®

Check for
updates

Steffen Hillemacher, RWTH Aachen University
Nicolas Jackel, FEV Europe GmbH
Christopher Kugler, FEV Europe GmbH
Philipp Orth, FEV Europe GmbH

David Schmalzing, RWTH Aachen University
Louis Wachtmeister, RWTH Aachen University 1 7

Artifact-Based Analysis for the
Development of Collaborative
Embedded Systems

One of the major challenges of heterogeneous tool environments is the management of
different artifacts and their relationships. Artifacts can be interdependent in many ways,
but dependencies are not always obvious. Furthermore, different artifact types are highly
heterogeneous, which makes tracing and analyzing their dependencies complicated. As
development projects are subject to constant change, references to other artifacts can
become outdated. Artifact modeling tackles these challenges by making the artifacts and
relationships explicit and providing a means of automated analysis. We present a
methodology for artifact-based analysis that enables analysis of heterogeneous tool
environments for architectural properties, inconsistencies, and optimizations.

© The Author(s) 2021 315
W. Béhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_17

El . E [HIK+21] S. Hillemacher, N. Jackel, C. Kugler, P. Orth, D. Schmalzing, L. Wachtmeister:

- Artifact-Based Analysis for the Development of Collaborative Embedded Systems.

= In: Model-Based Engineering of Collaborative Embedded Systems, pp. 315-331, Springer, Jan. 2021.
www.se-rwth.de/publications/

316 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

Consistency of artifacts
during the development
of collaborative
embedded systems

Heterogeneous
development tools

17.1 Introduction

The development of collaborative embedded systems (CESs) typically
involves the creation and management of numerous interdependent
development artifacts. Requirements documents specify, for example,
all requirements that a system under development must fulfil during
its lifetime, whereas system architectures written in the Systems
Modeling Language (SysML) [SysML 2017] enable system architects
to describe the logical and technical architecture of the system. If the
expected behavior of a system and its system components is also
modeled in SysML, automatically generated test cases [Drave et. al.
2019] can be used to check the system for compliance with these
system requirements. Accordingly, the creation of these development
artifacts extends through all phases of system development and thus
over the entire project duration. Consequently, different developers
create system requirements, architecture, and test artifacts using
diverse tools of the respective application domain. Therefore, all
artifacts must be checked for consistency, especially if further
development artifacts are to be generated automatically in a model-
driven approach. For example, it must be ensured that all components
that are mentioned in the system requirements or for which system
requirements exist are also present in the system architecture, or that
all values checked by a test case match the respective target values
specified in a requirement.

Another challenge that arises during the system development
process for CESs is the use of different tools during different stages of
the development project. As CESs aim to connect different embedded
systems handling multiple tasks in different embedding
environments, heterogeneous tools adapted to the application
domain are also used to create them. Furthermore, practice has
shown that new tools are introduced to the project and obsolete tools
are replaced by new ones to meet the challenges that arise in different
development phases whenever insuperable tool boundaries are
reached. As a result, the project becomes more complex, as new tools
create new dependencies and other relationships, a situation that is
amplified by the fact that the number of artifacts and their
interdependence during development constantly increases. Since
these various development tools are often incompatible with each
other and do not support relationship validation across tool

17.2 Foundations

317

interfaces, we use artifact-based analyses to enable automatic
analysis of relationships and architectural consistency.

To tackle this challenge, automating artifact-based analysis
enables the system developers to model the artifacts created during a
project and to automatically analyze their relationships and changes.
Artifact-based modeling and analysis were originally developed for
software projects [Greifenberg et. al. 2017], but with slight
modifications, also offer a decisive advantage in systems projects
[Butting et. al. 2018]. For this purpose, we introduce a project-specific
artifact model that is adapted to the individual project situation and
thus unambiguously models the artifacts that occur in the project and
illustrates their relationships.

We show the application of artifact-based analysis using the
example of DOORS Next Generation (Doors NG) and Enterprise
Architect (EA). To this end, we create an artifact model that models
the structure and the elements of the exports of Doors NG and EA, as
well as their relationships. We then describe the extraction of the
structures and prepare the extracted data for further processing by
analysis. For this purpose, we have developed static extractors that
convert the exports into artifact data (object diagrams). Finally, we
model analyses using Object Constraint Language (OCL) expressions
over the artifact metamodel and show the execution of corresponding
analyses on the extracted data.

17.2 Foundations

In this section, we present the modeling languages and model-
processing tools used in our approach and explain how to use these to
describe artifacts and artifact relationships.

umL/p

The UML/P language family [Rumpe 2016], [Rumpe 2017] is a
language profile of the Unified Modeling Language (UML) [UML 2015].
Due to the large number of languages involved, their fields of
application, and the lack of formalization, UML is not directly suitable
for model-driven development (MDD). However, it could be made
suitable by restricting the modeling languages and language
constructs allowed, as has been done in the UML/P language family. A
textual version of UML/P that can be used in MDD projects was
developed in [Schindler 2012]. The approach for the artifact-based

Artifact-based analysis

Application of artifact-
based analysis

A language profile of
UML

318 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

Class diagrams for
analysis

Object diagrams for
representing problem
domain concepts

analysis of MDD projects uses the languages Class Diagram (CD),
Object Diagram (OD), and OCL.

Class Diagrams in UML/P

Class diagrams serve to represent the structure of software systems
and form the central element for modeling software systems with
UML. CDs are primarily used to introduce classes and their
relationships. In addition, they can be used to model enumerations
and interfaces, associated properties such as attributes, modifiers,
and method signatures, as well as various types of relationships and
their cardinalities. CDs can be used in analysis to structure concepts
of the problem domain, in addition to being utilized to represent the
technical, structural view of a software system—that is, as the
description of source code structures [Rumpe 2016]. For this use case
in particular, [Roth 2017] developed an even more restrictive variant
of the UML/P class diagrams: the language Class Diagram for Analysis
(CD4A). In the approach presented here, CD4A is used to model
structures in model-based development projects.

Object Diagrams in UML/P

Object diagrams are suitable for specifying exemplary data of a
software system. They describe a state of the system at a concrete
point in time. ODs may conform to the structure of an associated class
diagram. Checking whether an object diagram corresponds to the
predefined structure of a class diagram is generally not trivial. For this
reason, [Maoz et. al. 2011] describes an approach for an Alloy-based
[Jackson 2011] verification technique. In object diagrams, objects and
the links between objects are modeled. The object state is modeled by
specifying attributes and assigned values. Depending on the intended
use, object diagrams can describe a required situation of the software
system or represent a prohibited or existing situation of the software
system. The current version of the UML/P OD language allows the
definition of hierarchically nested objects in addition to the concepts
described in [Schindler 2012]. This has the advantage that
hierarchical relationships can also be displayed as such in the object
diagrams. In this work, CDs are not used to describe the classes of an
implementation, but when used for descriptions on a conceptual level,
objects of associated object diagrams also represent concepts of the
problem domain instead of objects of a software system. In our
approach, object diagrams are used to describe analysis data — that
is, they reflect the current state of the project at the conceptual level.

17.3 Artifact-Based Analysis

319

OCL

OCL is a specification language of UML that allows additional
conditions of other UML languages to be modeled. For example, OCL
can be used to specify invariants of class diagrams, conditions in
sequence diagrams, and to specify pre- or post-conditions of methods.
The OCL variant of UML/P (OCL/P) is a Java-based variant of OCL. Our
approach uses the OCL/P variant only. OCL is used only in conjunction
with class diagrams throughout this approach. OCL expressions are
modeled within class diagram artifacts.

17.3 Artifact-Based Analysis

This section provides an overview of the solution concept developed
for performing artifact-based analyses and is largely based on the
work published in [Greifenberg 2019]. Before we present the analyses
in more detail, let us define the terms artifact, artifact model, and
artifact data.

Definition 17-1: Artifact

An artifact is an individually storable and uniquely named unit serving a
specific purpose in the context of a development process.

This definition focuses more on the physical manifestation of the
artifact rather than its role in the development process. It is therefore
less restrictive than the level characterization presented in
[Ferndndez et. al. 2019]. Furthermore, the definition requires an
artifact to be stored as an individual, referenceable unit. Nonetheless,
an artifact must serve a specific purpose within a development
process, making its creation and maintenance otherwise obsolete. On
the other hand, the definition does not enforce restrictions on the
integration of the artifact into the development process — that is, an
artifact does not necessarily have to be an input or output of a certain
process step. Artifacts may also exist only as intermediate or
temporary contributions of a tool chain. Moreover, the definition
largely ignores the logical content of artifacts. This level of abstraction
enables an effective analysis of the artifact structure taking the
existing heterogeneous relationships into account instead of
analyzing the internal structure of artifacts.

OCL for analysis

Artifact definition

320

Artifact-Based Analysis for the Development of Collaborative Embedded Systems

Role of an artifact

model and artifact data
within an MDD project

Artifact Model MDD Project
: _ " <
il %
! °
: g r
3 4—1—;-*: m n 0 z = =
KA
i i °
7 : p T data &2 Analyst
describes types of artifact extraction
®) L < correspondsTo
defines Atifact Artifact [uses
- model " data
Architect Stuchwes Software
Tool

Fig. 17-2: The role of an artifact model and corresponding artifact data within an
MDD project

An important part of the overall approach is the identification of the
artifacts, tools, systems, etc. present in the development process and
their relationships. Different modeling techniques provide a means to
make these explicit and thus enable model-based analyses. Figure 17-
2 gives an overview of the model-based solution concept. First, the
types of artifacts, tools, and other elements of interest, as well as their
relationships within a development process, must be defined. It is the
task of an architect, who is well-informed about the entire process, to
model these within an artifact model (AM). This model structures the
artifact landscape of the corresponding process or a development
project. The AM defines only the types of elements and relationships
and not the specific instances; therefore, this model can remain
unchanged over the entire life cycle of the process or the project
unless new types of elements or relationships are added or removed.
Moreover, once created, the model can be reused completely or
partially for similar projects.

Definition 17-3: Artifact model

The artifact model defines the relevant artifact types and the associated
relationship types of a development process to be examined.

Specific instances of an AM are called artifact data and reflect the
current project status. Ideally, artifact data can be extracted
automatically and saved in one or more artifacts.

17.3 Artifact-Based Analysis

321

Definition 17-4: Artifact data

Artifact data contains information about the relevant artifacts and their
relationships that exist at a specific point in time in an engineering
process. Artifact data are instances of a specific artifact model.

CD Language
((including OCL) (OD Language)

instanceOf instanceOf

correspondsTo

AM Artifact Data

Fig. 17-5: Modeling languages used for the artifact model and data

Artifact data are in an ontological instance relationship [Atkinson and
Kuhne 2003] to the AM. Each element and each relationship from the
artifact data correspond to an element or a relationship type of the
AM. The AM thus prescribes the structure of its artifact data. Figure
17-5 shows how this is achieved in terms of modeling techniques.
During the artifact-based analyses, artifact data represent the project
state at a certain point in time. Analysts and analysis tools use the
artifact data to understand the current project state, to check certain
relationships, create reports, and to check for optimization potential
within the project. Ultimately, the goal is to make the software
development process as efficient as possible. This approach is
especially suited for checking the consistency of the architecture of
model-driven software development projects or processes. It is
capable of handling input models, model-driven development (MDD)
tools—which themselves consist of artifacts—and handwritten or
generated artifacts that belong to the end product of the development
process. In such a case, the AM depends on the languages, tools, and
technologies used in the development process or project. Thus, it is
usually tailored specifically to a process or project.

Create Artifact Specify Artifact Artifact-Based
Model Data Analyses Analysis

Fig. 17-6: Steps for enabling artifact-based analysis

Relationship of artifact
data to an artifact
model

322 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

Enabling artifact-based
analysis

Creation of an artifact
model

Types of artifacts as
central elements of an
artifact model

In order to perform artifact-based analyses as shown in Figure 17-6,
the first step is to create a project-specific AM. Once created, analyses
based on the artifact data are specified. Finally, after the two previous
steps, the artifact-based analysis can be performed.

Artifact Model Creation
The first step of the methodology is the creation of an AM. The AM
determines the scope for specific analyses based on the
corresponding artifact data. It explicitly defines the relationships
between the artifacts and specifies prerequisites for the analyses.
Additionally, using the CD and OCL languages, model-driven
development tools can be used to analyze the artifact data.
[Greifenberg 2019] presents an AM core and a comprehensive AM for
model-driven development projects. If a new AM has to be created, or
an existing AM has to be adapted, the AM core and parts of existing
project-specific AMs should be reused. A methodology for this can also
be found in [Greifenberg 2019].

The central elements of any AM are the types of artifacts modeled.
All project-specific types of files are eligible to be contained in the AM.
Artifacts can contain each other. Typical examples of artifacts that
contain other artifacts are archives or folders in the file system.
However, database files or models containing artifacts are also
possible. Figure 17-7 shows the relevant part of the reusable AM core
as presented in [Greifenberg 2019].

artifact AM»
I* l* *I . | fproduces
Module > Aftifact |
A *‘[IrefersTo
contains
0..1

—<@ ArtifactContainer

/N

Archive Directory

Fig. 17-7: Reusable artifact model core as presented in [Greifenberg 2019]

17.3 Artifact-Based Analysis

323

In this part of the AM core, the composite pattern [Gamma et. al. 1995]
ensures that archives and folders can contain each other in any order.
Each type of artifact is contained in exactly one artifact container. If all
available artifact types are modeled, there is exactly one type of
artifact not contained by a container — that is, the root directory of
the file system. Furthermore, artifacts can contribute to the creation
of other artifacts (creates relationship) and they can statically refer to
other artifacts (refers to relationship). These artifact relationships are
defined as follows:

Definition 17-8: Artifact reference

If an artifact needs information from another artifact to fulfil its purpose,
then it refers to the other artifact.

Definition 17-9: Artifact contribution

An existing artifact contributes to the creation of the new artifact (to its
production) if its existence and/or its contents have an influence on the
resulting artifact.

Both relationships are defined in the AM as a derived association.
Therefore, it is vital to specify these relationships further in project-
specific AMs, while it is already possible to derive artifact data
analyses from these associations. The specialization of associations is
defined using OCL conditions [Greifenberg 2019], since the CD
language is not suitable for this.

Specification of Artifact Data Analysis
The second step of the methodology is the specification of project-
specific analyses that are based on the AM created in the first step.
These analyses must be repeatable and automated. They can be
implemented either by one person, an analyst or analysis tool
developer, or an analyst can specify the analyses as requirements for
the analysis tool developer, who then implements an appropriate
analysis tool. In this work, analyses are specified using OCL:

1. The CD language—used to model the AM—and OCL are well

suited for use in combination to define analyses.

Composition of artifacts
and artifact containers

Refining an artifact
model in project-specific
extensions

Specifying analysis of
artifact data

324 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

Executing artifact-based
analysis

Steps and components
for performing artifact-
based analysis

2. OCL has already been used to define project-specific analyses
in [Greifenberg 2019]. Reusing familiar languages and
providing example analyses shortens the learning curve for
analysts.

3. OCL has mathematically sound semantics that enable precise
analyses. Moreover, OCL expressions are suitable as input for a
generator that can automatically convert them into MDD tools,
thus reducing the effort for the developer of the analysis tool.

Artifact-Based Analyses

The third step in Figure 17-6 is the artifact-based analysis, which
executes the previously specified analyses. This step is refined into
five sub-steps. Each step is supported by automated and reusable
tools. Figure 17-10 presents these steps and the corresponding tools.

Confomit Accumula P
Extraction Merge Y - 3 Data
Check tion :

Analysis

Artifact E CD oD E
Container] Consistency e l
Extractor Checker
| ¥
v | e
Template oD oD Analsi
------- 4 E— E— ysis
Extractor Merger ‘ Accumulator Tools
.
Java oD
Extractor Verifier

Fig. 17-10: Steps of artifact-based analysis with tools (rectangles), resulting files (file
symbols), and the execution flow (directed arrows)

The first step in artifact-based analyses is to extract relevant project
data. If stored in different files, the data must be merged. The entire
data set is then checked for compliance with the AM. In the next step,
the data is accumulated based on the specification of the AM, to ensure
the derived properties are present for the last step, the artifact data
analysis. [Greifenberg 2019] presents a tool chain that can be used to
collect, merge, validate, accumulate, and finally, to analyze artifact
data. The tool chain supports all sub-steps of the artifact-based
analysis. The individual steps are each performed by one or more
small tools that, combined, form the tool chain. The tools shown in
Figure 17-10 are arranged according to the order of execution of the
tool chain. The architecture as a tool chain is modular and adaptable.
The primary data format for exchanging information between tools is

17.4 Artifact Model for Systems Engineering Projects with Doors NG and Enterprise Architect 325

object diagrams. New tools can be added without having to adjust
other tools. Existing tools can be adjusted or removed from the tool
chain without the need to adjust other tools. Therefore, when using
the tool chain in a new project, project-specific adjustments usually
have to be made. The architecture chosen supports the reuse and
adaptation of individual tools.

17.4 Artifact Model for Systems Engineering Projects
with Doors NG and Enterprise Architect

To demonstrate the practicability of the artifact-based approach, this Artifact-based analysis
section describes an example of artifact-based analysis of systems ©f Doors NG and
engineering projects with textual requirements and logical Enterprise Architect
architecture components in SysML. Doors NG and Enterprise

Architect are commonly used tools for these purposes. Doors NG

enables engineers to define and maintain requirements in a

collaborative development environment. Enterprise Architect is a

solution for modeling, visualizing, analyzing, and maintaining systems

and their architectures. Standards, such as UML and SysML, are

supported. In our example, we focus on the definition of requirements

in Doors NG and the modeling of systems and their components in

Enterprise Architect. Here, system components are modeled with

Internal Block Diagrams (IBD) and corresponding Block Definition

Diagrams (BDD) from the SysML standard.

17.4.1 Artifact Modeling of Doors NG and Enterprise Architect

The creation of the artifact model for this example includes the Creation of an artifact
identification of artifact types used in the project as a first step. Since, ~ Model for Doors NG and
in this example, we consider two tools whose files cannot be read Enterprise Architect
directly via an open standard, suitable exchange formats must first be

identified. The XML-based XMI exchange format, which is supported

by Enterprise Architect as a tool-independent exchange format, is

therefore taken as the exchange format for Enterprise Architect.

Furthermore, a ReqlF export is used for the cloud-based data format

of Doors NG for information exchange, which also enables a cross-tool

exchange of requirements. The challenge here is that the

requirements stored in the development tools are no longer present

as individually stored units, but rather as what are referred to as

artifact containers (cf. Figure 17-7), in which several development

artifacts— which must first be identified and extracted for subsequent

326 Artifact-Based Analysis for the Development of Collaborative Embedded Systems
analysis—have been combined. Once these basic artifact types
(named “EA Export” and “Doors Export” in the artifact model in Figure
17-11) have been identified, the relevant information contained in the
exports must be modeled and related.
,
AN JAN
‘ EA ‘ ‘ DoorsNG ‘ /—-{ EAExport | ‘ DoorsExport «
export 1 lcontains contains |,
| Model | [Module
coniains | contains 1.+
Lol EAElement DoorsElement
/\ /\ /\
| .o | | BOD | | IBDElement | » ArchElement
JAN fulfills| subchapter :
*+ source 1 * norts 0.1 ' .
Flow Port Part Chapter
* target 1 8
0.1 0.1 fo.1 fulfills P 2
allocateTo Requirement |—
IrefersTo
Fig. 17-11: Artifact model for exports of Doors NG and Enterprise Architect, as well as
their relationships
Modeling exports of ~ In the XMI export created by Enterprise Architect, exactly one model
Doors NG and E"te;p”se for the overall system modeled in the EA project is exported. This
Architect

model contains any number of diagrams and elements (named
Diagram and EAElement in the artifact model of Figure 17-11).
Furthermore, each diagram has any number of elements, represented
in the class diagram of the artifact model under consideration by the
consistsOf association. Since the example considered is limited to
architectural elements, not all diagram types of SysML are modeled in
the artifact model; only the structural diagrams relevant for the logical
architecture are modeled in the form of the Internal Block Diagram
(IBD) and the Block Definition Diagram (BDD). A decisive advantage
of the artifact models is that not all possible artifacts have to be
modeled; the model can be limited to the artifacts relevant for the
analysis. Similarly, only signal flows and parts—as the internal
representation of ports in EA—are defined for the example under
consideration. In the BDD, only the block is modeled as a relevant
diagram element and all relationships in the BDD are no longer
displayed. The ReqlF export of Doors NG is also represented as an
artifact in the artifact model. Each DoorsExport contains at least one,

17.4 Artifact Model for Systems Engineering Projects with Doors NG and Enterprise Architect 327

but otherwise any number of modules that also contain one or more
DoorsElements. In this context, a mixture of Chapters, Requirements,
and ArchElements serve as specialized DoorsElements.

17.4.2 Static Extractor for Doors NG and Enterprise Architect
Exports

Static extraction of

To verify automatically that the current project complies with the
y y proj p artifact data

architecture defined, all elements of the artifact model must be loaded
from the two exports. To achieve this, we implemented static
extractors, which parse the exports and load relevant information into
our internal representation. For this purpose, the extractor
transforms relevant data into an object diagram — that is, the artifact
data. This workflow is shown in Figure 17-12. The artifact data
extracted from the tool exports is tool-specific at first and needs
further consolidation. This means that tool-specific artifact data is
merged into a consistent data set (object diagram): the artifact data of
the system. During this step, associations between objects of different
diagrams are constructed (extracted from name references) and
objects of the same type and name are merged automatically.
Relationships between elements of different exports are constructed
during this step. The resulting object diagram gives a view of the
current project architecture and enables analysis.

Extraction Consolidation Analysis

© O->@> 0o - B
mlo o @ o =
@ E:> E> D = Artifact Results

data of the
system

Tool-specific
artifact data

Fig. 17-12: Tool chain workflow from artifact data extraction to analysis

17.4.3 Analysis of the Extracted Artifact Data

After the extraction and consolidation of artifact data, artifact-based Analysis of extracted
analyses can be defined on the previously constructed project-specific ~ 9rtifact data
artifact model and executed on the merged and consolidated artifact

data. However, analyses are executed only on artifact data that

conforms to the artifact model. Therefore, in a first step, the tool chain

328 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

checks whether the artifact data is an instance of the artifact model
and executes further well-formedness constraints. If the merged
artifact data is well-formed and conforms to the artifact model, then
defined analyses are executed on the artifact data. We model analyses
as constraints of OCL over the defined artifact model. This enables us
to define analyses without deeper programming experience and to
execute analyses automatically on the extracted data without having
knowledge of the internal data structure of the analysis tool. To this
end, our tool chain transforms modeled analyses into machine code
and executes this code on the internal representation of the artifact

data.
oD
s1:SignalFlow ri:Requirement r2:Requirement
type = INPUT description = description =
name = "s1" "This is s1" "This is s2"
T refersTo
allocateTo
P
source N pil:Part p2:Part

context SignalFlow s, Part p, Requirement r inv:
r.refersTo == s implies r.description.contains(s.name) &&
((s.type == INPUT && r.allocateTo == s.target) | |
(s.type == OUTPUT && r.allocateTo == r.source)) 0

Fig. 17-13: Example of artifact data invalidating a defined analysis constraint

An example of modeling An example of extracted artifact data invalidating an OCL analysis
analysis using OCL constraint is given in Figure 17-13. The constraints define that the
constraints 1 ame in the description of a requirement matches the name of a signal
flow the requirement refers to, and that the part allocated to the
requirement must be the target of this signal flow. In the artifact data
extracted, however, the part p1 allocated to the requirement r1 is the
source of the referred signal flow s1. The execution failure of the
analysis is noted in the analysis report and implies required changes
for project well-formedness. Changing the part p1 to be the target of
signal flow s1 instead of its source validates the analysis as shown in
Figure 17-14. The automated test in both sources checks that the
models are consistent in both tools during the whole development
process. The check throws an error if an inconsistency occurs, thus
notifying developers of potential problems.

17.5 Conclusion

329

oD
s1:SignalFlow r1:Requirement r2:Requirement
type = INPUT description = description =
name = “s1" "This is s1" "This is s2"
‘|‘ refersTo
allocateTo
)
target N pl:Part p2:Part

context SignalFlow s, Part p, Requirement r inv:
r.refersTo == s implies r.description.contains(s.name) &&
((s.type == INPUT && r.allocateTo == s.target) | |
(s.type == OUTPUT && r.allocateTo == r.source))

Fig. 17-14: Example of artifact data validating a defining analysis constraint

17.5 Conclusion

Model-driven development aims to reduce the complexity in the
development of collaborative embedded systems by reducing the
conceptual gap between problem and solution domain. The use of
models and MDD tools enables at least a partial automation of the
development process. In larger development projects involving
several different domains in particular, the huge number of different
artifacts and their relationships makes managing them difficult. This
can lead to poor maintainability or an inefficient process within the
project. The goal of the approach presented is the development of
concepts, methods, and tools for artifact-based analysis of model-
driven software development projects. Here, the artifact-based
analysis describes a reverse engineering methodology that enables
repeatable and automated analyses of artifact structures. In this
approach, UML/P provides the basis for modeling artifacts and their
relationships, as well as specifying analyses. A combination of the
UML/P class diagrams and OCL is used to create project-specific
artifact models. Additionally, analysis specifications can be defined
using OCL while artifact data that represents the current project state
is defined using object diagrams, which are instances of the artifact
model. This allows the consistency between an AM and its artifact data
to be checked. The models are specified in a human-readable form but
can also be processed automatically by other MDD tools. The example
presented for artifact-based analysis of Enterprise Architect and
Doors NG shows the practicability for checking the consistency of
artifacts across heterogeneous tools. Here, automated analyses enable
system architects to check the conformity of specified components to

Employing artifact-
based analysis to
facilitate model-driven
development

330 Artifact-Based Analysis for the Development of Collaborative Embedded Systems

requirements and enable requirement engineers to trace the impact
of changes on the specified architecture.

17.6 Literature

[Atkinson and Kuhne 2003] C. Atkinson, T. Kuhne: Model-Driven Development: A
Metamodeling Foundation. In: IEEE Software, 2003, pp. 36-41.

[Atzori et. al. 2010] L. Atzori, A. Iera, G. Morabito: The Internet of Things: A Survey. In:
Computer Networks, 2010, pp. 2787 - 2805.

[Brambilla et. al. 2012] M. Brambilla, J. Cabot, M. Wimmer: Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers, 2012.

[Butting et. al. 2018] A. Butting, T. Greifenberg, B. Rumpe, A. Wortmann: On the Need
for Artifact Models in Model-Driven Systems Engineering Projects. In: Software
Technologies: Applications and Foundations, Springer, 2018, pp. 146-153.

[Chenget. al. 2015] B. H. C. Cheng, B. Combemale, R. B. France, J. Jézéquel, B. Rumpe: On
the Globalization of Domain-Specific Languages. In: Globalizing Domain-Specific
Languages. LNCS 9400, Springer, 2015, pp 1-6.

[Drave et. al. 2019] I. Drave, T. Greifenberg, S. Hillemacher, S. Kriebel, E. Kusmenko, M.
Markthaler, P. Orth, K. S. Salman, J. Richenhagen, B. Rumpe, C. Schulze, M. von
Wenckstern, A. Wortmann: SMArDT Modeling for Automotive Software Testing. In:
R. Buyya, J. Bishop, K. Cooper, R. Jonas, A. Poggi, S. Srirama: Software: Practice and
Experience. 49(2), Wiley Online Library, 2019, pp. 301-328.

[Ebert and Favaro 2017] C. Ebert,]. Favaro: Automotive Software. In: IEEE Software,
Vol. 34,2017, pp. 33-39.

[Fernandez et. al. 2019] D.M. Fernandez, W. Bohm, A. Vogelsang,]. Mund, M. Broy, M.
Kuhrmann, T. Weyer, 2019. Artefacts in Software Engineering: A Fundamental
Positioning. In: Software & Systems Modeling, 18(5), pp. 2777-2786.

[France and Rumpe 2007] R. France, B. Rumpe: Model-Driven Development of Complex
Software: A Research Roadmap. In: Future of Software Engineering (FOSE '07),
2007, pp. 37-54

[Gamma et. al. 1995] E. Gamma, R. Helm, R. Johnson,]. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Greifenberg 2019] T. Greifenberg: Artefaktbasierte Analyse modellgetriebener
Softwareentwicklungsprojekte. In: Aachener Informatik-Berichte, Software
Engineering, Band 42, Shaker Verlag, 2019 (available in German only).

[Greifenberg et. al. 2017] T. Greifenberg, S. Hillemacher, B. Rumpe: Towards a
Sustainable Artifact Model: Artifacts in Generator-Based Model-Driven Projects. In:
Aachener Informatik-Berichte, Software Engineering, Band 30, Shaker Verlag,
2017.

[Jackson 2011] D. Jackson: Software Abstractions: Logic, Language, and Analysis. MIT
press, 2011.

[Krecmar et. al. 2014] H. Krcmar, R. Reussner, B. Rumpe: Trusted Cloud Computing.
Springer, Switzerland, 2014.

17.6 Literature

331

[Lee 2008] Edward A. Lee: Cyber-Physical Systems: Design Challenges. In 11th IEEE
International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), 2008, pp. 363-369.

[Maoz et. al. 2011] S. Maoz, J. O. Ringert, B. Rumpe: An Operational Semantics for
Activity Diagrams using SMV. In: Technical Report. AIB-2011-07, RWTH Aachen
University, Aachen, Germany, 2011.

[Miiller et. al. 2016] Markus Miiller, Klaus Hérmann, Lars Dittmann, Jérg Zimmer:
Automotive SPICE in der Praxis: Interpretationshilfe fiir Anwender und
Assessoren. 2edition, dpunkt.verlag, 2016 (available in German only).

[OCL 2014] Object Management Group: Object Constraint Language, 2014.
http://www.omg.org/spec/OCL/2.4; accessed on 04/30/2020.

[Roth 2017] Alexander Roth: Adaptable Code Generation of Consistent and
Customizable Data-Centric Applications with MontiDex. In: Aachener Informatik-
Berichte, Software Engineering: Band 31, Shaker Verlag, 2017.

[Rumpe 2016] B. Rumpe: Modeling with UML: Language, Concepts, Methods. Springer
International, 2016.

[Rumpe 2017] B. Rumpe: Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, 2017.

[Schindler 2012] M. Schindler: Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P. In: Aachener Informatik-Berichte, Software Engineering. Band 11.
Shaker Verlag, 2012 (available in German only).

[SysML 2017] Object Management Group. OMG Systems Modeling Language, 2017.
http://www.omg.org/spec/SysML/1.5/; accessed on 04/30/2020.

[UML 2015] Object Management Group. Unified Modeling Language (UML), 2015.
http://www.omg.org/spec/UML/; accessed on 04/30/2020.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder.

