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Architectures for Dynamically
Coupled Systems

Dynamically coupled collaborative embedded systems operate in groups that form,
change, and dissolve—often frequently—during their lifetime. Furthermore, the context
in which collaborative systems operate is a dynamic one: systems in the context may
appear, change their visible behavior, and disappear again. Ensuring safe operation of
such collaborative systems is of key importance, while their dynamic nature poses
challenges that do not occur in “classical” system design. This starts with the elicitation
of the operational context against which the system will be designed—requiring capture
of its dynamic nature—and affects all other design phases as well. Novel development
methods are required, enabling engineers to deal with the challenges raised by
dynamicity in a manageable way. This chapter presents methods that have been
developed to support engineers in this task. The methods cover different viewpoints and
abstraction levels of the development process, starting at the requirements viewpoint,
and glance at the functional and technical design, as well as verification methods for the
type of systems envisioned.
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Challenges addressed

5.1 Introduction

Dynamically coupled collaborative embedded systems (CESs) have to
function safely in collaborative system groups (CSGs) that form,
change, and dissolve during the lifetime of the CESs. The members of
a vehicle platoon, for example, typically change frequently. CESs and
the corresponding CSGs must therefore be able to deal with internal
dynamics as well as those of the operational context. Here, dynamics
refers to a specific notion of the term that subsumes the following
aspects:

Structure: the elements of the CES or CSG under consideration and
their interaction and dependencies. For example, elements of the
context can become part of the system group and emerge from it by
leaving the group.

Function/behavior: the services offered by the CES or CSG, and the
dependencies to the services in its context.

The above-mentioned aspects are indeed closely related. Systems
form system groups in order to achieve overarching goals (as defined
in Chapter 2). Vehicles, for example, may join a platoon in order to
optimize space usage and traffic flow, which changes the internal
system structure of the platoon. A car that drives in a platoon requires
functions—such as certain coordination functions—that are different
to those needed to drive independently. The functional aspect also
concerns the visible behavior of the context, which may also
dynamically change. CESs and CSGs must be able to change their
behavior accordingly. In some application domains, such as in the
traffic example, this aspect subsumes the perceived “intention” of
other traffic participants.

This chapter focusses on three challenges that arise from
dynamicity for the development of collaborative embedded systems.
First, systems are typically designed against a context that impacts the
definition of requirements, for example, the temperature range in
which the system must be able to work. Defining such specifications
becomes a complex task for dynamically coupled systems. The
complexity results not only from the context dynamics, with changing
context structures and behavior, but also from the system itself, which
may dynamically become part of a larger system (group) and leave it
again. At the end of this progression, we are faced with the problem of
designing systems against open contexts that cannot be fully
anticipated at design time.
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Dynamicity also raises the challenge of managing design
complexity. Starting with the functional design, how can we develop a
functional architecture that reflects the dynamicity of the system
context as well as the structure and behavior of potential CSGs in
which the CES is intended to work? Dynamicity calls for novel
architectural patterns, enabling engineers to deal with this kind of
complexity. Finally, such architectures should also support validation
and verification tasks — for example, by enabling compositional
reasoning. As the class of systems considered is that of safety-critical
systems, corresponding analysis methods that support engineers in
assessing important safety properties should be applicable in a
scalable way.

This chapter presents methods that support engineers in
designing dynamically coupled systems. The chapter is structured
along the established design framework developed in the SPES
projects [Pohl et al. 2012], [Pohl et al. 2016], as depicted in Figure 5-
1. Section 5.2 introduces a contract-based modelling method for the
specification of the behavior of collaborative system groups, covering
collaboration and interface aspects of CSGs and their expected
behavior. Section 5.3 elaborates on the functional design. The
approach enables the modelling of refined function architectures with
operation modes that reflect the dynamicity of context and system.
Section 5.4 presents a novel approach for incrementally constructing
system architectures that can function in dynamic contexts. Finally,
Section 5.5 presents an analysis method for the safety aspect of
collaborative systems at the logical design level. The analysis method
allows assessment of the impact on safety of failures of the
communication medium. The methods are exemplified in the context
of the “Vehicle Platooning” and “Autonomous Transportation Robots”
uses cases (cf. Chapter 1).

Functional
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Requirements
Viewpoint

Logical
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Chapter structure
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csG Functlonal
Architecture Analvsls
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Model
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CES Function CES Function SWC
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Modeling Architecture Architecture
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Fig. 5-1: Method overview
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Collaboration
specification metamodel

5.2  Specification Modeling of the Behavior of

Collaborative System Groups

This chapter introduces a modelling approach for a formal contract-
based specification of collaborative open systems.

CSGs are formed by the CESs involved. While a CSG as a whole
exposes behavior, follows its goals, and interacts with the
environment, its behavior is actually implemented by the systems that
make up the CSG. This implies that each system must be implemented
correctly with respect to the required group behavior. To decide
whether a CES fulfills its obligations in a collaborative system group,
we choose the concept of contracts. Contracts, as presented in this
approach, define the rights and obligations of the individual
collaborative systems based on protocol state machines for peer-to-
peer communication and formal scenario specifications of the group
behavior. We want these contracts to be formal so that they can be
used during CES operation but also already support automatic
verification and simulation from a requirements perspective. This
also implies that the modeling approach defines execution semantics
so that specifications are executable.

The modelling approach covers different aspects that are relevant
for specifying CSGs and the collaborative behavior of the CESs
involved. The key concepts enable the scenario-based definition of
collaboration structure and behavior. The metamodel in Figure 5-2
shows the main modelling concepts and their relationships, which are
discussed in the following.

Collaboration

Specification

Scenario Behavior |-
Scenario
Statechart
Scenario
Operation
Protocol State
Machine

1 behavior of B

behavior of

System Type ‘ ’System Interface

1 1
System Port  -nterface
1 1

Collaboration
Scenario Type
1

*

instance of B>

System Instance

System

provided
Connection e

Fig. 5-2: Collaboration metamodel

These modeling concepts are implemented using a collection of
integrated domain-specific modeling languages (DSLs). These consist
of textual, grammar-based languages and the graphical notation of
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statecharts. The concrete tools used are YAKINDU statecharts and
slang (system language) [Yakindu 2019], together with Franca IDL
[Franca 2019]. Independently of this concrete choice of modeling
languages and tools, the underlying concepts can also be adapted to
standard system modeling languages, such as SysML, or by
proprietary modeling approaches. The concepts are exemplified by
the “Collaborative Adaptive Cruise Control (CACC)” car platooning use
case (see Chapter 1).

The core approach for modeling collaboration within a CSG is
based on formal specifications of scenarios. Scenarios constitute a
natural way of specifying inter-object, or in our scope, inter-system
behavior [Harel and Marelly 2003]. A CSG consists of a set of CESs and
a set of relationships between these systems. This is specified by
collaboration scenario types. The specification of such a type is
illustrated by Figure 5-3. The example shows a platoon of three
vehicles that form a CSG. Each CES involved is represented by a system
instance of system type PlatoonMember. The direct communication
relationships between the CESs are specified as system connections.

scenario PlatoonOfThree { - ! - N N
instance leadVehicle : PlatoorMember---=""_ .--" | .-° N | v

instance midVehicle : PlatoonMember- - = -~ : : PR

instance backVehicle : PlatoonMember - = =~ r -
{

connect backVehicle.asFollower to midVehicle.asLeader- . _ A A

connect midVehicle.asFollower to leadVehicle.asLeader--. = .

Fig. 5-3: Example CSG structure

For this type of collaboration scenario structure, a specification
defines a set of behaviors. In contrast to other scenario specifications,
such as use case descriptions or standard sequence charts, CSG
specifications following this approach must be executable and thus
require a high degree of formalism. To support this, two types of
behavior models are used: scenario operations and scenario
statecharts. A scenario operation is a simple procedural model for
specifying dynamic processes within a CSG. Figure 5-4 gives an
example of a CSG reconfiguration within the vehicle platoon that adds
and integrates vehicles.

Collaboration scenario
specification
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@scenario op joinToSingleLead() {

// first place a car into the scenario
midVehicle.location = Coordinate.new (0, 0)
midvehicle.velocity = 50

assert notConnected( midVehicle.asFollower

// let the time proceed without creating a platoon

time.proceed( minutes(5) )
assert notConnected( midVehicle.asFollower

assert ( midVehicle.location.X == 50*60*5
// place second car 200 meters in front of first car
leadVehicle = PlatoonMember.new

leadVehicle.location = Coordinate.new(midVehicle.location.X + 200, 0)

leadVehicle.velocity = 40

ose to the second car

ol

cation.X - midVehicle.location.X < 100 )
assert ( midVehicle.asFollower == leadVehicle.asLeader

is cruisin ith the

// ity an

time.proceed( seconds (20) )
assert (midVehicle.velocity == leadVehicle.velocity
assert (leadVehicle.location.X - midVehicle.location.X == 55

}

Fig. 5-4: Reconfiguration example for platoon creation

CSG reconfigurations apply changes to the coupling of CESs and are
thus a way to capture the dynamics. Basically, all modifications such
as adding, removing, connecting, and configuring CES instances can be
described. Moreover, time is an explicit concept that can be used to
control temporal aspects of the scenario. Finally, assertions check the
proper execution of a scenario.

Scenario statecharts (introduced in [Marron et al. 2018]) adapt the
concepts of scenario-based modeling (SBM). SBM is an approach that
was first presented in the form of the graphical formalism of life
sequence charts (LSC) [Damm and Harel 2001], [Harel and Marelly
2003]. Scenario-based statecharts extend the formalism of statecharts
[Harel 1987] with SBM concepts. A scenario statechart (SSC) (see
Figure 5-2) describes a scenario that covers a single behavioral aspect
of the system group. Different scenario statecharts can be combined
to obtain a behavioral description of the system group. The
synchronization between these scenarios is based on events. In each
state, an SSC can request or block events. All events that are requested
by at least one scenario and are not blocked by at least one other
scenario are called enabled. One or more enabled events can be
selected and activated by a central event selection mechanism. All
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scenarios that requested or waited for such an event will be notified
and can proceed to the next scenario state.

leadVehicle.obstacleDetected

Idle [active (move_forward.maoving) breaking
*— ¥ block
-4 leadVehicle.move,
after 2s / midVehicle.move,
assert backVehicle.mowve
leadVehicle.velocity == 0
B8 midVehicle.veloci 0 request
B8 backVehide.velocity == leadVehicle.break,

3 midVehicle.break,
backVehicle.break

waiting ] il lurk
. | every 20s " request leadVehicle.obstacleDetected
[ leadVehicle.velocity > 0] ¢

llead\.l'ehicl e.obstacleDetected

cross drive way
reguest leadVehicle.obstacleRemoved

leadvehicle.cbstacleRemoved

Fig. 5-5: Emergency stop and obstacle detection scenarios

Figure 5-5 illustrates two example scenarios, each defined using a
simple scenario state chart. The first specifies an emergency stop
based on an obstacle. The second specifies the obstacle detection.
Both refer to the platooning CSG but are not directly dependent on
each other.

All properties of a CES that are relevant for the CSG specification
are specified by a system type. As an example, PlatoonMember (Figure
5-6) reacts to incoming events and defines a set of system properties
such as velocity and frontDistance. It also defines direct collaboration
relationships to other vehicles using system ports. The system port
asLeader provides a CACControl interface and asFollower requires it.

CACControl is a system interface that defines the elements that can
be used in the interaction (or communication) between two systems.
This concept adapts the well-known concepts of interface and
protocol specifications, as the modeling approach assumes that
communication protocols will form the basis for inter-CES
communication.

System type
specification

System interface
specification
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System interface
contracts

CSG contracts validation

@system type PlatoonMember { @system interface CACControl {
out event leadReady
@provides port asLeader : CACControl= = = = _ > in event followerReady
@requires port asFollower : CACControl S .- out event requestAcceleration: real
refers to in event confirmAcceleration : real
in event obstacleDetected 3
in event move
in event brake ff-
property velocity : real sp'e'm les
property ready : boolean o= =
property frontDistance : real “
} CACControl

specifies

CACControl () <€ = = = =

Fig. 5-6: System type and system interface example

System interfaces define the elements that exist in the interface and
are used by the interaction of CESs. The proven concept of protocol
state machines (PSMs) [Franca 2019] allows specification of the
dynamic behavior of system interfaces and can be used to ensure that
the communication peers involved interact in the proper order.

The behavioral part of a CSG collaboration specification is made up
of all scenario operations, scenario statecharts, and PSMs. The
scenario-based modeling approach is inherently incremental, which
involves incremental specification, development, and integration of
dynamically coupled CSGs and CESs. Additionally, all behavior models
are inherently executable. All models described can be jointly
executed within a simulation without any further behavioral model.
This already serves as a basis for analysis methods that check the
properties and consistency of the specification itself. Moreover, if the
specification models of the CSG are executed together with the
behavioral models of the CESs (e.g, using co-simulation), then
conformity and consistency of the CESs with the CSG specification can
be checked automatically. This allows a complete specification of the
collaborative behavior of a CSG for all known aspects in a dynamic
context, which is a precondition for the verification of the CES
behavior within a CSG. Comparable to PSMs that define an interaction
contract for single interaction relations, the collaboration scenarios
defined by a CSG specification form the collaboration contract for all
CESs involved.
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5.3 Modeling CES Functional Architectures

The functional architecture of a CES establishes the link between the
requirements viewpoint and the system design (cf. Figure 5-1). A
functional architecture “integrates the system requirements in a
structured, implementation independent system specification” [Pohl
etal, 2012]. It should therefore reflect all aspects discussed in Section
5.2, including dynamicity. The basic idea of the modelling approach
presented in this section is to explicate relevant system states in the
functional architecture model in order to enable consistency to be
established between the functional model and the dynamic aspects of
the CSG specification — that is, the functional design of the individual
CESs realizes the dynamic aspects specified in the requirements
viewpoint.

‘ System ‘ | Behavior | ‘ Interface ‘

has ¥
Functional Function
Architecture

Collaboration| changes P
Function

System
Function

contributes to I

4 is implemented by

Legend

‘csc Function
Concept mapped from

| is realized by b | Requirements Viewpoint]
Relation mapped from

Regquirements gEIEWpDInt >

Fig. 5-7: CrESt functional architecture metamodel — excerpt

‘ CES Function

The approach conforms to the metamodel defined with the SPES
modelling framework [Pohl et al. 2012], which has been extended in
CrESt in order to reflect the need to design (dynamic) collaborative
systems as well (cf. Chapter 4). An excerpt of this metamodel is
depicted in Figure 5-7. It reveals the relationship between the
concepts discussed in Section 5.2 (bold boxes) and the functional
elements. The specified system behavior, for example, will be
allocated to the behavior of a function. The collaborative behavior
specification (cf. Figure 5-5) is allocated to collaboration functions of
the CESs, while the collaboration structure and their relationships
determine the way in which CSG functions are realized by CES
functions. The figure also shows the relationship of the functional
architecture to the goals a CES or CSG is aiming for.

Functional architecture
metamodel
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Functional architectures
for dynamic systems

System scenario —
example

Modelling functional architectures of dynamic systems requires
paying particular attention to the relationships between system
functions and goals. As introduced in the Chapter 2 collaboration
functions determine the goals a CES (or CSG) is following at a
particular point in time. The goals in turn are implemented by the
system functions of the individual CESs. Dynamic changes in the CES
(and CSG) are reflected by changes in the collaboration functions, and
in turn in the system functions. The dynamic interplay between goals
and functions requires changes to happen in an orchestrated way. The
individual system functions must switch their internal behavior
consistently in order to be able to contribute to the changing goals.
The proposed modelling approach allows the specification of such
functional dynamics in terms of state diagrams, where engineers can
explicate the dynamicity of functional behavior and the interaction
between functions to coordinate changes. The approach then enables
analysis of whether dynamic changes actually happen in a consistent
way with respect to the scenarios specified.

5.3.1 Scenario

The approach is exemplified by the “Autonomous Transport
Robots” use case (cf. Chapter 1). Figure 5-8 shows a simple scenario
with a single production machine and two transport robots, which
represent the CSG being designed. Each robot is a CES in this CSG. The
goal of the CSG is to transport goods between machines as well as
storage locations, following some optimization objectives (cf. Chapter
9). Transport requests from the machines are distributed among the
individual robots.

The scenario specification in Figure 5-8 is similar to the one
introduced in Section 5.2 but applied to a different use case. The
scenario consists of a simple sequence of snapshots that represent a
particular state of the system and its context. Both robots initially do
not perform transport tasks. This is indicated by a wait state assigned
to the robots. In the second step of the scenario, the machine issues a
request for a transport task, such as the delivery of a required
resource, or the pickup of goods produced by the machine. This state
is depicted on the right-hand side of the figure. The third step in the
scenario specification would be that one of the robots (here robot2)
takes over responsibility for the task.



5.3 Modeling CES Functional Architectures

105

This type of scenario typically also consists of a specification of the
interaction between the individual objects, such as sequence charts
defining messages that are communicated, causing a scenario to
transition from one snapshot to another. In our scenario, this is
exemplified by single events. In Figure 5-8, the events are written in
boldface. For example, the scenario transitions from the first to the
second snapshot as a result of the occurrence of a newTask event.

wait(robot1)
wait(robot2)

newTask machine
wait(robot1)
wait(robot2) destination
request(machine,task) lmquests
biddingWin

task

wait(robot1)

wait(robot2) 5
hasToFulfill(robot2,task)
destinationReached @
wait(robot1) k

{ movesTowards(robot2,machine) : | wait

: hasToFulfill(robot2,task) 4
destinationReached

; wait(robot1)

movesTowards(robot2,destination)

" hasToFulfill(robot2,task)

robot2

Fig. 5-8: Autonomous transport robots use case — example scenario

The scenario actually exhibits the dynamic nature in the context of
the CSG “Transport Robots.” Although a transport task is not a
physical entity, it corresponds to a transported product as a physical
object that appears in the context of the transport robots. Products
and other relevant dynamic aspects, such as temporary roadblocks
and the addition of robots to the fleet, have been omitted to keep the
discussion simple.

5.3.2 Modelling

The modelling approach as depicted in Figure 5-9 is consistent with
[Vogelsang 2015] and employs the concepts for a structured mapping
of the collaboration specification to the functional architecture. The
top part shows the functional architecture of a transport robot,
consisting of the functions Planning & Control, Bidding, and Dynamic
Control. The key element of the mapping is shown in the angled boxes.
They represent the system states and object relations derived from
the specification, which are relevant for the individual functions. The
Bidding function realizes the collaboration among all robots by



106

Architectures for Dynamically Coupled Systems

negotiating which robot takes over a transport task, and therefore
decides about the hasToFulfill relationship of a task. The Dynamic
Control function is responsible for navigating the robot safely through
the factory, and thus realizes states such as wait and movesTowards.
The bottom part of Figure 5-9 shows the realization of the
functions in the logical architecture. It has been modelled in terms of
a SysML Internal Block Diagram, which has been chosen as the
implementation language. The Planning & Control function maintains
the “global” state of the transport robot. Figure 5-9 also shows how
the interactions between the individual functions are realized,
modelled by events that are transmitted between the interfaces along
the connections. For example, an incoming newTask event to the

wait
hasToFulfill

Planning and

movesTowards Control Function

Dynamic Control

hasToFulfill

Bidding Function Funetion

TransportRobot

newTask : Event taskDone : Event

Planning & Control finishedTask : Event

!

newBiddingTask : Event

1 [

biddingResult : Event start : Event |destl:Event |dest2:Event

Bidding

L Lt

Dynamic Control

-+

Fig. 5-9: Robot top-level functional architecture (top), and its realization in the logical
viewpoint

Planning & Control function causes a request to the Bidding function,

which will eventually come back with the result of the respective

bidding process. This in turn causes the Planning & Control function

to request state changes of the Dynamic Control function in order to

perform the required operations.
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Planning & Control

requests

r = newTask(task) / requests(task);time(1,1) —_—
e ‘ wait result [result==loose] / wait(); time(1,1) biddingProcess

J

result [result==win] /
hasToFulfill(task);
time(1,1)

@ B hasToFulfill '
dynamicControl

.~ @@

finishedTask(task) /
not hasToFulfill(task);
wait();
time(1,3)

Fig. 5-10: Planning & control — state-machine diagram

Typically, a large number of scenarios are specified for reasonably
complex systems and contexts. Moreover, the individual functions will
be further decomposed along the modelling process. Supporting
engineers in ensuring that the architecture designed adheres to the
requirements specified in the scenarios is of crucial importance in
order to avoid design errors. Figure 5-10 shows how this can be
achieved with the proposed modelling approach by explicating
internal state changes of the individual functions in terms of SysML
state machine diagrams. While state machines are defined mainly to
model behavior, they also provide a natural way to specify dynamicity
in functional architectures and the interaction between functions in
order to coordinate state changes throughout the CES architecture.

However, relating individual states with the system states
specified in the scenarios, would require a great deal of effort and
becomes highly complex— for example, if only combinations of states
of different functions match particular scenario states. A more
convenient and suitable way is to identify interaction points, or more
precisely, transitions, in the state machines, with corresponding state
changes in the scenarios. This is shown in Figure 5-10. The angled
boxes denote the events (and in turn state transitions) that are
associated with establishing object relationships in the scenario
specification.

As SysML state machines provide a large number of features, a
small subset of them have been selected and some design rules have
been defined to make the approach effectively applicable. More
details about this can be found in [CrESt 2019].



108

Architectures for Dynamically Coupled Systems

Consistency analysis

5.3.3 Analysis

The section concludes with a brief overview of an automated analysis
that can be applied in order to check the consistency of the functional
architecture modelled with a scenario specification. To this end, both
the scenario specification and the functional architecture, including
the state machine diagrams, are automatically translated into a target
automaton model (in our case RTanaz [Stierand et al. 2016]). The
translation has to identify state changes by events as explained above.
In the current implementation, this is achieved by name matching.
The analysis is basically a refinement check that fails if the
architecture model cannot “follow” the scenario specification, that is,
where either expected events do not occur (e.g., a hasToFulfill event of
one robot), or events occur unexpectedly (hasToFulfill events from
multiple robots). Note that consistency analysis has been developed
in the context of all SPES projects, such as with the AutoFOCUS tool
[Pohl et al. 2012, Section 5.5]. We now apply this important analysis
step to dynamic systems.

5.4 Extraction of Dynamic Architectures

Reference architectures can be used to define common structures in
software product lines for CES engineering. Therefore, they determine
the static and dynamic compositions of the underlying software
architecture. Reference architectures can either be defined from
scratch or extracted from a set of system architectures for specific
contexts expected for the CSG. Extraction enables identification of
existing features through successively establishing a reference
architecture by analyzing system architectures. The extraction
process captures the commonalities and variations of the
architectures analyzed. For that reason, the reference architecture
forms the basis for the development of further products and can be
successively extended by the extraction process.

The methods we present for extracting reference architectures
from a set of architecture models is semi-automated. Logical system
architectures for a static context are developed upfront and extrinsic
matches (common parts in each architecture) with the current
reference architecture are identified automatically in a second step.
All components of static system architectures that do not match
extrinsically in the reference architecture are automatically assigned
to the reference architecture. To minimize the number of false
assignments, this assignment is then reviewed by a domain engineer
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manually. The remaining extrinsic matches are further analyzed to
identify differences. For this purpose, fully automated variant and
similarity analyses are performed during the extraction process.

We begin this section by introducing general principles of software
product line engineering and continue with an explanation of how
new domain artifacts can be derived from the bases of multiple
application artifacts. As these techniques rely strongly on the
establishment of reference architectures, this section concludes by
introducing the Family Mining [Wille et al. 2014] approach, which
provides mechanisms for establishing reference architectures based
on a set of architectures that already exist.

5.4.1 Methods

To extract dynamic system architectures from existing system
architectures, this section is structured as follows. First, we introduce
reference architectures, which describe the common structures of
product lines. Second, we use the concept of software product lines,
for which we present a product-driven approach. Finally, we discuss
the extraction with the Family Mining approach in the context of
employed methods, that is, the Static Connectivity Matrix Analysis
(SCMA) [Schlie et al. 2018] and the Reverse Signal Propagation
Analysis (RSPA) [Schlie et al. 2017], which are both explained in detail
below. Clone-and-own [Riva and Rosso 2003] is a straightforward
reuse strategy that describes the copying and subsequent
modification of an existing system to create a new system variant.

With regard to software architectures, this straightforward reuse
strategy leads to a vast quantity of redundant and similar artifacts.
Moreover, a later transition towards structured reuse, such as with
software product lines, inevitably requires the comparison of all
existing variants prior to the actual migration. The development of
dynamic open systems from scratch adds a new level of complexity to
the system as it involves designing new functionality at the same time.
Thus, a step-by-step development based on a specific context of the
CSG by reusing a common reference architecture is promising. In this
process, the common parts of the system are reused in the reference
architecture of the system, while new parts represent the dynamic
part of the system.

SCMA [Schlie et al. 2018], [Schlie et al. 2019] is a procedure that
enables the evaluation of multiple MATLAB/Simulink model variants
simultaneously. The transformation of models into a matrix form
reduces the complexity of the models and allows large-scale systems

Static Connectivity
Matrix Analysis (SCMA)
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Reverse Signal
Propagation Analysis
(RSPA)

Family Mining

Software product line
engineering (SPLE)

to be compared with each other in their entirety. Moreover, SCMA
identifies all similar structures between the system portfolio under
comparison, even with model parts being completely relocated during
clone-and-own.

During development, model-based systems are subject to frequent
modifications. Manual identification of all modifications performed is
typically not feasible, especially for large-scale systems. However,
precise identification and subsequent validation of the modifications
is essential for the overall evolution. RSPA is a procedure that
identifies and clusters variations within evolving MATLAB/Simulink
models.

With each cluster representing a clearly delimitable—i.e.,
separate—variation point between models, model engineers can not
only specifically focus on single variations, but by using their domain
knowledge, they can relate and verify them.

One of the main challenges in the development of dynamic
architectures is capturing changes in the system’s context and
subsequently adapting the system to adjust to these changes. Thus,
the resulting architecture must allow a dynamic reconfiguration in
response to a changing context of the CSG. To this end, dynamic
software components of the architecture may only be relevant for a
set of contexts, and therefore, multiple alternative implementations of
a component may exist.

Software product line engineering (SPLE) deals with similar
challenges. In SPLE, software components or software modules are
flexibly configured to different application scenarios. Different
binding times, that is, the times of selecting and deriving the concrete
software variant of these modules are possible — for example,
configuration time, compilation time, initialization time, or runtime.
Dynamic open system architectures can be seen as software with a
binding time at runtime. Consequently, development mechanisms of
SPLE can be applied to the development of flexible system
architectures.

5.4.2 Software Product Line Engineering

A software product line (SPL) enables software developers to tailor
their software products to individual customer needs [Clements et al.
2001], [Apel et al. 2013]. To this end, an SPL captures the
commonalities and variabilities of a given set of software systems and
derives concrete software products by means of a variant deviation
mechanism. This mechanism takes a collection of desired software
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functionalities, called a configuration, as an input and automatically
derives a software variant from the SPL.

Domain Engineering

T e CHOH e T - <23

Requirements Architecture Components Tests

it 0 i o

Application N — Artifacts and Variant Model
Application 1 — Artifacts and Variant Model

CED e I e THO e 3

Requirements Architecture Components Tests

Application Engineering
Fig. 5-11: Reactive product line engineering (based on [Pohl et al. 2005])

As for reference architectures, there are extractive methods for
SPLE as well as proactive approaches that aim to establish an SPL
from scratch. Reactive SPLE [Apel et al. 2013] aims to combine the
strengths of both approaches. The aim of this process is to handle the
fact that products might be added to the SPL in later phases of the
product life cycle, or that specific software variants are altered after
their derivation, which often occurs in practical applications. To
achieve this aim, the reactive SPLE as displayed in Figure 5-11 starts
with an initial SPL, which consists only of a basic set of products that
is created from scratch, and later uses extractive mechanisms to
evolve the SPL and incorporate changes to the requirements and
product variants — that is, that existing products may be altered, or
new products may be included [Apel et al. 2013].

5.4.3 Product-Driven Software Product Line Engineering

Product-driven software product line engineering is a form of reactive
SPLE that focuses on the step-by-step establishment and development
of a software platform based on established artifacts considering new
requirements arising from application engineering. Using an
extractive approach, new domain artifacts can be derived from the
basis of multiple application artifacts. The process for developing a
new software component variant using the product-driven SPLE
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Fig. 5-12: Product-driven software product line engineering

approach is illustrated in Figure 5-12 as an activity diagram (AD) and
consists of the following steps:

1.

The “Draft software component variant” activity provides a
name and a short functional description.

The check whether the functionality fulfilled by the software
component variant is also fulfilled by a software component
of the reference architecture is done in the “Comparison with
reference architecture” activity. If this is the case, the names
of both components should be identical.

If the software component variant identified in the reference
architecture can be assigned to the application architecture,
the activity “Assign software component variant to
application architecture” will do this.

If the current software component has no counterpart in the
reference architecture, the “Reevaluation of assignment”
activity requires that the domain engineers recheck the
assignment again

If no software component variant is identified in the
reference architecture, no synergies can be provided by the
current software platform, and thus an implementation from
scratch is necessary in the “Implementation from scratch”
activity.

The activity “Comparison with extrinsic matches” analyzes
the similarity of the components based on structural and
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semantic aspects of the extrinsic matches to identify
commonalities and differences between the software
components.

7. Asimilar implementation based on this candidate is possible
and performed if a similar candidate exists. This is done in the
activity “Implementation based on similar candidate.”

8. Commonalities and differences can be analyzed in detail in
the “Variability analysis” activity to identify possible
variation points and variants, if similar available software
component variants can be identified.

9. Based on the variability analysis, the “Software component
implementation” activity includes the creation of a new
software component such that its configuration matches its
extrinsic matches.

10. The activity “Reference architecture adaption” includes the
adaption of the reference architecture to incorporate a new
component.

5.4.4 Family Mining — A Method for Extracting Reference
Architectures from Model Variants

To extract variability relations between existing block-based model
variants, such as MATLAB/Simulink models or SysML statecharts (cf.
[Alalfi et al. 2014], [Font et al. 2015], [Martinez et al. 2014], [Nejati et
al. 2007], [Rubin and Chechik 2012], [Rubin and Chechik 2013a],
[Rubin and Chechik 2013b], [Ryssel et al. 2010], [Ryssel et al. 2012] ),
the Family Mining approach was developed [Wille et al. 2014]. The
approach provides a generic algorithm that is not only applicable to
different block-based modelling languages, but also enables
customization by providing user-adjustable metrics [Wille et al.
2016], [Wille et al. 2018].

To present the workflow of this Family Mining approach, Figure 5-
13(a) depicts the steps required to compare input systems, locate the

Coarse-grained analysis
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Fig. 5-13: Workflow of the custom-tailored Family Mining approach for identifying
variability relationships between block-based model variants

most similar elements to match them with one another, and to derive
a 150% model starting from a set of imported input models.

Moreover, Figure 5-13(b) illustrates how the approach can be used
to capture the systems’ underlying architecture by assessing all input
models (i.e., the entire portfolio) at once [Schlie et al. 2018]. Hence,
the structural components (here MATLAB/Simulink subsystems) of
the input systems, along with their hierarchical relationships, are
assessed and related to derive the overall architecture of the input
portfolio and to simultaneously capture redundant model parts (cf.
ACC in Figure 5-13(b)). Subsequently, the workflow shown in Figure
5-13(a) can be applied in a fine-grained fashion to only those
components warranting such analysis, for instance to locate variation
points at a fine level of detail [Schlie et al. 2017] and to derive a final
150% model [Schlie et al. 2019]. Such a 150% model (cf. Figure 5-
13(c) for an excerpt) contains all possible model elements with
annotations to indicate where variants’ respective elements
originated from and variation points between them. To extract such
variability information and represent it in a centralized form, meaning
the 150% model, the workflow evaluates block-based model variants
in three sequentially processed phases (cf. compare, match, and
merge in Figure 5-13(a)).

In the first phase, called the compare phase, the identification of
model relationships is the primary goal of interest. For this purpose,
the imported model instances are compared with each other. The
workflow allows for variants to be compared at different levels of
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granularity and using different techniques. First, systems can be
compared iteratively, selecting a base model (e.g., the smallest model)
and processing the remaining n-1 models iteratively, each further
model variant then serving as a comparison model for the current
comparison phase. In this phase, the structure of the block-based
input models with their nodes (e.g, functional blocks for
MATLAB/Simulink systems) and their directed edges (e.g. signals
used to relay data between nodes) is exploited. To compare the nodes
of the input model, the proposed workflow starts with the start nodes
of the models (e.g., input blocks that introduce data) and traverses
nodes following the direction of data flow and, at all times, compares
nodes based on the user-adjustable similarity metric. This metric
calculates a similarity value in the interval [0..1], with 1.0 indicating
100% similarity. This similarity value is stored in a comparison
element, along with the elements being compared and their possible
relationship within analyzed models under comparison. Next, the
traversal algorithm follows the outgoing edges of the node and
compares them until no further compared nodes can be found.
Another technique offered by the workflow, SCMA [Schlie et al. 2018],
abstracts from the models’ inherent graph structure and describes the
models in a matrix form, representing only salient system
information, as described below. With models being structured in a
hierarchical fashion, with each hierarchical element denoted as a
subsystem in MATLAB/Simulink, each subsystem is transformed into
matrix form separately. As a result, the overall complexity of such
model-based systems is reduced drastically, allowing for the
comparison of multiple systems at once, rather than in an incremental
fashion. This allows system parts that warrant a fine-grained analysis
to be identified. Hence, such fine-grained analysis can be employed
only when warranted, omitting unnecessary comparisons.

A more fine-grained comparison procedure, RSPA [Schlie et al.
2017], compares block-based systems by assessing changes between
individual signals that always connect two blocks and grouping
affected blocks into delimitable variation points. In contrast to SCMA,
RSPA compares exactly two models, and can therefore be integrated
within the iterative comparison of an entire system portfolio. Like
SCMA, RSPA identifies areas within models where variations exist,
allowing for a precise targeting of such parts in the context of the
overall workflow.

In the second phase of the workflow, the matching phase, the
elements that are the most similar are matched with one another and
are assigned with their specific relationship (i.e., their variability),

Similarity

Match
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Merge

based on their similarity value. Multiple possible matching partners
may exist for a distinct element (e.g., a block from one model being
compared with multiple blocks from a different model). Such
ambiguities are identified and resolved during matching. Here, the
matching algorithm analyzes the comparison elements from the
“compare” phase and checks whether other comparison elements that
comprise one of the contained model elements exist. In this case, the
matching element with the highest similarity value is chosen. If both
compared elements have the same similarity value, these comparison
elements are sorted to the end of the list and the algorithm tries to
solve the conflict by matching other comparison elements first. If the
conflict remains, a decision wizard is called to identify the desired
match by executing additional user-specified logic or by requesting
direct feedback from the user.

In contrast, SCMA explicitly utilizes comparison results from
multiple input models to determine similarities across system
boundaries and across respective locations therein. Relating similar
comparison elements from multiple models to one another, while
exploiting the hierarchy of compared elements, allows information
about the model portfolio being analyzed to be retrieved. Moreover,
redundant or highly similar functionality, which may reside at
different locations within systems, can be identified. Such
redundancies can then be processed separately prior to the final
phase, the transformation of compared artifacts and their
relationships within a centralized form.

In the third and final phase, called the “merge” phase, the merge
algorithm creates a 150% model to store the variability relationships
identified. To this end, the algorithm extends a copy of the base model
by merging all matched components into this model. Based on the
similarity values from the “compare” phase, the algorithm determines
the explicit variability by categorizing the elements into mandatory
parts (i.e.,, common parts of all models), optional parts (i.e., common
parts of some models), and alternative parts (i.e., mutually exclusive
parts between models). During this process, all model elements that
were not previously part of the base model are copied to the 150%
model.

This 150% model generated enables domain experts to analyze
the variability identified in detail. Moreover, it may serve as a basis for
the comparison of the next remaining comparison model. The
proposed algorithm thus iteratively compares and merges all input
models into a single 150% model that stores the variability
information for the model family analyzed.
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5.4.5 Summary

In summary, SPLE enables software engineers to capture
commonalities and variabilities of a given set of software systems and
to derive concrete software products by means of a variant derivation
mechanism during CES engineering. To combine the strengths of
creating SPLEs from scratch with the advantages of extractive SPLE,
the reactive product-driven SPLE approach describes a step-by-step
establishment and development of a software platform based on
established artifacts. The Family Mining approach starts with input
models, which are first subject to a coarse-grained analysis, denoted
SCMA. In the SCMA, similar parts that warrant further analysis are
identified, while identical (meaning redundant) parts within models
are eliminated. By omitting unnecessary comparisons, the Family
Mining approach then directs subsequent analysis procedures to
those similar parts. Specifically, we employ a fine-grained comparison
metric to capture the variability of individual model elements at fine-
grain level (e.g., varying labels or different internal properties).
Comparison results of the fine-grained analysis are combined with
information from the coarse-grained analysis to derive one holistic
150% model.

5.5 Functional Safety Analysis (Online)

A common way to ensure the correct functional behavior of an
existing system is systematic testing against requirements. This
testing usually occurs with a model or setup of the system that is
already running instead of an architectural model. Therefore, we call
this testing online analysis with regard to functional safety. If the
system under test (SUT) is a CSG, there are further safety-relevant
requirements regarding the collaboration. These cannot be properly
tested with just a single CES as the SUT.

As described in Section 5.2, the entire idea of collaboration
between different CESs is highly dependent on communication. If the
communication is faulty, no collaboration is possible. A single CES
should still be able to react when faced with faulty communication.
Therefore, the recognition of faulty communication is an important
situation that must be tested.

For this purpose, we have developed a method to inject
communication errors into a CSG as the SUT. This allows faulty
communication to be simulated deterministically to test and verify
various kinds of error-detection mechanisms.
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For evaluation purposes, we implemented this method with
AUTOSAR components as an example. The result is a prototypical test
environment that connects multiple AUTOSAR components. This
environment enables us to intercept the communication between
components and manipulate the data exchanged.

5.5.1 Functional Testing

Software development for embedded systems typically starts with the
specification of the desired behavior. Such specifications often contain
expectations of output signals considering certain input signals. For
example, “If the distance to the car in front falls below 100 m then the
brake must be applied” could be a basic specification of an emergency
brake system. The scenario statecharts introduced in Section 5.2 can
also serve as a specification of the behavior. The software is
implemented based on such specifications.

To test an implementation, the software must be stimulated with
input signals and the output signals must be recorded. The device that
stimulates the inputs and records the outputs is called the test driver.
The tracking and evaluation of those signals against functional
requirements is called functional testing. A schematic representation
of this basic procedure for software testing can be seen in Figure 5-14.

System under Test [\

Recording of

Stimulation outputs

with inputs

Test driver 4

P

Fig. 5-14: Software simulation — schematic representation

Test solutions connect a test driver with the CES or CSG to be tested
to set the inputs and record the outputs.
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Fig. 5-15: Communication within a CSG

Basic approaches for functional testing consider a single embedded
system communicating with the environment but not connected to
other systems. To test the software of a CES within a CSG, the
communication with other systems must be considered.
Communication with other systems basically adds new inputs and
outputs to the test setup. If, for example, another CES in a
collaborative adaptive cruise control sends some information about a
traffic jam ahead, this information must be forwarded to the other
participants.

Another consideration is to view an entire system group as a single
system to be tested. In this case, the communication between several
single systems must also be simulated and recorded, just like the
communication of a single CES with the environment. Each individual
CES communicates with the environment on its own and each CES
communicates with other CESs. A schematic representation of this
communication of an entire CSG can be seen in Figure 5-15. In our
approach, we considered CSGs with a static configuration, which
means changes in the reconfiguration such as the addition or removal
of CESs are not considered here.

5.5.2 Communication Errors

The collaboration between several CESs adds new challenges to the
testing process. An important aspect is to ensure that each individual
system is capable of dealing with communication errors. Before we
start discussing ways of simulating communication errors, let us
introduce two kinds of errors.
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In further references, these different kinds of errors will be called
detected and undetected errors. If communication errors are detected
by the system itself, these errors are called detected errors. In
embedded software, detected errors can often be considered as
another kind of an “exceptional” input signal. Information such as
“communication error occurred” can be considered as “normal”
information. Processing that information in a simulation environment
is equal to using information like “distance to the car in front.” Typical
examples of detected errors are error flags, DTCs (diagnostic trouble
codes), and similar data that explicitly signals some malfunction or

Test solution
7] 7 \.

Simulated communication alljd fault injection
v |

CEs1 |/ CES 2

Communication between systems

CSG

Fig. 5-16: Communication flow with included test solution

irregular system behavior. If the detected errors are considered to be
a kind of input signal, they can obviously be tested by additionally
stimulating those “error detected” flags and recording the behavior in
the same way.

On the other hand, undetected communication errors are just the
reception or the transmission of incorrect values. To simulate
undetected errors during functional safety analysis, the test solution
must replace or manipulate the values sent from one CES to another
with the desired false values. Following this approach, fault detection
mechanisms such as timeout detection of cyclic messages or
plausibility checks of input signals can be tested in CSG testing. If the
tested system is given incorrect inputs, the behavior of a plausibility
check can be verified. By creating the possibility to modify the
communication between several collaborative embedded systems,
undetected faults can be injected. This approach is called fault
injection. It is illustrated in Figure 5-16.
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In this figure, instead of sending the information directly from CES
1 to CES 2, the information is sent to the test solution and then
forwarded to CES 2. During the modeling of those tests, an additional
flag to override certain signal values before forwarding them to CES 2
can be added as part of the test modeling. If this flag is set from the
test case modelled, an additionally modeled faulty value can be
transferred to CES 2 instead of the actual value from CES 1. The
behavior of CES 2, having received the “faulty” value, can still be
recorded and evaluated if it fits the specification.

5.6 Conclusion

The development of dynamically coupled collaborative systems poses
new challenges for engineers. The methods presented in this chapter
support CES engineers in tackling these challenges. They have been
selected in order to cover the different design phases and to show that
the challenges require continuous consideration of the various
aspects along the design process, such as requirements elicitation
(including the collaboration of individual CESs in a CSG), functional
design that ensures consistency with these requirements, and logical
architectures that enable the systems to handle dynamicity, as well as
approaches for testing CSG designs.

Some important aspects have been omitted. For example, the
design flow introduced in Figure 5-1 shows some “conceptual” flows,
which would involve additional methods for the design of
intermediate models and analysis results. The aspect of traceability,
which would be needed to support engineers in continuously
assessing those intermediate design models for adherence to the
system requirements, is not discussed either.
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