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Abstract

This book presents MontiArcAutomaton, a modeling language for architecture and be-
havior modeling of Cyber-Physical Systems as interactive Component & Connector mod-
els. MontiArcAutomaton extends the Architecture Description Language MontiArc with
automata to describe component behavior.

The modeling language MontiArcAutomaton provides syntactical elements for defin-
ing automata with states, variables, and transitions inside MontiArc components. These
syntactical elements and a basic set of well-formedness rules provide the syntax for a fam-
ily of modeling languages for state-based behavior modeling in Component & Connector
architectures. We present two concrete language profiles with additional well-formedness
rules to model time-synchronous component behavior and untimed, event-driven behav-
ior of components.

This book gives an overview of the MontiArcAutomaton language including examples,
a language reference, and a context-free grammar for MontiArcAutomaton models. It
also provides syntax definition, well-formedness rules, and semantics for two language
profiles. We summarize projects and case studies applying MontiArcAutomaton.

MontiArcAutomaton is implemented using the DSL framework MontiCore. Available
tools include a textual editor with syntax highlighting and code completion as well as
a graphical editor and a powerful and extensible code generation framework for target
languages including EMF, Java, Mona, and Python.
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Chapter 1.

Introduction

Cyber-Physical Systems (CPS) [Lee06] are networks of cooperating systems with both
physical and digital input and output. Common applications for CPS are sensor-based
systems, such as autonomous cars, smart grid, distributed robotics, and wireless sensor
networks. The technological and social challenges arising from CPS [Lee08, BCG12]
pervade many disciplines and implementation domains.

Efficient engineering of reliable and robust CPS requires new concepts, methods,
and technologies from automation engineering [KRS12] to security [CAS08] to soft-
ware engineering [Lee10]. A common concept to tame the increasing complexity of
modern distributed software systems is the separation of concerns through modular-
ization and decomposition into smaller parts. Component-based Software Engineering
(CBSE) [McI68b] is a prominent, maturing, and successfully applied realization of this
concept [HC01, BKM+05, NFBL10, SSL11]. Software components hide parts of the
system’s complexity behind well-defined, stable interfaces, which allows to develop and
evolve system parts independently by respective experts. Yet, the integration of cyber
modules and physical parts for non-trivial systems requires tremendous effort due to the
“conceptual gap” [FR07] between problem domains (e.g., autonomous navigation) and
implementation domains (e.g., software engineering).

Bridging the conceptual gap by handcrafting such software systems introduces “acci-
dental complexities” [FR07] (such as dealing with specific API issues rather than solution
concepts) which increase costs and difficulty of the software engineering process. Model-
Driven Engineering (MDE) [Sel03, SVEH05] lifts models, rather than source code, to be
primary development artifacts. These models describe different aspects of systems from
various perspectives and at multiple levels of abstraction. Using sophisticated toolchains,
such models are transformed into running systems. As models abstract from implementa-
tion details, MDE introduces less accidental complexities and thus reduces the conceptual
gap between problem domains and implementation domain.

Many architectures of pure software systems as well as CPS with large software parts
are modeled as Component and Connector (C&C) architectures [MT00, TMD09]. Com-
ponents encapsulate a related subset of a system’s functionality or data and define explicit
interfaces to restrict access to these services (see [TMD09]). Connectors establish and
regulate communication of components. Typically, connectors connect ports of compo-
nents with compatible interfaces to allow interaction. Component-based development of
software-intensive systems yields many benefits [McI68a, TMD09] as it facilitates reuse
and enables physically as well as logically distributed development of software systems.



2 CHAPTER 1. INTRODUCTION

Modeling languages for software and CPS architectures are called Architecture Descrip-
tion Languages (ADLs). MontiArc [HRR12] is an ADL implemented as a textual Domain
Specific Language (DSL) on top of the DSL framework MontiCore [GKR+08, KRV08].
ADLs like MontiArc have demonstrated their usefulness in various domains to describe
the structure of software systems.

We describe MontiArcAutomaton (MAA), an extension of the ADL MontiArc with an
integrated specification mechanism to model component behavior. This is implemented in
the modeling language MontiArcAutomaton (MAA), which extends MontiArc by embed-
ding automata into components to model their behavior. The extension with syntactical
elements makes MontiArcAutomaton a language family allowing the definition of differ-
ent concrete language profiles. Syntax and semantics of MontiArcAutomaton are based
on the I/Oω automata paradigm [Rum96] and the Focus framework [BS01, RR11].
I/Oω automata are automata, which allow reading from and sending messages to the
ports of their encompassing component, thus partially reducing the need for behavior
programming with general purpose programming languages such as Java or Python as
demonstrated in [RRW13a, RRW13b].

It is important to note that there are multiple kinds of automata that can syntactically
be expressed using MontiArcAutomaton. It is thus necessary to define language profiles
and language profile specific semantics (in the sense of meaning [HR04b]). We present
two language profiles in Chapter 4. One language profile supports time-synchronous
component interaction while the other one provides automata for handling event-based
communication.

Chapter 2 briefly introduces MontiArc [HRR12] before Chapter 3 illustrates Monti-
ArcAutomaton by example. Chapter 4 presents two language profiles with syntactically
specialized automata and corresponding automata semantics. The subsequent Chap-
ter 5 is a reference for MontiArcAutomaton language elements. Chapter 6 lists context
conditions required for the well-formedness of MontiArcAutomaton models. Chapter 7
describes several case studies with MontiArcAutomaton and different robotics platforms
and Chapter 8 discusses the experiences with MontiArcAutomaton and directions for
future work. Finally, Chapter 9 concludes this work.



Chapter 2.

The Architecture Description Language
MontiArc

MontiArc [HRR12] is a modeling language for the description of C&C software architec-
tures inspired by Focus [BS01] and C&C ADLs [TMD09]. Information is exchanged via
connectors between the typed and directed ports of component interfaces. The compo-
nent and connector concept allows composition of complex component hierarchies where
components are either atomic, and perform execution of functionalities themselves, or are
hierarchically composed of other components. Modeling component-based architectures
offers benefits over traditional CBSE as models are platform independent, better com-
prehensible, and can be used to analyze properties of architectures based on an abstract
model (cf. [TMD09, HRR12]). This section provides an overview of the ADL MontiArc
by example of a simple robot.

The bumper bot robot comprises an ultrasonic sensor to detect the distance to the
closest obstacle in front, a controller which reacts to obstacles, and two motors which
propel two parallel tracks. After the robot is activated, it explores a room by driving
straight forward until an obstacle is detected, then it backs up, rotates, and continues to
drive forward again (cf. [RRW13a]).

BumperBot

IntegerUltraSonic 

sensor
BumpControl

controller

MAA

Timer
Boolean

Motor

leftMotor

Motor

rightMotor

MotorCmd

TimerCmd

data distance

signal signal

left cmd

MotorCmd

right cmd

cmd

cmd

Figure 2.2.: Architecture of the composed component BumperBot for the bumper bot
robot with its subcomponents.
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Figure 2.2 depicts the software architecture for a bumper bot robot. The composed
top-level component BumperBot consists of five subcomponents: sensor of component
type UltraSonic, controller of component type BumpControl, leftMotor and
rightMotor of component type Motor, and timer of component type Timer. The
components exchange messages via the ports of their interfaces. Ports have a name, a
type, and a direction. Their types are defined in UML/P class diagrams [Sch12] and
restrict what messages they may send or receive – and thus also determine partners for
possible connections. Connectors can only be established between ports of the same or
of a compatible type. Here, component sensor sends distance measurements of type
Integer via its outgoing port data to the controller’s incoming port distance of the
same type. Furthermore, only ports in the same scope can be connected directly, i.e.,
a port of sensor can neither be connected directly to a port outside the component
BumperBot, nor directly to a subcomponent of controller. Figure 2.4 illustrates the
enumeration types used by the component controller to send messages to the timer
and the motors.

CD

«enumeration»

TimerCmd

SINGLE_DELAY

DOUBLE_DELAY

«enumeration»

MotorCmd

STOP

FORWARD

BACKWARD

Figure 2.4.: Class diagram defining the two enumerations TimerCmd and MotorCmd
used by the component BumperBot and its subcomponents.

After the controller has received a distance measurement and a timer signal it
determines the course of action (i.e., either continues driving forward, backs up, or ro-
tates) and sends according messages via its outgoing ports. Communication between
MontiArc components is based on Focus [BS01], a framework for specifying and mod-
eling distributed systems. Messages are passed asynchronously via typed unidirectional
channels. The observable behavior on a channel is modeled as a finite or infinite stream
of messages in the order of their transmission [HRR12].

The MontiArc code generation and simulation framework [wwwb] generates Java code
and schedulers for time-synchronous and asynchronously timed communication [RR11].
In Section 4.1 we introduce a language profile of MontiArcAutomaton that implements
time-synchronous communication of components.

The behavior of composed components emerges from the composition of the behaviors
of their subcomponents. Interfaces of components do not reveal information about their
behavior or possible composition, thus each of the subcomponents of BumperBot may
be further composed. The distinction between the interface of a component and its
behavior allows to introduce alternative behavior implementations. While the simulation
framework of MontiArc only supports Java component behavior implementations, Monti-
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ArcAutomaton extends MontiArc to enable modeling of component behavior as I/Oω

automata [RRW13b]. The next chapter illustrates this extension.

2.1. Applications and Extensions of MontiArc

MontiArc has been extended in the context of modeling product variability [HRR+11]
using deltas [HRRS11]. Delta modeling is a bottom up technique starting with a small,
but complete base variant. Features are added (that sometimes also modify the core).
A set of applicable deltas configures a system variant. [HRR+11, HRRS11] discuss the
application of this technique to Delta-MontiArc. Deltas can not only describe spacial
variability but also temporal variability which allows for using them for software product
line evolution [HRRS12].

[GHK+07] and [GHK+08] provide means for modeling requirements on the structure
of the logical architecture of interactive systems. The implementation of a specification
language for crosscutting structural C&C views [MRR13, MRR14] is based on MontiArc.
Prototype tools allow the verification of C&C models against C&C views [MRR14] and
a synthesis prototype computes a satisfying C&C model for valid, invalid, alternative,
and dependent C&C views, if one exists [MRR13].

A variant of MontiArc for cloud-based software architectures [NPR13] introduces
cloud-specific language elements, e.g., replicating components and message groups. The
extended framework supports code generation to Java and features solutions for typical
cloud-computing challenges, such as event-based communication and serialization into
databases.





Chapter 3.

MontiArcAutomaton Example and
Overview

MontiArcAutomaton extends MontiArc by introducing automata to define component
I/O behavior. Our automata are platform independent, i.e., they allow to model compo-
nent behavior independently of target platforms and languages. By using different code
generators, one can execute the same architecture and automata on different platforms.

This chapter illustrates the extensions of MontiArcAutomaton over MontiArc on the
example of component controller of type BumpControl. This component is used
to control the actions of the bumper bot robot introduced in Figure 2.2. In MontiArc-
Automaton component behavior is modeled as an automaton. Figure 3.2 depicts this
automaton embedded into the surrounding component.

MAA

Integer

BumpControl

Boolean

MotorCmd

distance

signal

left

MotorCmd

right

cmd

TimerCmd

/ left = STOP, 

right = STOP
[distance < 5]

/ left = BACKWARD

right = BACKWARD

DOUBLE_DELAY

true

/ left = FORWARD

SINGLE_DELAY

Idle

Driving

[distance < 5]

/ left = FORWARD

right = FORWARD

true

/ left = FORWARD

right = FORWARD

Backing

Rotating

Figure 3.2.: The atomic component BumpControl with an embedded automaton.

The automaton consists of the four states Idle, Driving, Backing, and Rotating
and five transitions. Generally, the automata of MontiArcAutomaton are finite in their
number of states and support an arbitrary number of initial states. Each transition has
a source state, a target state (which may be the same as the source state), and can be
labeled with a guard, an input block, and an output block. Guards, input blocks, and
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output blocks of transitions are conceptually connected to the encompassing component:
they either refer to ports of the component, which the automaton is embedded in, or its
local variables in combination with appropriate messages and values for the corresponding
port and variable types.

An input block states which input is necessary to activate the respective transition.
Therefore, each input block may reference an arbitrary subset of input ports and variables
to state which messages, according to the port and variables types, must be received.
Output blocks define the messages sent out via the components output ports and variable
assignments. This allows automata to model observable component behavior.

Here, the transition from Backing to Rotating denotes, that, if the messages re-
ceived on incoming port signal1 is true, the message FORWARD is send via the outgoing
port left and the message SINGLE_DELAY is send via the outgoing port cmd2. Guards
are conditions over the received input and the value of local variables that restrict when
transitions may be executed. They can be formulated using the Object Constraint Lan-
guage (OCL) variant of UML/P [Sch12] or as Java expressions. The automaton may
only execute a transition if the guard condition holds. In this example, the transition
form Idle to Driving may only occur, if the guard condition requiring that the value
on incoming port distance is less than 5 is satisfied. Then the message FORWARD is
send via the outgoing ports left and right.

MontiArcAutomaton is implemented as a textual Domain Specific Language (DSL)
with the MontiCore [GKR+08, Vö11, Sch12, wwwc] language workbench. The formalisms
for textual descriptions of hierarchically structured components are the same as in Mon-
tiArc. Therefore our examples focus on components models defining behavior. A textual
representation of component BumpControl in Figure 3.2 is shown in Listing 3.3.

The organization of component definitions in files is similar to Java, as each compilation
unit (model file) may contain only one parent component definition and these compilation
units are organized in packages (Listing 3.3, l. 1). Packages correspond to the directory
structure in the model path. Other compilation units (e.g., other components or types)
can be used by importing their packages (l. 3). Component definitions start with the
keyword component preceding the component name (l. 5). Typically, each MontiArc-
Automaton component declares its interface at the beginning of the component body.
An interface declaration starts with the keyword port and is followed by a set of ports
which are labeled either as input ports (keyword in) or as output ports (keyword out)
(ll. 7-12). Here each port is assigned a type and a name where the type is an unqualified
reference to a previously imported data type.

The component BumpControl contains an automaton definition initiated by the key-
word automaton (l. 14). The subsequent automaton body defines states and transitions
in arbitrary order. States are declared by the keyword state followed by at least one
state name (l. 15). Following the notation of [Rum96], initial states are defined explicitly
using the keyword initial followed by a least one state name (l. 17).

1If the type of a value unambiguously matches a single port or variable, MontiArcAutomaton allows to
omit the port’s or variable’s name in input blocks and output blocks.

2Again via type inference.
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MontiArcAutomaton

1 package bumperbot;
2

3 import bumperbot.types.*;
4

5 component BumpControl {
6

7 port
8 in Integer distance,
9 in Boolean signal,

10 out MotorCmd left,
11 out MotorCmd right,
12 out TimerCmd cmd;
13

14 automaton {
15 state Idle, Driving, Backing, Rotating;
16

17 initial Idle / {right = STOP, left = STOP};
18

19 Idle -> Driving [distance < 5]
20 / {left = STOP, right = STOP};
21

22 Driving -> Backing [distance < 5]
23 / {left = BACKWARD, right = BACKWARD, DOUBLE_DELAY};
24

25 Backing -> Rotating {true} / {left = FORWARD, SINGLE_DELAY};
26

27 Rotating -> Driving true / {left = FORWARD, right = FORWARD};
28 }
29 }

Listing 3.3: The component BumpControl in textual syntax

Transitions are not declared by a designated keyword but are instead defined by their
unique syntax. A transition declaration is initiated by a source state name followed by
a target state name (ll. 19-27). Further elements of a transition definition are source
state, target state, guard, input block, and output block. For transitions looping from
a state to itself, denoting the target state is optional. Subsequently, a guard may be
defined by providing an OCL or a Java expression in square brackets (ll. 19 and 22). For
each transition an optional input block may follow (ll. 25 and 27). This block specifies
messages read on incoming ports and values of local variables, which enable the transition
(e.g., the message true in l. 25). If the type of a value uniquely identifies the port (or
variable), the name of the port (or variable) can be omitted. For instance, the value
true of type Boolean used as input on the transition in from Backing to Rotating
(l. 25) can only be read from port signal as this is the only port of the same type.
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The curly brackets for input blocks and output blocks can be omitted (compare ll. 25
and 27) and serve merely a structuring purpose. Finally, each transition may define an
output block, which specifies messages or sequences of messages sent on output ports
and values assigned to variables. Similar to input blocks, curly brackets and port names
are optional as well. Guards, input blocks, and output blocks are optional and thus may
be left out.

3.1. Related Modeling Languages

Similar approaches to integrated modeling of architecture structure with component
behavior for CPS are the Architecture Analysis & Design Language [FG12] (AADL),
AutoFOCUS [HF11], Simulink [Tya12], SysML [Wei06, FMS11], and UML composite
structure diagrams with statecharts [OMG10].

AADL is a modeling language for hardware and software of embedded systems and
as such also features constructs to model hardware components, while MontiArcAuto-
maton focuses on modeling logical software components. In AADL, components can be
of component type thread, which may define sequences of subprogram calls. A subpro-
gram comprises a component-like interfaces and “represents callable unit of sequentially
executable code” [FG12]. AADL can also be extended with behavior modeling languages
through sublanguage conforming to the behavior annex [BFBFR07], which lacks inte-
grated semantics with the surrounding architecture [YHMP09].

AutoFOCUS is a modeling tool and C&C ADL for the development of distributed
embedded systems which is also based on the formal semantics of Focus [BS01, RR11].
AutoFOCUS supports timesynchronous streams with strongly causal and weakly causal
component behavior. Behavior is modeled as state transition diagrams similar to MAA
automata. In contrast to MontiArcAutomaton, AutoFOCUS lacks a distinction between
component types and their instantiations, which hampers reuse of components.

MathWorks Simulink features a block diagram language enabling the description of
components and connectors. Stateflow [wwwa] extends blocks with state transition dia-
grams. The semantics of Stateflow is not completely defined and has been formalized in
different ways [HR04a, MC12]. In contrast to the automata of MontiArcAutomaton, the
automata of stateflow do neither support underspecification nor refinement.

SysML is a graphical modeling language family for the development of software systems
based on a subset of extended UML [OMG10] languages. SysML features languages to
describe requirements, structure and behavior of systems. System structure is captured in
block definition diagrams, internal block diagrams, and package diagrams. Internal block
diagrams feature components (called “parts”), connectors, and ports and thus are simi-
lar to MontiArc models. System behavior is captured with activity diagrams, sequence
diagrams, state machine diagrams and use case diagrams. As MontiArcAutomaton au-
tomata can be considered a language profile of UML statecharts, SysML enables to ex-
press architectures similar to MontiArcAutomaton architectures. In contrast to SysML,
the semantics of a MontiArcAutomaton architecture is well-defined and grounded in the
Focus framework, while the semantics of SysML models is grounded in the code genera-



3.1. RELATED MODELING LANGUAGES 11

tor employed. The same holds for the combination of UML composite structure diagrams
with statecharts.





Chapter 4.

A MontiArcAutomaton Language
Profiles and Semantics

MontiArcAutomaton extends MontiArc [HRR12] with syntax for automata inside com-
ponent definitions. The extended syntax offers support for specifying states, variables,
and transitions. Transitions feature messages on input ports, message sequences on out-
put ports, guards, and variables. A formal definition of the concrete and abstract syntax
of MontiArcAutomaton is given as MontiCore grammar in the appendix (see Appendix A
for a simplified human-readable version of the grammar and Appendix B for the detailed
MontiCore grammar). We provide examples of all syntactical elements in Chapter 5.
Chapter 6 lists context conditions that well-formed MontiArcAutomaton models need to
satisfy.

A modeling language definition consists not only of the concrete and abstract syntax of
the language but also of its semantics (in the sense of meaning [HR04b]). For MontiArc-
Automaton we chose the Focus calculus [BS01, RR11] of streams and stream processing
functions as the semantic domain. This semantic domain allows to represent the interac-
tion behavior of various kinds of systems described by automata [Rum96, BR07, BCR07,
BCGR09]. We sketch the semantics of specific language profiles of MontiArcAutomaton
by giving examples for the execution of automata, i.e., the input streams they consume
and the output streams they produce.

One may define multiple language profiles that are each suited for different modeling
purposes. A general discussion of syntactic and semantic variability in modeling language
definitions is presented in [CGR09]. The modeling language MontiArcAutomaton forms
a superset of syntactical elements to express several kinds of automata. Its syntax can
be restricted for specific language profiles by additional well-formedness rules as shown
by the examples in Section 6.5 and Section 6.6. In addition the syntax of MontiArc-
Automaton can be extended or the semantics specialized using stereotypes at various
places.

In the following, we present two language profiles and sketch their semantics for time-
synchronous and event-driven communication [RR11]. One profile restricts the structure
of automata to model time-synchronous automata. The other is a variant of event-driven
automata. We sketch the semantics of the automata for these language profiles by giving
examples of automata executions.
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4.1. Language Profile for Time-Synchronous
Communication

We present the profile MAAts of the MontiArcAutomaton language to model interactive
components using time-synchronous communication. The key idea of time-synchronous
communication is an execution of the system in discrete global time cycles. Each cycle
corresponds to the execution of one transition of each MAAts automaton or an idle cycle
if none of its transitions is enabled. During a cycle a component reads its inputs and
sends outputs that are then available as input to the communication partners in the next
cycle. This MontiArcAutomaton language profile restricts the output in every time cycle
to at most one message per port. Each transition may read all variables and all messages
currently available on input ports, write up to one message to each output port, and
assign new variable values.

In typical CPS we observe various communication behavior. Components measuring
or aggregating sensor data may send messages with the most recent data in every time
cycle. Components on a higher level of abstraction may send command messages in one
time cycle but then wait for an event, e.g., receiving a response or observing the change
of sensor data in future time cycles, before issuing further commands. We thus include
handling of the absence of messages in the syntax and semantics of time-synchronous
automata. The MontiArcAutomaton language profile adds a special symbol -- (see
productions NoData and OptVal in the MontiArcAutomaton grammar in Listing B.1)
to allow modelers to specify the expected or forced absence of messages.

The structure of MAAts automata is given in Definition 4.1. The well-formedness
rules for the MontiArcAutomaton syntax to conform to the MAAts language profile are
described in Chapter 6. Specific well-formedness rules for the MAAts profile are defined
in Section 6.5.

Definition 4.1 (Time-synchronous MontiArcAutomaton (MAAts)). A time-synchro-
nous MAA is a syntactically restricted automaton where

• the output is at most one message per port and

• the special message -- may occur on all input and output ports.

△

MAAts automata are executed in cycles where in each time cycle one enabled transition
is executed, if one exists. Transitions are enabled if the input messages and variable values
specified in the input block match the messages read on the input ports and the values
of the local variables in the current time cycle. We interpret the absence of declared
messages and variable values as underspecification by the modeler, that is, the message
on a port and value of a variable omitted in the input block is not relevant for enabling
the transition, i.e., all possible messages and values are allowed on the omitted port or
variable. We interpret the absence of outputs on a transition as not sending a message on
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that port (denoted as -- in the time-synchronous semantics). The absence of assignments
to variables on a transition is interpreted as preserving variable values.

The messages on all input ports are available only in the cycle after they have been
sent. In case a message is not read on a port it is not buffered and then is lost in the
next cycle. If no transition is enabled in one execution cycle, the automaton does not
execute any transition and therefore does not produce any message in the current time
cycle (again denoted as --). This behavior can also be interpreted as the execution
of a self-loop, with output -- on every port, that is enabled if no existing transition
is enabled (so called idle completion [Rin14, Def. 6.25]). Again, in the next cycle the
previous inputs are no longer available on the port.

As an example for an automaton modeled according to the MAAts profile, consider
multiple vehicles driving in a convoy. The controller of a vehicle contains a component
that decides the speed of driving forward based on the information whether the vehicle
is in its lane and based on the distance to the leading vehicle. Part of this component
is sketched in the MAAts automaton shown in Listing 4.2. Component FollowThe-
LeaderOnline controls the speed of going forward by sending commands to the motor.
If the automaton is in the state Following, if the vehicle is in its lane, and if the distance
measured has the value TOO_FAR, the port cmd sends the command FAST_FORWARD.

MontiArcAutomaton-TS

1 package robot;
2

3 component FollowTheLeaderOnline {
4

5 port
6 in Boolean inLane,
7 in Distance dist,
8 out MotorCmd cmd;
9

10 automaton {
11 state Following, Finding, Waiting;
12 initial Following / SLOW_FORWARD;
13

14 Following {inLane = true, dist = TOO_FAR} / FAST_FORWARD;
15 Following {inLane = true, dist = TOO_CLOSE} / SLOW_FORWARD;
16 Following -> Finding false / TURN;
17

18 // ... more transitions ...
19 }
20 }

Listing 4.2: The MAAts automaton of component FollowTheLeaderOnline to follow
a leading object while staying in lane

Table 4.3 shows the reaction of the component to inputs given on the ports inLane
and dist. Each column of the table contains the input and output messages of one cycle
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cycle in inLane in dist out cmd
1 true -- SLOW_FORWARD
2 true -- --
3 true TOO_FAR --
4 true TOO_FAR FAST_FORWARD
5 true -- FAST_FORWARD
6 false -- --
7 false TOO_FAR TURN
8 true TOO_FAR --
9 SLOW_FORWARD

Table 4.3.: Inputs and outputs of component FollowTheLeaderOnline at nine exe-
cution cycles

of the synchronous system execution. As an example, the initial output message SLOW_-
FORWARD of the automaton (Listing 4.2, l. 12) is sent in the first cycle (see Table 4.3).

Consider the second cycle where the message true is received on the port inLane
and no message is received on the incoming port dist (denoted by --). This input
combination does not trigger a transition in the current state Following and nothing
is sent on port cmd in cycle t+1 (denoted by --). The transition in line 14 of Listing 4.2 is
triggered by the input in cycle 3 and the component sends the message FAST_FORWARD
in cycle 4. The same input pattern is received in cycle 4 and the message FAST_FORWARD
is repeated in cycle 5.

Our semantics of the MAAts language profile has strongly causal component behavior.
Strong causality requires that a possible reaction to an input at cycle t may only occur
in cycle t + 1 or later [BS01, RR11]. For MAAts the reaction to an input at time t (as
defined by a transition) happens at time t+ 1.

We have implemented MontiCore code generators for the MAAts language profile.
These generators generate executable Java and Python code, analyzable Mona predi-
cates, and EMF models as presented in [RRW13b, RRW13c]. The code generator from
MontiArcAutomaton models to the Mona specification language enables, e.g., refinement
checking between different MontiArcAutomaton components [Kir11]. We have evaluated
our Java code generator in a one-semester student project about model-based robotic
system development [RRW13c].

4.2. A Language Profile for Event-Driven Automata

A different language profile of MontiArcAutomaton is the MAAed profile for event-driven
automata. The execution of transitions in event-driven automata is triggered by receiving
an event on a port of the component. The component can then produce a finite number
of events to emit on its output ports. The structure of event-driven automata is defined
in Definition 4.4. It is important to note that each transition can only be triggered by
a single event. Thus it is not possible to read multiple events on a transition or read
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multiple events in guards of transitions.
The well-formedness rules for the MontiArcAutomaton syntax to conform to the MAAed

language profile are described in Chapter 6. Specific well-formedness rules for the MAAed

profile are defined in Section 6.6.

Definition 4.4 (Event-driven MontiArcAutomaton (MAAed)). An event-driven MAA
is a syntactically restricted automaton where

• on every transition the input and guard are restricted to read exactly one input
message on exactly one port and

• the symbol -- must not be used in the input or output on a transition.

△

As an example, consider the robotic arm shown in Figure 4.6 and the component
ToastArmController shown in Listing 4.7. The MAAed automaton inside component
ToastArmController has a transition from the state Idle activated by event PICK_-
UP_TOAST received on port req (see ll. 15-16). The event is handled by sending the
sequence of commands [MOVE_UP, TURN_RIGHT, OPEN, MOVE_DOWN, CLOSE] on
the output port armCmd.

Figure 4.6.: A robotic arm capable of picking up a toast

Please note that a definition of the semantics of MAAed automata based on stream
processing functions requires a model of timed streams (see [RR11] for different kinds of
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MontiArcAutomaton-ED

1 package robot;
2

3 component ToastArmController {
4

5 port
6 in Request req,
7 in Boolean reset,
8 out ArmControlCommand armCmd,
9 out LightCommand lightCmd;

10

11 automaton {
12 state Idle, GotToast;
13 initial Idle;
14

15 Idle -> GotToast PICK_UP_TOAST /
16 [MOVE_UP, TURN_RIGHT, OPEN, MOVE_DOWN, CLOSE], FLASH;
17 GotToast -> Idle DROP_TOAST /
18 [TURN_LEFT, MOVE_DOWN, OPEN], OFF;
19 }

Listing 4.7: The MAAed automaton of a robotic arm controller for picking up and
dropping toast

streams in Focus and see [Rum96] for semantics definitions of automata using stream
processing functions). Timed streams encode a model of time and thus make it possible
to relate the occurrence of events on different input and output ports of the component.

The language profile for MAAed automata has been investigated for modeling and code
generation in a student project with an application to robotic systems [Mar12].



Chapter 5.

MontiArcAutomaton Language
Reference

The language MontiArcAutomaton extends MontiArc with syntactical elements of I/Oω

automata [Rum96] and variables. This chapter introduces these language elements and
their concrete syntax on the basis of small examples. The complete grammar of Monti-
ArcAutomaton is available in Appendix A and Appendix B. Component definitions in
MontiArcAutomaton can contain automata and variables as top level elements in addition
to the language elements known from MontiArc [HRR12].

This chapter gives an overview over the syntactical elements of MontiArcAutomaton
not contained in MontiArc. Chapter 6 introduces well-formedness rules common to
all kinds of automata that can be expressed using the syntax of MontiArcAutomaton.
Section 6.5 and Section 6.6 present well-formedness rules specific to the language profile
for time-synchronous communication defined in Section 4.1 and specific to the profile for
modeling event-driven automata defined in Section 4.2.

5.1. Automaton Declarations

An automaton declaration has to be contained in a component definition and starts with
the keyword automaton followed by an optional name, and the body of the automa-
ton. Optionally, stereotypes can be added to the declaration of the automaton before
automaton.

Listing 5.1 shows the definition of component IntegerBuffer with an embedded
automaton of name BufferAutomaton (l. 8).

5.2. Variables

Automata may reference variables in guards, input blocks, and output blocks. These
variables are local to MontiArcAutomaton components and thus declared in the compo-
nent’s scope. A variable declaration consists of a type name, the variable’s name and
an optional initial value assignment. The types of variables are either defined in Java or
UML/P class diagrams and need to be imported by the containing component.

Listing 5.2 depicts the declaration of a variable buffer of type Integer (l. 8).
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MontiArcAutomaton

1 component IntegerBuffer1 {
2

3 port
4 in Integer value,
5 in Boolean saveValue,
6 out Integer bufferedValue;
7

8 automaton BufferAutomaton {
9 //...

10 }
11 }

Listing 5.1: Definition of an automaton with name BufferAutomaton inside
component IntegerBuffer

MontiArcAutomaton

1 component IntegerBuffer2 {
2

3 port
4 in Integer input,
5 in Boolean saveValue,
6 out Integer output;
7

8 Integer buffer;
9

10 automaton BufferAutomaton {
11 //...
12 }
13 }

Listing 5.2: Variable declarations inside a MontiArcAutomaton component

5.3. Values and Sequences

Values assigned to variables and communicated via ports of the component use the pro-
duction Value from the MontiArc grammar [HRR12] which provides values and literals
for common types, e.g. true and false for type Boolean. Listing 5.3 illustrates the
use of values: l. 13 defines a transition from state S to itself, which is enabled if a message
of value true is received via the port saveValue. In this case, the input is saved to
variable buffer and the value 0 is emitted via port output. If the value false is
received via the port saveValue, the value stored in variable buffer is send via port
output. As mentioned above, the port names can be omitted if the value types identify
the intended port unambiguously (cf. inputs in ll. 13 and 14). As both transitions define
a loop from state S to itself, explicitly defining the target state (i.e., -> S) could have
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been omitted.

MontiArcAutomaton

1 component IntegerBuffer3 {
2

3 port
4 in Integer input,
5 in Boolean saveValue,
6 out Integer output;
7

8 Integer buffer;
9

10 automaton BufferAutomaton {
11 state S;
12

13 S -> S true / {output = 0, buffer = input };
14 S -> S false / {output = buffer};
15 }
16 }

Listing 5.3: Usage of literal values true and 0

Some language profiles allow the sending of sequences of messages on output ports.
A sequence is created from a list of values using the operator [...] with a comma-
separated list of messages inside. The construction of message sequences is illustrated
in Listing 5.4. Line 12 denotes a transition from state S to T, which reads both input
ports and sends a sequence of the two values - not their concatenation - via its output
port. Please note, that it is not necessary to specify the output port name output, as
the sequence [a, b] consisting of two elements can only be send via port output of
type Integer.

Finally, MontiArcAutomaton extends the Value production of the MontiCore gram-
mar with the literal value NoData denoted by --. This (pseudo) value can be used in
combination with a timed streams semantics [RR11] to denote the case of no message
available. An example is given in the language profile MAAts introduced in Section 4.1.

5.4. State Declarations

A state declaration introduces one or more states. An automaton can have multiple state
declarations each starting with the keyword state followed by a list of states. A state
has a name and can have an optional list of stereotypes. Stereotypes are provided as
means to extend the language for generator developers and language profile developers.
The interpretation of stereotypes is thus left to specific applications. Multiple states
inside a state declaration are separated by a comma.

Listing 5.5 shows a single state declaration (l. 11) declaring two states with names S
and T. The state T has the stereotype «error» which can be interpreted by applications.
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MontiArcAutomaton

1 component Echo1 {
2 port
3 in Integer a,
4 in Integer b,
5 in Boolean speak,
6 out Integer output;
7

8 automaton {
9 state S, T;

10 initial S;
11

12 S -> T true / [a, b];
13 }
14 }

Listing 5.4: Sequences of values sent on output ports

MontiArcAutomaton

1 component IntegerBuffer4 {
2

3 port
4 in Integer input,
5 in String cmd,
6 out Integer output;
7

8 Integer buffer;
9

10 automaton BufferAutomaton {
11 state S, <<error>> T;
12

13 S -> S "SAVE" / {output = 0, buffer = input};
14 S -> S "SEND" / output = buffer;
15 S -> T [cmd != "SAVE" && cmd != "SEND"];
16 }
17 }

Listing 5.5: Definition of states S, and T with state T having the stereotype «error»

5.4.1. Initial States and Initial Outputs

An automaton can declare multiple initial states using the keyword initial followed
by at least one state name. Each of these state names can be assigned an initial output
in terms of an output block.

Listing 5.6 introduces the state S (l. 11). State S is declared initial afterwards (l. 12)
and defined to initially assigning the value 0 to the variable buffer. Please note, that
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MontiArcAutomaton

1 component IntegerBuffer5 {
2

3 port
4 in Integer input,
5 in Boolean saveValue,
6 out Integer output;
7

8 Integer buffer;
9

10 automaton BufferAutomaton {
11 state S;
12 initial S / buffer = 0;
13

14 S -> S true / {output = 0, buffer = input};
15 S -> S false / {output = buffer};
16 }
17 }

Listing 5.6: Definition of an initial state S with initial output 0

the curly brackets around assignments are optional again.

5.5. Transitions

Transitions are defined originating from a source state towards a target state. Omitting
the target state defines a transition looping from the source state to itself. A transition
further may have an optional guard, an optional input block, and an optional output
block. See Listings 5.3 to 5.6 show various forms of syntactically valid transitions.

Transitions follow the pattern illustrated in Listing 3.3: a transition from state S0 to
state S1 with guard Guard, inputs Inputs, and outputs Outputs generally has the
form

S0 -> S1 [Guard] {Inputs} / {Outputs};

where

• Guard is an expression of the embedded guard language (currently available are
OCL and Java).

• Inputs is a set of pairs of port names and variable names and their expected
values that trigger the transition of the form x = val. If x is the name of a port,
val must be a message consisting of a single value, i.e., no sequences of values. If
x is the name of a variable, val must again be a single value. Alternatives for the
values read on ports and variables may be written using the disjunction operator |
as in the example x = val1 | val2 | val3 to allow underspecification. Input
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ports and variables may reference other input ports and variables as described in
Section 5.5.2.

• Outputs is a set of pairs of port resp. variable names and assigned values that
result from the execution of the transition and have the form x = val. If x is the
name of a port, val may be a single message (e.g., 42) or a sequence of messages
(e.g., [3, 14]). If x is the name of a variable, val must be a single value. Non-
deterministic alternatives for the values written on ports and assigned to variables
may be written using the disjunction operator | as in the example x = val1
| [val2, val3] | []. Output ports and variable assignments may reference
input ports and variables as described in Section 5.5.3.

The curly brackets can be omitted, such that S0 -> S1 [Guard] Inputs / Out-
puts; denotes the same transition as above. If the transition describes a loop from
a state S0 to itself, the target state may also be omitted, which results to the form
S0 [Guard] {Inputs} / {Outputs};. Again, the curly brackets may be omitted
— thus S0 [Guard] Inputs / Outputs; denotes the same transition. As input,
guard, and output are also optional, the minimal transition has the form S0, which
denotes an unconditional loop from S0 to itself that reads, emits, and assigns noth-
ing. Whether this transition is allowed and what its semantics are is dependent on the
language profile and semantics chosen.

5.5.1. Guard Expressions over Ports and Variables

Guards on transitions are surrounded by square brackets [...]. MontiArcAutomaton
does not define its own expression language for guards. Current options are to use
Java expressions of type Boolean (guard kind starting with the keyword java:) or
OCL/P [Sch12] expressions (guard kind starting with the keyword ocl:). As OCL/P is
the default guard expression language, specification of guard kind ocl can be omitted.
Guards may refer to input ports and variables.

The optional OCL/P guard [input <= 9] in line 14 of Listing 5.7 expresses that
its transition can only be activated if variable input has a value less or equal than 9.
The second transition explicitly specifies to use a Java guard (l. 15) which holds, if the
value of variable input is greater than 9.

5.5.2. Input on Ports and Current Variable Values

The optional input block of a transition contains, if present, at least one port or variable
valuation. A valuation of a port specifies a value expected as input on this port. A
valuation of a local variable specifies the value it shall have to trigger the transition.
Multiple valuations of ports or variables are separated by commas. In case the port or
variable name is uniquely determined by the type of the message or value, the name is
optional in the input block. Alternatives for the values read on a port or variable with
the name x may be written using the disjunction operator | as in the example x =
val1 | val2 | val3.
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MontiArcAutomaton

1 component SmallNumbersBuffer {
2

3 port
4 in Integer input,
5 in Boolean saveValue,
6 out Integer output;
7

8 Integer buffer;
9

10 automaton BufferAutomaton {
11 state S;
12 initial S / buffer = 0;
13

14 S [input <= 9] true / {output = 0, buffer = input};
15 S [java: input > 9] true / {output = 0};
16 S false / {output = buffer};
17 }
18 }

Listing 5.7: Two guard expressions using the embedded OCL/P and Java respectively

MontiArcAutomaton

1 component ZeroBuffer {
2

3 port
4 in Integer input,
5 in Boolean safe,
6 out Integer output;
7

8 Integer buffer = -1;
9

10 automaton BufferAutomaton {
11 state S;
12 initial S;
13

14 S -> S true, input = 0;
15 S -> S [input != 0] true;
16 S -> S input = 0 | 1, false;
17 }
18 }

Listing 5.8: A component with three transitions and different valuations

Listing 5.8 shows a component containing an automaton with three transitions over
two input ports of types Integer and Boolean and a variable of type Integer as well.
Using the value true in an input block unambiguously identifies the port safe of type
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Boolean as the intended source, thus stating the the port’s name can be omitted. Using
numbers can either refer to the input port input or the variable buffer, therefore the
name of the intended source has to be specified.

Values in Input Blocks

The right side of a port reference in the input is a disjunction over expected messages. A
message can be a literal value conforming to the type of the port, the name of a variable,
or the name of another input port. The right side of a variable reference can either be
a literal value, or the name of another port or variable. Disjunctions of these are also
allowed for references to variables.

5.5.3. Output on Ports

The optional output block of a transition starts with /. If the block is present, it has
to contain at least one message as output to a port or an assignment of a value to a
variable. The output sent via a port can either be a literal value, a variable name, the
name of an input port, or a concatenation of any of these. The type of the assigned
values has to correspond to the type of the port or variable. The list operator [...]
concatenates messages to a list of messages, e.g., as list of String values as in Listing 5.9.
Non-deterministic alternatives of values can be separated by the disjunction operator |
inside an assignment. Multiple assignments are separated by commas.

MontiArcAutomaton

1 component IntegerDuplicator {
2 port
3 in String input,
4 in Boolean speak,
5 out String output;
6

7 automaton {
8 state S;
9 initial S;

10

11 S false / --;
12 S true / [input, input];
13 }
14 }

Listing 5.9: Transitions producing two output messages of type String

Listing 5.9 shows a component with an automaton that produces two Integer output
messages. The first transition (l. 11) is enabled if the message false was received on
incoming port speak and emits the message -- via outgoing port output. The second
transition (l. 12) is enabled if the message true was received and sends a list of two
Integer messages via outgoing port output. The output thus consists of two separate
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messages. As output is the only outgoing port that this sequence can be assigned to,
it is not necessary to include the name of the port output in the output block.

5.5.4. Variable Value Assignments

Value assignments to variables may also appear in the output blocks of transitions. Same
as with sending via ports, we use = after a variable name to denote an assignment of a
value to the variable. The value assigned to a variable can either be a literal value, a
variable name, or the name of an input port representing the value of a message read on
that port. Non-deterministic alternatives of values can be separated by the disjunction
operator | inside an assignment. Currently variable definitions (see Section 5.1) and the
output blocks of transitions are the only places where values can be assigned to variables.

MontiArcAutomaton

1 component IntegerBuffer6 {
2

3 port
4 in Integer input,
5 in Boolean saveValue,
6 out Integer output;
7

8 Integer buffer;
9

10 automaton BufferAutomaton {
11 state S;
12

13 S -> S true / {buffer = input, output = 0};
14 S -> S false / {buffer = 0, output = buffer};
15 }
16 }

Listing 5.10: Setting the variable buffer on transitions

Listing 5.10 illustrates how the variable buffer of type Integer is set on two tran-
sitions (ll. 13 and 14). Using an Integer value in an output block might refer either to
the outgoing variable output or the variable buffer, thus it is necessary to specify the
port or variable names explicitly. Again, the curly brackets (ll. 13 and 14) are optional.

5.6. Generic Types

Generic component types are a mechanism to facilitate reuse of components. Component
types can have generic type parameters which define the type of ports or variables. An
example for a generic component type is the component type Arbiter<T> shown in
Listing 5.11. Instantiations of the component Arbiter<T> need to provide a concrete
type or another type variable for the parameter T of the component. The component
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Arbiter uses the generic type T for the definition of its incoming and outgoing ports
(see Listing 5.11, ll. 4-6).

MontiArcAutomaton

1 component Arbiter<T> {
2 port
3 in Boolean mode,
4 in T in1,
5 in T in2,
6 out T res;
7

8 automaton {
9 state S;

10 initial S;
11 S mode = true / in1;
12 S mode = false / in2;
13 }
14 }

Listing 5.11: The generic Arbiter component selects and forwards one of two inputs
based on the messages received on port mode

The use of generic component types and type variables is supported by MontiArc-
Automaton. Type variables may be used for the types of ports and variables inside
MontiArcAutomaton component definitions. In the example shown in Listing 5.11 the
transition in line 11 forwards the message read on the input port in1 to the output port
res of the same type. Similarly, the transition in line 12 forwards the message read on
port in2 if the message read on port mode is false.

Additional well-formedness rules apply when using generic types, e.g., port names have
to be given explicitly and are not derived from the type of the port. See [HRR12] for
more details.
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MontiArcAutomaton Context Conditions

The modeling language MontiArcAutomaton is defined by a context-free MontiCore
grammar [GKR+08, KRV08]. Context-free grammars lack expressiveness to define var-
ious necessary properties (e.g., variables being defined twice in same scope) to make a
model well-defined. MontiCore provides a powerful framework to describe these context
conditions (CoCos) [Vö11]. The context conditions framework and the MontiCore sym-
bol table framework [Vö11] allow, e.g., to check whether the value assigned to a port or
variable has a compatible type.

We have implemented several context condition checks to assure the well-formedness
of MontiArcAutomaton models. Further context conditions may be added depending on
a chosen language profile and automata semantics (see Chapter 4) or to restrict models
for the code generation to specific target languages. The context conditions of Monti-
ArcAutomaton are divided into four groups regarding the nature of the checks. Our
categorization of context conditions differentiates between requirements such as unique-
ness of names (Section 6.1), conventions (Section 6.2), referential integrity (Section 6.3),
and type correctness (Section 6.4). While these categories cover basic rules for the au-
tomaton language, additional context conditions for specified language profiles may be
added (Section 6.5 and Section 6.6).

The extensions of MontiArcAutomaton which add automata and variables to the lan-
guage require new context conditions while the existing MontiArc context conditions are
inherited. A detailed list of MontiArc context conditions together with examples is given
in the MontiArc technical report [HRR12]. In the following we describe the context con-
ditions of MontiArcAutomaton by stating each condition as a rule and giving examples
of context condition violations. At first, context conditions common to all possible lan-
guage profiles are presented and afterwards (Section 6.5 and 6.6) language profile specific
context conditions are presented.

6.1. Uniqueness Conditions

In order to create correct models and to avoid generating ambivalent code, we demand
that all syntactical language elements of the same type have unique names.
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U1: Automata within a component have unique names.

Automata with duplicate names inside a common parent component, as seen in List-
ing 6.1, are not permitted.

MontiArcAutomaton

1 component IntegerBufferU1 {
2

3 automaton BufferAutomaton {
4 // ...
5 }
6

7 automaton BufferAutomaton { // duplicate automaton definition
8 // ...
9 }

10 }

Listing 6.1: Violated CoCo U1: Two automata definitions with equal name

U2: State names are unique within an automaton.

All state names in an automaton have to be unique in the scope of the automaton
definition. This requirement holds for state names listed in a single state definition as
well as among multiple state statements.

MontiArcAutomaton

1 component IntegerBufferU2 {
2

3 automaton BufferAutomaton {
4 state S, T, S; // state ’S’ defined multiple times
5 state T; // state ’T’ defined earlier
6 }
7 }

Listing 6.2: Violated CoCo U2: Duplicate state definitions

In Listing 6.2 the condition U2 is violated by declaring a state named S twice in a
single state definition (l. 4). Furthermore, both state definitions declare a state with
the name T (ll. 4-5), which also violates this condition.

U3: The names of variables and ports are unique within a component.

As all variables are declared and referenced in the scope of a component, the name of
each variable must be different from all other variable names and port names. This holds
for variables of the same type as well as for variables of different types.
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MontiArcAutomaton

1 component IntegerBufferU3 {
2

3 port
4 in Integer input;
5

6 String input; // port with name ’input’ already exists
7

8 Integer buffer;
9 String buffer; // variable ’buffer’ defined twice

10 }

Listing 6.3: Violated CoCo U3: Duplicate variable definitions

In Listing 6.3 context condition U3 is violated twice: first, by defining a variable with a
name already assigned to a port (l. 6) and second, by duplicate declaration a of variables
with name buffer.

6.2. Convention Conditions

We introduce a set of conventions for MontiArcAutomaton models. A model that vio-
lates a convention rule can still be considered well-formed but is strongly discouraged.
Violations of the rules introduced in this section result in warnings instead of errors.

C1: An automaton has at least one initial state.

At least one state of each automaton has to be declared as an initial state. In Listing
6.4 this context condition is violated.

MontiArcAutomaton

1 component IntegerBufferC1 {
2

3 automaton BufferAutomaton { // initial state missing
4 state S;
5 }
6 }

Listing 6.4: Violated CoCo C1: Missing initial state declaration

C2: The names of variables and ports start with lowercase letters.

In order to conform to conventions known from Java we discourage the use of port and
variable names which begin with an uppercase letter (see Listing 6.5).
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MontiArcAutomaton

1 component IntegerBufferC2to4 {
2 port
3 in Integer Input; // port name must start lowercase
4

5 automaton buffer { // automaton name must start uppercase
6 state s; // state name must start uppercase
7 }
8 }

Listing 6.5: Violated CoCos C2, C3, C4: Variable, automata, and state names are not
defined in compliance to MontiArcAutomaton conventions

C3: The names of automata start with uppercase letters.

An automaton is a constant entity and should thus have a name which begins with an
uppercase letter (see Listing 6.5).

C4: The names of states start with uppercase letters.

An automaton’s states are static entities and have therefore names that start in uppercase
(see Listing 6.5).

6.3. Referential Integrity Conditions

This section introduces rules for the well-definedness of references to language elements
inside MontiArcAutomaton models.

R1: States referenced by a transition must be declared.

The states which represent the source or the target of a transition have to be declared in
a state statement. Two violations of this context condition are depicted in Listing 6.6.
The state T has not been declared but is referenced as a target state in line 9 and as a
source state in line 10.

R2: Ports and variables referenced on transitions must be declared.

Only ports that have been declared as input or output ports in the components interface
may be referenced by a transition to either send or receive messages. In Listing 6.7 the
ports or variables with names saveValue, buffer, input, and output are unknown
to both component and automaton. As they are used to receive and send messages (l. 13),
the automaton definition is erroneous with respect to R2. The same holds for reading
and assigning variables. Additionally, ports and variables that are used as messages or
values must be declared as well.



6.4. TYPE CORRECTNESS CONDITIONS 33

MontiArcAutomaton

1 component IntegerBufferR1 {
2

3 port
4 in Boolean saveValue;
5

6 automaton BufferAutomaton {
7 state S;
8

9 S -> T true; // state ’T’ is undefined
10 T -> S false; // state ’T’ is undefined
11 }
12 }

Listing 6.6: Violated CoCo R1: Reference to an undefined state

MontiArcAutomaton

1 component IntegerBufferR2 {
2

3 automaton BufferAutomaton {
4 state S;
5

6 S saveValue = true / {buffer = input, output = 0 };
7 // name ’saveValue’ is undefined
8 // name ’buffer’ is undefined
9 // name ’input’ is undefined

10 // name ’output’ is undefined
11 }
12 }

Listing 6.7: Violated CoCo R2: Multiple undefined ports and variables

R3: Variable declarations may not reference ports.

As a convention, we require that initial value assignments to variables are performed
prior to any communication taking place. Thus, variable declarations may not reference
any ports.

6.4. Type Correctness Conditions

This section summarizes rules for the correct usage and combination of typed elements
in MontiArcAutomaton models.
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T1: Messages sent or received via ports and read from or assigned to
variables must conform to the according port or variable types.

For every port and variable in every input and output block, messages must consist solely
of values that conform to the type of the port and variable respectively.

MontiArcAutomaton

1 component IntegerBufferT1 {
2

3 port
4 in Integer input,
5 in Boolean saveValue,
6 out Integer output;
7

8 Integer buffer;
9

10 automaton BufferAutomaton {
11 state S;
12

13 S -> S true / {buffer = true, output = "Zero" };
14 // ’true’ is no Integer
15 // ’Zero’ is no Integer
16 }
17 }

Listing 6.8: Violated CoCo T1: Using incorrectly typed values with ports or variables

Listing 6.8 demonstrates two violations of the context condition T1: The port buffer
of type Integer cannot be used to send a message of the type Boolean (l. 13), and a
value of the type String cannot be assigned to the port output (l. 13). This context
condition applies to input and output blocks of transitions as well as to output blocks of
initial state outputs.

T2: Initial values of variables must conform to their types.

The possibility of assigning an initial value to a variable is provided by the underlying
grammar. For initial assignments the same rules apply as demanded by the context
condition T1. An assigned value must conform to the type of the variable. A violation
of the context condition T2 can be seen in Listing 6.9. In line 3 a literal of the type
String cannot be assigned to a variable of the type Integer.

T3: Input ports and variables used as part of a message or assignment,
must conform to the according port and variable types.

When using references to input ports or variables as messages on transitions, their types
must be compatible with the type of the port or variable on the left-hand side of the
comparison or assignment. Two possible mistakes are demonstrated in Listing 6.10, l. 13.
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MontiArcAutomaton

1 component IntegerBufferT2 {
2

3 Integer buffer = "Hello"; // ’Hello’ is no Integer
4

5 automaton BufferAutomaton {
6 state S;
7 //...
8 }
9 }

Listing 6.9: Violated CoCo T2: Assigning incompatible values in variable declaration
statements

MontiArcAutomaton

1 component EchoT3 {
2 port
3 in String input,
4 in Boolean speak,
5 out String output;
6

7 Boolean tmp;
8

9 automaton {
10 state S;
11 initial S;
12

13 S true / tmp = input, output = ["input is:", speak];
14 // port ’input’ is no Boolean
15 // variable ’speak’ is no String
16 }
17 }

Listing 6.10: Violated CoCo T3: Constructing a message sequence with an invalid
concatenation of messages of incompatible types and assigning a message
of an incompatible type to a variable (l. 13)

T4: The special literal value NoData cannot be used with variables.

The value NoData (written --) is reserved for timed streams on ports as it represents
the absence of a message in a time slice. Listing 6.11 demonstrates all kinds of variable
accesses that are prohibited if NoData is used as a value.
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MontiArcAutomaton

1 component IntegerBufferT4 {
2

3 port
4 in Integer input,
5 out Integer output;
6

7 Integer buffer = --;
8 // cannot assign NoData to variable ’buffer’
9

10 automaton BufferAutomaton {
11 state S;
12

13 S -> S buffer = -- / buffer = --;
14 // cannot read NoData from variable ’buffer’
15 // cannot write NoData to variable ’buffer’
16 }
17 }

Listing 6.11: Violated CoCo T4: Assigning and reading NoData from variables

T5: Sequences of values cannot be read from or assigned to variables.

Variables can hold only single values. Therefore, they can neither be assigned sequences
of values nor can they be queried for such sequences (see Listing 6.12).

MontiArcAutomaton

1 component IntegerBufferT5 {
2

3 Integer buffer;
4

5 automaton {
6 state S;
7 initial S;
8

9 S buffer = [1, 0] / buffer = [1, 1];
10 // cannot read sequence from variable
11 // cannot write sequence to variable
12 }
13 }

Listing 6.12: Violated CoCo T5: Writing and reading sequences of values from variables
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T6: The direction of ports has to be respected.

Messages can only be received through input ports and sent only through output ports.
Hence, transitions have to obey these limitations by only reading from input ports and
reacting by sending messages via output ports. Due to context condition T6 transitions
may not use ports in the opposite direction as illustrated in Listing 6.13.

MontiArcAutomaton

1 component IntegerBufferT6 {
2

3 port
4 in Integer input,
5 out Integer output;
6

7 automaton BufferAutomaton {
8 state S;
9

10 S output = 0 / input = 1;
11 // receiving from output port ’output’
12 // sending to input port ’input’
13 }
14 }

Listing 6.13: Violated CoCo T6: Violation of port directions

T7: Output ports must not be used as part of messages in a transition’s
input or output block.

References to input ports can be used for forwarding received messages on output ports.
In this case the currently received value at the input port is forwarded as (a part of)
the output. For output ports there are no current values which could be accessed and
thus it is not allowed to reference output ports when constructing messages. Listing 6.14
demonstrates two different violations of context condition T7.

6.5. MAAts Specific Context Conditions

Some context conditions for MontiArcAutomaton models are specific to language pro-
files, e.g., the language profile for time-synchronous communication with strong causality
(MAAts described in Section 4.1). We list these context conditions here.

S1ts: An atomic component contains at most one automaton.

The language profile MAAts does not allow the definition of two or more automata within
the same component. Therefore plural automata declarations, as seen in Listing 6.15, are
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MontiArcAutomaton

1 component IntegerBufferT7 {
2

3 port
4 in Boolean saveValue,
5 out Integer output;
6

7 Integer buffer;
8

9 automaton BufferAutomaton {
10 state S;
11

12 S true / buffer = output;
13 // output port ’output’ used in message
14 S buffer = output;
15 // output port ’output’ used as value
16 }
17 }

Listing 6.14: Violated CoCo T7: Use of an output port in messages of a transition’s
output block

not permitted. Other language profiles can be defined to handle multiple and concurrent
automata.

MontiArcAutomaton-TS

1 component IntegerBufferS1 {
2

3 automaton FirstBuffer {
4 // ...
5 }
6

7 automaton SecondBuffer { // multiple automata not
8 // allowed in this profile
9 // ...

10 }
11 }

Listing 6.15: Violated CoCo S1ts for profile MAAts: Multiple automata definitions

S2ts: Ports must not be used as part of messages in initial state outputs.

Strong causality introduces a computation delay, i.e., an output may not depend on the
input received at the same point in time. Thus, an initial output may not depend on
values read from input ports. In Listing 6.16 it is shown that it is strictly forbidden
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to reference ports within an initial state output. This context condition applies to the
language profile MAAts.

MontiArcAutomaton-TS

1 component IntegerBufferS2TS {
2

3 port
4 in Integer input,
5 out Integer output;
6

7 automaton BufferAutomaton {
8 state S, T;
9

10 initial S / output = input;
11 // port in message for initial state output
12 }
13 }

Listing 6.16: Violated CoCo S2ts for profile MAAts: A port as message source in an
initial state output

S3ts: In every cycle at most one message per port is sent.

The language profile MAAts does not allow emitting more than one message per port in
a cycles. Listing 6.17 demonstrates a violation by sending a sequence of messages. This
context condition applies to the language profile MAAts.

MontiArcAutomaton-TS

1 component InitialFib {
2

3 port
4 in Integer input,
5 out Integer output;
6

7 automaton {
8 state S;
9 initial S / output = [0, 1, 1, 2, 3, 5, 8, 13];

10 // sending sequence of messages not allowed
11 }
12 }

Listing 6.17: Violated CoCo S3ts for profile MAAts: Multiple messages per port
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6.6. MAAed Specific Context Conditions

Some context conditions for MontiArcAutomaton models are specific to language pro-
files, e.g., the language profile for event-driven communication (MAAed described in
Section 4.2). We list these context conditions here.

S1ed for profile MAAed: An atomic component contains at most one
automaton.

The language profiles MAAed does not allow the definition of two or more automata
within the same component. Therefore plural automata declarations, as seen in List-
ing 6.18, are not permitted. Other language profiles can be defined to handle multiple
and concurrent automata.

MontiArcAutomaton-ED

1 component IntegerBufferS1 {
2

3 automaton FirstBuffer {
4 // ...
5 }
6

7 automaton SecondBuffer { // multiple automata not
8 // allowed in this profile
9 // ...

10 }
11 }

Listing 6.18: Violated CoCo S1ed: Multiple automata definitions

S2ed: All inputs must be processed one single message at a time.

The language profile for event-driven automata (see Section 4.4) demands that a tran-
sition is triggered by a single message on a single port. This is equivalent to various
applications within embedded systems where events are represented by interrupts and
routines handling them. For that reason it is not allowed for a transition to consume
multiple messages at once. Listing 6.19 demonstrates a violation of context condition
S2ed in two different ways. In line 11 two input ports are read in a guard expression.
Likewise, line 13 violates the condition by simultaneously reading two messages from
different ports directly.
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MontiArcAutomaton-ED

1 component Filter {
2

3 port
4 in Integer input,
5 in Integer threshold,
6 out Integer output;
7

8 automaton BufferAutomaton {
9 state S;

10

11 S [ocl: input > threshold] / output = input;
12 // reading from multiple inputs inside a guard
13 S input = 1, threshold = 1 / output = -1;
14 // reading from multiple ports
15 }
16 }

Listing 6.19: Violated CoCo S2ed for profile MAAed: Reading multiple messages

S3ed: The -- symbol may not be used as input in MAAed automata.

The language profile for event-driven automata (see Section 4.4) does not allow triggering
reactions by the absence of events. A violation is illustrated in Listing 6.20, l. 11.

MontiArcAutomaton-ED

1 component TemperatureMonitor {
2 port
3 in Integer temp,
4 out String message;
5

6 automaton {
7 state S;
8 initial S;
9

10 S x = 0 / cout = "freezing";
11 S x = -- / cout = "nothing happened";
12 // triggered by absence of an event
13 }
14 }

Listing 6.20: Violated CoCo S3ed for profile MAAed: Using -- as trigger





Chapter 7.

Case Studies

We have evaluated MontiArcAutomaton on several platforms from simulators to educa-
tional Lego NXT robots to complex service robots in a distributed robotic system. To
evaluate MontiArcAutomaton on these platforms, we have developed code generators to
different target languages [RRW13b], which include code generation to Mona [EKM98]
(formal analysis), EMF Ecore1 (graphical editing), and Java and Python (deployment).
The code generators are generic in the sense, that they generate implementations of com-
posed components and automata in their target language. Many applications require
additional components to access platform specific software and hardware. MontiArc-
Automaton libraries organize these models and their platform specific implementations

• for robots using ROS [QCG+09],

• for robots using SmartSoft [SSL11],

• for Lego NXT robots using leJOS2, and

• for simulators such as ROS turtlesim3 and Simbad4.

The libraries comprise from 4 (ROS turtlesim) to 21 (leJOS NXT) components and
can be easily imported by MontiArcAutomaton applications to use these with different
platforms. Experiences with leJOS and ROS have shown that developing a library for a
certain platform is relatively straightforward as the functionality wrapped per component
is usually well defined by existing APIs. Additionally, we have developed GPL specific
libraries to provide GPL functionalities (e.g., file I/O). We have evaluated MontiArc-
Automaton in different projects and lab courses5 on various platforms.

Figure 7.1 depicts a Lego NXT robot, which is controlled by the bumper bot software
architecture shown in Figure 3.2. All components of the software architecture are de-
ployed to the NXT computation unit, which is connected to an ultrasonic sensor and two
motors — one for each track. Please note how close the logical architecture reflects the
physical implementation in this case.

1The Eclipse Modeling Framework Project: http://www.eclipse.org/modeling/emf/
2leJOS website: http://lejos.sourceforge.net/
3ROS turtlesim website: http://wiki.ros.org/turtlesim
4Simbad website: http://simbad.sourceforge.net/
5Videos of results of these courses are available at http://monticore.de/robotics/.

http://www.eclipse.org/modeling/emf/
http://lejos.sourceforge.net/
http://wiki.ros.org/turtlesim
http://simbad.sourceforge.net/
http://monticore.de/robotics/
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Figure 7.1.: A Lego NXT robot controlled by the bumper bot software architecture of
Figure 3.2

7.1. Lego NXT Coffee Service

With MontiArcAutomaton, the Java code generator, and the Java leJOS NXT libraries,
we evaluated the MontiArcAutomaton framework during a university lab course in the
winter term 2012/13 with a eight master level students [RRW13a]. The students modeled
the software architecture for a distributed robotic coffee service consisting of the three
robots illustrated in Figure 7.2. The GPL Java was used to implement the behavior of
components not easily expressible as automata (two out of ten component models).

The system enables users to issue requests for coffee via a website hosted on a smart
phone. This phone is connected to the coffee preparation robot via Bluetooth. Once this
robot receives a request, it informs the coffee delivery robot to fetch a plastic mug from
the mug provider robot. Afterwards, it returns to the coffee preparation robot, instructs
it via Bluetooth to make coffee and afterwards drives to the user who ordered the coffee
using — in the absence of sophisticated localization sensors — black lanes with colored
junctions.

7.2. ROS Robotino Logistics

In winter term 2013/14, we evaluated MontiArcAutomaton with a Python code genera-
tor and the ROS Python Robotino modules in another lab course. In this course, nine
master level students developed a model-driven logistics application using a Robotino
robot with a Kinect for user interaction. The software architecture was modeled with 31
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robot

mug provider robot

Figure 7.2.: The distributed robotic coffee service as implemented with Lego NXT robots
running leJOS as target platform

components. Of these, nine contain automata and 17 have platform specific implementa-
tions. The top-level of this architecture is depicted in Figure 7.3. The components Nav-
igation, MapProvider, and TaskManager are composed from other components.
During this course, the students modeled the software architecture and programmed
component GPL implementations where necessary (as, for instance, the behavior of the
ROS-specific components wrapping the Kinect had to be implemented manually).

Here, a web server is hosted on the robot itself and receives tasks such as “fetch item
X from room Y”. Automata translate these tasks into motion and interaction commands
passed to components Navigation and UserInterface which translate these into
platform-specific primitives.

7.3. SmartSoft Robotino Logistics

In a lab course of summer term 2014 we assigned the task to develop a robotics logis-
tics application similar to the previous one. 14 students from different computer science
bachelor and master programs participated. The students modeled the software architec-
ture with MontiArcAutomaton and connected it to the SmartSoft [SSL11] middleware
to control the robot. For his, they produced the architecture depicted in Figure 7.4. Of
the depicted subcomponents, five are composed and two atomic.

To communicate with the robot, both a website and a tablet PC were used. Both
are connected to the architecture via subcomponents of component Backend. Logistics
tasks are passed from Backend to JobManager and translated into commands send to
the SmartSoft middleware via component SequencerProxy.
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Figure 7.3.: The top-level architecture of the logistics application implemented during
winter term 2013/14 for a Robotino running ROS and Python

7.4. IServeU

IServeU is a research project of various academic and professional partners revolving
around the engineering and deployment of model-driven robotics applications to real-
world contexts. In this 3-year project, funded by the German Federal Ministry of Ed-
ucation and Research (BMBF), MontiArcAutomaton is used to model the architecture
and parts of the behavior for a logistics robotics application in a complex environment.
MontiArcAutomaton serves as ADL for a high-level controller which again interfaces
SmartSoft.

Figure 7.5 shows the core component RobotController of the IServeU top-level
software architecture. The RobotController receives tasks and passes these to the
Scheduler which decomposes them into individual goals passed to a task planner capa-
ble of reasoning about reaching goals based on the current situation and actions available
to the robot. To deduct a valid plan it may read properties of the robot and its environ-
ment via component PropertyCalculator. Once a plan is deducted, the controller
executes its actions via component ActionExecuter, which is connected to the under-
lying SmartSoft middleware.

All components types depicted are composed from multiple subcomponents and the
software architecture comprises 20 different component types. Of these, seven are com-
posed from other components and eight are atomic components containing automata.
The behavior of two components is generated from high-level models of the robot and
its capabilities.
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Figure 7.4.: Top-level architecture of the logistics application implemented in summer
term 2014 for a Robotino running SmartSoft and Python. Five of the dis-
played components types are composed
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Figure 7.5.: The top-level architecture of the high-level robot MontiArcAutomaton con-
troller employed in the IServeU project
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Figure 7.6.: The software architecture of component type Scheduler responsible for
managing tasks and goal execution. The subcomponent SchedulerCore
contains an automaton

The decomposed component Scheduler, depicted in Figure 7.6 takes care of overall
task scheduling. For this, the automaton in subcomponent SchedulerCore breaks
down tasks into individual goals and takes care of the remaining goals using the connected
buffer components.



Chapter 8.

Discussion and Current Limitations

Based on the lessons learned from past and ongoing evaluation of the MontiArcAuto-
maton language and framework we discuss its possible extensions. The three main topics
we address concern future directions of research around MontiArcAutomaton regarding
the expressiveness of the language, its extensibility with additional behavior modeling
languages, and the code generation and deployment to different robotics platforms.

8.1. Expressiveness of Automata for Behavior Modeling

We have evaluated the modeling language MontiArcAutomaton with groups of students
regarding its expressiveness for modeling the behavior of robotic systems as described in
Chapter 7. Regarding expressiveness of the behavior modeling part of MontiArcAuto-
maton we found out that some components are not easily modeled in MontiArcAuto-
maton. For example, the language is missing suitable means for modeling (dynamic)
look-up tables and more complex algorithms, e.g., for computing shortest paths in a
graph. Another limitation is the lack of expressiveness for message data manipulation in
MontiArcAutomaton. Examples are the computation of arithmetic or logical expressions
when assigning values to variables and sending messages on ports. We are currently
working on extending these assignments to allow expressions similar to the OCL and
Java expressions evaluated in guards.

To overcome current limitation of the language expressiveness in [RRW13a, RRW13b]
we allowed native component implementations in programming languages such as Java
and Python.

Expressing further properties of component behavior common in CPS requires more
fundamental extensions of the automaton language. Many formalisms for modeling au-
tomata with (multiple) clocks, differential equations, and probabilities [Rab63, AD94,
GSB98, LSV03, LS11] exist in the literature and could be integrated into MontiArc-
Automaton. The semantics of MontiArcAutomaton is based on the Focus framework
with powerful refinement and composition operators. Extensions the system model of
Focus that support hybrid and dense-timed streams have been suggested in [SRS99].
We thus believe that the current MontiArcAutomaton can seamlessly be extended to
model advanced features of CPS.



50 CHAPTER 8. DISCUSSION AND CURRENT LIMITATIONS

8.2. Extension with Additional Behavior Modeling
Languages

One of the main concepts of MontiArcAutomaton is the composition of components
from subcomponents with well-defined interfaces. The encapsulation of functionality
in components and the hiding of implementation details not relevant for composition
allow logically distributed development and physically distributed computation models.
Encapsulation of component behavior and its composition in a uniform way following the
Focus calculus makes MontiArcAutomaton amenable for extending component models
with additional behavior description languages complementary to automata.

Examples for other component behavior modeling languages are simple, stateless I/O
rules [RRW13c] or arbitrary domain specific languages defined using the MontiCore
framework. We have presented extensions of MontiArcAutomaton with additional com-
ponent behavior modeling languages and underlying concepts in [RRW13c, LPR+13].

8.3. Code Generation, Deployment, and Platforms

MontiArcAutomaton is a modeling language for architecture and behavior modeling of
CPS. One application domain of MontiArcAutomaton are robotic systems. The tran-
sition from platform independent models to concrete platform dependent applications
executable on systems of physical robots is a challenge to generative software engineer-
ing.

We have developed code generators for target languages including EMF, Java, Mona,
and Python and to target platforms executing leJOS, ROS, and SmartSoft environments
(see Chapter 7 and [RRW13b, RRW13c]). Current challenges in the efficient develop-
ment of code generators are developing and applying concepts for compositional code
generation as well as reusing (parts of) generators, models, and manual implementations
for different target platforms. We report on an approach for reusing models and manual
implementations organized in libraries in [RRW14].



Chapter 9.

Summary

In this work we presented a modeling language for the description of software archi-
tectures of Cyber Physical Systems as Component and Connector software architecture
models. The modeling language MontiArcAutomaton extends the Architecture Descrip-
tion Language MontiArc and inherits all language features described in [HRR12]. Monti-
ArcAutomaton thus allows the modeling of components with well-defined interfaces con-
sisting of typed ports. Components are either modeled as the hierarchical composition
of subcomponents interacting by exchanging messages via directed connectors between
ports or as atomic components. The language integrates syntactical elements of I/Oω

automata into atomic component definitions to model the interaction behavior of com-
ponents.

MontiArcAutomaton is a modeling language which allows the definition of language
profiles to express automata for various models of computation of interactive systems.
We sketched two language profiles and their semantics in Chapter 4. The syntax of
MontiArcAutomaton automata is introduced in a comprehensive language reference in
Chapter 5. The language reference covers all syntactical features added to the MontiArc
language. These include automata with states and transitions that depend on the values
of local variables and messages received on the input ports of a component. Components
interact by sending messages via their output ports. MontiArcAutomaton also comprises
well-formedness rules for models to ensure valid references and types. Their complete
list was presented in Chapter 6. Examples for these rules are the existence of ports
and variables referenced on transitions or the type compatibility of assigned values and
messages sent.

One advantage of MontiArcAutomaton is its ability for modeling requirements for
component behavior as well as component implementations [RRW12]. An application
domain are robotics applications [RRW13c]. For this, we have implemented code gener-
ators for MontiArcAutomaton models to various target languages including executable
code for robotics platforms [RRW13b]. The modeling language MontiArcAutomaton and
its code generation framework were evaluated multiple case studies (Chapter 6) which
led to identification of issues and possibilities for future extension (Chapter 8).
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Appendix A.

Human Readable Grammar

The MontiArcAutomaton grammar shown in Listing A.1 is provided for human compre-
hension in EBNF-like style. It is a simplified version of the MontiCore grammar used to
create MontiArcAutomaton models and describes the concrete syntax only.

MontiArcAutomaton extends the MontiArc grammar (l. 3), which is given in the ap-
pendix of [HRR12]. The MontiArcAutomaton grammar introduces productions Au-
tomaton (ll. 5-7) and VariableDeclaration (l. 9) and the productions used by
these. Both, Automaton and VariableDeclaration, can be used inside compo-
nents independently.

The Automaton production rule is composed from production rules for States
(l. 13), InitialStates (l. 17), and Transition (l. 19). These contain the pro-
ductions for the language elements described in Chapter 5.

MontiCore Grammar

1 package mc.maautomaton;
2

3 grammar MontiArcAutomaton extends MontiArc {
4

5 Automaton =
6 Stereotype? "automaton" Name? "{"
7 (States | InitialStates | Transition)* "}";
8

9 Variables = "var"? Type (VariableAssignment||",")+ ";";
10

11 VariableAssignment = Name ("=" Value)?;
12

13 States = "state" (State||",")+ ";" ;
14

15 State = Stereotype? Name;
16

17 InitialStates = "initial" (Name||",")+ ("/" Output)? ";";
18

19 Transition =
20 source:Name ("->" target:Name)?
21 Guard? Input? ("/" Output)? ";";
22

23 Guard = "[" InvariantContent "]";
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24

25 Input = "{" MatchList "}" | MatchList;
26

27 MatchList = (Match||",")+;
28

29 Match = (Name "=")? (OptionalValue||"|")+;
30

31 OptionalValue = Value | "--";
32

33 Output = "{" AssignmentList "}" | AssignmentList;
34

35 AssignmentList = (Assignment||",")+;
36

37 Assignment = (Name "=")? (OptionalValueOrSequence||"|")+;
38

39 OptionalValueOrSequence = OptionalValue | ValueSequence;
40

41 ValueSequence = "[" (Value||",")* "]";
42 }

Listing A.1: The complete MontiArcAutomaton grammar for human readers



Appendix B.

Parser Grammar

The MontiArcAutomaton grammar in Listing B.1 is used as input for the MontiCore
tool to parse MontiArcAutomaton models and create Abstract Syntax Trees (AST). It
contains additional information for the MontiCore parser and lexer framework (ll. 5-
9) as well as specific rules to improve parsing. Integration of new language elements
into MontiArc components in enabled via the interface ArcElement (cf. [HRR12]),
which both Automaton and VariableDeclaration implement (ll. 11 and 18). The
production for the -- terminal similarly implements the interface Value which enables
to use -- within guard expressions as well.

MontiCore Grammar

1 package mc.maautomaton;
2

3 grammar MontiArcAutomaton extends mc.umlp.arc.MontiArc {
4

5 options {
6 compilationunit ArcComponent
7 parser lookahead=5
8 lexer lookahead=7
9 }

10

11 Automaton implements (Stereotype? "automaton" Name?) =>
12 ArcElement =
13 Stereotype? "automaton" Name? "{"
14 (States | InitialStates | Transition)* "}";
15

16 NoData implements ("--") => Value = "--";
17

18 Variables = "var"? Type
19 VariableAssignment ("," VariableAssignment)* ";";
20

21 VariableAssignment = Name ("=" Value)?;
22

23 States = "state" State ( "," State )* ";" ;
24

25 State = Stereotype? Name;
26
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27 InitialStates = "initial" Name ("," Name)* ("/" Output)? ";";
28

29 Transition =
30 source:Name ("->" target:Name)?
31 Guard? Input? ("/" Output)? ";";
32

33 Guard = "[" (kind:Name ":")? InvariantContent "]";
34

35 Input = "{" MatchList "}" | MatchList;
36

37 MatchList = Match ("," Match)*;
38

39 Match = (Name "=")? OptionalValue ("|" OptionalValue)*;
40

41 OptionalValue = Value | NoData;
42

43 Output = "{" AssignmentList "}" | AssignmentList;
44

45 AssignmentList = Assignment ("," Assignment)*;
46

47 Assignment = (Name "=")?
48 (OptionalValueOrSequence ("|" OptionalValueOrSequence))*;
49

50 OptionalValueOrSequence = OptionalValue | ValueSequence;
51

52 ValueSequence = "[" (Value||",")* "]";
53

54 ValueSequence = "[" (Value ("," Value)*)? "]";
55

56 }

Listing B.1: The MontiArcAutomaton grammar for parsing



Related Interesting Work from the SE Group, RWTH Aachen

The following section gives an overview on related work done at the SE Group, RWTH Aachen. More de-
tails can be found on the website www.se-rwth.de/topics/ or in [HMR+19]. The work presented
here mainly has been guided by our mission statement:

Our mission is to define, improve, and industrially apply techniques, concepts, and methods for innova-
tive and efficient development of software and software-intensive systems, such that high-quality products
can be developed in a shorter period of time and with flexible integration of changing requirements. Fur-
thermore, we demonstrate the applicability of our results in various domains and potentially refine these
results in a domain specific form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an executable,
yet abstract and multi-view modeling language for modeling, designing and programming still allows
to use an agile development process.”, [JWCR18] addresses the question how digital and organizational
techniques help to cope with physical distance of developers and [RRSW17] addresses how to teach
agile modeling. Modeling will increasingly be used in development projects, if the benefits become
evident early, e.g with executable UML [Rum02] and tests [Rum03]. In [GKRS06], for example, we
concentrate on the integration of models and ordinary programming code. In [Rum12] and [Rum16],
the UML/P, a variant of the UML especially designed for programming, refactoring and evolution, is
defined. The language workbench MontiCore [GKR+06, GKR+08, HR17] is used to realize the UML/P
[Sch12]. Links to further research, e.g., include a general discussion of how to manage and evolve
models [LRSS10], a precise definition for model composition as well as model languages [HKR+09]
and refactoring in various modeling and programming languages [PR03]. In [FHR08] we describe a set
of general requirements for model quality. Finally, [KRV06] discusses the additional roles and activities
necessary in a DSL-based software development project. In [CEG+14] we discuss how to improve the
reliability of adaptivity through models at runtime, which will allow developers to delay design decisions
to runtime adaptation.

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time consuming process.
Managing the complexity, size, and number of the artifacts developed and used during a project together
with their complex relationships is not trivial [BGRW17]. To keep track of relevant structures, artifacts,
and their relations in order to be able e.g. to evolve or adapt models and their implementing code, the
artifact model [GHR17] was introduced. [BGRW18] explains its applicability in systems engineering
based on MDSE projects.

An artifact model basically is a meta-data structure that explains which kinds of artifacts, namely
code files, models, requirements files, etc. exist and how these artifacts are related to each other. The
artifact model therefore covers the wide range of human activities during the development down to fully
automated, repeatable build scripts. The artifact model can be used to optimize parallelization during the
development and building, but also to identify deviations of the real architecture and dependencies from
the desired, idealistic architecture, for cost estimations, for requirements and bug tracing, etc. Results can
be measured using metrics or visualized as graphs.
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Artificial Intelligence in Software Engineering
MontiAnna is a family of explicit domain specific languages for the concise description of the architec-
ture of (1) a neural network, (2) its training, and (3) the training data [KNP+19]. We have developed
a compositional technique to integrate neural networks into larger software architectures [KRRvW17]
as standardized machine learning components [KPRS19]. This enables the compiler to support the sys-
tems engineer by automating the lifecycle of such components including multiple learning approaches
such as supervised learning, reinforcement learning, or generative adversarial networks. According to
[MRR11g] the semantic difference between two models are the elements contained in the semantics of
the one model that are not elements in the semantics of the other model. A smart semantic differencing
operator is an automatic procedure for computing diff witnesses for two given models. Smart semantic
differencing operators have been defined for Activity Diagrams [MRR11a], Class Diagrams [MRR11d],
Feature Models [DKMR19], Statecharts [DEKR19], and Message-Driven Component and Connector
Architectures [BKRW17, BKRW19]. We also developed a modeling language-independent method for
determining syntactic changes that are responsible for the existence of semantic differences [KR18].

We apply logic, knowledge representation and intelligent reasoning to software engineering to perform
correctness proofs, execute symbolic tests or find counterexamples using a theorem prover. And we have
applied it to challenges in intelligent flight control systems and assistance systems for air or road traffic
management [KRRS19, HRR12] and based it on the core ideas of Broy’s Focus theory [RR11, BR07].
Intelligent testing strategies have been applied to automotive software engineering [EJK+19, DGH+19,
KMS+18], or more generally in systems engineering [DGH+18]. These methods are realized for a variant
of SysML Activity Diagrams and Statecharts.

Machine Learning has been applied to the massive amount of observable data in energy management
for buildings [FLP+11a, KLPR12] and city quarters [GLPR15] to optimize the operation efficiency and
prevent unneeded CO2 emissions or reduce costs. This creates a structural and behavioral system theoret-
ical view on cyber-physical systems understandable as essential parts of digital twins [RW18, BDH+20].

Generative Software Engineering
The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound derivate
of the UML designed for product and test code generation. [Sch12] describes a flexible generator
for the UML/P based on the MontiCore language workbench [KRV10, GKR+06, GKR+08, HR17].
In [KRV06], we discuss additional roles necessary in a model-based software development project.
[GKRS06, GHK+15b] discuss mechanisms to keep generated and handwritten code separated. In [Wei12],
we demonstrate how to systematically derive a transformation language in concrete syntax. [HMSNRW16]
presents how to generate extensible and statically type-safe visitors. In [MSNRR16], we propose the use
of symbols for ensuring the validity of generated source code. [GMR+16] discusses product lines of
template-based code generators. We also developed an approach for engineering reusable language com-
ponents [HLMSN+15b, HLMSN+15a]. To understand the implications of executability for UML, we
discuss needs and advantages of executable modeling with UML in agile projects in [Rum04], how to
apply UML for testing in [Rum03], and the advantages and perils of using modeling languages for pro-
gramming in [Rum02].

Unified Modeling Language (UML)
Starting with an early identification of challenges for the standardization of the UML in [KER99] many
of our contributions build on the UML/P variant, which is described in the books [Rum16, Rum17]
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respectively [Rum12, Rum13] and is implemented in [Sch12]. Semantic variation points of the UML
are discussed in [GR11]. We discuss formal semantics for UML [BHP+98] and describe UML seman-
tics using the “System Model” [BCGR09a], [BCGR09b], [BCR07b] and [BCR07a]. Semantic variation
points have, e.g., been applied to define class diagram semantics [CGR08]. A precisely defined seman-
tics for variations is applied, when checking variants of class diagrams [MRR11c] and objects diagrams
[MRR11e] or the consistency of both kinds of diagrams [MRR11f]. We also apply these concepts to
activity diagrams [MRR11b] which allows us to check for semantic differences of activity diagrams
[MRR11a]. The basic semantics for ADs and their semantic variation points is given in [GRR10]. We
also discuss how to ensure and identify model quality [FHR08], how models, views and the system
under development correlate to each other [BGH+98], and how to use modeling in agile development
projects [Rum04], [Rum02]. The question how to adapt and extend the UML is discussed in [PFR02]
describing product line annotations for UML and more general discussions and insights on how to use
meta-modeling for defining and adapting the UML are included in [EFLR99], [FELR98] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need
appropriate tooling. The MontiCore language workbench [GKR+06, KRV10, Kra10, GKR+08, HR17]
allows the specification of an integrated abstract and concrete syntax format [KRV07b, HR17] for easy
development. New languages and tools can be defined in modular forms [KRV08, GKR+07, Völ11,
HLMSN+15b, HLMSN+15a, HRW18, BEK+18a, BEK+18b, BEK+19] and can, thus, easily be reused.
We discuss the roles in software development using domain specific languages in [KRV14]. [Wei12]
presents a tool that allows to create transformation rules tailored to an underlying DSL. Variability in
DSL definitions has been examined in [GR11, GMR+16]. [BDL+18] presents a method to derive inter-
nal DSLs from grammars. In [BJRW18], we discuss the translation from grammars to accurate meta-
models. Successful applications have been carried out in the Air Traffic Management [ZPK+11] and
television [DHH+20] domains. Based on the concepts described above, meta modeling, model analyses
and model evolution have been discussed in [LRSS10] and [SRVK10]. DSL quality [FHR08], instruc-
tions for defining views [GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based tooling for
DSLs [KRV07a] complete the collection.

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable language com-
ponents, we adopt an engineering viewpoint on these techniques. General ideas on how to engineer a
language can be found in the GeMoC initiative [CBCR15, CCF+15] and the concern-oriented language
development approach [CKM+18]. As said, the MontiCore language workbench provides techniques for
an integrated definition of languages [KRV07b, Kra10, KRV10, HR17, HRW18, BEK+19]. In [SRVK10]
we discuss the possibilities and the challenges using metamodels for language definition. Modular com-
position, however, is a core concept to reuse language components like in MontiCore for the frontend
[Völ11, KRV08, HLMSN+15b, HLMSN+15a, HMSNRW16, HR17, BEK+18a, BEK+18b, BEK+19]
and the backend [RRRW15, MSNRR16, GMR+16, HR17, BEK+18b]. In [GHK+15a, GHK+15b], we
discuss the integration of handwritten and generated object-oriented code. [KRV14] describes the roles in
software development using domain specific languages. Language derivation is to our believe a promising
technique to develop new languages for a specific purpose that rely on existing basic languages [HRW18].
How to automatically derive such a transformation language using concrete syntax of the base language
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is described in [HRW15, Wei12] and successfully applied to various DSLs. We also applied the language
derivation technique to tagging languages that decorate a base language [GLRR15] and delta languages
[HHK+15a, HHK+13], where a delta language is derived from a base language to be able to construc-
tively describe differences between model variants usable to build feature sets. The derivation of internal
DSLs from grammars is discussd in [BDL+18] and a translation of grammars to accurate metamodels in
[BJRW18].

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of
telephone or video data, method invocation, or data structures passed between software services. We use
streams, statemachines and components [BR07] as well as expressive forms of composition and refine-
ment [PR99, RW18] for semantics. Furthermore, we built a concrete tooling infrastructure called Mon-
tiArc [HRR12] for architecture design and extensions for states [RRW13b]. In [RRW13a], we introduce
a code generation framework for MontiArc. MontiArc was extended to describe variability [HRR+11]
using deltas [HRRS11, HKR+11] and evolution on deltas [HRRS12]. Other extensions are concerned
with modeling cloud architectures [NPR13] and with the robotics domain [AHRW17a, AHRW17b].
[GHK+07] and [GHK+08a] close the gap between the requirements and the logical architecture and
[GKPR08] extends it to model variants. [MRR14b] provides a precise technique to verify consistency
of architectural views [Rin14, MRR13] against a complete architecture in order to increase reusabil-
ity. We discuss the synthesis problem for these views in [MRR14a]. Co-evolution of architecture
is discussed in [MMR10] and modeling techniques to describe dynamic architectures are shown in
[HRR98, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling. The
mechanisms for distributed systems are shown in [BR07, RW18] and algebraically grounded in [HKR+07].
Semantic and methodical aspects of model composition [KRV08] led to the language workbench Monti-
Core [KRV10, HR17] that can even be used to develop modeling tools in a compositional form [HR17,
HLMSN+15b, HLMSN+15a, HMSNRW16, MSNRR16, HRW18, BEK+18a, BEK+18b, BEK+19]. A
set of DSL design guidelines incorporates reuse through this form of composition [KKP+09]. [Völ11]
examines the composition of context conditions respectively the underlying infrastructure of the sym-
bol table. Modular editor generation is discussed in [KRV07a]. [RRRW15] applies compositionality to
Robotics control. [CBCR15] (published in [CCF+15]) summarizes our approach to composition and re-
maining challenges in form of a conceptual model of the “globalized” use of DSLs. As a new form of
decomposition of model information we have developed the concept of tagging languages in [GLRR15].
It allows to describe additional information for model elements in separated documents, facilitates reuse,
and allows to type tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and detailedness
is discussed in [HR04]. We defined a semantic domain called “System Model” by using mathematical
theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version especially suited for the UML
is given in [BCGR09b] and in [BCGR09a] its rationale is discussed. [BCR07a, BCR07b] contain detailed
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versions that are applied to class diagrams in [CGR08]. To better understand the effect of an evolved de-
sign, detection of semantic differencing as opposed to pure syntactical differences is needed [MRR10].
[MRR11a, MRR11b] encode a part of the semantics to handle semantic differences of activity diagrams
and [MRR11f, MRR11f] compare class and object diagrams with regard to their semantics. In [BR07],
a simplified mathematical model for distributed systems based on black-box behaviors of components
is defined. Meta-modeling semantics is discussed in [EFLR99]. [BGH+97] discusses potential mod-
eling languages for the description of an exemplary object interaction, today called sequence diagram.
[BGH+98] discusses the relationships between a system, a view and a complete model in the context of
the UML. [GR11] and [CGR09] discuss general requirements for a framework to describe semantic and
syntactic variations of a modeling language. We apply these on class and object diagrams in [MRR11f]
as well as activity diagrams in [GRR10]. [Rum12] defines the semantics in a variety of code and test
case generation, refactoring and evolution techniques. [LRSS10] discusses evolution and related issues
in greater detail. [RW18] discusses an elaborated theory for the modeling of underspecification, hierar-
chical composition, and refinement that can be practically applied for the development of CPS.

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code they are not initially correct
and need to be changed, evolved and maintained over time. Model transformation is therefore essential
to effectively deal with models. Many concrete model transformation problems are discussed: evolu-
tion [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], decomposition [PR99, KRW20],
synthesis [MRR14a], refactoring [Rum12, PR03], translating models from one language into another
[MRR11c, Rum12], and systematic model transformation language development [Wei12]. [Rum04]
describes how comprehensible sets of such transformations support software development and main-
tenance [LRSS10], technologies for evolving models within a language and across languages, and map-
ping architecture descriptions to their implementation [MMR10]. Automaton refinement is discussed in
[PR94, KPR97], refining pipe-and-filter architectures is explained in [PR99]. Refactorings of models
are important for model driven engineering as discussed in [PR01, PR03, Rum12]. Translation between
languages, e.g., from class diagrams into Alloy [MRR11c] allows for comparing class diagrams on a
semantic level.

Variability and Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one manufacturer
develops several products with many similarities but also many variations. Variants are managed in a
Software Product Line (SPL) that captures product commonalities as well as differences. Feature dia-
grams describe variability in a top down fashion, e.g., in the automotive domain [GHK+08a] using 150%
models. Reducing overhead and associated costs is discussed in [GRJA12]. Delta modeling is a bottom
up technique starting with a small, but complete base variant. Features are additive, but also can modify
the core. A set of commonly applicable deltas configures a system variant. We discuss the application
of this technique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas
can not only describe spacial variability but also temporal variability which allows for using them for
software product line evolution [HRRS12]. [HHK+13] and [HRW15] describe an approach to systemat-
ically derive delta languages. We also apply variability modeling languages in order to describe syntactic
and semantic variation points, e.g., in UML for frameworks [PFR02] and generators [GMR+16]. Further-
more, we specified a systematic way to define variants of modeling languages [CGR09], leverage features
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for compositional reuse [BEK+18b], and applied it as a semantic language refinement on Statecharts in
[GR11].

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical enti-
ties. In [RW18], we discuss how an elaborated theory can be practically applied for the development
of CPS. Contributions for individual aspects range from requirements [GRJA12], complete product lines
[HRRW12], the improvement of engineering for distributed automotive systems [HRR12], autonomous
driving [BR12a, KKR19], and digital twin development [BDH+20] to processes and tools to improve
the development as well as the product itself [BBR07]. In the aviation domain, a modeling language for
uncertainty and safety events was developed, which is of interest for the European airspace [ZPK+11]. A
component and connector architecture description language suitable for the specific challenges in robotics
is discussed in [RRW13b, RRW14]. In [RRW13a], we describe a code generation framework for this lan-
guage. Monitoring for smart and energy efficient buildings is developed as Energy Navigator toolset
[KPR12, FPPR12, KLPR12].

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradition on contributing
to systems engineering in automotive [GHK+08b], which culminated in a new comprehensive model-
driven development process for automotive software [KMS+18, DGH+19]. We leveraged SysML to
enable the integrated flow from requirements to implementation to integration. To facilitate modeling of
products, resources, and processes in the context of Industry 4.0, we also conceived a multi-level frame-
work for machining based on these concepts [BKL+18]. Research within the excellence cluster Internet
of Production considers fast decision making at production time with low latencies using contextual data
traces of production systems, also known as Digital Shadows (DS) [SHH+20]. We have investigated
how to derive Digital Twins (DTs) for injection molding [BDH+20], how to generate interfaces between
a cyber-physical system and its DT [KMR+20] and have proposed model-driven architectures for DT
cockpit engineering [DMR+20].

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including Petri nets
or temporal logics. Software engineering is particularly interested in using statemachines for modeling
systems. Our contributions to state based modeling can currently be split into three parts: (1) understand-
ing how to model object-oriented and distributed software using statemachines resp. Statecharts [GKR96,
BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement [PR94, RK96, Rum96, RW18] and
composition [GR95, GKR96, RW18] of statemachines, and (3) applying statemachines for modeling sys-
tems. In [Rum96, RW18] constructive transformation rules for refining automata behavior are given and
proven correct. This theory is applied to features in [KPR97]. Statemachines are embedded in the com-
position and behavioral specification concepts of Focus [GKR96, BR07]. We apply these techniques,
e.g., in MontiArcAutomaton [RRW13a, RRW14, RRW13a, RW18] as well as in building management
systems [FLP+11b].
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Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational support for human
behaviour (2) based on information from previously stored and real-time monitored structural context
and behaviour data (3) at the time the person needs or asks for it [HMR+19]. To create them, we follow
a model centered architecture approach [MMR+17] which defines systems as a compound of various
connected models. Used languages for their definition include DSLs for behavior and structure such as
the human cognitive modeling language [MM13], goal modeling languages [MRV20] or UML/P based
languages [MNRV19]. [MM15] describes a process how languages for assistive systems can be created.

We have designed a system included in a sensor floor able to monitor elderlies and analyze impact
patterns for emergency events [LMK+11]. We have investigated the modeling of human contexts for
the active assisted living and smart home domain [MS17] and user-centered privacy-driven systems in
the IoT domain in combination with process mining systems [MKM+19], differential privacy on event
logs of handling and treatment of patients at a hospital [MKB+19], the mark-up of online manuals
for devices [SM18] and websites [SM20], and solutions for privacy-aware environments for cloud ser-
vices [ELR+17] and in IoT manufacturing [MNRV19]. The user-centered view on the system design
allows to track who does what, when, why, where and how with personal data, makes information about
it available via information services and provides support using assistive services.

Modelling Robotics Architectures and Tasks

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-
ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics
applications requires composition and interaction of diverse distributed software modules. This usu-
ally leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensi-
ble, which hampers broad propagation of robotics applications. The MontiArcAutomaton language
[RRW13a] extends the ADL MontiArc and integrates various implemented behavior modeling languages
using MontiCore [RRW13b, RRW14, RRRW15, HR17] that perfectly fit robotic architectural modeling.
The LightRocks [THR+13] framework allows robotics experts and laymen to model robotic assembly
tasks. In [AHRW17a, AHRW17b], we define a modular architecture modeling method for translating
architecture models into modules compatible to different robotics middleware platforms.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication systems
as well as advanced active and passive safety-systems result in complex embedded systems. As these
feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct vari-
ants needs to be managed, developed and tested. A consistent requirements management that connects
requirements with features in all phases of the development for the automotive domain is described in
[GRJA12]. The conceptual gap between requirements and the logical architecture of a car is closed
in [GHK+07, GHK+08a]. [HKM+13] describes a tool for delta modeling for Simulink [HKM+13].
[HRRW12] discusses means to extract a well-defined Software Product Line from a set of copy and
paste variants. [RSW+15] describes an approach to use model checking techniques to identify behav-
ioral differences of Simulink models. In [KKR19], we introduce a framework for modeling the dynamic
reconfiguration of component and connector architectures and apply it to the domain of cooperating ve-
hicles. Quality assurance, especially of safety-related functions, is a highly important task. In the Carolo
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project [BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-based func-
tions through fully-automatic simulation [BBR07]. This technique allows a dramatic speedup in develop-
ment and evolution of autonomous car functionality, and thus enables us to develop software in an agile
way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in development and evolution
on a more general level by considering any kind of critical system that relies on architectural descriptions.
As tooling infrastructure, the SSElab storage, versioning and management services [HKR12] are essential
for many projects.

Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emissions is
an important challenge. Thus, energy management in buildings as well as in neighbourhoods becomes
equally important to efficiently use the generated energy. Within several research projects, we developed
methodologies and solutions for integrating heterogeneous systems at different scales. During the design
phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12, KPR12] is used for tech-
nical specification of building services already. We adapted the well-known concept of statemachines to
be able to describe different states of a facility and to validate it against the monitored values [FLP+11b].
We show how our data model, the constraint rules, and the evaluation approach to compare sensor data
can be applied [KLPR12].

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based
application and service architectures with high complexity, criticality, and new application domains. It
promises to enable new business models, to lower the barrier for web-based innovations and to increase
the efficiency and cost-effectiveness of web development [KRR14]. Application classes like Cyber-
Physical Systems and their privacy [HHK+14, HHK+15b], Big Data, App, and Service Ecosystems bring
attention to aspects like responsiveness, privacy and open platforms. Regardless of the application do-
main, developers of such systems are in need for robust methods and efficient, easy-to-use languages and
tools [KRS12]. We tackle these challenges by perusing a model-based, generative approach [NPR13].
The core of this approach are different modeling languages that describe different aspects of a cloud-
based system in a concise and technology-agnostic way. Software architecture and infrastructure models
describe the system and its physical distribution on a large scale. We apply cloud technology for the
services we develop, e.g., the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also
for our tool demonstrators and our own development platforms. New services, e.g., collecting data from
temperature, cars etc. can now easily be developed.

Model-Driven Engineering of Information Systems

Information Systems provide information to different user groups as main system goal. Using our experi-
ences in the model-based generation of code with MontiCore [KRV10, HR17], we developed several gen-
erators for such data-centric information systems. MontiGem [AMN+20] is a specific generator frame-
work for data-centric business applications that uses standard models from UML/P optionally extended
by GUI description models as sources [GMN+20]. While the standard semantics of these modeling lan-
guages remains untouched, the generator produces a lot of additional functionality around these models.
The generator is designed flexible, modular and incremental, handwritten and generated code pieces are
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well integrated [GHK+15b], tagging of existing models is possible [GLRR15], e.g., for the definition of
roles and rights or for testing [DGH+18].
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