
Applying a Self-Extension Mechanism to DSLs for
Establishing Model Libraries

Arkadii Gerasimov
Software Engineering, RWTH Aachen University

Aachen, Germany

Nico Jansen
Software Engineering, RWTH Aachen University

Aachen, Germany

Judith Michael
Software Engineering, RWTH Aachen University

Aachen, Germany

Bernhard Rumpe
Software Engineering, RWTH Aachen University

Aachen, Germany

Abstract
When applying model-driven engineering in an agile envi-
ronment, new requirements continuously expand the do-
main scope and trigger an extension of the concepts covered
by a Domain-Specific Language (DSL). While programming
languages streamline code extension and reuse through li-
braries, similar approaches for DSLs are more complex or
target a specific language. We present and discuss an ap-
proach for designing DSLs with a self-extension mechanism
to enable model library creation and seamless reuse. We use
the self-extension mechanism to introduce concepts in mod-
els, gather reusable models into a library, and provide an
infrastructure for its usage. We explain our language-specific
realization of the self-extension mechanism using a DSL for
graphical user interfaces and discuss its model libraries with
a use case from practice. The approach provides more flexibil-
ity for agile model-driven engineering. It enables application
modelers to introduce and reuse concepts via models without
changing the DSL, reducing the communication overhead
within the development team.

CCS Concepts: • Software and its engineering →
Model-driven software engineering; Domain specific
languages; Graphical user interface languages; Source
code generation; Unified Modeling Language (UML);
Reusability.

Keywords: Model-Driven Software Engineering, Domain-
Specific Languages, Software Language Engineering, Model
Library, Graphical User Interfaces

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GPCE ’24, October 21–22, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1211-1/24/10
https://doi.org/10.1145/3689484.3690732

ACM Reference Format:
Arkadii Gerasimov, Nico Jansen, Judith Michael, and Bernhard
Rumpe. 2024. Applying a Self-Extension Mechanism to DSLs for
Establishing Model Libraries. In Proceedings of the 23rd ACM SIG-
PLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE ’24), October 21–22, 2024, Pasadena, CA,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3689484.3690732

1 Introduction
Model-driven engineering (MDE) [68, 77] is becoming in-
creasingly prevalent in modern development endeavors over
various domains. It is applied, for example, in automotive [7,
10], aviation [29, 30], robotics [17, 22, 79], production [28, 33,
34], smart homes [50, 58], civil engineering [55, 75], software
engineering [42, 48, 77], and systems engineering [65, 66], us-
ing models as an abstraction to separate the problem domain
from the technical solution domain and establish a seamless
development process. In MDE, models are the primary de-
velopment artifacts that steer the engineering process and
constitute the single source of truth [31].
Models adhere to modeling languages that specify the

concrete and abstract syntax, well-formedness rules, and
semantics [18, 40]. These languages are often tailored for
a specific purpose or application domain to enable domain
experts to create solutions within their expertise, e.g., by us-
ing known terminology. Such languages are called Domain-
Specific Languages (DSLs) [20, 54]. In contrast General Pur-
pose Languages (GPLs), such as UML [61] or SysML [32, 41],
are generally applicable across multiple domains.
As modeling languages continuously evolve, the mainte-

nance and support effort for the languages and their tools
is also growing, as with any software product [27, 56]. In
recent years, the reusability of existing language compo-
nents has become an essential part of their research and
development [9, 39, 43]. Thus, we can see a trend that lan-
guages are not built from scratch but are based on incorporat-
ing modular, reusable building blocks. Multiple composition
techniques [25, 72, 78] and design patterns [24] have been
researched to seamlessly integrate language components pro-
vided in corresponding libraries [15] and, ultimately, leverage
software language product lines [52].

29

[GJMR24] A. Gerasimov, N. Jansen, J. Michael, B. Rumpe:
Applying a Self-Extension Mechanism to DSLs for Establishing Model Libraries.
In: Proceedings of the 23rd ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences (GPCE),
S. Chiba, T. Thüm (Eds.), pp. 29-43, GPCE ’24,
Association for Computing Machinery (ACM), New York, NY, USA, Oct. 2024.

https://orcid.org/0000-0003-4752-3995
https://orcid.org/0000-0001-5199-8323
https://orcid.org/0000-0002-4999-2544
https://orcid.org/0000-0002-2147-1966
https://doi.org/10.1145/3689484.3690732
https://doi.org/10.1145/3689484.3690732
https://doi.org/10.1145/3689484.3690732
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689484.3690732&domain=pdf&date_stamp=2024-10-21

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Arkadii Gerasimov, Nico Jansen, Judith Michael, and Bernhard Rumpe

While these advances are fundamental for sustainable lan-
guage development and maintenance, the techniques that
enable language extension via models have yet to be ex-
plored [67]. In this work, we refer to one such technique as
a self-extension mechanism, i.e., extending the language’s
functionality within models without modifying its meta-
model (the language provides means for its extension, thus
"self"–extension). The mechanism has been previously de-
scribed for some DSLs [67, 76]. Such DSLs often have ref-
erencing mechanisms for models and enable reuse of the
models, e.g., via a model library. The library concept has
already been established for prominent programming lan-
guages such as Java [2] and Python [74]. Therefore, it is only
logical that introducing a library concept is one of the next steps
in the evolution of modeling languages. The specifications of
large GPLs in modeling, such as UML [61], SysML [62], or its
successor, SysML v2 [64], already define concepts of model
libraries. Their implementation in GPLs shows that a self-
extension mechanism and model libraries have great poten-
tial in modeling languages. While an extension mechanism
requires language-specific implementation, its advantage is
that modelers can provide extensions themselves and do not
necessarily require the services or resources of a language
engineer. Furthermore, domain-specific extensions do not
demand their language variant but can be provided directly
via libraries by proficient modelers. This improves cross-
disciplinary applicability by establishing domain-specific
model libraries of a base language to be incorporated into
different application areas.
Although model libraries are already considered in in-

dividual languages and language families [67], this aspect
of language extensibility still needs to be explored. While
extensive contributions to software language engineering
practices [51] and ideas for model and meta-model evolu-
tion exist, a general, reusable self-extension concept is cru-
cial for developing smaller DSLs, as updating a DSL with-
out extension points in place is time-consuming and costly
to re-implement. Occasionally, a few languages provide a
language-specific solution. However, a general technique
and requirements for realizing a self-extension mechanism
for modeling languages and using it to build model libraries
must be explored.

We investigate and specify how to establish a model library
using a self-extension mechanism for DSLs. Our contributions:

• A conceptual framework for building DSLs with model
library support.

• A description and implementation of the components
necessary to build such a DSL using a self-extension
mechanism that enables seamless integration of new
language concepts and maintenance of a model library.

• A comparison of our approach using the self-extension
mechanism to a more straightforward alternative that
introduces new concepts directly in the language.

• A validation of the comparison using a real-world in-
formation system and its DSL for defining Graphical
User Interfaces (GUIs).

We list the components necessary to build a DSL with a
model library that is easy to extend and use.
Our approach’s general idea is to integrate and use the

self-extension mechanism to enable the introduction of lan-
guage concepts at the modeling level. The integration must
allow describing semantics in the models or the handwritten
artifacts supporting the generated code from model imple-
mentation. Such models can be transferred and reused as a
library with the same tooling built for the language. Further,
we use concepts from the Meta Object Facility (MOF) [59]
to designate metamodel level (M2), model level (M1), and
code level (M0). We use the older MOF specification since we
limit our work to these three levels in this paper. Applying
the approach to DSLs with arbitrary layers or applying the
mechanism to higher abstraction levels is out of our work’s
scope. For simplicity, while describing a concrete syntax def-
inition of a language and a code generator, we consider them
to be on a metamodel level (language level).
Figure 1 illustrates the difference between introducing a

new language concept for the two approaches. On the left-
hand side, a DSL is defined (top) with the two features, B
and C, which are used in particular models (bottom). The
right-hand side shows the generalization of this language by,
instead of introducing multiple specific language features,
introducing a general feature D that is extendable and refer-
encable on the model level. Since the language on the right
is extended on the model level, the concepts can be grouped
and packaged as a model library.

Figure 1. DSL extension techniques

We compare the approaches using the MaCoCo [35] infor-
mation system as real-world example and GUI DSL that de-
fines the system’s GUI. We compare and discuss both strate-
gies, highlighting the benefits and limitations of establishing
model libraries using the self-extension mechanism.

30

Applying a Self-Extension Mechanism to DSLs for Establishing Model Libraries GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

The paper is structured as follows: The next section in-
troduces preliminary work, including the technology and
languages used. Section 3 investigates the requirements for
a language’s self-extension mechanism and parts of corre-
sponding model libraries. Section 4 demonstrates an exam-
ple of self-extension mechanism implementation. Section 5
presents a real-world use case in applying the implemented
self-extensionmechanism to aDSL for designingGUIs and es-
tablishing a model library. Section 6 compares the approach
with its non-self-extendable predecessor. Section 7 evalu-
ates the differences between the approach and its predeces-
sor. Section 8 discusses the results, considering scenarios
in which model libraries are beneficial and listing the ap-
proach’s limitations. Section 9 presents related work contem-
plating associated techniques. The last section concludes.

2 Preliminaries
We introduce the technology stack and the real-world project
used as an example application.

MontiCore. We develop textual DSLs using MontiCore -
a workbench that produces infrastructure for the languages
defined in a context-free grammar [44] in Extended Backus-
Naur Form [80]. This includes a parser for the models of the
language, which transforms the textual representation of
the models into an Abstract Syntax Tree (AST), effectively
defining the language metamodel (M2). AST classes are gen-
erated by MontiCore alongside a visitor infrastructure for
their traversal. Components for creating, importing, and
exporting symbol tables, a CLI tool, and other helpful utili-
ties are derived automatically to support the development
of a generator and other model processing tools. The code
generated by MontiCore and its products can be extended
with hand-written code using inheritance or hook points. A
language engineer can also compose, extend, or aggregate
MontiCore grammars [13, 15].

MaCoCo. We demonstrate the self-extension mechanism
using the MaCoCo application [11, 35]. MaCoCo is an in-
formation system that supports managing and controlling
faculty resources and projects [37]. User activities include
budget management, planning staff on projects, recording
working hours, etc. MaCoCo is actively used by about 50
institutes with around 190 daily users (Table 1).

Table 1. MaCoCo statistics
Total

Modeled types (domain) 141
GUI-Models (web pages) 91
Lines of Code 11 mil
Active faculties 66
Users 1600
Logins per day 210

From a technical view, MaCoCo is a web application pro-
duced by the MontiGem generator with a Java backend and

Angular frontend. It is a large project with over a million
lines of code, where around 75% is generated.
MontiGem.MontiGem [1] is a framework that enables

the creation of web applications. It includes a generator and
a run-time environment to provide the frontend, backend,
database, and infrastructure for communication between
these components. A developer can quickly build a func-
tional prototype by modeling the data structure as class dia-
grams and user interfaces with the GUI DSL and running the
MontiGem generator. The frontend of a MontiGem product
is an Angular application. MontiGem was applied to develop
the MaCoCo application [35], process-aware information
systems [23], low-code development platforms [21], digital
twins [3], assistive systems [57], and IoT app stores [14].
First version of GUI DSL (GUI DSL 1). The first ver-

sion of GUI DSL was created for describing user interfaces. A
model of the language describes a web page by specifying do-
main objects to be loaded for the page and visual components
to be displayed with the loaded data. Every component is
defined in the grammar. A specific generator part transforms
each component into the target code.

Second version of GUI DSL (GUI DSL 2). GUI DSL 2 is
a rework of version 1. The DSL preserves general concepts
from the first version and expands on them to support fre-
quent changes and additions to the predefined component
set. A model of the DSL describes a GUI component that
can be a web page or a part of it. A component allows input
parameters, e.g., strings or integers, in addition to the data
source to enable the creation of configurable reusable compo-
nents. Every specific component, e.g., a button or a table, is
declared in a separate model. The language tooling handles
arbitrary components defined by a modeler in the same way.
This design is a foundation for realizing the self-extension
mechanism, which leads to establishing model libraries.

3 Model Library and Self-Extension
Mechanism

In an agile engineering process, the constantly changing
domain scope requires an appropriate reaction in the imple-
mentation, including models and often their DSLs. This con-
stant change requires a DSL user to introduce a new concept
in some way, the direct solution being language extension,
such as introducing a new grammar rule and adjusting the
corresponding generator parts. An alternative is to work
with more abstract concepts in the DSL and introduce new
concepts in the models. Such models effectively form a li-
brary. Figure 2 shows the overall concept of establishing and
employing such a library. Referenceable elements from a pro-
vided and precompiled model library are addressed and used
in a source model. The same applies to the program artifacts
synthesized from this source model. These artifacts import
functionalities that were, in advance, generated from the
library models or extended by hand. Thus, the library comes

31

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Arkadii Gerasimov, Nico Jansen, Judith Michael, and Bernhard Rumpe

Figure 2. A model library concept where model elements
refer to provided models, and the generated target code in-
corporates corresponding compiled artifacts

with compiled artifacts, similar to GPLs, so the generation
process is only triggered for the models at hand.
The requirements for establishing and incorporating li-

braries are similar for different software languages, indepen-
dent of their nature (i.e., programming or modeling). Thus,
for a more intuitive understanding, we compare features
required for a modeling library to similar concepts of Java:

• Extendable concepts: The language features abstract
concepts for the lower-level concepts described in the
models. Compared to Java, we have a similar notion,
for instance, with the abstract concept of classes, which
are implemented and can be provided externally.

• Importmechanism: Languages require a mechanism
to import and use the models in another model. This
includes a mechanism that allows for referencing par-
ticular model elements, regardless of whether they
are provided in the same artifact or externally. Mech-
anisms such as references [71], or symbol tables [15]
accomplish this task inmodeling languages. Compared
to Java, an implemented class can be imported and in-
stantiated in another class.

• Packaging mechanism: The reusable models and
associated artifacts must be suitably packaged into ar-
tifacts and exported. In Java, for instance, compiled
files can be packed into a JAR file, which can be incor-
porated into other projects.

The packaging mechanism selects the elements to be in-
corporated, which is essential for reuse. For instance, if the
models are backed by executable code, often generated from
the models, the mechanism has to ensure that the code is

correctly employed. Using a model from a library in another
model produces the code that retains such a relation. This re-
lationship is indicated in Figure 2, where the generated target
code references artifacts delivered within the model library.
Thus, a library of a DSL must precisely define deliverable
packages that include models and associated artifacts. While
the content of such packages depends on the corresponding
language and its underlying language workbench [26], we
can provide a general guideline for the required parts. The
contents of a self-contained package are:

• Model artifact: The model contains the reusable ele-
ments and is at the core of a package. Depending on
the implementation, the results from processing the
models may be used instead of the model artifact that
would serve as documentation. Such models can be
compared to Java source files, which help a program-
mer review the original implementation.

• Serialized symbol table: Instead of the model, an
artifact that exposes the referenceable model elements
can be packaged. Such elements that can be referenced
by their name are called symbols. These can be ad-
dressed intra- and inter-model-wide using a symbol
table. Language workbenches such as MontiCore al-
low these tables to be stored and loaded efficiently.
This provides an efficiency gain, especially for large
models and massive model sets in libraries. These seri-
alized symbol tables are comparable to the class files
in Java libraries: A model is similar to a source file, and
a serialized symbol table is similar to a compiled class.

• Compiled target artifacts: A package may contain
generated from models artifacts or manually created
extensions, such as executable GPL code. Since such
artifacts are closely related to a model, they are also
relevant for integrating library models into projects.

• Additional artifacts:Model components can be en-
riched with extra content. For example, they can in-
clude artifacts augmented with information synchro-
nizing the generation process [46] to ensure the gener-
ated files match. Alternatively, application- or domain-
specific artifacts, such as images for a GUI of an infor-
mation system, may be relevant.

In the above list, the set of artifacts for the approach that
relies on a direct DSL extension would include the language
and generator extensions instead of the model and compiled
target artifacts, respectively. For example, a DSL has a con-
cept of an Account. If the Account is added to the DSL in
the grammar with a mapping in the code generator, reusing
it relies on the language and generator extensions. If the
Account is introduced in a model, e.g., as a class in a class
diagram, and the generator provides a general mapping for
classes, the model (or equivalent concept description) and
the mapped code are needed for their reuse.

32

Applying a Self-Extension Mechanism to DSLs for Establishing Model Libraries GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

4 The Self-Extension in GUI DSL 2
GUI DSL 2 implements a self-extension mechanism allowing
application modelers and library developers to declare and
implement new user interface components in the models of
the DSL. The realization is similar to declaring new classes
or functions in object-oriented languages. A model of the
language contains a GUI component declaration with its
(optional) implementation. The implementation consists of
components imported from other models and instantiated
as a part of the component.

1 symbol GUIComponentDeclaration =
2 ([" component "] | ["page "]) Name
3 "(" (GUIParam || ",")* ")" GUIBlock ?;
4 symbol GUIParam implements Variable =
5 MCType Name ("=" default:Expression)?;
6
7 GUIComponent = "@" Name@GUIComponentDeclaration
8 "(" (GUINamedArg || ",")* ")";
9 GUINamedArg = Name@GUIParam "=" Expression;

Listing 1. GUI DSL 2 grammar excerpt. It specifies the
concrete syntax for a component declaration and usage.

Listing 1 shows how MontiCore grammar (MG) of GUI
DSL 2 specifies constructs necessary for realizing the self-
extension mechanism. The declaration (lines 1-3) starts with
a keyword component or page followed by an arbitrary com-
ponent name, a list of input parameters (lines 4-5), and a
block containing the component implementation. A com-
ponent usage (lines 7-8) is indicated by an @ sign followed
by the name of the component and a list of arguments (line
9). The grammar additionally uses MontiCore features to
specify a part of the abstract syntax connecting the name
in the component usage (line 7) and the named arguments
(line 9) to the symbols referencing a component declaration
and parameters.

1 package example;
2
3 import basic.GemText;
4
5 component TextExample () {
6 @GemText(value = "My text");
7 }

Listing 2. GUI model of a component displaying text.

Listing 2 demonstrates a component declaration
TextExample that uses a component displaying My text.
The component imports and instantiates GemText, which
is used to display text specified in a parameter value.
The TextExample component can further be imported
and instantiated in other models, resulting in the text My
text being displayed each time. The import mechanism
is supported by the MontiCore tool. Using the imports

and instantiation, components can be combined into new
components, resulting in complete web pages. Further, the
package and import declarations are omitted for brevity.

1 package basic;
2
3 component GemText(String value)

Listing 3. GUI model of the GemText.

GUI DSL 2 also defines basic components, which differ
from the combined components. Listing 3 shows the model
for the basic component GemText. The model only defines
the component’s input parameters but does not specify the
implementation. The component is implemented manually
in the target language of a DSL generator, e.g., JavaScript,
HTML, CSS, etc. As shown in Listing 2, using a component
only requires the component’s signature in the model. As a
result, any new basic building block can be added without
extending the metamodel.
If a model describes the implementation, the generator

translates it to the target code. The component implementa-
tion is only used on the code level as compiled sources.

1 import { GemText } from "basic/GemText ";
2 /*...*/
3 @Component ({
4 template: `
5 <gem -text [value]="'My Text '"></gem -text >
6 `,
7 selector: `text -example `,
8 imports: [GemText]
9 })
10 export class TextExample { /*...*/ }

Listing 4. Mapping of a GUI model to the TypeScript
(Angular) code.

The import and usage of a component translates to the
import and usage of the component signature. The general
idea can be seen in Figure 2, and an excerpt of the generated
code for the TextExample is shown in Listing 4.

• The component import (Listing 2 line 5) is translated
to Angular code imports (Listing 4 lines 1, 8).

• The name of a declared component (Listing 2 line 5)
is converted to TypeScript class declaration (Listing 4
line 10) and HTML tags declaration (Listing 4 line 7).

• The name of a used component (Listing 2 line 6) is
converted to HTML tag usage (Listing 4 line 5).

• The arguments (Listing 2 line 6) are translated to An-
gular parameter assignment (Listing 4 line 5).

The presented approach differs from the GUI DSL 1, where
components are a part of the DSL grammar and models only
describe complete web pages. Listing 5 shows how a text
component is introduced in GUI DSL 1.

33

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Arkadii Gerasimov, Nico Jansen, Judith Michael, and Bernhard Rumpe

1 Text = "textoutput" "{" Expression "}";

Listing 5. GUI DSL 1 grammar excerpt (simplified). It
specifies the concrete syntax for a text component.

This and other components have a specific keyword and
generation logic, which abstracts away their implementation
details. However, if a new component has to be introduced, it
must be added to the DSL grammar and usually the generator.
The key difference between the two approaches is the

abstraction levels when (re-)defining components. The self-
extension mechanism at the language (grammar) level elimi-
nates the need to modify artifacts but makes the components
indistinguishable. Further, we show how the self-extension
mechanism supports establishing a model library and com-
pare it to an alternative approach using GUI DSL 1 example.

5 Example
We use examples from the financial controlling domain to
compare languages with and without the self-extension
mechanism. The example models are simplified versions
of the production code but have the same meaning and
structure. The example workflow consists of three steps.
The first two are valid for both versions of GUI DSL:

• Step 1. Create a staff overview page (see Figure 4). The
page shows a list of persons with buttons to create a
new person and to view a wiki page documenting the
functionality.

• Step 2. Create an accounts overview page (see Fig-
ure 5). The page shows a list of accounts with buttons
to create a new account and to view a wiki page. Com-
pare the new page with the staff overview page and
extract a common layout component.

• Step 3. Integrate the common layout component into
a model library of GUI DSL 2.

We use the same data structure in the form of a class
diagram shown in Figure 3 for both versions. Readers may
find the full version in [36]. The GUI models reference the
data structure to define the source of web pages’ data.

Figure 3. Data structure

In the example, we observe several roles responsible for
the development on different abstraction levels:

• Language engineer modifies artifacts at the meta-
model level (M2), such as a DSL grammar and the
generator code.

• Application modeler (app modeler) modifies arti-
facts at the model level (M1), such as the models of the
DSL that describe GUI components, including pages.

• Component developer modifies artifacts at the code
level (M0), such as the code that implements or extends
the functionality of the modeled GUI components.

• Library developer is a component developer respon-
sible for maintaining a component library.

Step 1. The staff overview page is shown in Figure 4.
Here and further, we demonstrate the GUI using only a sin-
gle screenshot (despite having two versions of the pages)
since the displayed result is practically the same. Differences
are observed only in minor details, such as more rounded
corners, slightly different colors, and other visual styles ex-
plained by the updated theme for the components in GUI
DSL 2.

Figure 4. Staff overview page

Models describing the page in GUI DSL 1 (Listing 6) and
GUI DSL 2 (Listing 7) are structurally very similar. Both
models specify the data source in the web page declaration
(line 1) and define visual components to display.

1 webpage StaffOverview(all Person persons) {
2 card {
3 head {
4 row(stretch) {
5 textoutput { "Staff overview" }
6 row (r) {
7 button "Add person" { click ->add() }
8 button "?" { click ->wiki() }
9 }}}
10 body {
11 datatable "overview" {
12 rows <persons {
13 column "ID", <staffID;
14 column "Last Name", <lastName;
15 column "First name", <firstName;
16 }}}
17 }}

Listing 6. GUI DSL 1 model of the staff overview page.

34

Applying a Self-Extension Mechanism to DSLs for Establishing Model Libraries GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

1 page StaffOverview(List <Person > persons) {
2 @GemCard(
3 title = @GemRow(
4 hAlign = "stretch", components = [
5 @GemText(value = "Staff overview "),
6 @GemRow(hAlign = "right", components =[
7 @GemButton(label = "Add person",
8 click = add),
9 @GemButton(label = "?", click = wiki)
10])]),
11 component = @GemTable(
12 rows = persons ,
13 columns = [
14 TableColumn (" staffID", "ID"),
15 TableColumn (" lastName", "Last name"),
16 TableColumn (" firstName", "First name")
17]));}

Listing 7. GUI DSL 2 model of the staff overview page.

In a GUI DSL 1 model, the web page declaration only
specifies the data source and what items should be retrieved
(all or single items). In a GUI DSL 2 model, the declaration
specifies a list of input parameters, and the data is loaded
automatically whenever possible. Otherwise, the input pa-
rameter has to be set when a component is instantiated. For
example, a GemText value is a String input whose value is
set to "Staff overview" (Listing 7, line 5).

A GUI DSL 1 model body (Listing 6, lines 2-17) instantiates
visual components using component-specific syntax defined
in the language grammar. For example, a row aligns com-
ponents listed in braces from left to right and may control
the position and size of the components using a keyword
in brackets, such as stretch (line 4) to stretch the items for
filling the available space or r (line 6) to align all of the items
to the right side. A button has a different syntax, specifying
the button’s text after the button keyword and a function
to call on click in braces (lines 7-8). The non-uniform syntax
allows a more specialized and compact description.
The GUI DSL 2 grammar defines a single pattern for all

visual components and is more verbose. The values of compo-
nent arguments can be literals (Listing 7, line 5), expressions
(line 12), lists (line 13), and other components (line 3), pro-
viding sufficient expressive power to describe a web page.
As a result, a single GUI DSL 2 model is typically bigger than
a GUI DSL 1 model.

Despite the language differences, an application modeler
would not notice a big difference between the workflow for
creating either of the models. The application modeler speci-
fies the data source and the page content using the available
data structure and the same set of predefined components.

Step 2. A modeler creates an account overview page. The
same layout pattern should be used since views with the
same purpose must look similar according to the consistency
property of design principles [70]. As a result, the page’s

visual appearance is similar to the staff overview page, except
for the data and other textual information (see Figure 5).

Figure 5. Account overview page

Following the Don’t Repeat Yourself (DRY) principle [73],
the models are refactored to derive a visual component spec-
ifying a layout template for the overview pages.

1 Overview = "overview" title:StringLiteral "{"
PageElement "}";

Listing 8. GUI DSL 1 extension for the overview.

GUI DSL 1 implements the new concept via language
extension, including a new grammar rule (see Listing 8) and
a generator extension for a simplemapping from themodel to
the target language. The overview component hides details
such as the usage of a card and a textoutput component.

1 webpage AccountsOverview(all Account accounts){
2 overview "Account overview" {
3 head {
4 button "Add account" { click ->add() }
5 button "?" { click ->wiki() }
6 }
7 body {
8 datatable "overview" {
9 rows <accounts {
10 column "Name", <name;
11 column "Type", <type;
12 column "Budget", euro(<budget);
13 }}}}}

Listing 9. GUI DSL 1 model of the account overview.

The account overview page model uses the new compo-
nent to define the same layout as the staff overview more
concisely (see Listing 9). In the GUI DSL 2 case (Listing 10),
a new Overview model is created. The model defines a page
skeleton consisting of a card with a title, buttons, and an
arbitrary element as a card body with a default layout. The
account overview page model transforms where the layout
details become hidden (Listing 11).

35

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Arkadii Gerasimov, Nico Jansen, Judith Michael, and Bernhard Rumpe

1 page Overview(
2 String title ,
3 List <GUIViewElement > buttons ,
4 GUIViewElement main
5) {
6 @GemCard(
7 title = @GemRow(hAlign = "stretch",
8 components = [
9 @GemText(value = title),
10 @GemRow(hAlign = "right",
11 components = buttons)
12]),
13 component = main
14);}

Listing 10. GUI DSL 2 model for an overview page.

1 page AccountsOverview(List <Account > accounts) {
2 @Overview(title = "Accounts overview",
3 buttons = [
4 @GemButton(label = "Add account",
5 click = add),
6 @GemButton(label = "?", click = wiki)
7],
8 main = @GemTable(
9 rows = accounts ,
10 columns = [
11 TableColumn ("name", "Name"),
12 TableColumn ("type", "Type"),
13 TableColumn (" budget", "Budget ")
14]));}

Listing 11. GUI DSL 2 model of the account overview.

Step 3. The component is recognized as useful for dif-
ferent projects, so it should become available for reuse. A
library developer integrates the Overview component into
an existing or a newly created model library. For GUI DSL 1
users, the component is available since it was added to the
language in the previous step.

In GUI DSL 2, the library developer transfers artifacts into
a library that consists of

• a set of models, each describing a GUI component, and
• a set of hand-written extensions of the components.

In the example, the Overview component is fully defined by
its model. The library uses the same (or extended) tooling as
the application and produces the same code. If extensions for
the component are required, the library developer adjusts
the model, adds hand-written extensions, or replaces the gen-
erated implementation with a hand-written one. The library
developer pushes the update, which triggers a continuous
integration and deployment pipeline.

In the pipeline (Figure 6), MontiCore processes the models
and produces artifacts containing the component signatures
without their implementation, i.e., exported symbols of the
models. The component implementations are compiled with

Figure 6. Component processing and integration

the target code compiler, in the example, Angular and Type-
Script compilers. The artifacts produced from models are
packaged into JAR files. The compiled target code sources
are packaged into npm packages. We use different packag-
ing systems since MontiCore is a Java-based tool, while the
target code is JavaScript, HTML, and CSS. The packages are
imported into a MontiGem application. To simplify the pro-
cess, MontiGem applications use the Gradle build tool and a
setup provided by a MontiGem Gradle plugin to import the
library automatically and set up the build environment.

Technically, it is possible to derive package imports from
model imports using the same principle of the self-extension
mechanism, which is to implement consistent mapping from
a set of models into a library package declaration and usage.
However, this is outside this paper’s scope.

6 Comparison
Although the result is similar, the workflow for creating a
page and a layout template differs for an application modeler.

Using the GUI DSL 1, the workflow consists of the follow-
ing steps (see Figure 7a):

1. The app modeler creates an account overview page
with the same layout as the staff overview.

2. The app modeler communicates with a language engi-
neer to add the layout component to the language.

3. The language engineer adds the component to the
DSL and, if required, communicates with a component
developer to extend it with custom logic or appearance.

4. After the component is added to the language, the app
modeler integrates it into the models.

5. The app modeler may provide feedback and set ad-
ditional requirements to the language or component
developer, depending on the result.

If a new component is simple, the component developer is
not involved. In our example, a language engineer may add
a preprocessing step that expands the Overview component
into a card, text, and other parts previously present in the
model. However, if the app modeler requires special features
for the overview, such as additional search fields or a custom
style, the expertise of a component developer is needed.

36

Applying a Self-Extension Mechanism to DSLs for Establishing Model Libraries GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

Using the GUI DSL 2, the workflow consists of the follow-
ing steps (see Figure 7b):

1. The app modeler creates an account overview page
with the same layout as the staff overview.

2. The app modeler moves the common layout to a new
model specifying the component.

3. The app modeler directly integrates the new compo-
nent into the models and, if required, communicates
with a component/library developer to add custom
logic or appearance for the component.

4. The app modeler reviews the result and may decide to
redefine the component or provide additional require-
ments for the component/library developer.

In the example, a library developer replaces a component
developer during the third step when the component is inte-
grated into a library (see Figure 7c). Since the library devel-
oper becomes responsible for deploying the component, the
application modeler must communicate with them, and the
workflow becomes closer to the GUI DSL 1 workflow. The
component extension step remains optional. In our example,
the Overview component (Listing 10) is equivalent to the
initial layout setup since it does not require an extension.

The derived Overview model is domain-independent and
can be reused for other overview pages in different projects.
With time, project development results in a set of such com-
ponents that form a library. Similarly, later projects expand
an existing or create a new model library.

The workflows show that an extra step is necessary at the
initial application development stages if the self-extension
mechanism is absent. In the GUI DSL 1 workflow, an app
modeler passes a component definition to a language en-
gineer that integrates the component into the DSL. This
corresponds to an integration delay of at least the DSL re-
deployment time. The workflow of GUI DSL 2 has a similar
delay, but only after the component is integrated into the
model library, where the delay is equal to the redeployment
time of the library. However, the delay only applies to the
application modelers’ activities. The library modeler can con-
tinue working on the library component after its integration.
In the GUI DSL 1 workflow, the component developer expe-
riences the integration delay regardless. Since the described
workflows are executed continuously during the agile en-
gineering process and repeatedly for each component, the
delay accumulates with each new component and update.

7 Evaluation
Using the presented example and the MaCoCo application,
we compare DSLs with and without the self-extension mech-
anism. The criteria are workflow difference and the amount
of code. Since the MaCoCo application still uses GUI DSL 1
and equivalent library components, we can compare models
of different DSL versions.

We compare the difference in library components, such as
Overview in GUI DSL 1 (Listing 8) and GUI DSL 2 (Listing 10).
Application models, such as staff and accounts overview
pages, are not considered. These models represent web pages
constructed from library components, and their implementa-
tion is equivalent, including their hand-written code exten-
sions. We also do not consider the abstract concept imple-
mentation in GUI DSL 2 since this code remains unchanged
when introducing a library component. However, this plays
an important role in language engineering (see Section 8).

Table 2 demonstrates the statistics on the amount of code
used to integrate components into the projects for differ-
ent DSL versions. The components include our Overview
example and portions of layout and chart libraries created
in MaCoCo and updated to new versions from GUI DSL 1 to
GUI DSL 2, i.e., they represent equivalent components from
an app modeler perspective. The layout library portion con-
tains card, row, and column components. The chart library
portion includes pie, bar, and line charts.

Table 2. Lines of code (LoC) for GUI components
GUI DSL 1 GUI DSL 2

Overview component
Grammar 1 0
Generator 35 0
Model 0 32
Total 36 32
Layout library
Grammar 118 0
Generator 307 0
Model 0 158
Hand-written 126 291
Total 551 449
Charts library
Grammar 40 0
Generator 243 0
Model 0 106
Hand-written 1245 1036
Total 1528 1272

The components have similar implementation since we
did not change languages and technologies besides the DSL.
However, the code is distributed along the artifacts differ-
ently for the GUI DSL versions. For example, the overview
component is implemented in the grammar and generator of
GUI DSL 1, whereas it is fully implemented in a model using
GUI DSL 2. The total amount of code is similar (36 vs. 32 LoC),
with a slight difference that can be explained by a more com-
plex Java syntax in the generator implementation compared
to a specialized GUI DSL 2 syntax. As a rule, a component’s
interface is fully defined in a grammar (GUI DSL 1) or amodel
(GUI DSL 2). However, the GUI DSL 2 model also contains
parts of the component’s implementation, which makes a

37

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Arkadii Gerasimov, Nico Jansen, Judith Michael, and Bernhard Rumpe

(a) GUI DSL 1 (b) GUI DSL 2 before library integration (c) GUI DSL 2 after library integration

Figure 7. Adding/changing a component: Workflows

model always bigger than a grammar extension (32 vs. 1,
158 vs. 118, and 106 vs. 40 LoC for Overview component,
layout, and chart library, respectively). The rest of the code
defines the component’s implementation, i.e., the generator
code (GUI DSL 1), the model (GUI DSL 2), or a hand-written
extension. The contribution of each part varies, but the total
LoC for a GUI DSL 1 implementation is always higher and
stays within 20% difference, which, besides GUI DSL 2 syntax
being more compact than Java in the generator, is created
by component updates reducing the code. Since the amount
of code remains within the same bounds for both GUI DSL
versions and the code does not change its meaning, the effort
spent on the component implementation is similar.

However, as we demonstrate in the workflows in Figure 7a
and Figure 7b, the development process for GUI DSL 2 avoids
some delays during the component development. The GUI
DSL 1 workflow includes adding or changing the component
by a language engineer, which causes delays in the activities
of other roles. In our experience working with GUI DSL 1,
the delay varied from several minutes to a few working days,
depending on the response time of a language engineer. Such
a delay in the application modeler’s and component developer’s
activities quickly accumulates with continuous requirement
changes in agile development processes.

The self-extension mechanism simplifies the workflow for
introducing a new domain concept, such as a GUI component
in our example. We observe the benefits when dealing with
isolated cases of component creation. However, the mecha-
nism has disadvantages and various tradeoffs (see Section 8).

8 Discussion
We discuss the differences between deciding for or against
using the self-extension mechanism to create a model library.

Development costs.The self-extensionmechanism poses
challenges during the early stages of the language develop-
ment. A DSL requires a construct that abstracts domain-
specific parts.

In our example, text, buttons, and other components with
their configuration are represented by a general component
and input parameter concepts. The application-specific in-
formation is given to the components as arguments. For
example, a text component receives input such as a user
name or an address depending on a domain and a use case.
It took us several development iterations to find a solution
that fits different use cases for various applications.
Furthermore, the tooling needs to support the self-

extension mechanism. A code generator (M2) has to work
with an abstract concept, such as a GUI component. At the
same time, the generator needs to ensure that relations
between models (M1) representing specific component
types, such as a button and a page using it, are mapped to
the target code (M0) without relying on the component type.
In other words, the GUI DSL 2 tooling does not distinguish,
e.g., a button from a table or a web page. Our solution is to
describe a component’s signature declaration and usage in
the model and translate them uniformly into the declaration
and usage in the target code for every component, bridging
the gap between the M2 and M0 levels in the tooling without
relying on component- or application-specific information.
Developing, deploying, integrating, and maintaining a

model library’s importing and packaging mechanisms also
creates additional work since it requires additional configu-
ration and scripts.
Shift of the skill sets. With the self-extension mecha-

nism, a modeler is responsible for introducing a new concept.
The modeler does not only decide what concept they need
but also how it works. In our example, the overview compo-
nent is implemented by a language developer (GUI DSL 1)
or an app modeler (GUI DSL 2). GUI DSL 2 that has the self-
extension mechanism demands a higher level of expertise in
the GUI domain from app modelers since they have to know
how to define a layout for an overview.
Syntactic variety. A prerequisite of a self-extension

mechanism is an abstract concept in a DSL, which forces the

38

Applying a Self-Extension Mechanism to DSLs for Establishing Model Libraries GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

lower-level concepts to have identical syntactical structures.
On the one hand, the language syntax is easier to memorize
since the same pattern is guaranteed. On the other, adding
specialized syntax related to domain concepts becomes
challenging. In our examples, the GUI DSL 2 concrete syntax
ended up bulkier than its predecessor, and the models are
harder to understand without tooling support.

Mixed approaches. Our examples only include GUI DSL
1 and GUI DSL 2. However, there are approaches based on
mixed usage of libraries and the self-extension mechanism.
For example, a library can be established for GUI DSL 1 by
creating reusable language extensions and mappings. How-
ever, the development workflow from Section 6 would not
change and have similar shortcomings of GUI DSL 1.

Alternatively, GUI DSL 1 could keep a set of basic compo-
nents in the metamodel and add a self-extension mechanism
on top of the predefined set. Compared to GUI DSL 2, the
benefit is that basic components have a specific syntax and
generation. The language loses uniformity as a drawback,
and the DSL tooling has additional complexity.

Different concepts in the same language may also either be
a part of a self-extensionmechanism or not. For example, GUI
DSL 2 includes concepts, such as loops, that allow a modeler
to repeat a GUI part, for example, a button for each person
in a list. Although creating a loop component is possible,
we define a different semantic and syntax for a loop. A loop
specifies repeated GUI parts and has no visual properties
like components. Since introducing new kinds of loops is not
required in our projects, the loop is defined in the metamodel.
Approach selection.We summarize the tradeoffs of in-

tegrating and using a self-extension mechanism and model
libraries to determine when they should be used.
Integrating a self-extension mechanism with a model li-

brary is beneficial if the scope of a DSL continuously grows
via newly introduced concepts. Our example demonstrates
a new GUI component being created for a web page. Since
our tool is used for several projects [11], new components
are continuously being created to satisfy new requirements.
We have created 38 library components so far. Those com-
ponents implement an abstract "component" concept rep-
resented by four main parts: component package, import,
declaration, and usage. The parts also consist of 15 minor
parts, such as component input parameters, arguments, and
loops, that are necessary to construct and use a component.
GUI DSL 2 also uses over a hundred basic concepts, such as
expressions and literals, from a MontiCore grammar library.

A DSL tailored for a few specific use cases has no use for
a self-extension mechanism since it would only introduce
additional setup costs. For example, the MaCoCo project
was the only one using GUI DSL at the beginning. At that
point, the first version of the DSL was created quickly and
could be easily used. After years, we decided to reuse the
DSL for other projects, so we had extra costs in adjusting the
language. It took around 12 revisions to reach a stable version

of the DSL, enabling its reuse in other application domains.
A developer has to plan for such cases carefully. However,
changing requirements in agile processes might not make
such planning feasible from the start of the development.
A self-extension mechanism introduces a challenge if a

DSL is built formodelers with narrow expertise since it forces
semantics to a model and code levels. For example, GUI DSL
1 builds the overview component into the language, and an
app modeler does not concern themselves with its imple-
mentation. With GUI DSL 2, the modeler must understand
how to define a new component to utilize the self-extension
mechanism efficiently.

Limitations. Our work explores using the self-extension
mechanism to support model libraries and focuses on a three-
layered language architecture. Generalizing the approach to
architectures with an arbitrary amount of layers and apply-
ing the mechanism to higher abstraction levels could be pos-
sible. For example, an abstract construct at a metametamodel
level could enable a metamodel to introduce constructs for
building languages in different ways. However, the research
of such cases is out of our work’s scope.

9 Related Work
Several approaches mention the idea of a self-extension
mechanism and model libraries, especially in programming.
This trend is gaining popularity in the modeling community,
as seen in major languages such as UML and SysML. Modern
language workbenches such as Xtext [5], MPS [16], and Mon-
tiCore [44] support different mechanisms for referencing and
importing additional model artifacts. Our contribution adds
a general approach to realizing model libraries.

Seidewitz elaborates on a metasemantic protocol that en-
ables language users to extend the language within itself [67].
Based on the general idea proposed for programming lan-
guages [49], the concept is refined and tailored towards mod-
eling. Seidewitz describes that such a protocol requires for-
mal semantics as well as the corresponding abstract and
concrete syntax for realizing extension on the model level.
He positions this strategy in the context of SysML v2 and its
metalanguage, the Kernel Modeling Language (KerML) [63],
providing a model library based on abstract extension points
similar to a type-instance relation. The work points out how
model elements are referred to in different scenarios for UML,
SysML (v2), and KerML. The approach envisions mapping
each specific element to KerML base elements, which already
provide basic language self-extension capabilities. Further-
more, Seidewitz highlights the importance of realizing the
prerequisites in one seamless technological scope or ecosys-
tem. Our approach can be described as a realization within
the MontiCore ecosystem. Reusing MontiCore’s vast library
of language components [12] directly provides the concrete
and abstract syntax for establishing referenceable elements
intra- and inter-artifact-wide. The generated symbol table

39

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Arkadii Gerasimov, Nico Jansen, Judith Michael, and Bernhard Rumpe

infrastructure, facilitating loading a model’s symbol table
on demand [15], provides the required technical capabilities.
Additionally, our approach gives a practical example of how
to evolve a language toward self-extensibility.

Visser presents a case study on engineering modeling lan-
guages with WebDSL [76], a modeling language for design-
ing web applications. The study examines the engineering
process of a DSL, including identifying domain concepts,
translating these into abstract syntax enriched with concrete
syntax, parsing, code generation, and potential language ex-
tension. In this regard, the work considers different forms of
language extensibility. It describes a trade-off between gen-
erative extension (at the language level) and non-generative
extension (at the model level). In this regard, establishing
non-generative extension points is discussed to create a li-
brary of referenceable artifacts incorporating the correspond-
ing code snippets that modelers can use. The work uses a
mixed approach with a restricted set of basic building blocks
defined only at the language level that can be used to create
more complex components. While this extension mechanism
is not the paper’s main focus, it abstractly describes the tech-
nique we are exploring in our work. Even the use case for
creating web applications is similar, so our approach can be
understood as an intellectual successor with a more detailed
view of the self-extension aspects.

Creating a model library instead of defining domain con-
cepts in a language has been mentioned in Karsai et al. [47]
as a guideline suggesting limiting the number of language
elements. The authors also point out that such language has
to introduce more elaborate concepts that enable reusability
for different domains without going into further details. Our
work specifies conditions and creates a model library.

Selic [69] discusses model libraries via UML profiles. The
work suggests that a model library can be created by refining
a modeling language, whereas our approach is to create a
new DSL or rework an existing one. The result is similar to
how a model library represents specific domain concepts.
The tooling, however, has information about what profile a
library belongs to, thus allowing it to derive the semantics of
the library elements. In our work, we define the semantics on
the level of target code, specifying the exact meaning within
a model and hand-written code extending the generated one.
IFML and WebRatio [8] utilize said profiling mechanism

to provide a model library built with an extension mech-
anism different from the one presented in our work. An
IFML extension requires several artifacts representing an
implementation of a ViewElement, where a ViewElement is
similar to our GUI component concept. The artifacts include
templates and implementation code that define the signature,
behavior, and design of the ViewElements. Such design is
closer to GUI DSL 1 if it had generator plugins that specify
code generation for individual components.

Bierhoff et al. [6] present the incremental development of
a DSL. Their setup is similar to ours and uses an example to

create an initial version of the language further adjusted for
a different aspect of the same domain. Initially, the authors
built a DSL to describe a to-do list application. Their DSL
extension was required when adding a new feature showing
incomplete items in the to-do list. It is reported as a low-effort
modification, which was resolved by extending the grammar
and generator of the language. We describe a mechanism
that supports a model library without modifying the DSL.
A similar approach is described by Oberortner et al. [60]

where they extend their DSLs reacting to user requirements.
Language changes primarily include adding new concepts
in a meta-model without considering alternative solutions.
Gerasimov et al. [38] propose an idea to solve the need

to add new visual components to a GUI language quickly.
Our work realizes the proposed mechanism and presents the
results we analyze and compare with the approach where
the concepts are directly introduced in a DSL.
Our topic focuses on bringing new concepts to a

DSL, which relates to works on model and meta-model
co-evolution. Hölldobler et al. [45] describes a DSL for
language transformation, whose models are used to derive
a new language alongside the tooling for migration of
models. Cicchetti et al. [19] and Bell [4] similarly identify
different types of changes, such as generalizing properties
of a meta-model, and demonstrate their approach on
Petri Nets. Mengerink et al. [53] evaluate to what extent
existing solutions handle automatic model and meta-model
co-evolution. These works tackle the problem of changing
models alongside the meta-model encountered in our
work. Although closely related, such works do not consider
shifting domain concepts from a meta-model to the models.

10 Conclusion
This paper describes the concept of a model library and its
prerequisites, including self-extension, import, and packag-
ing mechanisms. Using the MaCoCo application as an exam-
ple, we explain the self-extension mechanism and compare
it to a more traditional solution, where domain concepts are
defined in the DSL. We highlight the benefits of using the
mechanism to improve the development workflow for an in-
dividual case and propose model libraries as the expansion of
the idea. The results are validated by comparing two versions
of the same DSL and equivalent concept implementations.
Model libraries facilitate the reuse of domain concepts

across projects. The self-extension mechanism makes the
model libraries easy to extend, improving workflow in an
agile model-driven engineering environment.

Acknowledgments
Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy – EXC 2023 Internet of Production - 390621612.
Website: https://www.iop.rwth-aachen.de.

40

https://www.iop.rwth-aachen.de

Applying a Self-Extension Mechanism to DSLs for Establishing Model Libraries GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

References
[1] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon

Varga. 2020. Enterprise Information Systems in Academia and Prac-
tice: Lessons learned from a MBSE Project. In 40 Years EMISA: Digital
Ecosystems of the Future: Methodology, Techniques and Applications
(EMISA’19) (LNI, Vol. P-304). GI, 59–66.

[2] Ken Arnold, James Gosling, and David Holmes. 2005. The Java Pro-
gramming Language. Addison Wesley Professional.

[3] Dorina Bano, Judith Michael, Bernhard Rumpe, Simon Varga, and
Matthias Weske. 2022. Process-Aware Digital Twin Cockpit Synthesis
from Event Logs. Journal of Computer Languages (COLA) 70 (2022).
https://doi.org/10.1016/j.cola.2022.101121

[4] Peter Bell. 2007. Automated Transformation of Statements within
Evolving Domain Specific Languages. In 7th OOPSLA Workshop on
Domain-Specific Modeling.

[5] Lorenzo Bettini. 2016. Implementing Domain-Specific Languages with
Xtext and Xtend. Packt Publishing Ltd.

[6] Kevin Bierhoff, Edy S Liongosari, and Kishore S Swaminathan. 2006.
Incremental development of a domain-specific language that supports
multiple application styles. In OOPSLA 6th Workshop on Domain Spe-
cific Modeling. 67–78.

[7] Hans Blom, Henrik Lönn, Frank Hagl, Yiannis Papadopoulos, Mark-
Oliver Reiser, Carl-Johan Sjöstedt, De-Jiu Chen, Fulvio Tagliabo, San-
dra Torchiaro, Sara Tucci, et al. 2013. EAST-ADL: An architecture
description language for Automotive Software-Intensive Systems. Em-
bedded Computing Systems: Applications, Optimization, and Advanced
Design: Applications, Optimization, and Advanced Design (2013), 456.
https://doi.org/10.4018/978-1-4666-3922-5.ch023

[8] Marco Brambilla and Piero Fraternali. 2014. Interaction flow modeling
language: Model-driven UI engineering of web and mobile apps with
IFML. Morgan Kaufmann.

[9] Barrett Bryant, Jean-Marc Jézéquel, Ralf Lämmel, Marjan Mernik, Mar-
tin Schindler, Friedrich Steinmann, Juha-Pekka Tolvanen, Antonio
Vallecillo, and Markus Völter. 2015. Globalized Domain Specific Lan-
guage Engineering. Springer, 43–69. https://doi.org/10.1007/978-3-
319-26172-0_4

[10] Alessio Bucaioni, Vlatko Dimic, Mattias Gålnander, Henrik Lönn,
and John Lundbäck. 2021. Transferring a model-based develop-
ment methodology to the automotive industry. In 2021 22nd IEEE
Int. Conf. on Industrial Technology (ICIT), Vol. 1. 762–767. https:
//doi.org/10.1109/ICIT46573.2021.9453680

[11] Constantin Buschhaus, Arkadii Gerasimov, Jörg Christian Kirchhof,
Judith Michael, Lukas Netz, Bernhard Rumpe, and Sebastian Stüber.
2024. Lessons Learned from Applying Model-Driven Engineering in 5
Domains: The Success Story of the MontiGem Generator Framework.
Science of Computer Programming 232 (2024), 103033. https://doi.org/
10.1016/j.scico.2023.103033

[12] Arvid Butting, Robert Eikermann, Katrin Hölldobler, Nico Jansen,
Bernhard Rumpe, and Andreas Wortmann. 2020. A Library of Lit-
erals, Expressions, Types, and Statements for Compositional Lan-
guage Design. Journal of Object Technology (JOT) 19, 3 (2020), 3:1–16.
https://doi.org/10.5381/jot.2020.19.3.a4

[13] Arvid Butting, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wort-
mann. 2021. Compositional Modelling Languages with Analytics and
Construction Infrastructures Based on Object-Oriented Techniques -
The MontiCore Approach. In Composing Model-Based Analysis Tools.
Springer, 217–234. https://doi.org/10.1007/978-3-030-81915-6_10

[14] Arvid Butting, Jörg Christian Kirchhof, Anno Kleiss, Judith Michael,
Radoslav Orlov, and Bernhard Rumpe. 2022. Model-Driven IoT App
Stores: Deploying Customizable Software Products to Heterogeneous
Devices. In 21th ACM SIGPLAN Int. Conf. on Generative Programming:
Concepts and Experiences (GPCE 22). ACM, 108–121. https://doi.org/
10.1145/3564719.3568689

[15] Arvid Butting, Judith Michael, and Bernhard Rumpe. 2022. Language
Composition via Kind-Typed Symbol Tables. Journal of Object Tech-
nology (JOT) 21 (2022), 4:1–13. https://doi.org/10.5381/jot.2022.21.4.a5

[16] Fabien Campagne. 2014. The MPS Language Workbench: Volume I.
Vol. 1. Fabien Campagne.

[17] Giuseppina Lucia Casalaro, Giulio Cattivera, Federico Ciccozzi, Ivano
Malavolta, Andreas Wortmann, and Patrizio Pelliccione. 2022. Model-
driven engineering for mobile robotic systems: a systematic mapping
study. Software and Systems Modeling 21, 1 (2022), 19–49. https:
//doi.org/10.1007/s10270-021-00908-8

[18] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. 2009.
Variability within Modeling Language Definitions. In Int. Conf. on
Model Driven Engineering Languages and Systems (MODELS’09) (LNCS
5795). Springer, 670–684. https://doi.org/10.1007/978-3-642-04425-
0_54

[19] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso
Pierantonio. 2008. Automating Co-evolution in Model-Driven En-
gineering. In 12th Int. IEEE Enterprise Distributed Object Computing
Conference. 222–231. https://doi.org/10.1109/EDOC.2008.44

[20] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard
Rumpe, James Steel, and Didier Vojtisek. 2016. Engineering Model-
ing Languages: Turning Domain Knowledge into Tools. Chapman &
Hall/CRC Innovations in Software Engineering and Software Devel-
opment Series. https://doi.org/10.1201/b21841

[21] Manuela Dalibor, Malte Heithoff, Judith Michael, Lukas Netz, Jérôme
Pfeiffer, Bernhard Rumpe, Simon Varga, and Andreas Wortmann. 2022.
Generating Customized Low-Code Development Platforms for Digital
Twins. Journal of Computer Languages (COLA) 70 (2022). https:
//doi.org/10.1016/j.cola.2022.101117

[22] Edson de Araújo Silva, Eduardo Valentin, Jose Reginaldo Hughes Car-
valho, and Raimundo da Silva Barreto. 2021. A survey of Model Driven
Engineering in robotics. Journal of Computer Languages 62 (2021),
101021. https://doi.org/10.1016/j.cola.2020.101021

[23] Imke Drave, Judith Michael, Erik Müller, Bernhard Rumpe, and Simon
Varga. 2022. Model-Driven Engineering of Process-Aware Information
Systems. Springer Nature Computer Science Journal 3 (2022). https:
//doi.org/10.1007/s42979-022-01334-3

[24] Florian Drux, Nico Jansen, and Bernhard Rumpe. 2022. A Catalog of
Design Patterns for Compositional Language Engineering. Journal of
Object Technology (JOT) 21, 4 (2022), 4:1–13. https://doi.org/10.5381/
jot.2022.21.4.a4

[25] Sebastian Erdweg, Paolo G Giarrusso, and Tillmann Rendel. 2012.
Language Composition Untangled. In 12th Workshop on Language
Descriptions, Tools, and Applications. https://doi.org/10.1145/2427048

[26] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël Konat, Pedro Molina, Martin Palatnik,
Risto Pohjonen, Eugen Schindler, Klemens Schindler, Riccardo Solmi,
Vlad Vergu, Eelco Visser, and JimiWoning. 2013. The State of the Art in
LanguageWorkbenches. In Int. Conf. on Software Language Engineering.
Springer, 197–217. https://doi.org/10.1007/978-3-319-02654-1_11

[27] J-M Favre. 2005. Languages evolve too! Changing the Software Time
Scale. In 8th Int. Workshop on Principles of Software Evolution (IW-
PSE’05). IEEE, 33–42. https://doi.org/10.1109/IWPSE.2005.22

[28] Kevin Feichtinger, Kristof Meixner, Felix Rinker, István Koren, Holger
Eichelberger, Tonja Heinemann, Jörg Holtmann, Marco Konersmann,
Judith Michael, Eva-Maria Neumann, Jérôme Pfeiffer, Rick Rabiser,
Matthias Riebisch, and Klaus Schmid. 2022. Industry Voices on Soft-
ware Engineering Challenges in Cyber-Physical Production Systems
Engineering. In 2022 IEEE 27th Int. Conf. on Emerging Technologies and
Factory Automation (ETFA). IEEE. https://doi.org/10.1109/ETFA52439.
2022.9921568

[29] Peter H Feiler and David P Gluch. 2012. Model-Based Engineering
with AADL: An Introduction to the SAE Architecture Analysis & Design
Language. Addison-Wesley.

41

https://doi.org/10.1016/j.cola.2022.101121
https://doi.org/10.4018/978-1-4666-3922-5.ch023
https://doi.org/10.1007/978-3-319-26172-0_4
https://doi.org/10.1007/978-3-319-26172-0_4
https://doi.org/10.1109/ICIT46573.2021.9453680
https://doi.org/10.1109/ICIT46573.2021.9453680
https://doi.org/10.1016/j.scico.2023.103033
https://doi.org/10.1016/j.scico.2023.103033
https://doi.org/10.5381/jot.2020.19.3.a4
https://doi.org/10.1007/978-3-030-81915-6_10
https://doi.org/10.1145/3564719.3568689
https://doi.org/10.1145/3564719.3568689
https://doi.org/10.5381/jot.2022.21.4.a5
https://doi.org/10.1007/s10270-021-00908-8
https://doi.org/10.1007/s10270-021-00908-8
https://doi.org/10.1007/978-3-642-04425-0_54
https://doi.org/10.1007/978-3-642-04425-0_54
https://doi.org/10.1109/EDOC.2008.44
https://doi.org/10.1201/b21841
https://doi.org/10.1016/j.cola.2022.101117
https://doi.org/10.1016/j.cola.2022.101117
https://doi.org/10.1016/j.cola.2020.101021
https://doi.org/10.1007/s42979-022-01334-3
https://doi.org/10.1007/s42979-022-01334-3
https://doi.org/10.5381/jot.2022.21.4.a4
https://doi.org/10.5381/jot.2022.21.4.a4
https://doi.org/10.1145/2427048
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1109/IWPSE.2005.22
https://doi.org/10.1109/ETFA52439.2022.9921568
https://doi.org/10.1109/ETFA52439.2022.9921568

GPCE ’24, October 21–22, 2024, Pasadena, CA, USA Arkadii Gerasimov, Nico Jansen, Judith Michael, and Bernhard Rumpe

[30] Damien Foures, Mathieu Acher, Olivier Barais, Benoit Combemale,
Jean-Marc Jézéquel, and Jörg Kienzle. 2023. Experience in Specializing
a Generic Realization Language for SPL Engineering at Airbus. In
ACM/IEEE 26th Int. Conf. on Model Driven Engineering Languages and
Systems (MODELS). 319–330. https://doi.org/10.1109/MODELS58315.
2023.00035

[31] Robert France and Bernhard Rumpe. 2007. Model-driven Development
of Complex Software: A Research Roadmap. Future of Software Engi-
neering (FOSE ’07) (2007), 37–54. https://doi.org/10.1109/FOSE.2007.14

[32] Sanford Friedenthal, Alan Moore, and Rick Steiner. 2014. A Practical
Guide to SysML: The Systems Modeling Language. Morgan Kaufmann.

[33] Shan Fur, Malte Heithoff, Judith Michael, Lukas Netz, Jérôme Pfeiffer,
Bernhard Rumpe, and Andreas Wortmann. 2023. Sustainable Digital
Twin Engineering for the Internet of Production. In Digital Twin
Driven Intelligent Systems and Emerging Metaverse. Springer Nature
Singapore, 101–121. https://doi.org/10.1007/978-981-99-0252-1_4

[34] Antonio Garmendia, Manuel Wimmer, Alexandra Mazak-Huemer,
Esther Guerra, and Juan de Lara. 2020. Modelling Production System
Families with AutomationML. In 2020 25th IEEE Int. Conf. on Emerging
Technologies and Factory Automation (ETFA), Vol. 1. 1057–1060. https:
//doi.org/10.1109/ETFA46521.2020.9211894

[35] Arkadii Gerasimov, Patricia Heuser, Holger Ketteniß, Peter Letmathe,
Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. 2020.
Generated Enterprise Information Systems: MDSE for Maintainable
Co-Development of Frontend and Backend. In Comp. Proc. of Model-
lierung 2020 Short, Workshop and Tools & Demo Papers. CEUR-WS.org,
22–30.

[36] Arkadii Gerasimov, Patricia Heuser, Peter Letmathe, Judith Michael,
Lukas Netz, Bernhard Rumpe, Simon Varga, and Galina Volkova. 2022.
Domain Modelling of Financial, Project and Staff Management. https:
//doi.org/10.5281/zenodo.6422355

[37] Arkadii Gerasimov, Peter Letmathe, Judith Michael, Lukas Netz, and
Bernhard Rumpe. 2024. Modeling Financial, Project and Staff Manage-
ment: A Case Report from the MaCoCo Project. Enterprise Modelling
and Information Systems Architectures - International Journal of Con-
ceptual Modeling 19 (2024). https://doi.org/10.18417/emisa.19.3

[38] Arkadii Gerasimov, Judith Michael, Lukas Netz, and Bernhard Rumpe.
2021. Agile Generator-Based GUI Modeling for Information Systems.
In Modelling to Program (M2P). Springer, 113–126. https://doi.org/10.
1007/978-3-030-72696-6_5

[39] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio
Navarro Perez, Bernhard Rumpe, Steven Völkel, and Andreas Wort-
mann. 2015. Integration of Heterogeneous Modeling Languages via
Extensible and Composable Language Components. In Model-Driven
Engineering and Software Development Conference (MODELSWARD’15).
SciTePress, 19–31. https://doi.org/10.5220/0005225000190031

[40] David Harel and Bernhard Rumpe. 2004. Meaningful Modeling:What’s
the Semantics of ”Semantics”? IEEE Computer Journal 37, 10 (2004),
64–72. https://doi.org/10.1109/MC.2004.172

[41] Matthew Hause et al. 2006. The SysML Modelling Language. In Fif-
teenth European Systems Engineering Conference, Vol. 9. 1–12.

[42] Malte Heithoff, Alexander Hellwig, Judith Michael, and Bernhard
Rumpe. 2023. Digital Twins for Sustainable Software Systems. In
IEEE/ACM 7th Int. Workshop on Green And Sustainable Software
(GREENS). IEEE, 19–23. https://doi.org/10.1109/GREENS59328.2023.
00010

[43] Malte Heithoff, Nico Jansen, Jörg Christian Kirchhof, Judith Michael,
Florian Rademacher, and Bernhard Rumpe. 2023. Deriving Integrated
Multi-Viewpoint Modeling Languages from Heterogeneous Modeling
Languages: An Experience Report. In 16th ACM SIGPLAN Int. Conf.
on Software Language Engineering (SLE 2023). ACM, 194–207. https:
//doi.org/10.1145/3623476.3623527

[44] Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe. 2021. MontiCore
Language Workbench and Library Handbook: Edition 2021. Shaker
Verlag.

[45] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. 2018.
Software Language Engineering in the Large: Towards Composing
and Deriving Languages. Journal Computer Languages, Systems &
Structures 54 (2018), 386–405. https://doi.org/10.1016/j.cl.2018.08.002

[46] Nico Jansen and Bernhard Rumpe. 2023. Seamless Code Generator
Synchronization in the Composition of Heterogeneous Modeling Lan-
guages. In 16th ACM SIGPLAN Int. Conf. on Software Language Engi-
neering (SLE 2023). ACM, 163–168. https://doi.org/10.1145/3623476.
3623530

[47] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Mar-
tin Schindler, and Steven Völkel. 2009. Design Guidelines for Domain
Specific Languages. In Domain-Specific Modeling Workshop (DSM’09)
(Techreport B-108). Helsinki School of Economics, 7–13.

[48] Djamel Eddine Khelladi, Benoit Combemale, Mathieu Acher, and
Olivier Barais. 2020. On the power of abstraction: a model-driven
co-evolution approach of software code. In ACM/IEEE 42nd Int. Conf.
on Software Engineering: New Ideas and Emerging Results (ICSE-NIER
’20). ACM, 85–88. https://doi.org/10.1145/3377816.3381727

[49] Gregor Kiczales, Jim Des Rivieres, and Daniel G Bobrow. 1991. The
Art of the Metaobject Protocol. MIT press. https://doi.org/10.7551/
mitpress/1405.001.0001

[50] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon
Varga, and Andreas Wortmann. 2020. Model-driven Digital Twin
Construction: Synthesizing the Integration of Cyber-Physical Sys-
tems with Their Information Systems. In 23rd ACM/IEEE Int. Conf.
on Model Driven Engineering Languages and Systems. ACM, 90–101.
https://doi.org/10.1145/3365438.3410941

[51] Anneke Kleppe. 2008. Software Language Engineering: Creating
Domain-Specific Languages Using Metamodels. Pearson Education.

[52] David Méndez-Acuña, José A Galindo, Thomas Degueule, Benoît
Combemale, and Benoit Baudry. 2016. Leveraging software prod-
uct lines engineering in the development of external dsls: A systematic
literature review. Computer Languages, Systems & Structures 46 (2016),
206–235. https://doi.org/10.1016/j.cl.2016.09.004

[53] Josh Mengerink, Alexander Serebrenik, Ramon Schiffelers, and M.
Brand. 2016. A Complete Operator Library for DSL Evolution Specifi-
cation. 144–154. https://doi.org/10.1109/ICSME.2016.32

[54] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and
How to Develop Domain-Specific Languages. ACM Comput. Surv. 37,
4 (dec 2005), 316–344. https://doi.org/10.1145/1118890.1118892

[55] Judith Michael, Jörg Blankenbach, Jan Derksen, Berit Finklenburg,
Raul Fuentes, Thomas Gries, Sepehr Hendiani, Stefan Herlé, Stefan
Hesseler, Magdalena Kimm, Jörg Christian Kirchhof, Bernhard Rumpe,
Holger Schüttrumpf, and GritWalther. 2024. Integratingmodels of civil
structures in digital twins: State-of-the-Art and challenges. Journal of
Infrastructure Intelligence and Resilience 3, 3 (2024). https://doi.org/10.
1016/j.iintel.2024.100100

[56] Judith Michael, Dominik Bork, Manuel Wimmer, and Heinrich C. Mayr.
2024. Quo Vadis Modeling? Findings of a Community Survey, an Ad-
hoc Bibliometric Analysis, and Expert Interviews on Data, Process,
and Software Modeling. Software and Systems Modeling 23, 1 (2024),
7–28. https://doi.org/10.1007/s10270-023-01128-y

[57] Judith Michael and Bernhard Rumpe. 2024. Software Languages for
Assistive Systems. SSRN (2024). https://doi.org/10.2139/ssrn.4423849

[58] Judith Michael, Bernhard Rumpe, and Simon Varga. 2020. Human
Behavior, Goals and Model-Driven Software Engineering for Assistive
Systems. In Enterprise Modeling and Information Systems Architectures
(EMSIA 2020), Vol. 2628. CEUR Workshop Proceedings, 11–18.

[59] OMG MOF. 2002. OMG Meta Object Facility (MOF) Specification v1.
4.

[60] Ernst Oberortner, Uwe Zdun, SchahramDustdar, Agnieszka Betkowska
Cavalcante, and Marek Tluczek. 2010. Supporting the evolution of
model-driven service-oriented systems: A case study on QoS-aware
process-driven SOAs. In IEEE Int. Conf. on Service-Oriented Computing

42

https://doi.org/10.1109/MODELS58315.2023.00035
https://doi.org/10.1109/MODELS58315.2023.00035
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1007/978-981-99-0252-1_4
https://doi.org/10.1109/ETFA46521.2020.9211894
https://doi.org/10.1109/ETFA46521.2020.9211894
https://doi.org/10.5281/zenodo.6422355
https://doi.org/10.5281/zenodo.6422355
https://doi.org/10.18417/emisa.19.3
https://doi.org/10.1007/978-3-030-72696-6_5
https://doi.org/10.1007/978-3-030-72696-6_5
https://doi.org/10.5220/0005225000190031
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/GREENS59328.2023.00010
https://doi.org/10.1109/GREENS59328.2023.00010
https://doi.org/10.1145/3623476.3623527
https://doi.org/10.1145/3623476.3623527
https://doi.org/10.1016/j.cl.2018.08.002
https://doi.org/10.1145/3623476.3623530
https://doi.org/10.1145/3623476.3623530
https://doi.org/10.1145/3377816.3381727
https://doi.org/10.7551/mitpress/1405.001.0001
https://doi.org/10.7551/mitpress/1405.001.0001
https://doi.org/10.1145/3365438.3410941
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1109/ICSME.2016.32
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1016/j.iintel.2024.100100
https://doi.org/10.1016/j.iintel.2024.100100
https://doi.org/10.1007/s10270-023-01128-y
https://doi.org/10.2139/ssrn.4423849

Applying a Self-Extension Mechanism to DSLs for Establishing Model Libraries GPCE ’24, October 21–22, 2024, Pasadena, CA, USA

and Applications (SOCA). 1–4. https://doi.org/10.1109/SOCA.2010.
5707172

[61] Object Management Group. 2017. OMG Unified Modeling Language
(OMGUML), Version 2.5.1. https://www.omg.org/spec/UML/2.5.1/PDF
[Online; accessed 2024-06-05].

[62] Object Management Group. 2019. OMG Systems Modeling Language
(OMGSysML), Version 1.6. https://www.omg.org/spec/SysML/1.6/PDF
[Online; accessed 2024-06-05].

[63] Object Management Group. 2023. Kernel Modeling Language (KerML),
Version 1.0 Beta 1. https://www.omg.org/spec/KerML/1.0/Beta1/PDF
[Online; accessed 2024-06-05].

[64] Object Management Group. 2023. OMG Systems Modeling Language
(OMG SysML), Version 2.0 Beta 1. https://www.omg.org/spec/SysML/
2.0/Beta1/Language/PDF [Online; accessed 2024-06-05].

[65] Ana Luísa Ramos, José Vasconcelos Ferreira, and Jaume Barceló.
2011. Model-Based Systems Engineering: An Emerging Approach
for Modern Systems. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part C (Applications and Reviews) 42, 1 (2011), 101–111.
https://doi.org/10.1109/TSMCC.2011.2106495

[66] Cosmina-Cristina Raţiu, Wesley K. G. Assunção, Edvin Herac, Rainer
Haas, Christophe Lauwerys, andAlexander Egyed. 2024. Using reactive
links to propagate changes across engineering models. Software and
Systems Modeling (2024). https://doi.org/10.1007/s10270-024-01186-w

[67] Ed Seidewitz. 2020. On a Metasemantic Protocol for Modeling Lan-
guage Extension. InMODELSWARD. 465–472. https://doi.org/10.5220/
0009181604650472

[68] Bran Selic. 2003. The Pragmatics of Model-Driven Development. IEEE
Software 20, 5 (2003), 19–25. https://doi.org/10.1109/MS.2003.1231146

[69] Bran Selic. 2007. A Systematic Approach to Domain-Specific Language
Design Using UML. ISORC 2007, 2–9. https://doi.org/10.1109/ISORC.
2007.10

[70] Ben Shneiderman, Maxine Cohen, Steven Jacobs, Catherine Plaisant,
Nicholas Diakopoulos, and Niklas Elmqvist. 2017. Designing the User
Interface Strategies for Effective Human-Computer Interaction, Global
Edition. Pearson Deutschland. 624 pages.

[71] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
2008. EMF: Eclipse Modeling Framework. Pearson Education.

[72] Carolyn Talcott, Sofia Ananieva, Kyungmin Bae, Benoit Combemale,
Robert Heinrich, Mark Hills, Narges Khakpour, Ralf Reussner, Bern-
hard Rumpe, Patrizia Scandurra, and Hans Vangheluwe. 2021. Com-
position of Languages, Models, and Analyses. In Composing Model-
Based Analysis Tools, Heinrich, Robert and Duran, Francisco and Tal-
cott, Carolyn and Zschaler, Steffen (Ed.). Springer, 45–70. https:
//doi.org/10.1007/978-3-030-81915-6_4

[73] David Thomas and Andrew Hunt. 2019. The Pragmatic Programmer:
your journey to mastery. Addison-Wesley Professional.

[74] Guido Van Rossum et al. 2007. Python Programming Language. In
USENIX annual technical conference, Vol. 41. Santa Clara, CA, 1–36.

[75] Ennio Visconti, Christos Tsigkanos, Zhenjiang Hu, and Carlo Ghezzi.
2021. Model-driven engineering city spaces via bidirectional model
transformations. Software and Systems Modeling 20, 6 (2021), 2003–
2022. https://doi.org/10.1007/s10270-020-00851-0

[76] Eelco Visser. 2008. WebDSL: A Case Study in Domain-Specific Lan-
guage Engineering. Generative and Transformational Techniques in
Software Engineering II: Int. Summer School (GTTSE 2007) (2008), 291–
373. https://doi.org/10.1007/978-3-540-88643-3_7

[77] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Simon
Helsen. 2013. Model-Driven Software Development: Technology, Engi-
neering, Management. John Wiley & Sons.

[78] Markus Völter and Eelco Visser. 2010. Language Extension and Com-
position with Language Workbenches. In ACM Int. Conf. companion
on Object oriented programming systems languages and applications
companion. 301–304. https://doi.org/10.1145/1869542.1869623

[79] Dennis Leroy Wigand, Arne Nordmann, Niels Dehio, Michael Mistry,
and SebastianWrede. 2017. Domain-Specific LanguageModularization
Scheme Applied to a Multi-Arm Robotics Use-Case. Journal of Software
Engineering for Robotics (2017).

[80] Niklaus Wirth. 1996. Extended Backus-Naur Form (EBNF). ISO/IEC
14977, 2996 (1996), 2–21.

Received 2024-06-18; accepted 2024-08-15

43

https://doi.org/10.1109/SOCA.2010.5707172
https://doi.org/10.1109/SOCA.2010.5707172
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/SysML/1.6/PDF
https://www.omg.org/spec/KerML/1.0/Beta1/PDF
https://www.omg.org/spec/SysML/2.0/Beta1/Language/PDF
https://www.omg.org/spec/SysML/2.0/Beta1/Language/PDF
https://doi.org/10.1109/TSMCC.2011.2106495
https://doi.org/10.1007/s10270-024-01186-w
https://doi.org/10.5220/0009181604650472
https://doi.org/10.5220/0009181604650472
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/ISORC.2007.10
https://doi.org/10.1109/ISORC.2007.10
https://doi.org/10.1007/978-3-030-81915-6_4
https://doi.org/10.1007/978-3-030-81915-6_4
https://doi.org/10.1007/s10270-020-00851-0
https://doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1145/1869542.1869623

	Abstract
	1 Introduction
	2 Preliminaries
	3 Model Library and Self-Extension Mechanism
	4 The Self-Extension in GUI DSL 2
	5 Example
	6 Comparison
	7 Evaluation
	8 Discussion
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

