Applied Artifact-Based Analysis for)
Architecture Consistency Checking ek

Timo Greifenberg, Steffen Hillemacher, and Katrin Hélldobler

Abstract The usage of models within model-driven software development aims
at facilitating complexity management of the system under development and
closing the gap between the problem and the solution domain. Utilizing model-
driven software development (MDD) tools for agile development can also increase
the complexity within a project. The huge number of different artifacts and
relations, their different kinds, and the high degree of automation hinder the
understanding, maintenance, and evolution within MDD projects. A systematic
approach to understand and manage MDD projects with a focus on its artifacts and
corresponding relations is necessary to handle the complexity. The artifact-based
analysis presented in this paper is such an approach. This paper gives an overview of
different contributions of the artifact-based analysis but focuses on a specific kind of
analysis: architecture consistency checking of model-driven development projects.
By applying this kind of analyses, differences between the desired architecture and
the actual architecture of the project at a specific point in time can be revealed.

1 Introduction

The complexity of developing modern software systems or software-intensive
systems continues to rise. Software is already considered the most important factor
of the competition within the automotive industry, which leads to an increasing
complexity especially in automotive software [EF17]. Further examples of complex
systems with a high amount of software are cloud-based systems [KRR14],
cyberphysical systems (CPS) [Lee08], or Internet of Things (IoT) [AIM10]. When
developing complex software systems, there is a wide conceptual gap between the
problem and the implementation domains [FRO7]. Bridging this gap by extensive
handcrafting of implementations can lead to accidental complexities that make

T. Greifenberg (<) - S. Hillemacher - K. Holldobler
Software Engineering, RWTH Aachen University, Aachen, Germany
e-mail: greifenberg @se-rwth.de; hillemacher @se-rwth.de; hoelldobler @se-rwth.de

© The Author(s) 2020 61
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2019,
https://doi.org/10.1007/978-3-030-58617-1_5

E . E [GHH20] T. Greifenberg, S. Hillemacher, K. Holldobler:

. Applied Artifact-Based Analysis for Architecture Consistency Checking.

. In: Ernst Denert Award for Software Engineering 2019, 19(3), pp. 61-85, Springer, Dec. 2020.
www.se-rwth.de/publications/

62 T. Greifenberg et al.

the development of complex software difficult and costly [FRO7]. Additionally,
some development processes demand tracing of development artifacts [MHDZ16].
Creating and maintaining such relationships consequently lead to additional effort
during the development.

In order to be able to control the complexity of the software as well as to
close the conceptual gap between problem and solution domain, approaches of
the field of model-driven software development (MDD) arose. MDD technologies
have been successfully applied in industrial software development processes, which
lead to improved quality and productivity [WHR14]. Platform-independent models
[OMG14] provide a means to abstract from technical aspects of the solution domain,
making the complexity easier to control. Such models of the problem domain
can often be developed directly by domain experts. The usage of domain-specific
languages (DSL) for modeling different aspects of the system helps to focus on
single aspects of the system in more detail [CCFT15]. The resulting domain-
specific models can then be used as primary input for an MDD tool chain. These
tool chains can guarantee the conformity of models (both, of single models and
between several models), analyze their contents, and automatically create parts
of the software product to be developed. Such an automated MDD build process
removes the necessity of manual synchronization between models and source code.
After adapting the models, the corresponding source code can be automatically
recreated without any additional effort. Hence, the use of MDD approaches aims for
a more efficient and effective software development process [BCW12], ultimately,
reducing manual effort, improving software quality through systematic translation
of domain-specific models into the source code, and lowering the development
costs.

In MDD projects, not only a large number of different artifacts caused by
the complexity of the software exist, but also a multitude of different artifact
types. Examples are models, templates, and grammar files, which are required by
special technologies to create MDD tools. Between these specific types of artifacts,
heterogeneous and complex relationships exist, thus understanding them is vital for
MDD tool developers. Examples for such relationships are imports between model
artifacts, artifacts that are used as input to automatically generate a set of target
artifacts, or artifacts containing each other.

The high amount and complexity of these dependencies create a number of
new challenges for MDD projects [GHR17]: (1) poor maintainability in case of
necessary changes due to unnecessary or unforeseen artifact relationships, (2)
inefficient build processes that perform unnecessary process steps or cannot be
executed incrementally, (3) long development times because poorly organized
artifact dependencies cause errors, and (4) prevention of reuse of individual tool
components or parts of the generated product caused by unnecessary artifact
relations. Due to the large number of different artifacts and relationships, the
multitude of artifact and relationship types, the use of special MDD tools and
the high degree of automation, a systematic approach is necessary to handle the
complexity in MDD projects. For the existing projects where no such approach
was used, reverse engineering techniques can help to reconstruct how artifacts are

Applied Artifact-Based Analysis for Architecture Consistency Checking 63

structured. Furthermore, relations between artifacts can be reconstructed, which
makes it easier to understand the dependencies as well as provide a way to analyze
the potential of process optimization. Such analyses of artifacts and their relations
are presented as artifact-based analyses [Gre19].

This paper gives an overview on the artifact-based analysis [Grel9] and, thus,
presents content that is already published. It cannot cover all the contributions
in all detail, which leads to presenting some of the topics in a simplified way
or omitting some details in discussions. Moreover, this work focusses just on a
single kind of artifact-based analysis: architecture consistency checking of MDD
projects. Compared to the original thesis [Gre19], an additional case of application
succeeding the former work is described in this paper in Sect. 4.2.

The main contribution of the original thesis are the methods and concepts for the
artifact-based analysis of model-driven software development projects [Gre19]. The
contribution consists of:

¢ A modeling technique for modeling artifact relationships and for the specification
of associated analyses.

* A concrete model, which describes artifact relationships in MontiCore-based
development projects.

* A methodology for using the modeling technique.

* A tool chain that supports artifact-based analyses.

2 Foundations

In this section, the modeling languages and model-processing tools used in this
approach are presented. Using these to describe artifacts and artifact relationships is
explained in Sect. 3.

2.1 UML/P

The UML/P language family [Rum16, Rum17] is a language profile of the Unified
Modeling Language (UML) [OMG15], which is a modeling standard developed
by the OMG [OMG17]. Due to the large number of languages, their fields of
application, and the lack of formalization, the UML is not directly suitable for
model-driven software development. However, this could be achieved by restricting
the modeling languages and language constructs allowed as done in the UML/P
language family. A textual version of the UML/P, which can be used in MDD
projects, was developed [Sch12]. The approach for the artifact-based analysis of
MDD projects uses the languages Class Diagram (CD), Object Diagram (OD), and
the Object Constraint Language (OCL).

64 T. Greifenberg et al.

2.1.1 Class Diagrams

Class diagrams serve to represent the structure of software systems. They form the
central element for modeling software systems with the UML and are therefore
the most important notation. Using class diagrams primarily, classes and their
relationships are modeled. In addition, enums and interfaces, associated properties
such as attributes, modifiers, and method signatures as well as various types of
relationships and their cardinalities can be modeled.

In addition to being used to represent the technical, structural view of a software
system, i.e., as the description of source code structures, class diagrams can be
used in analysis to structure concepts in the real world [Rum16]. Especially for
this use case, an even more restrictive variant of the UML/P Class Diagrams was
developed: the language Class Diagram for Analysis (CD4A) [Rotl7]. As a part
of this approach, CD4A is used to model structures in model-based development
projects.

2.1.2 Object Diagrams

Object diagrams are suitable for the specification of exemplary data of a software
system. They describe a state of the system at a concrete point in time. ODs can
conform to the structure of an associated class diagram. A check, whether an object
diagram corresponds to the predefined structure of a class diagram is in general
not trivial. For this reason, an approach for an Alloy [Jacll]-based verification
technique was developed [MRR11].

In object diagrams, objects and the links between objects are modeled. The
modeling of the object state is done by specifying attributes and assigned values.
Depending on the intended use, object diagrams can describe a required, represent
prohibited or existing situation of the software system. In addition to the concepts
described in the original thesis [Sch12], the current version of the UML/P OD lan-
guage allows the definition of hierarchically nested objects. This has the advantage
that hierarchical relationships can also be displayed as such in the object diagrams.
Listing 1 shows an example of a hierarchical OD with two nested objects. In this
work, CDs are not used to describe the classes of an implementation, but used
for descriptions on a conceptual level, objects of associated object diagrams also
represent concepts of the problem domain instead of objects of a software system.
In this approach, object diagrams are used to describe analysis data, i.e., they reflect
the current state of the project at the conceptual level.

Applied Artifact-Based Analysis for Architecture Consistency Checking 65

1| objectdiagram Students {
2

3| Max:Person {

4 id = 1;

5 firstName = "Max";

6 name = "Mustermann";

7 address = addressl:Address {
8 street = "Ahornstrafe";

9 city = "Aachen";

10 houseNumber = 55;

11 country = "Germany";

12 }i

13 }i

14|}

Listing 1 Example OD with two hierarchically nested objects

2.1.3 Object Constraint Language

The OCL is a specification language of the UML, which allows to model additional
conditions of other UML languages. For example, the OCL can be used to specify
invariants of class diagrams, conditions in sequence diagrams and to specify pre- or
post-conditions of methods. The OCL variant of UML/P (OCL/P) is a Java-based
variant of OCL. This approach uses the OCL/P variant only. OCL is only used in
conjunction with class diagrams throughout this approach. OCL expressions are
modeled within class diagram artifacts.

2.2 MontiCore

MontiCore [GKRT06, KRV08, GKR108, KRV 10, Kral0, Vo111, HR17] is a Lan-
guage Workbench for the efficient development of compositional modeling lan-
guages. Figure 1 gives an overview of the structure and workflow of MontiCore-
based generators.

Generator 7 I
CoCo SymTab Templates - Reports
Check 7

Output
Models \‘-’ Model | — Template Code
Parser Trafos AST Engine]

Fig. 1 Structure and execution of MontiCore-based generators

66 T. Greifenberg et al.

MontiCore languages are primarily specified using context-free grammars. Mon-
tiCore uses a grammar file as input to generate a parser, a data structure for abstract
syntax trees (AST), and an implementation of the visitor design pattern [GHJV95]
for the AST data structure. The AST data structure can be extended by a symbol
table data structure that can be partially generated. Symbol tables act as a model
interface and offer a way to dynamically load other model artifacts. Thus, symbol
tables provide an integrated processing of multiple models of different modeling
languages. By creating well-formedness rules, the so-called context conditions
(CoCo), additional conditions can be added to the rules given by the grammar. These
conditions are checked on the coherent data structure consisting of AST and symbol
table.

Prior to the generation, model-to-model (M2M) transformation can be used to
prepare AST and symbol table. These can either be implemented in the form of
Java code or defined using special transformation languages [Weil2, Hol18]. A
methodology for creating new transformation languages is also available [HRW15].

Next, the source code of the system in development can be generated by
template-based code generation. As a by-product, additional reports are generated,
which include relevant events of the last generation run or summarize the generation
process.

MontiCore, thus, generates an infrastructure for processing models, checking
them according to their well-formedness rules, transforming them using M2M
transformations, as well as for generating source code artifacts. Moreover, Mon-
tiCore offers a runtime environment (RTE) providing functions and data structures
which can be used by both the generated and handwritten parts of MontiCore-based
tools. MontiCore has already been used to create languages and related tools in
various domains including Automotive [RSW¥15], robotics [AHRW17], and cloud
applications [NPR13].

2.3 Architecture Consistency Checking

Architectural reconstruction and architectural consistency checking (ACC) are
techniques that are used in the area of software architecture. Their goal is to compare
the current state of a software architecture (the actual architecture or descriptive
architecture) with the planned architecture (also called target architecture or pre-
scriptive architecture). The following definitions of basic terms are taken from
[TMDO09]. The term architecture degradation is defined as

The resulting discrepancy between a system’s prescriptive and descriptive architecture.

Applied Artifact-Based Analysis for Architecture Consistency Checking 67

Further, the architectural drift is defined as

The introduction of principal design decisions into a system’s descriptive architecture that
(a) are not included in, encompassed by, or implied by the prescriptive architecture, but
which do not violate any of the prescriptive architecture’s design decisions.

Another term is the architectural erosion defined as

The introduction of architectural design decisions into a system’s descriptive architecture
that violate its prescriptive architecture.

In this work, the result of the calculation of architectural degradation is called
difference architecture. Such a difference architecture, thus, contains all differences
between the target and the actual architecture. Furthermore, it combines the parts
of the architectural drift with those of architectural erosion. Both, the absence of
expected relationships considered as architectural drift and unindended relationships
considered as architectural erosion, are examined as part of this work.

In order to retrieve the difference architecture, the actual architecture must be
compared to the target architecture. For this comparison, the target architecture
must be specified manually, while the actual architecture is reconstructed (semi-)
automatically from the source code. This process is called architectural reconstruc-
tion.

The process of architectural reconstruction distinguishes between top-down and
bottom-up approaches. Bottom-up approaches are also referred to as architecture
recovery [DP09]. They work fully automatically and can therefore be used even if
no target architecture is available. However, they suffer from a lack of accuracy
[GIM13]. By combining two different bottom-up approaches, the quality of the
actual architecture during architecture recovery could be increased, which also
increased the quality of the reconstructed architecture [vDBI11, PvDBI12]. In
contrast to bottom-up approaches, top-down approaches rely on the existence of
a modeled target architecture. Top-down approaches are also known as architecture
discovery [DP09].

The calculation of the difference architecture based on a target architecture and
the source code is also known as architecture consistency checking [PKB13]. In
a study [ABO™17], different ACC approaches from research were compared. The
study classified the approaches according to the following characteristics:

* The type of the underlying extraction method (static, dynamic). All approaches of
architectural reconstruction use extraction techniques to reveal the relationships
between the atomic architectural units (e.g., types, files). Moreover, there is
an approach that combines both extraction methods [SSC96]. This approach
utilizes information of a dynamic extraction to determine the frequency and, thus,
relevance of architecture violations, which are detected based on static extraction.

e The technique for the evaluation of the architectural consistency. Particularly,
interesting techniques in this area are:

— Reflection Modeling (RM) [MNSOI1], a technique in which source code
artifacts are assigned to architectural units of the target architecture. The

68 T. Greifenberg et al.

relationships between modules (actual architecture) are then reconstructed by
investigating the relationships of the source code.

— DSL-based approaches [HZ12, GMR15] allow a comfortable definition of
the target architecture. In addition to the specification of architectural units
and expected relationships, information such as complex conditions for
architectural violations or the severity of architectural violations in the event
of an occurrence can be defined. DSL-based approaches can be combined with
RM-based approaches.

These approaches can also be used for architectures outside the target product.
For this purpose, the scope of the relationships under consideration must be
extended. In MDD projects, the architecture of the target product as well as the
architecture of individual MDD tools, the interaction between tools and artifacts,
and the composition of tools into tool chains are of interest for such analyses. In
this work, a flexible, RM-based approach for checking architecture consistency for
MDD projects is presented. Depending on the application area, static, dynamic, or
static and dynamic (in combination) extracted relationship types are considered.

3 Artifact-Based Analysis

This section gives an overview over the developed solution concept to perform
artifact-based analyses. Before presenting details, the basic definition of an artifact
is given.

Definition 1 An artifact is an individually storable unit with a unique name that
serves a specific purpose in the context of the software engineering process.

In this definition, the focus is on the physical manifestation of the artifact rather
than on the role in the development process. This requires that an artifact can
be stored as an individual unit and then be referenced. Nevertheless, an artifact
should serve a defined purpose during the development process because the creation
and maintenance of the artifact would otherwise be unnecessary. However, no
restrictions are made about how the artifact is integrated into the development
process, i.e., an artifact does not necessarily have to describe the target system,
for example, in the form of a model, but can also be part of the MDD tool
chain instead. The logical content of artifacts thus remains largely unnoticed. This
level of abstraction was chosen to effectively analyze the artifact structure, while
considering the existing heterogeneous relationships and thus meeting the focus of
this work.

An important part of the overall approach is to identify the artifacts, tools,
systems, etc., and their relationships present in the system under development. Here,
modeling techniques are used, which allow to make these concepts explicit and,
thus, enable model-based analyses. Figure 2 gives an overview of the model-based
solution concept.

Applied Artifact-Based Analysis for Architecture Consistency Checking 69

First, it is explicitly defined which types of artifacts, tools, other elements, and
relationships in the MDD project under development are of interest. This task will
be covered by the architect of the entire MDD project through modeling an artifact
model (AM). Such a model structures the corresponding MDD project. As the AM
defines the types of elements and relationships and not the concrete instances, this
model can stay unchanged over the lifecycle of the entire project unless new artifact
or relationship types are added or omitted.

Definition 2 The artifact model defines the relevant artifact types as well as
associated relationship types of the MDD project to be examined.

Artifact data reflect the current project state. They can ideally be automatically
extracted and stored in one or more artifacts.

Definition 3 Artifact data contain information about the relevant artifacts and their
relationships, which are present at a certain point in time in the MDD project. They
are defined in conformance to an artifact model.

Artifact Model MDD Project
[}
...u:|:|i|||||" i i g =
v : g]
H : = a_'l
s = o
P
. f)
" describes artifact kinds data & Analyst
extraction
: ‘ correspondsTo
defines Artifact Artifact D | uses 0
model data
Architect structures Software
Tool

Fig. 2 Solution concept for artifact-based analyses

Artifact data are in an ontological instance relationship [AKO03] to the AM,
whereby each element and each relationship from the artifact data confirm to an
element or relationship type of the AM. Thus, the AM determines the structure of
the artifact data. Figure 3 shows how this is reflected in the used modeling technique.

Artifact data represent the project state at a certain point in time. Analysts or
special analysis tools can use the extracted artifact data to get an overview of
the project state, to check certain relations, create reports, and reveal optimization
potential in the project. The overall goal is to make the model-driven development
process as efficient as possible.

70 T. Greifenberg et al.

CD4A Language
(including OCL) OD Language

instanceOf instanceOf

correspondsTo .
AM4A AM Artifact Data

Fig. 3 Overview about the languages and models used for artifact modeling

Beside other kinds of analyses [Grel9], this approach is suited to define and
execute architecture consistency checking of model-driven software development
projects taking into account input models, MDD tools, which themselves consist
of artifacts, and handwritten or generated artifacts that belong to the target product
of the development process. A corresponding AM depends on the languages, tools,
and technologies used in the project under development. Thus, it must usually be
tailored specifically for a given project. However, such a model can be reused as a
whole or partially for similar projects.

Create Artifact Specficy Artifact Artifact-based
Model Data Analyses Analysis

Fig. 4 Required steps to perform an artifact-based analysis

As shown in Fig. 4, the first step before the execution of artifact-based analysis
is to create a project-specific AM. Subsequently, artifact data analyses are specified
based on this AM. Based on these two preceding steps, the artifact-based analysis
can finally be executed.

3.1 Create Artifact Model

The first step of the methodology is to model an AM. The AM determines the scope
for project-specific analyses, explicitly defines the relations between the artifacts,
and specifies pre-conditions for the analyses. Furthermore, by using the languages
CD and OCL (see Sect. 2.1), it is possible to reuse the existing MDD tools to
perform the analyses. An AM core as well as an extensive AM for MontiCore-
based MDD projects has already been presented [Gre19]. If a new AM needs to be
created or an existing AM needs to be adapted, the AM core and possibly parts of
the existing project-specific AMs should be reused. A methodology for this already
exists [Gre19].

The central elements of any AM are the artifacts. All project-specific files and
folders are considered artifacts. Artifacts can contain each other. Typical examples

Applied Artifact-Based Analysis for Architecture Consistency Checking 71

of artifacts that contain other artifacts are archives or folders of the file system, but
database files are also possible. In this paper, we focus on those parts of the AM that
are used to perform ACC. Figure 5 shows the relevant part of the AM core.

Since the composite pattern [GHIV95] is used for this part of the AM core,
the archives and folders contain each other in any order. Each artifact contained
in one artifact container at most. If all available artifacts are modeled, there is
exactly one artifact that is not contained in a container: the root directory of
the file system. Furthermore, artifacts can contribute to the creation of other
artifacts (produces relationship), and they can statically reference other artifacts
(refersTo relationship). These artifact relations are defined as follows:

Definition 4 If an artifact needs information from another artifact to fulfill its
purpose, then it refers to the other artifact.

Definition 5 An existing artifact contributes to the creation of the new artifact (to
its production) if its existence and/or its contents have an influence on the resulting
artifact.

artifact AMb

/produces

IrefersTo

ArtifactContainer

‘ Archive | ‘ Directory ‘

Fig. 5 Part of the AM core relevant for architecture consistency checking

Both relations are defined as derived association in the AM. Thus, these relations
must be further specified in project-specific AMs (see Sect. 4), while the definition
of artifact data analyses can already be done based on the derived associations
(see Sect. 3.4). The specialization of associations is defined using OCL constraints
[Gre19], because the CD language does not offer a first class concept here.

Modules represent architectural units based on artifacts and their relationships.
The artifacts relation between modules and artifacts must be explicitly defined
by the architect. A top-down approach (see Sect. 2.3) is used for the architecture
reconstruction part of the analysis.

72 T. Greifenberg et al.
3.2 Specify Artifact Data Analyses

The second step of the methodology is the specification of project-specific analyses
based on the previously created AM. Artifact-based analyses should be repeatable
and automated. For this reason, an implementation of the analyses is necessary.
This implementation can be either direct in which case the person performing the
analysis would have both roles, analyst and analysis tool developer, or the analyst
specifies the analyses as requirements for the analysis tool developer, who can then
implement a corresponding analysis tool. In this work, analyses are specified using
OCL. The reasons for this are:

1. The use of the CD language in the specification of the AM makes it possible
to specify analyses using OCL, since the two languages can be used well in
combination.

2. The OCL is already used to define project-specific AMs. The reuse of familiar
languages reduces the learning curve for analysts, makes analysis specifications
readable for architects, and enables reuse in tool development.

3. The OCL has mathematically sound semantics, allowing analyses to be described
precisely. OCL expressions are suitable as input for a generator that can
automatically convert them into MDD tools. Thus, this tool implementation step
can be automated, reducing the effort for the analysis tool developer.

As this paper focuses on ACC, Sect. 2.3 defines architecture consistency
checking as artifact data analysis in detail. Other kinds of artifact-based analyses
are presented in the original thesis [Gre19].

3.3 Artifact-Based Analyses

As third step of Fig. 4, the artifact-based analysis is executed. This step is divided
into five sub-steps, which are supported by automated and reusable tooling. Figure 6
shows these steps and their corresponding tools.

When performing artifact-based analyses, the first step is the extraction of
relevant project data. If the data are stored in different files, a merge of the data
takes place. The entire data set is then checked for conformity to the AM. In
the next step, the data are accumulated based on the specification of the AM, so
that the derived properties are present when performing the last step, the artifact
data analysis. To support the steps of performing analyses, the MontiCore Artifact
Toolchain (MontiArT) was developed [Gre19]. MontiArT is a tool chain that can be
used to collect, merge, validate, accumulate, and finally analyze artifact data. Thus,
all sub-steps of the artifact-based analysis are supported. The individual steps are
each performed by one or more small tools, which can be combined in a tool chain,
for example, by using a script. The tools shown in Fig. 6 are arranged according
to the tool chain’s execution order. The architecture as tool chain is modular and

Applied Artifact-Based Analysis for Architecture Consistency Checking 73

Confomit: Accumula- Al

Extraction Merge Y . Data

Check tion Analysis

Artifact CD OD
Container N ArtData D Consistency | g { ArtData
Extractor Checker
[
Template | oD N oD .
Extractor Merger [ArtData| Accumulator A_r:_glg/lzls
Java oD

Extractor Verifier

Fig. 6 Sub-step of the artifact-based analysis

adaptable. New tools can be added without the need to adapt other tools. Existing
tools can be adapted or removed from the tool chain without having to adapt other
tools. This is advantageous, since this work is based on the assumption that there is
no universal AM for all MDD projects [Gre19]. For this reason, when using the tool
chain in a new project, it is usually necessary to make project-specific adjustments.
The selected architecture supports the reuse and adjustments of individual tools.

3.4 Artifact-Based Analysis for Architecture Consistency
Checking

In architecture reconstruction (see Sect. 2.3), the relationships between the architec-
tural units of the system are reconstructed, which are represented here by modules
(see Sect. 3.3). Modules can be defined for the models and tools used in the project
as well as for the product to be developed. By explicitly modeling modules and
assigning artifacts of the project to modules, an abstract project view can be created
that gives stakeholders (architects, developers, or tool developers) a good overview
of the MDD project. Modules can often be identified by the existing packages or
folders. However, due to architectural erosion (see Sect. 2.3), this alignment can
be lost. It is also possible to define different architectures for a single project,
each with a different focus [Lil16]. Furthermore, different types of modules can
generally be defined for predefined elements of a software architecture, such as
components, layers, or interfaces. In general, it is recommended that the specified
modules are reflected as well as possible by an appropriate structure in the project.
The relationships between modules can be derived based on the assigned artifacts
as shown in Listing 2.

74 T. Greifenberg et al.

association /containedArtifact
[*] Module -> Artifact [x]; «AM4A)

context Module m, ArtfiactContainer c¢ inv:
m.containedArtifact.containsAll (m.artifact) &&
m.artifact.contains (¢) implies m.artifact.containsAll (c.
containg#*x) ;

R S

7
8| association /externalReferredArtifact
9 [*] Module -> Artifact [x];
10| association /externalProducedArtifact
11 [*] Module -> Artifact [=*];

13| context Module inv: (*@ \label{lst:applications module :
reliesonartifacts} @)

14 externalReferredArtifact ==
15 containedArtifact .refersTo.removeAll (containedArtifact) ;
16

17| context Module inv: (%@ \label{lst:applications module :
producedartifact} @x)

18 externalProducedArtifact ==
19 containedArtifact .produces.removelAll (containedArtifact) ;
20

21| association /reliesOnModule [*] Module -> Module [x];

22| association /contributionModule [%*] Module -> Module [*];
23
24| context Module inv: (+@ \label{lst:applications module :
reliesonmodules} @x)

25 reliesOnModule == externalReferredArtifact .module;

26
27| context Module inv: (x@ \label{lst:applications module:
contributionmodule} @«)

28 contributionModule == externalProducedArtifact .module;

Listing 2 Specification of the artifact data analysis for architecture consistency checking: actual
architecture

A distinction is made between two different types of module relationships,
which can be calculated based on the assigned artifacts and their relationships. The
reliesOnModule relationship indicates that a module refers to another module,
while the contributionModule relationship indicates the participation of a
module in the creation of another module similar to the corresponding relations
for artifacts defined in Sect. 3.1. To calculate the relationships, further derived
auxiliary associations were defined. Each module can contain a set of artifacts,
which is defined as the set of artifacts directly assigned to the module together
with all artifacts transitively contained by assigned artifacts. Thus, when assigning
a folder to a module, contained artifacts are also regarded to be part of that module.
Furthermore, for each module, the external artifacts can be calculated, which are
those artifacts that are related to artifacts of the module, but are not assigned to

Applied Artifact-Based Analysis for Architecture Consistency Checking 75

the module themselves. Depending on the type of the underlying artifact relation-
ship, the relationship is represented by the externalReferredArtifact or
the externalProducedArtifact relationship in the shown AM extension.
With the help of these associations, the calculations of reliesOnModule and
contributionModule are specified, which results in the actual architecture of
the system under development.

Based on the actual architecture, the difference architecture between the target
and the actual architecture can also be calculated with the help of an AM extension.
The first required extension part for this analysis is shown in Listing 3. It allows the
specification of the target architecture.

29| association intendedReference [x] Module -> Module [x] ;
30| association intendedContribution
31 [*] Module -> Module [x]; «AM4A>

Listing 3 Specification of the artifact data analysis for architecture consistency checking: target
architecture

With the help of the two associations intendedReference and intended-
Contribution, the intended relationships between modules can be specified.
These can then be used to calculate the differences between the target and actual
architecture. The second extension part for this analysis is shown in Listing 4. It
allows the representation of the difference architecture and specifies its calculation.

32| association /unintendedReference
33 [*] Module -> Module [x];

34| association /unintendedContribution «AM4Ay
35 [*] Module -> Module [x];

36

37| association /missingReference [x] Module -> Module [x];

38| association /missingContribution [+#] Module -> Module [*];
39
40(context Module inv:

41 unintendedReference ==

42 reliesOnModule .removeAll (intendedReference) ;

43

44| context Module inv:

45 unintendedContribution ==

46 contributionModule .removeAll (intendedContribution) ;
47

48 context Module inv:

49 missingReference ==

50 intendedReference .removeAll (reliesOnModule) ;

51

52| context Module inv:

53 missingContribution ==

54 intendedContribution .removeAll (contributionModule) ;

Listing 4 Specification of the artifact data analysis for architecture consistency checking:
difference architecture

76 T. Greifenberg et al.

To be able to capture the results of the calculations, four derived associations
were introduced. For each type of relationship to be compared, two associations
are specified here. One represents the unexpected, additional relationships of the
actual architecture in comparison to the target architecture, and the other contains
the missing, but intended relationships. The unintended, additional relationships
can be calculated by removing the intended relationships from the set of existing
relationships. In contrast to this, missing, intended relationships can be calculated
by removing the existing relationships from the set of intended relationships.

4 Applied Analyses

This section describes two different applied artifact-based analyses for architecture
consistency checking. For both analyses, only step one (Create Artifact Model)
and step three (Artifact-based Analysis) are described. Step two (Specify Artifact
Data Analyses) was already presented in Sect. 3.4. As the defined analysis works
completely on the concepts of the presented AM core, there is no need to define
different analyses for the two different applications.

4.1 DEx Generator

The MontiCore Data Explorer (DEx) [Rot17] is a generator based on MontiCore that
transforms an input CD into an executable system for data exploration. In addition
to the generation of data classes, a graphical user interface and a persistence layer
to connect the application to a database can be generated.

DEx offers a mechanism for the integration of handwritten code and a mechanism
for the exchange and addition of templates by the generator user making the
generator very flexible and the generation process highly configurable. Furthermore,
internal M2M transformations take place when the generator is executed. The
configuration functionality and the execution of internal model transformations lead
to the fact that generation processes in different DEx-based development projects
can differ greatly. For this reason, an analysis of DEx-based projects is particularly
interesting.

DEx is delivered together with an exemplary CD model for generating an
application for a social network. A target architecture was created together with
the architect of DEx using the exemplary CD model as input for the generator. The
architecture consists of eleven modules, which can be part of the generator, the
generated product, or the runtime environment. As preparation for the analysis, the
project-specific AM shown in Figs. 7 and 8 was modeled.

Figure 7 presents the project-specific refersTo relations of the DEx generator.
The reflexive reliesOnJavaArtifact association indicates that two Java
artifacts are dependent on each other. One Java source code file is dependent on

Applied Artifact-Based Analysis for Architecture Consistency Checking 77

Artifact «AM>

reliesOnTemplate K
«| FreeMarkerTemplate H JavaArtifact *

* [« reliesOnJavaArtifact $s *
reliesOnTemplate reliesOnJavaAtrtifact

Fig. 7 Specific refersTo relationships between template and Java artifacts in the DEX project

another Java artifact iff the other artifact must be loaded when compiling the source
code file. A .class file depends on another artifact iff something (type, method,
constant, ...) from the other file is used when executing the part of the program
defined by the .class file.

Templates can call each other during their execution [Schl2], which means
that templates are dependent on other templates. This relationship is modeled by
the reliesOnTemplate relationship of the AM. Furthermore, it is possible to
create Java objects from templates and to store them temporarily, provide them
as parameters to other templates, and call their methods. Hence, templates can
depend on the existence of the corresponding Java artifacts. This relationship is
represented by the reliesOnJavaArtifact relationship. Java artifacts can
rely on the existence of templates when replacing standard templates with project-
specific templates [Rot17].

«AM»

contributionFT
torF T

‘ FreemarkerTemplate Icontribu

Artifact

| * contributionJava
| contributorJava

‘ JavaArtifact

Fig. 8 Template and Java artifacts contribute to the creation of artifacts

The relationships contributionFT and contributiondava are special-
izations of the produces relation. Whenever a Java or template artifact of the
generator contributes to the generation of a target file, such a relation is recorded
in the artifact data.

78 T. Greifenberg et al.

To extract the data of the shown AM, several reusable as well as project-specific
extractors were used. In the following step, the artifact data of each extractor
are merged into a single artifact data file, which acts as the first input for the
calculation of the actual architecture. The second input for the calculation of the
actual architecture is the module definition, i.e., the assignment of artifacts to the
modules of the target architecture defined by the project’s architect. Based on the
calculated actual architecture and the modeled target architecture, the difference
architecture of the DEx project was determined, which is shown in Fig. 9.

generator product RTE

gtr-gui gen-gui k rte-gui
.

W\

(]

ul

:

Application Core /

gir-data |/ ; gen-data rte-data]
N \

5
[

Persipﬁence N
v i

L
gtr-persistence ,’I'

i

rte-persistence &’ i

l,',’l J , unintended- w ;
e Contribution

gtr-common ~ unintended- rte-util

Reference
_, Mmissing-
Reference

il

Fig. 9 Result of the artifact-based analysis: The difference architecture of the DEx project

The number of relationships present in the difference architecture reveals that
a major architectural degradation has occurred. An architectural degradation leads
to the fact that per time unit less and less functionality can be implemented and
bugs can be fixed, which ultimately leads to frustrated and demotivated developers
[Lil16]. Based on the analysis performed, the revealed architecture degradation
can be eliminated, thus counteracting these problems. For this purpose, it must
be decided individually for each relationship whether it is a violation of the target
architecture or whether the target architecture is outdated at this point. The cause for
unwanted relationships of the difference architecture can be traced using reporting
files created as by-product by the tooling. To update an outdated target architecture,
missing required relationships must be added and required relationships that have
become obsolete must be removed. In the case that the target architecture is still
valid, the corresponding relationship indicates a problem in the source code of
the project. When remedying such a problem, missing and additional, unintended
relationships of the actual architecture must be treated differently. Unintended

Applied Artifact-Based Analysis for Architecture Consistency Checking 79

Table 1 Examined artifacts of the DEx project

Module JavaSourceFile FreeMarkerTemplate >
gtr-gui 19 96 115
gtr-data 27 92 119
gtr-persistence 14 93 107
gtr-commons 17 5 22
gen-gui 121 0 121
gen-data 44 0 44
gen-persistence 121 0 121
rte-gui 119 0 119
rte-data 10 0 10
rte-persistence 17 0 17
rte-util 8 0 8
Nicht zugewiesen 38 15 53
> 555 301 856
Table 2 E).(amined relations Relation Source artifact Amount
between artifacts of the DEx ; ;
project contains Directory 940
imports JavaSourceFile 1815
reliesOnJava JavaSourceFile 3807
reliesOnTemplate | JavaSourceFile 324
reliesOnJava FreeMarkerTemplate 88
reliesOnTemplate | FreeMarkerTemplate 59
contributionJava | JavaSourceFile 270
contributionFT FreeMarkerTemplate | 2760
> 10,063

relationships must be eliminated by refactoring the source code in any case, while
a missing relationships can be either also fixed by a refactoring or it indicates
that the desired, corresponding functionality was not implemented at all or in a
fundamentally different way.

Finally, Tables 1 and 2 summarize some numbers to give an impression of the
scope of the project and the regarded artifact and relationship types.

4.2 MontiCar Repositories

While the artifact-based analysis of DEx focuses on a single development project,
we also applied our methodology to multiple projects located in different repos-
itories. Although these projects reside in different locations, i.e., version control
repositories, they are still related to each other. More specifically, our goal was
to perform architectural compliance checking for the MontiCar family, a family

80 T. Greifenberg et al.

of projects developed in the context of autonomous driving and other automotive
related topics [KRRvW17, KRSvW 18, KNP*19].

In case of multiple projects, we change our approach in such a way that we
define modules for the architectural compliance check based on the projects rather
than single parts of each project. For example, the project containing common
functionality for all other projects forms a single module or all functionality used for
visualization purposes is comprised in a single module. Next, the target architecture
for the set of projects is defined. Listing 5 shows an excerpt of this definition.

The EmbeddedMontiArc module has an intended relation to the commons and
visualization modules as well as to the EmbeddedMontiArcView module. For the
analyses of the MontiCar family, in general, we used the same specifications as
defined for DEx in Listings 2, 3, and 4. Furthermore, we assigned the src folder
of each project to the respective module since each project is a Maven project. The
transitive closure of the src folder defined the set of artifacts considered for the ACC
as described in Listing 2, 11. 3-5.

For the analysis of MontiCar, we only considered intended references between
the modules, since contribute relations only exist within each project. The primary
goals were to first check if all intended relations between modules actually exist
and second to get an overview of all unintended relations within the family. With
the help of the respective results, we then improved the current architecture of the
family to adhere to the target architecture.

1| objectdiagram ModuleRelations @
2 «MD»
3| EmbeddedMontiArc :Module{};

4| EmbeddedMontiView:Module({};

5| languagescommon :Module{};

6| visualisation:Module({};

7
8
9

link intendedReference EmbeddedMontiArc -> EmbeddedMontiView;
10| 1link intendedReference EmbeddedMontiArc -> languagescommon ;
11 link intendedReference EmbeddedMontiArc -> visualisation;
12|}

Listing 5 Excerpt of the module definition for the MontiCar project family

Table 3 shows the results of the ACC for the MontiCar family. The first column
displays the defined modules, and the following columns contain the total number of
artifacts analyzed, the number of intended references for each module defined in the
target architecture, and the found numbers of unintended and missing references
as part of the difference architecture. Looking at the results, it is interesting to
see that for most of the modules either a unintended or missing reference was
discovered. Moreover, the analysis found unintended references for more than half
of the modules. Unintended references are references not contained in the target

Applied Artifact-Based Analysis for Architecture Consistency Checking 81

Table 3 Results of analysis containing the number of artifacts of each module, the number of
intended references of the target architecture, the number of unintended references, and the number
of missing references

Module # Artifacts # Intended # Unintended # Missing
EmbeddedMontiArc 151 6 0 1
Enum 110 0 3 0
languagescommon 136 0 3 0
EmbeddedMontiArcMath 261 4 2 0
MontiMath 119 5 1 1
TaggingExamples 31 2 2 0
Struct 51 4 0 0
EmbeddedMontiView 120 4 2 2
EMAM2Cpp 357 9 1 0
View Verification 181 5 2 0
reporting 510 4 1 1
Tagging 121 1 0 0
NumberUnit 26 1 0 0
visualisation 188 6 3 3
S 2362 51 20 8

architecture, however, present in the actual architecture. In general, these deviations
illustrate the architectural erosion within the MontiCar family. Depending on the
module, one deviation is considered more critical than others. For example, for
the languagescommon project, the number of intended references is zero, since it
contains common functionality, which must not relate to any other project. However,
three unintended references to other projects of the family were found. The impact
of other occurrences in the difference architecture is less critical, since these were
classified as architectural drift. Especially, missing references between modules fall
into this category for the MontiCar project. As a consequence, the target architecture
was adjusted in these cases accordingly.

Using the results of the artifact-based analysis, we were able to look at each of the
references found in the current state of the MontiCar family in more detail. Besides
currently existing references between modules, the analysis also provided a detailed
list of the artifacts and their relations that cause a reference between modules. For
each of the unintended module references not contained in the target architecture,
we had the options to reduce the architectural drift:

* Declare the reference to be unintended and as a consequence refactor the artifacts
causing the reference.
* Declare the reference to be intended and add it to the target architecture.

Finally, we were able to reduce the architectural drift within the family of projects
using the artifact-based architectural consistency checking and continue to perform
it regularly to keep the architectural drift as small as possible at all times.

82 T. Greifenberg et al.

5 Conclusion

MDD helps to master the complexity of software development and to reduce the
conceptual gap between the problem and the solution domain. By using models and
MDD tools, the software development process can be at least partially automated.
Especially when MDD techniques are used in large development projects, it can
be difficult to manage the huge number of different artifacts, different artifact kinds,
and MDD tools. This can lead to poor maintainability or an inefficient build process.
The goal of the presented approach is the development of concepts, methods, and
tools for artifact-based analysis of model-driven software development projects. The
term artifact-based analysis is used to describe a reverse engineering methodology,
which enables repeatable and automated analyses of artifact structures. To describe
artifacts and their relationships, artifact and relationship types, and for the specifica-
tion of analyses, a UML/P-based modeling technique was developed. This enables
the specification of project-specific artifact models via CD and OCL parts. As part
of the modeling technique, a reusable AM core is defined. In addition, analysis
specifications can also be defined by CDs and OCL, while artifact data that represent
the current project situation are defined by ODs. The choice of modeling technique
allows you to check the consistency between an AM and artifact data. The models
are specified in a human readable form but can also be automatically processed by
MDD tools. The artifact-based analysis consists of five sub-steps, which, starting
from an MDD project and an associated AM, allows the execution of specified
analyses.

While this paper gave an overview of the contributions of the original thesis
[Grel9], not all contributions could be covered in detail. Especially, this paper
focused on only a single kind of artifact-based analysis, architecture consistency
checking, whereas the original thesis presents several different analysis kinds.
Moreover, Sect. 4.2 of this work described an additional case of application
succeeding the former work.

Due to the results obtained, this work contributes to handling the increasing
complexity of large MDD projects by explicit modeling artifact and relationship
types, which can be used for manual and automated analysis of MDD projects.
Hidden relationships can be revealed and checked immediately, which opens up the
possibility for corrections and optimizations in a given project.

References

ABO™17. Nour Ali, Sean Baker, Ross O’Crowley, Sebastian Herold, and Jim Buckley. Archi-
tecture consistency: State of the practice, challenges and requirements. Empirical
Software Engineering, pages 1-35, 2017.

AHRW17. Kai Adam, Katrin Holldobler, Bernhard Rumpe, and Andreas Wortmann. Engineering
Robotics Software Architectures with Exchangeable Model Transformations. In
International Conference on Robotic Computing (IRC’17), pages 172-179. IEEE,
April 2017.

Applied Artifact-Based Analysis for Architecture Consistency Checking 83

AIM10.
AKO03
BCWI12.

CCF*15.

DP09.

EF17.
FRO7.

GHIV9sS.

GHR17.

GIM13.

GKR™06.

GKR™08.

GMR15

Grel9.

Hol18.

HR17.

HRW15.

HZ12.

Jacll1.

Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey.
Computer Networks, 54:2787-2805, 2010.

. C. Atkinson and T. Kuhne. Model-Driven Development: A Metamodeling Foundation.

1IEEE Software, 20:36—41, 2003.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software
Engineering in Practice. Morgan & Claypool Publishers, 2012.

Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel,
and Bernhard Rumpe. On the Globalization of Domain Specific Languages. In
Globalizing Domain-Specific Languages, LNCS 9400, pages 1-6. Springer, 2015.
Stephane Ducasse and Damien Pollet. Software Architecture Reconstruction: A
Process-Oriented Taxonomy. [EEE Transactions on Software Engineering, 35:573—
591, 2009.

C. Ebert and J. Favaro. Automotive Software. IEEE Software, 34:33-39, 2017.
Robert France and Bernhard Rumpe. Model-driven Development of Complex
Software: A Research Roadmap. Future of Software Engineering (FOSE ’07), pages
37-54, May 2007.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Timo Greifenberg, Steffen Hillemacher, and Bernhard Rumpe. Towards a Sustainable
Artifact Model: Artifacts in Generator-Based Model-Driven Projects. Aachener
Informatik-Berichte, Software Engineering, Band 30. Shaker Verlag, December 2017.
Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. A Comparative Analysis of
Software Architecture Recovery Techniques. In Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering, pages 486—496. IEEE
Press, 2013.

Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Volkel. MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domén-
spezifischer Sprachen. Informatik-Bericht 2006-04, CFG-Fakultit, TU Braunschweig,
August 2006.

Hans Gronniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Volkel. MontiCore: A Framework for the Development of Textual Domain Specific
Languages. In 30th International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10—18, 2008, Companion Volume, pages 925-926, 2008.

. Timo Greifenberg, Klaus Miiller, and Bernhard Rumpe. Architectural Consistency

Checking in Plugin-Based Software Systems. In European Conference on Software
Architecture Workshops (ECSAW’15), pages 58:1-58:7. ACM, 2015.

Timo Greifenberg. Artefaktbasierte Analyse modellgetriebener Softwareentwick-
lungsprojekte. Aachener Informatik-Berichte, Software Engineering, Band 42. Shaker
Verlag, August 2019.

Katrin Holldobler. MontiTrans: Agile, modellgetriebene Entwicklung von und
mit domdnenspezifischen, kompositionalen Transformationssprachen. Aachener
Informatik-Berichte, Software Engineering, Band 36. Shaker Verlag, December 2018.
Katrin Holldobler and Bernhard Rumpe. MontiCore 5 Language Workbench Edition
2017. Aachener Informatik-Berichte, Software Engineering, Band 32. Shaker Verlag,
December 2017.

Katrin Holldobler, Bernhard Rumpe, and Ingo Weiseméller. Systematically Deriving
Domain-Specific Transformation Languages. In Conference on Model Driven Engi-
neering Languages and Systems (MODELS’15), pages 136-145. ACM/IEEE, 2015.
Thomas Haitzer and Uwe Zdun. DSL-based Support for Semi-automated Archi-
tectural Component Model Abstraction Throughout the Software Lifecycle. In
Proceedings of the 8th International ACM SIGSOFT Conference on Quality of
Software Architectures, QoSA *12. ACM, 2012.

Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT press,
2011.

84

KNP*19.

KralO.

KRR14.

KRRvW17.

KRSvW18

KRVO08.

KRV10.

Lee08.

Lil16.

MHDZ16.

MNSOL.

MRRI11.

NPR13.

OMG14.

OMGI5.

OMGL17.

PKB13.

T. Greifenberg et al.

Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard Rumpe, and
Thomas Timmermanns. Modeling and Training of Neural Processing Systems.
In Marouane Kessentini, Tao Yue, Alexander Pretschner, Sebastian Voss, and Loli
Burgueiio, editors, Conference on Model Driven Engineering Languages and Systems
(MODELS’19), pages 283-293. IEEE, September 2019.

Holger Krahn. MontiCore: Agile Entwicklung von domdnenspezifischen Sprachen im
Software-Engineering. Aachener Informatik-Berichte, Software Engineering, Band 1.
Shaker Verlag, Mirz 2010.

Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Computing.
Springer, Schweiz, December 2014.

Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von Wenckstern.
Modeling Architectures of Cyber-Physical Systems. In European Conference on
Modelling Foundations and Applications (ECMFA’17), LNCS 10376, pages 34-50.
Springer, July 2017.

. Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael von Wenck-

stern. Highly-Optimizing and Multi-Target Compiler for Embedded System Models:
C++ Compiler Toolchain for the Component and Connector Language Embedded-
MontiArc. In Conference on Model Driven Engineering Languages and Systems
(MODELS’18), pages 447-457. ACM, October 2018.

Holger Krahn, Bernhard Rumpe, and Steven Volkel. Monticore: Modular Develop-
ment of Textual Domain Specific Languages. In Conference on Objects, Models,
Components, Patterns (TOOLS-Europe’08), LNBIP 11, pages 297-315. Springer,
2008.

Holger Krahn, Bernhard Rumpe, and Stefen Volkel. MontiCore: a Framework for
Compositional Development of Domain Specific Languages. International Journal
on Software Tools for Technology Transfer (STTT), 12(5):353-372, September 2010.

Edward A. Lee. Cyber Physical Systems: Design Challenges. In 2008 11th IEEE
International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pages 363-369, 2008.

Carola Lilienthal. Langlebige Software-Architekturen: Technische Schulden
analysieren, begrenzen und abbauen. dpunkt, 2016.

Markus Miiller, Klaus Hormann, Lars Dittmann, and Jorg Zimmer. Automotive SPICE
in der Praxis: Interpretationshilfe fiir Anwender und Assessoren. dpunkt.verlag, 2
edition, 2016.

G. C. Murphy, D. Notkin, and K. J. Sullivan. Software Reflexion Models: Bridging
the Gap between Design and Implementation. [EEE Transactions on Software
Engineering, 27:364-380, 2001.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Semantics
for Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH Aachen
University, Aachen, Germany, July 2011.

Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures as
Interactive Systems. In Model-Driven Engineering for High Performance and Cloud
Computing Workshop, volume 1118 of CEUR Workshop Proceedings, pages 15-24,
2013.

Object Management Group. Object Constraint Language (OCL, 2014. http://www.
omg.org/spec/OCL/2.4.

Object Management Group. Unified Modeling Language (UML), 2015. http://www.
omg.org/spec/UML/.

Object Management Group. OMG Systems Modeling Language (OMG SysML),
2017. http://www.omg.org/spec/SysML/1.5/.

L. Pruijt, C. Koppe, and S. Brinkkemper. Architecture Compliance Checking of
Semantically Rich Modular Architectures: A Comparative Study of Tool Support. In
2013 IEEE International Conference on Software Maintenance, 2013.

Applied Artifact-Based Analysis for Architecture Consistency Checking 85

PvDB12.

Rot17.

RSWT15.

Rumlé6.
Ruml7.
Schl2.

SSC96.

TMDO9.

vDB11.

Volll.
Weil2.

WHR14.

M. C. Platenius, M. von Detten, and S. Becker. Archimetrix: Improved Software
Architecture Recovery in the Presence of Design Deficiencies. In 2012 16th European
Conference on Software Maintenance and Reengineering, pages 255-264, 2012.
Alexander Roth. Adaptable Code Generation of Consistent and Customizable
Data Centric Applications with MontiDex. Aachener Informatik-Berichte, Software
Engineering, Band 31. Shaker Verlag, December 2017.

Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver Ringert,
and Peter Manhart. Behavioral Compatibility of Simulink Models for Product Line
Maintenance and Evolution. In Software Product Line Conference (SPLC’15), pages
141-150. ACM, 2015.

Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer
International, July 2016.

Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing, Refactoring.
Springer International, May 2017.

Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P.
Aachener Informatik-Berichte, Software Engineering, Band 11. Shaker Verlag, 2012.
Mohlalefi Sefika, Aamod Sane, and Roy H. Campbell. Monitoring Compliance of
a Software System with Its High-level Design Models. In Proceedings of the 18th
International Conference on Software Engineering, ICSE *96, pages 387-396. IEEE
Computer Society, 1996.

R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture: Foundations,
Theory, and Practice. Wiley, 2009.

Markus von Detten and Steffen Becker. Combining Clustering and Pattern Detection
for the Reengineering of Component-based Software Systems. In Proceedings of the
Joint ACM SIGSOFT Conference — QoSA and ACM SIGSOFT Symposium — ISARCS
on Quality of Software Architectures — QoSA and Architecting Critical Systems —
ISARCS, QoSA-ISARCS ’11, pages 23-32. ACM, 2011.

Steven Volkel. Kompositionale Entwicklung domdnenspezifischer Sprachen. Aach-
ener Informatik-Berichte, Software Engineering, Band 9. Shaker Verlag, 2011.

Ingo Weisemoller. Generierung domdnenspezifischer Transformationssprachen.
Aachener Informatik-Berichte, Software Engineering, Band 12. Shaker Verlag, 2012.
J. Whittle, J. Hutchinson, and M. Rouncefield. The state of practice in model-driven
engineering. IEEE Software, 31(3):79-85, 2014.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http:/creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the

original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

