
Agile Generator-Based GUI Modeling
for Information Systems

Arkadii Gerasimov, Judith Michael(B), Lukas Netz, and Bernhard Rumpe

Software Engineering, RWTH Aachen, Aachen, Germany
{gerasimov,michael,netz,rumpe}@se-rwth.de

http://www.se-rwth.de

Abstract. We use two code generators for the model-based continuous
development of information systems including its graphical user inter-
faces (GUIs). As our goal is to develop full-size real-world systems for
different domains, the continuous and iterative model-based engineering
of their GUIs comes along with challenges regarding their extension and
modification. These challenges concern models, the languages they are
written in and hand-written code. In this work we present four comple-
mentary approaches to allow extensions for GUIs that we encounter with
the generator-based framework MontiGem to tackle these challenges. We
discuss the four approaches in detail and present extensions of the frame-
work in the grammar of the language, via atomic components, via hand-
written amendments of generated models and by generating connections
between the GUI and data structure models. These techniques can be
used to create a flexible DSL for engineering information systems, adapt-
able for different domains and rapidly changing requirements.

Keywords: Information system · Modeling graphical user interfaces ·
Model-Based Software Engineering · Code generation · MontiGem

1 Introduction

Model-Based Software Engineering (MBSE) and code generators are well estab-
lished technologies [30,31]. MBSE uses models as the basis for software engi-
neering. They describe both problem and solution consistently and produce a
solution that give comprehensive and verifiable answers to the system require-
ments posed by the problem [24]. These advantages provide significant support
when seeking a solution to a software engineering problem.

MBSE and code generators can be used to create an Enterprise Information
System (EIS) [2] using a multitude of Domain-Specific Languages (DSLs) [1].
Within this paper, we focus on the modeling of Graphical User Interfaces (GUIs)
with a DSL and take a closer look on the needs for an agile iterative engineering
process. In order to refine the target code, mechanisms to extend the gener-
ated code with hand-written amendments are introduced. This leaves us with
two options to modify the application: Changing the model in order to gener-
ate new target code, or changing the hand-written code directly, for example
c© Springer Nature Switzerland AG 2021
A. Dahanayake et al. (Eds.): M2P 2020, CCIS 1401, pp. 1–14, 2021.
https://doi.org/10.1007/978-3-030-72696-6_5

[GMNR21] A. Gerasimov, J. Michael, L. Netz, B. Rumpe: 
Agile Generator-Based GUI Modeling for Information Systems. 
In: Modelling to Program (M2P), pp. 113-126, Springer, 2021. 
www.se-rwth.de/publications/

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72696-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-72696-6_5


2 A. Gerasimov et al.

by extending the generated classes. In order to take advantage of the perks of
MBSE and code generation, we intend to define as much as possible within the
models. Therefore we have to consider a third option: Extending the grammar
of a modeling language in order to facilitate the definition of further aspects.

Within this paper, we tackle three challenges regarding (1) the modification
and extension of an EIS GUI (2) using an agile engineering approach (3) allowing
for continuous re-generation (4) without adapting the hand-written code:
Challenge 1: Our GUI modeling language [1] is good enough for reuse in dif-
ferent generated EISs but too generic and restrictive regarding addition of new
components. By extending the modeling capabilities of the language, we can
integrate new components easily, generate more specific source code and reduce
the amount of hand-written code in the resulting EISs.
Challenge 2: The current approach lacks support for iterative, evolving GUI
models which can be reused. Similar to a pattern approach, a model should be
usable as a template within another model of the same language.
Challenge 3: The current approach lacks support for interweaving models from
different languages. Aspects already defined in a different model, e.g., a data
model, should be reusable to prevent redundancy in modeling. This requires
composition of modeling languages.

To overcome these challenges, this paper addresses the research question
how we can extend and modify the GUI of an application created with MBSE
methods without having to adapt the hand-written code for each particular gen-
erated EIS. In this work we discuss four approaches to modify and extend the
generated application and inspect options on how to adapt given models without
having to adapt the hand-written code. The four (non-exclusive) options are:

(A1) Extension in the grammar: Introducing an approach to extend the gram-
mar of the GUI-DSL enables the software engineer to define more problem-
specific models and, thus, reduce the amount of hand-written source code
(Challenge 1).

(A2) Extension via atomic components: A general GUI component in the gram-
mar can be used to create and assemble new components and adds a new
level of flexibility to the language (Challenge 1). This extension is similar
to the first approach, but is more advantageous in particular cases.

(A3) Extension and modification via addition of hand-written GUI models: To
modify GUI models by adding hand-written ones allows for model modifi-
cations despite continuous re-generation processes (Challenge 2).

(A4) Extension via data models and connections to the GUI models: Defining a
connection between the two DSLs used to define the data structure and the
GUI allows to generate view models from models of both types (Challenge 3).

Outline. The next section explains several prerequisites for agile and iterative
GUI modeling of EISs. Section 3 presents our four approaches for GUI modeling.
Section 4 discusses other GUI languages and how they handle the challenges
described before. Section 5 concludes.



Agile Generator-Based GUI Modeling for Information Systems 3

2 Prerequisites

MBSE relies on the use of models to reduce the complexity of developed appli-
cations and systems [17]. Engineers can use a variety of modeling languages for
agile and model-based development of an EIS. In our case, these languages and
their tooling are created with the modeling platform and language workbench
MontiCore [18]. We use the generator framework MontiGem [2] and a newly
developed DSL, called GUI-DSL, to create the resulting EIS [14].

2.1 The Language Workbench MontiCore

The MontiCore [18,22] language workbench facilitates the engineering of textual
DSLs. It provides mechanisms to analyze, manipulate and transform the mod-
els of a developed DSL. The concrete syntax of a DSL is defined in extended
context-free grammars and context conditions are programmed in Java for check-
ing the well-formedness of models. MontiCore generates parsers, which are able
to handle models of the DSL, and infrastructures for transforming the mod-
els into their Abstract Syntax Tree (AST) representation and for symbol table
construction. The AST and symbol table infrastructures embody the abstract
syntax of a modeling language. Once the parser gets a model as an input, it
creates an AST for each model as well as a symbol table for further process-
ing, e.g., for code generation or analysis. The input AST can be transformed
as needed. A template engine uses the output AST together with templates for
the target language to create the resulting code [18]. MontiCore provides means
for a modular development and composition of DSLs [18]. It supports language
inheritance, embedding and aggregation [15].

Until now, a variety of languages, including a collection of UML/P [28] lan-
guages (variants of UML which fit better for programming) as well as the OCL,
delta, tagging languages, SysML and architecture description languages are real-
ized with MontiCore1.

2.2 Creating Information Systems with MontiGem

MontiGem [1,2], the generator framework for enterprise management, creates an
EIS out of a collection of input models and allows for hand-written additions. The
parser, AST-infrastructure and the symbol table infrastructure of the framework
are generated by MontiCore. Figure 1 shows the main generation process for an
EIS using MontiGem.

MontiGem uses Class Diagrams (CDs) (domain and view models) and GUI-
DSL models (views) as input (see A in Fig. 1). Additionally, it can handle OCL
models, e.g., for creating validation functions for input data, and tagging models,
e.g., for adding platform specific information to the domain model.

For code generation MontiGem uses two generators (B in Fig. 1): The data
structure and the user interface generator. The data structure generator creates

1 see http://www.monticore.de/languages/.

http://www.monticore.de/languages/


4 A. Gerasimov et al.

the database schema, back-end data structure and communication infrastructure
for the back-end and front-end out of CD models and view models. The user
interface generator creates TypeScript and HTML files for the front-end out
of GUI models. The generator parsers check the input models for syntactical
correctness and produce ASTs. The generators feed the ASTs and templates
for the target languages (Java for the back-end and TypeScipt/HTML for the
front-end) to a template engine, which generates the resulting code.

Fig. 1. The generation process using MontiGem

MontiGem can handle hand-written additions of the generated code. This
is important for agile engineering processes and their need for continuous re-
generation. For example, CSS classes are defined manually in separate files and
can be referred to in the models. In other cases, the generated code needs to
be extended by the hand-written code (HWC) directly, in which case the TOP-
mechanism [18] is used. The main idea of the TOP-mechanism is to extend
the generated code with the hand-written code using inheritance, while keeping
artifacts separate (C in Fig. 1). This allows to extend the business logic of the
information system and continuously re-generate code without losing the hand-
written extension.

We have used the generator framework MontiGem for engineering of several
applications, e.g., a full-size real-world application for financial and staff con-
trol [13] and projects in the manufacturing [10], automotive and energy domain.

2.3 Roles for Language and Application Engineering

In practice, language and application engineering are separated processes, which
involve people from different teams. Figure 2 shows roles related to the four
approaches in Sec. 3. We distinguish six different roles that are involved in the



Agile Generator-Based GUI Modeling for Information Systems 5

application and generator engineering process: In order to define a model we
need a DSL. A Language Engineer defines the grammar (Fig. 1B©) of the
DSL and maintains it. These DSLs are used by the Application Modeler to
define models (Fig. 1A©) that represent different aspects of the modeled appli-
cation. Dependent on the DSLs, the Application Modeler does not require a
background in programming, but should have good knowledge of the domain.
Once a model is defined, it is parsed, interpreted and transformed into target
source code (Fig. 1C©) by the generator. The generator itself (Fig. 1B©) is main-
tained and configured by the Generator Customizer. In small development
teams, Language Engineer and Generator Customizer might be the same per-
son, whereas in larger teams this might even be people from different teams.
Hand-written parts (Fig. 1C©) of the resulting application are implemented by
the Application Programmer who has coding skills. Predefined, not gener-
ated and not application specific components (Fig. 1C©) are implemented by the
Component Provider. Finally, the Tool Provider configures and maintains
libraries and components (Fig. 1C©) in the run-time environment of the applica-
tion and the generator (Fig. 1B©).

Fig. 2. Roles for language and application engineering

2.4 GUI-DSL, a Language for Defining User Interfaces

The GUI-DSL [14] is a textual modeling language aimed at describing an interac-
tive user interface for data representation and management in an EIS. The DSL
is part of a large collection of MontiCore languages and allows to create com-
plex views by defining models, each of which is interpreted by the user interface
generator and transformed into a web-page.

Grammar. As the web interface is a primary generation target, principles of
web interface design are followed in the language and reflected in the structure
of the grammar. The core concept of the grammar is built around the idea of
constructing a view by combining and nesting GUI-components, which provide
various data representations, e.g., text, charts, tables, or are used to define the
layout of the page. In the context of this work, a GUI-component is a software
component with a graphical representation, defining a visual interaction unit



6 A. Gerasimov et al.

and/or providing graphical representation of information. Another aspect han-
dled by the language is the definition of data sources for the view, which includes
minimal information about how and in what format the data is delivered.

Model. Each model of the language describes a web page and has a structure
similar to an HTML document. The page definition describes a hierarchical view:
A tree, where leaves provide the graphical representation of the data and inter-
mediate nodes define the layout of the page, e.g., Fig. 3b depicts the structure
of the web page on Fig. 3a. The GUI-components are part of a Card container,
where the head (blue top area of Fig. 3a) has a Label (text “Accountant details”)
and a Button (with a question mark). The body contains a Datatable (table of
accounts). A distinctive feature of a GUI-DSL model is the data handling. The
page definition includes information about the data as variables, which are used
as an input for GUI-components.

Fig. 3. Example of GUI Decomposition

Generator. The models are processed by the generator, which further produces
the application code. The process of transformation is executed in several steps.
First, the model is parsed and an AST of the model is created. The AST is
further transformed into a form which closely resembles the structure of the
generated code and is finally given to the template engine to construct the view
and the logic of the page piece by piece. Optionally, the generated code is further
formatted. This can be useful during the development as it makes the code more
readable and helps to analyze the code.

In order to define a web-page with simple functionality, it is enough to create
a GUI-DSL model to define the graphical representation and a data model to
define the data being displayed on the page. We are also investigating approaches
where only a CD is needed to create the first version of an application [14].

3 Approaches

During the agile development of an information system, several challenges arise
for GUI modeling. We describe the challenge to be tackled in detail, propose a
solution, define the roles involved in handling the challenge and analyze positive



Agile Generator-Based GUI Modeling for Information Systems 7

and negative aspects of the solution. The overreaching objective is to support
the application programmer with MBSE by increasing the amount of generated
code and decreasing the amount of hand-written code.

3.1 GUI-Extension via Grammar (A1)

A GUI model consists of GUI-components describing parts of a user interface.
If a new GUI-component is implemented and used, it has to be reflected in the
GUI model. Additionally, it has to be determined how the GUI-DSL needs to
be changed and how it affects models of the language.

Challenge. Depending on the specification of data presentation in the user
interface, various GUI-components are needed and new ones have to be imple-
mented and integrated into the application (Challenge 1). In GUI-DSL, a page
is described by a model which uses GUI-components. The GUI-components have
to be included in the definition of the DSL to be useable in the model. The DSL
is unaware of new GUI-components and they cannot be used in the model until
its interfaces are described as a part of the DSL. It is also necessary to implement
the transformation process in the generator in order to properly map the usage
of a GUI-component in the model to its usage in the target code.

Roles. The adjustment of the current language is handled by a Language Engi-
neer, whereas the generator is adjusted by a Generator Customizer.

Solution. A direct solution is to make both DSL and the corresponding gener-
ator extendable. This can be achieved with various kinds of language composi-
tions, such as aggregation or inheritance [19]. The idea is to separately define a
new DSL with its own generator, which can be combined with the existing one
to allow usage of both DSLs in one model and produce a combined result. For
example, a calendar GUI-component needs to be added to the user interface.
We have to create a separate extension of the DSL and corresponding genera-
tor, which describes the calendar GUI- component and generate the code for it.
Such approach requires a common ground for different kinds of GUI-components,
an interface to consistently handle them and a reusable generator structure to
mitigate the effort spent on implementation of mapping for the new component.

Advantages and Disadvantages. The solution is straightforward for both
development roles involved and allows to embed the logic necessary for a proper
operation of a GUI-component on a page directly into the generator. This is espe-
cially useful if the added component has a complicated structure and is heavily
configurable. Specific syntax can be defined to simplify its definition in the model
and let the generator handle the specifics. On the other hand, it takes consider-
able effort to integrate even the simplest GUI-components, as a new language and
different generator parts have to be created and integrated with the existing ones.

3.2 GUI-Extension via Atomic Components (A2)

The previous challenge can be addressed from different angles and although the
previous solution is valid, it has a considerable disadvantage regarding the effort.



8 A. Gerasimov et al.

Challenge. An ability to use a hand-written GUI-component in a model is
important, but it is also important to provide this ability without spending a lot
of effort on creating a DSL and a generator, especially if the added component
is very simple and does not require additional specific behavior definition to
be operable on a page (see Challenge 1). In such case, it is desirable to enable
GUI-component definition in models, where a new component is defined in a
model and conforms to a common structure. We will call these GUI-components
atomic, which signify a smallest unit of view composition on a modeling level.

Roles. Since the problem is solved in a different phase, the responsibility to
define new components moves from the Generator Customizer and Language
Engineer to the Application Modeler.

Solution. Defining a GUI-component in a model means that a rule for such
general definition of atomic components needs to be present in the language. This
rule specifies how to create a new GUI-component, e.g., by using the name of the
component and its interface. The interface consists of configurable properties of
the component, which then have to be defined in a model to allow instantiation
and usage of the GUI-component in other models. Taking the example from
the previous section, a calendar needs to be added to the user interface. This
solution suggests to describe the calendar GUI-component in a model, which can
be referred to from other models.

Advantages and Disadvantages. Introducing a new GUI-component in a
model saves a lot of effort compared to DSL extension. If a simple component
is implemented, this approach allows to quickly integrate it into the application
models, and generate the corresponding code without penalty. Additionally, a
uniform rule for component creation ensures consistency of GUI-component rep-
resentation in models. However, if a complex component is created which requires
additional logic to be used on web pages, either a mechanism for indirect gen-
erator manipulation needs to be defined and attached to the language or the
generated code always has to be completed by a hand-written amendment. This
solution amplifies the development effort proportional to the complexity of an
introduced GUI-component: The more complex the component is, the more addi-
tional effort is required for its integration, whereas the previous solution implies
the similar amount of effort regardless of the component complexity.

3.3 GUI-Extension and Modification via Hand-Written Model (A3)

Models can be generated or hand-written. Independently from the origin of mod-
els, modifications can be necessary and should remain during re-generation.

Challenge. In [14] we have introduced an approach to generate GUI-models
from CDs. In such case, developers would like to change the appearance of the
application which results either in adding larger amounts of hand-written code,
changing the generated GUIs or changing the generated models. Whereas the
first approach requires manual effort, any changes would be undone by the next
generation cycle for the latter two. If not only code but also models are generated,



Agile Generator-Based GUI Modeling for Information Systems 9

changes in these models will get lost during re-generation processes. This requires
an approach to handle changes for generated models.

Roles. The Application Modeler modifies models.

Solution. We can extend the GUI-DSL to allow for modification of a GUI model
by adding another GUI model. This extension enables references between GUI
models. The application modeler for example can be provided with a generated
model, that displays data as a table. This approach enables him to replace the
table with a bar chart by modifying the generated model with his handwritten
one. As described in Fig. 3, a GUI model can be represented in a tree structure.
With a simple set of tree manipulations, any GUI-model can be transformed into
the one needed. Similar to the TOP-Mechanism [18], we use naming conventions
to distinguish between and identify the generated and the hand-written model.
The hand-written model itself is a valid model and replaces the generated one.
This approach is discussed in [14] in more detail.

Advantages and Disadvantages. Extending models by further models, can
lead to a lack of clarity considering where components are defined and configured.
Hand-written models themselves can be modified multiple times leading to badly
defined models. The alternative would be a modification within the generated
source code, but depending on the size of the modification needed, an adaption
of the model instead of the code might be easier to maintain and to comprehend
for the developer while simultaneously generating consistent code.

3.4 GUI-Extension via Data-Models (A4)

Agile development requires additions and changes in the data structure. These
changes will have effects on the graphical representation.

Challenge. The data structure of iteratively evolving software is very likely to
be subject to change. The user interface presents and allows for interaction with
the data, which is defined in the data structure. There is a strong dependency
between GUI and data structure which should be reflected in a dependency
between the GUI model and the domain model (Challenge 1).

Roles. The view is modeled by the Application Modeler, whereas the grammar
of the GUI-DSL has to be adapted by the Generator Customizer.

Solution. In order to display data from the database in the GUI we use the
MVVM pattern (Fig. 4). The Data-Model is defined by the domain model (a
class diagram) and is used as an input for the generator. The View is defined by
the GUI-model. We can use a combination of both to derive the View-Model.
By referencing classes and attributes of the Data-Model in the View, we can
derive the classes and attributes needed in the View-Model. An additional class
diagram (View-Model) is generated for each GUI-model and provided to the
data structure generator, which uses the Data-Model and all View-Models as
an input. The dependency from Data-Model to View-Model can be used to load
and transport the correct data to the View. For example, when defining a table
in a GUI model, the data model could be referenced directly by the table entries.



10 A. Gerasimov et al.

Fig. 4. MVVM pattern

Advantages and Disadvantages. Generated view-models can be less efficient
than hand-written ones. This problem can be mitigated by allowing custom view-
models, that are used instead of the generated ones. The advantage of generated
view-models is that they always fit to the domain model. Changing the data
structure will result in automatically changed view-models. Hand-written view-
models become obsolete, which reduces developer effort.

4 Discussion and Related Work

MBSE for user interfaces has been addressed in different publications [5,20,23,25].
Different solutions address directly or indirectly the approaches discussed in this
work, namely extensions (A1) in the grammar, (A2) via atomic components, (A3)
via hand-written models and by generating models from models and (A4) by
generating connections between the GUI and data-structure models. MontiGem
in combination with MontiCore explicitly supports all four approaches.

GUI-Extension via Grammar (A1). The problem of extending the language
to allow more flexible definition of the user interface is often set to the back-
ground [3,4,16]. The set of elements in the view is considered to be static and
focused purely on information delivery. This can result in a need for language
extension when the models are required to be applied for another domain. For
example, the modeling language IFML [5] had to be extended in order to fit a dif-
ferent domain [7,8,26]. Similar to GUI-DSL, the language introduces interfaces
and means for abstractions, which serve as a base for new GUI-components and
provide a general description for components of the same type, although the
adaptability of the language to a different domain is not considered directly.
Aside from adding new GUI- components into the language, the extension
is also possible using stereotypes, i.e., additional information is attached to
existing components with keywords, which specify the interpretation of a GUI-
component. Such solution also requires implementation of a separate language
and a generator and can be used if an infrastructure for this approach is available.
Diep et al. [11] suggest several GUI modeling levels, starting from an abstract
representation of GUI-components in general, followed by more specific element
type, e.g., button, text box, etc., and ending with platform-specific elements,
such as StackPanel for Windows Phone. The abstract models are transformed
into more specific ones up to the generation of the target code. Having several
levels of abstraction allows to add not only specific elements, but also a new



Agile Generator-Based GUI Modeling for Information Systems 11

category of GUI-components. However, adding a new category of components
would still require the definition of the mapping to the more specific elements
or target code.

GUI-Extension via Atomic Components (A2). Most approaches for user
interface modeling use predefined sets of GUI-components [3,4,16]. There exist,
however, some approaches which provide the ability to extend the variety of GUI-
components. One option is to combine components from a predefined set into a
new component and use it in models of the user interface [9,21,23]. Although it
does not affect the visual appearance of an interface, it helps to reuse presenta-
tional patterns. An interesting take on the problem is discussed in [20], which
defines a DSL based on a Groovy programming language. The DSL uses function
calls similar to the rules for construction of GUI-components described in this
work to build the view, i.e., the GUI-component definitions are functions and
new components can potentially be added by defining new functions. The key
feature is that the pages and GUI-components are both described on the same
modeling level. The GUI-components are functions, which are called in the body
of a page function, thus constructing the whole view. This technique is similar
to the presented one, but it is not designed to simplify the process of defining
a GUI-component on a modeling level and does not guarantee the simplicity of
GUI-component integration.

GUI-Extension and Modification via Hand-Written Model (A3). The
concept of user interface derivation finds its place in [6], where the first step is to
model the tasks with details such as task context, roles involved and manipulated
objects. The user interface model is derived from the task model based on the
dependencies between the tasks. As a result, the interface is updated when a
task model is modified. [29] proposes model-to- model transformation in order
to get models of user interface from models describing use cases, data structure
and other models, which correspond to various aspects of an application. The
approach considers only two options for modeling a user interface: it is either
completely derived or completely modeled by hand. Our work goes one step
further and enables flexible modification of the generated models.

GUI-Extension via Data-Models (A4). The possibility to reference the data
structure in a user interface model has been recognized in [12,27,32]. The overall
approach regarding the connection between view and a data structure is similar
to the one in this work: The publications propose the usage of several models to
tackle different aspects of a web application, where a domain model and presenta-
tion model are defined separately, but at the same time the presentation model
refers to the domain model in order to define the content of a user interface.
Using such concept allows to describe parts of application focused on specific
problem separately and to bring these parts together by integrating fragments
of a domain model in a presentation model to define their content.

In general, a DSL designed for GUI description tends to have a predefined
set of GUI-components used to build a user interface. This allows a modeler to
easily create a new GUI by simply choosing a suitable data presentation from



12 A. Gerasimov et al.

a small set. However, this also implies that the language restricts the variability
of the generated GUI, which is necessary if the language needs to be further
reused and applied to a different problem domain. Making the language flexible
by introducing extension mechanisms to integrate new GUI-components helps
to cope with such challenge, but it still requires considerable effort to define
a mapping between newly introduced component and the target code. If the
language needs to be heavily reusable and adaptable, e.g., to describe GUIs on
different platforms or to target different users, it makes sense to introduce a
creation rule for new GUI-components in the language to allow a modeler to
create new building blocks for a user interface. Enhancements of a different
kind, such as derivation of the GUI models, introduces the similar problem of
restricting the variability of user interfaces by predefining the mapping from a
non-GUI model to a GUI model. Major adjustments of a GUI on a modeling level
would be confusing and difficult to maintain, while minor changes can be done
manually and the problem can potentially be ignored. However, the benefits of a
modeling approach would still be lost and it could be worth to create a simple set
of operations to modify the generated GUI models. The last extension considered
in this work is handling the connection between GUI and data. In case the data
structure and GUI are modeled separately, establishing the connection between
the models allows to generate a code for communication between a user interface
and data provider, which enables building functional application prototypes.

The proposed solutions are designed to reduce the development time and to
support the agile and iterative engineering of EIS. Typical engineering processes
which consider MBSE and code generation include strong user involvement, agile
reaction to changes and small product increments. The four approaches suggest
adaptations on a language or a modeling level to delegate the task of changing
huge parts hand-written code to a more abstract level, where the changes are
minimal, thus reducing development time and effort.

5 Conclusion

MBSE and code generators allow for an agile development process of EIS. How-
ever, this comes along with the question where to make changes for changing
requirements: In the models, in the grammar of the DSL the models are created
with or in the hand-written code. The requirements can also imply different
forms of changes, such as adding new code or adjusting the existing code. In
this paper we have shown four approaches, which allow to extend and modify
the GUI of an information system created with MBSE methods without having
to adapt the hand-written code: (A1) in the grammar, (A2) via atomic compo-
nents, (A3) via hand-written models and by generating models from models and
(A4) generating connections between the GUI and data structure models. These
techniques can be used to create a flexible DSL, adaptable for different domains
and rapidly changing requirements with reduced manual effort.

It is important to enable extensions of GUIs using MBSE and code gener-
ation. The extendability is relevant not only for GUIs but on different levels



Agile Generator-Based GUI Modeling for Information Systems 13

and also for other model-based aspects of the application. Thus, further con-
siderations have to be done to enable extendability of other generators for the
application as well as the run-time environment.

References

1. Adam, K., Michael, J., Netz, L., Rumpe, B., Varga, S.: Enterprise information
systems in academia and practice: lessons learned from a MBSE project. In: 40
Years EMISA: Digital Ecosystems of the Future: Methodology, Techniques and
Applications (EMISA 2019). LNI, vol. P-304, pp. 59–66. Gesellschaft für Informatik
e.V (2020)

2. Adam, K., et al.: Model-based generation of enterprise information systems. In:
Enterprise Modeling and Information Systems Architectures (EMISA 2018), vol.
2097, pp. 75–79. CEUR-WS.org (2018)

3. Bernardi, M., Cimitile, M., Maggi, F.: Automated development of constraint-driven
web applications, pp. 1196–1203 (2016). https://doi.org/10.1145/2851613.2851665

4. Bernardi, M.L., Cimitile, M., Di Lucca, G.A., Maggi, F.M.: M3D: a tool for the
model driven development of web applications. In: Proceedings of the Twelfth
International Workshop on Web Information and Data Management, WIDM 2012,
pp. 73–80. ACM (2012)

5. Bernaschina, C., Comai, S., Fraternali, P.: IFMLEdit.org: model driven rapid pro-
totyping of mobile apps, pp. 207–208 (2017)

6. Berti, S., Correani, F., Mori, G., Paternó, F., Santoro, C.: TERESA: a
transformation-based environment for designing and developing multi-device inter-
faces, pp. 793–794 (2004). https://doi.org/10.1145/985921.985939

7. Brambilla, M., Mauri, A., Franzago, M., Muccini, H.: A model-based method for
seamless web and mobile experience, pp. 33–40 (2016). https://doi.org/10.1145/
3001854.3001857

8. Brambilla, M., Mauri, A., Umuhoza, E.: Extending the interaction flow model-
ing language (IFML) for model driven development of mobile applications front
end. In: Awan, I., Younas, M., Franch, X., Quer, C. (eds.) MobiWIS 2014. LNCS,
vol. 8640, pp. 176–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10359-4 15

9. Costa Paiva, S., Oliveira, J., Loja, L., Graciano Neto, V.: A metamodel for auto-
matic generation of enterprise information systems (2010)

10. Dalibor, M., Michael, J., Rumpe, B., Varga, S., Wortmann, A.: Towards a model-
driven architecture for interactive digital twin cockpits. In: Dobbie, G., Frank,
U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp.
377–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1 28

11. Diep, C.K., Tran, N., Tran, M.T.: Online model-driven IDE to design GUIs for
cross-platform mobile applications, pp. 294–300 (2013). https://doi.org/10.1145/
2542050.2542083

12. Dukaczewski, M., Reiss, D., Stein, M., Rumpe, B., Aachen, R.: MontiWeb - model
based development of web information systems (2014)

13. Gerasimov, A., et al.: Generated enterprise information systems: MDSE for main-
tainable co-development of frontend and backend. In: Michael, J., Bork, D., (eds.)
Companion Proceedings of Modellierung 2020 Short, Workshop and Tools & Demo
Papers, pp. 22–30. CEUR-WS.org (2020)

https://doi.org/10.1145/2851613.2851665
https://doi.org/10.1145/985921.985939
https://doi.org/10.1145/3001854.3001857
https://doi.org/10.1145/3001854.3001857
https://doi.org/10.1007/978-3-319-10359-4_15
https://doi.org/10.1007/978-3-319-10359-4_15
https://doi.org/10.1007/978-3-030-62522-1_28
https://doi.org/10.1145/2542050.2542083
https://doi.org/10.1145/2542050.2542083


14 A. Gerasimov et al.

14. Gerasimov, A., Michael, J., Netz, L., Rumpe, B., Varga, S.: Continuous transition
from model-driven prototype to full-size real-world enterprise information systems.
In: Anderson, B., Thatcher, J., Meservy, R., (eds.) 25th Americas Conference on
Information Systems (AMCIS 2020). AIS Electronic Library (AISeL), Association
for Information Systems (AIS) (2020)

15. Haber, A., et al.: Composition of heterogeneous modeling languages. In: Desfray,
P., Filipe, J., Hammoudi, S., Pires, L.F. (eds.) MODELSWARD 2015. CCIS, vol.
580, pp. 45–66. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27869-
8 3

16. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform model-driven devel-
opment of mobile applications with md2. In: SAC (2013)

17. Hölldobler, K., Michael, J., Ringert, J.O., Rumpe, B., Wortmann, A.: Innovations
in model-based software and systems engineering. J. Obj. Technol. 18(1), 1–60
(2019). https://doi.org/10.5381/jot.2019.18.1.r1

18. Hölldobler, K., Rumpe, B.: MontiCore 5 language workbench edition 2017. Aach-
ener Informatik-Berichte, Software Engineering, Band 32, Shaker Verlag, December
2017

19. Hölldobler, K., Rumpe, B., Wortmann, A.: Software language engineering in the
large: towards composing and deriving languages. Comput. Lang. Syst. Struct. 54,
386–405 (2018)

20. Jia, X., Jones, C.: AXIOM: a model-driven approach to cross-platform application
development. In: ICSOFT 2012 - Proceedings of the 7th International Conference
on Software Paradigm Trends, pp. 24–33 (2012)

21. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-based web engineering: an
approach based on standards, pp. 157–191 (2008)

22. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional devel-
opment of domain specific languages. Int. J. Softw. Tools Technol. Transf. (STTT)
12(5), 353–372 (2010)

23. Kraus, A., Knapp, A., Koch, N.: Model-driven generation of web applications in
UWE. In: CEUR Workshop Proceedings, vol. 261 (2007)

24. Long, D., Scott, Z.: A primer for model-based systems engineering. Lulu. com
(2011)

25. Marland, V., Kim, H.: Model-driven development of mobile applications allowing
role-driven variants, pp. 14–26 (2019)

26. Morgan, R., Grossmann, G., Schrefl, M., Stumptner, M., Payne, T.: VizDSL: a
visual DSL for interactive information visualization, pp. 440–455 (2018)

27. Ren, L., Tian, F., (Luke) Zhang, X., Zhang, L.: DaisyViz: a model-based user
interface toolkit for interactive information visualization systems. J. Vis. Lang.
Comput. 21(4), 209–229 (2010). part Special Issue on Graph Visualization

28. Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33933-7

29. Seixas, J., Ribeiro, A., Silva, A.: A model-driven approach for developing responsive
web Apps, pp. 257–264 (2019). https://doi.org/10.5220/0007678302570264

30. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

31. Stahl, T., Völter, M., Efftinge, S., Haase, A.: Modellgetriebene Softwareentwick-
lung: Techniken, Engineering, Management, vol. 2, pp. 64–71 (2007)

32. Valverde, F., Valderas, P., Fons, J., Pastor, O.: A MDA-based environment for web
applications development: from conceptual models to code (2019)

https://doi.org/10.1007/978-3-319-27869-8_3
https://doi.org/10.1007/978-3-319-27869-8_3
https://doi.org/10.5381/jot.2019.18.1.r1
https://doi.org/10.1007/978-3-319-33933-7
https://doi.org/10.5220/0007678302570264

	Agile Generator-Based GUI Modeling for Information Systems
	1 Introduction
	2 Prerequisites
	2.1 The Language Workbench MontiCore
	2.2 Creating Information Systems with MontiGem
	2.3 Roles for Language and Application Engineering
	2.4 GUI-DSL, a Language for Defining User Interfaces

	3 Approaches
	3.1 GUI-Extension via Grammar (A1)
	3.2 GUI-Extension via Atomic Components (A2)
	3.3 GUI-Extension and Modification via Hand-Written Model (A3)
	3.4 GUI-Extension via Data-Models (A4)

	4 Discussion and Related Work
	5 Conclusion
	References




