
Agile Development with
Domain Specific Languages

Bernhard Rumpe, Martin Schindler, Steven Völkel, and Ingo Weisemöller

Software Engineering
RWTH Aachen University, Germany

http://www.se-rwth.de/

1 Introduction

An increasing number of software development projects uses domain specific
languages (DSLs) at least at one stage. Such languages allow domain experts
to take part in the product development, and they can often contribute to im-
proved efficiency. As a drawback, the development of a DSL is a complex and
error-prone software development process itself, which causes additional efforts
and costs. Moreover, the actual software product and the DSL are often devel-
oped concurrently, and the requirements for the DSL may change according to
the needs of developers of the actual product. Therefore, we have to address
two interdependent development processes: the product development process, in
which we may need to react on requirement changes by the customer quickly,
and the language development process, in which we want to define an adaptable
and extensible DSL.

In this tutorial, we sketch preliminary considerations about the use of DSLs,
important methods and techniques that are crucial for defining the language, and
basic technologies for code generation. In our tutorial, we also introduce concepts
for the modular definition of DSLs, quality assurance, and the integration of a
DSL into software development processes. Both our tutorial and this summary
build on our tutorial Generative Software Development presented at the ICSE
2010, respectively on the corresponding summary [4].

2 Usage of DSLs in Software Development Processes

There is already a considerable number of successfully applied domain specific
languages. In the requirements and analysis phase, requirements specification
languages that are close to natural languages have been introduced. Architectural
description languages and the UML play an important role in system design.
Matlab/Simulink is a wide spread language for the implementation of electronic
control units in the automotive industry.

The development of a domain specific language and the corresponding tools is
a software development process itself, which may be expensive and error-prone.
Therefore, the introduction of a DSL is particularly useful in the development

[RSVW11] B. Rumpe, M. Schindler, S. Völkel, I. Weisemöller 
Agile Development with Domain Specific Languages 
In: Proceedings of the 7th European Conference on Modelling Foundations and Applications (ECMFA 2011), 
pp. 387-388. June 2011, Birmingham, UK. Lecture Notes in Computer Science (LNCS) vol. 6698, Springer. 
www.se-rwth.de/publications 



of large and complex products [1]. In smaller development processes, the im-
provements in terms of efficiency and software quality may not be sufficient to
compensate the initial costs that are caused by the DSL development. If in con-
trast the complexity, size and lifetime of the software product are sufficiently
large, the development of high-quality languages and language instances can
substantially contribute to a more efficient and valuable software system.

3 Development of Domain Specific Languages

The development of precise DSLs and accompanying tools like MontiCore [3] con-
tain concepts of metamodels or grammars (syntax), context conditions (static
analysis and quality assurance) as well as possibilities to define the semantics of
a language. Instances of most DSLs can be mapped to models in different lan-
guages or executable programs by model transformations and code generators.
The growing number and complexity of DSLs is addressed by concepts for the
modular and compositional development of languages and their tools.

As a first step the language has to be defined precisely. This includes a
description of the valid words of the language, which is determined by its syntax
and by context conditions. These are often described by means of context free
grammars, attribute grammars, symbol tables and constraints.

The language definition also includes a description of the semantics of the
language [2]. This is often implemented by means of transformations, with code
generators as an outstandingly important special case. In the case of executable
models, the target language is often a general purpose language such as Java or
C++, and the runtime semantics of the source model are the runtime semantics
of the generated code. Most model-to-text-transformations are implemented by
means of template languages such as Freemarker. Transformations can be exe-
cuted locally on the developer’s machine, or remote as a transformation service,
where the latter reduces the technical efforts required for using a DSL.

In addition to the language definitions, developers need tools to describe and
transform models in the DSL, and the process must be adopted to the usage
of the new language. Moreover, measures for quality assurance of documents in
the language are required. Once these steps in language and tool development
have been completed, the DSL is ready to be used in other software development
processes.

References

1. Deursen, A., Klint, P.: Little Languages: Little Maintenance? Journal of Software
Maintenance: Research and Practice 10, 75–92 (1998)

2. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics“?
Computer 37(10), 64–72 (2004)

3. MontiCore Website: http://www.monticore.de/
4. Rumpe, B., Schindler, M., Völkel, S., Weisemöller, I.: Generative software develop-

ment. In: Proceedings of the 32nd International Conference on Software Engineering
(ICSE 2010). vol. 2, pp. 473–474. ACM (May 2010), tutorial summary




