Software and Systems Modeling (2024) 23:1247-1274
https://doi.org/10.1007/s10270-024-01157-1

REGULAR PAPER l')

Check for
updates

A model-based reference architecture for complex assistive systems
and its application

Judith Michael'® - Volodymyr A. Shekhovtsov?3

Received: 16 March 2023 / Revised: 22 January 2024 / Accepted: 5 February 2024 / Published online: 16 March 2024
© The Author(s) 2024

Abstract

Complex assistive systems providing human behavior support independent of the age or abilities of users are broadly used in a
variety of domains including automotive, production, aviation, or medicine. Current research lacks a common understanding
of which architectural components are needed to create assistive systems that use models at runtime. Existing descriptions
of architectural components are focused on particular domains, consider only some parts of an assistive system, or do not
consider models at runtime. We have analyzed common functional requirements for such systems to be able to propose a
set of reusable components, which have to be considered when creating assistive systems that use models. Such components
constitute a reference architecture that we propose within this paper. To validate the proposed architecture, we have expressed
the architectures of two assistive systems from different domains, namely assistance for elderly people and assistance for
operators in smart manufacturing in terms of compliance with such architecture. The proposed reference architecture will
facilitate the creation of future assistive systems.

Keywords Assistive systems - Context-aware - Reference architecture - Model-based software engineering - Daily activities

support - Assistive digital twin

1 Introduction

Motivation. Complex assistive systems use sensory infor-
mation and data to provide situational support for human
behavior at the time the person needs it or asks for it. Nowa-
days, assistive functionalities are broadly used in a variety
of domains including automotive [9, 99], production [77, 95,
96], aviation [31], smart homes and ambient assisted living
[65] or medicine [48, 86].

The development of such systems spans different domains
in informatics and is highly complex, so such an undertaking
has to be well-justified in terms of costs and benefits. A chal-

Communicated by Oystein Haugen.

B Judith Michael
michael @se-rwth.de

Volodymyr A. Shekhovtsov
volodymyr.shekhovtsov@imed.ac.at

Software Engineering, RWTH Aachen University, Aachen,
Germany

Medical University of Innsbruck, Innsbruck, Austria
University of Klagenfurt, Klagenfurt, Austria

’El - E_h [MS24] J. Michael, V. Shekhovtsov:

*. A Model-Based Reference Architecture for Complex Assistive Systems and its Application.

= |n: Journal Software and Systems Modeling (SoSyM), Volume 23(5),
pp. 1247-1274, Springer Berlin / Heidelberg, Oct. 2024.

lenge is that assistive systems often target niche application
areas, with only a few potential application users with very
specific needs. Still, delivering such systems for these niche
areas can be of high importance, as they provide critical func-
tionality, e.g., ensuring safety in potentially dangerous work
environments [38], supporting elderly people with cognitive
impairments [53], or ensuring safety for others one creates
products for [86].

While developing systems for such areas, the goal is to
reduce the resource needs and the development effort as much
as possible to achieve at least partial feasibility, as this allows
more systems to be developed at a lower cost. This allows the
provision of more assistive systems even for niche domains,
to address a wider range of critical problems. Current soft-
ware engineering research and practice proposes a number
of activities targeting such a goal [17, 28, 98]. Many such
activities possess at least one of the following features:

1. they are based on using models at runtime as a result of
applying the principles of model-based and model-driven
software engineering paradigms to the development of
assistive systems, as working within these paradigms
helps to reduce development time and resource require-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01157-1&domain=pdf
http://orcid.org/0000-0002-4999-2544

1248

J. Michael, V. A. Shekhovtsov

ments without compromising software quality [1, 4, 17,
98].

2. they rely on the availability of established reference
architectures, as making such architectures available to
the developers reduces the effort for developing systems
based on such architectures, allows for interoperability,
and facilitates the design of concrete architectures [22,
32, 35, 60, 61].

The problem with the above features is that, while the tech-
niques possessing either of them are widely studied and used,
they are not combined together, i.e., reference architectures
do not specifically target assistive systems using models at
runtime. When referring to the usage of models at runtime
of assistive systems, we consider using, e.g., process or task
models, context models, goal models, or models for events
and actions. Using these models enables an assistive system
toreact to changes and provide means for adaptation. Current
approaches realizing adaptivity, e.g., Monitor-Analyze-Plan-
Execute over a shared Knowledge (MAPE-K) [5, 87], or
context-aware systems [27], do not provide all concepts
needed for providing assistance for human users. Thus, defin-
ing a reference architecture that integrates common practices
for handling context information and models at runtime
would improve the state of the art. In this paper, we address
this research gap by proposing a reference architecture for
model-based assistive systems, which answers the research
question “which architectural components are needed and
how they should be connected to create an assistive system
which uses models at runtime.” We consider this architecture
as a further step toward reducing the effort for developing
assistive systems, making them more accessible to people in
need.

Our approach. We follow the process of defining ref-
erence architectures from [75] and aligning our reference
architecture with the RAModel reference model for reference
architectures [76]. We start from an information source inves-
tigation step, then we continue with an architectural analysis
and synthesis and conclude with an architectural evaluation.

In the first step, we investigate possible sources of func-
tional requirements for assistive systems which use models
at runtime; this is followed by collecting and analyzing
requirements from these sources. In a second step, based on
these functional requirements, we define a set of necessary
components and their connections that form a proposed ref-
erence architecture. Finally, we analyze the presence of these
components in two existing assistive systems from different
domains, namely a system to support elderly people in their
domestic environment [72] and a system to handle digital
twins of production systems [26]. The first system relies on
models at runtime in all its components; the second system
uses generative aspects to create large parts of the applica-

@ Springer

tion as well as models at runtime. In detail, our main research
contributions are:

— An analysis of what aspects are the foundation for
assistive systems using models at runtime and a set of
functional requirements for such systems

— A reference architecture with 16 components derived
from these requirements

— Two different ways of using the reference architecture,
namely (1) for analyzing existing architectures which we
show in two case studies, and (2) for creating new archi-
tectures, which we show in one example

— Guidelines and best practices for applying the proposed
reference architecture and the methods in real-world sce-
narios

Outline. Section2 lies down the foundations for our
approach. Section3 analyzes functional requirements for
assistive systems, which use models at runtime. Section4
presents the reference architecture, which includes compo-
nents related to these requirements. Section5 analyzes two
existing assistive systems in terms of compliance with the
proposed reference architecture. Section 6 discusses related
work, and Sect.7 discussed guidelines for using the refer-
ence architecture, limitations of our approach, and relevant
non-functional requirements. The last section concludes this

paper.

2 Foundation

This section describes the foundations: (1) for the effort-
reducing features forming the presented approach, namely
reference architectures and using models at runtime, (2) for
the target systems, namely assistive and context-aware sys-
tems.

2.1 Reference architectures

There are several definitions of reference architecture in the
existing body of literature. Bass et al. [12] provided a def-
inition that is based on the concept of a reference model
specified as “a division of functionality together with data
flow between the pieces [...] a standard decomposition of a
known problem into parts that cooperatively solve the prob-
lem.”. A reference architecture is then defined as “areference
model mapped onto software elements (that cooperatively
implement the functionality defined in the reference model)
and the data flows between them”. We use the above defi-
nition while concretizing software elements as components
and interfaces.

Nakagawa et al. [76] established a reference model for
reference architectures (RAModel) defining the following

A model-based reference architecture for complex assistive systems and its application 1249

sets of elements to be implemented by such architectures:
(1) domain: the elements of the problem domain (concepts,
constraints, quality attributes, etc.) reflected in the reference
architecture; (2) application: the scope and the functional
requirements of the applications to be built based on this
architecture; (3) infrastructure: software elements that could
be used to build applications based on the reference architec-
ture; (4) crosscutting elements such as architectural decisions
or rules that are spread across the other elements.

The existing body of literature also contains several def-
initions for the process of building reference architectures.
We follow the ProSA-RA process by Nakagawa et al. [75]
containing the steps of information source investigation,
architectural analysis and synthesis, and architectural evalu-
ation.

We align our proposed reference architecture with
RAModel and ProSA-RA process as follows: (1) we define
the domain concepts related to assistive systems and context-
awareness (domain set) further in this section (information
source investigation step); (2) we specify the requirements
to the assistive systems (application set) in the next section
(architectural analysis step); (3) we specify the implemen-
tation components, interfaces, and their connections (infras-
tructure set) in Sect. 4 (architectural synthesis step); (4) we do
not consider crosscutting elements; (5) we validate our ref-
erence architecture in Sect.5 (architectural evaluation step).

2.2 Using models at runtime

Model-based software engineering (MBSE) considers using
models and model transformations as the fundamental ele-
ments of software development. Here we restrict ourselves
to consider the class of such systems that use models at
runtime (models @run.time [17]), which means that the mod-
els expressed in some structured format are loaded into the
running instances of the applications within the system to
drive their execution. Note that introducing such a restric-
tion means that we are not going to address MBSE activities
related to other phases of the software development lifecycle
such as dealing with models at design or development time.
Models at runtime approaches allow for change of these mod-
els during system execution. This property allows us to cope
with the change of a system and context information captured
as data. Moreover, it allows for dynamic adaption as systems
can modify their behavior based on information provided by
models.

Figure 1 shows a minimal set of components (a frag-
ment of a reference architecture) for a system that handles
models at runtime. In this, we follow Mayr et al. [63, 64]
which introduced a set of common components (positioned
as architectural patterns) for such systems. Relevant compo-
nents include (a) a model storage that permanently stores the
models, (b) a model handler that parses and interprets the

Model
Handler

!

<—>=4—>

Data to Model
Transformer

Modeling
Tool

Model Storage

Fig. 1 Basic reference architecture for model-based systems

models obtained from storage prior to using them to con-
trol system functions at runtime, (c) a modeling tool that
allows the modeler to create and manage models using some
visual notation and transfer them to the running system, (d)
(optional) a data to model transformer, which derives models
from data.

In practice, model-based systems that handle models at
runtime would include even more components, e.g., ABmann
et al. [8] propose a more complex reference architecture for
the systems that use models at runtime including an analyzer,
reasoner, monitor, and concrete modeling languages, e.g., to
express goals as data flow in the reasoner. They define a
managed system to be monitored and controlled, whereas
this could be a human, a system, or a cyber-physical system
(CPS) for assistive systems.

Assistive systems widely use models at runtime to provide
assistance, such systems can be positioned as model-based
assistive systems. Bencomo, Goétz, and Song [14] have iden-
tified types of models for assistive systems using models at
runtime. This includes, e.g., structure models for the system
constituents and their states, behavior models defining what
the system can or will do based on its current state, or goal
models used to identify a current state and if certain goals
are fulfilled or not.

Models at runtime can be integrated into assistive systems
in various ways. Szvetits and Zdun [93] provide a comprehen-
sive overview of which models can be used during runtime
and for which purposes. For assistive systems, we can dis-
tinguish between the main perspective one has for defining
these models: Are they describing humans in the real world
(which then reflect in functionality of a system), or are the
models describing mainly the system and its properties. To
give some examples:

1. Process models could be used to describe the behavior of
humans to be supported [67]. These descriptions could be
used during the runtime of the assistive system to describe
the support steps a system should provide. To use behav-
ior models as runtime models is especially interesting, as
human behavior might change over time and we require
an assistive system to adapt to this behavior.

2. Goal models could be used to describe wished system
states one might want to reach. This is similar to agent-

@ Springer

1250

J. Michael, V. A. Shekhovtsov

based systems which use goals to define what an agent
should pursue [97]. Within assistive systems, such goals
can be shown to human users as options they have in
using the system [70]. When selecting a certain goal, an
assistive system could use reasoning functionalities to
detect how to reach that goal and provide human users
with support.

3. Eventlanguages allow, e.g., to describe events that occur
in a system together with actions on how to react to an
event [15]. Such approaches could also be applied to
assistive systems during runtime where events refer to
observable human behavior and the actions describe how
an assistive system should react to them.

4. Context models include contextual information, e.g.,
about the environment of a person in assistive systems,
spatial relations, or personal and social details [71]. By
having this information explicitly modeled, an assistive
system can monitor context changes and simplify adap-
tations.

5. Using Graphical User Interface (GUI) models during
runtime allows for flexibility and adaption [16]. This
property is interesting for assistive systems that require
changing the workflow of a system dependent on user
interactions.

6. Some Architecture Description Languages (ADLs) allow
integrating behavior descriptions of specific system com-
ponents, e.g., automata or state charts [83]. Those
behavior models can be used to check if the running assis-
tive system really refers to the planned system design,
e.g., by monitoring and translating observed events in
the running systems into an architecture model reflect-
ing the running system [36] and compare this with the
planned one. Moreover, developers could analyze prob-
lems in the assistive system by creating log trace models
based on the information received or sent from architec-
tural components [49].

Clearly, what types of models are integrated during run-
time have an influence on what specific components and
subcomponents are needed. Thus, approaches using mod-
els at runtime might differ in their concrete implementation
but can share common constructs (see Fig. 1).

2.3 Context-awareness

Context-aware systems [27] use context to provide rele-
vant information and/or services to the user. This relevancy
depends on the user’s task. Such context-aware systems have
to provide means to handle different kinds of context in rela-
tion to human tasks. Following [81], there exist four phases
in a context life-cycle for context-aware systems:

@ Springer

Sensors/Devices Virtual Source
Q= 0 [

Context
Acquisition

Context Aware
Service

Execution

Context Data
Context Data

Context Context Data gy Context Data

Dissemination ——
Data and
Knowledge Base

Context
Modeling

Knowledge[‘ Context Data

Models

Context
Reasoning

Fig.2 Reference architecture for context-aware systems

1. Context Acquisition: Sensing and capturing heteroge-
neous context information provided by physical sen-
sors/devices and virtual sources;

2. Context Modeling: Extracting and maintaining the con-
text of interest as models and classifying context entities
and relationships between these entities;

3. Context Reasoning: Deducing new knowledge based on
available context;

4. Context Dissemination: Distributing context information
to the consuming context-aware services and triggering
actions based on the context.

Figure 2 represents the main components, which are
needed to allow these phases. We consider a data and knowl-
edge base as the main component for the storage of related
data. Another option would be not to use a database but pass
on the data between acquisition and modeling directly, pass
on models and context data from the context modeling to
the context reasoning component, and pass on the enriched
context data to the context dissemination component. This
context dissemination could deliver context information by
allowing the context-aware service to query for relevant
information or using a publish-subscribe mechanism.

Model-based assistive systems need to be context-aware,
as changes in the context might lead to different support
solutions in reasoning processes [2]. MBSE for context-
aware systems needs approaches for context modeling [71]
to include all relevant information in addition to human
behavior. Such context information provides additional infor-
mation used for support, e.g., in which room a person is,
handicaps, or functionalities a device provides.

2.4 Assistive systems

An assistive system is a software system that “(1) pro-
vides situational support for human behavior, (2) based on

A model-based reference architecture for complex assistive systems and its application 1251

1= Step-by-step
(:) 20 (¢
f Assisted \ 3== Support (‘

Person(s)

8 &
p)

an L.
s
= Suppart Devices
b

»9 @@ T @ Applicatlion
S
2 @/ I

- e

@

—_—

d

_J @)

Storage

&

[

Fig.3 Reference architecture for assistive systems

information from previously stored and real-time monitored
structural context and behavior data, (3) at the time the per-
son needs or asks for it” [45]. Situational support requires
knowing the relevant current state of the person and its’ con-
text. Providing good support requires some adaptability of
the provided support to fit specific user needs. These user
needs are either known by the system and previously stored
[71] or the user has to interact with the system and provide
this information. This interaction can also be used to tell the
assistive system that support is needed. Providing support at
the time the person needs it is more complex as it requires
knowledge about when to support a person based on her or
his behavior or context changes.

Assistive systems should not be confused with the term
“assistive technologies” [43], which describes devices for
people with disabilities, which can be physical devices as
well as software or cyber-physical devices. They are provided
to specific user groups with mental, physical, or age-related
disabilities. In contrast, assistive systems provide support
functionalities to any user who is interested in being assisted.

Figure 3 shows the generic reference architecture for such
domain-independent assistive systems. In this picture, red
arrows reflect the sequence of steps in a process of assisting
the users by means of the system, black arrows indicate the
direction of the data exchange between the components, and
the steps themselves are indicated by the numbers in circles.

In the first step, the behavior is monitored (1) using sen-
sors [58] and the context of assisted persons [71]. This
behavior is then handled (2) in the main application of an
assistive system. In particular, the main application stores
(3) both behavior and data. The storage could be either a sin-
gle database or a set of e.g., relational databases, time-series
databases for sensor data, or triple stores for ontologies. In
the next step, (4) the application searches for known behavior
and data in the storage and transforms it into knowledge about
possible assistive actions. This can involve reasoning mecha-
nisms [2]. When a person asks for assistance, the application,
based on the possessed knowledge, uses (5) multimodal sup-

port and smart digital assistance devices [24] to provide (6)
step-by-step support.

We use the reference architectures from Figs.1, 2 and
3 as fundamentals for defining requirements and a refer-
ence architecture for model-based context-aware assistive
systems.

3 Analyzing requirements for assistive
systems

To be able to create an assistive system that uses models
at runtime, we need to identify the main functional require-
ments for assistive, context-aware, and model-based systems.
For a discussion of relevant non-functional requirements, we
refer the reader to Sect.7.4.

3.1 Functional requirements

To derive the functional requirements, we start with the
definition of assistive systems from [45], presented in the
previous section. Based on the three parts of this defi-
nition (situational support part, structure/behavior context
part, and on-time part), we could identify the first set of
requirements (see Table 1). An assistive system should
enable system-to-person communication (R1), e.g., by pro-
viding step-by-step information, managing stored context
and behavior data (R2), monitoring the person and her con-
text (R3), e.g., via sensors and sensor middleware, enabling
the interactive person-to-system communication (R4) and
detecting an assistive need (R5), e.g., by identifying disori-
enting behavior or context changes.

Based on the above definition of assistive systems, it
becomes clear that such a system needs to be aware of its con-
text and could be, thus, called a context-aware system. Fol-
lowing [27], there exist three important context-awareness
activities: (1) presentation of information and services to a
user, (2) automatic execution of a service and (3) tagging of
context to information for later retrieval. These three aspects
result in further requirements (see Table 2). Regarding these
activities, an assistive system should provide ways to present
information (R6), e.g., in a GUI, give acoustic support, by
vibrations, present services (R7), e.g., to choose between
different support modes, allows the automatic execution of
services or on devices (R8), e.g., to open the blinds or switch
off a device, and to handle the previous context used for later
support (R9). As we consider context as a part of our data,
the concrete technique of we are tagging context to informa-
tion (activity 3) is not needed. However, an assistive system
should be able to handle the previous context.

As stated in Sect. 2, there exist four phases of a context
life-cycle for context-aware systems [81], which are reflected
in several requirements (see Table 3): For (1) Context Acqui-

@ Springer

1252

J. Michael, V. A. Shekhovtsov

Table 1 Requirements based on

the definition of an assistive Req. num. Requirement definition Assistive system definition
system (see [45]) R1 Enable system-to-person communication Situation. support (1)
R2 Manage stored context & Behavior data Structure/behavior context (2)
R3 Monitor the person and her context
R4 Enable person-to-system interaction On-time (3)
RS Detect the assistive need

Table 2 Requirements based on activities of context-aware systems

Req. num. Requirement definition Activity

R6 Present information Presentation (1)
R7 Present services

R8 Allow automatic execution Automation (2)
R9 Handle previous context Tagging (3)

sition, we have identified R3 to monitor the person and her
context via sensors, sensor middleware, devices, and virtual
sources, e.g., monitor if somebody clicks on a button. For
(2) Context Modeling, we have identified the need to create
new models (R10), to merge new context data with existing
information (R11), and to handle runtime models (R12), e.g.,
by workflow-, process-, or own engines or interpreters. For
(3) Context Reasoning, we have identified the need to reason
about models and make predictions (R13) which includes
context preprocessing, sensor data fusion, and context infer-
ence. For (4) Context Dissemination, we have identified the
need for interfaces between components storing data and
services using context information (R14), the automatic exe-
cution of some components or services (R8), and the ability
to control actuators (R15).

ABmann et al. [8] propose a reference architecture for
systems using models at runtime. This is reflected in the fol-
lowing requirements (see Table 4): The base layer includes
models of the managed system which requires the ability
to create, read, update, and delete models (R16), to have
facilities to store and load models (R17), and to transform
data from the monitored system into models (R18). The con-
figuration management layer includes a reasoner (R13) to
create a reconfiguration plan, needs to analyze runtime mod-
els and compare them with existing goals (R19), and a learner
who updates models (R16) based on context data, and learns
models by analyzing reasoning plans (R20). The goal man-
agement layer requires the handling of goals (R21).

3.2 Mapping of functional requirements
In the next step, we have taken the functional requirements

and grouped them into logical entities. Together with our own
knowledge of the engineering of assistive systems, we have

@ Springer

defined a set of general components that are able to handle
the needed functionality. Table 5 presents an overview of the
different requirements in column one. Column two indicates
where the requirement originated from (A for the assistive
system in Sect. 2.4, C for context-awareness in Sect. 2.3, and
M for models at runtime in Sect. 2.2). The next columns show
from 1 to 16 in which component the requirement should be
handled.

As we rely on multiple sources while deriving the require-
ments, some of the requirements are overlapping. In partic-
ular, R1 and R4 overlap with R6 and R7, R10 overlap with
R16, and R12 overlap with R13 and R19. However, we do
not consider this as a problem as they are treated individually
when mapping them to components.

To improve this categorization, we have revised our initial
mapping after (1) completing the detailed description of each
component and (2) a basic implementation of the components
for an example project. The changes are highlighted in red
(deleted mapping) and green (added mapping) in Table 5.

4 Components of assistive systems

We have identified 16 important components for assistive
systems that can be used (1) to evaluate an existing archi-
tecture for possible missing aspects and (2) to implement
a new assistive system. Figure4 shows the detailed ver-
sion of an abstract and domain-independent assistive system
architecture, which includes all 16 components. The reason
why some of them are optional is discussed in Sect.4.1. In
Sect. 4.2, we discuss a method of how these components can
be used in practice to support the engineering of assistive
systems.

The components and their communication are modeled
as a component-connector model using a variant of the
architecture description language MontiArc [42]. The boxes
represent components, and each component can include
several subcomponents of the same type in the technical real-
ization of the architecture. The possible behavior of each
component can be found in the detailed explanation of the
functionalities of each component. Each arrow represents
connectors between components leading from an input to
an output port. On each connector, possible port types are

A model-based reference architecture for complex assistive systems and its application 1253

Table 3 Requirements

reflecting the context lifecycle Req. num. Requirement definition Lifecycle phase

phases R3 Monitor the person and her context Context acquisition (1)
R10 Create new models Context modeling (2)
R11 Merge new and existing context data
R12 Handle runtime models
RI13 Reason about models Context reasoning (3)
R14 Provide interfaces between context storage and usage Context dissemination (4)
R8 Allow automatic execution
R15 Control actuators

I:;;it?ngl?;ﬁzigegzing Req. num. Requirement definition Layer

models at runtime R16 Create, read, update, delete models Base layer
R17 Store and load models
R18 Transform data into models
R13 Reason about models Configuration management layer
R19 Analyze runtime models
R20 Learn models
R21 Handle goals Goal management layer

Table 5 Mapping from functional requirements to components showing the origin of the requirement (A for assistive system, C for context-

awareness, M for models at runtime)

R1 enable system-to-person communication

R2 manage stored context & behavior data

R3 monitor the person and her context

R4 enable person-to-system interaction

R5 detect the assistive need

R6 present information

R7 present services

R8 allow automatic execution

R9 handle previous context

R10 create new models

R11 merge new and existing context data

OOOOOOO>>“::>)>

R12 handle runtime models

R13 reason about models

o
=

R14 provide interfaces between context storage and usage

R15 control actuators

R16 create, read, update, delete models

R17 store and load models

R18 transform data into models

R19 analyze runtime models

R20 learn models

ZZN=ZZZE=Z0|0

R21 handle goals

described; however, on this reference architecture level, they
are underspecified and need to be refined in the concrete
technical realization, e.g., when the concrete language for
models at runtime was chosen, or concrete sensors, actuators
or support devices were specified. For better readability, we
have chosen a combined representation for connectors in both
directions between two components. Moreover, we addition-

ally represent the connection between the users/context and
the system with arrows, as we consider this as important. As
this connection happens outside the software system border,
the data flow between the human/context and the assistive
system is modeled using different types of arrows.

We use the following structure to discuss each component
in detail:

@ Springer

1254

J. Michael, V. A. Shekhovtsov

1 — ((‘ ’@ Support Devices Eﬂ Actuators

§= step-by-step support " 45 {é} @N
DT TCTTTTCTICTTITECCCIZZZI AN -2 2N Y (o9 NG
11 services ! C10 I
IV~ Interaction Service Information
1 data flow between =~ " T "~ [] - : q Controller

> Manager services | Presentation Presentation =
11 human & system I . N
1 | models, next step data, support possible services | tailored
selection, data 1 da request, service selection support data commands
Assisted . — = = — = = =]

support

Person(s)

component

ta
C6 Model Stoaat/l;s’
Handler

Reasoning []

ata,
errors

I observation

1 b
models, current data, Step, list of steps support connected actuators
;j goal, state, activity Imoa{els no support needed data, data actuator language,
{ T L f success/errors

Storage Manager
1

model admin. commands,

é

aggregated

sensor data,

@ activities
. Data (Pre-) [
processor
output]
t sensor data,
por activities

(9 {]
r Data to Model [
directed connector < Transforme

Context

sensor data,
models

input port

((

Data
Storage

combined representation of connectors
with an input and output port

language information,
daéa,/ models, model changes
models
= T Model @
—] current Administration
Model configuration,
Storage admin. commands,

data

. System @

Administration

. Communication
Interface @

data, models

Fig.4 Assistive system reference architecture represented with the MontiArc component-connector architecture description language

1. Requirements for assistive systems: which requirements
are related to this component and why.

2. Input: which data should be handled as input to this com-
ponent coming from which other components (incoming
arrows for a component in Fig. 4).

3. Functionalities: what are the methods this component
should provide (describing the component behavior).

4. Output: which data results from this component and is
handed over to which other components (outgoing arrows
for a component in Fig. 4).

5. (optional) Example: comparison of the functionality
with existing systems or architectural concepts.

C1 - Monitoring component(s)

Requirements: Monitoring components fulfill a require-
ment to provide functionality for monitoring a person (R3)
to ensure that all relevant data is included in the assistive
system.

Input: These components receive status changes or more
complex behavior from a human, machine, or software.
Functionalities: They are used to monitor the person and
her context. Typically, there exist several monitoring compo-
nents with different functionalities on different devices. The
purpose of these devices is to sense the human-in-the-loop,
relevant objects, and the environment.

Output: The output is raw sensor data, which is stored after
pre-processing (C2) or transformed into models (C5).

@ Springer

Example: Typical examples for monitoring are sensors, sen-
sor middleware, devices, and virtual sources such as screen
tracking on a PC, and behavior tracking on smartwatches
or smartphones. Other examples are, e.g., systems to detect
human steps [54]. Another option is video-based monitoring
systems, which are technically possible but not really wanted
by observed persons, especially in their private homes [7].

C2 - Data (pre-)processing component(s) (opt.)

Requirements: The data processing and preprocessing
component is needed to handle data from the monitoring
devices and prepare it in the needed quality. It fulfills the
requirements to merge new and existing context data (R11)
and to handle the previous context (R9).

Input: It gets input from sensors, which is a (raw) sen-
sor data point or sensor data stream or it gets its input from
an external “black box™ activity recognition system that has
already preprocessed the data to activities and (filtered) sen-
sor data. Note that C2 itself can be implemented as a (“white
box”) activity recognition system, see the Example section.

Functionalities: Data (pre-)processing component(s) aim
either to pre-process raw data from the monitoring compo-
nent(s) (C1) or to prepare data for the model handler to get
more complex representations and aggregated data. It stores
aggregated data via the storage manager (C4).

Output: The output is aggregated sensor data and a set
of activities getting stored in the storage (C3) via the storage

A model-based reference architecture for complex assistive systems and its application 1255

manager (C4). If a data-to-model transformer (C5) exists, it
could also send it this set of activities and its sensor data.

Example: An example of the preprocessing system (C2) is
an activity recognition system, which transforms raw sensor
data (events) into more complex activities [23]. In this case, it
is supposed to be implemented as a part of the solution (i.e., as
a “white box” system). Another example could be a system
that takes camera pictures as input from a camera (C1), it
detects falls of patients [103], and provides the information
if a fall happened or not to the storage manager (C4).

C3 - Storage

Requirements: This component fulfills requirements to
manage stored context and behavior data (instances) (R2)
and to store and load models (R17).

Input: Both input and output of this component are served
by the storage manager (C4) which hides the specifics of
storage implementation from the rest of the system. As input
for the storage component, the storage manager provides the
structural context and behavior data, in particular, the data
from sensors, together with models or documents for visu-
alization of assistive steps, all this data can be stored by the
storage component. The storage manager also provides com-
mands to retrieve the data.

Functionalities: The storage needs to provide CRUD
functionality via interfaces. For the different types of data
that are relevant as input, it might be reasonable to have dif-
ferent types of database systems, when necessary even in
parallel.

Output: As mentioned, the storage component is accessed
via the storage manager (C4), which provides commands to
retrieve the data and models from the storage. As a response,
the storage component provides the requested data as its out-
put to the storage manager.

Example: We can use, e.g., relational databases to store
structural data, document stores for, e.g., models or JSON
files, or triple-stores to handle the data as subject-predicate-
object data entities.

C4 - Storage Manager

Requirements: The storage manager fulfills requirements
to provide interfaces between context storage and usage
(R14) and to provide functionality to store and load mod-
els (R17).

Input: As the storage manager is the central component
for creating, accessing, updating, and deleting data, it can
get context information, process information, and model data
from different components using data and models (C2, C5-
C8, C12, C14-C16) to send to the storage component (C3). It
also gets requests to retrieve data from the above components
and gets the requested information back from the storage
component (C3).

Functionalities: If various databases are used in an
assistive system, an abstraction between the data and the

application is needed. This storage manager is an abstraction
layer between requests from components using data and mod-
els (C2, C5-C8, C14-C16) and components storing data and
models (C3). For components using data and models exists
only one component to contact. Their requests are then trans-
formed into specific requests for the connected database(s).

QOutput: The storage manager provides interfaces to
access data and model information covering structural con-
text and process information. By means of these interfaces,
it provides the context information, process information, and
model data to store in the storage component (C3). It also
sends requests to retrieve data to the storage component and
provides the requested information to the different compo-
nents using data and models (C2, C5-C8, C12, C14-C16).

Example: If we are working with technologies such as
Hibernate, the storage manager includes, e.g., various data
access object classes and the infrastructure to access the
database.

C5 - Data-to-Model Transformer (opt.)

Requirements: The data-to-model transformer aims to
synthesize models from existing data. It fulfills the require-
ments to create new models (R10) and to transform data into
models (R18).

Input: This component can receive different kinds of
input: (1) (Raw) sensor data points or a sensor data stream
from one or more sensors (C1), (2) activities and sensor data
from activity recognition systems (C2), (3) event logs from
third-party systems via the communication interface (C16)
to the storage manager (C4), and (4) one or more existing
models via the storage manager (C4).

Functionalities: In a learning assistive system, structure,
and behavior models could be automatically extracted from
data. This component can also use data to add variants in
existing models, e.g., process models, or update existing
models.

Qutput: Models and the data used to create these models
for reproducibility to be stored in the storage (C3) via the
storage manager (C4).

Example: Process discovery algorithms from process
mining could take raw data described in event logs and trans-
form it into process models, e.g., [18] shows an approach to
use such algorithms in a (semi-) automated transformation
chain to derive digital twin cockpits from sensor data.

C6 - Model Handler

Requirements: The model handler satisfies the require-
ments to handle runtime models (R12) and to analyze runtime
models (R19), e.g., by comparing a currently detected activ-
ity with existing processes.

Input: In order to use models at runtime, components such
as the model handler are needed to process these models.
These could be models from different modeling languages
and directions, e.g., workflows, events, states, or goals. Fur-

@ Springer

1256

J. Michael, V. A. Shekhovtsov

ther input from the storage manager (C4) is certain aspects
of these models, e.g., the current goal, state, or activity, and
from the reasoning component (C7) updates on models and
data based on reasoning results.

Functionalities: The main functionality of the model han-
dler is to orchestrate and manage instances from our models
at runtime, e.g., run goal or process instances, add a current
action to a model instance, or create a new model instance if
a new model at runtime has started, and compare a current
goal, state, or activity of the object/subject to be observed
with existing model information. The result of this compar-
ison can be passed on to the reasoning component (C7) or
the component can already provide new goals to reach for
reasoning if anomalies were detected in the comparison.

Output: The model handler provides either status infor-
mation or new goals to reach the reasoning component (C7).

Example: A part of the model handler component could
be, e.g., process engines, model interpreters, analyzers, or
evaluators.

C7 - Reasoning component(s)

Requirements: The reasoning components form the core
intelligence of assistive systems and, thus, fulfill require-
ments to detect the assistive need (R5), to reason about
models (R13), to learn models (R20) and to handle goals
(R21).

Input: Such a component gets either (a) a goal, or (b) a
problem from the model handler (C6), (a) high-level informa-
tion about the next steps, (b) triggering support, (c) selections
of services from the interaction manager (C11), or data and
models via the storage manager (C4).

Functionalities: The reasoning component gets (a) a goal
and finds a solution to reach that goal, or gets (b) a problem
and finds the best solution for this problem. In both versions,
it is possible to deduce new knowledge, e.g., add new cases
to a case base. Depending on the level of support, finding the
solution can be a simpler approach or a more intelligent one
where old solutions were taken into account such as case-
based reasoning. Moreover, this component should cover the
detection of the assistive need. This requires reason about
context information, e.g., about the current stress level or
preferences of users when they want to be supported, and
provides the decision to the support component.

Output: The outputs are (1) a possible next step for
assistance, (2) several steps, or (3) the information that no
support is currently needed. This information is handed over
to the support component (C8). The interaction manager
(C11) might influence the reasoning process by allowing
the assisted person to select support solutions if several are
provided. Moreover, the reasoning component can request
updates on the current goals from the model handler (C6)
and provide information about possible next steps. Reason-

@ Springer

ing data and models can be stored via the storage manager
(C4).

Example: The reasoning components may provide the
next step for support after they have checked if all resources
needed to do that step are present in the context information.

C8 - Support components

Requirements: The support components fulfill a require-
ment to enable system-to-person communication (R1) by
providing relevant support information.

Input: As input, they get the results from the reasoning
component (C7), and additional support information via the
storage manager (C4) from the database.

Functionalities: Support components collect all relevant
information needed to provide human behavior support in a
way that users will be able to understand. They provide the
needed support information to the information representation
component (C9) of the support devices, which requires tailor-
ing the information for different devices, e.g., specific screen
sizes or acoustic vs. textual representations, and providing
default presentations. Moreover, these components can pre-
pare information for diverse users and their specific needs.
Additionally, they provide services to the service presenta-
tion component (C10). This requires them to know which
services are available for end users and how they can react
to them.

Output: They hand on different kinds of information
packages for individual support steps tailored for specific
devices (C9) or possible services (C10) the user could choose
from. For automated support, support information is sent to
the automatic execution components (C12). All this data can
be stored via the storage manager (C4) in the database to
keep the support history.

Example: In a client-server architecture, the support
components would be implemented as server-side compo-
nents which, e.g., add additional pictures or audio files to sup-
port steps or create full support sentences from given phrases
and used resources. Moreover, they can provide services to
support adaptability to meet diverse end-user needs [40].

C9 - Information Presentation

Requirements: These components are implemented by
different kinds of devices and fulfill a requirement to present
information (R6).

Input: They get support information tailored for specific
devices from the support component (C8).

Functionalities: They display tailored support informa-
tion for the users to be assisted. This presentation could be,
e.g., a graphical user interface, an acoustic way of informa-
tion presentation, or a multi-modal representation of support
information.

Output: Information for step-by-step-support is pre-
sented to the supported user via different user interfaces.

A model-based reference architecture for complex assistive systems and its application

1257

Example: In a production process, support information
could be displayed on a tablet as text and pictures, in a smart
glass as short text, or in more silent areas of a factory as
acoustic information.

C10 - Service Presentation (opt.)

Requirements: These components fulfill a requirement
to present services (R7).

Input: Information about what services to present to the
user is provided by the support component (C8). This list of
services might be updated by the interaction manager (C11).

Functionalities: If the user should be able to trigger cer-
tain functionalities via the assistive system, it needs to show
her a set of services, e.g., callable methods or execution
functionalities, and allow for selection. Another provided
functionality could be to enable the users to add additional
information that was not detected by the monitoring system
or provide corrections if something was wrongly detected.

Output: A list or more detailed representation of possible
services is provided for the supported person and the inter-
action manager (C11).

Example: Such services could, e.g., control the blinds in
a smart home, change some machine settings in a production
environment, or control certain settings of a car entertainment
system.

C11 - Interaction Manager

Requirements: The interaction manager fulfills the require-
ment to enable person-to-system interaction (R4).

Input: This component allows communication from the
assisted person to the system. Thus, the input can be (a) infor-
mation about the behavior such as selections of several next
possible steps provided, or (b) information from services a
user provides the system in a direct way, e.g., model changes,
or preferences. Moreover, it is informed about the list of ser-
vices by the service presentation component (C10).

Functionalities: The interaction manager takes the user
input and redirects it to the relevant places, e.g., the reason-
ing (C7) or the storage manager component (C4). Adjusted
models need to be communicated back to the storage man-
ager (C4). Choosing the next steps or triggering support is
important information for the reasoning component (C7).
The service presentation component (C10) needs to know
about services that are not selectable after a certain decision
was made by the user, already selected options might not
be provided again or need to be changed e.g., if the service
"close the blind" was selected, the available services have
to change to "open the blind". However, this information is
not directly provided to C10 or C8 but indirectly via the rea-
soning component (C7) which decides regularly again which
services to show or which options a user could select from
in the next steps. The returned selection to the interaction
manager (C11) could also affect possible next support steps
as the assistive system might provide the service to learn

new preferences or selections from the user which affects
the decisions in the reasoning component (C7).

QOutput: (a) high-level information about the next steps to
(C7), (b) triggering support in (C7) via support requests, (c)
selections in services to the reasoning component (C7) and
the service presentation (C10), and (d) model changes and
data provided by users to the storage manager (C4).

Example: The supported person can choose between dif-
ferent options for the next steps, adjust models used for
reasoning, or she can trigger support.

C12 - Automatic execution components (opt.)

Requirements: These components fulfill a requirement to
allow automatic execution of commands (R8) on actuators.

Input: Possible input is (a) knowledge about connected
actuators, (b) knowledge about the language by means of
which the actuators could be controlled from the storage man-
ager (C4), and (c) support information from the reasoning
component (C7) via the support component (C8).

Functionalities: In assistive systems with full automa-
tion, the support component (C8) sends support information
that triggers actions for actuation in this component. The
automatic execution components create the right commands
in the correct language to control each relevant actuator indi-
vidually. Moreover, they communicate possible errors back
to the assistive system and user via the support (C8) and
information (C9) components.

Output: On success: a set of commands for controlling
actuators (C13) and their success to the storage manager (C4).
On error: error information to be sent to the support (C8),
information presentation component (C9), and the storage
manager (C4) for keeping historic information.

Example: In a smart home, we can send commands via
MQTT to open or close the blinds. More complex use cases
and IoT devices might require more complex components
and connections, e.g., via generated connections [50] and
IoT app stores [20].

C13 - Controller (opt.)

Requirements: The controller components fulfills a
requirement to control actuators (R15).

Input: They get the commands from the execution com-
ponent (C12) as input.

Functionalities: In assistive systems which should directly
execute the support on actuators, these components perform
specific tasks to control actuators, based on commands from
the execution component (C12).

Output: Results of task execution, e.g., switching some-
thing on and off, moving something, or changing values. The
effects of these changes might be sensed by monitoring com-
ponents (C1).

Example: Actuators are cyber-physical objects that can
be controlled by running commands on their software parts,

@ Springer

1258

J. Michael, V. A. Shekhovtsov

e.g., to switch a smart light bulb on or off, to open a window
blind, or to set an alarm.

C14 - Model Administration

Requirements: The model administration component ful-
fills requirements to create new models (R10) and to create,
read, update, and delete models (R16).

Input: Possible user inputs are (a) language commands
for model administration (creating, updating, and deleting of
models), and (b) information about the necessary language
- for a modeling tool based on this language. If the model
administration component is a low-code tool enabling mod-
eling on a higher level of abstraction, it could get graphical
user input and commands for model administration. It also
gets input from the storage manager (C4) consisting of (c¢)
the information about the already deployed models and (d)
model changes.

Functionalities: It supports model administration of an
assistive system (not only during the runtime of a model),
namely creating, updating, and deleting of models by means
of (a) amodeling tool based on language, either with a graph-
ical or textual interface, (b) a low-code tool which allows
creating, updating, and deleting model information without
providing too many details of the used modeling languages.
This tool exists on a higher level of abstraction, being feasi-
ble for domain experts without formal software engineering
training. Moreover, it includes (c) a component to handle
model updates. Such a model update could be provided as
a service via the service presentation component (C10) to
the user who replies with what he or she wants to change in
a model. This model change is then provided via (C11) to
the storage manager (C4), and provided to the model update
component of (C14) which makes a change in the model. In
this case, no explicit modeling tool would be needed.

Output: Its output is the result of performing model
administration tasks such as changed or created models com-
municated back to the storage manager (C4).

Example: The HBMS Modeling tool [72] is used to man-
age models of human behavior specified in the HCM-L
language. Another option is to provide models on a more
abstract level, e.g., using form-based interfaces in low-code
platforms [25].

C15 - System Administration Component

Requirements: This component fulfills requirements to
present services (R7), to allow automatic execution (R8), and
to handle goals (R21).

Input: Possible inputs are: (a) language commands for
system administration (changing the configuration of the sys-
tem), and the information about the necessary language for
specifying the administration tasks—for a system adminis-
tration component based on language, (b) low-coding user
input for system administration—for a low-coding admin-

@ Springer

istration component, and (c) information about the current
configuration.

Functionalities: This component allows us to configure
the assistive system. This could include, e.g., which services
to provide for users, which degree of support should be pro-
vided, or other technical administration for the components,
models, and data of the assistive system.

Output: Results of performing system administration
tasks such as the set of changes in the configuration of the
assistive system.

Example: An example is the HBMS Administration com-
ponent [72] which is used to specify the configuration of the
HBMS system for the specific environment, e.g., regarding
preferences for different support devices.

C16 - Communication Interface Components (opt.)

Requirements: These components form an interface to
external knowledge sources and, thus, fulfill a requirement
to monitor the person and her context (R3).

Input: Possible input is all external knowledge, e.g.,
from ontologies or third-party systems such as information
systems or physical systems, which is relevant for human
behavior support.

Functionalities: Each interface allows the acquisition of
external knowledge needed for the system. This knowledge
has to be transformed into the data structures to be handled
by the storage manager component (C4).

Output: The updated state of the system via the storage
manager component (C4), taking into account the acquired
knowledge. This can be further handled, e.g., by the reason-
ing component (C7) to learn models.

Example: A component that takes external domain
ontologies specified by means of OWL2 ontology descrip-
tion language and adds the knowledge from these ontologies
to the local knowledge base.

4.1 Assistive system properties affecting decisions
to implement the optional components

Some of the proposed components are optional. Figure 5 pro-
vides an overview. Which components are used depends on
the main properties of the assistive system. We have identi-
fied four different system properties, which influence which
combination of components should be chosen: the way of
data handling, the degree of support, the learning abilities
of the assistive system, and the degree of customizability by
users.

Data handling. If we handle sensor data, this will create
massive amounts of data which will need to be pre-processed.
However, dependent on the abilities of the monitoring com-
ponents (C1), this step might not be necessary if already
only pre-processes data from activity recognition systems is
stored.

A model-based reference architecture for complex assistive systems and its application 1259
FD
Assistive System D
Monitori Storage Model R) s it Information Model System Automatic
ontoring Manager Handler easoning uppo Presentation| | Administration | | Administration Execution
Data (pre-)| | Data-to-model L Interaction Service Actuator
processing| | Transformer Database | | Communication Manager Presentation Controller

‘Mandatory (5 Optional

Fig.5 Feature diagram (FD) representing mandatory and optional components

Degree of support. Assistive systems could provide step-
by-step guidance a person has to follow or provide a higher
degree of automation where changes within the environ-
ment of a person are also executed. Therefore, component(s)
to control actuators (C11) and automatic execution compo-
nent(s) (C12) are optional and only needed in the latter case.

Learning assistive systems. Assistive systems might be
operated with learning and support phases [92]. If they start
with an explicit learning phase, the system learns by creat-
ing models from data, and a component that automatically
transforms data into models (C5) is needed. However, models
might also be created and added manually which would not
stop the assistive system from including learning abilities,
e.g., by comparison of sensed data with information in mod-
els which is done in C6, the reasoning of new knowledge in
C7 based on existing knowledge, and updating or adding new
models using the model administration component (C14).

Degree of customizability. If the assistive system should
be more customizable by the users, presentation of services
(C10) would be needed. The selection of services would
be handled by the interaction manager (C11). Clearly, an
assistive system would also work without it if the selection
possibilities were only restricted to, e.g., a list of possible
next steps.

4.2 Application of the approach

We see two main areas of application for our reference
architecture: analyzing existing architectures and using the
reference architecture as a blueprint for creating a new archi-
tecture.

1. When analyzing existing architectures we aim at finding
gaps in existing architectures to update them to an assis-
tive system covering relevant requirements. Moreover,
it is possible to identify problems in existing architec-
tures, e.g., if functionalities are spread over too many
components, if functionalities are missing, or if compo-
nents are not connected. If components are missing, it
means that certain requirements for assistive systems are

not met. One can even trace back to the requirements
which ones are not fulfilled. E.g., if the Data to Model
Transformer (C5) is missing, one cannot fulfill the trans-
formation of data into models (R18) and one is not able
to fulfill the creation of new models (R10) if the Model
Administration component (C14) is missing. Similarly,
missing connections between components may indicate
that the requirements that are addressed by these connec-
tions are not satisfied. Based on the above, we understand
the compliance to our architecture as the combination of
the structural compliance, i.e., the presence of all required
components, and the communication compliance, i.e.,
the presence of the connections between components.
Compliance is treated as a binary function, thus, either a
component or connection is compliant with the reference
architecture or not.

2. We can use the reference architecture as a blueprint for
creating a new architecture. During the engineering pro-
cess of an assistive system, we can use the reference
architecture to discuss and reflect on the functionality
of each component. By discussing which functional part
an implemented component should cover, it is easier to
reflect if it covers the basic requirements, and planned
connections to other components could be added or
deleted.

Within this paper, we are focusing on the analysis of
existing architectures. We use the following method: For
each component of the architecture under consideration, we
have investigated the existing implementation and identi-
fied to which component in the reference architecture it
corresponds. These findings were mapped to the graphical
representations of the system architecture. For a reflection on
this method and its limitations, we refer the reader to Sect. 7.

5 Analyzing existing assistive systems

To validate our reference architecture, we map it into real sys-
tems, expressing such systems in terms of compliance with

@ Springer

1260

J. Michael, V. A. Shekhovtsov

this architecture (as mentioned above, we understand com-
pliance as the combination of the presence of components,
and the presence of connections between components). In
this section, we describe the results of such mapping for two
existing systems from different domains, namely assistance
for elderly people and assistance for operators in smart man-
ufacturing.

5.1 Assistance for elderly people

Within the Human Behavior Monitoring and Support (HBMS)
project [72], a group of researchers has developed an assis-
tive system to support the elderly in their daily activities in
their private homes.

System architecture. Figure 6 shows the main architec-
ture of the developed system. This architecture is designed to
make it possible for this system to learn the behavioral knowl-
edge of the person when his/her cognitive abilities are intact
and preserve this knowledge by means of domain-specific
modeling language HCM-L [62], so it can be reused when
these abilities begin to decline. The system provides support
in problematic situations (e.g., when the person forgets the
next steps or makes a wrong step in an activity of daily life)
by suggesting the course of actions based on the previous
behavior.

To express the architecture of HBMS in terms of compli-
ance with our reference architecture, for each of its described
components, we show the code of the corresponding com-
ponent of the reference architecture in parentheses; in Fig. 6
they are shown within circles on top of the mapped HBMS
components. For each of the described connections between
components, we show the codes of the components at the
ends of the connection in parenthesis and separate them with
adash: e.g., “(1)-(5)".

The HBMS architecture consists of the following compo-
nents:

1. HBMS Modeling Tool which is used for creating and
maintaining HCM-L models (C14). The communication
between this tool and the HBMS kernel (to be introduced
later) is performed by means of the HBMS model trans-
fer interface (CS). The following connection is present:
(C14)—(C5).

2. HBMS knowledge base that holds both HCM-L models
and behavioral data (C3). After coming from the model
transfer interface, HCM-L models are converted into the
knowledge base format using the HCM-L-OWL Con-
verter (C6). The communication between the knowledge
base and the kernel is performed through the HBMS Data
Management Subsystem (C4); within such subsystem, an
HCM Storage management component specifically han-
dles storing and extracting models (C6).

@ Springer

3. HBMS Observation Interface HBMS-OI obtains the
observed behavioral data from heterogeneous external
human activity recognition systems (HARS) (C2), which,
in turn, collect raw data from sensors, e.g., installed as
part of smart home environments (C1).

4. HBMS Kernel which provides the core functionality of
the system. By itself, it cannot be mapped to our ref-
erence architecture, instead, it contains sub-components
for which such a mapping could be established, namely:

(a) HBMS Observation Engine which obtains the recog-
nition data from the observation interface HBMS-OI
and converts it into the representation suitable for fur-
ther processing (C2), jointly with HBMS-OI and HAR
systems).

(b) HBMS Behavior Engine which matches the arrived
behavior data against the current HCM to indicate
the position in the model corresponding to the cur-
rently performed action, and decide if this action is
correct (C6), jointly with HCM-L-OWL converter and
HCM Model storage); it is also able to predict further
actions based on ontological reasoning [57] (C7).

(c) HBMS Support Engine which controls the activities
of the assisted users through the support client UI
(C8). It converts the match and prediction informa-
tion obtained from the Behavior Engine into support
client Ul commands.

5. Multimodal support client UI, which translates the com-
mands obtained from the Support Engine into visual or
audio cues for the supported person (C9).

6. Integration client UI, which collects behavior data from
persons when their cognitive abilities are intact; it makes
it possible to start and stop collecting activities, to check
if the collected sequence of steps is correct, etc. (C11).

7. Administrator and caregiver UI, which allows the respec-
tive users to issue administrative commands and monitor
the current status of the system (C15).

8. Knowledge acquisition interface connects the system to
the external knowledge sources, e.g., it allows the acqui-
sition of domain ontologies to handle concepts related to
specific domains or specific categories of users (C16).

Compliance with the proposed reference architecture.
Our main findings regarding the compliance of the HBMS
architecture to our proposed reference architecture are as fol-
lows.

1. All 10 mandatory and 3 out of 6 optional components
from the proposed reference architecture are present in
the HBMS architecture. The absence of optional compo-
nents (C10), (C12), and (C13) does not, in our opinion,
disqualify the HBMS system from compliance with the
reference architecture. This absence is related to the

A model-based reference architecture for complex assistive systems and its application

1261

3
°
® S

N

Structural Context

Activity Recognition System /
(C2 Jenvironment Modeling Middleware

a
Smart Home
Environment Behavioral

Context

Interface: ARS
g:“r'lziﬂr <<Data adapt
e L

modeler | ARS Adapter

Q

&

Target
User

@nlegration client | @Support client ﬂ H BMS
AREM-L HBMS-OI
specification Interface: Interface: SyStem
— Integration] Support
o HBMS
o Kernel <<Model <Model <<Model
<>
consumer>> le—p| consumer>> le—> consumer>>
8 | Admin Inter. m:\:':r?\::'» HBMS, HBM.S C8 HBMS - | Interface: g
et client Jfoce: | amin | | Observation Behavior Support i
B @@ Engine Engine Engine P
I @ C7 Caregiver
[S 1
Interface: model handler
e @ HBMS Data Management Subsystem
HBMS
L model adaper>> SEHEM <<Model storage manager>> Interface: |4— %
= ﬁac"ﬁ:L ngt s @ HCM Storage Management Knowledge
- il ek converter External
- =HC5 ? & stored
Modeler ﬁgﬁgm cty%ogﬁng) j v N knowledge
Tool <Model storage>>
g ﬁ'EJMEL HBMS Data @ T
= (OWL/triple store) Qi cazebase

Fig.6 Mapping of the proposed reference architecture into the HBMS system architecture (adapted from [72])

specifics of the support proposed by HBMS (e.g., this
support is not designed to use actuators or automated
tasks).

The mapping of the remaining components is not always
one-to-one:

— the data (pre-)processing component (C2) is mapped

into the external HAR system, its adapter, HBMS-OI

interface, and the HBMS Observation Engine.

The model-handling component (C6) is mapped into

the HCM-L-OWL converter, the model storage com-

ponent of the Data Management Subsystem, and into

the subset of the HBMS Behavior Engine responsible

for handling behavioral models.

the administrator client component (C15) is mapped

into admin and caregiver clients, and the correspond-

ing interfaces;

— both model-handling (C6) and reasoning (C7) com-
ponents are mapped into the HBMS Behavior Engine.

Discovering such mappings could help in indicating
possible design problems. For example, one-to-many
mapping of C6 could indicate the lack of unified model
management implementation in HBMS. On the other
hand, one-to-many mapping of C2 could be justified as
the HBMS system was designed to get the observation

data from heterogeneous HAR systems, so introduc-
ing separated HBMS-OI interface with HAR-specific
adapters allowed for extra flexibility while dealing with
such systems [90].

Communication Compliance. We have checked each
connection between the components in the reference archi-
tecture and their occurrence in the architecture within Fig. 6.
First of all, as several optional components (C10, C12, C13)
are not present, all connections referring to them and from
them are not present as well. Similarly to missing optional
components, this, in our opinion, does not disqualify HBMS
from being compliant. On the other hand, some connections
involving non-optional components, namely C1 to C5, C2
to C5, C4 to and from C8, C4 to and from C14, C6 to and
from C7, C11 to C4 and C11 to C7, are not represented in
the architecture directly. Still, most of these connections can
be followed via other components of the system. For exam-
ple, the connection between C4 (implemented by HBMS
Data Management Subsystem) and C14 (implemented by
the HBMS Modeling Tool) can be followed through C5
(implemented by HCM-L Model Transfer Interface) and C6
(HCM-L-OWL converter). The exception here is the con-
nection from C1 to C5 which is missing from the HBMS
architecture, as the HBMS Modeling Tool does not obtain

@ Springer

1262

J. Michael, V. A. Shekhovtsov

the input from the Smart Home Environment. This indicates
the possible way for the improvement of the architecture.
To sum it up, the analysis of the HBMS system has shown
that all mandatory components and all except one mandatory
connection defined in the proposed reference architecture
occur directly in this system or can be followed through
intermediate components. Thus, we conclude that the real-
life HBMS system complies almost fully with the proposed
reference architecture. This fact of compliance, together with
the fact, that the perceived mapping inconsistencies helped
to identify real design problems in the HBMS system, con-
tribute toward the validation of the proposed architecture.

5.2 Assistance for operators in smart manufacturing

Dalibor et al. [26] use a Model-Driven Software Engineering
(MDSE) approach to create digital twins and their cockpits.
They define a digital twin as "a set of models of the system, a
set of digital shadows and their aggregation and abstraction
collected from a system, and a set of services that allow using
the data and models purposefully with respect to the origi-
nal system" [26]. Those software systems include models,
data, and services to interact with a Cyber-Physical Produc-
tion System (CPPS) for a specific purpose. Such digital twins
might include assistive services to provide support for oper-
ators in production processes, e.g., on the shop floor.

System architecture. Figure7 shows a reference archi-
tecture for such digital twins, which realizes the MAPE-K
feedback loops [5] for self-adaptive systems. The researchers
use a MDSE approach to generate the adaptive look from
UML Class Diagrams (CDs) and MontiArc models [26] and
the visualization backend and frontend from CDs and GUI
models [37]. The architecture consists of the following com-
ponents:

1. The CPPS includes sensors (C1) which detect specific
property changes of the monitored system, e.g., temper-
ature and pressure sensors in various steps of an injection
molding process [15].

2. The Data Lake (C3) includes a set of databases that could
be used as information sources for the assistive system
as well as the visualization.

3. The Data Processor uses data from the data lake and
aggregates the data about the current state of a CPPS (C2)
into a digital shadow, which is "a set of contextual data
traces and/or their aggregation and abstraction collected
concerning a system for a specific purpose with respect
to the original system [15]". This step might also include
the transformation from data into models (C5).

4. The Evaluator (C6) uses this aggregated data and models
to monitor the CPPS state and check if the CPPS operates

@ Springer

asintended. If any anomalies are detected, it creates goals
that specify the intended CPPS state.

5. The Reasoner (C7) finds a solution on how to change
the current state to reach the intended state by using the
given goal.

6. The solution is handed over to the Data Distributor (C4),
which stores relevant data in the Data Lake (C3) and
provides relevant information to the Data Connector of
the visualization part of the digital twin which shows the
solution to an operator so that he can perform it.

7. The solution is also handed over to the Executor (C12),
if a change in the CPPS could be performed automati-
cally. The Executor translates the provided solution into
concrete CPPS settings and performs these using the
components to control actuators (C13) of the CPPS.

8. The solution to be shown to the user is passed on from
the Data Connector (C4) to the Logic Processor (C8),
which requests additional support information from the
Data Lake based on the solution from the reasoner.

9. The Data Aggregator sends commands to the Logic Pro-
cessor and can return aggregated view models which fit
different support devices.

10. The Data Aggregator sends view models to the Frontend
and presents (C9) them to the user. If data is sent from the
Frontend to be stored in the Data Lake the commands are
passed on by the Data Aggregator to the Logic Processor
and Data Connector sends the according queries.

Compliance with the proposed reference architecture.
This mapping has shown which components of the digital
twin can be used to provide assistive functionalities within
a digital twin of a CPPS. However, there are some aspects
missing from the reference architecture to provide full sup-
port.

— The architecture within Fig. 7 provides no detailed infor-
mation about the Frontend components. Whereas the
presented GUI shows selectable services (C10), e.g., to
stop the machine, and ways to interact (C11), there are no
details about these functionalities within the architecture
model. It has to be further defined to describe them.

— The architecture model shows no Model Administration
(C14) or System Administration (C15) component. By
now, administering the models is only possible at design
time and not at runtime. From a software engineering
point of view, those two components would be especially
helpful for the maintenance of the running application
and should be added.

— Providing Interfaces to other data and knowledge sources
(C16) is also relevant for digital twins. However, the pro-
posed architecture does not describe them explicitly but
implicitly, as those knowledge sources are a part of the

A model-based reference architecture for complex assistive systems and its application

1263

Frontend

Digital Twin

Visualization

Goal

Connection
Layer

Data
T Data| Query\, | VW baa| Yawey TN 3 ""C'o,;;a};"';e‘e;b;c}(""":_ """"

[T [H] .1 f_] 5
©
Data -
@ Data Lake@ s
DT-DB DB1 a

-

55

oz3
o

Fig. 7 Mapping of the proposed reference architecture into the digital twin system architecture represented as MontiArc (MA) model (adapted

from [26])

Data Lake. It would be better to describe those interfaces
explicitly in the architecture.

Communication Compliance. We have checked each
connection between the components in the reference archi-
tecture and their occurrence in the architecture within Fig. 7.
As several components do not exist, all connections referring
to them and from them do not exist. Moreover, the Data Dis-
tributor and Data Connector (C4) lacks several connections
to other components, and several connections are not mod-
eled directly but indirectly through other components, e.g.,
C81t0 C9, Cl11 to C4, C5 to C4, or C2 to C4. This shows that
the current approach stores less information that might be rel-
evant for assistive systems and is more restrictive regarding
which components interact. To add assistive functionalities
within this architecture according to our reference architec-
ture, several connections need to be added.

To sum up, the analysis of this system has shown that
several of the components defined in Sect.4 occur in this
system. As it is now, it does not provide all the functionalities
needed for an assistive system. However, it became clear what
components and data flows are missing and need to be added
to be able to provide assistance for operators.

6 Related work

As we stated in the introduction, we know of no prior research
specifically targeting reference architectures for assistive
context-aware systems which use models at runtime, so we
consider here

1. the publications on reference architectures for assistive
systems not explicitly using models at runtime;

2. the publications dealing with the properties of target sys-
tems, in particular

(a) the publications on reference architectures for context-
aware systems;

(b) the publications on reference architectures for self-
adaptive systems.

We compared reference architectures described in the lit-
erature to our architecture, the results of this comparison are
shown in Table 6. For brevity, we limited ourselves to com-
paring only components:

@ Springer

1264

J. Michael, V. A. Shekhovtsov

— if the architecture contains the specific component, the
corresponding cell is marked with a plus sign;

— if the component is defined partially (e.g., it offers a part
of the functionality or it is a generic component that has
to be instantiated as a more specific component to match
our architecture), the cell is marked as “+”,

— if the component is not present in the compared architec-
ture, the cell is marked with a minus sign.

The results of the comparisons are grouped by the category
of the compared system (assistive systems, context-aware
systems, self-adaptive systems).

Below we elaborate on the systems which were used in
comparison.

6.1 Reference architectures for assistive systems

Surveys of reference architectures for assistive systems not
necessarily addressing using models at runtime are available
in [29, 33]. Below we consider some specific works.

Liu et al. [56] presented a reference architecture of assis-
tive hardware devices and services aiming at improving the
quality of life of older people. Compared to our architecture,
it is more hardware-oriented, provides fewer functions (no
support for actuators, no reasoning mechanism, etc.), and
does not explicitly include model-handling components (it,
however, mentions dealing with “models, rules, and policies”
without elaborating on that).

El Murabet et al. [30] proposed RAFAALS reference
architecture for AAL systems as an architectural model based
on the “platform as a service” (PaaS) principle. It uses BPMN
models to drive the execution of services, though it does not
provide means for creating or maintaining such models, also,
it does not define interaction management components.

Oestreich et al. [78] proposed the adaptive workflow
architecture for digital assistance systems (mostly aiming at
supporting instructional systems, i.e., not limited to AAL). It
is based on runtime BPMN models, including such compo-
nents as Modeler, Editor, and Canvas to support the creation
of such models, and Process Engine for their execution. The
other component groups include Adaptive Assistance (with
Companion component), Process Monitoring and Analyt-
ics (with Dashboard component), and Adaptation (including,
besides Process Engine, the Adaptation Component and plu-
gins). It does not include actuators, does not use any external
knowledge, and is not explicitly positioned as a reference
architecture.

Augusto et al. [10] proposed the system architecture for
smart environments; their treatment of the system architec-
ture can be adapted to provide a reference architecture for the
specific domain. Most of its components are also defined by
our architecture, still, it lacks an explicit treatment of model
support or dealing with external knowledge.

@ Springer

Personal Connected Health Alliance (PCHA) published
Continua Design Guidelines that provide a reference archi-
tecture (Continua End-to-End Reference Architecture) for
interoperable healthcare ecosystems [100]. This architecture
includes the concepts of Personal Health Device, Personal
Health Gateway, Health, and Fitness Service, and Health
Information Service, the communication between imple-
mentations of these concepts is performed by means of
Personal Health Devices Interface, Service Interface, and
HIS Interface. It introduces a set of models: Domain Infor-
mation Model, Communication Model, and Service Model,
but the correspondence between these models and the mod-
els@run.time paradigm is not shown.

ECHONET consortium proposed the ECHONET Lite
reference architecture to support interoperability of home
appliances [51]. It includes the concepts of Home Appliance,
Home Gateway (connected by means of ECHONET Lite pro-
tocol), Cloud Server, and Application (connected by means
of ECHONET Lite Web API). One of the implementations
of this architecture is introduced in [74]. Pham et al. [82]
described a concept that supports the interoperation of the
implementations of both PCHA and ECHONET Lite refer-
ence architectures. As for PHCA, ECHONET Lite also does
not rely on models @run.time; in particular, the above imple-
mentations do not provide any model handling or interaction
support.

Garcés Rodriguez, Zanin Vicente and Nakagawa [34]
present a software architecture for healthcare systems to
assist patients with diabetes mellitus. This architecture is
generalized in [85] as HomecARe: a reference architecture
for chronic disease management at home. These architec-
tures include additional services for, e.g., quality checks and
describe various needed databases as information sources in
detail. They also include a business process model for activ-
ities regarding the patient, though the model administration
component is not described in detail. In addition, they lack
details on the support devices, include no actuators or auto-
matic execution, and are very specific to their application
domain. Still, HomecARe includes the richest set of compo-
nents among all architectures we reviewed, though the way
of presenting it (as a connection-less overview diagram sup-
plemented by a set of smaller-scope diagrams that describe
component interaction) makes it difficult to check the com-
munication compliance.

Among less recent reference architectures targeting AAL
domain are Feelgood [44], MPOWER SOA [73], OpenAAL
[101], and PERSONA [94]. Here, the richest set of compo-
nents is provided by PERSONA, which, however, completely
lacks support for administrative components and does not
define actuators.

To sum it up, most of the above approaches, not target-
ing models @run.time directly, do not support model-related
components (C5, C6, and C14) in full. Many of them, how-

A model-based reference architecture for complex assistive systems and its application 1265

Table Component definition References 1 C2 €3 €4 €5 C6 C7 €8 C9 Clo Cll CI2 CI3 Cl4 CI5 Cl6

architectures Reference architectures for assistive systems
[56] + + + £ + - - - - — + — — —
[30] + + £ £ ++ +£ £ £ - - — — — — —
[78] - - £ + - £ £ + + - + — - + + -
[10] + + £ £ + £ + £ + - + — + — — -
[100] + + + £ £ £ £ - + - — — - — — —
[74] + + £ £ £ - - + - - + + + - — -
[82] + + 4+ £ £ - - - - - - — — — — -
[85] + + £ + + + £ £ + =+ + + — + + +
[44] + £ + - - - £ + + - - — - - — +
[73] + £ + + - £ + - + - - — - + — +
[101] + + - + - £ - - - - - + - — +
[94] + + £ + £ £ + £ + + + - — — -
Reference architectures for context-aware systems
[46] + + £ £ + 4+ - - - - — — - + — +
[55] + + 4+ + + 4+ £ £ £ - + — - — — +
[11] + + - - + - + - - - + — - — — +
[88] + £ - - 4+ £ £ - - - - — - - - +
[6] + + £ £ = + + - - - - + - +
[3] + £ + + £ £ £ + - - - - - - -
Reference architectures for self-adaptive systems
[39] + +£ - - £ + - £ + - + — — + + +
[13] + + - - £ £ £ = - - x* - - - - %
[79] + 4+ o+ + + + £ + + + + + + + —
[91] + + + + +£ + £+ - - — + — — - —
[102] - ++ - - £ + - + - - + + - - - -

ever, support dealing with models and rules partially, usually
by mentioning that such structures can be used to drive the
support, without discussing these issues in detail. The level
of support for other kinds of components varies by solution,
we can state that getting the data from sensors (C1 and C2)
is supported much more widely than providing interaction
support (C11) or dealing with actuators (C13).

6.2 Reference architectures for context-aware
systems

Following Hu, Indulska, and Robinson [46], there are three
main approaches to building context-aware applications: (1)
without application-level context model, (2) with an implicit
context model (3) with an explicit context model. The latter
is the most relevant for our reference architecture. Roda et al.
[84] provide a study on software architectures for context-
aware systems. It is possible to implement their guidelines
for modeling, retrieving, and managing context with our
reference architecture. A specific reference architecture for
context-aware systems is presented by Lewis et al. [55], the

architectural components of such systems are also addressed
in detail by the CASA architecture by Augusto et al. [11]
and by a context-aware architecture for personal healthcare
smart gateways by Santos et al. [88].

In addition to the more generic context-aware approaches
listed above, the architectural approaches for context-aware
Internet of Things (IoT) systems (reviewed by Perera et al. in
[81] and represented by a context- and self-awareness archi-
tecture for the IoT by Arnaiz et al. [6]) and the approach
to model and execute context-sensitive production processes
by Alexopoulos et al. [3] would also fit into our proposed
reference architecture.

Among the approaches to handle context-awareness, the
reference architecture by Lewis et al., and, to lesser degree,
the IoT architecture by Arnaiz et al. offer the richest set of
components, coming closest to our approach. The problem
with these and other approaches of this kind is that they lack
assistive services for the supported human (not including, or
partially including C9 and C11), and do not support actuators.

@ Springer

1266

J. Michael, V. A. Shekhovtsov

6.3 Reference architectures for self-adaptive
systems

A broad variety of self-adaptive systems implement the
MAPE-K feedback loop [5, 87]. Addressing four MAPE-K
steps is a goal of a typical set of components that are found
in assistive systems. In particular, Grua et al. [39] propose a
reference architecture targeting the development of personal-
ized and self-adaptive e-health apps for smartphone-centered
environments which includes a specific set of components
supporting self-adaptation by implementing MAPE-K loops
(e.g., user-driven adaptation manager). The problem with
such steps is that they typically do not focus on the human-
in-the-loop to be assisted but on the automatic change and
execution of changing goals.

Further specific examples of reference architectures tar-
geting self-adaptive systems are RA4Self-CPS [79], a refer-
ence architecture for resilient behaviors control by Bemthuis
et al. [13], HAFLoop [102], and self-adaptive digital twin
reference architecture by Splettstosser et al. [91]. Among
these approaches, RA4Self-CPS includes the richest set of
components, coming close to our architecture; it, however,
lacks external knowledge support and does not fully sup-
port interaction support or actuators, whereas self-adaptive
digital twin architecture by Splettstosser et al. does not
address human support at all (not implementing C9 and C11),
and does not include administrative components, actuators,
and external knowledge support. Finally, HaFLoop, being a
reference architecture specifically targeting the support for
adaptive feedback loops, is not supposed to be used to design
standalone architectures, so it does not include any explicit
support for sensors, storage, or administrative components.

6.4 Final remarks on the related work

From the comparison in Table 6, it can be seen that no existing
architecture includes all the components proposed by our
reference architecture. The reference architectures closest to
our approach, such as HomecARe, PERSONA, the context-
aware architecture by Lewis et al., or RA4Self-CPS, still
lack the support of important components, such as actuators,
explicit model handlers, or interaction support components.
In our opinion, this further emphasizes the novelty of our
approach.

We also observed that the supported subset of components
depends on the type of the system: for example, context-
aware systems put more effort into handling models (C5
and C6), whereas self-adaptive systems are more likely to
implement support (C8) and interaction management (C11)
components.

One further observation is related to the components
which are mentioned the least. Among them, model and sys-
tem administration (C14 and C15) are rarely presented as, in

@ Springer

our opinion, academic solutions rarely reach a high technol-
ogy readiness level and therefore do not consider aspects such
as the long-term maintenance of systems. Service presenta-
tion (C10) is rarely mentioned explicitly, as, in our opinion,
architecture authors often do not feel the need to separate it
from the rest of the user interface, though its functionality
may be still present. Also, the support for actuators (C13) is
limited, which may diminish the quality of system-to-user
interaction.

7 Discussion

To date, we have not found in the literature any descriptions
of a domain-independent reference architecture for complex
assistive systems that use models at runtime. Within this
paper, we have introduced such an architecture and compared
it with two concrete implementations. Clearly, we have made
some assumptions in this process, our approach has limita-
tions and it could be further extended.

7.1 Guidelines and best practices

Our guidelines for analyzing and developing systems are
based on the blueprint already presented in Sect.4.2. In
particular, for analyzing systems, we propose to establish a
checklist (e.g., in a form of the Excel spreadsheet), which can
be followed against the current system architecture. Such a
checklist may include the list of components, together with
the indication of components providing the input and out-
put of each component (taken together, such input/output
specifications actually define the relationships between com-
ponents). While filling the checklist, the analyst may specify
the name of the system component which implements the par-
ticular component of the reference architecture (if it exists),
and the name of the component which serves as an input or
output for the specific system component (again if it exists).

If deviations are detected in real-world scenarios, e.g.,
components or connections are missing, the development
team can use the reference architecture to discuss (1) how
the requirement related to a component is related to their
concrete system requirements and (2) how adding each of
the relationships from the reference architecture would influ-
ence the data flows within their implementation. Moreover,
we suggest that the team evaluating the architecture includes
developers who are very familiar with the implementation to
make these discussions easier.

For developing systems, we suggest the developers use the
reference architecture as a blueprint and add additional func-
tional requirements, e.g., on concrete modeling languages
to use during runtime, from the application domain, or tech-
nical details. Moreover, non-functional requirements need
to be explored for the specific use case. These additional

A model-based reference architecture for complex assistive systems and its application 1267

requirements then have to be reflected if additions are needed
and which concretizations have to be done in the technical
architecture of the system. Moreover, the developers have to
explore if the newly developed system has to be connected
to systems that already exist.

Resource Reduction and Development Effort. We have
developed a case study for supporting the cooking process
in a smart kitchen [69]. It took one student app. 4 months to
come up with the first implementation of the whole assistive
system. This included (a) setting up the system architec-
ture, (b) the creation of two new Domain-Specific Languages
(DSLs) to be handled as models at runtime, a task and a con-
text modeling language, (c) a survey to get feedback on the
design of the system, (d) creating models, pictures, audio
support, and making hand-written additions to the partly gen-
erated system, and (e) performing an evaluation with end
users to get additional feedback. Thus, we can state that the
development effort was relatively low to realize such a sys-
tem. The proposed reference architecture helped to reduce
this effort as follows. (1) As the detailed descriptions of
each system component, its in-, and output as well as the
functionalities provided a more systematic way of structur-
ing the code in the first place, this enabled the creation of
a basic structure fast. (2) The described requirements were
used as a starting point to further refine the requirements for
the domain-specific application. (3) As some components
are marked as optional and serve specific system properties
(see Sect.4.1), this helped the student to focus on the imple-
mentation of the most relevant components and connections
for the particular application domain and its use cases. (4)
In cases where it was unclear in which system component
a certain functionality should be included or where specific
data and models should be handled, the descriptions helped
to make decisions faster. This is mainly because our reference
architecture follows the separation-of-concerns principle and
suggests a high cohesion within each component. (5) When
extending the implementation, this separation of concerns
helped to identify which components needed additional sub-
components to realize additional functionality. (6) When
refactoring the code during the development process, again
the functionality descriptions and comparing the actual input
and output of components with the suggestions in the refer-
ence architecture helped to identify if certain implementation
details should be moved to other components.

A quantitative comparison of the effort needed for an
implementation without the reference architecture is, how-
ever, acommon challenge we are facing in software engineer-
ing research: Developers have different skills and learn when
doing the same task more than one time, the realized domains
and software characteristics differ in size and complexity,
and requirements change during implementation. Thus, we
are currently applying the reference architecture to several
applications and case studies to be able to quantify the devel-

opment effort. However, as we are also using model-driven
engineering approaches for the development of such systems,
this could also have a strong influence on the development
effort.

The presented reference architecture describes an assis-
tive system on a higher level of abstraction. If one wants to
further explore the benefits of reference architectures, such
as the reuse of common functionalities and configurations
in the generation of systems, reduced risk through the reuse
of proven architectural elements, or better quality [61], one
needs to break the reference architecture down to concrete
domains and provide concrete reusable implementations for
the components of the reference architecture.

7.2 Assumptions and limitations

Assumptions. Clearly, only the graphical representation of
concrete system architecture (boxes and arrows) alone is
not enough to analyze a system. Thus, we assume (1) that
architecture models are detailed enough to identify missing
components and data flows, and (2) that developers which use
our reference architecture are knowledgeable enough about
their concrete implementation to be able to evaluate missing
aspects. Thus, our approach allows developers to identify
ways to extend their implementation toward providing more
functionality for assistive systems.

Application to different domains. We have shown the
applicability of our approach for examples from two non-
related domains. Thus, we assume that our approach is
generalizable and can be used to analyze architecture models
from assistive systems of different domains. Clearly, each
domain has to be further detailed, as different monitoring
components, actuators, and support services are needed.

Author involvement in the development of the concrete
implementations. The authors developed the first analyzed
system (HBMS) together and one author was a member of the
team developing the second system (digital twin). However,
the second system was initially developed without assistive
functionalities in mind as the research focus was on self-
adaptive systems and on understanding how MDSE could be
applied to digital twins. This involvement might influence the
analysis process; however, it also enabled a deeper analysis
of the system architectures as the authors know more details
in comparison with what is written in research papers about
one specific architecture.

Limitations of the communication structure. The proposed
reference architecture has no limitation regarding the com-
munication structure of the assistive system. It would work
for monolithic, distributed, agent-based, or client—server
architectures. Monitoring components (C1) and actuators
(C13) are clearly independent components in any kind of
architecture, which just need any kind of connection to the
related components. We assume that C9-C11 are a part of the

@ Springer

1268

J. Michael, V. A. Shekhovtsov

support devices. However, there is also no restriction on the
kind of communication with those components.

Restrictions on the size or architectural style. This refer-
ence architecture provides no restriction on the number of
lines of the code of the concrete implementation, on how
many sensors are needed, or how many activities have to be
supported to call an application an assistive system. More-
over, we do not restrict the reference architecture to a specific
architectural style, as the concrete implementations could dif-
fer in how distributed components are.

Limitation of expressiveness. Defining systems on a com-
ponent level using textual descriptions and analyzing them
based only on their architectural models has only limited
means to express if a component really provides what is
needed for a specific assistive use case. For example, if we
have an Information Presentation component in the archi-
tectural description, this does not ensure that there exists an
acoustic way of information presentation for an operator in a
noisy environment. Such aspects have to be further analyzed
regarding the specific requirements from the domain.

Reference architecture validation vs. formal compliance
checking. Clearly, how to represent reference architectures
and how to check the compliance of reference architectures
to concrete implementations are commonly known prob-
lems [19]. Approaches such as described by Bucaioni et
al. [19] require component connector models of the refer-
ence architecture and the concrete implementations. They
describe an approach combining model transformation and
weaving techniques allowing for the automatic conformance
checking of concrete architectures. This is based on vari-
ous types of conformance, e.g., if an architecture conforms
to constraints, rules, and characteristics of the reference
architecture, the architecture language grammar, architec-
tural styles, and additional constraints. These approaches
have other goals in comparison with our approach: If the goal
is to identify misalignment between reference and concrete
architectures as one of the main causes of architectural tech-
nical debts or to define Software Product Lines (SPLs) where
products must conform to the architecture of the related fam-
ily, it is important to strictly follow a reference architecture.
In more general, [52] suggests a more formal approach to
define conformance between two models without explicitly
referring to reference architectures. Following [52], a confor-
mance relation is a binary, reflexive, transitive relation that
describes whether the concrete model is a concretization of
a reference model. In addition to this, concrete conformance
rules need to be defined for each language, e.g., architecture
description languages.

Deeper exploration of different kinds of runtime mod-
els. Systems that use different types of models at runtime
might require additional subcomponents handling the spe-
cific model types within the Model Handler (C6). We have
already explored how to use behavior models [2], task and

@ Springer

context models [69] as well as goal models [70] within
assistive systems. However, Szvetits and Zdun [93] list
significantly more kinds of models existing for models at
runtime approaches, e.g., observation models, feature mod-
els, aspect models, Abstract Syntax Trees (ASTs), or safety
models. Thus, an exploration of these different kinds of mod-
eling approaches could be an interesting research topic.

Requirements elicitation. As mentioned in Sect.2.1, we
followed the ProSA-RA process while designing our refer-
ence architecture. While following this process in general,
and, in particular, conducting its requirements elicitation
step, we did not elaborate on the requirements elicitation pro-
cess in detail, limiting ourselves to obtaining requirements
based on the domain-specific definitions found in the state-
of-the-art literature. The reason is that such a process should
rely on the generic standards for collecting requirements for
the assistive systems which rely on using models at runtime,
but we are not aware of all standards of every possible appli-
cation domain in the necessary detail.

Requirements quality. As a result of following the process
based on the existing definitions of reference architecture
and assistive systems, we got a set of generic requirements.
We argue that such requirements correspond to our goal bet-
ter as we are proposing a generic architecture, not tied to
the specific technology or application domain. In particu-
lar, we argue that, e.g., by including the storage manager
as a technology-independent interface to the storage com-
ponent, we eliminated the need to specify the requirements
for the architecture to ask for the specific type of storage or
the specific storage technology to be implemented. Check-
ing the requirements with experts would be one possibility.
This requires finding experts who are familiar with different
implementations of and domains for assistive systems.

Vague requirements. The presence of vague requirements
(to some extent) hinders the external validation and replica-
tion of the study. E.g., the requirement to create new models
without mentioning which types of models these are, or to
enable person-to-system interaction without mentioning how
and with which technologies. In our opinion, this vagueness
is inevitable, as some of the requirements must be kept gen-
eral to allow for heterogeneous implementations in different
application domains and with different technologies. They
will become more concrete if a domain-specific implementa-
tion is considered based on the reference architecture and the
requirements are further detailed with the specific end users
of the assistance system. To mitigate this risk, we have added
a comparison with components in existing reference archi-
tectures covering some of the proposed aspects in Sect. 6.
However, this does not completely resolve this limitation.

Validating the architecture by asking the experts. While
following the ProSA-RA process in most of its activities, we
deviated from this process by omitting the use of the FERA
checklist [89] for evaluating the resulting architecture as we

A model-based reference architecture for complex assistive systems and its application 1269

found it overly detailed (consisting of 93 questions grouped
into several categories) and too relying on the specific knowl-
edge possessed by the experts. As our architecture is based on
the knowledge belonging to multiple domains, we expect dif-
ficulties with recruiting unbiased experts which possess the
knowledge belonging to all these domains. We also expect
difficulties in persuading experts from practice to invest their
time for the whole set of questions belonging to the check-
list. Still, in future, we plan to organize the evaluation based
on the modified version of the checklist taking into account
these considerations.

7.3 Architectural styles

Architectural styles, such as Client/Server, Microkernel, or
Microservices are often defined as parts of specific reference
architectures [76]. We, however, decided to make our archi-
tecture style-independent, as the fundamental property of the
systems compliant with it is that they have to be based on run-
time models, and enforcing this property does not depend on
selecting a specific architectural style. As a result, we limit
ourselves to checking component and communication com-
pliance, where required components and their connections
can be implemented by means of applying a specific archi-
tectural style.

In fact, we consider applying such a style to be a part of
the process of creating an implementation architecture of the
system, which is a blueprint for its implementation by means
of the specific set of technologies. Different such architec-
tures may be further derived from the compliant model-based
architecture, however, this process is outside the scope of our
work.

7.4 Non-functional requirements

To create the reference architecture, we have only consid-
ered functional requirements, since we treat non-functional
requirements as application- and technology-specific. Those
are addressed by deriving the specific implementation archi-
tecture of a domain-specific system from the compliant
model-based architecture, and, in particular, by applying a
specific architectural style, which we consider as outside the
scope of our work.

Still, non-functional requirements as quality attributes sig-
nificantly impact assistive systems. Thus, we describe their
relationship with assistive systems and provide some exam-
ples.

Security. Assistive systems should be secure, i.e., they
have to protect their data against attacks or unauthorized
access. Depending on the technical realization and the use of
standardized techniques for ensuring security, it might reflect
differently in concrete system architectures and, thus, has to
be seen as a cross-cutting topic.

Privacy. As assistive systems are human-centric systems
[41, 47], they partially need the private information of their
users. Using this information enables assistive systems to
be adaptable to specific user needs. To support the privacy-
aware handling of data, we can rely on privacy-by-design
principles [21] in the engineering of assistive systems. Pri-
vacy cannot be centered within one specific component in
the software architecture but is again a cross-cutting topic.
We can introduce privacy checkpoints [59, 66, 68] within
the software architecture in each point where data passes
happen. E.g., from monitoring components (C1) to the data
(pre)processor (C2), and from any component to and from
the storage manager (C4) and the data and model storages
(C3). Thus, such non-functional privacy requirements have
more influence on the communication between components
than the concrete components of the reference architecture.
To further elaborate on this idea, further studies are needed
considering different privacy checkpoints in a concrete assis-
tive system architecture.

Usability and Adaptation. Depending on the relevant user
groups, an assistive system has specific requirements for the
user interface and interaction, e.g., elderly users might need
larger fonts, more contrast, or louder voice output. More-
over, depending on the application domain different user
interfaces might be relevant, e.g., smartphones, tablets, AR
glasses, speakers. This heterogeneity in user interfaces leads
to a variety of different non-functional requirements on how
they could be adapted and what would be well usable for
their users. This will influence what information is collected
by the support component (C8), what and how information
is handled by the information (C9) and service presentation
component (C10), and what interaction is possible (C11).
Thus, when applying the reference architecture to specific
use cases, one has to check whether this is realized within
the functionality of these components.

Performance and Scalability. For assistive systems, it is
important to provide support in a reasonable time. Whether
support should be provided immediately or if there is more
time to react depends again on the concrete use case. Scalabil-
ity requirements describe what workloads an assistive system
should be able to handle to meet performance requirements.
To scale an assistive system (horizontal and vertical) depends
again on concrete use cases and what amount of interaction
to expect from them. Whether these non-functional perfor-
mance requirements could be met depends on the concrete
technological realization and not on the reference architec-
ture.

Compatibility. Whereas there might exist assistive systems
that could work as a stand-alone application, in practice, they
will often coexist with other systems in the same environ-
ment. This aspect again relies on the concrete technological
realization.

@ Springer

1270

J. Michael, V. A. Shekhovtsov

Maintainability. [61] report on reduced maintenance costs
due to the use of reference architectures and [80] on improv-
ing the maintenance of software with the use of model-driven
approaches. Having a clear reference architecture supports
the separation of concerns by avoiding redundancy. How-
ever, non-functional maintainability requirements are again
not explicitly reflected in a reference architecture.

To sum up, different kinds of non-functional require-
ments will be added to the list of requirements for a specific
realization of an assistive system. These might translate to
functional requirements, e.g., which encryption method to
use, with which firewall or authentication system an assis-
tive system has to be compatible, or how many servers are
needed to be able to handle the workload. Thus, they have
to be considered e.g., in the implementation architecture of
a system.

8 Conclusion

Within this article, we have shown how to develop a ref-
erence architecture for model-based assistive systems from
requirements. We have introduced relevant components and
data flows in detail and shown how these components could
be identified in architectural models of existing assistive sys-
tems.

This reference architecture with its components allows us
to (a) evaluate if a system is an assistive system and (b) make
suggestions on which components have to be added to an
existing architecture if it does not yet provide these assis-
tive functionalities. Our reference architecture reduces the
effort for development and helps to make high-level design
decisions about which components should be developed.

In the future, it might be interesting to see how MDSE
[98] with models at design time and automation with code
generation, might influence models at runtime [14] for assis-
tive systems. Moreover, we need to analyze the useability
of different modeling languages, such as goal modeling [70]
for their usefulness in assistive systems and if they require a
change in the system architecture.

Acknowledgements Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy - EXC 2023 Internet of Production - 390621612. Website:
https://www.iop.rwth-aachen.de

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,

@ Springer

unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abrahio, S., Bourdeleau, F., Cheng, B., Kokaly, S., Paige, R.,
Stoerrle, H., Whittle, J.: User experience for model-driven engi-
neering: challenges and future directions. In: ACM/IEEE 20th
Int. Conf. on Model Driven Engineering Languages and Sys-
tems (MODELS), pp. 229-236 (2017). https://doi.org/10.1109/
MODELS.2017.5

2. Al Machot, F., Mayr, H.C., Michael, J.: Behavior modeling and
reasoning for ambient support: HCM-L Modeler. In: Proceed-
ings of the International Conference on Industrial, Engineering
& Other Applications of Applied Intelligent Systems (IEA-AIE
2014), Lecture Notes in Artificial Intelligence (2014)

3. Alexopoulos, K., Makris, S., Xanthakis, V., Sipsas, K., Chrys-
solouris, G.: A concept for context-aware computing in manufac-
turing: the white goods case. Int. J. Comput. Integr. Manuf. 29(8),
839-849 (2016)

4. Alvarez, M.L., Sarachaga, I., Burgos, A., Estévez, E., Marcos, M.:
A methodological approach to model-driven design and develop-
ment of automation systems. IEEE Trans. Autom. Sci. Eng. 15(1),
67-79 (2018). https://doi.org/10.1109/TASE.2016.2574644

5. Arcaini, P, Riccobene, E., Scandurra, P.: Modeling and analyzing
mape-k feedback loops for self-adaptation. In: IEEE/ACM 10th
International Symposium on Software Engineering for Adaptive
and Self-Managing Systems 2015, pp. 13-23 (2015). https://doi.
org/10.1109/SEAMS.2015.10

6. Arnaiz, D., Vila, M., Alarcén, E., Moll, F., Sancho, M.R.,
Teniente, E.: Relating context and self awareness in the internet of
things. In: International Conference on Cooperative Information
Systems, pp. 384—402. Springer (2023)

7. Arning, K., Ziefle, M.: “Get that Camera Out of My House!” Con-
joint Measurement of Preferences for Video-Based Healthcare
Monitoring Systems in Private and Public Places. In: Geissbiih-
ler, A., Demongeot, J., Mokhtari, M., Abdulrazak, B., Aloulou,
H. (eds.) Inclusive smart cities and e-health, LNCS, vol. 9102, pp.
152-164. Springer (2015). https://doi.org/10.1007/978-3-319-
19312-0_13

8. ABmann, U., Gétz, S., Jézéquel, J.M., Morin, B., Trapp, M.: A ref-
erence architecture and roadmap for models @run.time systems.
In: Bencomo, N., France, R., Cheng, B.H.C., ABmann, U. (eds.)
Models @run.time, Lecture Notes in Computer Science, vol. 8378,
pp- 1-18. Springer International Publishing, Cham (2014). https://
doi.org/10.1007/978-3-319-08915-7_1

9. Aufrere, R., Chapuis, R., Chausse, F.: A model-driven approach
for real-time road recognition. Mach. Vis. Appl. 13(2), 95-107
(2001). https://doi.org/10.1007/PL0O0013275

10. Augusto, J., Giménez-Manuel, J., Quinde, M., Oguego, C., Ali,
M., James-Reynolds, C.: A smart environments architecture
(search). Appl. Artif. Intell. 34(2), 155-186 (2020)

11. Augusto, J.C., Quinde, M.J., Oguego, C.L., Giménez Manuel, J.:
Context-aware systems architecture (casa). Cybernet. Syst. 53,
1-27 (2021)

12. Bass, L., Clements, P., Kazman, R.: Software architecture in prac-
tice, 2nd edn. Addison-Wesley, Reading, MA (2003)

13. Bemthuis, R., Iacob, M.E., Havinga, P.: A design of the resilient
enterprise: a reference architecture for emergent behaviors con-
trol. Sensors 20(22), 6672 (2020)

https://www.iop.rwth-aachen.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MODELS.2017.5
https://doi.org/10.1109/MODELS.2017.5
https://doi.org/10.1109/TASE.2016.2574644
https://doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1109/SEAMS.2015.10
https://doi.org/10.1007/978-3-319-19312-0_13
https://doi.org/10.1007/978-3-319-19312-0_13
https://doi.org/10.1007/978-3-319-08915-7_1
https://doi.org/10.1007/978-3-319-08915-7_1
https://doi.org/10.1007/PL00013275

A model-based reference architecture for complex assistive systems and its application

1271

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Bencomo, N., Gotz, S., Song, H.: Models @runtime: a guided tour
of the state of the art and research challenges. Softw. Syst. Model.
18(5), 3049-3082 (2019)

Bibow, P., Dalibor, M., Hopmann, C., Mainz, B., Rumpe, B.,
Schmalzing, D., Schmitz, M., Wortmann, A.: Model-Driven
Development of a Digital Twin for Injection Molding. In: Dust-
dar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) Interna-
tional Conference on Advanced Information Systems Engineering
(CAIiSE’20), Lecture Notes in Computer Science, vol. 12127, pp.
85-100. Springer International Publishing (2020)

Blumendorf, M., Lehmann, G., Albayrak, S.: Bridging models
and systems at runtime to build adaptive user interfaces. In: 2nd
ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS 10, pp. 9-18. ACM, USA (2010). https://doi.org/
10.1145/1822018.1822022

Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software
engineering in practice: Second edition. Synthesis Lectures on
Software Engineering 3(1), 1-207 (2017). https://doi.org/10.
2200/S00751ED2V01Y201701SWE004

Brockhoff, T., Heithoff, M., Koren, 1., Michael, J., Pfeiffer, J.,
Rumpe, B., Uysal, M.S., van der Aalst, W.M.P., Wortmann,
A.: Process Prediction with Digital Twins. In: Int. Conf. on
Model Driven Engineering Languages and Systems Companion
(MODELS-C), pp. 182-187. ACM/IEEE (2021)

Bucaioni, A., Di Salle, A., Iovino, L., Malavolta, I., Pelliccione,
P.: Reference architectures modelling and compliance checking.
Softw. Syst. Model. (2022). https://doi.org/10.1007/s10270-022-
01022-z

Butting, A., Kirchhof, J., Kleiss, A., Michael, J., Orlov, R.,
Rumpe, B.: Model-Driven IoT App Stores: Deploying Customiz-
able Software Products to Heterogeneous Devices. In: 21th ACM
SIGPLAN International Conference on Generative Programming:
Concepts and Experiences (GPCE 22). ACM (2022)

Cavoukian, A.: Privacy by design: The 7 foundational princi-
ples (2009). Inf. Privacy Commissioner of Ontario, Toronto, ON,
Canada

Chamari, L., Pauwels, P., Petrova, E.: Reference architecture for
smart buildings (2023)

Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based
activity recognition. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 42(6), 790-808
(2012). https://doi.org/10.1109/TSMCC.2012.2198883
Czerniak, J.N., Schierhorst, N., Brandl, C., Mertens, A., Nitsch,
V.: Smart Digital Assistance Devices for the Support of Machine
Operation Processes at Future Production Workplaces. In: Ahram,
T.Z., Falcdo, C. (eds.) Advances in usability, user experience,
wearable and assistive technology, Advances in Intelligent Sys-
tems and Computing, vol. 1217, pp. 491-497. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51828-8_64

Dalibor, M., Heithoff, M., Michael, J., Netz, L., Pfeiffer, J.,
Rumpe, B., Varga, S., Wortmann, A.: Generating customized low-
code development platforms for digital twins. J. Comput. Lang.
(COLA) (2022). https://doi.org/10.1016/j.cola.2022.101117
Dalibor, M., Michael, J., Rumpe, B., Varga, S., Wortmann, A.:
Towards a Model-Driven Architecture for Interactive Digital Twin
Cockpits. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W.,
Mayr, H.C. (eds.) Conceptual Modeling, pp. 377-387. Springer
International Publishing, Berlin (2020)

Dey, A.K., Abowd, G.D.: Towards a better understanding of con-
text and context awareness. Tech. rep. (1999)

Di Ruscio, D., Kolovos, D., de Lara, J., Pierantonio, A., Tisi, M.,
Wimmer, M.: Low-code development and model-driven engineer-
ing: Two sides of the same coin? Softw. Syst. Model. (2022).
https://doi.org/10.1007/s10270-021-00970-2

Elmurabet, A., Abtoy, A., Touhafi, A., Tahiri, A.: Ambient assisted
living system’s models and architectures: a survey of the state of

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

the art. J. King Saud. Univ. Comput. Inform. Sci. 32(1), 1-10
(2020). https://doi.org/10.1016/j.jksuci.2018.04.009

El murabet, A., Anouar, A., Touhafi, A., Tahiri, A.: Towards an
SOA architectural model for AAL-Paas design and implimenta-
tion challenges. Int. J. Adv. Comput. Sci. Appl. (2017). https://
doi.org/10.14569/1JACSA.2017.080708

Ernst, J.M., Ebrecht, L., Schmerwitz, S.: Virtual cockpit instru-
ments displayed on head-worn displays - capabilities for future
cockpit design. In: IEEE/AIAA 38th Digital Avionics Sys-
tems Conference (DASC’19), pp. 1-10 (2019). https://doi.org/
10.1109/DASC43569.2019.9081733

Galster, M., Avgeriou, P.: Empirically-grounded reference archi-
tectures: A proposal. In: Proceedings of the Joint ACM SIGSOFT
Conference — QoSA and ACM SIGSOFT Symposium — ISARCS
on Quality of Software Architectures — QoSA and Architecting
Critical Systems — ISARCS, QoSA-ISARCS 11, p. 153-158.
ACM, USA (2011). https://doi.org/10.1145/2000259.2000285
Garcés Rodriguez, L.M., Ampatzoglou, A., Avgeriou, P., Naka-
gawa, E.Y.: A comparative analysis of reference architectures for
healthcare in the ambient assisted living domain. In: 2015 IEEE
28th Int. Symposium on Computer-Based Medical Systems, pp.
270-275. IEEE (2015)

Garcés Rodriguez, L.M., Zanin Vicente, 1., Nakagawa, E.Y.: Soft-
ware Architecture for Health Care Supportive Home Systems to
Assist Patients with Diabetes Mellitus. In: 2019 IEEE 32nd Int.
Symposium on Computer-Based Medical Systems (CBMS), pp.
249-252 (2019). https://doi.org/10.1109/CBMS.2019.00060
Garcés, L., Martinez-Fernandez, S., Oliveira, L., Valle, P., Ayala,
C., Franch, X., Nakagawa, E.Y.: Three decades of software ref-
erence architectures: A systematic mapping study. Journal of
Systems and Software 179, 111,004 (2021). https://doi.org/10.
1016/j.jss.2021.111004

Garlan, D., Schmerl, B.: Using architectural models at runtime:
Research challenges. In: Oquendo, F., Warboys, B.C., Morrison,
R. (eds.) Software Architecture, pp. 200-205. Springer, Berlin
Heidelberg, Berlin, Heidelberg (2004)

Gerasimov, A., Michael, J., Netz, L., Rumpe, B., Varga, S.:
Continuous Transition from Model-Driven Prototype to Full-
Size Real-World Enterprise Information Systems. In: Anderson,
B., Thatcher, J., Meservy, R. (eds.) 25th Americas Conference
on Information Systems (AMCIS 2020), AlISeL, pp. 1-10. AIS
(2020)

Golan, M., Cohen, Y., Singer, G.: A framework for opera-
tor - workstation interaction in industry 40. Int. J. Prod. Res.
58(8), 2421-2432 (2020). https://doi.org/10.1080/00207543.
2019.1639842

Grua, E.M., De Sanctis, M., Lago, P.: A reference architecture for
personalized and self-adaptive e-health apps. In: European Con-
ference on Software Architecture, pp. 195-209. Springer (2020)
Grundy, J., Khalajzadeh, H., Mclntosh, J., Kanij, T., Mueller, I.:
HumaniSE: approaches to achieve more human-centric software
engineering. In: Evaluation of Novel Approaches to Software
Engineering, pp. 444-468. Springer (2021)

Grundy, J., Khalajzadeh, H., McIntosh, J., Kanij, T., Mueller, I.:
Humanise: Approaches to achieve more human-centric software
engineering. In: Ali, R., Kaindl, H., Maciaszek, L.A. (eds.) Evalu-
ation of Novel Approaches to Software Engineering, pp. 444—468.
Springer International Publishing, Cham (2021)

Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural
Modeling of Interactive Distributed and Cyber-Physical Sys-
tems. Technical Report AIB-2012-03, RWTH Aachen University
(2012)

Hersh, M.A., Johnson, M.A.: On modelling assistive technology
systems - part i: Modelling framework. Technol. Disabil. 20(3),
193-215 (2008). https://doi.org/10.3233/TAD-2008-20303

@ Springer

https://doi.org/10.1145/1822018.1822022
https://doi.org/10.1145/1822018.1822022
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.1007/s10270-022-01022-z
https://doi.org/10.1007/s10270-022-01022-z
https://doi.org/10.1109/TSMCC.2012.2198883
https://doi.org/10.1007/978-3-030-51828-8_64
https://doi.org/10.1016/j.cola.2022.101117
https://doi.org/10.1007/s10270-021-00970-2
https://doi.org/10.1016/j.jksuci.2018.04.009
https://doi.org/10.14569/IJACSA.2017.080708
https://doi.org/10.14569/IJACSA.2017.080708
https://doi.org/10.1109/DASC43569.2019.9081733
https://doi.org/10.1109/DASC43569.2019.9081733
https://doi.org/10.1145/2000259.2000285
https://doi.org/10.1109/CBMS.2019.00060
https://doi.org/10.1016/j.jss.2021.111004
https://doi.org/10.1016/j.jss.2021.111004
https://doi.org/10.1080/00207543.2019.1639842
https://doi.org/10.1080/00207543.2019.1639842
https://doi.org/10.3233/TAD-2008-20303

1272

J. Michael, V. A. Shekhovtsov

44.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

Hietala, H., Ikonen, V., Korhonen, I., Lahteenmaki, K., Maksi-
mainen, A., Pakarinen, V., Parkka, J., Saranummi, N.: Feelgood-
ecosystem of phr based products and services. Research report
VTT-R-07000-09, VTT Technical Research Centre of Finland.,
Tampere, Finland (2009)

Holldobler, K., Michael, J., Ringert, J.O., Rumpe, B., Wortmann,
A.: Innovations in model-based software and systems engineering.
J. Object Technol. 18(1), 1-60 (2019). https://doi.org/10.5381/jot.
2019.18.1.r1

Hu, P, Indulska, J., Robinson, R.: An Autonomic Context Man-
agement System for Pervasive Computing. In: 6th Int. Conf.
on Pervasive Computing and Communications (PerCom’08), pp.
213-223. IEEE (2008). https://doi.org/10.1109/PERCOM.2008.
56

Jim, A., Shim, H., Wang, J., Wijaya, L., Xu, R., Khalajzadeh,
H., Grundy, J., Kanij, T.: Improving the Modelling of Human-
centric Aspects of Software Systems: A Case Study of Modelling
End User Age in Wirefame Designs. In: 16th Int. Conf. on Eval-
uation of Novel Approaches to Software Engineering (ENASE
2021), pp. 68-79. SCITEPRESS (2021). https://doi.org/10.5220/
0010403000680079

Jin, Z., Cui, S., Guo, S., Gotz, D., Sun, J., Cao, N.: CarePre:
an intelligent clinical decision assistance system. ACM Trans.
Comput. Healthcare (2020). https://doi.org/10.1145/3344258
Kirchhof, J.C., Malcher, L., Michael, J., Rumpe, B., Wortmann,
A.: Web-based tracing for model-driven applications. In: 48th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pp. 374-381. IEEE (2022)

Kirchhof, J.C., Michael, J., Rumpe, B., Varga, S., Wortmann, A.:
Model-driven digital twin construction: synthesizing the integra-
tion of cyber-physical systems with their information systems.
In: 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, pp. 90-101. ACM (2020)
Kodama, H.: The ECHONET Lite specifications and the work
of the ECHONET consortium. New Breeze-Q. ITU Assoc. Jpn.
27(2), 4-7 (2015)

Konersmann, M., Michael, J., Rumpe, B.: Towards reference mod-
els with conformance relations for structure. In: Strecker, S., Jung,
J. (Hrsg.): Informing Possible Future Worlds. Logos Verlag Berlin
(2024)

Kostavelis, 1., Giakoumis, D., Malasiotis, S., Tzovaras, D.: Ram-
cip: Towards a robotic assistant to support elderly with mild
cognitive impairments at home. In: Serino, S., Matic, A., Giak-
oumis, D., Lopez, G., Cipresso, P. (eds.) Pervasive Computing
Paradigms for Mental Health, pp. 186—195. Springer International
Publishing, Cham (2016)

Leusmann, P., Mollering, C., Klack, L., Kasugai, K., Rumpe, B.,
Ziefle, M.: Your Floor Knows Where You Are: Sensing and Acqui-
sition of Movement Data. In: A. Zaslavsky, P.K. Chrysanthis, D.L.
Lee, D. Chakraborty, V. Kalogeraki, M.F. Mokbel, C.Y. Chow
(eds.) 12th IEEE Int. Conf. on Mobile Data Management (Vol-
ume 2), pp. 61-66. IEEE (2011)

Lewis, G., Novakouski, M., Sanchez, E.: A reference architecture
for group-context-aware mobile applications. In: International
Conference on Mobile Computing, Applications, and Services,
pp. 44-63. Springer (2012)

Liu, J.W,, Wang, B., Liao, H., Huang, C., Shih, C., Kuo, T.,
Pang, A.: Reference architecture of intelligent appliances for the
elderly. In: 18th International Conference on Systems Engineer-
ing (ICSEng’05), pp. 447-455. IEEE (2005)

Lunardi, G.M., Al Machot, F., Shekhovtsov, V.A., Maran, V.,
Machado, G.M., Machado, A., Mayr, H.C., de Oliveira, J.P.M.:
Iot-based human action prediction and support. Internet Things
3,52-68 (2018)

Machot, F.A., Mayr, H.C., Ranasinghe, S.: A windowing approach
for activity recognition in sensor data streams. In: Eighth Interna-

@ Springer

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

tional Conference on Ubiquitous and Future Networks, ICUFN
2016, Vienna, Austria, July 5-8, 2016, pp. 951-953. IEEE (2016).
https://doi.org/10.1109/ICUFN.2016.7536937

Mannhardt, F., Petersen, S.A., Oliveira, M.E.: Privacy challenges
for process mining in human-centered industrial environments. In:
14th International Conference on Intelligent Environments (IE),
pp- 64-71 (2018). https://doi.org/10.1109/1E.2018.00017
Martinez-Fernandez, S., Ayala, C.P., Franch, X., Marques, H.M.,
Ameller, D.: Towards guidelines for building a business case and
gathering evidence of software reference architectures in industry.
J. Softw. Eng. Res. Dev. 2(1), 7 (2014). https://doi.org/10.1186/
s40411-014-0007-5

Martinez-Fernandez, S., Ayala, C.P., Franch, X., Martins Mar-
ques, H.: Benefits and drawbacks of reference architectures. In:
Drira, K. (ed.) Software Architecture, pp. 307-310. Springer,
Berlin Heidelberg, Berlin, Heidelberg (2013)

Mayr, H.C., Al Machot, F., Michael, J., Morak, G., Ranasinghe, S.,
Shekhovtsov, V., Steinberger, C.: HCM-L: Domain-specific mod-
eling for active and assisted living. In: Karagiannis, D., Mayr,
H.C., Mylopoulos, J. (eds.) Domain-specific conceptual model-
ing, pp. 527-552. Springer, Berlin (2016)

Mayr, H.C., Michael, J., Ranasinghe, S., Shekhovtsov, V.A., Stein-
berger, C.: Model centered architecture, pp. 85-104. Springer
International Publishing (2017)

Mayr, H.C., Michael, J., Shekhovtsov, V.A., Ranasinghe, S., Stein-
berger, C.: A Model centered perspective on software-intensive
systems. In: Enterprise Modeling and Information Systems Archi-
tectures (EMISA’18), CEUR Workshop Proceedings, vol. 2097,
pp. 58-64. CEUR-WS.org (2018)

Meliones, A., Maidonis, S.: DALL: A digital assistant for the
elderly and visually impaired using alexa speech interaction and
TV display. In: 13th ACM Int. Conf. on PErvasive Technologies
Related to Assistive Env., PETRA °20. ACM (2020)

Michael, J., Koschmider, A., Mannhardt, F., Baracaldo, N.,
Rumpe, B.: User-Centered and Privacy-Driven Process Mining
System Design for IoT. In: C. Cappiello, M. Ruiz (eds.) Proceed-
ings of CAiSE Forum 2019: Information Systems Engineering in
Responsible Information Systems, pp. 194-206. Springer (2019)
Michael, J., Mayr, H.C.: Conceptual modeling for ambient assis-
tance. In: Conceptual Modeling - ER 2013, LNCS, vol. 8217, pp.
403-413. Springer (2013)

Michael, J., Netz, L., Rumpe, B., Varga, S.: Towards privacy-
preserving loT systems using model driven engineering. In:
N. Ferry, A. Cicchetti, F. Ciccozzi, A. Solberg, M. Wimmer,
A. Wortmann (eds.) Proceedings of MODELS 2019. Workshop
MDEA4IoT, pp. 595-614. CEUR Workshop Proceedings (2019)
Michael, J., Rumpe, B.: Software Languages for Smart Assis-
tance. SSRN (2023). https://doi.org/10.2139/ssrn.4423849
Michael, J., Rumpe, B., Zimmermann, L.T.: Goal modeling and
MDSE for behavior assistance. In: Int. Conf. on Model Driven
Engineering Languages and Systems Companion (MODELS-C),
pp- 370-379. ACM/IEEE (2021)

Michael, J., Steinberger, C.: Context modeling for active assis-
tance. In: C. Cabanillas, S. Espafia, S. Farshidi (eds.) Proc. of the
ER Forum 2017 and the ER 2017 Demo Track co-located with
the 36th Int. Conference on Conceptual Modelling (ER 2017), pp.
221-234 (2017)

Michael, J., Steinberger, C., Shekhovtsov, V.A., Al Machot, F.,
Ranasinghe, S., Morak, G.: The HBMS story - past and future
of an active assistance approach. Enterp. Modell. Inform. Syst.
Archit. Int. J. Concept. Model. 13, 345-370 (2018)

Mikalsen, M., Hanke, S., Fuxreiter, T., Walderhaug, S., Wien-
hofen, L.: Interoperability services in the mpower ambient assisted
living platform. In: Medical Informatics in a United and Healthy
Europe, pp. 366-370. IOS Press (2009)

https://doi.org/10.5381/jot.2019.18.1.r1
https://doi.org/10.5381/jot.2019.18.1.r1
https://doi.org/10.1109/PERCOM.2008.56
https://doi.org/10.1109/PERCOM.2008.56
https://doi.org/10.5220/0010403000680079
https://doi.org/10.5220/0010403000680079
https://doi.org/10.1145/3344258
https://doi.org/10.1109/ICUFN.2016.7536937
https://doi.org/10.1109/IE.2018.00017
https://doi.org/10.1186/s40411-014-0007-5
https://doi.org/10.1186/s40411-014-0007-5
https://doi.org/10.2139/ssrn.4423849

A model-based reference architecture for complex assistive systems and its application 1273

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Moriya, K., Nakagawa, E., Fujimoto, M., Suwa, H., Arakawa, Y.,
Kimura, A., Miki, S., Yasumoto, K.: Daily living activity recog-
nition with ECHONET Lite appliances and motion sensors. In:
2017 IEEE International Conference on Pervasive Computing and
Communications Workshops (PerCom Workshops), pp. 437-442.
IEEE (2017)

Nakagawa, E.Y., Guessi, M., Maldonado, J.C., Feitosa, D.,
Oquendo, F.: Consolidating a process for the design, representa-
tion, and evaluation of reference architectures. In: 2014 IEEE/IFIP
Conference on Software Architecture, pp. 143-152. IEEE (2014)
Nakagawa, E.Y., Oquendo, F., Becker, M.: RAModel: a refer-
ence model for reference architectures. In: 2012 Joint Working
IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, pp. 297-301. IEEE (2012)
Nee, A., Ong, S.: Virtual and augmented reality applications in
manufacturing. IFAC Proceedings Volumes 46(9), 15-26 (2013).
https://doi.org/10.3182/20130619-3-RU-3018.00637. 7th IFAC
Conference on Manufacturing Modelling, Management, and Con-
trol

Oestreich, H., da Silva Broker, Y., Wrede, S.: An adaptive work-
flow architecturefor digital assistance systems. In: The 14th
PErvasive Technologies Related to Assistive Environments Con-
ference, pp. 177-184 (2021)

de Oliveira Camargo, M.P., dos Santos Pereira, G., Almeida, D.,
Bento, L.A., Dorante, W.F., Affonso, F.J.: Ra4self-cps: areference
architecture for self-adaptive cyber-physical systems. IEEE Lat.
Am. Trans. 22(2), 113-125 (2024)

Palyart, M., Lugato, D., Ober, I., Bruel, J.M.: Improving scalabil-
ity and maintenance of software for high-performance scientific
computing by combining mde and frameworks. In: Whittle, J.,
Clark, T., Kiihne, T. (eds.) Model Driven Engineering Languages
and Systems, pp. 213-227. Springer, Berlin Heidelberg, Berlin,
Heidelberg (2011)

Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Con-
text aware computing for the internet of things: a survey. IEEE
Commun. Surv. Tutor. 16(1), 414—454 (2014). https://doi.org/10.
1109/SURV.2013.042313.00197

Pham, V.C., Xin, T., Sioutis, M., Lim, Y., Tan, Y.: Toward coop-
eration of personal health devices and smart appliances in japan
smart homes. In: 2021 IEEE 3rd Global Conference on Life Sci-
ences and Technologies (LifeTech), pp. 386-389. IEEE (2021)
Ringert, J.O., Rumpe, B., Wortmann, A.: MontiArcAutomaton:
modeling architecture and behavior of robotic systems. In: Con-
ference on Robotics and Automation (ICRA’13), pp. 10-12. IEEE
(2013)

Roda, C., Navarro, E., Zdun, U., Lépez-Jaquero, V., Simhandl,
G.: Past and future of software architectures for context-aware
systems: a systematic mapping study. J. Syst. Softw. 146, 310—
355 (2018). https://doi.org/10.1016/].jss.2018.09.074
Rodriguez, L.M.G.: A reference architecture for healthcare sup-
portive home systems from a systems-of-systems perspective.
Ph.D. thesis, Université de Bretagne Sud; Universidade de Sao
Paulo (Brésil) (2018)

Riither, S., Hermann, T., Mracek, M., Kopp, S., Steil, J.: An assis-
tance system for guiding workers in central sterilization supply
departments. In: 6th Int. Conf. on PErvasive Technologies Related
to Assistive Env., PETRA "13. ACM (2013)

Samin, H., Bencomo, N., Sawyer, P.: Decision-making under
uncertainty: be aware of your priorities. Softw. Syst. Model. 21,
2213-2242 (2022). https://doi.org/10.1007/s10270-021-00956-
0

Santos, D.F., Gorgonio, K.C., Perkusich, A., Almeida, H.O.:
A standard-based and context-aware architecture for personal
healthcare smart gateways. J. Med. Syst. 40, 1-14 (2016)

89. Santos, J.EM., Guessi, M., Galster, M., Feitosa, D., Nakagawa,
E.Y.: A checklist for evaluation of reference architectures of
embedded systems (s)

90. Shekhovtsov, V.A., Ranasinghe, S., Mayr, H.C., Michael, J.:
Domain specific models as system links. In: International Con-
ference on Conceptual Modeling, pp. 330-340. Springer (2018)

91. SplettstoBer, A.K., Ellwein, C., Wortmann, A.: Self-adaptive
digital twin reference architecture to improve process quality. Pro-
cedia CIRP 119, 867-872 (2023)

92. Steinberger, C., Michael, J.: Using semantic markup to boost con-
text awareness for assistive systems. In: Smart Assisted Living:
Toward An Open Smart-Home Infrastructure, Computer Commu-
nications and Networks, pp. 227-246. Springer (2020)

93. Szvetits, M., Zdun, U.: Systematic literature review of the objec-
tives, techniques, kinds, and architectures of models at runtime.
Softw. Syst. Model. 15(1), 31-69 (2016). https://doi.org/10.1007/
$10270-013-0394-9

94. Tazari, M.R., Furfari, F., Ramos, J.PL., Ferro, E.: The persona
service platform for aal spaces. In: Handbook of Ambient Intelli-
gence and Smart Environments, pp. 1171-1199. Springer, Berlin
(2010)

95. Uhlmann, E., Franke, D., Hohwieler, E.: Smart maintenance -
dynamic model-based instructions for service operations. Proce-
dia CIRP 81, 1417-1422 (2019). https://doi.org/10.1016/j.procir.
2019.04.327. (52nd CIRP Conference on Manufacturing Sys-
tems (CMS))

96. Ullrich, C.: Rules for adaptive learning and assistance on the shop
floor. In: Int. Conf. on Cognition and Exploratory Learning in the
Digital Age (CELDA), pp. 261-268 (2016)

97. van Riemsdijk, M.B., Dastani, M., Winikoff, M.: Goals in agent
systems: a unifying framework. In: 7th Int. Joint Conf. on
Autonomous Agents and Multiagent Systems (AAMAS °08), p.
713-720 (2008)

98. Volter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S., Czarnecki,
K.: Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley Software Patterns Series. Wiley (2013)

99. Wagner, M., Zobel, D., Meroth, A.: Model-driven development of
soa-based driver assistance systems. ACM SIGBED Rev. 10(1),
37-42 (2013). https://doi.org/10.1145/2492385.2492392

100. Wartena, F., Muskens, J., Schmitt, L., Petkovi¢, M.: Continua:
the reference architecture of a personal telehealth ecosystem. In:
The 12th IEEE International Conference on e-Health Networking,
Applications and Services, pp. 1-6. IEEE (2010)

101. Wolf, P., Schmidt, A., Otte, J.P, Klein, M., Rollwage, S.,
Konig-Ries, B., Dettborn, T., Gabdulkhakova, A.: openaal-the
open source middleware for ambient-assisted living (aal). In:
AALIANCE conference, Malaga, Spain, pp. 1-5 (2010)

102. Zavala, E., Franch, X., Marco, J., Berger, C.: Hafloop: an architec-
ture for supporting highly adaptive feedback loops in self-adaptive
systems. Futur. Gener. Comput. Syst. 105, 607-630 (2020)

103. Zhang, Z., Conly, C., Athitsos, V.: A survey on vision-based
fall detection. In: Proceedings of the 8th ACM International
Conference on PErvasive Technologies Related to Assistive Envi-
ronments, PETRA ’15. ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2769493.2769540

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.3182/20130619-3-RU-3018.00637
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1109/SURV.2013.042313.00197
https://doi.org/10.1016/j.jss.2018.09.074
https://doi.org/10.1007/s10270-021-00956-0
https://doi.org/10.1007/s10270-021-00956-0
https://doi.org/10.1007/s10270-013-0394-9
https://doi.org/10.1007/s10270-013-0394-9
https://doi.org/10.1016/j.procir.2019.04.327
https://doi.org/10.1016/j.procir.2019.04.327
https://doi.org/10.1145/2492385.2492392
https://doi.org/10.1145/2769493.2769540

1274

J. Michael, V. A. Shekhovtsov

Judith Michael is PostDoc and
team leader at the Software Engi-
neering Chair of RWTH Aachen
University, Germany, and the speaker
of the modeling community (QFAM)
within the German Informatics Soci-
ety (GI). Her research focuses on
model-driven software engineer-
ing, the engineering of digital twins,
and software language engineer-
ing for domains such as produc-
tion, ambient assisted living, con-
trolling and finances, smart homes,
health, or IoT. Her Ph.D. thesis at
Alpen-Adria-Universitit Klagenfurt
was about cognitive modeling for assistive systems. For more informa-
tion, please visit https://www.se-rwth.de/staff/Judith.Michael/.

@ Springer

Volodymyr A. Shekhovtsov is a
PostDoc researcher at the Medi-
cal University of Innsbruck, Aus-
tria, and a lecturer at the Univer-
sity of Klagenfurt, Austria. His
research focuses on IT support
for biobanks, data and metadata
quality in healthcare, model-driven
engineering of complex systems,
domain-specific languages, assis-
tive systems and behavior sup-
port. His PhD thesis at National
Technical University, Kharkiv,
Ukraine was devoted to model,
methods, and information tech-

nologies in distributed production systems.

https://www.se-rwth.de/staff/Judith.Michael/

	A model-based reference architecture for complex assistive systems and its application
	Abstract
	1 Introduction
	2 Foundation
	2.1 Reference architectures
	2.2 Using models at runtime
	2.3 Context-awareness
	2.4 Assistive systems

	3 Analyzing requirements for assistive systems
	3.1 Functional requirements
	3.2 Mapping of functional requirements

	4 Components of assistive systems
	4.1 Assistive system properties affecting decisions to implement the optional components
	4.2 Application of the approach

	5 Analyzing existing assistive systems
	5.1 Assistance for elderly people
	5.2 Assistance for operators in smart manufacturing

	6 Related work
	6.1 Reference architectures for assistive systems
	6.2 Reference architectures for context-aware systems
	6.3 Reference architectures for self-adaptive systems
	6.4 Final remarks on the related work

	7 Discussion
	7.1 Guidelines and best practices
	7.2 Assumptions and limitations
	7.3 Architectural styles
	7.4 Non-functional requirements

	8 Conclusion
	Acknowledgements
	References

