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Abstract—Access to data for analysis and control tasks is at
the heart of digitization efforts in the manufacturing industry.
While sophisticated modeling languages like SysML describe
systems and their components, data often ends up in purpose-
built relational and time series databases. To generate value,
information must be retrieved and integrated from multiple
sources. In this paper, we propose an innovative method for
leveraging SysML engineering models and database queries by
combining them in a collaborative low-code web environment.
First, we make heterogeneous databases available via GraphQL,
a state-of-the-art approach for building Web APIs. Then, our
web application enables domain experts to exploit containment
relations in SysML models to connect diverse data sources.
The outcome is an integrated GraphQL API that matches
the engineering model structures by resembling views across
multiple database sources. The discussed approach incorporates
the benefits of data-oriented development and low-code platforms
beyond the business automation domain.

Index Terms—Low-Code, Data Integration, Data-Driven Ap-
plications, Manufacturing, Industry 4.0, Model-Driven Software
Engineering, SysML, Engineering Models

I. INTRODUCTION

The manufacturing industry is investing considerable re-

sources in the digitization of its processes as a means to boost

productivity [1]. The prerequisite to new kinds of analysis

tools driven by machine learning is the availability of data

from all levels of production, starting with machines and

ranging all the way to order and logistics data. In reality,

however, a great diversity of data sources and sinks can be

observed [2]. For example, even data from the same machine

is spread across different databases that were specifically built

for particular purposes. Across domains, such as engineering,

production, and usage, diversity grows. For a comprehensive

analysis, cross-domain data needs to be integrated.

The Systems Modeling Language (SysML) [3] is a general-

purpose modeling language for designing the structure, behav-

ior, requirements, and parametrics of cyber-physical systems.

It is adopted in various domains [4].

While SysML supports the systems engineering process

by leveraging models instead of a traditional document-based

approach, integration with heterogeneous runtime data is often

missing. Thus, there is a gap between the models describing

a system and the (often unstructured) data collected during

runtime. However, sophisticated, highly data-driven analy-

ses and applications require structured data preprocessing.

Therefore, combining these models, explicitly representing

the systems’ (sub-) hierarchies, with data queries can set the

foundation for an integrative view. Such a technique would

enable stakeholders as domain experts without advanced soft-

ware development knowledge to model schema integration

tasks tailored to their specific needs, avoiding the expense of

hiring software specialists. Therefore, we are interested in the

research questions, how data mapping tasks can be facilitated

for domain experts (RQ1) and whether (GraphQL) APIs can

be derived from SysML models (RQ2).

In this paper, we present a low-code approach and tool

support that enables linking engineering models with the data

the modeled systems produce. The aim is to realize database

views as object-oriented GraphQL queries. Our approach

combines Model-Driven Software Engineering (MDSE) [5]

methods with user-friendly functionalities of collaborative

low-code web applications, to account for domain experts

with varying data literacy. We extend the low-code platform

Direwolf Modeler [6] with SysML model support and develop

a service that converts SysML models to working GraphQL

services using the MontiCore language workbench [7]. The

proposed solution demonstrates the feasibility and usability

of the model-driven approach for data integration tasks but

also highlights challenges of possible real-world adoptions,

particularly regarding security.

The outline of this paper is as follows. In Section II, we

present related work in the area of data integration and low-

code model-driven design. We discuss the built-upon technolo-

gies in Section III. In Section IV, we outline our approach and

technical realization. Section V concludes this paper.

II. RELATED WORK

Easy availability and integration of data has multiple ben-

efits in the context of production processes [8]. However, to

analyze and use the data, uniform storage and access to data

must be ensured. Ontology-based data access (OBDA) [9] and

Database Federation [10] are research domains that deal with
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integration tasks. Database federation refers to an architecture

in which a middleware provides uniform access to heteroge-

neous data sources. Applications and developers might access

this data by a single query that gets processed by the manage-

ment system and relayed to the underlying sources. The same

architecture is implemented in newer database management

systems in conjunction with GraphQL. For example, the open-

source tool Hasura1 is able to connect various relational and

non-relational databases in a unified API.

OBDA handles the mapping of objects, representing the

high-level abstraction of a domain of interest, and the data

sources. Clients express queries in terms of an ontology, rather

than a database schema, and the OBDA system translates

them and enables access [9]. Typically, a mapping language

specified by domain experts and database engineers is used.

In this paper, we are working on the synergy between low-

code development approaches [11] and MDSE [12]. This over-

lap shares the use of models and the aim to reduce the amount

of source code required to create a software system [11].

The automated transformation of models into software im-

plementations opens the possibility to integrate information

from other formal descriptions, e.g., engineering models, into

the software. Several MDSE and low-code approaches for

production systems exist, however, they do not cover the

integration of data from different data sources in combination

with engineering models. For instance, one MDSE approach

for digital twins acts upon data generated from cyber-physical

production systems [13]. Other investigations describe the

generation of digital twin cockpits from event logs [14], or

from data structure models [15] supporting parameter manage-

ment in the engineering process of wind turbines. A further

prominent example comes in the context of the EU TYPHON

project2 dealing with heterogeneous database infrastructures

featuring high scalability. It proposes a model-based strategy

incorporating multiple languages to design, deploy, as well as

evolve distributed data stores and derive target store-specific

data access queries from a high-level representation [16].

However, these approaches rely on explicitly crafted data

structure models rather than automatically combining their

data and data sources with existing engineering models.

Most commercial LCDPs are proprietary and closed-source

(e.g., Microsoft PowerApps3 and Make4), which hinders inter-

operability, extensibility, and reusability [17], [18]. We develop

our tool with open standards like SysML and GraphQL to

consider these aspects explicitly. Since the cooperation be-

tween domain experts from engineering and data experts from

computer science is at the heart of our approach, we aim for

a web-based collaborative modeling tool [19] that is easily

accessible by all stakeholders.

1https://hasura.io/
2https://www.typhon-project.org/
3https://powerapps.microsoft.com/
4https://www.make.com

III. BACKGROUND

The main idea behind our approach is to reuse engineering

models to generate views on data stores. In the following,

we first introduce the underlying languages and tools, namely

SysML block diagrams that describes the structure of systems.

We then show GraphQL as an object-oriented and hierarchical

query language, the Direwolf Modeler, and the MontiCore

language workbench.

Block Definition Diagram (BDDs) as specified as part of

the SysML 1.6 specification [3] describe system structures. A

block is a modular unit describing certain system parts and

their relations. A block can comprise a real-world system,

such as a car or a wheel, but also more abstract concepts,

such as a production process or the automotive domain (driver,

passenger, car, baggage, etc.). An Internal Block Diagram

(IBD) captures the internal structure of a block. BDDs define

multiple relations that can be used for different purposes:

Generalization, part association, shared association, reference

association, as well as multi-branch versions of these elements.

GraphQL [20] is a query language for APIs and a server-

side runtime for executing queries using a defined type system.

A GraphQL data schema document contains multiple defini-

tions that are either executable or represent a GraphQL type

system. A service is created by defining types with their fields,

and operations for each field on each type. The operation is

either a query, a mutation, or a subscription. An exemplary

GraphQL API of a service providing general information

of a machine could have a root Query type with a field

named machines that returns a list of machine objects with

fields for the machine’s id, name, and location. To execute

a GraphQL query, the client sends the query string and the

operation (query or mutation) to the server. The server then

executes the query and returns the requested data. GraphQL

is a hierarchical query language, which means that the data is

queried from the root to the leaves of the graph.

There is a large number of tools, frameworks and libraries

available for GraphQL. The commercial open source tool Ha-

sura offers instant real-time GraphQL APIs on existing Post-

greSQL and other databases. It connects to existing databases,

and automatically generates a GraphQL API. Hasura provides

a built-in GraphQL engine, which allows to write custom

GraphQL queries and mutations. It provides functionality for

database federation with Remote Schemas but lacks a built-in

way to link different database sources together in such a way

as underlying engineering models prescribe.

Direwolf Modeler is a modular low-code framework for

creating universal graph-based graphical modeling applica-

tions [6], with an emphasis on visual development, simplicity,

and accessibility. The framework supports various node- and

edge-based metamodels, making it extensible for new graph-

like modeling languages. It enables the simultaneous integra-

tion of multiple modeler instances and, as a collaborative tool,

allows stakeholders to work together in the browser. The user

interface is kept deliberately simple and offers drag-and-drop

functionalities of modeling elements from an element palette.
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Figure 1: From engineering model to generated GraphQL API.

MontiCore is a language workbench for the development

of Domain-Specific Languages (DSLs) [7]. DSLs are defined

via context-free grammars, from which MontiCore gener-

ates software components for model processing such as a

parser, transforming models into an Abstract Syntax Tree

(AST), well-formednes and visitor infrastructures [21], and

a symbol table for models [22]. Additionally, it provides for

template-based code generation that builds upon the Apache

FreeMarker5 template engine. Visitors allow traversing and

operating on the AST data structure of the model. In the

generation process, parameterized templates are converted into

programming language code.

IV. FROM SYSML TO GENERATED GRAPHQL SCHEMA

Our general concept is based on the observation that some

information about structures, which is necessary for further

processing heterogeneous data from different databases, is

available in the engineering models. Therefore, the goal of

our work is the automated elicitation of this information and

the derivation of GraphQL queries for database federation and

further processing of this now structured data. Figure 1 ex-

plains our approach. Production systems (bottom left), which

are described by engineering models (top left), produce data

that are written to various databases. The model features an

industrial conveyor belt (red) with a gripper arm (blue) that

sorts out faulty parts. Belt and gripper store data at different

frequencies to different databases. The general goal of this

work is to reuse these engineering models in a low-code envi-

ronment and integrate access with the heterogeneous databases

via the GraphQL API (mid). The tooling automatically derives

queries to provide the corresponding data in a structured way

for integrated analyses (right).

Transformation Approach: In this work, we mainly refer

to engineering models of SysML. More precisely, we con-

centrate on SysML BDDs, describing system structures, and

forming the modeling baseline of our approach. We build

on the modeled system components and their relationships

5https://freemarker.apache.org/

for extracting linking information of the underlying runtime

data of a corresponding machine. For instance, an association

between two blocks represents a data relation between the

value properties, i.e., the data sources. In our modeling tool,

domain experts establish the connection between SysML BDD

blocks and GraphQL types by providing tagging information.

Thus, each block in the model is augmented with additional

data source details, allowing for different data sources for

distinct elements. For each property and for the block name, a

tag specifies a source (i.e., a table in one of the incorporated

databases). The tables are then joined via the information

provided by the association. We define two properties for

each association, joinFrom and joinTo. A domain expert

defines how data is joined together, similar to how foreign key

relations in a traditional SQL database are designed. Then, the

final (integrated) GraphQL schema is generated. For instance,

a table resource could contain all machine data, i.e., the name

and cost per hour of all machines. The root query name for

this table is then “resource”, while the machine data are the

fields of that query. An example GraphQL query would thus

be {resource {name cost_per_hour}}.

Deriving GraphQL schemas from the augmented SysML

BDDs requires an unambiguous mapping of the individual

diagram elements. Table I provides an overview of this trans-
lation between concepts of SysML BDDs into GraphQL. Every

SysML block b generates a new GraphQL schema type with

the name of the block (row 0 in Table I). Analogously, every

interface and enumeration has a corresponding interface or

enumeration (rows 1 & 5). If a block is associated with an

interface, then the GraphQL type also implements the interface

(row 2). For every attribute, or association with cardinality 1,

we create a new GraphQL field with the name and type of

the attribute, or the object type in case of an association

(row 3). For associations with cardinality higher than 1,

we generate a field with the association name and the type

wrapped in square brackets (row 4), indicating a collection-

like access schema. An enumeration literal is converted into a

corresponding GraphQL enumeration literal pendant (row 6).
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We create a new GraphQL scalar type if we encounter a field

type that is not a scalar type but should be one (row 7).

For associations that expect at least one result, we add an

exclamation mark representing required parameters (row 8).

Furthermore, BDDs support multiple other association types

that we do not specify explicitly. For example, generalization

can be included by adding the properties of the generalized

block to the specialized block. Similarly, the part association

can be included by specifying that all properties of a part are

inserted into the block it is part of. No separate type should

be created for a part either. As SysML originated as a UML

profile, this method directly resembles related work that maps

UML and IFML models to GraphQL [23].

Table I: Mapping from SysML BDD elements to GraphQL

schema components.

# BDD Metaclass GraphQL schema
0 b : Block type b.name {...}

1 i : Interface interface i.name {...}

2 b : Block.implements → i : «Interface » type c.name implements i.name {...}

3 a : {attrs., assocs. max. mult. 1} a.name : a.type (field)

4 as : assocs. max. mult.>1 as.name : [as.type] (field)

5 e : «Enumeration » enum e.name {...}

6 el : Enum Literal el.name (enum value)

7 t : Type not in GraphQL scalar types scalar t.name

8 f : structural feature min mult. 1 f.name : f.type! (type marker)

Technical Realization: We use the open-source tool Hasura

to make data sources available as GraphQL APIs. It offers data

integration functionalities for heterogeneous data sources via

remote schemas that need to be configured via textual config

files. Based on the integrated APIs, our low-code tool allows

for a demand-driven composition of queries, automatically

derived by extracting the interrelations within the SysML

models. Using the customization possibilities of the Direwolf

Modeler, we realized an extension incorporating SysML BDDs

with augmentation possibilities via attachable tags. Thus, each

block includes a title, an attributes property contain-

ing all fields of a block, and a tags property containing all

the additional tags that were added to an element. Users can

add attributes by specifying a string that consists of the name

of the attribute, followed by a colon and lastly the type of the

attribute (e.g., name: String). Furthermore, associations

are available in the BDD modeling palette that can be applied

by dragging from one block to another. Each association has

attributes, tags, and the properties cardinality_origin,

cardinality_target, JoinFrom, and JoinTo. The

cardinality properties express the relationship’s multiplicities

(at both ends) between blocks based on the direction of

the edge. In our model, associations are always directed,

to get unambiguous schema mappings with corresponding

JoinFrom and JoinTo properties. Therefore, to create reciprocal

references, we require two separate associations. To further

process the data access enriched models, we use Direwolf’s

capability to convert different kinds of models into a JSON

representation that we employ in the next step.

Extracting and Processing Model Information Generat-

ing GraphQL schemas and servers from the augmented BDDs

modeled in Direwolf requires further processing of the models,

exported as JSON artifacts. We use the MontiCore JSON

parser to handle these JSON representations and create an

AST. The parser dissects the JSON document into a data

structure adhering to the JSON grammar representation so that

each entry has a corresponding type, such as JSONArray,

JSONProperty, or JSONObject.

After deriving the AST, we need to collect the information

relevant to the generation process. For this purpose, we employ

a visitor, which MontiCore automatically provides for each

language [7], an extended realization of the general visitor

pattern [24]. By design of Direwolfs export, we have two

arrays within the input JSON document, one for all nodes

and one for all edges of the graph induced by the original

SysML model. Here, we make use of MontiCore’s possibility

to customize the overall traversal strategy to only shallowly

traverse the AST as we are only interested in the array’s nodes

and edges. Thus, the visitor operates on the nodes of the JSON

AST and collects a list of Java node objects and the edges

into a list of edge objects. The visitor returns the sub-AST

that results from its execution. On the node array, we collect

the properties of that node into the node object. On the edge

array, we proceed analogously.

GraphQL Schema Generation. To generate the GraphQL

schema, based on the extracted features from the JSON AST,

we add fields as attributes to each node if it has an outgoing

edge to another node, as shown in Table I. The name of this

field is the association name and the type is the name of

the target node. Furthermore, we annotate the new field with

square brackets if the cardinality for the target is greater than

one. Additionally, a root query is created for every node as the

access point for the respective data source. A query defines the

entry point for all queries of the generated GraphQL schema.

Instead, the root queries are generated for every node to query

all fields (including associations) from one data source.

GraphQL Server Generation. We generate a GraphQL

server in JavaScript that runs on the open-source Apollo
Server6. We generate an index.js, and, for every GraphQL

type, resolver.js and datasource.js files. A data-
source class encapsulates fetching data from particular data

sources via HTTP. Functionalities of datasource files are

available to the resolver as APIs that have the node’s name.

The topmost resolvers send API calls to all datasources.

These calls are cached for scalability reasons. The JoinFrom
and JoinTo properties of the nodes are used to match the

result tables with the respecting fields of our GraphQL type

system. Finally, the index file contains functions to import

the corresponding datasource files, create an Apollo instance,

instantiating the resolvers, and starting the server.

V. CONCLUSION AND FUTURE WORK

The digitization of industry relies on making large amounts

of data available for advanced analysis and control tasks.

However, these data treasures often sit in heterogeneous

6https://www.apollographql.com/docs/apollo-server/
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databases that have been set up for specific purposes, making

integration difficult. For instance, Digital Shadows, which

form a purposeful view of an observed object or process,

require a specific focus and by selection and aggregation of

data that may originate from heterogeneous sources [25]. Our

proposed method of combining SysML engineering models

and database queries in a collaborative web environment relies

on domain experts working together with data experts. We

benefit from parts-of hierarchies inherent to SysML models,

resulting in an integrated GraphQL schema matching the engi-

neering model structures. By extending Direwolf Modeler with

SysML BDDs, we facilitate data mapping tasks for domain

experts, thus answering RQ1. Furthermore, we developed a

prototype for generating a GraphQL server with the MontiCore

language workbench and its text generating capabilities for

creating GraphQL schemas, answering RQ2. In comparison

to proprietary LCDPs, every part of our software can be

swapped for another technology stack. A preliminary technical

evaluation exhibits a low overhead with a linear increase of

the response time with each added node. The generation time

is almost unaffected by the number of nodes.

Our prototype shows a number of limitations. E.g, the

generated resolver exhibits overfetching issues, i.e., data rows

are fetched multiple times, which becomes critical with an

increasing number of source tables. Real-world aspects that

we considered out of scope include the integration of more

complex and real-time time series data sources. Database

federation, in general, has the risk of compromising huge

amounts of data if a security vulnerability is exploited.

In future work, we want to research how additional

GraphQL operation types, such as mutations and subscriptions,

could be combined with our solution. Moreover, our approach

can be used to connect digital twins with the different data

sources from their cyber-physical counterpart in low code

development platforms [26]. Our tool connects modeling and

domain experts in a visual, collaborative interface requiring

a usability study. To test our prototype in real-world applica-

tions, we are working on scalability measures by employing

caching and batching of queries. Finally, usability evaluations

with domain experts need to be performed. Overall, we

see great potential for collaborative LCDPs involving both

modeling and domain experts to tackle data integration and

analytics tasks common to digitization endeavours.
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