
A Domain Specific Transformation Language

Bernhard Rumpe and Ingo Weisemöller

Software Engineering
RWTH Aachen University, Germany

http://www.se-rwth.de/

Abstract. Domain specific languages (DSLs) allow domain experts to
model parts of the system under development in a problem-oriented no-
tation that is well-known in the respective domain. The introduction of a
DSL is often accompanied the desire to transform its instances. Although
the modeling language is domain specific, the transformation language
used to describe modifications, such as model evolution or refactoring
operations, on the underlying model, usually is a rather domain inde-
pendent language nowadays.
Most transformation languages use a generic notation of model patterns
that is closely related to typed and attributed graphs or to object di-
agrams (the abstract syntax). A notation that reflects the transformed
elements of the original DSL in its own concrete syntax would be strongly
preferable, because it would be more comprehensible and easier to learn
for domain experts. In this paper we present a transformation language
that reuses the concrete syntax of a textual modeling language for hier-
archical automata, which allows domain experts1 to describe models as
well as modifications of models in a convenient, yet precise manner. As
an outlook, we illustrate a scenario where we generate transformation
languages from existing textual languages.
Keywords: domain specific languages, model transformations.

1 Introduction and Problem Statement

Domain specific languages (DSLs) have the advantage of allowing domain experts
to model parts of the system in a problem-oriented notation that is well-known in
the respective domain. Like most documents in software development processes,
models in DSLs underly frequent changes. These may include refactorings, au-
tomated modifications, or complex editing operations. Change operations on
models can be described in explicitly defined model transformations.

To define a model transformation, we need an appropriate transformation
language. Today’s transformation languages [7] however operate on the abstract
syntax and thus look very different from the DSL to be transformed. In the
following sections, we are going to present an approach to close this gap.

1 In our wording, the term “domain” refers to application domains such as business
processes or a discipline of engineering as well as to technical domains such as rela-
tional databases or state based systems.

[RW11] B. Rumpe, I. Weisemöller
A Domain Specific Transformation Language
In: ME 2011 - Models and Evolution, Wellington, New Zealand.
Ed: B. Schätz, D. Deridder, A. Pierantonio, J. Sprinkle, D. Tamzalit, Wellington, New Zealand, Okt. 2011.
www.se-rwth.de/publications

If the user wants to keep the look-and-feel of the DSL within the transfor-
mation language, then this language needs to embody elements of the concrete
syntax of the underlying DSL, and is thus domain specific itself. Consequently,
instead of having a single language for transformations of models in arbitrary
DSLs, we would prefer a syntactically fitting transformation language that pro-
vides the same look-and-feel as the DSL at hand.

In this contribution, we state that the concrete syntax of a textual DSL can
be reused to describe transformation rules, thus providing this look-and-feel. We
substantiate our claim by the introduction of a transformation rule used in the
process of flattening hierarchical automata and of the corresponding transfor-
mation language. Because the elements of the transformation language depend
on the elements of the automata language in a systematic manner, we believe
it is possible to systematically if not automatically derive the transformation
language from a given DSL.

The following sections are outlined as follows: In Section 2 we provide a brief
introduction to graph based model transformations, based on a rule used in the
process of flattening hierarchical automata. We are going to reuse this example in
the subsequent sections. Section 3 gives an introduction to existing approaches
to the definition of model transformations in a domain specific notation. In
Section 4 we explain what transformation rules in concrete syntax look like.
In Section 5 we summarize the previous sections and give an overview of our
ongoing and future work in this area.

2 Abstract and Concrete Syntax in Transformations

In the following, we consider transformation rules to be small steps of transfor-
mation in an appropriate language, which may be composed to more complex
transformation sequences by control structures or rule application strategies.
Composition mechanisms may vary (cf. [7, 17]), whereas we encounter some kind
of transformation rules in almost any transformation language. Therefore and for
reasons of space, we leave composition mechanisms out of consideration. Instead,
we focus on the notation of transformation rules.

In graph based transformation approaches, rules consist of a left hand side
(LHS) and a right hand side (RHS), which describe excerpts from a model that
the transformation can be applied to (see [15, 12]). Informally explained, the LHS
describes a part of the model before the application of the transformation rule,
whereas the RHS describes the same part of the model after the rule application.

Because we basically describe excerpts from models, i.e. instances of a mod-
eling language, in the LHS and RHS of a transformation rule, it seems natural
to reuse the syntax of the modeling language when describing transformation
rules. In current transformation approaches however, this reuse is limited to the
abstract syntax for a variety of reasons, which means that the concrete syntax
of the modeling language is not reflected in the transformation language.

We are going to show the difference between reusing the abstract syntax
only and reusing both abstract and concrete syntax based on a transformation

rule for hierarchical automata. The rule we consider is used in the process of
flattening hierarchical automata, which is a simplified case of the transformations
for flattening UML state machines (cf. [18, pp. 227 ff.] for details).

operating

off

⇔ starting

operating

off

starting

switchedOn switchedOn

equivalent
automata

1 state off; state off;

2

3 state operating { state operating {

4 state starting <<initial>>; <=> state starting;

5 } }

6

7 off -switchedOn> operating; off -switchedOn> starting;

Fig. 1. Equivalent automata in graphical and textual representation

Before investigating the transformation rule itself, we take a look at the
syntax of the DSL for hierarchical automata. Figure 1 shows both a graphical and
textual representation of a hierarchical automaton on the left, and a graphical
and textual representation of a semantically equivalent automaton on the right.
The automaton on the right is obtained from the one on the left by forwarding
the transition to the nested initial state. The upper part of the figure shows
the automata in a graphical syntax, whereas the notation in the lower half is a
textual representation of the same automata.

A model transformation rule that can transform an automaton on the left
into the equivalent automaton on the right consists of two parts: a LHS, which
matches a part of the automaton similar to the left side of Figure 1, and a RHS,
which specifies the replacement, and which is similar to the right side of Figure 1.
We ignore the RHS of the rule for the moment and take a look at the pattern
matching part on the left only: Figure 2 shows the difference between a pattern
based on the abstract syntax of the textual DSL from Figure 1, and the same
pattern in a notation based on the concrete syntax of that language.

The language of the object diagram pattern in the upper part of the figure
reuses the abstract syntax of the automata DSL. The same applies to the second
notation (which we did not define explicitly, but is inspired by MOF QVT [11]
and OCL [10]). Please note that these patterns are written in pseudocode rather
than being executable by some tool, but they depict the general style of trans-
formation languages based on the abstract syntax.

:Outgoing
t1 : Transition

s2: State

s1: State
:Incoming

: StateHasSubstates

s3: State

initial = true

substates

: TransitionHasLabel

e: Label

UML object diagram

Automaton pattern in OCL-like abstract syntax

1 s1 : State;

2 s2 : State;

3 s3 : State;

4 t : Transition;

5 e : Label;

6

7 s2.substates->contains(s3);

8 s3.initial = true;

9 t.source = s1;

10 t.target = s2;

11 t.label = e;

Automaton pattern in concrete syntax

1 state $source;

2

3 state $outer {

4 state $inner <<initial>>;

5 }

6

7 $source -$event> $outer;

Fig. 2. Three variants of the LHS of a rule for transition forwarding

The statements in this pattern are either declarations of typed objects (ll.
1-5), links (l. 7) or additional constraints for these objects (ll. 8-11).

In comparison to this, the pattern based on the concrete syntax of the DSL,
which is shown in the lower part of Figure 2, is more compact and easier to read.
This is because the transformation language used here is close to the underlying
modeling language rather than based on lists of objects, links and constraints.

The pattern matching language differs from the modeling language itself
mainly in the use of schema variables such as $source that act as placeholders
for concrete elements from the model.

3 Related Work

A number of publications addresses the specification of model transformations
in a notation close to or identical to the corresponding modeling languages. This
is usually referred to as transformations in concrete syntax, for instance by T.
Baar and J. Whittle [3] as well as by M. Schmidt [19]. We will adopt this term
for the remainder of this paper.

Both publications mentioned above adapt the concrete syntax of visual mod-
eling languages for the specification of transformation rules. In either approach,
the adaption of the syntax is performed manually. To our best knowledge, there
is no implementation of either of these approaches available.

Several researchers have spent work on the derivation or inference of trans-
formation rules from concrete examples [13, 22, 5]. In comparison to our work,
these approaches usually require a manual adaption of the inferred rule in order
to make it applicable to more models than the example it was derived from.

There are also approaches to define a specific transformation language man-
ually, such as JTL [6] or the language for Java patterns presented in [2]. The
manual definition of comparable languages for DSLs would be very tedious.
Therefore, the generation of transformation languages that we present as an
outlook in Section 5 can substantially save efforts for language developers.

Existing approaches to the generation of transformation languages that re-
flect the concrete syntax of the transformed models are currently limited to
graphical, metamodel-based languages. The most mature approaches we are cur-
rently aware of are the ones by R. Grønmo [8] and by Kühne et al. [14]. These
approaches however do not consider the concrete syntax of textual languages de-
fined in grammars, and the generation of the languages is not fully automated.

Models in textual languages can also be transformed by term rewriting sys-
tems. E. Visser presents how term replacements can be written using the concrete
syntax of the underlying language in [23]. Term rewriting rules however are usu-
ally limited to a connected (and typically small) subgraph of the target syntax
tree, whereas in model transformations we often have to deal with rules that
operate on objects distributed all over the syntax tree or even different input
files.

Another example where the same language is used to describe expressions
and transformations is mathematics and maybe proof systems close to math-
ematics [4, 16]. Mathematical equations can be understood as transformations,
and indeed the success of mathematics to a large extent comes from a precisely
defined, composable set of transformation rules (equalities) that allow to ma-
nipulate and simplify mathematical formulas in almost any form. Mathematics
however does not need explicit references to the abstract syntax.

In conclusion, model transformations for textual languages could be substan-
tially improved in terms of reflecting the concrete syntax of the underlying DSL,
and — as far as can be seen from existing work — such transformation languages
can to a wide extent be generated from the original modeling languages.

4 Syntactic Form of Transformation Rules

We now introduce the transformation rule language for hierarchical automata.
This introduction is informal in the sense that it points out the style of trans-
formation rules and what happens at execution time of these rules. We are not
going to completely define their syntax and their semantics, but concentrate
on the presentation style of transformation rules. For the understanding of this
section, we assume that the reader has a basic knowledge of model transforma-
tions, especially model transformations based on graph transformations, and the
application of transformation rules to host models as discussed in [1].

We pick up the example of forwarding transitions in automata to nested
initial states (cf. Section 2). Figure 3 shows two possible notations of a transfor-
mation rule for the forwarding of a single transition, given in concrete syntax2.

In our approach, which is shown in the upper half of Figure 3, a transforma-
tion rule consists of an integrated notation of its LHS and its RHS. In comparison
to separate notations, as shown in the lower half of Figure 3, this has two major
advantages: The first one is reduced redundancy between the LHS and the RHS,
especially if we have a lot of elements that are not changed by the transforma-
tion and occur on both sides of the rule. The second one is the possibility to
determine object identity between the LHS and the RHS: If an object does not
have a name (such as the transition in lines 8 and 16 in the lower part of the
figure), or if the name of an object is changed by the transformation rule, we
have to introduce additional object IDs, such as $T in the example, for defining
identical objects on the LHS and RHS.

In our example there are two differences between the LHS and the RHS. In
the integrated notation, differences are indicated by a replacement inside the
rule, denoted between square brackets [[...]] and the replacement operator
:-. The first difference is defined in line 6: The state identified by $inner is
not initial on the RHS, indicated by the removal of the modifier <<[[initial
:-]]>>. The second one occurs in line 9. The name of the target state of the
transition modeled here is $outer on the LHS, but $inner on the RHS.

These differences describe exactly the modifications that are necessary to
transform the LHS from our initial example (cf. Figure 1) into the RHS, i.e. into
the automaton that has no nested initial states.

In contrast to our initial example from Figure 1, we do not have to use con-
crete identifiers of states or transition labels in the transformation rule. Instead
of identifiers, we can use schema variables. In our transformation rule language,
identifiers are interpreted as schema variables if and only if they start with a
dollar sign. Thus, we can unambiguously distinguish between schema variables
that must be matched when the transformation is executed, and fixed identifiers.
Please note that schema variables cannot only be matched against identfiers, but
against arbitrary syntactical elements. For example, $event in Figure 3 could
also be matched against complex labels with events and preconditions.

2 This is a simplified rule; actually a semantics preserving transformation would have
to forward all incoming transitions to all nested initial states.

Transformation rule in concrete syntax

1 state $source;

2

3 state $outer {

4 state $inner << [[initial :-]] >>;

5 }

6

7 $source -$event> [[$outer :- $inner]];

Transformation rule in concrete syntax, separated LHS and RHS

1 match {

2 state $source;

3

4 state $outer {

5 state $inner << initial >>;

6 }

7

8 Transition $T [[$source -$event> $outer;]]

9 } replace {

10 state $source;

11

12 state $outer {

13 state $inner << initial >>;

14 }

15

16 Transition $T [[$source -$event> $inner;]]

17 }

Fig. 3. Transformation rule for transition forwarding in concrete syntax with integrated
notation of LHS and RHS (top) or separated notation (bottom)

When a transformation is executed, the transformation engine attempts to
find a match for the pattern specified on the LHS. A schema variable may occur
several times in a pattern, such as $source in lines 1 and 7. In this case, all
matches against this schema variable in the host model must have the same
value3. Elements that have a fixed identifier are matched against the element
with exactly this identifier in the host model.

Once a match for the LHS is found, it is replaced by the RHS of the trans-
formation rule. As our work does not focus on the definition of another trans-
formation engine, but we need such an engine to demonstrate our approach, we

3 This part of the matching is currently limited to a flat, global namespace. We are
going to to apply this concept to more complex namespaces in future work.

have chosen a fairly standard way of interpreting the transformation as inspired
by graph grammar tools like [21, 20, 1] in the first attempt.

The graph matching approach allows (but not enforces) a match to have
properties that are not given in the rule. For example, the initial state given in
line 4 of the example may be mapped to a state that is both initial and final.

Our language also provides mechanisms to combine concrete syntax patterns
with abstract syntax, thus allowing to define objects with abstract types or
additional constraints referring to the abstract syntax. Moreover, it includes
advanced concepts for pattern matching in attributed graphs such as sets of
nodes or negative application conditions.

5 Conclusions, Current State and Future Work

In the previous section we gave an example of a transformation rule in concrete
syntax, which is an instance of a domain specific transformation language. The
systematic derivation of such transformation languages from DSLs as well as
further improvements of our transformation engine are subject to our ongoing
work in this area.

Our goal is to generate transformation languages from the grammars of DSLs.
A configuration of the generation process (such as the specification of the variable
prefix described above) would be acceptable, but the development of a transfor-
mation language in concrete syntax should not require writing source code in a
programming language or modifying grammars manually.

We use the MontiCore tool set and framework for the language definition
and all generation processes. MontiCore [9] allows for the integrated definition
of the concrete and the abstract syntax of DSLs in a grammar format similar
to EBNF. It also provides mechanisms to efficiently process models in these
DSLs, for instance static analyses, code generation, or model transformations
written in Java. Future versions of MontiCore will also provide support of model
transformations as presented in this paper.

Figure 4 depicts the process of modeling and transformation language de-
velopment as well as the usage of these languages according to our approach. A
language developer defines the syntax of a DSL in a context-free grammar. From
this definition, the rule language generator can automatically derive a grammar
of a transformation language and a matching code generator, where the code
generator also includes a language independent runtime environment. A domain
expert can now not only define models in the DSL, but also implement model
transformations in the generated language, which can be processed by the trans-
formation language parser and code generator.

As a proof of concept we are currently working on more complex transfor-
mations, including the complete process of flattening UML state machines by
transformations in concrete syntax. In order to develop more complex transfor-
mations in a manageable way, we are also working on a control flow language,
which is syntactically and semantically close to a subset of Java and includes
transformation rules as statements or expressions.

<<instanceof>>

:ASTAutomatona:ASTAutomaton

<<instanceof>>

RuleLanguage-
Generator

:ASTAutomatona':ASTAutomaton

language
developer

domain
expert

<<generates>>

<<generates>>

<<gen>>
AutomatonTF.mc

<<handcoded>>
Automaton.mc

<<handcoded>>
ForwardTo-
Initial.mtr

<<gen/RE>>
CodeGen

DSL
definition

Transformation
language definition

Fig. 4. Roles, documents and components in the transformation process

The current prototype can already execute a subset of the rules required to
flatten UML state machines. We plan to come up with a more stable version that
includes the control flow language and fully enables the transformations of state
machines as well as some other languages in an upcoming version of MontiCore,
which we plan to release by the end of this year.

References

1. Agrawal, A., Karsai, G., Shi, F.: A UML-based graph transformation approach
for implementing domain-specific model transformations. International Journal on
Software and Systems Modeling (2003)

2. Appeltauer, M., Kniesel, G.: Towards concrete syntax patterns for logic-based
transformation rules. Electron. Notes Theor. Comput. Sci. 219, 113–132 (November
2008)

3. Baar, T., Whittle, J.: On the Usage of Concrete Syntax in Model Transforma-
tion Rules. In: Proc. of Sixth International Andrei Ershov Memorial Conference,
Perspectives of System Informatics (PSI). pp. 84–97. Lecture Notes in Computer
Science (2006)

4. Bauer, F.L., Ehler, H., Horsch, A., Möller, B., Partsch, H., Paukner, O., Pepper, P.:
The Munich Project CIP, Volume II: The Program Transformation System CIP-S,
Lecture Notes in Computer Science, vol. 292. Springer (1987)

5. Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M., Kappel, G., Rets-
chitzegger, W., Schwinger, W.: An Example Is Worth a Thousand Words: Com-
posite Operation Modeling By-Example. In: Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems. pp. 271–285.
MODELS ’09, Springer-Verlag, Berlin, Heidelberg (2009)

6. Cohen, T., Gil, J.Y., Maman, I.: Jtl: the java tools language. SIGPLAN Not. 41,
89–108 (October 2006)

7. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–645 (2006)

8. Grønmo, R.: Using Concrete Syntax in Graph-based Model Transformations. Ph.D.
thesis, Dept. of Informatics, University of Oslo (2009)

9. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: Monticore: a frame-
work for the development of textual domain specific languages. In: 30th Interna-
tional Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May
10-18, 2008, Companion Volume. pp. 925–926 (2008)

10. Object Management Group: Object Constraint Language Version 2.0 (OMG Stan-
dard 2006-05-01) (2006),
http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf

11. Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification (2008-04-03) (April 2008),
http://www.omg.org/spec/QVT/1.0/

12. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Satellite Events at the
MoDELS 2005 Conference. Lecture Notes in Computer Science (LNCS), vol. 3844.
Springer (2005), http://dx.doi.org/10.1007/11663430 14

13. Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, Exten-
sions, Implementations, and Application Scenarios. Tech. Rep. tr-ri-07-
284, Software Engineering Group, Department of Computer Science, Uni-
versity of Paderborn (June 2007), http://www.uni-paderborn.de/cs/ag-
schaefer/Veroeffentlichungen/Quellen/Papers/2007/tr-ri-07-284.pdf

14. Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.: Explicit trans-
formation modeling. In: Ghosh, S. (ed.) Models in Software Engineering, Lecture
Notes in Computer Science, vol. 6002, pp. 240–255. Springer Berlin / Heidelberg
(2010)

15. Nagl, M.: Graph-Grammatiken: Theorie, Anwendungen, Implementierung. Vieweg
(1979)

16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. Springer (2002)

17. Philipps, J., Rumpe, B.: Refactoring of Programs and Specifications. In: Kilov, H.,
Baclawski, K. (eds.) Practical foundations of business and system specifications,
pp. 281–297. Kluwer Academic Publishers (2003)

18. Rumpe, B.: Modellierung mit UML. Springer (2004)
19. Schmidt, M.: Transformations of UML 2 Models using Concrete Syn-

tax Patterns. In: RISE 2006 International Workshop on Rapid Integra-
tion of Software Engineering techniques. Lecture Notes in Computer Sci-
ence (LNCS), vol. 4401, pp. 130–143. Springer Verlag, Heidelberg (2006),
http://www.springerlink.com/content/836phwk78782v614/

20. Schürr, A.: Progres: A vhl-language based on graph grammars. In: Graph-
Grammars and Their Application to Computer Science (LNCS 532). pp. 641–659
(1990)

21. Taentzer, G.: Agg: A graph transformation environment for modeling and val-
idation of software. In: Applications of Graph Transformations with Industrial
Relevance. pp. 446–453 (2004), http://dx.doi.org/10.1007/b98116

22. Varró, D.: Model Transformation by Example. In: Proc. 9th Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems (MODELS 2006). LNCS, Springer, Genova (October 2006),
http://www.springerlink.com/content/a34jhvh4j01l7514/

23. Visser, E.: Meta-Programming with Concrete Object Syntax. In: Batory, D., Con-
sel, C., Taha, W. (eds.) Generative Programming and Component Engineering
(GPCE’02). Lecture Notes in Computer Science, vol. 2487, pp. 299–315. Springer-
Verlag, Pittsburgh, PA, USA (October 2002)

