
A Compositional Framework
for Systematic Modeling Language Reuse
Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, Andreas Wortmann

Software Engineering, RWTH Aachen University, Aachen, Germany
www.se-rwth.de

ABSTRACT
Many engineering domains started using generic modeling lan-
guages, such as SysML, to describe or prescribe the systems under
development. This raises a gap between the generic modeling lan-
guages and the domains of experience of the engineers using these.
Engineering truly domain-specific languages (DSLs) for experts of
these domains still is too challenging for their wide-spread adop-
tion. One major obstacle, the inability to reuse multi-dimensional
(encapsulating constituents of syntax and semantics) language com-
ponents in a black-box fashion, prevents the effective engineering
of novel DSLs. To facilitate engineering DSLs, we devised a concept
of 3D components for textual, external, and translational DSLs that
relies on systematic reuse through systematic closed and open vari-
ability in which DSL syntaxes can be embedded, well-formedness
rules joined, and code generators integrated in a black-box fashion.
We present this concept, a method for its systematic application,
an integrated collection of modeling languages supporting system-
atic language reuse, and an extensible framework that leverages
these languages to derive novel DSLs from language product lines.
These can greatly mitigate many of the challenges in DSL reuse
and, hence, can advance the engineering of truly domain-specific
modeling languages.

CCS CONCEPTS
• Software and its engineering→Domain specific languages.
KEYWORDS
DSL, Modeling Language, Reuse, Variability
ACM Reference Format:
Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, Andreas Wortmann. 2020.
A Compositional Framework for Systematic Modeling Language Reuse. In
ACM/IEEE 23rd International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS ’20), October 18–23, 2020, Virtual Event, Canada.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3365438.3410934

1 INTRODUCTION
Our society thrives on Cyber-Physical System (CPS) that enable
communication, education, healthcare, mobility, and more. These
systems are engineered in collaboration with experts from multiple
domains, such as mechanical engineering, electrical engineering,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’20, October 18–23, 2020, Virtual Event, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7019-6/20/10. . . $15.00
https://doi.org/10.1145/3365438.3410934

material sciences, jurisprudence, software engineering, and systems
engineering. To cope with the complexity of engineering these
systems, domain experts have begun to leverage the benefits of
modeling languages [49] to, among others, describe product ge-
ometries [17, 37] physical properties [19, 30], or the integration of
contributions from different domains [2, 40].

The efficient use of models by domain experts demands well-
defined, Domain-Specific Languages (DSLs) that support automated
analysis and synthesis of conforming models. Engineering DSLs
is a complex endeavor that demands understanding the domain
of interest, creating implementations capturing the DSL’s syntax
and semantics, integrating these properly, and providing tools sup-
porting to their use. Due to these challenges, experts often have
to use overly generic modeling languages, such as UML [25] or
SysML [22], instead of DSLs precisely tailored to the concepts and
notations of their respective domains. This hinders domain experts
in employing these languages efficiently. Reusing components to
engineer DSLs more efficiently can lead to more precise and specific
languages that can foster the adoption of modeling techniques and,
ultimately, facilitate engineering complex CPS. The contributions
of this paper support the efficient engineering of DSLs through
(1) a novel conceptual model of the reuse of 3D DSL components
through closed variability of DSL families (product lines) and open
customization; (2) a method for its systematic application; (3) a col-
lection of integrated modeling languages to describe DSL families
and their constituents; and (4) an extensible framework that sup-
ports engineering DSL families as well as deriving DSL components
and complete DSLs from these.

The research results presented in this paper extend the find-
ings presented in [6–8] by making extension points explicit on
the component level, introducing different kinds of bindings be-
tween the DSL families and their components, and providing an
integrated feature modeling language that describes how families
relate components through features.

In the remainder, Sec. 2 motivates the benefits of systematic lan-
guage reuse and Sec. 3 presents preliminaries. Sec. 4 introduces our
conceptual model and a method for its systematic application. Sec. 5
describes the modeling languages and the framework realizing the
conceptual model. Sec. 6 illustrates its application by example. Sec. 7
discusses observations and related research. Sec. 8 concludes.

2 MOTIVATING EXAMPLE
Consider a company engineering different kinds of CPS featur-
ing state-based behavior, such as robotics systems and appliances
for smart buildings. Instead of using the same generic modeling
language for all three departments, engineers in each department
should be enabled to use a DSL closely related to their domain of

[BPR+20] A. Butting, J. Pfeiffer, B. Rumpe, A. Wortmann:
A Compositional Framework for Systematic Modeling Language Reuse.
In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, ACM, Oct. 2020.
www.se-rwth.de/publications/

https://doi.org/10.1145/3365438.3410934
https://doi.org/10.1145/3365438.3410934

MODELS ’20, October 18–23, 2020, Virtual Event, Canada A. Butting, J. Pfeiffer, B. Rumpe, A. Wortmann

Deep Shallow

InitialAnd

FinalState
Junction ConditionForkJoin

Hierarchical

States

History

State

Machines

Pseudo

States

Timed

Transitions

FD

Figure 1: Feature model of an FSM Language Product Line
(LPL) (adapted from [38])

expertise. A team of language engineers, therefore, decides to engi-
neer a family of Finite-State Machines (FSMs) DSLs (cf. Figure 1).
State machines are commonly used behavior descriptions in a mul-
titude of application domains such as robotics [5, 9], aerospace
software [21], web applications [23] or game development [35].
Thus, different variants for FSM notations have been brought forth.

For instance, the company has engineered a DSL for describ-
ing state-based behavior of robot arms with limited computational
power. For this application, performance is crucial and managing
state histories and concurrency as induced by join and fork nodes
is not desired. However, the behavior of the robot arm should fea-
ture time-based triggers on transitions to ease its programming. In
another department of the company, a variant of the FSM DSL is
used to describe the behavior of web-based smart home appliances.
For these, a deep state history can improve the user experience by
continuing an interrupted procedure in the state it was interrupted.
Furthermore, the language engineers decide that for web applica-
tions, junctions in FSMs should simplify user response handling.

Through domain analysis, the engineers of the FSM DSL product
line consider these and a set of similarly fashioned applications
and decide to create the feature model depicted in Figure 1. Each
FSM DSL contains states and transitions that are not explicated in
the feature model, as they are contained in every variant of the
language. Further, each DSL must contain initial and final pseudo
states. These are explicated in the feature model, as the language
engineers plan to evolve the feature model in the near future by
providing an alternative textual notation for initial and final pseudo
states. Moreover, each DSL variant has the option of including deep
or shallow history pseudo states, junction pseudo states, fork and
join pseudo states, and condition pseudo states. Optionally, an FSM
DSL may support modeling hierarchical states that themselves con-
tain states and transitions. Timed transitions, also optional features,
enable users to model a passage of time as a transition trigger.

The team developing the above DSL family has four requirements
for the reuse of DSL components:

R1 Black-box reuse: To foster DSL reuse across time and in-
volved developers, it must be possible to reuse DSL parts in
a black-box fashion without needing to become an expert in
their internal implementation details.

R2 Structured reuse: To support reusingDSL parts for building
similar DSLs by domain experts without language engineer-
ing expertise, it should be possible to arrange the relevant

DSL components in the DSL family definition according to
their options for composition.

R3 Push-button reuse: To enable domain experts to derive
suitable languages with minimal effort, the composition of
selected DSL components based on their arrangement in the
DSL family should be automated.

R4 Open reuse: To enable extending DSL components with
capabilities unforeseen at time of their arrangement, it must
be possible to customize these systematically through open
variability [13].

A language engineering approach satisfying the above require-
ments can help the company to reduce cost and effort for engineer-
ing and maintaining modeling languages tailored to each kind of
CPS they develop.

3 PRELIMINARIES
Our method for efficient DSL engineering relies on research in
Software Language Engineering (SLE) [29, 32, 50] and leverages
the MontiCore language workbench as technological space [34] for
realization and for the case study.

3.1 Software Language Engineering
A modeling language usually is defined by the set of models it
accepts. To make languages machine-processable, language defi-
nitions in terms of their constituents have been proposed. These
usually require that (1) a language definition comprises a concrete
syntax, an abstract syntax, a semantic domain, and a mapping
from the abstract syntax to the semantic domain giving mean-
ing [26] to the language’s sentences [11]; or that (2) each language
definition comprises a concrete syntax, an abstract syntax, static
semantics (well-formedness rules), and dynamic semantics (behav-
ior) [12]. The abstract syntax of a modeling language defines the
structure of accepted models and is typically defined in terms of
grammars [3, 10, 47] or metamodels [16, 41, 43]. The concrete syn-
tax is the representation of models towards the user and can be, e.g.,
textual, graphical, or mixed. Often, this is defined by the editor used
to process models. Well-formedness rules can restrict the abstract
syntax further to prevent undesired model properties not express-
ible through the abstract syntax formalism itself. Interpreters and
model transformations can give meaning [26] (and possibly behav-
ior) to models by translating these into other languages.

In the following, we assume language implementations that are
• textual: they feature an integrated definition of concrete and
abstract syntax through a grammar;

• external: they are not defined in terms of a host language (in
contrast to internal DSLs [15]); and

• translational: they give meaning to models through transfor-
mation (in particular through code generation).

3.2 MontiCore
We use the language workbench MontiCore [28] to realize our ap-
porach as proof of concept. MontiCore is a language workbench
for the development of textual, external DSLs. The integrated con-
crete and abstract syntax of a DSL is specified in the form of a
context-free grammar. From this, MontiCore generates language

A Compositional Framework for Systematic Modeling Language Reuse MODELS ’20, October 18–23, 2020, Virtual Event, Canada

grammar FSM {
StateMachine = "sm" Name "{" (IState | ITrans)* "}";
interface ITrans;
interface IState = Name ;
State implements IState = "state" Name ";" ;
Transition implements ITrans = from:Name "->" to:Name ";" ;
}

MCG01
02
03
04
05
06
07

interface productions

concrete syntax only iteration

interface implementation

Figure 2: Example MontiCore grammar of an FSM DSL

tooling including an abstract syntax data structure, a parser that in-
stantiates this data structure, a visitor infrastructure for traversing
the abstract syntax, and infrastructures for defining and checking
well-formedness rules as well as for generating code from models
conforming to the grammar. Well-formedness rules in MontiCore
are realized as Java classes called context conditions and are checked
against the abstract syntax leveraging the generated visitor infras-
tructure. Code generation is realized through template-based code
generators based on the FreeMarker [20] template engine.

Each MontiCore grammar begins with the keyword grammar,
followed by the name of the grammar as depicted by example
in Figure 2. The body of a grammar (ll. 2-7) contains grammar pro-
ductions. By default, the first production is the start production
of a grammar. On the left-hand side, each production defines a
nonterminal, e.g., StateMachine (l. 2). On the right-hand side, a
production can contain terminals (in double quotes) and nontermi-
nals (starting with upper case letter) as well as iterations (’*’, ’+’
,’?’), alternatives (’|’), and concatenations (’ ’) thereof. Interface
nonterminals can underspecify a right-hand side completely (l. 3)
or prescribe abstract syntax elements (l. 4). Other productions can
implement interface productions (ll. 5-6). If the right-hand side
prescribes abstract syntax elements, implementing nonterminals
must provide these. The generated parser treats the usage of an
interface nonterminal equal to an alternative over all nonterminals
defined by productions implementing the interface nonterminal.

Moreover, MontiCore supports language inheritance [28], which
enables reusing complete grammars by inheriting from them and
using all inherited productions in the new grammar. We will lever-
age this to compose the grammars of DSL components according
to their arrangement in the DSL family.

4 A METHOD FOR SYSTEMATIC LANGUAGE
ENGINEERING

This section introduces the process of creating families of reusable
DSL components and composing these to derive novel DSLs. It
further presents a conceptual model describing DSL components,
their properties, and their relation to feature models of DSL families.
With this in place, it explains the effect of selecting twoDSL features
as the composition of the two related DSL components.

Ourmethod for systematic language composition relies on encap-
sulating related language constituents in DSL components, making
their provided and required extensions explicit, and composing the
language components according to these and guided by a feature
model. All these activities are related to roles with specific expertise
as illustrated in Figure 3. First, language engineering experts create
reusable DSL components for specific purposes, such as the fea-
tures illustrated in Figure 1. Each of these contains a combination

Language

Engineering

Expert

F

Derived

Product

Comp F

2
.

R
e

s
o

lv
in

g

c
lo

s
e

d
 v

a
ri

a
b

ili
ty

cr
ea

te
s

feature
configuration
resolving

C

3
.

R
e

s
o

lv
in

g
 o

p
e

n

v
a

ri
a

b
ili

ty

Modeler

uses

Derived

FC-DSL

no mandatory
extension
points left

derivation
of the DSL

DSL

Owner

Derived

Customized

Comp FC

Comp 1

Comp 3Comp 2

Comp 6

Comp 5

Comp 4

language
family

creates
components

DSL Family

Architect

provided
extensions

⊗
⊕

1
.

C
re

a
ti
n

g
 a

 D
S

L
 f

a
m

ily
Figure 3: The composition of twoDSL components processes
all bindings, and updates the interface of the resulting DSL
component accordingly. If all mandatory required exten-
sions have been fulfilled, a new DSL can be derived.

of grammars, well-formedness rules, and code generators relat-
ing to these grammars. By making their provided extensions (i.e.,
grammar productions, well-formedness rules, or code generators)
and their required extensions (grammar productions or generator
extensions) explicit, language family architects can arrange these
into a feature model representing a family of DSLs.

In this feature model, each feature either is related to a language
component or is an abstract feature [42] for logical grouping. By
relating features to DSL components and to other features (through
their parent-child relation), the language family engineer decides
how the components will be composed if their respective features
are selected. Once the DSL family is complete, DSL owners, who are
experts of the application domains, can derive a suitable DSL by se-
lecting appropriate features from the family. Based on the resulting
feature configuration, the selected DSL components are composed
and their provided and required extensions are updated accordingly.
Through extension points of our framework, the composition of
the language constituents (i.e., grammars, well-formedness rules,
code generators) is delegated to software modules of the specific
technological spaces (such as Neverlang [44], MontiCore [28], or
Xtext [18]). The result either is a new DSL component, if mandatory
extensions were not provided through the family or a new DSL
otherwise. In the former case, the DSL owner can specify additional
customization information that was either not available during
family creation (e.g., the action language needed for automata tran-
sitions for a specific domain) or not suitable for configuring in a

MODELS ’20, October 18–23, 2020, Virtual Event, Canada A. Butting, J. Pfeiffer, B. Rumpe, A. Wortmann

feature model (such as numerical parameters). If the DSL family
was well-defined, i.e., options for all required extensions of its com-
ponents were provided, the DSL owner does not need to have any
expertise in SLE but can derive the most suitable DSL variant on a
push-button basis.

To foster DSL reuse, we have conceived and integrated modeling
languages for describing DSL components and DSL families. They
are tailored to language engineering experts and support making
provided and required DSL component extensions explicit. Their
models form the basis of component composition. The latter lan-
guage is an extension of features models that supports describing
DSL families and the binding of features to extension points of DSL
components. A customization language supports implementing
required extensions of DSL components not provided by their lan-
guage family. The modeling languages and the software modules
processing these support extension with new language elements
and analyses to support extending DSL component definitions and
to address challenges of different technological spaces. However,
conceptually, our approach assumes the following1:

A1 Composition leads to conservative extension [28], i.e., it is
purely additive in terms of language constituents, i.e., compo-
sition cannot eliminate grammar productions, well-formedness
rules, or generators. Otherwise, composition could elimi-
nate extension points, which yields undesired complexities.
Nonetheless, adding new well-formedness rules can restrict
the accepted models of the resulting DSL.

A2 The grammar language must support identification of exten-
sion points. Otherwise, binding extensions to grammars is
not possible. This identification, however, can be realized,
e.g., through dedicated forms of productions or naming con-
ventions. Hence, many grammar specification formalisms
can support this.

A3 Thewell-formedness rules of the technological spacemust be
identifiable and applicable individually. Otherwise, selecting
and reusing these rules in different contexts might not be
possible.Whether these rules are implemented in OCL [27], a
general-purpose programming language [18, 28], or another
modeling language [44] then does not matter.

A4 The code generators (producers) and generated artifacts (prod-
ucts) must be defined in a language that supports the notion
of object-oriented interfaces and both interfaces (producer
and product) must be made explicit by the code generators.
Otherwise, the form of adaptation between the generators
(producers) or generated artifacts (products) that we pro-
pose, will not be possible [6, 8]. This prevents applying our
approach to various kinds of target languages and formats
(such as CSV, SQL, XML, etc.)

A5 Each code generator must create a main artifact adhering to
the generator’s product interface through which that artifact
can be invoked during product runtime. If there is no such
product, adapting between the required product and the
provided product is not possible. While this does not limit
the application of our approach technically, enforcing the
existence of such a product can make the generated code
less efficient. Mitigating this is subject to current research.

1The reasoning for the code generator assumptions is discussed in detail in [6, 8].

4.1 A Conceptual Model for Black-Box
Language Reuse

Our conceptual model describes the properties of DSL components
(R1) and DSL families (R2) relevant to their systematic reuse. For
this purpose, the DSL components do not provide closed variability
themselves, but support customization through their required ex-
tensions. DSL families comprise feature models to describe closed
variability of potential DSLs by arranging DSL components (cf.
Figure 4).

4.1.1 3D DSL components and interfaces. DSL components pro-
vide the constituents of a language definition. They are three-
dimensional by comprising elements of each of the three essential
language definition constituents: (1) syntax, (2) well-formedness
rules, and (3) semantics-based code generators. To this end, each
DSL component comprises at least one grammar and can com-
prise multiple sets of identifiable (A3) well-formedness rules, as
well as multiple code generator specifications. As both, the well-
formedness rules and the generator specifications rely on a gram-
mar for the definition of the abstract syntax data types, it is manda-
tory for each component. The well-formedness rules are grouped
in sets to facilitate their reuse in different contexts. The generator
specifications identify a generator as a GPL code class that adheres
to an explicit producer interface (A4) and creates at least a main
GPL artifact that adheres to an explicit product interface (A5).

DSL interfaces expose (parts of) these constituents through
explicit extensions with cardinalities (optional or mandatory) to the
environment (e.g., the language family). For grammars and genera-
tors, the interfaces support both, provided and required extensions,
whereas for well-formedness rules, only provided extensions can be
made explicit. Specifying what is required from a well-formedness
rule is subject to ongoing research (cf. Sec. 7). For well-formedness
rules and code generators, additional parameters can be defined
that enable more fine-grained customization (such as numerical
constraints, paths, etc.).

Provided extensions offer DSL functionality to be reused by
other components. Provided grammar extensions reference a pro-
duction in the grammar that can be reused by other components’
grammars. Provided well-formedness rules extensions offer sets of
well-formedness rules for a specific production that can be reused
in different contexts. Provided generator extensions reference a
production for which they provide a transformation, a reference to
a GPL class, and the interfaces of producer and product.

Required extensions specify missing functionality of a DSL
component–e.g., an automaton DSL might need an expression DSL
for specifying guards–and can be either optional or mandatory.
Required extensions for grammars reference a production of a
contained grammar that supports extension. Required generator
extensions demand extension for a specific production (such as
the guard expressions above), with specific product and producer
interfaces as introduced in [6]. Required parameters also are either
optional or mandatory and parameterize well-formedness rules or
generator specifications, respectively.

Generator specifications describe code generators of compo-
nents in terms of processed product rules, provided producer and
product interfaces, and a set of extension points that follows the

A Compositional Framework for Systematic Modeling Language Reuse MODELS ’20, October 18–23, 2020, Virtual Event, Canada

Grammar

Production

Rule

Well-
formedness

Rule

WFR

Parameter

DSL
Component

Interface

Provided
Grammar
Extension

Required
Grammar
Extension

WFR Set

Specification

Generator

Parameter

�

1..�

Generator

Specification

Generator

Product

Interface

Producer

Interface

�� � � �

�

�

��

�

Required
Generator
Extension

Provided
Generator
Extension

DSL

Component

Conceptual Model

Boolean opt Boolean opt Boolean optBoolean opt

1

1

1

1

artifacts of the selected
technology space

Generator

Extension

Point

1

�

Figure 4: DSL components provide extensions, i.e., parts of
language constituents that are exposed by DSL component
interfaces. DSL component interfaces also specify required
extensions and parameters.

extension points of the processed grammar. For each required gram-
mar extension, the generator specification provides a generator
extension point that describes the required producer interface and
a required product interface. The required producer interface pre-
scribes the expected structure of a compatible generator being us-
able for translating productions embedded into the required gram-
mar extension this extension point relates to. The required product
interface prescribes the expected structure of a compatible main ar-
tifact produced for the required grammar extension this extension
point relates to.

4.1.2 DSL families and bindings. Language families [48] describe
closed variability through a central feature model [14]. Features
relate to the extensions of DSL components and the arrangement
of features in this model describes how the components will be
composed if their respective features are selected. To this effect,
DSL family architects select DSL components for specific purposes
and arrange these carefully for DSL owners to use (R2).

Figure 5 depicts the conceptual model of DSL families. A family
references one ormore DSL component(s) and yields a single feature
model [1, 4] consisting of features and bindings. A feature references
a DSL component of the family that realizes it.

The root (top) feature of the DSL family defines the base DSL
component into which the components related to all selected child
features are embedded according to the family’s feature model. As
such, it might yield provided extensions as well, for which the root
feature configuration can define bindings (i.e., selections) already.
This enables using a comprehensive DSL for the root feature while
giving the flexibility of reusing only selected parts of it.

Bindings relate features to DSL components. Our concept sup-
ports three kinds of bindings, matching the different kinds of re-
quired and provided extensions (grammar, well-formedness rule,
generator). Bindings are defined within features, i.e., each feature
describes how (a subset of) the provided extensions of its related

�

Feature

Model

Feature

Group
Feature

Constraint

Root

Feature

Config

DSL

Component

DSL

Family

selected extensions

�

root feature configuration

1..�

�

�

p
ro

v
id

e
d

e
x
te

n
s
io

n

required

extension

Binding

DSL
Component

Interface

p
a

re
n

t

bindings
features

1..�

Feature

root feature

1

1

1

1

�

�

Conceptual Model

Figure 5: A language family has a feature model with fea-
tures that reference and bind DSL components.

DSL component will be bound to (a subset of) the required exten-
sions of the DSL component related to its parent feature. To this
end, each non-abstract feature must define at least one such binding
and can define as many bindings as there are provided extensions
in its DSL component. The different kinds of bindings are:

Grammar bindings map a provided grammar extension of the
embedded component (e.g., of a child feature) to a required grammar
extension of the embedding component (e.g., of a parent feature).
The effect of such a binding is that everything producible from
the provided grammar extension will become producible from the
required grammar extension as well. For instance, when embed-
ding the provided grammar extension for arithmetic expressions
into a required grammar extension for Boolean expressions, arith-
metic expressions become an alternative to the former. This can
be realized through production inheritance [28] or adding an al-
ternative supporting the provided productions to the requiring
productions [5, 44]. This composition is supported by adhering to
(A1) and (A2).

Generator bindingsmap a provided generator extension of the
embedded component to the required generator extension of the
embedding component. Such a binding entails that the provided
generator will be used whenever the required generator is called.
For instance, embedding a generator for translating arithmetic ex-
pressions to Java into another generator requiring that translation
entails, per construction detailed in [8], that the embedding gen-
erator will call the embedded generator via an adapter between
the required producer for arithmetic expressions and the provided
producer interface of the generator for arithmetic expressions. This
composition is enabled by (A1), (A3), and (A4).

Well-formedness rule embeddings join a well-formedness
rule set of the embedded component into a well-formedness rule
set of the embedding component. The result is a novel component
with the same number of well-formedness rule sets than before, but
more well-formedness rules in its sets. This enables refining DSLs
by adding additional rules to its provided well-formedness rules.

Well-formedness rule addition adds a complete set of well-
formedness rules of the embedded component en-bloc to the em-
bedding component. Through this, a novel set of well-formedness
rules becomes present in the resulting component. Both forms of
well-formedness rule set composition rely on (A1) and (A5).

MODELS ’20, October 18–23, 2020, Virtual Event, Canada A. Butting, J. Pfeiffer, B. Rumpe, A. Wortmann

Are any

unprocessed

bindings left?

[no]
[yes]

Tool Development Workflow

Add WFR set to

embedding

component

[is grammar

binding]

[is generator

binding]

[is well-formedness

rule binding]

Add WFRs from

source set to

target set

Well-formedness rule

selection?

[yes]

[no]

Add WFR

to target set in

embedding component

Add set to

embedding component

Compose

grammars

Add implied required grammar

extensions from embedded component

to embedding component

Compose

generators

Add implied required generator

extensions from embedded component

to embedding component

Add generator parameters

to embedding component

Add WFR parameters to

embedding component

Return

composed

component

Set optionality of required

extension to optional

Are mandatory

required

extensions left?

Derive

DSL

⑂

⑂

⑂

⑂⑂

Customize

component

[no]

[yes]

Figure 6: DSL components are composed according to the bindings defined between DSL family features.

4.2 Composing DSL Components
The composition of two DSL components is the directed applica-
tion of bindings between these components. It produces a novel
component resulting from adding selected provided extensions of
the embedded component into the respective required extensions
of the embedding component. This comprises two main activities:
(1) Composition of the components’ interfaces; and (2) Composi-
tion of the comprised language definition constituents (grammars,
well-formedness rules, code generators);

Our method of reusing DSLs and DSL parts is independent of the
actual composition of language constituents in the different tech-
nological cases as long as these adhere to (A1)-(A5). Consequently,
the method and its realization anticipate extension with software
modules specific to the technological space of choice that take care
of the technical composition (cf. Sec. 5.4).

The process of composing two DSL components along their in-
terface is illustrated in Figure 6: As long as there are unprocessed
bindings, these and the related artifacts are passed to the technology
space-specific composition components (used by green activities
with fork icon) to perform the composition of DSL constituents.
Afterwards, the required extensions of the language interface of
the embedding component are updated accordingly by (a) setting
fulfilled extensions to be optional and (b) adding implied required
extensions of the embedded component. Provided extensions of the
embedded components are not added to the interface of the embed-
ding component as this would add options for reuse unintended
by the DSL family. For well-formedness rules, either a set of the
embedded component was meant to be reused en-bloc, in which
case the complete set is added to the interfaces of the embedded
component, or individual rules shall be reused. In this case, these
are added to the set of well-formedness rules of the embedding
component as indicated by the respective bindings.

Where an embedded component yields parameters, these are
added to the interfaces of the embedding component. If all required
extensions are fulfilled, the resulting DSL component can be trans-
lated into a new DSL automatically. Otherwise, it needs subsequent
customization.

For a feature configuration relative to a language family, the fea-
ture tree of the language family is traversed bottom-up. If a feature
is selected in the feature configuration, all associated bindings of
this particular feature are applied, and the components are com-
posed pairwise. The application of the bindings is similar to the
composition process stated in the former part of this section. The
traversing of the feature tree ends with the root feature configura-
tion, if present. When applying the root feature configuration, all
provided extensions and well-formedness rule sets not stated in the
root configuration are removed. If the component has no manda-
tory required extension or component parameter, a usable DSL can
be derived from it automatically (R3). Otherwise, customizing the
component (R4) is necessary to obtain a usable DSL. To this effect,
the bindings between the embedded and the customized compo-
nent are applied and the components are composed as if they were
related to a parent feature and its child.

5 MODELING LANGUAGES AND
FRAMEWORK

Based on the example of the FSM family of Figure 1, this section
presents the modeling languages for DSL components and families.

5.1 DSL Components
The DSL component language reifies our conceptual model of DSL
components and interfaces (R1) in form of a MontiCore modeling
language. Following the conceptual model, each DSL component
references exactly one grammar, zero to many generator contexts
(describing producers and products), as well as various provided
and required extensions and well-formedness rule sets.

Figure 7 illustrates this by example of theTransitionSystem
DSL component It references a grammar via its fully qualified
name mc.FSM (l. 2) and specifies the generator FSMG with context
FSMGenerators (l. 3, Figure 8). The generator context is a class
diagram describing the generator and its interfaces.

Afterwards, TransitionSystem defines a provided and two
required grammar extensions of different optionalities (ll. 5-7) us-
ing productions from the mc.FSM grammar. This defines that the

A Compositional Framework for Systematic Modeling Language Reuse MODELS ’20, October 18–23, 2020, Virtual Event, Canada

dsl component TransitionSystem {

grammar mc.FSM;

gen FSMG context fsm._gen.FSMGenerators;

provides production StateMachine;

requires optional production IState;

requires mandatory production ITrans;

provides gen FSMMainGen for StateMachine with FSMG;

requires optional gen StateGen for IState with FSMG;

requires optional gen TransGen for ITrans with FSMG;

wfrs TransitionsCorrect {

fsm._cocos.TransitionSourceStateExists;

fsm._cocos.TransitionTargetStateExists;

}

wfrs TSCorrect {

fsm._cocos.AllStatesReachable;

fsm._cocos.NamesAreUpperCase;

}

}

LC01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

grammar reference
generator
context

grammar extensions

generator
extensions

provided sets of
well-formedness
rules

Figure 7: A component representing a transition systemDSL.
It provides and requires extensions for the language’s gram-
mar, generator, and well-formedness rules.

component enables extension for the productions IState and
ITrans. For code generation, the component defines a provided
and two required generator extensions (ll. 9-11) relative to the gen-
erator context represented in Figure 8. The provided generator
extension FSMMainGen enables reusing the component’s genera-
tor. The required generator extensions StateGen and TransGen
enable to extend code generation of this component for states and
transitions accordingly. Ultimately, TransitionSystem also de-
fines two provided sets of well-formedness rules of two rules each
(ll. 13-20). The FSM grammar itself is illustrated in Figure 2 and
comprises four productions: it defines two interfaces that can act as
grammar extension points (ll. 3-4) and defines a transition system
as a named collection of instances of these interfaces (l. 2). For
states and transitions, it provides a default implementation (ll. 5-6).

Figure 8 depicts the generator context for the transition sys-
tem component. The top three classes, IFSMProducer, IFSM-
Product, and IFSMSystemGenerator define how this the
FSMGenerator can be embedded into other components, i.e.,
that it can act as an IFSMProducer and that its generated arti-
facts will adhere to the IFSMProduct interface. Moreover, FSM-
Generator yields registration methods corresponding to its two
extension points. For extension of states, e.g., the FSMGenerator
expects a producer of type IStateProducer and that this pro-
ducer generates a main artifact of type IStateProduct, hence
the corresponding code interfacing with implementations of this
interface can be generated.

When bindings between two DSL components specify embed-
ding FSMGenerator as IFSMProducer into a generator ex-
pecting another particular producer interface (as defined in the
embedding component’s generator context), an adapter between
the expected producer interface andIFSMProducer and a factory
for its injection is generated. When the adaptation is non-trivial,
this generated adapter needs to be extended with handcrafted adap-
tation functionality using the generation gap pattern [24]. For the
product interfaces, the same mechanism is applied. The classes of
the generator context and signatures of the registration methods
follow framework-wide naming conventions [6, 8].

«interface»

IFSMProducer

generate(ASTTransSystem,

Path)

CD

«interface»

IStateProducer

«interface»

IStateProduct

«interface»

ITransProducer

«interface»

ITransProduct

FSMGenerator

registerIStateGens(ASTClass, IStateProducer)

registerITransGens(ASTClass, ITransProducer)

+ visit() execute()

getSourceState()

getTargetState()

generate(ASTState, Path) generate(ASTTrans)

setOutputPath(Path)

invokes invokes

producesproduces

«interface»

IFSMProduct

step(Input)

produces

embedded generators
will be adapted to
these Interfaces
according to the
corresponding
bindings

product interfaces of
embedded generators
will be adapted to
these

product interface that the main artifact
produced by this generator adheres to

classes defining
composition with the
provided FSMMainGen
generator extension

classes defining composition with the required
StateGen and TransGen generator extensions

Figure 8: The generator context for the transition system
DSL component. It contains the generator interfaces and
classes for the extensions of the component.

5.2 DSL Families
DSL families consist of a feature model, components that realize
features of the model, and bindings between these components.

Figure 9 depicts an excerpt of the StateMachineFamily that
describes a family of FSM languages. The family contains a textual
feature model to arrange the components within the family (R2). It
is an excerpt of the one presented in Figure 1 (ll. 3-10). After the fea-
ture model, the family defines features in terms of names, realizing
component, and bindings (ll. 12-31) such that each feature of the fea-
turemodel is realized through aDSL component. For instance, in the
StateMachineFamily the feature StateMachines (ll. 12ff)
is realized through the DSL component TransitionSystem
(l. 13). A detailed insight into this component is given in Figure 7.

All non-root features yield bindings that connect the provided
extensions of their DSL components with the required bindings
of their parent feature’s component–or its ancestor, if the parent
feature is abstract. For instance, the InitialAndFinalState
feature is realized through the component InFinState (ll. 17ff),
which is illustrated in Figure 12. Afterwards (ll. 19-23), bindings
for productions, generators and well-formedness rules are defined
between the feature-realizing component InFinState and the
grandparent feature’s component TransitionSystem (cf. Fig-
ure 7). Through these bindings, e.g., the provided grammar exten-
sion InitialState of InFinState is bound to the required
grammar extension IState of TransitionSystem.

5.3 DSL Component Customization
The DSL component customization realizes open variability (R4). In
contrast to the DSL family configuration, it enables the DSL owner
to customize a DSL component by binding its required extensions
to other DSL components that might not have been part of the

MODELS ’20, October 18–23, 2020, Virtual Event, Canada A. Butting, J. Pfeiffer, B. Rumpe, A. Wortmann

family StateMachineFamily {

feature diagram StateMachines {

mandatory PseudoStates {

mandatory InitialAndFinalState;

abstract History {…} or Junction or //...;

}

optional HierarchicalStates;

optional TimedTransitions;

}

feature StateMachines {

component ts.comp.TransitionSystem;

// Bindings of the StateMachines feature

}

feature InitialAndFinalState {

component ps.comp.InFinState;

bind production InitialState -> IState;

bind production FinalState -> IState;

bind generator InitStateGen -> StateGen;

bind generator FinalStateGen -> StateGen;

bind wfrs CheckStateCardinality;

}

feature TimedTransitions {

component tt.comp.TransitionsWithTiming;

bind production TimedTrans -> ITrans;

bind generator TTGen -> TransGen;

bind wfrs TimingCorrectness;

}

// Definitions of further features

}

LF01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

root feature

feature definition

Figure 9: Excerpt of a textual model of the
StateMachineFamily DSL family (cf. Figure 1).

DSL family. Furthermore, the customization can assign values to
parameters of the identified DSL component. Figure 10 illustrates a
customization by example.

The customizationRobotArmWithClock customizes the com-
ponent RobotArmLang (see Figure 14). Bindings in the customiza-
tion have the same syntax as in the feature definition of the language
family and are applied in the same fashion. The left side of the bind-
ing is the source, i.e., a provided extension or well-formedness rule
set, and the right side of the binding is the target, i.e., a required ex-
tension or well-formedness rule set. In the customization the source
of the binding is the fully qualified name of the language compo-
nent and the name of the respective provided extension or well-
formedness rule set. The required extension or well-formedness set
which is the target of the binding, always originates from the cus-
tomized component. The customization RobotArmWithClock
binds a grammar production and a generator for a clock expression
(ll. 3ff) of a DSL component ce.comp.Clock to the customized
component RobotArmLangComp. Furthermore, it limits the num-
ber of initial states to one by setting the corresponding parameter
(l. 6). Customization produces a new composed component that
contains the bound extensions and no longer contains the set pa-
rameter.

5.4 Language Engineering Framework
For demonstration of the feasibility of our approach, we have im-
plemented the framework for deriving languages from the family
(R3) in four different modules that each relate to different activities
and their modeling languages (cf. Figure 11).

The DSL Component Processor (top left) is responsible
for parsing, processing, and validating DSL components (cf. Fig-
ure 4) and used by the language engineering expert. Therefore, the

import ce.comp.Clock;

customization RobotArmWithClock for RobotArmLangComp {

bind production Clock.ClockExpr -> ITimedExpr;

bind generator Clock.ClockGen -> TimerGen;

assign numberOfInitialStates = 1;

}

CC
01

02

03

04

05

06

07

Figure 10: The textual model of a customization for the DSL
componentRobotArmWithClock (cf. Figure 14). It contains
two bindings and a parameter assignment.

DSL Component

Composer

DSL Component

Processor

DSL Family

Manager
DSL Component

Customizer

CompD

Figure 11: Our framework comprises modules for process-
ing, composing, customizing DSL components, and manag-
ing DSL families.

module holds the corresponding language processing tools (parser,
lexer, well-formedness checker) as well as an interface for calcu-
lating implications. A MontiCore-specific implication calculator
implements the calculator interface to resolve and validate implica-
tions. After processing a DSL component model, it produces a DSL
component that can be reused in DSL families and other contexts.

The DSL Component Composer (top right) takes two DSL
components with a set of bindings and composes these as pre-
sented in Sec. 4.2. It relies on the DSL Component Processor to
parse components, before it composes their interfaces and artifacts.
For the latter, it provides an interface to integrate modules specific
to the technological space operated within. The DSL Family
Manager (bottom left) evaluates and resolves the DSL families
and related feature configurations. To this end, it comprises three
modules that process feature models, feature configurations, and
resolve the latter. It also interacts with the DSL Component Com-
poser for composing DSL components in the process of applying the
DSL family configuration and deriving a new DSL (of component)..
The DSL Component Customizer (bottom right) reads and
applies the customization configuration. It parses and validates
customization configurations and applies these.

6 APPLICATION EXAMPLE
This section provides an insight into applying our concepts on the
example of deriving an FSM DSL used for describing state-based
behavior of a robot arm (cf. Sec. 2) [39]. This includes selecting re-
quired features from the DSL family, showing the feature-realizing
DSL components, their composition, and the artifact composition
exemplified via the composition of grammar productions.

Consider language engineering experts that design DSLs for dif-
ferent concerns of Figure 1 and create DSL components accordingly.
For instance, the DSL component InFinState (see Figure 12)
contains a grammar and a generator (ll. 2-3) to provide productions

A Compositional Framework for Systematic Modeling Language Reuse MODELS ’20, October 18–23, 2020, Virtual Event, Canada

dsl component InFinState {

grammar mc.InitialAndFinalState;

gen IFG context infinstate._gen.InFinGenerators;

provides production InitialState;

provides production FinalState;

provides gen InGen for InitialState with IFG;

provides gen FinGen for FinalState with IFG;

wfrs CheckStateCardinality {

infinstate._cocos.InitStatesCardinality;

}

wfr parameter Integer numberOfInitialStates for

infinstate._cocos.InitStatesCardinality;

}

LC01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

contained grammar

generator

provided grammar
extensions

provided generator
extensions

well-formedness
rule parameter

grammar InitialAndFinalState {

InitialState = "initial" "state" Name;

FinalState = "final" "state" Name;

}

MCG01

02

03

04

Figure 12: The DSL component InFinState that provides
grammar productions and generator for the language ele-
ments initial and final state (top) and its grammar (bottom).

and generators for initial and final state definitions (ll. 5-9). In addi-
tion, it contains a well-formedness rule that limits the number of
initial states. The number itself is configurable via the parameter
numberOfInitialStates (ll. 15ff). Figure 12 depicts the refer-
enced grammar with the productions provided by the DSL compo-
nent. The TransitionsWithTiming (see Figure 13) provides
a production and a generator for timed transitions with a counter
that decreases over time and is extensible with additional timing
expressions. A DSL family architect then models a family for FSMs.
Therefore, she arranges several DSL components resulting in the
DSL family StateMachineFamily (cf. Figure 9).

Based on this family, a DSL owner then can derive an FSM
DSL for describing the state-based behavior of robot arms. For
this, she selects the features StateMachines, the abstract fea-
ture PseudoStates, InitialAndFinalState, and Timed-
Transitions in a feature configuration RobotArmLang. The
featureStateMachines is realized by theTransitionSystem
component, the feature InitialAndFinalState is realized
by the component InFinState (see Figure 12), and the feature
TimedTransitions is realized by the TransitionsWith-
Timing component. Based on the feature selection, the DSL com-
ponentsInFinState andTransitionsWithTiming are com-
posed with the DSL component TransitionSystem. This re-
sults in a composed DSL component RobotArmLangComp (see
Figure 14). Since bound provided extensions are embedded into the
component that is the target of the binding, the provided extensions
of the embedded components are no longer available in the com-
posed component. However, to preserve further extension, the re-
quired extensions of the embedded components remain available in
the composed component. Thus, the composed component adopts
the provided extensions of the component TransitionSystem
(ll. 7, 12). Furthermore, the required extensions of the embedded
component TransitionsWithTiming are available (ll. 10, 15).
Through binding thewell-formedness rule set in the featureTimed-
Transitions, the set TimingCorrectness is present in the
composed component (ll. 25ff) as well as the well-formedness rule

dsl component TransitionsWithTiming {

grammar mc.TimedTransition;

gen TTG context time._gen.TTGenerators;

provides production TimedTrans;

requires optional production ITimedExpr;

provides gen InGen for TimedTrans with TTG;

requires gen TimerGen for ITimedExpr with TTG;

wfrs TimingCorrectness {

time._cocos.IsTimingPositive;

}

}

LC01

02

03

04

05

06

07

08

09

10

11

12

13

14

grammar TimedTransition {

interface ITimedExpr;

TimedTrans = Name "–" timer:ITimedExpr ">" Name;

IntegerTimer implements ITimedExpr = IntLiteral "sec";

}

MCG01

02

03

04

05

Figure 13: The DSL component TransitionsWithTiming
(top) and its grammar (bottom).

sets of the component TransitionSystem (ll. 17-20 and ll. 21-
24). As bindings of the feature InitialAndFinalState in-
clude the well-formedness rule set CheckStateCardinality
(ll. 28ff) of component InFinState, the parameter number-
OfInitialStates is available in the composed component
(ll. 31ff).

The composition of the language artifacts according to the bind-
ings defined by the selected features results in a composed gram-
mar RobotArmLangGrammar (l. 2) named after the DSL fam-
ily configuration and a new generator context RobotArmLang-
Generators (l. 5). Our approach implements the composition
of grammars, generators, and well-formedness rule sets as pre-
sented in [6, 7]. Hence, the generator context contains the abstract
adapter classes between the producer and product interfaces of the
extended and embedded generators that are necessary to compose
the implementations of the bound generators.

Figure 15 depicts the composed grammar RobotArmLang-
Grammar. The grammar results from applying the bindings defined
in the selected features of the DSL family (see Figure 9). The feature
InitialAndFinalState defines grammar bindings that bind
the provided extensions InitialState and FinalState of
the component InFinState to the required extension IState
of componentTransitionSystem (ll. 20ff). Identifying the gram-
mar of the provided production requires insights into the DSL com-
ponent. The component model of InFinState (cf. Figure 12) ref-
erences the grammar InitialAndFinalState depicted in Fig-
ure 12. It contains the two productions referenced by the provided
extensions of the DSL component. The required extension of the
component TransitionSystem references the interface pro-
duction IState of the grammar TS (cf. Figure 7). From this, the
tooling generates the composed grammar depicted in Figure 15. For
the grammar bindings of the feature InitialAndFinalState,
the composed grammar extends the grammars TS and Initial-
AndFinalState referenced by the bound components (l. 2). Also,
the grammar defines two productions InitialState2IState
and FinalState2IState adapting the bound productions to
another. Processing the grammar bindings of the feature Timed-
Transitions is similar to the ones of the feature InitialAnd-
FinalState. Here, the composed grammar introduces a new

MODELS ’20, October 18–23, 2020, Virtual Event, Canada A. Butting, J. Pfeiffer, B. Rumpe, A. Wortmann

dsl component RobotArmLangComp {

grammar mc.RobotArmLangGrammar;

gen FSMG context fsm._gen.TSGenerators;

gen TTG context time._gen.TTGenerators;

gen RAG context ra._.RobotArmLangGenerators;

provides production TransSystem;

requires optional production IState;

requires optional production ITrans;

requires optional production ITimedExpr;

provides gen TSMainGen for TransSystem with FSMG;

requires optional gen StateGen for IState with FSMG;

requires optional gen TransGen for ITrans with FSMG;

requires optional gen TimerGen for ITimedExpr with TTG;

wfrs TransitionsCorrect {

fsm._cocos.TransitionSourceStateExists;

fsm._cocos.TransitionTargetStateExists;

}

wfrs TSCorrect {

fsm._cocos.AllStatesReachable;

fsm._cocos.NamesAreUpperCase;

}

wfrs TimingCorrectness {

time._cocos.IsTimingPositive;

}

wfrs CheckStateCardinality {

infinstate._cocos.InitStatesCardinality;

}

wfr parameter Integer numberOfInitialStates for

infinstate._cocos.InitStatesCardinality;

}

LC01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Figure 14: The component resulting from the feature config-
uration contains the DSL components added by the bindings
defined in the selected features.

production implementing the interface of the required extension
and extends the production of the provided extension.

The DSL owner needs a timed expression to define a specific trig-
ger time. As this is not available in the DSL family, she customizes
the derived DSL component (see Figure 14). With the customization
depicted in Figure 10, she binds a production and generator real-
izing the expression that enables her to define a condition based
on a certain time. Here, she limits the number of initial states to
one state by setting the parameter numberOfInitialStates.
The composition produces a new DSL component containing the
language features added via the customization. A modeler then can
use an FSM DSL tailored specifically to her needs.

grammar RobotArmLangGrammar

extends FSM, TimedTransition, InitialAndFinalState {

start StateMachine;

InitialState2IState extends InitialState implements IState

= "initial" "state" Name;

FinalState2IState extends FinalState implements IState

= "final" "state" Name;

TimedTrans2ITrans extends TimedTrans implements ITrans

= Name "–" timer:ITimedExpr ">" Name;

}

MCG01

02

03

04

05

06

07

08

09

10

11

Figure 15: The composed grammar after applying the fea-
ture configuration. It adapts the provided grammar produc-
tions to the productions of the required extensions.

7 DISCUSSION AND RELATEDWORK
Encapsulating constituents relating to a language concern in an
explicit DSL component eases their reuse as it mitigates the chal-
lenge of identifying how the usually only loosely coupled language

constituents can be reused without becoming an expert in their im-
plementation (R1). Through arranging DSL components in families,
their systematic reuse can be guided, which eases composing these
components accordingly (R2). This separation of concerns along
the different roles also can liberate domain experts enacting as DSL
owners from needing in-depth language engineering expertise (R3).
Customization enables open variability of DSL components with
capabilities not foreseen in the DSL family (R4). However, our ap-
proach entails additional efforts in defining language components
and empirically measuring their impact demands further research.

Our approach to DSL engineering is limited to textual, external,
and translations DSL and has comprehensive requirements for com-
patible technological spaces. Based on these assumptions, it uses
specific composition operations, namely embedding (grammars),
merging (context conditions), and adapted embedding (code gener-
ators). Removing parts of a language by selecting features, thus, is
not possible. While the set of valid models can be restricted through
adding new features (that contain suitable context conditions), the
non-terminals, context conditions, and code generators selected
by other features remain part of the language (family). Moreover,
we currently use the technological space of MontiCore for real-
izing our concepts as well as for engineering language families.
This might introduce biases towards MontiCore in our concepts,
we are currently experimenting with the language workbenches
Neverlang [44] and Xtext [18].

Several language engineering tools such asMPS [46], Spoofax [47],
and Melange [16] provide means for language composition and
customization, but do not provide methods for systematic reuse
through DSL families. Other approaches for systematically reusing
language parts do not make their interfaces explicit, which hampers
reusing these modules [3, 33, 44, 45], or do not support all three
component dimensions [16, 36].

Overall, our approach builds upon ideas formulated as concern-
oriented language development [13, 31], which proposes to engineer
languages based on components (called “concerns”) with three
kinds of interfaces representing their variability, customization,
and use. In this vision, concerns comprise artifacts linked with
each other that conform to meta-languages which are typed by
“perspectives” contained in libraries. With respect to this vision,
our approach addresses the componentization of languages and
their systematic reuse only. However, we are unaware of any other
similar comprehensive realizations of this part of the vision.

8 CONCLUSION
Wehave presented concepts for reusing 3DDSL components through
closed variability of DSL families (product lines) and open cus-
tomization. These concepts are intended to be used in a systematic
fashion by different stakeholders involved in language engineering,
who are supported by a collection of integrated modeling languages
to model DSL families and their constituents. While our concepts
and their application method are currently limited to textual, ex-
ternal, and translational DSLs, they greatly facilitate DSL reuse
and, hence, foster the adoption of modeling languages by domain
experts. In the future, we plan to relax our method’s assumptions
(A1-A5) and integrate further language definition dimensions.

A Compositional Framework for Systematic Modeling Language Reuse MODELS ’20, October 18–23, 2020, Virtual Event, Canada

REFERENCES
[1] Don Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In

International Conference on Software Product Lines. Springer, 7–20.
[2] Olaf Berndt, Uwe Freiherr von Lukas, and Arjan Kuijper. 2015. Functional Mod-

elling And Simulation Of Overall System Ship-Virtual Methods For Engineering
And Commissioning In Shipbuilding.. In ECMS. 347–353.

[3] Lorenzo Bettini. 2016. Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd.

[4] Danilo Beuche, Holger Papajewski, and Wolfgang Schröder-Preikschat. 2004.
Variability management with feature models. Science of Computer Programming
53, 3 (2004), 333–352.

[5] Jonathan Bohren and Steve Cousins. 2010. The SMACH High-Level Executive.
IEEE Robotics & Automation Magazine 17, 4 (2010), 18–20.

[6] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. 2018. Controlled and Extensible Variability of Concrete and Ab-
stract Syntax with Independent Language Features. In Proceedings of the 12th
International Workshop on Variability Modelling of Software-Intensive Systems
(VAMOS’18). ACM, 75–82.

[7] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. 2018. Modeling Language Variability with Reusable Language Compo-
nents. In International Conference on Systems and Software Product Line (SPLC’18).
ACM.

[8] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. 2019. Systematic Composition of Independent Language Features.
Journal of Systems and Software 152 (2019), 50–69.

[9] Arvid Butting, Bernhard Rumpe, Christoph Schulze, Ulrike Thomas, and Andreas
Wortmann. 2015. Modeling Reusable, Platform-Independent Robot Assembly
Processes. In International Workshop on Domain-Specific Languages and Models
for Robotic Systems (DSLRob 2015).

[10] Walter Cazzola and Edoardo Vacchi. 2013. Neverlang 2–Componentised Language
Development for the JVM. In International Conference on Software Composition.
Springer, 17–32.

[11] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. 2009. Variability
withinModeling Language Definitions. InConference onModel Driven Engineering
Languages and Systems (MODELS’09) (LNCS 5795). Springer, 670–684.

[12] Tony Clark, Mark G. J. van den Brand, Benoit Combemale, and Bernhard Rumpe.
2015. Conceptual Model of the Globalization for Domain-Specific Languages. In
Globalizing Domain-Specific Languages. Springer, 7–20.

[13] Benoit Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais, Er-
wan Bousse, Walter Cazzola, Philippe Collet, Thomas Degueule, Robert
Heinrich, Jean-Marc Jézéquel, Manuel Leduc, Tanja Mayerhofer, Sébastien
Mosser, Matthias Schöttle, Misha Strittmatter, and Andreas Wortmann. 2018.
Concern-Oriented Language Development (COLD): Fostering Reuse in Lan-
guage Engineering. Computer Languages, Systems & Structures 54 (2018),
139 – 155. http://www.se-rwth.de/publications/Concern-Oriented-Language-
Development-COLD-Fostering-Reuse-in-Language-Engineering.pdf

[14] Krzysztof Czarnecki and Ulrich W Eisenecker. 2000. Generative Programming.
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen (2000), 15.

[15] Manuela Dalibor, Nico Jansen, Johannes Kästle, Bernhard Rumpe, David Schmalz-
ing, Louis Wachtmeister, and Andreas Wortmann. 2019. Mind the Gap: Lessons
Learned from Translating Grammars Between MontiCore and Xtext. In Interna-
tional Workshop on Domain-Specific Modeling (DSM’19), Jeff Gray, Matti Rossi,
Jonathan Sprinkle, and Juha-Pekka Tolvanen (Eds.). ACM, 40–49.

[16] Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais, and Jean-
Marc Jézéquel. 2015. Melange: A Meta-language for Modular and Reusable
Development of DSLs. In 8th International Conference on Software Language
Engineering (SLE). Pittsburgh, United States, 25–36.

[17] Jiwang Du, Qichang He, and Xiumin Fan. 2013. Automating generation of
the assembly line models in aircraft manufacturing simulation. In 2013 IEEE
International Symposium on Assembly and Manufacturing (ISAM). IEEE, 155–159.

[18] Moritz Eysholdt and Heiko Behrens. 2010. Xtext - Implement your Language
Faster than the Quick and Dirty way. In Proceedings of the ACM international
conference companion on Object oriented programming systems languages and
applications companion. ACM, 307–309.

[19] Stefan Feldmann, Sebastian JI Herzig, Konstantin Kernschmidt, Thomas Wolfen-
stetter, Daniel Kammerl, Ahsan Qamar, Udo Lindemann, Helmut Krcmar, Chris-
tiaan JJ Paredis, and Birgit Vogel-Heuser. 2015. Towards effective management
of inconsistencies in model-based engineering of automated production systems.
IFAC-PapersOnLine 48, 3 (2015), 916–923.

[20] Charles Forsythe. 2013. Instant FreeMarker Starter. Packt Publishing.
[21] Ricardo Bedin Franca, Jean-Paul Bodeveix, Mamoun Filali, Jean-Francois Rol-

land, David Chemouil, and Dave Thomas. 2007. The AADL behaviour annex–
experiments and roadmap. In null. IEEE, 377–382.

[22] Sanford Friedenthal, Alan Moore, and Rick Steiner. 2014. A practical guide to
SysML: the systems modeling language. Morgan Kaufmann.

[23] Nils Glombitza, Dennis Pfisterer, and Stefan Fischer. 2010. Using state machines
for amodel driven development of web service-based sensor network applications.

In Proceedings of the 2010 ICSE Workshop on Software Engineering for Sensor
Network Applications. 2–7.

[24] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram Mir
Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk Reiß,
Alexander Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wortmann.
2015. A Comparison of Mechanisms for Integrating Handwritten and Generated
Code for Object-Oriented Programming Languages. In Model-Driven Engineering
and Software Development Conference (MODELSWARD’15). SciTePress, 74–85.

[25] Object Management Group. 2010. OMG Unified Modeling Language (OMG UML),
Infrastructure Version 2.3 (10-05-03).

[26] David Harel and Bernhard Rumpe. 2004. Meaningful Modeling: What’s the
Semantics of ”Semantics”? IEEE Computer 37, 10 (October 2004), 64–72.

[27] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, Michael Thiele,
Christian Wende, and Claas Wilke. 2010. Integrating OCL and textual modelling
languages. In International Conference on Model Driven Engineering Languages
and Systems. Springer, 349–363.

[28] Katrin Hölldobler and Bernhard Rumpe. 2017. MontiCore 5 Language Workbench
Edition 2017. Shaker Verlag. http://www.se-rwth.de/phdtheses/MontiCore-5-
Language-Workbench-Edition-2017.pdf

[29] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. 2018. Software
Language Engineering in the Large: Towards Composing andDeriving Languages.
Computer Languages, Systems & Structures 54 (2018), 386–405.

[30] Botond Kádár, Walter Terkaj, and Marco Sacco. 2013. Semantic Virtual Factory
supporting interoperable modelling and evaluation of production systems. CIRP
Annals 62, 1 (2013), 443–446.

[31] Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle, Nicolas Belloir,
Philippe Collet, Benoit Combemale, Julien Deantoni, Jacques Klein, and Bernhard
Rumpe. 2016. VCU: the three dimensions of reuse. In International Conference on
Software Reuse. Springer, 122–137.

[32] Anneke Kleppe. 2008. Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Addison-Wesley.

[33] Thomas Kühn, Walter Cazzola, and Diego Mathias Olivares. 2015. Choosy and
Picky: Configuration of Language Product Lines. In Proceedings of the 19th Inter-
national Conference on Software Product Line. ACM, 71–80.

[34] Ivan Kurtev, Jean Bézivin, and Mehmet Aksit. 2002. Technological Spaces: an
Initial Appraisal. CoopIS, DOA 2002 (2002).

[35] Aung Sithu Kyaw. 2013. Unity 4. x Game AI Programming. Packt Publishing Ltd.
[36] Jörg Liebig, Rolf Daniel, and SvenApel. 2013. Feature-Oriented Language Families:

A Case Study. In Proceedings of the Seventh International Workshop on Variability
Modelling of Software-intensive Systems. ACM, 11.

[37] Michael Lütjen and Daniel Rippel. 2015. GRAMOSA framework for graphical
modelling and simulation-based analysis of complex production processes. The
International Journal of Advanced Manufacturing Technology 81, 1-4 (2015), 171–
181.

[38] David F. Méndez Acuña. 2016. Leveraging Software Product Lines Engineering in
the Construction of Domain Specific Languages. Ph.D. Dissertation. INRIA Rennes.

[39] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. 2014. Architec-
ture and Behavior Modeling of Cyber-Physical Systems with MontiArcAutomaton.
Shaker Verlag.

[40] Chantal Steimer, Jan Fischer, and Jan C Aurich. 2017. Model-based design process
for the early phases of manufacturing system planning using SysML. Procedia
CIRP 60 (2017), 163–168.

[41] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2008. EMF:
Eclipse Modeling Framework (2nd Edition). Addison-Wesley Professional.

[42] Thomas Thum, Christian Kastner, Sebastian Erdweg, and Norbert Siegmund.
2011. Abstract features in feature modeling. In 2011 15th International Software
Product Line Conference. IEEE, 191–200.

[43] Juha-Pekka Tolvanen and Steven Kelly. 2009. MetaEdit+: Defining and Using
Integrated Domain-Specific Modeling Languages. In Proceedings of the 24th ACM
SIGPLAN conference companion on Object oriented programming systems languages
and applications. ACM, 819–820.

[44] Edoardo Vacchi and Walter Cazzola. 2015. Neverlang: A framework for feature-
oriented language development. Computer Languages, Systems & Structures 43
(2015), 1–40.

[45] Markus Völter and Konstantin Solomatov. 2010. Language modularization and
composition with projectional language workbenches illustrated with MPS. Soft-
ware Language Engineering, SLE 16 (2010), 3.

[46] Markus Völter and Eelco Visser. 2010. Language Extension and Composition
with Language Workbenches. In Proceedings of the ACM international conference
companion on Object oriented programming systems languages and applications
companion. ACM, 301–304.

[47] Guido HWachsmuth, Gabriël DP Konat, and Eelco Visser. 2014. Language Design
with the Spoofax Language Workbench. IEEE software 31, 5 (2014), 35–43.

[48] Jules White, James H Hill, Jeff Gray, Sumant Tambe, Aniruddha S Gokhale, and
Douglas C Schmidt. 2009. Improving Domain-Specific Language Reuse with
Software Product Line Techniques. IEEE software 26, 4 (2009), 47–53.

[49] Andreas Wortmann, Olivier Barais, Benoit Combemale, and Manuel Wim-
mer. 2019. Modeling Languages in Industry 4.0: an Extended Systematic

http://www.se-rwth.de/publications/Concern-Oriented-Language-Development-COLD-Fostering-Reuse-in-Language-Engineering.pdf
http://www.se-rwth.de/publications/Concern-Oriented-Language-Development-COLD-Fostering-Reuse-in-Language-Engineering.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/phdtheses/MontiCore-5-Language-Workbench-Edition-2017.pdf

MODELS ’20, October 18–23, 2020, Virtual Event, Canada A. Butting, J. Pfeiffer, B. Rumpe, A. Wortmann

Mapping Study. Software and Systems Modeling 19, 1 (January 2019), 67–
94. http://www.se-rwth.de/publications/Modeling-languages-in-Industry-4-0-
an-extended-systematic-mapping-study.pdf

[50] Steffen Zschaler, Dimitrios S Kolovos, Nikolaos Drivalos, Richard F Paige, and
Awais Rashid. 2009. Domain-specific metamodelling languages for software lan-
guage engineering. In International Conference on Software Language Engineering.
Springer, 334–353.

http://www.se-rwth.de/publications/Modeling-languages-in-Industry-4-0-an-extended-systematic-mapping-study.pdf
http://www.se-rwth.de/publications/Modeling-languages-in-Industry-4-0-an-extended-systematic-mapping-study.pdf

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 Software Language Engineering
	3.2 MontiCore

	4 A Method for Systematic Language Engineering
	4.1 A Conceptual Model for Black-Box Language Reuse
	4.2 Composing DSL Components

	5 Modeling Languages and Framework
	5.1 DSL Components
	5.2 DSL Families
	5.3 DSL Component Customization
	5.4 Language Engineering Framework

	6 Application Example
	7 Discussion and Related Work
	8 Conclusion
	References

