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Abstract—Architecture description languages (ADLs) facili-
tate model-driven engineering by fostering reuse of component
models. Some of the over 120 ADLs contributed by academia
and industry feature dynamic architecture reconfiguration and
the underlying mechanisms vary significantly. When considering
employing an ADL supporting dynamic reconfiguration it is
challenging to keep track of the possibilities. We conducted
a literature study investigating the different reconfiguration
mechanisms of component & connector (C&C) ADLs. To this
effect, we started with the 120 ADLs studied in [29], reduced these
to C&C ADLs, investigated their reconfiguration mechanisms,
and classified these along six dimensions. The findings unravel
the state of dynamically reconfigurable C&C ADLs and support
developers considering employing one in choosing the most
suitable language.

I. INTRODUCTION

Component & connector (C&C) architecture description
languages [29], [32] combine the benefits of component-based
software engineering with model-driven engineering (MDE) to
abstract from the accidental complexities [19] and notational
noise [54] of general-purpose programming languages (GPLs).
They employ abstract component models to describe software
architectures as hierarchies of connected components.

We adopt the notion of C&C ADLs as described in [32],
where components encapsulate the functionality of the system
within well-defined stable interfaces and connectors enable
component interaction. These concepts abstract over technical
language details of C&C ADLs. In many ADLs the config-
uration of C&C architectures is fixed at design time. The
environment or the current goal of the system might however
change during runtime and require dynamic adaptation of the
system [45] to a new configuration that may only include a
subset of already existing components and their interconnec-
tions or may introduce new components and connectors.

To support dynamic adaptation a modeled C&C architecture
either has to adapt its configuration at runtime or it must
encode adaptation in the behaviors of the related components.
This encoding introduces implicit dependencies between com-
ponents and forfeits abstraction of behavior paramount to C&C
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models. It thus imposes co-evolution constraints on differ-
ent levels of abstraction and across components. Dynamic
reconfiguration mechanisms and their formulation in ADLs
help to mitigate these problems by formalizing adaptation as
structural reconfiguration. This allows components to maintain
encapsulation and abstraction of functionality.

Different C&C ADLs have suggested different reconfig-
uration mechanisms currently lacking detailed classification.
On the one hand, this creates challenges for engineers in
selecting ADLs with the right reconfiguration mechanisms.
On the other hand, a classification might help ADL creators to
design appropriate reconfiguration mechanism. Our goal is to
identify the modeling dimensions for dynamic reconfiguration
in C&C ADLs. We therefore investigate dynamic reconfig-
uration in C&C ADLs and develop a classification of C&C
ADL reconfiguration mechanisms. Our contribution consists
of (1) a study of dynamic reconfiguration in C&C ADLs, and
(2) a classification of C&C ADLs along different dimensions
of dynamic reconfiguration.

Sec. II gives an example to demonstrate benefits of dynamic
reconfiguration, before Sec. III presents concepts of dynamic
reconfiguration in C&C ADLs. Afterwards, Sec. IV discusses
our study and Sec. V compares it to related work. Finally,
Sec. VI concludes.

II. EXAMPLE

As motivating example, we consider different C&C model
configurations of a shift controller for an automatic transmis-
sion system for cars, as modeled in [23]. In this example, the
car’s clutch can adopt the six positions Park, Reverse, Neutral,
Drive, Sport, and Manual that influence when to shift gears.
Each of these positions is reflected in the software architecture
by an equivalent transmission operating mode (TOM). In C&C
software architectures, each shifting behavior would typically
be modeled as an individual component. With dynamic recon-
figuration, the architecture can adapt at run time. To this end,
reconfiguration modifies parts of the architecture, for example,
by redefining the connections between components. There
are different approaches to realizing dynamic reconfiguration,
e.g., stating different configurations of activated components
and connectors or exchanging connectors and instantiating or
deleting subcomponents.
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Fig. 1. Three configurations of the component ShiftController. Un-
connected subcomponents are omitted.

Fig. 1 illustrates dynamic reconfiguration of the composed
component ShiftController by depicting two exemplary
configurations. The top depicts the configuration Sport,
where the subcomponent SportShiftCtrl is employed
to shift the gears according to several values measured by
the SCSensors component. In this configuration, two sub-
components are active and four connectors are involved. The
bottom depicts the Manumatic configuration, which has one
active subcomponent ManShiftCtrl that reads the position
of the clutch and changes gears accordingly. The subcompo-
nents that are not used in the current configurations are either
unconnected, deactivated (e.g., to save energy), or removed –
depending on the realization of dynamic reconfiguration. TOM
messages received by the ShiftController component
are used to change between different configurations, e.g., based
on an automaton with a state for each configuration.

With explicit dynamic reconfiguration mechanisms, the con-
nectors between software components become exchangeable
or modifiable at runtime, which enables to specify different
operating modes of software architectures. Some ADLs also
support dynamic instantiation and removal of subcomponents.
In many ADLs, the number of possible configurations is
unrestricted, yielding great flexibility. In others, configurations
are made explicit and controlled, yielding the possibility of de-
scribing flexible software architectures for dynamic distributed
systems or system networks, while still supporting (automatic)
formal analyses on these systems. The latter is crucial for
modeling reliable and safe software architectures.

III. DYNAMIC RECONFIGURATION IN C&C ADLS

Modeling C&C architectures using ADLs [31], [32] ab-
stracts from the notational noise [54] and accidental complexi-
ties [19] of GPLs. ADLs enable modeling complex systems as
interacting, encapsulated components with stable communica-
tion interfaces. Connectors enable components to interact with
each other via their interfaces. Many ADLs yield additional
features, such as communication constraints, non-functional
properties, component behavior modeling techniques, or mod-

eling elements for domain-specific aspects. Different domains
successfully adopted ADLs, such as avionics [18], automo-
tive [9], cloud systems [36], and robotics [46].

We consider an ADL as dynamic if it supports modeling
dynamically reconfigurable architectures, i.e., it allows at least
to model dynamic establishment or removal of connectors.
The importance of dynamically reconfigurable architectures
has long been recognized [27] and it has been implemented for
multiple ADLs. Nonetheless, there are many ADLs that sup-
port static architectures only, such as ArchFace [51], ALI [6],
C3 [3], COSA [49], DiaSpec [13], Gestalt [47],LISA [53],
MontiArc [11], Palladio [7], UNICON-2 [16], or xADL [26].
Many of these ADLs focus on and excel in different con-
cerns, such as expressiveness (EAST-ADL [15]), domain-
specificness (DiaSpec [13]), or extensibility (xADL [26]).
Where available, rules for dynamic reconfiguration are usually
expressed by designated modeling elements of the ADL.
However, there is no consensus on how to describe dynamic
reconfiguration in architectural models.

We propose a classification of dynamic reconfiguration
mechanisms. Our starting point are 120 architecture languages
found in [29]. From this, we excluded ADLs that are not based
on C&C models (such as P++ [48]) and component models
with GPL implementations only (such as the k-Component
model [17], which is realized in C++ instead of an explicit
ADL). Afterwards, we excluded all ADLs for which no peer-
reviewed publications were available (such as DADL [34])
and all ADLs based on formal approaches for which we did
not find an implementation (such as TADL [35]). This left
23 ADLs that we examined regarding their capabilities and
mechanisms for dynamic reconfiguration.

A. A Classification of Dynamic Reconfiguration

During examining the ADL’s publications, we identified
six dimensions for the classification of modeling C&C ADL
dynamic reconfiguration mechanisms.

Restricted vs. Open Reconfiguration: With restricted recon-
figuration, the number of possible configurations is finite at
design time. For instance, AADL [18], AutoFocus [5], [4],
MontiArcAutomaton [23], or PRISMA [40] enable dynamic
reconfiguration in a restricted fashion. Here, composed com-
ponents can change between a finite number of configurations
(called “modes”). Switching between modes is also restricted:
specific transition govern under which circumstances a com-
ponent may change its configuration. Dynamic Wright [2], for
instance, enables to model dynamic reconfiguration between
a finite number of configurations predefined at design time in
response to the occurrence of special control events [2]. With
open reconfiguration, components may dynamically change
to configurations at runtime that have not been predefined
at design-time (cf. π-ADL [38], LEDA [12], PiLar [14],
and ArchJava [1]) or may change between an unrestricted
number of configurations predefined at design time [28].
While restricted reconfiguration lacks the flexibility of open

 



reconfiguration, it may increase model comprehensibility and
facilitate static analysis.

Imperative vs. Declarative Specification: In imperative
reconfiguration mechanisms, the reconfiguration is defined
programmatically, whereas declarative specifications typically
describe configurations. Imperative specifications exist in
many ADLs: ArchJava [1] allows to instantiate and connect
components similar to objects in Java. The π-ADL [38],
LEDA [12], and PiLar [14] include control structures and
operators for modeling dynamic reconfiguration such as the
instantiation and removal of components and connectors. Dy-
namic Wright [2] provides special actions (new, del, attach,
detach) to instantiate or remove architectural elements. The
architecture modification language of C2 SADL [30] enables
to specify sequences of operations for performing dynamic
reconfigurations. In Fractal [10], components may contain
various controllers, which are explicit language elements to
add and remove subcomponents as well as connectors. A
controller’s implementation, e.g., in Java [10], defines the
reconfiguration mechanism. Declarative specifications appear
in AADL [18], AutoFocus [4], Darwin [28], and Koala [52].
In the AADL [18] and AutoFocus [4], dynamic architec-
tures are declaratively described by predefined modes. In
Koala [52], switches are parts of component configurations.
Darwin [28] supports to declaratively specify special services
for component instantiation. To some extent, reconfiguration
can built upon both imperative and declarative mechanisms.
ACME/Plastik [25], e.g., provides imperative operators for
the instantiation of components, but additionally supports to
declaratively specify dependencies of the new component
to further architectural elements. When the component is
instantiated, these elements are also instantiated.

Programmed vs. Ad-Hoc Reconfiguration: With pro-
grammed reconfiguration, the architecture model is aware of
reconfiguration possibilities, whereas with ad-hoc reconfigura-
tion, it is not. In programmed reconfiguration, reconfiguration
conditions and effects are specified at design time. At runtime,
the reconfiguration is applied when the conditions for reconfig-
uration are met. Programmed reconfiguration can be restricted
(through specification of modes) or open (through imper-
ative reconfiguration specification). Ad-hoc reconfiguration
introduces greater flexibility, but the reconfiguration options
are invisible in the architecture models. Combining ad-hoc
reconfiguration with open reconfiguration can have the form
of external scripts selecting from predefined configuration
modes at architecture runtime. The ADLs AADL [18] and
ArchJava [1], for example, support programmed reconfigu-
ration through modes and imperative programs, respectively.
ACME/Plastik [25], C2 SADL [30], and Fractal [10] support
ad-hoc reconfigurations. In ACME/Plastik [25], for example,
ad-hoc reconfiguration is possible by executing reconfiguration
scripts that operate on a runtime API. While ad-hoc reconfig-
uration allows to simulate unforeseen architectural changes,
e.g., for testing the robustness of an architecture at runtime, it

complicates analysis and evolution.

Dynamic Component Instantiation & Removal: Many dy-
namic ADLs also allow to instantiate or remove components
at runtime. In ACME/Plastik [25], so-called actions can re-
move and create connectors and components. ArchJava [1]
embeds architectural elements in Java and hence allows to
instantiate objects corresponding to special component classes
similarly to ordinary Java objects. Although dynamic removal
of components cannot be explicitly modeled with ArchJava,
component instances are garbage collected, when they cannot
be referenced anymore. C2 SADL [30] supports ad-hoc in-
stantiation and removal of components. The controller concept
of Fractal [10] enables to dynamically instantiate and remove
components. The π-ADL [38], LEDA [12], and PiLar [14]
provide language constructs for the specification of dynamic
architectures, such as the instantiation, removal, or movement
of components. Dynamic Wright [2] supports modeling in-
stantiation and removal of components in response to the
occurrence of special control events. MontiArcAutomaton [23]
supports modeling dynamic component instantiation and re-
moval on mode changes. Darwin [28] only support modeling
dynamic instantiation but not dynamic removal of components.
ExSAVN [56], AVDL [44], and AOSEPADL [21] do not
support dynamic component instantiation or removal. While a
reconfiguration mechanism with dynamic component instanti-
ation and removal is more expressive than a mechanism relying
on establishing and removing only connectors at runtime, the
former complicates formal analyses on the architecture.

Instructed vs. Triggered Reconfiguration: With instructed
reconfiguration, the environment can intentionally instruct a
component’s reconfiguration. If an ADL supports modeling the
application of a reconfiguration in response to the occurrence
of a dedicated reconfiguration event only, we denote the
reconfiguration mechanisms as instructed (the environment
instructs the component to reconfigure). The nature of these
events depends on the expressiveness of the respective ADL
and can range from receiving messages of specific types
to components providing explicit reconfiguration services.
In contrast, if a component reconfigures based on internal
conditions over events that have to be satisfied (e.g., recon-
figure automatically if the incoming messages indicate a high
load) we denote the reconfiguration mechanism as triggered.
The ADLs AVDL [44], Darwin [28], Dynamic Wright [2],
and OOADL [50] support instructed reconfiguration only.
With ACME/Plastik [25], ArchJava [1], AutoFocus [5], [4],
Fractal [10], MontiArcAutomaton [23], LEDA [12], and Pi-
Lar [14], for instance, triggered reconfiguration is possible as
well. Triggered approaches are more powerful than instructed
approaches as they can emulate instructed reconfiguration.
Triggered reconfiguration, however, reduces complexity of
specifying configuration changes at the cost of flexibility.

Self-Direction: With self-directed approaches, the configura-
tion of a component cannot be changed by its environment at

 



will, instead only the component itself knows when and how
to reconfigure. With self-direction, reconfiguration is encapsu-
lated into the composed component [24], [50], but can be made
accessible through its interface, e.g., through dedicated recon-
figuration messages. This can be either instructed or triggered.
MontiArcAutomaton is a representative of a dynamic, mode-
based ADL supporting self-directed reconfiguration only, as
modes of a component are only accessible in the scope
of the component itself [23]. In Darwin [28], a component
may provide special services that dynamically change the
configuration of the component. ACME/Plastik [25] supports
imperative specification of programmed reconfiguration. Its
language elements (e.g., on, detach, remove, dependencies,
active property) only allow for self-directed reconfiguration.
Similarly, Dynamic Wright [2] only allows self-directed re-
configurations by means of special actions (new, del, attach,
detach) for dynamically modifying component configurations.
In AADL [18], modes of subcomponents can be mapped to
modes of their enclosing components. The subcomponents
then switch their modes according to the mode transitions of
their enclosing components. PiLar [14] is an imperative ADL
providing reflective commands that enable components to re-
trieve any other system part that can be manipulated afterwards
using the language’s dynamic commands. In Fractal [10],
components may be reconfigured from their environments via
the external interfaces of their membranes and from their
subcomponents via their membranes’ internal interfaces. The
π-ADL [38] and LEDA [12] include the mobility aspects of the
π-calculus [33]. Therefore, neither AADL, nor PiLar, Fractal,
π-ADL, or LEDA are self-directed. Self-direction retains the
encapsulation of component behavior as reusable black boxes.
While it can reduce the flexibility of reconfiguring, non self-
directed reconfiguration challenges system composition when
the reconfiguration makes assumptions about the internals of
(sub-)components.

B. Summary and Observations on Dynamic Reconfiguration

Table I summarizes our findings for the 23 identified ADLs
with unique dynamic reconfiguration mechanisms. The ADLs
are classified according to the identified dimensions. The
columns of the table indicate whether the reconfiguration
mechanism of each ADL is restricted, is imperative (Imper.)
or declarative (Decl.), is programmed or ad-hoc, allows for
dynamic component instantiation or removal, is triggered,
and whether it is self-directed. The symbols X, ×, ? denote
that a concept is supported, not supported, or that support is
unknown based on the available literature.

The majority of ADLs supporting dynamic reconfiguration
support open reconfiguration, enabling changing the architec-
ture in ways unforeseen at design time (for instance by loading
and applying change models). All ADLs, but C2 [30] support
programmed reconfiguration, whereas C2 is the single ADL
supporting only ad-hoc reconfiguration. Greater flexibility is
supported by ACME/Plastik [25], Fractal [10], and MAE [43],
which support both reconfiguration mechanisms. Where com-
ponent instantiation is supported, component removal is usu-

ally supported as well. Only Darwin [28] does not support
removal despite supporting instantiation. Whether this is due
to the semantic challenges of removal or the lack of a driving
use case is not disclosed. It is furthermore somewhat surprising
that only half of the ADLs support triggered reconfiguration,
as instructed mechanisms are substantially less flexible.

While support for instructed or triggered mechanisms and
support for component instantiation or removal are spread
uniformly over the 20 years of relevant papers, there seems
to be a trend towards programmed, declarative specification
of reconfiguration in the last decade. We assume to obtain
better model checking support, as these specifications are often
fixed at design time. Detailed investigation of the complexities
of the related reconfiguration specification mechanisms might
give insights into this.

IV. DISCUSSION

We conducted a literature study based on the 120 ADLs
presented in [29]. The authors performed a systematic search
using multiple databases and used the resulting list of ADLs
to investigate the industrial requirements on ADLs. Limiting
research to these 120 ADLs can be considered a threat to
the design of our study. Future work includes conducting a
systematic mapping study on C&C ADLs to identify ADLs
potentially missing in [29]. Nevertheless, we are confident that
our findings are valid for the majority of C&C ADLs. As
we only considered publications available in English, there
might, however, be publications on C&C ADLs with novel
reconfiguration mechanisms not accessible to us. Additional
threats arise from including publications using other than
established terminology (cf. [32]) to describe ADLs. To avoid
preventing relevant publications or including irrelevant pub-
lications, ambiguous publications were reviewed by at least
three of the authors and their inclusion was discussed based on
these reviews. To prevent the threat of classification fatigue, it
was performed in sessions of at most one hour broken followed
by breaks of at least 15 minutes.

V. RELATED WORK

Our study depends of the notion of component & connector
architecture description languages as introduced in [32], where
the authors investigated the properties of components and con-
nectors in nine ADLs. In that study, dynamic reconfiguration is
not investigated systematically. Moreover, the presented study
leverages the data collected for and presented in [29]. In that
study, the authors investigated the requirements on architecture
languages from an industrial perspective. They do not classify
reconfiguration features of the identified architecture lan-
guages. The authors of [22] investigate the properties relevant
to system-of-systems engineering of four ADLs (including
UML [37] and SysML [20]), but do not study their different
dynamic reconfiguration mechanisms. In [39], the authors
investigate six first-generation [31] ADLs and find that at least
Darwin [28] and Rapide [27] support dynamic reconfiguration.
They do not detail or compare the mechanisms.

 



ADL Restricted
Reconf.

Specification
Style

Programmed
Reconf.

Ad-hoc
Reconf.

Component
Instantiation

Component
Removal

Triggered
Reconf.

Self-directed
Reconf.

AADL [18] X Decl. X ? × × × ×
ACME/Plastik [25] × Imper. X X X X X X
AOSEPADL [21] X Decl. X × × × × X
ArchJava [1] × Imper. X ? X X X X
AutoFocus [4], [5] X Decl. X ? × × X X
AVDL [44] ? Decl. X × × × × ×
C2 SADL [30] × Imper. × X X X × ×
Darwin [28] × Decl. X ? X × × X
Dynamic Wright [2] X Imper. X × X X × X
ExSAVN [56] ? ? X × × × ? ?
Fractal [10] × Imper. X X X X X ×
KADL [41] ? Decl. X × X X X ?
Koala [52] X Decl. X ? × × X ×
LEDA [12] × Imper. X × X X X ×
MAE [43] × Decl. X X X X × X
MontiArcAutomaton [42] X Decl. X × X X X X
OOADL [50] × Imper. X × × × × X
π-ADL [38] × Imper. X ? X X X ×
PiLar [14] × Imper. X ? X X X ×
PRISMA [40] × Imper. X × × × X X
Rapide [27] × Decl. X × X X X X
Scud-ADL [55] × ? X × X X ? ×
SOADL [24] × Decl. X × X X × X

TABLE I
CLASSIFICATION OF DYNAMIC C&C ADLS ACCORDING TO THE SIX IDENTIFIED RECONFIGURATION DIMENSIONS.

Dynamic reconfiguration is related to self-configuration and
self-management of self-adaptive software [45]. A survey of
dynamic architecture specifications for self-management [8]
investigated 14 specification mechanisms and produced a tax-
onomy comprising the initiation and selection of reconfigura-
tion, available reconfiguration operations, and reconfiguration
management. The survey’s notion of dynamic reconfiguration
agrees with the notion introduced in this work. The survey [8]
includes the formal basis that reconfiguration mechanisms rely
on (i.e., graph-based, process algebra based, logic-based, and
other approaches). Our classification includes more ADLs
and abstracts from theoretical backgrounds. The survey [8]
defines an ADL’s reconfiguration mechanisms to be centralized
if dynamic reconfiguration is solely handled by specialized
components. Centralized approaches as defined in [8] are not
self-directed (cf. Sec. III) as in these approaches specialized
components manage the reconfiguration of other components.
An ADL solely supports restricted reconfiguration (cf. Sec. III)
if it solely supports pre-defined selection as defined in [8].

VI. CONCLUSION

We examined C&C ADLs and identified six dimensions of
dynamic reconfiguration. Slightly less than half of the ADLs
under investigation allow dynamic reconfiguration between
predefined configurations. The others allow reconfiguration
between configurations not predefined at design time. In most
examined ADLs that allow reconfiguration between predefined
configurations, only, the specification style for describing
reconfiguration mechanisms is declarative. However, there are
also ADLs providing a declarative specification style in combi-
nation with arbitrary reconfiguration. All but one ADL support
programmed reconfiguration, whereas the minority supports

ad-hoc reconfiguration. In all but one ADL where dynamic
component instantiation is possible, dynamic component re-
moval is also possible. Nearly half of the examined ADLs
support modeling self-directed programmed reconfiguration,
only. Surprisingly, only half of the ADLs support triggered
reconfiguration. Finally, there appears to be no general con-
sensus on modeling dynamic reconfiguration in C&C ADLs.
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