

Controlling Development Processes

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH

Aachen University zur Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Thomas Heer

aus Vechta

Berichter: Universitätsprofessor Dr.-Ing. Dr.h.c. Manfred Nagl

Universitätsprofessor Dr.rer.pol. Matthias Jarke

Tag der mündlichen Prüfung: 19. Juli 2011

[Hee11] T. Heer
Controlling Development Processes
Shaker Verlag, ISBN 978-3-8440-0509-7.
Aachener Informatik-Berichte, Software Engineering Band 10. 2011.
www.se-rwth.de/publications

Abstract

The development of an innovative product is a complex and highly dynamic process
which has to be performed in a controlled way. Several dependencies exist between
the defined tasks, the assigned resources, and the artifacts to be produced. In
a development project, which is planned and executed according to a process
definition, the time, budget, and available resources are limited. Controlling a
development process involves monitoring the actual performance and analyzing
whether it conforms to the plan. Poor performance, changing requirements, the
detection of errors, and the creation or modification of key artifacts may require
plan changes at process runtime. As a consequence of the inherent complexity of
the task, software tool support is essential for controlling development processes.

Different insufficient solutions are nowadays applied in practice for this purpose.
Project management systems support project planning and to some degree project
controlling, but they do not support the execution of predefined processes. Workflow
management systems on the other hand are commonly applied for process execution.
However, they do not support the scheduling of tasks in a project, and they are not
flexible enough for the management of development processes. As a consequence,
both types of systems are insufficient when it comes to controlling development
processes. Attempts for their integration fell short with respect to representing
execution states in project plans and scheduling workflow instances.

This thesis describes a new concept for a process management system, which
combines the strengths of the aforementioned tools and eliminates their deficien-
cies by substantial extensions. Starting point of the research were results of the
collaborative research center (SFB) 476 IMPROVE. An integrated approach for
the management of development processes has been extended with respect to
task scheduling, progress measurement, and change management in development
projects. In particular, an algorithm for the automatic generation of a project
schedule has been developed which takes the execution states of the tasks into
account. Subprocesses of a development process can be executed by a workflow
engine, which interprets predefined workflow definitions. With respect to monitor-
ing, specific progress measures for the degree of completion of tasks have been
defined which rely on elements of the process model. In the case of plan changes at
process runtime, the consistency of the plan with the execution state of the process
is ensured.

The concepts have been implemented in the extension module PROCEED of the
commercial life cycle asset information management system Comos of Siemens
Industry Software. Comos is widely used in the plant engineering industries. There-
fore, this thesis combines fundamental research results with a proof of concept
implementation in an industrial context. The realization of PROCEED based on an
industrial platform offers great opportunities for further evaluation of the provided
functionalities in plant design projects in the plant engineering industries.

Danksagung

Viele Menschen haben zum Gelingen dieser Arbeit und zum erfolgreichen Abschluss
meiner Promotion beigetragen. Ihnen möchte ich an dieser Stelle herzlich danken.

Mein besonderer Dank gilt Prof. Dr.-Ing Dr.h.c. Manfred Nagl für die Möglichkeit
an seinem Lehrstuhl zu promovieren, das spannende und nach wie vor aktuelle
Thema, die stets konstruktive Kritik in Vorträgen und Diskussionen, und sein vor-
bildliches Arbeitsethos an dem man sich orientieren konnte. Auch über die rein
fachlichen Dinge hinaus habe ich in den vergangenen Jahren viel von ihm gelernt.

Prof. Dr. Matthias Jarke danke ich für die Erstellung des Zweitgutachtens. Prof.
Dr. Berthold Vöcking und Prof. Dr. Thomas Seidl danke ich für ihre Bereitschaft als
Prüfer zu fungieren. Allen Mitgliedern der Promotionskommission danke ich für die
angenehme Prüfungsatmosphäre. Dem neuen Lehrstuhlinhaber Prof. Dr. Bernhard
Rumpe gilt mein Dank für seine Unterstützung in der Endphase meiner Promotion.

Diese Arbeit ist im Rahmen eines DFG Transferprojektes entstanden und wäre
ohne die Förderung der Deutschen Forschungsgemeinschaft nicht möglich gewesen.
Den Mitarbeitern des Industriepartners im Transferprojekt Siemens Industry Soft-
ware, vormals innotec, danke ich für die fruchtbare Zusammenarbeit. Herrn Weller
danke ich für die Bereitschaft, mit dem Lehrstuhl zum Thema Prozessmanagment zu
kooperieren, Herrn Kokkelink danke ich für die vielen konstruktiven Gespräche in
Bonn, Alexander Wojciekowski danke ich für seine tatkräftige Unterstützung in den
ersten Monaten des Projektes, Frau Nestler und Herrn Schimmang danke ich für
die gute Weiterführung der Zusammenarbeit.

Auf Seiten des Lehrstuhls waren mehrere Mitarbeiter, Diplomanden und Hilfswis-
senschaftler am Projekt beteiligt. Mein besonderer Dank gilt Galina Volkova und
Jochen Hormes für ihre Beiträge zur Entwicklung des Softwareprototyps. Die Diplo-
manden und Masterstudenten Christoph Briem, Sheryl Leong, Christoph Außem,
Emily Pu, Michael Dreher und Ventsislava Vasileva haben im Rahmen ihrer Ab-
schlussarbeiten maßgeblich zu den in dieser Arbeit vorgestellten Konzepten und
zur Entwicklung des Softwareprototyps beigetragen. Zeitweilig unterstützten uns
Christoph Briem, Florian Meyer und Ghislain Manib Mbogos als Hilfswissenschaftler.
Allen Teammitgliedern bin ich für ihre Unterstützung sehr dankbar.

In den Jahren während meiner Promotion durfte ich mit großartigen Kollegen
zusammenarbeiten und hatte mit ihnen viel Spaß am Lehrstuhl und darüber hinaus.
Daraus sind auch einige feste Freundschaften entstanden. Bodo Kraft, mein Diplo-
marbeitsbetreuer, hat mir gezeigt wie man ein Promotionsprojekt effektiv managed.
Markus Heller war mir ein Vorbild als gewissenhafter Forscher. Er hat wesentliche
Vorarbeiten zu dieser Arbeit geliefert. Mit René Wörzberger konnte ich im Rahmen
des Transferprojekts sehr gut zusammenarbeiten. Auf den Konferenzen, Arbeit-
skreisen, und Kundengesprächen, die wir zusammen besuchten, gab es dank ihm
viele heitere Momente. Theresa Körtgen danke ich für ihre moralische Unterstützung
und ihre wertvollen Verbesserungsvorschläge zu dieser Arbeit sowie zu meinem
Promotionsvortrag. Sie war mir immer ein Vorbild in Bezug auf Disziplin und Zielstre-
bigkeit. Daniel Retkowitz habe ich immer bewundert für seine stoische Gelassenheit.

Von ihm habe ich gelernt, die Promotion richtig einzuordnen und gelassen zu bleiben.
Ibrahim Armac hat mir gezeigt, wie man stilvoll promoviert und dabei immer eine
gute Figur macht. Mein lieber Bürokollege der letzten Tage Cem Mengi war immer
hilfsbereit und herzensgut, und war mir damit eine moralische Stütze. Allen alten
Kollegen möchte ich danken für die schöne Zeit in den ersten Jahren. Neben den
zuvor genannten sind dies Simon Becker, Thomas Haase, Christian Fuß, Christoph
Mosler, Ulrike Ranger, Erhard Weinell, Marita Breuer, Ulrich Norbisrath und Boris
Böhlen. Mit Simon verbinden mich auch einige nette Bierabende in Aachens Kneipen.
Bernhard Westfechtel hatte zwar den Lehrstuhl zu meiner Zeit schon verlassen, mir
jedoch bei einem Besuch noch eine gute Motivationsspritze verpasst. Den neuen
Kollegen, die mit Prof. Rumpe an den Lehrstuhl kamen, danke ich für die schöne
Zeit in den letzten Jahren und die vielfältige Unterstützung. Zu nennen sind hier
Ingo Weisemöller, Jan Oliver Ringert, Thomas Kurpick, Claas Pinkernell, Arne Haber,
Christoph Herrmann, Antonio Navarro-Perez, Markus Look, Minh Tran, Rim Jnidi,
Tim Gülke, Roland Hildebrandt, Martin Schindler, Christian Berger, Steven Völkel,
Hans Grönniger, Holger Rendel und Holger Krahn. Rim Jnidi war mir für einige
Zeit eine liebe Bürokollegin. Besonderer Dank gilt unseren Sekretärinnen Angelika
Fleck, Silke Cormann und Sylvia Gunder.

Ich möchte auch allen meinen Freunden und Bekannten in Aachen und darüber
hinaus danken, die mich moralisch immer unterstützt haben. Einen besonderen
Motivationsschub verdanke ich meinem Cousin Patrick gegen Ende der Promotion.
Schließlich danke ich meiner Familie für ihre Unterstützung in all den Jahren,
meinem Bruder Christoph, meinen Schwestern Radegunde und Walburga, und
besonders meinen Eltern Resi und Josef. Ohne euch hätte ich das nicht geschafft.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Research Context . 6
1.3 Solution Approach . 7
1.4 Contributions . 10
1.5 Structure of the Thesis . 13

2 Application Context 15
2.1 The General Plant Design Process . 15
2.2 The Life Cycle Asset Information System Comos 21
2.3 Example Scenario . 23

3 Fundamentals 31
3.1 Project Management . 31

3.1.1 Project Management Activities 32
3.1.2 Project Management Phases 34
3.1.3 Work Breakdown Structure and Project Plan 36
3.1.4 Organizational Breakdown Structure and Resources 39

3.2 Project Scheduling . 41
3.2.1 Temporal Analysis . 43
3.2.2 Resource-Constrained Project Scheduling 46
3.2.3 Disruption Management . 49

3.3 Project Controlling . 50
3.3.1 Determining the Actual Project Status 51
3.3.2 Target-Performance Comparison and Analysis 53
3.3.3 Steering a Project . 56

3.4 Workflow Management . 57
3.4.1 Definitions and Views . 59
3.4.2 Modeling Languages . 60
3.4.3 Workflow Management Systems 61
3.4.4 The Windows Workflow Foundation 62

4 Previous Achievements 67
4.1 RESMOD . 68
4.2 COMA . 69
4.3 DYNAMITE . 70

vii

viii Contents

4.3.1 Structural Model . 70
4.3.2 Behavioral Model . 72
4.3.3 Comparison With Other Paradigms 75

4.4 Process Model Definitions and Evolution 78
4.5 Interorganizational Cooperation . 82

4.5.1 Delegation-based Cooperation 83
4.5.2 View-Based Cooperation . 83

4.6 The AHEAD Prototype . 87

5 Timed Dynamic Task Nets 93
5.1 Structural Model . 95

5.1.1 Tasks and Control Flow . 95
5.1.2 Documents and Data Flow . 97
5.1.3 Resource Modeling . 100
5.1.4 Structural Constraints . 104

5.2 Behavioral Model . 113
5.2.1 Life Cycle of a Task . 113
5.2.2 Behavioral Constraints . 115
5.2.3 Execution States and Structural Change Operations 118

5.3 Timing Model . 123
5.3.1 Properties for Time Management 123
5.3.2 Timing Consistency Constraints 137

5.4 Monitoring Model . 144
5.4.1 Properties for Monitoring . 145
5.4.2 Monitoring Constraints . 151

5.5 Authorization Model . 154
5.5.1 Permissions . 155
5.5.2 Authorization Rules . 157
5.5.3 Project-Specific Tailoring of Access Control Policy 166

5.6 Related Work . 167
5.6.1 Resource Modeling . 167
5.6.2 User Authorization . 169

5.7 Conclusion . 171

6 Process Modeling and Enactment 173
6.1 Task Types . 174
6.2 Process Templates . 177
6.3 Workflow Management . 181

6.3.1 Workflow Instances in Dynamic Task Nets 183
6.3.2 Mapping of Meta-Model Elements 185
6.3.3 Mapping of Execution States and State Transitions 187
6.3.4 Execution of Control Flow Activities 190
6.3.5 Data Flow in Workflow-Managed Task Nets 192
6.3.6 Dynamic Changes to Workflow-Managed Tasks 193
6.3.7 Time Management Data in Workflow Templates 194

Contents ix

6.3.8 Conclusion . 195
6.4 Related Work . 196

6.4.1 Integration of Project and Workflow Management 196
6.4.2 Direct Process Support in Engineering Design Projects . . . 199

6.5 Conclusion . 201

7 Scheduling of Dynamic Task Nets 203
7.1 Partial Scheduling . 205

7.1.1 Zero-Duration Tasks . 207
7.1.2 Not Scheduled Tasks and Partially Scheduled Tasks 211

7.2 Critical Path Analysis . 213
7.2.1 Hierarchical Critical Path Method 214
7.2.2 Criticality and Consistency . 221
7.2.3 Correctness and Time Complexity 224

7.3 Resource-Constrained Scheduling . 226
7.3.1 Initialization . 227
7.3.2 Task Durations . 229
7.3.3 Parallel Scheduling Scheme 235
7.3.4 Scheduling Example . 245
7.3.5 Correctness and Time Complexity 253

7.4 Scheduling of Workflow Instances . 259
7.4.1 Critical Path Analysis . 259
7.4.2 Resource-Constrained Scheduling 263

7.5 Export to Database . 270
7.6 Related Work . 271

7.6.1 Resource-Constrained Scheduling 272
7.6.2 Temporal Analysis and Scheduling of Workflows 285

7.7 Conclusion . 290

8 Monitoring a Development Process 295
8.1 Progress Measures . 298

8.1.1 Black-Box Progress Measures 298
8.1.2 White-Box Progress Measures 303
8.1.3 Comparison of Progress Measures 311

8.2 Earned Value Analysis and Forecasts 313
8.3 Visual Project Status Analysis . 317

8.3.1 Measures . 320
8.3.2 Dimensions . 321
8.3.3 Configurable Pivot Table for Project Status Analysis 323
8.3.4 Analyzing the History of Plan Changes 327
8.3.5 Coupling with Management Views 328

8.4 Related Work . 328
8.4.1 Progress Measurement of Development Processes 328
8.4.2 Visualization of Project Management Data 334

8.5 Conclusion . 336

x Contents

9 Change Management 337
9.1 Enactment of Management Processes 337

9.1.1 Management Tasks . 340
9.1.2 Parameterization of Task Types 342
9.1.3 Parameterization of Management Workflow Templates 346
9.1.4 Example Case . 349

9.2 Possible Disruptions and Compensating Actions 350
9.2.1 Disruptions at Project Runtime 351
9.2.2 Change Operations . 352

9.3 General Change Management Procedure 355
9.3.1 Consistency Checks Before Change Operations 356
9.3.2 Resolving Inconsistencies After Replanning 361
9.3.3 Rescheduling of Workflow-Managed Task Nets 364
9.3.4 Violations of Monitoring Constraints 364
9.3.5 Changes to Dependent Task Properties 364

9.4 Related Work . 368
9.4.1 Enactment of Project Management Processes 368
9.4.2 Replanning and Rescheduling 370

9.5 Conclusion . 373

10 Prototypical Implementation 375
10.1 System Overview . 375
10.2 Design and Implementation . 377

10.2.1 Process Engine . 377
10.2.2 Workflow Engine . 380
10.2.3 Scheduler . 381
10.2.4 Project Data Warehouse . 383
10.2.5 Coupling with External Project Management System 384

10.3 User Interface . 386
10.3.1 Project Management Views 386
10.3.2 Process Definition Tools . 391
10.3.3 Monitoring Views . 393
10.3.4 Resource Management View 397

10.4 Implementation Size . 398
10.5 Conclusion . 399

11 Conclusion 401
11.1 Summary . 401
11.2 Outlook . 406

Bibliography 409

List of Figures

1.1 Example for a dynamic task net. 3
1.2 Overview over solution approach. 8

2.1 Phases and main activities of the general plant design process. . . . 17
2.2 Block diagram with basic information [ISO01]. 18
2.3 Process flow diagram with basic information [ISO01]. 19
2.4 Piping and instrumentation diagram with basic information [ISO01]. 19
2.5 Screenshots of the Comos user interface. 22
2.6 Overview over the tasks of the work breakdown structure. 25
2.7 Overview over technical tasks and work steps. 26
2.8 Cutout of dynamic task net at runtime. 29

3.1 The project management triangle [PR05]. 33
3.2 Project management phases according to [PR05]. 34
3.3 The process of project planning adapted from [Ela08]. 36
3.4 Mixed type work breakdown structure of example scenario. 38
3.5 Example for an organizational breakdown structure [EDL10]. . . . 40
3.6 The project management control cycle, adapted from [PR98]. 51
3.7 Key figures of earned value analysis [Lip03]. 54
3.8 Development of the SPI and CPI in a delayed project [Lip03]. . . . 55
3.9 Workflow Reference Model - Components & Interfaces [Wor95]. . . 62
3.10 Graphical representation of a WF workflow [Mic10b]. 64
3.11 WF component categories [Buk08, p. 32]. 65

4.1 Example for a management configuration in AHEAD [HJK+08]. . . . 68
4.2 Graph schema for dynamic task nets [Sch02]. 70
4.3 Example for a dynamic task net. 72
4.4 State transition diagram [Kra98]. 73
4.5 Feedback flows and task versioning in dynamic task nets [Sch02]. . 74
4.6 Conceptual framework for evolutionary process management [Sch02]. 79
4.7 Class diagram for a design subprocess [HJK+08]. 81
4.8 Instance pattern for partial realization definition [Sch02]. 82
4.9 Distributed AHEAD system [HJK+08] 84
4.10 Integration of workflow processes in AHEAD [HJK+08]. 86
4.11 Architecture of the AHEAD system [HJK+08]. 88
4.12 The task net view of the management environment [HJK+08]. . . . 89
4.13 The resource view of the management environment [HJK+08]. . . . 89

xi

xii List of Figures

4.14 The work environment [HJK+08]. 90

5.1 Partial models of the TNT meta-model for dynamic task nets. 94
5.2 Classes for tasks and task relationships. 95
5.3 Task net hierarchy with defined granularity levels. 97
5.4 Example for a hierarchical task net with control and feedback flows. 97
5.5 Classes for documents, revisions, parameters, and data flows. . . . 98
5.6 Example for data flow in a dynamic task net. 99
5.7 Classes for resources and task assignments. 101
5.8 Role hierarchy of the example scenario. 102
5.9 Organizational breakdown structure of the example scenario. . . . 102
5.10 Responsibility hierarchy derived from the OBS. 103
5.11 Example for a task with multiple task assignments. 103
5.12 Finite state machine defining the life cycle of a task. 114
5.13 Example for an enacted dynamic task net. 114
5.14 Versioning of a terminated task. 122
5.15 Entities and properties for time management. 124
5.16 Example for a work calendar and workload distributions. 126
5.17 Planning of total workload for a complex task. 129
5.18 Lag time for a simultaneous control flow. 132
5.19 Entities and properties for monitoring. 145
5.20 Workload distributions for actual workload of task assignments. . . 147
5.21 Graphical representation of dynamic task nets. 150
5.22 Related classes for users and permissions. 155
5.23 Example task net for the application of authorization rules. 159

6.1 Classes and associations for task types. 175
6.2 Example for the specialization of task types. 176
6.3 Additional associations for process templates. 179
6.4 Example for the usage of a process template. 179
6.5 Example workflow definition for the design of a pump. 184
6.6 Tasks and control flows of example workflow template. 185
6.7 Mapping workflow block structure to task net control flow structure. 186
6.8 Finite state machine defining the life cycle of WF workflow instances. 187
6.9 Synchronizing automaton for workflow-managed tasks. 188
6.10 Finite state machine defining the life cycle of WF workflow activities. 189
6.11 Synchronizing automaton for workflow tasks. 189
6.12 Sequence diagram for workflow integration. 191
6.13 Enacted workflow-managed task net. 192

7.1 Replacement rule for control flows of a zero-duration task. 209
7.2 Possible timing of tasks for the standard successor case. 210
7.3 Example for the elimination of zero-duration tasks from a task net. 210
7.4 Influence of execution states on rescheduling. 212
7.5 Virtual start and end nodes in a hierarchical task net. 215

List of Figures xiii

7.6 Traversal order for critical path analysis. 217
7.7 Example for constrained EPET and discarded solution. 219
7.8 Example for CPM failure due to a not scheduled task. 223
7.9 Computed constraint dates for cutout of example scenario. 224
7.10 Example for duration variability. 230
7.11 Example for distributed workload of a task and its task assignments. 231
7.12 Example for aligning planned values to actual values. 234
7.13 Illustration of time increments of parallel heuristic. 235
7.14 Example for inconsistent end time with not scheduled successor. . . 240
7.15 Examples for inconsistent end times of complex tasks. 243
7.16 Gantt chart of the complete base schedule. 246
7.17 Planned dates for the base schedule cutout. 247
7.18 Gantt chart of the base schedule cutout. 248
7.19 Computed constraint dates and planned dates after rescheduling. . 249
7.20 Gantt chart of rescheduled plan due to task delay. 250
7.21 Rescheduled task net after feedback. 252
7.22 Gantt chart of rescheduled plan after feedback. 253
7.23 Latest possible end times with and without explicit project deadline. 254
7.24 CPM computations in a workflow-managed task. 261
7.25 Example workflow for resource-constrained scheduling 264
7.26 Example realization of a workflow-managed task. 264
7.27 Different unsatisfying possibilities for scheduling alternative tasks . 265
7.28 Scheduled alternatives at different stages of workflow enactment. . 268
7.29 Scheduled iterated activity in a workflow-managed task. 269

8.1 Integrated approach to planning, scheduling, and monitoring. . . . 296
8.2 Actual, planned, and forecasted total workload of a task. 300
8.3 Task with produced document revisions. 302
8.4 Required graph structure for progress measure Milestones. 304
8.5 Reference values for a workflow definition. 307
8.6 Reference data for an iterated activity. 309
8.7 Accurate progress measurement despite incomplete WBS. 311
8.8 Comparison of progress measures regarding effort and accuracy. . 313
8.9 Comparison of planned and actual degree of completion. 314
8.10 Duration forecast based on SPI. 317
8.11 Overview over the visualization approach. 319
8.12 Simplified cutout of the TNT meta-model. 320
8.13 Multidimensional database schema of project data warehouse. . . . 322
8.14 Example for a subcube of the complete hypercube. 323
8.15 Example configuration of the pivot table. 324
8.16 Task States configuration of the project status analysis view. 326
8.17 Visual comparison of the development of property values. 328
8.18 Dimensions of the SPCC taxonomy [MH04]. 332
8.19 Software development model [MH04]. 333

xiv List of Figures

9.1 Examples for management workflows. 338
9.2 Management extensions of the TNT meta-model. 340
9.3 Management tasks in work breakdown structure. 342
9.4 Management workflow triggered by an event. 345
9.5 Example for the automatic organization of management workflows. 348
9.6 Example for a change management workflow instance. 349
9.7 Procedure for consistency checking before a change operation. . . 356
9.8 Changes to planning data and compensation. 358
9.9 Temporally accepted inconsistent changes. 360
9.10 Procedure for (re)starting a task. 362
9.11 Replanned and rescheduled task net. 363
9.12 Dependent time management properties. 365
9.13 Decrease of maximal resource usage per day for a task assignment. 366
9.14 Increase of total duration. 367
9.15 Dependent time management properties in MS Project 372

10.1 Planning objects and base objects in Comos. 378
10.2 Relation of process engine classes to Comos interfaces. 379
10.3 Workflow engine and related components and tools. 380
10.4 Exported dynamic task net in MS Project. 385
10.5 Screenshot of the Task Net View. 387
10.6 Task properties in the Task Net View. 388
10.7 Split screen and overview window of Task Net View. 389
10.8 Task assignment dialog. 389
10.9 Screenshot of the Task List View. 390
10.10 Filters applied to the Task List View. 390
10.11 Limited visibility and accessibility of management data. 391
10.12 Screenshot of the PROCEED Process Template Editor. 392
10.13 Screenshot of the PROCEED Workflow Designer. 393
10.14 Workflow enactment state in PROCEED Workflow Monitor. 394
10.15 Pivot table configuration Technical Crews. 395
10.16 Pivot table configuration Task Usage. 396
10.17 PROCEED Resource Management View. 397

List of Tables

2.1 Planning data of tasks in the example scenario. 28

4.1 DYNAMITE control flows versus PDM precedence constraints. 76

5.1 Pre- and post-conditions for structural change operations. 112
5.2 Pre- and post-conditions for state change operations. 119
5.3 Behavioral pre- and post-conditions for structural change operations. 121
5.4 Default property values for a new subtask. 134
5.5 Default property values for a new task version. 136
5.6 Timing post-conditions for structural change operations. 144
5.7 Equivalent concepts in [NW94], RESMOD, and the TNT meta-model. 168

6.1 Editable properties of types and tasks. 177

7.1 Timing consistency constraints fulfillment by CPM algorithm. 226
7.2 Timing consistency constraints fulfillment by heuristic. 258

8.1 States and progress degrees for a P&ID 301
8.2 Evaluation of progress measures. 312
8.3 Examples for SPI thresholds. 316

9.1 Selected events which may trigger management workflows. 344

10.1Lines of code of the PROCEED prototype. 398

xv

Chapter 1 Introduction 1

Chapter 1

Introduction

Processes are inherent in the work of people in virtually every organization. A
process can be defined as the logical organization of people, materials, energy,
equipment, and procedures into work activities designed to produce a specified end
result [Pal87]. Process models can be applied to capture all of these aspects. A
process model defines the activities to be executed, their sequence, their responsible
roles, the artifacts which are required for the activities and those which shall
be produced [Lon93]. Additional properties regarding the expected durations of
activities, their required effort, their priorities, etc. can be incorporated as well. The
explicit definition of processes has several advantages [Kra98]. A process model
allows the communication about the process. Process models can be reused for
the definition of new processes. An explicitly defined process can be analyzed and
improved subsequently. Finally, the explicit definition of a process enables process
controlling during its performance. Process controlling subsumes all activities which
are performed to ensure that the results of a process are delivered on time and meet
the required quality standards. This includes monitoring the process and taking
corrective measures if necessary.

A specific type of processes are development processes. They define how dif-
ferent human actors have to cooperate to develop a new product. Development
processes have several specific characteristics [NW94]. First, they define multiple
interrelationships between tasks, human resources, and products, which have to be
managed at process runtime. Products subsume all documents and other artifacts
produced in the process. Second, there is a high degree of uncertainty, and dynamic
changes to the defined tasks, resources, products, and their mutual relationships
occur frequently at process runtime. Finally, the tasks which have to be executed
in a development process and their relationships cannot be completely defined in
advance before the start of the process. The creation of key artifacts is often the
precondition for the definition of further tasks.

The term design process is often used synonymously for development process
[NM08]. However, one can also regard a design process as a special case or
subprocess of a development process. The result of the former is the design of
a new product, e.g. a car or a chemical plant, while the latter also includes the
actual construction of the product. For example, the result of a plant design project
is the design of a chemical plant while the actual construction has to take place
subsequently or simultaneously. In contrast, the result of a software development

2 1.1 Motivation

process includes the software itself and not merely its design.

Process management includes all activities regarding the modeling, performance,
controlling, and improvement of processes. It is a means to improve the performance
of individual process participants, teams, and whole organizations. The specific
characteristics of development processes and their complexity demand for software
tool support for process management. A process management system can support
the process responsible by keeping track of all interdependencies between tasks,
resources, and products, thereby maintaining a consistent state of the management
data. The human resources who execute the defined tasks can be guided in carrying
out their work. The compliance of the actual process performance to the defined
process model can be enforced. Finally, a process management system can support
the partial automation of development processes.

1.1 Motivation

A process management system which addresses the specific characteristics of de-
velopment processes was realized in the project Adaptable and Human-Centered
Environment for the Administration of Development Processes (AHEAD) [HJK+08]
at the Department of Computer Science 3 of RWTH Aachen University. The aim
of the AHEAD project was to provide new concepts and tool functionalities for
the management of development processes. In particular, the aspects of process
modeling, enactment, and improvement, as well as interorganizational collaboration
were addressed. The AHEAD prototype was developed to evaluate the applicability
of the developed concepts for the management of development processes.

Besides a formal definition of the process to be performed, a process management
system needs an internal representation of a process instance, i.e. the current state
of a performed process at runtime. In [Sch02], the following terminology has been
introduced, which will also be used in this thesis.

Process Model Definition. A process model definition defines the process inde-
pendent of any specific instance.

Process Model Instance. A process model instance represents a process in its
current state of performance.

In both cases the term model is used to emphasize that the definition of the process
as well as the process instance are both represented by according models in a
process management system. The term process model enactment is used for the
mechanical interpretation of a process model by a process management system and is
thereby distinguished from process performance [Lon93]. Performance of a process
means the execution of the defined tasks by process participants according to the
process model and thereby refers to the actions of the process participants in the
real world. In contrast, enactment refers to the state changes of the corresponding
process model instance in a process management system.

Chapter 1 Introduction 3

Initial Piping &
Instr. Diagr.

Process Engineer

Create Process
Flow Diagram

Process Engineer

PFD

Detailed Piping &
Instr. Diagr.

Mechanical Engineer

seq

Assemble
Equipment List

Process Engineer

Equipment
List

Specification of
Devices

Mechanical Engineer

seq

sim

sim

P&ID

P&ID

sim

PFD
Revision 1

P&ID
Revision 1

Figure 1.1: Example for a dynamic task net.

For the representation of process model instances in AHEAD, the concept of a
dynamic task net was introduced [Kra98]. A dynamic task net integrates the current
state of planning with the enactment state of the corresponding development process.
In Figure 1.1, an example of a dynamic task net is depicted showing the currently
defined tasks to be executed, their required roles, their execution states, and the
actual data flow, i.e. the document revisions which have been produced within the
scope of the tasks. The available entities, properties, and relationships for modeling
dynamic task nets in AHEAD are defined in the DYNAMITE meta-model [Kra98],
which also defines structural and behavioral invariants constraining the allowed
change operations to ensure the consistency of the management data.

In the majority of cases, development processes are executed in the form of
development projects. According to the ISO 9000 standard, a project is a unique
process, consisting of a set of coordinated and controlled activities with start and
finish dates, undertaken to achieve an objective conforming to specific requirements
including constraints of time, cost and resources [ISO05]. The connection between
the concepts of a process and a project has been illustrated in [Dow91]. A process
model definition cannot make any assertion about fixed date constraints in a calendar
or about actual human resources in a project team. These aspects can only be
determined in a concrete project where one has to deal with time, cost and resource
constraints. On the other hand, a process model instance of a development process
should incorporate all aspects of a project plan.

Nowadays, complex development projects are usually carried out according to
a process model definition which defines the project phases, milestones, tasks,
functional roles, and the artifacts to be produced. The project plan of such a
development project has to comply to restrictions defined in the process model
definition concerning the order of tasks, the assignment of qualified human resources
to tasks, and the produced artifacts [HJK+08, GDMR04]. However, a project plan
stored in a conventional project management system does not capture the current

4 1.1 Motivation

enactment state. For this purpose, dynamic task nets integrate the information
contained in project plans with information about the current performance state of a
development process, namely the execution states of tasks and the actual data flow.

Controlling the performance of a development process refers to controlling a
development project. Project controlling subsumes all activities for measuring the
actual performance of the defined tasks, comparing the actual performance to the
plan, identifying deviations from the plan, and taking corrective measures to get
back on track if necessary [DIN09]. If corrective measures are unsuccessful or the
project goals have changed, plan changes may be required at project runtime. The
project controlling activities can be divided into monitoring and steering. Monitor-
ing subsumes the activities from measuring the actual performance to identifying
deviations while corrective measures and plan changes are means to control or steer
a project.

The capabilities of the AHEAD system for project controlling are limited. Mon-
itoring the performance of a development process is only possible based on task
execution states and released document revisions. No degree of completion is
computed to determine the exact progress of tasks during execution. Tasks in a
dynamic task net are not scheduled for particular dates in the AHEAD system. As a
consequence, it cannot be decided whether the resource assignments are feasible.
Without a baseline schedule, it is not possible to assess the performance of a devel-
opment process with respect to deadlines and budget limits. The AHEAD approach
includes a conceptual framework for process management on several modeling
layers which allows for continuous process improvement [Sch02]. However, process
improvement with respect to timing data like average task durations is generally
only possible when development processes are monitored at runtime. Consequently,
it was required to extend the AHEAD approach with respect to project scheduling
and controlling capabilities.

A prerequisite for project controlling is the existence of a baseline schedule which
serves as a reference for assessing the actual performance. For example, the tasks
depicted in Figure 1.1 have an estimated duration and resource requirements in
terms of working hours. They have to be scheduled for particular dates, so that
resources can be allocated according to the requirements. An executable schedule
has to be time- and resource-feasible, i.e. it has to comply to all defined task
dependencies, and the resource usage may not exceed the defined limits for any
date. The complexity of development projects demands for software tool support for
the automatic generation of such time- and resource-feasible schedules. Research
on project scheduling has been conducted for several decades with considerable
success [DH02]. However, there are still several open research questions with
respect to scheduling [Smi03]. One of these problems is managing change. A project
is never executed exactly as planned, so that plan changes occur frequently at
project runtime. Dynamic plan changes require a partial or full rescheduling of
the defined tasks. Most established approaches for project scheduling assume that
the scheduling environment is predictable and that the generated schedule can be
executed as planned, while practical applications tend to be highly unpredictable,

Chapter 1 Introduction 5

so that scheduling is an ongoing process of responding to unexpected and evolving
circumstances. Algorithms which are able to reschedule the tasks in a project fast
upon dynamic plan changes are still rare.

Based on a baseline schedule, project monitoring can be performed. The first
step in project monitoring is to measure the actual performance of the defined
tasks. For this purpose, the degree of completion of a task has to be determined.
The degree of completion reflects to what extent the goal of the task has been
reached. In this way, quantitative statements can be made about the progress of a
running task. For example in Figure 1.1, it could be determined that the task Create
Process Flow Diagram is 60% complete after creating the first revision of the process
flow diagram. For the computation of the degree of completion, different progress
measures can be applied, which quantify the actual progress of running tasks. A
progress measure has to be sufficiently accurate in order to base management
decisions on the computed values. At the same time, the measuring effort should
be as low as possible in order to avoid a disproportionate measurement overhead
which negatively affects the performance of the development process. Accuracy
and measuring effort are mutually dependent, and a good trade-off has to be found
by selecting appropriate progress measures. Furthermore, it is important to be
able to determine the current project status in a timely manner, i.e. it should be
possible to derive an accurate degree of completion for a task at any time. In large
and complex projects, the timeliness of progress measurement can only be achieved
with software tool support. But even with software tool support, the actuality of the
computed values is degraded if progress measures rely on user inputs which are
not provided on a regular basis. In project monitoring theory and practice, several
different measures for the degree of completion of a task have been proposed and
are used [PR05]. These measures differ with respect to their accuracy, the required
measurement effort, and the actuality of the measured values. For different tasks
in a project, different progress measures are appropriate. However, no integrated
measurement framework exists which combines all common measures and which
can be tailored to a specific development process.

Besides monitoring the actual performance, controlling also involves the appli-
cation of corrective measures and plan changes. The integration of planning and
scheduling has been identified in [Smi03] as another open problem in the scheduling
research field. When tasks, dependencies, or resources are created, modified, or
deleted at project runtime, then the schedule has to be updated. For example in
Figure 1.1, the duration of the task Initial Piping and Instrumentation Diagram may
be increased or the deadline for the task Assemble Equipment List may be antedated.
Individual plan changes may lead to an inconsistent state of the management data
with respect to timing properties and may even render scheduling impossible. A
process management system has to ensure that dynamic changes eventually enable
successful rescheduling. However, it is not possible to ensure the consistency of
the timing data at any time during replanning because several operations may be
required to obtain a new consistent state.

When it comes to planning and replanning, several additional issues have to be

6 1.2 Research Context

considered. If project planning is performed by means of a software tool which is
used by several users with different permissions, then the authorization for change
operations has to be decided for every user individually. When a user is authorized
to perform plan changes, he may require additional information to decide on the
best option. For example, he may want to inspect the currently planned usage of
all resources with a certain functional role to decide which resource to assign to a
task. Finally, the history of plan changes should be traceable for two reasons. First,
the effect of unforeseen disruptions at project runtime can be analyzed. Second,
bad estimates of the required time and effort for tasks specified in a process model
definition, which have been used for project planning, can be identified and corrected
after project completion.

1.2 Research Context

The research presented in this thesis has been conducted in the context of the
transfer project T6 Dynamic Process Management based upon Existing Systems at
the Department of Computer Science 3 of RWTH Aachen University [HNWH08]. The
project was part of the Transfer Center 61 succeeding the Collaborative Research
Center (CRC) 476 IMPROVE [NM08], which were both funded by the DFG (Deutsche
Forschungsgemeinschaft). The application domain of the CRC and the Transfer
Center was the domain of plant engineering. The goal of the interdisciplinary
research was to provide better software tool support for plant design processes.
Software prototypes should demonstrate the applicability of the developed concepts
and functionalities for the management of dynamic development processes.

Besides the advancement of the AHEAD approach, the transfer of the research
results to industrial practice was the second goal of the transfer project T6. The
AHEAD system was a purely academic prototype. It was generated from a formal
specification of a graph rewriting system [SWZ99]. In contrast, the new concepts and
algorithms presented in this thesis have been implemented as an extension module
of the commercial life cycle asset information management system Comos, a product
of Siemens Industry Software formerly known as innotec [Sie10]. Siemens Industry
Software was the industrial partner in the transfer project T6. The Comos system
was extended by new functionality for the management of dynamic development
processes. The cooperation with the industry partner Siemens Industry Software also
gave rise to additional requirements. In particular, workflow support for individual
subprocesses in a plant design project and an adequate visualization of the project
management data for project status reports were demanded by the industry partner.

Two other research projects were conducted in the Transfer Center 61 which were
closely related to the transfer project T6. In the project T2 Computer-Assisted Work
Process Modeling [THM08], the modeling of work processes based on ontologies was
investigated. The project T3 Simulation-Supported Workflow Optimization in Process
Engineering [KSSL08] was concerned with the simulation of development processes
in order to optimize the usage of resources and tools. The software prototypes
developed in the projects T2, T3, and T6 were coupled in a joint cooperation, so that

Chapter 1 Introduction 7

process models of the T2 project could be simulated by the simulation tool of the
T3 project, and both, the models and the simulation results could be imported into
Comos in the form of workflow templates. The resulting integrated tool framework
has been presented in [HTT09, Pu09] but will not be treated in this thesis.

In the CRC 476 IMPROVE, another research project was conducted which was
concerned with process management. In the project B1 Experience-Based Develop-
ment Processes, direct process support was integrated in the software-tools which
are used by engineers in a plant design project. The results of this project will be
reviewed as related work in Chapter 6 of this thesis.

1.3 Solution Approach

In this thesis an innovative approach for controlling development processes by means
of a process management system is presented. The developed solution exceeds
state-of-the-art project and workflow management systems with respect to the
management of development processes. Project management systems do not allow
to connect the defined tasks in a project plan with technical products. Furthermore,
they do not allow to enact predefined processes. On the other hand, workflow
management systems do not support planning and scheduling. The deficiencies
of the two types of systems are overcome by integrating the two paradigms and
thereby providing integrated support for project planning and process enactment.

The AHEAD approach for process management has been advanced in this thesis
to cover the aspects of project planning, scheduling and controlling. Planning refers
to the initial definition of a dynamic task net including estimates for the required
effort and duration of the defined tasks. In the process management literature, the
terms task and activity are sometimes used synonymously. In this thesis, only the
term task is used to refer to the portions of work defined in a process model. After
planning, the defined tasks are scheduled. Controlling subsumes monitoring the
actual performance as well as changing a dynamic task net at project runtime. A
task net can be replanned and subsequently rescheduled at project runtime.

Established approaches for project planning, scheduling, and controlling from
theory and practice have been analyzed, adapted, extended and integrated with
the AHEAD approach for process management. The developed algorithms and tool
functionalities have been implemented in the Process Management Environment
for Engineering Design Processes (PROCEED) which is an extension module of the
commercial life cycle asset information management system Comos. An exemplary
plant design project has been defined and the enactment of the process model in-
stance has been simulated in PROCEED to verify the correctness of the implemented
algorithms and to evaluate the applicability of the provided tool functionality.

The solution approach can generally be divided into two parts. First, the DY-
NAMITE meta-model for modeling dynamic task nets has been extended by new
entities, properties, relationships, and constraints to enable the modeling of timing
and progress measurement aspects, resulting in the new TNT meta-model for Timed
Dynamic Task Nets. Second, algorithms and tool functionalities have been developed

8 1.3 Solution Approach

TNT Meta-model

Structural Model

Behavioral Model

Timing Model

Monitoring Model

Authorization Model

Management Extensions

Chapter 5

Chapter 6 Workflow
Management

Chapter 7 Scheduling

Chapter 8 Progress
Monitoring

Chapter 9
Enactment of
Management
Processes

Figure 1.2: Overview over solution approach.

which build on the extended modeling capabilities and support the scheduling and
controlling of process model instances. Figure 1.2 shows the structure of the TNT
meta-model together with the corresponding algorithms and tool functionalities.
Furthermore, it shows which aspects of the solution approach are treated in which
chapter of this thesis.

Workflow support for technical subprocesses has been a specific requirement in
the industrial context of the transfer project T6. Workflow management systems
(WfMS) [JB96, Jab95, Wor95] are a popular type of process management systems.
WfMS put an emphasis on the automation of processes. Previous work in the AHEAD
project [Hel08a] regarding the integration of workflow instances into dynamic
task nets could be continued [HBW09]. A workflow engine has been integrated in
PROCEED to partially automate the enactment of dynamic task nets. If a task in a
process is refined by several subtasks which together define another process, then
the latter process is called a subprocess of the former. Workflow definitions serve
as process model definitions for subprocesses of a development process. This tool
functionality is related to the behavioral model of the TNT meta-model.

The timing model of the TNT meta-model defines entities, properties, and relation-
ships to enable the scheduling of tasks in a dynamic task net. Tasks can be planned
with respect to required workload and budget, expected duration, constraint dates,
and planned dates. Timing consistency constraints have been defined which ensure
the consistency of a dynamic task net with respect to all timing properties. The
classical critical path analysis [KW59] has been adapted for hierarchically structured
dynamic task nets to compute the earliest and latest possible start and end times
of the defined tasks. A heuristic algorithm for resource-constrained scheduling
of dynamic task nets has been developed based on a general parallel scheduling

Chapter 1 Introduction 9

scheme. The heuristic yields a good time- and resource-feasible schedule which
is flexible in the sense that dynamic changes to the task net at runtime can be
incorporated into the schedule. The heuristic can be applied for initial schedule
generation as well as for dynamic rescheduling at project runtime.

The monitoring model of the TNT meta-model defines additional entities and
properties which capture the actual performance of the enacted process. Several
established progress measures from practice have been combined in an integrated
measuring framework. These measures are complemented by new progress mea-
sures which build on the modeling capabilities of dynamic task nets [HW11]. In
particular, the connection of tasks and products is exploited to determine the degree
of completion of tasks. Furthermore, the information contained in process model
definitions is used to determine the progress of subprocesses which are automati-
cally enacted by the workflow engine. Earned value analysis [Anb03] is applied to
derive performance indices for running tasks which allow a comparison of the actual
process performance with the plan. The expected end times and costs of tasks can
be forecasted and deviations from the plan can be detected early.

In the AHEAD system, different environments are designated to be used by
the process manager and the process performers, respectively. In PROCEED, all
process participants use the same environment. This required the development of
an authorization model as part of the TNT meta-model to determine which user of
the system is allowed to view and modify which parts of a dynamic task net. The
authorization of a user depends on his personal permissions, his assigned tasks, and
his position in the project team.

The five partial models amount to the core of the TNT meta-model. They enable the
modeling, enactment, and controlling of development processes and regulate the ac-
cess to the management data. However, a process model instance of a development
process does not capture the management activities which are performed to monitor
and control the development process. These activities include reporting, quality man-
agement, change management, replanning, and rescheduling. The solution approach
for the controlling of development processes presented in this thesis also provides
tool support for these activities. First, a general change management procedure
has been defined which regulates the process of replanning and rescheduling. This
procedure ensures that inconsistencies introduced during replanning are eventually
resolved during rescheduling. Second, management processes can be enacted in
the same way as technical processes in PROCEED. The workflow approach has
been applied for the modeling and enactment of management processes. Specific
workflow definitions can be defined by an organization, which define how change
management cases, quality management procedures, and reporting have to be
performed in a project of the organization. To enable the modeling of connections
between management processes in a project and the corresponding development
process, management extensions have been defined for the TNT meta-model.

All developed concepts and algorithms presented in this thesis have been imple-
mented in the Process Management Environment for Engineering Design Processes
to verify their correctness and applicability. PROCEED provides the main functional-

10 1.4 Contributions

ities of the AHEAD system for the modeling and enactment of dynamic task nets and
complements them by functionality for project scheduling and controlling. Several
views are provided to view and modify the management data which is stored in the
Comos database, including a task list view and a task net view. For the visualization
of a scheduled dynamic task net, a Gantt chart is preferable to a network diagram,
because the temporal extent of tasks is directly visible. Therefore, PROCEED has
been coupled with the widely used project management system MS Project [Mic10a]
in order to use its various diagram types for the presentation of the management
data. PROCEED additionally comprises a dedicated user interface for project status
control which also provides decision support for replanning. The development of
this user interface has been a requirement of the industrial partner in the research
project and has been motivated by the specific characteristics of plant design pro-
cesses. A multidimensional visualization approach has been developed to provide a
condensed overview over the tasks in a project, their workload and their current
status [HBW09]. The current project status can be analyzed from different per-
spectives. The processing of the management data is performed in a project data
warehouse to which the management data is exported in regular intervals.

The developed concepts and algorithms and their implementation in PROCEED
have been evaluated by means of an example scenario. An example plant design
project has been modeled and scheduled. The enactment of the design process has
been simulated. The monitoring functionalities provided by PROCEED have been
used to determine the expected effects of task delays and other disruptions. Prede-
fined management workflows have been enacted for controlled change management.
Replanning and rescheduling of the task net have been performed according to the
general change management procedure.

1.4 Contributions

This thesis makes several contributions which can be viewed from three differ-
ent perspectives. First, research results have been transferred to the commercial
software-tool Comos which is widely used in the plant engineering industries. Sec-
ond, the AHEAD approach for the management of dynamic development processes
has been extended by project management functionality, which is required to enact
process model instances in the form of development projects. Third, new concepts
and algorithms enabling software tool support for project scheduling and controlling
have been developed which represent significant contributions in these fields of
research.

Process management in Comos The commercial life cycle asset information
system Comos has been extended by new functionalities for the explicit management
of engineering design processes.

Task management The Comos system has been extended to support the manage-
ment of tasks in addition to the engineering data and the resources, i.e. the users

Chapter 1 Introduction 11

of the system. Tasks can now be explicitly defined and stored as objects in the
Comos database. They can be connected with the required engineering data
and the assigned resources. This enables the integrated management of tasks,
resources and products as it is supported by the AHEAD system.

Workflow management A workflow engine and client applications for the defini-
tion and monitoring of workflows have been integrated into Comos as part of
PROCEED. The workflow management functionality enables the enactment of
partially automated processes to guide engineers in performing their work. The
underlying workflow technology offers interfaces for the integration of Comos
with external applications.

Project management Based on the explicit representation of tasks, the Comos
system now allows to plan and control plant design projects not only regarding
the engineering data but also regarding time, resources and cost.

Project management with dynamic task nets The concepts for process man-
agement underlying the AHEAD prototype have been advanced. Several enhance-
ments and extensions have been made regarding the meta-model for dynamic task
nets and the algorithms for planning and controlling process model instances.

Scheduling The tasks in a dynamic task net can be scheduled automatically based
on task assignments and workload estimates. Thereby, the semantics of the
specific control flow types available in dynamic task nets are taken into account
as well as the hierarchical structure of dynamic task nets. Task nets can also be
rescheduled at runtime in case of dynamic changes. The generated schedule is
robust in the sense that modifications to a dynamic task net at runtime do not
necessarily affect the whole schedule and can often be handled locally.

Monitoring The degree of completion of tasks in a dynamic task net can be mea-
sured by means of several different progress measures. Specific progress mea-
sures have been developed for dynamic task nets which use the actual data flow
and the knowledge contained in process model definitions. Earned value analysis
is applied to detect and quantify deviations of the actual performance from the
plan.

Integration with workflow management An approach for integrating workflow
instances into dynamic task nets which was developed in the AHEAD project has
been advanced, so that arbitrary subprocesses in a development project can now
be automatically enacted by the workflow engine which has been developed as
part of PROCEED.

Access control A new authorization model has been implemented in PROCEED
which enables various ways of collaboration in contrast to the strict distinction
between the roles of manager and engineer in the AHEAD system. All process
participants use the same user interface while their access to the management

12 1.4 Contributions

data is restricted depending on their permissions, assigned tasks, and respective
positions in the project team.

Controlling of development processes Scheduling and controlling of develop-
ment projects are still open fields of research. This thesis makes several contribu-
tions to these research topics.

Timing consistency constraints for executable process model The formally
defined TNT meta-model for dynamic task nets incorporates timing consistency
constraints. These constraints cover all dependencies between the structure
of a process model instance, its enactment state, and the values of the timing
properties. An executable process model can be timed, enacted, and dynamically
changed at runtime whereby the consistency of the management data is ensured
by the process management system.

Heuristic for resource-constrained scheduling A heuristic algorithm for the
generalized resource-constrained project scheduling problem [DH02] has been
developed, which has several distinguishing features. A general parallel schedul-
ing scheme has been extended to support hierarchically structured task nets.
Furthermore, the execution states of the defined tasks are taken into account
during scheduling which enables the rescheduling of task nets at project runtime.
Scheduling can be performed locally for only a part of a task net. Scheduling is
performed directly based on the work calendars of the assigned resources. The
durations of the defined tasks can be derived from workload estimates. If work-
load and duration buffers are defined for complex tasks, the resulting schedule is
robust in the sense that the creation of additional subtasks at project runtime
does not necessarily affect the whole project schedule.

Integrated approach for progress measurement Different progress measures
have been combined in an integrated measuring framework. Common measures
from theory and practice are complemented by two new progress measures which
rely on the actual data flow modeled in a dynamic task net and the enactment state
of workflow instances, respectively. For every task in a process model instance,
the most appropriate progress measure can be selected in order to achieve the
best trade-off between measurement accuracy and effort. Aggregation methods
which are used to combine the progress degrees of several subtasks at a common
parent task yield aggregated progress degrees which remain stable even in case
of dynamic changes to the task net.

Data warehousing and visualization for project status analysis The combina-
tion of a data warehouse with visualization techniques enables visual project
status analysis which complements the monitoring capabilities based on earned
value analysis. Multidimensional visual analysis enables the assessment of the
project status even in case of plant design projects with a vast number of engi-
neering tasks and a high degree of simultaneous engineering. The analysis views

Chapter 1 Introduction 13

are tightly integrated with the management views of PROCEED which enables
direct intervention when delays or resource bottlenecks are detected.

Authorization model covering process changes The authorization model imple-
mented in the PROCEED system covers structural changes to a dynamic task net
at runtime. Users are authorized to make changes to a process model instance
depending on their assigned tasks. This approach goes one step further than
common access control mechanisms for process management systems which only
regulate the assignment of resources to tasks and the execution of tasks in a
process.

Explicit modeling of management processes Technical processes and manage-
ment processes in development projects are distinguished in PROCEED, and their
mutual dependencies are explicitly modeled in the system. While engineering
tasks are part of the project plan, the enactment of management processes in-
volves changes to the project plan. In related work, management processes are
either not covered at all or handled independently of the development process.

1.5 Structure of the Thesis

This thesis is structured as follows. In Chapter 2, the application domain of this
thesis is described. The general plant design process is introduced, the main
functionalities of the Comos system are described, and the example scenario is
presented, which is used throughout this thesis. In Chapter 3, some fundamental
concepts and established approaches for project management, scheduling, and
controlling, are explained, which are required for a better understanding of the main
chapters. The previous research achievements of the AHEAD project are reviewed
in Chapter 4.

Chapter 5 to Chapter 10 are the main chapters of this thesis. In Chapter 5, the TNT
meta-model is presented which includes the adopted and adapted modeling elements
and constraints of the DYNAMITE meta-model. Chapter 6 describes how process
knowledge including timing data can be defined in PROCEED using task types and
process templates, and how it can be reused for subsequent projects. Furthermore,
the workflow management capabilities of PROCEED are described in Chapter 6. The
algorithms for temporal analysis and resource-constrained scheduling of dynamic
task nets are described in Chapter 7. In particular, the solution for the scheduling of
workflow instances is presented. The approach to project monitoring implemented
in PROCEED is described in Chapter 8, including the integrated framework for
progress measurement and the multidimensional visualization of project manage-
ment data. Chapter 9 deals with the controlled enactment of management processes.
It is explained how domain and organization specific management workflows can
be defined, parameterized, and enacted. Furthermore, the general change man-
agement procedure for replanning and rescheduling is described. Related work
on the different subtopics of this thesis is reviewed in the respective chapters. In

14 1.5 Structure of the Thesis

Chapter 10, the prototypical implementation of the PROCEED system is presented.
Chapter 11 concludes the thesis.

Chapter 2 Application Context 15

Chapter 2

Application Context

In the Collaborative Research Center 476 IMPROVE, the application domain of the
AHEAD process management system was the domain of process plant engineering
[NM08]. Also the Comos system, which has been extended by process management
functionality in this thesis, is commonly used in the plant engineering industries.
Therefore, this chapter introduces the general process model for plant design
projects in Section 2.1. The purpose and main functionalities of the Comos system
are described in Section 2.2. Finally in Section 2.3, a concrete example process is
introduced which will be used as the reference scenario throughout this thesis.

2.1 The General Plant Design Process

This section introduces the engineering phases and main activities in a plant design
project. Furthermore, the central documents and the different functional roles
of project team members are described. The presentation is a synthesis of the
descriptions given in [For94, PTW03, Mad00, Ull83, Lan00, Bön99, Mar06, DIN06,
Hel08b, Wag03, Hir99, NM08]

A process plant is an industrial plant in which raw materials are processed and
converted into products. Source materials and products may be gaseous, liquid
or solid substances or mixtures of these states. Inside a process plant, a chemical
or physical process takes place which converts intermediate products step by step
by means of several unit operations. Different process plants exist for the various
products in different business domains like chemical engineering, pharmaceutics,
petroleum industry, food industry and construction industry. In a chemical plant,
different substances react with each other to yield the final product. The required
conditions regarding temperature, pressure, material flow, etc. are established by
according devices.

Process design The chemical process which takes place inside a chemical plant
has to be distinguished from the design process which yields the design of the
chemical plant. During the design of a chemical process, decisions have to be
made regarding the processing mode, the raw materials, products, and by-products,
and the operations required to achieve the desired product. The processing mode
can be either batch or continuous. Regarding the products, the flow rate is of

16 2.1 The General Plant Design Process

primary interest which affects the flow rate of the raw materials. Furthermore,
the composition, phase, form, temperatures, and pressures of all raw material and
product streams are determined. The processing operations to convert the raw
material to products are inserted into the process flow sheet. Several alternative
configurations are generated which are compared in order to select the one that is
best suited for the existing conditions. During the design of the chemical process,
several different process designs are created, which can be classified depending on
the accuracy and detail they provide [PTW03].

Quick estimating procedures include so-called order-of-magnitude designs and
study or factored designs which are both not really process designs, but are
merely used for preliminary cost estimation.

Preliminary designs are used as a basis for deciding whether further work should
be done on a proposed process or if an alternative solution is to be preferred.

Detailed-estimate designs are used to determine the cost-and-profit potential of
an established process by detailed analyzes and calculations; exact specifica-
tions for the equipment, however, are not given and piping and layout work is
minimized.

Final process designs are developed as the final step before developing the con-
struction plans for the plant; complete specifications are presented for all compo-
nents of the plant, and accurate costs based on quoted prices are obtained.

Life cycle of a chemical plant In the following, the design process is described
which yields the design of a chemical plant. It is divided into several subsequent
phases. Parallel to all process phases, project management and controlling have
to be performed in a plant design project. The design process is embedded in the
overall life cycle of a chemical plant which also includes its construction, operation
and maintenance. The life cycle of a process plant can be divided into several phases
[Bön99, Mar06, DIN06]. Figure 2.1 shows the most common division into phases
and the most important activities of these phases.

The first phase in a plant design project is the preliminary planning. A feasibility
study shows, if the plant can be realized given the general conditions. The main task
in the preliminary planning phase is the process design. A general process concept
is developed, mass balances are calculated and the general process data of the main
devices is specified. It is usually the case, that the basic chemical process is not
designed from scratch at this point, but that an existing process is adapted for the
specific process plant to be developed. Therefore, extensive literature research and
the use of according databases is an important step during the preliminary design
phase. The central document which is created in this phase is the block diagram
of the chemical process which specifies the basic operations and the material flow
between them. An example of a block diagram is given in Figure 2.2. In this example,
the raw materials and intermediate products pass through several process steps
like Reaction, Concentration and Distillation. The material streams are annotated

Chapter 2 Application Context 17

Basic
Engineering

Detail
Engineering

Construction
& Installation

Operation &
Maintenance

Preliminary
Planning

Feasibility Study

General Conditions

Process Design
Block Flow Diagram
Mass Balances
Process Data for Devices

Plant Concept
Security
Infrastructure
Disposal
Environmental Protection

Preliminary Cost Estimation
Profitability Calculation

Process Design
Process Flow Diagrams
Mass Balances
Equipment Design

Plant Concept
Layout Plan
Process Control System

Device Requests

Cost Calculation
Profitability Calculation

Permit Procedure

Process
P&IDs
Device Specifications
Piping Isometries
Instrumentation
Parts Lists

Acquisition and Manufacturing

3D Plant Model

Infrastructure Plan
Supply and Disposal
Transport Logistics
Building Plan

Installation Plan

Commissioning Plan

Cost Control
Schedule Control

Figure 2.1: Phases and main activities of the general plant design process.

with the corresponding (intermediate) products or by-products. Besides the process
design, a general plant concept is developed regarding security, infrastructure,
disposal of waste material and issues of environmental protection. A preliminary
cost estimation and a profitability calculation can be conducted at the end of the
preliminary planning phase.

The purpose of the basic engineering phase is to elaborate the process design
and the plant concept so far that the permit procedure can be carried out after
which the government decides about the permission for the construction of the plant.
The central documents in this phase are the process flow diagrams (PFDs) for the
different plant parts. It is common that every operation of the block flow diagram is
detailed as a separate PFD to handle the complexity of the overall design. Figure 2.3
shows an example for a PFD. The PFD shows the main devices in the chemical plant
like pumps (P1A, P2A, P3A), heat exchangers (W1-W5), vessels (B2) and columns
(K1). In the basic engineering phase, the mass balances are elaborated and the
equipment designs are specified. Devices which take a long time to be delivered
are already requested from the manufacturers. The plant concept is elaborated in
the form of a layout plan, and the process control system is specified. Based on the
technical documents produced in the basic engineering phase, a cost calculation

18 2.1 The General Plant Design Process

Crushing

Dissolution Reaction Concentration

Recovery

Waste gas
scrubbing

Distillation

Waste gas

Residue

Final product

Waste water

Solvent

Raw material

Additive

Figure 2.2: Block diagram with basic information [ISO01].

and a profitability calculation can be performed.

In the detail engineering phase, the flow diagrams, specifications, layout plans,
etc. are elaborated in full detail to enable the manufacturing of devices and the
construction of the process plant. Based on the PFDs, piping and instrumentation
diagrams (P&IDs) are created which incorporate additional information about the
pipes between devices and all the instrumentation devices like measuring points,
valves, etc. An example P&ID is depicted in Figure 2.4. In the detail engineering
phase, the devices are designed in detail, and either standard products are ordered
from the manufacturers or special devices are fabricated for the process plant.
The same holds for the instrumentation devices. The layout of the pipes and other
connections between devices are specified in isometries, and a three-dimensional
model of the plant is generated. The infrastructure of the plant is specified in
detail as well. Plans are established for the installation and the commissioning
of the plant. During the whole detail engineering phase, the costs have to be
monitored which includes the costs for the design work as well as the expected costs
for the construction and installation work and the material costs of the chemical
plant. Finally, schedule control is important so that the design process is performed
as planned and no delays are introduced which could not be compensated in the
following phases.

The construction and installation of the process plant already starts during the
detail engineering phase. Basic and detail engineering are executed in sequence
because the governmental permission is a prerequisite for proceeding with the de-
tailed planning. However, the foundations can be built before P&IDs are completed,

Chapter 2 Application Context 19

K1

P1A

P1B

B1

W5

W1

W3

W2

P2A

P2B

B3A

B3BB2

W4

P3A

P3B

Vacuum
station

Concentrate
(1515 kg/h)

13 kPa
105 °C

23 kPa
130 °C

Final product
(1500 kg/h)

Residue
(15 kg/h)

Cooling water

C
oo

lin
g

w
at

er

Cooling water, 20 °C

To storage
tanks

To waste air treatment

Brine, -15 °C

From concentration unit

Steam,
3,1 MPa

To barrel

Figure 2.3: Process flow diagram with basic information [ISO01].

From
concentration unit

To incinerator

To storage

To waste air
treatment

To waste air
treatment

W1

K1

W2

W3

B1

P1A

P1B

P2A

P2B

W4

W5

B2 B3A B3B

P3A

P3B

Vacuum
station

Figure 2.4: Piping and instrumentation diagram with basic information [ISO01].

20 2.1 The General Plant Design Process

and available devices can be installed before all devices have been delivered. Hence,
the phases of detail engineering and construction and installation overlap in time.
Besides the foundations, the superstructure, the installed devices, the pipes, and the
instrumentation, the construction also includes roads and infrastructure facilities.
At the end of the construction and installation phase, there are several test runs of
the plant before it can be commissioned.

During operation and maintenance, the correct functioning of the plant has to
be ensured which requires the monitoring of according measured values. If the
plant operates in batch mode, operation includes starting and stopping the plant
and cleaning it between two batches. Also in the continuous operation mode a plant
may have to be shut down temporarily for maintenance activities. Since a shutdown
time is always associated with an income loss, it should be as short as possible.
This is the goal of shutdown management. For all maintenance activities, the flow
diagrams, specifications, reports, etc., which have been created during the different
design phases, are of great importance and should be available to the plant operator.
Therefore, software tools for the management of the engineering data like Comos
(cf. Section 2.2) are used throughout the whole life cycle of a process plant. The
final step in the life cycle of a process plant is its decommissioning.

All phases of the life cycle of a process plant have to be managed. However, in
this thesis the focus lies on the design process which includes preliminary planning,
basic and detail engineering. It is common, that different companies are responsible
for the design and the construction of a plant. These contractors have to cooperate,
but also manage their internal processes independently. The customer, which is the
future owner of the plant, takes over after the commissioning and becomes the plant
operator. All required documents from the design phases should be handed over to
the plant operator.

Functional roles In plant design projects, several different functional roles are
required [Lan00]. On the organizational level, the general management defines tar-
gets and verifies their implementation. This includes human resource management,
product management, quality management, technical management and commercial
management. Part of the technical management are controlling and engineering
which are important roles in plant design projects. The engineering is responsible
for the creation of the technical drawings, layout and installation plans. Process
engineers are involved in the process design and the creation of the basic flow
sheets. For the design of devices, engineers from different fields collaborate in-
cluding mechanical and electrical engineers. Building plans and layout plans are
created by architects and construction engineers. For the design of the process
control system, specific know how regarding process automation is required. These
and many other functional roles are required to successfully carry out the design
and construction of a chemical plant. Tasks in a plant design project are usually
assigned based on the required qualifications specified in terms of functional roles
in the process model definition.

Chapter 2 Application Context 21

Software support Software tools have been used to support many activities of
the plant design process [PTW03]. The traditional areas where software is used in
the process include the following.

Research Electronic publications and databases for literature research about the
latest data, flow diagrams, equipment, and simulation models,

Process flow diagrams Generation, evaluation and selection of process flow dia-
grams,

Simulation Selection of operating conditions, unit operation and sizing, component
simulation, dynamic/steady-state simulation, and overall simulation of the process,
scenario investigation,

Economics Cost databases for chemicals, utilities, and equipment for process
economics evaluations,

Optimization Optimization of equipment type and size, processing order, etc. by
means of mathematical models,

Layout Generation of 2D/3D isometrics for piping and material transfer equipment
as well as maintenance access.

Life cycle asset information systems like Comos cover several of these functionalities,
inter alia the creation of process flow diagrams and layouts. The traditional areas
for software support in plant design projects do not cover the management of the
design process. However, software tools for process management are required in
large design projects [NM08] as well.

2.2 The Life Cycle Asset Information System Comos

The PROCEED prototype has been realized as an extension module of the commer-
cial life cycle asset information management system Comos [Sie10]. This section
introduces the Comos system, its purpose and main functionalities.

The Comos system supports the design, construction and maintenance of industrial
plants. Engineers in a plant design project use Comos to create and maintain
the engineering data including flow diagrams, device specifications, and piping
isometries [Sie10]. All engineering data is stored in the Comos database. Figure 2.5
shows screenshots of the Comos user interface. The main functionalities of the
Comos system are the following.

• Creation and revisioning of flow diagrams and other technical drawings (cf.
Figure 2.5 front),

• Design and specification of devices and instrumentation, e.g. vessels, heaters,
pumps (cf. Figure 2.5 middle),

• Three-dimensional piping planning and visualization (cf. Figure 2.5 back),

22 2.2 The Life Cycle Asset Information System Comos

Figure 2.5: Screenshots of the Comos user interface.

• Automatic generation of parts lists depending on the planned devices and instru-
mentation,

• Management and revisioning of all required documents in a plant design process.

Comos stores all data in an object-oriented database. Documents created by
means of external programs are stored in the file system and are referenced by
according objects in the database. There are different types of objects in Comos.

Planning objects represent the actual engineering data in a project. Comos users
work with planning objects.

Base objects are templates for planning objects and define their attributes.

Attributes can be specified for base objects. Attributes are also represented as
objects in the database. Attributes can have textual, numerical or boolean values,
or can link other objects in the database.

Documents can either be flow diagrams created with Comos or placeholder objects
for external documents in the file system.

Chapter 2 Application Context 23

Comos provides basic functionality for collaborative work. All engineers in a
project work on the same database. A user of the system can create a so-called
working layer for the project data. All modifications done in a working layer do
not affect the data in other working layers. The working layers are structured
hierarchically. Changes made in one working layer can be released to the next
higher working layer. Rudimentary support is provided for resolving conflicts
between changes released from different working layers.

In Comos, the information about human resources in a company which belong to
different departments is maintained in the so-called users project. In this project,
multiple locations of a company can be defined which are subdivided into depart-
ments. Employees of the company are modeled as person objects contained in the
department objects. The person objects can be linked to user accounts of the Comos
system. Thereby, human resources and users of the Comos system are unified.

Until the development of the PROCEED prototype, Comos did not provide any
functionality for explicit process management. The provided functionality for collab-
orative work can be regarded as implicit process support at best. Tasks could not be
explicitly defined in Comos and no support was available for engineers to follow the
defined procedures in a project. An integration of the product data contained in the
Comos database with the project management data in a plant design project was not
given. However, this integration is of great value for project monitoring and control.
The available functionality for progress control in the released version of Comos was
limited to status management of individual documents. For this reason, Comos has
been extended by customers to allow for progress measurement of a whole plant
design project based on the engineering data in the Comos database [LGB+05].
In this thesis, Comos has been extended by explicit process management support,
integrating product, task and resource management and allowing for task-based
project status analysis.

2.3 Example Scenario

While Section 2.1 introduced the general plant design process, this section describes
the concrete example scenario which will be used in this thesis. While the AHEAD
system has been applied to support the early phases of the plant design process
[NM08], the Comos system is applied to all process phases, in particular to the detail
engineering phase. Therefore, the example scenario covers preliminary planning,
basic engineering, and detail engineering in a plant design project. The scenario
has been developed based on thorough literature research [For94, PTW03, Mad00,
Ull83, Lan00, Bön99, Mar06, DIN06, Hel08b, Wag03, Hir99, NM08] and discussions
with representatives from industry [Sie10, Tec10]. The scenario has been designed
to include the typical tasks which have to be executed in a plant design project.
Although the scenario is quite elaborate, it cannot be complete. A plant design
project in practice comprises several hundreds of tasks. Therefore, several tasks,
documents and dependencies have been omitted to reduce the complexity of the
process model instance. However, the most important task types which occur in

24 2.3 Example Scenario

plant design projects are represented in the example. Several concepts used in this
section and the notation for dynamic task nets will be introduced in the following
chapters. The description in this section shall only provide a first glance on the
example scenario to the reader. And it may serve as a reference for the examples
which will be given in the following chapters.

The main part of the example is a dynamic task net which defines the phases, work
packages and tasks in a two-year plant design project. The estimated workload, the
durations, and the budget are defined for all tasks in the example task net. In this
section, the defined tasks, the structure of the task net, and the planning data are
described. Different planning and enactment states of the task net will be presented
in the following chapters to explain the developed concepts and algorithms. The
tasks in the example task net will be be scheduled. The progress of the defined
tasks will be measured during the enactment of the process. Changes to the task
net will be made, and the tasks will be rescheduled to incorporate these changes.
Figure 2.6 gives an overview over the part of the hierarchically structured dynamic
task net which covers the work breakdown structure of the example project. Tasks
are represented as boxes and control flow dependencies as labeled arrows between
these boxes. The labels indicate the semantics of the control flows which will
be introduced in Section 5.2. For some control flows, lag times are defined. The
subtasks of a complex task are positioned in a box below the task, which is connected
by a double-headed arrow with the complex task.

The root node of the dynamic task net represents the whole design project. The
typical project phases Preliminary Planning, Basic Engineering, and Detail Engineering
are defined as subtasks of the root task. The subtasks of the project phases define
the work packages in the project. In the preliminary planning phase, on the one
hand, the chemical process is defined by performing a simulation and creating a
block flow diagram (task BFD in Figure 2.6). On the other hand, a plant concept is
determined which allows for a preliminary cost estimation. In the basic engineering
phase, the cost estimation is concretized which is a prerequisite for the decision
about the realization of the chemical plant and the continuation of the project. The
task Realization Approval is the corresponding milestone in the project. In the task
PFDs, the process flow diagrams are created, which are elaborated in the form of
piping and instrumentation diagrams in the following task Initial P&IDs. The piping
and instrumentation diagrams are elaborated in the detail engineering phase. Based
on these P&IDs, the machines and devices, instruments, and pipes can be specified
in detail in the corresponding tasks. A long-running task in the detail engineering
phase is the procurement of the machines, devices and instruments. It starts as soon
as the first devices have been specified and ends at the end of the detail engineering
phase.

Figure 2.7 shows the subtasks of the work packages which are not part of the
work breakdown structure of the project but are taken into account during project
scheduling. An example for a workflow-managed task is included in the example:
The task Specify Pump 037 is executed according to a predefined procedure. The
tasks to determine the type of the pump have to be executed alternatively, i.e. only

Chapter 2 Application Context 25

In
it

ia
l
P

&
ID

s

B
lo

c
k

 F
lo

w

D
ia

g
ra

m

s
e

q

s
im

(1
0

)

L
a

y
o

u
t

P
la

n
In

s
ta

ll
a

ti
o

n

P
la

n
s

im

s
im

In
s

ta
ll
a

ti
o

n

P
la

n
n

in
g

P
ip

in
g

s
e

q

C
o

n
s

tr
u

c
ti

o
n

P
la

n
n

in
g

s
e

q

s
e

q

3
D

 M
o

d
e

l

s
e

q
Is

o
m

e
tr

ie
s

s
im

s
im

s
im

s
im

In
s

tr
u

m
e

n
ta

ti
o

n
s

im
(3

0
)

s
ims

im

E
q

u
ip

m
e

n
t

L
is

t

M
a

s
s

 B
a

la
n

c
e

s

P
ro

c
u

re
m

e
n

t

L
ic

e
n

s
in

g
/

P
e

rm
it

ti
n

g

D
e

ta
il
e

d
 P

&
ID

s

s
im

(2
0
)

s
im

(2
)

P
la

n
t

C
o

n
c

e
p

t

s
e

q

P
re

li
m

in
a

ry
 C

o
s

t

E
s

ti
m

a
ti

o
n

s
e

q
S

p
e

c
if

ic
a

ti
o

n
 o

f

M
a

c
h

in
e

s
 a

n
d

 D
e

v
ic

e
s

C
o

s
t

C
a

lc
u

la
ti

o
n

s
e

q

s
im

R
e

a
li
z
a

ti
o

n

A
p

p
ro

v
a

l
s

e
q

s
e

q

s
e

q
s

im
s

im
(1

4
)

s
e

q

D
e

ta
il

E
n

g
in

e
e

ri
n

g

B
a

s
ic

E
n

g
in

e
e

ri
n

g

P
F

D
s

s
e

q
P

re
li
m

in
a

ry

P
la

n
n

in
g

s
e

q

s
e

q

s
e

q

S
im

u
la

ti
o

n

s
im

(6
)

s
im

 (
1

4
)

s
im

s
e

q

P
la

n
t

D
e

s
ig

n
 P

ro
je

c
t

Figure 2.6: Overview over the tasks of the work breakdown structure.

26 2.3 Example Scenario

In
it

ia
l
P

&
ID

s
s

e
q

In
s

tr
u

m
e

n
ta

ti
o

n
s

im

D
e

ta
il
e

d
 P

&
ID

s
S

p
e

c
if

ic
a

ti
o

n
 o

f

M
a

c
h

in
e

s
 a

n
d

 D
e

v
ic

e
s

s
im

S
p

e
c

if
y

P
u

m
p

 0
3

2

S
p

e
c

if
y

P
u

m
p

 0
3

7

S
p

e
c

if
y

 P
lu

g
 F

lo
w

R
e

a
c

to
r

0
1

2

S
p

e
c

if
y

 H
e

a
t

E
x

c
h

a
n

g
e

r
0

1
7

D
e

te
rm

in
e

O
p

e
ra

ti
n

g
 P

a
ra

m
e

te
rs

D
e

te
rm

in
e

 P
u

m
p

 T
y

p
e

b
y

 U
s

e
 C

a
s

e

D
e

te
rm

in
e

 P
u

m
p

 T
y

p
e

b
y

 P
ro

c
e

s
s

 D
a

ta

D
e

ta
il
 E

n
g

in
e

e
ri

n
g

o
f

P
u

m
p

 S
p

e
c

if
ic

a
ti

o
n

s
e

q
s

e
q

s
e

q
s

e
q

R
e

a
c

ti
o

n
 P

&
ID

C
o

n
c

e
n

tr
a

ti
o

n
 P

&
ID

s
td

R
e

a
c

ti
o

n
 P

&
ID

C
o

n
c

e
n

tr
a

ti
o

n
 P

&
ID

s
td

(1
0

)

s
e

q s
e

q

R
e

a
c

ti
o

n

In
s

tr
u

m
e

n
ta

ti
o

n

C
o

n
c

e
n

tr
a

ti
o

n

In
s

tr
u

m
e

n
ta

ti
o

n

S
p

e
c

if
y

 M
e

a
s

u
ri

n
g

P
o

in
t

1
1

6

S
p

e
c

if
y

 C
ir

c
u

it

B
re

a
k

e
r

4
2

S
p

e
c

if
y

 M
e

a
s

u
ri

n
g

P
o

in
t

1
1

7

S
p

e
c

if
y

C
ir

c
u

it
 B

re
a

k
e

r
4

3

s
im

(5
)

s
im

s
im

s
im

(5
)

s
im

s
im

D
is

s
o

lu
ti

o
n

 P
&

ID

D
is

s
o

lu
ti

o
n

 P
&

ID
s

e
q

s
td

s
td

(1
0
)

P
ro

je
ct

 S
tru

ct
ur

e

Ta
sk

s

W
or

k
S

te
ps

D
is

s
o

lu
ti

o
n

In
s

tr
u

m
e

n
ta

ti
o

n
s

im
(5

)

s
im

s
im

s
im s
im

Figure 2.7: Overview over technical tasks and work steps.

Chapter 2 Application Context 27

one of the tasks is executed at project runtime. All subtasks of Specify Pump 037
are work steps which together specify the procedure the engineer has to follow to
complete the task. Work steps of individual engineers are not taken into account
during project scheduling.

The planning data of the defined tasks in the example are listed in Table 2.1. For
every task, the required workload in man hours is estimated. Furthermore, every
task has budgeted costs in the currency Euros. Finally, the total duration of a task
can be estimated. The workload and budget of a task include the respective values
of all subtasks.

Task Workload Budget Duration
(man hours) (Euros) (work days)

Project 14278 759589 586
Preliminary Planning 1678 89269 76
Simulation 800 42560 50
Plant Concept 240 12768 25
Preliminary Cost Estimation 250 13300 15
Block Flow Diagram 196 10427 25
Mass Balances 40 2128 10
Basic Engineering 3272 174070 160
Layout Plan 160 8512 20
Process Flow Diagrams 1760 93632 110
Cost Calculation 200 10640 20
Licensing and Permitting 80 4256 40
Initial P&IDs 316 16811 22
Dissolution P&ID 40 2128 7
Reaction P&ID 40 2128 8
Concentration P&ID 40 2128 5
Installation Plan 352 18726 44
Equipment List 64 3404 8
Realization Approval 20 1064 5
Detail Engineering 8156 433899 318
Construction Planning 480 25536 40
Detailed P&IDs 820 43624 110
Dissolution P&ID 200 10640 25
Reaction P&ID 200 10640 25
Concentration P&ID 200 10640 34
Instrumentation 872 46390 110
Reaction Instrumentation 120 6384 20
Dissolution Instrumentation 120 6384 15
Concentration Instrumentation 160 8512 20
Specify Circuit Breaker 42 8 425 2
Specify Measuring Point 117 8 425 1
Specify Circuit Breaker 43 8 425 1

28 2.3 Example Scenario

Specify Measuring Point 116 8 425 1
Piping 2112 112358 88
Procurement 2072 110230 259
Specification of Machines 216 11491 66
and Devices
Specify Pump 032 20 1064 10
Specify Pump 037 20 1064 10
Specify Heat Exchanger 017 20 1064 10
Specify Plug Flow Reactor 012 24 1276 12
Isometries 352 18726 22
3D Model 176 9363 22
Installation Planning 396 21067 22

Table 2.1: Planning data of tasks in the example scenario.

The complete example task net has been scheduled, enacted, monitored, replanned
and rescheduled to show the applicability of the concepts, algorithms and software
tools which are presented in this thesis. However, only a part of the overall scenario
can be displayed in detail in this thesis. Figure 2.8 shows the cutout of the dynamic
task net which will be used to demonstrate the algorithms for scheduling and
progress measurement. The figure contains additional information compared to
the overview diagrams. For every task, the assigned resources are depicted in
boxes with rounded edges. Multiple resources can be assigned to a task. The roles
which are required for the task assignments are shown in brackets. In the example
project, the project team members can play different functional roles which are
structured in a generalization hierarchy. For example, the roles Process Engineer and
Mechanical Engineer are both specializations of the general role Engineer. Roles are
defined on the organizational level for all projects in the company. Depending on the
composition of the project team, a subset of the organizational roles are available
in a project. The structure of the project team will be introduced in Section 5.1.3.
Figure 2.8 shows a state of the enacted development process at project runtime.
The execution states of tasks are visualized by pictograms: gears for active tasks,
check marks for terminated tasks, and pencil and paper for tasks which have not
been started yet. The arrows connecting different tasks are labeled with their
execution semantics which constrain the allowed execution states of the connected
tasks. For the tasks Initial P&IDs and Detailed P&IDs, input and output parameters
for documents and connecting data flows are defined. A revision of a document has
been produced which is visualized by the paper icon. Dynamic task nets and their
graphical representation will be described in detail in Chapter 5.

The cutout of the example shows the main project phases Basic Engineering and
Detail Engineering and some of their subtasks. Among others, the following steps
are executed in the example scenario.

1. The tasks Basic and Detail Engineering are defined as well as their main subtasks.

Chapter 2 Application Context 29

Initial P&IDs

sim(10)

seq

Equipment List

Detailed P&IDs

seq

Specification of

Machines and Devicessim

sim(14)

Detail

Engineering

Basic

Engineering

Heer(Project Manager)

PFDs

Heer(Project Manager)

Dreher(Process Engineer)

seq

Baumann

(Process Engineer)

Dreher

(Process Engineer)

Vasileva

(Mechanical Engineer)

Maier(Process Engineer)

Maier(Process Engineer)

P&ID.R

P&ID.D

P&ID.D
Rev 0
DC

P&ID.C

P&ID.R

P&ID.D

P&ID.C

Figure 2.8: Cutout of dynamic task net at runtime.

Required roles are defined for the tasks. Resources are manually assigned to the
tasks.

2. Basic Engineering and Initial P&IDs are started.

3. A delay of the task PFDs is detected.

4. The tasks PFDs and Equipment List are finally terminated.

5. A first revision of the document P&ID.D is created.

6. After the previous steps, the development process has reached the depicted state
of Figure 2.8. The scenario proceeds with a change management case. In the
task Initial P&IDs, problems are encountered which require changes to process
flow diagrams. The process manager makes the following changes to the task
net.

• A new version of the terminated task PFDs is created.

• A feedback flow relation is defined indicating that feedback is given from
Initial P&IDs to the new task version.

• Furthermore, a new version of the task Equipment List is created because it
was already terminated.

30 2.3 Example Scenario

The described enactment and modifications of the dynamic task net could already
be performed in the AHEAD prototype. With respect to this example, the func-
tionality of PROCEED for managing a process model instance exceeds the process
management support provided by the AHEAD system in the following ways, where
the numbers refer to the previous enumeration.

1. The workload for the tasks and their durations are estimated and planned. Based
on this information, the tasks are scheduled. During scheduling, eligible re-
sources are automatically assigned to the defined tasks based on the specified
required roles.

2. The degree of completion of the running tasks is measured by means of different
progress measures. Progress measurement allows to forecast the expected
duration and end time of a task by means of earned value analysis. In this way,
the delay of the task PFDs can already be detected while it is still executing.

3. The resource Dreher which is responsible for the task PFDs reports the delay to
the project manager. Since there is still time buffer for the task Basic Engineering
available, prolonging task PFDs will prolong Basic Engineering only marginally
and the project deadline will still be met. Therefore, the project manager decides
to adapt the plan with respect to the task PFDs to reflect the actual performance.

4. Several changes are automatically performed for the tasks PFDs and Equipment
List.

• The planned end time is set to the actual end time, and the total duration is
adapted accordingly.

• Remaining planned workload is deleted.

• The planned budget is aligned to the actual budget.

• The degree of completion is set to 100%.

5. The first released revision of the P&ID.D represents the document state Devices
Complete (DC). This results in an increased degree of completion of the task
Initial P&IDs.

6. The plan changes are implemented in the course of a change management
workflow which is requested by the person responsible for the task Initial P&IDs.
The creation of the new version of the task PFDs leads to violations of timing
consistency constraints with respect to its successors and its parent task. The
inconsistencies are resolved by rescheduling the part of the dynamic task net.
The change management case is closed after new revisions of the erroneous
process flow diagrams have been approved.

Altogether, the extensions of the AHEAD approach with respect to the presented
example scenario cover the scheduling of tasks, the progress measurement and
detection of delays, dynamic changes to a dynamic task net at runtime including
rescheduling, the evaluation and enforcement of timing consistency constraints, and
the explicit modeling and enactment of management processes.

Chapter 3 Fundamentals 31

Chapter 3

Fundamentals

The enactment of a development process always takes place in the form of a develop-
ment project. In particular the problem of task scheduling, which will be introduced
in Section 3.2, has been addressed mostly in the context of project management.
Therefore, Section 3.1 gives an overview over the main concepts and techniques
for project management. Section 3.2 deals with different scheduling problems and
general solution approaches. Section 3.3 is concerned with project controlling, in
particular with project monitoring, i.e. the determination of the current state and the
progress of a running project. Finally, Section 3.4 introduces the workflow paradigm,
which has been applied in this thesis for supporting subprocesses in development
projects.

3.1 Project Management

According to the ISO 9000 standard, a project is a unique process, consisting of a
set of coordinated and controlled activities and start and finish dates, undertaken
to achieve an objective conforming to specific requirements including constraints
of time, cost and resources [ISO05]. In [DH02] the main attributes of a project are
summed up as follows.

A project has a goal or objective A definable end product, result or output that
is defined in terms of cost, quality and timing.

Uniqueness A project is not a repetitive undertaking. Even projects of the same
type, e.g. plant design projects, are essentially different.

Complexity The relationships between the defined tasks may be very complex.

Temporary nature Projects have defined start and end dates.

Uncertainty Projects are planned before they are executed, but due to uncertain-
ties, i.e. unforeseen events and developments, no project is carried out exactly
as planned.

Life cycle A project passes through a life cycle that consists of several phases.

32 3.1 Project Management

Kerzner [Ker98] offers a reduced list for the general attributes of a project com-
prising: a specific objective, defined start and end dates, funding limits and the
consumption of resources. Thereby, he omits one of the most significant characteris-
tics of a project, namely its uniqueness. No two projects are run in exactly the same
way. Therefore, it is not possible to provide a precise and fine-grained process model
definition to be enacted in several different projects. However, different projects in
a common domain may be run in a similar way when coarse grained process models
are applied to support project management activities.

3.1.1 Project Management Activities

According to [Ker98], project management consists of all activities regarding project
planning and project monitoring where monitoring includes steering the project.
A similar definition can be found in [PR05] where the proper term controlling
is used instead of monitoring. The 2004 edition of the PMBOK [PMI04] defines
project management as "application of knowledge, skills, tools and techniques to
project activities to meet project requirements. Project management is accomplished
through the application and integration of the project management processes of
initiating, planning, executing, monitoring and controlling, and closing". This
definition emphasizes the use of skills, tools and techniques and defines the different
processes of project management. Demeulemeester and Herroelen stress in [DH02]
that project management "basically involves the planning, scheduling and control of
project activities to achieve performance, cost and time objectives for a given scope
of work, while using resources efficiently and effectively". Thereby, a distinction is
made between planning and scheduling of a project since the focus of [DH02] lies
on project scheduling.

Altogether, many different definitions of project management exist which put
emphasis on different aspects, be it soft skills or techniques. However, they all
agree on the necessity of project planning and controlling. Furthermore, project
management is commonly considered to be successful if the project objectives are
achieved within time and cost limits and the product has the desired quality and is
accepted by the customer.

The different constraints on the project are strongly related to each other, which
is usually illustrated by the project management triangle [Ker98, PR05] depicted in
Figure 3.1. The overall goal is to optimize all three aspects, i.e. complete the project
as soon as possible with as little money as necessary and with the best possible
results. However, reducing the makespan of the project may only be possible with
higher resource usage and consequently higher costs. If the project duration and/or
the resource usage should be reduced this is usually only possible by reducing the
scope of the project or producing a product at a lower quality.

The definitions of project management determine the main responsibilities and
processes. These can be refined by project management activities like the following
list shows which is an excerpt of the list presented in [PR05].

• Project planning

Chapter 3 Fundamentals 33

Project

Management

Scope
Quality

Cost
Resources

Time

Figure 3.1: The project management triangle [PR05].

– Project definition

– Identification of project risks

– Definition of quantity and quality of work

– Scheduling

– Resource planning

– Cost planning and budgeting

• Organization, communication and coordination

– Definition of roles

– Task assignments

– Organization of the information flow

• Leadership

– Resource selection

– Promoting the clarity and acceptance of the project goals

– Promoting the collaboration of the project team members

– Initiation of changes

– Decision making

• Controlling

– Measuring and analyzing the project’s progress

– Integrated controlling of quality, time, resources, costs and budget

– Ordering corrective measures

In contrast to classical management, project management does not include staffing
[Ker98, DH02]. As a matter of fact, a project manager does not staff his project.
Staffing is a responsibility of the line managers in a company. The project manager
merely has the right to request specific resources. While the activities listed under

34 3.1 Project Management

Project start phase
Planning phase

Coordination phase 1
Execution phase 1

Coordination phase 2

Project closing phase

...

time

Figure 3.2: Project management phases according to [PR05].

leadership describe soft skills of a project manager, well established techniques
can be applied to the activities listed under project planning, organization, and
controlling. The latter can be supported by appropriate software tools.

3.1.2 Project Management Phases

The project management activities can be associated with different phases which
define the life cycle of a project. As for the definitions of the terms project and
project management, different models for the general project life cycle exist.

In [PR05], four types of project management phases are distinguished: project
start phase, planning and execution phases, coordination and change phases, project
closing phase. This is illustrated in Figure 3.2. In the project start phase, the project
is initiated. In the planning phase all project documents are created including
plans and schedules. Afterwards, coordination and execution phases alternate until
the project closing phase is reached. In the execution phases the actual technical
work is performed which finally yields the product or outcome of the project. The
coordination phases constitute the transitions between the planning, execution and
closing phases and allow for changes to the project parameters and in particular the
project schedule.

The definition of project management phases can be regarded as a coarse-grained,
domain-independent process model for a project, which is even independent of
the type of project. Process models for certain domains or specific project types
usually also define distinct phases. For example, in plant design projects the design
process is commonly divided into preliminary planning, basic and detail engineering
as described in Section 2.1. These specific process phases should not be confused
with the project management phases. However, there are connections and overlaps
between the two perspectives on a project. The transitions between preliminary
planning, basic and detail engineering constitute coordination phases in which
milestones and intermediate results are evaluated. For software development
projects, several elaborated process models exist. Prominent examples are the
Unified Software Development Process [JBR99] and the V-Model [Bun06]. The
Unified Software Development Process divides the control/execution phase into

Chapter 3 Fundamentals 35

several execution phases with well defined transitions for coordination and change
as described in [PR05] for projects in general. These technical project phases are
the inception, elaboration, construction and transition.

In [DH02], a different process model for project management is presented which
comprises the following six project management phases.

Concept phase The need for a project is identified, proposals are made for solv-
ing the problem together with preliminary estimates of cost and preliminary
schedules. Often, a feasibility study is conducted.

Definition phase The proposed solution to the need or problem is exactly defined
in terms of the project’s objectives, its scope and its strategy.

Planning phase The project activities are identified, the time and resource require-
ments are estimated, relationships and dependencies are identified, as well as
schedule constraints.

Scheduling phase The project base plan is constructed which specifies resource
feasible start and end dates for the activities, their resource requirements, and
as a result the budget.

Control phase The work is performed according to the plan. The actual progress
of the tasks is measured and compared to the planned progress. If a delay, budget
overrun or underperformance is detected, corrective actions must be taken to
get the project back on track.

Termination phase The project termination phase should include a thorough
follow-up to learn from mistakes and to improve the defined processes.

Here, the execution phase is not divided into multiple phases and is called the
control phase. The project start phase is subdivided into two phases as is the project
planning phase where scheduling is distinguished from planning. The differences of
this definition of project management phases compared to [PR05] are probably due
to the focus of [DH02] on research about project scheduling while [PR05] addresses
the project management practitioner.

Common to all general process models for project management is a planning
phase in the beginning. In some cases, scheduling is considered as part of the
planning process, in other cases planning is understood as the prerequisite for
scheduling. In any case, planning of activities, dependencies, roles and resources
has to be conducted before a schedule can be computed. Project planning can be
described by the process depicted in Figure 3.3. In this case, a distinction is made
between structural planning, i.e. the definition of tasks and their dependencies, and
scheduling which includes the estimation of all data that is required to calculate a
schedule (cf. Section 3.2).

36 3.1 Project Management

Activity Definition

Activity Sequencing

Structural Planning

Scheduling

Workload Estimating

Resource Estimating

Budget Estimating

Duration Estimating

Schedule Development

Figure 3.3: The process of project planning adapted from [Ela08].

3.1.3 Work Breakdown Structure and Project Plan

To manage the complexity of a project, the work to be done in the project is broken
down into manageable portions which results in the so-called work breakdown
structure (WBS). The project is divided into major pieces which are further refined
into tasks and subtasks, until finally the level of work packages is reached.

The work packages form the lowest level of the WBS. A work package describes
the work to be accomplished by a specific performing group and serves as a vehicle
for monitoring and reporting progress of work [Ker98]. Work packages should be
uniquely associated with a certain organizational unit to ensure clear responsibilities,
they should not extend across project phase boundaries, and they should not refer
to different product parts [Bur00].

The defined tasks together comprise the full amount of work that has to be
conducted in the project. The costs of the project are distributed over the WBS.
Each node in the WBS subsumes the costs and the need for resources of all subtasks.
Therefore, also project management is incorporated as a task in the WBS because it
occasions costs.

There are different ways to define a WBS, i.e. it can be structured according to dif-
ferent aspects. Three different types of work breakdown structures are distinguished
[Bur00].

Chapter 3 Fundamentals 37

• Product oriented WBS

• Function oriented WBS

• Process oriented WBS

In a product oriented WBS, the main tasks and the work packages are divided
according to the product structure, e.g. according to the parts of a chemical
plant or a car which shall be designed in the project. As a consequence, the work
breakdown structure becomes very similar to the product breakdown structure
which is the hierarchical representation of the final product. A function oriented
WBS structures the project according to the functional roles in a project. For a plant
design project this would be among others civil engineering, process design, piping
and instrumentation. A process oriented WBS defines the main tasks according to
the enacted development process. The top level of a process oriented WBS therefore
resembles the main process steps, e.g. preliminary planning, basic engineering, and
detail engineering in a plant design project. Besides the three distinct types of WBS
there may be mixed forms, e.g. a combination of function oriented WBS on the top
level and a process oriented WBS on the lower levels [Bur00, p. 144].

A WBS is always project specific. There can be no standardized WBS which applies
for several projects. It is however possible to use a standard WBS for a class of
development projects which has to be tailored to the specific project at hand by
removing irrelevant parts and adding new branches or work packages.

The following list is an example of a concrete work breakdown structure for a
process plant construction project. The example is a reduced version of the one
given in [PMI06]. It is a mixed type of a function and process oriented WBS.

1. Plant System Design

1.1 Business requirements

1.2 Process Models

1.2.1 System Engineering

1.2.2 Site Development

1.2.3 Civil Structures

...

2. Construction

3. Legal and Regulatory Issues

4. Testing

4.1 System Test

4.2 Acceptance Test

5. Startup

38 3.1 Project Management

Detail

Engineering

Project

Basic

Engineering

Create

PFD

Device

Specifications

Acquisition &

Manufacturing

Construction

& Installation

Specify

Pump 032

Specify

Pump 037

Specify Plug

Flow Reactor 012

Specify Heat

Exchanger 017

Function oriented

Process oriented

Product oriented

Figure 3.4: Mixed type work breakdown structure of example scenario.

6. Project Management

The example for a dynamic task net used in this thesis incorporates a work
breakdown structure which is a combination of a process oriented WBS on the top
level, a function oriented WBS on the lower levels and a product oriented WBS on
the lowest levels (cf. Figures 2.6, 2.7 and 3.4). The first division into subtasks has
been made according to the phases of the development process. On the next level,
the tasks are defined according to the different functions, e.g. process definition,
specification of devices, piping, instrumentation, and procurement. Finally, on the
lowest level, tasks are defined according to the structure of the chemical plant to be
designed. Individual tasks are defined for the flow diagrams of different plant parts
and for the specification of devices.

The WBS of a project constitutes the basis for the responsibility matrix, network
scheduling, costing, risk analysis, organizational structure, coordination of objectives
and controlling [Ker98]. For detailed project planning, the work packages are further
refined into subtasks. For every work package, the specific tasks are identified that
need to be performed in order to accomplish the project’s objective [DH02]. When
the subtasks of the work packages have been identified, their interdependencies can
be defined. The tasks can then be visualized in the form of a project network. While
the WBS defines the organization of the work in the project, the project network
defines the control flow between the tasks and thereby the inherent processes in
the project. In addition to the tasks and their dependencies, time estimates for the
task durations are made, and the required resources are defined. Based on these
data, a project schedule can be calculated. The work breakdown structure, the task
dependencies, and the scheduled dates of tasks are all part of the project plan which
is used to monitor and control a project at runtime.

For the visualization of project plans, several representations have emerged over
time where the most commonly used are the Gantt chart and the network diagram
[PR05]. A Gantt chart is a horizontal bar chart in which every bar represents a

Chapter 3 Fundamentals 39

task in the project. The width of the bar indicates the duration of the task and
its horizontal position indicates the start time of the task. The tasks in a Gantt
chart can be connected by dependency relations with several different semantics
(cf. Section 3.2). However, Gantt charts are often used without task dependencies,
since their representation quickly becomes too complex and confusing. A network
diagram depicts the tasks in a project as nodes of a graph and the task dependencies
as edges. The representation of a graph node and its position do not transport any
information about the task duration and start time. Consequently, even in complex
project plans the tasks can be neatly arranged, so that the logical task dependencies
can be easily comprehended.

A work breakdown structure is not fixed after the planning phase of a project. It
is continuously modified and adapted during the execution of the project [Bur00].
In large projects, it is common that work packages of later project phases are not
subdivided into subtasks until project runtime. This practice is called rolling-wave
planning [Ela08]. Work to be accomplished in the near term is planned in detail at a
low level of the WBS, while work far in the future is planned for WBS components
that are at a relatively high level of the WBS. As a consequence, the whole project
plan is continuously modified and adapted at project runtime.

3.1.4 Organizational Breakdown Structure and Resources

In addition to the WBS, an organizational chart is defined for a project which is
called the organizational breakdown structure (OBS) [DH02]. The OBS comprises
the various organizational units that are going to work for the project, i.e. it defines
the hierarchical structure of the project team. The members of the project team are
called human resources. A project team can be structured into several subteams.

Figure 3.5 shows an example of an OBS for a plant design project. The depicted
boxes represent the organizational units which may be subteams or positions for
individuals. For every organizational unit, there is a person responsible. The
connecting lines define the hierarchy of responsibility and authority.

The organizational units of the OBS are linked to the WBS of a project, i.e. the
lowest units in the OBS are assigned to work packages of the WBS. For example, the
subteam Piping is assigned to the piping work package in a plant design project. The
members of the subteam are assigned to subtasks of the work package. The head of
the subteam is responsible for the whole work package.

The members of an organizational unit in the OBS do not necessarily have the
same qualifications. The qualifications of a human resource are usually defined by
his functional roles. Role definitions can be used for the assignment of resources
to tasks [NW94]. In a first step, the required role is defined for a task. In a second
step, an eligible resource which can play the required role is selected for the task.
Although it is not necessarily the case, membership to an organizational unit often
coincides with certain roles, so that tasks which require the same qualifications are
assigned to resources which are in the same organizational unit.

In project management, several different categories of resources can be distin-

40 3.1 Project Management

Project Manager

Quality/Security
Management

Construction/
Installation

Management

Process
Engineering

Procurement Progress/Cost
Control

Control
Systems Layout Machines

& Devices
(Steel)

Construction Piping

Figure 3.5: Example for an organizational breakdown structure [EDL10].

guished [DH02], including human and non-human resources. The main distinction is
made with respect to whether resources are renewable. Renewable resources are
available on a period-by-period basis. The available amount is renewable from period
to period while the total resource used at every time instant is constrained. Typical
examples are manpower, machines, tools, equipment and space. Nonrenewable re-
sources are available on a total project basis, with a limited consumption availability
for the entire project. The most prominent example is money. Doubly-constrained
resources are constrained per period as well as for the overall project, e.g. man
hours per day in combination with a constraint on the total number of man hours for
the project.

Another category contains partially (non)renewable resources whose availability
is defined for a specific time interval. With this kind of resources it is possible to
model a project team member who may work on either Saturday or Sunday but
not both. This is not possible with renewable resources. As a matter of fact, the
concept of partially (non)renewable resources includes renewable, nonrenewable
and doubly-constrained resources.

A resource can be continuously divisible or discretely divisible. For a continuously
divisible resource, the constant availability in each (real-valued) time instant may
not be exceeded. Examples are power and energy. Human resources however are
discretely divisible resources since the availability is constrained for each discrete
time instant, e.g. a day.

In project scheduling, the most challenging task is to assign the available human
resources to the defined tasks. A human resource, i.e. an employee of a company
who is a member of the project team, can be categorized as a renewable or doubly-

Chapter 3 Fundamentals 41

constrained, discretely divisible resource. The time unit is usually a workday and
the resource can spend the available man hours of a workday on several tasks.

3.2 Project Scheduling

The results of structural planning are the definitions of tasks and their dependencies.
Effective project controlling requires the defined tasks to be scheduled over the
project duration. Thereby, planned start and end times are assigned to the tasks.
The schedule which is calculated in the project planning phase is called the base-
line schedule and is used as a reference for project monitoring. It should satisfy
precedence and resource constraints and meet as much as possible the objectives
set forward by project management.

Several different objectives can be distinguished [DH02]. The most common
objective is the time-based objective to minimize the project’s makespan, i.e. its
duration. Another time-based objective is to minimize the total tardiness, i.e. the
sum of all delays of tasks in the project should be minimized.

An important example of a resource-based objective is to minimize the resource
availability costs while a given project deadline has to be met. In this case, the
optimal capacities of renewable resources have to be determined. Another resource-
based objective is resource leveling where one tries to level the usage of a resource
over all time units.

Furthermore, financial and quality oriented objectives can be pursued. In the multi-
objective case, scheduling involves the use of different objectives which are weighted
and combined. Finally, multi-project scheduling is concerned with scheduling several
projects in parallel which share common resources. This problem class can be solved
by combining the project networks in one super-network and applying the techniques
for single project scheduling, although this approach is not always feasible.

Estimation of task durations For the calculation of a baseline schedule, infor-
mation about the required resources and workload of the defined tasks as well as
their expected durations is needed. The estimation of task durations is difficult and
error-prone. It depends on human judgment which may be biased, e.g. overesti-
mating task durations is common to add extra safety as a protection against future
time-cuts imposed by the upper management.

Two types of methods for workload and cost estimation can be distinguished
[PR05]. The global estimation allows to derive the overall workload and cost of the
project from only few key figures like, e.g., in plant engineering the type and size of
the chemical plant. In software development projects, common global estimation
methods are the function point method or the Cocomo approach [Bal00]. For global
estimation methods, experience values of the company about comparable projects
are required. Global estimation methods are useful for the decision whether the
project should be executed. They are, however, too coarse to be useful for cost
controlling at project runtime.

42 3.2 Project Scheduling

The analytical estimation derives the workload and costs from the corresponding
values of the defined tasks and subtasks in the work breakdown structure in a bottom-
up fashion. The cost estimation on project level finally should also incorporate
indirect costs. Since the workload and costs are defined for the individual tasks
and work packages in the project, they form a basis for project scheduling and
controlling.

If several similar projects are run in a company which have similar goals, scope,
objectives and underlying process models, knowledge from previous projects can
be used for estimating the workload, resource requirements, and task durations for
a new project. This is often the case in plant engineering, when several chemical
plants for the same chemical product are designed by a company. Parameters like the
size of the chemical plant, the location, legal and political issues may differ, but the
type and number of devices and the general architecture of the plant are comparable
and can be scaled accordingly. Therefore, it is often possible to estimate the required
effort for the plant design based on the size of the plant and by comparing it to the
size of previously designed chemical plants.

There are several different approaches for estimating task durations [DH02]. The
most common technique is based on single-time estimates. In this case, the duration
estimate made for a task is the mean or average time the task will probably take.
The duration of a task should not include unexpected disruptions at project runtime.
Furthermore, it should not depend on the duration of preceding or succeeding tasks.

Besides the estimation of deterministic task durations, there also exist approaches
which deal with uncertainty. In the PERT model, stochastic task durations are used
[MRCF59]. The duration of an activity is defined by a probability density function
whose parameters are derived from three-time-estimates, i.e. a project manager
estimates the optimistic, pessimistic and most likely duration of a task. During
scheduling, the task durations are derived as values of random variables thereby
incorporating a certain degree of uncertainty.

Task net representation After the work breakdown structure and task depen-
dencies have been defined, and the required workload, resources and costs for the
defined tasks have been estimated, the project schedule can be calculated which
defines planned start and end times for all tasks in the project. Starting point for
the schedule calculation is the project network. There are two possible formal
representations of a project network.

In the so-called activity-on-arc (AoA) representation, tasks are represented by
edges of a directed graph and the nodes of the graph represent events. AoA net-
works form the basis of the two best-known project networking techniques, namely
PERT (Project Evaluation and Review Technique) [MRCF59] and CPM (Critical Path
Method) [KW59]. However, AoA networks have the significant drawback that it
is not possible to define control flow relationships between tasks with semantics
different from the finish-start relationship [DH02].

In the activity-on-node (AoN) representation, a project network is represented by
a directed graph G = (V, E) where the tasks are represented by the vertices in V

Chapter 3 Fundamentals 43

and the precedence relations by the edges in E ⊆ N× N. This representation allows
for the so-called generalized precedence relations (GPRs). Four types of GPRs can
be distinguished: start-start (SS), start-finish (SF), finish-start (FS) and finish-finish
(FF). A GPR represents a maximal or minimal time-lag between the corresponding
events of the source and target tasks. For example, a minimal time-lag FSmin

ij (x)
specifies that activity j can only start x time units after activity i has finished. A
GPR of FFmin

ij (x) is common in design projects where activity j may not be finished
before x time units after the preceding activity i has finished so that the final results
of the preceding activity can be incorporated. Combined GPRs are also possible,
e.g. the combination of SSmin

ij (x) and FFmin
ij (x) to demand a time-lag of x time units

between the start and the end events of tasks i and j. In [Haj97] an additional
GPR was introduced for this specific combination. The use of AoN networks with
GPRs with only minimal time-lags but no maximal time-lags is called the Precedence
Diagramming Method (PDM) [Wie81, DH02, Kle00].

3.2.1 Temporal Analysis

Early techniques for scheduling tasks in a project network like the PERT [MRCF59],
CPM [KW59] and the Metra-Potential Method (MPM) [Dib70, KS75] can be subsumed
under the term temporal analysis [DH02]. With these techniques, the minimal
makespan of a project, earliest possible start and end times of tasks and slack times
allowing for task delays can be calculated. However, temporal analysis does not take
resource requirements and availabilities into account. Therefore, it is not sufficient
for computing a resource-feasible project schedule. In this thesis, temporal analysis
is performed as a preprocessing step for resource-constrained scheduling. For this
reason, the critical path method for AoN-networks is presented in the following.

Critical Path Method

In its basic form, the critical path method (CPM) assumes deterministic task du-
rations and only finish-start precedence relations with zero time-lag [KW59]. The
goal is to compute and analyze the critical path, i.e. the set of tasks which cause a
project deadline violation if they are delayed. The CPM is divided into two phases,
the forward termination (forward pass calculation) and the backward termination
(backward pass calculation).

The forward termination determines for every task i its earliest possible start
time EPSTi and its earliest possible end time EPETi. Let the project network be
represented by a graph G = (V, E) with |V| = n and the nodes in V representing
the tasks are numbered in topological order so that each arc leads from a smaller
to a higher node number. The duration of a task i is denoted by di, and Pi denotes
the set of immediate predecessors of i. Without loss of generality one can assume
a unique starting node for the project network and a unique end node, each with
duration zero. The forward termination proceeds according to Algorithm 3.1.

From the earliest possible start times the so-called early schedule can be derived,
i.e. every task is scheduled at its earliest possible start time.

44 3.2 Project Scheduling

Algorithm 3.1 CPM Forward Termination [DH02]
1: EPST1 = EPET1 = 0
2: for j:=2 to n do
3: EPSTj := max{EPETi|i ∈ Pj};
4: EPETj := EPSTj + dj;
5: end for

In the backward termination phase, the latest possible start times (LPST) and
latest possible end times (LPET) of all tasks are calculated. The algorithm proceeds
analogously to Algorithm 3.1 in reverse-topological order where the latest possible
end time of a task is set to the minimal latest possible start time of all immediate
successors, starting from the project deadline as the latest possible end time of the
unique end node in the network. The overall time complexity of the forward and
backward pass calculations is O(n2) [DH02].

From the earliest and latest possible start and end times the float (or slack time)
of tasks can be calculated. The total float of a task indicates the number of time
units for which the task can be delayed without delaying the project end time. For a
task i, the total float TFi is defined as

TFi = LPSTi − EPSTi = LPETi − EPETi

The free float of a task indicates the number of time units for which the task can
be delayed without delaying an immediate successor. For a task i, the free float FFi
is defined as

FFi = min{EPSTj|j ∈ Si} − EPETi

where Si denotes the set of immediate successors of task i.
A task with a total float of zero is called a critical task since a delay of this task

would delay the whole project. In practice however, the delay of a critical task can
often be compensated by a faster completion of a succeeding task. A path from the
start to the end node of the project network, which only contains critical tasks is
called a critical path. There may exist several critical paths in a project network.

Temporal Analysis with Generalized Precedence Constraints

Temporal analysis can also be performed on project networks with GPRs (generalized
precedence relations). This problem class was originally addressed by the Metra-
Potential Method (MPM) [KS75]. The GPRs between two tasks i and j have the
form:

si + SSmin
ij ≤ sj ≤ si + SSmax

ij si + SFmin
ij ≤ f j ≤ si + SFmax

ij

fi + FSmin
ij ≤ sj ≤ fi + FSmax

ij fi + FFmin
ij ≤ f j ≤i +FFmax

ij

Where si denotes the start event of task i and fi its finish event. FSmin
ij denotes for

example the minimal lag time x imposed by a generalized precedence constraint
FSmin

ij (x). A GPR with a maximal time lag can be represented as a GPR with a

Chapter 3 Fundamentals 45

minimal time lag in the opposite direction [RH96]. Consequently, task nets with
GPRs may contain cycles [RH96, DH02]. For example, two tasks can be connected
in one direction by a start-finish precedence relation with a minimal time lag and in
the other direction by a start-finish precedence relation with a maximal time lag.

GPRs can be represented in a standardized from, e.g. by transforming them
to minimal start-start precedence relations of the form si + lij ≤ sj with lij ∈ <.
The interval [si + lij, si − lij] is then called the time window of sj relative to si (cf.
[DH02, p.116] for details). This results in the standardized representation of the
network G = (V, E). The transformation requires that the durations of the tasks are
deterministic and fixed. A schedule S = (s1, s2, . . . , sn) is called time-feasible, if the
task start times si satisfy the following conditions:

si ≥ 0 ∀i ∈ V
si + lij ≤ sj ∀(i, j) ∈ E

A time feasible earliest start schedule (ESS) is a solution to the resource-un-
constrained project scheduling problem with GPRs under the minimum makespan
objective. The ESS can be computed efficiently by using the Modified Label Correct-
ing Algorithm which is of time complexity O(|V||E|) [DH02].

In a non-standardized network with GPRs, a critical path may not be a path in the
strict sense but rather a tree structure because it may include a task connected with
a minimal and maximal time-lag in the same direction, ensuring that the start or
completion of the task should be exactly equal to the start or finish of a predecessor
plus a certain time-lag. An example for this case is given in [DH02, p.122].

Also the notion of criticality has to be refined for task networks with GPRs. As
mentioned earlier, in traditional CPM terminology a task is critical if delaying that
task causes a project delay. Likewise, an increase of the duration of a critical task
results in an increase of the project duration. In task nets with GPRs, delaying
a critical task will also increase the project duration but a duration increase of a
critical task may not. This is for example the case if only the start event of the task
imposes constraints on other tasks in the network. Therefore, different criticality
types are described in [DH02]. A task is labeled:

Critical if it is located on a critical path, which is the longest path from the unique
start node to the unique end node,

Start-critical if (a) it is critical, and (b) if the project duration increases when the
start time of the task is delayed,

Finish-critical if (a) it is critical, and (b) if the project duration increases when the
end time of the task is delayed,

Forward-critical if (a) it is start-critical, and (b) when the project duration in-
creases when the task’s duration is increased,

Backward-critical if (a) it is finish-critical, and (b) when the project duration
increases when the task’s duration is decreased,

46 3.2 Project Scheduling

Bi-critical if (a) it is start- and finish-critical, and (b) when the project duration
increases when the task’s duration is either increased or decreased.

The effects of decreasing the duration of a backward-critical task have already
been described in [Wie81]. Splitting of tasks is proposed as a solution to the problem
that increasing the duration of a backward-critical task may be required to decrease
the duration of the project. In fact, this seems to be a practical solution, in which
the task is simply paused which has to wait for another task to start or finish before
itself may finish. When resources are taken into account, pausing a task means
scheduling zero workload for a number of time units. The workload per day could
also be reduced to a smaller value but still greater than zero to increase the duration
of a task. These considerations however, are not possible in the context of traditional
CPM and PDM. Furthermore, the anomalous effects of backward-critical tasks mainly
affect the project planning phase. At project runtime, if a backward-critical task
has already been started, the decrease of its duration cannot affect its start time
anymore. The possible inconsistency regarding a constraint imposed on the end
time of a started task can only be resolved by pausing, i.e. splitting, the task and
thereby keeping the late end time.

The discussion of different types of task criticality is concerned with the different
effects of a task delay or duration increase or decrease on the overall project duration.
If, however, the project deadline must not be violated and the latest possible end
time of the last task in the network is fixed, the question arises whether the delay of
a task or a change of its duration still results in a time-feasible network for the fixed
project deadline. Therefore, the notion of flexibility has been introduced in [EK92]
to denote the freedom to manipulate the task duration to achieve feasibility. A task
is said to be

Forward inflexible if extending the task duration results in a time-infeasible sched-
ule,

Backward inflexible if shortening the task duration results in a time-infeasible
schedule,

Bi-inflexible if it is forward- and backward-inflexible.

The notion of task floats for task nets with GPRs are similar to those of standard
CPM networks. However, in task nets with GPRs, only late starts are used for
computing task float, since task duration increases may not lead to a project delay
[DH02].

3.2.2 Resource-Constrained Project Scheduling

To obtain a resource-feasible schedule, resource requirements and availabilities have
to be considered in addition to precedence constraints and duration estimates. If
two tasks require the same resource, they have to share the resource or they have to
be executed in sequence. The problem to find a time and resource feasible schedule

Chapter 3 Fundamentals 47

for a task net with only finish-start relationships and a given set of renewable
resources which is optimal with respect to the project’s makespan is called the
resource-constrained project scheduling problem (RCPSP).

There are different approaches for solving the RCPSP [DH02]. The problem of
finding the optimal solution to the RCPSP is NP-hard in the strong sense. Hence,
exact methods for solving the RCPSP have an exponential runtime complexity in
the worst case. Exact methods for solving the RCPSP include linear programming
based approaches and branch-and-bound procedures. Besides exact methods, there
are heuristic approaches which do not necessarily provide an optimal solution for
the RCPSP but allow for an efficient and fast computation. Especially in the case
of projects with high uncertainty and many disruptions at runtime, it is reasonable
to work with sub-optimal schedules which can be (re-)computed efficiently. The
heuristic methods can be divided into constructive heuristics and improvement
heuristics.

Constructive Heuristics

Constructive heuristics start with an empty schedule and add tasks step by step until
a time-feasible schedule has been generated. Priority rules are used to select the
next task to be scheduled if there are several possibilities. Five different categories
for priority rules can be distinguished.

Task based priority rules e.g. the task with the longer duration has higher prior-
ity,

Network based priority rules e.g. the task with more immediate successors has
higher priority,

Critical path based priority rules e.g. the task with earlier latest possible start
time or the smaller slack time has higher priority,

Resource based priority rules e.g. the task with greater resource demand has
higher priority,

Composite priority rules define a weighted average of several priority rules.

Based on the defined priority rules, a priority list is computed in which the tasks
to be scheduled are ordered according to their priority starting with the highest
priority.

Two different scheduling schemes are distinguished. The serial scheduling scheme
goes through the tasks according to the priority list and determines the earliest start
time for each task whilst taking limited resource availabilities into account.

The parallel scheduling scheme goes through the time units from the start to
the end of the scheduling time frame (in the planning phase this usually equals the
whole project duration) and selects for each decision point the tasks which can be
started. Decision points are those points in time at which a task is terminated. If

48 3.2 Project Scheduling

several tasks can be started at a decision point which compete for resources, the
selection is made according to the priority list.

Both, the serial and the parallel scheduling scheme have a runtime complexity of
O(m · n2) where m is the number of resources and n the number of tasks [KH98]. A
schedule obtained by the serial scheduling scheme is a so-called active schedule
[DH02, Kle00]. Among the active schedules for a given task net, there is at least
one optimal solution. A schedule obtained by the parallel scheduling scheme is a
so-called non-delay schedule. There may be no optimal solution among the non-
delay schedules of a task net. This means, that for a given example the parallel
scheme may not find an optimal solution no matter which priority rules are used.
However, according to [Kle00], the two scheduling schemes do not dominate each
other. Examples are given for which the parallel scheduling scheme yields better
results for backward planning, where the scheduling schemes are applied starting
from the project deadline. Furthermore, the serial scheduling scheme performs
slightly worse than the parallel scheduling scheme considering the average deviation
from optimality but manages to find more optimal solutions.

Since constructive heuristics are efficiently computable, it is common to combine
the different variants in a multi-pass method. Thereby, different priority rules can
be used in each pass and different combinations of serial or parallel scheduling with
forwards, backwards or bi-directional scheduling can be applied. In this way, several
good solutions can be computed from which the best one can be selected.

Improvement Heuristics

Improvement heuristics start with a given time-feasible schedule, e.g. obtained
using a constructive heuristic, and try to improve it by applying change operations to
the schedule until a locally optimal solution is reached [DH02]. One example is the
steepest descent approach which computes the neighborhood of a solution which
consists of all schedules which result from applying an atomic change operation
to the solution. Then, the best solution in the neighborhood is selected. This
procedure is repeated until a solution is reached which is the optimal solution in
its neighborhood. In the fastest descent approach, not the complete neighborhood
of a given solution is generated, but as soon as a better solution than the current
one is generated, this is selected for the next round. The iterated descent approach
executes a descent method several times for randomly generated schedules as
starting points. This way, several locally optimal solutions are generated from which
the best one is selected.

For the generation of a locally optimal resource-feasible schedule, other meta-
heuristic approaches can be applied as well [DH02, KH98]. These include tabu
search, simulated annealing and genetic algorithms. The latter two have also been
applied for schedule repair in case of disruptions [Wan05].

Chapter 3 Fundamentals 49

The Generalized Resource-Constrained Scheduling Problem

The RCPSP is restricted to scheduling tasks subject to minimal finish-start prece-
dence constraints. The generalized resource-constrained project scheduling problem
(GRCPSP) also allows for the additional precedence relations of the precedence
diagramming method (start-start, finish-finish and start-finish relations with minimal
time lags) [Kle00]. Furthermore, release and due dates can be specified for tasks
which define time windows for the tasks. Finally, the resource availabilities may vary
for different time units.

Just like the RCPSP, the GRCPSP is NP-hard. Even the decision problem of
detecting whether a feasible schedule exists for the GRCPSP is NP-complete [DH02].

In [Kle00] it is described, how the heuristic approaches for the RCPSP would have
to be adapted to handle the generalized precedence relations of the GRCPSP. A
brief discussion is given showing how priority rules can be adapted to the GRCPSP.
The serial scheduling scheme can be immediately transferred to the GRCPSP while
the parallel scheduling scheme has to be slightly modified. The computation of the
next decision point has to be adapted because a task can not only be scheduled
when another task is finished but possibly before because of generalized precedence
constraints. A time-feasible schedule for the GRCPSP can be computed using forward
planning. Backward planning, however, is generally not possible for the GRCPSP
since different schedules are obtained for different project end dates due to varying
resource availabilities [Kle00].

The resource-constrained project scheduling problem with generalized precedence
relations (RCPSP-GPR) allows for all GPRs including maximal time lags. In [DH02],
exact branch-and-bound solution procedures are presented for the RCPSP-GPR.
However, it is not described, how the heuristic approaches for the RCPSP would
have to be adapted to handle generalized precedence relations with maximal time
lags. No information can be found in literature, how maximal time lags affect the
applicability of the scheduling schemes and priority rules for constructive heuristics.

3.2.3 Disruption Management

The baseline schedule is generated before the execution of the project. However, no
project is executed exactly as planned. Due to uncertainties, unexpected disruptions
occur frequently at project runtime which often require changes to the project
schedule. Changes to the baseline schedule are eventually required when corrective
measures have failed to align the actual performance with the plan.

According to [HL05], different methods for schedule generation under uncertainty
can be followed. One possibility is to not generate a baseline schedule at all. In
this case, scheduling policies are applied to assign tasks to resources on the fly at
project runtime. However, without a baseline schedule effective project monitoring
is not possible. The second possibility is to generate a baseline schedule with no
anticipation of variability. In this case, reactive scheduling is required to repair the
schedule in case of disruptions. In the third case, information about the particular
variability characteristics, e.g. probability distributions for activity durations, is

50 3.3 Project Controlling

used. This approach is called proactive (robust) scheduling. In this case, disruptions
do not necessarily require schedule repair.

A schedule is called robust if it is rather insensitive to disruptions [HL05]. The
term quality robustness is used when referring to the insensitivity of the schedule
performance in terms of the objective value, e.g. the resource availability costs.
The term solution robustness or stability is used to refer to the insensitivity of the
task start times to disruptions, i.e. the schedule itself does not change significantly
during repair. Furthermore, a schedule is called flexible if it can be easily repaired,
i.e. changed into a new high quality schedule. If the flexibility of a schedule is low,
high effort is needed for the repair.

3.3 Project Controlling

The goal of project controlling is to align the actual project performance with the
project plan regarding costs, time and (the quality of) the results. It is necessary
because of risks and uncertainties. At project runtime, the following unexpected
events may occur [PR05].

Change of goals Changes to the project goals or to customer requirements,

Disturbances Resource unavailability, technical problems, delivery delays, etc.,

Deviations from the plan Wrong estimates or low efficiency.

Project controlling involves monitoring and steering a project. However, the usage
of the term project controlling is not consistent in the literature and in practice.
Sometimes controlling is used synonymously for monitoring a project. On the other
hand, the term control is often used synonymously with steering.

The German standard DIN 69901-5 subsumes under the term project controlling
the measurement of the actual project status, the comparison with the plan, the
analysis and evaluation of deviations resulting in recommendations for corrective
measures, the planning of corrective measures, and finally the steering of their
implementation [DIN09].

Similarly, the Project Management Body of Knowledge (PMBOK) [PMI04] lists
as the core functions of project controlling the comparison of actual and planned
performance, the analysis of deviations, the evaluation of trends and possible al-
ternatives, and the recommendation of suitable corrective measures. The PMBOK
Guide defines processes for controlling the scope, schedule, costs and risks in a
project as well as for change and quality control.

The project management control cycle depicted in Figure 3.6 describes the con-
nection between project planning, execution and controlling [PR98, Lic06]. Project
planning is a prerequisite for project controlling. It provides the initial project base
plan. Project execution takes place based on this plan. During execution, the actual
status of the project is measured and compared with the plan. Deviations from
the plan are analyzed. Based on this analysis, either corrective control measures

Chapter 3 Fundamentals 51

project (re-)planning

implementation of
plans and control

measures

development of corrective
control measures

analysis

plan/actual
comparison

progress measurement

Figure 3.6: The project management control cycle, adapted from [PR98].

are taken or the plan is adapted. The execution of the project proceeds either
with corrective control measures or an adapted project plan. If corrective control
measures are not effective, this is detected in another iteration of the cycle and
further management decisions have to be made. In the following, the different steps
of project controlling are described in more detail.

3.3.1 Determining the Actual Project Status

The first step is to determine the actual project status. The collected data refers to
the parameters performance, time, resources, costs and process quality [PR05]. The
actual performance is measured in terms of quality and quantity.

The quality of the (intermediate) products in a project has to be ensured by means
of regular reviews and quality tests, and the documentation of their results. This is
usually part of quality management in a project.

The quantitative performance is measured for the work packages in the project by
computing their degree of completion (DOC). The DOC indicates, how much of the
work with respect to the defined goal of the work package has already been done.
This measure is independent of the actually spent time for the work package. For
example, if the goal of a work package is to do the layout of the pipes in a chemical
plant, then one can argue that the work is half done when half of the pipes have
been laid out, no matter whether 20%, 50% or 80% of the scheduled time for the
work package has already passed.

It is fairly easy to determine the DOC of work packages which have not been
started yet or which are already completed. The challenging task is to accurately
measure the DOC of work packages which have been started but are not completed
yet. There are several common methods for calculating the DOC of tasks in a project.
Some methods can be used in every project while others can only be used in projects
of a certain type. In the following, the methods presented in [PR05] are coarsely

52 3.3 Project Controlling

described.

A comparably simple technique is the start-end method. It assigns a DOC of 0%
to a task which has not yet been started and 100% to a finished task. A running
task is assigned a DOC of 50% or any other value k with 0% ≤ k < 100%. For the
individual task, this may be a comparably inaccurate measure. However, when the
DOCs of several tasks are aggregated at the common parent task, this results in a
fairly accurate DOC for the parent task.

It is common in project planning to define milestones in the project schedule.
These milestones define specific intermediate results of the project. Estimates
for the DOC of the parent task are assigned to milestones. When a milestone is
completed, the parent task is assumed to have reached the defined DOC.

It is always possible to directly estimate the DOC of a task based on experience
and information about the work performed in the task. Since this direct estimation
is error-prone, an alternative method is often used in which the remaining workload
for a task is estimated. This results in a forecast for the expected total workload of
the task which may deviate from the originally planned total workload. The ratio of
actually performed work to the expected total workload yields the DOC of the task
in question.

If there is an indicator for the work to be done in a task which increases proportion-
ally to the degree of completion of the task, the former can be used to compute the
latter. In construction projects for example, the square meters of concreted ground
or the amount of used concrete or steel in tons can be used to measure the DOC of a
task. In plant design projects, the number of completed device specifications can
be used. If a task is subdivided into a larger number of comparable subtasks, it is
possible to use the number of finished subtasks as the indicator. The DOC is then
calculated as the ratio of the actually used or completed amount to the total planned
amount, e.g. the number of finished tasks divided by the number of planned tasks.
Two important aspects have to be considered for this measure. The completed work
has to fulfill the required quality standards, and the planned total amount of work
must not change during the execution of the task.

Besides the degree of completion of tasks, the effort which has actually been
spent on the tasks has to be measured as well. This can be realized by means of
a time-tracking system in which the performers of the tasks book their actually
spent working hours. From the actual workload and the cost rates of the resources,
the actual resource related costs of tasks and the whole project can be derived.
In development projects, the costs of human resources account for the major part
of the overall project costs. In construction projects, costs for machines, devices
and material have to be considered as well. Costs for the required technological
infrastructure, energy, facilities and also trainings and travel expenses are usually
booked as base costs of a project.

Chapter 3 Fundamentals 53

3.3.2 Target-Performance Comparison and Analysis

When the actual performance of the tasks, the effort spent on the tasks, and the
actual costs have been determined, the values have to be compared with the planned
performance, workload and costs.

Besides the actual degree of completion of a task, the planned degree of completion
can be computed as well. One possibility is to compute the quotient of the elapsed
time of a task and the planned total time of a task. However, in this case a linear
increase of the planned progress over time is assumed. A more exact approach is to
compute the quotient of the planned workload to date and the planned total workload
of the task. This results in non-linear functions for the planned progress when the
planned workload is not equally distributed over the calendar days for which the
task has been scheduled. The actual DOC of a task can be directly compared to the
planned DOC. A deviation indicates that the task is either behind schedule or ahead
of schedule. However, from this direct comparison of the actual and planned DOC it
is not possible to make any predictions about the expected actual duration of the
task. Furthermore, nothing can be said about the expected actual costs of the task
in comparison to the budgeted costs.

For the quantitative comparison of planned and actual progress and costs, the
earned value analysis (EVA) can be applied [Anb03, PR05] which is also referred to
as earned value method. From the degree of completion of a task, the earned value
(EV) can be computed. It is the monetary value of the accomplished work and is
computed as

EV = DOC× BAC (3.1)

where BAC is the planned budget at completion of the task. The earned value is also
called the budgeted cost of work performed (BCWP). The planned value (PV) is the
budgeted cost of work scheduled (BCWS), i.e. the money which should have been
spent on the task to date according to the plan. The planned value can be derived
from the project schedule and the cost rates of the resources. The actual value (AV)
is the actual cost of work performed (ACWP), i.e. the personnel costs of the actual
effort spent on the task to date. It can be determined by the results of time tracking
and the cost rates of the resources.

Figure 3.7 shows an example of the development of the planned, actual, and
earned value over time. From these values, two indices can be computed. The
schedule performance index (SPI) indicates whether the task is on schedule, behind
schedule or ahead of schedule. It is computed as follows.

SPI =
EV
PV

(3.2)

The task is exactly on schedule if SPI = 1. If SPI < 1 then the task is behind
schedule since the earned value is smaller than the planned value. If SPI > 1, the
task is ahead of schedule. Corrective measures for a delayed task are only required
if the SPI value falls below a certain threshold. The thresholds are usually project-
or company-specific. For example, the following thresholds can be used together

54 3.3 Project Controlling

Figure 3.7: Key figures of earned value analysis [Lip03].

with the implied consequences for project controlling.

0.9 ≤ SPI The task is on schedule or only a little bit behind.

No corrective measure is required.

0.7 ≤ SPI < 0.9 Corrective measures may be necessary

and should be discussed.

SPI < 0.7 The task is considerably behind schedule and

corrective measures are required.

The calculation of the schedule performance index has a known issue which
is described in [Lip03]. If the planned deadline of a task is exceeded, the SPI
converges from below to the value 1 until the task is finished, i.e. the task reaches
an optimal performance in the end. This is the case because the planned costs
remain constant after the planned deadline, but the task is still executed and the
earned value increases. This problem is illustrated in Figure 3.8. Similarly, if the
task finishes early, the SPI converges from above to the value 1 until the planned
deadline is reached. In [Lip03], the earned schedule approach is presented which
addresses the described problem. The presented performance index is called SPIt.
It is calculated by determining the date on which the current earned value was
or will be the planned value. This date is compared with the current date. If it is
before the current date, the task is behind schedule because the current earned
value should have been reached earlier. Consequently, the SPIt is less than one. If it
is after the current date the task is ahead of schedule and the SPIt is greater than
one. Empirical studies have shown that the values of the SPIt do not differ from the

Chapter 3 Fundamentals 55

values of the SPI until the final stage of a task, but that the SPIt does not exhibit the
described anomalies in the final stage of the task.

Figure 3.8: Development of the SPI and CPI in a delayed project [Lip03].

The cost performance index (CPI) indicates whether the budget for the task will
be met, overrun or underrun. It is computed as follows.

CPI =
EV
AV

(3.3)

If CPI = 1, the task is exactly in budget. If CPI < 1, the task is over budget since
the value of the performed work is less than the spent money. If CPI > 1, the task is
under budget because the earned value is greater than the actual spent money.

The computation of the performance indices SPI and CPI is a way to analyze
the current status of a task. It goes beyond the mere comparison of the actual
and planned degrees of completion, since the indices are quantitative measures
for how much a task is behind schedule or above budget respectively. In practice,
the performance indices SPI and CPI are usually not calculated for every task in a
project but only for the top-level tasks in the work breakdown structure and for the
whole project.

Further analysis of the current project status is concerned with forecasting the
expected end time and final budget of tasks. This can be done based on the SPI
and CPI respectively [Anb03, Lic06]. The forecasted duration (FD) of a task can be
computed as

FD =
PD
SPI

(3.4)

56 3.3 Project Controlling

where PD denotes the planned duration of the task. This method for forecasting
assumes that the past performance of the task is a good predictor of the future
performance, i.e. efficiencies or inefficiencies observed to date will prevail to
completion. This assumption is generally associated with earned value analysis. In
contrast, the critical path method assumes that problems and opportunities that
affected the project’s performance in the past will not occur in the future and that
past performance is not a good predictor of future performance. For example, if
a critical activity in a project network is delayed by a certain amount of time, it
is assumed that the whole project will be delayed by exactly this amount of time,
i.e. future performance will parallel the original plan. Based on this assumption an
alternative method for forecasting the duration of a task is presented in [Anb03]

FD = PD− TV (3.5)

where TV denotes the schedule variance in time units, e.g. if the task is 4 time
units behind schedule then TV = −4. This method is aligned with the critical path
method. However, equation (3.4) is generally used in conjunction with earned value
analysis.

Using the forecasted durations of tasks, it should be continuously checked in a
project whether internal deadlines are met to detect delays early. This is particularly
required, if the success of the project strongly depends on meeting the final deadline
because a contractual penalty would apply in case of a deadline violation. This is
usually the case for plant construction projects [PR05].

The earned value analysis has not been widely used to estimate the expected
duration of a task at completion. It is more common to forecast the estimated cost at
completion, also called estimate at completion (EAC). With the assumption that past
performance is a good predictor of future performance, the EAC is computed as:

EAC =
BAC
CPI

(3.6)

where BAC denotes the planned budget at completion. Analogously to the forecast
of the task duration, there is a formula which assumes that future performance will
parallel the original plan [Anb03]:

EAC = AV + (BAC− EV) (3.7)

The planned costs for the remaining work are added to the actual costs to date.
As for the duration forecast, equation (3.6) is generally used in conjunction with
earned value analysis instead of equation (3.7).

The earned value method is a useful means for quantifying deviations from the
project plan and it helps the project management to focus on work packages that
need the most attention. In particular, the quantification of deviations allows to
distinguish between minor and critical delays and budget overruns.

3.3.3 Steering a Project

Delays, cost overruns, the failure to reach quality standards, and other disruptions
require the intervention of the project management personnel. Steering a project

Chapter 3 Fundamentals 57

is necessary to ensure that the project stays on track, i.e. that it will still be
completed within time and budget limits and will yield the aimed-at results with the
required quality. Steering as part of project controlling involves the implementation
of corrective measures or plan changes at project runtime [Bur00].

With respect to the project management triangle depicted in Figure 3.1, plan
changes refer to the aspects time and cost/resources while corrective measures
may affect the scope of the project and the quality of the final product. However,
corrective measures may also increase the performance of the project team members
which is not represented in the project management triangle. Increased performance
may yield the same results in terms of scope and quality while using less time and/or
less resources.

Corrective measures Corrective measures include all actions which aim at in-
creasing the performance of the project team members or changing the focus of the
work performed without changing the project plan. Increasing the performance of
the project team members can for example be achieved by personal interviews and
feedback, trainings, improved equipment, and additional tools. Sometimes it may
be required to change the scope of the project. For example, to meet the project
deadline, it may be necessary to drop certain requirements for the final product.
However, this is only seldomly possible since the requirements are usually fixed in
the contract for the project.

Plan changes Changes to the project plan include the addition and deletion of
tasks and changes to the scheduled dates of tasks. Furthermore, the priority of tasks
can be changed, i.e. the work on certain tasks is scheduled earlier for the assigned
resources. Plan changes may even be required if the project has been executed as
planned in the past but the scope of the project has changed. In particular, new
customer requirements may lead to significant changes to the design of the product
under development and consequently to the project plan. New tasks may have to be
created and existing tasks may have to be removed from the plan. With respect to the
project management triangle, a change has been made to the scope of the project,
but the actual plan changes still refer only to time and costs. Changes to the project
plan also include changes to resource assignments. A resource may be reassigned
from another task which is ahead of schedule to accelerate the performance of a
task which is behind schedule. If additional resources are used or more working
hours are planned for resources of the project team, then this involves increased
labor costs.

3.4 Workflow Management

In recent years, workflow management has become a popular approach in the
broader field of process management [Jab95, JB96, Law97, JBS99, vdAvH02]. In
particular in the area of business process management the workflow paradigm has

58 3.4 Workflow Management

been widely adopted. For example, in the insurance domain, workflow manage-
ment systems are used to guide clerks during their diverse cases [Wör10, Law97].
Conventional workflow management systems have proven to be suitable for pre-
defined, rather static business processes. However, they are less suitable for the
management of development processes.

The specific characteristics of development processes discriminate them from
business processes. Business processes can be instantiated as individual and inde-
pendent cases. For example, the cases performed by different clerks in an insurance
company are usually independent, and so are the workflow instances which are
enacted to support the work. In contrast, the subprocesses of a development process
are always enacted in the context of an overall development process. The different
subprocesses usually depend on each other which makes the management of the
overall development process a challenging task.

A process model definition for a business process usually defines a standard pro-
cedure which has to be followed, and deviations from this procedure are handled as
exceptional cases. Disruptions are seldom but have to be handled nevertheless by the
process management system. This problem has been addressed in [WEH08, Wör10].
In contrast to this, disruptions are considered the normal case in development
processes. The degree of uncertainty is much higher than in common business cases,
and dynamic changes to a process model instance occur frequently [NW94].

Finally, a process model instance of a development process cannot be completely
defined in advance, i.e. before runtime of the process. Many tasks cannot be
planned until certain intermediate results of the development process are available,
e.g. the design of a software architecture or a flow sheet which defines the main
components of a chemical plant. These key artifacts are required for the refinement
of the process model instance [NW94]. Depending on a released revision of a key
artifact, new tasks are defined and existing tasks may have to be aborted. As a
consequence, it is not possible to determine all tasks of a process in the process
model definition. In contrast, a business process is usually not modified structurally
due to the documents which are produced in a certain case.

Despite the limitations of the workflow approach, subprocesses of a development
process may be adequately supported by a workflow management system [Hel08a,
HHM+06]. Therefore, workflow management functionality has been integrated into
PROCEED as described in Section 6.3 and [HBW09]. Furthermore, workflows are
used in PROCEED to support management processes as described in Section 9.1.
This section introduces the necessary terminology and concepts from the area of
workflow management. Different formalisms and a general reference model for
workflow management systems are presented as well as a class library for workflow
management which has been used as a basis for the implementation of the workflow
management functionality of the PROCEED prototype.

Chapter 3 Fundamentals 59

3.4.1 Definitions and Views

A workflow is usually regarded as "the computerized facilitation of a business
process, in whole or part" [Wor95]. Hence, a distinct characteristic of a workflow as
a specific type of process is the software support, let it be client tools for the human
actors or the partial automation of the process by means of software services.

Furthermore, workflows are classified in [DvdAtH05] as person-to-application
processes, i.e. human actors interact with software tools to perform the defined
processes. In contrast to that, person-to-person processes occur in computer-
supported collaborative work (CSCW) where several human actors collaborate and
software tools are only used for the necessary coordination. Finally, business-to-
business processes define the interaction of software systems where no human actor
is involved.

All required information for the execution of a workflow is defined in a workflow
definition sometimes also called workflow model or schema. This definition can
be instantiated several times in a workflow management system leading to several
workflow instances of the same workflow type. Accordingly, one distinguishes
between build time and runtime of a workflow. During build time, the workflow
definition is created and elaborated. The tasks and control flow are defined, as well
as the resource requirements of the tasks, the data, required applications, exception
handlers and the like. During runtime of the workflow, the execution states of the
tasks are changed by the workflow management system according to the workflow
definition and the state of the workflow instance. Resources are automatically
assigned to tasks who execute the tasks by using the available applications.

To cope with the complexity of workflow models, it is useful to look at them from
different perspectives [JB96, vdAvH02].

Tasks and Control Flow This view describes the tasks to be performed within
a workflow as well as their relationships which concern the routing of tasks.
Workflow definitions usually contain control structures like alternative branches
and loops comparable to those in imperative programming languages.

Resources and Organizational Structure Resources include all kinds of objects
that are necessary to perform a workflow or task. Human resources are members
of organizational units and have competencies and responsibilities.

Data and Data Flow Data are divided into control and production data. Local
variables of workflows are examples of control data while documents produced
in the process are considered as production data. Parameters can be defined for
workflows and tasks. Data flow generally happens between parameters and local
variables of workflows.

Temporal Aspects This view includes information about deadlines and durations of
activities, temporal distances between activities, availability times for resources
and other temporal restrictions. The consistency of temporal constraints has to
be guaranteed and schedules can be derived from the constraints.

60 3.4 Workflow Management

Applications The applications view focuses on the application programs that are
used in order to perform certain tasks. In the business domain, this might be an
accounting system, a text editor or a form for structured input.

Exception Handling A workflow definition usually describes the regular process
execution. A workflow management system should also provide means for sys-
tematic recovery in case of exceptional and faulty situations. However, even
these exception handling mechanisms have to be incorporated into the workflow
definition before execution.

Additional views include Business Rules, Interorganizational Cooperation and others
[DvdAtH05]. While most of the views apply for processes in general, control data
and exception handling are particularly required for workflows since they enable
process automation.

3.4.2 Modeling Languages

Since workflow management aims at a (partial) automation of the defined processes,
the control flow definition usually comprises control structures like alternative
branches and loops. The different modeling languages and formalisms for the defini-
tion of workflows therefore require modeling elements for these control structures.
Other process modeling languages which are merely used for the analysis of pro-
cesses or for manual enactment, do not necessarily require these control structures.
Different formalisms have been used for workflow modeling, and many different
modeling languages have been developed.

A common approach is to use Petri nets for workflow definitions [PW08, Aal98,
Aal96, DvdAtH05]. Tasks are represented by transitions in a Petri net and the places
in the Petri net represent the different possible states of the workflow. The firing of
a transition represents the execution of the corresponding task. In [Aal96], van der
Aalst gives three good reasons for using a Petri-net-based workflow management
system. These are the formal semantics, the state-based model and the available
analysis techniques. A disadvantage of Petri nets however is the difficulty to realize
dynamic structural changes to the workflow definition at runtime.

An event-driven process chain (EPC) is a type of flowchart for business process
modeling [KNS92, JBS99, DvdAtH05]. An EPCs is a bipartite graph which incorpo-
rates event nodes and function nodes. Event nodes represent states of the workflow
while functions are the equivalent to tasks. In EPCs the control flow is defined by
logical relationships for branch/merge and fork/join which connect events. EPCs are
used in ARIS Workflow and SAP Business Workflow for modeling business processes.

The Web Service Business Process Execution Language (WS-BPEL) [WAM+07]
is a textual language for process definitions which can be executed by a process
management systems like the WebSphere Process Server [WAM+07]. Process mod-
els defined by means of the graphical Business Process Modeling Notation (BPMN)
can be transformed to workflow definitions in BPEL [DDO07, Whi05, WDGW08,
ODtHvdA07].

Chapter 3 Fundamentals 61

UML activity diagrams can be used to specify workflow definitions [DtH01,
DvdAtH05]. However, the fact that their syntax and semantics are not fully de-
fined in the OMG standard’s documentation impedes the realization of a WfMS using
workflow definitions modeled as UML activity diagrams.

Several research prototypes for workflow management systems use their own
modeling languages for workflow definitions. One example is the formal workflow
model ADEPT (Application Development Based on Encapsulated Premodeled Process
Templates) for the WfMS of the same name [RD98, Rei00]. Another prominent
example is the workflow language YAWL (Yet Another Workflow Language) for the
WfMS of the same name which is based on Petri nets [vdAtH05].

The Windows Workflow Foundation, which will be described in Section 3.4.4,
provides a programming model comprising classes and interfaces for building work-
flow definitions either programmatically or declaratively. It does not provide a
well-defined modeling language.

3.4.3 Workflow Management Systems

A workflow management system (WfMS) provides the actual software support for
the execution of workflows. It is commonly understood as "a system that completely
defines, manages and executes ’workflows’ through the execution of software whose
order of execution is driven by a computer representation of the workflow logic"
[Wor95].

The prerequisite for workflow execution in a WfMS is a machine-readable workflow
definition. From this definition, workflow instances can be instantiated and executed.
This is done by a workflow engine which is the central component of a WfMS.
The workflow reference model of the Workflow Management Coalition defines the
components and interfaces of a WfMS which are depicted in Figure 3.9.

Process definition tools are used to create workflow definitions in a machine-
readable form and store them in the repository of the WfMS. The workflow enactment
service comprises one or multiple workflow engines each of which maintains several
workflow instances. The human resources assigned to tasks in a workflow instance
interact with the WfMS by means of workflow client applications. This can be for
example a work list handler which presents the assigned tasks to the user and allows
for state changes to the assigned tasks. For the execution of tasks, resources may
require certain applications like a text editor, an email client or an input form, which
are invoked via the workflow management system. A WfMS may communicate with
other workflow enactment services to realize business-to-business integration. In
this case, information is exchanged between different organizations and the control
flow of the process is managed by communicating workflow management systems.

A distinguishing feature of a workflow management system is whether it allows for
dynamic structural changes to a workflow definition at runtime. Dynamic changes
include the addition and removal of tasks and control structures. The realization of
such functionality involves consistency checks which guarantee that the modified
workflow definition is still executable and in particular that running workflow in-

62 3.4 Workflow Management

TC00-1003 Issue 1.1 Workflow Reference Model Printed 19/11/98

Copyright 1993, 1994, 1995 Workflow Management Coalition Page 20 of 20

3. Workflow Reference Model

3.1. Overview

The Workflow Reference model has been developed from the generic workflow application structure by
identifying the interfaces within this structure which enable products to interoperate at a variety of levels. All
workflow systems contain a number of generic components which interact in a defined set of ways; different
products will typically exhibit different levels of capability within each of these generic components. To
achieve interoperability between workflow products a standardised set of interfaces and data interchange
formats between such components is necessary. A number of distinct interoperability scenarios can then be
constructed by reference to such interfaces, identifying different levels of functional conformance as
appropriate to the range of products in the market.

3.2. The Workflow Model

Figure 6 illustrates the major components and interfaces within the workflow architecture.

Process
Definition Tools

Administration
& Monitoring

Tools

Interface 1

Interface 4
Interface 5

Workflow Enactment Service

Workflow API and Interchange formats

Other Workflow
Enactment Service(s)

Workflow
Client

Applications

Interface 3Interface 2

Workflow
Engine(s)

Workflow
Engine(s)

Invoked
Applications

Fig 6 Workflow Reference Model - Components & Interfaces

The architecture identifies the major components and interfaces. These are considered in turn in the following
sections. As far as possible, the detail of the individual interfaces (APIs and interchange formats) will be
developed as a common core set using additional parameters as necessary to cope with individual requirements
of particular interfaces.

Figure 3.9: Workflow Reference Model - Components & Interfaces [Wor95].

stances can continue execution according to the modified definition [Wör10, RD98].
If a copy of the workflow definition is stored for every workflow instance in the WfMS,
the definition of an individual instance can be modified without affecting the other
instances. If, however, there is only one workflow definition and only information
about the execution state is stored for the instances in the WfMS, then a change
to the shared definition affects all instances, which therefore have to be migrated
to the new definition [Rin04]. Migration may also be necessary for domain specific
reasons when open cases have to be continued according to new regulations.

Finally, dynamic changes of running workflow instances must also adhere to com-
pliance constraints, i.e. domain-specific business rules which define on a higher level
of abstraction whether a workflow is correct with respect to company regulations,
applicable laws, and the like. This compliance is ensured by a workflow management
system which has been developed in the transfer project T6 in cooperation with
Generali Deutschland Informatik Services [HNWH08, WEH08, WKH08b, WKH08a,
Wör10].

3.4.4 The Windows Workflow Foundation

In this thesis, a workflow management system has been implemented as part of
the prototype PROCEED. This WfMS is based on a framework for the development
of workflow applications which is called the Windows Workflow Foundation (WF)
[Mic10b, SS06, Buk08].

Chapter 3 Fundamentals 63

The WF provides a new programming model for developing workflow-oriented
applications. As such, it is not a WfMS and it is not necessarily used to develop
workflow management systems. The intended and most common use of the WF
is the development of business applications in which the workflow for using the
respective application is explicitly represented in its source code. The WF aims at
simplifying the development of these applications by providing types, classes and
interfaces for the definition of workflows, as well as runtime services which provide
functionality like persistence and tracking for the applications. Furthermore, the
integrated development environment for .NET applications, Visual Studio, has been
extended by a graphical designer for workflow definitions.

In the WF, two different types of workflow definitions are distinguished: the se-
quential workflow and the state machine workflow. A sequential workflow definition
describes the control flow between activities and is therefore comparable to the
common approaches to workflow modeling described in Section 3.4.2. A state ma-
chine workflow is essentially a finite state machine as the name indicates. In the
context of this thesis, sequential workflows have been used for process automation.

A sequential workflow in WF is a hierarchical composition of .NET classes. Two
general types of activities are distinguished: Composite activities and atomic activi-
ties. Composite activities define the control flow of the workflow. Atomic activities
can invoke application specific code. The composition hierarchy is a tree structure
which implicates that WF workflow definitions are always block structured. The
WF provides a class library which contains numerous predefined activity classes.
This includes the composite activities IfElseActivity for alternative branching,
WhileActivity for iteration, as well as SequenceActivity, ParallelActivity and
ReplicatorActivity. The latter creates and executes multiple instances of a sin-
gle child activity at runtime. Examples for available atomic activities are the
DelayActivity, and the CodeActivity to execute application specific code.

It is furthermore possible to write custom activity classes in a .NET programming
language. This includes composite activities for the realization of special control flow
relationships as well as custom atomic activities which can provide special services
for an application. As a consequence of this flexibility, there is no fixed, well-defined
modeling language for workflow definitions in the WF. In this thesis, the available
activity types for workflow modeling have been restricted to a fixed subset of the
available activities to enable the integration of WF workflows with dynamic task
nets. Only the predefined composite activities IfElseActivity, WhileActivity,
SequenceActivity, and ParallelActivity may be used to model the control flow
of a workflow. A custom atomic activity has been implemented to synchronize
with human tasks in PROCEED (cf. Section 6.3). In this thesis, the term activity
is reserved for activities in WF workflow definitions, although it is often used
synonymously with the term task. In general, the chunks of work specified by a
process model are called tasks.

If an activity in a running workflow instance is closed due to an error, it may
be necessary to undo previous results of the workflow. In this case, compensating
activities can be started. Therefore, so-called compensation handlers can be defined

64 3.4 Workflow Management

Figure 3.10: Graphical representation of a WF workflow [Mic10b].

for all activities in a workflow definition. Compensation is a commonly adopted
concept in workflow management systems, since the defined flow of work often has
the characteristics of a database transaction. Either the workflow is successfully
terminated and the results are committed or no changes are made to the database
and all intermediate results are undone. This is a reasonable approach for person-
to-application and business-to-business processes. However, it is not suitable if
workflows are applied to support parts of a complex development process in which
intermediate results may be corrected but are never discarded.

A WF workflow definition can either be created programmatically by means of
a .NET programming language or declaratively in a WF-specific XML dialect. In
the latter case, the composition of activity classes is defined in XML while custom
activity classes are still defined in a .NET programming language. A workflow
definition is represented graphically in the Visual Studio development environment
as depicted in Figure 3.10.

Figure 3.11 shows the component categories of the Windows Workflow Foundation.
The WF Class Libraries include the WF programming model and the predefined
activity types. The WF Runtime Engine provides an execution environment for
workflow instances. It is not a self-contained application. Instead, an instance of the
WorkflowRuntime class must be hosted by the developed application.

The WF Runtime Services provide additional functionality which may be required
for the developed workflow-oriented application. There are core services for which
a standard implementation exists like the persistence and the tracking service. It is

Chapter 3 Fundamentals 65

WF Class Libraries
and Framework

WF Runtime Engine

WF Runtime Services

WF Design-Time Tools

.NET 2.0 Runtime

Figure 3.11: WF component categories [Buk08, p. 32].

also possible to provide custom implementations for these services. Furthermore,
local services can be developed depending on the requirements of the application.

The WF Design-Time Tools are used to graphically edit workflow definitions.
Figure 3.10 shows the graphical representation of a WF workflow in the design view
which is integrated into the Visual Studio development environment. The design
time tools can be hosted in any other .NET application and have been used to realize
the workflow designer and monitor of the PROCEED prototype.

Dynamic changes to running workflow instances As it has been pointed out
in Section 3.4.3, a distinguishing feature of a workflow application is whether it
allows for dynamic changes to a workflow definition at runtime. The WF allows
for such changes via API method calls. Change operations can be applied to the
definition of a workflow instance programmatically. Every workflow instance carries
a copy of the workflow definition so that the changes affect only the one instance. All
other instances of the same workflow type—whether they are currently executing or
instantiated in the future—use their own copies of the original workflow definition.
The available change operations include adding and removing an activity, replacing
an activity by another one, and changing conditions for alternative branching and
loops.

For technical reasons, several restrictions apply for changing a workflow at
runtime [SS06]. An executing activity cannot be removed from a workflow instance,
and its properties cannot be modified. Put another way, only the following dynamic
changes are possible.

• Changing property values of not yet started activities,

• Removing a not yet started activity,

66 3.4 Workflow Management

• Inserting a new activity into a not yet terminated activity.

The last two changes implicate that it is possible to move a not yet started activity
from a not yet terminated activity to a not yet terminated activity.

Chapter 4 Previous Achievements 67

Chapter 4

Previous Achievements

The management of complex development processes nowadays needs adequate
software tool support. A software tool can enable the process participants to keep
track of the various interdependencies between the task, resources and products in
a development process. Furthermore, it can guarantee that the management data
is in a consistent state at any time and that all process regulations are satisfied.
Examples are the correct sequencing of tasks, the unique assignment of product
revisions to tasks, the mandatory release of a document before the completion of
a task, and the correct assignment of a task to a resource in accordance with role
restrictions.

The management system AHEAD (Adaptable and Human-Centered Environment
for the MAnagement of Design Processes) has been developed at the Department of
Computer Science 3 at RWTH Aachen University with the goal to support dynamic
development processes [JSW00, Jäg00, NWS03, FLW03, SW03, WSJH03, Wes01,
Wes99c, Wes99b, JKN+99, KW00, HKW97, HKNW99, WHH07, HJK+08]. AHEAD
is based on a formal meta-model defined in the executable specification language
PROGRES (PROgrammed Graph REwriting System) [SWZ99]. The formal specifica-
tion removes any potential for ambiguities and misinterpretation. Furthermore, the
usage of an executable specification language allowed to generate the application
logic of the management system from the specification. The user interface of AHEAD
was realized by means of the UPGRADE framework [BJSW02a] which is commonly
used in combination with the PROGRES environment.

The meta-model which defines the internal data structures to represent develop-
ment processes on instance level in the AHEAD system comprises three integrated
submodels. The DYNAMITE (DYNAMIc Task nEts) meta-model enables the mod-
eling and execution of so-called dynamic task nets [Kra98, NWS03, HJK+08]. It is
complemented by ResMod (Resource Modeling) [KW00] and CoMa (Configuration
Management) [Wes95, Wes96, Wes99c], which are meta-models for resource man-
agement and product management, respectively. The three partial meta-models
are tightly integrated: Tasks in a dynamic task net are assigned to resources, and
product revisions are associated with tasks. Thereby, the tasks in a dynamic task net
establish a connection between the entities defined in ResMod and CoMa. Figure 4.1
shows an example management configuration in the AHEAD system. The common
visualization of a management configuration displays the resources in the left col-
umn, activities in the upper part of the right column and products below. The arrows

68 4.1 RESMOD

manager

design
expert

simulation
expert 1

simulation
expert 2

laboratory
expert

Schneider

Bayer

Eggers-
mann

Schmitz

reaction
alternatives

PFD

simulate CSTR

simulation
model

simulate
PFR

simulation
model

resources
activities

products

positionsemployees

requirements

requirements PFD CSTR model

PFR model

Figure 4.1: Example for a management configuration in AHEAD [HJK+08].

visualize the mutual relationships between tasks, resources, and products. In the
following three sections, the three partial meta-models are reviewed. Afterwards,
advanced capabilities of the AHEAD system for the management of development
processes are reviewed and the AHEAD prototype is described.

4.1 RESMOD

In the AHEAD system both, human resources and non-human resources can be
modeled. Human resources are the people in an organization or a project team.
Non-human resources are, e.g., computer workstations, software tools, or machines.
The same concepts are applied for modeling human and non-human resources
which are subsumed under the general term resource. Two types of resources are
distinguished: planned resources and actual resources [KW00]. Actual resources
can be allocated for planned resources which define positions. Furthermore, a
distinction is made between base resources in an organization and project resources.
In the case of human resources, planned project resources are the positions in a
project team while actual project resources are the actual team members who fill
the positions. Actual base resources are the people belonging to an organization, e.g.
employees of a company. Planned base resources are positions in the company to
which the employees have been appointed. The human planned base resources are
usually structured in organizational units like departments or company branches. In
Figure 4.1, only actual base resources and planned project resources are depicted.

There are similarities between the concepts of a planned resource and a role. In
the example of Figure 4.1, the resource Schmitz plays the role laboratory expert in

Chapter 4 Previous Achievements 69

the project team. Like in role-based models for process management [Rup97, zM99],
an actual resource is only indirectly assigned to a task. A planned resource is
assigned to a task which can later be executed by the actual resource which fills the
position. The difference between roles and planned resources is that the latter define
positions in the project team. This becomes obvious by the two positions simulation
expert 1 and simulation expert 2 which both require a resource to be a simulation
expert to fill the position. The mapping of actual to planned resources is always a
1:1 mapping. In the case of roles, there would be only one role of simulation expert
with two resources holding the role. If the role was assigned to a task, it would
not be clearly defined which actual resource shall execute the task. In RESMOD, a
class of planned resources is the equivalent of a role. It defines the type of planned
resources and abstracts from individual positions.

Beyond the simple case presented in Figure 4.1, actual and planned resources
can be complex, i.e. built up from several parts. A complex actual resource can
fill the position of a complex planned resource, if its structure and its parts match
the configuration of the planned resource. Complex resources are primarily used to
model non-human resources like computer workstations consisting of several parts.
However, complex resources have also been used to model project teams of human
resources. A detailed description and examples for complex resources can be found
in [KW00].

4.2 COMA

The partial meta-model CoMa for product management allows to model products,
their dependencies, the different variants and revisions of products, as well as
product configurations combining specific versions of different products into a
coherent whole [Wes95, Wes96, Wes99c]. The term product does not merely refer
to the final product of a development process and its parts. Instead, every artifact
which is produced in the course of the development process is called a product, which
includes documents, engineering data in a database, and source code fragments in
case of a software development process.

In Figure 4.1, products are represented by ellipses containing their version trees.
Product versions are represented by small boxes which are connected with the
preceding and succeeding versions. A directed edge between two product ellipses
indicates that the source of the edge depends on the target. The products are
associated with input and output parameters of tasks in the dynamic task net which
represents the development process. Product revisions are associated with the
output parameters of those tasks in which they have been created. In this way, the
management system AHEAD keeps track of which products are required for the
tasks, which task creates or modifies a certain product, and which product version
has been produced in the course of which task.

70 4.3 DYNAMITE
82 Chapter 3

these calls can be combined through control structures like sequences, (non-deterministic)
branches and loops [Zündorf and Schürr, 1991]. More detailed descriptions of PRO-
GRES’ language elements are given on-the-fly, when they are applied for the formal
specification of dynamic task nets.

3.2.2 The Structural Base Model

The specification of the base model consists of three parts: The graph schema defining the
graph type for dynamic task nets, a set of constraints, which have to hold on a task net in
order for it to be valid, and a set of operations, which can be performed on a task net to
manipulate its structure.

The Graph Schema

The graph schema for dynamic task nets is presented in Figure 3-12. Its root node class is
ITEM. All items within a dynamic task net may be versioned which results in good trace-
ability, because the evolution history of a task net is not destroyed by its continuous ma-
nipulation. This is reached through the successor edge type defined for items. From
the root class, classes representing entities and relations are derived. The central entity
class is called TASK and represents a complex or atomic task. A task may own multiple
nodes belonging to the class PARAMETER. This is further subdivided into classes for IN-
PUT, OUTPUT, INTERNAL and EXTERNAL parameters and combinations of these (not
all of which are displayed in the Figure). There is also a class for the document references
passed between parameters called TOKEN. The documents referred to by a token lie
within the product management component of AHEAD and are therefore grayed out in
the Figure. The class REALIZATION is an entity as well as a task relation class. As an
entity it represents the realizing subnet of a complex task it is assigned to. As a relation, it
serves as a decomposition or delegation relationship between a parent task and its sub-
tasks. We have modeled task and parameter relations as node classes, because these rela-
tions carry attributes and attributed edges are not permitted by PROGRES. Further task
relations are CONTROLFLOW and FEEDBACKFLOW relationships. Task relations may be
refined by parameter relations. The only parameter relation defined in the base model so

ITEM

TASK
RELATION

RELATIONENTITY

CONTROL
FLOW

FEEDBACK
FLOW

DATAFLOWTASK

REALIZATION

PARAMETER

INPUT OUTPUT INTERNAL EXTERNAL

INTERNAL
INPUT ...

TOKEN DOCUMENT

fromSourceT

toTargetT

fromSourceP

toTargetP

has

assigned

refersTo

releasedFor

p
r
o
d
u
c
e
d

c
o
n
s
u
m
e
d

refines

successor

[0:1]

[1:1]

[0:n]

[0:1]

[1:1]

[1:1]

[0:n]

[0:1]

[1:1] [0:n]

[0:n][1:n]
[1:1][0:n]

[1:1][0:n]

[0:n]

[0:n]

[0:n]

[1:1]

[0:n]

[0:1]

Figure 3-12. Graph schema for dynamic task nets.

Figure 4.2: Graph schema for dynamic task nets [Sch02].

4.3 DYNAMITE

The DYNAMITE meta-model for dynamic task nets connects the partial models for
resource and product management. A dynamic task net represents an enacted pro-
cess model instance of a development process. Dynamic task nets can be compared
to network diagrams which are commonly used for project planning. Just like in
project plans, tasks are connected by control flows with different semantics, and
human resources are assigned to tasks. However, in contrast to network diagrams
in project management, the data flow between tasks is covered by a dynamic task
net as well. Furthermore, the tasks in a dynamic task net have execution states,
and the produced revisions of documents are represented as tokens in the task net.
Therefore, a dynamic task net does not merely represent a project plan but also
the enactment state of a development process. The specification of the DYNAMITE
meta-model is divided into a structural part and a behavioral part [Sch02] which
will be described in the following two sections.

4.3.1 Structural Model

In the structural part, the entities and relationships for modeling dynamic task
nets are defined in a graph schema. Furthermore, structural invariants are defined
which impose semantical constraints on a dynamic task net. Finally, structural
manipulation operations are specified which can be applied to modify a dynamic
task net.

Figure 4.2 shows the graph schema for dynamic task nets. It defines the node
types of a graph which represents a dynamic task net. The successor relation of the
most general node type ITEM is used for the versioning of all elements in a dynamic
task net. By means of this relation, the history of changes to a task net can be

Chapter 4 Previous Achievements 71

traced. The most important entity is the TASK. Two tasks can be connected by a task
relation which can be a CONTROLFLOW or a FEEDBACKFLOW relation. A task can have
several input and output parameters, whereby internal and external parameters
are distinguished. Input and output parameters of different tasks can be connected
by DATAFLOW relationships. A document revision is represented in DYNAMITE by a
TOKEN which refers to the corresponding document and the output parameter of the
task in which it has been produced. The REALIZATION of a task contains its subtasks
and their dependencies. It defines, how the task should be executed.

The structural invariants defined in the DYNAMITE meta-model impose addi-
tional semantical constraints on dynamic task nets which cannot be defined in the
graph schema. The following list contains the informal description of the structural
invariants.

• The name of a task has to be unique in the dynamic task net.

• The hierarchy of tasks within a task net builds a tree structure.

• The control flow relationships between tasks must not form a cycle.

• If two tasks from different subnets (realizations) are connected by a control flow,
their respective parent tasks must be connected by a control flow with the same
orientation.

• There must exist a control flow path from a feedback flow’s target to its source.

• A data flow may only be created if it refines a task relationship, i.e. the tasks of
the connected parameters have to be connected by a control or feedback flow
with the same orientation.

• A token may only be released to a task that owns an input parameter which is
connected by a data flow to an output parameter of the producing task.

• A token can only be read via an input parameter, if it has been released for the
task owning that parameter.

These invariants have been formally defined in [Sch02]. For example, the invariant
which prohibits control flow cycles is formally defined as follows.

∀t1, t2 ∈ Tasks(t1 ∈ {t2.Source} → t2 /∈ {t1.Source})

The property t.Source ⊂ Tasks returns the set of all transitive predecessors of a task
t ∈ Tasks with respect to the control flow relationship.

In Figure 4.3 an example of a DYNAMITE task net is depicted. This example has
been taken from a larger scenario from the domain of chemical engineering, which
is described in [NM08]. Tasks are represented by rectangular boxes. The displayed
task net is hierarchically structured. The hierarchy is indicated by means of the
layout. The subtasks of Design Reaction are arranged below the task itself. Input
and output parameters are represented as white and black circles respectively. Not

72 4.3 DYNAMITE

Simulate PFR

Simulation Expert 2

Design Reaction

Manager

Flowsheet
Alternatives

Design Expert

Simulate CSTR

Simulation Expert 1

seq

Requirements

Flow
Diagram

Define
Requirements

Req. Expert

Detail Engineering

Unassigned

seq

sim

sim

Evaluate

Unassigned

sim

sim

Reaction

Req.
Sim.
CSTR

Sim. PFR

Result

feedback
Simulate PFR

Simulation Expert 2

seq

Active

Done

InDefinition

Control Flow

Data Flow

Figure 4.3: Example for a dynamic task net.

all entities defined in the graph schema of Figure 4.2 are represented by nodes
in the graphical representation of a dynamic task net. The realization of a task is
not displayed at all while task relations and data flows are represented by edges
between tasks and parameters respectively. The distinction between internal and
external parameters allows to model data flow from a parent task to a subtask
and vice versa. An internal parameter of a task can be connected with external
parameters of its subtasks. If a document which is produced in a subtask shall be
available at the parent task, then an external output parameter has to be defined
for the subtask which is connected with the internal input parameter of the parent
task for this document. This is the case for the document Result in Figure 4.3. Vice
versa, the input parameter for the document Requirements of the subtask Flowsheet
Alternatives is connected to an internal output parameter of the task Design Reaction,
so that it can be used in one of its subtasks.

The structural manipulation operations for dynamic task nets have been specified
in the graph rewriting language PROGRES. A representative collection is presented
in [Sch02]. Structural manipulation operations may not violate the semantical
constraints imposed on dynamic task nets. Consequently, if a task net fulfills
all structural invariants then the invariants are still fulfilled after a manipulation
operation has been applied to the task net.

4.3.2 Behavioral Model

The behavioral part of the DYNAMITE meta-model is concerned with the execution
states of tasks in a dynamic task net. The life cycle of a task is defined by the state

Chapter 4 Previous Achievements 73

InDefinition Waiting Active

Planning

Suspended

Failed

Done

Defined

Redefine

Start

Plan Restart

Suspend Resume

Plan

Abort

Abort

Abort

Commit

Figure 4.4: State transition diagram [Kra98].

transition diagram depicted in Figure 4.4. In the state InDefinition, the task is pre-
pared for execution. As soon as all relevant properties are set, the task’s execution
state can be changed to Waiting, i.e. it can now be started by the assigned resource.
The state Active indicates, that the assigned resource is currently performing the
work defined by the task. A task can be temporarily suspended. If changes to the
task or its realization have to be made, the state of the task has to be changed to
Planning first. If a task is successfully finished it reaches the final state Done. If it
has to be aborted, the final state Failed is reached.

The definition of a single tasks’s life cycle is not sufficient to define the execution
semantics of a complete task net. The possible execution state transitions of a task
also depend on the execution states of all tasks, which are connected to the task by
control or feedback flows. In DYNAMITE, a control flow connects exactly two tasks
and it can have one out of three different semantics.

• A standard control flow defines that the target task of the control flow must not
be terminated before the source. This is the minimal requirement for a control
flow. However, the source and target of a standard control flow can be executed
in parallel, and the target can even be started before the source.

• A simultaneous control flow defines the additional restriction, that the source
task must be started before the target. The motivation for this control flow
semantics is that the resources of the source and target tasks cooperate, and
that a first intermediate result of the source task is required to start working on
the target task. At the same time the constraint with respect to the termination
of the tasks guarantees that the last version of the source’s output is consumed
by the target task before it is terminated.

• The most restrictive control flow is that of type sequential. In this case, the target
task may only become active after the source task has been terminated.

In DYNAMITE, the concept of a feedback flow addresses specific dynamic situ-
ations in development processes. Although the model of a development process
usually defines dependent tasks and hence an order of execution, the actual ex-
ecution of these tasks in a project is carried out iteratively. In case of a change

74 4.3 DYNAMITE
A Meta Model for Evolution Support : Dynamic Task Nets 71

zontally through control flow and feedback flow relationships. Control flows are ordering
relationships between tasks and impose an enactment sequence between a pair of tasks.
Control flow relationships build an acyclic graph. In the figure, we can see that control
flow relationships have been established between a large number of tasks, e.g. between
the redesign and corresponding implementation tasks. Dynamic task nets can be edited
and enacted in an interleaved fashion. In the example, an initial task net would consist of
the tasks for application redesign and system testing only, which are the gray boxes in
Figure 3-1. As soon as a new design document becomes available, the intermediate task
net can be completed with tasks for component implementation or change and component
testing (white boxes).

Feedback flows are directed oppositely to control flow relationships and indicate iteration
or exception cycles within a task net. Iterations occur when a process is planned to be
performed multiple times to refine or optimize a result. Exceptional feedback flows are
needed when an unexpected error occurs within the process that results in a need to reper-
form earlier steps of the process or to replan the process. If occurring feedback induces
the need to reenact part of a process that has already been terminated, tasks and their re-
spective relationships to other tasks are versioned. Through the version history of tasks
the enactment of the task net can be retraced at a later time, which is important for analyz-
ing and learning purposes. In Figure 3-2, the situation of the task net for extension request
handling is shown after an error occurred during system test that is linked to a mistake
made during the change of component C. Assuming all intermediate tasks between the
feedback flow’s target and the system test task are terminated (black boxes) at the time
the feedback flow is created, new task versions (gray boxes) are derived which means
they have to be performed once again. In this case, after the error in component C has
been corrected, components C and A have to be tested again, before the failed system test
will be retried.

Tasks own parameters to exchange data or documents with other tasks. Within dynamic
task nets input parameters are distinguished from output parameters, both of which can be
internal or external. Internal parameters serve the purpose to communicate with the tasks
within a complex task’s own realization and are hidden through the interface of a task
(vertical communication). Via an internal output parameter a complex task can send
documents to the tasks within its decomposition. The results from the decomposition are
sent to the complex task through the internal input parameters. External parameters are

Redesign
Application

Change
Component A

Implement
Component B

Change
Component C

Test
 Component B

Test
 Component C

Test
 Component A

System Test

Feedback Flow

Change
Component C

Test
 Component C

Test
 Component A

new task version

Figure 3-2. Feedback flows and task versioning in dynamic task nets.

Figure 4.5: Feedback flows and task versioning in dynamic task nets [Sch02].

request or a detected error in a product, it may be necessary to redo previous
process steps. To trace cases, in which feedback from a succeeding task is given to a
previous task, a feedback flow is introduced. A feedback flow is initially active and is
deactivated when the requested changes have been performed. As long as a task has
an incoming active feedback flow, it cannot be successfully terminated. If a task has
already been terminated and therefore has to be restarted to handle feedback from
succeeding tasks, a new task version is created for this and succeeding terminated
tasks. This case is depicted in Figure 4.3 where a feedback flow is defined from the
task Evaluate to Simulate PFR for which a new version has been created. Figure 4.5
shows an example from the domain of software engineering where a feedback flow
requires the versioning of several subsequent tasks. The use of feedback flows
and versioned tasks is a possibility to redo already terminated process parts during
enactment while ensuring traceability at the same time.

Besides control flows and feedback flows, also the position of a task in the hierar-
chy of a dynamic task net constrains it possible execution states. A task may not be
started before its parent task, and it can only be committed after all of its subtasks
have been terminated. If a task is suspended or aborted, all subtasks have to be
suspended or aborted as well, respectively.

Altogether, the allowed state transitions of a task are restricted by the state
transition diagram defining the life cycle of a task, by the execution states of all
tasks which are connected with the task by control flows or active feedback flows,
and by the execution states of its parent task and its subtasks. These constraints have
been defined in the form of behavioral invariants in [Sch02] which are informally
presented in the following list.

• Tasks that have never been activated cannot have a terminated parent task and
the subtasks of a preparing task must also be preparing.

• A parent task must be activated before its subtasks.

• If a task is suspended, its parent task must be either active or suspended.

Chapter 4 Previous Achievements 75

• Subtasks of failed tasks may not be running.

• The subtasks and predecessors of successfully terminated tasks have to be
terminated as well. A task may not be successfully terminated if it is the source
of an active feedback flow.

The formal definition of the first invariant taken from [Sch02] is provided here as
an example where the property State returns the execution state of the given task,
the property Parent the parent task, and the property Children all subtasks. The
set Preparing{InDefinition, Waiting} is a subset of all possible execution states of
a task.

Task.State ∈ Preparing→ (¬(Task.Parent.State = Done)∧
(∀t ∈ Task.Children(t.State ∈ Preparing)))

State change operations may not lead to a violation of behavioral invariants. Hence,
the defined behavioral invariants have several implications for state change opera-
tions in a dynamic task net. For example, the fourth constraint implicitly demands
that upon the abortion of a task all active subtasks have to be aborted as well.
The AHEAD system performs these required adaptations of a dynamic task net
automatically when certain state change operations are performed. In this way, the
behavioral consistency of dynamic task nets is ensured at any time.

4.3.3 Comparison With Other Paradigms

Dynamic task nets combine the advantages of different paradigms for process
instance modeling and are tailored for the management of development processes
in large and complex development projects.

Comparison with project plans As mentioned earlier, a dynamic task net can
be considered as an enhanced project network diagram. Networks diagrams are
commonly used for project planning. Tasks and their dependencies are defined,
critical path analysis is performed, resources are assigned to tasks, and the tasks
are scheduled. A project plan may be adapted at project runtime to reflect the
actual performance of the project. However, a project plan is not executable, i.e. the
current status of the planned tasks are not reflected in the network diagram. This
makes progress measurement difficult. In contrast, a dynamic task net is executable.
A project is modeled as a process model instance. At any point in time, the task net
reflects the current plan and at the same time the current enactment state of the
process.

The Precedence Diagramming Method (PDM) which has been introduced in Sec-
tion 3.2 defines four different types of precedence constraints which can be defined
between two tasks in a network diagram: start-end, start-start, end-end and end-
start. The control flow semantics defined in DYNAMITE can be mapped to the
precedence constraints of the PDM as shown in Table 4.1. The task dependencies

76 4.3 DYNAMITE

DYNAMITE control flow PDM precedence constraint
standard end-end

simultaneous start-start + end-end
sequential end-start

start-start
start-end

Table 4.1: DYNAMITE control flows versus PDM precedence constraints.

start-start and start-end have no counterpart in DYNAMITE. During the develop-
ment of the DYNAMITE meta-model it was found, that they are not suitable for the
management of development processes because a control flow should at least have
the semantics of an end-end task dependency. The control flow type simultaneous
combines the start-start and end-end precedence constraints. The introduction of a
distinct control flow type for this combination is in line with [Haj97].

Since a dynamic task net is hierarchically structured and at the same time defines
control flows, it combines the main characteristics of a work breakdown structure
and an activity network (cf. Section 3.1). It is common practice in project planning
to structure network diagrams hierarchically. When a unique identification number
is assigned to every task in a hierarchical network diagram, then it is possible to
derive the work breakdown structure from the network diagram automatically, and
a separate work breakdown structure is dispensable [Bur00, p.145]. This is the case
for dynamic task nets.

Project plans usually do not incorporate a notion of data flow. No parameters and
data flow relationships can be specified which determine how documents shall be
transferred between the tasks. Since a project plan cannot be enacted, the actual
data flow [Joe97], i.e. the created and released revisions of documents, is also not
represented in a project plan. In DYNAMITE, the data flow relationships between the
tasks of a dynamic task net are explicitly modeled and so are the different document
versions which are produced, released and consumed by the corresponding tasks.
This is an important aspect for the management of development processes which
are strongly data-driven. Process model definitions including workflow definitions
commonly define data flows between tasks. However, workflow management systems
are often limited with respect to modeling the actual data flow in workflow instances
because different versions of documents cannot be explicitly represented.

Comparison with workflows Workflow management is a popular approach for
process management (cf. Section 3.4). A workflow definition is instantiated several
times and the instances are executed according to the definition. Dynamic task nets
represent process model instances and therefore have to be compared with workflow
instances but not with workflow definitions. For this reason, control structures for
alternative courses of action and loops which are common for workflow definition
languages are not defined in DYNAMITE.

A major drawback of workflow management systems with respect to their appli-

Chapter 4 Previous Achievements 77

cability for development processes is that the semantics of control flows is limited
to the end-start precedence constraint. As argued before, modeling standard and
simultaneous control flows is essential for the adequate modeling of cooperation
scenarios in development processes where dependent tasks may be executed in
parallel. The restriction to end-start precedence constraints is due to the fact, that
the other precedence constraints start-start, start-end and end-end would render
process automation impossible. In case of the end-start precedence constraint, the
succeeding task can be automatically started when the end-event of the predecessor
occurs. This is done by virtually every workflow management system. The constraint
does not actually demand that the two events coincide but only that the start of
the successor happens after the end of the predecessor. However, the additional
assumption is made to enable automation. For the start-start precedence constraint
the assumption would not be equally reasonable. For the start-end and end-end
precedence constraints it would even be impossible to determine a start time for
the automatic start of the successor. As a consequence, a dynamic task net with
standard and simultaneous control flows cannot be automatically enacted.

A common form of dynamics in development processes is the unanticipated redo
of already finished process parts due to errors found in the design of the product or
due to changed requirements. These cases are supported in dynamic task nets by
feedback flow relationships and new task versions as described earlier. In workflow
management systems, the repetition of process parts is realized by loop control
structures in the workflow definition. However, this only covers iterations which
can be anticipated before workflow runtime. Repeating finished process parts at
workflow runtime for which no loop construct has been defined requires dynamic
changes to the workflow definition.

A dynamic task net can be arbitrarily modified at process runtime as long as
the defined invariants hold after the modification. Tasks and control flows can
be added, changed, or removed. Even if a process model definition restricts the
allowed changes to a task net, there are significant degrees of freedom for mod-
ifications, and it is even possible to deviate from the process model definition
(cf. Section 4.4). It is considerably more difficult to modify a workflow instance
which is executed according to a workflow definition. This type of problem gave
rise to a whole field of research on flexible process aware information systems
[Rei00, RD98, WEH08, Wör10, MS03, Wes99a, VW98, Cas98, CCPP99]. The com-
mon approach is to dynamically change the workflow definition at runtime and to
continue the enactment of the workflow instance according to the modified definition.
This is not required for dynamic task nets where a process model instance can be
modified independently of the corresponding process model definition. Finally, most
commercial workflow management systems to date do not allow any deviations of a
workflow instance from the defined workflow definition at all.

The allowed state changes of tasks in a workflow instance are restricted by the
control structures defined in the corresponding workflow definition. A WfMS en-
sures the consistency of the workflow instance enactment state with the workflow
definition. If a WfMS allows dynamic structural changes to the definition of workflow

78 4.4 Process Model Definitions and Evolution

instances at runtime, the correctness of these changes has to be ensured. This can
be achieved by defining process knowledge on a more abstract level and ensuring
the compliance of workflow definitions to this process knowledge [Wör10]. Research
on compliance of workflow definition has been carried out at the Department of Com-
puter Science 3 of RWTH Aachen University [WKH08a, WKH08b, Wör10, WH11]
and by other research groups [DAV05, MA07, BGS07, VA00, VBA01, Ver04]. In case
of DYNAMITE, the behavioral and structural invariants can be regarded as general
process knowledge to which every process model instance has to comply.

Applicability for agile processes For agile processes, which have recently be-
come increasingly popular in the software engineering domain, the usage of a
process management system like AHEAD would constitute a significant manage-
ment overhead. The explicit modeling of tasks, control flows, data flows, and even
feedback cases is incompatible to the agile approach where project planning at the
level of individual tasks is avoided. Therefore, the AHEAD system is not suitable for
projects which are performed according to the agile process management approach.
However, several assumptions underly the agile software development approach
which imply that it is not applicable for all development processes [TFR05]: all
developers are able to have frequent, intensive personal communication with each
other, are all equally skilled and informed about the product, and have immediate
access to the customer. As a consequence, the agile approach is not applicable for
distributed development, subcontracting, large project teams, and the development
of large, complex systems [TFR05]. In these cases, software tool support as provided
by the AHEAD system is required to keep track of all dependencies between tasks,
resources, and the various artifacts which are created in a development project.
Plant design projects are a prominent example of design projects with large project
teams, and a highly complex product.

Conclusion Concluding, it can be stated that the DYNAMITE meta-model is ade-
quate for modeling process model instances of development processes. It combines
the advantages of project plans and workflow instances, namely flexibility and ex-
ecutability. Compared to the workflow approach, a drawback of the DYNAMITE
meta-model is that it does not allow the automation of the defined processes. This
drawback is addressed in this thesis by an integration of dynamic task nets with
workflow instances to enable the automation of subprocesses. Compared to project
planning, a drawback of the AHEAD system is that it does not support the scheduling
and quantitative progress measurement of tasks. Here lie the main contributions of
this thesis to the AHEAD approach.

4.4 Process Model Definitions and Evolution

Dynamic task nets represent process model instances. For effective process man-
agement, process model definitions are required which describe the commonalities

Chapter 4 Previous Achievements 79

real-world process

process model instance

propagation
(restriction)

analysis
(inference)

propagation
(planning)

analysis
(matching)

consistency

consistency

instance
evolution

definition
evolution

real-world
evolution

process meta model
meta model
evolution

consistency
analysis

(learning)
propagation
(restriction)

products
activities

 resources

products
activities

 resources

products
activities

 resources

products
activities

 resources

process model definition

Figure 4.6: Conceptual framework for evolutionary process management [Sch02].

of all process instances of a certain process type. This enables process improvement
over a series of process instances. Knowledge gained during the enactment of a
process model instance can be incorporated into the process model definition, and
can be subsequently used for the following instances. Furthermore, process model
definitions can define domain-specific knowledge about development processes in
a certain domain, e.g. chemical engineering, mechanical engineering, or software
engineering. This includes knowledge about the typical task types, control flows,
roles, products, and data flow relationships.

In [Sch02], a conceptual framework for process management is presented which
defines the requirements for continuous process improvement by means of a process
management system. The concepts of this framework have been realized in the
AHEAD prototype [Sch02, HJK+08, HSW04b, HSW04a]. The proposed approach has
been adopted by other research groups, e.g. in [GDMR04]. The framework proposes
a four-layer view onto process management as it is depicted in Figure 4.6. The first
layer (from bottom to top) reflects the real world process being performed by the
process participants. On the second layer, a process model instance represents
the real-world process which can be used to manage the process by means of a

80 4.4 Process Model Definitions and Evolution

software tool. Reusable process knowledge is kept within the third layer in the form
of a process model definition. A process model definition can be instantiated to
create new process model instances. The syntax and semantics of process model
definitions and instances are defined within the process meta-model layer which
provides according modeling languages.

The layers are connected with each other in that analysis of the process models on
one layer may lead to changes of the models on the next higher layer, and changes
on a higher layer are propagated to the next lower level. Evolution of process models
may take place on every layer.

• The real-world process evolves in the sense that the process participants perform
their work, produce results, and make decisions. It is important for software
tool support, that the process model instance on the second layer matches the
real-world process as exactly as possible. Since it is impossible to maintain a
perfect match at any time during the runtime of the process, inconsistencies may
occur.

• The process model instance may evolve in two ways. Its enactment state is contin-
uously adapted to match the performance of the real-world process. Furthermore,
instance evolution may take place due to management decisions which involve
structural changes to the process model instance. In this case, the changed plan
has to be propagated to the real-world process, i.e. the process participants have
to carry out the modified plan.

• Changes to a process model instance may not have been foreseen in the corre-
sponding process model definition and may therefore result in inconsistencies.
From several changed process model instances, new process knowledge can be
inferred and incorporated into the corresponding process model definition.

• It may be necessary to change a process model definition due to changed regula-
tions. The instances of a changed definition may have to be adapted to comply to
the new restrictions.

• Finally, the modeling languages restrict the creation of process model definitions
and instances. If different or new modeling elements are required to express
certain process knowledge, the process meta-model has to be adapted which
constitutes meta model evolution.

In the AHEAD system, dynamic task nets represent process model instances. For
process model definitions, UML class diagrams are used. Every class in such a
class diagram is marked with a UML stereotype to indicate its DYNAMITE entity
type. The classes define domain-specific types of tasks and parameters. Figure 4.7
shows an example process model definition which defines the design process of
Figure 4.3 on the type level. Just like in the graphical representation of dynamic
task nets, input and output parameters are represented as white and black circles in
the process model definition. The representation corresponds to the defined UML
stereotypes. Tasks and realization nodes are marked in textual form with according

Chapter 4 Previous Achievements 81

Subprocess
Design

<<Realization>>
SimulationBased

Flowsheet
SubprocessDe

sign

<<Task>>
Flowsheet

Alternatives

Flowsheet

Flowsheet

1

1

1

1

<<dflow>>

<<may_contain>>

<<Task>>
Simulation

Simulation
ResultSimulation

Result
10..*

1<<dflow>>

<<cflow>>

<<cflow>>

<<m
ay_contain>>

<<dflow>>

src trg

src trg

1 1..*

0..*0..*

<<Task>>
Evaluation

Subprocess
Design

Sim.
Result 1

1..*

<<cflow>>
src trg
1..* 1

<<may_contain>>

1 11..*

<<dflow>>

<<dflow>>

1

<<
df

low
>>

Sim.
Result

<<RealizationPackage>>
R_SimulationBased_1

{EnactmentOrder = simultaneous}{EnactmentOrder = simultaneous}

<<Task>>
Subprocess

Design
Flowsheet

<<may_have>>

<<may_have>>
1

1

 <InterfacePackage>>
 I_SubprocessDesign

<<may_have>>

SubProcess
Design

0..1

Flowsheet
src0..1trg0..1

<<fback>>

{AllowStandardTypes = true}{AllowStandardParameters = false}

0..* src

SubProcess
Design

Figure 4.7: Class diagram for a design subprocess [HJK+08].

stereotypes. The hierarchy of tasks and the association of parameters with tasks are
modeled as composition associations. Control flows and data flows are modeled as
associations between tasks and parameters respectively. Cardinalities are defined
for associations to define for example how many instances of a certain task type
should be contained in a process model instance or how many successors of a certain
type a task may have. Finally, annotations to control flow associations define the
required execution semantics. The UML profile which has been defined for process
model definitions on type level can be considered as a graphical domain-specific
language for process modeling. Design guidelines for domain-specific languages
have been presented in [KKP+09].

The approach to process management in AHEAD is considered to be a wide
spectrum approach [NM08]. A wide spectrum of processes is supported ranging
from ad hoc processes to completely predefined processes. A dynamic task net can
be built up from untyped tasks without any process model definition to represent an
ad hoc process. If a process model definition is available which defines element and
relation types and their cardinalities, a process model instance can be instantiated

82 4.5 Interorganizational Cooperation

<<Task>>
: Flowsheet
Alternatives

<<Task>>
: Simulation

<<Task>>
: Evaluation

{new}

: Simulation
Results

:AFD :AFD

{new}

{new}

{new}

{new}

{new}

Figure 4.8: Instance pattern for partial realization definition [Sch02].

from this definition. The process may be enacted complying to all constraints
imposed by the process model definition. In this case the instance and the definition
are called strongly consistent. However, if tasks are inserted into the process model
instance which were not defined in the definition, this results in inconsistencies. The
process models are called weakly consistent if the introduced tasks are not typed
and the process model definition allows the introduction of untyped tasks. Otherwise
they are inconsistent. Inconsistency and (weak) consistency can refer to structural
and behavioral constraints imposed by the process model definition.

Besides process models on the type level, the approach developed in [Sch02] also
provides the concept of instance patterns. An instance pattern can be inserted in one
step into a dynamic task net. If the instance pattern represents a whole subprocess,
it is called an instance-level process model definition. For the definition of instance
patterns, UML object diagrams are used in AHEAD for two reasons:

• Multiple objects of the same class can be modeled in an object diagram, which is
not possible with class diagrams.

• The context in which the pattern may be inserted can be specified as well in an
object diagram.

Figure 4.8 shows an example of an instance pattern which can be used to insert a
simulation task into a dynamic task net and connect it at the same time with control
and data flows to the unique successor and predecessor which have to be present in
the task net for the pattern to be applicable. The UML constraint {new} indicates
which elements are created.

4.5 Interorganizational Cooperation

Development processes are rarely carried out in isolation by one company only. A
common scenario is that of a customer-contractor relationship in which the customer
provides the requirements for the product to be developed, and the contractor
has to fulfill these requirements. Well defined interfaces for the communication

Chapter 4 Previous Achievements 83

between customer and contractor contribute to the success of a development project.
Furthermore, it is often the case, that the contractor delegates certain tasks to
subcontractors. In this case, subprocesses of the overall development process are
enacted by the subcontractors.

To support the various cooperation scenarios between different organizations, the
AHEAD approach was extended by concepts for interorganizational cooperation. In
a first step, a delegation-based cooperation model was developed which enables
process modeling and enactment for contractor-subcontractor scenarios [Jäg02]. In
a second step, this approach was elaborated and generalized to support a broader
range of scenarios including the cooperation of partners with equal rights [Hel08a].

Although interorganizational cooperation is not in the focus of this thesis, the two
approaches are shortly introduced here to complete the overview over the AHEAD
system. Furthermore, a partial result of the work on the view-based cooperation
approach, namely the coupling of AHEAD with workflow management systems, has
been the starting point for the development of a similar integration approach which
is presented in this thesis.

4.5.1 Delegation-based Cooperation

The implementation of the approach for delegation-based cooperation presented
in [Jäg02, BJSW01, HJ04a, HJ04b, HJS+04, HJK+08] lead to a distributed AHEAD
system. Figure 4.9 illustrates the concept behind this system. Several instances
of AHEAD are coupled with each other in order to support the management of
a distributed development process. Every instance provides views for a project
manager and the engineers or developers in a development project. Subprocesses
of a development process can be delegated to subcontractors, and the enactment of
these subprocesses can be monitored by the contractor.

A delegated subprocess may consist of a connected set of subtasks, i.e. it is
not confined to a single task. This allows the contractor to define milestones for
controlling the work of the subcontractor. The delegated subprocess serves as a
contract between contractor and subcontractor. The contractor is obliged to provide
the required inputs, based on which the subcontractor has to deliver the outputs
fixed in the contract. The subcontractor may refine the delegated subprocess. Such
refinements, however, are not visible to the contractor since they are not part of
the contract. Finally, a delegation contract may be changed at process runtime
according to a change protocol which assures that both parties agree on the change.
In this way, dynamic process changes are supported even for interorganizational
processes.

4.5.2 View-Based Cooperation

The delegation-based cooperation approach was generalized to support a broader
spectrum of cooperation scenarios [Hel08a, HW06b, HW06a, HW07, HJK+08]. This
resulted in the view-based approach for interorganizational cooperation. The main

84 4.5 Interorganizational Cooperation

Designers

Project

manager

Designers
Project

manager

Project

manager

Delegation of subprocesses

Monitoring of subprocesses

AHEADAHEAD

AHEAD

Designers

Data

base

Data

baseData

base

Figure 4.9: Distributed AHEAD system [HJK+08]

drawbacks of the delegation-based approach which were addressed by the view-
based approach are the following:

• It was only possible to expose process parts to another organization by delegat-
ing these parts to the organization. This excluded the scenario of monitoring
subprocesses without delegation.

• Only delegation from contractor to subcontractor was supported. The cooperation
of partner organizations with equal rights was not possible.

• The delegation of several disconnected subprocesses required several delegation
contracts even if the subcontractor was the same organization. It was not possible
to combine disconnected subprocesses in one delegation.

• The cooperation protocols could not be tailored to specific scenarios with different
levels of trust. In a case where only informal guidelines were required for the
cooperation, the delegation still required strict rules.

Chapter 4 Previous Achievements 85

From these drawbacks, the main requirements for the improved approach were
derived as (1) flexible mechanisms for defining the visibility of process informa-
tion shared with other organizations and (2) support of customizable cooperation
relationships.

The fundamental concept which was introduced to meet these requirements was
the dynamic process view. A dynamic process view is published by one organization
and can be subscribed by another organization. It includes a subgraph of a dynamic
task net where certain elements can be omitted, a view product workspace main-
taining all view-related products and product versions, and a view resource space
containing all view-related resources. Furthermore, a set of view definition rules
defines which elements of the underlying private process are part of the process
view.

Several cooperation phases have been defined which structure the whole process
of interorganizational cooperation, from the private task net planning to the comple-
tion of process inter-connection. Finally, a cooperation model defines three layers
for interoganizational cooperation: the private process layer on which the private
processes of the organizations are defined, the process view layer on which the
published process views reside, and the cooperation layer on which different kinds
of cooperation relationships between organizations can be defined.

Integration of workflow processes in a development process The view-based
cooperation model first of all addressed the interorganizational integration of devel-
opment processes carried out in different organizations. This was complemented by
an approach for the intraorganizational integration of processes executed within
heterogeneous process management systems, namely AHEAD and conventional
workflow management systems.

While development processes as a whole cannot be adequately supported by work-
flow management systems, there are often well understood, repetitive subprocesses
which can be modeled as workflows and enacted by means of WfMS. Examples from
plant design projects are the design and procurement of a device. In these processes,
only few resources are involved and they usually have to follow a pre-defined proce-
dure using certain tools to produce the required result. This type of processes is very
suitable for workflow support. For this reason, an approach was developed to couple
AHEAD with a workflow management system, and a prototypical implementation
was realized in which the WfMS Shark was coupled with AHEAD.

A workflow instance is represented in AHEAD by a subnet of the dynamic task
net which represents the whole development process. A view-based integration has
been realized in the sense that the subnet always reflects the current enactment
state of the workflow instance but changes to the workflow cannot be applied via the
AHEAD system. Regarding the visibility of workflow elements, a gray-box approach
was chosen. A workflow instance is neither represented by an atomic task in the task
net (black-box approach) nor are all elements of the workflow necessarily visible
in the task net (white-box approach). For example, control variables or control
nodes in the workflow graph are not mapped to elements in the dynamic task net.

86 4.5 Interorganizational Cooperation

Rückgriff

AHEAD

WFMS

Command calls and exchange of
workflow information

Organization A

Fließbild

Spez.

Parameter-
wahl Untersuchung im Extruder Entscheidung Aufbereitungskonzept

Fließbild Aufbereitungskonzept

Aufbereitung
s-konzept

Ergebnis
(Extruder)

Ergebnis (Mischgüte)

Trennungskonzep
t

Spezifikation

Aufbereitung

...
Untersuchung

Mischgüte Fließbild

Spez.

Parameter-
wahl Untersuchung im Extruder Entscheidung Aufbereitungskonzept

Fließbild Aufbereitungskonzept

Aufbereitungs-konzeptErgebnis (Extruder)

Ergebnis (Mischgüte)

Trennungskonzept

Spezifikation

Aufbereitung

...

Untersuchung
Mischgüte

Rückgriff

Eingebetteter Workflow „3D-Simulation“ (Aufgabennetz)

Fließbild

Spez.

Parameter-
wahl Untersuchung im Extruder Entscheidung Aufbereitungskonzept

Fließbild Aufbereitungskonzept

Aufbereitungs-konzeptErgebnis (Extruder)

Ergebnis (Mischgüte)

Trennungskonzept

Spezifikation

Aufbereitung

...

Untersuchung
Mischgüte

Extended
workflow definition (WD’)

Initial
workflow definition (WD)

Workflow Instance Inst(WD’)

1Import of
workflow template

2

3

Embedding

Integration of the workflow
process with context tasks

4 Extension

5 Initiation

Workflow Execution ServiceWorkflow Repository

6Coupling
Infrastructure

Workflow Instance

Figure 4.10: Integration of workflow processes in AHEAD [HJK+08].

The processing of workflows in AHEAD takes place in several phases which are
illustrated in Figure 4.10.

Workflow Embedding At first, a workflow template is imported, i.e. the corre-
sponding task net representation is embedded into the dynamic task net (1/2).
This representation is called a workflow fragment.

Workflow Context Definition The workflow fragment is connected with other
tasks in the dynamic task net by control and data flows (3). The execution
states of the workflow tasks (i.e. the tasks in the workflow fragment) are set to
the Waiting state. An extended workflow definition which includes new conditions
for the execution of workflow activities is generated (4).

Workflow Instantiation AHEAD sends a request to the WfMS for the creation of an
instance of the extended workflow definition. A workflow instance is created and
a reference to the instance is returned to AHEAD (5). Afterwards, the workflow
instance is started.

Workflow Monitoring The workflow is enacted in the WfMS. Assigned resources
start their tasks, modify data and finally commit their tasks. All events regarding
task status changes or data modification in the WfMS are sent to AHEAD and
the workflow fragment is updated accordingly (6). A manager using the AHEAD
system can thus monitor the performance of the workflow.

Process Traceability After the termination of the workflow instance, the workflow
fragment remains in the dynamic task net and all documents produced in the
course of the workflow remain accessible in AHEAD for reasons of traceability.

With this approach, workflow instances can be embedded in a dynamic task net.
The enactment of embedded workflows can be monitored in AHEAD via the corre-

Chapter 4 Previous Achievements 87

sponding workflow fragments. AHEAD and the WfMS exchange events bidirection-
ally to inform each other about relevant process changes [Hel08a, HHM+06, Wei06].
The coupling of the two systems supports integrated project and workflow manage-
ment and enables the integration of previously independent workflow processes in a
development project.

4.6 The AHEAD Prototype

The AHEAD system has been realized as a research prototype using an infrastructure
for rapid prototyping of graph-based applications. Figure 4.11 shows the general
architecture of the AHEAD system. The application logic of the AHEAD system has
been specified in the graph rewriting language PROGRES [SWZ99]. The PROGRES
environment allows to generate C-code from such an executable specification. The
PROGRES specification of the AHEAD system is two-part. The generic specification
part has been manually created by the developers of AHEAD. This part includes the
DYNAMITE meta-model for dynamic task nets. Domain specific process knowledge is
defined in the second part of the PROGRES specification. This part is generated from
the UML class diagrams which are created by means of the modeling environment
for process model definitions.

The UML-based process model definitions can be created by means of the commer-
cial CASE tool Rational Rose. Process model definitions and their different versions
can be managed as UML-packages in the repository of this tool. From the UML
models, the domain-specific part of the PROGRES specification of the AHEAD system
is generated by a transformer. Afterwards, the process model definitions constitute
a part of the application logic of the AHEAD system.

For the implementation of the user interface of the AHEAD system, the UPGRADE
framework has been used [BJSW02b, BJSW02a]. UPGRADE is a Java framework for
the development of graph-based applications. The source code which is generated
from the PROGRES specification is linked with the UPGRADE libraries. The resulting
prototype can be adapted and extended by Java classes to customize its user interface.
Different tools for the management and enactment of development processes have
been realized by means of PROGRES/UPGRADE which will be described in this
section. All management data which are created and modified by means of these
tools are stored in a GRAS database [KSW95]. This database is optimized for the
storage of graph structures.

The realization of the AHEAD prototype by means of PROGRES/UPGRADE has
both, advantages and disadvantages. The infrastructure of PROGRES, GRAS and
UPGRADE allows for the rapid prototyping of graph-based applications. Due to the
available code generation, far less effort is required compared to manual implemen-
tation. The application logic is formally specified in PROGRES by means of which the
executable specification can be analyzed and interpreted to verify its correctness.
The PROGRES language is dedicated to the development of graph-based applications.
Solutions to many common problems like pattern matching in a graph are provided
by PROGRES.

88 4.6 The AHEAD Prototype

meta schema

21 3 31

basic operations

process schema

Change_Mod_Start

(task : Change_Mod)

begin

Consume(task.-inp->...

refined operations

generic
specification part

specific
specification part

management

environment work

environment

modeling environment

PROGRES System

generates

ge
ne

ra
te

s

offers view
UPGRADE

application logic

library

GUIs

interacts

definition level

instance level

management
data

op
er

at
es

 o
n

GRAS

Figure 4.11: Architecture of the AHEAD system [HJK+08].

One of the drawbacks of the realization approach is that it requires the extensive
infrastructure consisting of PROGRES, GRAS and UPGRADE. This infrastructure is
not maintained anymore and it is not intended for commercial use. Furthermore, the
portability of the infrastructure is limited. While the Java framework UPGRADE can
be ported to other platforms, PROGRES is limited to a Unix environment. Finally,
the runtime efficiency of a PROGRES prototype is not optimal, since the general
purpose code generation cannot incorporate any application-specific optimizations.

AHEAD provides two different environments for the management and enactment of
process model instances respectively. The management environment is used by the
project manager to manage the development process. He can define tasks, control
flows and data flows, assign resources to tasks and prepare tasks for execution.
Structural changes to the dynamic task net are exclusively done in the management
environment. The development process is enacted by the resources using the work

Chapter 4 Previous Achievements 89

Figure 4.12: The task net view of the management environment [HJK+08].

Figure 4.13: The resource view of the management environment [HJK+08].

environment in which they can change the execution states of their assigned tasks.

Figure 4.12 shows a screenshot of the task net view of the management environ-
ment. It shows the task hierarchy and the available actual resources on the left
side. The main view shows the dynamic task net as a graph in which the elements
are represented as in Figure 4.3. The graphical representation is very close to the
internal data structures for dynamic task nets. This has been identified as one of the
drawbacks of the AHEAD prototype regarding its applicability in practice. One of
the contributions of this thesis is the improvement of the graphical representation
of dynamic task nets to achieve a higher acceptance by users in industrial projects.

In addition to the task net view, the management environment comprises a re-
source view, which is used to assemble the project team. Planned resources can

90 4.6 The AHEAD Prototype

Figure 4.14: The work environment [HJK+08].

be defined for the project. Actual resources can be selected from the different
organizational units in the company and assigned to the planned resources of the
project. The resource view is depicted in Figure 4.13 with the project resources in
the left tree view and the base resources in the right tree view.

Finally, the management environment comprises the product view which gives
an overview over all development products and their versions. Versions of different
documents can be combined into configurations. Products, versions and configura-
tions are all displayed as nodes in a graph. An example screenshot of the product
view can be found in [NM08, p. 317].

The work environment serves for the execution of defined tasks by the assigned
resources. A user who has a position in the project team can log on to the system
and a list of his assigned tasks is presented to him in the agenda tool of the work
environment (top of Figure 4.14). For each assigned task, information about its
state, deadline etc. is displayed. The user can start, suspend, finish or abort a task
using the agenda tool, or he can start the work context tool for a selected task. The
work context tool (bottom of Figure 4.14) provides access to the documents and
tools required for executing a task. The relevant documents are presented in a list
and in a graph view at the bottom of the work context tool. Furthermore the work
context of the task is presented to the user which contains all tasks in the task net
which are relevant for this task, i.e. which are connected via incoming and outgoing
data flows. This can be predecessors and successors of a task, its parent task and
its subtasks, and tasks connected by feedback flows.

In AHEAD, the use of the management environment is reserved for the project
manager, and all other project team members are restrained to the work environ-

Chapter 4 Previous Achievements 91

ment. This way, the access control to the management data is realized. Ordinary
project team members can only change their assigned tasks and can only view the
work contexts of these tasks. The project manager has full access to the whole
management configuration and can modify all parts of the task net, resource model
and product configuration.

In plant design projects, there are multiple responsible persons who need to have
access to the whole management configuration. This can be achieved in AHEAD
by giving these persons the role of project responsible. However, there are also
scenarios in practice, where a hierarchical approach is required in which certain
project team members are responsible for whole subprocesses and not only for their
assigned tasks. Therefore, a more flexible access control model has been developed
in this thesis as part of the solution approach for project controlling.

92 4.6 The AHEAD Prototype

Chapter 5 Timed Dynamic Task Nets 93

Chapter 5

Timed Dynamic Task Nets

A process management system has to maintain an internal representation of a
process model instance, including the dependencies between the defined tasks, the
resources who are assigned to the tasks, and the products which are produced.
Tasks, products and resources are managed in an integrated way in PROCEED.
Dynamic task nets are used for the representation of process model instances.

The entities, properties, and relationships for dynamic task nets, as well as the
constraints for changes to dynamic task nets are defined in a new meta-model which
is presented in this chapter. The major extensions compared to the DYNAMITE
meta-model are related to timing issues. Therefore, the new meta-model for dynamic
task nets is called the TNT meta-model, which stands for Timed Dynamic Task Nets
or Timed Nets in short. The development of the TNT meta-model had three different
goals.

• The main concepts of the DYNAMITE meta-model should be transferred to the
new meta-model. In particular, dynamic task nets should be used to represent
process model instances.

• New requirements derived from the industrial context regarding the usability
of the prototype should be addressed. The meta-model should be adapted and
simplified where necessary.

• The meta-model had to be extended by new entities and properties for project
planning and controlling.

Figure 5.1 shows the five partial models of the TNT meta-model. Every partial
model defines on the one hand entities, properties, and relationships, and on the
other hand constraints which apply to changes to the management data.

The distinction between a structural and a behavioral model has been adopted
from DYNAMITE. The structural and the behavioral model of DYNAMITE have
been adapted and extended to incorporate additional modeling entities, additional
execution states of tasks, and corresponding invariants. The structural model covers
the definition of the available entities for task net modeling, their properties and
relationships, as well as structural invariants. It is presented in Section 5.1. The
behavioral model covers the execution states of tasks and according behavioral
invariants. Furthermore, it defines consistency constraints for structural change
operations which depend on the execution states of tasks. The behavioral model is

94

TNT Meta-Model for Timed Dynamic Task Nets

Structural Model

Behavioral Model

Timing Model

Monitoring Model

Authorization Model

Permissions Authorization Rules

Monitoring Entities/Properties Monitoring Constraints

Timing Entities/Properties Timing Consistency
Constraints

Task Execution States
Control Flow Semantics Behavioral Invariants

Entities/Relationships/
Properties Structural Invariants

Figure 5.1: Partial models of the TNT meta-model for dynamic task nets.

presented in Section 5.2. The invariants defined in the structural and behavioral
model may never be violated.

The timing model defines additional entities and task properties which are re-
quired to schedule the tasks in a dynamic task net. Furthermore, it defines timing
consistency constraints which ensure that a scheduled dynamic task net represents
a time and resource feasible project schedule. Timing consistency constraints may
be temporarily violated The timing model is presented in Section 5.3.

The monitoring model introduces additional entities and properties which are
required to measure the degree of completion of tasks in a dynamic task net and to
evaluate their performance in comparison to the plan. Monitoring constraints define
the situations in which the actual performance matches the plan. Their violation
indicates a deviation from the plan. Monitoring constraints are non-strict in the
sense that they may be permanently violated. The monitoring model is presented in
Section 5.4.

When process model definitions are enacted in an engineering project, an autho-
rization model has to be implemented which ensures that only authorized users of
the system can perform changes to the management data. In Section 5.5, the autho-
rization model of the TNT meta-model is described. Project specific permissions are
assigned to members of a project team, which are evaluated in authorization rules
to determine the effective permissions of a user.

Every partial model depends on entities, properties, and relationships defined
in the next lower model, i.e. a partial model may define additional properties for
entities which are defined in a lower model, and the constraints defined as part of a

Chapter 5 Timed Dynamic Task Nets 95

realizes

Task

Name : string
Granularity : GranularityLevels

Realization

ControlFlow

1
0..10..1

*

1

1*
*

0..10..1

FeedbackFlow

1

1*
*

successor

predecessor

source

target

NextVersion

Figure 5.2: Classes for tasks and task relationships.

partial model may refer to modeling elements of lower models.
The entities and relationships of the TNT meta-model are introduced by means

of UML class diagrams in the following sections. The respective constraints are
presented in a formal notation which has been adopted from [Sch02].

5.1 Structural Model

The description of the entities and relationships defined by the structural model
is divided into three sections corresponding to the different perspectives on dy-
namic task nets, namely tasks, products, and resources. Afterwards, the structural
constraints are described which apply to all three perspectives.

5.1.1 Tasks and Control Flow

The central entity in the TNT meta-model is the task. It integrates the entities
related to resource and product management with each other. Figure 5.2 shows the
class Task together with related classes for modeling vertical and horizontal task
relationships in a dynamic task net.

Vertical relationships refer to the hierarchical structure of dynamic task nets.
Except for the root task, all other tasks in a dynamic task net have a unique parent
task and may have several subtasks. The root task represents the whole project.
A task which has subtasks is called a complex task, and a task without subtasks is
called an atomic task. Like in the DYNAMITE meta-model, a distinction is made
between the interface and the realization of a task. The interface of a task is its

96 5.1 Structural Model

definition in terms of properties, parameters, assigned resources and relationships
to other tasks. The realization of a task contains its subtasks and their mutual
relationships. Therefore, the subtasks of a task are aggregated in an object of the
class Realization which is associated with the parent task. The realization of a task
is usually not displayed in the graphical representation of dynamic task nets.

For every task in a dynamic task net, the granularity level can be explicitly defined
by setting the property value Granularity. This is an extension to the DYNAMITE
meta-model. Three granularity levels are distinguished.

• Project structure

• Task

• Work step

The highest level is project structure. All tasks in a dynamic task net, which together
form the work breakdown structure of the project, have the granularity level project
structure. The lowest tasks in the hierarchy of a dynamic task net which have the
granularity level project structure are the work packages. The next lower granularity
level is the task level. Finally, the lowest level of granularity is the level work step.
Tasks with this granularity are not taken into account during scheduling. For every
task in a dynamic task net, the following two rules have to be fulfilled:

• The task has the same granularity level as its sibling tasks.

• The task has the same or a lower granularity level than its parent task.

The granularity level of a task may be set manually for a task. If no granularity
level is explicitly specified for a new task, then the granularity of the new task is
automatically set to the granularity of the sibling tasks or, if no siblings exist, to the
granularity of the parent task. The granularity levels of the tasks in the example
scenario have been defined as depicted in Figure 5.3.

In [HJK+08], three levels of granularity have been distinguished which overlap
with the granularity levels introduced in this section. On a coarse-grained level,
development processes are divided into phases according to some life cycle model.
At a medium-grained level, development processes are decomposed further down to
the level of documents or tasks, i.e. units of work distribution. At the fine-grained
level, specific details of design subprocesses are considered. The granularity level
work step can be mapped to the fine-grained level. However, the coarse-grained level
does not cover all tasks of the work breakdown structure, i.e. with granularity level
project structure, but only the first two levels. The granularity levels of [HJK+08]
were not explicitly defined for the tasks in a dynamic task net. However, the tasks
which were commonly represented in a dynamic task net in AHEAD belonged to the
coarse-grained and medium-grained levels. This is still true for dynamic task nets in
PROCEED where work steps can be defined but are not scheduled.

With respect to horizontal relationships, tasks can be connected by control and
feedback flow relationships. A control flow connects exactly two tasks and is directed

Chapter 5 Timed Dynamic Task Nets 97

 Work Step

 Task

 Project Structure

Detail

Engineering

Plant Design

Project

Basic

Engineering

Equipment List Specification of

Machines and Devices

Procurement

Specify

Pump 032

Specify

Pump 037

Specify Plug

Flow Reactor 012

Specify Heat

Exchanger 017

Determine Operating

Parameters

Determine Pump Type

by Use Case

Figure 5.3: Task net hierarchy with defined granularity levels.

Basic Engineering Detail Engineering

Piping

Installation

Planning

Installation Plan

Piping

Figure 5.4: Example for a hierarchical task net with control and feedback flows.

from the predecessor to the successor A feedback flow is defined between two tasks,
when the results of the target task have to be changed due to detected errors or
new requirements. The information regarding the required changes is provided by
the source task. In Figure 5.4, a part of a hierarchically structured dynamic task net
with defined control and feedback flows is depicted. If a task has subtasks they are
depicted below the task in a box which is connected to the task by a double-headed
arrow. Control flows are displayed as solid lines with closed arrowheads. A feedback
flow is displayed as a dashed line with a closed arrowhead.

5.1.2 Documents and Data Flow

For modeling documents and data flow in dynamic task nets, the relevant entities
and relationships of the DYNAMITE meta-model have been adopted. In Figure 5.5,
the relevant classes and associations are depicted. An object of the class Document

98 5.1 Structural Model

Document

Name : string

Task

OutputParameter

Name : string

InputParameter

Name : string

Revision

Number : int
Inspected : bool
Released : bool

*
1

*

1

1*

*

*

1

*

DataFlow
1

0..1
refers torefers to

*
1

0..10..1

1
*

Figure 5.5: Classes for documents, revisions, parameters, and data flows.

represents a document in the Comos database, e.g. a flow diagram, a Word or Excel
document. Input and output parameters can be defined for a task in PROCEED.
An input parameter indicates, that a document is required for this task. An output
parameter indicates, that a document is created or modified in the task. When
a document is created in the Comos database, it is associated with the output
parameter of the task in which it has been created, and with the output parameters
of all tasks in which it will be modified. A data flow connects an output and an input
parameter of two different tasks. It specifies that the document associated with the
output parameter can be used in the task to which the input parameter belongs. An
example for a data flow in a dynamic task net is shown in Figure 5.6. The block flow
diagram (BFD) is transferred from the task Preliminary Planning to the task Basic
Engineering.

In Comos, several revisions of a document can be created. In a three-step proce-
dure, a revision is created, inspected and finally approved, and thereby released.
Revisions are used to document certain intermediate results during the elabora-
tion of a document. In contrast to common version management systems, it is
not possible to retrieve an older version of a document from the Comos database
to continue development starting from this version. Nevertheless, my means of
document revisions the progress of the work is documented. Therefore, document
revisions are represented in the TNT meta-model by objects of the class Revision. A
revision of a document is produced in the course of a task. It is connected with the
output parameter of this task which is associated with the corresponding document.
In the example in Figure 5.6, a first revision of the process flow diagram PFD has
been created with the revision number 0, and it has been released for all consuming
tasks. In contrast to DYNAMITE, the release of document revisions for individual
tasks and the consumption of document revisions by these tasks is not explicitly

Chapter 5 Timed Dynamic Task Nets 99

sim

PFD
0

PFDs

BFD PFD

Initial P&IDs

PFD P&ID

Basic Engineering

BFD P&ID

Detail Engineering

P&ID

Preliminary Planning

BFD

seq seq

Figure 5.6: Example for data flow in a dynamic task net.

modeled in PROCEED for reasons of simplification.

In the graphical representation of Figure 5.6, input parameters and output param-
eters of a task are listed below the name and execution state. Data flows are drawn
between input and output parameters as dashed lines with open arrowheads. If a
document revision has been produced in a task, it is depicted as a document item
labeled with the name of the document, the revision number and the status of the
document. The document item is connected with the output parameter. A produced
but not yet released revision has no revision number but is labeled with * instead.
When a revision is released, it is connected with all consuming input parameters.

In [Sch02], a distinction was made between internal and external parameters to
model the data flow between a task and its subtasks (cf. Section 4.3). This concept
has been abandoned in PROCEED for reasons of simplification. If the input of
a task shall be available at one of its subtasks, then the input parameter of the
subtask references the input parameter of the parent task. For this purpose, the
association refers to is defined in Figure 5.5. Revisions which are available at
the input parameter of the parent task are also available at the connected input
parameter of the subtask. If the output of a subtask should be available at the parent
task, then an output parameter is defined for the parent task which references
the output parameter of the subtask. Revisions which are produced at the output
parameter of the subtask are implicitly available at the output parameter of the
parent task. Figure 5.6 illustrates the connection between parameters by means of
references. The BFD is provided to the task Basic Engineering via a data flow and
is also available for the subtask Create PFD because of the reference from its input
parameter to the input parameter of Basic Engineering. The concept for modeling
data flows in PROCEED is similar to the original data flow concept defined in [Kra98]
which also did not distinguish between internal and external parameters. However,
in [Kra98] ordinary data flows were defined in the opposite direction compared to
the references in PROCEED. Data flows could be defined from an input parameter of
a task to the input parameter of a subtask and from the output parameter of a task
to an output parameter of the parent task. This approach required to produce and

100 5.1 Structural Model

release document revisions which should be transferred from a subtask to its parent
task and vice versa. The reference concept implemented in PROCEED simplifies the
transfer of data between tasks and their subtasks.

5.1.3 Resource Modeling

In the TNT meta-model, the strict distinction between a resource model and a model
for dynamic task nets as it was realized in AHEAD with RESMOD and DYNAMITE
has been abandoned. The resource modeling capabilities of the TNT meta-model
cover on the one hand the assignments of resources but also the modeling of the
organizational structure. Resource management in the organization, allocation of
resources for projects, and assignment of resources to tasks are all covered in the
TNT meta-model.

All members of a project team in a plant design project use Comos and PROCEED
to carry out their work and to manage their personal processes. Project team
members are human resources for the project and at the same time users of the
management system. Therefore, the terms human resource and user will be used
synonymously in the following because they represent equivalent concepts with
respect to the PROCEED system.

Figure 5.7 shows the classes and associations which are defined for resource
management in PROCEED. Human resources are represented by objects of the class
User. They are organized in departments which are structured hierarchically and
are located at certain company locations. This information was already available
in Comos before the extension by PROCEED. The classes User, Department and
Location integrate the resource model of Comos into the TNT meta-model.

Non-human resources are not modeled in PROCEED for reasons of simplification.
Software tools are not modeled explicitly since the main application which is used by
the project team members is the Comos environment and the use of external applica-
tions is determined by the type of the documents which have to be edited. Required
computer hardware, facilities etc. are not explicitly modeled as resources required
for a task to simplify project planning. It is assumed that computer workstations,
software and all required tools are available to the engineers in a project as needed,
so that they do not need to be explicitly modeled and planned, i.e. assigned to tasks.
Their costs however are incorporated in the project budget as part of the base costs.

Functional roles Human resources can play different functional roles in an orga-
nization and a project. A role defines the qualifications of the resources who can
play this role. Examples for functional roles in a plant design project are project
manager, controller, architect, construction engineer, or process engineer. Roles can
be structured in a generalization hierarchy. If a resource can play a specific role, he
can also play the more general role. Figure 5.8 shows the generalization hierarchy
of roles of the example scenario. A role hierarchy like this may be defined in a plant
engineering company. In this example, a mechanical engineer is assumed to have
the qualifications of a general engineer like fundamental knowledge in mathematics

Chapter 5 Timed Dynamic Task Nets 101

TaskAssignment

IsResponsible : bool

Task

User

Name : string

Role

Name : string

originator

*
1

1

*

1

*

*

0..1*

can play

Department

Name : string

Location

Name : string

Team

Name : string

1
*

*

1

1

requires

is a

1

0..1

0..1

*

0..1

1

*

*

*

leader

member of

head

0..1

Figure 5.7: Classes for resources and task assignments.

and a general understanding of design. In practice, role hierarchies are rather flat,
but they are nevertheless useful to organize the different functional roles defined
in a company. The functional roles which are available in a concrete project are
implicitly defined by the human resources which are members of the project team.
A functional role is available in the project if there is a project team member who
can play the role in the organization.

Project team A project team is built up from employees of the company who are
members of different departments. The department heads decide whether their
employees are released to work in a project for a requested time period. The
organizational breakdown structure (OBS) defines the structure of the project team
as described in Section 3.1. The organizational units of the OBS are subteams of
the project team which are modeled in PROCEED as instances of the class Team. A
team can be subdivided into several subteams. A team has several team members
one of which is the team leader. The leader of a team is responsible for his team
members and the subteams. He may instruct his team members and the leaders of
the subteams.

Figure 5.9 shows a part of the organizational breakdown structure of the example
scenario including the team members. The team leaders are represented by resource
pictograms with a filled head. The team leader of the team Process Engineering is the
resource Dreher. He receives instructions from the project manager and instructs

102 5.1 Structural Model

Bergmann

Employee

Engineer

Mechanical Engineer

Electrical Engineer

Construction Engineer

Process Engineer

ArchitectProcurement
Operator

Manager

Project
Manager

Heer

Newman

Endres
Hansen

Mbogos

Instrumentation Engineer
Leong
Hormes

Estimator

Bayer
Kaufmann

Pu
Vasileva
Volkova
Bach
Meier

Dreher
Maier
Baumann

Boateng

Figure 5.8: Role hierarchy of the example scenario.

Project Manager

Progress/Cost
Control

Process
Engineering Layout Machines

& Devices

Heer

Petersen Schmidt

Dreher Maier JansenNewman Pohl Vasileva Bach Volkova

Figure 5.9: Organizational breakdown structure of the example scenario.

Chapter 5 Timed Dynamic Task Nets 103

Petersen

Schmidt

Heer

Jansen

Newman

Maier

Dreher

Pohl

Vasileva

Bach Volkova

Figure 5.10: Responsibility hierarchy derived from the OBS.

Vasileva (Mechanical Engineer)

Specification of

Machines and Devices

Bach (Mechanical Engineer)

Mechanical Engineer

Figure 5.11: Example for a task with multiple task assignments.

his team members. The position project manager is modeled as a team with only
one member. The hierarchy in the example is rather flat. However, the hierarchical
structure is generally required to model the distribution of responsibility in the
project team. The responsibility hierarchy is implicitly defined by the project team
structure. For the example of Figure 5.9, the responsibility hierarchy is explicitly
shown in Figure 5.10.

Task assignments In PROCEED, the concept of a task assignment has been
introduced. The assignment of a resource to a task is explicitly modeled by an
object of the class TaskAssignment. For a task assignment, a required role has to be
specified. It is a strict constraint that the user who is assigned to the task via the task
assignment can play the required role. Several resources can be assigned to a task.
This is modeled by multiple task assignment objects. However, a resource cannot
be assigned to two different task assignments of the same task. Exactly one of the
assigned resources has to be defined as the person responsible for managing the
task. This resource is called the responsible resource. The property IsResponsible is
set to true for the task assignment of the responsible resource.

Figure 5.11 shows an example in which three resources have been assigned to

104 5.1 Structural Model

the task Specification of Machines and Devices. Task assignments are depicted
as rounded boxes below the task. If no resource is assigned yet, only the role is
displayed. Otherwise, the role is displayed in brackets after the resource’s name.
It is required that both assigned resources can play the role Mechanical Engineer.
The resource Vasileva is appointed to be responsible for the task. This is visualized
in Figure 5.11 by underlining the required role and the assigned resource. A third
task assignment has been defined which also specifies the required role Mechanical
Engineer but no resource has been assigned yet.

In development projects, it is a common practice to define so called tickets to
keep track of necessary bug fixes or enhancements of the developed product. These
tickets are often managed by means of a bug tracking system, e.g. the system trac
[Sof10]. A ticket can be directly assigned to a resource or it can be put in a task pool
to be picked up by an eligible resource at a later point in time. These strategies are
called the push- and pull-pattern in the context of workflow management systems
[RvdAtHE05]. Both resource assignment patterns are supported by PROCEED. The
push-pattern is realized by directly assigning tasks to resources. The pull-pattern is
realized by only defining the required role of a task assignment an preparing the
task for execution. An eligible resource who can play the required role in the project
can pick up the task.

The explicit modeling of task assignments has several advantages for project
planning, scheduling and execution. First, multiple resources can be assigned
to a task which is particularly advantageous for rolling-wave planning, when the
realization of a task in terms of subtasks is not yet completely defined but the
required resources and workload for the task have to be planned. Dynamic task nets
allow the creation of additional subtasks even at process runtime and thereby enable
rolling-wave planning. Besides the deferred creation of subtasks, the definition
of multiple task assignments for a task has the additional advantage that several
resources can be assigned to a task which support the responsible resource but are
not responsible for any of the subtasks.

Another advantage of explicitly modeled task assignments is that planned and
actual workload for a task can be associated with each assigned resource individually.
Resources can be assigned to a task with different planned workload, so that one
resource has to work 2h per day on the task while another assigned resource has
to work 8h per day on the task. Furthermore, the resources can book their actual
workload on the task assignments which may deviate from the planned workload.

5.1.4 Structural Constraints

The structural model defines consistency constraints regarding the structure of a
dynamic task net. For every structural change operation to a dynamic task net, it has
to be ensured that the consistency of the management data is maintained. Therefore,
several structural invariants have been defined which have to be fulfilled at any
time. This implies that no structural change operation on a consistent dynamic
task net may lead to a state of the task net in which an invariant is violated. From

Chapter 5 Timed Dynamic Task Nets 105

the structural invariants, pre- and post-conditions for structural change operations
have been derived and implemented in PROCEED. Several invariants, pre- and
post-conditions have been adopted from DYNAMITE while others have been adapted
or added. In particular, structural invariants which refer to task assignments were
not defined in DYNAMITE.

Definitions

For the formal definition of the invariants and the pre- and post conditions of change
operations, several definitions are required. These definitions apply as well for the
behavioral model, timing model, and monitoring model, which are based on the
structural model.

Several entities have been defined in the structural model, including tasks, re-
sources, and documents. The different classes which have been introduced in this
section define entity types. An entity type can be regarded as a set containing all
objects of this type, e.g. the set of tasks. The properties which have been defined for
the entity types are defined as mappings from an entity type to a certain domain.
Let E be a set of entities of the same type and D a domain. A property is formally
defined as a mapping

P : E→ D∪ {⊥}
Where ⊥ indicates that the value of the property is undefined. For reasons of
simplification, properties of entities are written in the dot notation which has also
been used in [Sch02]. For a concrete entity e of the entity type E, the property P of
equation Section 5.1.4 is denoted as follows.

e.P ∈ D∪ {⊥}

Likewise, a set-valued property S is denoted as e.S ⊂ D which is formally defined
as a mapping P : E→ ℘(D) ∪ {⊥} with e ∈ E. For several invariants and algorithms
presented in this thesis, it is required to check whether the value of a property is
defined. For this purpose, the function undef is defined as follows.

undef : (E× (D∪ {⊥}))× E→ {true, false} :

(P, e)→
{
true, P(e) = ⊥
false, P(e) ∈ D

For a property P of an entity e ∈ E the application of the function undef is denoted as
undef(e.P) ∈ {true, false}. Finally, methods can be defined for entity types in the
dot notation e.M(arg) ∈ D for actual parameters arg ∈ A from the argument domain
A. These methods would be formally defined as M : E× A→ D with e ∈ E.

Tasks and control flow The set Tasks contains all tasks whereby different ver-
sions of a task are considered as distinct tasks. The set ControlFlows ⊂ Tasks× Tasks

contains all control flows. The set FeedbackFlows ⊂ (Tasks× Tasks)r ControlFlows

contains all feedback flows. The set Realizations contains all realizations. For every
control flow c ∈ ControlFlows the following attributes are defined.

106 5.1 Structural Model

• c.Pred ∈ Tasks is the source of the control flow.

• c.Succ ∈ Tasks is the target of the control flow.

For every feedback flow f ∈ FeedbackFlows the following attributes are defined.

• f.Source ∈ Tasks is the source of the feedback flow.

• f.Target ∈ Tasks is the target of the feedback flow.

• f.Active ∈ {True, False} indicates whether the feedback flow is still active.

For every task Task ∈ Tasks and Realization ∈ Realizations the following proper-
ties are defined.

• Task.PreviousVersion ∈ Tasks is the previous version of the task.

• Task.PreviousVersions ⊂ Tasks is the set of all previous versions of the task, i.e.
the non-reflexive transitive closure of the PreviousVersion function.

• Task.Realization ∈ Realizations is the realization of a task.

• Realization.Subtasks ⊂ Tasks is the set of all tasks in a realization.

• Task.Subtasks := Task.Realization.Subtasks is the set of all subtasks.

• Task.Parent ∈ Tasks is the task’s parent task which may be undefined.

• Task.Ancestors ⊂ Tasks is the set of all ancestors of a task, i.e. the non-reflexive
transitive closure of the Parent function.

• Task.ControlFlows ⊂ ControlFlows denotes the set of outgoing control flows of
the task.

• Task.Successors := {s|∃c ∈ Task.ControlFlows : c.Succ = s} ⊂ Tasks denotes
the set of direct successors of the task.

• Task.Predecessors := {p|∃c ∈ ControlFlows : c.Succ = Task∧ c.Pred = p}
⊂ Tasks denotes the set of direct predecessors of the task.

• Task.TSuccessors ⊂ Tasks is the set of all transitive successors of the task, i.e.
the non-reflexive transitive closure of the ControlFlows relation.

• Task.Feedbacks ⊂ Feedbacks denotes the set of outgoing feedback flows.

• Task.ActiveFeedbacks := {f|f ∈ Task.Feedbacks∧ f.Active = true} denotes the
set of all active outgoing feedback flows.

• Task.FeedbackTargets := {t|∃f ∈ Task.Feedbacks∧ f.Target = t} ⊂ Tasks

denotes the set of connected feedback targets.

Chapter 5 Timed Dynamic Task Nets 107

Documents and data flow The set Documents contains all documents. The set
Revisions contains all revisions of documents. The set OutputParameters contains
all output parameters and the set InputParameters contains all input parameters.
The set DataFlows ⊂ InputParameters× OutputParameters contains all data flows.
For every task Task ∈ Tasks the following properties are defined.

• Task.OutputParameters ⊂ OutputParameters

• Task.InputParameters ⊂ InputParameters

For every input parameter InputParameter ∈ InputParameters the following proper-
ties are defined.

• InputParameter.Task ∈ Tasks the task to which the input parameter belongs.

• InputParameter.DataFlows ⊂ DataFlows denotes the set of all incoming data flows
of the input parameter. There can be more than one incoming data flow for an
input parameter when there are several versions of the source task.

For every data flow d ∈ DataFlows the following attributes are defined.

• d.Source ∈ OutputParameters denotes the source of the data flow.

• d.Target ∈ InputParameters denotes the target of the data flow.

For every document Document ∈ Documents the following properties are defined.

• Document.Revisions ⊂ Revisions denotes the set of all revisions of the document.

For every output parameter OutputParameter ∈ OutputParameters the following at-
tributes are defined.

• OutputParameter.DataFlows ⊂ DataFlows denotes the set of all outgoing data
flows of the output parameter.

• OutputParameter.Task ∈ Tasks is the task to which the output parameter belongs.

• OutputParameter.Document ∈ Documents is the document which is associated with
the output parameter.

• OutputParameter.Revisions ⊂ OutputParameter.Document.Revisions are the revi-
sions which have been produced in the task of this output parameter.

For every revision Revision ∈ Revisions the following attributes are defined.

• Revision.IsReleased ∈ {True, False} indicates whether the revision has already
been released.

108 5.1 Structural Model

Resource modeling The set Resources contains all resources in the project team.
The set Roles contains all functional roles defined in the organization. The set
TaskAssignments contains all task assignments. For every task Task ∈ Tasks the
following properties are defined.

• Task.TaskAssignments ⊂ TaskAssignments is the set of all task assignments de-
fined for the task.

For every task assignment a ∈ TaskAssignments the following attributes are defined.

• a.Task ∈ Tasks the task for which the task assignment has been defined.

• a.IsResponsible ∈ {True, False} indicates whether the task assignment defines
the responsible resource for the task.

• a.Resource ∈ Resources the resource assigned to the task via the task assignment.

• a.Role ∈ Roles the required role specified for the task assignment.

Structural Invariants

Structural invariants are defined for the entities, relationships, and properties of the
structural model. They can be divided into invariants concerning tasks and control
flow, documents and data flow, and resource modeling. In the following definitions
of the structural invariants, it is implicitly assumed that all instances contained in
the sets which define the entity types belong to the same project. In that sense, the
sets do not exactly represent the entity types but only subsets thereof. The same
assumption is made for the definition of behavioral invariants and timing consistency
constraints in the following sections.

Tasks and control flow The following structural invariants ensure that the struc-
ture of a dynamic task net is consistent with respect to horizontal and vertical task
relationships.

Unique naming

∀t1, t2 ∈ Tasks(t1.Parent = t2.Parent⇒ t1.Name 6= t2.Name) (5.1)

Two different subtasks of a common parent task must not have the same name.

Task hierarchy

∀t1, t2 ∈ Tasks(t1 ∈ t2.Ancestors⇒ t2 /∈ t1.Ancestors) (5.2)

The hierarchy of tasks within a task net builds a tree structure.

Acyclic control flow

∀t1, t2 ∈ Tasks(t1 ∈ t2.TSuccessors⇒ t2 /∈ t1.TSuccessors) (5.3)

The control flow relationships between tasks must not form a cycle.

Chapter 5 Timed Dynamic Task Nets 109

Control flow balancing

∀t1, t2 ∈ Tasks(t2 ∈ t1.Successors∧ t1.Parent 6= t2.Parent)
⇒ t2.Parent ∈ t1.Parent.Successors) (5.4)

If two tasks from different subnets (realizations) are connected by a control flow,
their respective parent tasks must be connected by a control flow with the same
orientation.

Feedback flow balancing

∀t1, t2 ∈ Tasks(t1 ∈ t2.FeedbackTargets
⇒ t1.Parent = t2.Parent)∨

t1.Parent ∈ t2.Parent.FeedbackTargets∨
t1 ∈ t2.Parent.FeedbackTargets∨
t1.Parent ∈ t2.FeedbackTargets) (5.5)

Two tasks can be connected by a feedback flow, if they are subtasks of the same
task, or if their parent tasks are connected by an equally directed feedback flow.
Furthermore, a diagonal feedback flow to or from a subtask is allowed if the
parent of the target or source task is connected by a feedback flow with the
source or target task respectively (cf. [Kra98, p.80]).

Feedback flow orientation

∀t1, t2 ∈ Tasks((t1 ∈ t2.FeedbackTargets∧ (t1.Parent = t2.Parent∨
t1.Parent ∈ t2.Parent.FeedbackTargets))⇒ t2 ∈ t1.TSuccessors) (5.6)

There must exist a control flow path from a feedback flow’s target to its source,
except for diagonal feedback flows.

Redundant control flows

∀t ∈ Tasks(∀c1, c2 ∈ t.ControlFlows(c1 6= c2

⇒ (c1.Pred 6= c2.Pred∨ c1.Succ 6= c2.Succ))
(5.7)

There must not exist two different control flows between two tasks.

Redundant active feedback flows

∀t ∈ Tasks(∀f1, f2 ∈ t.Feedbacks(f1 6= f2 ∧ f1.Target = f2.Target∧
f1.Source = f2.Target⇒ f1.Active = false∨ f2.Active = false))

(5.8)

There must not exist two different active feedback flows between two tasks.

110 5.1 Structural Model

Documents and data flow With respect to the definition of data flows, the fol-
lowing structural invariants are defined.

Data flow between tasks

∀d ∈ DataFlows(d.Source.Task 6= d.Target.Task) (5.9)

The input and output parameters which are connected by a data flow do not
belong to the same task.

Data flow along task relationships

∀d ∈ DataFlows(d.Target.Task ∈ d.Source.Task.Successors∨
d.Target.Task ∈ d.Source.Task.FeedbackTargets) (5.10)

The tasks which are connected by a data flow are connected by a control or
feedback flow with the same orientation.

Unique input

∀i ∈InputParameters(∀d1, d2 ∈ i.DataFlows(d1 6= d2

⇒ (d1.Source.Task ∈ d2.Source.Task.PreviousVersions∨
d2.Source.Task ∈ d1.Source.Task.PreviousVersions))) (5.11)

There may not be two different data flows between two parameters, and an
input parameter cannot have data flows from different tasks defined. If an input
parameter has two incoming data flows, the source output parameters belong
two different versions of the same task.

Documents and output parameters

∀d ∈ Documents∃!o∈ OutputParameters(o.Document = d∧
∀i∈ o.Task.InputParameters(i.Document 6= d)) (5.12)

For every document, there exists exactly one producing output parameter in the
task net, i.e. the task of the output parameter does not have the document as
input.

Revisions and output parameters

∀r ∈ Revisions∃!o ∈ OutputParameters(r ∈ o.Revisions) (5.13)

For every revision of a document, there exists exactly one output parameter in
the task net which produced this revision. This implies that an output parameter
cannot be deleted once it has produced a revision.

Chapter 5 Timed Dynamic Task Nets 111

Resource modeling Structural invariants which apply for modeling resource
assignments in dynamic task nets are the following.

Clarified responsibility

∀t ∈ Tasks(∀a ∈ t.TaskAssignments
(∃b ∈ t.TaskAssignments(b.IsResponsible = true)))

(5.14)

When at least one task assignment has been defined for a task, then there is a
task assignment for the responsible resource. As a consequence, the first created
task assignment of a task becomes the responsible task assignment, and the
responsible task assignment cannot be deleted before other task assignments.

Unique responsible resource

∀t ∈ Tasks(∀a1, a2 ∈ t.TaskAssignments(a1 6= a2

⇒ ¬(a1.IsResponsible = true∧ a2.IsResponsible = true)))
(5.15)

There may not be two different task assignments of a task which both define the
responsible resource.

Pre- and Post-Conditions

From the defined invariants, several pre- and post-conditions for structural change
operations have been derived. These conditions impose constraints on the structure
of a dynamic task net which have to be fulfilled in order to invoke the respective
operation.

Operation
Pre-Condition
Post-Condition

CreateSubtask(p, out s) ∀s1, s2 ∈ p.Subtasks(s1.Name 6= s2.Name)

AddRealization(t, r)
undef(t.Realization)
t.Realization = r

RemoveRealization(t)
undef(t.Realization)

CreateControlFlow(p, s)

(p.Parent = s.Parent∨
s.Parent ∈ p.Parent.Successors)∧
s /∈ p.Successors∧
p /∈ s.TSuccessors

DeleteControlFlow(c)

¬∃cs ∈ ControlFlows

(cs.Pred ∈ c.Pred.Subtasks∧
cs.Succ ∈ c.Succ.Subtasks
∀t1, t2 ∈ Tasks(t1 ∈ t2.FeedbackTargets
⇒ t2 ∈ t1.TSuccessors

112 5.1 Structural Model

Operation
Pre-Condition
Post-Condition

CreateFeedbackFlow(s, t, out f)

s ∈ t.TSuccessors∧
(t.Parent = s.Parent∨
t.Parent ∈ s.Parent.FeedbackTargets∨
t ∈ s.Parent.FeedbackTargets∨
t.Parent ∈ s.FeedbackTargets)∧
¬∃f′ ∈ s.ActiveFeedbacks(f′.Target = t)
f.IsActive = true∧ f.source = s∧
f.target = t

DeleteOutputParameter(o)
o.Revisions = ∅

CreateDataFlow(o, i)

(∃c ∈ o.Task.ControlFlows
(c.Succ = i.Task)∨
∃f ∈ o.Task.ActiveFeedbacks
(f.Target = i.Task))∧
¬∃d ∈ DataFlows(d.Target = i∧
d.Source.Task /∈ o.Task.PreviousVersions)

CreateTaskAssignment(t, out a)
(∃a′ ∈ t.TaskAssignments
(a′.IsResponsible = true))∧
(¬∃a1, a2 ∈ t.TaskAssignments(a1 6= a2∧
a1.IsResponsible = true∧
a2.IsResponsible = true))

DeleteTaskAssignment(a)
a.IsResponsible = false∨
¬∃a′ ∈ a.Task.TaskAssignments(a′ 6= a)

ModifyTaskAssignment(a)

∃a′ ∈ a.Task.TaskAssignments
(a′.IsResponsible = true)∧
¬∃a1, a2 ∈ a.Task.TaskAssignments
(a1 6= a2 ∧ a1.IsResponsible = true∧
a2.IsResponsible = true)

CreateNewTaskVersion(t, out t′)
¬∃t̂ ∈ Tasks(t ∈ t̂.PreviousVersions)
t = t′.PreviousVersion

Table 5.1: Pre- and post-conditions for structural change operations.

The defined pre- and post-conditions have been implemented in PROCEED to
ensure the structural consistency of a dynamic task net. If pre-conditions of a
change operation are not fulfilled or its application would lead to a violation of a
post-condition, then the operation is prohibited. As a consequence, a consistent
dynamic task net cannot be transformed by a structural change operation into an

Chapter 5 Timed Dynamic Task Nets 113

inconsistent state.

5.2 Behavioral Model

The behavioral model specifies the available execution states of tasks and the allowed
state transitions. Furthermore, it defines additional constraints for structural change
operations which take the execution states of tasks into account. In particular, the
creation of feedback flows depends on the execution states of the connected tasks.

5.2.1 Life Cycle of a Task

Every task in a dynamic task net has an execution state. The finite state machine
depicted in Figure 5.12 defines the life cycle of a task. It defines the possible
execution states and the generally allowed state transitions independent of the
task’s context. The boxes represent task states while the edges represent transitions
between these states. Every edge is labeled with the name of the transition.

InDefinition is the initial state of a task. In this state, the properties of the task can
be set, resources can be assigned and the realization of the task can be elaborated.
When a task is completely defined, its state is changed to Waiting. If a responsible
resource has been assigned to the task, this resource can start the task so that it
becomes active. Otherwise, if only the required role for the responsible resource has
been specified, a resource who can play this role can pick up the task and start it.

The state Active indicates that the work defined by the task is currently performed
by the assigned resources. A task can be temporarily suspended. When a task is
in the state Suspended, no work is performed on the task and no working hours
can be booked on the task. In PROCEED, property values of a started task can be
changed when the task is in the states Active or Replanning. However, only in the
state Replanning, a task can be structurally changed, i.e. the realization of the task
can be modified. The execution state Replanning had been introduced in DYNAMITE
in [Kra98] but abandoned in [Sch02]. In PROCEED, the Replanning state has been
reintroduced because it is particularly useful for rescheduling dynamic task nets.

A task can be aborted from each of the states Active, Suspended or Replanning.
The final state Failed indicates that the task has been unsuccessfully terminated. On
the other hand, if the work of an active task has been successfully completed, the
task is committed whereby its state is changed to Done. The execution state Skipped
has been introduced in PROCEED. This extension was required to cover certain
cases during the enactment of workflow-managed tasks which will be described
in Section 6.3. In DYNAMITE, it was not possible to skip the execution of a task
completely without starting it in the first place. When a task is skipped in PROCEED,
it is considered as successfully terminated although the work has not been done. A
task can only be skipped when it has not been started yet. A running task has to be
either committed or aborted.

Three subsets of the set of states are defined which correspond to the three
different phases of the life cycle of a task: Preparing, Running and Terminated. A

114 5.2 Behavioral Model

InDefinition

Waiting

Preparing

Active

Replanning Suspended

Running

Skipped

Done

Failed

Terminated

Start Commit

Defined Redefine

Restart

Replan

Suspend

Resume

Abort

Abort

Skip

Skip

Abort

Figure 5.12: Finite state machine defining the life cycle of a task.

sequential

Active

sequential

simultaneous

standard

DoneActiveWaitingInDefinition Suspended FailedReplanning Skipped

Execution States

Detail Engineering

Installation

Plan

Basic Engineering

Piping

Piping

Installation

Planning

Figure 5.13: Example for an enacted dynamic task net.

task is preparing if it is either in the state InDefinition or Waiting, i.e. it has not
been started yet. If the task is active or temporarily suspended or replanning, it is
considered as running. Finally, a task can be terminated, either successfully if it has
been committed or skipped, or unsuccessfully if its execution failed.

The property values of a task may only be changed in the states InDefinition, Active
and Replanning. A task which has one of these states is called editable. Structural
changes to the realization of a task are only allowed if the task is in one of the states
InDefinition or Replanning. When a task is in one of these states it is considered as
plannable.

Chapter 5 Timed Dynamic Task Nets 115

In Figure 5.13, an example of an enacted dynamic task net is depicted. Several
behavioral aspects are visualized in addition to the task net structure. The control
flows are labeled with their semantics (cf. Section 4.3.2) and the tasks have execution
states. The symbols which are used to represent the execution states of tasks are
defined in the legend at the bottom of the figure.

5.2.2 Behavioral Constraints

The finite state automaton defined in Section 5.2.1 already constrains the allowed
state transitions of a task. In addition to that, further constraints are imposed by the
context of a task which includes the parent task, the subtasks and the predecessors
and successors with respect to control and feedback flow relationships.

Definitions

For the definition of behavioral invariants, some additional definitions are required.
The set States := {InDefinition, Waiting, Active, Suspended, Replanning, Failed,
Skipped, Done} contains all available execution states of a task. The following subsets
of the set States are defined.

• Preparing := {InDefinition, Waiting}

• Running := {Active, Suspended}

• Terminated := {Failed, Skipped, Done}

• Plannable := {InDefinition, Replanning}

• Editable := {InDefinition, Replanning, Active}

For every task Task ∈ Tasks the following property is defined.

• Task.State ∈ States denotes the current execution state of the task.

For every control flow c ∈ ControlFlows the following attribute is defined.

• c.Semantics ∈ {Standard, Simultaneous, Sequential} is the semantics of the con-
trol flow.

For reasons of simplification, the following set-valued properties are defined for a
task Task ∈ Tasks.

• Task.StdCFs := {c|c ∈ Task.ControlFlows∧ c.Semantics = Standard}

• Task.SimCFs := {c|c ∈ Task.ControlFlows∧ c.Semantics = Simultaneous}

• Task.SeqCFs := {c|c ∈ Task.ControlFlows∧ c.Semantics = Sequential}

116 5.2 Behavioral Model

Behavioral Invariants

The behavioral invariants which are defined in the following have been in large part
adopted from DYNAMITE [Kra98, Sch02]. However, the defined invariants deviate
from those defined in [Sch02] in that the execution states RePlanning and Skipped
have been added to the finite state automaton. Additional constraints have been
defined which refer to the task assignment for the responsible resource of a task.

Several invariants are defined with respect to vertical task relationships, i.e. the
relation of a task to its parent and its subtasks.

• A task that has never been started cannot have a terminated parent task, and the
subtasks must also be preparing.

Task.State ∈ Preparing⇒ (∀t ∈ Task.Subtasks(t.State ∈ Preparing)∧
¬(Task.Parent ∈ Terminated)) (5.16)

• A task that is running and not suspended has to have a running but not suspended
parent task. This constraint demands that the subtasks of a suspended task may
not be active or replanning.

(Task.State = Active∨ Task.State = Replanning)⇒
(Task.Parent.State = Active∨ Task.Parent.State = Replanning)

(5.17)

• The parent task of a suspended task has to be running.

Task.State = Suspended⇒ (Task.Parent.State ∈ Running) (5.18)

• If a task is terminated, all subtasks have to be terminated as well and the parent
task must not be preparing. This implies that a task may only be skipped when
the parent task has been started or skipped.

Task.State ∈ Terminated⇒ (∀t ∈ Task.Subtasks(t.State ∈ Terminated)∧
¬(Task.Parent.State ∈ Preparing)) (5.19)

The last invariant does not demand, that a successfully terminated tasks has only
successfully terminated subtasks, i.e. a task can be committed when a subtask has
failed. The failure of a subtask simply indicates that the assigned resources were
not able to achieve the goals defined for the task. However, additional subtasks
can be defined in which resources continue the work of the failed task and rework
its results. In contrast to that, the failure of a task in a workflow instance which
is enacted in a workflow management system usually leads to the failure of the
whole workflow. This is due to the fact that workflow management systems are often
used to support fully automatic processes. The failure of the whole workflow can
only be prevented by the implementation of so called compensation handlers (cf.
Section 3.4). In development processes, the failure of a task does not necessarily

Chapter 5 Timed Dynamic Task Nets 117

mean that the whole process is condemned to failure. The definition of additional
tasks which make up for the failed task can be regarded as manual compensation.

Besides vertical task relationships, horizontal task relationships have to be con-
sidered as well. Two tasks can be connected by a control flow or a feedback flow.
The execution state changes of tasks connected by control or feedback flows are
constrained by the following invariants.

• The successors of a task may not be terminated before the task. This applies for
all control flow semantics. In particular, it is guaranteed that all predecessors of
a milestone task are terminated before the milestone terminates.

Task.State /∈ Terminated⇒ ∀t ∈ Task.Successors(t.State /∈ Terminated)
(5.20)

• If a task has not been started yet, then its simultaneous successors may not have
been started either.

Task.State ∈ Preparing⇒ ∀c ∈ Task.SimCFs(c.Succ.State ∈ Preparing) (5.21)

• If a task has not been terminated yet, then its sequential successors may not
have been started.

Task.State /∈ Terminated⇒ ∀c ∈ Task.SeqCFs(c.Succ.State ∈ Preparing)
(5.22)

• If two tasks are connected by an active feedback flow, they both may not be
committed.

∀f ∈ FeedbackFlows(f.IsActive = true⇒ f.Source.State = Active∧
f.Target.State /∈ Terminated) (5.23)

The assignment of a responsible resource to a task constrains its allowed execution
state transitions as well.

• To complete the definition of a task, a task assignment for the responsible
resource has to be defined with a required role.

Task.State = Waiting⇒ ∃a ∈ Task.TaskAssignments(a.IsResponsible = true

∧¬undef(a.Role)) (5.24)

• For a task to be started, the responsible resource has to be assigned to the task.

Task.State ∈ Running⇒ ∃a ∈ Task.TaskAssignments(a.IsResponsible = true

∧¬undef(a.Resource)) (5.25)

Document revisions may also constrain the possible state changes of tasks. A task,
which still has an open revision, i.e. a revision which has been created and possibly
inspected but not yet approved, may not be committed.

Task.State = Done⇒ ¬(∃o ∈ Task.OutputParameters(∃r ∈ o.Revisions
(o.IsReleased = false))) (5.26)

118 5.2 Behavioral Model

Pre- and Post-Conditions

The constraints which are imposed by the defined invariants on state change opera-
tions in a dynamic task net have been translated to pre- and post-conditions for state
change operations. Table 5.2 shows the conditions for all possible state changes of
a task which also cover the constraints imposed by the finite state machine which
defines the life cycle of a task. The post-conditions defined in Table 5.2 are fulfilled
after a state change of a task because the following automatic adaptations of the
context of the task are performed by PROCEED.

• When a task is suspended, all active and replanning subtasks are suspended as
well.

• When a task is resumed, all suspended subtasks are resumed as well to the state
they had before the suspension (either Active or Replanning). This adaptation is
not required to re-establish consistency but it is convenient for the user.

• When a task is aborted, all running subtasks are aborted and all preparing
subtasks are skipped. Furthermore all outgoing feedback flows are deactivated.

• When a task is skipped, all subtasks are skipped as well which are necessarily all
preparing.

5.2.3 Execution States and Structural Change Operations

Several structural change operations are constrained by the execution states of
the involved tasks. The corresponding invariants could not be formulated in Sec-
tion 5.1.4 since the available execution states of a task have been introduced in
Section 5.2.1. Therefore, this section draws the connection between the structural
and the behavioral model. The constraints imposed by task execution states on
structural change operations are directly defined as pre- and post-conditions of the
corresponding change operations. The underlying invariants are only informally
described. The creation of a feedback flow may require complex adaptations to a
dynamic task net to maintain its consistency with respect to behavioral constraints.
Therefore, these adaptations are described in detail at the end of this section.

Pre- and Post-Conditions

A task is editable if it is in one of the states InDefinition, Active or Replanning,
i.e. the property values of the task may be changed. Structural changes to the
realization of a task are only allowed if it is plannable, i.e. it is in one of the states
InDefinition or Replanning. Furthermore, the execution state of a new task has to
be initialized correctly. These constraints determine the pre- and post-conditions for
structural change operations listed in Table 5.3 which are evaluated by PROCEED in
addition to the structural conditions presented earlier.

Chapter 5 Timed Dynamic Task Nets 119

Operation
Pre-Condition
Post-Condition

Defined(Task)

Task.State = InDefinition∧
∃a ∈ Task.TaskAssignments(a.IsResponsible = true∧
¬undef(a.Resource))
Task.State = Waiting

Redefine(Task)
Task.State = Waiting

Task.State = InDefinition

Start(Task)

Task.State = Waiting∧
Task.Parent.State ∈ {Active, Replanning}∧
(¬∃c ∈ ControlFlows(Task = c.Succ∧ c.Semantics
= Simultaneous∧ c.Pred.State ∈ Preparing))∧
(¬∃c ∈ ControlFlows(Task = c.Succ∧ c.Semantics
= Sequential∧ c.Pred.State /∈ Terminated))∧
(∃a ∈ Task.TaskAssignments(a.IsResponsible = true∧
¬undef(a.Resource)))
Task.State = Active

Replan(Task)
Task.State = Active

Task.State = Replanning

Restart(Task)
Task.State = Replanning

Task.State = Active

Suspend(Task)
Task.State ∈ {Active}
∀t ∈ Task.Subtasks(t.State ∈ Preparing∨
t.State = Suspended∨ t.State ∈ Terminated)

Resume(Task)
Task.State = Suspended∧
Task.Parent.State ∈ {Active, Replanning}
Task.State ∈ {Active}

Commit(Task)

Task.State = Active∧
(∀t ∈ Task.Subtasks(t.State ∈ Terminated))∧
(∀t ∈ Tasks(Task ∈ t.Successors⇒ (t.State ∈ Terminated)))
∧(¬∃f ∈ FeedbackFlows(f.IsActive = true∧
(Task = f.Source∨ Task = f.Target)))∧
¬(∃o ∈ Task.OutputParameters(∃r ∈ o.Revisions
(o.IsReleased = false)))
Task.State = Done

Abort(Task)

Task.State ∈ Running

Task.State = Failed∧
(∀t ∈ Task.Subtasks(t.State ∈ Terminated))∧
(∀f ∈ Task.Feedbacks(f.IsActive = false))

Skip(Task)
Task.State ∈ Preparing

Task.State = Skipped∧
(∀t ∈ Task.Subtasks(t.State = Skipped))

Table 5.2: Pre- and post-conditions for state change operations.

120 5.2 Behavioral Model

Operation
Pre-Condition
Post-Condition

CreateSubtask(p, out s)
p.State ∈ Plannable

s.State = InDefinition

DeleteSubtask(p, s)
p.State ∈ Plannable∧ s.State ∈ Preparing

AddRealization(t, r)
t.State = InDefinition

RemoveRealization(t)
t.State = InDefinition

CreateControlFlow(p, s, out c)

p.Parent.State ∈ Plannable∧
s.Parent.State ∈ Plannable∧
(¬(s.State ∈ Terminated)∨
(p.State ∈ Terminated))
c.Semantics = Standard

DeleteControlFlow(c)
c.Pred.Parent.State ∈ Plannable∧
c.Succ.Parent.State ∈ Plannable

ModifyControlFlow(c, s)

c.Pred.Parent.State ∈ Plannable∧
c.Succ.Parent.State ∈ Plannable

c.Semantics = s∧
(¬(c.Succ.State ∈ Terminated)∨
c.Pred.State ∈ Terminated)∧
(c.Semantics = Simultaneous⇒
(c.Pred.State /∈ Preparing∨
c.Succ.State ∈ Preparing))∧
(c.Semantics = Sequential⇒
(c.Pred.State ∈ Terminated∨
c.Succ.State ∈ Preparing))

CreateFeedbackFlow(s, t, out f)

s.Parent.State ∈ Plannable∧
t.Parent.State ∈ Plannable∧
s.State = Active∧
t.state ∈ Running∪ Preparing
f.IsActive = true

CreateOutputParameter(t)
t.State ∈ Editable

DeleteOutputParameter(o)
o.Task.State ∈ Editable

CreateDataFlow(o, i)
o.Task.Parent.State ∈ Plannable∧
i.TaskParent.State ∈ Plannable

DeleteDataFlow(d)
d.Source.Task.Parent.State ∈ Plannable∧
d.Target.Task.Parent.State ∈ Plannable

Chapter 5 Timed Dynamic Task Nets 121

Operation
Pre-Condition
Post-Condition

ModifyTask(t)
t.State ∈ Editable

CreateTaskAssignment(t, out a)
t.State ∈ Editable

DeleteTaskAssignment(a)

a.Task.State ∈ Editable∧
(a.IsResponsible = false∨
a.Task.State = InDefinition)

ModifyTaskAssignment(a)
a.Task.State ∈ Editable

CreateNewTaskVersion(t, out t′)
t.Parent.State ∈ Plannable∧
t.State ∈ Terminated

t′.State = InDefinition

ProduceRevision(o)
o.Task.State = Active

Table 5.3: Behavioral pre- and post-conditions for structural change operations.

Feedback Handling

The pre-condition for the creation of a feedback flow demands, that the target task
is not terminated. In the formal notation used for the conditions, different versions
of the same task are regarded as two distinct tasks. To define a feedback flow which
targets a terminated task, a new version of the task has to be created first.

Several structural and behavioral constraints apply for the creation of a feedback
flow between two tasks. In particular, the target of a feedback flow may not be
terminated, which is why a new version of a terminated task is created when a
feedback is created which has the terminated task as its target. In the UML class
diagram of Figure 5.2, the association NextVersion is defined for the class Task.
Two objects of the class which represent subsequent versions of the same task
are connected via this association. New task versions have to be created for all
terminated successors as well, in order to reach a consistent enactment state of the
dynamic task net.

All new versions of tasks are connected by control flows with the same semantics
as defined between the old versions of the tasks. However, the semantics of a control
flow from a new version of a task to a running successor always has the standard
semantics. When the parent task of a versioned task is already terminated as well, a
new version has to be created for this task too. The realization of a new task version
can be empty. However, if the old version of the task defined a complex subprocess,
it is convenient for the user to have the subnet automatically created according to
the old version of the task.

Figure 5.14 shows an example which incorporates all aspects of task versioning

122 5.2 Behavioral Model

seqsim

Active

PFDs

Basic

Engineering

Initial P&IDs

Detail

Engineering
seq

simDetailed

P&IDs

Basic

Engineering

Initial P&IDssim seq
Detailed

P&IDs

std

std

Reaction

P&ID

Dissolution

P&ID

Dissolution

P&ID

Reaction

P&ID

Active

Piping

std

std

Figure 5.14: Versioning of a terminated task.

due to the creation of a feedback flow. Different versions of a task are connected by
dotted arrows directed from the older version to the new version. The task Initial
P&IDs has been terminated earlier. During the execution of the task Piping, errors
are detected in the results of the task Initial P&IDs. This requires the creation of a
new task version of the task Initial P&IDs and the definition of a feedback flow from
Piping to the new task version. Since the parent task Basic Engineering is already
terminated and no feedback has been defined on the level of the parent tasks yet,
first, a new version of the task Basic Engineering is created and defined as the target
of a feedback flow from Detail Engineering. Not all subtasks of Basic Engineering
are versioned but only the task Initial P&IDs. However, the realization of the task
Initial P&IDs is completely created anew containing new versions of all subtasks
of the previous version. New task versions have to be created for all terminated
successor tasks of Initial P&IDs. The semantics of the control flows between new
task versions are the same as the semantics of the corresponding control flows
between the old versions. Only when the targets of the new control flows have not
been versioned and are still running, the semantics is changed to standard like
for the control flows targeting Detail Engineering and Piping. This adaptation is
required for behavioral consistency because the targets of the new control flows
are already running. Parameters and data flows are not depicted in Figure 5.14.
The new version of a task has by default the same input and output parameters as
the previous versions. Naturally, no produced revisions are associated with these
parameters yet. Data flows are automatically created according to the data flows

Chapter 5 Timed Dynamic Task Nets 123

defined for the old task versions. New parameters may be introduced for the new
task versions, e.g. to accept an error report from a feedback source.

5.3 Timing Model

The DYNAMITE meta-model did not define any properties for tasks, control flows or
resources for the purpose of time management in dynamic task nets. The AHEAD
prototype did not provide any functionality for scheduling the tasks of a process
model instance. Therefore, the TNT meta-model extends several entities which have
been adopted from DYNAMITE by the required properties to enable the temporal
modeling of processes and the scheduling of tasks. The values of time related
properties have to be consistent in a dynamic task net. Therefore, timing consistency
constraints are defined which are enforced by the PROCEED system.

5.3.1 Properties for Time Management

For the planning and scheduling of tasks in a dynamic task net, several properties
have been defined for the entities task, task assignment, control flow and resource.
Figure 5.15 shows the entities which have been extended by new time management
properties. Besides the extension of existing entities by new properties, the class
WorkCalendar has been introduced to define the working days of resources and tasks.
Furthermore, the class WorkloadDistribution has been introduced to store the daily
planned and actual workload of task assignments.

The time management properties can be divided into the following categories.

Planning data refers to all data that is specified in the project planning phase
before scheduling, e.g. required workload and budget.

Manually set time constraints are the release and due dates of tasks, but also
lag times defined for control flows.

Computed constraint dates result from critical path analysis of a dynamic task
net, e.g. earliest possible start times of tasks.

Planned dates are calculated during resource-constrained scheduling and include
besides the planned start and end times of tasks also the planned daily workload
for task assignments and resources.

Actual and forecasted dates are logged and computed respectively during process
enactment. These properties are not part of the timing model but are defined in
the monitoring model. In the following, the new entities and properties for time
management in dynamic task nets are introduced starting with work calendars and
workload distributions.

124 5.3 Timing Model

TaskAssignment

IsResponsible : bool
Workload : int
MaxDailyWorkload : int
/PlannedCost : double

Task

ExecutionState : ExecutionStates
TotalWorkload : int
UsedTotalWorkload : int
UnassignedTotalWorkload : int
TotalDuration : TimeSpan
TotalBudget : double
UsedTotalBudget : double
UnassignedTotalBudget : double
PlannedStartTime : DateTime
EPST : DateTime
LPST : DateTime
ReleaseDate : DateTime
PlannedEndTime : DateTime
EPET : DateTime
LPET : DateTime
DueDate : DateTime

User

CostPerHour : double
CostPerUsage : double

*

1 *

1

ControlFlow

ExecutionOrder : ExecutionOrders
LagTime : int1

1 *

*
successor

predecessor

WorkCalendar

TotalWorkload(DateTime d) : int
UsedWorkload(DateTime d) : int
AvailableWorkload(DateTime d) : int

planned workload

WorkloadDistribution

1

1

1 work calendar

unassigned workload 1

Figure 5.15: Entities and properties for time management.

Work Calendars

Because different resources or groups in a project team may have different working
times, work calendars have been introduced in PROCEED. Work calendars allow
to define the working times of tasks and resources individually. For every resource
r ∈ Resources, the property r.WCal ∈ WorkCalendars is defined where WorkCalendars

denotes the set of all possible work calendars. Likewise, for every task t ∈ Tasks,
the property t.WCal ∈ WorkCalendars is defined.

A work calendar defines for every day the number of totally available working
hours. This way, weekends, holidays, days of illness and other exceptions can be
taken into account during scheduling. Furthermore, a work calendar can store the
used working hours per day.

A work calendar defines a regular work week and a set of exceptions from the
normal working days. The available work weeks in PROCEED are the 5-day, 6-day
and 7-day work week. For design tasks, the common work week is the 5-day week
which is used as the default in PROCEED. The alternatives 6-day and 7-day work
week are common for construction or transportation tasks. For all dates which
deviate from the regular work week of the calendar with respect to the totally
available working hours, exceptions are stored in the work calendar. For example,

Chapter 5 Timed Dynamic Task Nets 125

the calendar of a resource may define exceptions for dates which are work days
according to the regular work week but where the resource is not available due to
vacation, illness, trainings, or work in another project. In the work calendar of a
task, general holidays may be stored as exceptions from the regular work week. It is
also possible to define exceptions for dates which are no work days according to the
regular work week but for which working hours shall be available.

For every work calendar cal ∈ WorkCalendars, the following three methods are
defined where the set Dates contains all possible dates.

Total Workload The method cal.TWL(d) ∈N returns the number of totally available
working hours for the date d ∈ Dates.

Used Workload The method cal.UWL(d) ∈N returns the number of used working
hours for the date d ∈ Dates.

Available Workload The method cal.AWL(d) ∈N returns the number of available
working hours for the date d ∈ Dates which is computed as

cal.AWL(d) = cal.TWL(d)− cal.UWL(d)

The work calendar of a resource stores for every day the working hours which
have been scheduled for the task assignments of the resource for this particular day.
The work calendar of a task does not store used working hours. It merely specifies
the regular work week and exceptions, e.g. additional holidays.

During resource-constrained scheduling, the workload of task assignments is
distributed over several days between the planned start and end times of the
corresponding tasks. The property a.PlannedWorkload ∈ WorkloadDistributions is
defined for every task assignment a ∈ TaskAssignments. It defines the planned
working hours for every date.

A workload distribution is basically a mapping of dates to working hours. For
every distr ∈ WorkloadDistributions the method distr.Workload(d) ∈N is defined
which returns the workload for a date d ∈ Dates. A workload distribution stores no
information about the work calendar which was used to compute the distribution.
However, the daily working hours which are planned for a task assignment are
added to the used workload of the work calendar of the assigned resource.

Figure 5.16 shows an example for the work calendar of a resource. The depicted
cutout of the work calendar of the resource Bach covers several days in May, 2010.
The 13th and 24th of May, 2010 are official holidays, and the 14th is a personal
holiday of the resource Bach. Therefore, the total workload for these dates is zero
while all other days have eight hours total workload each. The resource Bach has
two task assignments in the project in the depicted time frame (the corresponding
tasks are not depicted). The task assignments have already been scheduled, i.e. the
workload has been distributed over several days. The daily planned workload of the
task assignments sums up to the used workload in the work calendar of the resource
Bach. From this, the available workload is derived which is zero in the work week

126 5.3 Timing Model

Bach (Mec. Eng.) 8 MHR

Mo Di Mi Do Fr Sa So
8 8 8 0 0 0 0

Mo Di Mi Do Fr Sa So
8 8 8 8 8 0 0

Mo Di Mi
0 8 8

Bach (Mechanical Engineer) 48 MHR

10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26Date (May 2010)
Day of the week
Total Workload

6 6 6 0 0 0 0 8 8 8 8 8 0 0 0 0 0Used Workload
2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 8 8Available Workload

6 6 6 0 0 0 0 6 6 6 6 6

17 18 19 20 21
2 2 2 2 2

Date (May 2010)
Planned Workload

10 11 12 13 14 15 16 17 18 19 20 21

Work calendar of resource Bach

Task assignments of resource Bach

6

2

Figure 5.16: Example for a work calendar and workload distributions.

from 17th to 21st of May. Therefore, no more tasks can be assigned to the resource
Bach in this week.

The usage of work calendars for resources is a way to realize multi-project man-
agement. For those days on which a resource is not available in the current project
because he is working in another project, an exception is stored in the work calendar
specifying less available working hours than the full work day would provide. When
the tasks in the current project are scheduled, the unavailability of resources due to
their work in other projects is taken into account. This is a practical approach for
aligning the schedules of several different projects. It does not lead to a globally
optimal schedule over all projects but results in good feasible schedules.

Planning Data

Project planning involves the assignment of resources to tasks. A resource has a
limited amount of working hours per day which can be used for different tasks. The
cost which arises from the work performed by the resources can be derived from
their planned and actual workload and their individual cost rates. Therefore, for
every Resource ∈ Resources the following properties are defined.

Available workload per day The work calendar Resource.WCal of the resource re-
turns for every date d ∈ Dates the total and available working hours via the
methods WCal.TWL(d) and WCal.AWL(d), respectively.

Cost per hour The property Resource.CpH ∈ R+ specifies the cost of the resource
for one working hour in the currency which is used for budgeting the project.

Cost per usage The property Resource.CpU ∈ R+ specifies the cost of the resource
for its usage in a task. For the sake of simplicity, the cost per usage is always
accrued at the start of the task.

Chapter 5 Timed Dynamic Task Nets 127

Since task assignments are explicitly modeled in PROCEED, the following proper-
ties can be defined for every task assignment a ∈ TaskAssignments.

Workload The property a.Workload ∈N specifies the planned workload for the task
assignment in the unit man hours (MHRS).

Planned Cost The property a.PlannedCost ∈ R+ returns the planned costs of the
task assignment which are derived from the planned workload and the cost rates
of the assigned resource. If no actual resource is assigned yet, the planned cost
for a task assignment cannot be determined and is set to zero by default.

In contrast to workload planning, the budget of task assignments cannot be manu-
ally defined but is derived from the planned workload and the resource costs. As
a consequence of the inherent dynamics in development processes, the assigned
resource may change for a task assignment even during the execution of the task.
The definition of the planned cost has to take this circumstance into account. There-
fore, some additional definitions are required beforehand. For a task assignment
a ∈ TaskAssignments the following properties and methods are defined.

• a.PlannedWorkload.Workload(d) ∈N with d ∈ Dates returns the workload which
has been planned for the task assignment for a particular date as defined by the
workload distribution.

• a.Resource(d) ∈ Resources returns the resource which is assigned to the task
assignment at the date d ∈ Dates which may be a time point in the past, the
current date, or a future point in time. For all future dates, the currently assigned
resource is returned. In particular, the following equation holds.

a.Resource = a.Resource(Today)

where Today ∈ Dates represents the current date.

• a.Resources := {r ∈ Resources|∃d ∈ Dates(a.Resource(d) = r)} is the set of all
resource which have ever been assigned to the task assignment. This accounts
for dynamic plan changes in which a task assignment is transferred from one
resource to another.

Using these properties and methods, the value of the derived property a.PlannedCost
is calculated as follows after the task has been scheduled.

a.PlannedCost := ∑
d∈Dates

(a.Resource(d).CpH · a.PlannedWorkload.Workload(d))+

∑
r∈a.Resources

r.CpU

When the task has not been scheduled yet, but a resource has already been assigned,
the value of the derived property a.PlannedCost is calculated as follows.

a.PlannedCost :=a.Resource.CpH · a.Workload+ a.Resource.CpU

128 5.3 Timing Model

The prerequisites for task scheduling are good estimates for the required workload
and the expected duration of the defined tasks. For this purpose, the following
properties can be set for every Task ∈ Tasks.

Total workload The property Task.TotalWorkload ∈N is the estimated and planned
workload in man hours which is required to complete the task. It includes the
workload of all task assignments and subtasks.

Total duration The property Task.TotalDuration ∈N is the estimated and planned
duration of the task. It can be manually set during project planning or it can be
derived by scheduling the task assignments and subtasks.

Total budget The property Task.TotalBudget ∈ R+ is the overall planned cost of
the task including the cost for all task assignments and subtasks.

In PROCEED, it is possible to assign several resources to a task. Complex tasks
can have resources assigned as well. The total workload of a task includes the sum
of the workload of all task assignments and subtasks but does not necessarily equal
it. The total workload can be set manually and may exceed the workload of the
subtasks and task assignments which results in a workload buffer. Specifying a
workload buffer for a task is a possibility to plan workload which cannot (yet) be
assigned to a specific subtask. This is useful for top-down planning and is required
for rolling-wave planning where tasks of later project phases are not completely
elaborated in the planning phase but only in the execution phase of the project. The
sum of the workload of all subtasks and task assignments is the used total workload
while the remainder from subtracting it from the planned total workload is the
unassigned total workload.

Definition 5.1 (Used total workload) For a task t ∈ Tasks the used total work-
load is defined as

t.UsedTotalWorkload := ∑
s∈t.Subtasks

s.TotalWorkload+ ∑
a∈t.TaskAssignments

a.Workload

(5.27)

Definition 5.2 (Unassigned total workload) For a task t ∈ Tasks, the unassigned
total workload is defined as

t.UnassignedTotalWorkload := t.TotalWorkload− t.UsedTotalWorkload (5.28)

A task can for example have a planned total workload of 1200 MHRS although
it only has two subtasks with 820 MHRS and 216 MHRS total workload respec-
tively. The complex task therefore has a used total workload of 1036 MHRS and an
unassigned total workload of 164 MHRS. This situation is depicted in Figure 5.17.

The unassigned total workload of a task is uniformly distributed over all working
days of the task according to the task’s work calendar. This workload distribution is
used for earned value analysis. The algorithm for resource-constrained scheduling
distributes the unassigned total workload of a task. Furthermore, the distribution

Chapter 5 Timed Dynamic Task Nets 129

Detail Engineering

Total workload:
Used total workload:
Unassigned total workload:

Detailed P&IDs

Total workload:
Used total workload:
Unassigned total workload:

Specification of Machines and Devices

Total workload:
Used total workload:
Unassigned total workload:

216 MHR
0 MHR

216 MHR

820 MHR
220 MHR
600 MHR

1200 MHR
1036 MHR
164 MHR

Process Engineer: 220 MHR

Figure 5.17: Planning of total workload for a complex task.

is automatically updated whenever the total duration of the task is changed or the
unassigned total workload changes due to modifications to task assignments or
subtasks.

In plant engineering projects, experienced estimators estimate the workload of the
top-level tasks in the project based on personal experience, market prices and similar
projects. The resulting estimates are refined while building the work breakdown
structure. At the level of work packages, the duration and resource requirements
are estimated in coordination with the lead engineers. The resulting values are
aggregated on higher levels and the previously estimated values are adapted. This
way, the planning and workload estimation is carried out top-down and bottom-up.
PROCEED supports this bidirectional planning process in the following ways. When
a subtask is defined for a task and a certain amount of man hours is specified as its
workload, these working hours are automatically taken from the total workload of
the parent task, i.e. the used total workload is increased and the unassigned total
workload is decreased while the total workload stays the same. This way, top-down
planning is supported because the workload can be distributed from the respective
parent tasks to their subtasks. When the total workload of a subtasks has to be
increased due to more accurate estimations, or when an additional subtask has to
be created which has not been expected before, then the used total workload may
exceed the planned total workload. This inconsistency is resolved by setting the total
workload to the new used total workload. This way, bottom-up planning is supported
because the workload can be aggregated from the workload of the subtasks.

Besides the planning of workload, a budget has to be planned for every task. It can
be set manually by the project manager or another authorized resource. Just like the
total workload, the total budget of a task may exceed the sum of the budgets of the
subtasks. It is common practice in budget planning to define contingency reserves

130 5.3 Timing Model

in the budget of a task and not to distribute the whole budget to the subtasks. The
total budget of a task includes fixed costs for the task. Since the whole project is also
modeled as a task, the base costs of the project can be included in its total budget.
The used total budget and the unassigned total budget are defined analogously to
the used and unassigned total workload.

Definition 5.3 (Used total budget) For a task t ∈ Tasks, the used total budget is
defined as

t.UsedTotalBudget := ∑
s∈t.Subtasks

s.TotalBudget+ ∑
a∈t.TaskAssignments

a.PlannedCost

(5.29)

Definition 5.4 (Unassigned total budget) For a task t ∈ Tasks, the unassigned
total budget is defined as

t.UnassignedTotalBudget = t.TotalBudget− t.UsedTotalBudget (5.30)

The total duration of a task is the estimated and planned duration which will
presumably be required to complete the task. It is specified as the number of
required work days. The duration of the task in terms of calendar days may be much
higher due to weekends, holidays, and other resource unavailabilities. The total
duration of a task always defines the number of work days, even when it is specified
as "n days".

The total duration can be manually set for a task and may be longer than the
duration of the scheduled subprocess defined by the realization of the task. In that
sense, the total duration is independent of the duration of the subtasks. However,
some basic constraints have to be fulfilled, e.g. the constraint that no subtask may
have a longer duration than the parent task. If the total duration of a subtask is set to
a value that is longer than the total duration of the parent, then the latter has to be
adapted, i.e. the total duration of the parent is set to the duration of the prolonged
subtask. If no total duration is defined for a task, it is automatically derived during
resource-constrained scheduling from the durations of the task assignments and
the subprocess. Resource-constrained scheduling may also reveal that the task
assignments or subtasks require a longer time frame than defined by the total
duration of the parent task when they are scheduled in a time- and resource-feasible
way. In this case, the total duration of the parent task is adapted by the scheduling
algorithm and the user is informed about the change.

Manually Set Time Constraints

In addition to the estimated workload, budget and duration, the project planner
can set constraint dates for tasks. For this purpose he can set fixed dates for the
following two properties of a task t ∈ Tasks.

Release date The task t may not be started before the fixed date specified by the
property t.ReleaseDate ∈ Dates.

Chapter 5 Timed Dynamic Task Nets 131

Due date The task t has to be terminated no later than the fixed date specified by
the property t.DueDate ∈ Dates.

These constraints are taken into account during the scheduling of the tasks in
a dynamic task net. If they are violated during the actual execution of the tasks,
warnings are shown to the respective resource who is responsible for the subprocess.

For a task assignment a ∈ TaskAssignments, the following time constraint can be
specified.

Maximal resource usage per day The property a.MaxDailyWorkload specifies how
many working hours may be scheduled at most per day for the task assignment.

This value is used during resource-constrained scheduling of the task. The workload
of the task assignment is distributed over several days in a way that the planned
workload for the assigned resource does not exceed the maximal resource usage
for those days. This way, tasks can be defined on which a resource needs not work
full time but only for some hours per day. As a consequence, several of these tasks
can be assigned to and executed by the same resource in parallel for several days.
The task assignments which have been presented in Figure 5.16 have a maximal
resource usage per day of six and two man hours respectively, which is visualized by
the downwards oriented arrows.

Control flows in DYNAMITE were only distinguished by their semantics. For
temporal analysis and scheduling it is sometimes necessary to define a lag time for
a control flow. Therefore, the following property can be set for every control flow
c ∈ ControlFlows.

Lag time The property c.LagTime specifies the minimal time which has to pass
between the two events related by the control flow.

Lag times are defined as natural numbers which stand for a number of work days.
The lag time of a control flow is always measured with respect to the work calendar
of the successor task. This is in line with [Har05].

In case of a sequential control flow, a lag time of x work days requires the target
task to start no earlier than x work days after the end time of the source task. In
case of a standard control flow, the target task may not end earlier than x work days
after the end time of the source task. In case of a simultaneous control flow, the lag
time applies to the time span between the respective start times and end times of
the connected tasks. Depending on the durations of the tasks this may lead to even
larger minimal lag times for the start or end times. In Figure 5.18 on the left side,
the duration of the target task Isometries is shorter than the duration of the source
task Piping. Hence, the minimal lag time has to be ensured between the end times
of the tasks. Scheduling of the tasks leads to an even larger lag time between the
planned start times. The opposite case is depicted on the right side of Figure 5.18
where the smaller lag time exits between the start times of the connected tasks
because the duration of Instrumentation is shorter than the duration of Procurement.

Minimal lag times are required to adequately model simultaneous engineering
scenarios where two tasks are executed in parallel but are connected by a simulta-
neous or standard control flow. The control flow requires that the target task may

132 5.3 Timing Model

Piping

Isometries

tLagTime

Instrumentation

Procurement

tLagTime

sim

sim

Figure 5.18: Lag time for a simultaneous control flow.

not be terminated before the source task. This constraint would also be fulfilled
if both tasks would terminate at the same time. However, the intension of the
modeled control flow between the tasks is that the final results of the source task
are incorporated into the results of the target task which requires a certain amount
of time. Therefore, adequate lag times have to be defined for simultaneous and
standard control flows.

In PROCEED, only minimal lag times can be defined but no maximal lag times.
Maximal lag times have been found to be not required in addition to fixed due dates
for modeling temporal constraints on tasks. In contrast to business processes, the
demand of maximal time spans between two events in a process are not common in
the context of development processes. While in business cases it is often required
that a certain task is completed no later than several time units after the completion
of a preceding task, the end times of tasks in development projects are usually
constrained by explicit deadlines for the delivery of certain artifacts. Maximal lag
times could be used for modeling release and due dates of tasks [DH02, p.43],
but release and due dates can be defined explicitly for every task in PROCEED,
so that control flows with maximal lag times are not required for this purpose.
The task relationships of the precedence diagramming method which is commonly
applied for project planning can only define minimal lag times between tasks. The
generalized resource-constrained project scheduling problem (cf. Section 3.2.2)
considers precedence relations of the PDM as well as task release and due dates.
Consequently, a subclass of this problem class is addressed by the scheduling
algorithm implemented in PROCEED.

Computed Constraint Dates

The automatic scheduling in PROCEED is divided into two phases. In the first
phase, critical path analysis is performed on a given task net. The earliest and latest
possible start and end times are calculated and saved for every task. For these
computed constraint dates the following properties are defined for a task t ∈ Tasks.

Earliest possible start time The task t may not be started before the date speci-
fied by the property t.EPST ∈ Dates

Latest possible start time The task t may not be started later than the date spec-
ified by the property t.LPST ∈ Dates

Chapter 5 Timed Dynamic Task Nets 133

Earliest possible end time The task t may not be terminated before the date
specified by the property t.EPET ∈ Dates

Latest possible end time The task t may not be terminated later than the date
specified by the property t.LPET ∈ Dates

Planned Dates

After critical path analysis, resource-constrained scheduling is performed, which
leads to planned start and end dates for tasks and planned daily workload for task
assignments. For every task t ∈ Tasks, the following properties are defined.

Planned start time The property t.PlannedStartTime ∈ Dates defines the date on
which the task should be started according to the schedule.

Planned end time The property t.PlannedEndTime ∈ Dates defines the date on
which the task should be committed according to the schedule.

The workload of all task assignments of a task is distributed over several work
days which lie between the planned start and end times of the task. For every
day, the planned workload per day is specified individually. For a task assignment
a ∈ TaskAssignments, the workload distribution a.PlannedWorkload is defined which
stores the planned workload per day for the task assignment.

• a.PlannedWorkload.Workload(d) ∈N returns the workload which has been
planned for the task assignment for a date d ∈ Dates.

The duration of a task assignment is only implicitly defined by the time frame in
which workload is scheduled.

Default Values

During initial planning of a dynamic task net as well as during dynamic replanning
at project runtime, structural changes and changes to timing properties are made.
When a user of PROCEED creates a new task in a dynamic task net or defines a
feedback flow resulting in a new version of a task, several property values of this
new task (version) have to be set, so that it is correctly embedded into its context.
Furthermore, the property values of a control flow have to be set during its creation.
For some properties of a new task (version) and a new control flow, default values
are defined which are set automatically by PROCEED if the user does not provide
custom values.

New task Table 5.4 shows the default values for the properties of a new task.
Alternative values can be provided by the user upon the creation of the task, which
override the default values. The release date of a new task is set to the release date
of the parent task if the latter is defined. Otherwise it remains undefined. The same
holds for the due date of a new task. If the user does not specify values for the total

134 5.3 Timing Model

Property Default Value
Task.ReleaseDate Task.Parent.ReleaseDate
Task.DueDate Task.Parent.DueDate
Task.TotalWorkload 0
Task.TotalBudget 0
Task.TotalDuration 1 day
Task.EPST, Task.EPET undefined
Task.LPST, Task.LPET
Task.PlannedStartTime max{Today, Task.Parent.PlannedStartTime}
Task.PlannedEndTime Task.PlannedStartTime

Table 5.4: Default property values for a new subtask.

workload, budget and duration of a new task, they are initialized with zero man
hours, zero amount of money, and one day, respectively. The computed constraint
dates are not set until the task is scheduled for the first time. The planned start time
is set to the maximum of the current date (Today ∈ Dates) and the planned start time
of the parent task. This way, the task is preliminary scheduled in a consistent way. If
the current date is not a working day, the next working day in the work calendar of
the task is used instead. Since the total duration is set to one day by default, the
planned end time is set to the same date as the planned start time.

Definition of task assignments In PROCEED, the duration of a task and the
total workload can be defined independently. The total workload of a task can
be distributed to task assignments and subtasks. Supporting tool functionality is
provided for the definition of tasks and task assignments. The following functions
ease the definition of task assignments.

• When the user has defined the total duration and the total workload of a task,
PROCEED computes the number of resources which would be necessary to
perform the work in the specified time frame for the project’s default maximal
resource usage per day. For example, for a workload of 800 MHRS over 10
work days, 10 resources would be required assuming a maximal resource usage
of 8 MHRS per day. The computed value can be used for planning the task
assignments and subtasks.

• When a user creates a new task assignment for a task, PROCEED computes the
maximal workload which a resource can perform over the total duration of the
task considering the maximal daily workload specified for the task assignment.
This maximal planned workload can be used to create a task assignment which
lasts for the whole duration of the task. A larger value for the planned workload
of the task assignment would increase the total duration of the task during
resource-constrained scheduling.

• Task assignments for additional resources can be used to assign resources to tasks
which have no subtasks yet. At a later planning stage, these task assignments

Chapter 5 Timed Dynamic Task Nets 135

may have to be transformed to regular subtasks. PROCEED offers a one-click
mechanism for this transformation.

New task version A new version of a task is created when changes to the results
of the task are required after its termination. The new task version is inserted
into the dynamic task net and is connected to predecessor and successor tasks
as described in Section 5.2. The default values for the properties of a new task
version are slightly different to the values for a new task. Table 5.5 shows the
default values for the properties of a new task version. The release date of the new
task version is set to the current date. This setting is required to obtain correct
earliest possible start and end times for the new task version during critical path
analysis. The due date is set to the due date of the parent task. A new version of
a task has by default the same task assignments with the same required roles and
assigned resources as the previous version. This ensures that the work which has to
be continued or revised is performed by the same resources. The assignments can
be manually changed by the responsible resource if previously assigned resources
are not available. When a new version of a task is created, the user who performed
the operation is asked to provide a percentage estimate for the relative required
workload, budget and duration for the new task version compared to the previous
version. Since the creation of a new task version means, that the results of the
previous version have to be revised and reworked, the required workload is usually
less than for the previous version. From the estimated percentage value, the total
workload, budget and duration of the new task version are computed as well as the
planned workload of all task assignments by multiplying it with the values of the
previous task version. Since for every subtask a new version is created as well, the
specified percentage value is also used to calculate the respective property values
of the new versions of the subtasks. If the user does not provide a percentage value
for the planning data, a default of 100% is used. The computed constraint dates are
set to the values of the parent task, so that the task will be scheduled to a consistent
time frame during rescheduling. The new task version is preliminary scheduled for
the current date.

New control flow A new control flow relationship has the standard semantics and
a time lag of zero by default. Thereby it imposes the least constraints on the dates
of the connected tasks. A new control flow which has been created in the course
of task versioning, i.e. which connects a new task version with another task, has
by default the same semantics and lag time as the control flow which is defined
between the previous versions of the tasks. In the case of task versioning, it is often
required to manually adapt the lag time of new control flows.

Task termination When a task is terminated, then its actual end time is set to
the current date. Furthermore, several property values of the task are adapted
depending on its final execution state. These changes cannot be influenced by the
user.

136 5.3 Timing Model

Property Default Value
Task.ReleaseDate Today

Task.DueDate Task.Parent.DueDate
Task.TotalWorkload User estimated percentage of

workload of previous version
Task.TotalBudget User estimated percentage of

budget of previous version
Task.TotalDuration User estimated percentage of

duration of previous version
Task.EPST, Task.EPET according values of parent task
Task.LPST, Task.LPET
Task.PlannedStartTime Today

Task.PlannedEndTime Task.PlannedStartTime+ Task.TotalDuration
w.r.t. the work calendar of the task

Table 5.5: Default property values for a new task version.

• Committed and aborted task

– The planned end time is set to the actual end time, and the total duration is
adapted accordingly.

– Planned workload which has been distributed for dates after the actual end
time is deleted and subtracted from the total workload. This applies to the
planned workload of all task assignments and the unassigned total workload
of the task.

– Accordingly, the planned costs for these dates are subtracted from the total
budget.

• Skipped task

– The planned start and end times are set to the current date.

– The total duration is set to zero work days.

– Planned workload which has been distributed for task assignments and the
task is deleted and the total workload is set to zero work hours.

– Actual resources are removed from the task assignments.

– The total budget is set to zero.

The planned end time and total duration of a committed or aborted task are
automatically adapted to the actual values. This constitutes an automatic adaptation
of the plan to the actual performance. In contrast to running tasks, the user does
not have the choice whether he wants to align the plan to the actual performance
or not. The scheduling algorithm which will be described in Chapter 7 uses the
planned dates of terminated tasks to schedule their successors. If the planned end
time of a committed or failed task would not be set to the actual end time, then the
successors would possibly be scheduled to late.

Chapter 5 Timed Dynamic Task Nets 137

In contrast to the planned end time and the total duration, the distributed planned
workload of a committed or aborted task is not aligned to the actual values. The
planned workload which has been scheduled for dates later than the actual end time
of the task is deleted because the work will not be performed anymore. However, the
planned daily workload which has been distributed over the actual duration of the
task remains unchanged and may therefore deviate from the actual daily workload.

A task which is skipped is not removed from the dynamic task net for reasons of
traceability. However, its planning data is deleted so that it does not contribute to
the used total workload and budget of the parent task anymore. Since a skipped
task is terminated, it will not be (re)scheduled. The planned start and end times are
set to the current date, so that successors may be started or terminated depending
on the defined control flows.

The automatic changes to the the planned end time, the total workload, and the
total budget of a terminated task override the originally planned values. In these
cases, the traceability of plan changes is not provided by the dynamic task net.
Therefore, a project data warehouse is used to store successive plan states over the
duration of a project. This project data warehouse will be introduced in Chapter 8.

5.3.2 Timing Consistency Constraints

Besides structural and behavioral constraints which were already defined in DYNA-
MITE, dynamic task nets in PROCEED must adhere to timing consistency constraints
as well. There are different types of constraints which are related to the timing
properties of tasks. An example of a timing consistency constraint is that the earliest
possible start time of a task always has to be less or equal to the latest possible
start time. An example of a different constraint is that the actual end time of a
task must not exceed the planned end time. The first constraint is enforced by
PROCEED but not the latter since it is common that tasks are delayed in a project.
The strict enforcement of the second constraint would render PROCEED useless
for practice. A violation of the second constraint merely indicates a deviation of
the actual performance of a task from the plan. These deviations are covered by
monitoring constraints which will be described in Section 5.4.

Timing consistency constraints must not be violated, since this would lead to
clearly inconsistent management data. Therefore, timing consistency constraints
are also called strict constraints to be distinguished from the monitoring constraints
which may be violated and are therefore also called non-strict constraints. All
timing consistency constraints have in common that they can only be violated due to
user actions, in contrast to monitoring constraints which may also be violated just
because time proceeds. Violations of timing consistency constraints refer to:

• Inconsistent planning data

• Inconsistent time constraints and computed constraint dates

• Inconsistent planned dates

138 5.3 Timing Model

• Inconsistencies between planned dates and time constraints or computed con-
straint dates

The first two types of strict constraints may never be violated. When a user action
would lead to an inconsistent state of the dynamic task net, PROCEED proposes an
alternative or additional change which resolves the inconsistency. The user may
accept this change or cancel his action. The latter two types of timing consistency
constraints may be violated temporarily, but only during the (re)planning of the
corresponding subprocess, i.e. the planned dates of tasks may only be inconsistent
with each other, with time constraints, or with computed constraint dates as long as
the respective parent task is in the state InDefinition or Replanning.

In the following, the timing consistency constraints are formally defined. Two dates
d1, d2 ∈ Dates can be compared using the operators <,≤,>,≥ which determine if a
date is earlier or later than the other respectively. Time spans like durations and lag
times are defined as natural numbers which stand for the number of work days. If a
time span is subtracted from a date, the resulting date is obtained by going back in
time for the specified number of work days with respect to the work calendar of the
task or resource for which the date is defined. As described earlier, the lag time of a
control flow is always measured with respect to the work calendar of the successor
task. Several properties are compared in the following constraints which may have
undefined values, e.g. the due date of a task may be undefined. In this case, no
constraint violation can be determined. Therefore, the corresponding formulas
evaluate to true if one of the compared dates is undefined. A formula (e1.p1 op e2.p2)
for two properties p1, p2 of two entities e1 and e2 and an operator op ∈ {<,≤,>,≥}
is actually evaluated as (undef(e1.p1) ∨ undef(e2.p2) ∨ e1.p1 op e2.p2). For reasons of
simplification, the additional subformulas for checking whether the properties are
defined, are not shown in the following constraints.

The planning data for tasks has to be consistent. The workload, budget and
duration of a task may be planned independently of the respective properties of
its realization. However, the following timing consistency constraints have to be
fulfilled at any time, even during the (re-)planning of a task.

Task.TotalWorkload ≥ Task.UsedTotalWorkload (5.31)

Task.TotalBudget ≥ Task.UsedTotalBudget (5.32)

Task.TotalDuration ≥ max{s.TotalDuration|s ∈ Task.Subtasks} (5.33)

If a user tries to change the total workload, budget, or duration of a task in a
way that would violate one of the constraints (5.31) to (5.33), then alternative
or compensating changes are proposed by PROCEED. The user may accept these
changes or his operation is discarded.

Several time constraints may be set manually by the user: The release and due
dates of a task, and the lag times of control flows. These time constraints have to be

Chapter 5 Timed Dynamic Task Nets 139

consistent with each other.

Task.ReleaseDate ≤ Task.DueDate (5.34)

Task.ReleaseDate ≥ Task.Parent.ReleaseDate (5.35)

Task.DueDate ≤ Task.Parent.DueDate (5.36)

∀c ∈ Task.StdCFs(Task.DueDate ≤ c.Succ.DueDate− c.LagTime) (5.37)

∀c ∈ Task.SimCFs(Task.DueDate ≤ c.Succ.DueDate− c.LagTime) (5.38)

∀c ∈ Task.SimCFs(Task.ReleaseDate ≤ c.Succ.ReleaseDate− c.LagTime)
(5.39)

∀f ∈ Task.ActiveFeedbacks(Task.DueDate ≥ f.Target.DueDate) (5.40)

During scheduling, critical path analysis is performed and the earliest and latest
start and end times of all tasks are computed. These computed constraint dates
have to be consistent with each other and with the manually set constraint dates. A
scheduling pass (re-)establishes this consistency. First of all, the computed constraint
dates have to be consistent with each other. These constraints cannot be violated by
user actions since they only refer to computed values.

Task.EPST ≤ Task.EPET− Task.TotalDuration (5.41)

Task.EPET ≤ Task.LPET (5.42)

Task.EPST ≤ Task.LPST (5.43)

Task.LPST ≤ Task.LPET− Task.TotalDuration (5.44)

Task.EPST ≥ Task.Parent.EPST (5.45)

Task.LPST ≥ Task.Parent.LPST (5.46)

Task.EPET ≤ Task.Parent.EPET (5.47)

Task.LPET ≤ Task.Parent.LPET (5.48)

Furthermore, the computed constraint dates have to be consistent with the manually
set constraint dates.

Task.ReleaseDate ≤ Task.EPST (5.49)

Task.DueDate ≥ Task.LPET (5.50)

Finally, the defined control and feedback flows impose constraints on the computed

140 5.3 Timing Model

constraint dates.

∀c ∈ Task.StdCFs(Task.EPET ≤ c.Succ.EPET− c.LagTime) (5.51)

∀c ∈ Task.StdCFs(Task.LPET ≤ c.Succ.LPET− c.LagTime) (5.52)

∀c ∈ Task.SimCFs(Task.EPET ≤ c.Succ.EPET− c.LagTime) (5.53)

∀c ∈ Task.SimCFs(Task.LPET ≤ c.Succ.LPET− c.LagTime) (5.54)

∀c ∈ Task.SimCFs(Task.EPST ≤ c.Succ.EPST− c.LagTime) (5.55)

∀c ∈ Task.SimCFs(Task.LPST ≤ c.Succ.LPST− c.LagTime) (5.56)

∀c ∈ Task.SeqCFs(Task.EPET ≤ c.Succ.EPST− c.LagTime) (5.57)

∀c ∈ Task.SeqCFs(Task.LPET ≤ c.Succ.LPST− c.LagTime) (5.58)

∀f ∈ Task.ActiveFeedbacks(Task.EPET ≥ f.Target.EPET) (5.59)

∀f ∈ Task.ActiveFeedbacks(Task.LPET ≥ f.Target.LPET) (5.60)

After a successful scheduling pass, the user may change the manually set constraint
dates as well as the lag times and the semantics of control flows. If a constraint
is violated by this change, the corresponding subprocess has to be rescheduled to
re-establish consistency.

The automatic resource-constrained scheduling which is implemented in PRO-
CEED generates a consistent schedule and sets the values of the planned dates
of tasks. The following timing consistency constraints have to be fulfilled for the
planned dates to be consistent. Manual changes to the planned dates may lead to
inconsistencies which may remain unresolved until scheduling is performed again.

Task.PlannedStartTime = Task.PlannedEndTime− Task.TotalDuration (5.61)

Task.PlannedStartTime ≤ Task.PlannedEndTime (5.62)

Task.PlannedStartTime ≥ Task.Parent.PlannedStartTime (5.63)

Task.PlannedEndTime ≤ Task.Parent.PlannedEndTime (5.64)

∀c ∈ Task.StdCFs(Task.PlannedEndTime ≤
c.Succ.PlannedEndTime− c.LagTime) (5.65)

∀c ∈ Task.SimCFs(Task.PlannedEndTime ≤
c.Succ.PlannedEndTime− c.LagTime) (5.66)

∀c ∈ Task.SimCFs(Task.PlannedStartTime ≤
c.Succ.PlannedStartTime− c.LagTime) (5.67)

∀c ∈ Task.SeqCFs(Task.PlannedEndTime ≤
c.Succ.PlannedStartTime− c.LagTime) (5.68)

∀f ∈ Task.ActiveFeedbacks(Task.PlannedEndTime ≥
f.Target.PlannedEndTime) (5.69)

The scheduled workload for a task assignment has to be consistent with its planned

Chapter 5 Timed Dynamic Task Nets 141

workload.

TaskAssignment.Workload = ∑
d∈Dates

TaskAssignment.PlannedWorkload.Workload(d)

(5.70)
The scheduled workload for a task assignment has to be consistent with the planned
dates of the corresponding task.

∀d ∈ Dates((d < TaskAssignment.Task.PlannedStartTime∨
d > TaskAssignment.Task.PlannedEndTime)
⇒ TaskAssignment.PlannedWorkload.Workload(d) = 0) (5.71)

Furthermore, the scheduled workload for a task assignment has to be consistent
with the time constraint for the maximal daily workload.

∀d ∈ Dates(TaskAssignment.PlannedWorkload.Workload(d)
≤ TaskAssignment.MaxDailyWorkload) (5.72)

Finally, the resource usage must never exceed the totally available workload of the
resource.

∀r ∈ Resources(∀d ∈ Dates(r.WCal.UWL(d) ≤ r.WCal.TWL(d))) (5.73)

The planned dates of a task have to be consistent with the manually set constraint
dates.

Task.ReleaseDate ≤ Task.PlannedStartTime (5.74)

Task.PlannedEndTime ≤ Task.DueDate (5.75)

Furthermore, the planned dates have to be consistent with the computed constraint
dates.

Task.EPST ≤ Task.PlannedStartTime (5.76)

Task.PlannedStartTime ≤ Task.LPST (5.77)

Task.EPET ≤ Task.PlannedEndTime (5.78)

Task.PlannedEndTime ≤ Task.LPET (5.79)

Post-conditions for structural change operations Structural change opera-
tions to a dynamic task net and changes to the properties of tasks and control flows
may cause violations of timing consistency constraints. Therefore, post-conditions
are defined for change operations, which ensure that the timing data is in a consis-
tent state after the respective operation. These post conditions are derived from
the timing consistency constraints. The post conditions are evaluated before the
management data is actually modified, i.e. the PROCEED system checks whether the
structural change or the new property value would lead to an inconsistent state. If
so, then the operation may be prohibited, compensating changes may be performed,

142 5.3 Timing Model

or the operation is temporarily accepted. The different actions which can be taken
to avoid the inconsistency of the management data with respect to timing properties
will be discussed in Chapter 9. The timing consistency constraints are translated
to formulas which check for an individual task, task assignment, control flow, or
feedback flow whether their timing properties are consistent with the property
values of the tasks and task relationships in its context.

The following formula combines all timing consistency constraints which refer to
the properties of a single task. The formula is evaluated whenever the value of a
timing property of a task is changed.

TaskPropertiesConsistent(t) ≡
t.ReleaseDate ≤ t.DueDate∧

t.EPST ≤ t.EPET ∧ t.EPET ≤ t.LPET∧
t.EPST ≤ t.LPST ∧ t.LPST ≤ t.LPET∧

t.ReleaseDate ≤ t.EPST ∧ t.DueDate ≥ t.LPET∧
t.PlannedStartTime = t.PlannedEndTime− t.TotalDuration∧
t.PlannedStartTime ≤ t.PlannedEndTime∧

(∀a ∈ t.TaskAssignments(∀d ∈ Dates((d < a.Task.PlannedStartTime
∨d > a.Task.PlannedEndTime)⇒ a.PlannedWorkload.Workload(d) = 0)))∧

t.ReleaseDate ≤ t.PlannedStartTime ∧ t.PlannedEndTime ≤ t.DueDate∧
t.EPST ≤ t.PlannedStartTime ∧ t.PlannedStartTime ≤ t.LPST∧
t.EPET ≤ t.PlannedEndTime ∧ t.PlannedEndTime ≤ t.LPET

The following formula checks for an individual task assignment whether the
planned workload equals the distributed workload and whether its share of the
used workload of the corresponding task is not to large. This formula is evaluated
when the planned workload of a task assignment shall be changed or a new task
assignment is created.

TaskAssignmentConsistent(a) ≡
a.Task.TotalWorkload ≥ a.Task.UsedTotalWorkload∧

a.Task.TotalBudget ≥ a.Task.UsedTotalBudget∧
TaskAssignment.Workload =

∑
d∈Dates

TaskAssignment.PlannedWorkload.Workload(d)

The following formula combines all timing consistency constraints which refer
to the relation of a subtask to its parent task. This formula is evaluated for a new
subtask before it is created or when an existing task shall be modified. Furthermore,
it is evaluated for all subtasks of a task when its timing related properties or its

Chapter 5 Timed Dynamic Task Nets 143

realization shall be changed.

SubtaskConsistent(t) ≡
t.Parent.TotalWorkload ≥ t.Parent.UsedTotalWorkload∧

t.Parent.TotalBudget ≥ t.Parent.UsedTotalBudget∧
t.Parent.TotalDuration ≥ t.TotalDuration∧

t.ReleaseDate ≥ t.Parent.ReleaseDate∧
t.DueDate ≤ t.Parent.DueDate∧

t.EPST ≥ t.Parent.EPST ∧ t.LPST ≥ t.Parent.LPST∧
t.EPET ≤ t.Parent.EPET ∧ t.LPET ≤ t.Parent.LPET∧

t.PlannedStartTime ≥ t.Parent.PlannedStartTime∧
t.PlannedEndTime ≤ t.Parent.PlannedEndTime

The formula ControlFlowConsistent(c) checks for a control flow c ∈ ControlFlows

if the timing properties of the connected tasks are consistent with respect to the
semantics and the lag time of the control flow. This formula is evaluated after the
creation of a new control flow or the modification of an existing control flow, and it
is evaluated for all control flows which are connected to a modified task.

ControlFlowConsistent(c) ≡
c.Pred.DueDate ≤ c.Succ.DueDate− c.LagTime∧

c.Pred.EPET ≤ c.Succ.EPET− c.LagTime∧
c.Pred.LPET ≤ c.Succ.LPET− c.LagTime∧

c.Pred.PlannedEndTime ≤ c.Succ.PlannedEndTime− c.LagTime∧
(c.Semantics = Simultaneous⇒

(c.Pred.ReleaseDate ≤ c.Succ.ReleaseDate− c.LagTime∧
c.Pred.EPST ≤ c.Succ.EPST− c.LagTime∧
c.Pred.LPST ≤ c.Succ.LPST− c.LagTime∧

c.Pred.PlannedStartTime ≤ c.Succ.PlannedStartTime− c.LagTime))∧
(c.Semantics = Sequential⇒

(c.Pred.EPET ≤ c.Succ.EPST− c.LagTime∧
c.Pred.LPET ≤ c.Succ.LPST− c.LagTime∧

c.Pred.PlannedEndTime ≤ c.Succ.PlannedStartTime− c.LagTime))

Likewise, the formula FeedbackFlowConsistent(f) checks whether the timing
properties of the feedback flow’s source and target are consistent.

FeedbackFlowConsistent(f) ≡
f.Source.DueDate ≥ f.Target.DueDate∧

f.Source.EPET ≥ f.Target.EPET∧
f.Source.LPET ≥ f.Target.LPET∧

f.Source.PlannedEndTime ≥ f.Target.PlannedEndTime

144 5.4 Monitoring Model

Operation Post-Condition
CreateSubtask(p, out s) TaskConsistent(s)
AddRealization(t, r) TaskConsistent(t)
CreateControlFlow(p, s, out c) ControlFlowConsistent(c)
ModifyControlFlow(c, s) ControlFlowConsistent(c)
CreateFeedbackFlow(s, t, out f) FeedbackFlowConsistent(f)
ModifyTask(t) TaskConsistent(t)
CreateTaskAssignment(t, out a) TaskAssignmentConsistent(a)
ModifyTaskAssignment(a) TaskAssignmentConsistent(a)
CreateNewTaskVersion(t, out t′) TaskConsistent(t′)

Table 5.6: Timing post-conditions for structural change operations.

Finally, the formula TaskConsistent(t) combines the previous formulas to check
for an individual task t ∈ Tasks whether its timing properties are consistent with
each other, with the timing properties of the parent task, the subtasks, the connected
tasks, and the task assignments.

TaskConsistent(t) ≡
TaskPropertiesConsistent(t)∧
∀a ∈ t.TaskAssignments(TaskAssignmentConsistent(a))∧
SubtaskConsistent(t)∧
∀s ∈ t.Subtasks(SubtaskConsistent(s))∧
∀c ∈ t.ControlFlows∪ t.IncomingCFs(ControlFlowConsistent(c))∧
∀f ∈ FeedbackFlows((f.Source = t∨ f.Target = t)

⇒ FeedbackFlowConsistent(f))

Table 5.6 lists all timing related post-conditions for structural change operations
and property change operations. the previously defined formulas are used to check
the consistency of the management data in case the respective operation would be
performed.

5.4 Monitoring Model

The monitoring model defines entities and properties which are required to deter-
mine the current status of an enacted development process, and to evaluate its
performance in comparison to the plan. Furthermore, monitoring constraints are
defined which are evaluated to detect deviations of the actual performance from the
plan.

Chapter 5 Timed Dynamic Task Nets 145

Document

Workload : int
DOC : double

Task

OutputParameter

Revision

Number : int
Inspected : bool
Released : bool
CreationDate : DateTime
InspectionDate: DateTime
ReleaseDate : DateTime

DocumentState

Name : string
Workload : int
DocumentDOC : double

*
1

1

*
1

**
1

1

*

0..1 represents

ExecutionState : ExecutionStates
ActualWorkload : int
ActualCosts : double
StartTime : DateTime
EndTime : DateTime
DOC : double
PlannedDOC : double
CalculationMethod : CalculationMethods
RemainingWorkload : int
IsMilestone : bool
OverallDOC : double
/EarnedValue : double
/PlannedValue : double
/ActualValue : double
/SPI : double
/CPI : double
/ForecastedEndTime : DateTime
/EAC : double

current
State
0..1

TaskAssignment

/ActualWorkload : int
/ActualCost : double

1 *

actual workload

WorkloadDistribution
1

Figure 5.19: Entities and properties for monitoring.

5.4.1 Properties for Monitoring

Several properties have been defined for the entities task, task assignment, docu-
ment and revision for determining the current process status and its performance.
Figure 5.19 shows the entities which have been extended or introduced. The addi-
tional entities and properties can be categorized into the following three categories.

Actual dates The start and end times of tasks and the actual workload spent on
task assignments.

Performance indicators The degree of completion of a task as well as performance
indices computed by means of earned value analysis.

Forecasted values The forecasted duration, end time, and budget at completion of
a task.

These properties will be described in detail in the following.

Actual Dates

The execution states of tasks in a dynamic task net represent the current status of
the enacted process. It can be analyzed which parts of a process model instance

146 5.4 Monitoring Model

have already been started and which have already been terminated. However, this
information is not precise enough for project monitoring. It is required to know
since when a task is active, and how much effort has already been spent on the task.
Therefore, the monitoring model adds properties for actual dates, workload and
costs to the entities task and task assignment.

When a process instance is enacted, tasks are started and eventually committed.
The PROCEED system automatically logs the actual start and end times of all tasks
in a dynamic task net. For this purpose, the following properties are defined for
every task t ∈ Tasks.

Start time The property t.StartTime ∈ Dates is set to the current date when a task
is started.

End time The property t.EndTime ∈ Dates is set to the current date when a task is
committed, aborted, or skipped.

The start time of a task which is skipped is set to the same date as the end time.
The actual start and end times of a task may deviate from its planned start and end
times. This may indicate delays during the enactment of a process model instance.

When resources execute their assigned tasks, they are obliged to register their
actual working hours for their task assignments. The following properties are
defined for every task assignment a ∈ TaskAssignments .

Actual Workload The workload distribution a.ActualWorkloadDistribution stores
the registered actual working hours per day. The property a.ActualWorkload
returns the actual workload for the task assignment in the unit MHRS which is
the sum of all working hours which the assigned resource has spent on the task
assignment down to the present day. It is derived from the registered working
hours of the task assignment.

a.ActualWorkload := ∑
d∈Dates

a.ActualWorkloadDistribution.Workload(d)

Actual Cost The property a.ActualCost is the actual cost of the task assignment
which is derived from the actual workload and the cost rates of the assigned
resource(s).

a.ActualCost := ∑
d∈Dates

(a.Resource(d).CpH·

a.ActualWorkloadDistribution.Workload(d))+

∑
r∈a.Resources

r.CpU

If no actual resource is assigned yet, no actual working hours can be registered
and hence no actual costs are accrued.

Figure 5.20 shows an example of two task assignments with workload distributions
for the planned and actual workload. The registered values may deviate from the

Chapter 5 Timed Dynamic Task Nets 147

Bach (Mec. Eng.) 8 MHR

Mo Di Mi Do Fr Sa So Mo Di Mi Do Fr Sa So Mo Di Mi

Bach (Mechanical Engineer) 48 MHR

10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26Date (May 2010)
Day of the week

6 6 6 0 0 0 0 6 6 6 6 6
7 8 6 0 0 0 0 5 6 8 4 8

17 18 19 20 21
2 2 2 2 2
3 2 0 4 2

Date (May 2010)
Planned Workload
Actual Workload

10 11 12 13 14 15 16 17 18 19 20 21

Figure 5.20: Workload distributions for actual workload of task assignments.

planned values. In contrast to the planned workload, the actual workload spent
on the task assignments is only stored at the task assignments but not in the work
calendars of the respective resources.

The actual workload of the task assignments and subtasks together amount to the
actual workload of a task which is defined analogously to the used total workload of
a task. Likewise, the actual costs of the task assignments and subtasks amount to
the actual costs of the task which is defined analogously to the used total budget of a
task. In Chapter 8, it will be described that earned value analysis can be performed
in PROCEED based on either workload or costs. Depending on which modus is
chosen, the actual value of a task is the actual workload or the actual costs.

Performance Indicators

The goal of progress measurement is to determine the actual performance of the
enacted process and to compare it to the plan. The actual execution states of tasks
in a timed dynamic task net can be compared to the planned execution states which
are derived from the planned dates of the subtasks, e.g. a task has the planned
execution state Active between its planned start and end times. This comparison
can be very effective when a large number of small tasks is considered, e.g. a task
is behind schedule when 70 out of 100 subtasks should be committed but only 50
are already committed. However, for long-running tasks whose progress cannot be
determined in terms of committed subtasks, the execution state does not provide
sufficiently precise information about the actual performance of the task compared
to the plan. When the task is active as planned, the execution state does not show
how much work has already been completed.

For this purpose, the degree of completion (DOC) of a task has to be determined,
which is a quantitative measure for the progress of a task. The DOC does not
represent the mere progress in time, e.g. 6 of the planned 10 work days have passed,
but it represents the progress of a task in terms of accomplished objectives. In the
formal notation, the degree of completion is defined as the property t.DOC for a task
t ∈ Tasks.

148 5.4 Monitoring Model

The degree of completion of a new task (version) is always 0%. The degree of
completion of a task is automatically set to 100% upon termination, even when the
task is aborted or skipped. This is required to ensure that the aggregated degree of
completion of the parent task can reach 100%. According to constraint (5.19) of the
behavioral model, a complex task in a dynamic task net can be committed when all
of its subtasks are terminated, whether successfully or unsuccessfully. Setting the
degree of completion of failed and skipped tasks to 100% is in line with this aspect
of the behavioral semantics of dynamic task nets.

Several different progress measures can be used in PROCEED to compute the
DOC of a task, which will be introduced in Chapter 8. Different progress measures
do not provide different key figures by means of which the progress of a task can
be evaluated, but they are different calculation methods for the DOC of a task
which utilize different sources of information for the computation. The property
CalculationMethod (cf. Figure 5.19) specifies for every task in a dynamic task net
individually, which progress measure shall be used to compute the DOC of the task.
A new version of a task has by default the same calculation method for the DOC as
the previous version. One of the available progress measures requires the estimation
of the remaining workload of a task. The property RemainingWorkload can be set
to the estimated value. The remaining workload of a new task (version) is set by
default to the total workload of the task (version).

A task can be a milestone in a dynamic task net. A task is defined as a milestone
by setting the value of the property IsMilestone to true. In contrast to conventional
project plans, a milestone in PROCEED can have a duration of several days, assigned
resources, and planned workload and costs. The classical concept of a milestone
corresponds to the end event or planned end time of a milestone task. Milestones
can be used for the computation of the DOC of their respective parent tasks. The
property OverallDOC defines the overall degree of completion which is set for the
parent task when a milestone is committed. The property is only used for a milestone
task.

The degree of completion of tasks can also be measured based on the states
of their output documents. For this purpose, the class DocumentState has been
introduced. A document can have several document states which are associated
with a degree of completion of the document and the proportional workload required
to reach the state. The current state of a document can be changed during the
execution of a task by releasing a new document revision which represents the next
state.

While the DOC of a task represents the actual progress of the task in terms of
accomplished objectives, the planned degree of completion (PlannedDOC) indicates
how far a task should have progressed at the current date. It is computed as the quo-
tient of the planned working hours to the current date divided by the total planned
workload of the task. In the formal notation, the planned degree of completion is
defined as the property t.PlannedDOC for a task t ∈ Tasks. If the planned working
hours are non-uniformly distributed over the duration of the task, then this results
in a non-linear increase of the planned degree of completion over time. The planned

Chapter 5 Timed Dynamic Task Nets 149

DOC can be directly compared to the actual DOC of a task to check whether the task
is delayed. However, this direct comparison does not allow any prediction about
how much the task will be delayed when it is finally terminated.

Earned value analysis (cf. Section 3.3.2) enables a more precise evaluation of the
performance of a task. It involves the computation of the EarnedValue, PlannedValue
and ActualValue of a task, which can be determined based on either workload or costs.
From these values, the schedule performance index (SPI) and the cost performance
index (CPI) are computed. The SPI indicates whether the task is on schedule while
the CPI indicates whether the task is expected to stay in budget limits.

Forecasted Values

Progress measurement and earned value analysis allow to forecast the duration, end
time, and budget of a task. Based on the SPI, the expected end time of a task is
forecasted. The calculated value is assigned to the property ForecastedEndTime. The
property is formally defined for a task t ∈ Tasks as t.ForecastedEndTime ∈ Dates.
Depending on the performance of the task, the forecasted end time may be earlier
or later than the planned end time. This information can be used to detect probable
deadline violations and to adapt the plan when required.

The CPI allows to forecast the expected total budget at the end of the task. The
property EAC (Earned at Completion) returns the forecasted value. It is formally
defined for a task t ∈ Tasks as t.EAC ∈ R+. The EAC value indicates whether a task
is likely to exceed its planned total budget.

Graphical Representation

The graphical representation of dynamic task nets which is used in this thesis has
been gradually introduced in Section 2.3 and in the previous sections. At this point
the graphical representation of all entities and properties defined in the structural,
behavioral, timing, and monitoring models shall be presented.

Figure 5.21 shows an abstract example of a dynamic task net. The release date
and the due date of a task are displayed in arrows on top of the task box (RDATE
and DDATE). Dates are generally displayed in the British date format dd/mm/yyyy
with the day of the month (dd), the month (mm) and the year (yyyy), or in the
short version dd/mm. All other properties of a task are arranged below the task
name: The total workload (TW), total duration (TDUR), total budget (TB), the earliest
and latest possible start and end times as well as the total float (TFLOAT) which is
calculated during critical path analysis. Furthermore, the planned start and end
times (PSTART and PEND), the actual start and end times (START and END), and the
degree of completion of a task (DOC) are depicted. The performance indices SPI and
CPI are displayed below the actual dates and the degree of completion. The input
and output parameters of a task are listed below the performance indices. They
can be connected with parameters of other tasks via data flows which connect the
respective boxes in the graphical representation. Depending on the examples, not
all properties of a task will be displayed in the figures presented in this thesis which

150 5.4 Monitoring Model

TBTW

PSTART

TDUR

PEND

START DOC END

Resource (Role) WL

1 2 3 4 5 6 7 8 9

8 8 8 8 8 0 0 8 8

RDATE DDATE

IPAR1 OPAR1

IPAR2

LPST
TFLOAT

LPET

EPST EPET

ES

TBTW

PSTART

TDUR

PEND

START DOC END

IPAR1 OPAR1

OPAR2

ES

TBTW

PSTART

TDUR

PEND

START DOC END

IPAR1 OPAR1

IPAR2 OPAR2

ES

TBTW

PSTART

TDUR

PEND

START DOC END

IPAR1 OPAR1

IPAR2 OPAR2

ES

CF Semantics
[Lag Time]

Active

DNAME
REVNR
STATUS

SPI CPI

DoneActiveWaitingInDefinition Suspended FailedReplanning Skipped

Execution States

8 6 9 7 9 0 0 9 8

Task NameTask Name

Task Name Task Name

8

Figure 5.21: Graphical representation of dynamic task nets.

show dynamic task nets. From the context, the data formats, and the position of the
property boxes, it will be obvious which properties are displayed.

The planned workload for a task assignment is depicted in the top right corner of
the rounded box representing the task assignment (WL). The first line of numbers
specifies the days of the month which depend on the planned dates of the task. The
second line shows the planned daily workload and the third line the actual daily
workload for that task assignment. A downwards oriented arrow at the right side of
the task assignment shows the maximal daily resource usage which is allowed for
the task assignment.

A control flow is labeled with its semantics and the lag time. A feedback flow is
labeled with Active if it is still active.

Document revisions are visualized by document icons containing the document
name (DNAME), the revision number (REVNR), and the status of the document
(STATUS) which has been reached with the depicted revision.

Chapter 5 Timed Dynamic Task Nets 151

5.4.2 Monitoring Constraints

Violations of monitoring constraints are not prohibited by PROCEED. They merely
indicate a bad performance of the enacted process which deviates from the plan. In
that sense, monitoring constraints are non-strict constraints in contrast to structural,
behavioral, and timing consistency constraints, which may not be violated.

While violations of strict constraints can only occur due to manual modifications
of a dynamic task net, monitoring constraints may also be violated simply because
time proceeds. For example, a monitoring constraint demands that a task should
not be committed later than its planned end time. If a task has not been committed
yet, but the planned end time has not been reached yet, the constraint is satisfied.
However, if time proceeds beyond the planned end time, and the task still has not
been committed, then the monitoring constraint is violated. This deviation from the
plan can even be anticipated before the planned end time of the task has actually
passed. PROCEED allows to measure the progress of individual tasks and to forecast
their expected end times. This way, potential constraint violations can be detected
before they occur. In general, violations of monitoring constraints refer to one of the
following two cases.

• Inconsistencies between actual performance and plan,

• Expected inconsistencies between actual performance and plan,
i.e. inconsistencies between forecasted and planned values.

PROCEED identifies violations of monitoring constraints and informs the responsible
user, who can then take different actions to resolve the constraint violations. The
actions which the person responsible can take to resolve the non-strict inconsisten-
cies can be divided into corrective measures or plan changes. Corrective measures
may be to increase the motivation or qualification of the process participants, or to
eliminate existing conflicts [Bur00]. These actions do not cause a change in the man-
agement data but may influence the performance of the process participants. Plan
changes on the other hand affect the management data and may lead to violations
of strict constraints. PROCEED supports the user during replanning to arrive at a
consistent plan, which may require the rescheduling of the affected subprocesses.

In the following, the defined monitoring constraints are presented. The actual
performance of a task should comply to the manually set constraint dates. The
actual start time is compared to the release date to check whether the task has been
started too early. To detect a delayed termination of a task, its execution state has to
be checked after the due date has passed. Comparing the end time of the task to
the due date is not sufficient because the former is undefined as long as the task has
not been terminated yet.

Task.StartTime ≥ Task.ReleaseDate (5.80)

Today > Task.DueDate⇒ Task.State ∈ Terminated (5.81)

The actual performance may comply to the manually set constraint dates but still
may not meet the plan. If a task has been scheduled early in the time window defined

152 5.4 Monitoring Model

by the release and due date but is started and/or finished later than planned, the
corresponding responsible resource should be informed. Therefore, the following
two monitoring constraints are defined.

Today > Task.PlannedStartTime⇒ Task.State /∈ Preparing (5.82)

Today > Task.PlannedEndTime⇒ Task.State ∈ Terminated (5.83)

If the second constraint is fulfilled for a task, then the constraint (5.81) for the due
date is fulfilled as well because the planned end time may not be set to a later date
than the due date according to the timing consistency constraint (5.75). However,
the monitoring constraint (5.81) is not redundant since a task for which a due date
has been defined may not be scheduled, so that the planned date is undefined. In
that case, the constraint for the planned date is not violated, but the constraint for
the due date may be violated.

The following monitoring constraints are refinements of the behavioral constraints
(5.20) to (5.22). They take the lag times of control flows into account.

∀c ∈ Task.StdCFs(Task.EndTime ≤ c.Succ.EndTime− c.LagTime) (5.84)

∀c ∈ Task.SimCFs(Task.EndTime ≤ c.Succ.EndTime− c.LagTime) (5.85)

∀c ∈ Task.SimCFs(Task.StartTime ≤ c.Succ.StartTime− c.LagTime) (5.86)

∀c ∈ Task.SeqCFs(Task.EndTime ≤ c.Succ.StartTime− c.LagTime) (5.87)

If a control flow defines a lag time which is greater than zero, the defined time
span has to pass between the two events which are related by the control flow. For
example, it is not sufficient to require that the successor of a given task which is
connected by a standard control flow is not terminated earlier than the task when
the control flow defines a minimal lag time. In this case the specified minimal lag
time has to pass until the successor can be committed. When the source task of a
control flow has not been started or terminated yet, then the behavioral constraints
(5.20) to (5.22) apply for the execution states of the successors, i.e. the successor
may not be started or terminated in contradiction to the control flow semantics.
When the source task has been terminated, then the constraints (5.84) to (5.87) are
evaluated when the successor is started or terminated to check for consistency with
respect to the defined lag times.

While the corresponding behavioral constraints are strict constraints which are
enforced by PROCEED, the monitoring constraints (5.84) to (5.87) are not strictly
enforced. It is possible to start or commit a task too early with respect to the
minimal lag time defined for an incoming control flow. This non-strict enforcement of
monitoring constraints is required for the applicability of the management approach
in practice. In particular, it is not possible to enforce the timely termination of
tasks. Furthermore, the monitoring constraints (5.84) to (5.87) for control flows
are handled in the same way as the monitoring constraints (5.80) and (5.81) for
manually set constraint dates. In the latter case, it is also possible to start a task
before its release date and to commit it after its due date. These deviations from the
plan merely lead to warnings presented to the corresponding responsible resources.

Chapter 5 Timed Dynamic Task Nets 153

The direct comparison of the degree of completion of a task with its planned
degree of completion is formally defined by the following constraint.

Task.DOC ≥ Task.PlannedDOC (5.88)

The evaluation of this constraint does not lead to a warning when it is violated for
the following reasons. First, the DOC of a task may deviate from the planned DOC
for a longer period of time, so that many warnings would be generated. Second, not
every minor deviation from the planned DOC requires the intervention of the project
manager or another responsible resource. Third, the schedule performance index
computed by means of earned value analysis is a better indicator for the delay of a
task compared to the direct comparison of actual and planned degree of completion.

Expected violations of the constraints (5.81) and (5.83) are detected as violations
of the following two constraints which compare the forecasted end time of a task
with its due date and planned end time.

Task.ForecastedEndTime ≤ Task.DueDate (5.89)

Task.ForecastedEndTime ≤ Task.PlannedEndTime (5.90)

Finally, the actual costs of a task should not exceed its total budget. Furthermore,
the budget at completion can be forecasted and compared to the total budget in
order to detect budget overruns early. The following two monitoring constraints
check whether the actual costs of a task have exceeded or will exceed the total
budget, respectively. While a violation of the former constraint leads to a warning
when the task is terminated, a violation of the latter constraint does not lead to a
warning for the same reasons which have been given for the comparison of actual
and planned DOC.

Task.ActualCosts ≤ Task.TotalBudget (5.91)

Task.EAC ≤ Task.TotalBudget (5.92)

The monitoring constraints (5.80) and (5.84) to (5.87) are evaluated upon the
corresponding behavioral change operations, i.e. starting and committing a task,
to check whether the respective operation has been performed too early. However,
no post-conditions for the behavioral change operations are defined because the
monitoring constraints are not strictly enforced. The monitoring constraints (5.81)
to (5.83) are checked upon every date change to check whether a required behavioral
change operation has been performed. The monitoring constraints (5.88) to (5.92)
are not checked at all by PROCEED. They merely specify constraints which the
user can check manually by inspecting the corresponding property values. The
performance indicators of the earned value analysis are used to visualize deviations
from the plan in the management views of PROCEED in order to call the user’s
attention.

154 5.5 Authorization Model

5.5 Authorization Model

The issues of access control and authorization are of high relevance for all kinds of
information systems which are simultaneously used by several users. Authorization
and access control are terms often mistakenly interchanged. Authorization is the
act of checking to see if a user has the proper permission to access a particular
resource or perform a particular operation, assuming that the user has successfully
authenticated himself. Access control is the general term for the ways of controlling
access to system resources which includes authorization. In development processes,
several process participants with different roles and responsibilities collaborate.
For a process management system which is used by several users, an authorization
model has to be defined.

In the AHEAD prototype (cf. Section 4.6), the access control issue was resolved
by having two separate environments: The management environment and the work
environment. Process participants used only one of the environments depending on
their role in the project. Structural changes to the process model like inserting new
tasks or control flows were only possible in the management environment. In the
work environment, only the tasks assigned to the logged-in user were visible in a
work list, and the user had only limited modification possibilities, e.g. changing the
state of the tasks.

In PROCEED, the strict distinction between management environment and work
environment has been abandoned. In order to enable process participants to manage
their personal tasks and the subprocesses for which they are responsible, the
graphical task net representation is available for all users. However, it is not
desirable that every project team member can view and change all parts of the
dynamic task net. Therefore, a control mechanism has been implemented which
restricts the rights of certain users to view and modify the management data.

In static workflow management systems, the workflow definition is predefined
and does not change structurally during enactment. Therefore, access control and
authorization are usually concerned with the question whether a resource may
execute a defined task and may access the related data. For example, in a claim
assessment task of an insurance process, only the claims manager can approve the
claim and view all the corresponding documents of the particular claim. In contrast,
the authorization model of a dynamic process management systems also has to
cover dynamic changes to running process model instances including task creation,
deletion, and assignment.

The entities and relationships for resource management in PROCEED have been
introduced in Section 5.1.3. Resources can have different functional roles in a
project. The project team is structured hierarchically in sub-teams. Every team has
a team leader who is authorized to direct the other team members. From the project
team structure, a responsibility hierarchy can be derived. For every task in a project,
there is exactly one task assignment for the responsible resource. There may be
several additional task assignments for the additional resources.

The assignment of tasks to resources can be done in two different ways. In the

Chapter 5 Timed Dynamic Task Nets 155

User Permission

Name : stringhas **

Figure 5.22: Related classes for users and permissions.

pull mechanism only the required role is specified for a task assignment. Users who
can play the role in the project are notified about the new task assignment and can
pick up the task. In the push mechanism a task is directly assigned to a specific
resource. In this case the authorization model comes into play, because not every
resource can be allowed to directly assign tasks to other resources. The resources
in a project team are at the same time users of the PROCEED system. Users can
make changes to a dynamic task net. They can add or delete tasks and control flows,
assign resources to tasks, and execute tasks. The authorization model regulates
which operations can be performed by the users.

The access control approach in PROCEED is based on permissions and authoriza-
tion rules. Permissions are assigned to the members of a project team individually.
The authorization rules are defined for the PROCEED system and cannot be changed
by a user. The rules are evaluated by PROCEED to decide whether a user is autho-
rized to perform a certain operation in a given situation. The result of the evaluation
depends on the user’s permissions, his task assignments, and his position in the
project team. The constraints for the activation of permissions take the task net
structure of the running process model instance into account but they are indepen-
dent of any specific process model definition. The authorization model combines
the active and passive access control approaches [TS97]. While some permissions
are only activated in certain contexts defined in the authorization rules, other per-
missions are always activated. The access control policy of the PROCEED system is
configurable for each individual project to support diverse collaboration scenarios.
The details of the access control mechanism in PROCEED have been described in
[Leo08].

5.5.1 Permissions

The authorization model defines permissions which can be assigned to users of the
system. Figure 5.22 shows the extension of the meta-model by the class Permission
which is associated with the class User. Users can be resources in a project team,
and permissions are granted for individual projects. Therefore, a user can have
a certain permission in one project while in another project he does not have the
permission.

For a given project, permissions are assigned to every member of the project team
individually. Permissions are not associated with the functional roles available in
the project. Roles solely define professional competencies and qualifications. The
permissions are assigned to users directly. Therefore, users with the same functional

156 5.5 Authorization Model

role can have different permissions. This flexibility is essential since in development
projects there are often resources with the same qualifications, e.g. mechanical
engineer, but with different responsibilities. The involved administrative overhead
is lowered by default settings which are applied when a user is added to a project
team.

The set of available permissions is fixed for the PROCEED system and cannot be
extended. For every project, the set of predefined permissions is instantiated. There
are two types of permissions, basic permissions and super permissions.

Basic Permissions implement the active access control approach and are activated
depending on the evaluation of certain constraints. Constraints refer to the relation
of a user to a task, e.g. whether the user is the responsible resource of the task. The
following basic permissions are defined in PROCEED.

Manage Tasks This basic permission defines that a user may change the properties
and the realization of tasks.

Assign Tasks This basic permission defines that a user may assign a task to a
resource in the project team.

Execute Tasks This basic permission defines that a user can be assigned to tasks
and can execute the assigned tasks.

Management of a task refers to changes to the plan, e.g. structural changes to
the realization of a task, and to the time management data of a task. Management
also includes the creation of a new task assignment or the change of an existing
task assignment, except for setting the assigned resource. Assignment of a task
means that a user may initially set or change the assigned resource of an existing
task assignment. Task execution refers to all operations which are necessary to
reflect the actual performance of a task in the PROCEED system, i.e. execution state
changes but also the production of document revisions and the registration of actual
working hours.

Super permissions implement the passive access control approach and are always
activated independent of the given context. The following super permissions are
defined in PROCEED.

Manage All Tasks A user who has this super permission may manage every task
in the project.

Assign Any Task to Any Resource A user who has this super permission may
directly assign a task to any resource in the project team.

Execute Any Task A user who has this super permission may execute any task in
the project.

View All Tasks A user who has this super permission may view all tasks in the
project.

Chapter 5 Timed Dynamic Task Nets 157

Resource Management A user who has this super permission may assemble a
project team, and he may assign permissions to users and revoke permissions
from users in the project team.

While there is a super permission to view all tasks in a project, there is no corre-
sponding basic permission, because it would not make sense to deprive a user of the
permission to view the tasks he is assigned to.

Permissions in the PROCEED system are always positive permissions. A user is
authorized to execute a certain operation if he has the required basic permission
and the corresponding constraints are fulfilled. The absence of a basic permission
prohibits a user from performing certain operations.

The access control mechanism implemented in PROCEED is project based. Every
project in the system has its own instance of the permission set. Thus, a user who is
a member in several project teams can have different permissions in the different
projects. For example, a user can be the project manager for a small project in which
he has super permissions, while in another project he has only basic permissions.

Because permissions are assigned to every member of a project team individually,
defaults are applied to alleviate the involved management overhead. When a new
user is added to a project team, all basic permissions are automatically assigned
to the user. This setting can be changed afterwards by the project manager or any
other user who has the permission for resource management in the project.

Permissions can be assigned and revoked from a user at project runtime. These
changes can only be performed by a user who has the super permission for resource
management. The consistency of the management data has to be guaranteed
in this case. If the basic permission for task management or assignment or a
super permission is revoked from a user, then this user cannot perform certain
operations anymore. However, these changes cannot lead to any inconsistencies
of the management data. On the other hand, the basic permission to execute a
task cannot be revoked from a user as long as he is still assigned to a running task,
because otherwise it might happen that there is no user left who is authorized to
execute and commit the task.

5.5.2 Authorization Rules

The authorization rules define which operations a user of the PROCEED system
may perform in a certain situation. Every authorization rule is specified in terms
of permissions and constraints. The contextual information which constrains the
activation of a basic permission defines the relation of the resource to the entity
he wants to modify, e.g. whether he is the responsible resource of a task. The
constraints depend on the operation for which the authorization rule is defined. In
general, an authorization rule is defined as follows.

user is authorized to perform operation ≡
(user has basic permission ∧ constraints are fulfilled)

∨ user has super permission

158 5.5 Authorization Model

A user is allowed to perform the operation if he has the required basic permission
and all constraints are satisfied, or if he has the required super permission.

The sub formulas are defined using the entities and properties introduced in the
previous sections for the definition of structural, behavioral, and timing consis-
tency constraints. Furthermore, additional properties, predicates, and formulas are
defined for reasons of clarity. The predicate Superior(u, u′) defines for two users
u, u′ ∈ Resources that user u is superior to user u′ in the responsibility hierarchy
derived from the project team structure (cf. Section 5.1.3). For a task t ∈ Tasks

the property t.ResponsibleResource returns the responsible resource of the task, so
that the following formula is fulfilled.

∀t ∈ Tasks∀r ∈ Resources(r = t.ResponsibleResource⇔
∃a ∈ t.TaskAssignments(a.IsResponsible = True∧ a.Resource = r)

To determine the authorization of a user, it is often required to check whether the
user is responsible for one of the ancestor tasks of a given task. For this purpose,
the following formula is defined for a task t ∈ Tasks and a user u ∈ Resources.

ResponsibleForAncestor(u, t) ≡ ∃t′ ∈ t.Ancestors(t′.ResponsibleResource = u)

The following predicates define for a user u ∈ Resources that he has the respective
permission in the project.

ManageTasks(u) ManageAllTasks(u)
AssignTasks(u) AssignAnyTask(u)
ExecuteTasks(u) ExecuteAnyTask(u)

ViewAllTasks(u)
ResourceManagement(u)

The authorization rules are defined as formulas AuthorizedToOPNAME(x, u) which
specify under which circumstances a user u ∈ Resources is authorized to perform
the operation OPNAME for the entities specified by the variables x. The formulas are
implicitly all-quantified over all free variables. If not explicitly stated, the variables
t, a, c, i, o, d, r stand for a task, task assignment, control flow, input parameter, output
parameter, data flow, and resource, respectively.

The authorization rules will be explained by means of the example task net
depicted in Figure 5.23 which is the same task net cutout as depicted in Figure 2.8.
Thereby, it is assumed that all involved resources have only basic permissions.

A user u ∈ Resources is authorized to manage a task t ∈ Tasks, if he has the basic
permission for task management and he is responsible for the task or one of the
ancestor tasks. Alternatively, he may manage the task, if he has the super permission

Chapter 5 Timed Dynamic Task Nets 159

Initial P&IDs

sim(10)

seq

Equipment List

Detailed P&IDs

seq

Specification of

Machines and Devicessim

sim(14)

Detail

Engineering

Basic

Engineering

Heer(Project Manager)

PFDs

Heer(Project Manager)

Dreher(Process Engineer)

seq

Baumann

(Process Engineer)

Dreher

(Process Engineer)

Vasileva

(Mechanical Engineer)

Maier(Process Engineer)

Maier(Process Engineer)

P&ID.R

P&ID.D

P&ID.D
Rev 0
DC

P&ID.C

P&ID.R

P&ID.D

P&ID.C

Figure 5.23: Example task net for the application of authorization rules.

to manage all tasks in the project.

AuthorizedToCreateSubtask(t, u) ≡
AuthorizedToDeleteSubtask(t, u) ≡
AuthorizedToAddRealization(t, u) ≡

AuthorizedToRemoveRealization(t, u) ≡
AuthorizedToCreateInputParameter(t, u) ≡
AuthorizedToCreateOutputParameter(t, u) ≡
AuthorizedToDeleteInputParameter(t, u) ≡
AuthorizedToDeleteOutputParameter(t, u) ≡
AuthorizedToCreateTaskAssignment(t, u) ≡ (ManageTasks(u)∧

(t.ResponsibleResource = u∨
ResponsibleForAncestor(u, t)))∨
ManageAllTasks(u) (5.93)

In the example of Figure 5.23, only resource Heer is authorized to manage the task
Basic Engineering.

A user u ∈ Resources is authorized to view a task t ∈ Tasks, if he is assigned to
the task or if he is the responsible resource of one of the ancestor tasks. The user

160 5.5 Authorization Model

can also view all tasks in the work context of one of his tasks, i.e. the immediate
predecessors and successors and the parent task. If he has the super permission to
view all tasks in the project, no restrictions apply for the visibility of tasks. All tasks
which a user may not view are not displayed in the management views of PROCEED.

AuthorizedToViewTask(t, u) ≡
(∃a ∈ t.TaskAssignments(a.Resource = u)∨
ResponsibleForAncestor(u, t)∨
∃t′ ∈ t.Successors∪ t.Predecessors(t′.ResponsibleResource = u)∨
∃s ∈ t.Subtasks(s.ResponsibleResource = u))∨
ViewAllTasks(u) (5.94)

In the example of Figure 5.23, resource Heer can view all depicted tasks while re-
source Maier can only view the tasks PFDs, Equipment List, Specification of Machines
and Devices, and Basic Engineering. However, resource Dreher can also view all
depicted tasks because they form the work context of the tasks for which he is
responsible.

A user u ∈ Resources is authorized to modify or delete a task assignment a ∈ Task

Assignments, if he has the basic permission for task management and he is responsi-
ble for the parent task of the assignment or one of the ancestor tasks. Alternatively,
he may change or delete the task assignment, if he has the super permission to
manage all tasks in the project.

AuthorizedToDeleteTaskAssignment(a, u) ≡
AuthorizedToModifyTaskAssignment(a, u) ≡ (ManageTasks(u)∧

(a.Task.ResponsibleResource = u∨
ResponsibleForAncestor(u, a.Task)))∨
ManageAllTasks(u) (5.95)

A user u ∈ Resources is authorized to create a control flow from the preceding
task p ∈ Tasks to the succeeding task s ∈ Tasks, if he has the basic permission for
task management and he is responsible for the successor s or for the common
ancestor of both tasks. The former allows a responsible resource of a task to
define incoming control flows for his task and subsequently according data flows
for required documents. A user may also create a control flow if he has the super
permission to manage all tasks in the project.

AuthorizedToCreateControlFlow(p, s, u) ≡ (ManageTasks(u)∧
(s.ResponsibleResource = u∨
∃t′ ∈ p.Ancestors∩ s.Ancestors
(t′.ResponsibleResource = u)))∨
ManageAllTasks(u) (5.96)

In the example of Figure 5.23, the control flow from task PFDs to task Initial P&IDs
could have been created by resources Baumann and Heer.

Chapter 5 Timed Dynamic Task Nets 161

The deletion and modification of a control flow c ∈ ControlFlows is reserved
for the responsible resource of the common ancestor of the predecessor and the
successor tasks c.Pred, c.Succ ∈ Tasks.

AuthorizedToDeleteControlFlow(c, u) ≡
AuthorizedToModifyControlFlow(c, u) ≡ (ManageTasks(u)∧

(∃t′ ∈ c.Pred.Ancestors∩ c.Succ.Ancestors
(t′.ResponsibleResource = u)))∨
ManageAllTasks(u) (5.97)

In the example of Figure 5.23, only resource Heer is authorized to delete the control
flow between the tasks PFDs and Initial P&IDs.

A user u ∈ Resources is authorized to create a feedback flow from the source
task s ∈ Tasks to the target task t ∈ Tasks, if he has the basic permission for task
management and he is responsible for the source s or for the common ancestor of
both tasks. If the target task has already been terminated, then the user has to be
authorized to create a new version of this task.

AuthorizedToCreateFeedbackFlow(s, t, u) ≡ (ManageTasks(u)∧
((s.ResponsibleResource = u∨
∃t′ ∈ s.Ancestors∩ t.Ancestors(t′.ResponsibleResource = u))∧
(t.State ∈ Terminated⇒ AuthorizedToCreateNewTaskVersion(t, u))))∨
ManageAllTasks(u) (5.98)

A user u ∈ Resources is authorized to create a new version of a task t ∈ Tasks

if he has the basic permission for task management and he is responsible for the
ancestor of the task and all succeeding terminated tasks. The latter is required
because new versions of the terminated successors will be automatically created as
well. Alternatively, he may create the task version, if he has the super permission to
manage all tasks in the project.

AuthorizedToCreateNewTaskVersion(t, u) ≡ (ManageTasks(u)∧
(ResponsibleForAncestor(u, t)∧
∀s ∈ t.TSuccessors(s.State /∈ Terminated∨ ResponsibleForAncestor(u, s))))∨
ManageAllTasks(u) (5.99)

In the example of Figure 5.23, resource Baumann is not authorized to define a
feedback flow from Initial P&IDs to PFDs because the latter task is already terminated
and resource Baumann may not create a new version of the task. Resource Heer can
define the feedback flow which involves the creation of new versions of the tasks
PFDs and Equipment List.

Analogously to control flows, a user u ∈ Resources is authorized to create a
data flow from an output parameter o ∈ OutputParameters to an input parame-
ter i ∈ InputParameters, if he has the basic permission for task management and

162 5.5 Authorization Model

is responsible for the task of the input parameter or for the common ancestor of
both involved tasks. In the first case, a responsible resource of a task can define
incoming data flows for documents which are required to perform the task.

AuthorizedToCreateDataFlow(o, i, u) ≡ (ManageTasks(u)∧
(i.Task.ResponsibleResource = u∨
∃t′ ∈ o.Task.Ancestors∩
i.Task.Ancestors(t′.ResponsibleResource = u)))∨
ManageAllTasks(u) (5.100)

The control flow and the data flows between Initial P&IDs and Detailed P&IDs could
have been created by resources Dreher and Heer.

The deletion of a data flow c ∈ ControlFlows is reserved for the responsible
resource of the common ancestor of the involved tasks.

AuthorizedToDeleteDataFlow(d, u) ≡ (ManageTasks(u)∧
(∃t′ ∈ d.Source.Task.Ancestors∩
d.Target.Task.Ancestors(t′.ResponsibleResource = u)))∨
ManageAllTasks(u) (5.101)

A responsible resource of a task may assign additional resources to his task, if
he has the basic permission for task assignment. The responsible resource of any
ancestor task may assign resources to the task as well. This includes the assignment
of the responsible resource. In both cases, the assigned resource has to have
the permission to execute tasks, and the assigning user has to be superior to the
assigned resource in the project team. Otherwise, a user is only authorized to assign
tasks, if he has the corresponding super permission.

AuthorizedToAssignRessource(a, r, u) ≡ (AssignTasks(u)∧
(ExecuteTasks(r)∧
(a.Task.ResponsibleResource = u∨
ResponsibleForAncestor(u, a.Task))∧
Superior(u, r)))∨
AssignAnyTask(u) (5.102)

In the example of Figure 5.23, resource Dreher could assign resource Maier to
the task Detailed P&IDs because the former is the team leader of the latter (cf.
Figures 5.9 and 5.10). Resource Heer could assign any resource of the project team
to any task in Figure 5.23, because he is superior to all other resources in the project
team.

There are several operations which are related to the enactment of a process
model instance. First of all, changes to the execution state of a task can be performed
by the responsible resource or a responsible for one of the ancestor tasks depending
on the state transition. The preparation of a task for execution is the responsibility

Chapter 5 Timed Dynamic Task Nets 163

of the responsible resource of an ancestor task, because it involves the assignment
of the responsible resource. A task in the execution state InDefinition may not have
a responsible resource assigned yet.

AuthorizedToDefineTask(t, u) ≡
AuthorizedToRedefineTask(t, u) ≡

AuthorizedToSkipTask(t, u) ≡ (ExecuteTasks(u)∧
ResponsibleForAncestor(u, t))∨
ExecuteAnyTask(u) (5.103)

A task may only be started by the assigned responsible resource. Likewise, it
is reserved to the responsible resource to commit the task. Only the responsible
resource of a task can decide when the work on the task is actually started, and
when all required results have been produced.

AuthorizedToStartTask(t, u) ≡
AuthorizedToCommitTask(t, u) ≡ (ExecuteTasks(u)∧

t.ResponsibleResource = u)∨
ExecuteAnyTask(u) (5.104)

Finally, suspension, replanning and abortion can be performed by the responsible
resource of the task as well as by the responsible resources of the ancestor tasks.
The latter is required in cases when the whole subprocess containing the task shall
be suspended, replanned, or aborted.

AuthorizedToReplanTask(t, u) ≡
AuthorizedToRestartTask(t, u) ≡
AuthorizedToSuspendTask(t, u) ≡
AuthorizedToResumeTask(t, u) ≡
AuthorizedToAbortTask(t, u) ≡ (ExecuteTasks(u)∧

(t.ResponsibleResource = u∨
ResponsibleForAncestor(u, t)))∨
ExecuteAnyTask(u) (5.105)

In the example of Figure 5.23,the active task Initial P&IDs can only be committed by
resource Baumann. However, resource Heer could suspend, replan or abort the task.

The production of document revisions is actually an operation which refers to the
enactment of a task, although it has been defined as part of the structural model.
Every assigned resource can produce document revisions for the output parameter
of a task.

AuthorizedToProduceRevision(o, u) ≡ (ExecuteTasks(u)∧
∃a ∈ o.Task.TaskAssignments(a.Resource = u))∨
ExecuteAnyTask(u) (5.106)

164 5.5 Authorization Model

In the example of Figure 5.23, the depicted document revision has been produced
by resource Baumann.

Besides the production of document revisions, registering working hours is the only
operation which can be performed by assigned resources who are not responsible
for a task. The two operations are required to reflect the actually performed work in
the system but are not associated with any responsibilities.

AuthorizedToRegisterWorkingHours(a, u) ≡ (ExecuteTasks(u)∧
a.Resource = u)∨
ExecuteAnyTask(u) (5.107)

When a task is executed, its degree of completion can be determined inter alia
by direct estimation or by an estimation of the remaining workload required for the
task (cf. Chapter 8). These values may only be specified by the responsible resource
of the task. In particular, additionally assigned resources may not provide estimates.
Since progress measurement is related to the enactment of defined processes, the
basic and super permissions to execute tasks are relevant in this context.

AuthorizedToEstimateProgress(t, u) ≡
AuthorizedToEstimateRemainingWorkload(t, u) ≡ (ExecuteTasks(u)∧

t.ResponsibleResource = u)∨
ExecuteAnyTask(u) (5.108)

With respect to changes to time management properties, different cases have
to be distinguished. The planning data, constraint dates and planned dates of a
task may not be changed by the assigned responsible resource but only by the
responsible resources of the ancestor tasks. Otherwise, a task responsible could
arbitrarily increase the total workload, budget, and duration of his task which is
beyond his area of responsibility. Instead, he can only request the increase of these
values from an authorized resource.

AuthorizedToChangePlanningData(t, u) ≡
AuthorizedToChangeConstraintDate(t, u) ≡

AuthorizedToChangePlannedDate(t, u) ≡ (ManageTasks(u)∧
ResponsibleForAncestor(u, t))∨
ManageAllTasks(u) (5.109)

In the example of Figure 5.23, resource Dreher was not allowed to increase the total
duration of the task PFDs while it was still active. He had to request this duration
increase from resource Heer.

In case of a task assignment, the planned workload can be changed by the
responsible resource of the corresponding task. If an increase does exceed the
unassigned total workload of the task, the authorization rule (5.109) is evaluated to
determine whether the resource may increase the total workload and budget of his

Chapter 5 Timed Dynamic Task Nets 165

task. The responsible resources of a task and its ancestor tasks are authorized to
change the time constraint for the maximal daily workload of a task assignment of
the task.

AuthorizedToChangePlannedWorkload(a, u) ≡
AuthorizedToChangeMaxDailyWorkload(a, u) ≡ (ManageTasks(u)∧

(a.Task.ResponsibleResource = u∨ ResponsibleForAncestor(u, a.Task)))∨
ManageAllTasks(u) (5.110)

The lag time of a control flow may only be changed by the responsible resource of
the common ancestor task.

AuthorizedToChangeLagTime(c, u) ≡ (ManageTasks(u)∧
(∃t′ ∈ c.Pred.Ancestors∩ c.Succ.Ancestors(t′.ResponsibleResource = u)))∨
ManageAllTasks(u) (5.111)

The responsible resource of a task and the responsible resources of the ances-
tor tasks may initiate a scheduling pass for a task in one of the execution states
InDefinition or Replanning. The responsible resource who is not at the same time
responsible for an ancestor task may initiate scheduling, but the changes are only
applied if the planning data and planned dates of the task itself are not affected.

AuthorizedToScheduleTask(t, u) ≡ (ManageTasks(u)∧
(t.ResponsibleResource = u∨
ResponsibleForAncestor(u, t)))∨
ManageAllTasks(u) (5.112)

Finally, there are operations related to resource management. Changes to the
project team structure and changes to the permission settings can only be performed
by a user who has the permission for resource management in the project. The
cost rates and work calendars of resources cannot be changed by a user who has
the resource management permission for the project. Changing the cost rates and
working times of resource is not in the area of responsibility of project managers.

AuthorizedToChangeProjectTeam(u) ≡
AuthorizedToChangePermission(r, u) ≡ ResourceManagement(u) (5.113)

At this point, the approach should be elaborated to distinguish between resource
allocation for a project and restructuring the project team. In practice, a project
manager cannot simply add new resources to his project team but has to request the
resources from line managers or department heads. This distinction has not been
made in PROCEED for reasons of simplification.

The authorization rules defined in this section are evaluated whenever a user tries
to invoke the respective operation. If he is not authorized to perform the operation,
a warning is shown an the operation is not invoked. Furthermore, the functionality
provided by the graphical user interface of PROCEED is adapted according to the
evaluation of authorization rules. Several functions are deactivated if the user is not
authorized to perform the associated operations on the dynamic task net.

166 5.5 Authorization Model

5.5.3 Project-Specific Tailoring of Access Control Policy

With the combination of passive and active access control approaches, the authoriza-
tion model implemented in PROCEED can be tailored to support the management of
dynamic task nets in various ways of collaboration. The permission settings can be
configured for an individual project to support the delegation of tasks from superiors
to subordinates, the collaboration of engineers with equal rights, and even the
observation by progress chasers or consultants.

Usually, a combination of several management styles is required in a plant design
project. The project manager is given the required super permissions to assign
coarse grained tasks directly to the lead-engineers of the different maintenance
groups. The lead-engineers can assign tasks to their team members but not to other
resources. This is realized by the authorization rule for direct task assignment,
which takes the project team structure of the project into account. A lead-engineer
is only given the basic permissions, but since he is the leader of his team, he may
assign tasks directly to his team members. In addition to the direct task assignment,
a task assignment can also be defined by only specifying the required role. Then
a user, who can play this role, can pick up the task. This mode of task assignment
reflects a common practice in development projects.

In plant design projects there are usually so-called progress chasers who are
responsible for gathering the progress estimates from the engineers. From this
data, the project status report is compiled. Furthermore external consultants may
be hired to evaluate the performance of the development process. Progress chasers
and consultants should be able to view the tasks in the project, but they should not
be allowed to make changes to the management data. To achieve this, their user
accounts are given only the super permission to view all tasks in the project but
none of the basic permissions. Without the permissions to manage and execute
tasks, they cannot be assigned to any task and therefore are prevented from making
any changes.

The permission settings of a project can also be configured to support the purely
hierarchical delegation mode. In PROCEED, this behavior can be simulated by
assigning all super permissions to the project manager, and only the basic permission
to execute tasks to the engineers. As a result, the managers can view and modify all
tasks in the project. The engineers can only view their assigned tasks, perform the
allowed execution state changes, produce document revisions, and register working
hours. The AHEAD-prototype only supported this management mode, because
changes to the management data were only possible with the dedicated environment
for project managers. The engineers could not make structural changes in their
work environments. Likewise, in conventional static workflow management systems,
process participants are usually restricted to executing their assigned tasks while
the system manages the process.

In recent times, agile process models have become increasingly popular [TFR05].
In these process models there is no strict hierarchy, and the rather small development
team consists of developers with equal rights. The PROCEED system can even
support these agile processes by assigning only the basic permissions to all project

Chapter 5 Timed Dynamic Task Nets 167

team members, but no super permissions to anyone (except for the person who
initiates the project and assembles the project team). As a result, the constraints
defined in the authorization rules are always evaluated, and permissions are only
activated in the defined contexts.

5.6 Related Work

Research that is related to the contributions described in this section can be distin-
guished into work on resource modeling and user authorization. Related work that
deals with time management in process models and the monitoring of development
processes will be reviewed in Section 7.6 and Section 8.4, respectively.

5.6.1 Resource Modeling

The approach to resource modeling in AHEAD and PROCEED has undergone a long
development. First concepts were presented in [NW94] which were substantially
elaborated in [Krü96, KW00, KKSW00] and resulted in the resource management
meta-model RESMOD which has been described in Section 4.1. The approach to
resource modeling defined in RESMOD has been adapted and simplified in PROCEED
to account for the specific requirements arising from the technology transfer to
the Comos system. Thereby, some of the concepts defined in RESMOD have been
abandoned.

In Table 5.7, the three different approaches to resource modeling are compared to
each other by mapping equivalent concepts. In [NW94] and in RESMOD, technical
and human resources could be modeled. The research on RESMOD focused even
more on technical resources than on human resources and in particular on modeling
complex technical resources. In PROCEED, only human resources are modeled to
simplify project planning. For the following comparison only human resources are
considered.

The concept of an actual resource in [NW94] corresponds to the actual base
resource in RESMOD and the resource in PROCEED. Employees of the company
which are available for engineering projects are represented by objects in the
database.

In RESMOD, actual project resources were introduced to model the members
of a project team distinct from the actual base resources in the organization. An
actual project resource could correspond to an actual base resource or to an external
resource who was not a member of the organization. In [NW94], this distinction
was not made. In PROCEED it has been abandoned because resources are defined
on the organizational level in Comos and are only referenced in individual projects.
External resources have to be represented as members of the organization.

The concept of a planned base resource was introduced in RESMOD to be able to
model positions in an organization independent of actual resources who fill these
positions. Again, this concept has been abandoned in PROCEED because the simple
resource model of Comos does not allow to model positions separate from users.

168 5.6 Related Work

Nagl and Westfechtel RESMOD PROCEED

Technical and Technical and Only human resources
human resources human resources
Actual resource Actual base resource Resource

Actual project resources
Planned base resource
Planned project resource

Abstract resource Planned resource class Role
Needed resource
Resource properties

Resource assignment Resource assignment Resource assignment
mechanism Resource allocation Project team definition
Complex resource Complex resource

Complex actual project Team
resource with human
resources as atomic parts

Task assignment

Table 5.7: Equivalent concepts in [NW94], RESMOD, and the TNT meta-model.

The concept of a planned project resource in RESMOD was an advancement from
the concept of an abstract resource in [NW94]. It did not only define the required
role of a resource but at the same time a position in the project team. A planned
project resource is therefore not equivalent to a role as argued in Section 4.1.
Instead, the concept of a planned resource class is equivalent to a role as well as the
abstract resource in [NW94]. It abstracts from individual positions in the project
team. In PROCEED, roles are used to define resource requirements for tasks since
the concept of a role is more common in practice. Furthermore, the explicit modeling
of task assignments allows to define several required resources with the same role
for a task. The project team is modeled by means of teams. Therefore, the position
aspect of a planned resource is not needed in PROCEED.

The concept of a needed resource is used in RESMOD to define resource require-
ments of actual resources. This is particularly useful for technical resources which
often depend on other technical resources. In contrast to that, it is uncommon to
define dependency relationships between human resources. Since in PROCEED
only human resources are modeled, the concept of a needed resource has been
abandoned as well.

In RESMOD, properties of resources can be defined for actual and planned re-
sources. Properties of planned resources define requirements which have to be
matched by the property values of the assigned actual resources. In PROCEED, only
human resources are modeled and roles are used instead of planned resources. A
role defines implicitly the properties a resource who can play this role has. There
has not been the need to explicitly model individual properties of resources and
according requirements for tasks or task assignments. Thereby, the associated

Chapter 5 Timed Dynamic Task Nets 169

modeling overhead is avoided and resource modeling is simplified, which increases
the applicability of the approach in practice.

Complex resources do not exist in PROCEED except for teams which can be
regarded as complex human resources. In RESMOD, a team would be modeled as a
complex actual project resource with human resources as atomic parts. However, it
would not be possible to define a team leader in a straightforward way in RESMOD.

Finally, in RESMOD resources can be shared with respect to the composition
relationship, i.e. a human resource could be a member of two different teams. This
has not been adopted in PROCEED since project team structure should unambigu-
ously define the responsibility hierarchy in a project and therefore should be a tree
structure in which every resource belongs to exactly one team.

In [NW94], actual resources were defined for the organization and abstract re-
sources for individual projects. When an actual resource was assigned to an abstract
resource this resource assignment mechanism included two steps: First, the alloca-
tion of the resource for the project, and second the assignment of the actual resource
to the planned resource. In RESMOD, these two steps were explicitly separated.
The resource allocation created an actual project resource which referred to the cor-
responding actual base resource. The definition of actual project resources was the
equivalence to the assembly of a project team. The resource assignment was then
established as a link between actual and planned project resources. In PROCEED,
there are no actual project resources, but the two steps can be executed separately
as well. The resource allocation is performed by defining the project organization
in the form of a hierarchical team structure, and by assigning resources to the
defined teams. Resource assignment in PROCEED and RESMOD are not exactly
comparable. However, the assignment of an actual resource to a planned resource
in RESMOD can at best be compared to the assignment of a resource to an explicit
task assignment for which a required role is defined. In this case, the resource has
to be able to play the required role which is defined on the organizational level.

5.6.2 User Authorization

The management of access rights is an issue in many types of information systems.
In this section we first discuss general approaches before we consider research work
concerning to access control in process management systems.

There are basically two approaches to access control: the passive approach and
the active approach [TS97]. In the passive approach, also known as subject-object
view, permissions are maintained as assignments. Once a permission is assigned to
a user, it is always assumed to be activated independent of the given context. On the
other hand, the active approach distinguishes context-based permission activation
from permission assignment. Permissions are constantly monitored and can be
activated and deactivated according to the respective context. The access control
approach presented in this thesis combines the active and the passive approach.
Basic permissions are only activated in certain contexts while super permissions are
always activated.

170 5.6 Related Work

Role-Based Access Control (RBAC) [SCFY96] is a passive security model. The
permissions are assigned to roles rather than to individual users. Roles are created
based on job functions in the organization and users are assigned to roles based
on their qualification and responsibilities. Thus, a user assigned to a role thereby
acquires the permissions of that role. This grouping of users in roles for access
control eases the management of permissions. One of the drawbacks of RBAC is its
inability to support users with the same role but with different permissions. This is
an important criterion in a dynamic process management system where users with
the same functional role can have different permissions. Therefore, the role-based
approach has not been implemented in PROCEED. Instead, permissions are assigned
to users of the system individually.

In several research projects, the RBAC model has been adapted and applied to
workflow management systems [ASKP00, KPF01]. The implementation of RBAC on
web-based workflow systems is presented in [ASKP00], while RBAC is extended
to support inter-organizational workflow in [KPF01]. In the context of workflow
management, the role-based access control model is more suitable than in the
context of development processes. When it comes to the enactment of business
processes, functional roles usually coincide with permissions, e.g. for the accounting
clerks and the accounts manager in an accounting office.

In [AH96], Atluri and Huang present an active security model where authorization
is synchronized with the current state of tasks in workflows. In other words, a
resource can gain access to required objects, e.g. documents, only during the
execution of a task. To achieve this, an authorization template is used to specify the
parameters of the authorization which is attached to a task. When the task is actually
started, the authorization template is used to derive the actual authorizations. In this
approach, authorization constraints are associated with specific tasks or workflow
definitions, and there are no authorization rules regulating the dynamic creation of
subtasks or other dynamic structural changes to a workflow instance.

In the Team-based Access Control model presented in [AC04], permissions can
be specified for a group of collaborating users, acting in various roles. This means
that a team member not only has permissions from the role he is playing, he also
has additional permissions from the team he is in. This model only defines if
team members can access certain objects within the context of the team. There
is no explicit connection to any process model instance and task assignments.
Furthermore, specific permissions are also not associated with teams in the TNT
meta-model.

In [WBK03], the W-RBAC framework for workflow systems is presented, which is
based on RBAC. Authorization constraints are specified using a logic-based language.
A permission service in the framework is used to compile a list of users who can
execute a task based on the specified constraints. W-RBAC only focuses on the
assignment and the execution of tasks. The defined constraints are specific for
certain types of tasks whereas in PROCEED general constraints for all tasks in a
process model instance are required.

Chapter 5 Timed Dynamic Task Nets 171

5.7 Conclusion

In this chapter, the TNT meta-model for timed dynamic task nets has been presented.
Several adaptations and extensions have been applied to the DYNAMITE meta-
model to obtain the TNT meta-model. The structural and behavioral model have
been adapted to meet the requirements which arose from the approach to project
planning and process enactment realized in PROCEED. With respect to resource
management, subteams of the project team with respective team leaders can be
defined, and task assignments are explicitly modeled as separate objects, so that
several resources can be assigned to a task. With respect to the definition and
execution of tasks, the major extensions are the explicit modeling of the granularity
of a task, and a the extension of a task’s life cycle by the possibility to skip tasks
without starting them in the first place.

The major extensions of the DYNAMITE meta-model refer to time management
and progress monitoring. The structural model and the behavioral model have been
complemented by the timing model and the monitoring model. These partial models
define the required entities and properties for task scheduling and progress mea-
surement, respectively. The actual performance of a process is explicitly modeled,
separately from the planned performance. This allows a comparison of actual and
planned performance. The alignment of the plan to the actual performance is an
explicit management decision.

The authorization model of the TNT meta-model identifies human resources with
users of the system and introduces the concept of user permissions. Authorization
rules constrain the possible change operations of individual users depending on their
permissions and task assignments. This extension of the DYNAMITE meta-model
has been required due to the switch from separate environments for different roles
to one environment for all users.

Altogether, this chapter introduced the modeling elements for process model
instances in PROCEED. The next chapter describes how process model definitions
can be created in PROCEED, and how they are applied and enacted in a concrete
project. The algorithms for project scheduling and monitoring, which build on the
modeling elements introduced in this chapter, will be described in Chapter 7 and
Chapter 8, respectively.

172 5.7 Conclusion

Chapter 6 Process Modeling and Enactment 173

Chapter 6

Process Modeling and Enactment

A dynamic task net as it has been defined in Chapter 5 represents a process model
instance. The combination of a project plan with data flow dependencies and execu-
tion states of tasks in one integrated model is advantageous for the management
of development projects. However, dynamic task nets do not allow to define pro-
cess knowledge which can be reused in several similar projects, and which can be
improved and extended from project to project. For this purpose, it is required
to maintain process model definitions containing the process knowledge which is
independent of actual process model instances.

The first step is to define domain specific task types which may be instantiated
several times in a process model instance. For example, the creation of a process
flow diagram is a task type which has several instances in a plant design project,
one for each individual process flow diagram. Task types are used in process model
definitions to distinguish the different tasks in the process. Knowledge about the
document input and output parameters, the resource requirements in terms of roles
and workload, and the planning data of a task type can be stored in the process
knowledge base. In general a type defines common properties of a class of objects
and possibly initial property values. In the TNT meta-model, the properties of a task
are fixed and so are the properties of a task type. Only the different property values
distinguish different task types. When a task type is used in a project, an instance
of the type is inserted into the dynamic task net as a new task whose property
values are set to the values defined by the type. The usage of task types for process
modeling in PROCEED is described in Section 6.1.

Task types contain process knowledge about individual tasks, but they do not
define the possible relationships between different tasks and the allowed or required
number of task instances in a process model instance. For this purpose, process
model definitions are required.

There are different approaches for modeling process model definitions. On the
one hand there are procedural approaches. Procedural process model definitions
explicitly specify in which order the defined tasks have to be executed, when the
process is enacted. As a consequence, procedural process model definitions can
be executed automatically if required. On the other hand, there are declarative
process model definitions which merely constrain the allowed manual changes to
a process model instance. The process model definitions on type level which have
been described in Section 4.4 fall into this category.

174 6.1 Task Types

A third type of process model definitions, which does not clearly fall into one
of the two categories, are instance patterns or process model definitions on the
instance level (cf. Section 4.4). These process model definitions are basically process
templates which can be reused for the manual modeling of a process model instance
by copying and inserting them into an existing dynamic task net. Process templates
are used in PROCEED for the definition of process knowledge. Section 6.2 describes
how process templates can be defined and used in PROCEED.

Process templates can be augmented by a workflow definition which enables the
automatic enactment of the respective processes in a dynamic task net. Workflows
are modeled using control structures like alternative branching constructs and
loops (cf. Section 3.4). Therefore, they are classified as procedural process model
definitions. The integration of workflow instances into dynamic task nets is described
in Section 6.3.

6.1 Task Types

A task in a dynamic task net can be derived from a task type. A task type specifies
default values for the properties of all instances of this type. When a task is
instantiated from a task type, then the default values are set for the respective
properties of the task. For properties of the task type which are undefined, the
general default values are used for the properties of the task instance, which have
been described in Section 5.3.1.

The class diagram depicted in Figure 6.1 shows on the left the class Task with all
relevant properties for time management and progress measurement and on the
right the class TaskType. Only those properties are defined for the class TaskType
whose values can be reused in different projects. A specific task type does not
define additional properties but only specific property values. The planning data
of a task constitutes valuable process knowledge. Task instances of the same type
will probably require a similar amount of workload, duration, and budget if they are
instantiated in comparable projects. The respective property values defined for the
task type are good starting points for project planning.

With respect to progress measurement, the calculation method for the degree
of completion of a task can be specified for a task type. It is very probable that
the progress of all instances of a common task type is measured by means of the
same calculation method. Tasks which are defined as milestones in a dynamic task
net can be used for measuring the progress of the parent task. For this purpose, a
milestone defines a percentage value for the property OverallDOC (overall degree of
completion). When a type is defined for a milestone, then the value for the overall
degree of completion can be specified for the type and reused for the milestones
which are instantiated from the type.

All instances of a task type are connected by the instance of association with the
respective type as depicted in Figure 6.1. The PROCEED system keeps track of
which tasks have been instantiated from which type. This information is required
to derive reference values for the planning data of the task type from the task

Chapter 6 Process Modeling and Enactment 175

Task

Name : string
ExecutionState : ExecutionStates
TotalWorkload : int
TotalDuration : TimeSpan
TotalBudget : double
StartTime : DateTime
PlannedStartTime : DateTime
EPST : DateTime
LPST : DateTime
ReleaseDate : DateTime
EndTime : DateTime
PlannedEndTime : DateTime
EPET : DateTime
LPET : DateTime
DueDate : DateTime
DOC : double
CalculationMethod : CalculationMethods
OverallDOC : double
IsMilestone : bool
PlannedDOC : double
RemainingWorkload : int
EarnedValue : double
PlannedValue : double
ActualValue : double
SPI : double
CPI : double
ForecastedEndTime : DateTime
EAC : double

TaskType

Name : string
TotalWorkload : int
TotalDuration : TimeSpan
TotalBudget : double
CalculationMethod : CalculationMethods
OverallDOC : double
IsMilestone : bool

1*

0..1*

instance of

is a

WorkCalendar

Workweek :
WorkWeek

1

1

TaskAssignment

IsResponsible : bool

1

* OutputParameter

Name : string

InputParameter

Name : string

*
1

*

1

Decision

Value : bool
0..1

0..1 *
*

Figure 6.1: Classes and associations for task types.

instances.

Task types can be structured in a generalization hierarchy. The root of this
hierarchy is the most general and domain-independent task type which cannot be
changed by the users of PROCEED. By means of specialization, domain-specific
task types can be derived. A special task type which has been derived from a more
general one does not define additional properties but only specific property values.
By default, property values are inherited by a specialized task type from the general
type, but they can be overridden with specific values. The generalization is defined
by the association is a in Figure 6.1 and not as a UML generalization relationship.
This way, a generalization hierarchy of objects of the class TaskType can be built
at tool runtime which corresponds to the parameterized specification approach
described in [KN04].

Figure 6.2 shows an example of a generalization hierarchy of task types. The most
general type with the name Task is predefined by PROCEED and cannot be changed
by the user. A specific task type has been defined for the creation of piping and
instrumentation diagrams. There are two specializations of this type, one for the
initial creation of a P&ID and one for the elaboration of a P&ID. The former specifies
a shorter duration than the latter. Furthermore, the former type has only one output

176 6.1 Task Types

is a

: TaskType

Name = "Task"

: TaskType

Name = "Create initial P&ID"
TotalDuration = 8 working days

: TaskType

Name = "Create P&ID"

is a

: TaskType

Name = "Create detailed P&ID"
TotalDuration = 25 working days

is a

: OutputParameter

Name : "P&ID"

: InputParameter

Name : "P&ID"

: OutputParameter

Name : "P&ID"

Figure 6.2: Example for the specialization of task types.

parameter for the P&ID to be created. In contrast, the task type for the elaboration
of a P&ID has an input and output parameter for the modified document.

Document input and output parameters can be defined for a task type. These
parameters are cloned and associated with an instance of the type upon instantiation.
Likewise, decision variables can be defined for task types which are then available
for every instance of the type. A decision variable is an object of the class Decision
which is depicted in Figure 6.1. Its boolean value represents the result of a decision
made by the responsible resource of the corresponding task. Decision variables
are evaluated during the enactment of workflow-managed task nets which will be
introduced in Section 6.3.

Task types can be used for the creation of dynamic task nets which represent
process model instances. Whenever the user who defines a task net wants to create
a new subtask, he can browse the process knowledge base for appropriate types. If
he selects a suitable type for a new task, all specified property values of the type are
set for the new task. The user can adapt the property values as required, but this
will not change the type of the task. The connection between the task instance and
the type has to be deleted manually, if the task shall no longer have the type.

The life cycle of a task can be divided into three phases. First, the type is defined.
Second, the type is instantiated as a task in a process model instance, and third, the
task is executed. Table 6.1 gives an overview with respect to the three life cycle
phases over which properties may have values assigned, which property values
are allowed, and who is authorized to change the property values. A task type
does not have an execution state explicitly defined. However, in terms of the task
execution states a type would be in the state InDefinition because this is the default
value for a new task after its creation. When a task has been instantiated from a

Chapter 6 Process Modeling and Enactment 177

Type Type Task
definition instantiation execution

Execution InDefinition Preparing Running,
state Terminated
Resource Required Assigned Assigned
properties roles resources resources
Product Input/Output Documents Revisions
properties parameters
Time Planning data, Constraint dates, Actual start
management planned start and end times,
properties and end times forecasted duration

and end time
Authorization Type Task Responsible

creator creator resource(s)

Table 6.1: Editable properties of types and tasks.

type, its execution state may be changed to Waiting. Later, the task is started and
eventually terminated. With respect to resource management, only required roles of
task assignments can be defined for a task type. Because a task type is independent
of any concrete project, no actual resources from a project team can be assigned to
a task type. Resources can be assigned after the task has been instantiated. With
respect to product management, only input and output parameters can be defined
for a task type. The association of parameters with actual documents can only be
done for a task instance in the context of a development project. Revisions of the
associated documents can only be produced at runtime of the task. With respect
to time management properties, the planning data of a task can be specified in
a type. Constraint dates and planned dates are project-specific. Actual start and
end times and forecasts can only be determined during the execution of the task.
Finally, a user must be authorized to make changes to a task type or a task in the
different life cycle phases. The person who creates a task type may be a domain
expert or a so-called knowledge engineer in a company. He populates a knowledge
base with domain-specific task types. However, he is usually not involved in any
concrete development project. The user who is authorized to create a new task
instance in a development project is also authorized to change the property values
of this new task. When a resource is assigned to a task instance and designated to
be responsible for the task, he may modify the task according to the authorization
rules which have been presented in Section 5.5.

6.2 Process Templates

Task types are already a way to reuse process knowledge for different projects.
However, task types alone do not allow to define any task relationships. Therefore,

178 6.2 Process Templates

process templates are required.

A process template in PROCEED is a dynamic task net which can be reused by
copying it as a subprocess into a process model instance. A task and its realization
together amount to a process template. This means that a process template always
defines a complete subprocess and not only a building block for a process. The real-
ization of a process template may contain several subtasks which can be connected
by control and data flows and which can themselves have subtasks. Consequently, a
process template can be a hierarchically structured dynamic task net, but it always
has a unique root task.

When a process template is used in a concrete project, the root task and its
complete realization are copied and inserted as a new task in the dynamic task net
which represents the development process. Afterwards, resources can be assigned
to the task and its subtasks, the tasks can be scheduled and finally executed.

Besides the insertion of a process template as a new task in an existing dynamic
task net, there is a second way of using a process template. If a task has already
been defined in a process model instance, its realization can be created or exchanged
by copying the realization of a process template. In this case, the properties of
the root task of the process template are not reused but only the subtasks and
their relationships. The connection between document parameters of the task in
the process model instance and its new realization has to be established manually.
Likewise, possible inconsistencies related to time management properties of the
task and its new realization have to be resolved in the process model instance.
This functionality is useful whenever an existing task is already connected with
other tasks in the dynamic task net and project specific property values have been
specified, but the realization shall be created according to an existing template.

In [Sch02], process model definitions were divided into process model definitions
on type level and on instance level (cf. Section 4.4). In contrast to task types, process
templates are located on the instance level. There is no generalization relationship
for process templates. A process template is copied into an existing task net but is
not instantiated. The tasks in a process template are already instances of task types.
As a consequence, the tasks in a process template and a process model instance are
instances of the same class Task defined in the TNT meta-model.

Figure 6.3 shows the extensions to the meta-model which are required for process
templates. Objects of the classes Task and Realization may be contained in a process
model instance or a process template. The association instance of between the
classes Task and TaskType has already been introduced in Figure 6.1. It connects
tasks which have been instantiated from a task type with the respective type.

When a process template is copied into a dynamic task net, then the copied tasks
and realization objects are automatically connected with the respective objects in
the process template by means of the association copy of. In this way, the PROCEED
system keeps track of which subprocess of a development process is a copy of a
process template and which subtask is a copy of which subtask in the respective
template. This information is required to improve a process template based on
dynamic changes to the process model instances.

Chapter 6 Process Modeling and Enactment 179

Task TaskType

1*
0..1*

instance of

is a

1

*

copy of

Realization

1
0..10..1

* realizes

1

copy of

*

Figure 6.3: Additional associations for process templates.

instance of

is a

copy of

: TaskType

Name = "Task"

: TaskType

Name = "Process Flow Diagrams"
TotalDuration = 110 w.d.

: TaskType

Name = "Create PFD"

: Task

Name = "Process Flow Diagrams"
TotalDuration = 110 w.d.

: Realization

: Task

Name = "Create PFD.R"

: Task

Name = "Basic Engineering"

instance of

is a

: Realization

: Task

Name = "Process Flow Diagrams"
TotalDuration = 110 w.d.
PlannedStartTime = 21/12/2010

: Realization

: Task

Name = "Create PFD.R"
PlannedStartTime = 17/02/2010

instance of instance of

copy of

Task types

Process template Process model instance

copy of

Figure 6.4: Example for the usage of a process template.

180 6.2 Process Templates

An example for the usage of a task type is shown in Figure 6.4 in the form of a UML
object diagram. On the type level, three task types are defined: the general domain-
independent task type which is predefined by PROCEED and two specializations,
one for tasks in which several process flow diagrams are created, and one for tasks
in which one individual process flow diagram is created. For the task type Process
Flow Diagrams, an expected total duration of 110 working days has been defined.
This type is instantiated as a task which is the root task of a process template.
The task instance has the same property value for the total duration. The process
template Process Flow Diagrams contains several instances of the task type Create
PFD, one for every process flow diagram that is expected to be created in the defined
subprocess, i.e. the process template defines tasks for specific process flow diagram
while the task type Create PFD can be generally used for all tasks in which a process
flow diagram has to be created. One of the subtasks is depicted in Figure 6.4. In
the subtask Create PFD.R, the process flow diagram for the reaction part of the
chemical process shall be designed. However, the task does not yet refer to an
actual document in a development project. This connection can only be established
after the process template has been copied into a process model instance. In the
lower right corner of Figure 6.4, a process model instance is depicted in which the
process template has been used. The copied tasks and the realization object are
linked to the original instances in the process template. Tasks in a process model
instance may be scheduled in contrast to tasks in a process template, and their
output parameters can be connected with actual documents.

Although process templates are composed of task instances, the properties of
the tasks are not editable like the properties of tasks contained in process model
instances. For the tasks in a process template, the same restrictions apply as for task
types, because the tasks are still part of a template and not part of a process model
instance, although they are technically instantiated from task types. According
to Table 6.1, a task in a process template can only be edited as defined in the
column Type definition, i.e. the execution state can only be InDefinition, required
roles for task assignments can be defined but no actual resources, input and output
parameters for documents can be defined but not associated with actual documents,
and only the planning data can be defined for the task but no constraint dates or
planned dates. A process template may also define task relationships. In this regard,
the only constraint for editing process templates is that no feedback flows can be
defined. A feedback flow can only be defined originating from active tasks but a
process template is not enacted. With respect to the authorization of users for
editing operations, the same restrictions apply as for task types (cf. row five in
Table 6.1). The template creator may modify the template. The user who used a
process template to create a new subtask may edit the copied task net structure.
Finally, when responsible resources are assigned to the root task of the subprocess
and the subtasks, then these resources may edit their assigned tasks according to
the authorization rules which have been presented in Section 5.5.

A process template can only be used as a new task in an existing task net or
as a new realization of an existing task. In this regard, process templates differ

Chapter 6 Process Modeling and Enactment 181

from instance patterns which were introduced in [Sch02]. An instance pattern
did not necessarily represent a whole realization of a task but could consist of
connected tasks which could be inserted into an existing realization (cf. Section 4.4).
Furthermore, an instance pattern defined the required context for inserting the
pattern and how the tasks of the pattern should be connected with the context
tasks. These modeling possibilities have not been adopted in PROCEED. Process
templates have to have a unique root task. This is an essential requirement for
workflow templates which will be introduced in the next section. No context for the
insertion of a process template into a task net can be defined. The abandonment of
context definitions for process templates has the advantage, that process modelers
do not have to learn and use additional modeling constructs or even a new modeling
language like UML object diagrams which were used in [Sch02] for this purpose.
They can model process templates just like a process manager would define a
dynamic task net in a concrete project, whereby the previously described limitations
apply.

Declarative process model definitions on type level which were introduced in
[Sch02] were also not adopted in PROCEED. Although this concept for declarative
process modeling on type level might in general be a valuable extension to a process
management system like PROCEED, it has not been considered suitable in the
industrial context of the research project. The usage of UML class diagrams for
the declarative modeling of processes has been considered disadvantageous with
respect to the acceptability of the process management functionality in Comos.
Domain experts in the chemical industries are usually not familiar with the UML
notation. The concepts of type and instantiation are not well-known among engineers.
On the other hand, Comos users are very familiar with the concept of a template.
Furthermore, the declarative approach to process modeling is rather uncommon.
Instead, operational process definitions have been demanded by the industry partner.
Therefore, workflow templates are used in PROCEED which will be described in the
next section. Workflow templates comprise additional information about alternative
courses of action and the planned iteration of tasks. Finally, task, process and
workflow templates are sufficient for elementary process modeling as it is required
for project controlling. Reference data regarding the required workload, duration,
budget, task assignments, functional roles, and document parameters of tasks can
be maintained using task types and process templates.

6.3 Workflow Management

Workflow management has recently gained in importance in the different engineering
domains. Workflow management systems [JB96] are used to support well-defined
individual and collaborative processes. The workflow approach allows for a partial
automation of processes, and the available technologies enable interoperability with
other systems and applications in service oriented architectures. The usefulness
of workflow support for development processes has been identified in academia
[Bau04, MDB+00, CC02, Bus98] and industry.

182 6.3 Workflow Management

However, workflow management systems are not suitable for the management of
whole development processes. They can only support the enactment of structured
subprocesses which may be predefined in advance. Unlike project management
systems, project planning goes beyond the scope of workflow management systems.
Furthermore, it is not feasible to model a complete development process as one
workflow due to the inherent uncertainties and dynamics. As a consequence, enacted
workflow instances which represent subprocesses in a development project would
be disconnected in a WfMS and would not be embedded into the context of the
development process.

For these reasons, several research groups have investigated the opportunities of
integrating project management systems (PMS) with workflow management systems
(cf. related work presented in Section 6.4.1). In all of these approaches, project plans
are used for global planning, and structured subprocesses are enacted by means of
workflow management systems. Integration components couple these systems at
runtime, so that workflow instances may be represented in project plans. However,
the different integration approaches all face the problem that no information about
the process enactment state is maintained in the respective project management
system. Thus, the enactment state of workflow instances cannot be adequately
mapped to the project plan which limits the possibilities for project monitoring.
Furthermore, since products and data flows are not represented in project plans,
product management is still beyond the scope of the integrated systems. Data
flows between workflow instances have to be managed manually. These restrictions
are overcome by integrating workflow management functionality into the process
management system PROCEED.

In Section 4.3.3, dynamic task nets have been compared to project plans and
workflow instances. It has been highlighted that dynamic task nets are a suitable
representation of development process instances. However, process automation
as supported by workflow management systems is not possible for a dynamic task
net without an operational process model definition. Declarative process model
definitions and process templates do not enable the automation of process model
instances. The former provide too many degrees of freedom for a process engine to
decide which operation to perform upon a certain event. The latter are merely tem-
plates to be copied and do not provide any additional information for the automatic
enactment of the processes. The functionality provided by workflow management
systems is complementary to the process management functionality provided by
the PROCEED core system. Integrating workflow management functionality into
PROCEED extends the process support, so that it also covers partially automated
processes.

The workflow paradigm is particularly suitable to guide individual engineers in
their everyday tasks. This has been the main motivation for the integration of
workflow support into PROCEED. The procedures which have to be followed by
engineers when they work with the Comos system can be modeled as workflow
definitions and can be automatically enacted in a development project. Intermediate
steps in these procedures, like sending an email or uploading files to a remote

Chapter 6 Process Modeling and Enactment 183

server, can be performed automatically by the workflow engine. The progress of
running workflow instances can be determined automatically, so that the engineer
who performs the defined tasks does not have to provide additional information.
Workflows can also be applied to support the coordination of several engineers
or technical crews, if the respective processes can be predefined before project
runtime. In particular, quality and change management processes can be modeled
as workflows.

In this section, it is described how a workflow engine has been integrated into
PROCEED. The workflow engine enacts workflow instances which are represented
by subnets of the dynamic task net representing the whole development process.
The enactment state of workflow instances can be monitored in the dynamic task net
because workflow operations are mapped to state transitions of tasks and structural
changes of the task net. Workflow instances are not only represented in a dynamic
task net but the workflow engine automatically enacts and manages the part of
the dynamic task net which represents the workflow instance, i.e. it changes the
execution states of tasks and performs dynamic structural changes to the task
net. Thereby, the workflow engine relieves a human resource from managing the
subprocess. The workflow engine can be viewed as an automatic manager of the
subprocess.

The realized integration builds on previous results which have been developed in
the AHEAD project [HHM+06, Hel08a, HHWW10] and which have been described in
Section 4.5. The integration approach has been presented in a workshop on process
management for highly dynamic and pervasive scenarios [HBW09]. It is furthermore
shortly described in [HHWW10]. The details of the approach are described in
[Bri08].

6.3.1 Workflow Instances in Dynamic Task Nets

In the context of the research cooperation with Siemens Industry Software, it has
been decided to use the Windows Workflow Foundation (WF) to realize the workflow
management functionality in PROCEED. The WF has been introduced in Section 3.4.4.
It is a framework for the development of workflow based applications but it is not
a full-fledged WfMS. Most workflow management solutions come with their own
specific modeling language for workflow definitions. Likewise, the WF provides
its own modeling language for workflow definitions which has been introduced in
Section 3.4.4. Workflows are composed of nested building blocks, the workflow
activities. There are atomic activities and complex activities. While the former
define automatically or manually performed tasks, the latter define the control flow
of a workflow.

Figure 6.5 shows a schematic representation of a workflow definition. The example
is taken from the domain of chemical plant design. The workflow defines the
procedure which has to be followed to specify a pump of a chemical plant. In the
first step, the operating parameters of the pump have to be defined including the
flow rate and the medium data. For the second step, the determination of the pump

184 6.3 Workflow Management

Determine Pump
Type by Use Case

While

IfElse

Sequence

Detail Engineering
of Pump Specification

Determine Pump Type
by Process Data

Determine
Operating Parameters

Figure 6.5: Example workflow definition for the design of a pump.

type, there are two alternatives. The pump type can either be determined based
on the use case at hand or based on the process data defined in the process flow
diagram. Finally, the detailed technical specification of the pump is elaborated. This
step may have to be repeated several times.

A workflow instance is represented by a task in the dynamic task net which
represents the development process. Such a task is called a workflow-managed task
because structural changes to the realization of the task and certain state changes of
its subtasks are automatically performed by the workflow engine once the workflow
has been started. In fact, these changes can only be performed by the workflow
engine and manual changes are prohibited. The realization of a workflow-managed
task is called a workflow-managed task net. Finally, the subtasks of a workflow-
managed task are called workflow tasks because they are related to activities in the
workflow instance.

Workflow tasks themselves can again be workflow-managed or not. In the first
case, a workflow instance is started upon the start of a workflow task. In the second
case, the enactment and management of the workflow task and its subtasks is
performed manually by the responsible resource. Consequently, an arbitrary nesting
of workflow-managed and manually managed tasks can be realized in a dynamic
task net.

A workflow-managed task is always derived from a workflow template. A workflow
template is a process template for which a workflow definition has been defined. The
workflow definition is associated with the realization of the root task of the workflow
template. The realization of the root task contains a subtask for every workflow
activity in the workflow definition, i.e. the workflow template defines a dynamic
task net which matches the workflow definition associated with the root task of

Chapter 6 Process Modeling and Enactment 185

seq
Determine Pump Type

by Use Case

Determine Pump Type

by Process Data

Detail Engineering of

Pump Specification
seq

Determine Operating

Parameters

seq

seq

Figure 6.6: Tasks and control flows of example workflow template.

the template. Figure 6.6 shows the dynamic task net for the workflow definition of
Figure 6.5. Only the control flow perspective is depicted in Figure 6.6. Document
parameters, data flows, and task assignments are not shown but generally belong to
a workflow template as well. The tasks are all in the execution state InDefinition.
The iterated activity Detail Engineering of Pump Specification is represented by only
one task in the dynamic task net.

A workflow template is an operational process model definition on instance level.
Like ordinary process templates, a workflow template is copied into an existing
dynamic task net. The template defines the initial state of the process. The associated
workflow definition contains additional information about the correct enactment of
the process. When the workflow template is finally used and a workflow-managed
task net is enacted, the task net is automatically restructured and the execution
states of subtasks are automatically changed depending on the conditions defined in
the workflow definition which are evaluated by the workflow engine.

6.3.2 Mapping of Meta-Model Elements

The representation of WF workflow instances as dynamic task nets requires the map-
ping of two different meta-models. The language elements available for the creation
of WF workflow definitions have to be mapped to the entities and relationships used
to model dynamic task nets.

The WF allows to implement custom activity types (cf. Section 3.4.4). A special
atomic activity type has been implemented for workflow tasks. Activities of this
type are represented by tasks in the workflow-managed dynamic task net. Atomic
activities of other types which are executed automatically are not represented as
tasks in the task net. Figure 6.7 shows an abstract example of a workflow definition
and the corresponding dynamic task net which together amount for a workflow
template. Every activity labeled with a single letter is an instance of the activity type
for workflow tasks. The activity labeled automatic does not have a counterpart in
the dynamic task net.

Complex activities in the workflow definition determine the control flow relation-
ships between the workflow tasks in the dynamic task net. The workflow tasks are
connected by sequential control flows according to the relation of the corresponding
activities in the workflow definition. Only sequential control flows with zero lag
times can occur in a workflow-managed task net. Simultaneous and standard control

186 6.3 Workflow Management

A

B

D

While

IfElse

Sequence

F

A

E

G

B C D

E

F

automaticC

Parallel

G

Workflow
definition

Dynamic
task net

Seq.

Figure 6.7: Mapping workflow block structure to task net control flow structure.

flows and lag times cannot be modeled in WF workflow definitions and are therefore
not allowed in a workflow-managed task net. They can also not be created manually
because manual structural changes are not allowed for workflow-managed task nets.

For the connection of the workflow tasks by control flows, it is required to deter-
mine the first and last atomic activities in a complex activity which are represented
by workflow tasks. These activities are determined by recursively descending into
the hierarchical structure of complex activities and collecting all atomic activities
which have no predecessor or successor as well as all first and last activities from
complex child activities. For example, in Figure 6.7 the first activities of the IfElse
activity are the first activities of the Parallel activity together with the first activity of
the inner Sequence activity, i.e. activities B, C, and D.

In a SequenceActivity, several atomic or complex activities are arranged in
sequence. The workflow tasks corresponding to the activities are connected by
sequential control flows in the dynamic task net according to the order defined
by the SequenceActivity. In case of complex activities, the first and last atomic
activities are determined and their corresponding workflow tasks are connected
with the tasks representing the preceding and succeeding activities, respectively. In
Figure 6.7, activity D is one of the first activities in the IfElse activity. It is connected
to activity A via a control flow because activity A precedes the IfElse activity. Workflow
tasks representing the first and last activities of the different branches of a Parallel
activity are connected with the workflow tasks corresponding to the predecessors
and successors of the whole Parallel activity, respectively. Likewise, all workflow

Chapter 6 Process Modeling and Enactment 187

Suspended

Created Running Terminated

Completed

Figure 6.8: Finite state machine defining the life cycle of WF workflow instances.

tasks associated with the first and last activities of different alternative branches of
an IfElse activity are connected by sequential control flows with the predecessors
and successors, which results in a parallel construct. The decision on which tasks
are actually executed and which tasks are skipped is made at workflow runtime and
is not reflected in the control flow structure. Finally, for every activity directly or
indirectly contained in a While loop, exactly one workflow task is inserted in the
dynamic task net, although the loop may be skipped completely or iterated several
times. The actual number of iterations at runtime is reflected in the dynamic task
net by automatic structural changes and execution state changes performed by the
workflow engine. In all these cases, atomic activities which are not represented by
workflow tasks are neglected for the control flow structure, i.e. the workflow tasks
corresponding to their predecessors are directly connected with the workflow tasks
corresponding to the successors.

6.3.3 Mapping of Execution States and State Transitions

The integration of WF workflow instances into dynamic task nets is eased by the
circumstance that tasks in dynamic task nets have execution states, in contrast to
tasks in project plans. However, the execution states and allowed state transitions
defined for WF workflow instances and activities do not exactly match the finite
state machine defined for tasks in a dynamic task net which has been described in
Section 5.2.1.

The finite state machine for WF workflow instances is depicted in Figure 6.8.
The initial execution state of a workflow instance is the state Created. A workflow
instance has to be explicitly started to take on the execution state Running. A
running workflow instance can be temporarily suspended which is indicated by the
execution state Suspended. If the execution of a workflow fails due to technical
problems or premature cancellation, the execution state of the workflow is changed
to the final state Terminated. Only a running workflow can be successfully completed
whereby its execution state is changed to Completed.

The synchronization of the enactment of workflow instances with their respective
workflow-managed tasks has been formally specified by the product automaton
depicted in Figure 6.9. Every state of the combined automaton is labeled with the
execution state of the workflow-managed task on top and the execution state of the

188 6.3 Workflow Management

InDefinition Waiting
Created

Active
Running

Suspended
Suspended

Replanning
Running

Done
Completed

Failed
Terminated

Skipped
Terminated

Skipped

InDefinition
Created

Figure 6.9: Synchronizing automaton for workflow-managed tasks.

workflow instance below. A workflow instance is created when the execution state
of the workflow-managed task is changed from InDefinition to Waiting for the first
time. If the task shall be redefined afterwards, the existing workflow instance has
to be modified. The workflow instance is started when the execution state of the
workflow-managed task is changed to Active. Suspension of the workflow-managed
task results in the suspension of the workflow instance. The workflow instance is not
suspended to replan the workflow-managed task which involves dynamic changes
to the workflow definition. The execution state Completed indicates a successful
completion of a workflow and is therefore mapped to the execution state Done. The
workflow instance is terminated when the workflow-managed task is aborted or
skipped.

The finite state machine for WF workflow activities is depicted in Figure 6.10.
For a WF workflow activity, the initial execution state is Initialized. After an activity
has been started it is in the execution state Executing. If the activity is successfully
completed, than its execution state is changed from Executing to Closed directly.
There are two intermediate execution states in which exceptional events are handled
before the activity is closed. The state Canceling indicates that the command to
cancel the activity has been invoked and is currently processed. The state Faulting
is reached if technical problems have occurred. Both intermediate states lead to
an unsuccessful closure of the activity. The execution state is changed to Closed
just like for successful termination. The final state does not reflect whether the
activity has been terminated successfully or unsuccessfully. For this purpose, a
separate return value is transmitted to the workflow engine. If an activity is closed
due to an error, it may be necessary to undo previous results of the workflow. In
this case compensating activities can be started. The failed activity is changed to
the execution state Compensating while the compensation takes place. Afterwards,
the execution state is changed back to Closed and can never be changed again.
Therefore, Closed is actually the final state of the state automaton but only if the

Chapter 6 Process Modeling and Enactment 189

Initialized Executing Closed Compensating

Canceling

Faulting

Figure 6.10: Finite state machine defining the life cycle of WF workflow activities.

InDefinition
Initialized

Waiting
Executing

Active
Executing

Suspended
Executing

Replanning
Executing

Failed
Closed

Skipped
Closed

Skipped
Initialized

Done
Closed

Figure 6.11: Synchronizing automaton for workflow tasks.

state Compensating has been reached before.

The synchronization of the execution of workflow activities with their correspond-
ing workflow tasks is defined by the product automaton depicted in Figure 6.11.
Every state of the combined automaton is labeled with the execution state of the
workflow task on top and the execution state of the workflow activity below. The
intermediate execution states Canceling and Faulting have been left out for reasons of
clarity. Likewise, the execution state Compensating has been left out in Figure 6.11
because PROCEED does not make use of the compensation functionality of WF
workflows. The full product automaton which takes all activity execution states into
account has 21 states and 38 transitions.

In Figure 6.11, it can be seen that the start of a workflow activity is mapped to
the transition from InDefinition to Waiting of the corresponding workflow task. The
alternative solution to map the start of an activity to the start of the corresponding
task has not been implemented for the following reasons. The workflow engine
manages the workflow-managed task net, i.e. it creates new task version when
necessary and prepares tasks for execution. The enactment of the workflow tasks
is left to the assigned resources. The responsible resource of a workflow task

190 6.3 Workflow Management

changes the execution state to Active when the assigned resources actually start
working on the task. The workflow engine cannot decide when a task can actually
be started. It can only prepare the task for execution by changing its execution
state to Waiting. For a workflow task, this transition can only be performed by the
workflow engine. As a consequence, the responsible resource of a workflow task
can only start the task when it has been prepared for execution by the workflow
engine. Tasks, which correspond to activities in the workflow definition which have
not been reached by the workflow instance yet, cannot be started by the respective
responsible resources. A workflow task cannot be redefined because this would
require a manual state change from InDefinition to Waiting afterwards. Therefore,
the state InDefinition/Executing and the corresponding state transitions are not
contained in the synchronizing automaton.

The responsible resource of a workflow task starts and terminates the task. The
successful termination of a workflow task is signaled to the workflow engine which
closes the corresponding workflow activity and proceeds with the enactment of
the workflow instance. If a workflow task is aborted by the responsible resource
to indicate that the objective of the task could not be achieved, the corresponding
workflow activity is nevertheless successfully closed and the workflow proceeds as
planned. This behavior is in line with the semantics of task failure in dynamic task
nets (cf. Section 5.2). A complex task does not fail only because one of its subtasks
has failed. The complex parent task can be successfully terminated nevertheless.
The objectives of the failed subtask can possibly still be achieved by performing
additional tasks.

The UML sequence diagram depicted in Figure 6.12 gives an overview over the
interaction between the four entities workflow-managed task, workflow instance,
workflow activity, and workflow task. This figure merely illustrates the depending
state changes. The interaction actually takes place between the PROCEED process
engine, which manages dynamic task nets, and the workflow engine, which enacts
workflow instances. When a workflow-managed task is defined for the first time, a
new workflow instance is created. With this workflow instance, an activity instance
is created for every activity defined in the workflow definition. When the workflow-
managed task is started, the workflow instance is started as well. When a workflow
activity is executed, the corresponding workflow task is defined, i.e. its execution
state is set to Waiting. Afterwards the task can be started and eventually committed
by the responsible resource, whereupon the workflow activity is closed. When the
workflow instance is finally completed, the workflow-managed task is committed.

6.3.4 Execution of Control Flow Activities

The state machine mapping for execution states of workflow activities and workflow
tasks does not cover complex activities, which define the control flow in a workflow
instance. During the execution of IfElse and While activities, conditions are
evaluated which determine how the workflow instance proceeds. These decisions
lead to behavioral and structural changes of the workflow-managed task net.

Chapter 6 Process Modeling and Enactment 191

Workflow-managed task

Workflow activity

Workflow instance

Workflow task

new()

new()

Execute

Defined

StartWorkflow

Close

Closed

Commit

Start

Commit

Start

Defined

Complete

Figure 6.12: Sequence diagram for workflow integration.

All workflow tasks which correspond to activities inside an IfElse activity remain
in the state InDefinition until the decision for one of the alternative branches has
been made. When an IfElse activity is reached by the workflow instance and the
decision is made, the workflow tasks corresponding to the first activities in the
selected branch are set to the execution state Waiting while all workflow tasks
corresponding to activities in the neglected branches are skipped. The former can
be started by the respective responsible resources while the latter cannot be started
anymore.

A workflow-managed task net initially contains a workflow task for every activity
contained in a While loop. If a While activity is not executed at all in a workflow
instance due to the evaluation of the condition for entering the loop, then all
corresponding workflow tasks are skipped in the dynamic task net. If the workflow
instance enters the while loop, the workflow tasks corresponding to the first activities
in the loop are prepared for execution by changing their execution states to Waiting.
If a While loop is iterated once more, then a new task version is created for every
workflow task which corresponds to an activity contained in the While loop. The
previous versions of these tasks are necessarily all terminated, i.e. in one of the
execution states Done, Failed, or Skipped.

192 6.3 Workflow Management

seqDetermine Pump Type

by Use Case

Determine Pump Type

by Process Data

Detail Engineering of

Pump Specification

Determine Operating

Parameters

seq

seq
Detail Engineering of

Pump Specification
seq

seq

seq

Figure 6.13: Enacted workflow-managed task net.

Figure 6.13 shows the a workflow-managed task net which has been created as
a copy of the workflow template of Figure 6.6. The workflow instance has already
proceeded to the second iteration of the While loop (cf. Figure 6.5). In the IfElse
activity, the alternative branch with the activity Determine Pump Type by Use Case
has been selected whereupon the workflow task Determine Pump Type by Process
Data has been skipped. The first iteration of the While loop has already been
completed and the first version of the workflow task Detail Engineering of Pump
Specification has been committed. A new version of the iterated workflow task has
been automatically created and prepared for execution by the workflow engine.

At workflow runtime, decisions are made regarding which alternative branch to
chose or whether a loop shall be iterated once more. These decisions are made
based on conditions specified in the workflow definition. In PROCEED, the conditions
evaluate decision variables which are defined for the workflow-managed task or
the workflow tasks. Custom decision variables can be defined for task types (cf.
Section 6.1). The conditions which are specified in a workflow definition refer to the
decision variables of the tasks in the dynamic task net. If several versions of a task
exist, the values of the last version are used. The values of the decision variables
can be changed by the responsible resources of the respective tasks. In this way,
the enactment of a workflow-managed task net can be influenced by authorized
users. In the example of Figure 6.13, the workflow-managed task which represents
the whole workflow instance has a decision variable for the selection of one of
the alternative ways to determine the pump type. The responsible resource of the
workflow-managed task can decide which alternative is chosen at runtime. The
workflow task Detail Engineering of Pump Specification has a decision variable which
is set to true if another iteration is required. The responsible resource of the
workflow task may decide whether another iteration is performed by setting the
value of the decision variable. The value of the variable is initially set to true.

6.3.5 Data Flow in Workflow-Managed Task Nets

In general, a workflow definition covers different views on a workflow (cf. Sec-
tion 3.4). In PROCEED, only the control flow view of WF workflows is used for
workflow-managed task nets. The data flow between workflow tasks is defined in
the dynamic task net of a workflow template. Input and output parameters can be
defined for workflow tasks and can be connected by data flows. According to the

Chapter 6 Process Modeling and Enactment 193

structural constraint (5.10), a data flow can only be defined between two parame-
ters when the respective tasks are connected by an equally directed control flow or
feedback flow. Feedback flows can be manually created in workflow-managed task
nets only when the target task is active. Automatic structural change operations
performed by the workflow engine at workflow runtime are restricted to the creation
of new task versions. The creation of new task versions takes the data flow into
account, i.e. the new task versions have the same parameters as the old versions,
and the parameters are connected by data flows accordingly (cf. Section 5.2.3). At
workflow runtime, document revisions have to be produced and released manually
by the assigned resources of the workflow tasks. For the same reason why the
workflow engine cannot start and commit workflow tasks automatically, it cannot
automatically produce document revisions.

6.3.6 Dynamic Changes to Workflow-Managed Tasks

The enactment of workflow-managed task nets involves automatically performed
structural changes in case of the iteration of loop structures. However, these
structural changes are predefined in the associated workflow definitions. In some
situations it may be required to apply structural changes to a workflow-managed
dynamic task net which have not been predefined in the workflow definition, e.g. it
may be required to add an additional task. In this case, it is necessary to change
the workflow definition of the running workflow instance as well. Therefore, it
is not possible to directly change a workflow-managed task net in PROCEED, but
manual structural changes to a workflow-managed task net can only be performed
by changing the workflow instance which in turn entails the automatic adaptation of
the associated task net.

Every WF workflow instance contains a copy of the workflow definition from which
it has been instantiated. The windows workflow foundation allows to dynamically
change the definition of a running workflow instance, so that the workflow is enacted
according to the changed definition afterwards. The changes affect only the one
workflow instance but not other instances which have been instantiated from the
same workflow definition. In Section 3.4.4, the constraints have been listed which
apply for dynamic changes to running WF workflow instances. An activity can only
be deleted if it has not been started yet. A new activity can only be inserted into a
complex activity which has not been terminated yet. It is possible to move an activity
from one complex activity to another as long as the two constraints are satisfied.

Dynamic changes to a workflow instance are reflected in the corresponding
workflow-managed dynamic task net. The deletion of an activity results in the
deletion of the associated workflow task. The creation of a new activity involves the
creation of a new workflow task. In both cases, the control flows in the workflow-
managed task net are adapted, so that they reflect the new structure of the workflow
definition. Thereby, the same transformation rules apply as for a workflow template,
which have been described earlier and have been illustrated in Figure 6.7. If an
activity is moved from one complex activity to another, then the existing workflow

194 6.3 Workflow Management

task is retained but its control flow dependencies are adapted to reflect the new
position of the activity in the workflow definition.

The changes which are automatically applied to a workflow-managed task net
upon the change of the associated workflow instance have to fulfill all structural and
behavioral constraints for dynamic task nets (cf. Sections 5.1 and 5.2). Otherwise,
the changes are prohibited. This means among other things, that the workflow-
managed task has to be in the execution state Replanning. Possible violations of
timing consistency constraints are handled according to the change management
procedure which will be introduced in Chapter 9.

When a workflow-managed task has been terminated, it may be necessary to
create a new version of the task, e.g. if a feedback flow is defined which targets the
terminated workflow-managed task. The completed workflow instance associated
with the previous version of the workflow-managed task cannot be reused. Therefore,
a new workflow instance is created based on the—possibly modified—workflow
definition of the previous version of the workflow-managed task. The new task
version is again workflow-managed and is enacted accordingly.

6.3.7 Time Management Data in Workflow Templates

The primary functions of process management are to use previously gained process
knowledge in development projects and to improve this knowledge from project
to project. Time management data represents process knowledge. For task types,
the planning data can be specified and reused for all instances of the respective
type. In process templates, the lag times of control flows can be specified. Workflow
templates enable another form of collecting and reusing time management data for
workflow-managed tasks.

Reference values are determined for the durations of all activities in a workflow
definition—atomic activities as well as complex activities. The reference value for
the duration of an activity is calculated as the mean duration of all occurrences of the
activity in the terminated instances of the workflow template. The reference values
for the activity durations are stored at the workflow template. This information is
used for scheduling and progress measurement of workflow-managed tasks derived
from the template. In Sections 7.4 and 8.1, it will be described in detail which data is
collected for a workflow template and how it is used for scheduling and monitoring,
respectively.

The quality of the reference values for activity durations depends on the number
of workflow instances which are taken into account and the standard deviation of
the measured durations. Only those workflow instances are considered, which have
been executed in a comparable project and under the same circumstances.

Dynamically changed workflow instances are not taken into account for the com-
putation of reference data for the original workflow template. They are handled as
new variants of the workflow definition and separate reference values are calculated
for these variants if sufficiently many instances with the same dynamic changes
exist. If several versions of a workflow-managed task have been created in a project,

Chapter 6 Process Modeling and Enactment 195

only the activity durations of the first version are taken into account for the original
workflow template.

The tracking service of the workflow engine determines the total durations of
workflow activities including work time and idle time. Only the effective work time is
used to compute the reference values. For this reason, running workflow instances
have to be suspended and resumed by the responsible resources before and after
working on the tasks, respectively. The suspension time is subtracted from the total
activity durations. Consequently, the activity durations reflect, when the assigned
resources were actually working on the respective workflow tasks.

For activities directly or indirectly contained in a While activity, the mean duration
is determined for every iteration of the surrounding loop construct separately.
Furthermore, for every iteration, the number of workflow instances which actually
completed the respective iteration is determined. For an IfElse activity, the average
durations of the alternative branches are stored as well as the average duration of
the IfElse activity itself. Furthermore, for every alternative branch the number of
workflow instances which actually chose the branch is stored.

6.3.8 Conclusion

The integration of a workflow engine into PROCEED allows for the modeling and
enactment of partially automated processes. Automatically executing activities
can be defined in a workflow definition, which are not represented in the project
plan. Alternative courses of action can be defined, and the workflow engine decides
automatically at runtime which alternative is executed. The iteration of process parts
can be predefined in a workflow definition, so that the required structural changes
to the task net can be automatically performed by the workflow engine. Thereby,
the responsible resource of a workflow-managed task is released of managing the
subprocess. The enactment of multiple instances of a workflow definition allows the
automatic calculation of reference values for the activity durations, which can be
used for workflow scheduling and monitoring.

In PROCEED, workflows are used alternatively to declarative process model defi-
nitions on type level which were introduced in [Sch02]. However, both approaches
could be used together and actually complement each other. Declarative process
model definitions are more suitable to model whole development processes or sub-
processes on higher levels of a hierarchically structured dynamic task net. Workflows
are more suitable to model and enact subprocesses on lower levels of a dynamic task
net. However, in the industrial context of the research project, only the workflow
approach was required and has been implemented. The declarative approach for
process modeling has not been applied for the reasons discussed in Section 6.2.

The implemented integration of workflow instances into dynamic task nets has
one limitation. It is not possible to define and enact workflows which span across
several subprocesses, i.e. the workflow tasks which correspond to the activities of a
workflow definition may not be contained in the realizations of different parent tasks.
To realize this, it would be required to detach workflow definitions and instances

196 6.4 Related Work

from the realizations of individual tasks in a dynamic task net. This problem has not
been addressed in this thesis because it would require a fundamentally different
integration approach.

6.4 Related Work

In this section, related work is reviewed regarding the workflow management
functionality in PROCEED.

6.4.1 Integration of Project and Workflow Management

The approach for integrating workflow management functionality into PROCEED is
closely related to the problem of integrating a WfMS with a project management
system (PMS). In both cases, different meta-models for modeling workflows on the
one hand and project plans or task nets on the other hand have to be mapped. A
runtime mechanism has to be provided which translates the events and actions in
one system to according operations in the other system to maintain the consistency
of the different models.

Chan and Chung In [CC02], the IPPM system is described which integrates
project and workflow management functionality. Custom workflow modeling and
enactment tools have been integrated with MS Project. Control flow structures
in workflows are mapped to task net structures in a project plan. For alternative
branching constructs, the prudential branching method is applied, i.e. tasks cor-
responding to unselected branches are removed from the project plan as soon as
the decision for one of the branches is made by the workflow management system.
This method differs from the method implemented in PROCEED where neglected
branches are not removed from the workflow-managed task net but are marked as
skipped. Retaining the skipped tasks in the task net ensures the traceability of work-
flow execution in the task net. With respect to loop constructs, different possibilities
are distinguished: loops with only compulsory tasks and loops with compulsory and
optional tasks. The case that a loop can be skipped completely is neglected. Loops
are unfolded in project plans at workflow runtime, i.e. the subsequent iterations of
tasks are represented as individual tasks in the project plan and are sequentially
connected by control flows. In contrast, new versions of iterated tasks are created
in PROCEED. In the IPPM system, only the compulsory tasks of a loop are inserted
in the project plan before workflow runtime. The optional tasks are replaced by
a so-called prudent-estimated task which represents all further iterations of the
loop. Just like in PROCEED, workflow definitions in the IPPM system have to be
well-structured—or in other words block-structured—for the described mappings to
be applicable. All aspects regarding the scheduling of workflow instances which are
covered by the IPPM system will be reviewed in Section 7.6.1.

Chapter 6 Process Modeling and Enactment 197

Bussler In [Bus98], Bussler discusses issues regarding the integration of WfMS
and PMS in general. He distinguishes two parts: schema integration and behavior
integration. Schema integration is also called semantic integration and refers to
the mapping of the conceptual objects of the systems, e.g. workflow activities and
tasks. Behavior integration means that the state changes taking place in one system
have to be mapped to operations in the other system. Regarding schema integration,
the main conflicts are identified, e.g. the absence of alternative branching and
loops in project plans, and the restriction to sequential control flows in workflows.
Different possible mappings for control structures are discussed: static mapping
and continuous mapping. Static mapping means that all possible routes through a
workflow are completely mapped to the project plan before workflow runtime, which
does not work for loops. At workflow runtime, tasks of neglected alternative branches
are removed from the project plan. Continuous mapping means that only the portion
of a workflow is mapped to the project plan which will actually be executed. For
the mapping of control structures in PROCEED we used the continuous mapping
approach for loops and the static mapping approach for alternative branching with
the exception that no tasks are deleted after a decision has been made. Regarding
behavior integration, the interaction of the integrated systems is specified by means
of sequence diagrams which cover the enactment of workflow instances as well as
dynamic changes to workflow instances. Bussler describes an ideal integration of a
WfMS and a PMS independent of any specific system. Similarly, the interaction of
the workflow and task net entities in PROCEED has been specified in Figure 6.12.
However, the challenging problems arise from the peculiarities of the systems to be
integrated.

Bauer Bauer also addresses in [Bau04] the issue of integrating existing workflow
and project management systems. He describes the respective strengths and weak-
nesses of PMS and WfMS and motivates their integration amongst others by the need
to schedule workflows in a project. He distinguishes two approaches: loose coupling,
where several workflow instances can be mapped to a single project task, and close
coupling, where there is a one-to-one mapping of workflow activities and tasks in
the project plan. The close coupling approach is not applicable, when the project
plan and the workflows are on different abstraction levels. Hence Bauer presents
a generic integration architecture for loose coupling based on an integration layer
between the WfMS and the PMS. The propagation and aggregation of runtime data
via the integration layer is specified by means of event-condition-action (ECA) rules.
In PROCEED, a close coupling of the process engine and the workflow engine has
been realized. There is a one-to-one mapping between workflow activities and tasks
in the task net.

Maurer et al. The MILOS system [MDB+00] is an integrated solution for the
management of software development processes. It combines project and workflow
management functionality by coupling a custom process engine with MS Project.
The workflow management part supports ad-hoc workflows, which can be elaborated

198 6.4 Related Work

during enactment. MS Project is used as the planning interface and is extended by
functionality to define information flow between different tasks. However, the actual
performance of tasks in terms of execution states is not reflected in the project plan.
The runtime coupling between the workflow management component and MS Project
is realized by means of ECA-rules. The problem of different abstraction levels of
the project plan and the workflows is not addressed, i.e. a close coupling is realized
with respect to the terminology introduced in [Bau04]. In the MILOS system, there
is a strict distinction between the user interfaces for the project planner and the
process performers. The former uses MS Project while the latter work only with
to-do lists. The process context of a task is not visible to the assigned resource. The
scheduling and project monitoring functionality of the MILOS system is limited by
the functionality provided by MS Project.

Bahrami In [Bah05], an architecture for an integrated project and workflow man-
agement system is proposed. Technical issues are addressed like the exchange
format for workflow definitions which is XPDL in this case. The conceptual problems
of structural and behavioral mapping are not addressed in the paper. The paper
claims that workflow instances are scheduled by the project management system
but no details are revealed to substantiate this statement. In general, the paper
does not verify that the aimed-at functionality of the integrated system has been
implemented and is demonstrably working. It should rather be considered as a
statement of intent.

The reviewed integration approaches all face the problem that no information
about the process enactment state is maintained in the respective project manage-
ment system. The plan is adapted according to the enactment of workflow instances,
but the ability to monitor the status of process instances in the PMS is limited.
Furthermore, since products and data flows are generally not represented in project
plans, product management is still beyond the scope of the integrated systems,
except for the MILOS system. In most cases, data flows between workflow instances
have to be managed manually. These deficiencies are overcome by integrating
workflow instances into dynamic task nets.

Heller The solution which is most related to the workflow integration approach
presented in this thesis is the integration of the AHEAD system with the workflow
management system Shark as described in [Hel08a, HHM+06, Wei06] and Sec-
tion 4.5. The goal of the integration of Shark and AHEAD was to monitor workflow
processes in AHEAD which were enacted in a WfMS. In contrast, a workflow engine
has been integrated into PROCEED to automatically manage parts of a dynamic task
net. The motivation for this integration has been the availability of additional model-
ing capabilities for alternative branching and loops. The different motivations lead
to differences in detail between the solutions. In the integrated solution of AHEAD
and Shark, it was not possible to refine workflow tasks by manually managed task
nets. The control over the enactment of a workflow fragment remained at the WfMS.
A workflow task could only be refined by another workflow instance. In contrast,

Chapter 6 Process Modeling and Enactment 199

workflow-managed tasks and manually managed tasks can be arbitrarily nested
in PROCEED. The resources assigned to tasks in a workflow fragment used the
client application of the Shark WfMS to execute their tasks. The workflow fragment
in AHEAD which represented the workflow instance could only be monitored. In
contrast to that, the assigned resources use PROCEED to start and commit their
workflow tasks. No separate client application is required. The start of a workflow
activity in the Shark system was mapped to the start of the corresponding task in
the workflow fragment in AHEAD. This mapping was correct for the integration
of AHEAD and Shark because the workflow fragment should reflect the status of
the workflow instance. When an assigned resource had started his activity in the
WfMS, this had to be reflected in AHEAD. In PROCEED however, the start of a
workflow activity is mapped to the preparation of the corresponding workflow task
for execution because the assigned resources start the tasks manually via PRO-
CEED. Further differences between the two approaches stem from the different
modeling capabilities and available functionalities of the integrated systems. The
set of available execution states of a task has been extended by the state Skipped in
PROCEED. This has enabled a more seamless integration of the execution states of
workflow tasks and workflow activities. In the AHEAD solution, a neglected task of
an alternative branch remained in the execution state InDefinition until the workflow
was terminated. Finally, dynamic changes to running workflow instances were not
possible for the Shark WfMS. Therefore, the integrated solution did not cover the
adaptation of a workflow fragment in case of dynamic changes to the corresponding
workflow instance. In PROCEED, the workflow-managed task net is automatically
adapted to the changed workflow definition.

6.4.2 Direct Process Support in Engineering Design Projects

In the Collaborative Research Center (CRC) 476 IMPROVE [NM08], another research
project was conducted which was concerned with process management. In the
project Experience-based Development Processes [MJW08], new concepts and tools
were developed for direct process support in engineering design projects. The
PRIME framework [PWD+99] was applied to realize process-integrated software
tools which are used by the engineers in plant design projects to create design
artifacts like flow diagrams. Individual and cooperative processes are supported by
dynamically adapting the available tool functionality and by providing advices and
hints to the user to guide him.

In contrast to process management on the medium- and coarse-grained level
as provided by the AHEAD and the PROCEED system, direct process support is
provided for fine-grained technical processes in a design project. The process
support is built into the technical software tools which are used by engineers and
other process participants instead of providing separated guidance tools. From the
user perspective, process support is provided implicitly by adapted tool functionality
and not by explicitly defined tasks and work packages presented on a to-do list.
The general process support provided by PROCEED falls into the latter category.

200 6.4 Related Work

The PRIME approach is nevertheless related to the workflow support provided
by PROCEED in that similar processes are targeted. Workflow management in
PROCEED is best suitable for fine-grained processes in a design project.

In [MJW08], the authors argue that the early phases of plant design processes
are highly creative and dynamic and cannot be completely predefined in advance.
In particular on the fine-grained level, a design process cannot be predetermined
before runtime. However, individual process chunks may be identified which appear
often in the same way in an engineering project and even in different projects. These
parts of the overall process represent best practices followed by the majority of the
engineers. These process chunks are generally well-understood and can be formally
defined. In the PRIME approach, so-called method fragments are created for this
purpose.

The approach for direct process support builds on three basic ideas. First, method
guidance is provided by the process-integrated software tools. Thereby, no strict
conformity with process prescriptions is enforced. Instead, advice is given to the user.
When a valid situation with eligible method fragments for enactment eventuates,
then the user gets notified about the available options and can selectively request
their enactment. Second, the process support is provided by means of process-
integrated tools instead of separated guidance tools. These tools detect situations
which correspond to method fragments and provide the advice. Furthermore, the
user interface is automatically adapted, i.e. the available options are presented to
the user and certain tool functionalities which are not required in the situation are
hidden from the user to focus his attention on the relevant functions. Finally, process
and product traces are reused to generate method fragments. While engineers are
working with their process-integrated tools, their actions are logged and stored
in a database. This feedback information is organized according to a traceability
meta-model which is adjusted to the project-specific needs. The captured process
traces provide evidence for the dependencies between the design products (e.g. flow
sheets), the supplementary products (goals, decisions), and the process observation
data (process steps). From the process traces, the method fragments are derived.
Compared to prescriptive process definitions which may be biased by perceptions of
the process modelers, process traces are objective in the sense that they reflect the
actually performed processes.

The realization of process-integrated tools is supported by the integration frame-
work PRIME [PWD+99, Poh99, PWD+98]. The framework includes the situation-
based process meta-model NATURE [Poh96] which defines the required entities
and relationships for the explicit definition of method fragments. By means of the
NATURE meta-model, situations and intentions can be explicitly represented. An
intention reflects the goal that the human actor has in mind. The process knowledge
about how to reach an intention in a given situation is defined by a so-called context.
The method definitions based on NATURE are integrated with tool models in the
so-called environment model. Furthermore, PRIME enables the capturing of traces
during the usage of process-integrated tools for product design. Finally, PRIME
comprises an object-oriented implementation framework for the interpretation of

Chapter 6 Process Modeling and Enactment 201

environment model definitions by the process-integrated tools and the dynamic
adaptation of their behavior. Using the PRIME framework, a process-integrated
flow sheet editor has been realized which is based on the drawing tool Visio. This
prototype has been used to evaluate the approach for direct process support in the
CRC 476 IMPROVE.

The direct process support provided by the flow sheet editor and the workflow
support integrated into PROCEED can be applied to similar processes in plant design
projects. The procedures which have to be followed by individual engineers can
be supported by both solutions. In both approaches, certain process steps can be
automatically executed while others require human intervention. Alternative courses
of action can be defined in the process models and decisions can be made by the
users at process runtime.

However, there are significant differences between the two approaches. The
workflow support in PROCEED still relies on the concept of explicitly defined tasks
which are assigned to human resources. In this regard, the workflow support for
fine-grained processes does not differ from the process support on the medium-
and coarse-grained level. In contrast, the process support provided by process-
integrated tools based on PRIME is implicit. The user is not aware that a formally
specified process model controls the behavior of his tool. However, direct process
support only is not sufficient for the management of complex development processes.
Furthermore, in the PRIME approach process traces are captured to derive the
process model from these traces, i.e. the structure of the process regarding the
available actions, situations, and intentions, as well as their mutual dependencies
are determined. In contrast, the structure of a workflow is prescribed in PROCEED,
i.e. it is manually specified by a domain expert. At workflow runtime, timing data
and structural dynamic changes are captured and used afterwards to improve the
corresponding workflow template. The process-integrated flow sheet editor which
has been realized using PRIME is based on the general purpose drawing tool Visio.
PROCEED is an extension to the life cycle asset information system Comos which is
widely used in the plant engineering industries, in particular for the creation of flow
diagrams.

Altogether, the PRIME approach and the workflow support in PROCEED offer
complementary support for fine-grained processes of individual engineers and for
the coordination of technical crews. Direct process support would constitute a
valuable extension to the PROCEED system and would complement the process
support functionalities integrated in Comos.

6.5 Conclusion

This chapter introduced the modeling concepts for process model definitions and
the functionality for their enactment in PROCEED. Task types are used to store
and reuse knowledge about the time, effort, and costs involved with performing a
task instance of the respective type. This is already very valuable information for
project planning. Process templates additionally comprise information about the

202 6.5 Conclusion

relationships and dependencies between tasks including required lag times. Finally,
workflow templates comprise additional information about the enactment of the
process. This allows for the automatic enactment of subprocesses of a development
process and thereby releases the responsible resources from managing these pro-
cesses. Workflow-managed task nets have to be scheduled in a particular way as it
will be described in Chapter 7, and the knowledge contained in workflow templates
enables specific progress measurement as it will be described in Chapter 8.

Chapter 7 Scheduling of Dynamic Task Nets 203

Chapter 7

Scheduling of Dynamic Task Nets

The process of project planning as described in Section 3.1.2 and depicted in
Figure 3.3 comprises several steps. The steps Activity Definition, Activity Sequencing
and the estimations of workload, budget, durations and resource requirements
can be performed manually. The task net which is defined in the course of these
planning steps can be built up from scratch or by using pre-defined task types and
process templates. Afterwards, the defined tasks are scheduled. The development
of a good, time- and resource-feasible schedule needs adequate tool support. A
project manager cannot manually generate a feasible schedule, which respects all
defined control flow and resource dependencies. In particular in mid-size to large
projects with over 50 resources and hundreds of tasks, it is impossible to take all
dependencies into account. Furthermore, secondary objectives like the minimization
of the project makespan and the leveling of resource usage cannot be achieved
manually with reasonable effort. Therefore, algorithms have been implemented in
PROCEED for automatic schedule generation.

This chapter describes, how the tasks in a dynamic task net are scheduled in
PROCEED to obtain a timed process model instance. The planning data, defined
task assignments with required roles, and the manually set time constraints are
used to calculate planned start and end times for tasks, to assign resources to task
assignments, and to distribute the planned workload over several work days [Dre09].

A dynamic task net is an activity-on-node representation of a project network.In
PROCEED, release and due dates can be defined for tasks. Resource availabilities
may vary for different time units as defined in the resources’ work calendars. The
available semantics of control flows in dynamic task nets cover most of the gen-
eralized precedence relations with minimal lag times, except for start-start and
start-end relationships. Therefore, the problem of scheduling dynamic task nets can
be considered as a restricted version of the GRCPSP (cf. Section 3.2.2).

In contrast to the GRCPSP, it is not the objective of scheduling in PROCEED to
produce an optimal schedule with respect to the project makespan for the following
reasons. The problem of finding the optimal solution to the GRCPSP is NP-hard in
the strong sense [DH02]. Hence, exact methods for solving the GRCPSP have an
exponential runtime complexity in the worst case. Heuristic methods may not find
the global optimum among the feasible schedules but solutions can be computed
more efficiently. In practice, it is more important for project managers to obtain
good schedules fast than to wait for optimal schedules for a long time [DH02, p.264].

204

The generation of an optimal schedule does only make sense, when all tasks
in the project are known, i.e. when the work breakdown structure is completely
defined. However, this is usually not the case at the start of a development project.
Many tasks are defined at runtime and have to be incorporated into the schedule.
As a consequence, frequent rescheduling is required to react to these disruptions.
According to [ZBY05], computing an optimal schedule at the beginning of a project
makes it harder to repair the schedule in case of disruptions at project runtime,
i.e. suboptimal schedules are more flexible. Schedule recovery is more likely to
be unfeasible for an optimal schedule than for a good schedule which incorporates
additional slack time for the scheduled tasks. The duration of a plant design project
is usually estimated based on reliable reference data from similar previous projects,
and it is fixed in the contract before a detailed scheduling of all tasks in the project
is performed. The goal of task net scheduling therefore is to find a good feasible
schedule which takes all time constraints and in particular the defined project
deadline into account. The computed project end time will usually be earlier than
the defined project deadline, because the estimate for the project duration contains a
contingency buffer to cover unforeseen delays at project runtime. Instead of finding
the optimal schedule for the tasks in a project which leaves, e.g., 30% of the project
duration as buffer time, it is reasonable to compute a suboptimal schedule which
leaves, e.g., 20% of the project duration as buffer.

Since the GRCPSP is NP-hard and the goal of resource-constrained scheduling in
PROCEED is the fast computation of a good but not necessarily optimal schedule,
a heuristic approach has been implemented in PROCEED. Since the scheduling
algorithm is used for initial project planning, a constructive heuristic is required
which generates a good feasible schedule from scratch. The constructive heuristic
is also used to repair the schedule in case of dynamic changes at project runtime.
Therefore, the heuristic allows partial rescheduling of dynamic task nets.

The implemented heuristic for resource-constrained scheduling in PROCEED is
based on the parallel scheduling scheme and uses CPM-based priority rules (cf.
Section 3.2.2). The fact that the optimal schedule may not be in the set of non-delay
schedules which are produced by a parallel scheduling scheme can be neglected
for the above mentioned reasons. The usage of CPM-based priority rules requires a
CPM-scheduling pass before the actual resource-constrained scheduling. Therefore,
the whole scheduling algorithm is divided into two phases.

1. Critical path analysis

2. Heuristic resource-constrained scheduling

Critical path analysis has been extended in this thesis to cover hierarchical task nets
in which simultaneous and standard control flows can be defined. The earliest and
latest possible start and end times which result from the critical path analysis are
used to compute the priority list of tasks for the second phase. They are furthermore
used during resource-constrained scheduling as additional constraints.

The scheduling of a dynamic task net requires certain input parameters. The
user specifies the start date for scheduling which defines the first date for which

Chapter 7 Scheduling of Dynamic Task Nets 205

preparing tasks can be scheduled. This is by default the next work day after the
current date. Scheduling can be performed before the start of the project but also at
project runtime. When a task net is rescheduled at runtime, terminated tasks are not
rescheduled, running tasks keep their planned start time, and preparing tasks are
scheduled later or equal to the specified start date. Rescheduling at project runtime
can be performed for a subnet of the whole dynamic task net. For this purpose, the
user specifies the root task of this subnet. Only the descendants of this root task in
the task net hierarchy are rescheduled while all other tasks remain unchanged.

The heuristic approach has been chosen because the GRCPSP is NP-hard. The
implemented parallel heuristic may not yield an optimal schedule with respect
to the project’s makespan which is acceptable for the above mentioned reasons.
However, even the problem of deciding whether a feasible schedule for the GRCPSP
exists is NP-complete [DH02]. If the algorithm for automatic scheduling fails, it
cannot be efficiently decided in the worst case whether a solution exists at all
given the defined time and resource constraints. However, the reason for the
failure of the scheduling run for the given problem instance can be identified. This
information is presented to the user and he or she may decide how the defined
time and resource constraints can be adapted to enable a successful scheduling
pass. This is a practicable solution because the automatic scheduling fails in most
cases due to conflicting constraints which are revealed during resource-constrained
scheduling. Consequently, scheduling of a dynamic task net in PROCEED is an
interactive process. The user defines planning data and time constraints and invokes
the scheduling algorithm. If scheduling fails or does not yield the expected result,
the user can add, remove or change time constraints and control flows, adapt
the planning data, and invoke the scheduling algorithm again until an acceptable
solution is reached.

The dynamic task net which is stored in the Comos database is mirrored in
the computer’s main memory for scheduling. This memory representation of the
dynamic task net contains all information required for scheduling. When scheduling
has been successfully terminated, the computed timing property values are written
to the database all at once. Working on a memory representation instead of the
database speeds up the scheduling algorithms. Furthermore, inconsistent states of
the management data in the database are avoided by writing the computed values
to the database only after a complete and successful scheduling run.

7.1 Partial Scheduling

Existing algorithms for solving the GRCPSP always take all tasks of a given problem
instance into account [DH02]. This is required due to the possible resource depen-
dencies between different tasks. It is in general not possible to schedule parts of
the overall activity network separately without considering the resource constraints
imposed by other tasks in the network. This procedure would in most cases lead to
resource-infeasible schedules. Furthermore, feasible schedules would probably not
be optimal, and the optimization of the schedule is the main objective of the majority

206 7.1 Partial Scheduling

of approaches found in literature.
Even approaches for schedule repair work on the whole task network and try

to globally optimize the schedule after local modifications [Wan05]. With respect
to scheduling under uncertainty, other optimization objectives than the minimal
project makespan are considered, e.g. the minimization of the sum of the weighted
absolute differences between the start time of each task in the repaired schedule
and the original start time of that task [HL05, SW00]. In these cases, it is desirable
to minimize the effects of local changes on other parts of the schedule to achieve a
stability of the planned start times.

The objective for resource-constrained scheduling in PROCEED is to compute a
good feasible schedule which is consistent with the planned project deadline. The
optimization of the project makespan is not the main objective. In case of disruptions
at project runtime, the consistency of the schedule has to be re-established. The
effects of local changes to a dynamic task net on other parts of the task net should
be limited. Therefore, only some parts of the dynamic task net are rescheduled while
others remain unchanged.

There are several reasons for excluding tasks from scheduling. The user may
have explicitly specified that certain tasks shall not be changed. Tasks can be too
short or too small to be scheduled in a meaningful way. Tasks which define project
management activities should not be scheduled as part of the project plan. Therefore,
the tasks in a dynamic task net are divided into the following three categories with
respect to scheduling.

Zero-duration tasks are not (re)scheduled and do not impose constraints on sched-
uled tasks. These tasks are excluded from scheduling because of their duration,
workload, granularity, or because they represent project management activities.

Not scheduled tasks are not (re)scheduled but do impose constraints on scheduled
tasks. These tasks are not scheduled because they are not contained in the subnet
to be scheduled or because of their execution states.

Partially scheduled tasks are not moved by the scheduling algorithm but may be
prolonged or foreshortened, i.e. their planned start time remains unchanged
but their planned end time may change. In this category fall all running but not
suspended tasks which do not fall into one of the previous categories.

Scheduled tasks are those tasks for which the scheduling algorithm computes
planned start and end times.

When the memory representation of the persistent task net is created, the property
values of the tasks in memory are set to the respective property values of the tasks
in the Comos database. During this import of the task net into main memory, some
property values are not imported.

• The computed constraint dates of tasks are not set in the memory representation.
They are completely calculated anew during critical path analysis. However, the
manually set constraint dates are imported.

Chapter 7 Scheduling of Dynamic Task Nets 207

• The planned dates and workload distributions of scheduled tasks are not imported.
They are computed during resource-constrained scheduling.

• The planned end times of partially scheduled tasks are not imported. They
are updated during resource-constrained scheduling. However, the workload
distributions of partially scheduled tasks are imported.

In the following, the criteria for the membership of tasks in the different categories
are motivated and defined in detail, and it is described how the tasks which are not
regularly scheduled are handled.

7.1.1 Zero-Duration Tasks

Tasks which are too short or too small and tasks which represent management
activities are excluded from scheduling. The decision whether a task is a zero-
duration task is made based on its planning data, granularity level, and its type.
When a task is categorized as a zero-duration task, then all of its descendants in the
task net hierarchy are zero-duration tasks as well.

Planning data The size of a task in terms of workload and duration may exclude
it from scheduling. Scheduling is useful for tasks with a significant amount of
required workload which require at least one work day for completion. For short
term tasks resource-constrained scheduling involves a disproportionate overhead.
Therefore, the following tasks are not taken into account during resource-constrained
scheduling.

• Tasks with a total duration of zero work days. A task for which a duration of zero
work days has been explicitly defined is not meant to be scheduled. This includes
tasks in the execution state Skipped.

• Tasks with an undefined total duration and a total workload of 0 MHRS or an
undefined total workload, If the duration of a task is undefined and no man hours
are specified, the task cannot be scheduled in a meaningful way because the
duration cannot be derived from the total workload.

• Tasks with undefined total duration and without task assignments and subtasks.
Unassigned total workload of these tasks cannot be distributed in a meaningful
way because the duration cannot be determined.

• Tasks whose respective parent task has a total duration of one work day only. A
task with a duration of one work day is scheduled. However, the subtasks of this
task are not considered for scheduling since all work can be performed in one
day which is the smallest time unit for scheduling.

In all other cases, a task can be scheduled. A task with a duration of more than
zero work days but with a total workload of zero man hours is scheduled based on
the explicitly defined duration. If the duration of a task is undefined but workload of

208 7.1 Partial Scheduling

more than zero man hours is specified for at least one task assignment, the duration
is determined by distributing the workload over several workdays according to the
work calendars of the task and the assigned resources.

Granularity level In Section 5.1.1, the concept of granularity has been introduced.
The granularity level of a task can be explicitly defined. The value work step indicates
that the task represents a small step in a procedure which is commonly executed
by only one resource. Therefore, work steps are excluded from scheduling. Only
the tasks with granularity levels project structure or task are considered for the
generation of the project schedule. Even when a significant amount of workload or a
duration of several work days is specified for a task with granularity level work step,
this task is not taken into account during scheduling. To include the task into the
project plan, the user has to change its granularity level to task.

Project management tasks The work breakdown structure of a project usually
contains a first level element which subsumes all project management activities
in the project [Bur00, Hau01]. In PROCEED, all project management tasks are
stored under the task Project Management which is defined by default on the first
level of the hierarchical dynamic task net below the root task which represents the
whole project. Project management tasks are defined to structure the processes
which are enacted to manage a project. These processes include reporting, quality
management, and change management, and in particular project planning and
replanning. The details of how management tasks are handled in PROCEED will be
described in Section 9.1. Management tasks are not part of the project plan because
their execution affects the project plan. Therefore, the task Project Management
and all its descendants are excluded from scheduling.

Processing of zero-duration tasks Zero-duration tasks except management
tasks may have scheduled tasks as predecessors or successors in the dynamic
task net. Although the zero duration tasks are not scheduled, the task dependencies
have to be taken into account during scheduling since they connect the predecessors
and successors with each other. Therefore, zero-duration tasks are removed from
the dynamic task net before scheduling. Control flows which connect zero-duration
tasks are replaced by equivalent ones. This way, dependencies between (partially)
scheduled tasks via zero-duration tasks are retained while the zero-duration tasks are
deleted. These structural modifications are applied to the memory implementation
of the dynamic task net but are not written to the Comos database after scheduling.

For every combination of a control flow from a predecessor and a control flow to a
successor of a zero-duration task, an equivalent replacement control flow is defined
between the predecessor and the successor. The lag time of the replacement control
flow is the sum of the lag times of the replaced control flows. The semantics of the
replacement control flow can be determined by the following rule. When the control
flow to the successor has the standard semantics, then the replacement control flow
also has the standard semantics. Otherwise, the replacement control flow has the

Chapter 7 Scheduling of Dynamic Task Nets 209

stdZ std

seqelse

Control flows to be replaced Replacement control flow

SP P S

SP

Figure 7.1: Replacement rule for control flows of a zero-duration task.

sequential semantics. This rule is illustrated in Figure 7.1 where the task labeled Z
is the zero-duration task to be replaced, and the tasks S and P represent a successor
and a predecessor task.

The correctness of the rule can be verified by examining all possible combinations
of control flows and the resulting constraints imposed on the predecessor and
successor tasks. Thereby, the zero-duration task to be deleted is regarded as a task
with a duration of zero work days, which means that the start and end events of
the task fall on the same date. As a consequence, most combinations transform to
a sequential control flow, because a simultaneous control flow requires the same
timing as a sequential one. A formal logical proof of the equivalence of the replaced
control flows and the replacement control flow is based on this observation. In the
following, a sketch of a formal proof is presented for the case of zero lag times.
The variable P represents the predecessor task, Z the zero-duration task, and S the
successor task in the presented formulas. For every task T the start event is denoted
as T.Start and the end event is denoted as T.End.

• The replacement control flow has at least standard semantics since both replaced
control flows have at least standard semantics.
P.End ≤ Z.End ∧ Z.End ≤ S.End⇒ P.End ≤ S.End

• If the control flow to the predecessor task has standard semantics, the replace-
ment control flow cannot have simultaneous or sequential semantics since the
start event of the successor may still occur before the start event of the prede-
cessor.
P.End ≤ Z.End ∧ Z.End ≤ S.End ; P.Start ≤ S.Start ∨ P.End ≤ S.Start
An according counter example is illustrated in Figure 7.2.

• If the second control flow has simultaneous semantics, the replacement control
flow has to have sequential semantics, because the first control flow has at least
standard semantics and the start and end event of the 0-duration task fall on the
same date.
P.End ≤ Z.End ∧ Z.Start ≤ S.Start ∧ Z.End = Z.Start⇒ P.End ≤ S.Start

• If the second control flow has sequential semantics, the replacement control flow

210 7.1 Partial Scheduling

std
P

S

Control flows to be replaced Possible timing of tasks

Z SP Z

Figure 7.2: Possible timing of tasks for the standard successor case.

ZA Z CB

Z ZD E

Zstd(3) seq

sim std

std(3) std(5)

seq

A CB

D E

seq(3) std(8)

seq

Transformation

Figure 7.3: Example for the elimination of zero-duration tasks from a task net.

has to have sequential semantics as well.
P.End ≤ Z.End ∧ Z.End ≤ S.Start⇒ P.End ≤ S.Start

The removal of zero-duration tasks from the memory representation of the dynamic
task net and the replacement of control flows is performed as follows. Zero-duration
tasks are removed from bottom to top. A zero-duration task may have subtasks which
have to be removed first. Before a zero-duration task is removed, the replacement
control flows are inserted into the task net. For all combinations of two control
flows from a predecessor and to a successor, a replacement control flow is inserted.
Afterwards, the zero-duration task and all its control flows are deleted.

As a consequence of the application of the replacement rule, a control flow path
between two scheduled tasks is replaced by one control flow when all tasks on
the path are zero-duration tasks. If different control flow paths of this kind exist
between two scheduled tasks in the original task net, then multiple control flows are
introduced between these tasks. In this case, only the most restrictive control flow
is kept and the others are discarded.

The removal of zero-duration tasks together with the introduction of replacement
control flows may lead to the violation of the structural constraint (5.4) for control
flow balancing. However, this violation does not impede scheduling of the trans-
formed task net, and the modified structures are not saved to the Comos database
after scheduling.

Figure 7.3 shows an abstract example for the removal of zero duration tasks from
a task net. All tasks labeled with Z are zero-duration tasks which are removed by the

Chapter 7 Scheduling of Dynamic Task Nets 211

transformation. The sequential control flow between the tasks A and B results from
the combination of the standard and sequential control flows in the original task
net. The zero-duration tasks between the tasks D and E are removed before their
common parent task. The control flow path between the tasks D and E is replaced
by a single control flow because only zero-duration tasks lie on the path. The
replacement control flow between tasks B and C violates the control flow balancing
constraint. The zero-duration successor of task C is removed without any control
flow replacement.

7.1.2 Not Scheduled Tasks and Partially Scheduled Tasks

After zero-duration tasks have been eliminated from the dynamic task net, critical
path analysis can be performed for the project. Critical path analysis is always
performed on the full task net. Planned start and end times however, are only
computed for (partially) scheduled tasks. Tasks which are not descendants of the
specified root task are not scheduled. However, not all descendants of the specified
root task are necessarily scheduled.

One of the major advantages of dynamic task nets is the incorporation of the
execution state of an enacted process instance into a project plan. The information
about the execution states of tasks is used for scheduling. Only those tasks in a
dynamic task net are scheduled which are in one of the execution states InDefinition,
Active, or Replanning. Active and replanning tasks are only partially scheduled, i.e.
only the planned end time may change. A suspended task has to be resumed to be
scheduled. Property values of a waiting task may generally not be changed. Hence
a waiting task is not scheduled unless its execution state is changed to InDefinition
or Active, first. Terminated tasks are not changed anymore. Their planned dates are
not touched by the scheduling algorithm.

In Section 5.1.3 it has been described that resources can be assigned to tasks
by means of the pull- and the push-pattern. In case of the pull-pattern, the tasks
which are still in the task pool should not be scheduled and no resource should be
automatically assigned by the scheduling algorithm. This is achieved by defining
the tasks without assigning actual responsible resources but only the required roles,
and changing the execution states to Waiting. This way, the tasks in the task pool are
not taken into account during scheduling and can be picked up by eligible resources
at any time. When a resource has picked up a task and activates it, the actual
start time is automatically set to the current date. Since the planned start time is
still undefined, it is automatically set to the actual start time. This enables partial
rescheduling of the active task at a later point in time.

Besides the execution states, the hierarchical structure of the task net is consid-
ered as well to decide which tasks are scheduled. The scheduling algorithm only
considers the subtasks of those tasks which are either in the state InDefinition or
Replanning. The planned dates and workload distributions of an active task may
change during scheduling, but its subtasks are not scheduled. If a task shall be
rescheduled at project runtime, all parent tasks up to the root task specified for

212 7.1 Partial Scheduling

Detail

Engineering

Project

Basic

Engineering

Create

Building Plan

Acquisition &

Manufacturing

Device

Specifications

Construction &

Installation

Installation

Plan

Specify

Pump 032

Specify

Pump 037

Figure 7.4: Influence of execution states on rescheduling.

scheduling have to be in the execution state Replanning.

Figure 7.4 shows an example of a task net hierarchy in which tasks have different
execution states. Scheduling of the whole task net may lead to changed planned
dates of the tasks Project, Detail Engineering, Device Specifications, Installation Plan
and Construction & Installation. The tasks Basic Engineering, Create Building Plan
and Acquisition & Manufacturing are not scheduled due to their execution states.
The tasks Specify Pump 032 and Specify Pump 037 are not scheduled because their
parent task is active and not in the state Replanning. If the task Detail Engineering is
specified as the root task for scheduling, the task Construction & Installation becomes
a not scheduled task and may for example not be moved to a later date.

Not scheduled and (partially) scheduled tasks can impose resource and time
constraints on (partially) scheduled tasks. The not scheduled tasks may have been
scheduled before, e.g. when they had different execution states. In this case, their
planned start and end times are set and resources are assigned which use part of
their total workload for these tasks. There are many possible interdependencies
between not scheduled tasks and scheduled tasks like the following examples show.

• The duration of an active task cannot be reduced because the scheduled subtasks
require the currently planned duration and their planned start and end times and
durations are not modified.

• A task in the execution state InDefinition cannot be scheduled for a later date
because a sequential successor task is in the Waiting state and cannot be moved.

• A task in the execution state InDefinition has to be moved to a later planned start
time because the required resource is still assigned to a prolonged active task.

The planned dates of not scheduled tasks are taken into account during scheduling
as additional constraints for the planned start and end times of the scheduled tasks.

Chapter 7 Scheduling of Dynamic Task Nets 213

The used workload of the not scheduled tasks is implicitly taken into account via the
work calendars of the assigned resources.

7.2 Critical Path Analysis

The critical path method (CPM) is applied to compute the earliest and latest start and
end times and the total float of the tasks in a dynamic task net. The computed latest
possible start times of tasks are used for the prioritization of tasks during resource-
constrained scheduling (cf. Section 7.3). Furthermore, the computed earliest
possible start times are used as constraints for resource-constraint scheduling. If
critical path analysis is performed for a fixed project deadline, then the computed
latest possible end times can be used as constraints during resource-constraint
scheduling as well.

The general approach for CPM is divided into two phases: forward scheduling and
backward scheduling (cf. Section 3.2.1). During forward scheduling, the earliest
possible start and end times of all tasks in the dynamic task net are calculated.
Backward scheduling yields the latest possible start and end times of the tasks.

The critical path analysis requires that the release date of the project has been
defined. Furthermore, the due date of the project has to be defined for backward
scheduling to obtain meaningful latest possible times and total floats for the tasks in
the project. If no project deadline is specified, the earliest possible end time of the
project which is computed by forward scheduling is used as the latest possible end
time of the project for backward scheduling. However, in this case the computed
latest possible end times of tasks cannot be used for consistency checks during
resource-constrained scheduling as described in Section 7.3.

Critical path analysis is always performed on the full task net after zero-duration
tasks have been eliminated as described in Section 7.1. Earliest and latest possible
times are computed for (partially) scheduled tasks and not scheduled tasks, because
the latter constrain the scheduling of the former.

Before the CPM algorithm starts, the task net is initialized. Values for computed
constraint dates of tasks which are stored in the Comos database are not imported
into the memory representation for scheduling. Instead, the computed constraint
dates of the tasks are set as follows, or remain undefined otherwise. If the value of a
property is not defined, it is not assigned to the respective earliest or latest time,
and the latter remains undefined until it is set during CPM scheduling.

• For all tasks, the earliest possible start and latest possible end times are set to
the release and due dates respectively.
Task.EPST := Task.ReleaseDate
Task.LPET := Task.DueDate
The implemented CPM algorithm takes these initial values into account and
thereby ensures that the computed constraint dates are at least as restrictive as
the manually set constraint dates.

214 7.2 Critical Path Analysis

• For all partially scheduled tasks, the earliest and latest possible start times are
set to the planned start time of the task.
Task.EPST := Task.PlannedStartTime
Task.LPST := Task.PlannedStartTime
This ensures, that the planned start times of active and replanned tasks are not
moved by the scheduling algorithm.

• For all not scheduled tasks, the earliest and latest possible start and end times
are set to the planned start and end times respectively.
Task.EPST := Task.PlannedStartTime
Task.LPST := Task.PlannedStartTime
Task.EPET := Task.PlannedEndTime
Task.LPET := Task.PlannedEndTime

Several approaches exist to extend the CPM to task relations of the precedence
diagramming method which include standard and simultaneous control flows with
minimal time lags [EK92, Wie81, DH02]. However, all algorithms which are known to
the author of this thesis assume a flattened task net and do not explicitly address the
problem of a hierarchical structure. In particular, the intricacies involved with task
relations of the precedence diagramming method in combination with complex tasks
has not been tackled elsewhere. The neglecting of hierarchical task nets in CPM
literature may be due to the fact, that in conventional approaches to project planning,
task relations are only defined for activities below the level of work packages. The
work breakdown structure is assumed to be complete and its hierarchy is not taken
into account. In contrast, scheduling of dynamic task nets should also be possible for
an incomplete WBS. Furthermore, the duration of complex tasks in a dynamic task
cannot be directly derived from its subtasks, because its duration can be defined
independently, and task assignments may lead to an even longer duration. Finally,
the duration does not need to be specified explicitly but can be derived from the
defined task assignments of a task even during CPM. The critical path analysis is
performed in PROCEED on a hierarchical dynamic task net by performing a depth
first traversal of the hierarchy.

7.2.1 Hierarchical Critical Path Method

The critical path method for hierarchical task nets requires a preprocessing step to
ensure the correct scheduling of all subtasks in a common realization. Afterwards,
forward and backward scheduling is performed which traverse the task net along
the task-subtasks relationships and the defined control flows.

Preprocessing For every task, virtual start and end nodes are created. These
virtual tasks have no duration and no resource requirements. The virtual start and
end nodes are introduced to ensure that every subtask is reached and the task net
of the realization is traversed in topological order. Furthermore, the consistency

Chapter 7 Scheduling of Dynamic Task Nets 215

T1 T2

T1.1

T1.2

T2.1

T2.2

S1 E1 S2 E2

Figure 7.5: Virtual start and end nodes in a hierarchical task net.

constraints that no subtask may have an earlier EPST or a later LPET than its parent
task is ensured by the introduction of virtual start and end nodes. Therefore, every
subtask of the considered task, which does not have a predecessor in the same
realization or only predecessors connected by standard control flows, becomes a
sequential successor of the virtual start node. Every subtask which does not have a
successor in the same realization is connected by a sequential control flow with the
virtual end node.

An example for virtual start and end nodes in a hierarchical dynamic task net is
depicted in Figure 7.5. The tasks T1.1, T1.2, and T2.1 do not have a predecessor in
the same realization. Therefore, they are connected to the virtual start nodes S1
and S2 respectively. The tasks T1.1, T1.2, and T2.2 do not have a successor in the
same realization. Therefore, they are connected to the virtual end nodes E1 and
E2 respectively. Task T1.1 is connected to E1 and T2.1 is connected to S2 despite
the control flow between T1.1 and T2.1 since it connects two tasks from different
realizations.

The earliest and latest possible start times of the virtual start nodes are set to the
respective values of their parent tasks. Likewise, the earliest and latest possible
end times of the virtual end nodes are set to the respective values of their parent
tasks. The property values of the parent tasks stem from the initialization described
earlier.

Forward scheduling Algorithm 7.1 shows the procedure for forward scheduling.
Forward scheduling is started by invoking the method ScheduleForward(t) for the
root node of the dynamic task net. The earliest possible start time of the task
t ∈ Tasks has to be set. First, the subtasks of the task t are scheduled to determine
its earliest possible end time. Second, the constraints imposed by incoming active
feedback flow relationships on the earliest possible end times of the respective
source tasks are handled. If the currently processed task is the target of an active
feedback flow, then the earliest possible end time of the source must be later than
the EPET of the current task. Third, the resulting earliest possible end time is used
to compute the earliest start and end times of all successors recursively.

216 7.2 Critical Path Analysis

Algorithm 7.1 ScheduleForward(t)

1: ScheduleForwardTask(t)
2: for all f ∈ FeedbackFlows do
3: if f.IsActive = true∧ f.Target = t then
4: if undef(f.Source.EPET) ∨ f.Source.EPET < f.Target.EPET then
5: f.Source.EPET := f.Target.EPET
6: end if
7: end if
8: end for
9: for all ControlFlow c ∈ t.ControlFlows do

10: HandleControlFlowForward(c)
11: end for

The method HandleControlFlowForward(c) determines the earliest possible start
or end date of the successor depending on the semantics of the control flow and
invokes recursive forward scheduling for the successor if it is contained in the
same realization as the predecessor. The pseudo code for this method is given
in Algorithm 7.2. The sequential control flow is handled similarly to the classical
Critical Path Method except that minimal lag times are taken into account. For a
sequential control flow, the earliest possible start time (EPST) of the successor is
derived from the earliest possible end time (EPET) of the predecessor by adding
the minimal lag time of the control flow. As defined in Section 5.3.2, the lag time in
calendar days is generally derived from the lag time in work days by using the work
calendar of the successor task of the control flow.

Standard and simultaneous control flows are not considered in the classical Critical
Path Method. A standard control flow does not directly impose a constraint on the
earliest possible start time of the successor but on its earliest possible end time. The
method HandleControlFlowForward(c) first checks whether the earliest possible end
time of the successor is still undefined or whether the control flow imposes a more
restrictive constraint. In these cases the EPET of the successor is set to the EPET of
the predecessor plus the minimal lag time of the control flow. The earliest possible
start time of the successor of the standard control flow is constrained by the EPST
of the parent task, and it can already be defined by forward scheduling of another
incoming control flow. If required, the EPST of the successor is set to the EPST of
its parent task.

A simultaneous control flow imposes constraints on the EPST and EPET of the
successor. As described in Section 5.3.1, the minimal time lag has to elapse between
the start and end events of the connected tasks. Therefore, the handling of a
simultaneous control flow sets the EPST and the EPET of the successor to consistent
dates if required.

Recursive forward scheduling is only performed for the successor task if it is
contained in the same realization as the predecessor. Otherwise, the earliest possible
start and/or end times of the successor task are set but the method ScheduleForward

is not invoked. In this case, the successor task will be handled later by the CPM

Chapter 7 Scheduling of Dynamic Task Nets 217

Algorithm 7.2 HandleControlFlowForward(c)
1: if c.Semantics = Sequential then
2: if undef(c.Succ.EPST) ∨ c.Pred.EPET+ c.LagTime > c.Succ.EPST then
3: c.Succ.EPST := c.Pred.EPET+ c.LagTime
4: end if
5: else if c.Semantics = Standard then
6: if undef(c.Succ.EPET) ∨ c.Pred.EPET+ c.LagTime > c.Succ.EPET then
7: c.Succ.EPET := c.Pred.EPET+ c.LagTime
8: if c.Succ.Parent = c.Pred.Parent∧ undef(c.Succ.EPST) then
9: c.Succ.EPST := c.Succ.Parent.EPST

10: end if
11: end if
12: else if c.Semantics = Simultaneous then
13: if undef(c.Succ.EPST) ∨ c.Pred.EPST+ c.LagTime > c.Succ.EPST then
14: c.Succ.EPST := c.Pred.EPST+ c.LagTime
15: end if
16: if undef(c.Succ.EPET) ∨ c.Pred.EPET+ c.LagTime > c.Succ.EPET then
17: c.Succ.EPET := c.Pred.EPET+ c.LagTime
18: end if
19: end if
20: if c.Succ.Parent = c.Pred.Parent then
21: ScheduleForward(c.Succ)
22: end if

5

1

2

3 6 7

8

4 9 10

Figure 7.6: Traversal order for critical path analysis.

algorithm when its parent task is scheduled. At that point, the constraints imposed
by the predecessors are already incorporated into the earliest possible times of the
task and will be taken into account by the algorithm. Altogether, the CPM algorithm
performs a depth-first traversal of the task net hierarchy which is illustrated in
Figure 7.6 where the numbers of the tasks determine the order in which they are
handled by the algorithm.

While the method HandleControlFlowForward(c) traverses the dynamic task net
in horizontal direction, the method ScheduleForwardTask(t), which is defined by
Algorithm 7.3, schedules the workload, task assignments and subtasks of a task
and thereby traverses the dynamic task net in vertical direction. The first step
is to determine the EPET of the task t ∈ Tasks based on its total duration if it is

218 7.2 Critical Path Analysis

defined. Then, the task assignments of task t are scheduled. Thereby no actual
resources are considered. For the scheduling of a task assignment, the standard
work calendar with the most available work days is selected from the work calendars
of the resources who can play the required role of the task assignment, e.g. a 6-day
calendar if there is an eligible resource with such a calendar. If the scheduling of
the task assignments leads to a longer duration and a later EPET, this value is used
in the following.

Algorithm 7.3 ScheduleForwardTask(t)

1: if ¬undef(t.TotalDuration) then
2: EPET := DetermineEndDate(t.EPST, t.TotalDuration, t.WCal)
3: end if
4: AEPET := ScheduleAssignmentsForward(t)
5: if AEPET > EPET then
6: EPET := AEPET

7: end if
8: if |t.Subtasks| > 0 then
9: t.VirtualStart.EPST := t.EPST

10: ScheduleForward(t.VirtualStart)
11: end if
12: if t.VirtualEnd.EPET > EPET then
13: EPET := t.VirtualEnd.EPET
14: end if
15: if undef(t.EPET) ∨ EPET > t.EPET then
16: t.EPET := EPET

17: end if

After scheduling the task assignments, the subtasks of task t are scheduled, where
t.VirtualStart, t.VirtualEnd ∈ t.Subtasks are the virtual start and end nodes of the
realization of the task t. Scheduling the subtasks results in the earliest possible
end time of the realization of the task. Thereby, possibly set constraint dates for the
subtasks are taken into account. If the earliest possible end time of the realization
is later than the EPET derived from the total duration and task assignments, then
it is used in the following. The EPET of the task may have been set before when
a standard or simultaneous control flow from a predecessor was handled. If it is
later than the EPET which has been determined by scheduling task assignments and
subtasks, then the value is not changed.

In the classical critical path method which only considers end-start precedence
relations, the earliest possible end time of a task is derived from the earliest possible
start time during forward scheduling by adding the duration of the task. As a
consequence, the formula ∀t ∈ Tasks(t.EPET− t.EPST = t.TotalDuration) is valid
for a consistent CPM result.

For a task net with standard and simultaneous control flows, this equation does not
necessarily hold. Only the formula ∀t ∈ Tasks(t.EPET− t.EPST ≥ t.TotalDuration)
is valid for a consistent CPM result. The time span between the earliest possible

Chapter 7 Scheduling of Dynamic Task Nets 219

P2

S

P1
sequential standard

tS.EPST S.EPET

P2

S

P1
sequential

standard

tS.EPST S.EPET

a)

b)

Figure 7.7: Example for constrained EPET and discarded solution.

start and end times of a task does not necessarily equal the duration of the task but
may be longer because standard and simultaneous control flows from predecessors
may impose constraints on the earliest possible end time.

This circumstance is illustrated in Figure 7.7 a) where the task S has two prede-
cessors P1 and P2. The sequential control flow from P1 constrains the start event
of the task S and leads to the depicted earliest possible start time during forward
scheduling. The standard control flow from P2 constrains the earliest possible end
time, so that S.EPET-S.EPST>S.TotalDuration. In this example, the earliest possible
start time of task S is too optimistic for the computed total duration.

A possible solution to this problem is illustrated in Figure 7.7 b) where the earliest
possible start time of the task S is moved to a later point in time, so that the end
time of the task obtained by adding its duration equals the earliest possible end time,
i.e. S.EPET-S.EPST=S.TotalDuration holds. This solution seems to make sense for
critical path analysis. However, it is not useful in the context of resource-constrained
scheduling. The CPM results are used during resource-constrained scheduling as
additional constraints, so that the task S may not be scheduled earlier than its earliest
possible start time S.EPST. However, the durations of tasks are probably longer
during resource-constrained scheduling because resource availabilities are taken
into account. The task durations computed during CPM are the minimal durations.
This is illustrated by the dashed line which extends the task S in Figure 7.7 b). The
task S could possibly be scheduled before S.EPST without violating the constraint
imposed by the standard control flow. Hence, the moved earliest possible start time
would be too strict for resource-constrained scheduling.

For this reason, the described solution has been discarded, and the "inconsistency"
of earliest times and task durations in the CPM result are accepted. The earliest

220 7.2 Critical Path Analysis

possible start times which result from the critical path analysis are anyway too
optimistic for resource-constrained scheduling since the CPM works with minimal
task durations. Furthermore, control flow dependencies have to be checked during
resource-constrained scheduling, so that tasks with standard and simultaneous
predecessors are not scheduled too early. The same considerations can be made
for backward scheduling where simultaneous control flows may constrain the latest
possible start times which leads to similar "inconsistencies".

Backward scheduling Backward scheduling is performed similarly to forward
scheduling. If a project deadline has been manually specified by the user, i.e. the
due date of the root node of the task net is defined, this date is used as the LPET.
Otherwise, the computed EPET of the root node is used as the LPET. In this case,
the computed latest possible start and end times are not used as constraints for
resource-constrained scheduling.

The algorithm for backward scheduling incorporates several methods which have
been defined analogously to the methods for forward scheduling. Algorithm 7.4
shows the method ScheduleBackward(t) which takes a task with defined LPET as
input. First, the task is scheduled recursively which results in an LPST for the
task. Afterwards, the outgoing active feedback flows are handled to ensure that
the targets of the feedback flows have an earlier latest possible end time than the
currently processed task. Finally, the dynamic task net is traversed along the control
flow relationships in opposite direction from successors to predecessors.

Algorithm 7.4 ScheduleBackward(t)

1: ScheduleBackwardTask(t)
2: for all f ∈ t.ActiveFeedbacks do
3: if undef(f.Target.LPET) ∨ f.Target.LPET > t.LPET then
4: f.Target.LPET := t.LPET
5: end if
6: end for
7: for all ControlFlow c ∈ ControlFlows : c.Succ = t do
8: HandleControlFlowBackward(c)
9: end for

Control flows are handled similarly to forward scheduling. A standard control flow
constrains the LPET of the predecessor just like the parent task of the predecessor.
In contrast to that, the EPST and EPET are set during forward scheduling, when
a standard control flow is handled. When a simultaneous control flow is handled
during backward scheduling, the LPET and the LPST of the predecessor are set as
required.

The constraint imposed on the LPST of a simultaneous predecessor does not
cause the same problems as the constraint imposed on the EPET of a simultaneous
successor which has been described before. Because the LPST and LPET specify
the latest dates for the respective events, scheduling a task at the LPST with a

Chapter 7 Scheduling of Dynamic Task Nets 221

duration which is shorter than the time span between LPST and LPET can never
lead to inconsistencies with respect to the LPET of the task.

Algorithm 7.5 HandleControlFlowBackward(c)
1: if c.Semantics = Sequential then
2: if undef(c.Pred.LPET) ∨ c.Succ.LPST− c.LagTime < c.Pred.LPET then
3: c.Pred.LPET := c.Succ.LPST− c.LagTime
4: end if
5: else if c.Semantics = Standard then
6: if undef(c.Pred.LPET) ∨ c.Succ.LPET− c.LagTime < c.Pred.LPET then
7: c.Pred.LPET := c.Succ.LPET− c.LagTime
8: end if
9: else if c.Semantics = Simultaneous then

10: if undef(c.Pred.LPET) ∨ c.Succ.LPET− c.LagTime < c.Pred.LPET then
11: c.Pred.LPET := c.Succ.LPET− c.LagTime
12: end if
13: if undef(c.Pred.LPST) ∨ c.Succ.LPST− c.LagTime < c.Pred.LPST then
14: c.Pred.LPST := c.Succ.LPST− c.LagTime
15: end if
16: end if
17: if c.Pred.Parent = c.Succ.Parent then
18: ScheduleBackward(c.Pred)
19: end if

The method ScheduleBackwardTask(t) is shown in Algorithm 7.6. First the total
duration of the task is used to derive the LPST from the LPET. In the second step,
the workload of the task assignments is distributed backwards, starting from the
LPET. If the distribution leads to an earlier LPST, this value is used in the following.
Afterwards, the subtasks are scheduled and it is checked whether the resulting LPST
is even earlier than the previously computed value. Finally, the LPST is set to the
computed value if the latter is earlier than a previously set date or if the LPST of the
task has not been defined yet.

7.2.2 Criticality and Consistency

The total float of a task is the amount of time for which the task can be delayed
without delaying the whole project. For task nets with task relations of the prece-
dence diagramming method, only the earliest and latest possible start times are
used for computing task floats [DH02]. The total float of a task t ∈ Tasks is defined
as follows.

t.TotalFloat := t.LPST− t.EPST (7.1)

In the presence of standard and simultaneous control flows, the time span between
the earliest and latest possible start times does not necessarily equal the time span

222 7.2 Critical Path Analysis

Algorithm 7.6 ScheduleBackwardTask(t)

1: if ¬undef(t.TotalDuration) then
2: LPST := DetermineStartDate(t.LPET, t.TotalDuration, t.WCal)
3: end if
4: ALPST := ScheduleAssignmentsBackward(t, t.LPET)
5: if ALPST < LPST then
6: LPST := ALPST

7: end if
8: if |t.Subtasks| < 0 then
9: t.VirtualEnd.LPET := t.LPET

10: ScheduleBackward(t.VirtualEnd)
11: end if
12: if t.VirtualStart.LPST < LPST then
13: LPST := t.VirtualStart.LPST
14: end if
15: if undef(t.LPST) ∨ LPST < t.LPST then
16: t.LPST := LPST

17: end if

between the earliest and latest possible end dates, i.e. the formula

∀t ∈ Tasks(t.LPST− t.EPST = t.LPET− t.EPET)

does not necessarily hold for the CPM results. For the classical CPM approach the
equality is true for all tasks and defines the total float of a task.

A task which has a total float of zero days is called a critical task. A critical path
is a path in the task net from the virtual start node of the project to the virtual end
node which only contains critical tasks. However, due to release and due dates, a
task can be critical without lying on a critical path. A complex task can be critical
although the subnet defined by its subtasks does not contain a critical path. This is
the case, when the total duration of the task is longer than the computed duration of
the subnet.

In this thesis, the critical path analysis is also applied to dynamic task nets which
represent running process instances. To avoid that already started tasks are moved
to a different start date, the earliest and latest possible start times of running tasks
are initially set to the planned start time, and for terminated tasks the earliest and
latest possible end times are set tot the planned end time as well. As a consequence,
the total float of started tasks would always be zero if it was computed according to
equation (7.1). Therefore, the total float of running tasks is computed based on the
earliest and latest possible end times.

∀t ∈ Tasks(t.State ∈ Running⇒ t.TotalFloat = t.LPET− t.EPET) (7.2)

The total float of terminated tasks is always zero.
If the result of critical path analysis is inconsistent, i.e. there is at least one

task t ∈ Tasks for which t.LPST < t.EPST or t.LPET < t.EPET, then there is no time-

Chapter 7 Scheduling of Dynamic Task Nets 223

p

s

t

seq

p.EPST p.PlannedStartTime
= p.LPST

p.EPET
= s.EPST

Figure 7.8: Example for CPM failure due to a not scheduled task.

feasible schedule which fulfills all specified time constraints (manually set constraint
dates, control flows, and task durations).

In particular, the constraints imposed by partially scheduled and not scheduled
tasks may lead to inconsistent computed constraint dates. In this case, the critical
path analysis fails. For tasks which are in the execution states Active or Replanning,
the planned start time is fixed. For all other running and terminated tasks the
planned start and end times are fixed. Furthermore, the planned dates of waiting
tasks may not be changed. This is realized by initializing the earliest and latest
possible times with the corresponding planned dates. As a consequence, if critical
path analysis computes a later earliest time or an earlier latest time for a task
compared to the initially set values, then the constraint dates are inconsistent and
the CPM computation fails. The user is informed about the reason for the failure
and may adapt the dynamic task net to enable a successful scheduling run.

In the example in Figure 7.8, the task p ∈ Tasks has been created at project
runtime and the dynamic task net shall be rescheduled. The task s ∈ Tasks has been
defined and scheduled before, and its execution state has been changed to Waiting.
As a consequence, the task s is not rescheduled. Its EPST and LPST are set to the
planned start time before critical path analysis is performed. The CPM increases the
EPST of task s due to its sequential predecessor p. The computed constraint dates
are inconsistent because s.EPST > s.LPST. The reason for this inconsistency is that
task p cannot be scheduled before task s without moving s. The user is informed
about this problem and could for example change the execution state of task s to
InDefinition, so that it can be moved to a later planned start time.

Figure 7.9 shows the cutout of the dynamic task net introduced in Section 2.3
with computed constraint dates and total float values. The earliest possible end
times and latest possible start times have been derived from the respective start
and end times based on the defined total durations and total workload of the tasks.
Thereby, unconstrained resource availabilities are assumed. For scheduling task
assignments, the work calendars of the assigned resources or required roles with
the most available working days are used. If this still leads to a longer duration
for a task than the manually set total duration, then the longer duration is used for
the CPM computations but the total duration is not adapted in the database. The
total duration of a task is only increased during resource-constrained scheduling if
required.

224 7.2 Critical Path Analysis

seq

Basic Engineering

160

21/12 01/08

17/02 28/09

3272 174T

58

Equipment List

8

21/12 23/05

19/09 28/09

64 3404

272

Initial P&IDs

22

04/01 06/06

22/07 21/09

316 16T

199

Process Flow

Diagrams

110

21/12 23/05

07/04 07/09

1760 93T

107
sim

sim(10)

DetailEngineering

318

02/08 18/10

29/09 17/12

8156 433T

58

Detailed P&IDs

110

02/08 02/01

09/11 18/10

820 43T

99

Specification of

Machines and Devices

66

22/08 20/01

21/12 17/12

216 11T

121

sim(14)

seq

seq

Figure 7.9: Computed constraint dates for cutout of example scenario.

The total float of 58 work days for the tasks Basic Engineering and Detail Engi-
neering results from the circumstance that the project deadline is set to the 17th
December 2012 while the earliest possible end time of Detail Engineering is the 18th
October 2012. This leaves a time buffer of 58 work days and avoids any critical
tasks in the base schedule. As a consequence, some delays of tasks and the creation
of new tasks at project runtime can be compensated. The total float values of the
subtasks of the tasks Basic Engineering and Detail Engineering are even larger be-
cause the durations of the parent tasks also incorporate a certain time buffer. As
a consequence, the subtasks may be delayed for a certain amount of time without
increasing the duration of their respective parent tasks, and the total float of the
parent tasks is incorporated into the total float of the subtasks as well.

7.2.3 Correctness and Time Complexity

In this section, the correctness of the algorithm for critical path analysis is shown,
and an upper bound for the time complexity of the algorithm is determined.

Chapter 7 Scheduling of Dynamic Task Nets 225

Termination The first step to prove the correctness of the developed algorithm is
to show that it always terminates. The hierarchical critical path method performs a
depth first traversal of the task net hierarchy and traverses the control flows within
the realization of each task. For every complex task, the algorithm descents into its
realization exactly once. Every task in a realization is visited only a finite number of
times since the control flow relationships between tasks in a dynamic task net do not
form a cycle. Therefore, the implemented critical path method always terminates.

Correctness The requirements for a time feasible schedule have been defined
in the form of timing consistency constraints in Section 5.3.2. It remains to be
shown that the scheduling algorithm yields computed constraint dates which fulfill
the timing consistency constraints. This is informally proven in the following by
mapping the constraints to those parts of the presented algorithm which ensure
their fulfillment.

Table 7.1 shows the timing consistency constraints which are relevant for critical
path analysis in the left column. In the right column, the corresponding methods
and lines in the presented pseudo code are given. The EPET of a task t ∈ Tasks is
determined based on the EPST of the task during forward scheduling by the method
ScheduleForwardTask(t). The implementation guarantees that t.EPET ≥ t.EPST holds
so that constraint (5.41) is satisfied. The durations of the tasks which are used during
CPM depend on the earliest possible start date or latest possible end date for which
they are computed during forward or backward scheduling, respectively. When
for a task t ∈ Tasks the inequation t.LPET ≥ t.EPET holds, then also t.LPST ≥ t.EPST
holds, because for t.LPET = t.EPET the computed duration is equal for forward and
backward scheduling because equally many working days are available in both cases.
Therefore, the LPST cannot be earlier than the EPST when the LPET is later than
the EPET. Since backward scheduling is started for a LPET which is greater or equal
to the EPET of the project, constraints (5.42) and (5.43) are fulfilled. The timing
consistency constraints (5.45) to (5.48) which relate the computed constraint dates
of a task to the constraint dates of its parent task are fulfilled in a scheduled task net
because the constraint dates of the subtasks are computed based on the constraint
dates of the parent task during the depth first traversal of the task net hierarchy.
The earliest possible start times and latest possible end times are initialized with the
release and due dates of the respective tasks if they are defined. During forward and
backward scheduling, these dates are only updated if they have to be more restrictive.
Therefore, the timing consistency constraints (5.49) and (5.50) are fulfilled by the
scheduled task net. The timing consistency constraints (5.51) to (5.60) which
concern the computed constraint dates of tasks connected by control flows are
fulfilled due to the implementation of the methods HandleControlFlowForward and
HandleControlFlowBackward which handle every control flow in the task net to set
the constraint dates of the predecessors and successors accordingly. The constraints
(5.59) and (5.60) with respect to feedback flows are implicitly fulfilled when a
control flow path exists from the feedback flow’s target to its source as demanded
by constraint (5.6). However, diagonal feedback flows require special treatment in

226 7.3 Resource-Constrained Scheduling

Constraint According part(s) of CPM algorithm
(5.41) ScheduleForwardTask computes the EPET based on the EPST
(5.42) Backward scheduling is started with LPET≥EPET for the project
(5.43) and if LPET≥EPET for a task, then LPST≥EPST
(5.44) ScheduleBackwardTask computes the LPST from the LPET
(5.45) ScheduleForwardTask lines 8-11
(5.46) ScheduleBackwardTask lines 12-14
(5.47) ScheduleForwardTask lines 12-14
(5.48) ScheduleBackwardTask lines 8-11
(5.49) Initialization and HandleControlFlowForward lines 2 and 13
(5.50) Initialization and HandleContro0lFlowBackward lines 2, 6 and 10
(5.51) HandleControlFlowForward lines 6-7
(5.52) HandleControlFlowBackward lines 6-7
(5.53) HandleControlFlowForward lines 16-18
(5.54) HandleControlFlowBackward lines 10-12
(5.55) HandleControlFlowForward lines 13-15
(5.56) HandleControlFlowBackward lines 13-15
(5.57) HandleControlFlowForward lines 2-4
(5.58) HandleControlFlowBackward lines 2-4
(5.59) ScheduleForward lines 2-8
(5.60) ScheduleBackward lines 2-6

Table 7.1: Timing consistency constraints fulfillment by CPM algorithm.

the methods ScheduleForward and ScheduleBackward.

Time complexity The time complexity of the hierarchical CPM implementation
does not differ from the time complexity of the classical forward and backward
calculations for flat task nets which are of time complexity O(|T|2) [DH02] where
T ⊂ Tasks is the set of all tasks in the dynamic task net except for zero-duration
tasks. Every subnet which is contained in the realization of a complex task is handled
like in the classical approach. Every complex task is visited exactly once during the
depth-first traversal of the task net hierarchy.

7.3 Resource-Constrained Scheduling

Resource-constrained scheduling sets planned start and end times for tasks and as-
signs resources to task assignments. Thereby, control flow dependencies, constraint
dates and limited resource availabilities are taken into account. Furthermore, the
planned workload of tasks and task assignments is distributed over the days of the
respective work calendars.

For the description of the algorithm some definitions are required in addition
to the definitions from Chapter 5. For a task t ∈ Tasks, the following additional

Chapter 7 Scheduling of Dynamic Task Nets 227

properties are defined.

• Task.IncomingCFs := {c|c ∈ ControlFlows∧ c.Succ = t} ⊂ ControlFlows

denotes the set of incoming control flows from predecessors.

• Task.IStdCFs := {c|c ∈ Task.IncomingCFs∧ c.Semantics = Standard}

• Task.ISimCFs := {c|c ∈ Task.IncomingCFs∧ c.Semantics = Simultaneous}

• Task.ISeqCFs := {c|c ∈ Task.IncomingCFs∧ c.Semantics = Sequential}

• t.PStd := {p|∃c ∈ p.StdCFs : c.Succ = t} ⊂ Tasks denotes the set of direct prede-
cessors of the task which are connected by a standard control flow.

• t.PSim := {p|∃c ∈ p.SimCFs : c.Succ = t} ⊂ Tasks denotes the set of direct prede-
cessors of the task which are connected by a simultaneous control flow.

• t.PSeq := {p|∃c ∈ p.SeqCFs : c.Succ = t} ⊂ Tasks denotes the set of direct prede-
cessors of the task which are connected by a sequential control flow.

• t.EST, t.EET ∈ Dates are additional constraint dates for a task which are only used
during resource-constrained scheduling when backtracking is required due to
standard and simultaneous control flows. The date t.EST is the earliest planned
start time, which is used to move a task to a later date. The date t.EET is the
earliest planned end time, which is used to prolong a running tasks, so that it
does not end before the specified date.

The function f(a, d) returns for a task assignment a ∈ TaskAssignments and a date
d ∈ Dates the available workload for this task assignment, which is either the avail-
able workload of the assigned resource or the maximal available workload of any
resource which can play the required role if no resource is assigned.

f(a, d) =

{
r.WCal.AWL(d), r = a.Resource
max{r.WCal.AWL(d)|r ∈ Resources∩ a.Role}, undef(a.Resource)

7.3.1 Initialization

Priority list The parallel scheduling scheme requires that the tasks to be scheduled
are ordered in a priority list. When two tasks which compete for resources can be
scheduled at the same time, then the task with higher priority is preferred. The
results of critical path analysis are used to compute the priority list.

If one of the tasks is running while the other is still preparing, the running task is
preferred. If both tasks are running or both tasks are still preparing, the one with
the earlier latest possible start time has the higher priority. If the latest possible
start times of the tasks are equal, other criteria have to be considered. The third
criterion is the total float of the tasks. The task with less total float has the higher
priority because it is more critical. If the total floats are equal, the task with higher
total workload is preferred. In the case that all five criteria lead to an equal priority

228 7.3 Resource-Constrained Scheduling

of the tasks, a manually specified value for the scheduling priority is evaluated for
both tasks. If these values are not defined or equal, the task to be scheduled first is
selected randomly. Altogether, the priority of of two tasks is decided based on the
following criteria which are evaluated in the given order. If no decision can be made
based on one criterion, the next criterion is used.

1. Execution state

2. Latest possible start time

3. Total float

4. Total workload

5. Manually set scheduling priority

6. At random

Parameters Besides the computed priority list, the heuristic scheduling algorithm
requires additional input parameters. The user has to provide a start date for
scheduling. This is the earliest date for which preparing tasks will be scheduled.
The start date has to be later or equal to the current date which is at the same time
the default value. In the descriptions of the algorithm, the date start ∈ Dates is the
start date provided by the user.

Critical path analysis is always performed for the whole dynamic task net. All
tasks in the project are taken into account when it comes to time constraints which
they impose on the (re)scheduled tasks. Resource-constrained scheduling can
be restricted to a subprocess. The root task of the subnet to be scheduled can
be specified by the user, which is by default the root of the whole dynamic task
net. Only this root task and its descendants will be (re)scheduled by the heuristic
algorithm. Other tasks are not (re)scheduled but may impose constraints on the
planned dates of the scheduled tasks.

Planned start and end dates The first step of the algorithm is to initialize the
planned start and end dates and the workload distributions of the specified root task
and all its descendants.

• The planned start and end times of scheduled tasks, i.e. descendants of the
root task which are in the execution state InDefinition, are reset so that their
values are undefined. The workload distributions of these tasks and their task
assignments are reset as well.

• For partially scheduled tasks, i.e. tasks in one of the execution states Active or
Replanning, only the planned end times are reset. The workload distributions are
retained but may be overwritten during scheduling.

Chapter 7 Scheduling of Dynamic Task Nets 229

All not scheduled tasks keep their possibly defined planned start and end times
as well as their workload distributions. Their constraint dates and planned dates
constrain the respective dates of the scheduled tasks, and their planned workload
distributions impose resource constraints on the scheduled tasks.

7.3.2 Task Durations

During resource-constrained scheduling, resources are assigned to the task assign-
ments of a task, and the workload of these task assignments is distributed over
several work days.

The first step in scheduling a single task is the assignment of resources to the task
assignments. Manually assigned resources are not reassigned during scheduling.
The replacement of a resource has to be done manually by the user. The user can
e.g. delete an assigned resource and leave the task assignment unassigned before
automatic scheduling.

For task assignments without assigned resources, eligible resources are automat-
ically selected. One of the resources who can play the required role is selected
automatically. If there are several eligible resources, the resource which will com-
plete the task in the shortest amount of time is selected, i.e. the resource which has
the most free working hours. Differences between resources with respect to skill
level and performance are not considered.

At this point, the implemented approach could be extended by other resource
selection criteria like qualification, past performance, or cost. However, this has
not been investigated further in the context of this thesis. The selection of the
resource with the most available workload at the following work days aims at two
optimization goals at the same time: The duration of the task shall be minimized,
and the resources shall be equally used for task assignments.

Work calendars define the available work days for the distribution of workload
during scheduling. Every resource and every task has an individual work calendar
(cf. Section 5.3.1).

• The work calendar of a task is used when the unassigned total workload is
distributed over the duration of the task.

• The work calendar of a resource is used to distribute the workload of its task
assignments.

The scheduling of tasks is directly performed on the work calendars of the tasks
and resources. The duration of a task or task assignment depends on the respective
calendar. The actual availabilities of the resources at the different dates are taken
into account when the duration of a task is determined. In contrast, most scheduling
approaches found in literature schedule tasks on a generic time scale and afterwards
transform the computed times to dates in a calendar [DH02, Zha92]. However, this
approach is not feasible, when different calendars are used for different tasks and
resources.

230 7.3 Resource-Constrained Scheduling

40 MHRS

Availability of resource Mueller

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17Calendar days

8 8 8 8 8 0 0 0 0 0 0 0 0 0 8 8 8

40 MHRS

Early schedule

Later schedule

Figure 7.10: Example for duration variability.

After the resource for a task assignment has been selected, the planned workload
is distributed. For every work day in the work calendar of the assigned resource, as
many working hours as possible are planned which has to be less than the available
workload of the resource for the day and less than the maximal daily workload
defined for the task assignment. The distributed workload is added to the used
workload of the resource’s work calendar (cf. Section 5.3.1). The used working
hours of the resource are not available anymore for other tasks.

During scheduling, the full amount of available working hours defined by the
work calendar of a resource is used. This default strategy can be adapted by the
project manager by defining a general utilization ratio of less than 100%. For
example, for 8 available working hours per day and a utilization ratio of 75% only
6 hours are scheduled for task assignments. This way, more realistic schedules
can be generated which take into account, that a resource cannot work full time
on technical tasks every day, since they need time for administrative work like
telephone calls, meetings, etc. However, the utilization ratio is not defined for each
resource’s work calendar individually but only for the whole project.

The main advantage of scheduling the workload of task assignments on a daily
basis is that realistic task durations are obtained which respect the actual resource
availabilities in the project. When a resource is assigned which has less free working
hours in a certain time frame, then the task will take more work days. If a resource
with more available working hours is assigned, this can significantly speed up the
task, i.e. decrease its total duration. The consequence of the dynamic calculation of
a task’s total duration based on the required workload is that the duration of the task
may vary depending on the planned start date. Depending on the availability of the
assigned resource, the difference can be significant. Figure 7.10 shows an example
in which the duration of a task in calendar days varies from 5 to 14 days because the
assigned resource Mueller has a vacation week defined in his or her work calendar.
This example illustrates the advantage of the approach. A project manager can
easily analyze the consequences of vacation times of project team members on the
planned end times of their assigned tasks by specifying the unavailabilities in the
work calendars and rescheduling the tasks.

The example in Figure 7.11 shows the task Specify Heat Exchanger with a total
workload of 294 MHRS which is partly used for two task assignments. The task
assignments have been scheduled whereby the maximal daily workload of 6 MHRS
for the assignment of resource Bach has been respected. Scheduling of the task

Chapter 7 Scheduling of Dynamic Task Nets 231

Bach (Mechanical Engineer) 48 MHRS

10 11 12 13 14 15 16 17 18 19 20 21
6 6 6 0 0 0 0 6 6 6 6 6

Vasileva (Mechanical Engineer) 60 MHRS

10 11 12 13 14 15 16 17 18 19 20
8 8 8 0 8 0 0 8 8 8 4

Unassigned Total Workload Distribution 184 MHRS

10 11 12 13 14 15 16 17 18 19 20 21
21 21 21 0 21 0 0 20 20 20 20 20

294

10/05/2010

9 days

21/05/2010

Specify Heat

Exchanger

6

Figure 7.11: Example for distributed workload of a task and its task assignments.

assignments resulted in the planned end date 21/05/2010. With respect to the work
calendar of the task, which defines the 13th of May as a holiday but the 14th of May
as a work day, the resulting total duration of the task is 9 work days.

Algorithm 7.7 ScheduleTask(t)

1: t.PlannedEndTime := ScheduleTaskAssignments(t)
2: if t.PlannedStartTime+ t.TotalDuration > t.PlannedEndTime then
3: t.PlannedEndTime := t.PlannedStartTime+ t.TotalDuration
4: end if
5: if t.State 6= InDefinition then
6: if t.PlannedEndTime < t.EPET then
7: t.PlannedEndTime := t.EPET
8: end if
9: if ¬undef(t.EET) ∧ t.PlannedEndTime < t.EET then

10: t.PlannedEndTime := t.EET
11: end if
12: end if
13: for all s ∈ t.Subtasks do
14: if ¬undef(s.PlannedEndTime) ∧ s.PlannedEndTime > t.PlannedEndTime then
15: t.PlannedEndTime := s.PlannedEndTime
16: end if
17: end for
18: t.TotalDuration := t.PlannedEndTime− t.PlannedStartTime
19: DistributeAvailableWorkload(t)

Algorithm 7.7 shows the method ScheduleTask which schedules the workload

232 7.3 Resource-Constrained Scheduling

of the task assignments of task t ∈ Tasks and sets the the total duration and the
planned end time of the task correctly with respect to the task assignments, manually
specified total duration, earliest possible start time, and planned end times of
predecessors. The method ScheduleTask is invoked during execution of the parallel
schedule generation scheme which will be described in the following section.

If the workload distribution of the task assignments of a task requires more
work days than are available according to a manually specified total duration of
the task, then the total duration is increased accordingly by setting the planned
end time to the value determined by the durations of the task assignments. This
prolongation of the task may cause scheduling failure due to explicitly set deadlines
or successor tasks which cannot be rescheduled. To obtain a time and resource
feasible schedule, it would be necessary to schedule more working hours per day
for certain task assignments which may even exceed the available workload of the
assigned resources. This problem can be resolved by manually increasing the total
workload for several workdays in the work calendars of the assigned resources
and by increasing the maximal daily workload of the task assignments. In this way,
overtime work can be planned manually by the user. Overtime work is never planned
automatically by the scheduling algorithm, i.e. the algorithm does not plan more
working hours per day for a resource than are available in his work calendar.

The planned end time derived from scheduling the task assignments can be incon-
sistent with the earliest possible end time or the planned end times of simultaneous
or standard predecessors. If the planned end time of the task is too early compared
to the EPET or planned end times of predecessors, then the task has been scheduled
to early, or in other words, the duration of the task is too short for the planned start
time. If the task is preparing, it is scheduled for a later start time as explained
in the next section. However, if the task is running, then its planned start time
cannot be moved. Therefore, its total duration has to be increased, so that the
resulting planned end time is consistent with the earliest possible end time and the
planned end times of all predecessors. The latter is achieved by setting the EET

during-resource constrained scheduling to a consistent date.

Besides the task assignments, also the subtasks of a complex task may influence
its total duration. The planned end time and the total duration of a complex task may
have to be adapted to the collective duration of the scheduled subtasks at a later
point in time. When the resource-constrained scheduling of the subtasks results in a
duration of the subprocess which is longer than the total duration of the parent task,
then the total duration is increased as well. In the method ScheduleTask, all not
scheduled subtasks are considered which have been scheduled before and therefore
have a defined planned end time. However, the scheduled subtasks will be handled
after the parent task. Their planned end times may lead to an increased planned end
time of the complex task. This is done during the execution of the parallel scheduling
scheme which is described in the following section.

Altogether the total duration which is computed during resource-constrained
scheduling is the maximum of the manually specified total duration, the duration
of the scheduled task assignments, and the duration of the scheduled subprocess

Chapter 7 Scheduling of Dynamic Task Nets 233

which is defined by the subtasks. Furthermore, the total duration of a running task
is long enough for the planned end time to be consistent with the earliest possible
end time and the planned end times of all predecessors.

When the duration of a task has been finally determined, the unassigned total
workload of the task is equally distributed over all work days of the task according to
the task’s work calendar. First, the unassigned workload wu is distributed over the
work days d1, . . . , dn of the task so that every work day receives the same amount of
bwu/nc man hours. The rest of the workload (wu mod u) is distributed with 1 MHR
per work day starting from the first work day. The distribution of the unassigned
total workload is required to compute an accurate planned value for earned value
analysis.

In the example of Figure 7.11, the unassigned total workload of the task has been
equally distributed over the 9 work days of the task’s work calendar. The workload
distribution is visualized like a task assignment in Figure 7.11, however, no task
assignment is created to store the workload values. They are stored in a separate
workload distribution of the task.

The total duration of a task may exceed the duration of the scheduled task assign-
ments and in particular the duration of the assignment of the responsible resource.
The scheduled subtasks together may require more time than the task assignments.
The duration may have been increased to achieve consistency with the earliest pos-
sible end time and the planned end times of the predecessors. A common approach
proposed in the related work is to split a task if its planned end date is constrained
in this way. This would be a solution for the problem of meeting an earliest possible
end time. However, splitting a task is not an option if it has subtasks. The task
needs to be active for the whole duration of the subtasks. In PROCEED, a practical
solution has been chosen. The scheduler warns the user about tasks for which
the task assignment of the responsible resource is shorter than the total duration
of the respective task. The user can then increase the planned workload for the
responsible resource or decrease the maximal daily workload of the task assignment,
and another scheduling pass will resolve the issue.

If no task assignments and subtasks are defined for a task and the total duration
has not been specified, then it cannot be determined. It is not possible to derive
the total duration from the total workload since it is not known how much workload
should be scheduled per day. Therefore, these tasks have been defined as zero-
duration tasks in Section 7.1, although a non-zero workload may be specified.

Tasks which are in one of the execution states Active or Replanning are always
scheduled at their planned start time. If the actual performance of a running task
deviates from the plan, there are two possibilities for scheduling. Either the plan is
not changed and the task is scheduled as before or the plan is aligned to the actual
performance. To align the planned dates of a running task to the actual dates, the
planned start time has to be set to the actual start time manually. However, this alone
does not ensure that the planned workload distributions of the task assignments are
aligned to the actual workload distributions. Therefore, a flag can be set for a task
which indicates, that the planned values should be aligned to the actual values.

234 7.3 Resource-Constrained Scheduling

Hansen (Construction Engineer) 48 MHRS

17 18 19 20 21 22 23 24 25 26 27
6 6 6 6 6 0 0 0 6 6 6
0 0 6 8 8 0 0 0 4

Date (May 2010)
Planned Workload
Actual Workload

Scheduled:

48

17/05/2010

8 days

28/05/2010

19/05 48%

Create Building Plan

Hansen (Construction Engineer) 48 MHRS

19 20 21 22 23 24 25 26 27 28
6 8 8 0 0 0 4 6 6 6
6 8 8 0 0 0 4

Date (May 2010)
Planned Workload
Actual Workload

48

19/05/2010

8 days

31/05/2010

19/05 48%

Create Building Plan

29 30 31
0 0 4

Rescheduled: align plan to
actual

performance

Figure 7.12: Example for aligning planned values to actual values.

PROCEED offers the operation align plan to actual performance to the user which
can be executed for a running task. This operation sets the planned start time
to the actual start time and sets the aforementioned flag to true. If the flag is
set, then for every day for which actual workload is defined, the actual values are
used to compute the new planned workload distributions. The remaining planned
workload of a task assignment is distributed according to the work calendar of
the assigned resource. Besides the planned start time, the operation align plan to
actual performance also adapts the total duration and workload of the task. The
total duration is set to the number of working days from the actual start time to
the forecasted end time which is obtained from progress measurement and earned
value analysis. If the progress of the task is measured by estimating the remaining
workload until completion (cf. Section 8.1), then the total workload is set to the sum
of actual workload and estimated remaining workload.

Figure 7.12 shows an example where an active task is rescheduled at runtime and
the user has decided to align the plan to the actual performance. Therefore, the
planned start time has been set to the actual start time of the task. The planned
workload of the only task assignment is distributed like the actual workload. Because
only 26 man hours have been spent on the task assignment instead of the planned
36 man hours, the remaining workload of 22 MHRS has to be distributed over the
following working days. In this example, the total duration of the task does not
change because the plan is adapted to the late start. However, if the actual workload
per day would be smaller, the planned duration would increase during rescheduling.

Chapter 7 Scheduling of Dynamic Task Nets 235

Create pump specification

Create reactor specification

t
d1

Bach

Bach

d2 d3 d4 d5 d6 d7 d8 d9

Figure 7.13: Illustration of time increments of parallel heuristic.

Furthermore, an increase of the planned workload, e.g. due to the estimation of
remaining workload, would lead to an increased duration.

7.3.3 Parallel Scheduling Scheme

The heuristic for resource-constrained scheduling is based on the general parallel
schedule generation scheme presented in [KH98, DH02, Kle00]. Several adaptations
of this parallel heuristic were required which will be discussed in Section 7.7.

The heuristic iterates over time as illustrated in Figure 7.13. After every iteration
step, the current date d ∈ Dates is increased by one day. In every iteration step,
eligible tasks which fulfill all control flow and resource constraints are scheduled. In
the example in Figure 7.13, the two tasks are scheduled in sequence because they
both require the same resource.

The algorithm operates on several sets which contain the tasks to be scheduled
and which are updated in each iteration step. The set T ⊂ Tasks contains all tasks in
the project except for the zero-duration tasks which have been removed from the
memory representation of the task net before critical path analysis. Critical path
analysis is performed for all tasks in T as described in the previous section. The set
S ⊂ T contains the scheduled tasks.

S := {t ∈ T|t.State ∈ {InDefinition, Active, Replanning}∧
(t = root∨ (root ∈ t.Ancestors∧
∀a ∈ t.Ancestors(a = root∨ root ∈ a.Ancestors
⇒ a.State ∈ {InDefinition, Replanning})))} ⊂ T

This excludes all tasks which are not in the subnet of the specified root task and
all not scheduled tasks which are excluded from scheduling due to their execution
states. Only tasks in S are (re)scheduled by the heuristic.

The elements of the following sets are changed at defined points in the algorithm
by evaluating the following mathematical definitions. The formulas which define the
sets may not be valid for the sets between the explicit updates. The set Ad ⊂ T is the
active set which contains all tasks which have already been scheduled and which
are active at the date d according to the schedule.

Ad = {t ∈ T|t.PlannedStartTime ≤ d∧ ¬undef(t.PlannedEndTime)∧
(¬endTimeFinal(t) ∨ d ≤ t.PlannedEndTime)} ⊂ T

236 7.3 Resource-Constrained Scheduling

The active set does not consist of the tasks which are in execution state Active,
although the name of the set might suggest it. The actual start and end times are
not considered for determining the elements of the active set.

The formula endTimeFinal(t) is defined as follows for a task t ∈ Tasks.

endTimeFinal(t) ≡¬undef(t.PlannedEndTime)∧
∀s ∈ t.Subtasks(endTimeFinal(s))

For an atomic task, it returns true, if the task has been scheduled before and a
planned end time has been computed. For a complex task, it only returns true, if the
task itself has already been scheduled as well as all descendants in the hierarchy
of the dynamic task net, so that the planned end time of the task will not change
anymore in the current scheduling pass.

The set Cd ⊂ T is the complete set which contains all tasks which have been
scheduled and are terminated at date d according to the schedule.

Cd = {t ∈ T|endTimeFinal(t) ∧ t.PlannedEndTime < d} ⊂ T

The set Fd ⊂ S is the forbidden set which contains atomic tasks which could
be started at date d ∈ Dates according to control flow and resource constraints,
but whose end dates would be inconsistent with the end dates of standard or
simultaneous predecessors. When the planned end date of a task t ∈ S has been
calculated, and the following condition is satisfied, then the task is added to the
forbidden set.

FS(t) ≡ t.PlannedEndTime < t.EPET∨
(¬undef(t.EET) ∧ t.PlannedEndTime < t.EET)∨
∃c(c ∈ t.IStdCFs∪ t.ISimCFs∧ endTimeFinal(c.Pred)∧
c.Pred.PlannedEndTime+ c.LagTime > t.PlannedEndTime)∨
∃f ∈ t.ActiveFeedbacks(endTimeFinal(f.Target)∧
t.PlannedEndTime < f.Target.PlannedEndTime)

The planned end time of a task may not be earlier than its earliest possible end time.
Furthermore, the planned end time of a task has to be consistent with the planned
end times of all predecessors as well as all targets of outgoing active feedback flows.
If the planned end time of a predecessor is still undefined or may change later due
to scheduling its subtasks, then the constraint on the planned end time cannot be
checked yet. The formula FS(t) returns false, no action is taken, and the consistency
is checked at the end of the scheduling pass which may lead to backtracking.

The eligible set Ed ⊂ S contains all tasks which can be scheduled at the current

Chapter 7 Scheduling of Dynamic Task Nets 237

date d ∈ Dates. It is defined as follows.

Ed ={t ∈ S \ (Cd ∪ Ad ∪ Fd)|
∀c ∈ t.ISeqCFs(endTimeFinal(c.Pred) ∧ c.Pred ∈ Cd−c.LagTime)∧
∀c ∈ t.ISimCFs(c.Pred ∈ Ad−c.LagTime ∪ Cd−c.LagTime) ∧ t.Parent ∈ Ad∧
d ≥ t.EPST∧ (t.State 6= InDefinition∨ d ≥ start)∧
(undef(t.EST) ∨ d ≥ t.EST)∧
((t.State 6= Active∧ t.State 6= Replanning) ∨ d = t.PlannedStartTime)∧
∀a ∈ t.TaskAssignments(f(a, d) > 0)}

A task t is in the eligible set, when all of its sequential predecessors are terminated
and all simultaneous predecessors are active or terminated according to the schedule.
Furthermore, the current date d has to be later or equal to the computed earliest
possible start time of the task. If the task is in the execution state InDefinition, the
current date d has to be equal or later than the specified start date for resource-
constrained scheduling start ∈ Dates. In this way, the preparing tasks in state
InDefinition are moved to planned start dates which are later or equal to the
specified start date for scheduling. In contrast, running tasks are scheduled for
their defined planned start dates, and only their duration may change. If the earliest
planned start time EST of the task has been set during backtracking because a
previously computed planned end time was inconsistent with the end time of a
standard or simultaneous predecessor, then the task is only included in the eligible
set, if the date EST has been reached. Finally, to schedule a task at the current date,
workload has to be available for its task assignments. Workload is always available
for running tasks at their planned start time, since they have been scheduled before
for this date.

The subformula ∀a ∈ t.TaskAssignments(f(a, d) > 0) does not require, that the
resources are available for the whole working day and it does not exclude the case
that two task assignments require the same resource. This is the case, when several
task assignments require the same role but there are less resources who can play
the role available than there are task assignments defined. Also in the case that two
task assignments require different roles but there is only one resource available
who can play both roles, the task assignments require the same resource. In these
cases, the task assignments are scheduled in sequence, or in parallel if maximal
daily workload is defined for the task assignments.

When an eligible task has been scheduled, its duration and planned end time have
been determined. The calculated planned end time can be inconsistent with the
start or end times of not scheduled tasks. For this reason, the following condition

238 7.3 Resource-Constrained Scheduling

has to be checked after scheduling a task t ∈ S.

IE(t) ≡t.PlannedEndTime > t.LPET∨
∃c ∈ t.ControlFlows((c.Succ /∈ S∧
(((c.Semantics = Standard∨ c.Semantics = Simultaneous)∧
¬undef(c.Succ.PlannedEndTime)∧
t.PlannedEndTime > c.Succ.PlannedEndTime− c.LagTime)∨
(c.Semantics = Sequential∧
¬undef(c.Succ.PlannedStartTime)∧
t.PlannedEndTime > c.Succ.PlannedStartTime− c.LagTime)))∨
(c.Succ ∈ S∧ c.Succ.State 6= InDefinition∧
(c.Semantics = Sequential∧
¬undef(c.Succ.PlannedStartTime)∧
t.PlannedEndTime > c.Succ.PlannedStartTime− c.LagTime)))

The formula checks whether the planned end time of the task is later than the latest
possible end time. Furthermore, it checks whether the planned end time is later
than the planned end time of a standard or simultaneous successor or the planned
start time of a sequential successor which is not (re)scheduled or only partially
(re)scheduled. If the formula IE(t) evaluates to true, scheduling is aborted because
the end date of task t is inconsistent. In this case it is not possible to generate a
time and resource feasible schedule given the time constraints, the planned dates of
the not scheduled tasks, and the priority list. The priority list based on the latest
possible start times of the tasks has been chosen to avoid these inconsistencies.
Among two tasks, the one with the earlier LPST is more constrained by succeeding
tasks and has therefore the higher priority. However, the durations of the tasks
which are determined during resource-constrained scheduling can be significantly
longer than the durations used for critical path analysis. Therefore, even a task
with lower priority may cause inconsistencies although a task with higher priority
does not. This is illustrated in Figure 7.14 where Task1 and Task2 have a common
sequential successor and the duration of Task1 is longer than the duration of Task2
for critical path analysis. However, during resource-constrained scheduling, the
duration of Task2 increases due to resource availabilities which is why its end date
is inconsistent with the planned start date of the not scheduled successor.

Backtracking and rescheduling with a higher priority for the conflicting task could
resolve some of these cases, but the problem would not be solved in general. The
conflicting task may still have an inconsistent end date even when it is scheduled
for an earlier start date. Therefore, scheduling is aborted in these cases, and the
user is informed about the inconsistency. There are several actions which the user
can perform to enable a successful scheduling run. He can for example change the
execution state of a waiting successor back to InDefintion, so that its planned start
time can be adapted during scheduling. Alternatively, he can change the semantics
of the connecting control flow or remove the control flow completely.

Chapter 7 Scheduling of Dynamic Task Nets 239

Algorithm 7.8 Schedule(start)
1: if project.State ∈ Running then
2: d := project.PlannedStartTime
3: else
4: d := start

5: end if
6: while S * Cd ∪ Ad ∧ d < end do
7: update Cd, Ad, Ed
8: while |Ed| > 0 do
9: choose t ∈ Ed with highest priority

10: if d > t.LPST then
11: abort scheduling
12: end if
13: t.PlannedStartTime := d

14: ScheduleTask(t)
15: if IE(t) then
16: abort scheduling
17: else if t.Subtasks = ∅ ∧ FS(t) then
18: UnscheduleTask(t)
19: if t.State = InDefinition then
20: Fd := Fd ∪ {t}
21: else
22: t.EET := max{e|∃c ∈ t.IStdCFs∪ t.ISimCFs

(e = c.Succ.PlannedEndTime+ c.LagTime)}
23: ScheduleTask(t)
24: if IE(t) then
25: abort scheduling
26: end if
27: UpdateParent(t)
28: add task t to the active set
29: end if
30: else
31: UpdateParent(t)
32: add task t to the active set
33: end if
34: update Ed
35: end while
36: d := d+ 1

37: Fd := ∅
38: end while
39: if d = end then
40: abort scheduling
41: end if
42: CheckEndDates()

240 7.3 Resource-Constrained Scheduling

Task1

successor

t

Task2

Task1

successor

Task2

t

Task2.LPSTTask1.LPST

Task1.PlannedStartTime

Task2.PlannedStartTime

Critical Path Analysis:

Resource-constrained Scheudling:

Figure 7.14: Example for inconsistent end time with not scheduled successor.

The method Schedule which is shown in Algorithm 7.8 implements the adapted
parallel schedule generation scheme. In lines 1 to 5, the start date d ∈ Dates for
the scheduling algorithm is set. The task project ∈ Tasks is the root node of the
complete dynamic task net. If this task is running, i.e. the project has already
been started, the parallel heuristic has to start at the planned project start date
in order to cover all active and running tasks which may not be moved but whose
workload may be redistributed. If the project has not been started yet, i.e. all tasks
of the dynamic task net are still preparing, then the parallel heuristic starts at the
manually specified start date. In both cases, tasks which are in the execution state
InDefinition are not scheduled earlier than the manually specified start date for
scheduling.

The algorithm iterates the main while loop until all tasks in S have been scheduled.
If it is not possible to schedule all tasks in S so that he planned dates of all tasks in T

are consistent, then the while loop terminates when the date end ∈ Dates is reached.
The date end is set to the due date of the project, if the latter is defined. Otherwise
it is set to a sufficiently late date, so that all tasks of the project can be scheduled in
the resulting time frame, e.g. 4 years for a plant design project which is sufficient in
most cases.

The first step of every iteration is the update of the complete set, active set, and
eligible set. If there are eligible tasks for the current date, the task with the highest
priority is selected for scheduling. If the current date is already later than the latest
possible start time of the task, scheduling is aborted. Otherwise, the planned start
time of the selected task is set to the current date.

The method ScheduleTask assigns resources to the task assignments of the se-
lected task and distributes the workload of the task assignments according to the
work calendars of the resources as described in the previous section. The distributed
workload is added to the used workload of the resources’ work calendars. The used

Chapter 7 Scheduling of Dynamic Task Nets 241

working hours of the resources are not available anymore for other tasks. Therefore,
the eligible set has to be updated after every iteration in which one of the eligible
tasks is scheduled (line 34 of Algorithm 7.8).

The computed planned end date of the scheduled task can be inconsistent with
the planned dates of not scheduled successors. This is checked by evaluating the
formula IE(t) for the scheduled task t. If the formula evaluates to true, then the
computed planned end time is inconsistent with the planned end time of a standard
or simultaneous successor or with the planned start time of a sequential successor.
In this case, scheduling is aborted and the user is informed about the reason for the
failure.

Inconsistencies with planned end dates of scheduled standard successors do
not require to abort scheduling completely. These inconsistencies are detected at
the end of the full scheduling pass and lead to backtracking as described below.
Inconsistencies with planned start dates of scheduled simultaneous or sequential
successors cannot occur at this point because these successors will be scheduled
later.

When a task is scheduled at its earliest possible start time or later, it is not
guaranteed that its planned end time is later than its earliest possible end time,
because the time window between the EPST and the EPET may be longer than the
task’s duration (cf. Section 7.2). Furthermore, it is not guaranteed that its planned
end time is consistent with the planned end times of its predecessors because the
durations of the predecessors may be longer for resource-constrained scheduling
than for critical path analysis. If the planned end date of a task is inconsistent,
backtracking is required. While inconsistencies concerning complex tasks are
handled at the end of a complete scheduling pass, backtracking is performed directly
in case of atomic tasks. The resource assignments, the workload distributions, and
the planned dates of an atomic task are undone. If the task is in the execution
state InDefinition, it is scheduled at a later date, which is realized by means of the
forbidden set. The unscheduled task is inserted into the forbidden set and the inner
while loop proceeds with scheduling the eligible task with the next lower priority.
The task which has been added to the forbidden set is scheduled at the earliest
on the next date. If the atomic tasks is in one of the execution states Active or
Replanning, it cannot be scheduled at a later date. Therefore, its earliest planned
end time is set and the method ScheduleTask is invoked again. This leads to a
prolongation of the task as described in the previous section. The planned start time
remains unchanged but the planned end time is moved to the earliest planned end
time.

The planned end date of a complex task is not final until all subtasks have been
scheduled. Whenever a subtask of a complex task has been scheduled, the method
UpdateParent(t) updates the planned end date of the parent task t.Parent. The
pseudo code of this method is depicted in Algorithm 7.9. First, the latest planned
end time of all subtasks is determined. If the parent task can be rescheduled and the
computed value is later than the previously defined planned end time, then the latter
is set to the former. The total duration of the parent task is adapted accordingly, and

242 7.3 Resource-Constrained Scheduling

the unassigned total workload is redistributed. If the new planned end time of the
parent task leads to a violation of the formula IE(t) which checks the consistency
with the planned dates of not scheduled successors, then scheduling is aborted.
Otherwise, the planned end time of the ancestors is updated recursively. If the
parent task is not a (partially) scheduled task and the computed planned end time is
later than an existing value, then scheduling has to be aborted as well. This may
be the case, if a subprocess is rescheduled leading to a longer duration which is
inconsistent with the planned dates of not scheduled tasks outside the subprocess.

Algorithm 7.9 UpdateParent(t)

1: ê := max{e|∃s ∈ t.Parent.Subtasks(
¬undef(s.PlannedEndTime) ∧ e = s.PlannedEndTime)}

2: if t.Parent ∈ S then
3: if undef(t.Parent.PlannedEndTime) ∨ t.Parent.PlannedEndTime < ê then
4: t.Parent.PlannedEndTime := ê

5: t.Parent.TotalDuration :=
t.Parent.PlannedEndTime− t.Parent.PlannedStartTime

6: DistributeAvailableWorkload(t.Parent)
7: if IE(t.Parent) then
8: abort scheduling
9: else

10: UpdateParent(t.Parent)
11: end if
12: end if
13: else
14: if ¬undef(t.Parent.PlannedEndTime) ∧ t.Parent.PlannedEndTime < ê then
15: abort scheduling
16: end if
17: end if

At the end of every iteration of the inner while loop (line 34 of Algorithm 7.8), the
eligible set is updated. The formula which defines the eligible set is evaluated for
the current situation after the eligible task has been scheduled. The scheduling of
an eligible task may lead to the removal of other tasks from the eligible set because
the scheduled task uses resources which are required by the other tasks. These
tasks may become members of the eligible set again when the scheduled task has
released its resources. As a consequence, tasks which compete for resources are
scheduled in sequence.

When the eligible set for the current date d ∈ Dates is empty because all eligible
tasks have been scheduled or have become non-eligible, then the current date is
increased by one day, and the forbidden set is emptied. Scheduling proceeds with
the computation of the complete, active and eligible set for the new date.

After all tasks in S have been scheduled, the method CheckEndDates is invoked
in line 42 of Algorithm 7.8. This method checks the consistency of all planned end
dates in the task net. Inconsistencies between planned end dates can still exist for

Chapter 7 Scheduling of Dynamic Task Nets 243

P

S

t

standard
S1

S3

S2

P

S

t

standard

S1

S3

S2

a) b)

Figure 7.15: Examples for inconsistent end times of complex tasks.

complex tasks which are sources or targets of standard or simultaneous control
flows. The end date of a complex task is not ultimately fixed until all subtasks have
been scheduled. Therefore, complex tasks as targets of standard and simultaneous
control flows were excluded in line 17 of Algorithm 7.8. In the definition of the
formula FS(t), complex tasks whose planned end time is not final, i.e. which may still
increase during scheduling, are not considered as sources of incoming simultaneous
or standard control flows.

When all subtasks of a complex task have been scheduled, the resulting final
planned end time may be inconsistent with the planned end times of simultaneous
or standard predecessors or successors. This can only be detected after all subtasks
of the source and target of a simultaneous or standard control flow have been
scheduled. Therefore, the consistency of the planned end dates of all tasks is
checked at the end of the scheduling algorithm by the method CheckEndDates.

Figure 7.15 shows example cases where the scheduling of subtasks led to incon-
sistencies. In Figure 7.15 a), the task assignments of the predecessor P and its
subtask S1 have been scheduled which led to the total duration indicated by the
gray bar. Scheduling the successor task S did not lead to inconsistent end dates.
However, when the subtasks S2 and S3 of task P were scheduled, the duration of P
was increased which lead to the inconsistent planned end dates. In Figure 7.15 b),
the scheduling of the task assignments of task S lead to an inconsistent end date.
However, the scheduling of its subtasks S1 to S3 could still resolve this inconsistency,
which is why task S was not moved to a later planned start time. In the example, the
inconsistency remained unresolved until the end of the scheduling pass although
the duration of task S increased due to the scheduled subtasks.

The pseudo code of the method CheckEndDates is presented in Algorithm 7.10.
First, the planned end times of all tasks are compared to the respective earli-
est possible end times. For every task for which the dates are inconsistent, the
earliest planned start time is set to the planned start time plus the time span
∆d = t.EPET− t.PlannedEndTime. As a consequence, the task will be scheduled ∆d

work days later during the next scheduling pass. Second, all standard and simul-
taneous control flows are checked for consistency. If the target task t ∈ S of an
inconsistent control flow is in the execution state InDefinition, then its earliest

244 7.3 Resource-Constrained Scheduling

Algorithm 7.10 CheckEndDates()
1: reschedule := false

2: for all t ∈ S do
3: if t.PlannedEndTime < t.EPET∧ t.State = InDefinition then
4: ∆d := t.EPET− t.PlannedEndTime
5: t.EST := t.PlannedStartTime+ ∆d

6: reschedule := true

7: end if
8: end for
9: for all c ∈ ControlFlows∩ (Tasks× S) do

10: if (c.Semantics = Standard∨ c.Semantics = Simultaneous)
c.Pred.PlannedEndTime+ c.LagTime > c.Succ.PlannedEndTime then

11: if c.Succ.State = InDefinition then
12: ∆d := (c.Pred.PlannedEndTime+ c.LagTime)− c.Succ.PlannedEndTime
13: c.Succ.EST := max{c.Succ.EST, c.Succ.PlannedStartTime+ ∆d}
14: else
15: c.Succ.EET := {max{c.Succ.EET, c.Pred.PlannedEndTime+ c.LagTime}
16: end if
17: reschedule := true

18: end if
19: end for
20: for all f ∈ FeedbackFlows∩ (S× Tasks) do
21: if f.IsActive = true∧ f.Source.PlannedEndTime < f.Target.PlannedEndTime

then
22: f.Source.EPET := f.Target.PlannedEndTime
23: reschedule := true

24: end if
25: end for
26: if reschedule = true then
27: ResetSchedulingResult()
28: Schedule(start)
29: end if

Chapter 7 Scheduling of Dynamic Task Nets 245

planned start time is set to the previously planned start time plus the time span

∆d = max{c.Pred.PlannedEndTime+ c.LagTime|c ∈ t.IncomingCFs}
−t.PlannedEndTime

so that the task is scheduled ∆d work days later during the next scheduling pass.
If the target task t ∈ S is running, then its earliest planned end time is set to a
value which is consistent with the planned end times of the predecessors. Third, the
planned end times of all tasks are checked for consistency with respect to active
feedback flows. The earliest planned end time of a source task is set to prolong
the necessarily active task during the next scheduling pass. Finally, backtracking
is performed if inconsistent planned end dates have been detected. All computed
workload distributions and planned dates of all scheduled tasks are reset and another
scheduling pass is started. Depending on their execution states, the conflicting tasks
will be either scheduled later or with a longer duration.

7.3.4 Scheduling Example

The example scenario which has been introduced in Section 2.3 has been used to
evaluate the correctness and applicability of the described approach for scheduling
dynamic task nets. Figure 7.16 shows the base schedule of the example project,
which results from scheduling the whole dynamic task net. Thereby, resources are
assigned to tasks depending on the defined required roles of the task assignments
and the resource availabilities. The tasks are scheduled in a way that the computed
planned dates are consistent with all defined control flows and task-subtasks rela-
tionships as well as resource constraints. The base schedule constitutes the basis for
the enactment of the defined development process. However, the actual execution
of tasks may deviate from the plan. The plan is only adapted to the actual execution
when an authorized user performs according manual change operations and invokes
another scheduling pass at project runtime.

In Section 2.3, a cutout of the complete dynamic task net was presented. Fig-
ure 7.17 shows the cutout with additional information about the required workload
for the tasks and task assignments, the defined total durations of the tasks, and their
budget. The total workload and budget of a task are contained in the total workload
and budget of the parent task respectively. The maximal daily workload of several
task assignments is restricted. This possibility has been used for task assignments
which cover administrative work, e.g. the resource Baumann only manages the
task Initial P&IDs which has several technical subtasks for the actual creation of the
piping and instrumentation diagrams. The date 06/09/2010 in the top left corner of
the figure is the date on which the base schedule has been generated. The planned
start and end dates of the tasks are displayed in Figure 7.17 below the computed
constraint dates. The planned dates are consistent with the computed constraint
dates according to the timing consistency constraints (5.76) to (5.79). The planned
dates also respect the execution semantics and lag times of the defined control flows.
For some control flows, minimal lag times are defined, so that a certain number of

246 7.3 Resource-Constrained Scheduling

Figure 7.16: Gantt chart of the complete base schedule.

Chapter 7 Scheduling of Dynamic Task Nets 247

seq

Basic Engineering

160

21/12 01/08

17/02 28/09

3272 174T

21/12/2010 01/08/2011

58

Equipment List

8

21/12 23/05

19/09 28/09

64 3404

24/05/2011 02/06/2011

272

Initial P&IDs

22

04/01 06/06

22/07 21/09

316 16T

09/05/2011 07/06/2011

199

Process Flow

Diagrams

110

21/12 23/05

07/04 07/09

1760 93T

21/12/2010 23/05/2011

107

sim

sim(10)

DetailEngineering

318

02/08 18/10

29/09 17/12

8156 433T

02/08/2011 18/10/2012

58

Detailed P&IDs

110

02/08 02/01

09/11 18/10

820 43T

02/08/2011 02/01/2012

99

Specification of

Machines and Devices

66

22/08 20/01

21/12 17/12

216 11T

24/10/2011 23/01/2012

121

sim(14)

seq

seq

Heer 636
(Project Manager)

Heer 320
(Project Manager)

Dreher 880
(Process Engineer)

Baumann 44
(Process Engineer)

Dreher 220
(Process Engineer)

Vasileva 132
(Mechanical Engineer)

Maier 64
(Process Engineer)

Maier 880
(Process Engineer)

2 2

2 2

8

8

8

2

06/09/2010

Figure 7.17: Planned dates for the base schedule cutout.

work days has to pass between the start and end events of the connected tasks. For
example, the planned end time of the task Initial P&IDs is 10 work days later than
the planned end time of the task Process Flow Diagrams.

Figure 7.18 shows the corresponding Gantt chart for the cutout of the base
schedule. The time frame which will be most affected by replanning and rescheduling
activities is depicted. It can be seen that there is a minimal lag time of 10 work days
between the planned end times of the tasks Process Flow Diagrams and Initial P&IDs.
Since the tasks Initial P&IDs and Installation Plan are connected by a simultaneous
control flow, the planned start time of the latter has to be equal or later than the
planned start time of the former. Finally, it can be seen that there is a time buffer for

248 7.3 Resource-Constrained Scheduling

Figure 7.18: Gantt chart of the base schedule cutout.

the task Basic Engineering which results from the explicitly defined total duration
of the task, which is longer than the scheduled duration of the defined subprocess.
This time buffer will be used to compensate the effects of task delays in the basic
engineering phase up to a certain extent.

In the following, two examples for rescheduling the task net at project runtime are
presented to demonstrate the corresponding features of the scheduling algorithm.
The procedure which has to be followed for replanning a dynamic task net at runtime
will be presented in Chapter 9, and the example will be reviewed there again with
respect to this procedure and authorization aspects.

In the given example, the task Process Flow Diagrams is delayed. The delay is
identified at the 23rd March 2011, i.e. before the planned end time of the task. This
situation is depicted in Figure 7.19. The actual degree of completion of the task
Process Flow Diagrams is 52% which is smaller than its planned degree of completion
for the given date which is 60%. Earned value analysis yields a forecasted duration
of 126 working days which is 16 days longer than the planned total duration of 110
working days.

In this situation, the plan shall be adapted to the actual performance of the task.
For this purpose, the command Adapt plan to actual performance is executed for the
task Process Flow Diagrams (cf. Section 7.3.2), so that the planned duration is set to
the forecasted duration and the total workload is increased. Afterwards, the added
workload is manually distributed to the task assignments by an authorized user.

The execution states of the task Basic Engineering and the root task of the dynamic
task net are changed to Replanning, and a scheduling run for the complete task
net is initiated. Figure 7.19 shows the result of rescheduling the dynamic task net.
This plan state can be compared to the cutout of the base schedule which has been
depicted in Figure 7.17.

In Figure 7.19, the total duration of the task Process Flow Diagrams has been
increased from 110 to 126 working days. The total workload and total Budget
have been increased accordingly. The earliest and latest possible start times of
the running tasks Process Flow Diagrams and Basic Engineering have been set to
the planned start times. Both tasks have been started at their respective planned

Chapter 7 Scheduling of Dynamic Task Nets 249

seq

46%

Basic Engineering

164

21/12

21/12 05/08

21/12 28/09

3821 203T

21/12/2010 05/08/2011

54

0%

Equipment List

8

21/12 14/06

19/09 28/09

64 3404

15/06/2011 24/06/2011

272

0%

Initial P&IDs

22

04/01 28/06

22/07 21/09

316 16T

30/05/2011 28/06/2011

199

52%

Process Flow

Diagrams

126

21/12

21/12 14/06

21/12 07/09

2309 122T

21/12/2010 14/06/2011

85 sim

sim(10)

0%

DetailEngineering

318

08/08 24/10

29/09 17/12

8156 433T

08/08/2011 24/10/2012

52

0%

Detailed P&IDs

110

08/08 06/01

09/11 18/10

820 43T

08/08/2011 06/01/2012

93

0%

Specification of

Machines and Devices

66

26/08 26/01

21/12 17/12

216 11T

28/10/2011 27/01/2012

117

sim(14)

seq

seq

23/03/2011

Figure 7.19: Computed constraint dates and planned dates after rescheduling.

250 7.3 Resource-Constrained Scheduling

Figure 7.20: Gantt chart of rescheduled plan due to task delay.

start time. The earliest possible end time of the task Process Flow Diagrams has
been increased due to the longer total duration. As a consequence, the earliest
possible end times of the simultaneous successors have been increased. In case of
the task Initial P&IDs, the earliest possible end time results from adding the lag time
of the connecting control flow to the earliest possible end time of the predecessor.
Due to the increased total duration and workload, the planned end time of the task
Process Flow diagrams has been increased. The successors have been scheduled
for later planned start times to fulfill the constraints imposed by the control flows
on the planned end times. This required backtracking during resource-constrained
scheduling. The task Equipment List is scheduled sequentially after its predecessor
due to limited resource availabilities. The connecting control flow only demands
simultaneous execution. However, the resource Maier which is required for the task
Equipment List is also assigned to the task Process Flow Diagrams with 8 MHRS per
day. Finally, the total duration of the task Basic Engineering has increased during
scheduling because several subtasks have been scheduled for a later date. As a
consequence, the planned start times of Detail Engineering and its subtasks have
been increased.

The Gantt diagram in Figure 7.20 shows the same cutout of the example scenario
as Figure 7.19 and some additional tasks. It can be compared to the Gantt chart of
the base schedule cutout which is depicted in Figure 7.18. The previously described
changes can be easily comprehended in the Gantt representation. The duration
of the task Process Flow Diagrams has increased and the tasks Initial P&IDs and
Equipment List have been moved to later dates. Because the task Initial P&IDs is
a simultaneous predecessor of the task Installation Plan (cf. Figure 2.6), the latter
had to be moved to a later date as well. Together with its sequential successor
Realization Approval, the task Installation Plan accounts for the increased duration of
Basic Engineering. However, because the originally planned total duration of Basic
Engineering incorporated a certain time buffer, it is not increased as much as the
duration of Process Flow Diagrams.

After the dynamic task net has been rescheduled at runtime, the development
process proceeds. The task Process Flow Diagrams is eventually committed and the

Chapter 7 Scheduling of Dynamic Task Nets 251

successors are started as planned. The task Equipment List is committed two days
before its planned end time and the assigned resource Maier takes a leave for two
days. The planned end time of the task is automatically set to the actual end time.
During the execution of the task Initial P&IDs, at the 23rd June 2011, errors are
detected in the process flow diagrams which require to rework the previous results.
Because the task Process Flow Diagrams is already terminated, new versions of this
task and the terminated successor Equipment List have to be created. Furthermore,
a feedback flow from Initial P&IDs to the new version of Process Flow Diagrams is
created. Since the revision of the process flow diagrams does not take as much
time and workload as the initial creation, the values for the new task versions are
adapted accordingly. Furthermore, the lag time between Process Flow Diagrams and
Initial P&IDs is reduced to 5 working days. The release dates of the new task versions
are automatically set to the date of the plan change. Rescheduling yields computed
constraint dates and planned dates for the new task versions. The resulting state of
the dynamic task net is depicted in Figure 7.21.

Figure 7.22 shows the Gantt chart representation of the task net cutout. The
progress of the terminated and running tasks is visualized by the black bars inside
the task bars. The new versions of the tasks Process Flow Diagrams and Equipment
List are listed as separate tasks with the same name. The new version of Process Flow
Diagrams is scheduled for the 27/06/2011 because the required resource Maier is not
available before this date. Likewise, the new version of Equipment List is scheduled
sequentially after Process Flow Diagrams because resource Maier is required for both
tasks. The duration of the running task Initial P&IDs is prolonged so that the planned
end time is consistent with the planned end time of the new predecessor and the lag
time of 5 working days of the connecting control flow. Since the task has already
been started, it is not moved to a later planned start time. The longer duration
of Initial P&IDs does not affect the simultaneous successor Installation Plan and its
successor Realization Approval. Consequently, the total duration of Basic Engineering
is not affected as well. In this case, local rescheduling of Basic Engineering could be
performed because other tasks in the task net have not been affected.

The scheduling example which has been presented in this section has demon-
strated several advantages of the developed approach for time management and
progress control in PROCEED. During scheduling, lag times which are defined for
control flows and the availability of assigned resources are taken into account. The
degree of completion of a task is used to forecast its expected duration, workload,
and budget at completion. The underlying computations will be described in the next
chapter. The forecasted values can be directly used for a plan change in order to
adapt the plan to the actual performance. The execution states of tasks influence the
rescheduling of a dynamic task net at runtime. Running tasks are not moved but only
prolonged if required. The planned dates of terminated tasks are not changed at all.
Time and workload buffer can be planned for complex tasks which may alleviate the
effect of subtask delays during rescheduling. New task versions are scheduled like
separate new tasks since there may be a delay between the end of the original task
and the start of the new version. Finally, local rescheduling can be performed, if the

252 7.3 Resource-Constrained Scheduling

seq

84%

Basic Engineering

164

21/12

21/12 05/08

21/12 28/09

4005 213T

21/12/2010 05/08/2011

54

100%

Process Flow

Diagrams

126

21/12 14/06

21/12 14/06

21/12 14/06

2309 122T

21/12/2010 14/06/2011

0

54%

Initial P&IDs

35

31/05

30/05 15/07

30/05 21/09

316 16T

30/05/2011 15/07/2011

68

15/06 100%

Equipment List

6

22/06

15/06 22/06

15/06 22/06

48

15/06/2011 22/06/2011

0

0%

Process Flow

Diagrams

10

23/06 06/07

01/09 14/09

160 8512

27/06/2011 08/07/2011

23/06

70

0%

Equipment List

5

23/06 06/07

22/09 28/09

40 2128

11/07/2011 15/07/2011

23/06

91

sim

sim(10)

std(5)

sim

0%

DetailEngineering

318

08/08 24/10

29/09 17/12

8156 433T

08/08/2011 24/10/2012

52

0%

Detailed P&IDs

110

08/08 06/01

09/11 18/10

820 43T

08/08/2011 06/01/2012

93

0%

Specification of

Machines and Devices

66

26/08 26/01

21/12 17/12

216 11T

28/10/2011 27/01/2012

117

sim(14)

seq

seq

seq

23/06/2011

Active

2553

Figure 7.21: Rescheduled task net after feedback.

Chapter 7 Scheduling of Dynamic Task Nets 253

Figure 7.22: Gantt chart of rescheduled plan after feedback.

timing properties of the root task of the rescheduled subprocess are not affected.

7.3.5 Correctness and Time Complexity

In this section, the correctness of the algorithm for resource constrained scheduling
is shown, and an upper bound for the time complexity of the algorithm is determined.

Consistency with Constraint Dates The computed constraint dates which are
determined by critical path analysis are used during resource-constrained scheduling.
The priority of the tasks depends on the computed latest possible start times. The
tasks with earlier latest possible start time have a higher priority. Furthermore,
computed constraint dates constrain the planned start and end times of the tasks.

• A task cannot be scheduled before its EPST. Therefore, it is not included into the
eligible set when the current scheduling date is earlier than its EPST.

• A task must not be scheduled later than its LPST. If an eligible task shall be
scheduled but the LPST of the task has already passed, then scheduling is
aborted. However, this condition is only evaluated when the latest possible times
have been determined based on an explicitly specified project deadline.

• A task must not finish before its EPET. This is ensured for preparing tasks by
putting them into the forbidden set or setting the earliest planned start time
during backtracking. Running tasks are prolonged, so that the planned end time
is later than or equal to the EPET.

• A task must not finish later than its LPET. This condition is evaluated after the
planned end time of a task has been determined. As for the LPST, this condition
is only evaluated when the latest possible times have been determined based on
an explicitly specified project deadline.

254 7.3 Resource-Constrained Scheduling

T1 : Resource1

t

T2 : Resource1

T0 T3

T1.EPST
= T2.EPST

T1.LPET
= T2.LPET

T3.EPET
= T3.LPET

T0.EPST

a)

T1 : Resource1

t

T2 : Resource1

T0 T3

T1.EPST
= T2.EPST

T3.EPETT0.EPST

b)
T3.DueDate

T3.LPETT1.LPET
= T2.LPET

Figure 7.23: Latest possible end times with and without explicit project deadline.

If no project deadline is specified, the latest possible start and end times which are
computed starting from the earliest possible end time of the project cannot be used
for consistency checks. This is due to the fact that resource-constrained scheduling
in general leads to longer task durations and later planned start dates than critical
path analysis because the latter does not take resource availabilities into account.
This circumstance is illustrated in Figure 7.23. Figure 7.23 a) shows the case where
the earliest possible end time of the last task in a task net has been used as the latest
possible end time. As a consequence, the resulting time window for the tasks T1
and T2 is to short for resource-constrained scheduling, because the same resource
is assigned to both tasks and the tasks have to be scheduled in sequence. When
the backward scheduling pass of the CPM starts with the explicitly set due date of
the last task, this may result in a larger time window for the two parallel tasks, so
that the resource-feasible schedule is consistent with the latest possible times. This
case is depicted in Figure 7.23 b). A manually set project deadline may still lead to
inconsistencies. In this case, the project manager is informed, and he can adapt the
deadline as required.

When the computed latest possible end times of tasks are not used for consistency
checks because no project deadline has been specified, the planned end times
of all tasks are compared to possibly defined due dates of the respective tasks
nevertheless. These manually set constraint dates have to be consistent with the
generated schedule.

For the presentation of the algorithms for resource-constrained scheduling, it
has been implicitly assumed that the latest possible times have been determined
based on an explicitly set project deadline. According consistency checks which
compare the earliest possible times and planned dates with the latest possible times
can be found in the algorithms and formulas. The presentation would have to be

Chapter 7 Scheduling of Dynamic Task Nets 255

extended by alternative comparisons with the manually specified constraint dates
and according checks whether the latter have defined values. This has been omitted
in the presentation for reasons of clarity.

If a project deadline is explicitly defined, the computed constraint dates are used
as strict constraints during resource-constrained scheduling. In this case, the time
windows between the earliest possible start times and the latest possible end times
of tasks have to be large enough, so that the tasks fit in these time windows during
resource-constrained scheduling where they usually have a longer duration. The
minimal task durations used during critical path analysis are always smaller or equal
to the durations derived for the tasks during resource-constrained scheduling. When
the computed constraint dates are consistent with the planned dates, most tasks
will have a total float which is greater than zero, and hence will not be critical by
definition. The definition of the total float presented earlier may therefore not be
helpful for assessing the criticality of tasks in the context of resource-constrained
scheduling. The alternative of computing activity resource floats as proposed in
[Lib01] by performing forward and backward scheduling with the parallel heuristic
is not feasible for the GRCPSP [Kle00, p.178].

The solution proposed in this thesis is to perform another critical path analysis, us-
ing the computed total durations which result from resource-constrained scheduling.
After a complete scheduling run, the total durations of all scheduled tasks are set in
the database to the values which have been determined during resource-constrained
scheduling. These values are used as minimal task durations for critical path analysis
in every following scheduling run. As a consequence, the durations used for CPM do
not differ very much from the durations determined during resource-constrained
scheduling in these following scheduling runs. The duration of a task which is
determined during resource-constrained scheduling will at least be as long as the
total duration defined in the database. The duration of a task may still increase
during resource-constrained scheduling due to different resource availabilities for
different planned start dates or changes to the planned total workload of the task.
However, the task durations used during later CPM computations will be close to
the durations computed during resource-constrained scheduling.

The constraint dates in Figures 7.9 and 7.17 have been computed based on total
duration values which stem from a previous resource-constrained scheduling pass.
The general problem of the CPM that no resource availabilities are taken into
account remains, so that tasks may be scheduled in parallel during CPM which have
to be scheduled in sequence when resources are considered.

Termination The first step to prove the correctness of the developed algorithm is
to show that it always terminates. In case of the parallel scheduling scheme, there
could be several possible reasons for an infinite run of the algorithm. First, if no time
and resource feasible schedule exists or cannot be found by the algorithm, then the
scheduled tasks contained in the set S ⊂ Tasks will never be completely contained
in the complete and active sets. Therefore, the calendar search limit end ∈ Dates is
used in Algorithm 7.8 to constrain the maximal scheduling timeframe. The algorithm

256 7.3 Resource-Constrained Scheduling

terminates at the latest at the date end ∈ Dates which means that scheduling was
not successful.

Second, backtracking is performed to correct inconsistent planned end times of
tasks. Local backtracking is realized by means of the forbidden set. If, for some
reason, a task is put into the forbidden set for every date in the scheduling timeframe
and is never scheduled, then no time and resource feasible schedule can be found
and scheduling terminates at the date end ∈ Dates. Global backtracking is performed
if inconsistent planned end times are detected in the method CheckEndDates. If the
planned end time of the target task of a simultaneous or standard control flow is
inconsistent with a planned end time of a predecessor, then the task is either moved
to a later date or prolonged. This is realized by increasing its earliest possible
start time or setting the earliest planned end time respectively and restarting the
whole resource-constrained scheduling algorithm. The earliest possible start time is
increased by a non-zero value, i.e. it is at least set to the next work day of the task’s
calendar. Therefore, the task is scheduled for a later date during every subsequent
scheduling pass. Nevertheless, when the EPST of the task has been increased, the
planned end time of the task may still be inconsistent after rescheduling with the
modified constraint date because the duration of the task may decrease. The EPST
has to be increased again and scheduling is performed again. However, as soon as
the minimal duration of the task is reached, the increase of the EPST will finally
lead to a consistent planned end time. The number of scheduling runs required
to achieve the consistency of the planned end date of a task is constrained by a
constant value which is smaller than the maximal total duration of all tasks in the
dynamic task net. The increase of the planned end time of a task may affect the
planned dates of its successors, which may again lead to inconsistent planned end
dates. Only successors of the task can be affected in this way but no predecessors.
Therefore, the maximal number of iterations of the scheduling algorithm due to
global backtracking is constrained by the number of tasks in the dynamic task net.
Consequently, resource-constrained scheduling will finally terminate.

Correctness The requirements for a time and resource feasible schedule have
been defined in the form of timing consistency constraints in Section 5.3.2. It
remains to be shown that the scheduling algorithm yields planned dates which fulfill
the timing consistency constraints. This is informally proven in the following by
mapping the constraints to those parts of the presented algorithms which ensure
their fulfillment.

Table 7.2 shows the timing consistency constraints which are relevant for resource-
constrained scheduling in the left column. In the right column, the corresponding
definitions, methods and lines in the presented pseudo code fragments are given.
The total duration of a scheduled task is updated whenever the planned end time of
a task is changed during scheduling, so that constraint (5.61) is fulfilled for all tasks.
The planned end time is computed starting from the planned start time of a task
in the method ScheduleTask. The planned end time is not decreased in the method
UpdateParent. This ensures the fulfillment of the constraint (5.62). A task can only

Chapter 7 Scheduling of Dynamic Task Nets 257

be scheduled when its parent task is already contained in the active set. Therefore,
constraint (5.63) is fulfilled for all tasks. The method UpdateParent ensures that
the planned end time of a complex task is greater or equal to the planned end
times of all subtasks, so that constraint (5.64) is fulfilled. The constraints (5.65)
and (5.66) which refer to the consistency of planned end times with respect to
control flow relationships are fulfilled because their violation is explicitly checked
by the algorithm and backtracking is performed if required. Constraints imposed
by simultaneous or sequential control flows imposed on the planned start times
of tasks (constraints (5.67) and (5.68)) are fulfilled due to the definition of the
eligible set which only includes tasks whose predecessors have been started or
terminated, respectively. Constraint (5.69) is implicitly fulfilled when a control flow
path exists from the feedback flow’s target to its source. Diagonal feedback flows
(cf. Section 5.1) are treated in the formula FS(t) and the method CheckEndDates.
The method ScheduleTaskAssignments has not been presented in pseudo code. It
assigns eligible resources to the task assignments of a task and distributes the
planned workload of the task assignments as described in Section 7.3.2. Thereby,
the maximal daily workload of the task assignments and the available workload of
the assigned resources are respected. As a consequence, the constraints (5.70),
(5.73), and (5.72) are fulfilled. The planned end time of a task is increased in the
method ScheduleTask, so that the timeframe between the planned start and end
covers the complete distributed workload of all task assignments. As a consequence,
the constraint (5.71) is fulfilled. The timing consistency constraints (5.74) to (5.79)
which relate the planned dates to the manually set and computed constraint dates
are fulfilled because inconsistencies with respect to the latest possible times would
lead to the abortion of the scheduling algorithm, and inconsistencies regarding
the earliest possible end times are handled by the backtracking mechanisms. The
planned start times are consistent with the earliest possible start times due to the
definition of the eligible set.

Time complexity The heuristic algorithm for resource-constrained scheduling is
based on the parallel scheduling scheme presented in [KH98] which has a time
complexity of O(|T|2|Roles|). A problem instance for the parallel scheduling scheme
presented in [KH98] does only contain sequential control flows, does not have a
hierarchical structure, and the task durations are fixed before scheduling. The
introduction of PDM task relationships with minimal time lags does not increase the
runtime complexity because only the computation of the next decision point, i.e. the
date on which a task can become eligible, has to be adapted [Kle00].

However, due to the dynamic calculation of task durations during scheduling
and the hierarchical structure of dynamic task nets, backtracking is required for
the heuristic presented in this thesis. Backtracking has to be performed when the
planned end time of a task is inconsistent with the planned end time of a simultaneous
or standard predecessor. These cases cannot be avoided beforehand because the
duration of the successor is computed during scheduling and the predecessor or
successor can be complex tasks whose respective planned end times are not final

258 7.3 Resource-Constrained Scheduling

Constraint According part(s) of heuristic algorithm
(5.61) ScheduleTask line 18 and UpdateParent line 5
(5.62) ScheduleTask and UpdateParent

(5.63) Definition of eligible set
(5.64) UpdateParent

(5.65) Schedule lines 17-29 (FS) and CheckEndDates

(5.66) Schedule lines 17-29 (FS) and CheckEndDates

(5.67) Definition of eligible set
(5.68) Definition of eligible set
(5.69) Schedule lines 17-29 (FS) and CheckEndDates

(5.70) ScheduleTaskAssignments

(5.71) ScheduleTask lines 1-4 and ScheduleTaskAssignments

(5.72) ScheduleTaskAssignments

(5.73) ScheduleTaskAssignments

(5.74) fulfilled due to CPM and constraints (5.49) and (5.76)
(5.75) fulfilled due to CPM and constraints (5.50) and (5.79)
(5.76) Definition of eligible set
(5.77) Schedule lines 10-11
(5.78) Schedule lines 17-29 (FS) and CheckEndDates

(5.79) Schedule lines 15-16,24-25 and UpdateParent

Table 7.2: Timing consistency constraints fulfillment by heuristic.

yet.

In case of atomic tasks, the forbidden set is used to delay the scheduling of an
inconsistent task. Scheduling an eligible task requires a constant amount of time
whose upper bound is determined by the maximal value for the total workload
of a task in the dynamic task net. After the distribution of the workload and the
computation of the total duration and planned end time of the task, it can be decided
if the task is still eligible for the current date or if it has to be scheduled at a later
date. Therefore, the constant amount of time required for scheduling the task
assignments of a task can be regarded as additional time required to determine
whether a task is eligible or not. As a consequence, the overall time complexity of
the parallel scheduling scheme does not increase by this local backtracking using
the forbidden set.

If inconsistent end dates are detected at the end of the scheduling pass, the
whole scheduling algorithm has to be executed again after constraint dates have
been adapted. As explained before to show the termination of the algorithm, the
maximal number of reiterations is in O(|T|). Therefore, the runtime complexity of
the implemented parallel scheduling scheme is O(|T|3|Roles|) which is only slightly
worse than the basic version of the algorithm which does not cover end-end task
relationships, complex tasks, and durations computed during scheduling.

Chapter 7 Scheduling of Dynamic Task Nets 259

7.4 Scheduling of Workflow Instances

The scheduling of workflow-managed tasks requires a special approach. Specific
problems arise due to the usage of alternative branching and loop constructs in a
workflow definition. In classical project plans and dynamic task nets, all defined
tasks are eventually executed. In workflow-managed task nets, alternative tasks can
be skipped and tasks may be iterated several times.

As described in Section 6.3, a workflow template contains a subtask for every
activity in the workflow definition. This means, that subtasks are defined for all
activities contained in all alternative branches of an IfElse-activity, but only one
branch is executed at workflow runtime. Furthermore, for every activity contained
in a While-activity, exactly one subtask is defined, so that only the first iteration
of the loop is explicitly modeled in the workflow template. However, at workflow
runtime, several iterations of the While-activity may be executed which results in
the creation of several versions of the defined tasks as described in Section 6.3.

A workflow-managed task in a dynamic task net is a copy of a workflow template.
After its creation, a workflow-managed task and its subtasks may be scheduled.
Critical path analysis and resource-constrained scheduling have to be adapted for
the case of workflow-managed tasks. Alternative tasks cannot be treated like parallel
tasks, and scheduling only the first iteration of a loop does not cover the cases of
zero or multiple iterations.

In the following descriptions, the distinction between workflow tasks in a workflow-
managed task net and their associated activities in the workflow definition is softened
for reasons of readability. For example, it will be written that a workflow task is
contained in a control structure, although strictly speaking the associated activity is
contained in the workflow structure. The attentive reader will be able to understand
the implicitly described relations.

7.4.1 Critical Path Analysis

With respect to critical path analysis, the computation of the earliest possible start
times of the workflow tasks which succeed alternative branching constructs and
loops have to be adapted. Furthermore, the computation of the latest possible end
times of the tasks which precede these control structures have to be adapted.

In PROCEED, the computed constraint dates are used as strict constraint dates
for resource-constrained scheduling. Therefore, the minimal task durations are used
during critical path analysis to obtain computed constraint dates which are still valid
during resource-constrained scheduling (cf. Sections 7.2 and 7.3).

Consequently, the earliest possible start times of the successors of an alternative
branching construct have to be computed based on the duration of the shortest
alternative branch. At workflow runtime, the shortest path through an alternative
branching construct may be chosen and the successors may start after this branch
has been terminated. If a longer branch would be used for the computation of their
earliest possible start times, the resulting dates would constrain the start of the

260 7.4 Scheduling of Workflow Instances

successors too much because they could start earlier.

In case of a loop structure, the minimal number of iterations has to be assumed
to compute the earliest possible start times of the successors. If the loop has to be
iterated at least once, the shortest duration of the first iteration of the loop is used.
If the loop can be skipped completely, then a duration of zero days is used.

Just like the earliest possible start times of the successors, the latest possible
end times of the predecessors of alternative branching constructs and loops have to
be computed based on the shortest durations of these control flow constructs. If a
predecessor task terminates at its latest possible end time, it may still be possible
to finish the workflow in time by executing the shortest alternative branch or the
smallest number of iterations.

Besides the earliest start times of the successors and the latest end times of the
predecessors, constraint dates have to be computed for the tasks inside control flow
structures. This computation is performed for every alternative branch and for the
body of a loop construct in the same way as for the whole workflow. Constraint
dates are computed for all tasks in all alternative branches, but only the earliest
possible end time of the shortest branch is used for the computation of the earliest
possible start times of the successors, and only the latest possible start time of the
shortest branch is used for the computation of the latest possible end times of the
predecessors. Constraint dates are computed for all tasks in the first iteration of a
loop, even when the loop may be skipped completely.

Figure 7.24 shows an abstract example for the CPM computation of a workflow-
managed task. The task B is executed alternatively to C and D. The task E may be
iterated several times but has to be executed at least once. On the right side of the
figure, the minimal durations of the tasks and the computed constraint dates are
depicted. The EPST of task E is computed based on the EPET of task B, because B is
contained in the shortest branch. The 13th of September 2010 is the next working
day after the 10th of the same month. Because task E will be executed at least once,
the EPST of task F is the next working day after the EPET of task E. The LPET of the
last task F is later than its EPET. Starting from this date, the backward scheduling
pass is performed analogous to forward scheduling.

In a workflow definition, control flow structures may be nested. The above
described computations of constraint dates are still valid for the case of nested
control flow structures. For example, if an alternative branch contains a loop
construct which may be skipped completely at runtime, then the duration of the first
iteration is not taken into account for the computation of the earliest possible end
time of the alternative branch, which may implicate that the alternative branch is
the shortest branch.

The described CPM computations for control flow structures in workflow-managed
task nets are performed before the respective control flow structures have been
executed. At workflow runtime, a re-computation of the constraint dates is required
when decisions for alternatives or further iterations have been made. When the
decision for an alternative branch has been made at workflow runtime, the tasks of
all other branches are skipped which makes them zero-duration tasks so that they

Chapter 7 Scheduling of Dynamic Task Nets 261

A (2 days)

16/09/10 17/09/10

06/09/10 07/09/10

B C

While

IfElse

Sequence

E

A

D

F

B (3 days)

16/09/10 20/09/10

08/09/10 10/09/10

C (2 days)

14/09/10 15/09/10

08/09/10 09/09/10

D (3 days)

16/09/10 20/09/10

10/09/10 14/09/10

E (3 days)

21/09/10 23/09/10

13/09/10 15/09/10

F (4 days)

24/09/10 29/09/10

16/09/10 19/09/10
Task (duration)

LPST LPET

EPST EPET

Seq.

Figure 7.24: CPM computations in a workflow-managed task.

are eliminated from the memory implementation of the task net before scheduling.
The selected alternative branch is therefore handled as if no alternatives ever existed.
When the nth iteration of a loop is currently executing, all previous iterations are
handled like a ordinary task nets because they are already terminated and can only
contain parallel and sequential constructs. The currently executing nth iteration is
handled as described above.

Adaptation of CPM algorithm The method HandleControlFlowForward is ex-
tended as shown in Algorithm 7.11 by the cases that the control flow originates from
a last task of an alternative branch or a loop. There may be several parallel last
tasks in an alternative branch or a loop.

In case of alternative branching, the EPET of the shortest branch will finally
become the EPST of the successor if it is later than the release date. The control
flow originates from one last task in one of the alternative branches. Because the
CPM algorithm traverses a subnet along the control flows in a depth-first fashion,
the earliest possible end times of the other last tasks may still be undefined. In a
first step, the EPET of the alternative branch is determined in which the predecessor
of the control flow is contained. This is the latest defined EPET of all last tasks in the
branch. Second, the EPET of the whole alternative branching construct is computed
as the earliest EPET of all branches for which an EPET can already be determined.
If the computed EPET is later than the release date of the successor, it is set as its
EPST. The computed EPET is compared to the release date of the successor and

262 7.4 Scheduling of Workflow Instances

not to a possibly defined EPST because the latter may have been derived from a
longer alternative branch before and therefore may be later than the computed
EPET. However, in this case, the EPST of the successor has to be set to the earlier
date.

Algorithm 7.11 HandleControlFlowForward(c)
1: if c.Pred is a last task in an alternative branch then
2: set EPET of the branch to the latest EPET of all last tasks in the branch
3: EPET :=the earliest defined EPET of all branches
4: if undef(c.Succ.ReleaseDate) ∨ EPET > c.succ.ReleaseDate then
5: c.Succ.EPST := EPET

6: end if
7: if c.Succ.Parent = c.Pred.Parent then
8: ScheduleForward(c.Succ)
9: end if

10: else if c.Pred is a last task in a loop then
11: if the loop will be executed at least once then
12: if undef(c.Succ.EPST) ∨ c.Pred.EPET > c.Succ.EPST then
13: c.Succ.EPST := c.Pred.EPET
14: end if
15: else
16: EPST :=earliest start time of the loop
17: if undef(c.Succ.EPST) ∨ EPST > c.Succ.EPST then
18: c.Succ.EPST := EPST

19: end if
20: end if
21: if c.Succ.Parent = c.Pred.Parent then
22: ScheduleForward(c.Succ)
23: end if
24: else
25: Algorithm 7.2
26: end if

A control flow which originates from a last task of a loop construct is handled in
the same as a sequential control flow in Algorithm 7.2, if the loop is executed at
least once. If the loop may be skipped completely, then the EPST of the successor is
set to the EPST of the whole loop construct.

The adaptation of the method HandleControlFlowBackward for the latest possible
end time of the predecessor is analogous.

Adaptation of timing consistency constraints The computation of constraint
dates for tasks which are contained in an alternative branching construct but not in
its shortest branch as well as the computation of constraint dates for tasks which
are contained in a loop which may be skipped completely may result in a violation of
the timing consistency constraints (5.57) and (5.58).

Chapter 7 Scheduling of Dynamic Task Nets 263

The EPST of a successor of an alternative branching construct is computed based
on the shortest branch and can therefore be earlier than the EPET of one of the last
tasks in a longer branch. This is the case in Figure 7.24 for the task E whose EPST is
earlier than the EPET of the predecessor D. Analogously, the LPET of a predecessor
of an alternative branching construct may be inconsistent with the LPST of a task
in a longer branch, e.g. task A in Figure 7.24. The same problem may occur for
successors and predecessors of loop constructs which may be skipped completely.

Therefore, the constraint checking has to be adapted for workflow-managed tasks
as well. A task which is a successor of an alternative branching construct has
only tasks as predecessors which are contained in one of the alternative branches.
The constraint (5.57) is only evaluated for the predecessor which is contained
in the shortest branch. Likewise, a task which is a predecessor of an alternative
branching construct has only tasks as successors which are contained in one of
the alternative branches. The constraint (5.58) is only evaluated for the successor
which is contained in the shortest branch

If a loop is iterated at least once, the earliest EPET of the last tasks in the loop is
used to compute the EPST of the successors, and the latest LPST of the first tasks
in the loop is used to compute the LPET of the predecessors. No inconsistencies
can occur in this case. However, if the loop may be skipped completely, the earliest
possible end times of the predecessors of the loop are used to compute the earliest
possible start times of the successors of the loop. Likewise, the latest possible start
times of the successors are used for the computation of the latest possible end times
of the predecessors of the loop. Therefore, the timing consistency constraints (5.57)
and (5.58) are evaluated with respect to the EPET of the loop’s predecessors and
the LPST of the loop’s successors, respectively.

7.4.2 Resource-Constrained Scheduling

In the context of resource-constrained scheduling, the problems involved with
alternative branching and loop constructs extend to the assignment of eligible
resources and the distribution of workload. If workflow-managed tasks would be
scheduled like all other tasks in a dynamic task net, the planning of workload and
resource requirements would be incorrect. In case of alternative branching, too
much workload would be planned and resources would be unnecessarily bound
for those tasks which are skipped at runtime. In case of loop structures, too little
workload would be planned, and required resources would possibly not be available
when several iterations of a loop are executed.

Alternative branching Figure 7.26 shows the realization of a workflow-managed
task before its start. The associated workflow definition is depicted in Figure 7.25.
The two tasks to determine the pump type shall be executed alternatively. Both
require the same role and shall be performed by the same resource. If the as-
signed resources are not specified manually before automatic scheduling, different
resources are assigned to the alternative tasks, because the resource which is

264 7.4 Scheduling of Workflow Instances

Determine Pump
Type by Use Case

While

IfElse

Sequence

Detail Engineering
of Pump Specification

Determine Pump Type
by Process Data

Determine
Operating Parameters

Figure 7.25: Example workflow for resource-constrained scheduling

8 MHR 1 day

seq

Determine Pump Type

by Use Case

16 MHR 2 days

Determine Pump Type

by Process Data

40 MHR 20 days

Detail Engineering of

Pump Specification

seq

24 MHR 3 days

Determine Operating

Parameters

seq

seq

(Process Engineer)

(Process Engineer)

8 MHR

16 MHR

Figure 7.26: Example realization of a workflow-managed task.

Chapter 7 Scheduling of Dynamic Task Nets 265

8

88

8

8 8

4

4 4

4

8

Determine Pump Type by Process Data

Determine Pump Type by Use Case

16 17 18 10/2010

Dreher

Dreher

Dreher

Dreher

Dreher

Meyer

Determine Pump Type by Process Data

Determine Pump Type by Process Data

Determine Pump Type by Use Case

Determine Pump Type by Use Case

b)

a)

c)

Figure 7.27: Different unsatisfying possibilities for scheduling alternative tasks

assigned to one task is not available for the other. This situation is depicted in
Figure 7.27 a) where the tasks are scheduled in parallel with assigned resources
Meyer and Dreher. The assignment of different resources for alternative branches
has the disadvantage that one of the resources is unnecessarily blocked for the
planned duration of the task and cannot be assigned to other tasks in the project.

When a maximal resource usage per day is specified for the task assignments, the
same resource may be selected by the scheduling algorithm for both tasks. This
case is depicted in Figure 7.27 b) where the resource Dreher is assigned to both
tasks. However, PROCEED does not offer the possibility to define a binding between
two tasks which demands that they are necessarily executed by the same resource.
Therefore, the only way to ensure that both tasks are executed by the same resource
is to manually assign the resource before automatic scheduling.

If the same resource is assigned to both tasks but no maximal resource usage per
day is specified for the task assignments, another problem arises. The tasks have to
be scheduled in sequence because the resource is only available for one task at a
time as depicted in Figure 7.27 c).

In both cases in which the same resource is assigned to the tasks, the planned
workload for this resource is to high since he or she only has to execute one of the
tasks. Furthermore, the planned workload for the workflow-managed parent task
is to high, since workload is defined for all alternative tasks. In the example of
Figure 7.26, the sum of 24 MHRS is added to the used workflow of the parent task.
This value is in any case too high because only one of the tasks will be executed and
the other task will be skipped. Therefore, the planned workload of the workflow-
managed parent task will be too high until the decision for one of the alternative
branches is made.

Several possible solutions to resolve the described problems concerning the
scheduling of alternative branches in a workflow have been evaluated.

• Workload is planned for all alternative branches and all tasks are scheduled. This
is the case which has been described above. As a consequence, to much workload
is planned and scheduled, and resources are unnecessarily bound.

266 7.4 Scheduling of Workflow Instances

• All tasks in the alternative branches are scheduled according to their duration but
no workload is planned and no resources are assigned. In this case the tasks may
be correctly timed, but too little workload is planned for the workflow-managed
task, and the required resources may not be available when the tasks shall finally
be executed.

• The tasks in alternative branches are not scheduled at all until the decision is
made at runtime which branch shall be executed. In this case the same problems
arise as in the previous case.

• One of the alternative branches is scheduled—preferably the most probable one
if it can be determined—and the workflow-managed task net is replanned and
rescheduled in the case that a different branch is chosen at workflow runtime.

The last solution has been selected because it has several advantages over the other
cases which will be described in the following. When the realization of a workflow-
managed task shall be scheduled and the workflow definition contains alternative
branches, only the tasks which belong to one of the branches are scheduled. The
workflow-managed task net may be scheduled before the workflow has reached
the decision point in which one of the alternative branches is selected. Before the
decision for one of the branches has been made, the branch to be scheduled is
selected as follows.

• If statistical data about the enactment of previous instances of the same workflow
type exists, it is used to determine the most probable branch, which is then
selected to be scheduled.

• If no statistical data is available, the branch with the highest total workload in the
sum of its tasks is selected. In this way, it is assured that resources with enough
free working hours are available for the workflow tasks when the decision is
made for another branch at workflow runtime.

The planning data for the tasks which belong to the alternative branches is set in
a way, that the algorithm for resource-constrained scheduling only schedules the
selected branch.

• The tasks of the selected branch are in the execution state InDefinition and have
a total workload greater than zero man hours, and their total duration is either
undefined or greater than zero work days. Therefore, they are taken into account
during resource-constrained scheduling.

• The tasks of the not-selected branches are also in the execution state InDefinition
but have a total workload of zero man hours and the duration is undefined. There-
fore, they are not taken into account during resource-constrained scheduling (cf.
Section 7.1).

At workflow runtime when the decision has been made for one of the alternative
branches, rescheduling may be required. In the case that the previously selected

Chapter 7 Scheduling of Dynamic Task Nets 267

branch has also been selected at runtime, no change to the schedule is required. In
the case that a different branch has been selected at runtime, the workflow-managed
dynamic task net is replanned and rescheduled automatically.

• The tasks of the previously selected branch are skipped. Thereby, the planned
total workload is reset to zero and the assigned resources are released.

• Likewise, the tasks of all other not-selected branches are skipped.

• The planning data of the tasks which belong to the branch selected at runtime
are retrieved from the workflow template.

• If task assignments of the branch selected at runtime require the same roles
as task assignments of the skipped tasks of the previously selected branch, the
freed resources are assigned to these task assignments. Otherwise, no resources
are assigned at this point.

• The workflow-managed task is rescheduled whereby the workload is distributed
and resources are assigned to task assignments of tasks in the branch which has
been selected at runtime. This rescheduling is local and does not affect other
parts of the project plan.

• The execution states of the scheduled tasks are changed from InDefinition to
Waiting as described in Section 6.3.

The solution for resource-constrained scheduling of alternative branches is illus-
trated in Figure 7.28. Figure 7.28 a) shows the situation before the decision for
one of the alternative branches has been made at workflow runtime. The branch
with the higher total workload has been scheduled whereby the resource Dreher has
been assigned and the workload has been distributed over two days. Figure 7.28 b)
shows the situation at runtime, after the decision has been made for the previously
scheduled branch. No rescheduling was required and the task Determine Pump Type
by Process Data can be executed as scheduled. In the case depicted in Figure 7.28 c),
the decision has been made for the other alternative branch at runtime. The task
Determine Pump Type by Process Data was skipped which is why no resource is as-
signed anymore, and no workload is planned for the given days. The freed resource
Dreher was assigned to the task Determine Pump Type by Use Case and the workload
was distributed by the algorithm for resource-constrained scheduling. Because
the task of the previously selected branch was skipped, the resource Dreher was
available and the task Determine Pump Type by Use Case could be scheduled for the
16th October.

Altogether, the planned duration of the alternative branching construct was at
any time at most two days because the tasks could be scheduled with fully available
resources assigned which are not blocked by alternative tasks. In contrast to that,
the different possible solutions for scheduling all alternative branches depicted in
Figure 7.27 lead to an overall duration of three days of the alternative branching
construct.

268 7.4 Scheduling of Workflow Instances

88

8

8 8

Determine Pump Type by Process Data

Determine Pump Type by Use Case

16 17 18 10/2010

Dreher

Dreher

Dreher

Determine Pump Type by Process Data

Determine Pump Type by Process Data

Determine Pump Type by Use Case

Determine Pump Type by Use Case

b) After decision for scheduled branch

a) Before decision has been made

c) After decision for not-scheduled branch

Figure 7.28: Scheduled alternatives at different stages of workflow enactment.

The rescheduling of tasks which belong to an alternative branch of a workflow at
runtime is local, i.e. only the planned dates, workload and resource assignments of
the workflow tasks are changed. This is achieved by setting the workflow-managed
parent task as the root task for scheduling (cf. Section 7.3). If required resources are
not available this may lead to delays in the selected branch, or resource-constrained
scheduling may even fail. In the first case, a suboptimal schedule is computed
which is nevertheless feasible. In the second case, the project manager is informed
about the failure. In both cases, a manually invoked scheduling pass, in which
also other tasks in the project may be rescheduled, can improve or repair the
schedule respectively. In the case that resources which were assigned to tasks of
the previously scheduled branch can be used for the branch which is selected at
runtime, scheduling of the selected branch will most probably not fail and lead to
good results, in particular when the previously scheduled branch required more
workload than the branch selected at runtime.

Loops In the example of Figures 7.25 and 7.26, the task Detail Engineering of Pump
Specification is iterated several times whereby the pump design is more and more
refined. If the planned duration, total workload, and total budget of the task only
account for the first iteration of the loop, additional work days, workload and budget
have to be planned for the subsequent versions of the task. Therefore, the planned
values are too low until the loop is actually iterated.

This problem is comparably simple to solve. The duration and total workload of
workflow tasks which represent activities in a While-loop of the workflow definition
are set in a way that they incorporate multiple iterations of the loop. In the example
of Figure 7.26, the task Detail Engineering of Pump Specification is planned with
a duration of 20 days and a required workload of 40 MHRS. These 40 MHRS are
the required workload for all iterations of this task according to the values stored
in the workflow template. Figure 7.29 shows a part of the workflow-managed
dynamic task net at runtime. The aforementioned task has been committed after 15
days, whereupon the remaining planned workload has been deleted as described in

Chapter 7 Scheduling of Dynamic Task Nets 269

30 MHR

20/09/2010

15 days

15/10/2010

Detail Engineering of

Pump Specification

16 MHR

16/09/2010

2 days

17/09/2010

Determine Pump Type

by Process Data

10 MHR

11/10/2010

5 days

15/10/2010

Detail Engineering of

Pump Specification

seq

seq
16/09 100% 17/09

20/09 100% 08/10

11/10

seq

Figure 7.29: Scheduled iterated activity in a workflow-managed task.

Section 5.3.1, which leads to a planned workload of 30 MHRS. The loop construct has
already entered the next iteration and a new version of the terminated subtask has
been created. The total workload of this new task version is automatically set to 10
MHRS which are defined for the remaining iterations in the workflow template. The
total duration of the new task version is set to 5 days which is the value defined by the
workflow template. If the iterated task is executed approximately as planned in every
iteration, then the initially planned values are finally reached by the subsequent task
versions together. In the example, the two versions of the task together account for
20 work days and 40 MHRS workload.

When the number of iterations and the activity durations in a workflow instance
are close to the average values derived from statistical data about all instances of
the workflow type, then the originally planned duration and required workload will
be close to the actual duration and workload.

Zero-duration subtasks of workflow-managed tasks The described solution
for resource-constrained scheduling of workflow-managed tasks is required when
a workflow definition is used to enact a long-running task on a higher level of the
hierarchical dynamic task net. However, workflow definitions are often used to define
procedures for individual engineers. The corresponding workflow-managed tasks
often have a short duration and are defined on the lowest levels of the hierarchical
dynamic task net. In these cases, it is not useful to schedule the subtasks of the
workflow-managed tasks. Low-level workflows can be excluded from resource-
constrained scheduling in different ways. As described in Section 7.1, the following
tasks are not taken into account during scheduling.

• Tasks with a duration of 0 days,

• Tasks with an undefined duration and a workload of 0 MHRS,

• Tasks whose parent task has a duration of 1 day only,

270 7.5 Export to Database

• Tasks with granularity level Work Step.

The granularity of the subtasks defined in a workflow template can be set to Work
Step. This way, the automatic scheduling algorithm will schedule all instances of this
workflow template as atomic tasks and will neglect the subtasks which represent the
workflow activities. If a workflow-managed task itself has the granularity Work Step,
it is not scheduled at all. Furthermore, if the duration or workload of a workflow is
too little, it is not scheduled at all (0 days) or only as an atomic task (1 day). This
way, low-level workflows can be enacted as part of the overall dynamic task net, but
they are neglected when it comes to scheduling.

7.5 Export to Database

After a successful scheduling run, the memory representation contains the earli-
est and latest possible start and end times of all tasks in the project as well as the
updated planned dates, resource assignments, and workload distributions of the (par-
tially) scheduled tasks. These values and distributions are written to the database
after a successful scheduling pass when the user, who initiated the scheduling pass,
accepts the results.

The computed constraint dates are exported to the Comos database for all tasks in
the project and override possibly existing values. Even not scheduled tasks receive
the new computed constraint dates. These new values are necessarily consistent
with the constraint dates and planned dates of the not scheduled tasks because
otherwise scheduling would have failed. The local rescheduling of a subnet may
influence the earliest and latest possible start and end times of not scheduled tasks in
other parts of the project. This information is relevant for the responsible resources
of these tasks to assess the criticality of their tasks after the plan changes.

In contrast to computed constraint dates, planned dates of not scheduled tasks
are never changed during scheduling and are therefore not exported to the Comos
database. The local rescheduling of a subnet does not affect the planned dates of
tasks which are not part of this subnet.

The planned start and end times of scheduled tasks and the computed workload
distributions are exported to the Comos database. The planned start times of partially
scheduled tasks remain unchanged and are therefore not exported. However, the
planned end times and the workload distributions of partially scheduled tasks may
be changed by the scheduling algorithm. Therefore, they are updated in the Comos
database.

Resource-constrained scheduling assigns resources to task assignments of (par-
tially) scheduled tasks which do not have resources assigned yet. These assignments
are exported to the Comos database. Accordingly, the workload which is scheduled
for task assignments is added to the used workload in the work calendars of the
resources.

The total duration of a task specifies the number of work days required for the
task with respect to the work calendar of the task. It should be consistent with the

Chapter 7 Scheduling of Dynamic Task Nets 271

planned start and end times of the task at any time, i.e. between the specified dates
for planned start and end, the work calendar of the task should contain as many
work days as specified by the total duration. The total duration can be manually set
for tasks in the persistent dynamic task net. The defined values are imported into the
memory representation of the task net. During resource-constrained scheduling, the
total duration of a task may increase due to the scheduling of its task assignments
and subtasks as described in Section 7.3.2. This increased value of the total duration
is exported to the Comos database after scheduling. The user who initiated the
scheduling pass is informed about all cases in which the total duration of a task has
been increased.

The update of the total duration reveals a common issue related to the adaptation
of workload, budget and duration. If the workload, budget or duration of a task are
automatically increased due to a modification of the task assignments or subtasks
or due to rescheduling of the subprocess, then the adapted values cannot be distin-
guished from manually set values afterwards. If a later plan change or a scheduling
pass leads to a state in which the increased value of workload, budget or duration
is not necessary anymore, the values are not reduced automatically, because they
could be intentionally specified by the user. In all these cases, the user has to reduce
the workload, budget or duration of a complex task manually to account for the
decrease of the respective values for the task assignments or subtasks. In this sense,
the automatic increase of the total duration of a task during scheduling is in line
with the update of the total workload and budget of a task in case of manual changes
to the planning data. The only difference to the case of workload and budget is that
the computed duration of the task assignments and subtasks depends on the number
of work days and available resources in the timeframe for which the parent task is
scheduled. If the task had been scheduled for a different timeframe, the computed
duration could have been shorter, so that an increase of the total duration of the
parent task would not be required.

Altogether, computed constraint dates, planned dates, durations, workload distri-
butions, and assigned resources are exported to the Comos database after scheduling.
For not scheduled and (partially) scheduled tasks, only those properties are exported
which can generally be changed by the scheduling algorithms.

7.6 Related Work

The related work on temporal analysis and scheduling can be coarsely divided into
two different areas of research. First, there is the large scheduling community
which is concerned with project scheduling, production scheduling in manufacturing
systems, and the like. Second, there is a part of the process management community
which has tried to incorporate the aspect of time into workflow management. The
latter has adopted some techniques from the former, tackled problems which are
specific to workflows, but also reinvented established solution concepts.

272 7.6 Related Work

7.6.1 Resource-Constrained Scheduling

The scheduling research community has been quite successful in recent years, and
scheduling research has had an increasing impact on practical problems [Smi03]. A
large number of different approaches and algorithms exist for solving the different
variants of the resource-constrained scheduling problem. Current scheduling tech-
niques are capable of solving large problems and they are capable of generating
schedules under broad and diverse sets of temporal and resource constraints. Fur-
thermore, various different optimization goals can be handled. However, scheduling
is not a solved problem as Smith argues in [Smi03]. The open research questions
relate inter alia to the management of change and the integration of planning
and scheduling. These problems have been addressed in this thesis by the solu-
tion for resource-constrained scheduling presented in this chapter and a change
management procedure which will be presented in Chapter 9.

In this section, related work on scheduling is presented. First an overview over
common general solution approaches and the different problem classes is provided.
After a short coverage of robust scheduling approaches, related work on schedule
repair is presented which addresses the problem of rescheduling at project runtime.
Finally, the scheduling functionality provided by commercial project management
systems is shortly reviewed.

A quantitative comparison of the scheduling algorithms presented in this thesis
with related solutions from literature regarding the quality of the generated sched-
ules has not been performed for two reasons. First, the algorithm presented in this
thesis differs significantly from scheduling algorithms found in literature in that it
takes the hierarchical structure of a task net and the execution state of the tasks into
account. Therefore, the problem instances are not comparable and consequently
neither are the generated solutions. Second, the optimization of the generated
schedule with respect to the makespan of the project or the tardiness of tasks has
not been the focus in this thesis.

Overview

Over the last decades, several different approaches have been developed for solving
the resource-constraint project scheduling problem and its numerous variants. In
Section 3.2, the general approaches have already been introduced. There are exact
methods which aim at finding the optimal solution for the respective optimization
problem. On the other hand there are heuristic approaches, which aim at find-
ing good feasible solutions efficiently. The heuristics can be distinguished into
constructive heuristics and improvement heuristics.

In [Haj97], Hajdu presents network scheduling techniques for construction project
management covering the steps of network-based project planning, critical path
analysis, and the precedence diagramming method. Finally, resource leveling and
resource allocation are treated.

Kolisch and Padman provide in [KP01] an integrated survey of project scheduling.
Different optimization objectives for project scheduling are presented and optimal

Chapter 7 Scheduling of Dynamic Task Nets 273

approaches as well as heuristic approaches to solve the respective optimization prob-
lems are reviewed. In [KH98], Kolisch and Hartmann review the heuristic algorithms
for solving the resource-constrained scheduling problem in detail. In particular,
the parallel and serial schedule generation schemes are presented as examples for
constructive heuristics. Simulated annealing, tabu search, and genetic algorithms
are shortly described as examples for meta-heuristics. Finally, a computational
analysis of the different algorithms is performed.

Herroelen, De Reyck, and Demeulemeester provide in [HRD98] a survey over
developments with respect to the research on resource-constrained scheduling until
the year 1998. In particular, research work addressing the generalized resource-
constrained project scheduling problem (GRCPSP) and the resource-constrained
project scheduling problem with generalized precedence constraints (RCPSP-GPR)
is reviewed (cf. Section 3.2). A much more elaborate overview is provided in the
research handbook on project scheduling by Demeulemeester and Herroelen [DH02].
It can be considered as a fairly complete overview over the different scheduling
problems, optimization goals, exact and heuristic solution approaches, which even
covers stochastic, robust, and reactive scheduling. A similarly but less extensive
overview is provided by Klein in his dissertation [Kle00] in which he performs
several computational experiments to compare the different approaches for solving
the RCPSP and the GRCPSP with respect to their runtime efficiency.

The algorithm for resource-constrained scheduling presented in this thesis can be
categorized as a constructive heuristic, which does not necessarily yield an optimal
schedule with respect to the project’s makespan, but efficiently generates a good and
feasible schedule. All related work on project scheduling does not explicitly address
hierarchically structured task networks. It is generally assumed that precedence
relationships are only defined for the tasks on the lowest level of a work breakdown
structure and that the duration of complex tasks cannot be specified independently
of their subtasks.

In contrast to the previously reviewed established approaches for solving the
GRCPSP, the algorithm presented in this thesis can not only be used to generate an
initial baseline schedule, but also to repair a project schedule at runtime. In project
management and other application domains for scheduling algorithms, generated
baseline schedules often have to be revised at project or process runtime. The
possible disruptions which may occur at runtime cannot be determined it advance,
which is subsumed under the term uncertainty. Surveys over the current research
regarding scheduling under uncertainty are presented in [HL05, ALM+05, OP09]. In
contrast to approaches which aim at generating an optimal baseline schedule before
the start of the project, the surveyed works particularly target possible disruptions
at project runtime. The reviewed publications are classified into five fundamental
approaches: reactive scheduling, stochastic project scheduling, proactive robust
scheduling, fuzzy project scheduling, and sensitivity analysis, where the latter two
are not related to the approach of this thesis.

Predictive-reactive scheduling is concerned with repairing the baseline schedule in
case of disruptions. Simple techniques aim at restoring the consistency of the sched-

274 7.6 Related Work

ule and are referred to as schedule repair actions. An example is the well-known
right shift rule which may however lead to poor results. At the other end of the spec-
trum of reactive scheduling approaches is the full rescheduling of the project part
which remains to be executed. Match-up scheduling matches up with the baseline
schedule within a given time frame. In contrast to predictive-reactive scheduling,
completely reactive scheduling does not create a baseline schedule in advance but
decisions are made locally in real-time, e.g. by using priority dispatching rules. In
the following, the term reactive scheduling is used for predictive-reactive scheduling.
The approach presented in this thesis can be categorized as a reactive scheduling
approach. In case of dynamic changes, the task net is (partially) rescheduled to
reestablish the consistency of the timing data.

Stochastic project scheduling is mainly concerned with solving the stochastic
resource-constrained scheduling problem which aims at scheduling project activities
with uncertain durations in order to minimize the expected project duration subject
to zero-lag finish-start precedence constraints and renewable resource constraints.
Due to the presence of both, resource constraints and random activity duration,
no baseline schedules are used, but schedules are generated on-the-fly by apply-
ing scheduling policies. In that sense, stochastic project scheduling is a form of
completely reactive scheduling. Without an explicit baseline schedule no advance
commitments to subcontractors and customers can be made in a project. Hence,
merely applying scheduling policies is not feasible for engineering projects, which is
why the scheduling of dynamic task nets could not be based on stochastic project
scheduling approaches.

Proactive robust project scheduling is an interesting approach for achieving ex
ante stability in contrast to ex post stability which is achieved by reactive scheduling.
With proactive robust scheduling, the baseline schedule is generated in a way that
in case of disruptions during runtime like overdue activities, reactive measures are
in most cases not necessary. For example, slack time can be distributed to protect
several activities. The schedules generated by PROCEED for dynamic task nets
are robust to some extent when buffers for the duration and workload of complex
tasks have been planned. The hierarchical structure of a dynamic task net together
with explicitly defined durations and workload for complex tasks which exceed the
respective aggregated values of the subtasks leads to a stable baseline schedule for
which changes to the dynamic task net at project runtime have only local impact.

Robust Scheduling

In [SW00, DGB01, HL04, VDH05, DDHVdV06, dVDH08], different algorithms for
solution robust scheduling are presented. Solution robust scheduling aims at the
generation of baseline schedules which have to change as little as possible in case of
disruptions at runtime. The common optimization goal is to minimize the expected
weighted deviation in task start times in the repaired schedule from those in the
baseline schedule. This is achieved by scheduling activities later than their earliest
possible start times in the baseline schedule to ensure that at runtime they can be
started as scheduled even if preceding activities have been delayed. The presented

Chapter 7 Scheduling of Dynamic Task Nets 275

algorithms include time buffers in a given schedule while the project due date
remains respected.

Three slack-based techniques for generating robust schedules are reviewed in
[DGB01]. Temporal protection simply extends task durations before scheduling to
obtain so-called protected durations. Time window slack modifies the scheduling
problem definition to ensure that each activity will have at least a specified amount
of slack rather than extending task durations before scheduling. In this way, slack
times are explicitly represented and can be reasoned about during scheduling. With
the focused time window slack technique, tasks obtain more slack time when it is
more likely that a disruptive event will occur before their execution, i.e. intuitively
that tasks which are scheduled later receive more slack time. In [VDH05] resource
flow networks which were introduced in [AR00] are used to determine the required
time buffers. The remaining solutions for proactive robust scheduling include
constructive heuristics, algorithms based on linear programming and constraint
programming, as well as combinations of the latter two.

Related work on solution robust scheduling always assumes a flat task network.
In this thesis, the hierarchical structure of dynamic task nets has been used as a
means to increase the stability of the generated schedule. Instead of planning a
time buffer between activities by scheduling tasks late, the approach presented in
this thesis allows to incorporate a time buffer into the total duration of a complex
task which enables the timely start of succeeding tasks even if subtasks have been
delayed. In a way, the chosen approach can be considered as temporal protection in
a hierarchically structured task net.

Reactive Scheduling

According to [Smi94], scheduling is an ongoing reactive process where evolving
and changing circumstances continually force reconsideration and revision of pre-
established plans. Traditional scheduling research has ignored this process view of
the problem, focusing instead on optimization of performance under idealized as-
sumptions of environmental stability and solution executability. Reactive scheduling
is concerned with reestablishing the feasibility of a schedule which has been flawed
due to disruptions at runtime. Several approaches also try to optimize the repaired
schedule.

Sadeh et al. In [SOS93], the approach for reactive scheduling implemented in the
MicroBoss scheduler is presented. Two levels are distinguished on which disrup-
tions to the schedule can be handled. On the control level, small disruptions are
handled by simple control rules. On the scheduling level, the schedule is repaired or
re-optimized from a more global perspective. Inter alia two conflict propagation pro-
cedures are introduced which can be used as control rules for handling disruptions
on the control level, but which can also be used to determine a set of tasks which
shall be rescheduled by the global scheduling algorithm implemented in MicroBoss.
The so-called right shift rule (or right shifting heuristic) moves forward in time all

276 7.6 Related Work

those tasks which are affected by the failure of a resource, either because they were
assigned to the resource, or due to incoming control flows from shifted tasks. This
technique may produce poor solutions, since it does not re-sequence tasks. A more
sophisticated heuristic is the right shifting and jumping procedure which bumps
forward tasks in time while jumping over some tasks which do not need to be moved.
This procedure identifies a smaller number of tasks to be rescheduled but may still
lead to poor results. The right shift rule has been one of the first heuristic operations
for schedule repair. It is an example for a rule which identifies all affected tasks in
case of a disruption.

The rescheduling approach implemented in PROCEED does not make use of this
kind of simple repair rules. Defining a complete set of repair rules which covers
all possible disruptions would have been tedious and futile since their application
generally leads to poor results. Therefore, the constructive heuristic used for initial
schedule generation has been extended to be applicable for schedule repair. The
parallel heuristic generates a new schedule to handle all occurred disruptions,
whereby preparing tasks can be moved forward in time. However, only those
preparing tasks which are directly or indirectly affected by the disruptions are
actually moved because for all other tasks the time and resource constraints have
not changed and they are consequently scheduled for the same dates as before.

Bean et al. A heuristic approach for match-up scheduling was originally introduced
in [BBMN91]. The heuristic for schedule repair tries to repair a schedule in case of
disruptions in a way that the repaired schedule equals the original schedule after a
specified time frame, i.e. only start times and resource assignments of tasks which lie
in this time frame are changed. The application domain of [BBMN91] are automotive
manufacturing problems. Therefore, resources are machines which perform jobs
in sequence. The general procedure of the match-up scheduling algorithm (MUSA)
consists of four steps. First, for every disrupted resource (machine), a minimum
match-up time T is determined. Then, the jobs on each machine are re-sequenced
before T whereby the deviation from the original schedule which is measured by a
cost function may not exceed a specified threshold. If this is possible for all machines,
then the algorithm is successfully terminated. Otherwise, the match-up times are
incrementally increased and resequencing for individual machines is performed
again. If the match-up time of a resource exceeds a global maximal value, jobs are
reallocated between machines, i.e. the resource assignments are changed. The
algorithm underlies the assumption that match-up with the original schedule is
eventually possible. This is theoretically proven for the case that there is sufficient
slack time in the original schedule. Since this cannot be guaranteed in general, the
practical solution is to use a time limit after which the algorithm stops.

Some aspects of the described approach can be found in the approach for schedule
repair presented in this thesis. The local rescheduling of a subprocess in PROCEED
implicitly defines a time frame after which the original project schedule is left
unchanged. In this way, match-up scheduling can be performed for a fixed match-up
time. However, the match-up time cannot be arbitrarily chosen but the possible

Chapter 7 Scheduling of Dynamic Task Nets 277

values are implicitly defined by the hierarchical structure of the dynamic task net.
Furthermore, rescheduling in PROCEED does not automatically change resource
assignments if the schedule cannot be repaired. The user has to change or reset
certain task assignments manually.

Smith In [Smi94], Smith presents the OPIS scheduling system which has been
designed to automatically revise schedules in response to changed solution con-
straints. The application domain of the OPIS system is manufacturing production
management, i.e. the scheduling of tasks on a production line where the avail-
able resources are machines which perform the steps of the production process.
Changes to solution constraints may arise due to machines break down, delayed
arrival of materials, unexpected production demands, and the like. Due to the focus
on production management, the rescheduling approach does not rely on human
interaction with the system. The integration with user decision-making processes
and the development of flexible interactive scheduling tools is mentioned as intended
future research in the conclusion. The problem of reactive scheduling is broken
down to two steps. First, the feasibility of the schedule has to be reestablished.
Second, certain optimization objectives have to be met, e.g. compliance to due dates,
minimization of tardiness of tasks, maximization of resource utilization. Schedule
repair is achieved by incrementally revising schedules in response to changes to
solution constraints. An approach from AI planning is applied where a control cycle
is iterated until all conflicts have been resolved. One iteration consists of the steps
event aggregation, event prioritization, event analysis, and subproblem formulation,
where the last step yields a complex task which is performed to change the schedule.
Different subtasks can be performed to repair the schedule. The so-called strategic
alternatives include the application of the right shift rule to achieve feasibility and
the application of the left shift rule to optimize the schedule. A specific characteristic
of the approach is that the existence of a feasible solution is guaranteed by assuming
that constraints are infinitely relaxable, e.g. due dates do not necessarily have to be
met.

The approach for schedule repair presented in [Smi94] differs from the approach
presented in this thesis in several ways. In [Smi94] a schedule is repaired by incre-
mentally applying local repair actions, while the heuristic for resource-constrained
scheduling described in this thesis is globally applied to reschedule complete dy-
namic task nets or subnets thereof. As a consequence, the latter can also be applied
to initially generate a baseline schedule. The application domains of [Smi94] and
this thesis differ. While the former addresses production management, the latter ad-
dresses scheduling as part of project management. As a consequence, the approach
for schedule repair presented in [Smi94] does not involve human interaction, while
the the approach presented in this thesis relies on manual management decisions in
case that no feasible schedule can be generated. In particular, time constraints can
only be relaxed manually.

278 7.6 Related Work

Zhu et al. In [ZBY05] different possible disruptions at project runtime are analyzed
and categorized, and a solution for schedule recovery is presented which is based
on linear programming. Only the RCPSP is addressed, i.e. PDM and generalized
precedence relationships are not considered but only sequential control flows. The
proposed classification scheme for the different types of disruptions will be reviewed
in the related work section of Chapter 9. Several recovery options are available to
repair a disrupted schedule. Rescheduling of the defined tasks assigns new planned
start and end times which takes into account changed constraints. Changes to
the so-called resource-duration mode of tasks may resolve inconsistencies which
include subcontracting and task cancellation. Finally, so-called resource alternatives
increase resource availabilities. The recovery problem is defined as getting back
on track as soon as possible at minimum cost, where cost is a function of the
deviation from the original schedule. The problem is formulated as an integer linear
program and is solved with a so-called hybrid mixed-inter programming/constraint
programming procedure. A recovery window is defined which determines the time
period after which the project shall again be executed as originally planned, i.e.
the part of the original plan after the time window is not changed. Computational
experiments have been conducted to determine the effects of different factors
related to the recovery process. It has been found that schedule repair is harder
to solve when the original schedule is optimal instead of just a good schedule. The
earlier a disruption is detected, the easier is schedule repair.

The approach presented in [ZBY05] is related to the approach for resource-
constrained scheduling presented in this thesis in several ways. The possible
disruptions at project runtime which have been identified in [ZBY05] may occur in
the same way in a dynamic task net, and most of the recovery options can be mapped
to dynamic changes of a timed dynamic task net, as it will be shown in Chapter 9.
The solution approach based on linear programming cannot be directly compared
to the constructive heuristic presented in this thesis. However, the heuristic also
allows to repair a disrupted schedule at project runtime. It addresses a variant of the
GRCPSP while in [ZBY05] only the RCPSP is addressed. The local rescheduling of a
subprocess in PROCEED implicitly defines a time window after which the original
project schedule is left unchanged. Finally, the experimental results of [ZBY05]
have been one of the major motivations why an optimal solution of the scheduling
problem has not been aimed at in this thesis.

Wang Wang presents in [Wan05] a heuristic approach for repairing schedules
which constitute solutions to the RCPSP. The scheduling problem is modeled as a
dynamic constraint satisfaction problem where the due date constraint is considered
as a hard constraint, i.e. the project deadline may not be violated. Unexpected
changes during project runtime are regarded as additions or deletions of constraints
to the problem. These changes include the shift of a task, a changed task duration,
a change in certain resource capacities, and the addition or removal of a temporal
constraint, e.g. the due date of a task. Two types of schedule conflicts may arise
due to unexpected changes. Temporal conflicts are the violation of precedence

Chapter 7 Scheduling of Dynamic Task Nets 279

constraints, earliest or latest start time constraints, or milestone constraints. A
resource conflict exists when the aggregated resource demand exceeds the available
capacity of a resource for a certain time. A reactive scheduling methodology based on
meta-heuristic approaches is developed to repair a disrupted schedule. Thereby, the
objective is to find a schedule that satisfies the temporal constraints and minimizes
the resource constraint violation, i.e. resource constraints are not regarded as
strict constraints. Two different meta-heuristics are applied for schedule repair.
On the one hand a repair algorithm based on simulated annealing, and on the
other hand a genetic algorithm. Computational studies are performed to test the
performance of the proposed approaches. The computational time of the simulated
annealing approach grows exponential as the time constraints become tighter while
the computational time of the genetic algorithm remains constant. With respect to
the quality of the solution, the simultaneous annealing approach performs slightly
better.

The paper does not clarify why an approach based on meta-heuristics is particularly
advantageous for schedule repair. Furthermore, it remains unclear in which way
the implemented algorithms differ from similar improvement heuristics for solving
the RCPSP. A common disadvantage of meta-heuristics is that it is difficult for the
user to comprehend the applied changes for repairing the schedule and to track
the problem solving process. While [Wan05] addresses schedule repair for the
RCPSP, the resource-constrained scheduling algorithm presented in this thesis can
be applied to instances of the GRCPSP. In both cases, the project deadline is a
hard constraint. However, limited resource capacities are also handled as hard
constraints by the scheduling algorithm implemented in PROCEED. From a practical
point of view, it seems to be questionable that resource capacities can be arbitrarily
exceeded in [Wan05].

Zweben et al. An approach for schedule repair similar to that of [Wan05] was
presented much earlier in [ZDDD93]. The proposed system uses constraint-based
iterative schedule repair, a technique that starts with a complete but possibly flawed
schedule and iteratively improves it by using constraint knowledge within repair
heuristics. The applied meta-heuristic is based on simulated annealing. In every
iteration step, violations of resource constraints and so-called state constraints are
detected and one violation is selected. Repair heuristics are applied to decide how
to repair the schedule with respect to the selected constraint violation. The changed
schedule is used for the next iteration or it is discarded depending on its quality and
the escape function of the meta-heuristic.

In [ZDDD93], the authors argue why they applied iterative repair instead of
constructive methods. The main argument against constructive methods is that pre-
viously scheduled tasks which are not directly affected by a constraint violation have
to be unscheduled and rescheduled in order to repair the schedule, because they
depend on tasks which are directly affected. According to the authors, determining
these tasks is not straightforward. The heuristic for resource-constrained scheduling
which is implemented in PROCEED solves this problem by using the execution

280 7.6 Related Work

states of tasks. Preparing tasks which have not been started yet by the assigned
resources can easily be rescheduled without introducing to much nervousness due
to a constantly changing schedule.

Van de Vonder et al. Van de Vonder et al. present in [dVBDH07] heuristic reactive
project scheduling procedures. The objective of these procedures is to minimize the
deviations between the original baseline schedule and the repaired schedule. The
authors argue that solution robustness present in a predictive baseline schedule
should also be maintained when the schedule is repaired due to disruptions at
runtime. Reactive procedures should try to repair the predictive schedule in such a
way that the included safety is preserved. For this purpose, the existing serial and
parallel scheduling schemes for heuristic resource-constrained scheduling have been
adapted. The new robust parallel scheduling scheme does not schedule tasks before
their original planned start time. This is called railway scheduling. The new robust
serial scheduling scheme tries to schedule the tasks as close as possible to their
original planned start times but possibly earlier. The robust heuristics for schedule
repair do not introduce any safety cushion against future disruptions themselves,
but they merely try to maintain existing ones. In this sense, none of the procedures
has a proactive nature.

During the review of related work on robust scheduling it has been argued that
time buffers incorporated in the durations of complex tasks in a dynamic task net
may lead to a certain schedule stability and are therefore a means for proactive
robust scheduling. The heuristic for resource-constrained scheduling implemented
in PROCEED naturally maintains the stability which results from these time buffers
during schedule repair. In this sense the implemented heuristic could also be
regarded as a procedure for robust reactive scheduling. Due to the hierarchical
structure of the dynamic task net, it is in many situations not required to explicitly
demand that tasks are not rescheduled to earlier dates. The successors of a complex
tasks will not be scheduled earlier even if subtasks of the complex tasks may have
been moved backwards in time. This surely does not cover all situations and it may
very well happen that preparing tasks are scheduled for earlier dates. However, for
running tasks the same rule applies as it has been introduced for the robust parallel
heuristic in [dVBDH07].

Hao et al. The approach to resource-constrained project scheduling which is most
related to the approach presented in this thesis has been developed at the same
time and has just recently been published in [HSXW10]. The focus of this article
is on multi-project scheduling, but also a solution for single project scheduling is
presented. The problem of solving conflicts which arise at project runtime is ad-
dressed by proposing algorithms for rescheduling and interactive conflict resolution,
so that the approach can be categorized as a reactive scheduling approach. A task
network is defined containing the tasks in the project and the precedence relation-
ships. Only sequential precedence constraints are defined in a task network which
may however specify lag times. Furthermore, resource constraints and exclusive

Chapter 7 Scheduling of Dynamic Task Nets 281

constraints can be defined for tasks where the latter specify that the respective task
may not be executed in parallel to any other task in the project. A task network
in [HSXW10] is not hierarchically structured but flat. The scheduling algorithm
presented in [HSXW10] is related to the approach presented in this thesis in that
task execution states are taken into account for scheduling. Scheduling is performed
for a specified start date which is not necessarily the start date of the project. This
scheduling start date is related to the date start ∈ Dates used in Section 7.3 in
that tasks which have not been started yet are moved to this date. Tasks which
were previously scheduled earlier are moved forward in time. Tasks which were
previously scheduled later are possibly moved backwards in time if this is consistent
with all defined precedence constraints. Scheduling is only performed for a part of
the overall task network. The first not yet started tasks in the topology of the task
net are determined. They constitute the so-called heads of the rescheduled part. All
succeeding tasks are also part of the task net to be rescheduled. In contrast, an
arbitrary subprocess can be rescheduled by the scheduling algorithm presented in
this thesis. The subprocess is simply specified by the parent task in the task net
hierarchy. Furthermore, not scheduled tasks may exist which constrain the latest
possible end time of the rescheduled subprocess, which is not possible in [HSXW10].
In [HSXW10], the earliest possible start times of tasks are computed which results
in a project plan. An early schedule is computed, but earliest possible times and
planned dates are not clearly distinguished. The algorithm for resource-constrained
scheduling is only informally described in [HSXW10] and it is not based on any estab-
lished scheduling scheme. Resource constraints are handled after time constraints,
i.e. at first, only a time-feasible schedule is generated which is then corrected with
respect to resource constraints by shifting conflicting tasks to later start dates. This
approach produces suboptimal schedules with respect to the project’s makespan
and the resource usage which are probably worse than schedules generated by the
parallel or serial scheduling scheme. Resource usage is defined per task but not for
individual dates, so that only a uniform resource usage can be modeled.

With respect to multi-project management, an incremental and interactive al-
gorithm is proposed in [HSXW10] which consists of the steps scheduling, conflict
detection, and manual conflict resolution, which are performed iteratively, i.e. after
the manual resolution of conflicts, the affected task network is rescheduled, conflicts
are detected, and so on. The considered conflicts exist between tasks of different
projects, and the goal of the algorithm is to align the schedules of different projects
with each other, which have previously been generated by the algorithm described
above. The iterative and interactive procedure can however be compared with the
scheduling approach developed in this thesis. If resource-constrained scheduling
fails for a part of a dynamic task net in PROCEED, then the user is informed about
the reason for the failure which are in most cases unresolvable conflicts between
time and resource constraints of different tasks. The user has to modify the dynamic
task net in order to enable a successful scheduling run. Furthermore, the change
management procedure for dynamic task nets, which will be introduced in Chapter 9,
is also iteratively performed until all time and resource conflicts are resolved. The

282 7.6 Related Work

manual changes to the task network available in [HSXW10] are crushing the task
duration, shifting tasks, releasing task constraints, prioritizing tasks, and overtime
arrangement. All of these changes can also be performed in PROCEED for tasks in a
dynamic task net.

Altogether, the approach for resource-constrained scheduling presented in this
thesis goes beyond the solution presented in [HSXW10] in several ways. Scheduling
is supported for hierarchically structured task nets and arbitrary subprocesses
thereof. The life cycle of a task is more elaborate and particularly includes the state
of replanning. The scheduling algorithm is based on the well established parallel
scheduling scheme for solving the RCPSP. Resource usage of tasks can be specified
for individual dates, and tasks and resources can have individual work calendars.

Scheduling Functionality of Commercial Project Management Systems

Soon after the introduction of the personal computer, software tools for project man-
agement emerged. Since the beginning of the 90s, project management software
packages provided functionality for resource-constrained project scheduling. Nowa-
days, there is a huge number of different project management solutions available on
the market which differ significantly in their range of functions and with respect to
the quality of the generated schedules. Since PROCEED is effectively an extended
project management system, according commercial software packages are shortly
reviewed in this section.

Due to the time complexity of optimal solutions to the resource-constrained
scheduling problems, heuristic algorithms are implemented in commercial project
management systems (PMS). Which algorithms are implemented exactly is pro-
prietary information. Therefore, a comparison of commercial PMS can only be
performed by experimental analysis but not with respect to the details of the imple-
mented algorithms. Several publications describe the results of comparative studies
of commercial PMS [Kol99, MT01, TB09b, TB09a]. Kolisch compared in [Kol99] the
resource allocation capabilities of several commercial project management software
packages, including Microsoft Project 4.0, Primavera Project Planner 1.0, CA Super
Project 3.0, and Time Line 6.0. The criterion for comparison was the quality of
the generated schedule with respect to the project’s makespan, i.e. the degree of
variance from the optimal solution. An example input dataset was generated by
varying several problem parameters including the number of activities, the number
of available resources, and the network complexity of the projects to be scheduled.
The input data was loaded into the PMS and a so-called full leveling procedure was
performed in each of the PMS. For all evaluated software packages, the schedule
quality decreased for an increasing number of activities, and an increasing number
of resources. However, the network complexity did not have a significant influence.
While different tools were superior for different parameter settings, on average
the Primavera Project Planner performed best, followed by CA Super Project and
Time Line, while Microsoft Project generated only average solutions. A similar
comparison of commercial project management systems has been performed and
presented in [MT01] for a different selection of PMS. The compared systems are

Chapter 7 Scheduling of Dynamic Task Nets 283

Acos Plus 8.2, CA SuperProject 5.0, CS Project Professional 3.0, Microsoft Project
2000, and Scitor Project Scheduler 8.0.1. The input data has been generated by
a systematic variation of the same problem parameters as in [Kol99]. The gener-
ated schedules are compared with the respective optimal solutions regarding the
project’s makespan. With respect to the mean and maximal deviation from the
optimal solutions over all problem instances, Acos Plus performed best, followed
by Scitor’s Project Scheduler. Finally, the most recent comparison of commercial
project management software packages has been performed by Trautmann and Bau-
mann and presented in [TB09b, TB09a]. The experimental setup and the criterion
for comparison are the same as in [Kol99, MT01]. The most recent versions of the
following PMS are evaluated: Acos Plus, AdeptTracker Professional, CS Project
Professional, Microsoft Office Project 2007, Primavera P6, Sciforma PS8, and Turbo
Project Professional. With the respective default resource-allocation options cho-
sen, Sciforma PS8 computes the best project schedules, followed by AdeptTracker
Professional and Microsoft Project, while Primavera P6 produces below average
results. Besides the default settings, the impact of different priority rules have been
evaluated. In contrast to the situation where the default resource-allocation options
were selected, Primavera P6 and Acos Plus outperform the other packages when for
every problem instance the best results are taken from several different schedules
obtained by applying different priority rules.

For the comparison of commercial PMS with PROCEED, the available features
for project planning and scheduling provided by the PMS are more interesting than
the quality of the generated schedules, because the research on project scheduling
in this thesis did not focus the optimization of the project’s makespan. In [MT01],
some distinguishing features of the evaluated PMS have been described. Almost
all software packages allow to specify the full set of PDM precedence constraints
between tasks with the exception of CA SuperProject and Project Scheduler which
do not support start-end relationships. All packages provide tools for managing
resource-related costs including fixed costs per task and overtime costs. All eval-
uated project management systems allow to define different calendars for tasks
and resources including working time and overtime per day, per week, and per
month, as well as holidays. In this regard, PROCEED offers the same functionality
as common commercial solutions. Acos Plus is the only tool which allows to spec-
ify maximal lag times for task dependencies but generally fails to find a feasible
schedule in the presence of maximal lag times. This suggests that even the heuristic
solution of the RCPSP-GPR is still beyond the capabilities of commercial project
management systems. Nevertheless, commercial PMS are widely used in practice
and are effectively applied for project management although maximal lag times
cannot be defined. This suggests the assumption that the definition of maximal
time lags is not essential in practice, in particular when due dates can be explicitly
defined for tasks. For most tools evaluated in [MT01], resource allocation can be
restricted to a subset of the defined tasks or to a specific time frame. Furthermore,
Project Scheduler allows to restrict resource allocation to selected resources. In
PROCEED, resource-constrained scheduling can only be restricted to a coherent

284 7.6 Related Work

subprocess but not to an arbitrary selection of tasks. Finally, different priority rules
for resource-constrained scheduling including user-defined priority values can be
selected in most tools. In PROCEED, user-defined priority values can be defined for
tasks as well. The priority rules for resource-constrained scheduling however are
fixed and cannot be changed by the user. In this respect, the scheduling functionality
of PROCEED could be extended as already mentioned in Section 7.3.

In [Kle00], Klein presented an analysis of the main features common to all com-
mercial project management systems at that time without referring to concrete
products. In the project planning phase, a PMS can support the user in structur-
ing, scheduling, resource allocation, and budgeting. With respect to structuring,
the work breakdown structure and the organizational breakdown structure of a
project can be defined. Furthermore, task durations, release and due dates, as
well as precedence relationships can be specified. Most PMS support the PDM
precedence relationships but no maximal lag times. The project can be represented
as a activity-on-node network or as a Gantt chart. Consistency tests are performed
during planning which detect, e.g., cycles in the project network. Scheduling in
PMS refers to temporal analysis of the project network. A project calendar can be
developed defining working periods and non-working periods. Critical path analysis
can be performed considering release and due dates. Slack time calculations are
usually restricted to computing the total float of the tasks. Regarding resource
allocation, different resources can be defined and associated with their respective
corresponding organizational units in the OBS. For renewable resources, individual
calendars can be defined. Resource requirements of tasks can be specified, where
only few PMS allow the resource usage of tasks to vary over their duration. A
resource loading profile is generated for every resource based on the schedule ob-
tained from critical path analysis. Resource conflicts can be resolved automatically
by heuristically solving the GRCPSP. With respect to budgeting, the per period cost
of human resources can be defined as well as costs for overtime work. In the project
execution phase, the performance data of tasks can be input into the system. The
progress of tasks is usually visualized in a progress Gantt chart. Some PMS are able
to estimate the expected end times of delayed tasks. Most PMS are also able to
track the cost performance. The budgeted costs of work performed are calculated
automatically, and earned value analysis can be applied. Earned value analysis is
only performed based on costs but not based on the planned workload. Finally,
there are several functionalities provided by PMS which are not related to a specific
project management phase. In some systems, what-if analyses can be performed
for comparing the effects of different plan changes. Multi-project management can
be supported in different ways, where the most convenient approach is based on
a central resource data base for all projects. Finally, some PMS implement access
control mechanisms to grant the rights for certain operations only to a subset of the
users.

PROCEED offers most of the functionalities provided by state-of-the-art project
management systems. In this sense, it reconciles the AHEAD approach with the
common standards for project management in practice. In contrast to commercial

Chapter 7 Scheduling of Dynamic Task Nets 285

PMS, PROCEED is based on a formally defined management meta-model. Dynamic
task nets are superior to ordinary project plans in that they represent the current
enactment state of an explicitly defined process. The incorporation of task execution
states into project network diagrams has been the basis for an innovative approach
for resource-constrained scheduling and schedule repair which is not supported by
existing PMS. Furthermore, the modeling of actual data flow enabled the definition of
a new progress measure for tasks in a development project which will be introduced
in Chapter 8. With respect to resource allocation, PROCEED is superior to most
commercial solutions with respect to automatic resource-constrained scheduling
with non-uniform resource availabilities and requirements. Finally, workflow man-
agement has been integrated with project management in PROCEED, and specific
solutions for the scheduling and monitoring of workflow-managed task nets have
been developed. This functionality is not provided by commercial PMS to date.

7.6.2 Temporal Analysis and Scheduling of Workflows

The workflow paradigm emerged in the 1990s. Around the turn of the millennium,
several research groups started to investigate the timing aspects involved with the
enactment of workflows. Thereby, several established techniques from the domain
of project scheduling were adapted and transferred to the domain of workflow man-
agement. Several related works are concerned with temporal analysis of workflow
definitions, in particular critical path analysis [PEL97, EPR99, CSK02, SKK05].

A distinguishing characteristic of workflow management is that an explicit distinc-
tion is made between the build time and the runtime of a workflow. The creation of a
workflow definition is considered as the build time, while the runtime covers the en-
actment of a concrete workflow instance. In between, there is the instantiation time
when a new workflow instance is initially created from a workflow definition. Some
related works are concerned with consistency checks at workflow build time only
[CSK02, SKK05, CP09], while others also cover the scheduling and timely execution
of tasks in running workflow instances [EPPR99, KK99, ZCP01, CC02]. Only few
related approaches can be found which address rescheduling of workflow instances
at runtime [CC02].

Marjanovic et al. describe in [MO99, SMO00] some challenges for temporal
management in dynamic workflows such as temporal uncertainty and dynamic
modification of a running workflow instance. They identify time management support
that is required by a user of a WfMS to be able to effectively face these challenges,
e.g. explicitly modeling unknown task durations, identification of affected temporal
constraints by intended dynamic changes, as well as re-computation of expected
start and end dates in case of performed changes. However, they do not describe
how to realize this time management support.

Very little work has been performed with respect to resource constraints present
in workflow definitions and instances [LYC04]. In this context, it is required to
investigate the dependencies between different workflow instances [LY05].

Scheduling in the context of workflow management systems is sometimes un-

286 7.6 Related Work

derstood as applying scheduling policies for assigning pending tasks to resources
on-the-fly [BWE04, CP06]. These approaches are related to common solutions to the
job-shop problem. In this case, tasks are not scheduled for specific dates. Therefore,
the corresponding works are not reviewed in detail here.

Eder et al. Eder et al. made several contributions on how classical CPM and
PERT computations have to be adapted for workflow definitions. Since workflow
definitions can define alternative execution paths, the classical PERT approach is
not directly applicable to workflows. Therefore, the extended PERT approach is
presented in [PEL97]. Earliest and latest possible times are computed for the best
case and the worst case execution, i.e. for the case that always the shortest path
is selected at runtime, or respectively the longest path. Consequently, four dates
are computed for the start and end events of tasks in a workflow. The authors claim,
that the approach also covers loop structures in a workflow but they do not show
how the ePERT computations work on a workflow definition which is not a directed
acyclic graph. The timing information can be used in several ways at build time and
at workflow runtime. At build time, static time failures, i.e. inconsistencies, can be
detected and prevented. Furthermore, the workflow structure can be optimized with
respect to timing issues. At workflow runtime, the time information can be used
for pro-active and reactive scheduling as well as workflow controlling. Pro-active
scheduling of workflows includes the selection of shorter alternative paths in case of
delays and the skipping of non vital tasks. Reactive scheduling includes warnings
and automatic compensation, e.g. by means of backtracking to a decision point
where a shorter path can be selected. Finally, workflow controlling is concerned
with the identification of late tasks but also with the collection of statistical data for
the purpose of process improvement.

In [EPR99], the ePERT approach has been advanced. External deadlines are
introduced which are defined by so-called fixed date constraints. Furthermore,
minimal and maximal lag times between tasks can be defined. An extended critical
path method computes task deadlines from external deadlines and lag times. At
workflow build time, all dates are computed relative to the starting time of the
workflow. These dates are transformed to actual dates upon workflow instantiation.
During workflow runtime, the earliest and latest times are recomputed based on the
actual dates of completed tasks.

In addition to the earliest and latest times, and the best case and the worst case
performance, another dimension is introduced in [EPPR99]. Optional tasks can be
defined, and a path through a workflow is called a fast path if all optional tasks are
skipped, while on a slow path all optional tasks are executed. As a consequence,
eight values are computed for the start and end dates of tasks.

In [EGP00], Eder et al. present a procedure for partially unfolding a workflow
graph in order to solve some issues involved with explicit time constraints defined
for tasks on alternative execution paths. In particular, superfluous time constraint
violations are avoided which were detected by the approach presented in [EPR99]
which treated parallel and alternative paths in the same way. [EP00] summarizes

Chapter 7 Scheduling of Dynamic Task Nets 287

the results of the previous publications of the group. Furthermore, the concepts of
early scheduling and late scheduling of tasks are introduced for workflow instances.

The results of Eder et al. can be compared to the approach to workflow scheduling
and monitoring presented in this thesis. Like the original PERT and CPM approaches,
no resource constraints are considered in the work of Eder et al. In PROCEED, the
critical path analysis of a workflow-managed task net is only the preprocessing step
for resource-constrained scheduling. The critical path computations for workflow-
managed task nets presented in this thesis chose the shortest path from alternative
paths instead of the longest. As a consequence, the computed constraint dates
can be used as strict constraints during resource-constrained scheduling. If the
longest paths were used, the computed constraint dates would be too restrictive.
The computation of constraint dates for workflow-managed task nets in PROCEED
can be performed at workflow runtime after workflow tasks have been completed.
Thereby, neglected alternative branches are handled differently compared to the
approach presented by Eder et al. Skipped tasks in a dynamic task net become
zero-duration tasks and are not considered anymore during critical path analysis.

Son, Kim et al. In [CSK02, SKK05], a method is presented to systematically
determine the critical path from a workflow definition. Block structured workflow
definitions with synchronization edges are used as the underlying model. From every
control flow block, the path with the longest average execution time is extracted
and the control flow block is replaced by this sequential path. The replacement
proceeds from the innermost to the outermost control flow blocks until all alternative
branching and loop constructs are transformed. The resulting critical path is the
path with the longest average execution time through the workflow. The approach
allows to assess the criticality of workflow tasks in a workflow definition. However,
it does not allow to compute earliest possible start times which can be used as
strict constraints for workflow instance scheduling. Since the paths with the longest
average execution times are extracted from control flow blocks, resulting earliest
possible start times of succeeding tasks would be too late and succeeding tasks
could be started earlier if shorter paths are selected at workflow runtime.

The intentions of temporal analysis of workflows in [CSK02, SKK05] and in this
thesis are different. While in the cited articles the workflow definition is analyzed to
identify critical tasks in a workflow definition independently of an actual workflow
instance, in this thesis critical path analysis is performed for workflow instances
as a preprocessing step for resource-constrained scheduling. In this context, it
is important that the computed constraint dates are still valid during resource-
constrained scheduling which is not necessarily the case for the approaches of
[CSK02, SKK05]. Therefore, the computation of earliest and latest possible times
for workflow instances presented in this thesis uses the alternative paths with the
shortest average computation times.

Kafeza and Karlapalem Another early publication on time management in work-
flows is [KK99]. Temporal constraints can be defined between the start and end

288 7.6 Related Work

events of tasks which cover the PDM precedence constraints but without explicit lag
times. This is one of few approaches to workflow management which is not restricted
to sequential control flows. The consistency of a workflow definition with respect to
the temporal constraints is checked by generating the corresponding event graph
which connects the start and end events according to the time constraints. If the
event graph is acyclic, then the temporal constraints are consistent. Besides a
general system architecture for a temporal workflow management system, different
scheduling policies are proposed. Thereby, global schedulers are distinguished from
agent schedulers. A global scheduler assigns tasks to agents, i.e. resources, and
the resources have their own scheduling policies to determine the order in which
they execute the assigned tasks. A pseudo-static global scheduler schedules the
tasks until the next alternative branching construct statically. After that, it waits
until the decision for one of the alternatives has been made and then schedules
the next portion of the workflow until the next alternative branching. In contrast,
a dynamic global scheduler continuously computes the set of enabled but not yet
assigned tasks and dispatches them to resources. The proposed agent schedulers
are a first-in-first-out scheduler, an earliest-deadline-first scheduler, and a scheduler
that selects the task with the shortest duration first. Different combinations of the
dynamic scheduler and the agent schedulers achieve different scheduling goals, e.g.
meeting the temporal constraints while missing some deadlines.

The presented approach is interesting insofar as automatic workflow enactment is
realized in the presence of PDM precedence constraints. In PROCEED, the usage of
control flow types is constrained to sequential control flows in workflow-managed
task nets, because the Windows Workflow Foundation is used for workflow enactment.
Furthermore, the scheduling algorithm assigns planned dates to all tasks and the
assigned resources are expected to start and commit their tasks according to the
planned dates. In the context of human-intensive development processes it would
not make sense to define scheduling policies for agents, i.e. resources, because the
human resources decide for themselves when to start a task. The dispatching of
tasks to resources comparable to the dynamic scheduler in [KK99] is realized by
setting the execution states of the tasks to Waiting, so that they are not scheduled
for concrete dates.

Zhuge et al. In [ZCP01], the aspect of globally distributed workflow enactment
over different time zones is addressed. Several time axes are modeled which are
mapped to one common reference axis. The notion of flow duration is introduced
which incorporates the lag times between tasks which arise due to the transmission
of control from one site to another. An approach for temporal consistency checking
of workflows during build time and runtime is presented.

The aspect of different time zones has not been explicitly addressed in this thesis.
A global reference calendar would have to be introduced to make the dates of
individual resource calendars comparable. For certain time zones, the working
hours scheduled for a particular date in the global calendar would have to be
mapped to two half days in the global calendar.

Chapter 7 Scheduling of Dynamic Task Nets 289

Combi et al. Combi and Posenato introduce in [CP09] the concept of controllabil-
ity for workflow definitions. A workflow definition is controllable if every possible
workflow execution is consistent with all defined time constraints as long as all
task durations lie between specified minimal and maximal values. This is related to
the existence of a free schedule as it has been introduced in [BWJ02]. In [CP09], a
conceptual model for workflows is introduced in which time constraints between the
start and end times of different tasks can be defined. The introduced constraints
together have the expressiveness of generalized precedence constraints with min-
imal and maximal lag times. An algorithm is presented, how the controllability
of a block-structured workflow definition without loops can be verified efficiently.
Because controllability is a stronger property of a workflow definition than the
consistency of the time constraints, the algorithm implicitly checks the latter, too.

The approach is related to the evaluation of timing consistency constraints for
workflow-managed task nets as defined in this thesis. However, the intentions of the
two approaches differ significantly. While in [CP09], a workflow definition is analyzed
in order to obtain propositions about all possible instances, in PROCEED concrete
workflow instances are analyzed by evaluating timing consistency constraints and
performing critical path analysis. The verification of controllability has not been the
focus in this thesis. In PROCEED, expected durations of the defined tasks are used to
determine their earliest and latest possible start times in order to decide whether the
tasks can be scheduled in a time-feasible way. The fulfillment of timing consistency
constraints is checked for the computed constraint dates and the planned dates of
a workflow instance with respect to the expected durations. In [CP09], no fixed
task durations are assumed. On the other hand, strict upper bounds for the task
durations are defined and it is assumed that they are never exceeded. In the context
of development processes it is infeasible to enforce a maximal task duration when
the task is performed by a human resource. Therefore, a more practical approach
has been followed in this thesis, where the constraint dates are recomputed at
workflow runtime if the expected durations are exceeded. Finally, the approach for
temporal analysis of workflows presented in this thesis explicitly takes loops in a
workflow into account which has not been done in [CP09].

Li, Yang et al. Li and Yang cover two aspects regarding time management in
workflows which have been neglected by other research groups, namely resource
requirements of workflow tasks and the interdependencies between concurrently
executing workflow instances. In [LYC04], they investigate resource dependencies
between different tasks in a workflow. They present an algorithm for checking the
consistency of time and resource constraints in a workflow definition at build-time.
The algorithm is based on computing the active interval of each task which is defined
as the time period between the earliest start and latest end time of a task. In
[LY05, LY04], the approach is extended to checking the feasibility of time constraints
for concurrently executing workflow instances which require the same resources.

In PROCEED several workflow instances requiring the same resources may be
executed concurrently as well. All workflow instances are embedded into the overall

290 7.7 Conclusion

dynamic task net which represents the project plan. Resource dependencies between
workflow instances are taken into account during resource-constrained scheduling.
A time- and resource-feasible schedule defines a possibly interleaved sequencing of
workflow tasks belonging to different workflow instances. If such a schedule exists,
then all defined time constraints for the running workflow instances can be satisfied
in the current situation. In this sense, the parallel heuristic solves the same problem
as the algorithm of Li and Yang as presented in [LY05, LY04] while it is based on an
established approach for project scheduling.

Chan and Chung The IPPM system which has already been reviewed in Sec-
tion 6.4.1 integrates project and workflow management functionality. In [CC02],
different methods are proposed to determine the duration of alternative branch-
ing constructs and loops. For alternative branching and parallel constructs, the
branch with the maximal duration can be scheduled, or the average duration of
all branches can be used. Finally, the weighted average of the durations can be
computed weighted by the probabilities for the selection of the respective branches.
In PROCEED, another possibility is added, namely to use the duration of the most
probable branch. Furthermore, different durations are used for CPM and resource-
constrained scheduling in PROCEED. For CPM, the shortest durations are used
while for resource-constrained scheduling the longest or most probable durations
are used. In [CC02], a so called prudent-estimated task replaces all optional tasks
and future iterations of a loop. Its duration is defined as the expected duration of all
expected further iterations. This is handled differently in PROCEED, where the first
versions of iterated tasks are scheduled with expected durations which incorporate
possible future iterations. Every workflow task in a loop carries the information
about possible further iterations instead of introducing one additional task which
covers the expected further iterations of the whole loop.

7.7 Conclusion

In this chapter, algorithms for critical path analysis and resource-constrained
scheduling of dynamic task nets have been presented. The algorithms are im-
plemented in PROCEED and enable the user to perform automatic scheduling of the
defined tasks based on the specified planning data, resource and time constraints. In
the following, the specific characteristics of the developed algorithms are reviewed
which distinguish them from related work. Furthermore, a short outlook is provided
on how the approach for scheduling dynamic task nets could be extended.

Characteristics of scheduling approach The algorithm for critical path analysis
is based on the classical approach which involves forward and backward scheduling
of a task net [DH02]. The heuristic for resource-constrained scheduling is based on
the parallel schedule generation scheme presented in [KH98, DH02, Kle00]. Several
adaptations and extensions of the algorithms were required for their application to

Chapter 7 Scheduling of Dynamic Task Nets 291

dynamic task nets. These modifications cover the following aspects.

• Hierarchical structure of dynamic task nets,

• End-end task dependencies,

• Individual work calendars for tasks and resources,

• Dynamic computation of task durations,

• Utilization of CPM results for resource-constrained scheduling,

• Heuristic schedule repair considering task execution states,

• Partial rescheduling of dynamic task nets,

• Scheduling of workflow instances.

Dynamic task nets are structured hierarchically and timing constraints apply
for the task-subtask relationship. Therefore, the critical path method as well as
the heuristic for resource-constrained scheduling have been extended to cover
hierarchical task net structures. The developed hierarchical critical path method
performs a depth-first traversal of the dynamic task net, and the computed constraint
dates of a complex task depend on the respective computed constraint dates of the
subtasks. During resource-constrained scheduling, a task only becomes eligible
when its parent task is already scheduled for its start date. The planned end time of
a complex task is updated to the planned end time of a subtask if the latter is later
than the former. Furthermore, control flows between tasks contained in different
subnets, i.e. task realizations, are taken into account during scheduling. Finally,
task assignments and workload can be defined for complex tasks in a dynamic task
net. The workload which is associated with complex tasks is distributed during
resource-constrained scheduling. This is useful to model administrative work for a
complex task, or to model an incomplete work breakdown structure where the total
workload of a complex task includes the workload of subtasks which have not yet
been defined yet.

Critical path analysis and resource-constrained scheduling for the cases of PDM
task relationships and generalized precedence constraints have been addressed in
related work [EK92, Wie81, DH02, Kle00]. However, simultaneous and standard
control flows require specific attention during resource-constrained scheduling if
the task net is hierarchically structured and if the task durations are dynamically
determined. In both cases, the final planned end time of a task is not known when
the task is scheduled and backtracking has to be performed when the final planned
end time is inconsistent with the planned end time of a simultaneous or standard
predecessor. In case of atomic tasks, the forbidden set is used to delay the scheduling
of an inconsistent task. The planned end times of complex tasks are checked after a
complete scheduling pass which may lead to another scheduling pass with additional
constraint dates.

292 7.7 Conclusion

During resource-constrained scheduling, the planned workload of tasks and task
assignments is distributed according to individual work calendars of the tasks and
resources. The availability of the assigned resources may vary for different dates.
As a consequence, the resource consumption of task assignments may result in
non-uniform workload distributions.

The duration of a task is derived during resource-constrained scheduling from
the workload distributions of its task assignments, the duration of the subprocess
defined by its subtasks, and its total duration. As a consequence, the duration of a
task is not fixed before scheduling but may vary depending on resource availabilities.

The results of critical path analysis are used as constraints during resource-
constrained scheduling when CPM has been performed for a manually specified
project deadline. Thereby, all manually set release and due dates of tasks are taken
into account. If no time and resource feasible schedule can be found which respects
the project deadline, scheduling fails. This accounts for the common requirement in
plant design projects that the project deadline must not be violated.

A dynamic task net can be partially rescheduled at project runtime. The reschedul-
ing capabilities of PROCEED address one of the open problems of scheduling re-
search mentioned in [Smi03], namely the management of change during project
execution. The planned and actual performance of a process are explicitly distin-
guished in PROCEED. To adapt the plan to the actual performance of the process,
manual management decisions are required which may, e.g., align the total duration
and total workload of delayed tasks. After these operations, the schedule can be
automatically adapted to the changed planning data. A dynamic task net can be
partially rescheduled at runtime. The root of the subnet to be rescheduled can be
explicitly specified. Furthermore, certain tasks are excluded from scheduling due to
their planning data, granularity, purpose, or execution states. In particular, the ex-
clusion of waiting, suspended and terminated tasks from rescheduling distinguishes
the developed approach from related work on schedule repair. These tasks are not
rescheduled but impose constraints on the rescheduled tasks. Among the resched-
uled tasks, active and replanned tasks are treated in a special way in that their
planned start times are not changed. This accounts for the practical requirement
that the planned start time of a started task must not be changed anymore because
the assigned resource already started working on the task.

Finally, the scheduling of workflow-managed task nets takes the existence of
alternative branches and loops into account. Related work on workflow scheduling
is often confined to temporal analysis of the workflow definition. The approach
presented in this thesis addresses the scheduling of workflow instances thereby
taking resource constraints into account. Workflow-managed tasks are automatically
rescheduled at workflow runtime depending on the decisions made by the workflow
engine.

Open problems The rules to compute the priority list for the parallel scheduling
scheme are fixed in the current implementation of PROCEED, which is an unnec-
essary restriction. Different alternatives for the prioritization of tasks could be

Chapter 7 Scheduling of Dynamic Task Nets 293

provided and the user could even be allowed to define his own comparison methods
for the priorities of tasks. Different priority lists have an effect on the scheduling
result. It was out of the scope of this thesis to investigate, which prioritization rules
lead to better results of the scheduling algorithm.

The implemented parallel heuristic for resource-constrained scheduling may not
lead to an optimal schedule in terms of the project makespan. It still remains to be
shown how good the generated initial baseline schedules are compared to optimal
solutions with respect to the project’s makespan. Furthermore, it has not been
quantitatively measured, how good the scheduling results are with respect to the
robustness and flexibility of the schedule. This kind of computational studies was
out of the scope of this thesis.

The implemented resource selection during resource-constrained scheduling aims
at a balanced resource usage but an optimal result is not guaranteed. Optimization
goals which aim at a uniform resource utilization and a balanced resource usage
have not been investigated.

Altogether, the computation of an optimal schedule with respect to different
optimization goals was not the focus of this thesis. The focus of the thesis lied
on investigating the possibilities for dynamic rescheduling of task nets at project
runtime while taking task execution states into account.

294 7.7 Conclusion

Chapter 8 Monitoring a Development Process 295

Chapter 8

Monitoring a Development Process

A key feature of process management systems is the monitoring of running processes.
Especially in plant design projects it is essential to have accurate information about
the current status of the enacted development process. This information is even
more valuable if it is available at short notice. The PROCEED system supports
incremental progress measurement of engineering design projects. At any time
during the project, the current status can be retrieved, in which the most recent
developments are reflected. The progress measurement functionality of PROCEED
facilitates quantitative statements about the actual progress of tasks and allows
comparing these to the planned progress which is derived from the project schedule.
In this way, critical delays can be detected early.

The general approach for time management and progress measurement realized
in PROCEED is illustrated in Figure 8.1. The estimated workload and budget of
tasks and their expected durations are planned top-down in a dynamic task net.
From this planning data, a baseline schedule is computed. At project runtime, the
degree of completion is determined for every task in the project, and these values
are aggregated on higher levels of the hierarchically structured dynamic task net.

In plant design projects, often reliable estimates are available for the required
workload and costs for the different engineering phases and main tasks. The
workload and costs can be distributed top-down over the work breakdown structure
in the planning phase of the project. Thereby, the workload of a task is distributed
to the subtasks. However, not the whole workload has to be distributed. On the
one hand, workload can be associated with task assignments of a complex task. On
the other hand, workload can remain at a task without being assigned to either
subtasks or task assignments. This workload can be used at later stages of the
project planning phase and even during project runtime for new task assignments,
additional subtasks or as additional workload for existing subtasks. In addition to
workload and budget, the durations of the main tasks in the project and the number
of required resources can be estimated.

The scheduling algorithms implemented in PROCEED generate a time and re-
source feasible baseline schedule from the planning data. Thereby, eligible resources
are assigned to the planned tasks in the dynamic task net. The schedule is the basis
for progress measurement.

The degree of completion (DOC) of tasks in a dynamic task net can be calculated
by means of several different progress measures which differ regarding the trade-off

296

Initial P&IDsBFD Detailed P&IDs

Specification of

Machines and Devices

Detail

Engineering

Basic

Engineering

PFDs

Preliminary

Planning

Plant Design Project

Reaction

P&ID

Concentration

P&ID

Dissolution

P&ID

Pump

032

Plug Flow

Reactor 012

W
o

rk
lo

a
d

, d
u

ra
tio

n
s
, b

u
d

g
e

t
D

e
g

re
e

 o
f

C
o

m
p

le
ti

o
n

Schedule

Figure 8.1: Integrated approach to planning, scheduling, and monitoring.

between accuracy and measurement effort. In general, the actuality of the DOC of
a task is more important than its accuracy [PR05]. Therefore, it would not make
sense to spend much effort for measuring the progress of rather small and short-
lived tasks. However, if the DOC of a complex, long-running task is measured by
a too simple measure, then its accuracy is too low to be of any use. Consequently,
progress measures with little measuring effort but low accuracy are generally used
for small tasks in the project, which occur in large numbers, e.g. the specification
of measuring points for the design of a chemical plant. Progress measures with
high accuracy but with a comparably high measuring effort are used for critical and
complex tasks in the project, e.g. the creation of a process flow diagram.

In PROCEED, the decision of which progress measure to use can be made for
individual tasks or it can be specified for task types. As for other property values
like the expected duration, the progress measure defined for a task type serves as
the default value for all instances of this type. However, the selected measure can
be changed for each task instance individually—even at runtime of the task.

Specific progress measures are used to aggregate the DOCs of subtasks at complex
tasks. In this way, the DOCs of individual tasks are aggregated and propagated
upwards in the hierarchical structure of the dynamic task net to finally arrive at DOCs

Chapter 8 Monitoring a Development Process 297

for the main project phases. Progress measurement may reveal bad performance
of the development process which may require replanning and rescheduling at
project runtime. Thereby, the structure of the dynamic task net may be modified,
the scheduled dates may have to be adapted, and the DOCs of tasks may change.
However, certain structural changes to a dynamic task net at project runtime may
leave the DOCs of the respective parent tasks unchanged depending on whether
time and workload buffer is available.

The DOC only measures the progress of a task in terms of its defined scope. It
does not directly show, if the schedule will be met and the task will keep to the
budget. Therefore, the actual performance of tasks has to be compared with the plan.
In PROCEED, earned value analysis is applied for this purpose (cf. Section 3.3.2).
For every task in a dynamic task net, the Schedule Performance Index (SPI) and
the Cost Performance Index (CPI) are calculated. Depending on user specified
thresholds for the SPI and CPI, tasks are marked in the PROCEED management
views according to their degree of delay or budget overrun. Based on the SPI and
CPI, the forecasted end time and the expected budget at completion are computed
for every task, respectively.

Altogether, the approach for monitoring of engineering design processes is inte-
grated in two ways. The planning and scheduling functionality is integrated with the
progress measurement functionality, and several different progress measures are
integrated to measure the progress of a process model instance.

Besides the calculation of performance indicators and their visualization in the
management views, PROCEED additionally comprises a dedicated user interface for
project status control. The development of this user interface was motivated by the
specific characteristics of plant design processes: a huge amount of rather small
engineering tasks and a high degree of simultaneous engineering. As a consequence,
the presentation of tasks in network diagrams, Gantt charts, and task lists, and the
indication of delays in these representations is not sufficient to assess the status
of a project. Therefore, a concept for the multidimensional visualization of project
management data has been developed to provide a condensed overview over all
tasks in a project with their planned and actual workload and their current status.
The processing of the management data for visualization is done in a project data
warehouse to which the management data is exported in regular intervals. Additional
views are provided to analyze the history of plan changes at project runtime which
can be derived from the project plan snapshots in the data warehouse.

This chapter is structured as follows. Section 8.1 describes and compares the
different progress measures which can be used for individual tasks in a dynamic
task net to compute their degree of completion. Section 8.2 describes, how earned
value analysis is applied in PROCEED to determine the degree of delay and budget
overrun of a task. Section 8.3 deals with the project data warehouse and the user
interface for visual project status analysis. Related work on all aspects of process
monitoring in PROCEED is discussed in Section 8.4.

298 8.1 Progress Measures

8.1 Progress Measures

In project controlling theory and practice, several different progress measures are
used, which range from simple heuristics to more accurate, complex measures
[PR05]. The approach to progress measurement in PROCEED incorporates the most
common of these techniques and complements them by new measures which are
specific for dynamic task nets [Dre09, HW09, HW11].

A progress measure is basically a calculation method for the Degree Of Completion
(DOC) of a task. The terms progress measure and calculation method will be used
synonymously in the following. Common to all different calculation methods for the
DOC of a task is, that the value is 0% if the task has not been started yet, and 100%
if it has been terminated. However, they differ in how they calculate the DOC of an
active task. Hence, in this section each progress measure is defined by a formula
which is used to compute the DOC of an active task.

In the following, the different progress measures available in PROCEED are
described in detail. For each measure an example case is given for which the
measure is most appropriate. The measures are evaluated regarding their required
effort and measuring accuracy and rated with one of the values Lowest, Very Low,
Low, Medium, High, Very High or Highest. Finally, the measures are compared with
each other.

The set of progress measures which are available in PROCEED is coarsely divided
into two subsets. On the one hand there are measures, which do not take the
progress of possibly existing subtasks into account. On the other hand there are
measures, which rely on the execution states and DOCs of the subtasks. In the
following, we call the former black-box and the latter white-box progress measures.
Even for black-box progress measures, details of the respective task like planned
and actual workload or the estimated remaining workload are taken into account.
The term black-box here only refers to the fact that the progress of the subtasks is
neglected.

8.1.1 Black-Box Progress Measures

The majority of progress measures found in literature fall into the category of black-
box progress measures. In the following, the adopted measures are reviewed and
formally defined in the notation used for all measures presented in this section.
Furthermore an additional progress measure is presented which integrates the
common practice to measure the progress of a plant design project by means of
document states with the concept of dynamic task nets.

Established progress measures from practice The simplest technique is the
calculation method Absolute. Here the DOC of a task is 0% as long as it is not
completed. Hence we have for an active task t ∈ Tasks

DOCAbsolute(t) = 0

Chapter 8 Monitoring a Development Process 299

This heuristic is suitable for small tasks in a project which occur in large numbers
as subtasks of a common parent task, e.g. the specification of measuring points of a
process plant. If the DOCs of these subtasks are aggregated at the parent task, this
results in a fairly accurate DOC for the parent task. There is no measuring effort
required for this measure. However, for the individual task it also has the lowest
accuracy.

The Start/End heuristic returns a constant value k with 0 < k < 1 for the DOC of
an active task.

DOCStart/End(t) = k

This method is slightly more accurate than the method Absolute, since active tasks
are reflected with a non-zero contribution in the aggregated DOC of the parent task.
At the same time, this method requires more effort, since the constant value k has to
be defined. Nevertheless the effort is very low, since k can be defined for a task type
and does not need to be changed for individual instances of the type.

Another common technique is the Time Proportional calculation of the DOC of a
task. This technique underlies the assumption that the work defined by the task,
for which the progress is measured, is carried out exactly as planned. This is a
reasonable assumption for continuously performed work during the project like
management activities. These activities do not have a specific goal or deadline, but
the work is carried out as required. If a task is defined for this type of work in the
dynamic task net, the Time Proportional calculation method is the most adequate.
Let wt be the working days of a task t ∈ Tasks between its planned start and end
times and let pt be the number of actually passed working days between the planned
start and end times of t until the current date. Then the DOC of an active task is
computed as follows.

DOCTimeProportional(t) =
pt

wt

If the planned end time of the task has already passed, the DOC is 100%. During
the execution of the task, the progress increases linearly over time. This is the
only calculation method which does not take the actual performance of the task
into account but only the planned dates and the passed time. If the method is
applicable for a task, then its accuracy can be evaluated as Medium while there is
no measurement effort involved.

The DOC of a task can also be determined simply by an estimation made by a
domain expert. The corresponding measure is called Expert’s Estimate. In theory,
this method can be very accurate if sufficient information about the current status
of the task is available and if the expert has enough experience. However, there are
several social aspects which may bias the estimate [SKW07]. Therefore the accuracy
of this measure may vary from Low to High. The measure requires comparably
much effort for providing a good estimate, so that it has to be rated with High.
Finally, an expert usually cannot provide an estimate on each working day over the
complete duration of the task, which means that an up-to-date DOC is not available
at any time. Let Kt = {k1, . . . , kn} be the set of subsequent DOC estimates for a task
t ∈ Tasks, where kn is the most recent one. The current DOC of the active task t is

300 8.1 Progress Measures

actual workload remaining workload

forecasted total workload

planned workload

Figure 8.2: Actual, planned, and forecasted total workload of a task.

then calculated as:
DOCExpertsEstimate(t) = kn

The direct estimation of the DOC of a task may only be done by the resource that is
responsible for managing the measured task or one of the superior tasks in the task
net hierarchy (cf. Section 5.5). The progress measure is appropriate for long-term,
critical tasks in the project whose DOC cannot be calculated based on the DOCs of
the subtasks and where the responsibility for the estimated DOC has to be clearly
defined.

The calculation method Estimate to Completion calculates the DOC of a task
based on the estimated remaining workload and the accumulated actual workload
up to the current date. It requires a time registration system with which the
assigned resources of the task can track their actual workload. As described in Sec-
tion 5.1.3, the assignment of resources to tasks is explicitly modeled in the form of
task assignments in PROCEED. Actual workload can be booked on these task assign-
ments. For a task t ∈ Tasks with task assignments a1, . . . , an ∈ t.TaskAssignments let
A(t) = ∑n

i=1 A(ai) be its actual workload consisting of the registered actual workload
of the task assignments, and R(t) the estimated remaining workload for the whole
task. Then the DOC of the task is computed as

DOCEstimatetoCompletion(t) =
A(t)

A(t) + R(t)

The sum A(t) + R(t) is the forecasted total workload of the task t assuming that no
subtasks exist. Figure 8.2 shows an example where the forecasted total workload
of the task is greater than the planned workload. In general, the forecasted total
workload can be less, equal or greater than the planned workload, where the latter
case indicates, that the actual performance does not meet the plan. As for the
measure Expert’s Estimate the remaining workload of a task may only be set by an
authorized resource. The estimation requires much effort, comparable to the direct
estimation of the current DOC. Together with the tracking of the actual workload
this results in even more effort compared to the measure Expert’s Estimate. Hence
the required effort is rated as Very High. The accuracy of the measure is comparable
to the measure Expert’s Estimate since an estimation has to be made and this
may be equally biased. Its accuracy may therefore range from Low to High. As
for the measure Expert’s Estimate, the progress degree of the task is not always
up-to-date. However, it may be more practical to give an estimate of the remaining

Chapter 8 Monitoring a Development Process 301

P&ID (150 PH)
DC PC IC IFR IFC
20% 40% 70% 80% 100%
30 PD 60 PD 105 PD 120 PD 150 PD

Table 8.1: States and progress degrees for a P&ID

workload on a daily basis than to estimate the DOC directly with this frequency. The
actual workload of subtasks in not considered in this progress measure. For tasks
with subtasks, an aggregation method should be used. Therefore, the estimated
remaining workload of a task is incorporated in one of the white-box progress
measures as well.

Progress measurement based on document states In plant design projects,
a common practice is to measure the status of the project by means of the docu-
ments which have to be created. For the different types of documents like flow
sheets, device specifications, equipment lists, layout plans, etc., states are defined.
Every document state is associated with a degree of completion of the document.
The document states and progress degrees are usually defined in company-wide
standards [Tec10]. In a concrete engineering project, a so called list of deliverables
is assembled. The documents which have to be delivered are weighted by their
required workload. During the runtime of the project, a document can reach a
new state when a new revision is produced and released. At regular intervals, the
progress values of the different documents which are derived from the current states
are aggregated which results in a degree of completion of the whole project.

The disadvantage of this way of progress measurement is that it is completely
detached from project planning. It is possible to derive a degree of completion for
the whole project from the current document states, but if the calculated value
indicates a delay of the project, the reason for this delay cannot be associated with
specific tasks in the project plan. In the approach presented in this thesis, this
problem has been solved by integrating the described progress measurement based
on document states with the actual data flow which can be modeled in dynamic task
nets by means of document revisions. The corresponding progress measure is called
Document States.

For a document like a Piping and Instrumentation Diagram (P&ID) several states
can be defined together with according progress degrees. Furthermore, an estimate
for the required workload for the document can be derived from reference data.
From the progress degrees and the overall workload for the document, the accumu-
lated workload can be calculated for each state. An example is given in Table 8.1
where five states are defined for the document type P&ID: Devices complete (DC),
Piping complete (PC), Instrumentation Complete (IC), Issued for Review (IFR) and
Issued for Construction (IFC).

In PROCEED, documents and tasks are managed in an integrated way. A document
contained in the Comos database can be associated with an output parameter of

302 8.1 Progress Measures

P&ID.R
Rev *

P&ID.R
Rev 0
DC

P&ID.C
Rev 0
DC

P&ID.D
Rev 1
PC P&ID.D

Rev 2
IC

P&ID.R
Rev 1
PC

P&ID.D
Rev 0
DC

08.08. 39%

Detailed P&IDs

110820 43T

08/08/2011 06/01/2012

P&ID.RP&ID.R

P&ID.CP&ID.C

P&ID.DP&ID.D

Figure 8.3: Task with produced document revisions.

a task meaning that the document is created or modified in the scope of this task.
Furthermore input parameters can be defined for tasks and can be connected with
output parameters of other tasks via data flows. These data flows define how the
documents are routed from one task to another. Figure 8.3 shows an example
where four document revisions have been produced in the task Detailed P&IDs. The
progress measure Document States builds on these modeling capabilities.

Let sd0, sd1, . . . , sdk be the possible states of a given document d ∈ Documents, where
sd0 denotes the initial state of the document right after its creation. Let Wd(s) be
the accumulated workload required to reach state s of the document d. For every
document d ∈ Documents is Wd(sd0) = 0. For each output parameter of a task, the
target state of the respective document is defined, i.e. the state which the document
should reach in the scope of this task. For a given task t ∈ Tasks which has an output
parameter for document d, we denote otd for the defined target state of that output
parameter. The current state which a document d has reached in task t is denoted
as atd. For each input parameter of task t, the input state which the corresponding
document d has before it is modified in the task can be determined as the target
state of the connected output parameter. It is denoted as ptd. If the document is
created in the task, then the input state is the initial state of the document ptd = sd0.
Let t be a task with m output parameters associated with documents d1, . . . , dm. Then,
the DOC of task t is calculated as follows.

DOCDocumentStates(t) =
∑m
j=1

(
Wdj(a

t
dj
)− Wdj(p

t
dj
)
)

∑m
j=1

(
Wdj(o

t
dj
)− Wdj(p

t
dj
)
)

The sum of the accumulated workload for the actually reached document states is
divided by the sum of the planned accumulated workload for reaching the target
states.

In the example in Figure 8.3, the output documents P&ID.D,P&ID.R and P&ID.C
of the task Detailed P&IDs have to reach the target state IFR. The documents are
in state DC before they are modified in the task Detailed P&IDs. For the document

Chapter 8 Monitoring a Development Process 303

P&ID.D, two revisions have been created and released which represent the document
states PC and IC as depicted in Figure 8.3. For the document P&ID.R, one revision
has been released and the state PC has been reached. Another revision has been
created but not yet released. In this case, the degree of completion for the task
Detailed P&IDs computes to

(105− 30) + (60− 30) + (30− 30)
(120− 30) + (120− 30) + (120− 30)

=
105
270

= 38, 89%

Since it is a common practice to work with document states and workload estimates
for documents in plant design projects, the used reference values often stem from
long-year experience. Hence, the progress measure Document States can achieve
a reasonably high accuracy regarding the progress of the defined tasks. However,
the fact that for one task usually only few documents are considered may lessen the
accuracy of the progress measure. Therefore the accuracy is rated as Medium. As
long as no document revisions have been produced in a task, no meaningful DOC
is available for the task. Until the next state has been reached, the DOC does not
exactly represent the actual progress of the task.

The measure Document States is most appropriate for tasks, which produce
complex and essential documents like flow sheets or layout plans, where reliable
data for the document states and estimated workload is available. Since this data is
required and target states for output parameters have to be defined, the effort for
measuring the progress of a task by means of document states is rated as Very High.

8.1.2 White-Box Progress Measures

As described in Section 5.1.1 and Section 6.3, a task in a hierarchical dynamic task
net can be refined by a subnet, which is either managed manually or by the workflow
engine depending on whether a workflow definition exists for the subprocess. In the
following, white-box progress measures are described which take the subtasks of
the measured task into account. First, progress measures are described which are
applicable for manually managed and workflow-managed tasks. These measures
either use defined milestones or aggregate the DOC values of the subtasks. Second,
a progress measure is presented which requires the measured task to be workflow-
managed because it relies on reference data derived from completed workflow
instances.

Milestones If milestones have been defined for a subnet of the overall dynamic
task net, then the DOC of the parent task of the subnet can be calculated based
on the Milestones measure. Each milestone is associated with an overall degree
of completion which is set for the parent task as soon as the milestone has been
committed (cf. Section 5.4). Let Mt = {m1, . . . , mn} be the set of DOCs associated with
the completed milestones which are contained in the realization of task t ∈ Tasks.
Then the DOC of task t is calculated as follows.

DOCMilestones(t) = max({m1, . . . , mn})

304 8.1 Progress Measures

M M

60% 90%

Figure 8.4: Required graph structure for progress measure Milestones.

For the Milestones measure to return a meaningful DOC value, the dynamic task net
containing the milestones should be structured in a particular way. The tasks and
control flows have to form a weakly connected directed graph and the milestones
should be cuts in this connected graph, i.e. removing a milestone would result in
two disconnected graphs. Furthermore, all milestones should lie on a all paths from
the first to the last tasks in the subnet. Figure 8.4 illustrates the required graph
structure, where the black boxes labeled with M represent milestone tasks.

The Milestones measure is most appropriate for complex tasks in the project
where the DOCs of subtasks are not available or not reliable and where positions in
the respective subprocess can be identified with which domain experts can associate
progress degrees for the complex parent task. Furthermore, progress measurement
based on milestones is common in practice, which is why a practical approach for
progress measurement like the one presented in this thesis should incorporate this
measure.

The disadvantage of the basic Milestones measure is that the DOCs of the subtasks
between milestones are not taken into account for the DOC of the parent task. If
reliable DOCs for the subtasks are available, then these should not be neglected.
Hence, a variant of the Milestones measure has been defined, which also takes the
subtasks after the last completed milestone into account. It is called Milestones+
because additional tasks are taken into account and the measure is slightly more
accurate than the pure Milestones measure. However, to calculate the DOC based
on this measure, the above mentioned graph structure is mandatory for the dynamic
task net. Otherwise, the computation would fail. Let Mt = {m1, . . . , mn} be the set of
DOCs associated with the completed milestones, which are part of the subnet of
task t ∈ Tasks, with mi ≤ mj for i < j. Furthermore let mn+1 be the DOC of the next
milestone which will be reached in the task net (due to the above mentioned graph
structure, this milestone is unique) or the value of 100% if n is the last milestone
in the task net. The set of all tasks between two subsequent milestones i and j is
denoted as Bij ⊂ Tasks. Then the DOC of a task t ∈ Tasks is calculated as follows.

DOCMilestones+(t) = mn+

(
1

∑i∈Bn,n+t
W(i) ∑

s∈Bn,n+t

(s.DOC× s.TotalWorkload)

)
×(mn+1 − mn)

The DOCs of the tasks after the last completed milestone are aggregated, weighted
by their total workload. The difference between the overall degrees of completion

Chapter 8 Monitoring a Development Process 305

defined by milestones n+ 1 and n is multiplied by the calculated degree of completion
of the subnet between these milestones, and the result is added to the overall DOC
defined by the milestone n. In this way, the progress of the tasks between the
milestones n and n+ 1 is taken into account.

For both measures which rely on the definition of milestones, there is consider-
able effort required for the estimation of the overall DOCs for the milestones in a
task net. These estimates are specific for the subprocess defined by the subnet.
Accurate estimates require reference values from previous projects and sufficiently
experienced domain experts. Therefore, the measuring effort is rated as High. The
accuracy of the Measures Milestones and Milestones+ range from Low to Medium,
since the DOC-values defined for the milestones are based on estimates, and the
progress of the other subtasks in the process is either not taken into account at all
or only partly.

Aggregation One of the progress measures available in PROCEED has been par-
ticularly defined for aggregating the progress degrees of subtasks and is there-
fore called Aggregation. This measure is usually used on higher levels of the
work breakdown structure, when other measures are not appropriate or appli-
cable. The earned value of a task t ∈ Tasks in terms of workload is defined as
E(t) = t.TotalWorkload× t.DOC. If task assignments are defined for a task t ∈ Tasks,
then their planned workload sums up to WAss(t) = ∑a∈t.TaskAssignments a.Workload. The
DOC of task t is computed as follows according to the measure Aggregation

DOCAggregation(t) =

(
∑s∈t.Subtasks E(s)

t.TotalWorkload−WAss(t) × WAss(t)
)
+ ∑s∈t.Subtasks E(s)

t.TotalWorkload

Since no DOC is computed for task assignments, their planned workload is multiplied
with the aggregated degree of completion of the subtasks. The accuracy of the
measure Aggregation can be rated as Medium to High, since it combines the DOCs
of the subtasks in a reasonable way. There is no additional measuring effort required
for this measure.

If the actual workload of the task assignments of a task t ∈ Tasks has been tracked
and there is an estimate for the remaining workload for the task assignments of task
t, then the calculation can be refined to

DOCAggregation+(t) =

(
A(t)

A(t)+R(t)
× WAss(t)

)
+ ∑s∈t.Subtasks E(s)

t.TotalWorkload

where A(t) and R(t) are defined as for the measure Estimate to Completion. The
variant Aggregation+ of the measure Aggregation is more accurate. The estimation
of remaining workload for the task may slightly improve the calculated progress
degree. If the estimation is bad, it does not bias the aggregated value too much.
Therefore, its accuracy is rated with High. Time tracking and estimation of remaining
workload lead to a very high measuring effort as for the measure Estimate to
Completion.

306 8.1 Progress Measures

In the special case, where no task assignments with planned workload exist for
task t ∈ Tasks, its DOC is computed as

DOCAggregation+(t) = DOCAggregation(t) =
∑s∈t.Subtasks E(s)

t.TotalWorkload

which is the weighted average of the DOCs of the subtasks, weighted by their total
planned workload.

In conventional work breakdown structures, the workload of a complex task always
equals the sum of the workload of its subtasks. Hence, every change to the planned
workload of a task inevitably leads to a change of the planned workload of the parent
task.

The total workload of a task is used as the normalizing factor in the progress
measures Aggregation(+). If the total workload was always equal to the used total
workload, then a change of the workload of a subtask would always lead to a change
of the degree of completion of the task even if the DOC of the subtask was 0%. This
would lead to unnecessary disturbance and confusion regarding the progress of the
task during replanning. Therefore, the total workload of a task may exceed the used
total workload in a dynamic task net. The creation of a new subtask or the increase
of the total workload of a subtask can be covered by the unassigned total workload
of a complex task. In these cases the total workload of the task remains unchanged
and the dynamic change to the realization of the complex task has no effect on its
degree of completion.

Progress measurement of workflow instances For workflow-managed tasks,
a specific progress measure is available. The measure Workflow calculates the DOC
of a workflow-managed task based on reference values for the expected durations of
the workflow activities. The current state of the workflow instance determines the
expected duration of the workflow. The degree of completion of a workflow-managed
task t ∈ Tasks is calculated as the quotient of the actual duration and the expected
duration of the workflow instance.

DOCWorkflow(t) =
Actual duration of workflow instance

Expected duration of workflow instance

Reference values for activity durations are collected for all activities in a workflow
definition—atomic activities as well as complex activities. The reference value for
the duration of an activity is calculated as the mean duration of all occurrences
of the activity in the completed instances of the workflow template. For an IfElse
activity this has the effect that its mean duration equals the weighted average of the
mean duration of its branches, weighted by the number of workflow instances which
have chosen the respective branch during execution. This is illustrated in Figure 8.5.
The mean duration of the activity If is 40 days and the mean duration of activity Else
is 8 days. Nevertheless, the mean duration of the whole IfElse activity is only 10
days, because in the example only two workflow instances chose the If-branch while
30 instances chose the Else-branch (10 = [(40× 2) + (8× 30)]/32).

Chapter 8 Monitoring a Development Process 307

If Else

S2

While

IfElse

Workflow

Sequence

S1

3/2/2 days

2/2/1 days
5/4/3 days
32/25/20 completed

10 days

40 days 8 days

10 days
20 days

30 completed2 completed

Figure 8.5: Reference values for a workflow definition.

For activities directly or indirectly contained in a While activity, more information
is needed about their mean durations. For these activities, the mean duration
is determined for every iteration of the surrounding loop construct separately.
Figure 8.5 illustrates this. On average, activity S1 took 3 days in the first iteration, 2
days in the second and another 2 days in the third (3/2/2 days in Figure 8.5). For
a While activity we furthermore store for each iteration the number of workflow
instances which actually completed the respective iteration (e.g. 32/25/20 completed
in Figure 8.5). In the example of Figure 8.5, the reference data only covers workflow
instances with up to three iterations of the While activity. For more than three
iterations, there are no reference data available. When reference values are required
for further iterations of the While-loop, a simple heuristic is applied, which assumes
that every further iteration will have approximately the same duration as the last
one for which reference values are available. It is reasonable to assume that every
further iteration of a loop does not take longer than the previous iterations, because
the iteration of tasks in the context of a development project is usually performed to
rework previous results. Therefore, later iterations will probably be shorter than the
previous ones. However, since no information is available about the time saving in
a later iteration compared to the previous one, the same value as for the previous
iteration is used.

The tracking service of the workflow engine determines the total durations of
workflow activities including work time and idle time. For progress measurement,
only the effective work time is considered. This is achieved by suspending and
resuming the workflow instance after and before working on the tasks respectively.
The suspension time is subtracted from the total activity durations. This applies for

308 8.1 Progress Measures

the workflow instances which are used to compute the mean activity durations, as
well as for the measured workflow instance. Consequently, the activity durations
reflect when the assigned resources were actually working on the respective tasks.

The quality of the reference values for activity durations depends on the number
of workflow instances which are taken into account and the standard deviation
of the measured durations. Only those workflow instances should be considered,
which have been executed in a comparable project. Dynamically changed workflow
instances are not taken into account for the computation of reference data for the
original workflow template. Reference values for activities, which were dynamically
added or removed, cannot be used or collected respectively. If an activity was
dynamically removed, incorporating a duration of zero time units into the mean
duration of this activity would bias the reference value for its duration. If an activity
was dynamically added, the calculated reference value cannot be associated with
an activity in the original workflow definition. Consequently, dynamically changed
workflow instances have to be handled as new variants of the workflow definition
and—if sufficiently many instances with the same dynamic changes exist—separate
reference values can be calculated for these variants.

At runtime of a workflow instance, the reference data which has been collected
for the workflow template is used for progress measurement. The DOC of a running
workflow instance is recalculated after every closing event of an activity. The actual
duration of the workflow instance is calculated as the time span between the start
of the workflow and the closing event, where suspension times are subtracted. The
expected duration of the workflow is calculated based on the actual durations of
closed activities and the expected durations of all activities which still have to be
executed. The algorithm updates the expected durations of all complex activities
which directly or indirectly contain the recently closed activity. This leads to an
updated expected duration of the whole workflow instance. The degree of completion
can then be computed based on the updated expected duration.

The essential step of the algorithm is the recalculation of the expected durations of
all complex activities directly or indirectly containing the recently closed activity. For
Sequence and IfElse activities this is quite straight forward. The expected duration
of a Sequence activity is the sum of the actual durations of all closed activities,
the recursively computed expected duration of the activity containing the recently
closed activity, and the expected durations of all subsequent activities which are
taken from the reference data of the workflow template. For an IfElse activity, the
expected duration of the selected branch is calculated which is at the same time the
expected duration of the whole IfElse construct.

In case of a While activity, future iterations have to be taken into account. Similar
to the Sequence activity, the actual durations of all completed iterations and the
expected duration of the currently executing iteration are summed up. Furthermore,
a time span is added to the result which covers the expected duration of probably
executed future iterations of the While loop.

Figure 8.6 shows on the top the iterations of a While activity in a running workflow
instance. The While activity contains only the single activity S. Activity S has been

Chapter 8 Monitoring a Development Process 309

S S...

S S...

S S...

S S...

..
.

S

S

S

S

S...

Running instance

Reference instances

Average duration

a1 ei

c1

c2

ck

instances

instances

instances

d1 di di+1 di+k

S

S

S

S

ai-1

di-1

Figure 8.6: Reference data for an iterated activity.

iterated i− 1 times and the surrounding While activity is now in iteration i. The
expected duration ei of iteration i is calculated based on the reference values for this
iteration. For this purpose, reference values are stored for the activities contained
in a While activity for each number of iterations separately. To obtain the expected
duration of the complete While activity, the expected remaining time for all following
iterations has to be determined. Since it is not known how many further iterations
the While loop will have in the workflow instance, the remaining time of the While
loop is computed using the probabilities for the additional iterations. For every
number of additional iterations, the probability is determined that the While loop
will iterate that often. These values are multiplied with the corresponding expected
remaining durations for the respective number of iterations. The sum of these
products is the expected remaining duration of the While loop. The probability for a
certain number of additional iterations is derived from the reference data, i.e. from
the number of workflow instances which completed this many iterations. Altogether,
the expected duration of a While activity in iteration i is computed as follows.

eiWhile =
i−1
∑
j=1

aj + ei +
1

∑k
j=1 cj

k

∑
j=1

(
cj ×

j

∑
t=1

di+t

)

The semantics of the variables in the formula is illustrated in Figure 8.6. For a
certain number j with 1 ≤ j ≤ k, the variable cj denotes the number of workflow
instances in the reference data which have completed i+ j iterations. The sum
of the average durations of the iterations i+ 1 to i+ j is the expected remaining
duration of the While loop for j further iterations.

A concrete example can be provided based on the workflow definition and refer-
ence data of Figure 8.5. Here, it is assumed that an instance of this workflow type
has just completed activity S1 after 5 days, which is 2 days longer than expected.
The expected duration of the Sequence activity in the first iteration is therefore 7
days, and the expected duration of the whole While activity is

0 + 7 +
((25− 20)× 4) + (20× (4 + 3))

25
= 13.4

310 8.1 Progress Measures

The degree of completion of the whole workflow instance computes to 5/23.4=21.4%
which is less than the planned progress after five days 5/20=25%.

By using the expected remaining duration, the measure Workflow reaches an
accuracy comparable to the measure Estimate to Completion. However, while for
the latter manual time tracking and estimation are required this is not necessary
for a workflow-managed task. Time tracking is done automatically by the tracking
service of the workflow engine and the estimation of the remaining durations is done
automatically based on the available reference data. Since workflow definitions
are required for this measure, and resources assigned to workflow-managed tasks
have to suspend and resume their tasks correctly, the measuring effort is rated as
Medium. The measure Workflows seems to be preferable to the measure Estimate
to Completion. However, it is only applicable for workflow-managed tasks, for which
reference data is available. Finally, it is important to mention that the project
controller is not obliged to choose the measure Workflow for a workflow-managed
task. It is very well possible to choose any other measure while the task is managed
by the workflow engine. The detailed description of the algorithms which are
required to determine the degree of completion of a workflow instance are described
in [Bri08].

Progress measurement for incomplete work breakdown structure By means
of the white-box progress measures, which take the progress of subtasks into ac-
count, the DOC can be aggregated on higher levels of the work breakdown structure.
In this way, degrees of completion for the different engineering phases and finally
the whole project can be derived.

Due to the top-down planning of workload which has been described in Section 5.3,
a valid DOC can be derived for the project even if the work breakdown structure has
not been completely elaborated. Furthermore, if workload buffer has been planned
for a complex task, dynamic structural changes to the realization of the complex task
do not necessarily affect its degree of completion. This is illustrated in Figure 8.7
which shows an abstract example of a task net hierarchy.

If the measure Aggregation is used for calculating the DOC of task A, it returns a
value of 10% because the planned total workload of the tasks C and D is taken into
account, although they have a DOC of 0%. The DOCs of all subtasks are weighted by
their planned total workload. Since the expected total workload is already defined
for task D although its realization is not yet elaborated, i.e. no subtasks have been
defined, the DOC of task A already reflects that there will be subtasks which will
amount for 500 MHRS and which have not been started yet.

Similarly, the measure Workflow works with the expected durations of tasks. If
the DOC of task A would be measured by means of the measure Workflow, then
the expected duration of D would already incorporate the durations of subtasks
which have not been planned yet. Even if task D would be iterated several times in
a While loop, the expected duration of the whole While loop could be derived from
the reference data, and the structural changes as a consequence of the iteration
would already be incorporated into the DOC of task A before the iteration would

Chapter 8 Monitoring a Development Process 311

C: 1000, 0%

A: 2000, 10%

B: 500, 40%

J

F G

D: 500, 0%

K

E

H I

Figure 8.7: Accurate progress measurement despite incomplete WBS.

take place.
Finally, the measure Milestones explicitly defines points in the realization of a

task where a certain DOC is reached and it does therefore not rely on the detailed
planning of future tasks. For example, if the task C in Figure 8.7 would be defined
as a milestone task with an overall degree of completion of 45%, then this DOC
is reached upon committing task C regardless of whether task D has already been
completely elaborated.

8.1.3 Comparison of Progress Measures

For every task in a dynamic task net, an individual progress measure can be chosen.
In the example in Figure 8.1, the progress of the task Pump 032 may be measured
by means of the measure Workflow. If for short-lived tasks like the specification of
a Measuring point no workflow definition is available, then the measure Start/End
may be most appropriate. For complex tasks like Specification of Machines and
Devices, the measure Aggregation(+) can be chosen. If milestones are defined
in a task, as it is conceivable for an engineering phase like Basic Engineering,
then the measure Milestones(+) can be chosen. In this way, the most appropriate
measure can be selected for every task. The selection of a progress measure for
a task constitutes process knowledge which should be reused for future projects.
Therefore, progress measures can be specified for task types which serve as default
selection for all instances of the respective type. Furthermore, progress measures
can be specified for the subtasks of process templates. This is particularly useful for
the Milestones measure because the overall degree of completion determined by a
milestone depends on the subprocess in which it is contained.

Table 8.2 gives an overview over all available progress measures in the PROCEED
system together with the rating of their required measuring effort and accuracy. The
rationale for the selected values has been given in the description of the different
measures in the previous section. Furthermore, Table 8.2 shows the timeliness of
the different measures, i.e. if up-to-date values for the DOC of a task are available at
any time, or if the values may be outdated until a certain event takes place. Anyway,
with PROCEED a project controller is not limited to assembling a progress report
once a month, but he can retrieve a sufficiently accurate and up-to-date report from

312 8.1 Progress Measures

Measure Effort Accuracy Timeliness

Absolute Lowest Lowest Immediately available
Start/End Very Low Very low Immediately available
Time Proportional Lowest Medium Immediately available
Expert’s Estimate High Low–High Outdated between estimations
Estimate to Compl. Very High Low–High Outdated between estimations
Milestones(+) High Low–Medium Immediately available
Workflow Medium Medium Immediately available
Document States Very High Medium Outdated between creation of

document revisions
Aggregation Lowest Medium–High Immediately available
Aggregation+ Very High High Outdated between estimations

Table 8.2: Evaluation of progress measures.

the system at any time.

The different progress measures can be positioned against each other regard-
ing their measuring effort and accuracy as depicted in Figure 8.8. The progress
measures can be coarsely grouped into three sets. First, there are measures with
low effort and low accuracy (Absolute and Start/End). For individual tasks, these
measures return too inaccurate results and other measures are usually preferred if
they are applicable. Second, there are measures with low effort and comparably high
accuracy (Aggregation, Time Proportional and Workflow), which are only applicable
for some tasks when certain prerequisites are fulfilled. Finally, there are measures
with high accuracy, but which require a comparably high measuring effort. Although
in most cases, these measures return the best results, they cannot be applied to
all tasks in an engineering project, since this would lead to a huge measurement
overhead.

The measures with the highest accuracy are close to each other, both in terms of
effort and accuracy. However, the calculation of the DOC relies on different sources
of information. If reference data about the output documents of a task is available
one may decide to choose the measure Document States. If no such data is available,
one has to resort to measures based on estimates. If time tracking is performed
for a task, one can use the measure Estimate to Completion, otherwise Expert’s
Estimate is the alternative choice. As a consequence, none of the different measures
is dispensable.

In some rare cases a low effort configuration is feasible. In these cases, only
measures without or with very low measuring effort are used, i.e. Absolute or
Start/End for atomic tasks, Aggregation for complex tasks, and Time Proportional
for accompanying management tasks. In some cases this may lead to valid progress
degrees at the project level because of the balancing effect of the aggregation.
However, if several long-running atomic tasks exist which are critical for the project
then this approach will fail in terms of accuracy and timeliness.

Chapter 8 Monitoring a Development Process 313

accuracy

effort

Workflow
Document States

Absolute

Start/End

Lowest

Very Low

Low

Medium

High

Very High

Lowest Very Low Low Medium High Very High

Time Proportional Est. to Compl.Expert’s Estimate

Aggregation+

Milestones(+)

Aggregation

Figure 8.8: Comparison of progress measures regarding effort and accuracy.

The discussion leads to the conclusion, that the proposed approach to use all
described measures and for every task the most suitable one is the only practica-
ble way of measuring the progress of an engineering project with an acceptable
measuring effort and a sufficiently high accuracy.

8.2 Earned Value Analysis and Forecasts

The calculation of the degree of completion for every task in the project is only one
step on the way to a useful project status report. In general, projects are constrained
by time, cost and scope. The DOC only measures the progress of a task in terms
of its defined scope, i.e. it measures to which extent the final result of the task is
completed, e.g. a process flow diagram can be completed to 60%. The DOC does
not directly show if the schedule will be met and whether the task will keep to its
budget. Therefore, the actual performance of tasks has to be compared with the
plan.

In PROCEED, Earned Value Analysis [Anb03] is applied for this purpose. Earned
Value Analysis (EVA) can be performed based on either workload or costs. The
former allows a simplified planning and performance analysis without a detailed
budget. However the latter is the more accurate method which is generally used in
practice, because base costs and different resource costs can be taken into account.
The PROCEED system supports both methods. The following explanations will refer
to EVA based on the planned and actual workload of tasks.

To compare the actual performance of a task with the plan, the planned value
has to be determined. The Planned Value P(t) of a task t ∈ Tasks is the workload
that has been planned for the task from its planned start time to the reporting
date. Resource constrained scheduling of a dynamic task net distributes the planned

314 8.2 Earned Value Analysis and Forecasts

23/05/2011

52%

Process Flow

Diagrams

110

21/12

1760 93T

21/12/2010

23/03/2011

 Planned 60%

 Actual 52%

Figure 8.9: Comparison of planned and actual degree of completion.

workload of tasks and task assignments over several working days. The planning of
workload on a daily basis allows for a non-uniform distribution over the duration of
a task, i.e. the working hours which are scheduled per day for a task assignment
may differ for different dates. As a consequence, the planned value of a task does
not necessarily increase linearly over the duration of the task.

From the planned value, the planned degree of completion of a task can be derived.
It is calculated as the quotient of planned value and the total planned workload.

DOCplanned(t) =
P(t)

t.TotalWorkload

The planned DOC of a task can be directly compared to the actual DOC to check
whether the task is behind schedule. In Figure 8.9 the task Process Flow Diagrams is
delayed because the planned DOC is smaller than the actual DOC.

For tasks whose actual degree of completion is determined by means of the
progress measure Absolute or Start/End, the planned DOC is computed in a different
way. Since these progress measures provide only very rough estimates for the actual
DOC of a task, the actual DOC would nearly always differ from the planned DOC
if it was calculated as described above. Therefore, the planned DOC is calculated
like the actual DOC but with respect to the planned dates, i.e. when the task should
be preparing, running, or terminated according to the plan, then the degree of
completion defined for the progress measure is used as the planned DOC. This value
may nevertheless differ from the actual DOC, if the task is started or terminated too
late or too early.

The comparison of the actual DOC with the planned DOC of a task does not allow
any quantitative statements about the expected delay of the task. For this purpose,
earned value analysis has to be applied. The Actual Value A(t) of a task t ∈ Tasks is
the workload that was spent on the task from its actual start time to the reporting
date. It is determined by means of a time tracking system in which resources can
book their actual working hours per day on their task assignments. A resource can
spend every number of working hours between zero and the maximally available
time for a particular day on a task assignment. Like the planned workload, the actual
workload is not necessarily uniformly distributed over the working days of a task.
Consequently the actual value may also increase non-linearly over the runtime of

Chapter 8 Monitoring a Development Process 315

the task.
The actual value of a task may deviate from the planned value. This indicates

that either more or less effort and money has been spent on the task than planned.
However, even if more money has been spent on the task than planned, this does not
necessarily mean that the task is over budget, because the earned value may also
be higher than the planned value, i.e. the work has simply been completed earlier
than planned but with the planned effort and costs. The Earned Value E(t) of a task
t ∈ Tasks is calculated by multiplying the DOC of the task t with its total workload.

E(t) = t.DOC× t.TotalWorkload

Performance indices To quantify the amount of delay of a running task and to
decide whether a running task has already exceeded its budget limits, performance
indices have to be computed which allow forecasting the expected duration and
budget of the task.

For this purpose, the Schedule Performance Index (SPI) and the Cost Performance
Index (CPI) are calculated for every task in a dynamic task net. In contrast to the
common practice, performance indices are not only calculated for project phases
or the whole project but for all tasks in the project. This enables the detection of
delayed tasks on lower levels of the hierarchical dynamic task net.

The SPI indicates, how much a task t ∈ Tasks deviates from the schedule It is
defined as

SPI(t) =
E(t)

P(t)

where P(t) is the Planned Value of task t. An SPI value greater than one means that
the task is ahead of schedule, a task with SPI=1 is exactly on schedule, and a delayed
task has an SPI smaller than one. The project management is interested in tasks
which perform worse than planned because these tasks may require intervention.
Tasks which do not perform as planned are marked in the management views of
PROCEED. A running task is marked with one out of three colors depending on
whether the schedule performance index falls below a certain threshold. The colors
represent increasingly severe levels of delay and required different actions by the
project management.

Green The task is on schedule or only a little bit behind.
No corrective measure is required.

Yellow Corrective measures may be necessary and should be discussed.

Red The task is considerably behind schedule and corrective measures are required.

The thresholds for the different levels of delay can be configured for each project
individually. Examples for SPI thresholds are listed in Table 8.3.

While the SPI indicates a delay of a task in terms of the schedule, the CPI indicates
whether the task will eventually exceed its planned budget. It is defined as

CPI(t) =
E(t)

A(t)

316 8.2 Earned Value Analysis and Forecasts

Level Threshold
Green SPI ≥ 0.9
Yellow 0.9 > SPI ≥ 0.7
Red 0.7 > SPI

Table 8.3: Examples for SPI thresholds.

where A(t) is the Actual Value of task t. To determine the actual value of a task, the
assigned resource have to register their actual working hours in the time tracking
system. A CPI greater than or equal to one means that the task is in budget limits,
and a CPI smaller than one means that the task will probably exceed its budget. The
color markings of tasks which are used to provide an overview over the delay of the
tasks in a project can alternatively be used to represent different levels of budget
overrun. The project management can switch between the two modes, i.e. the colors
of tasks either represent the SPI levels or the CPI levels. For the cost performance
index, the meaning of the colors is similar to the SPI.

Green The task is in budget limits or only a little bit over budget. No corrective
measure is required.

Yellow Corrective measures may be necessary and should be discussed.

Red The task is considerably over budget and corrective measures are required.

The example thresholds for the SPI which are presented in Table 8.3 could also be
used for the CPI.

Forecasts The SPI provides quantitative information about the delay of a task.
It is furthermore possible to forecasted the expected duration of a task t ∈ Tasks

based on the SPI as follows.

t.ForecastedDuration =
t.TotalDuration

SPI(t)

It is implicitly assumed, that the performance of the task—whether good or bad—will
not change until the task is terminated. From the forecasted duration and the actual
start time, the forecasted end time can be derived.

t.ForecastedEndTime = t.StartTime+ t.ForecastedDuration

Figure 8.10 shows the delayed task Process Flow Diagrams with its schedule per-
formance index. The bars below the task illustrate the difference between the
planned total duration and the forecasted duration. The delay of a task may require
different actions of the project manager or another resource which is responsible
for managing the subprocess. The forecasted end time does not directly influence
the planned dates of the task and its successors. Adapting the plan to the actual
performance requires an explicit management decision of an authorized resource.
These plan changes due to task delays are discussed in Chapter 9.

Chapter 8 Monitoring a Development Process 317

Forecasted duration: 126 working days

Total duration: 110 working days

23/05/2011

52%

Process Flow

Diagrams

110

21/12

1760 93T

21/12/2010

SPI = 0.87

t

23/03/2011

Figure 8.10: Duration forecast based on SPI.

Analogously to the forecasted duration, the estimated budget at completion (EAC)
of a task can be forecasted based on the CPI.

t.EAC =
t.TotalBudget

CPI(t)

If the costs for a task exceed the planned budget too much, it may be necessary to
release assigned resources of the task.

Summary Altogether, the performance of an enacted development process can be
evaluated in different ways in PROCEED. First, the DOC of a task can be directly
compared to the planned DOC. Second, the performance indices SPI and CPI of the
earned value analysis are computed, and tasks are marked in the management views
if their respective values of the performance indices exceed specified thresholds.
Finally, the duration, end time, and budget at completion of a task can be forecasted
and compared to the currently planned values to obtain the expected amount of
delay or budget overrun. The performance status evaluation of a process model
instance by means of the earned value analysis is not an original contribution of this
thesis, but it is rather an application of the established project controlling technique
to process management.

8.3 Visual Project Status Analysis

The Comos system is used during all phases of a plant design project for the manage-
ment of the engineering data. While the AHEAD system has been applied to support
the early phases of the plant design process [NM08], the PROCEED prototype also
has to be applicable to later process phases, in particular to the detail engineering
phase (cf. Section 2.1). Compared to the early phases of preliminary planning and
basic engineering, the processes in the detail engineering phase are less dynamic
but the degree of simultaneous engineering is even higher. Furthermore, a large

318 8.3 Visual Project Status Analysis

number of rather small, similar engineering tasks is executed in the detail engineer-
ing phase for the specification of all devices, pipes, instruments, etc. of the designed
plant. As a consequence, network diagrams and Gantt charts are insufficient for the
assessment of the current project status for the following reasons. The visualization
of tasks in the form of a network diagram is not sufficient since most tasks are
executed in parallel. If all engineering tasks would be displayed, network diagrams
and Gantt charts would quickly grow too big. Finally, both diagram types focus the
tasks and control flow perspective, while resources, roles, and process templates
are not adequately reflected.

The project management data in plant design projects is inherently multidimen-
sional where dimensions are among others the tasks, resources, functional roles,
but also the different parts of the chemical plant which is designed. For this reason,
software tools for the monitoring of design projects in plant engineering need to
be able to handle and to visualize multidimensional project management data in an
adequate way. Business Intelligence technologies like Online Analytical Process-
ing (OLAP) [CCS93] in a data warehouse together with appropriate visualization
techniques [Kei02, Tuf86] can be applied for this purpose. The information in data
warehouses is multidimensional, meaning for the user that it can be visualized in
grids. OLAP functionality is characterized by dynamic multidimensional analysis
of consolidated data that supports end user analytical and navigational activities
[JLVV00].

In this thesis, a multidimensional visualization approach for project management
data has been developed to provide a condensed overview over all tasks, resources,
and roles in a project with respect to their associated workload and costs, as well as
the status and progress in case of tasks. The current project status can be analyzed
from different perspectives, e.g. the planned workload per role can be visualized,
or the status of all workflow instances of a certain template can be inspected. It
is furthermore possible to analyze the history of plan changes in a project and
to compare it with the progress of tasks. These functionalities complement the
project monitoring functionality provided by the management views of PROCEED
where performance indices are visualized by color markings as described in the
previous section. The developed approach for multidimensional visualization of
project management data has been presented in a workshop on business process
intelligence [HAW10].

The analysis views of PROCEED serve several different purposes. First, project
monitoring is supported by the visualization of delays, overtime work, or resource
bottlenecks. Second, project planning is supported by the visualization of resource
availabilities and the identification of unbalanced resource usage. Third, the trace-
ability of plan changes during a project is ensured, and plan changes can be com-
pared to progress changes of individual tasks or the whole project. The current
plan can be compared to the initial plan at the start of the project. This leads to the
fourth possible usage of the analysis views, namely process improvement. After the
completion of a project, the actual workload and cost can be compared to the initially
planned values, and reference data defined for task types and process templates can

Chapter 8 Monitoring a Development Process 319

Hyper Cube

Export
Transform
Load

Aggregation
Slicing
Filtering

Projection

4

0

7 8

5 3

1

3 4

Visualization

Management Views

Tasks

Resources

Products

Management
Data

Navigation

Project Status Analysis Views

Comos Database

Changes

Project Data Warehouse

Figure 8.11: Overview over the visualization approach.

be adapted accordingly.

An overview over the visualization approach is given in Figure 8.11. Measures are
applied to the management data in the Comos database, and the measured values
are exported to a separate data warehouse [JLVV00]. In the project data warehouse,
the measured values are arranged along several dimensions of a hyper cube. OLAP
operations on the hyper cube lead to projections which are visualized in a flexibly
configurable pivot table. The views for visual project status analysis are coupled
with the management views of PROCEED, so that the user can navigate between the
analysis and management views. The approach to multidimensional project status
analysis in PROCEED has been described in [Auß09, HAW10].

For the management of development projects in PROCEED, an object-oriented
management data model is used, which has been introduced Chapter 5. Figure 8.12
shows a simplified cutout of the complete TNT meta-model for dynamic task nets
extended by the entity PlantPart. A chemical plant is hierarchically structured into
several plant parts. Documents as well as tasks in a plant design project can be
associated with certain parts of the chemical plant. For example, the task to specify
the properties of a pump as well as the resulting specification are associated with
the part of the chemical plant in which the pump is contained.

The object-oriented data model is suitable for process management, but does
not support the multidimensional visualization of the project management data. To
facilitate the latter, a transition from the object-oriented model to a multidimensional
data model is required. This is the transformation step of the so-called ETL process
(export, transform, load) in which data from different data sources is loaded into a

320 8.3 Visual Project Status Analysis

Realization

Task

Name : string
ExecutionState : ExecutionStates
TotalWorkload : int
TotalBudget : double
DOC : double
PlannedDOC : double
EAC : double

TaskType

Name : string

instance of

is a

TaskAssignment

Workload : int
ActualWorkload : int

User

Name : string
CostPerHour : double
CostPerUsage : double
WorkingCalendar : Calendar

Role

Name : string

can play

Department

Name : string

Location

Name : string

Team

Name : string

requires

is a

member of

PlantPart

Name : string

copy of

refers to

Figure 8.12: Simplified cutout of the TNT meta-model.

data warehouse [KC04].
The multidimensional data model is an n-dimensional array, also called a hyper

cube, which stores all measured values in its cells, i.e. at its coordinates [JLVV00,
Leh03]. A hyper cube is spanned by several dimensions which act as indices for
identifying values in the hyper cube. Measures associate values with points in a
hyper cube. They correspond to columns in a relational database table whose values
functionally depend on the values of other columns.

8.3.1 Measures

In PROCEED, different measures are used to analyze the status of a running
project. The measured values are extracted from the management data in the
Comos database and are exported to the separate data warehouse. The following
measures are used for project status analysis.

• Workload

• Cost

• Degree of completion

• Schedule performance index

Chapter 8 Monitoring a Development Process 321

• Cost performance index

The measure workload refers to the planned and actual workload of tasks and task
assignments, as well as the workload of resources and roles. The measure cost refers
to the total budget of tasks and the costs of task assignments which are derived
from the respective planned workload as described in Section 5.3.1. The degree of
completion (DOC), schedule performance index (SPI), and cost performance index
(CPI) is exported to the data warehouse for every task in the project.

8.3.2 Dimensions

The different measures can be associated with tasks, users, roles, plant parts and
dates. For this reason, the data in the project data warehouse is structured along
the following major dimensions.

• Time

• Tasks

• Roles

• Resources

• Plant parts

While the measures workload and cost are associated with all dimensions, the
progress related measures are only associated with time, tasks and plant parts but
not with roles or resources. The set of associated dimensions is called the granularity
of a measure [Leh03].

Every major dimension has an associated hierarchy of levels of consolidated data,
i.e. the coordinates of each major dimension are structured hierarchically. The
hierarchy defined for the dimension time is day-month-year. For the dimension
tasks, several hierarchies are defined. The tasks can be structured according to
the task-subtask relationship in the dynamic task net, according to the task types
from which they have been instantiated, or according to the process templates
from which they have been copied. In case of the task types, the generalization
relationship defines the upper part of the hierarchy. Functional roles in a project are
structured according to the generalization relationship. The dimension resources
has the human resources at the lowest level, the hierarchy of departments to which
they belong on the higher levels, and the different locations on the highest level.
Finally, the hierarchy of the dimension plant parts reflects the composition hierarchy
of the designed plant.

Besides the major dimensions there are additional dimensions which are not hier-
archically structured. The dimension modus has the coordinates actual and planned
which enables the distinction between the actual and planned workload and cost of
tasks and task assignments. The dimension execution states has the coordinates
preparing, running, and terminated and is used to separate the planned and actual

322 8.3 Visual Project Status Analysis

Workload

Time stamp

Task assignments

Roles Plant parts

Tasks

Resources

TimeModus

Execution states

Figure 8.13: Multidimensional database schema of project data warehouse.

workload of tasks in the respective execution states. Finally, the dimension time
stamp defines the date and time of the data export of the measured values to the
project data warehouse. It allows to distinguish between different subsequent plan
states.

Figure 8.13 shows a cutout of the multidimensional data model of the data ware-
house. Every box corresponds to a table in the underlying relational database
according to the ROLAP data model [JLVV00]. There is a fact table for the measure
workload and there are dimension tables for all major and additional dimensions.
For reasons of clarity, only the fact table for the measure workload is shown in
Figure 8.13 while the fact tables for cost, DOC, and the performance indices are
omitted. The resulting schema is a so-called snowflake schema [JLVV00], because
the fact tables refer to several dimension tables which themselves refer to other
dimension tables.

Figure 8.14 shows a cutout of a four-dimensional hypercube which holds the
planned and actual workload in man hours. The depicted cube is a subcube of the
complete hypercube containing all dimensions and all measured values. It is the
result of a so-called slicing operation by which the coordinate on the dimension time
has been fixed to the date 13/09/2011. For the coordinate planned on the dimension
modus, the cells of the cube hold the planned workload of task assignments for
the specified date. In the example, resource Boateng has to perform 8 man hours
in the task Instrumentation in his role as Instrumentation Engineer. This does not
necessarily mean that resource Boateng is assigned to the task Instrumentation but
the value for the planned workload for the task aggregates all values of the subtasks.
The depicted values are taken from the example scenario where resource Boateng is
assigned to the task Instrumentation with 2 man hours and to the subtask Reaction
Instrumentation with 6 man hours which together amount for the 8 man hours. On
the right side of Figure 8.14, the actual working hours performed by the resources
are depicted, some of which deviate from the respective planned values.

Chapter 8 Monitoring a Development Process 323

13/09/2011

B
aum

ann

8
8

B
oateng

E
ndres

Instrumentation

Engineer

Construction Eng.

Process Eng.

Detailed P&IDs

Instrumentation

Construction
Planning

8

B
aum

ann

8
7

B
oateng

E
ndres

Instrumentation

Engineer

Construction Eng.

Process Eng.

Detailed P&IDs

Instrumentation

Construction
Planning

9

planned actual

Figure 8.14: Example for a subcube of the complete hypercube.

The values in the hypercube are aggregated along all dimensions which are not
displayed, and which were not subject to a slicing operation. Every measure defines
an aggregation method which is applied when measured values are aggregated,
either on a higher level of a dimension hierarchy or along a whole dimension. For
the measures workload and cost, the summation is defined as the aggregation
method. For the progress related measures, no aggregation method is defined.
The aggregation of the respective values along the task net hierarchy is already
performed for the management data in the Comos database.

8.3.3 Configurable Pivot Table for Project Status Analysis

The main project status analysis view is a flexibly configurable pivot table for the
multidimensional visualization of the measured values. The coordinates of the pivot
table show stacked-bar charts. The configuration of the pivot table is done by
mapping the dimensions and measures of the data cube to the axes of the pivot
table and the properties of the stacked bars, respectively. The measured values are
represented by the height of the stack layers. One dimension can be mapped to the
color of the stack layers. Furthermore, two stacked bars can be displayed in one cell
to visualize the values for two different coordinates of a dimension. Consequently,
four dimensions can be visualized in the two-dimensional grid.

Figure 8.15 shows an example configuration of the pivot table. (In this section,
schematic figures are used whereas screenshots of the prototype will be presented
in Chapter 10.) The tasks dimension is mapped to the y-axis where the task-subtask
relation defines the hierarchy. The dimension plant parts is mapped to the x-axis.
Each cell of the pivot table holds one stacked bar for the planned workload on the
left and for the actual workload on the right side. The roles are mapped to the
colors of the stack layers. The time frame is set from the beginning of the project

324 8.3 Visual Project Status Analysis

Detail Engineering

Piping

Specification
of Machines
and Devices

Dissolution Reaction Concentration

FoundationSuper Structure

Mechanical Engineer Process Engineer Construction Engineer

Figure 8.15: Example configuration of the pivot table.

to the current date. By means of this view configuration, the project responsible
can inspect, how much workload has been planned for the tasks in the project
distributed over the different plant parts, and how much effort has actually been
spent on the respective tasks. The values in the row for the task Detail Engineering
are the aggregated values of all subtasks and task assignments.

The project status analysis view allows virtually any combination of dimensions
and measures and thereby provides many different perspectives on the project
management data. It supports all common operations on a multidimensional dataset
[JLVV00]: Drill-down, roll-up, pivot, slicing and filtering. With drill-down and roll-
up, a dimension is added or removed from the visualization respectively, e.g. no
dimension is mapped to the x-axis or the colors of the stacked bars. The pivot
operation changes the mapping of dimensions to axes while the number of displayed
dimensions stays the same. A slicing operation fixes the coordinates on one or
more dimensions, e.g. it sets a fixed date for which the management data shall
be displayed. Filtering excludes certain coordinates of a dimension from being
displayed, e.g. only the basic and detail engineering phases could be displayed
on the y-axis while the preliminary planning phase is filtered. The values in the
hypercube are aggregated along all dimensions which are not displayed, and which
were not subject to a slicing operation.

Chapter 8 Monitoring a Development Process 325

A view configuration can be manually assembled by selecting the dimensions and
measures individually. Furthermore, a configuration can be changed into another
configuration by applying the aforementioned operations on multidimensional data
sets. However, some configurations are more useful than others for project status
analysis. The most common configurations have been identified and can be directly
selected by the user. On the one hand, common views provided by conventional
project management systems (PMS) like Microsoft Project can be configured.

• Gantt Chart

• Task Usage

• Resource Graph

• Resource Usage

The Gantt Chart configuration maps the tasks dimension to the y-axis, the time
dimension to the x-axis, and shows the planned workload in the cells of the pivot
table. The configuration Task Usage additionally maps the resources dimension to
the colors of the stacked-bar layers. The Resource Graph shows the resources on
the y-axis, the timeline on the x-axis, and the planned workload in the cells. The
Resource Usage configuration additionally maps the tasks dimension to the colors
of the stacked-bar layers.

On the other hand, there are view configurations, which are not provided by con-
ventional PMS. These configurations take specific modeling concepts of dynamic task
nets as well as domain-specific aspects into account, namely functional roles, task
execution states, progress degrees, and plant parts. The following configurations
are available.

• Task Workload

• Technical Crews

• Task States

The Task Workload configuration has been depicted in Figure 8.15. It can be used
to analyze the planned and actual workload of the tasks with respect to the different
plant parts. The view configuration Technical Crews maps the roles dimension to the
y-axis and the time dimension to the x-axis. The resources are mapped to the colors
of the stacked-bar layers. The configuration can be used to analyze the scheduled
workload for the different technical crews in the upcoming weeks.

A different perspective on the tasks in the project is provided by the view con-
figuration Task States which gives insight into the current execution states of the
tasks in the project This configuration is depicted in Figure 8.16. The time frame is
set to the current date. As in Figure 8.15, the tasks dimension is mapped onto the
y-axis of the pivot table. However, this time the tasks are grouped by the process
templates of which they are copies. Consequently, the values displayed in a row for
a certain process template are the aggregated values of all copies of this template

326 8.3 Visual Project Status Analysis

Specify Pump

23/11/2011

Preparing Running Terminated

Specify Heat
Exchanger

Specify Plug Flow
Reactor

planned

actual

planned

actual

planned

actual

Figure 8.16: Task States configuration of the project status analysis view.

in the dynamic task net. The colors of the stacked bars indicate the execution states
of the tasks. The measure is the planned total workload of the tasks. This measure
has been chosen instead of the tasks count, so that tasks with a high total workload
are adequately represented. By means of the view configuration Task States, the
project responsible can inspect, how much work is already successfully completed,
how many tasks—as measured by workload—are currently running, and how much
effort still remains for the preparing tasks. These actual values are compared with
the planned values which are derived from the planned start and end dates of the
tasks. This view configuration is useful for project controlling to analyze the overall
performance of all process instances derived from certain templates.

In the example of Figure 8.16, the measured values which are mapped to the
bar stack widths indicate that for the process template Specify Pump less tasks
have been terminated than planned, mainly because several tasks have not been
started as planned. At the same time, the enactment of the tasks derived from the
process templates Specify Heat Exchanger and Specify Plug Flow Reactor goes
nearly as planned. The project responsible could gain even more insight into where
the bottleneck with respect to the specification of pumps is by mapping the resource
dimension to the x-axis. This would reveal, if certain resources are responsible for
the delay.

Chapter 8 Monitoring a Development Process 327

Project controlling and process improvement When the view configuration of
Figure 8.15 is used after the end of the project or the end of a certain project phase,
it can reveal that the planned effort defined in task types or process templates was
unrealistic, and that the process knowledge has to be improved.

In general, the monitoring view can be used for two different purposes: for
process controlling and for process analysis. While the former may lead to corrective
measures or plan changes at runtime of a project, the latter can be used for process
improvement. During the course of a development project, the different view
configurations can reveal, if certain tasks exceed their time limits, or if the count
of completed process instances of a certain type lies below the planned number.
After the completion of an engineering project, the actual workload for tasks and
subprocesses can be compared with the required workload defined in the task
types and process templates. The latter can be adapted if necessary. Furthermore,
actual resource allocation data can be evaluated and compared with the defined
assignments in the process templates.

8.3.4 Analyzing the History of Plan Changes

Besides the pivot table, an additional view is provided to analyze the past perfor-
mance of the enacted development process and the history of plan changes. For
every task in the project, the values of key properties can be displayed in line
diagrams which show how these values developed over time. The planned total
workload of a task can be displayed as it was planned at certain dates in the past.
Accordingly, the planned degree of completion can be visualized. Regarding process
performance, the accumulated actual workload of a task can be displayed which
yields a monotonically nondecreasing function. In contrast, the actual degree of
completion may also decrease compared to earlier values. Finally, the performance
indices SPI and CPI can be displayed.

Planned values and the values of derived properties show the planning state for a
certain date. Therefore, the dates refer to the time stamp that is assigned to each
record in the data warehouse. The management data can be exported to the data
warehouse in regular intervals, e.g. every night or once a week. Furthermore, it is
technically possible to export changes to the management data incrementally after
every change operation, e.g. after the creation of a new task. Based on the time
stamp, it is possible to visualize how the planned values have changed over time.
This allows for a detailed analysis of the planning process itself, e.g. it is possible to
see if the plan had to be adapted several times in the course of the project. In case
of actual values, the dates refer to the time dimension in the data warehouse. In this
case, only the most recent time stamp is relevant. Actual values which have been
determined for a date in the past cannot change anymore.

The successive property values can be visualized in separate line diagrams and
can even be combined in one diagram. This combination allows, for example, to
investigate whether a decrease of the actual progress of a task is related to plan
changes. This situation is illustrated in Figure 8.17 where the degree of completion

328 8.4 Related Work

100%

50%

0%

600 MHRS

300 MHRS

0 MHRS
April May August September October November

DOCPlannedTotal Workload

Accumulated
Actual Workload

Figure 8.17: Visual comparison of the development of property values.

of a task decreased because its total workload was increased.

8.3.5 Coupling with Management Views

The views for project management are coupled with the project status analysis view
by navigation functionality. To take immediate action based on the analysis of the
running process, a user can navigate from the project status analysis view to specific
tasks in the task net or task list view. For example, if the view configuration Task
States reveals that a task has not been completed as planned, the user can directly
navigate to this task in the task net view to take corrective measures or to adapt the
plan. Vice versa, the project manager often needs additional information when he is
replanning the project. For example, if he is looking for an additional resource for a
task, he can navigate from the dialog for the definition of a task assignment to the
adequately configured analysis view, which shows him the utilization of the resources
that can play the required role. General purpose multidimensional visualization tools
fail to provide this tight coupling with project management views.

8.4 Related Work

Research work that is related to the project monitoring approach presented in
this chapter can be divided into two categories. First, there are approaches that
specifically address progress measurement of development processes. Second,
research has been undertaken regarding the processing and visualization of project
management data for project status analysis.

8.4.1 Progress Measurement of Development Processes

Liefeldt et al. A specific approach for measuring the progress of a plant design
project in Comos has been presented in [LGB+05]. Liefeldt et al. describe how the

Chapter 8 Monitoring a Development Process 329

project’s status can be automatically retrieved from the Comos database by analyz-
ing the engineering data. Progress measurement can be continuously performed,
simultaneously to the performance of the design process. It does not depend on
reports issued by assigned resources, and it is not restricted to certain time points,
e.g. once every month. The progress data is not stored in a separated database but
together with the engineering data in the Comos database. The engineering data is
systematically analyzed and evaluated to determine the project’s status. The basis
for this analysis is the object-oriented approach to plant design in Comos. Additional
objects are inserted into the database for the purpose of progress measurement.
So-called check objects perform checks on the engineering data and can be divided
into three different types. An attribute check determines whether a certain attribute
value is set. A document check determines whether required revisions of a document
have been created. Finally, a reference check determines whether certain objects
are linked with each other. The check objects can be associated with the main
engineering phases in a plant design process, i.e. to successfully complete a certain
phase, all associated checks have to be successful. Checkpoint objects in the Comos
database search for check objects, perform the corresponding checks, and visualize
or propagate the results. Various search criteria can be specified including the
device type, plant part, functional role, and the engineering phase. Checkpoints can
be structured hierarchically, so that the results of lower checkpoints are aggregated
by superior checkpoints. Checks and checkpoints can only be performed and evalu-
ated when the corresponding engineering objects have already been instantiated,
which is not necessarily the case for all objects in the early phases of a plant design
project. Therefore, a quantity structure of the expected number of engineering
objects is created at project start. In this way, the existing objects can be related to
the expected total amount of objects, even in early phases of a plant design project.

The proposed approach to progress measurement has the advantage that it does
not require any additional measuring effort at project runtime. Members of the
project team do not have to explicitly report their progress. On the other hand,
there is a comparably large effort involved with customizing a Comos project to
enable progress measurement. The aggregation of check results at checkpoint
objects and the use of a quantity structure to incorporate not yet existing objects
are related to the aggregation method for the DOC of subtasks at a complex parent
task in PROCEED, where the total workload of the parent task may incorporate the
workload required for not yet existing subtasks. The filters which can be used for
the evaluation of checkpoint objects are related to the dimensions in the project data
warehouse of PROCEED, where the results can also be structure according to plant
parts, functional roles, etc. The significant difference of the progress measurement
approach of Liefeldt et al. compared to the approach presented in this thesis is
that the former does not rely on an explicitly defined process model. This has
the disadvantage that the progress of the project and possible delays cannot be
associated with specific tasks in the project plan. The same disadvantage has been
identified for the common progress measurement approach from practice which is
only based on document states. For this reason, this approach has been integrated

330 8.4 Related Work

with dynamic task nets in PROCEED as described in Section 8.1. In the same way,
the approach of Liefeldt et al. could be integrated with the progress measurement
capabilities of PROCEED. Check objects would not only be associated with the
engineering phases but could be associated with individual tasks as well. This
integration has not been performed because the technical details of the approach
presented in [LGB+05] have not been available. On the conceptual level, only
document checks have been integrated into the progress measurement approach
implemented in PROCEED.

Gupta and Buddhdeo An early publication on progress measurement in plant
engineering projects is [GB83]. Gupta and Buddhdeo present an approach which
awards progress at the completion of job steps which are physically measurable.
The approach implicitly takes into account the efficiency of the assigned resources.
In this regard, it differs from the common methods for progress management which
were used at that time including estimate to completion. The main project phases
are divided into activities which are further divided into so-called job steps. The
job steps of a common parent activity are sequentially executed. The progress of
a project phase is computed as the weighted average of the progress degrees of
the activities, weighted by their estimated required workload. The progress of an
activity is determined by the last job step which has been completed. Every job
step defines an overall progress of the parent activity. The overall progress of a job
step is determined before project runtime based on the artifacts which have to be
produced in the activity. The man hours required to create the various artifacts are
distributed to the work steps. The proportion of the cumulative man hours required
to complete a job step and its preceding job steps of the total required workload to
complete the activity determines the overall progress defined for the job step.

The progress measurement approach presented in [GB83] is related to the ap-
proach presented in this thesis in many ways. In both cases, the actual physical
progress of tasks is measured instead of the mere progress in time. The aggrega-
tion method used in [GB83] is similar to the one presented in this thesis with the
exception that in [GB83] no workload can be assigned to the complex task. Gupta
and Buddhdeo restrict their approach to the first four levels of the work breakdown
structure comprising project phases, activities, and job steps. The approach pre-
sented in this thesis can be applied to task net hierarchies of arbitrary depth. Job
steps in [GB83] correspond to work steps in PROCEED in that they define steps in a
procedure which is performed to execute a task. However, the progress measure-
ment based on job steps is related to the progress measure Milestones which has
been introduced in this chapter. Job steps and milestones define an overall degree
of completion of the parent task which is reached when the job step/milestone is
completed. The determination of the overall progress associated with job steps
is related to the progress measure Document States. A job step implicitly defines
development states of the artifacts produced in the corresponding activity. The
workload required for the various artifacts to reach the respective development
states is combined to obtain the workload required for the job step. In a sense,

Chapter 8 Monitoring a Development Process 331

the concepts underlying the progress measures Milestones and Document States
are combined in the approach for measuring the progress of an activity in [GB83].
Altogether, the basic ideas of Gupta and Buddhdeo have been picked up in this
thesis and have been extended resulting in a more elaborate and flexible progress
measurement approach.

Daubner et al. In [Dau05, DHW06, DWH06, Dau08] Daubner et al. present an ap-
proach for progress measurement in software development projects, which anchors
the progress measures to elements of the instantiated process model. This allows to
define measures independently of a concrete project, in particular before the start
of a project. The term process model is solely used for process model definitions
[DWH06]. The V-Model XT is used as an example for a process model. It defines
roles, activities, and products. The work breakdown structure (WBS) of a project is
used to connect the actual products produced in a project with the activities of the
process model. A product is associated with a work package in the WBS which is in
turn an instance of an activity defined in the process model. In this way, the lines of
code of source files which belong to a certain process activity can be determined
at project runtime. Further measures can be defined by the process manager and
selected by a project manager. To make the measured values of different projects
comparable, a standard WBS is defined and tailored for individual projects. The
approach to software process measurement has been implemented as an extension
of the well-known tool Maven, which supports the management and the development
process of Java projects, resulting in the Maven Measurement Framework (MMF).
The unique WBS code of a work package is used in a time recording system to track
the effort spent by resources. Furthermore, these references to the work breakdown
structure are also maintained in the configuration management system and the bug
tracking system to relate the progress on products to work packages in the WBS.

The described approach for software process measurement allows to define
progress, productivity, and quality measures in advance before the start of a project.
Several measures can be automatically evaluated at project runtime. However, to
track the effort spent by the assigned resources on work packages, a time recording
system has to be used which requires manual data input. With respect to progress
measurement, it does not become clear how the reference for 100% completion of a
work package is defined, and whether the effort required for future process phases
is taken into account. A degree of completion of running work packages cannot
be determined. Only the deviation of the manually estimated expected duration
from the planned duration is determined in [Dau08]. Consequently, the support
for project controlling is limited. The main disadvantage of the approach of Daub-
ner is that no explicit representation of a process model instance is maintained.
Only the WBS of a project is used for measurement but not the project plan with
scheduled dates. Execution states of tasks and actual data flow are not modeled.
As a consequence, the connection between product versions and activities of the
process model definition has to be established by the WBS codes of work packages.
In contrast, timed dynamic task nets are used in PROCEED to capture all aspects of

332 8.4 Related Work

dimensions: purpose, technical, improvement, role, and

tool dimension. Each dimension consists of several ele-

mentary characteristics (see Fig. 1). The following sub-
sections focus on these dimensions and give a short

definition for their characteristics.

2.1. Purpose dimension

The purpose dimension describes the possible usage

purposes of an SPCC (such as monitoring or prediction)

and therewith the basic (external) functionality. The
following terms do not give a complete list of possible

SPCC usage purposes, but aim at defining an extensible

and adaptable basic structure. Extensibility means the

capability to introduce a new usage purpose together

with associated techniques and methods that implement

the purpose. Adaptability means the capability to

choose different techniques and methods to implement a

certain purpose (or a group of purposes) and the pos-
sibility to tailor them to the context of a specific soft-

ware development project. Techniques and methods (for

different purposes) form the basis of the SPCC func-

tionality. Therefore, we will refer to them as SPCC

functions in the following: An SPCC function is a

technique or method that implements a certain purpose

or a group of purposes. The latter is the case if a func-

tion covers more than one single purpose.
The following definitions are adapted from the soft-

ware management environment (SME) approach

(Hendrick et al., 1992), which was developed at the

NASA/SEL.

Monitoring 1 refers to observing the project state and

progress by surveying attributes or combinations of at-

tributes from processes, products, and resources of the

project. Briand et al. (1996) define monitoring as fol-

lowing the trends/evolution of the performance/state of
processes and products.

Comparison aims at using archived data from com-

pleted projects or nominal performance guidelines as

references to judge the progress and health of the cur-

rent project.

Analysis aims at (1) examining the monitoring results

and (2) applying information about the project context

to identify the probable causes of deviations from the
nominal performance guidelines.

Assessment aims at weighting information about the

project to form a judgment of project, product, and

process quality.

Prediction aims at extrapolating attributes of pro-

cesses, products, and resources of the project from the

current project status towards project completion to

assess the future behavior of the project. In general,
prediction always requires some kind of mathematical

model. Fenton and Pfleeger (1996) define prediction as

identifying relationships between various process and

product factors and using these relationships to predict

relevant external attributes of products and processes.

One means for capturing the dynamic behavior of de-

velopment projects can be simulation modeling, i.e.,

values for key parameters can be forecasted with simu-
lation. This requires valid simulation models for the

specific project contexts.

Planning, in the context of an SPCC, aims at defining

baselines or nominal values for certain measures. In

addition, it aims at assessing (alternative) planning

decisions and their effects. This is the basis for fur-

ther dynamic replanning during the execution of the

project.

Fig. 1. Dimensions of the identified taxonomy.

1 In the SME approach the function is called observation.

J. M€uunch, J. Heidrich / The Journal of Systems and Software 70 (2004) 3–19 5

Figure 8.18: Dimensions of the SPCC taxonomy [MH04].

a running development process. The enactment state including the actual data flow
is explicitly modeled and is used for progress measurement.

Software project control centers In [MH04], Münch and Heidrich present the
concept of a software project control center (SPCC) which is a means for collecting,
interpreting, and visualizing measurement data in order to provide purpose- and
role-oriented information to all involved parties during the execution of a software
development project. The involved parties include the project manager and the
quality assurer but also the developers. The input information of an SPCC includes
information about project goals and characteristics, project plan information, mea-
surement data of the current project, and empirical data from previous projects.
An SPCC visualizes measurement data depending on the context of the project, the
purpose of the usage (e.g. monitoring), and the role of the user. A reference model
for concepts and definitions around SPCCs is presented in [MH04]. An SPCC can be
classified according to five dimensions: purpose, technical, improvement, role and
tool dimension, which are presented in Figure 8.18. The purpose of an SPCC can,
e.g., cover the monitoring of a running project and the prediction of future project
behavior. On the technical dimension, the different purposes of data collection and
presentation/visualization are distinguished among others. Münch and Heidrich also
describe, how an SPCC can be integrated into a software engineering environment.
This integration is illustrated in Figure 8.19 where four different levels of a software
development model are distinguished: roles, services, tools, and information. The
SPCC is neither used for project planning nor for the collection of measurement
data, but it relies on the information provided by these tools.

The concepts and definitions regarding software process control centers presented
in [MH04] can be transferred to development processes in general. This allows to
characterize the functionalities provided by PROCEED using the terminology intro-

Chapter 8 Monitoring a Development Process 333

Roles: The roles involved in software development

projects use different services in different phases of the
project to fulfill their tasks. For instance, a project

planner uses planning services in order to create a pro-

ject plan, a developer uses technical development ser-

vices in order to develop artefacts, a project manager

uses management services in order to control the pro-

ject, and so on.

Services: We assume that all services needed to con-

duct a software development project can be classified
along three dimensions: planning services, execution

services, and know-how management services. (1) Pro-

ject planning is done based on explicit project goals and

characteristics. During planning, models (e.g., process

models, product models) are instantiated and related in

order to build a project representation with respect to

the project’s goals and characteristics. This includes the

determination of quantitative target values based on
experience from past projects. The project plan can be

used for communication, coordination, resource as-

signment, and quality assurance purposes during project

execution. We distinguish initial planning, which refers

to planning before project start, from replanning, which

addresses the systematic changing or detailing of the

plan during project execution. We make this distinction

because replanning requires additional input such as the
current project state, which can be provided by an

SPCC. (2) The services mainly needed for project exe-

cution can be divided into services for technical devel-

opment in order to develop artefacts, services for project

management in order to control the software develop-
ment project itself, and, finally, services for quality as-

surance in order to assure the quality of resulting

artefacts. The services provided by an SPCC mainly

support the three project execution services by provid-

ing, for instance, information about developed artefacts,

the current project state, or quality goals of the project.

Therefore, the SPCC services can be seen as orthogonal

project execution services. (3) Know-how management
is used to analyze the collected project data in order to

provide and improve existing models for future use.

Generally, know-how management also includes gener-

alizing or formalizing experience in the form of models,

guidelines, etc.

Tools: Some services are performed automatically or

at least semi-automatically; that is, a human agent is

supported by dedicated tools. For instance, there exist
tools to support project planning, to measure project

data, to develop artefacts, or to package experience. All

these tools are invoked by services and use information

resulting from other tools or from an experience base to

perform their tasks. An SPCC tool is mainly deployed

during the execution of a project. It supports roles such

as project manager, quality assurer, or developer (re-

spectively corresponding services) by providing, process-
ing, interpreting, and visualizing process-accompanying

data for their specific needs and purposes. Measured on-

line project data is retrieved from the project-specific

Fig. 2. Software development model.

J. M€uunch, J. Heidrich / The Journal of Systems and Software 70 (2004) 3–19 9

Figure 8.19: Software development model [MH04].

duced in [MH04]. With respect to the dimensions for classifying an SPCC, it can be
stated that PROCEED fulfills the purposes of monitoring, prediction, planning, and
guidance. On the technical dimension, the functionality of PROCEED covers data
collection and validation, data processing, presentation and visualization, as well as
model building. Because knowledge gained in a project about the enacted processes
can be reused in future projects, PROCEED can support the project-specific improve-
ment cycle as well as the strategic improvement cycle. It provides an experience
base containing process models and historical planning data. Finally, different roles
may use the PROCEED system, including project manager and developer. When the
software development model of Figure 8.19 is transferred to the general case of
a development process, it can be seen that PROCEED and Comos together cover
the whole functionality provided by all depicted tools including project planning
and progress measurement, where the software development environment has to
be replaced by the design and specification functionalities of Comos. The Comos
database and the PROCEED project data warehouse together provide the knowledge
which is contained in the experience base of an SPCC.

Progress measurement of workflow instances The publications of Eder et al.
have already been reviewed in Section 7.6 with respect to temporal analysis of
workflows. In [EPPR99], Eder et al. furthermore present an approach to monitor
the performance of running workflow instances. At workflow runtime, the internal
deadlines which are computed for every task are used for the early detection of

334 8.4 Related Work

delays. Traffic light colors are used to visualize the status of a running workflow
instance with respect to the defined deadline. If a workflow is green, it is expected
to finish in time without skipping tasks or choosing shorter paths (cf. Section 7.6). A
yellow workflow can still be finished in time by skipping certain tasks or choosing
shorter paths. A red workflow can only be finished in time if certain tasks are
completed with shorter durations than planned.

The warning system implemented in PROCEED also uses three different color
values to visualize the delay or budget overrun of a task. However, while the
approach presented by Eder et al. is merely based on internal deadlines for workflow
tasks, the warning system implemented in PROCEED is based on a resource-feasible
schedule used as a reference and earned value analysis for extrapolating the amount
of delay and budget overrun at task completion. The approach of Eder et al. can
only be applied to complex, workflow-managed tasks, while the approach based on
earned value analysis can be applied to all tasks in a project.

8.4.2 Visualization of Project Management Data

The visualization of multidimensional data and especially the application of these
techniques to project management have been tackled in some related research
projects which are described in this section. However, none of the related works
covers the full cycle depicted in Figure 8.11. Furthermore, domain specific measures
and dimensions are neglected.

Stolte et al. Polaris [STH03] has been a research project at Stanford University
concerned with the visualization of multidimensional data from a data warehouse.
The developed prototype offers a configurable pivot table whose axes can be asso-
ciated with the dimensions of a data cube. The entries of the pivot table can be
numbers or even diagrams, and their color can also be associated with a dimension.
The approach is closely related to the multidimensional visualization of project man-
agement data in PROCEED. However, since Polaris is a general purpose visualization
tool, it does not integrate with a process management system, i.e. no navigation
from an analysis view to corresponding management views is possible.

Songer et al. In [DBC04], an application with different multidimensional views for
project status control of construction projects is presented. The analysis is limited
to budget data, and there is no pivot table among the visualizations. The focus lies
rather on a comparative study about the usefulness of different diagrams than on the
development of a user interface concept for a project management and controlling
tool.

Nie et al. Another approach which applies OLAP technology to project status anal-
ysis can be found in [HN07]. A multidimensional data model for a data warehouse
is developed, which comprises five dimensions and the measures person hours,
actual costs and planned costs. A pivot table is used to generate different views on

Chapter 8 Monitoring a Development Process 335

the project data using MDX-queries. The approach uses a simple star schema for
the data model instead of a more complex snowflake schema like in the approach
presented in this thesis. No information about plan changes in the monitored project
is stored in the data warehouse. No graphical visualization techniques are applied to
present the data in the pivot table. Only the standard functionality of the SQL-server
is used. The focus of [HN07] lies on the evaluation of the OLAP technology for
project management, but not on a suitable visualization of the data.

Eder et al. In [EOG02], Eder et al. present a general architecture for a workflow
log data warehouse. The enactment data which is collected by a WfMS at runtime
of the workflow instances is exported to the data warehouse and processed. The
measured values stored in the cells of a hypercube which is spanned by several
dimensions. The data warehouse can be queried in several different ways to analyze
the performance of the workflow instances, e.g. the number of workflow instances
started by a certain agent for successive dates can be determined.

The approach presented by Eder et al. is related to the project data warehouse
of PROCEED. In both cases, runtime data of process instances is exported to a
data warehouse, processed, and queried for monitoring and controlling as well
as process improvement. Both warehouses store the data for subsequent points
in time for trend analysis. However, the two approaches have different purposes
which has lead to significantly different warehouse architectures. While the data
warehouse of Eder et al. collects runtime data of independent workflow instances
which represent business processes in an organization, the workflow instances in the
PROCEED data warehouse are all embedded in a development project. In [EOG02],
no planned values for the workload and duration of workflows and no scheduled
dates are considered. Only the actual durations of workflows and workflow tasks
are determined, as well as the estimated and actual overtimes with respect to
defined deadlines. A comparison of planned and actual values beyond the end times
of workflows is not possible because the workflow instances are not scheduled.
The visualization of the consolidated data in the data warehouse is not treated
in [EOG02]. Merely, line diagrams are used to display the trends of individual
measured values. In contrast, the multidimensional visualization approach realized
in PROCEED allows to compare different key figures of the enacted processes.
Finally, the data warehouse is not connected with the WfMS in [EOG02], i.e. the
systems are uncoupled and it is not possible to navigate from the analysis views to
the workflow management views to take corrective measures.

Statistical process control The statistical process control (SPC) has been applied
in production management systems for decades but only recently for controlling
software development processes [FC99, DCA04]. Several different chart types or
diagrams are used for SPC. A run chart can be used to track trends of measured
values over a period of time. A control chart is a run chart in which upper and lower
levels of tolerance are defined for the measured values. The monitoring system
informs the process owner if a value is above the upper or below the lower level.

336 8.5 Conclusion

Early warning messages can be generated if a certain number of successive values
are continuously increasing or decreasing. Histograms are used to present data by
frequency, i.e. each bar represents the number of observations in a certain time
frame that fit in the indicated range. A Pareto chart is a specific bar chart that
presents prioritized in some fashion. Finally, scatter diagrams plot data points,
allowing trends to be observed between one variable and another.

The measured values which are exported to the project data warehouse of PRO-
CEED can be visualized in different diagrams. Run charts can be used to visualize
the planned workload, actual progress, etc. of tasks. The SPI and CPI of a task
can be visualized in control charts with lower levels of tolerance. The pivot table
for project status analysis can be configured to show bar charts which resemble
histograms, although in PROCEED there are no measures which merely count the
occurrences of events. Besides the diagram types, the SPC defines several statis-
tical methods of data analysis which are, however, not related to the approach for
progress measurement presented in this thesis.

8.5 Conclusion

In this chapter, the capabilities of PROCEED with respect to project monitoring have
been described. Several different progress measures are available to determine
the degree of completion of a task. The most common measures from practice
have been integrated with new computation methods which exploit the specific
modeling capabilities of the TNT meta-model. One of the new measures takes the
actual data flow into account, i.e. the produced document revisions which are
explicitly modeled in dynamic task nets. The second new measure uses reference
data available for workflow templates to automatically determine the degree of
completion of an enacted workflow. Earned value analysis is applied to compare the
actual performance of tasks with the plan and to quantitatively measure deviations.
In this way, project planning, scheduling and monitoring are integrated.

The multidimensional visualization of the project management data complements
the project monitoring functionality based on the degree of completion and perfor-
mance indices of tasks. The project management data is exported to a project data
warehouse to be processed for visualization. The export is performed in regular
intervals, so that subsequent planning states are stored and can be analyzed. This
ensures the traceability of plan changes.

Altogether, this chapter demonstrated the integrated approach to project moni-
toring implemented in PROCEED. Depending on the analysis of the current project
status, replanning and rescheduling may be required. In the next chapter will
describe how changes to a timed dynamic task net are performed in a controlled
fashion.

Chapter 9 Change Management 337

Chapter 9

Change Management

The authorization model for dynamic task nets which has been presented in Sec-
tion 5.5 ensures that project team members can only make changes to the dynamic
task net according to their personal permissions and their task assignments. How-
ever, avoiding unauthorized modifications of a task net does not support the respon-
sible resources in performing their management activities. Therefore, the workflow
approach has been applied to define and enact management processes in addition
to technical processes. The management processes have to be handled differently
compared to the technical processes in a development project. The solution for
the controlled enactment of management processes in PROCEED is described in
Section 9.1.

During project runtime, when the defined processes are enacted, many disruptions
can occur which require changes to the calculated schedule. These disruptions
include bad performance of subprocesses, unexpected unavailability of resources,
and additional work due to changed requirements. An overview over possible
disruptions in a project and according compensating actions is given in Section 9.2.
The project management control cycle which has been introduced in Section 3.3
shows that replanning of a project may be required due to performance analysis.
This includes the rescheduling of tasks at project runtime. Managing changes to a
project plan and integrating planning and scheduling are two of the open research
questions with respect to resource-constrained scheduling [Smi03]. The scheduling
algorithm presented in Chapter 7 allows to repair a disrupted schedule. However, it
does not define how manual plan changes to a dynamic task net can be performed at
runtime and when rescheduling is performed in the process. Section 9.3 describes
the general change management procedure, which defines how changes to a timed
dynamic task net have to be performed during enactment in order to avoid violations
of timing consistency constraints and authorization rules. In particular, it is shown
how the procedure is applied to change the values of dependent task properties.

9.1 Enactment of Management Processes

Project management covers various different activities including project planning,
reporting, change management, and quality management (cf. Section 3.1.1). Project
management processes are often standardized within an organization, to ensure

338 9.1 Enactment of Management Processes

Inspect Revision

Revision
Workflow

Create RevisionRequest Change

Analyze and Evaluate Change Request

Plan Change

IfElse

Implement Change

Verify Change

Close Change

While

Sequence

CM Workflow

Approve Revision

a) b)

Figure 9.1: Examples for management workflows.

organization-wide quality standards. In particular, the following project management
activities are usually performed according to predefined procedures.

• Reporting

• Change management

• Quality management

Reporting refers in this case to the submission of problem reports by people respon-
sible for individual work packages or tasks. Change management includes changes
to the final product of the development process as well as changes to the project plan,
where the former usually involves the latter. Finally, quality management refers to
processes in a development project which ensure the quality standards demanded
for the final product, e.g. reviews of documents. Processes which belong to the
listed project management activities can be explicitly defined as process model
definitions. Instances of these process model definitions are enacted whenever a
problem occurs, a change is requested, or the quality of an intermediate product
has to be verified in a development project.

In Figure 9.1 a), an example for an explicitly defined change management process
is depicted, which has been adapted from [Wik10]. In general, change management

Chapter 9 Change Management 339

has two main objectives [CAD03]. The first is to provide support for the processing of
changes, which includes requesting, determining attainability, planning, implement-
ing, and evaluating of changes. The second objective is traceability, i.e. it should be
possible at any time to list all active and implemented changes. Both objectives can
be achieved by enacting change management processes in a process management
system. In the change management process depicted in Figure 9.1 a), a change
is identified and a change request (CR) is created in the first task. The reason for
a change can be the correction of an error or the improvement of the (design of
the) product. Authorized resources analyze the CR and determine the action to be
taken. In large development projects, the evaluation of a change request is often
performed by a so-called change control board [CAD03]. If the change is approved,
the required tasks for the implementation of the change are planned and assigned to
qualified resources, which are then responsible for implementing the change. When
the assigned resources have completed the implementation, the change has to be
verified, e.g. by means of reviews. If the verification is not successful, additional
work has to be performed to finally implement the change correctly and completely.
In the end, the change request is closed.

The enactment of such change management processes enables the traceability of
changes in a development project. A general change management procedure can
be prescribed for all change management cases in the development projects of an
organization. Such a procedure ensures that every change request is handled in a
structured way and that the responsibilities for the evaluation, implementation, and
verification of changes are clearly defined. For this reason, a change management
procedure is not adapted for individual cases. Although the actual cases differ, i.e.
the changes to the product and the involved changes to the project plan are different
from case to case, the general procedure which specifies how to proceed in these
cases is not changed.

The same argument holds for quality management processes like document re-
views. Figure 9.1 b) shows an example of a review process which consists of three
steps: creation, inspection, and approval of a document revision. This process
reflects the common steps which have to be performed in the Comos system before
a revision of a document can be released. The enactment of the process ensures
that only authorized resources may perform the inspection and approval tasks of the
process.

All in all, management processes for project controlling, change management,
and quality management are rather static, in contrast to development processes.
Furthermore, management processes comprise alternative courses of action which
depend on management decisions made at process runtime. The alternatives are
predefined before process runtime. As a consequence, the workflow approach is
suitable for the modeling and enactment of management processes. Therefore, the
workflow management functionality of the PROCEED prototype, which has been
described in Section 6.3, is not only used to support technical processes but also
management processes.

340 9.1 Enactment of Management Processes

Task

IsManagementTask : bool
related task

Trigger

EventHandler

Condition : string
FireOnlyOnce : bool

DateChanged

0..1

*
*

*
management workflow

technical task

Started Aborted ...

workflow template
1

*

*

Action

Suspended Resumed

TaskType0..1
type of
parent
task

0..1

0..1

*

Figure 9.2: Management extensions of the TNT meta-model.

Figure 9.2 shows the management extensions of the TNT meta-model which are
required to model and enact management processes in addition to development
processes in PROCEED. The new classes, properties, and associations defined in the
class diagram will be explained in the following sections.

9.1.1 Management Tasks

Management tasks define work which has to be performed to manage a development
project. They are distinguished from technical tasks in a task net by setting the
property IsManagementTask, which is defined for the class Task, to the value true.
Management tasks can be atomic, but they can also define complex processes.
Workflow templates can be defined for management processes in the same way as
for technical processes, including task assignments with required roles and data
flows between the workflow tasks. A workflow template for a management process
is enacted in the form of a dynamic task net as described in Section 6.3. Both,
the workflow-managed task net and its workflow tasks are management tasks. A
workflow-managed management task is called a management workflow. Its subtasks
may be manual management tasks or again management workflows.

Although the same tools and mechanisms are applied for the modeling and enact-
ment of management workflows as for technical workflows, they represent processes
of a different kind. Management processes which are enacted in a development

Chapter 9 Change Management 341

project are not subprocesses of the overall development process. The subtasks of
enacted management workflows are not part of the project plan. On the contrary,
the execution of management tasks may involve changes to the project plan, e.g.
to handle a change request. The successful completion of quality management
processes may be a prerequisite for certain state changes in the dynamic task net
representing the development process, e.g. several review workflows may have to
be completed before a milestone task may be committed. Management tasks are
usually not scheduled in a development project. They are rather executed as soon as
possible and are therefore maintained in todo-lists. The explicit distinction between
development processes and management processes in a project was already made
in [NW94]. Management processes were enacted to change a development process.
The conceptual framework presented in [NW94] will be reviewed in Section 9.4.1.

Although management tasks are not part of the project plan and are not scheduled,
they involve costs which have to be incorporated in the project’s budget. A common
approach in project management is to define a first level element in the work
breakdown structure of a project which subsumes all project management activities
[Bur00, Hau01]. As explained in Section 3.1, the costs of a project are distributed
over the work breakdown structure which covers the full amount of work that has to
be conducted in the project. Therefore, also project management is incorporated
as a task in the WBS. This approach has been applied for management tasks in
PROCEED. All management tasks are located in the task net hierarchy under the
task Project Management which is defined by default on the first level below the
root task representing the whole project. Figure 9.3 shows the task net hierarchy of
the example scenario which is extended by the task Project Management. Subtasks
of the task Project Management can be defined to structure the management tasks
according to different topics, e.g. Change Management and Quality Management
as depicted in Figure 9.3. The task Project Management is a management task
itself, i.e. the property IsManagementTask is set to true by default. Furthermore,
a management task can only be created as a subtask of another management task.
This ensures that management tasks are always located somewhere below the task
Project Management in the task net hierarchy.

The majority of management workflows and tasks in a project are somehow
related to the project plan. In PROCEED, the project plan is the scheduled part of
the dynamic task net without the task Project Management and its subtasks. The
enactment of change management workflows involves changes to the project plan,
the successful completion of quality management processes is a prerequisite for
certain state changes in the dynamic task net, and reporting workflows are invoked
to report problems which are detected in certain tasks of the development process.
Therefore, the management tasks are linked to the tasks in the project plan to which
they refer. When a management workflow is invoked by a user in his role as the
responsible resource of a certain task, then the management workflow is linked
to that task. The technical task is then called the related task of the management
workflow. The corresponding association which has been defined for the class Task
is depicted in Figure 9.2.

342 9.1 Enactment of Management Processes

Detail

Engineering

Basic

Engineering

Preliminary

Planning

Plant Design Project

Project

Management

Change

Management

Quality

Management

Figure 9.3: Management tasks in work breakdown structure.

The procedures which have to be followed in a project to perform the project man-
agement activities vary from organization to organization. Within an organization,
these processes may be standardized to increase the performance of projects. If
individual projects in an organization require higher quality and safety standards
than others, then specific management processes may be defined for these projects.
As a consequence, the management processes in development projects can be
organization-specific as well as project-specific. This requires the parameterization
of management processes and development processes for an organization and its
projects.

PROCEED provides the means to define and parameterize management processes
for organizations and projects individually. The task types for development tasks
as well as the management workflow templates and their subtasks can be param-
eterized. The definition of management workflow templates is also part of the
parameterization process. The examples for management workflows which have
been presented in Figure 9.1 are not predefined in PROCEED but could have been
defined by a process manager of a plant engineering company which uses Comos
and PROCEED in its design projects.

9.1.2 Parameterization of Task Types

In PROCEED, domain-specific task types can be defined which can be instantiated
in process model instances in a development project (cf. Section 6.1). These task
types for development tasks can be parameterized to specify which management
workflows can be started from the respective task instances. This means, that the
responsible resource of a task which has been instantiated from a type can invoke
those management workflows for the task which have been specified for the type.
For example, the responsible resource may want to send a problem report to the
responsible resource of the parent task and starts a reporting workflow for this
purpose. In addition to manual invocation, management workflows may also be

Chapter 9 Change Management 343

triggered automatically for a task upon certain events which are related to the
task. Altogether, there are the following two ways to parameterize a task types with
respect to management workflows.

• Actions

• Events

Actions and events are both possible triggers of management workflows. In Fig-
ure 9.2 the classes Action and EventHandler are inherited from the abstract class
Trigger for which associations to the class Task are defined. Objects of the these
classes always belong to a unique technical task or to a task type. Upon instantiation
of a task, the Trigger objects associated with the type are cloned for the instance.
Furthermore, task instances refer to a workflow template which defines the manage-
ment workflow to be started. The root task of a workflow template is an object of
the class Task (cf. Section 6.2). If one or several management workflows have been
started for an action or an event, then they are connected to the respective Action or
EventHandler objects.

Actions For a task type, arbitrary user-defined actions can be specified and as-
sociated with management workflow templates. Performing such an action for a
task instance in a concrete project is equivalent to the invocation of a management
workflow which is derived from the associated template. Because the actions and
associated management workflows can be freely defined during parameterization,
only examples for possible actions can be given here.

Report problem The responsible resource of a task may report a problem related
to his task, e.g. technical problems may have occurred which will cause a
delay of the task. The invoked management workflow routes the information
to the resource which has to be informed about the problem. This may be the
responsible resource of the parent task or the work package to which the task
belongs. It may as well be the group leader of the responsible resource, the
project controller, or the project manager. The definition which resource has to be
informed is organization-specific and can be specified in the workflow template
during the parameterization process.

Request plan change With this action, a responsible resource can request a change
to the project plan which is related to his task. For example, if the resource
estimates that the task cannot be completed within the planned duration, he may
request a duration increase and with it an increase of the planned workload and
budget of his task. The management workflow routes the request to the person
who is authorized to decide over the plan change. This may be the responsible
resource of the parent task or the work package to which the task belongs, or
the project manager, depending on how plan change requests shall be handled in
the project.

344 9.1 Enactment of Management Processes

Operation Event Parameters

Start(t) t

Commit(t) t

Abort(t) t

CreateSubtask(p, out s) s

CreateOutputParameter(t, out o) o

ProduceRevision(o, out r) o, r
DeleteTaskAssignment(a) a.Task, a.Resource

Table 9.1: Selected events which may trigger management workflows.

Request product change In this case a problem is reported and a change is re-
quested. However, this action differs from the previous examples in that the
requested change refers to other tasks in the project. The responsible resource
of a task has detected an error in a technical document produced in a previous
task which requires the revision of the document. Therefore, a workflow like
the one depicted in Figure 9.1 a) is started to handle the change request. The
enactment of the workflow involves changes to the project plan.

Events Management workflows can also be invoked automatically upon certain
events. An event mechanism for dynamic task nets was already introduced in [Kra98].
This approach has been adopted and extended in PROCEED. Every structural and
behavioral change operation on a task (net) raises a corresponding event. Table 9.1
lists some operations which raise events. The events carry parameters which
describe the context of the event, e.g. which tasks have been involved or which
document revision has been created. The corresponding parameters are listed in
the second column of Table 9.1.

A task type can be parameterized, so that a management workflow is automatically
started when a certain event occurs for an instance of the type. The workflow can
be considered as the event handler. For example, if a task assignment is deleted,
then a management workflow can be started which informs the released resource as
well as his team leader about the freed working hours. Furthermore, if a responsible
resource of a task aborts his task, then a management workflow can be started
which informs the responsible resource of the parent task about the task’s failure,
so that he may decide on compensating actions or plan changes.

The event mechanism introduced in [Kra98] has been extended by conditions for
triggering event handlers, i.e. a management workflow which is associated with an
event is not invoked in any case, but only if a defined condition evaluates to true.
The associations of management workflows to events are specified in the form of
event-condition-action (ECA) rules [DGe95]. When the event of an ECA-rule is raised
and the condition evaluates to true, then the action is performed. The action is
the invocation of the associated management workflow. The condition may refer to
properties of the task or to its work context. In the following examples, ECA-rules are
presented as triples (Event, Condition, Action). The previously described example

Chapter 9 Change Management 345

:Task

Name = "InformParentResponsible"
ExecutionState = Active
IsManagementTask = true

related task

management workflow

technical task

workflow template

:Aborted

Condition = "Task.TotalWorkload>40"
FireOnlyOnce = true

:Task

Name = "Reaction P&ID"
ExecutionState = Failed
IsManagementTask = false

:Task

Name = "InformParentResponsible"
IsManagementTask = true

copy of

Figure 9.4: Management workflow triggered by an event.

for the notification about an aborted task can be refined by a condition.

(Abort(Task), Task.TotalWorkload > 40, InformParentResponsible)

In this case, the notification only takes place if the total workload of the aborted task
is larger than 40 man hours. This covers all tasks for which a single resource works
full-time for a complete work week. If shorter tasks fail, then no notification workflow
is started because this would constitute a disproportionate management overhead.
The ECA-rule including the threshold of 40 man hours as well as the management
workflow InformParentResponsible are project or organization specific and would
be defined in the course of the parameterization process.

An ECA-rule is represented by an object of the class EventHandler which is
depicted in Figure 9.2. The condition is defined as the textual value of the property
Condition. In this section, the conditions are shown in the formal notation introduced
in Chapter 5. In the actual implementation, boolean conditions in the programming
language C# are used as conditions, which are compiled and evaluated at runtime
of PROCEED. The boolean property FireOnlyOnce specifies whether more than one
management workflow of the associated template can be started. In Figure 9.4 the
situation is depicted in which the previously described ECA rule for the abortion of
a task has fired and a management workflow has been started. The management
workflow is a copy of the associated workflow template whose root task is also an
object of the class Task. The started management workflow is linked to the related
technical task. The EventHandler object is also linked to the management workflow.
This information is used to avoid that several management workflows are started for
an event for which the property FireOnlyOnce is set to false.

In addition to events which are raised upon change operations, a timing event
has been introduced which is raised whenever the current date changes and is
therefore named DateChanged. This event is required to react to delays of tasks or
other deviations from the plan, i.e. whenever a monitoring constraint is violated (cf.
Section 5.3.2). Monitoring constraints may be violated only because time proceeds.
The timing event was not defined for the event mechanism presented in [Kra98]

346 9.1 Enactment of Management Processes

because the AHEAD system did not cover timing issues. The event DateChanged

cannot be associated with specific tasks in a project. It applies for all tasks in
the same way. Nevertheless, task types can be parameterized by the definition of
ECA-rules, so that actions are performed for the task instances on certain dates.
In the following example, the responsible resource of a task is notified whenever a
subtask is started late, i.e. the planned start time has already passed but the task is
still preparing.

(DateChanged, Today > Task.PlannedStartTime∧ Task.State ∈ Preparing,
InformParentResponsible)

This example of an ECA-rule should only fire once in a project. However, the event
DateChanged is raised every day, and if the condition is still satisfied on the next day,
then another management workflow would be started, so that the same deviation
from the plan would be reported over and over again. To avoid this behavior, ECA-
rules can be explicitly defined to fire only once. Altogether, there are two different
modi for ECA-rules in PROCEED, those which fire only once and those which fire as
often as possible. The former modus is mainly used in conjunction with the event
DateChanged. The latter modus could for example be used for an ECA-rule which
should fire whenever a task is resumed from suspension. This may happen several
times in a project, and every time a new management workflow should be started.

9.1.3 Parameterization of Management Workflow Templates

Every management workflow which is enacted in a development project is derived
from a workflow template. A management workflow template can be defined just like
a workflow template for an engineering process. However, additional information is
required to define who may invoke the management workflow and which resources
shall be assigned to the workflow tasks.

Data flow and decisions Like for technical workflow templates, input and output
parameters can be defined for workflow tasks, and data flows can be defined which
connect these parameters. In management workflows, data flows are used to
specify how reports and other management documents are routed between the
management tasks at runtime. Decisions in a management workflow are made by
setting the values of decision variables which are defined for management tasks.
These decision values are evaluated in the conditions of the workflow’s control
structures as described in Section 6.3.

External management workflows As described before, workflow templates can
be associated with tasks via actions or events. Management workflows which are
triggered by tasks in the dynamic task net are called internal management workflows.
In contrast, external management workflows cannot be associated with tasks in the
project plan. They are invoked by members of the project team which have a certain
role or position in the project. These management processes are enacted to handle

Chapter 9 Change Management 347

changes to the scope of the project and the objectives of project management. For
example, customer requirements or external deadlines may be changed. In these
cases, the respective management workflows cannot be associated with specific
tasks in the project plan. For a management workflow template, it can be explicitly
specified whether it defines an internal or an external management workflow. For
an external management workflow, the required functional role or position in the
project team has to be specified. Only resources which have this role or position
may invoke a management workflow of the respective type.

Organization of management tasks Management workflows can be started
automatically by the PROCEED system upon certain events. If a responsible resource
of a task invokes an action for his task, then the associated workflow is started.
By default, a management task representing the management workflow is created
below the task Project Management. Management tasks can be organized according
to different project management activities, e.g. classified into quality management
and change management processes like in Figure 9.3. This can be achieved by
the parameterization of the management workflow templates. The type of the
intended parent task can be specified. For this purpose, the association type of
parent task is defined in Figure 9.2 between the classes Task and TaskType. If there is
a unique subtask of the task Project Management which is of the specified type, then
every management workflow which is derived from the template is automatically
created as a subtask of this task. This situation is depicted in Figure 9.5 where
the management workflow template Document Revision is associated with the task
type Quality Management. The management workflow Revision of PFD.D is therefore
created automatically below the task Quality Management.

Resource assignment rules For the workflow tasks in a management workflow
template, task assignments with required roles can be defined. However, in contrast
to technical tasks, management tasks are usually not assigned by means of the pull
pattern (cf. Section 5.1.3) where only the required role for a task is specified and an
eligible resource can pick up the task, because resource with the same functional
role may have different authorizations and responsibilities for managing a project.
Instead, management tasks are directly assigned to resources of the project team
which are responsible for handling the change management or quality management
cases. Management tasks must be assigned to actual resources at any time to avoid
that essential management decisions are delayed or overlooked.

The assignment of actual resources to management tasks cannot be done during
the parameterization of the workflow templates. Workflow templates are defined
independently of any concrete project for which resources could be allocated. How-
ever, at project runtime, management tasks have to be directly and automatically
assigned to actual resources. For this purpose, so-called assignment rules can be
defined for task assignments of management tasks. These rules specify how the
correct actual resource for a task assignment of a management task is determined
automatically at runtime. The following assignment rules are predefined in PRO-

348 9.1 Enactment of Management Processes

copy of

: TaskType

Name = "Quality Management"

: Task

Name = "Document Revision"

: Task

Name = "Quality Management"

: Realization

: Task

Name = "Revision of PFD.D"

instance of

Management workflow template

Management workflow

type of parent task

Figure 9.5: Example for the automatic organization of management workflows.

CEED and can be used to parameterize management workflows and management
tasks. In any case, the selected resource has to be eligible with respect to the
required role of the task assignment.

Random A resource who can play the required role is randomly selected from the
project team.

Responsible resource of related task The resource who is responsible for the
related task of the management workflow is assigned to the management task.

Responsible resource of parent task The resource who is responsible for the
parent task of the related task is assigned to the management task.

Responsible of management workflow The resource who is responsible for the
whole management workflow is assigned to the management task.

Team leader The leader of the team to which the responsible resource of the
related task belongs is assigned to the management task.

If no assignment rule is specified for a task assignment of a management task or
no resource can be determined by evaluating the specified assignment rule, then
the task is assigned to the responsible resource of the parent task by default. This
means a workflow task of a management workflow is assigned to the responsible
resource of the whole workflow, and a management workflow is assigned to the
responsible resource of the collective parent task which subsumes several manage-
ment workflows. The automatically assigned resource can then manually reassign
the management task if necessary.

Chapter 9 Change Management 349

Request

Change

Baumann

(Engineer)

Analyze and Evaluate

Change Request

Implement

Change

Close

Change

Plan

Change

Verify

Change

Request to

Change PFDs

Change

Management

Project

Management

Plant Design

Project

Basic

Engineering

PFDs Initial P&IDs

PFDs

sim

std

Dreher(Process Engineer)
Baumann

(Process Engineer)

Dreher

(Engineer)

Heer

(Project Manager)

Heer

(Manager)

Heer

(Project Manager)

Baumann

(Engineer)

Heer

(Manager)

Figure 9.6: Example for a change management workflow instance.

9.1.4 Example Case

When a management workflow is copied from a template, it is automatically inserted
into the dynamic task net below the task Project Management as described before.
If the workflow has been started from a technical task in the project plan, it is
linked to this related task. The assignment rules which have been defined for
the task assignments of the management tasks in the workflow are evaluated and
the determined resources are assigned to the tasks. Afterwards, the management
workflow is automatically started.

Figure 9.6 shows an example of a change management workflow and its relation
to other tasks in the project. The responsible resource Baumann of the tasks Initial
P&IDs has detected errors in the previously created process flow diagrams which
need to be corrected. Because resource Baumann is not authorized to change the
realization of the task Basic Engineering, he issues a change request by starting
a change management workflow. The management task Request to Change PFDs,
which represents the management workflow, is automatically created below the
management task Change Management and is linked to the related task Initial P&IDs.
Different assignment rules have been specified for the subtasks of the management
workflow. The management task Request Change has to be performed by the
responsible resource of the related task who issued the change request, which is
resource Baumann. He has to create a document which describes the encountered
problems and his propositions for changes. The task Analyze and Evaluate Change
Request is assigned to a random resource with the role Project Manager. In most

350 9.2 Possible Disruptions and Compensating Actions

projects, there is a unique resource with this functional role in the project. In the
example, the project manager Heer decides that the changes shall be performed. The
planning of the changes is left to the responsible resource of the parent task of the
related task, which is in this example also resource Heer. During the execution of the
task Plan Changes, resource Heer creates a new version of the terminated task PFDs
and introduces the feedback flow from Initial P&IDs to PFDs. The implementation
of the changes is the responsibility of the resource Dreher who is assigned to the
new version of the task PFDs. The problem report of resource Baumann can be
transferred to resource Dreher via a data flow defined along the feedback flow. After
new revisions of all erroneous process flow diagrams have been released, resource
Dreher commits the task Implement Change. The changes are then verified by the
resource Baumann who has been assigned to the task Verify Change according to
the assignment rule responsible of related task. After all changes are verified, the
change request is finally closed which involves the deactivation of the feedback flow.
If the changes were not verified, the change management workflow would enter
another iteration of the while loop. New revisions of the process flow diagrams
would be created until they would finally be verified.

Conclusion This section showed how management tasks are handled in PROCEED,
and how they are related to the development process. The clear distinction between
technical tasks and management tasks is required because the latter are not part of
the project plan, which is why management tasks are excluded from scheduling as
described in Section 7.1. Some aspects of the approach have not been described
in this section. For example, so-called recursive management tasks have been
introduced, which allow for the recursive invocation of management workflows
at runtime. Further specific assignment rules have been defined which were not
presented in this thesis. All details of the approach are described in [Vas10]. With
respect to the definition of assignment rules, the approach could be extended.
A domain-specific language [KKP+09] could be introduced to enable the flexible
definition of assignment rules as part of the parameterization. This has not been
investigated in more detail in the context of this thesis.

9.2 Possible Disruptions and Compensating Actions

No development project is executed exactly as planned. At project runtime, many
disruptions may occur which cause deviations from the original plan [PR05, NW94].
The project goals may change, which includes changes to deadlines, milestones
and the budget. Additional customer requirements or changes to the existing
requirements and specifications for the product to be developed may require to
perform additional work to extend or rework the results. Disruptions in the narrow
sense include the unavailability of resources, technical problems, and delivery
problems, which generally lead to task delays. Finally, the actual execution of tasks
may deviate from the plan because of bad estimates for the required time and
workload or because of poor performance. Task delays and budget overruns can be

Chapter 9 Change Management 351

detected by means of progress measurement as described in the previous chapter.
The forecasted end time of a task, which is computed by means of the schedule
performance index, may reveal delays already during the execution of the task. The
cost performance index is used to forecast the total budget at completion of the task.

Disruptions which occur at project runtime have to be addressed by the project
management to ensure that the project will be completed within time and budget
limits. Corrective control measures can be taken to increase the performance of
the resources, e.g. by increasing the motivation or qualification of the project team
members or by eliminating existing conflicts [Bur00]. If corrective measures are
insufficient, the project plan has to be changed with respect to resource assignments.
Additional resources can be assigned to delayed tasks or the availability of assigned
resources can be increased which usually involves overtime work. Corrective
measures and resource related plan changes aim at bringing delayed tasks back on
schedule. If this cannot be achieved, the project schedule has to be adapted to reflect
the actual performance and the expected end times of the tasks. In some projects it
may be possible to reduce the scope of the project to avoid plan changes. Certain
requirements for the product are deleted, so that the remaining requirements can
be met within the given time and budget limits. However, this is usually the last
resort and often infeasible.

In the following, possible disruptions at project runtime are reviewed. These
disruptions may require certain plan changes which are performed manually by
authorized users. Manual plan changes may in turn require automatic rescheduling
of parts of the dynamic task net. Corrective measures and changes to the scope
of the project are not considered here because they do not directly influence the
project plan.

9.2.1 Disruptions at Project Runtime

Possible disruptions and entailed plan changes are the following.

Requirements are added or changed. Complex structural changes to the dyna-
mic task net may be required. New task (versions), control and feedback flows
may have to be added. It may even be necessary to abort or skip certain tasks
which are not relevant anymore.

Errors are detected in produced artifacts If an erroneous artifact has been pro-
duced in a task which is already terminated, a new task version of this task and
all terminated successors has to be created. A feedback flow is introduced which
connects the task in which the error has been detected with the new version. The
new task version has to be scheduled like a new task.

Key artifacts are produced enabling the refinement of the plan When a revi-
sion of a key artifact has been released, new tasks are introduced into the task net
and existing tasks may have to be aborted. In plant design projects, the different
flow sheets are key artifacts. For every device contained in such a diagram, a
task should be defined for the specification of the device. Similarly, in software

352 9.2 Possible Disruptions and Compensating Actions

development projects, the software architecture determines the implementation
tasks.

Deadlines for tasks, milestones, or the project are tightened. These changes
may require to add additional resources to certain tasks to shorten their duration.
Certain tasks may have to be aborted or skipped to meet the new tighter deadlines.
In any case, rescheduling will be required.

The project budget is decreased. This may implicate that task assignments have
to be deleted and resources have to be removed from the project team to save la-
bor costs. The deletion of task assignments may lead to increased task durations.

A resource becomes temporarily or permanently unavailable. The resource
has to be replaced by one or several substitutes to avoid a delay of his assigned
tasks. The substitutes may possibly be reassigned from other tasks. If the
resource cannot be substituted for certain tasks, these tasks may become delayed.

A task is (expected to be) delayed. There are many possible reasons for a task
delay: Bad estimates for the planning data, poor performance at runtime, changed
or additional requirements for the completion of the task, unavailable or reas-
signed resources, technical problems, or delivery problems. The assignment of
additional resources may speed up the task. If the delay cannot be avoided, the
plan should be aligned to the actual performance. This may require to relax the
semantics of control flows to successors to preserve the consistency of the later
planned end time with the planned dates of the successors.

9.2.2 Change Operations

In most cases, project management will try to avoid plan changes. However, some-
times plan changes are necessary, so that the plan reflects the actual project status
and can be used to forecast the end times of running and preparing tasks. When
task delays stem from bad estimates which were made during the project planning
phase, adapting the plan to the actual performance is the only reasonable solution.
The bad estimates for the planning data of tasks may be defined in task types. These
values should be updated after the completion of the project. In this way, the process
knowledge about the timing of tasks is improved, which leads to better planning
results in future projects.

The manual plan changes which are performed to compensate disruptions at
project runtime can be classified into three categories depending on whether they
are related to the task net structure, the tasks, or the resources. Manual plan
changes may require rescheduling of the task net depending on whether timing
consistency constraints are violated or planned workload has to be redistributed.

• Task net structure related

Create a new task (version). The new task (version) requires workload and
resources, and it has a certain duration. There has to be enough unassigned

Chapter 9 Change Management 353

total workload at the parent task. The duration of the new task has to be
consistent with the duration of the parent task. The planned workload has to
be distributed over several work days which requires scheduling of the task.
Resources can be assigned manually beforehand or automatically during
scheduling. It may be required to reschedule the parent task and all of its
subtasks as well to obtain a consistent schedule.

Abort or skip a task. The (remaining) planned workload of the task is deleted
and its duration is reduced as described in Section 5.3.1. This does not lead
to violations of timing consistency constraints. However, the user may want
to reschedule parts of the dynamic task net to schedule successors earlier
and to reduce the duration of the parent task if possible.

Change the semantics of a control flow. If a new control flow is introduced
or the semantics of an existing control flow is tightened, e.g. changed from
simultaneous to sequential, this may lead to inconsistent planned dates of
the connected tasks, so that rescheduling is required. Deleting a control flow
or relaxing the semantics of a control flow cannot lead to inconsistencies.
However, rescheduling may be desired to benefit from the gained degree of
freedom, i.e. the successor of the control flow may possibly be scheduled
earlier.

• Task related

Change the total workload of a task. This does not directly affect the dura-
tion of the task as long as the additional workload is not used for task
assignments. Therefore, rescheduling is not required at this point. However,
the changed unassigned total workload of the task has to be redistributed
over the duration of the task.

Change the total budget of a task. Changes to the budget of a task do not
affect the schedule.

Change the total duration of a task. The new duration and planned end time
may be inconsistent with the planned dates of predecessors, successors, the
parent task, scheduled subtasks, and scheduled task assignments. In these
cases, rescheduling is required. In any case, the unassigned total workload
of the task has to be redistributed for the new duration.

Align planned values of a task to actual values. The planned start time is
set to the actual start time, and the planned workload of all task assignments
is re-distributed during rescheduling according to the actual workload distri-
butions as described in Section 7.3.2. This may result in a changed duration
and a changed planned end time with the consequences discussed before.

Change planned dates of a task. The planned dates are usually computed by
the scheduling algorithm but can be manually adapted. If the task has task
assignments and has been scheduled before, then rescheduling is required to
redistribute their planned workload. If no task assignments are defined and
the new planned dates are consistent with respect to all timing consistency

354 9.2 Possible Disruptions and Compensating Actions

constraints, then rescheduling is not required. However, a later scheduling
pass may override the manually set planned dates. The user can alternatively
change the constraint dates of the task and initiate rescheduling.

Add or change manually set constraint date of a task. The new date must
not be inconsistent with other constraint dates, i.e. the timing consistency
constraints (5.34) to (5.40) can never be violated. The constraint date can
however be inconsistent with the planned dates of the task. In this case,
rescheduling of the parent task is required.

• Resource related

Assign an additional resource to a task. The total workload and the total
budget of the task may have to be increased. On the other hand, work-
load can also be transferred from another task assignment. In any case,
rescheduling of the task is required to distribute the planned workload of
the new task assignment.

Replace a resource for a task assignment. Rescheduling of the task is re-
quired to redistribute the planned workload of the task assignment because
the availability of the new resource may be different.

Change the planned workload of a task assignment. Rescheduling of the
corresponding task is required to (re)distribute the new planned workload
of the task assignment which may be less or greater than the previously
planned workload.

Change the total workload of a resource. If the total workload—and thereby
implicitly the available workload—in the work calendar of the resource is
decreased for a particular date, then rescheduling is required because task
assignments of this resource may become longer. An increase of the total
workload for a particular date does not affect the dynamic task net directly.
However, the intention of this change is usually to shorten the duration
of tasks which are assigned to the resource, which is only achieved by
rescheduling these tasks.

Task related plan changes may have the effect that formerly scheduled tasks
become zero-duration tasks which are excluded from scheduling, or the other way
round zero-duration tasks become scheduled tasks. A task may become or cease
to be a zero-duration task due to changes to its total duration, total workload, or
granularity level, or due to changes of the duration of the parent task (cf. Section 7.1).
In these cases, scheduling of the parent task is required to update the scheduled
dates of the predecessors and successors as well as the parent task.

In this section it has been shown which disruptions may occur at project runtime,
which dynamic changes to a task net can be performed in response, and whether
these manual changes require automatic rescheduling of (parts of) the task net. The
integration of planning and scheduling is based on a change management procedure
which is presented in the following section.

Chapter 9 Change Management 355

9.3 General Change Management Procedure

Structural and behavioral invariants constrain the possible changes to dynamic task
nets at runtime (cf. Sections 5.1 and 5.2). Furthermore, a user of the PROCEED sys-
tem may only be authorized to modify certain parts of a dynamic task net, depending
on his permissions and task assignments. Finally, timing consistency constraints,
which have been defined in Section 5.3.2, further constrain the allowed change
operations to a dynamic task net. These constraints are evaluated to check whether
the planning data is consistent, whether there are no contradictory constraint dates,
and whether the planned dates represent a time and resource feasible schedule.

Replanning a dynamic task net may violate timing consistency constraints, e.g.
performing a structural change operation or a change to a timing property. The
reason for a violation of a timing consistency constraint is always a user action,
i.e. a manual modification of the management data. In order to maintain a time
and resource feasible schedule, timing consistency constraints may not be violated
permanently. However, it would be impractical to prohibit every change operation
which would violate a timing consistency constraint. Therefore, the change manage-
ment procedure implemented in PROCEED allows that certain timing consistency
constraints are temporarily violated during replanning of a task net. A (partial)
dynamic task net is replanning if the root task is in one of the states InDefinition or
Replanning. All inconsistencies are eventually resolved by automatic rescheduling
when replanning is completed. The replanning of a task net is finished when the
execution state of the root task is changed to Waiting or Active, respectively. In this
way, planning and scheduling is integrated in PROCEED.

Before a property change or a structural change operation, the PROCEED system
checks whether timing consistency constraints would be violated by the operation.
Depending on which timing consistency constraints would be violated, there are
four different ways to handle the expected constraint violations.

• The action which would lead to the inconsistency is prohibited.

• An alternative action is performed, e.g. a consistent property value is set instead
of the user-specified value.

• Additional compensating changes to the dynamic task net are made which pre-
serve consistency.

• The inconsistency is temporarily accepted until the replanning of the subprocess
is finished.

The change management procedure ensures that the timing data of a dynamic task
net is eventually in a consistent state after several dynamic changes have been
performed. It is divided into two parts. First, when a change operation is invoked
by the user, it has to be decided whether the operation is prohibited, alternative or
additional changes are performed, or the change is temporarily accepted. Second,
when a complex task shall be defined (state change from InDefinition to Waiting) or

356 9.3 General Change Management Procedure

changes
accepted?

Accept or deny
proposed
changes

determine
required

compensating
changes

Change
Temporarily
Accepted

Issue
Warning

Structural Change

Property Change

Change Denied

Check
Consistency

planning data
consistent?

no

Change Accepted

yes

manual time
constraints
consistent?

no
computed

constraint dates
consistent

yes

no

planned dates
consistent

yes

no

user
authorized

to perform comp.
changes?

no

determine
alternative change

user
authorized to

schedule
subprocess?

no

no

yes

yes

yes

yeschanges
accepted?

Accept or deny
proposed
changes

no

yes

Figure 9.7: Procedure for consistency checking before a change operation.

restarted (state change from Replanning to Active), it has to be checked whether
temporarily accepted changes exist for the realization of the task. The corresponding
inconsistencies have to be resolved by rescheduling the realization before the task
can be defined or restarted.

9.3.1 Consistency Checks Before Change Operations

The flowchart depicted in Figure 9.7 defines the procedure which is executed upon
the invocation of a change operation by the user. Beforehand, PROCEED verifies
that all structural and behavioral consistency constraints are fulfilled and that the
user is authorized to perform the intended change operation.

Structural changes to the realization of a task as well as property changes to
the interface of a task have to be handled by the procedure. Structural changes
include the creation and deletion of tasks, control flows, data flows, and feedback
flows, the creation of new task versions, and all changes to properties of control

Chapter 9 Change Management 357

flows. Property changes include changes to timing properties but exclude execution
state changes. Structural changes to the realization of a complex task and changes
to the timing property values of one of its subtasks may cause several constraint
violations at once. For example, the manual change of a planned date may at the
same time be inconsistent with other planned dates, with constraint dates, and with
the workload distributions of task assignments. A change to the semantics or the lag
time of a control flow may cause inconsistencies between planned dates as well as
inconsistencies between constraint dates. Therefore, the post-conditions defined for
structural change operations in Section 5.3.2 evaluate several timing consistency
constraints with respect to the modified entities. The operation ModifyTask(t) cov-
ers all changes to timing properties of the task t ∈ Tasks. The post-conditions of the
different change operations are evaluated by the change management procedure
before the invoked operation takes effect. In the definition of the change manage-
ment procedure shown in Figure 9.7, the different structural change operations and
property changes are not distinguished. For every operation it is checked whether
one of the following inconsistencies would occur in the dynamic task net.

• Inconsistent planning data,

• Inconsistent manually set constraint dates,

• Inconsistencies between computed constraint dates and manual time constraints
or task durations,

• Inconsistencies between planned dates and computed constraint dates, manual
time constraints, or planning data.

Thereby, the inconsistencies may concern any task in the work context of a changed
task, i.e. the parent task, the subtasks, as well as predecessors and successors.
Changes to control or feedback flows may even affect tasks of different realizations.
In the following, the reactions to the expected inconsistencies defined by the change
management procedure are described for every case.

Inconsistent planning data If timing consistency constraints related to the plan-
ning data of tasks would be violated by the change operation, the PROCEED system
determines compensating changes to the task net, which have to be performed in
addition to the intended change to ensure consistency. The relevant constraints are
the constraints (5.31) to (5.33). Violations to these constraints have to be resolved
immediately by performing alternative changes or additional compensating changes.

If increased values for the total workload, budget or duration of a task would be
inconsistent with the respective values of the parent task, then PROCEED proposes
to adapt the conflicting values of the parent task as well. The latter changes
compensate the intended changes. If decreased values for the total workload or
budget of a task would be inconsistent with the respective used total workload or
budget of the same task, then PROCEED proposes to decrease the properties only
to values which are still consistent, e.g. setting the total workload to the used total

358 9.3 General Change Management Procedure

Basic Engineering

1643821 203T

Process Flow

Diagrams

1262309 122T

23/03/2011

Basic Engineering

1603272 174T

Process Flow

Diagrams

1101760 93T

Heer 320
(Project Manager)

06/09/2010

Dreher 880
(Process Engineer)

Dreher 1008
(Process Engineer)

Heer 320
(Project Manager)

Figure 9.8: Changes to planning data and compensation.

workload. The same holds for the total duration which may not be shorter than the
durations of the subtasks.

Changing the total duration of a task involves an automatic adaptation performed
by PROCEED. If the planned start time is defined, then the planned end time is
automatically set to the consistent date which fulfills constraint (5.61) with respect
to the work calendar of the task. Inconsistencies which may arise due to the changed
planned end time are resolved afterwards when the planned dates of the task and
its context are checked.

For example, if the user wants to increase the total workload of a task, but there
is not enough unassigned total workload available at the parent task, so that the
used workload would exceed the total workload of the parent task in contradiction
to the timing consistency constraint (5.31), then the PROCEED system offers the
possibility to increase the total workload of the parent task accordingly.

However, the option to perform additional compensating changes is only available
if the user is authorized to perform the changes, e.g. if he may increase the total
workload of the parent task. If the user is not authorized, then his initial change
operation is discarded and he has to invoke a management workflow to request
the necessary changes from an authorized resource. If the user is authorized, he
may still reject the proposed compensating changes. In this case, his initial change
operation is discarded as well.

In the example of Figure 9.8, the total workload and budget of the task Process
Flow Diagrams is increased by resource Heer. The responsible resource Dreher of
the task Process Flow Diagrams is not authorized to perform this change because it
involves an increase of the total workload and total budget of the parent task Basic
Engineering, which is a compensating change. If resource Dreher tried to perform
the change operation, the change management procedure would deny the change.
Therefore, resource Dreher has invoked a management workflow to request the plan
change from resource Heer.

Chapter 9 Change Management 359

Inconsistent manually set constraint dates When no inconsistencies with re-
spect to the planning data exist or compensating changes could resolve the inconsis-
tencies, then the manual time constraints are checked for inconsistencies afterwards.
Inconsistencies between manually set constraint dates may lead to the violation of
one of the constraints (5.34) to (5.40). The reason for a constraint violation is either
a date change or a change of the semantics or lag time of a control flow.

Inconsistent manually set constraint dates are not compensated by additional
changes to the task net but alternative values are proposed instead. The PROCEED
system proposes an alternative, consistent value for the changed constraint date or
the semantics or lag time of a control flow. For example, if the release date of a task
is set to a date which is earlier than the release date of the parent task, PROCEED
proposes to set the release date to the release date of the parent task instead. If the
lag time of a control flow shall be increased to a value which is inconsistent with the
due dates defined for the predecessor and successor, then an alternative consistent
value is proposed.

Since the user is authorized to perform the initially intended change operation, he
is also authorized to set the alternative value. Therefore, an additional verification as
in the case of compensating changes is not required. However, like for compensating
changes, the user may still decide whether he accepts the proposed alternative
changes or not. Depending on his decision, the alternative change is applied or the
intended change operation is denied.

Inconsistencies with respect to computed constraint dates Inconsistencies
regarding computed constraint dates refer to the violation of the constraints (5.41)
to (5.60). This includes inconsistencies of computed constraint dates with the total
duration of tasks and with manually set time constraints (constraint dates and control
flow properties). Computed constraint dates cannot be changed manually by the
user but are computed automatically by critical path analysis. The consistency can
be reestablished by performing critical path analysis. Therefore, the inconsistencies
are temporarily accepted until the replanning of the subprocess is finished.

In the example of Figure 9.9, resource Heer increased the total duration of the
task Process Flow Diagrams which lead to a violation of the timing consistency
constraints (5.41) and (5.44) because the earliest and latest possible start and
end times were computed based on a shorter duration before. The compensating
adaptation of the total workload and budget of the parent task Basic Engineering also
led to a violation of the same timing consistency constraints. The changes can be
temporarily accepted because the parent task Basic Engineering is in the execution
state Replanning and the resource Heer who performed the changes is authorized
to reschedule the subprocess defined by this task.

Inconsistencies with respect to planned dates Inconsistencies are also ac-
cepted temporarily in the case that planned dates are inconsistent with planning
data, manually set time constraints, or computed constraint dates. These cases
refer to the timing consistency constraints (5.61) to (5.79). In particular, constraint

360 9.3 General Change Management Procedure

Basic Engineering

1643821 203T

Process Flow

Diagrams

1262309 122T

23/03/2011

21/12 01/08

17/02 28/09

21/12/2010 01/08/2011

58

21/12 23/05

07/04 07/09

21/12/2010 23/05/2011

107

Figure 9.9: Temporally accepted inconsistent changes.

(5.70) checks whether the planned workload of a task assignment has been changed
or not yet distributed by scheduling. In this case, scheduling is required and the
change which led to the violation of the constraint is only temporarily accepted.
Similarly, rescheduling is required when the planned dates of a task have been
changed in a way that they are inconsistent with the distributed workload of the task
assignments (constraint (5.71)). If a new subtask has been created during replan-
ning, then its planning data, constraint dates, and planned dates are set by default
but can also be adapted by the user. If the defined values are consistent with the
timing data of the parent task, and if no task assignments have been defined, then
no scheduling is required yet. However, if task assignments are defined for a new
task with according planned workload, then constraint (5.70) is necessarily violated,
because the planned workload of the task assignments has not been distributed yet.
Therefore, the change is only temporarily accepted and the realization of the parent
task has to be rescheduled before the parent task can be restarted. Likewise, all
changes to the planned workload of task assignments are only temporarily accepted
and require rescheduling. In contrast, the unassigned workload of a task is automat-
ically redistributed without scheduling whenever its value or the planned dates of
the task are changed (cf. Section 5.3.1.

In the case that inconsistencies are temporarily accepted, the complex task has
to be determined, which contains all tasks which have conflicting computed con-
straint dates or planned dates. For example, if two tasks are contained in different
realizations but are connected by a control flow whose semantics and lag time are
inconsistent with the planned dates of the tasks, then the common ancestor of both
tasks has to be found in the task net hierarchy. This task will have to be rescheduled
to resolve the inconsistency.

When the complex task has been identified which has to be rescheduled, it has

Chapter 9 Change Management 361

to be checked whether this task is plannable, i.e. in one of the execution states
InDefinition or Replanning, and whether the user who performed the change oper-
ation is authorized to schedule the task. If one of these conditions is not fulfilled,
then the initial change operation invoked by the user is discarded. because it would
lead to inconsistencies which could only be resolved by rescheduling but this is not
possible. If the conditions are fulfilled, then a flag is set at the identified root task
of the subprocess to indicate that it has to be rescheduled before it can be defined
or restarted. The user is warned about the circumstance that rescheduling will be
required.

In the example of Figure 9.9, The responsible resource Dreher of the task Process
Flow Diagrams has estimated that the forecasted duration is actually required to
complete the task. Since he is neither authorized to perform compensating changes
to the planning data of the task Basic Engineering nor to reschedule this task, he has
requested additional time, workload and budget for his task Process Flow Diagrams
from the resource Heer who is responsible for the task Basic Engineering and at the
same time the project manager. Resource Heer has changed the execution state
of the task Basic Engineering to Replanning and has executed the command Adapt
plan to actual performance for the task Process Flow Diagrams (cf. Section 7.3.2),
so that the planned duration is set to the forecasted duration, and the planned end
time is automatically changed to a consistent date. Furthermore, resource Heer has
increased the total workload of the task Process Flow Diagrams and has distributed
the added workload to the task assignments. Because the planned workload of task
assignments has changed and is therefore inconsistent with the previously computed
workload distributions, and because the new total duration and planned end time
are inconsistent with the planned dates of succeeding tasks, the changes are only
temporarily accepted. The corresponding flag is set for the task Basic Engineering.

9.3.2 Resolving Inconsistencies After Replanning

The second part of the change management procedure concerns the moment, when
a complex task shall be defined or restarted, i.e. when its execution state shall be
changed from InDefinition to Waiting or from Replanning to Active, respectively. In
these situations rescheduling has to be performed if temporally accepted changes
exist in the realization of the complex task, i.e. when the corresponding flag is set.
Figure 9.10 shows the flow chart of the second part of the change management
procedure.

After the initial planning of a task net, rescheduling is always required to initially
distribute the planned workload of the defined tasks and to compute their planned
dates. Therefore, a complex task and its realization are always scheduled when its
execution state is changed from InDefinition to Waiting. For a complex task which
shall be restarted, i.e. whose execution state shall be changed from Replanning
to Active, scheduling is only required if temporarily accepted changes exist which
caused inconsistencies of the management data. Temporarily accepted changes lead
to inconsistencies which are related to computed constraint dates and planned dates

362 9.3 General Change Management Procedure

Define task

Temporarily
accepted changes

exist?

State change
acceptednoyesScheduling of

subprocess

Scheduling
successful?

no

yes

Inform user
and propose

changes

State change
denied

Accept or reject
schedule

Schedule
accepted?

no

yes

Undo
scheduling

Restart task

Figure 9.10: Procedure for (re)starting a task.

of tasks. These inconsistencies can be resolved by a local scheduling run of the
complex task and its realization.

Local scheduling may fail due to task and resource dependencies to other tasks
in the dynamic task net which are not contained in the rescheduled subprocess. In
this case, it is required to start a local scheduling pass on a higher level of the task
net hierarchy or even a full scheduling pass for the whole project. For this purpose,
the resource who wants to (re-)start his task may have to request the rescheduling
of the parent task from the respective responsible resource. According to the
change management procedure, PROCEED informs the user about the failure of the
scheduling pass and prohibits the change of the execution state for the moment.

Scheduling may also fail for other reasons. Given a consistent set of user-defined
time constraints, planning data for tasks, and resource availabilities it may not be
possible to schedule the tasks in a time and resource feasible way. This can be the
case for local scheduling but also for a full rescheduling pass of the whole project. In
these cases, the user is informed about necessary changes to the dynamic task net
which are required for successful scheduling. Until these modifications are made by
the user, the change of the execution state of the complex task to Waiting or Active
is prohibited.

When scheduling is successful, the user is asked if he accepts the computed
schedule. If he does, the state change is accepted and the new scheduled dates are
saved for the tasks in the subprocess. There may be reasons for the user to reject
a successfully computed schedule, e.g. if he realizes that certain tasks have been
scheduled too late. If he rejects the computed schedule, the scheduled dates are not
written to the database and the state change is denied. The complex task for which
temporarily accepted changes are pending remains plannable and the user may

Chapter 9 Change Management 363

46%

Basic Engineering

164

21/12

21/12 05/08

21/12 28/09

3821 203T

21/12/2010 05/08/2011

54

0%

Initial P&IDs

22

04/01 28/06

22/07 21/09

316 16T

30/05/2011 28/06/2011

199

52%

Process Flow

Diagrams

126

21/12

21/12 14/06

21/12 07/09

2309 122T

21/12/2010 14/06/2011

85
sim(10)

23/03/2011

seq

0%

DetailEngineering

318

08/08 24/10

29/09 17/12

8156 433T

08/08/2011 24/10/2012

52

Figure 9.11: Replanned and rescheduled task net.

introduce further manual time constraints (constraint dates and control flows) or
change existing ones to influence the automatic generation of the schedule. Finally,
when scheduling has been successful and the user has accepted the generated
schedule, then the flag which indicates that temporarily accepted changes exist is
reset for all scheduled tasks, so that their execution state can be changed to either
Waiting or Active.

In the example of Figure 9.11, resource Heer has invoked the operation to change
the execution state of the task Basic Engineering back to Active. According to the
change management procedure, partial rescheduling of the task Basic Engineering
has been performed. Local rescheduling of Basic Engineering has failed at first,
because the planned end time of Basic Engineering would have to be increased to
the date 05/08/2011 which is later than the planned start time of the succeeding
task Detail Engineering (02/08/2011). Therefore, resource Heer has changed the
execution state of the root node of the dynamic task net to Replanning and has
initiated a scheduling run for the complete task net. He is authorized to do so
because he is the project manager and responsible of the project root task. The
task Detail Engineering is now rescheduled and moved to a later planned start time
because it is in the execution state InDefinition. Rescheduling of the dynamic task
net is successful and all inconsistencies are resolved. The flag that temporarily
accepted changes exist for the task Basic Engineering is reset to false. Finally, the
state of Figure 9.11 is reached in which the planned dates and computed constraint
dates are consistent with the time constraints and planning data.

364 9.3 General Change Management Procedure

9.3.3 Rescheduling of Workflow-Managed Task Nets

As described in Section 7.4, the enactment of a workflow-managed dynamic task
net may involve structural changes and local rescheduling of the task net. When
the decision for one of several alternative branches is made, the workflow-managed
task net is rescheduled. When a loop is iterated once more, new subtasks are
created and scheduled. The structural changes and the local rescheduling are
performed automatically by PROCEED according to the execution of the workflow
instance. As long as the changes to the task net and the timing properties remain
local, i.e. they do not influence other tasks in the context of the workflow, the
enactment of the workflow-managed task net can proceed normally. If the automatic
rescheduling requires to adapt planned dates of the workflow-managed task in a
way that is inconsistent with timing properties of the task itself or its context, then
scheduling fails. As a consequence, workflow enactment fails when the automatic
local rescheduling fails, and the workflow-managed task is aborted. To compensate
the abortion, a new version of the workflow-managed task has to be started manually.
Since the replanning and rescheduling of workflow-managed tasks is performed
automatically, it is not covered by the change management procedure.

9.3.4 Violations of Monitoring Constraints

In contrast to timing consistency constraints, violations of monitoring constraints
merely indicate that the actual execution of the development process deviates from
the plan. Violations of monitoring constraints may result from manual changes to the
dynamic task net, but they may also result from the passing of time as discussed in
Section 5.3.2. Monitoring constraints may be permanently violated. The PROCEED
system informs the user about the constraint violations, but the user is not obliged
to resolve the inconsistencies. Therefore, violations of monitoring constraints are
not covered by the change management procedure.

9.3.5 Changes to Dependent Task Properties

Common project management systems handle inconsistencies with respect to the
time management properties of a task. When the user performs a change operation
to one of the properties of a task, the system reacts with an adaptation of other
properties to re-establish consistency or to automatically make changes intended
by the user. For example, when the user assigns an additional resource to a task in
the well known project management system MS Project [Mic10a], then the software
offers different possibilities: Either the duration of the task is shortened, its total
workload is increased, or the resource usage per day is decreased for all assigned
resources.

The total workload, the total duration, the number of assigned resources, and their
planned workload per day are depended properties of a task in a timed dynamic
task net. These properties are depicted in Figure 9.12. A change to one of the
properties influences the other properties and may require corresponding changes

Chapter 9 Change Management 365

Total Workload

Total Duration Number of
Resources

Resource Usage
per Day

Figure 9.12: Dependent time management properties.

to ensure the consistency of the management data. This section elaborates on
how the consistency of the dependent time management properties of an individual
task is ensured by means of the change management procedure implemented in
PROCEED. It is shown that the procedure covers all cases of inconsistencies between
the properties.

In PROCEED, the total workload of a task is explicitly defined, independently
of the used total workload of the task. The total workload of a task does not
necessarily equal the sum of the planned workload of the task assignments and
subtasks. Therefore, the dependencies between workload, duration, number of
resources and their usage are handled differently in PROCEED compared to other
project management systems like MS Project.

The following description reviews manual changes to one of the four properties
depicted in Figure 9.12. The arrows in Figure 9.12 indicate which property may have
to be adapted in case of changes to the property at the source of the respective arrow.
For every property change, the timing consistency constraints which may be violated
are identified, and the responses in terms of the constraint handling procedure are
described. In this way, it is shown that the defined constraints together with the
defined change management procedure cover all possible cases of inconsistencies
between the four properties of a task.

First, the effects of changes to the number of assigned resources are considered.

Creation of a new task assignment A user may create a new task assignment
for a task by specifying the required role, the planned workload, and optionally
the assigned resource. If workload should be transfered from an existing task
assignment to the new one, this has to be done manually by reducing the workload
of the other task assignment beforehand. Two consistency constraints may be
violated:

• Since the new task assignment still has to be scheduled to distribute the
planned workload, constraint (5.70) is violated, and the change to the
task net is only temporarily accepted until the parent task is rescheduled.
Rescheduling assigns an eligible resource if necessary and distributes the

366 9.3 General Change Management Procedure

80 mhrs

01/11/2010

5 days

05/11/2010

Design Heat

Exchanger

Meyer (Mech. Eng.) 30 mhr

1 2 3 4 5

6 6 6 6 6

80 mhrs

01/11/2010

6 days

08/11/2010

Design Heat

Exchanger

Meyer (Mech. Eng.) 30 mhr

1 2 3 4 5

5 5 5 5 5
56 7 8

0 0 5
6

Figure 9.13: Decrease of maximal resource usage per day for a task assignment.

planned workload according to the work calendar of the resource.

• If the used total workload of the task including the workload of the new task
assignment exceeds the total workload, the constraint (5.31) is violated. This
constraint violation is resolved immediately. PROCEED offers the possibility
to increase the total workload of the task.

Deletion of a task assignment When a task assignment is deleted, no adaptation
of other property values is required and the change can be accepted permanently.
The used total workload of the task is implicitly reduced while the total workload
remains unchanged. If the intention of the deletion was to save workload for the
task, the total workload has to be reduced manually afterwards.

Second, the effects of a change to the resource usage per day are considered.
In PROCEED, only the maximal resource usage per day can be manually defined
for a task assignment. The planned workload of task assignments is distributed
during scheduling and the individual values cannot be changed manually because
they would be overridden during the next scheduling pass anyways.

Decrease maximal resource usage per day for a task assignment If the distri-
buted planned workload exceeds the decreased maximal resource usage for a
particular day, the constraint (5.72) is violated. This change is temporarily
accepted until the parent task is rescheduled. Rescheduling may fail when the
adapted total duration of the task is inconsistent with the timing properties of
other tasks. In this case, the decrease of the maximal resource usage per day may
have to be undone. Figure 9.13 shows an example for the situation in which the
task has been rescheduled to comply to the reduced maximal resource usage of 5
hours per day for the task assignment which led to an increased total duration of
the task.

Increase maximal resource usage per day for a task assignment This change
can be permanently accepted since it does not lead to any inconsistencies. It
may however shorten the duration of the task assignment during rescheduling.

Chapter 9 Change Management 367

70 mhrs

01/11/2010

5 days

05/11/2010

Design Heat

Exchanger

Meyer (Mech. Eng.) 30 MHRS

1 2 3 4 5

6 6 6 6 6

(Electrical Engineer) 40 MHRS

1 2 3 4 5

8 8 8 8 8

 94 mhrs

01/11/2010

9 days

11/11/2010

Design Heat

Exchanger

Meyer (Mech. Eng.) 54 MHRS

1 2 3 4 5

6 6 6 6 6

(Electrical Engineer) 40 MHRS

1 2 3 4 5

8 8 8 8 8

6 7 8 9

0 0 6 6

10

6 6

11 66

Figure 9.14: Increase of total duration.

Third, the effects of a change to the total duration of a task are considered.
The total duration of a task may be inconsistent with the planned dates and the
distributed planned workload of task assignments.

Increase of total duration The unassigned total workload of the task is automat-
ically redistributed. The planned end time is automatically adapted to be con-
sistent with the new total duration. If the new planned end time of the task is
consistent with the planned dates of the other tasks in the task net, then this
change is permanently accepted. However, PROCEED warns the user that the
new total duration of the task is longer than the scheduled task assignments. The
user can for example increase the workload for the responsible resource, so that
the task assignment will span over the full duration of the task after rescheduling.
This situation is depicted in Figure 9.14 where 24 man hours have been added to
the task assignment of the responsible resource and distributed by rescheduling
over the additional days.

Decrease of total duration If the duration of a previously scheduled task assign-
ment, which is implicitly defined by the distributed workload, exceeds the new
total duration of the task, then the constraint (5.71) is violated. The change is
temporarily accepted until the parent task is rescheduled. If the task assignment
is not changed as well, then rescheduling will increase the total duration again,
as required for the task assignment. To avoid this, the user has to reduce the
planned workload or increase the maximal daily workload of the conflicting task
assignment.

Finally, the effects of a change to the total workload of a task are considered.

Increase of total workload In this case, no adaptation of other property values
of the same task is required. The change can be accepted permanently if it is
consistent with the total workload of the parent task. An inconsistency between

368 9.4 Related Work

the total workload and the total duration of the modified task cannot be iden-
tified at this point since the total workload may be distributed to multiple task
assignments later on.

Decrease of total workload If the used total workload of the task exceeds the new
total workload, the constraint (5.31) is violated. This constraint violation has
to be resolved immediately. PROCEED proposes to decrease the total workload
only to the used total workload. Otherwise, the change is prohibited.

9.4 Related Work

The concepts which have been presented in this chapter are related to two different
research directions. First, there is the enactment of project management processes,
in particular change management processes. Second, there is the integration of
planning and scheduling at project runtime, in particular the identification and
classification of possible changes to the project plan.

9.4.1 Enactment of Project Management Processes

Nagl and Westfechtel The distinction between technical processes and manage-
ment processes was already made in [NW94]. A layered approach for the realization
of a process management system is presented in which different levels of admin-
istration information are distinguished. On the lowest level, layer 0, there is only
technical information, i.e. the details of the technical documents in a development
project. The fine-grained processes on the technical level are not explicitly repre-
sented in the system. In the so-called extended technical configuration, technical
artifacts and their dependencies are represented on a more abstract level. The
development process and its subprocesses, the corresponding resources, and the
extended technical configuration together form the so-called administration con-
figuration which is administrated on layer 1. The processes which are enacted on
layer 1 are comparable to the management processes in PROCEED. They define how
the administration configuration including the development process is built up and
modified. The highest level, layer 2, is called the management administration. On
this level, the parameterization of the process management system for the usage
in different domains, organizations and projects takes place. Process model defi-
nitions for technical processes as well as management processes can be defined
and customized. This resembles the parameterization of management workflows in
PROCEED. The three levels are compared with each other [NW94, p.45]. Different
users of a process management system are associated with the different layers.
Level 0 is the activity level of technical developers, level 1 that of the administrator
of a project, level 2 that of the manager of the parameterization process. From the
lowest level to the highest level, the number of different users of the system and the
number of different user roles decreases. With respect to the enacted processes,
the degree of dynamics decreases from the lowest level to the highest level. For the

Chapter 9 Change Management 369

modification of the technical data on layer 0, no processes are explicitly prescribed.
For the management of the development process, dynamic task nets are defined on
layer 1, and complex dynamic changes can be applied. Finally, the parameterization
process defined on layer 2 is usually not changed at project runtime. In this thesis,
management processes have been compared to development processes, and it has
been argued that the former are less dynamic than the latter. This corresponds to
different degrees of dynamics within layer 1 of the approach presented in [NW94].
The enacted processes on layer 1 are less dynamic than the managed processes.

Joeris Change management processes in the software engineering domain are
addressed in [Joe97], where the author Gregor Joeris presents a conceptual frame-
work for the integration of process and configuration management. Management of
changes means managing the process of change as well as managing all artifacts of
an evolving software system. Joeris argues that process modeling languages provide
only poor concepts for managing the process of change. The presented approach
tries to integrate the underlying representation formalisms of process and version
models. For this purpose, basic concepts of dynamic task nets are used: Input
and output parameters of tasks, data flow relationships, and actual data flow, i.e.
modeling released document revisions in the process model instance. Feedbacks
in a process are related to changes to the product. Change processes shall be
reflected in a software development process by adapting the process model instance.
The adaptation is performed in several steps: modeling and initiating of feedbacks,
impact analysis and consequences, managing the flow of change. Joeris defines
the requirement that management processes like change request authorization
or approval of changes have to be integrated with the technical processes. This
leads to the concept of reflexivity which is required when "the process of process
(model) changes is defined in the process space". Altogether, Joeris describes on a
conceptual level how change management and development process management
can be integrated, but he does not provide a concrete solution for the problem. The
approach for the enactment of management processes presented in this thesis can
be regarded as a concrete realization of this integration.

Ivins et al. In [IGM04] an approach is presented which uses change processes to
manage changes to products. The key activities that are required for changing a
product are divided into human and technical activities. Human activities are finding
developers affected by a change, obtaining permission for a change, notifying rele-
vant users of a change, and following a predefined approval procedure for releasing
performed changes. Technical activities are the actual changes to the artifacts
and product configurations. The change processes provide explicit support for the
coordination of human and technical activities. They are modeled using UML activity
diagrams. The authors emphasize that a behavioral model was required to clearly
show the sequence of activities in a process, i.e. the model of a change process has
to be capable of representing sequential and concurrent activities, alternative paths
and iteration. Several requirements for a system to enact the process models are

370 9.4 Related Work

defined including the modeling of process participants and required roles, the trace-
ability of the process, and the adaptability of the process which refers to dynamic
changes of a process model instance at runtime. A research prototype has been
developed which integrates workflow technology with a development system that
supports versioning. In contrast to the approach presented in [IGM04], human and
technical activities are not represented in the same process model in PROCEED. The
human activities are the subtasks of management workflows, while the technical
activities are contained in the part of the dynamic task net which represents the
project plan. Both approaches have in common, that change management processes
are explicitly modeled and enacted by a workflow system. This provides standard-
ized, auditable change processes which support the coordination of several process
participants in a change management case.

9.4.2 Replanning and Rescheduling

According to Smith [Smi03], two of the open research questions with respect to
scheduling are the management of change and the integration of planning and
scheduling. When speaking of the integration of planning and scheduling, Smith
mainly thinks of planning systems from the domain of artificial intelligence. These
systems autonomically generate a plan to execute and schedule the individual tasks.
However, the integration of manual planning and scheduling in the context of a
project is also an open field of research. Current scheduling techniques are best
suited for highly predictable scheduling environments while most practical appli-
cations tend to comprise highly uncertain and dynamic scheduling environments.
Solutions for reactive scheduling have already been reviewed in Section 7.6.1.

In the following, two works are reviewed in which the possible disruptions at
project runtime have been systematically determined in order to develop reactive
scheduling algorithms. Finally, the common functionality of project management
systems for handling manual plan changes is reviewed by means of an exemplary
tool.

Zhu et al. In [ZBY05], a classification of possible disruptions at project runtime is
provided which defines four different classes. Under the term disruption, reasons
for plan changes and actual plan changes are subsumed, e.g. resource shortage
as well as the increase of a task’s duration. First, there are disruptions which are
related to the project network like the creation or deletion of tasks or changes to
precedence relationships. Second, task related disruptions like delays, increased
task durations, and deviating resource usages may occur. The third class covers
resource related disruptions like unexpected resource shortage or unavailability.
Finally, milestone disruptions do not affect the feasibility of the schedule but it may
be desirable to revise the schedule to meet a new or changed milestone. Several
recovery options are available to repair a disrupted schedule, which have been
reviewed in Section 7.6.1. Recovery options are applied by changing, adding, or
removing constraints of a integer linear programming (ILP) model. A solution to

Chapter 9 Change Management 371

the ILP problem instance is a repaired time and resource feasible schedule for the
whole project.

The classification for disruptions introduced in [ZBY05] has been used to classify
the possible changes to a dynamic task net in this thesis. Thereby, milestone
disruptions have not been considered. In contrast to [ZBY05], reasons for plan
changes and actual plan changes have been explicitly distinguished in this thesis.
Zhu et al. solve an integer linear programming problem for the whole project
schedule. In this way, no local schedule repair is possible. The effects of the applied
recovery options may be local in many cases, but there is no way to explicitly
constrain scheduling to a part of the project plan. This has been required in this
thesis due to the possibly limited authorization of a user to perform changes as well
as for enabling automatic rescheduling of workflow instances. The approach of Zhu
et al. does not take execution states of tasks into account because project planning
is treated independently of project execution. The change management procedure
presented in this chapter ensures that replanning and rescheduling is performed
consistently with process enactment.

Wang Wang describes in [Wan05] several possible disruptions which may occur
at project runtime. Four different cases are identified. The shift of a task refers
to changing the start or end time of the task. Second, the duration of a task may
change. Third, a change in certain resource capacities may occur. Finally, a temporal
constraint may be added or removed. Temporal constraints as defined by Wang
include release dates, due dates, precedence constraints, and milestone constraints.
A milestone constraint defines a fixed point in time for the start or end time of a
task. Disruptions lead to changed constraints of a dynamic constraint satisfaction
problem which is then solved by means of meta-heuristics (cf. Section 7.6.1). As a
consequence, the same limitations apply for the approach of Wang with respect to
local rescheduling as for the approach of Zhu et al. which has been discussed before.
The disruptions identified by Wang do not include the addition or deletion of tasks.

Changes to dependent task properties in project management systems As
an exemplary case, the alternative adaptations offered by the project manage-
ment system MS Project [Mic10a] are described in detail in the following. MS
Project provides all basic functionalities required for project management in small
to medium-sized projects. It provides tool support for the manual scheduling of
tasks. In particular, it ensures the consistency of the planned workload of a task, its
duration, the number of assigned resources, and the individual resource usage per
day for the task. The dependencies are visualized in Figure 9.15 by the square with
the properties at the edges. The arrows in Figure 9.15 indicate, which automatic
changes MS Project proposes to handle a manual change to one of the properties,
i.e. a change to the property at the source of an arrow may require a change to the
property which is the target of the arrow.

The total workload of a task is not explicitly defined in MS Project and can
therefore not be changed manually. When the user performs a change operation

372 9.4 Related Work

Total Workload
of Task

Total Duration
of Task

Number of
Resources

Resource
Usage per Day

Figure 9.15: Dependent time management properties in MS Project

to one of the properties, MS project performs a default change to re-establish
consistency and offers the alternative change operations to the user to select one of
those instead. This way, the consistency of the dependent property values is ensured.
The semi-automatic adaptations of the management data are necessary because the
workload of a task equals the sum of the workload of all task assignments and this
equality has to be preserved at any time. The workload of subtasks is not taken into
account. There are different possibilities for re-establishing the equality after a user
action whereby the total workload remains unchanged. On the other hand, the user
may want to change the workload of a task by performing an action like adding a
new resource or increasing the resource usage per day. These alternative changes
are also provided to the user.

Like in PROCEED, the planned workload of task assignments can be defined on a
daily basis in MS Project. When the workload values for individual days are manually
adapted by the user, the workload or the task is automatically adapted accordingly.
The duration of a task is connected with the planned start and end time in MS Project.
A change of the planned start or end time of a task moves the task on the time line.
Thereby, the duration remains fixed. The scheduled workload of the resources is
moved accordingly. It is not checked, whether the resources are assigned to other
tasks in the new time frame as well. If so, this leads to overtime work for overlapping
days. The project manager has to resolve the resulting inconsistencies manually.

In contrast to MS Project, the total workload of a task is explicitly defined in
PROCEED and is not necessarily equal to the sum of the workload of all task
assignments. Therefore, it is not required to make any adaptations in PROCEED,
when the used total workload is reduced. PROCEED supports automatic resource-
constrained scheduling which can resolve inconsistencies between planning data,
time constraints and planned dates. As a consequence, necessary adaptations to the
management data can be delayed while a user is replanning a task, and are only
performed just before the task is restarted.

Chapter 9 Change Management 373

9.5 Conclusion

This chapter showed how changes to a timed dynamic task net are performed at
project runtime. Changes to a project plan or to the scope of a project have to be
performed according to defined processes in an organization. Section 9.1 showed
how project management processes can be defined and enacted in PROCEED. The
organization-specific and project-specific parameterization enable organizations
to define their own management processes for reporting, change management,
and quality management. In practice, a scheduled dynamic task net has to be
continuously replanned in the course of a project. Section 9.2 described the possible
disruptions which may occur at project runtime, which manual plan changes can be
applied to react to the respective disruptions, and whether the plan changes require
rescheduling. Section 9.3 showed how replanning is performed in a consistent way
which respects the current enactment state of the development process. In this way,
planning, scheduling, and enactment of dynamic task nets are integrated.

374 9.5 Conclusion

Chapter 10 Prototypical Implementation 375

Chapter 10

Prototypical Implementation

This section describes the PROCEED prototype which is an implementation of
the concepts and algorithms described in the previous chapters. First, a coarse
overview over the system and its main components is given. In the following section,
relevant technical details with respect to the design and implementation of the
prototype are described. The main part of this chapter is the presentation of the
graphical user interface of PROCEED. The different views for process and project
management and monitoring are described. Finally, key figures regarding the size
of the implementation are provided.

10.1 System Overview

The process management environment PROCEED has been implemented as an
extension to the life cycle asset information system Comos which is widely used
in the plant engineering industries. PROCEED adds new functionality to Comos
which covers process and project management in engineering design projects. It is a
prototypical implementation of the concepts and algorithms presented in this thesis.

Since the infrastructure consisting of PROGRES, UPGRADE and GRAS, based on
which the AHEAD prototype was built, could not be used for the development of
PROCEED, the PROGRES graph schema defining the DYNAMITE meta-model had to
be translated to classes and associations defining the data model of the PROCEED
prototype. Graph transformations and graph queries were translated to according
methods in the PROCEED source code.

PROCEED has been implemented using the programming language C# and several
libraries of the Microsoft .NET framework. The Windows Presentation Foundation
(WPF) has been used to realize the graphical user interface. The Windows Workflows
Foundation (WF) has been used to realize the workflow management functionality.

The integration of the PROCEED extension module with Comos has been realized
by means of the Component Object Model (COM) []. COM interfaces have been
defined to allow the invocation of the different tools provided by PROCEED from
Comos. PROCEED accesses the data in the Comos database and the Comos functions
via the Comos API which provides several COM interfaces.

The Comos database is an object oriented database. The planning objects in
the Comos database which represent the actual engineering data in a project
are derived from base objects which constitute templates for planning objects (cf.

376 10.1 System Overview

PROCEED

GUI

Manage-

ment

Core

Comos

System

Microsoft
Analysis
Services

Comos Data Base

Comos API

Microsoft
SQL ServerExport

Process Engine Workflow Engine

Access
Control Scheduling Progress

Measurement
Workflow Progress

Measurement

Process

Management Tools

- Template Editor
- Workflow Designer
- Workflow Monitor

Project Management Views

- Task Net View
- Task List View
- Ressource Management View

Microsoft
Project

Coupling

Project

Status

Analysis

View

Section 2.2). Several base objects have been created as templates for the entities of
the management data model of PROCEED. A Comos database has to contain these
base objects, so that PROCEED can be used.

Section 10.1 shows the coarse grained architecture of the PROCEED system and
its relation to Comos. A three-tier architecture has been implemented. On the
presentation tier, the different views and tools which together amount to the graph-
ical user interface (GUI) of PROCEED are located. These views will be described
in detail in Section 10.3. They are divided into three different categories. Project
Management Views of PROCEED are used for managing a running project including
enacted process model instances. The Project Status Analysis View is used at project
runtime for monitoring. The Process Management Tools are used for the creation of
process model definitions, and for dynamically changing the definitions of running
process model instances.

On the logic tier, the Management Core of PROCEED is located. The Process
Engine is responsible for the enactment of dynamic task nets, which includes the
evaluation of all structural, behavioral, and timing consistency constraints. The
Workflow Engine enacts workflow instances which control the enactment of workflow
managed task nets. The bidirectional arrow indicates the coupling between the two
engines. The Access Control module realizes the authorization model for dynamic
task nets presented in Section 5.5. The algorithms for critical path analysis and
resource-constrained scheduling of dynamic task nets have been implemented in the
module Scheduling. The evaluation of the progress measures defined for tasks takes
place in the Progress Measurement module. The degree of completion of workflow
instances is computed in the module Workflow Progress Measurement which is tightly

Chapter 10 Prototypical Implementation 377

integrated with the workflow engine. The computed values are used for the general
progress measurement.

The data tier of the three-tier architecture contains the Comos database in which
all management data is stored. The data is accessed via the Comos API. In regular
intervals, the management data is exported to a relational database in an instance
of a Microsoft SQL Server. The data of this project data warehouse is processed
and condensed by means of the Microsoft Analysis Services which are conceptually
located on the logic tear but are, technically speaking, not part of the PROCEED
system. The Project Status Analysis View of the PROCEED system accesses the
project data warehouse via MDX queries to the Microsoft Analysis Services.

The project management system Microsoft Project has been coupled with PRO-
CEED to use its Gantt chart view for the presentation of the project schedule. When
MS Project is invoked from PROCEED, the current state of the dynamic task net
is exported and a project plan is generated in Ms Project. Some changes to task
properties can be directly made in MS Project which is why the coupling of the two
systems is bidirectional.

10.2 Design and Implementation

This section reviews some technical details regarding the design and implementa-
tion of the components of the PROCEED prototype. It is shown how the Process
Engine accesses the objects in the Comos database. The relationships between
the components which together provide the workflow management functionality in
PROCEED are reviewed. With respect to task net scheduling, the data structures
are described which enable a fast and side effect free computation of a project
schedule. It is shown how multidimensional data sets are retrieved from the Project
Data Warehouse. Finally, it is coarsely described how the coupling with the project
management system MS Project has been realized.

10.2.1 Process Engine

The meta-model for the management data maintained in the Comos database which
has been introduced in Chapter 5 forms the basis of the PROCEED process engine.
Classes have been implemented for tasks, resources, documents, control flows, etc.
On the one hand, these classes encapsulate the access to the data in the Comos
database. In this sense, the process engine serves as a wrapper for the Comos
API. On the other hand, additional functionality is implemented in the process
engine classes including the constraint checks of structural, behavioral, and timing
consistency constraints.

Engineering data of a plant design project is stored in the Comos database in the
form of so-called planning objects. These planning objects may represent devices of
the designed plant but also documents like flow diagrams. Tasks, which are managed
by PROCEED, are stored as planning objects in the Comos database. Figure 10.1
shows the tree view which is used in Comos to browse the objects in the database.

378 10.2 Design and Implementation

Figure 10.1: Planning objects and base objects in Comos.

On the left side, planning objects are shown which represent process templates
and tasks in a project. The realization of a task is represented by a separate object
which is arranged below the task. The children of the realization object represent
the subtasks. The bottom part of the tree view shows the specifications of the
selected planning object. In this case, the specifications of the task Cost Calculation
are displayed, and it can be seen that a specification refers to the succeeding task
Realization Approval.

On the right side of Figure 10.1, the base objects are displayed which have been
defined for PROCEED. Base objects serve as templates for planning objects. A base
object can be customized by defining additional specifications. The base object TSK
represents the most general task type. All planning objects which represent tasks
are instantiated from this base object or from a specialization thereof. For the base
object TSK several specifications have been defined which are therefore available
for the task Cost Calculation.

The objects contained in a Comos database can be accessed via the Comos API
which provides several interfaces for the different object types. In Figure 10.2 on
the right, four different interfaces for Comos objects are depicted. The IComos-
BaseObject is the most general type. Planning objects are instances of the interface
IComosDDevice. Specifications of planning objects are of the type IComosDSpeci-

Chapter 10 Prototypical Implementation 379

* 1

predecessor

IComosBaseObject

+Name

ComosObjectSubstitute

+Name

Task

+CreateSubtask

ControlFlow

+Successor

TaskType

IComosDDevice

IComosDCDevice

IComosDSpecification

+LinkObject

instance of
CDevice

1

1
1

1

Figure 10.2: Relation of process engine classes to Comos interfaces.

fication. Finally, base objects, which are also called CDevices in Comos, have the
interface IComosDCDevice. Every IComosDDevice object has a unique CDevice from
which it is derived. Every specification belongs to exactly one planning object or
base object where the latter association is not depicted in Figure 10.2.

The classes defined by the PROCEED process engine wrap the interfaces of the
Comos API. They are all derived from the class ComosObjectSubstitute. Every
object which is instantiated from a process engine class is associated with a unique
object in the Comos database which has the same name. Tasks are represented by
IComosDDevice objects and task types by IComosCDevice objects. A control flow
which connects two tasks is realized as a specification of the predecessor which
refers to the successor as the so-called LinkObject.

Whenever an object in the Comos database is accessed from PROCEED, an in-
stance of the corresponding process engine class is created. As a consequence,
there may be several instances of a process engine class referring to the same data
object in the database at the same time. This does not pose a problem because no
property values are cached in the management object of the process engine. Instead,
the values are always retrieved from the Comos database.

The process engine classes do not merely wrap the Comos interfaces but also
provide additional functionality. The constraint checks of structural, behavioral, and
timing consistency constraints are implemented in the methods of these classes.
Furthermore, the access control module is queried whenever a change operation is
invoked on an object instantiated from a process engine class to determine whether
the currently logged-in user is authorized to perform the operation. In Figure 10.2,
the method CreateSubtask is depicted. In this method, the authorization of the
user and the various constraints which apply to this change are checked before the
subtask is actually created. The subtask is created as a new IComosDDevice object
in the Comos database below the object which corresponds to the realization of the

380 10.2 Design and Implementation

Workflow
Progress

Process
Engine

Persistence
Service

WF Workflow Runtime

Tracking
Service

Workflow Designer

Workflow
Service

Workflow
Integration

Progress
Service

Workflow Monitor

serialized
instances

tracking data

instances events

workflow
definitions

events

workflow
instances

tracking
data

tracking data
reference data

events

workflow
status

base
objects

Comos Database

Workflow Engine

Figure 10.3: Workflow engine and related components and tools.

task.

10.2.2 Workflow Engine

The workflow engine of PROCEED has been implemented based on the Windows
Workflow Foundation (WF) [Buk08]. As described in Section 3.4.4, the WF provides
a runtime engine for the enactment of workflow instances and class libraries for
activities which can be used to create workflow definitions. Services for workflow
persistence and tracking are provided and it is possible to implement custom services.
Finally, user controls are provided for the realization of design-time tools.

Figure 10.3 gives an overview over the components which together provide the
workflow management functionality in PROCEED. The central component is the
Workflow Engine. Workflow instances are enacted by the WF Workflow Runtime which
is used for this purpose in all workflow-based applications which are implemented
based on the Windows Workflow Foundation. Several custom services have been
implemented. The Persistence Service serializes workflow instances in order to
store their current state in the Comos database. The Tracking Services logs all
workflow events like the start and completion of activities and stores tracking data
for all running workflow instances in the Comos database. This tracking data is
used together with reference data about all instances of a given workflow type to
compute the degree of completion of a workflow instance of this type. The degree of
completion is updated upon the completion of workflow activities. The computed
workflow status is stored in the Comos database. The integration of the Workflow
Engine and the Process Engine which is responsible for the enactment of dynamic
task nets is realized by the Workflow Integration component which receives workflow

Chapter 10 Prototypical Implementation 381

events via the Workflow Service and invokes operations like starting a workflow
instance via the Workflow Runtime. Finally, two tools have been implemented for
the definition and monitoring of workflows. The Workflow Designer is used to create
workflow definitions which are stored for the respective workflow templates in the
Comos database. The Workflow Monitor displays the current status of a running
workflow instance based on the tracking data in the Comos database. Furthermore,
it can be used to apply dynamic changes to running workflow instances.

The workflow management functionality has been developed in close cooperation
with Siemens Industry Software, at that time called innotec. The Workflow Engine,
Workflow Progress component, Workflow Designer, and Workflow Monitor can also
be used independently of PROCEED to define and enact engineering workflows in
Comos. This functionality has already exceeded the prototype status and has been
integrated in the current release of the Comos system.

10.2.3 Scheduler

The management data of PROCEED is stored in the Comos database. This has several
advantages. The Comos system can be used as the persistence layer of PROCEED
and the management data is stored in the same database as the engineering data.
When the user makes manual changes to a dynamic task net in PROCEED, these
changes are directly written to the database.

For scheduling however, it is required to mirror the dynamic task net in the
computer’s main memory. The read and write access to the data in main memory is
faster than the access to the Comos database which speeds up the computationally
intensive scheduling algorithm. Furthermore, the computed timing property values
should not be directly written to the database but only when the whole scheduling
pass is successfully completed. This way, inconsistent states of the management
data can be avoided in which some tasks have been rescheduled and others have
not.

The classes required for the memory representation of a dynamic task net are
contained in the namespace MemoryImplementation as depicted in Section 10.2.3.
There are classes for tasks, task assignments, roles, resources, control flows, and
feedback flows. The classes of the memory implementation which correspond to
process engine classes have only the minimal set of properties which are required for
scheduling. This includes for example the execution state but excludes the degree
of completion of a task.

The class MemFacade provides a compact interface for scheduling dynamic task
nets and implements the facade design pattern [GHJV94]. For example, the methods
ScheduleCPM() and ScheduleResources(Task root, DateTime start) can be invoked to
perform the respective scheduling algorithms on the dynamic task net of the current
project. The respective algorithms are implemented in the classes MemCPMScheduler
and MemResourceScheduler. Before scheduling, the memory implementation of the
task net is internally build by the method Build(Task root) which returns the root
of the task net hierarchy consisting of instances of the class MemTask. The classes

382 10.2 Design and Implementation

MemoryImplementation

MemTask

MemTaskAssignment

MemRole

MemFeedbackFlow

MemResource

WorkloadDistributionWorkCalendar

is a

parent

MemFacade

+ScheduleCPM()
+ScheduleResources(Task root, DateTime start)
-Build(Task root) : MemTask

MemCPMScheduler

Calendar

MemResourceScheduler

MemControlFlow

WorkCalendar and WorkloadDistribution which are also used by the process engine
classes are directly used for the memory implementation because they do not access
the Comos database after they have been instantiated.

After a successful scheduling pass, the computed planned start and end times are
set at the MemTask objects. Furthermore, task assignments have been created by
instantiating objects of the class MemTaskAssignment, and workload distributions
have been generated for the task assignments. These scheduling results have to be
written back to the Comos database. The export has the properties of a database
transaction, in particular it is atomic, consistent and durable. Either the whole
export of all property values and task assignments is successful, or the whole export
is aborted and rolled back, so that the management data in the Comos database
remains unchanged.

Chapter 10 Prototypical Implementation 383

10.2.4 Project Data Warehouse

For the multidimensional visualization of project management data which has been
described in Section 8.3, a data warehouse [JLVV00] has been realized to which the
management data can be exported in regular intervals. This project data warehouse
could not be realized using the Comos database. The Comos database is an object-
oriented database which is based on an underlying relational database. It is not
possible to add custom tables to this relational database.

Therefore, a separate relational database is used for the project data ware-
house which is managed by an instance of the Microsoft SQL Server. In an ETL
(Extract-Transform-Load) process, the management data is extracted from the Co-
mos database, transformed to the schema of the relational database and loaded into
the data warehouse. The Microsoft Analysis Services [Mic11] have been applied
for the data processing. The measured values which are exported from Comos are
arranged along the dimensions of a hypercube in the data warehouse. When this
hypercube has been generated, multidimensional data records can be retrieved from
the project data warehouse using the query language MDX. The following example
of an MDX query retrieves the hypercube for the view configuration Technical Crews
from the data warehouse.

Select [Dim Time].[Hierarchy].Members on axis(0),
[Dim Roles].[Parent Role].Members on axis(1),
[Dim Resources].[Parent Resource].Members on axis(2)

From [PM Cube]
Where [Dim Modus].[Dim Modus].&[planned], [Measures].[Workload]

The time dimension is mapped to the x-axis, the roles dimension to the y-axis, and
the resources dimension to the third axis which is visualized by the stack layers of
in the pivot table of the project status analysis view. The measure is the planned
workload, aggregated over all tasks and plant parts .

Besides a full export of the management data, the export can also be performed
incrementally. In this case, only changed measured values are exported. Whenever
a change to a task, task assignment, resource or the like occurs, the changed
values of the affected entities are immediately exported to the data warehouse
and the hypercube is updated. This dynamic update functionality constituted a
technical challenge, since the export and processing of data is time consuming
even for an incremental export, but the user should not impeded in his work with
PROCEED. Therefore, the incremental export of changed data sets is started in a
separate thread, so that the user can work with the GUI of PROCEED while the
export takes place. After the export has completed, a manual update of the pivot
table of the project status analysis view will show the changed values. In this way,
dynamic changes to the project management data are immediately reflected in the
multidimensional analysis view.

For every full or incremental export of management data to the project data
warehouse, a new time stamp is created. All exported measured values are asso-
ciated with this time stamp. In this way, the history of plan changes is stored in

384 10.2 Design and Implementation

the data warehouse and can be visualized in the project status analysis view. The
subsequent values of the total workload of a task can be retrieved from the project
data warehouse with the following MDX query.

Select [Dim Time Stamp].[Dim Time Stamp].Members on axis(0),
From [PM Cube]
Where ([Dim Modus].[Dim Modus].&[planned],

[Dim Tasks].[Parent Task].&[A2CDOWFM78],
[Measures].[Workload])

The time stamps for the subsequent states of planning are mapped to the x-axis.
The modus is set to planned values thereby excluding the actual workload of the
task. A slicing operation is performed for the tasks dimension, so that only the
values for a particular task are returned. In this example, the unique id A2CDOWFM78
identifies the task Basic Engineering. Finally, the measure workload is selected. The
retrieved values are displayed in a line diagram instead of a pivot table as described
in Section 8.3.

10.2.5 Coupling with External Project Management System

The project management system Microsoft Project has been coupled with PROCEED
to use its Gantt chart view for the presentation of the project schedule. Figure 10.4
shows a screenshot of MS Project with the exported dynamic task net of the example
scenario.

When MS Project is invoked from PROCEED, the current state of the dynamic task
net is exported to a project plan in Ms Project. Only scheduled tasks are exported
to MS Project, i.e. management tasks, work steps, and zero-duration tasks are not
represented in the Gantt chart. For all other tasks the current and possibly existing
older versions of the respective task are exported as individual tasks to MS Project.

The following properties of a task are exported from PROCEED to MS Project.

• Name

• Description

• Start and end time

• Planned start and end time

• Due date

• Assigned resources

• Degree of completion

A minor difference between tasks in PROCEED and MS Project is related to the
planned end time of a task. While in PROCEED, the end time of a task is the last
date on which working hours are scheduled, no working hours can be scheduled on

Chapter 10 Prototypical Implementation 385

Figure 10.4: Exported dynamic task net in MS Project.

the finish date of a task in MS Project. Therefore, the planned end time of a task
had to be mapped to the next date in MS Project. Besides the functional properties
of a task, the unique id of a task in the Comos database is also exported to establish
the mapping between the tasks in PROCEED and MS Project.

Control flows are not exported to MS Project. In general, control flows could be
mapped to task dependencies in MS Project. However, several limitations rendered
a semantics preserving mapping impossible. First, there are no simultaneous control
flows in MS Project, and it is not possible to define two different task dependencies
between two tasks, e.g. to simulate simultaneous control flows by a combination of
start-start and end-end task dependencies. Second, the start-start and start-end task
dependencies which can be defined in MS Project have no equivalent counterpart
in dynamic task nets. Finally, complex tasks in MS Project cannot be the target of
task dependencies which impose constraints on their end dates, i.e. start-end and
end-end task dependencies cannot be defined for these tasks.

After all tasks have been exported to MS Project, the project plan reflects the
corresponding part of the dynamic task net. An event mechanism has been realized
which ensures that all subsequent changes to the dynamic task net in PROCEED
are immediately reflected in MS Project by incrementally exporting the changed
data. On the other hand, the user can change the planned start and end times
of tasks in MS Project, and he can create new subtasks or delete existing tasks.
If he is authorized to perform these changes in PROCEED, and the changes can
be permanently or temporarily accepted with respect to behavioral and timing
consistency constraints, then they are applied to the dynamic task net. Otherwise,
the intended change operation is prohibited in MS Project and the project plan
remains unchanged.

386 10.3 User Interface

10.3 User Interface

In this section, the different management and monitoring views of the PROCEED pro-
totype are presented. The presentation of the management data and the functionality
for modifying the data are described.

The user interface of the PROCEED prototype has been implemented using the
Windows Presentation Foundation (WPF) framework by Microsoft [Nat06]. One of
the advantages of this new graphics framework is that all controls are vector-based
graphics and can be arbitrarily scaled, so that zooming functionality could be easily
realized.

10.3.1 Project Management Views

PROCEED provides two different views for process management. In these views,
tasks and task relationships of a process model instance can be defined and modified.
Furthermore, the process model instance can be enacted, i.e. task execution states
can be changed and document revisions can be produced.

Process model instances are internally represented as dynamic task nets in PRO-
CEED. The Task Net View uses this internal data model also for the presentation of
the management data to the user. Tasks and task dependencies are represented in a
network diagram. In this way, all logical relationships between tasks are visualized,
but not their extension and their relative position in time.

Figure 10.5 shows a screenshot of the PROCEED Task Net View. Tasks are
represented by boxes and control flow by labeled edges between the task boxes.
Besides the name and total workload of a task, its execution state, the responsible
resource with the required role, and the start and end dates are displayed. For a
preparing task, the planned start and end dates are displayed, while for running and
terminated tasks, the respective actual dates are displayed. The actual and planned
degrees of completion of a task are visualized by horizontal progress bars, so that
they can be directly compared. The color of the task box indicates, whether the task
has fallen below defined thresholds of the CPI or SPI. The setting whether the color
markings in the management views represent the SPI or CPI can be changed by the
user. In Figure 10.5, the yellow color of the task Process Flow Diagrams indicates,
that the SPI value of the task is between 0.7 and 0.9.

The representation of a task in the task net does not allow to display all relevant
property values at once. Therefore, the property values of a selected task can be
inspected and modified in the property box which is depicted for the task Process
Flow Diagrams in Figure 10.6. Furthermore, additional information about the task
is displayed when the user holds the mouse over certain parts of the task box,
e.g. in Figure 10.6 the mouse cursor is located above the planned dates of the
task Equipment List whereupon a box with all actual and planned dates as well as
computed constraint dates of the tasks is shown.

The Task Net View shows only one level of the task net hierarchy at a time. The
user can navigate downwards and upwards in the task net hierarchy by clicking

Chapter 10 Prototypical Implementation 387

Figure 10.5: Screenshot of the Task Net View.

on the tasks. The tasks depicted in Figure 10.5 are all subtasks of the task Basic
Engineering except for the task Specification of Machines and Devices. The latter
is a subtask of the task Detail Engineering but is at the same time a successor
of a task Equipment List. In dynamic task nets, it is possible to define control
flows and data flows between tasks contained in different realizations. To display
these dependencies, the dependent tasks from other realizations are depicted as
transparent boxes in the Task Net View.

To define control flows between tasks of different realizations in the first place, it
is required to display both at the same time. For this purpose, the Task Net View
can be split into two parts as depicted in Figure 10.7. On the left hand, the subtasks
of the task Preliminary Planning are displayed while on the right side the subtasks of
Basic Engineering are visible. This split screen allows to define task dependencies
between subtasks of different parent tasks. The overview window shows the user
how the parent tasks are related to each other and thereby whether the subtasks
may be connected by control flows.

Finally, an additional dialog can be opened for a task to define and modify its
task assignments. This dialog is depicted in Figure 10.8. It shows the relevant
properties of the task, namely its total workload, the unassigned total workload, and
the total duration. On the right hand side the currently defined task assignments

388 10.3 User Interface

Figure 10.6: Task properties in the Task Net View.

are listed, where the task assignment for the responsible resource is marked. A new
task assignment can be defined by selecting a role from the list of project roles on
the left side and clicking the button below.

Besides the Task Net View, a Task List View is provided by PROCEED, which can
be used by individual project team members as a todo list with their assigned tasks,
but also by the project manager to get an overview over all tasks in the project. The
list reflects the hierarchical structure of the task net. Several task properties can
be displayed in the list which can be selected by the user. When a task is selected
in the list, its input and output parameters, additional resources, and all properties
are displayed on the bottom of the Task List View. Tasks which do not perform as
planned are marked in the Task List View just like in the Task Net View by colors
indicating the degree of delay or budget overrun.

Several filters can be applied to the Task List View. An example setting is depicted
in Figure 10.10 where only the preparing tasks to which the logged in user Heer is
assigned are displayed.

Restricted Accessibility The authorization model described in Section 5.5 has
been implemented in PROCEED. Authorization rules are evaluated to decide whether
a user is allowed to perform a certain change operation and which management

Chapter 10 Prototypical Implementation 389

Figure 10.7: Split screen and overview window of Task Net View.

Figure 10.8: Task assignment dialog.

390 10.3 User Interface

Figure 10.9: Screenshot of the Task List View.

Figure 10.10: Filters applied to the Task List View.

Chapter 10 Prototypical Implementation 391

Figure 10.11: Limited visibility and accessibility of management data.

data is visible to the user. The functionalities of the user interface are enabled or
disabled depending on the user’s authorization so that the user is only permitted to
perform authorized operations. In addition, the displayed data is filtered according
to the user’s authorization.

Figure 10.11 shows a screenshot of the Task Net View with restricted functionality.
The user Baumann is currently logged in. He can see the task Initial P&IDs for which
he is responsible as well as the tasks in the work context of this task. However,
he cannot see all subtasks of Basic Engineering. The task Equipment List is not
displayed. Furthermore, the user Baumann cannot navigate into the task Process
Flow Diagrams to view its subtasks, and he may not perform any change operations
on this task. This can be seen in Figure 10.11, where the user opened the context
menu for the task Process Flow Diagrams in which certain entries are disabled.

In general, the management views are adapted according to the effective permis-
sions of the logged in user. In contrast, other views for process definition, project
monitoring, and resource management are completely disabled if the user does not
have the required super permissions.

10.3.2 Process Definition Tools

While the management views are used in a project to manage and enact process
model instances, there are dedicated views for the creation of process model defini-
tions and the management of the process knowledge. The definition of task, process,
and workflows templates for technical processes and management processes is
usually performed by a process engineer who has to be one of the administrators of
the Comos database. Task types are directly defined in Comos by creating according

392 10.3 User Interface

Figure 10.12: Screenshot of the PROCEED Process Template Editor.

base objects. For the definition of process templates, the PROCEED Template Ed-
itor is used. This tool is similar to the Task Net View but provides only restricted
functionality which is required to create a process template before project runtime.

Figure 10.12 shows a screenshot of the template editor, in which the task net part
of the workflow template Specify Pump is displayed. It is not possible to change the
execution states of the defined tasks and to set planned dates. The required roles of
the responsible resources are defined but no actual resources can be assigned to
the tasks.

The workflow definition which is associated with such a workflow template is
defined by means of the Workflow Designer. This tool allows to define control
structures for alternative branching and loops. A screenshot of the Workflow De-
signer is depicted in Figure 10.13. On the right side, the workflow definition is
visualized graphically. An IfElse activity and a While activity have been used to define
the workflow Specify Pump. Below the workflow definition, the properties of the
currently selected activity are displayed and can be modified. On the left side of
the designer window, a list of available activity types is displayed most of which
represent specific atomic and complex activities which have not been introduced
in this thesis. An activity can be selected in the list, dragged onto the workflow
definition, and dropped at the position where it shall be inserted.

The tools to define and monitor workflows have been implemented using the
Windows Workflow Foundation (WF) [Buk08]. This framework provides several
reusable controls, e.g. for the graphical representation of the workflow definition.

Chapter 10 Prototypical Implementation 393

Figure 10.13: Screenshot of the PROCEED Workflow Designer.

10.3.3 Monitoring Views

The management views already provide functionality for monitoring enacted process
model instances. The execution states of tasks, their degree of completion, and the
computed performance indices are displayed in the Task Net View and the Task List
View.

An additional view can be used to inspect the current enactment state of workflow-
managed task nets. This Workflow Monitor is an extended version of the Workflow
Designer. The workflow definition is augmented by symbols which visualize the
current enactment state of the workflow as depicted in Figure 10.14. Checkmarks
indicate that an activity has been completed. Currently executing activities are
marked with a play-symbol. In addition, the number of iterations is shown for every
activity. In Figure 10.14, the While activity is in the second iteration. Furthermore,
an event log is presented to the user in the Workflow Monitor which shows all

394 10.3 User Interface

Figure 10.14: Workflow enactment state in PROCEED Workflow Monitor.

execution state changes of the workflow instance and its activities.

The Workflow Monitor is not only used for monitoring running workflow instances,
but also to apply dynamic structural changes to the workflow definition at runtime.
Therefore, the Workflow Monitor provides the same functionality as the Workflow
Designer. For dynamic changes at workflow runtime, certain restrictions apply,
which have been described in Section 6.3.6. The WF provides the possibility to
change running workflow instances programmatically via API calls, and it provides
a user control for the graphical editing of workflow definitions. However, at the
time of development of the PROCEED prototype, there was no solution available
for performing dynamic changes to a running workflow instance using the controls
for the graphical representation of the workflow definition. This posed a technical
challenge which could be successfully solved. The user can work with the Workflow
Monitor like with the Workflow Designer by dragging activities into the workflow
definition or moving activities inside the workflow definition. When he confirms his
changes, they are applied to the running workflow instance.

The Project Status Analysis View which has been introduced in Section 8.3 enables
project managers and controllers to visually analyze the current project status with
respect to different key figures. Because this view provides an overview over all
tasks in the project, it can only be used by authorized users who have the super
permission to view all tasks in the project (cf. Section 5.5).

Chapter 10 Prototypical Implementation 395

Figure 10.15: Pivot table configuration Technical Crews.

Figure 10.15 shows a screenshot of the pivot table which is used for the multi-
dimensional visualization of the project management data. The user has selected
the configuration Technical Crews which maps the time dimension to the x-axis,
the roles dimension to the y-axis, and the resources dimension to the colors of the
stacked bars. The user has furthermore defined a filter for the y-axis which only
displays the role Engineer and specializations thereof. The height of the stacked
bars shows how many working hours have been scheduled for the different roles and
how they are distributed between the resources. This view can be used to analyze
the current state of planning in order to optimize the assignment of resources to
tasks. It can also help a project manager to find a suitable resource for a new task
assignment which has not too many tasks assigned yet for the given timeframe.

In Figure 10.16, the view configuration task usage is depicted, in which the
planned workload for different tasks in a selected timeframe is visualized, divided
into the shares of the assigned users. The details of the stacked bars can be inspected
by hovering of the coordinates of the pivot table with the mouse, so that data tips

396 10.3 User Interface

Figure 10.16: Pivot table configuration Task Usage.

[Tid06] are displayed.

Further information graphics patterns have been applied in order to enable the
user to grasp the complex multidimensional data. Data brushing [Tid06] is used
to highlight data sets which refer to the same coordinate of a dimension, e.g.
only the stack layers corresponding to a particular resource can be highlighted in
Figure 10.15 while all other layers are displayed in the same color. The pivot table
itself is an application of the small multiples [Tuf86] pattern, which allows for a very
dense but clear presentation of large multidimensional datasets.

The project status analysis view allows the user to quickly navigate between dif-
ferent configurations of the pivot table. In addition to the manual view configuration
and the selection of pre-defined configurations, several navigation operations are
available which realize most of the operations on a multidimensional dataset which
have been introduced in Section 8.3, e.g. pivoting by exchanging the dimensions
of the axes. The operations can be invoked via context menus of the axes and the
stacked-bar charts and ease the handling of the project status analysis view.

Chapter 10 Prototypical Implementation 397

Figure 10.17: PROCEED Resource Management View.

10.3.4 Resource Management View

A dedicated view has been implemented to support the management of roles, users,
and permissions in a project. Figure 10.17 shows a screenshot of the Resource
Management View. Only authorized users who have the super permission for
resource management in the project (cf. Section 5.5) may use this view.

The top part of the view shows the roles which have been defined for the organiza-
tion, and the users who can play these roles in the organization. The bottom part
shows the structure of the project team, the available roles, the allocated resources,
and their permissions in the project. When a subteam of the project team is selected
in the tree view on the left, then the members of the subteam are displayed in the list
Project Resources. If an available role is selected, then all project resources which
can play this role in the project are displayed. When a project resource is selected,
then the permission lists show the setting for this resource, e.g. the resource Volkova
has only the basic permissions but no super permissions. A resource can be added to
the project team by dragging it from the organization resources list onto one of the
project subteams. When a new user is added to a project, the default permissions
are automatically assigned to the user.

398 10.4 Implementation Size

C# XAML
Component files LOC files LOC

Process Engine, Access Control,
Scheduling, Progress Measurement 66 21053 0 0
Project Management Views 146 27550 52 2090
Process Management Tools 19 4814 0 0
Project Status Analysis View 87 12869 24 479
Workflow Engine, Workflow Progress
Measurement, Workflow Integration 106 14739 0 0
MS Project Integration 8 2283 0 0

Total 432 83308 76 2569

Table 10.1: Lines of code of the PROCEED prototype.

10.4 Implementation Size

The PROCEED prototype has been developed at the Department of Computer Sci-
ence 3 at RWTH Aachen University in close cooperation with Siemens Industry
Software, formerly known as innotec. A developer of innotec contributed to the
workflow engine of the PROCEED system. Altogether, eleven developers including
employees of the department and students contributed to the software prototype.
The development took about three years with interruptions.

Table 10.1 shows the size of the implementation in terms of source files and lines
of code (LOC). The lines of code are counted excluding blank lines and comments.
The PROCEED prototype has been implemented using the programming language
C#. The main part of the user interface has been realized using the Windows
Presentation Foundation (WPF). The source code of WPF-based user controls is
divided into the layout part which is defined in the XAML format and the program
logic which is written in C#. The XAML format is a WPF specific XML format. The
Management Core excluding the workflow management functionality amounts to
66 source files and 21053 LOC. The views for task and resource management in a
project add another 24550 lines of C# code and 2090 lines in XAML files. There
are comparably few LOC for the process management tools because the Template
Editor is merely a restricted version of the Task Net View, and the Workflow Monitor
is an extended version of the Workflow Designer. The LOC for the Project Status
Analysis View include the source code for the ETL export of the management data to
the data warehouse. Altogether, about 85T lines of code have been written to realize
the PROCEED prototype.

In contrast to the AHEAD prototype, no generative software development frame-
work like the PROGRES system [SWZ99] could be used for the development of
PROCEED. It has been a requirement of the industry partner to realize the prototype
using the applied Microsoft technologies for which no tools exist which could gener-
ate the application logic from a formal specification. The Visual Studio development
environment merely provides support for designing graphical user interfaces. User

Chapter 10 Prototypical Implementation 399

controls can be visually designed while the editor generates the source code which
defines their layout.

10.5 Conclusion

In this chapter it has been shown that the concepts and algorithms presented in
this thesis have been implemented in a working software prototype. The PROCEED
prototype is based on an industrial platform. It is an extension to the widely used life
cycle asset information system Comos. The workflow management functionality of
PROCEED has already exceeded the prototype status and has been integrated into
the current release of Comos. The concepts and algorithms for controlling develop-
ment projects have been evaluated using the PROCEED prototype. Process model
definitions have been defined, an example project has been created, the defined
tasks have been scheduled, executed, and monitored in PROCEED. Furthermore,
the dynamic replanning and rescheduling of enacted development processes has
been simulated in PROCEED. The example scenario which has been described in
various sections of this thesis has been used for this evaluation. For the execution of
the three year-long example project, the progression of time has been simulated. By
means of this virtual evaluation, the general applicability of the developed approach
could be shown.

The next step would be an evaluation of the prototype in a real-world project in a
plant engineering company. The circumstance that PROCEED is an extension to the
Comos system which is widely used in the plant engineering industries, offers great
possibilities for such an evaluation. In a first step, a plant engineering company
would use PROCEED to define their design processes and the subprocesses thereof.
This process knowledge would be stored in the central Comos database used for
all design projects in the company. The second step would be the execution of a
small design project using PROCEED for project planning and controlling. This
evaluation would provide valuable insights in how project team members accept the
new functionalities provided by PROCEED. The evaluation in a real-project could
not be performed during the course of this research because plant design projects
usually take several years.

400 10.5 Conclusion

Chapter 11 Conclusion 401

Chapter 11

Conclusion

This chapter summarizes and evaluates the contributions of this thesis. Furthermore,
an outlook is provided on how the presented research could be continued.

11.1 Summary

In this thesis, a novel approach for controlling development processes by means
of a process management system has been presented. The solution approach can
be coarsely divided into two parts. First, the TNT meta-model has been defined to
provide the necessary modeling capabilities for process model instances. Second,
algorithms and tool functionalities have been developed to support the scheduling
and monitoring of tasks in a development process as well as the controlled enactment
of change management processes at project runtime.

The TNT meta-model has been presented in Chapter 5. It defines the entities,
properties, and relationships required for modeling timed dynamic task nets. The
TNT meta-model is based on the DYNAMITE and RESMOD meta-models which were
defined for the AHEAD system. The main concepts for modeling dynamic task nets
have been adopted in the structural and the behavioral model. Several adaptations
have been made to address specific requirements which emerged in the industrial
context of the research project. In particular, the resource management capabilities
provided by PROCEED differ from those of the AHEAD system in that a project
team with subteams and team leaders can be defined, and several resources can be
assigned to a single task. The behavioral model of the TNT meta-model defines a
new execution state and additional state transitions to enable the skipping of tasks,
which is particularly required for the automatic enactment of subprocesses in a
development project.

The TNT meta-model extends the DYNAMITE meta-model by three additional
models: the timing model, the monitoring model, and the authorization model. These
partial models enable the scheduling and monitoring of process model instances,
and the access control to the management data, respectively.

The timing model, which has been presented in Section 5.3, introduces individual
work calendars for tasks and resources which define the available and used working
hours for every date. Timing properties have been defined for tasks, control flows,
and resources. They are divided into planning data, time constraints, computed
constraint dates, and planned dates. The introduced entities and properties cover

402 11.1 Summary

all planning aspects of a process model instance with respect to time and resource
management. Timing consistency constraints define the consistent states of the
management data with respect to the timing property values. They result from a
systematic analysis of all dependencies between the timing properties of different
tasks, task relationships, and resources. Based on the timing consistency constraints,
the consistent definition of a process model instance can be supported by the process
management system.

The monitoring model introduces task properties for progress measurement and
performance analysis. It has been presented in Section 5.4. First of all, actual dates
have been introduced in addition to planned dates. The explicit distinction between
planned and actual values enables the detection of deviations of the process perfor-
mance from the plan. For performance analysis, the degree of completion of a task
is defined as well as performance indices of the earned value analysis. A forecasted
end time is defined in addition to the planned end time. Monitoring constraints
define the enactment states in which the actual performance conforms to the plan.
Based on the monitoring constraints, the enactment of process model instances
in compliance with time restrictions can be supported the process management
system.

The authorization model, which has been presented in Section 5.5, introduces
the concept of a permission. Permissions for a project can be individually assigned
to users of the system. Authorization rules specify which permissions are actually
effective in a given situation. The rights of a user to change the management data
of a project depend on his permissions, his task assignments, and his position in
the project team. In contrast to access control mechanisms implemented in other
academic or commercial process management systems, the authorization model also
covers structural changes to a process model instance. The authorization model
enables a project-specific tailoring of the access control policy. Depending on the
assigned permissions, different management styles can be realized including the
hierarchical delegation of tasks and the collaboration of project team members with
equal rights. Furthermore, permissions can be assigned to users in a way that
enables observation without the right to change the management data.

Process knowledge which can be reused in different development projects can be
defined in several ways in PROCEED as described in Chapter 6. In Section 6.1, task
types have been introduced which define default property values for their instances.
In particular, default values of timing properties represent valuable process knowl-
edge for planning a process model instance. But also the progress measure used to
determine the degree of completion of a task instance can be predefined for a task
type. Task types can be arranged in a generalization hierarchy where specialized
task types inherit the property values of the more general types. There are two
ways to define process model definitions in PROCEED. First, process templates
can be defined which are copied to a process model instance during planning as
described in Section 6.2. Process templates may contain several instances of a
task type. They may define control flows and data flows between tasks. Second,
workflow templates can be used which are extended process templates incorporating

Chapter 11 Conclusion 403

additional information for the automatic enactment of the defined subprocesses. The
workflow management capabilities of PROCEED have been described in Section 6.3.
A workflow definition which is associated with a workflow template defines control
structures like alternative branching and loops. Decision variables, whose values
can be set by process participants, are evaluated at process runtime to determine
the actual flow of control. The process modeling capabilities provided by PROCEED
support the planning and the enactment of process model instances. Process tem-
plates and procedural process model definitions, i.e. workflows, have been found
suitable and sufficient for the application of PROCEED in industrial practice.

The timing model of the TNT meta-model enables the scheduling of tasks in a
process model instance. Since manual scheduling is infeasible in large development
projects, PROCEED provides support for automatic schedule generation. The im-
plemented scheduling algorithms have been presented in Chapter 7. Not all tasks
in a dynamic task net are necessarily scheduled. So-called zero-duration tasks are
excluded from scheduling due to their granularity, duration, or purpose, as described
in Section 7.1.

Scheduling is performed in two steps. First, a critical path analysis of the dynamic
task net to be scheduled is performed. Afterwards, resource-constrained scheduling
is performed to obtain a time- and resource-feasible schedule. The hierarchical criti-
cal path method for dynamic task nets has been described in Section 7.2. It computes
the earliest and latest possible start and end times of tasks. Running and terminated
tasks are treated differently compared to preparing tasks in that their planned dates
determine the computed constraint dates. For resource-constrained scheduling,
a heuristic algorithm has been developed based on a general parallel scheduling
scheme. This heuristic has been described in Section 7.3. The hierarchical structure
of dynamic task nets, the presence of simultaneous and standard control flows, and
the dynamic computation of task durations together require backtracking during
scheduling if planned end times are inconsistent. Despite backtracking, the time
complexity of the scheduling algorithm is still polynomial. The constructive heuristic
can be used to generate an initial baseline schedule but also to reschedule a dynamic
task net at project runtime. In the latter case, the execution states of tasks are taken
into account. Terminated tasks are not rescheduled at all and running tasks are not
moved to a different start date. A dynamic task net can be scheduled locally. For this
purpose, the root task of the subprocess to be scheduled has to be specified. All tasks
which are not part of the subprocess defined by the root task remain unchanged
during scheduling. It has been shown that the developed algorithms for critical path
analysis and resource-constrained scheduling yield constraint dates and planned
dates which fulfill all timing consistency constraints defined in the TNT meta-model.

Workflow-managed dynamic task nets are treated in a special way during schedul-
ing. In Section 7.4, it has been described how critical path analysis and resource-
constrained scheduling are performed in these cases. Critical path analysis uses the
shortest paths through alternative branching and loop constructs to compute the
constraint dates of the predecessors and successors of these constructs. Resource-
constrained scheduling is initially performed for one alternative path of a branching

404 11.1 Summary

construct and only one iteration of a loop. At runtime, a workflow-managed dynamic
task net is automatically rescheduled upon decisions made by the workflow engine,
i.e. when a different alternative is selected or a loop is iterated once again.

Altogether, the scheduling capabilities of PROCEED cover scheduling of hierar-
chically structured task nets, local rescheduling at process runtime whilst taking
task execution states into account, and scheduling of workflow instances. Thereby,
PROCEED stands out against related scheduling approaches from research and
commercial software packages for project and workflow management.

PROCEED supports process controllers in determining the current project status
as described in Chapter 8. An innovative approach has been developed for progress
measurement, which integrates several different progress measures in one unified
measuring framework. The available progress measures have been described and
compared in Section 8.1. The degree of completion can be determined for individual
tasks by means of the most appropriate progress measure which represents the
best trade-off between measuring effort and accuracy. The common practice to
determine the current status of a plant design project based on document states
has been integrated with the concept of dynamic task nets in the form of a specific
progress measure. The integrated management of tasks and products and the
explicit representation of the actual data flow in dynamic task nets enable this
way of progress measurement. In contrast, state of the art project management
systems do not allow to connect the tasks in a project plan with the technical
products. Another specific progress measure has been defined which relies on the
timing information available for workflow templates. The degree of completion of a
workflow-managed task is derived from the current enactment state of a workflow-
managed task net and reference values for the expected durations of the remaining
tasks. The progress measure which is used for a task can be predefined for a task
type or a task instance in a process template. In this way, the measuring framework
can be tailored to the process model definition of a specific development process.
Finally, earned value analysis has been applied to compare the actual performance
of a running process model instance with the plan as described in Section 8.2.

In addition to progress measurement based on the degrees of completion of
tasks and earned value analysis, the project management data can be visualized
in a project status analysis view, which has been described in Section 8.3. A
flexibly configurable pivot table allows to analyze the inherently multidimensional
management data from different perspectives. The history of changes to the planning
data which is stored in a project data warehouse is visualized in the form of line
diagrams. A user of PROCEED can navigate between the different project monitoring
views and the management views to take immediate action when he has identified
poor process performance.

All in all, the provided project monitoring functionality goes beyond the state of
the art in academia and industrial practice. The integration of planning, enactment,
and monitoring enables the comparison of the actual performance with the plan.
Common project management systems generally do not support the execution of
the defined tasks, and their monitoring capabilities are limited at best. While

Chapter 11 Conclusion 405

different progress measures have been promoted, no integrated approach can be
found in research or practice which provides a flexible framework for progress
measurement which can be tailored to a development process. The application of
a data warehouse and visualization techniques for project status analysis has only
recently been investigated. In particular, the integration of this functionality into
a process management system distinguishes the presented approach from related
work.

Controlling of development processes includes besides monitoring also steering
the process by taking corrective measures and applying plan changes. As described
in Chapter 9, these managerial activities are supported by PROCEED as well. In
Section 9.1, it has been described how management processes are explicitly mod-
eled and enacted in PROCEED. Workflow templates can be defined for all sorts of
processes in a project including reporting, quality management, and change manage-
ment processes. Task types for technical tasks can be parameterized, so that specific
management workflows are enacted in certain predefined situations. In this way, the
controlled enactment of management processes can be tailored to a development
process. The explicit modeling and controlled enactment of management processes
and their integration with the development process distinguishes PROCEED from
related approaches in academia and practice. In related research approaches and
commercial solutions, management processes in a development project are either
not treated at all or without any relation to the enacted development process.

When disruptions occur at project runtime, plan changes may have to be per-
formed. In Section 9.2, the possible disruptions have been analyzed with respect
to whether they require manual plan changes and whether these changes require
rescheduling of the project plan. The general change management procedure which
has to be followed by authorized users when they perform changes to a dynamic
task net has been presented in Section 9.3. It ensures, that the task net is eventually
in a consistent state after replanning and rescheduling, in which the planned dates
of the tasks represent a time- and resource-feasible schedule. Replanning and
rescheduling are performed alternatively and iteratively in order to arrive at a feasi-
ble schedule which meets the requirements of the user. The change management
procedure takes the execution states of tasks into account. Changes to the plan are
ensured to be consistent with the current state of enactment. The support for plan
changes at project runtime provided by PROCEED goes beyond the capabilities of
common project and workflow management systems. Project management systems
do not support the enactment of development processes which is why changes to
the project plan may conflict with the process performance. On the other hand,
workflow management systems which are commonly applied to enact predefined
processes do not cover planning and scheduling and are therefore unsuitable for the
management of development projects. Furthermore, the capabilities of commercial
WfMS to perform changes to running workflow instances are limited.

The PROCEED prototype has been implemented as an extension to the commercial
life cycle asset information system Comos. Several technical details of the imple-
mentation and the graphical user interface of PROCEED have been described in

406 11.2 Outlook

Chapter 10. PROCEED complements the functionalities of Comos for maintaining
complex engineering data by process management functionality. The realization
based on an industrial platform distinguishes PROCEED from other research proto-
types of process management systems. In contrast to the AHEAD system, PROCEED
has not been realized using a generative tool building framework, but it has been im-
plemented in a conventional way using state-of-the-art technologies and frameworks
which are commonly used for commercial applications. The functionalities provided
by PROCEED can be used in plant design projects in the chemical industries. The
workflow management functionality provided by PROCEED has already exceeded
the prototype status and is integrated in the current release of the Comos system.

The approach to project controlling implemented in the PROCEED prototype has
been evaluated by modeling a complex process model instance of a plant design
project and simulating its enactment. The evaluation showed the applicability of the
developed concepts, algorithms, and tool functionalities with respect to planning,
scheduling, monitoring, and change management.

11.2 Outlook

The research results presented in this thesis offer some starting points for further
research.

A memory representation of a dynamic task net is used for scheduling to avoid
changes to the management data in the Comos database before scheduling has been
successfully completed. This technique could also be applied to perform a what-if-
analysis evaluating different planning scenarios. Using the memory representation,
several different schedules of a dynamic task net could be computed for different
manual plan changes. The resulting schedules could be used as decision support for
choosing the best change operations.

Scheduling of multiple projects which share common resources is a well-known
problem and a topic of ongoing research. Multi-project management has not been
explicitly addressed in this thesis. The connection between several different projects
could be established via the work calendars of resources. When a resource is used in
one project, the working hours are not available for tasks in another project anymore.
If the scheduling approach implemented in PROCEED would be transferred to the
multi-project setting, then the main challenge would be to reschedule multiple
parallel projects at runtime whilst taking the execution states of the defined tasks
into account. Another challenge would be to adapt the authorization model and the
general change management procedure to the multi-project setting.

A complementary problem is the scheduling of process model instances which span
across multiple organizations. Solutions for the management of interorganizational
cooperation in development processes by means of the AHEAD system have been
presented in [Jäg02, Hel08a]. Subprocesses can be delegated to subcontractors
who elaborate the details of the delegated tasks. If the overall development process
would be rescheduled, then the delegated subprocesses would be affected as well.
However, the manager of the overall process could not see or modify the subtasks

Chapter 11 Conclusion 407

defined by the subcontractors for the delegated tasks. This scenario requires a
scheduling approach which conforms to dynamic process views and cooperation
protocols as they have been introduced in [Hel08a].

With respect to project monitoring, the progress measurement based on docu-
ments could be extended to the engineering data in the Comos database which
is not contained in documents. For this purpose, the approach of Liefeldt et al.
[LGB+05] which has been reviewed in Section 8.4 could be adopted. Devices which
are represented as objects in the Comos database could be connected with output
parameters of tasks. The degree of completion of such a task could be determined
by comparing the properties of defined values in the device specification with the
properties required to complete the specification. In contrast to [LGB+05], the ag-
gregation of progress degrees would be performed in the work breakdown structure
defined by a dynamic task net instead of the product breakdown structure defined
for the chemical plant.

The application domain of this thesis has been the domain of plant engineering.
Specific characteristics of plant design processes and the functionalities provided
by the Comos system have influenced the developed solutions. The support of devel-
opment processes in other engineering domains has not been explicitly addressed
in this thesis. However, the presented approach could also be applied to software
development processes. PROCEED would have to be decoupled from Comos and
coupled with a version control system to be used in software development projects.
User accounts and documents in the version control system would represent re-
sources and products, respectively. PROCEED also represents an ideal platform
for the integration of an issue tracking system as it is commonly used in software
development projects. Tickets in an issue tracking system generally represent
fine-grained tasks in a software development process. In a nutshell, the presented
concepts and algorithms for controlling development processes are not confined
to a specific engineering domain but are generally applicable to various types of
development processes.

Bibliography 409

Bibliography

[Aal96] W.M.P. van der Aalst. Three Good Reasons for Using a Petri-net-based
Workflow Management System. In S. Navathe and T. Wakayama,
editors, Proceedings of the International Working Conference on
Information and Process Integration in Enterprises (IPIC’96), pages
179–201, Camebridge, Massachusetts, 1996.

[Aal98] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Man-
agement. The Journal of Circuits, Systems and Computers, 8(1):21–66,
1998.

[AC04] Fahad T. Alotaiby and J. X. Chen. A Model for Team-based Access
Control (TMAC 2004). In ITCC ’04: Proceedings of the Interna-
tional Conference on Information Technology: Coding and Computing
(ITCC’04), volume 2, pages 450–454, Las Vegas, USA, 2004. IEEE
Computer Society.

[AH96] Vijayalakshmi Atluri and Wei-Kuang Huang. An Authorization Model
for Workflows. In Proceedings of the 4th European Symposium on
Research in Computer Security, pages 44–64, Rome, Italy, 1996.
Springer Verlag.

[ALM+05] Haldun Aytug, Mark A. Lawley, Kenneth McKay, Shantha Mohan,
and Reha Uzsoy. Executing Production Schedules in the Face of
Uncertainties: A Review and some Future Directions. European
Journal of Operational Research, 161(1):86–110, 2005.

[Anb03] Frank T. Anbari. Earned Value Project Management Method and
Extensions. Project Management Journal, 34(4):12–23, 2003.

[AR00] Christian Artigues and Francois Roubellat. A Polynomial Activity
Insertion Algorithm in a Multi-Resource Schedule with Cumulative
Cosntraints and Multiple Modes. European Journal of Operational
Research, 127(2):297–316, 2000.

[ASKP00] Gail-Joon Ahn, Ravi Sandhu, Myong Kang, and Joon Park. Injecting
RBAC to Secure a Web-Based Workflow System. In Proceedings of
the 5th ACM Workshop on Role-based Access Control, pages 1–10,
Berlin, Germany, 2000. ACM.

410 Bibliography

[Auß09] Christoph Außem. Visualisierung multidimensionaler Projektstatus-
daten im Anlagenbau. Diploma thesis, RWTH Aachen University,
Aachen, Germany, January 2009.

[Bah05] Ali Bahrami. Integrated Process Management: From Planning to Work
Execution. In BSN ’05: Proceedings of the IEEE EEE05 International
Workshop on Business Services Networks, pages 11–11, Piscataway,
NJ, USA, 2005. IEEE Press.

[Bal00] Helmut Balzert. Lehrbuch der Software-Technik. Spektrum, 2000.

[Bau04] Thomas Bauer. Kooperation von Projekt- und Workflow-Management-
Systemen. Informatik Forschung und Entwicklung, 19(2):74–86, 2004.

[BBMN91] James C. Bean, John R. Birge, John Mittenthal, and Charles E. Noon.
Matchup Scheduling with Multiple Resources, Release Dates and
Disruptions. Operations Research, 39(3):456–469, 1991.

[BGS07] Domenico Bianculli, Carlo Ghezzi, and Paola Spoletini. A Model
Checking Approach to Verify BPEL4WS Workflows. In Proceedings of
the IEEE International Conference on Service-Oriented Computing
and Applications (SOCA) 2007, pages 13–20, Newport Beach, USA,
2007.

[BJSW01] S. Becker, D. Jäger, A. Schleicher, and B. Westfechtel. A Delegation
Based Model for Distributed Software Process Management. In A. Am-
briola, editor, Software Process Technology: 8th European Workshop,
EWSPT 2001, volume 2077 of LNCS, pages 130–144. Springer, 2001.

[BJSW02a] B. Böhlen, D. Jäger, A. Schleicher, and B. Westfechtel. UPGRADE: A
Framework for Building Graph-Based Interactive Tools. Electronic
Notes in Theoretical Computer Science, 72:2:113–123, 2002. Pro-
ceedings of the International Workshop on Graph-Based Tools (Gra-
BaTs’02), Barcelona, Spain, October 7–8, 2002.

[BJSW02b] B. Böhlen, D. Jäger, A. Schleicher, and B. Westfechtel. UPGRADE:
Building Interactive Tools for Visual Languages. In Proceedings of
the 6th World Multi-Conference On Systemics, Cybernetics and Infor-
matics (SCI 2002), Orlando, Florida, USA, pages 17–22, 2002.

[Bön99] Sabine Bönig. Erarbeitung sicherheitstechnischer Maßnahmenkat-
aloge zur Entwicklung verfahrenstechnischer Prozesse, Maschinen
und Anlagen. IMW-Institutsmitteilungen Nr. 24, pages 119–128, 1999.

[Bri08] Christoph Briem. Workflows in dynamischen Entwicklungsprozessen.
Diploma thesis, RWTH Aachen University, 2008.

[Buk08] Bruce Bukovics. Pro WF — Windows Workflow in .NET 3.5. Apress,
2008.

Bibliography 411

[Bun06] V-Modell XT. Bundesministerium des Innern, 2006.

[Bur00] Manfred Burghardt. Projektmanagement. Publicis MCD Verlag,
München, 5th edition, 2000.

[Bus98] Christoph Bussler. Workflow Instance Scheduling with Project Man-
agement Tools. In DEXA ’98: Proceedings of the 9th International
Workshop on Database and Expert Systems Applications, pages 753–
758, Vienna, Austria, 1998. IEEE Computer Society.

[BWE04] Gregorio Baggio, Jacques Wainer, and Clarence Ellis. Applying
Scheudling Techniques to Minimize the Number of Late Jobs in Work-
flow Systems. In Proceedings of the 2004 ACM symposium on Applied
computing, pages 1396–1403, Nicosia, Cyprus, 2004.

[BWJ02] Claudio Bettini, X. Sean Wang, and Sushil Jajodia. Temporal Reasoning
in Workflow Systems. Distributed and Parallel Databases, 11(3):269–
306, 2002.

[CAD03] Ivica Crnkovic, Ulf Asklund, and Annita Persson Dahlqvist. Imple-
menting and Integrating Product Data Management and Software
Configuration Management. Artech House, 2003.

[Cas98] Fabio Casati. Models, Semantics, and Formal Methods for the Design
of Workflows and their Exceptions. PhD thesis, Politecnico di Milano,
1998.

[CC02] Keith Chan and Lawrence Chung. Integrating Process and Project
Management for Multi-Site Software Development. Annals of Soft-
ware Engineering, 14(1–4):115–143, 2002.

[CCPP99] Fabio Casati, Stefano Ceri, Stefano Paraboschi, and Guiseppe Pozzi.
Specification and Implementation of Exceptions in Workflow Manage-
ment Systems. ACM Transactions on Database Systems, 24(3):405–
451, 1999.

[CCS93] E.F Codd, S.B. Codd, and C.T. Salley. Providing OLAP to User-Analysts:
An IT Mandate. Technical report, Codd & Date Inc., Michigan, 1993.

[CP06] Carlo Combi and Giuseppe Pozzi. Task Scheduling for a Temporal
Workflow Management System. In Proceedings of the Thriteenth
International Symposium on Temporal Representation and Reasoning
(TIME’06), Budapest, Hungary, 2006.

[CP09] Carlo Combi and Roberto Posenato. Controllability in Temporal Con-
ceptual Workflow Schemata. In Proceedings of the 7th International
Conference on Business Process Management (BPM 2009), volume
5701 of LNCS, pages 64–79, Ulm, Germany, 2009.

412 Bibliography

[CSK02] Duk-Ho Chang, Jin Hyun Son, and Myoung Ho Kim. Critical Path
Identification in the Context of a Workflow. Information and Software
Technology, 44(7):405–417, 2002.

[Dau05] Bernhard Daubner. Empowering Software Development Environ-
ments by Automatic Software Measurement. In Proceedings of the
11th IEEE International Symposium on Software Metrics (METRICS
2005), Como, Italy, 2005.

[Dau08] Bernhard Daubner. Conceptual Design and Prototypical Implemen-
tation of a Framework for Automated Software Measurement. PhD
thesis, Universität Bayreuth, 2008. in German.

[DAV05] Boudewijn F. van Dongen, Wil M. P. van der Aalst, and Henricus M. W.
Verbeek. Verification of EPCs: Using Reduction Rules and Petri Nets.
In Proceedings of the 17th International Conference on Advanced
Information Systems Engineering (CAiSE), pages 372–386, Porto,
Portugal, 2005.

[DBC04] Songer A D., Hays B., and North C. Multidimensional Visualization of
Project Control Data. Construction Innovation: Information, Process,
Management, 4(3):173–190, 2004.

[DCA04] R. Dumke, I. Cote, and O. Andruschak. Statistical Process Control
(SPC) - A Metric-Based Point of View of Software Processes Achieving
the CMMI Level Four. Technical report, Fakultät für Informatik,
Universität Magdeburg, 2004.

[DDHVdV06] Filip Deblaere, Erik Demeulemeester, Willy Herroelen, and Stijn
Van de Vonder. Proactive Resource Allocation Heuristics for Robust
Project Scheduling. SSRN eLibrary, 2006.

[DDO07] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Formal Se-
mantics and Analysis of BPMN Process Models. Technical report,
Queensland University of Technology, 2007.

[DGB01] A. J. Davenport, C. Gefflot, and J. C. Beck. Slack-Based Techniques for
Robust Schedules. In Constraints and Uncertainty Workshop, Seventh
International Conference on Principles and Practice of Constraint
Programming, Paphos, Cyprus, November 2001.

[DGe95] Klaus R. Dittrich, Stella Gatziu, and Andreas Geppert (eds.). The Ac-
tive Database Management System Manifesto: A Rulebase of ADBMS
Features. In Proceedings of the Second International Workshop on
Rules in Database Systems (RIDS 95), LNCS 985, pages 3–20, Athens,
Greece, 1995. Springer.

Bibliography 413

[DH02] Erik L. Demeulemeester and Willy S. Herroelen. Project Scheduling:
a Research Handbook, volume 49 of International Series in Opera-
tions Research & Management Science. Kluwer Academic Publishers,
Boston, 2002.

[DHW06] Bernhard Daubner, Andreas Henrich, and Bernhard Westfechtel. Inte-
grierte Softwaremessung durch Verankerung der Softwaremaße an
Elementen des Vorgehensmodells. In Bettina Biel, Matthias Book, and
Volker Gruhn, editors, Software Engineering 2006, Proceedings der
Fachtagung des GI-Fachbereichs Softwaretechnik, pages 157–162,
March 2006.

[Dib70] M. L. Dibon. Ordonnancement et Potentiels - Méthode MPM. Her-
mann, Paris, 1970.

[DIN06] PAS 1059 Processing Plant Design — Procedural Model and Terminol-
ogy. DIN Deutsches Institut für Normung e.V., Berlin, 2006.

[DIN09] Projektmanagement — Netzplantechnik und Projektmanage-
mentsyteme. Beuth Verlag, 2009.

[Dow91] Mark Dowson. Process and Project Management. In Proceedings of
the Seventh International Software Process Workshop (ISPW ’91),
Yountville, California, USA, 1991. IEEE Computer Society.

[Dre09] Michael Dreher. Terminplanung und Fortschrittskontrolle in dynamis-
chen Entwicklungsprozessen. Diploma thesis, RWTH Aachen Univer-
sity, Aachen, 2009.

[DtH01] Marlon Dumas and Arthur H. M. ter Hofstede. UML Activity Diagrams
as a Workflow Specification Language. Lecture Notes in Computer
Science, 2185:76–90, 2001.

[dVBDH07] Stijn Van de Vonder, Francisco Ballestin, Erik Demeulemeester, and
Willy Herroelen. Heuristic Procedures for Reactive Project Scheduling.
Computers and Industrial Engineering, 52(1):11–28, February 2007.

[DvdAtH05] Marlon Dumas, Wil van der Aalst, and Arthur H. M. ter Hofstede,
editors. Process-Aware Information Systems. John Wiley & Sons,
2005.

[dVDH08] Stijn Van de Vonder, Erik Demeulemeester, and Willy Herroelen.
Proactive Heuristic Procedures for Robust Project Scheduling: An
Experimental Analysis. European Journal of Operational Research,
189(3):723–733, 2008.

[DWH06] Bernhard Daubner, Bernhard Westfechtel, and Andreas Henrich.
Towards Anchoring Software Measures on Elements of the Pro-
cess Model. In Proceedings of the 1st International Conference

414 Bibliography

on Software and Data Technologies (CSOFT 2006), pages 232–237,
Setï¿½bal, Portugal, September 2006.

[EDL10] EDL Anlagenbau. Company Website. http://www.edl.poerner.de/
organisation1.0.html, Janurary 2010.

[EGP00] Johann Eder, Wolfgang Gruber, and Euthimios Panagos. Temporal
Modeling of Workflows with Conditional Execution Paths. In Proceed-
ings of the 11th International Conference on Databaes and Expert
Systems Applications, 2000.

[EK92] S. E. E. Elmaghraby and J. Kamburowski. The Analysis of Activity
Networks under Generalized Precedence Relations. Management
Science, 38(9):1245–1263, 1992.

[Ela08] Mohamed Elashri. Project Time Management. http://www.
slideshare.net/m_elashri/project-time-management, Juni 2008.

[EOG02] Johann Eder, Georg E. Olivotto, and Wolfgang Gruber. A Data Ware-
house for Workflow Logs. In First International Conference on Engi-
neering and Deployment of Cooperative Information Systems (EDCIS),
pages 1–15, Beijing, China, September 2002.

[EP00] Johann Eder and Euthimios Panagos. Workflow Handbook 2001,
chapter Managing Time in Workflow Systems, pages 109–132. Future
Strategies Inc., 2000.

[EPPR99] Johann Eder, Euthimios Panagos, Heinz Pozewaunig, and Michael
Rabinovich. Time Management in Worfklow Systems. In Proceedings
of the 3rd International Conference on Business Information Systems,
Poznan, Poland, 1999.

[EPR99] Johann Eder, Euthimios Panagos, and Michael Rabinovich. Time
Constraints in Workflow Systems. In Matthias Jarke and Andreas
Oberweis, editors, Proc. of the 11th Intl. Conf. on Advanced Informa-
tion Systems Engineering (CAiSE ’99), volume 1626 of LNCS, pages
286–300, Berlin, 1999. Springer.

[FC99] William A. Florac and Anita D. Carleton. Measuring the Software Pro-
cess: Statistical Process Control for Software Process Improvement.
Addison-Wesley, Boston, USA, 1999.

[FLW03] C. Foltz, H. Luczak, and B. Westfechtel. Use-Centered Interface
Design for an Adaptable Administration System for Chemical Process
Design. In Proceedings of the International Conference on Human-
Computer Interaction (HCI International 2003), Crete, Greece, pages
365–369, 2003.

http://www.edl.poerner.de/organisation1.0.html
http://www.edl.poerner.de/organisation1.0.html
http://www.slideshare.net/m_elashri/project-time-management
http://www.slideshare.net/m_elashri/project-time-management

Bibliography 415

[For94] Hans-Josef Forst, editor. Projektmanagement im Anlagenbau. VDE-
Verlag, 1994.

[GB83] Sushil K. Gupta and M. P. Buddhdeo. Progress Measurement During
Project Execution. Engineering Management International, 1(4):281–
285, 1983.

[GDMR04] Michael Gnatz, Martin Deubler, Michael Meisinger, and Andreas
Rausch. Towards an Integration of Process Modeling and Project
Planning. In 5th International Workshop on Software Process Sim-
ulation and Modeling (ProSim 2004), Edinburgh, United Kingdom,
2004.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman, Amsterdam, 1994.

[Haj97] M. Hajdu. Network Scheduling Techniques for Construction Project
Management. Kluwer Academic Publishers, 1997.

[Har05] Scott Harold. Enhanced PDM — Concepts and Benefits. Technical
report, Planning Engineers Organisation, Mai 2005.

[Hau01] Gregory T. Haugan. Effective Work Breakdown Structures. Manage-
ment Concepts, 2001.

[HAW10] Thomas Heer, Christoph Außem, and René Wörzberger. Flexible Multi-
Dimensional Visualization of Process Enactment Data. In Business
Process Management Workshops of BPM 2009, volume 43 of LNBIP,
pages 104–115, Ulm, Germany, 2010. Springer.

[HBW09] Thomas Heer, Christoph Briem, and René Wörzberger. Workflows in
Dynamic Development Processes. In Business Process Management
Workshops of BPM 2008, volume 17 of LNBIP, pages 266–277, Milano,
Italy, 2009. Springer.

[Hel08a] M. Heller. Decentralized and View-based Management of Cross-
company Development Processes (in German). PhD thesis, RWTH
Aachen University, Aachen, 2008. 501 pp.

[Hel08b] Frank Peter Helmus. Process Plant Design - Project Management
from Inquiry to Acceptance. Wiley-VCH, Weinheim, 2008.

[HHM+06] R. Hai, M. Heller, W. Marquardt, M. Nagl, and R. Wörzberger. Work-
flow Support for Inter-organizational Design Processes. In 9th Interna-
tional Symposium on Process Systems Engineering, pages 2027–2032,
Garmisch-Partenkirchen, Germany, July 2006. Elsevier.

416 Bibliography

[HHWW10] T. Heer, M. Heller, B. Westfechtel, and R. Wörzberger. Tool Support
for Dynamic Development Processes. In Graph Transformations and
Model-Driven Engineering, volume 5765 of LNCS, pages 621–654.
Springer, 2010.

[Hir99] Hans Günther Hirschberg. Handbuch Verfahrenstechnik und Anla-
genbau. Springer, 1999.

[HJ04a] M. Heller and D. Jäger. Graph-Based Tools for Distributed Cooperation
in Dynamic Development Processes. In Pfaltz et al. [PNB04], pages
352–368.

[HJ04b] M. Heller and D. Jäger. Interorganizational Management of Develop-
ment Processes. In Pfaltz et al. [PNB04], pages 427–433.

[HJK+08] M. Heller, D. Jäger, C.-A. Krapp, M. Nagl, A. Schleicher, B. Westfechtel,
and R. Wörzberger. An Adaptive and Reactive Management System
for Project Coordination. In Nagl and Marquardt [NM08], pages
307–373.

[HJS+04] M. Heller, D. Jäger, M. Schlüter, R. Schneider, and B. Westfechtel. A
Management System for Dynamic and Interorganizational Design Pro-
cesses in Chemical Engineering. Computers & Chemical Engineering,
29(1):93–111, 2004.

[HKNW99] P. Heimann, C.-A. Krapp, M. Nagl, and B. Westfechtel. An Adaptable
and Reactive Project Management Environment. In Nagl [Nag96],
pages 504–534.

[HKW97] P. Heimann, C.-A. Krapp, and B. Westfechtel. An Environment for
Managing Software Development Processes. In Proceedings of the
8th Conference on Software Engineering Environments, Cottbus, Ger-
many, pages 101–109. IEEE Computer Society Press, 1997.

[HL04] Willy Herroelen and Roel Leus. The Construction of Stable Project
Baseline Schedules. European Journal of Operational Research,
156(3):550 – 565, 2004.

[HL05] Willy Herroelen and Roel Leus. Project Scheduling under Uncertainty:
Survey and Research Potentials. European Journal of Operational
Research, 165(2):289–306, 2005.

[HN07] Thomas Froese Hao Nie, Sheryl Staub-French. OLAP-Integrated
Project Cost Control and Manpower Analysis. Journal of Computing
in Civil Engineering, 21(3):164–174, 2007.

[HNWH08] M. Heller, M. Nagl, R. Wörzberger, and T. Heer. Dynamic Process
Management Based Upon Existing Systems. In Nagl and Marquardt
[NM08], pages 733–748.

Bibliography 417

[HRD98] Willy Herroelen, Bert De Reyck, and Erik Demeulemeester. Resource-
Constrained Project Scheduling: A Survey of Recent Developments.
Computers and Operations Research, 25(4):279–302, 1998.

[HRK07] Thomas Heer, Daniel Retkowitz, and Bodo Kraft. Algorithm and
Tool for Ontology Integration Based on Graph Rewriting. In Andy
Schürr, Manfred Nagl, and Albert Zündorf, editors, Applications of
Graph Transformations with Industrial Relevance, Third International
Symposium (AGTIVE), volume 5088 of LNCS, pages 484–490, Kassel,
Germany, 2007. Springer.

[HRK08] Thomas Heer, Daniel Retkowitz, and Bodo Kraft. Incremental Ontol-
ogy Integration. In José Cordeiro and Joaquim Filipe, editors, Proceed-
ings of the 10th International Conference on Enterprise Information
Systems (ICEIS), page 8 pages, Barcelona, Spain, 2008.

[HRK09] Thomas Heer, Daniel Retkowitz, and Bodo Kraft. Tool Support for
the Integration of Light-Weight Ontologies. In Enterprise Information
Systems, 10th International Conference, Revised Selected Papers,
volume 19 of LNBIP, pages 175–187. Springer, 2009.

[HSW04a] M. Heller, A. Schleicher, and B. Westfechtel. Graph-Based Specifica-
tion of a Management System for Evolving Development Processes.
In Pfaltz et al. [PNB04].

[HSW04b] M. Heller, A. Schleicher, and B. Westfechtel. Process Evolution Sup-
port in the AHEAD System. In Pfaltz et al. [PNB04], pages 454–460.

[HSXW10] Qi Hao, Weiming Shen, Yunjiao Xue, and Shuying Wang. Task Network-
Based Project Dynamic Scheduling and Schedule Coordination. Ad-
vanced Engineering Informatics, 24(4):417–427, 2010.

[HTT09] Thomas Heer, Sven Tackenberg, and Manfred Theissen. Integrated
Modeling, Simulation and Enactment of Design Processes in Chem-
ical Engineering. In 8th World Congress of Chemical Engineering
(WCCE8), Montréal, Canada, August 2009.

[HW06a] M. Heller and R. Wörzberger. Management Support of Interorga-
nizational Cooperative Software Development Processes based on
Dynamic Process Views. In 15th International Conference on Soft-
ware Engineering and Data Engineering (SEDE 2006), pages 15–28,
Los Angeles, USA, 2006.

[HW06b] Markus Heller and R. Wörzberger. A Management System Supporting
Interorganizational Cooperative Development Processes in Chemical
Engineering. In 9th World Conference on Integrated Design & Process
Technology (IDPT 2006), pages 639–650, San Diego, USA, 2006.
SDPS.

418 Bibliography

[HW07] M. Heller and R. Wörzberger. A Management System Supporting
Interorganizational Cooperative Development Processes in Chemi-
cal Engineering. Journal of Integrated Design and Process Science:
Transactions of the SDPS, 10(2):57–78, 2007.

[HW09] Thomas Heer and René Wörzberger. Support for Enactment and
Monitoring of Engineering Design Processes. In 8th World Congress
of Chemical Engineering (WCCE8), Montréal, Canada, August 2009.

[HW11] Thomas Heer and René Wörzberger. Support for Modeling and Mon-
itoring of Engineering Design Processes. Computers and Chemical
Engineering, 2011. accepted for publication.

[IGM04] Wendy K. Ivins, W. Alex Gray, and John C. Miles. Managing Changes
to Engineering Products Through the Co-ordination of Human and
Technical Activities. In Proceedings of the Cooperative Information
Systems (CoopIS) 2004 International Conference, LNCS 3290, pages
442–459, Agia Napa, Cyprus, October 2004. Springer.

[ISO01] Flow diagrams for Process Plants - General Rules (German version
EN ISO 10628:2000). Deutsches Institut für Normung e.V., 2001.

[ISO05] Quality Management Systems - Fundamentals and Vocabulary (ISO
9000:2005). Beuth Verlag, 2005.

[Jab95] Stefan Jablonski. Workflow-Management-Systeme. International
Thomson Publishers, 1995.

[Jäg00] Dirk Jäger. Modeling Management and Coordination in Development
Processes. In R. Conradi, editor, Software Process Technology: 7th
European Workshop, volume 1780 of LNCS, pages 109–114, Kaprun,
Austria, February 2000. Springer.

[Jäg02] Dirk Jäger. Unterstützung übergreifender Kooperation in komplexen
Entwicklungsprozessen. PhD thesis, RWTH Aachen University, 2002.

[JB96] Stefan Jablonski and Christoph Bussler. Workflow Management: Mod-
eling Concepts, Architecture and Implementation. International Thom-
son Computer Press, 1996.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified
Software Development Process. Addison-Wesley, 1999.

[JBS99] Stefan Jablonski, Markus Böhm, and Wolfgang Schulze. Workflow-
Management: Entwicklung von Anwendungen und Systemen. dpunkt
Verlag, 1999.

Bibliography 419

[JKN+99] D. Jäger, C.-A. Krapp, M. Nagl, A. Schleicher, and B. Westfechtel.
Anpassbares Administrationssystem für die Projektkoordination. In
M. Nagl and B. Westfechtel, editors, Integration von Entwicklungssys-
temen in Ingenieuranwendungen – Substantielle Verbesserung der
Entwicklungsprozesse, pages 311–348. Springer, 1999.

[JLVV00] Matthias Jarke, Maurizio Lenzerini, Yannis Vassiliou, and Panos Vas-
siliadis. Fundamentals of Data Warehouses. Springer, 2000.

[Joe97] Gregor Joeris. Change Management Needs Integrated Process and
Configuration Management. In Proceedings of the 6th European Soft-
ware Engineering Conference, LNCS 1301, pages 125–141, Zurich,
Switzerland, September 1997.

[JSW00] D. Jäger, A. Schleicher, and B. Westfechtel. AHEAD: A Graph-Based
System for Modeling and Managing Development Processes. In
M. Nagl, A. Schürr, and M. Münch, editors, Applications of Graph
Transformations with Industrial Relevance: International Workshop,
AGTIVE’99, Kerkrade, The Netherlands, September 1999. Proceed-
ings, volume 1779 of LNCS, pages 325–340. Springer, 2000.

[KC04] Ralph Kimball and Joe Caserta. The Data Warehouse ETL Toolkit:
Practical Techniques for Extracting, Cleaning, Conforming, and Deliv-
ering Data. John Wiley & Sons, 2004.

[Kei02] Daniel A. Keim. Information Visualization and Visual Data Mining.
IEEE Transactions on Visualization and Computer Graphics, 8(1):1–8,
2002.

[Ker98] Harold Kerzner. Project Management: A Systems Approach to Plan-
ning, Scheduling, and Controlling. Wiley, 6th edition, 1998.

[KH98] R. Kolisch and S. Hartmann. Project Scheduling: Recent Models,
Algorithms and Applications, chapter Heuristic Algorithms for Solving
the Resource-Constrained Project Scheduling Problem: Classification
and Computational Analysis, pages 147–178. Kluwer, 1998.

[KK99] Eleana Kafeza and Kamalakar Karlapalem. Temporally Constrained
Workflows. In L. C.-K. Hui and D. L. Lee, editors, Proceedings of the
5th International Computer Science Conference (ICSC’99), volume
1749 of LNCS, pages 246–255, Hong Kong, China, 1999. Springer.

[KKP+09] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and
S. Völkel. Design Guidelines for Domain Specific Languages. In Pro-
ceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling
(DSM’ 09), Orlando, Florida, USA, October 2009.

420 Bibliography

[KKSW00] C.-A. Krapp, S. Krüppel, A. Schleicher, and B. Westfechtel. Graph-
Based Models for Managing Development Processes, Resources, and
Products. In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg,
editors, Theory and Application of Graph Transformations: 6th In-
ternational Workshop, TAGT’98, Paderborn, Germany, November 16–
20, 1998. Selected Papers, volume 1764 of LNCS, pages 455–474.
Springer, 2000.

[Kle00] Robert Klein. Scheduling of Resource-Constrained Projects. Kluwer,
Boston, 2000.

[KN04] B. Kraft and M. Nagl. Parameterized Specification of Conceptual
Design Tools in Civil Engineering. In Pfaltz et al. [PNB04], pages
90–105.

[KNS92] G. Keller, M. Nüttgens, and A. W. Scheer. Semantische Prozessmodel-
lierung auf der Grundlage Ereignisgesteuerter Processketten (EPK).
Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 89
(in German), University of Saarland, Saarbrücken, 1992.

[Kol99] Rainer Kolisch. Resource Allocation Capabilities of Commercial
Project Management Software Packages. Interfaces, 29(4):19–31,
1999.

[KP01] Rainer Kolisch and Rema Padman. An Integrated Survey of Determin-
istic Project Scheduling. OMEGA International Journal of Manage-
ment Science, 29(3):249–272, June 2001.

[KPF01] Myong H. Kang, Joon S. Park, and Judith N. Froscher. Access Control
Mechanisms for Inter-Organizational Workflow. In SACMAT ’01: Pro-
ceedings of the sixth ACM Symposium on Access Control Models and
Technologies, pages 66–74. ACM, 2001.

[Kra98] C.-A. Krapp. An Adaptable Environment for the Management of De-
velopment Processes. PhD thesis, RWTH Aachen University, Aachen,
1998.

[Krü96] Sven Krüppel. Ein Ressourcenmodell zur Unterstützung von Software-
Entwicklungsprozessen. Diploma thesis, RWTH Aachen University,
February 1996.

[KS75] J.A.G.M Kerbosh and H.J. Shell. Network Planning by the Extended
METRA Potential Method. Technical report, University of Technology
Eindhoven, Department of Industrial Engineering, 1975.

[KSSL08] B. Kausch, N. Schneider, C. Schlick, and H. Luczak. Simulation-
supported Workflow Optimization in Process Engineering. In Nagl
and Marquardt [NM08], pages 666–674.

Bibliography 421

[KSW95] N. Kiesel, A. Schürr, and B. Westfechtel. GRAS: a Graph-Oriented Soft-
ware Engineering Database System. Information Systems, 20(1):21–
51, 1995.

[KW59] James E. Jr. Kelley and Morgan R. Walker. Critical Path Planning
and Scheduling. In Proceedings of the Eastern Joint IRE-AIEE-ACM
Computer Conference, pages 160–173, New York, 1959.

[KW00] S. Krüppel and B. Westfechtel. RESMOD: A Resource Management
Model for Development Processes. In H. Ehrig, G. Engels, H.-J. Kre-
owski, and G. Rozenberg, editors, Theory and Application of Graph
Transformations: 6th International Workshop, (TAGT’98), volume
1764 of LNCS, pages 390–397. Springer, Paderborn, Germany, Novem-
ber 2000.

[Lan00] Wolfgang Langer. Maschinen- und Anlagenbau. Galileo Press, Bonn,
2000.

[Law97] Peter Lawrence, editor. Workflow Handbook. John Wiley & Sons,
1997.

[Leh03] Wolfgang Lehner. Datenbanktechnologie für Data-Warehouse-
Systeme: Konzepte und Methoden. dpunkt Verlag, Heidelberg, 2003.

[Leo08] Suet Mooi Leong. Resource Allocation and Access Control in a Dy-
namic Process Management System. Master’s thesis, RWTH Aachen
University, 2008.

[LGB+05] Andreas Liefeldt, Georg Gutermuth, Peter Beer, Stefan Basenach,
and Richard Alznauer. Effizientes Engineering — Begleitende
Fortschrittskontrolle großer Projekte der Automatisierungstechnik.
ATP — Automatisierungstechnische Praxis, 47(7):60–64, 2005.

[Lib01] Vladimir Liberzon. Resource Critical Path Approach to Project Sched-
ule Management. 4th European Project Management Conference,
London, June 2001.

[Lic06] Horst Lichter. Skript: Software-Qualitätssicherung und Projektman-
agement, RWTH Aachen University, 2006.

[Lip03] Walt Lipke. Schedule is different. Technical report, Oklahoma City
Air Logistics Center, 2003.

[Lon93] Jacques Lonchamp. A Structured Conceptual and Terminological
Framework for Software Process Engineering. In Proceedings of the
Second International Conference on the Software Process: Continu-
ous Software Process Improvement, Berlin, 1993.

422 Bibliography

[LY04] Hongchen Li and Yun Yang. Verification of Temporal Constraints for
Concurrent Workflows. In Proceedings of the 6th AsiaPacific Web
Conference (APWeb 2004), volume 3007 of LNCS, pages 804–813.
Springer, 2004.

[LY05] Hongchen Li and Yun Yang. Dynamic Checking of Temporal Con-
straints for Concurrent Workflows. Electronic Commerce Research
and Applications, 4(2):124–142, 2005.

[LYC04] Hongchen Li, Yun Yang, and T.Y. Chen. Resource Constraints Analysis
of Workflow Specifications. The Journal of Systems and Software,
73(2):271–285, 2004.

[MA07] Jan Mendling and Wil M. P. van der Aalst. Formalization and Verifica-
tion of EPCs with OR-Joins Based on State and Context. In Advanced
Information Systems Engineering, 19th International Conference,
CAiSE 2007, volume 4495 of Lecture Notes in Computer Science,
pages 439–453. Springer, 2007.

[Mad00] Bernd J. Madauss. Handbuch Projektmanagement. Schäffer-Poeschel
Verlag, Stuttgart, 2000.

[Mar06] Wolfgang Marquardt. Prozessentwicklung in der Verfahrenstechnik.
Lecture notes, AVT — Process Systems Engineering, RWTH Aachen
University, 2006.

[MDB+00] Frank Maurer, Barbara Dellen, Fawsy Bendeck, Sigird Goldmann,
Harald Holz, Boris Kötting, and Martin Schaaf. Merging Project
Planning and Web-Enabled Dynamic Workflow Technologies. IEEE
Internet Computing, 4(3):65–74, 2000.

[MH04] Jürgen Münch and Jens Heidrich. Software Project Control Centers:
Concepts and Approaches. The Journal of Systems and Software,
70(1-2):3–19, 2004.

[Mic10a] Microsoft Corporation. Microsoft Project. www.microsoft.com/
project, October 2010.

[Mic10b] Microsoft Corporation. Windows Workflow Foundation. http://msdn.
microsoft.com/en-us/netframework/aa663328.aspx, March 2010.

[Mic11] Microsoft Corporation. SQL Server 2008 Analysis Ser-
vices. http://www.microsoft.com/Sqlserver/2008/en/us/
analysis-services.aspx, January 2011.

[MJW08] M. Miatidis, M. Jarke, and K. Weidenhaupt. Using Developers’ Ex-
perience in Cooperative Design Processes. In Nagl and Marquardt
[NM08], pages 185–223.

www.microsoft.com/project
www.microsoft.com/project
http://msdn.microsoft.com/en-us/netframework/aa663328.aspx
http://msdn.microsoft.com/en-us/netframework/aa663328.aspx
http://www.microsoft.com/Sqlserver/2008/en/us/analysis-services.aspx
http://www.microsoft.com/Sqlserver/2008/en/us/analysis-services.aspx

Bibliography 423

[MO99] Olivera Marjanovic and Maria E. Orlowska. Time Management in
Dynamic Workflows. In The Proceedings of the Second International
Symposium on Cooperative Database Systems for Advanced Appli-
cations (CODAS’99), pages 138–149, Wollongong, Australia, 1999.
Springer.

[MRCF59] D. G. Malcolm, J. H. Rosenboom, C. E. Clark, and W. Fazar. Application
of a Technique for Research and Development Program Evaluation.
Operations Research, 4(5):646–669, 1959.

[MS03] Peter J. Mangan and Shazia W. Sadiq. A Constraint Specification
Approach to Building Flexible Workflows. Journal of Research and
Practice in Information Technology, 35(1):21–39, 2003.

[MT01] Christoph Mellentien and Norbert Trautmann. Resource Allocation
with Project Management Software. OR Spektrum, 23(3):383–394,
2001.

[Nag90] Manfred Nagl. Softwaretechnik: Methodisches Programmieren im
Großen. Springer Verlag, March 1990.

[Nag96] M. Nagl, editor. Building Tightly Integrated Software Development
Environments: The IPSEN Approach, volume 1170 of LNCS. Springer,
1996.

[Nat06] Adam Nathan. Windows Presentation Foundation Unleashed. Sams
Publishing, Indianapolis, USA, 2006.

[NM08] Manfred Nagl and Wolfgang Marquardt, editors. Collaborative and
Distributed Chemical Engineering: From Understanding to Substan-
tial Design Process Support, volume 4970 of LNCS. Springer, Berlin,
2008.

[NW94] Manfred Nagl and Bernhard Westfechtel. A Universal Component
for the Administration in Distributed and Integrated Development
Environments. Technical report, RWTH Aachen, 1994.

[NW03] M. Nagl and B. Westfechtel, editors. Modelle, Werkzeuge und Infras-
trukturen zur Unterstützung von Entwicklungsprozessen. Wiley-VHC,
2003.

[NWS03] M. Nagl, B. Westfechtel, and R. Schneider. Tool Support for the Man-
agement of Design Processes in Chemical Engineering. Computers
and Chemical Engineering, 27(2):175–197, 2003.

[ODtHvdA07] Chun Ouyang, Marlon Dumas, A.H.M. ter Hofstede, and W.M.P.
van der Aalst. Pattern-Based Translation of BPMN Process Mod-
els to BPEL Web Services. International Journal of Web Services
Research, 5(1):42–62, 2007.

424 Bibliography

[OP09] Djamila Ouelhadj and Sanja Petrovic. A Survey of Dynamic Scheduling
in Manufacturing Systems. Journal of Scheduling, 12(4):417–431,
August 2009.

[Pal87] Gabriel A. Pall. Quality Process Management. Prentice Hall, 1987.

[PEL97] Heinz Pozewaunig, Johann Eder, and Walter Liebhart. ePERT: Extend-
ing PERT for Worfklow Management Systems. In First East-European
Symposium on Advances in Database and Information Systems (AD-
BIS’97), pages 217–224, St. Petersburg, Russia, 1997.

[PMI04] PMI — Project Management Institute. A Guide to the Project Man-
agement Body of Knowledge (PMBOK Guide). Project Management
Institute, 3rd edition, 2004.

[PMI06] PMI — Project Management Institute. Practice Standard for Work
Breakdown Structures. Project Management Institute, 2006.

[PNB04] John L. Pfaltz, M. Nagl, and B. Bï¿½hlen, editors. Applications of
Graph Transformations with Industrial Relevance: Second Interna-
tional Workshop, AGTIVE 2003, Charlottesville, VA, USA, September
27 – October 1, 2003, Revised Selected and Invited Papers, volume
3062 of LNCS. Springer, 2004.

[Poh96] Klaus Pohl. Process-Centered Requirements Engineering. Research
Studies Press, Taunton, 1996.

[Poh99] Klaus Pohl. Continuous Documentation of Information Systems Re-
quirements. Habilitation, RWTH Aachen University, 1999.

[PR98] Gerold Patzak and Günter Rattay. Projekt Management. Linde, 1998.

[PR05] Gerold Patzak and Günter Rattay. Projekt-Management : Leitfaden
zum Management von Projekten, Projektportfolios und projektorien-
tierten Unternehmen. Linde, Wien, 5th edition, 2005.

[PTW03] Max S. Peters, Klaus D. Timmerhaus, and Ronald E. West. Plant
Design and Economics for Chemical Engineers. McGraw-Hill, 5th
edition, 2003.

[Pu09] Wen Pu. Semi-formal Process Models to Executable Workflows. Mas-
ter’s thesis, RWTH Aachen University, 2009.

[PW08] Lutz Priese and Harro Wimmel. Theoretische Informatik - Petri Netze.
Springer, 2008.

[PWD+98] K. Pohl, K. Weidenhaupt, R. Dömges, P. Haumer, and M. Jarke. Prozess-
integration in PRIME: Modelle, Architektur, Vorgehensweise. In Pro-
ceedings of Softwaretechnik ’98, pages 42–52, Paderborn, 1998.

Bibliography 425

[PWD+99] Klaus Pohl, Klaus Weidenhaupt, Ralf Dömges, Peter Haumer, Matthias
Jarke, and Ralf Klamma. PRIME - Towards Process-Integrated Model-
ing Environments. ACM Transactions on Software Engineering and
Methodology, 8(4):343–410, October 1999.

[RD98] Manfred Reichert and Peter Dadam. ADEPTflex — Supporting Dy-
namic Changes of Workflows Without Losing Control. Journal of
Intelligent Information Systems, 10(2):93–129, 1998.

[Rei00] Manfred Reichert. Dynamische Ablaufänderungen in Workflow-
Management-Systemen. PhD thesis, Universität Ulm, May 2000.

[RH96] Bert De Reyck and Willy Herroelen. A Branch-and-Bound Proce-
dure for the Resource-Constrained Project Scheduling Problem with
Generalized Precedence Constraints. Technical report, Operations
Management Group, Department of Applied Economics, Katholieke
Universiteit Leuven, 1996.

[Rin04] Stefanie Rinderle. Schema Evolution in Process Management Systems.
PhD thesis, University of Ulm, 2004.

[Rup97] Walter Rupietta. Organization and Role Models for Workflow Pro-
cesses, pages 165–172. In Lawrence [Law97], 1997.

[RvdAtHE05] Nick Russel, Wil M.P. van der Aalst, Arthur H.M. ter Hofstede, and
David Edmond. Workflow Resource Patterns: Identification, Repre-
sentation and Tool Support. In Proceedings of the 17th Conference
on Advanced Information Systems Engineering (CAiSE’05), volume
3520 of LNCS, pages 216–232, Porto, Portugal, 2005. Springer.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-Based Access Control Models. IEEE Computer,
29(2):38–47, 1996.

[Sch02] Ansgar Schleicher. Management of Development Processes - An
Evolutionary Approach. PhD thesis, RWTH Aachen University, Aachen,
2002.

[Sie10] Siemens Industry Software GmbH & Co.KG. Comos Product Website.
http://www.comos.com, December 2010.

[SKK05] Jin Hyun Son, Jung Sun Kim, and Myoung Ho Kim. Extracting the
Workflow Critical Path from the Extended Well-Formed Workflow
Schema. Journal of Computer and System Sciences, 70:86–106, 2005.

[SKW07] Andrew P. Snow, Mark Keil, and Linda Wallace. The Effects of Opti-
mistic and Pessimistic Biasing on Software Project Status Reporting.
Information & Management, 44(2):130–141, 2007.

http://www.comos.com

426 Bibliography

[Smi94] Stephen F. Smith. Intelligent Scheduling Systems, chapter Reactive
Scheduling Systems. Kluwer Publishing, 1994.

[Smi03] Stephen Smith. Is Scheduling a Solved Problem? In Graham Kendall,
Edmund K. Burke, Sanja Petrovic, and Michel Gendreau, editors,
Multidisciplinary Scheduling: Theory and Applications, pages 3–17.
Springer US, 2003.

[SMO00] Shazia W. Sadiq, Olivera Marjanovic, and Maria E. Orlowska. Manag-
ing Change and Time in Dynamic Workflow Processes. International
Journal of Cooperative Information Systems, 9(1-2):93–116, 2000.

[Sof10] Edgewall Software. Trac Project Website. http://trac.edgewall.
org/, August 2010.

[SOS93] Norman M. Sadeh, Shinichi Otsuka, and Robert Schnelbach. Predic-
tive and Reactive Scheduling with the Micro-Boss Production Schedul-
ing and Control System. In Proceedings of the IJCAI-93 Workshop
on Knowledge-based Production Planning, Scheduling, and Control,
Chambery France, August 1993.

[SS06] Dharma Shukla and Bob Schmidt. Essential Windows Workflow Foun-
dation. Microsoft .Net Development Series. Addison-Wesley Profes-
sional, 2006.

[STH03] Chris Stolte, Diane Tang, and Pat Hanrahan. Multiscale Visualization
Using Data Cubes. IEEE Transactions on Visualization and Computer
Graphics, 9(2):176–187, 2003.

[SW00] Hani El Sakkout and Mark Wallace. Probe Backtrack for Minimal Per-
turbation in Dynamic Scheduling. Constraints, 5(4):359–388, October
2000.

[SW03] A. Schleicher and B. Westfechtel. Unterstützung von Entwick-
lungsprozessen durch Werkzeuge. In Nagl and Westfechtel [NW03],
pages 329–332.

[SWZ99] A. Schürr, A. Winter, and A. Zündorf. The PROGRES Approach: Lan-
guage and Environment. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook on Graph Grammars and Computing
by Graph Transformation – Volume 2: Applications, Languages, and
Tools, pages 478–550. World Scientific, 1999.

[TB09a] N. Trautmann and P. Baumann. Resource-constrained Scheduling
of a Real Project from the Construction Industry: A Comparison of
Software Packages for Project Management. In International Confer-
ence on Industrial Engineering and Engineering Management (IEEM),
2009.

http://trac.edgewall.org/
http://trac.edgewall.org/

Bibliography 427

[TB09b] Norbert Trautmann and Philipp Baumann. Resource-Allocation Ca-
pabilities of Commercial Project Management Software: an Experi-
mental Analysis. In Proceedings of the 39th International Conference
on Computers & Industrial Engineering, pages 1143–1148, Troyes,
2009.

[Tec10] Technip. Company Website. http://www.technip.com, April 2010.

[TFR05] Daniel E. Turk, Robert B. France, and Bernhard Rumpe. Assump-
tions Underlying Agile Software-Development Processes. Journal of
Database Management, 16(4):62–87, 2005.

[THM08] M. Theißen, R. Hai, and W. Marquardt. Computer-Assisted Work
Process Modeling in Chemical Engineering. In Nagl and Marquardt
[NM08], pages 656–665.

[Tid06] Jenifer Tidwell. Designing Interfaces. O’Reilly, Beijing, 2006.

[TS97] Roshan K. Thomas and Ravi S. Sandhu. Task-Based Authorization Con-
trols (TBAC): A Family of Models for Active and Enterprise-Oriented
Authorization Management. In Proceedings of the IFIP Eleventh Inter-
national Conference on Database Security, pages 166–181. Chapman
& Hall, 1997.

[Tuf86] Edward R. Tufte. The Visual Display of Quantitative Information.
Graphics Press, Cheshire, USA, 1986.

[Ull83] Hans Jürgen Ullrich. Anlagenbau: Kommunikation, Planung, Manage-
ment. Georg Thieme Verlag, Stuttgart, 1983.

[VA00] Henricus M. W. Verbeek and Wil M. P. van der Aalst. Woflan 2.0: A
Petri-Net-Based Workflow Diagnosis Tool. In Proceedings of the 21st
International Conference on Application and Theory of Petri Nets
(ICATPN), volume 1825, pages 475–484, Aarhus, Denmark, June 2000.
Springer.

[Vas10] Ventsislava Vasileva Vasileva. Workflow-Unterstützung für Manage-
mentprozesse in dynamischen Entwicklungsprozessen. Diploma the-
sis, RWTH Aachen University, Aachen, 2010.

[VBA01] Henricus M. W. Verbeek, Twan Basten, and Wil M. P. van der Aalst.
Diagnosing Workflow Processes using Woflan. Comput. J., 44(4):246–
279, 2001.

[vdAtH05] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL: yet
another workflow language. Information Systems, 30(4):245–275,
2005.

http://www.technip.com

428 Bibliography

[vdAvH02] Wil van der Aalst and Kees van Hee. Workflow Management. Models,
Methods, and Systems. MIT Press, 2002.

[VDH05] Stijn Van De Vonder, Erik Demeulemeester, and Willy Herroelen.
Heuristic procedures for generating stable project baseline schedules.
In Proceedings of Third Euro Conference for Young OR researchers
and practitioners (ORP3), pages 11–19, 2005.

[Ver04] Henricus M. W. Verbeek. Verification of WF-Nets. PhD thesis, Tech-
nische Universität Eindhoven, 2004.

[VW98] Gottfried Vossen and Matthias Weske. The WASA Approach to Work-
flow Management for Scientific Applications. In Workflow Man-
agement Systems and Interoperability, volume 164, pages 145–164.
Springer, 1998.

[Wag03] Walter Wagner. Planung im Anlagenbau. Vogel Buchverlag, 2003.

[WAM+07] Ueli Wahli, Vedavyas Avula, Hannah Macleod, Mohamed Saeed, and
Anders Vinther. Business Process Management: Modeling through
Monitoring Using WebSphere V6.0.2 Products. IBM, 1st edition,
August 2007.

[Wan05] Juite Wang. Constraint-based Schedule Repair for Product Develop-
ment Projects with Time-limited Constraints. International Journal of
Production Economics, 95(3):399–414, 2005.

[WBK03] Jacques Wainer, Paulo Barthelmess, and Akhil Kumar. W-RBAC -
A workflow security model incorporating controlled overriding of
constraints. International Journal of Cooperative Information Systems,
12(3):455–485, 2003.

[WDGW08] Matthias Weidlich, Gero Decker, Alexander Großkopf, and Mathias
Weske. BPEL to BPMN: The Myth of a Straight-Forward Mapping.
In On the Move to Meaningful Internet Systems, OTM 2008 Con-
federated International Conferences, CoopIS, DOA, GADA, IS, and
ODBASE 2008, volume 5331 of Lecture Notes in Computer Science,
pages 265–282. Springer, 2008.

[WEH08] René Wörzberger, Nicolas Ehses, and Thomas Heer. Adding Sup-
port for Dynamics Patterns to Static Business Process Management
Systems. In Cesare Pautasso and Éric Tanter, editors, Software Com-
position, volume 4954 of Lecture Notes in Computer Science, pages
84–91. Springer, 2008.

[Wei06] Ingo Weisemöller. Verteilte Ausführung dynamischer Entwick-
lungsprozesse in heterogenen Prozessmanagementsystemen. Diploma
thesis, RWTH Aachen, 2006.

Bibliography 429

[Wes95] Bernhard Westfechtel. Graph-Theoretic Concepts in Computer Sci-
ence, volume 903 of LNCS, chapter Using programmed graph rewrit-
ing for the formal specification of a configuration management system,
pages 164–179. Springer, 1995.

[Wes96] B. Westfechtel. A Graph-Based System for Managing Configurations
of Engineering Design Documents. International Journal of Software
Engineering & Knowledge Engineering, 6:4:549–583, 1996.

[Wes99a] Mathias Weske. Workflow Management Systems: Formal Foundation,
Conceptual Design, Implementation Aspects. Habilitationsschrift,
Westfälische Wilhelms-Universität Münster, 1999.

[Wes99b] B. Westfechtel. Graph-Based Product and Process Management in
Mechanical Engineering. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook on Graph Grammars and Computing
by Graph Transformation – Volume 2: Applications, Languages, and
Tools, pages 321–368. World Scientific, 1999.

[Wes99c] B. Westfechtel. Models and Tools for Managing Development Pro-
cesses, Habilitation Thesis, volume 1646 of LNCS. Springer, 1999.
418 pp.

[Wes01] B. Westfechtel. Ein graphbasiertes Managementsystem für dynamis-
che Entwicklungsprozesse. Informatik Forschung und Entwicklung,
16(3):125–144, 2001.

[WH08] René Wörzberger and Thomas Heer. Process Model Editing Support
Using Eclipse Modeling Project Tools. In Peter Friese, Simon Zam-
brovski, and Frank Zimmermann, editors, Proceedings of the Second
Workshop on MDSD Today, Berichte aus der Softwaretechnik, pages
81–88. Shaker, 2008.

[WH11] René Wörzberger and Thomas Heer. DYPROTO - Tools for Dynamic
Business Processes. International Journal of Business Process Inte-
gration and Management (IJBPIM), 2011. accepted for publication.

[WHH07] R. Wörzberger, M. Heller, and F. Hässler. Evaluating Workflow Defini-
tion Language Revisions with Graph-Based Tools. Electronic Commu-
nications of the EASST, 2007. 6th International Workshop on Graph
Transformations and Visual Modeling Techniques (GT-VMT’2007),
Satellite Event of ETAPS’2007, Braga, Portugal.

[Whi05] Stephen A. White. Using BPMN to Model a BPEL Process. BPTrends,
3(3):1–18, 2005.

[Wie81] Jerome D. Wiest. Precedence Diagramming Method: Some Unusual
Characteristics and their Implications for Project Managers. Journal
of Operations Management, 1(3):121–130, February 1981.

[Wik10] Wikipedia. Change Management (Engineering). http://en.
wikipedia.org/wiki/Change_management_%28engineering%29,
November 2010.

[WKH08a] René Wörzberger, Thomas Kurpick, and Thomas Heer. Checking Cor-
rectness and Compliance of Integrated Process Models. In Proceed-
ings of the 10th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pages 576–583, Los Alamitos,
CA, USA, 2008. IEEE Computer Society.

[WKH08b] René Wörzberger, Thomas Kurpick, and Thomas Heer. On Correct-
ness, Compliance and Consistency of Process Models. In WETICE,
pages 251–252. IEEE Computer Society, 2008.

[Wor95] Workflow Management Coalition. The Workflow Reference Model.
http://www.wfmc.org/, January 1995. Document Number WFMC-
TC00-1003, Issue 1.1.

[Wör10] René Wörzberger. Management dynamischer Geschäftsprozesse auf
Basis statischer Prozessmanagementsysteme. PhD thesis, RWTH
Aachen University, Aachen, Germany, 2010.

[WSJH03] B. Westfechtel, A. Schleicher, D. Jäger, and M. Heller. Ein Man-
agementsystem für Entwicklungsprozesse. In Nagl and Westfechtel
[NW03], pages 369–370.

[ZBY05] G Zhu, JF Bard, and G Yu. Disruption Management for Resource-
constrained Project Scheduling. Journal of the Operational Research
Society, 56(4):365–381, 2005.

[ZCP01] Hai Zhuge, To-Yat Cheung, and Hung-Keng Pung. A Timed Worfklow
Process Model. Journal of Systems and Software, 55(3):231–243,
2001.

[ZDDD93] Monte Zweben, Eugene Davis, Brian Daun, and Michael J. Deale.
Scheduling and Rescheduling with Iterative Repair. IEEE Transac-
tions on Systems, Man and Cybernetics, 23(6):1588–1596, 1993.

[Zha92] J. Zhan. Calendarization of Time Planning in MPM Networks. Mathe-
matical Methods of Operations Research, 36(5):423–438, 1992.

[zM99] Michael zur Muehlen. Resource Modeling in Workflow Applications. In
Proceedings of the 1999 Workflow Management Conference (WFM99),
pages 137–153, 1999.

http://en.wikipedia.org/wiki/Change_management_%28engineering%29
http://en.wikipedia.org/wiki/Change_management_%28engineering%29
http://www.wfmc.org/

Lebenslauf

Thomas Heer

Geburtsdatum: 29. Juli 1980
Geburtsort: Vechta

Geburtsname: Heer
Staatsangehörigkeit: deutsch

seit Oktober 2006 Wissenschaftlicher Angestellter
am Lehrstuhl für Informatik 3 der
RWTH Aachen; Beginn der Promotion

September 2006 Studienabschluss als
Diplom-Informatiker (Dipl.-Inform.)

2000 – 2006 Informatikstudium an der RWTH Aachen

1999 – 2000 Zivildienst Malteser Hilfsdienst
Vechta

1999 Abitur am
St. Thomas Kolleg Vechta

Related Interesting Work from the SE Group, RWTH Aachen

Agile Model Based Software Engineering
Agility and modeling in the same project? This question was raised in [Rum04]: “Using an executable, yet
abstract and multi-view modeling language for modeling, designing and programming still allows to use
an agile development process.” Modeling will be used in development projects much more, if the benefits
become evident early, e.g with executable UML [Rum02] and tests [Rum03]. In [GKRS06], for example,
we concentrate on the integration of models and ordinary programming code. In [Rum12] and [Rum11],
the UML/P, a variant of the UML especially designed for programming, refactoring and evolution, is
defined. The language workbench MontiCore [GKR+06] is used to realize the UML/P [Sch12]. Links
to further research, e.g., include a general discussion of how to manage and evolve models [LRSS10], a
precise definition for model composition as well as model languages [HKR+09] and refactoring in various
modeling and programming languages [PR03]. In [FHR08] we describe a set of general requirements for
model quality. Finally [KRV06] discusses the additional roles and activities necessary in a DSL-based
software development project.

Generative Software Engineering
The UML/P language family [Rum12, Rum11] is a simplified and semantically sound derivate of the
UML designed for product and test code generation. [Sch12] describes a flexible generator for the UML/P
based on the MontiCore language workbench [KRV10, GKR+06]. In [KRV06], we discuss additional
roles necessary in a model-based software development project. In [GKRS06] we discuss mechanisms
to keep generated and handwritten code separated. In [Wei12] we show how this looks like and how
to systematically derive a transformation language in concrete syntax. To understand the implications
of executability for UML, we discuss needs and advantages of executable modeling with UML in agile
projects in [Rum04], how to apply UML for testing in [Rum03] and the advantages and perils of using
modeling languages for programming in [Rum02].

Unified Modeling Language (UML)
Many of our contributions build on UML/P described in the two books [Rum11] and [Rum12] are im-
plemented in [Sch12]. Semantic variation points of the UML are discussed in [GR11]. We discuss formal
semantics for UML [BHP+98] and describe UML semantics using the “System Model” [BCGR09a],
[BCGR09b], [BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied to define class
diagram semantics [CGR08]. A precisely defined semantics for variations is applied, when checking va-
riants of class diagrams [MRR11c] and objects diagrams [MRR11d] or the consistency of both kinds of
diagrams [MRR11e]. We also apply these concepts to activity diagrams (ADs) [MRR11b] which allows
us to check for semantic differences of activity diagrams [MRR11a]. We also discuss how to ensure and
identify model quality [FHR08], how models, views and the system under development correlate to each
other [BGH+98] and how to use modeling in agile development projects [Rum04], [Rum02] The question
how to adapt and extend the UML in discussed in [PFR02] on product line annotations for UML and to
more general discussions and insights on how to use meta-modeling for defining and adapting the UML
[EFLR99], [SRVK10].

Domain Specific Languages (DSLs)
Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need
appropriate tooling. The MontiCore language workbench [GKR+06], [KRV10], [Kra10] describes an in-
tegrated abstract and concrete syntax format [KRV07b] for easy development. New languages and tools

Related Interesting Work from the SE Group, RWTH Aachen

can be defined in modular forms [KRV08, Völ11] and can, thus, easily be reused. [Wei12] presents a tool
that allows to create transformation rules tailored to an underlying DSL. Variability in DSL definitions
has been examined in [GR11]. A successful application has been carried out in the Air Traffic Manage-
ment domain [ZPK+11]. Based on the concepts described above, meta modeling, model analyses and
model evolution have been examined in [LRSS10] and [SRVK10]. DSL quality [FHR08], instructions
for defining views [GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based tooling for DSLs
[KRV07a] complete the collection.

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of
telephone or video data, method invocation, or data structures passed between software services. We use
streams, statemachines and components [BR07] as well as expressive forms of composition and refi-
nement [PR99] for semantics. Furthermore, we built a concrete tooling infrastructure called MontiArc
[HRR12] for architecture design and extensions for states [RRW13]. MontiArc was extended to des-
cribe variability [HRR+11] using deltas [HRRS11] and evolution on deltas [HRRS12]. [GHK+07] and
[GHK+08] close the gap between the requirements and the logical architecture and [GKPR08] extends
it to model variants. Co-evolution of architecture is discussed in [MMR10] and a modeling technique to
describe dynamic architectures is shown in [HRR98].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling. The me-
chanisms for distributed systems are shown in [BR07] and algebraically underpinned in [HKR+07]. Se-
mantic and methodical aspects of model composition [KRV08] led to the language workbench MontiCore
[KRV10] that can even develop modeling tools in a compositional form. A set of DSL design guidelines
incorporates reuse through this form of composition [KKP+09]. [Völ11] examines the composition of
context conditions respectively the underlying infrastructure of the symbol table. Modular editor genera-
tion is discussed in [KRV07a].

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and detailedness
is discussed in [HR04]. We defined a semantic domain called “System Model” by using mathematical
theory. [RKB95, BHP+98] and [GKR96, KRB96]. An extended version especially suited for the UML
is given in [BCGR09b] and in [BCGR09a] its rationale is discussed. [BCR07a, BCR07b] contain detai-
led versions that are applied on class diagrams in [CGR08]. [MRR11a, MRR11b] encode a part of the
semantics to handle semantic differences of activity diagrams and [MRR11e] compares class and object
diagrams with regard to their semantics. In [BR07], a simplified mathematical model for distributed sys-
tems based on black-box behaviors of components is defined. Meta-modeling semantics is discussed in
[EFLR99]. [BGH+97] discusses potential modeling languages for the description of an exemplary object
interaction, today called sequence diagram. [BGH+98] discusses the relationships between a system, a
view and a complete model in the context of the UML. [GR11] and [CGR09] discuss general require-
ments for a framework to describe semantic and syntactic variations of a modeling language. We apply
these on class and object diagrams in [MRR11e] as well as activity diagrams in [GRR10]. [Rum12] em-
bodies the semantics in a variety of code and test case generation, refactoring and evolution techniques.
[LRSS10] discusses evolution and related issues in greater detail.

Related Interesting Work from the SE Group, RWTH Aachen

Evolution & Transformation of Models
Models are the central artifact in model driven development, but as code they are not initially correct
and need to be changed, evolved and maintained over time. Model transformation is therefore essential
to effectively deal with models. Many concrete model transformation problems are discussed: evolution
[LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactoring [Rum12, PR03], translating
models from one language into another [MRR11c, Rum12] and systematic model transformation langua-
ge development [Wei12]. [Rum04] describes how comprehensible sets of such transformations support
software development, maintenance and [LRSS10] technologies for evolving models within a language
and across languages and linking architecture descriptions to their implementation [MMR10]. Automaton
refinement is discussed in [PR94, KPR97], refining pipe-and-filter architectures is explained in [PR99].
Refactorings of models are important for model driven engineering as discussed in [PR03, Rum12].
Translation between languages, e.g., from class diagrams into Alloy [MRR11c] allows for comparing
class diagrams on a semantic level.

Variability & Software Product Lines (SPL)
Many products exist in various variants, for example cars or mobile phones, where one manufacturer
develops several products with many similarities but also many variations. Variants are managed in a
Software Product Line (SPL) that captures the commonalities as well as the differences. Feature dia-
grams describe variability in a top down fashion, e.g., in the automotive domain [GHK+08] using 150%
models. Reducing overhead and associated costs is discussed in [GRJA12]. Delta modeling is a bottom
up technique starting with a small, but complete base variant. Features are added (that sometimes also
modify the core). A set of applicable deltas configures a system variant. We discuss the application of
this technique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can
not only describe spacial variability but also temporal variability which allows for using them for soft-
ware product line evolution [HRRS12]. [HHK+13] describes an approach to systematically derive delta
languages. We also apply variability to modeling languages in order to describe syntactic and semantic
variation points, e.g., in UML for frameworks [PFR02]. And we specified a systematic way to define va-
riants of modeling languages [CGR09] and applied this as a semantic language refinement on Statecharts
in [GR11].

Cyber-Physical Systems (CPS)
Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical en-
tities. Contributions for individual aspects range from requirements [GRJA12], complete product lines
[HRRW12], the improvement of engineering for distributed automotive systems [HRR12] and autono-
mous driving [BR12a] to processes and tools to improve the development as well as the product itself
[BBR07]. In the aviation domain, a modeling language for uncertainty and safety events was develo-
ped, which is of interest for the European airspace [ZPK+11]. A component and connector architecture
description language suitable for the specific challenges in robotics is discussed in [RRW13]. Monito-
ring for smart and energy efficient buildings is developed as Energy Navigator toolset [KPR12, FPPR12,
KLPR12].

State Based Modeling (Automata)
Today, many computer science theories are based on state machines in various forms including Petri nets
or temporal logics. Software engineering is particularly interested in using state machines for modeling
systems. Our contributions to state based modeling can currently be split into three parts: (1) under-
standing how to model object-oriented and distributed software using statemachines resp. Statecharts

Related Interesting Work from the SE Group, RWTH Aachen

[GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement [PR94, RK96, Rum96] and
composition [GR95] of statemachines, and (3) applying statemachines for modeling systems. In [Rum96]
constructive transformation rules for refining automata behavior are given and proven correct. This theory
is applied to features in [KPR97]. Statemachines are embedded in the composition and behavioral speci-
fications concepts of Focus [BR07]. We apply these techniques, e.g., in MontiArcAutomaton [THR+13]
as well as in building management systems [FLP+11].

Robotics

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-
ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics
applications requires composition and interaction of diverse distributed software modules. This usual-
ly leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensible,
which hampers broad propagation of robotics applications. The MontiArcAutomaton language [RRW12]
extends ADL MontiArc and integrates various implemented behavior modeling languages using Monti-
Core [RRW13] that perfectly fits Robotic architectural modelling. The LightRocks [THR+13] framework
allows robotics experts and laymen to model robotic assembly tasks.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication systems
as well as advanced active and passive safety-systems result in complex embedded systems. As these
feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct va-
riants needs to be managed, developed and tested. A consistent requirements management that connects
requirements with features in all phases of the development for the automotive domain is described
in [GRJA12]. The conceptual gap between requirements and the logical architecture of a car is clo-
sed in [GHK+07, GHK+08]. [HKM+13] describes a tool for delta modeling for Simulink [HKM+13].
[HRRW12] discusses means to extract a well-defined Software Product Line from a set of copy and
paste variants. Quality assurance, especially of safety-related functions, is a highly important task. In
the Carolo project [BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-
based functions through fully-automatic simulation [BBR07]. This technique allows a dramatic speedup
in development and evolution of autonomous car functionality, and thus, enables us to develop software
in an agile way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in development and
evolution on a more general level by considering any kind of critical system that relies on architectural de-
scriptions. As tooling infrastructure, the SSElab storage, versioning and management services [HKR12]
are essential for many projects.

Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emissions is
an important challenge. Thus, energy management in buildings as well as in neighbourhoods becomes
equally important to efficiently use the generated energy. Within several research projects, we developed
methodologies and solutions for integrating heterogeneous systems at different scales. During the design
phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12, KPR12] is used for tech-
nical specification of building services already. We adapted the well-known concept of statemachines to
be able to describe different states of a facility and to validate it against the monitored values [FLP+11].
We show how our data model, the constraint rules and the evaluation approach to compare sensor data
can be applied [KLPR12].

Related Interesting Work from the SE Group, RWTH Aachen

Cloud Computing & Enterprise Information Systems
The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based
application and service architectures with high complexity, criticality and new application domains. It
promises to enable new business models, to lower the barrier for web-based innovations and to incre-
ase the efficiency and cost-effectiveness of web development. Application classes like Cyber-Physical
Systems [KRS12], Big Data, App and Service Ecosystems bring attention to aspects like responsiveness,
privacy and open platforms. Regardless of the application domain, developers of such systems are in need
for robust methods and efficient, easy-to-use languages and tools. We tackle these challenges by perusing
a model-based, generative approach [PR13]. The core of this approach are different modeling languages
that describe different aspects of a cloud-based system in a concise and technology-agnostic way. Soft-
ware architecture and infrastructure models describe the system and its physical distribution on a large
scale. We apply cloud technology for the services we develop, e.g., the SSELab [HKR12] and the Energy
Navigator [FPPR12, KPR12] but also for our tool demonstrators and our own development platforms.
New services, e.g.,c collecting data from temperature, cars etc. are easily developed.

Related Interesting Work from the SE Group, RWTH Aachen

References
[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems Enginee-

ring Process and Tools for the Development of Autonomous Driving Intelligence. Journal of
Aerospace Computing, Information, and Communication (JACIC), 4(12):1158–1174, Octo-
ber 2007.

[BCGR09a] Manfred Broy, Maria Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Conside-
rations and Rationale for a UML System Model. In Kevin Lano, editor, UML 2 Semantics
and Applications, pages 43–61. John Wiley & Sons, 2009.

[BCGR09b] Manfred Broy, Maria Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Definition
of the UML System Model. In Kevin Lano, editor, UML 2 Semantics and Applications,
pages 63–93. John Wiley & Sons, 2009.

[BCR07a] Manfred Broy, Maria Victoria Cengarle, and Bernhard Rumpe. Towards a System Model
for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU Munich, February
2007.

[BCR07b] Manfred Broy, Maria Victoria Cengarle, and Bernhard Rumpe. Towards a System Model
for UML. Part 3: The State Machine Model. Technical Report TUM-I0711, TU Munich,
February 2007.

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger, Bernhard Rumpe,
Monika Schmidt, and Wolfgang Schwerin. Exemplary and Complete Object Interaction
Descriptions. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Proceedings OOPSLA’97
Workshop on Object-oriented Behavioral Semantics, TUM-I9737, TU Munich, 1997.

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin. Systems,
Views and Models of UML. In M. Schader and A. Korthaus, editors, Proceedings of the
Unified Modeling Language, Technical Aspects and Applications. Physica Verlag, Heidel-
berg, 1998.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katharina Spies. Softwa-
re and System Modeling Based on a Unified Formal Semantics. In M. Broy and B. Rumpe,
editors, RTSE ’97: Proceedings of the International Workshop on Requirements Targeting
Software and Systems Engineering, LNCS 1526, pages 43–68, Bernried, Germany, October
1998. Springer.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als Grundlage
der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3–18, Februar 2007.

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the Urban
Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In Proceedings of the
10th Workshop on Automotive Software Engineering (ASE 2012), pages 789–798, Braun-
schweig, Germany, September 2012.

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Software. In C.
Rouff and M. Hinchey, editors, Experience from the DARPA Urban Challenge. Springer,
2012.

Related Interesting Work from the SE Group, RWTH Aachen

[CGR08] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model Semantics
of Class Diagrams. Informatik-Bericht 2008-05, CfG Fakultät, TU Braunschweig, 2008.

[CGR09] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability within Mo-
deling Language Definitions. In Model Driven Engineering Languages and Systems. Pro-
ceedings of MODELS 2009, LNCS 5795, pages 670–684, Denver, Colorado, USA, October
2009.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling Semantics
of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems. Kluver Academic Publisher, 1999.

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indikator für
Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5):408–424, Oktober 2008.

[FLP+11] Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. State-
Based Modeling of Buildings and Facilities. In Proceedings of the 11th International Con-
ference for Enhanced Building Operations (ICEBO’ 11), New York City, USA, October
2011.

[FPPR12] Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The Energy Na-
vigator - A Web-Platform for Performance Design and Management. In Proceedings of
the 7th International Conference on Energy Efficiency in Commercial Buildings (IEECB),
Frankfurt a. M., Germany, April 2012.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard Rumpe.
View-based Modeling of Function Nets. In Proceedings of the Object-oriented Modelling
of Embedded Real-Time Systems (OMER4) Workshop, Paderborn, Germany, October 2007.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Rothhardt, and
Bernhard Rumpe. Modelling Automotive Function Nets with Views for Features, Vari-
ants, and Modes. In Proceedings of 4th European Congress ERTS - Embedded Real Time
Software, Toulouse, 2008.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Modeling Variants
of Automotive Systems using Views. In Modellbasierte Entwicklung von eingebetteten
Fahrzeugfunktionen (MBEFF), Informatik Bericht 2008-01, pages 76–89, CFG Fakultät,
TU Braunschweig, March 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System Model
with State. Technical Report TUM-I9631, TUM, Munich, Germany, 1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domänspezifischer Spra-
chen. Technical Report 2006-04, CfG Fakultät, TU Braunschweig, August 2006.

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler. Integration von
Modellen in einen codebasierten Softwareentwicklungsprozess. In Proceedings der Model-
lierung 2006, Lecture Notes in Informatics LNI P-82, Innsbruck, März 2006. GI-Edition.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical Report
TUM-I9533, TUM, Munich, Germany, 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In Workshop on
Modeling, Development and Verification of Adaptive Systems. 16th Monterey Workshop,
LNCS 6662, pages 17–32, Redmond, Microsoft Research, 2011. Springer.

Related Interesting Work from the SE Group, RWTH Aachen

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level Require-
ments Management and Complexity Costs in Automotive Development Projects: A Problem
Statement. In Requirements Engineering: Foundation for Software Quality. 18th Interna-
tional Working Conference, Proceedings, REFSQ 2012, Essen, Germany, March 2012.

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of Activity Dia-
grams with Semantic Variation Points. In Model Driven Engineering Languages and Sys-
tems, Proceedings of MODELS, LNCS 6394, Oslo, Norway, 2010. Springer.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bernhard
Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In Proceedings of the
17th International Software Product Line Conference (SPLC), Tokyo, pages 22–31. ACM,
September 2013.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bernhard Rumpe,
and Ina Schaefer. First-Class Variability Modeling in Matlab / Simulink. In Proceedings of
the Seventh International Workshop on Variability Modelling of Software-intensive Systems,
pages 11–18, New York, NY, USA, 2013. ACM.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
An Algebraic View on the Semantics of Model Composition. In D. H. Akehurst, R. Vogel,
and R. F. Paige, editors, Proceedings of the Third European Conference on Model Driven
Architecture - Foundations and Applications (ECMDA-FA 2007), Haifa, Israel, pages 99–
113. Springer, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
Scaling-Up Model-Based-Development for Large Heterogeneous Systems with Composi-
tional Modeling. In H. Arabnia and H. Reza, editors, Proceedings of the 2009 International
Conference on Software Engineeering in Research and Practice, Las Vegas, Nevada, USA,
2009.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-In-Based
Framework for Web-Based Project Portals. In Proceedings of the 2nd International Work-
shop on Developing Tools as Plug-Ins (TOPI) at ICSE 2012, pages 61–66, Zurich, Switzer-
land, June 2012. IEEE.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of ”Se-
mantics”? IEEE Computer, 37(10):64–72, Oct 2004.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Component Inter-
faces. In Madhu Singh, Bertrand Meyer, Joseph Gil, and Richard Mitchell, editors, TOOLS
26, Technology of Object-Oriented Languages and Systems. IEEE Computer Society, 1998.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der Linden.
Hierarchical Variability Modeling for Software Architectures. In Proceedings of Interna-
tional Software Product Lines Conference (SPLC 2011). IEEE Computer Society, August
2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural Modeling
of Interactive Distributed and Cyber-Physical Systems. Technical Report AIB-2012-03,
RWTH Aachen, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling for Soft-
ware Architectures. Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte Ent-
wicklung eingebetteter Systeme VII, fortiss GmbH, February 2011.

Related Interesting Work from the SE Group, RWTH Aachen

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-oriented
Software Product Line Architectures. In Large-Scale Complex IT Systems. Development,
Operation and Management, 17th Monterey Workshop 2012, LNCS 7539, pages 183–208,
Oxford, UK, March 2012. Springer.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung eines Pro-
duktlinienansatzes in die automotive Softwareentwicklung am Beispiel von Steuergeräte-
software. In Software Engineering 2012: Fachtagung des GI-Fachbereichs Softwaretechnik
in Berlin, Lecture Notes in Informatics LNI 198, pages 181–192, 27. Februar - 2. März
2012.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler, and Ste-
ven Völkel. Design Guidelines for Domain Specific Languages. In Proceedings of the 9th
OOPSLA Workshop on Domain-Specific Modeling (DSM’09), Sprinkle, J., Gray, J., Ros-
si, M., Tolvanen, J.-P., (eds.), Techreport B-108, Helsinki School of Economics, Orlando,
Florida, USA, October 2009.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Modeling Cyber-
Physical Systems: Model-Driven Specification of Energy Efficient Buildings. In Procee-
dings of the Modelling of the Physical World Workshop MOTPW’12, Innsbruck, October
2012, pages 2:1–2:6. ACM Digital Library, October 2012.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification and Refine-
ment with State Transition Diagrams. In Fourth IEEE Workshop on Feature Interactions in
Telecommunications Networks and Distributed Systems. P. Dini, IOS-Press, 1997.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navigator. In Ent-
wicklung und Evolution von Forschungssoftware. Tagungsband, Rolduc, 10.-11.11.2011,
Aachener Informatik-Berichte, Software Engineering Band 14. Shaker Verlag Aachen,
2012.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im
Software-Engineering. Aachener Informatik-Berichte, Software Engineering Band 1. Sha-
ker Verlag, Aachen, Germany, 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical model
for distributed information processing systems - SysLab system model. In Proceedings
of the first International Workshop on Formal Methods for Open Object-based Distributed
Systems, pages 323–338. Chapmann & Hall, 1996.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical Systems
- eine Herausforderung für die Automatisierungstechnik? In Proceedings of Automation
2012, VDI Berichte 2012, pages 113–116. VDI Verlag, 2012.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Development using
Domain Specific Modelling Languages. In J. Gray, J.-P. Tolvanen, and J. Sprinkle, editors,
Proceedings of the 6th OOPSLA Workshop on Domain-Specific Modeling 2006 (DSM’06),
Portland, Oregon USA, Technical Report TR-37, pages 150–158, Jyväskylä University, Fin-
land, 2006.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Generation for Com-
positional DSLs in Eclipse. In Proceedings of the 7th OOPSLA Workshop on Domain-
Specific Modeling (DSM’ 07), Montreal, Quebec, Canada, Technical Report TR-38, pages
8–10, Jyväskylä University, Finland, 2007.

Related Interesting Work from the SE Group, RWTH Aachen

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of Abstract and
Concrete Syntax for Textual Languages. In G. Engels, B. Opdyke, D. C. Schmidt, and
F. Weil, editors, Proceedings of the ACM/IEEE 10th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2007), Nashville, TN, USA, October
2007, LNCS 4735. Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular Development of
Textual Domain Specific Languages. In R. F. Paige and B. Meyer, editors, Proceedings
of the 46th International Conference Objects, Models, Components, Patterns (TOOLS-
Europe), Zurich, Switzerland, 2008, Lecture Notes in Business Information Processing LN-
BIP 11, pages 297–315. Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for Com-
positional Development of Domain Specific Languages. International Journal on Software
Tools for Technology Transfer (STTT), 12(5):353–372, September 2010.

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan Sprinkle. Model
Evolution and Management. In MBEERTS: Model-Based Engineering of Embedded Real-
Time Systems, International Dagstuhl Workshop, Dagstuhl Castle, Germany, LNCS 6100,
pages 241–270. Springer, October 2010.

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture Descriptions
of Critical Systems. IEEE Computer, 43(5):42–48, May 2010.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Differencing for
Activity Diagrams. In Proc. Euro. Soft. Eng. Conf. and SIGSOFT Symp. on the Foundations
of Soft. Eng. (ESEC/FSE’11), pages 179–189. ACM, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Semantics for
Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH Aachen University,
Aachen, Germany, July 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Diagrams Analy-
sis Using Alloy Revisited. In Model Driven Engineering Languages and Systems (MODELS
2011), Wellington, New Zealand, LNCS 6981, pages 592–607, 2011.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Diagrams. In Proc.
25th Euro. Conf. on Object Oriented Programming (ECOOP’11), LNCS 6813, pages 281–
305. Springer, 2011.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Configurable Con-
sistency Analysis for Class and Object Diagrams. In Model Driven Engineering Langua-
ges and Systems (MODELS 2011), Wellington, New Zealand, LNCS 6981, pages 153–167.
Springer, 2011.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Annotations with
UML-F. In G. J. Chastek, editor, Software Product Lines - Second International Conference,
SPLC 2, LNCS 2379, pages 188–197, San Diego, 2002. Springer.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for Behaviour
Modelling with Automata. In M. Naftalin, T. Denvir, and M. Bertran, editors, FME’94:
Industrial Benefit of Formal Methods, LNCS 873. Springer, October 1994.

Related Interesting Work from the SE Group, RWTH Aachen

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architectures. In J. Da-
vies J. M. Wing, J. Woodcock, editor, FM’99 - Formal Methods, Proceedings of the World
Congress on Formal Methods in the Development of Computing System, LNCS 1708, pages
96–115. Springer, 1999.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications. In H. Ki-
lov and K. Baclawski, editors, Practical foundations of business and system specifications,
pages 281–297. Kluwer Academic Publishers, 2003.

[PR13] Antonio Navarro Perez and Bernhard Rumpe. Modeling Cloud Architectures as Interactive
Systems. In I. Ober, A. S. Gokhale, J. H. Hill, J. Bruel, M. Felderer, D. Lugato, and A. Dab-
holka, editors, Proc. of the 2nd International Workshop on Model-Driven Engineering for
High Performance and Cloud Computing. Co-located with MODELS 2013, Miami, Sun
SITE Central Europe Workshop Proceedings CEUR 1118, pages 15–24. CEUR-WS.org,
2013.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In H. Kilov and
W. Harvey, editors, Specification of Behavioral Semantics in Object-Oriented Information
Modeling, pages 265–286. Kluwer Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes mathematisches
Modell verteilter informationsverarbeitender Systeme - Syslab-Systemmodell. Technical
Report TUM-I9510, Technische Universität München, 1995.

[RRW12] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Requirements Modeling
Language for the Component Behavior of Cyber Physical Robotics Systems. In N. Seyff
and A. Koziolek, editors, Modelling and Quality in Requirements Engineering: Essays De-
dicated to Martin Glinz on the Occasion of His 60th Birthday. Monsenstein und Vannerdat,
Münster, 2012.

[RRW13] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAutomaton: Mo-
deling Architecture and Behavior of Robotic Systems. In Workshops and Tutorials Procee-
dings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), May
6-10, 2013, Karlsruhe, Germany, pages 10–12, 2013.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag Wissenschaft, ISBN 3-89675-149-2, 1996.

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare? In T. Clark
and J. Warmer, editors, Issues & Trends of Information Technology Management in Con-
temporary Associations, Seattle, pages 697–701. Idea Group Publishing, Hershey, London,
2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In F. de Boer, M.
Bonsangue, S. Graf, W.-P. de Roever, editor, Formal Methods for Components and Objects,
LNCS 2852, pages 380–402. Springer, November 2003.

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In M. Wirsing, A. Knapp, and S. Bal-
samo, editors, Radical Innovations of Software and Systems Engineering in the Future. 9th
International Workshop, RISSEF 2002. Venice, Italy, October 2002, LNCS 2941. Springer,
October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML. Springer, second edition, September 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring.
Springer, second edition, Juni 2012.

Related Interesting Work from the SE Group, RWTH Aachen

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P. Aa-
chener Informatik-Berichte, Software Engineering Band 11. Shaker Verlag, Aachen, Ger-
many, 2012.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Metamodelling:
State of the Art and Research Challenges. In MBEERTS: Model-Based Engineering of Em-
bedded Real-Time Systems, International Dagstuhl Workshop, Dagstuhl Castle, Germany,
LNCS 6100, pages 57–76, October 2010.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas Wort-
mann. A New Skill Based Robot Programming Language Using UML/P Statecharts. In Pro-
ceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA),
pages 461–466, Karlsruhe, Germany, May 2013. IEEE.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen. Aachener
Informatik-Berichte, Software Engineering Band 9. Shaker Verlag, Aachen, Germany, 2011.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen. Aache-
ner Informatik-Berichte, Software Engineering Band 12. Shaker Verlag, Aachen, Germany,
2012.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Kumardev Chat-
terjee, Andreas Horst, and Bernhard Rumpe. On Demand Data Analysis and Filtering for
Inaccurate Flight Trajectories. In D. Schaefer, editor, Proceedings of the SESAR Innovation
Days. EUROCONTROL, November 2011.

Related Interesting Work from the SE Group, RWTH Aachen

	thomas_heer_controlling_development_processes
	diss-Heer-Controlling-Development-Processes
	1 Introduction
	1.1 Motivation
	1.2 Research Context
	1.3 Solution Approach
	1.4 Contributions
	1.5 Structure of the Thesis

	2 Application Context
	2.1 The General Plant Design Process
	2.2 The Life Cycle Asset Information System Comos
	2.3 Example Scenario

	3 Fundamentals
	3.1 Project Management
	3.1.1 Project Management Activities
	3.1.2 Project Management Phases
	3.1.3 Work Breakdown Structure and Project Plan
	3.1.4 Organizational Breakdown Structure and Resources

	3.2 Project Scheduling
	3.2.1 Temporal Analysis
	3.2.2 Resource-Constrained Project Scheduling
	3.2.3 Disruption Management

	3.3 Project Controlling
	3.3.1 Determining the Actual Project Status
	3.3.2 Target-Performance Comparison and Analysis
	3.3.3 Steering a Project

	3.4 Workflow Management
	3.4.1 Definitions and Views
	3.4.2 Modeling Languages
	3.4.3 Workflow Management Systems
	3.4.4 The Windows Workflow Foundation

	4 Previous Achievements
	4.1 RESMOD
	4.2 COMA
	4.3 DYNAMITE
	4.3.1 Structural Model
	4.3.2 Behavioral Model
	4.3.3 Comparison With Other Paradigms

	4.4 Process Model Definitions and Evolution
	4.5 Interorganizational Cooperation
	4.5.1 Delegation-based Cooperation
	4.5.2 View-Based Cooperation

	4.6 The AHEAD Prototype

	5 Timed Dynamic Task Nets
	5.1 Structural Model
	5.1.1 Tasks and Control Flow
	5.1.2 Documents and Data Flow
	5.1.3 Resource Modeling
	5.1.4 Structural Constraints

	5.2 Behavioral Model
	5.2.1 Life Cycle of a Task
	5.2.2 Behavioral Constraints
	5.2.3 Execution States and Structural Change Operations

	5.3 Timing Model
	5.3.1 Properties for Time Management
	5.3.2 Timing Consistency Constraints

	5.4 Monitoring Model
	5.4.1 Properties for Monitoring
	5.4.2 Monitoring Constraints

	5.5 Authorization Model
	5.5.1 Permissions
	5.5.2 Authorization Rules
	5.5.3 Project-Specific Tailoring of Access Control Policy

	5.6 Related Work
	5.6.1 Resource Modeling
	5.6.2 User Authorization

	5.7 Conclusion

	6 Process Modeling and Enactment
	6.1 Task Types
	6.2 Process Templates
	6.3 Workflow Management
	6.3.1 Workflow Instances in Dynamic Task Nets
	6.3.2 Mapping of Meta-Model Elements
	6.3.3 Mapping of Execution States and State Transitions
	6.3.4 Execution of Control Flow Activities
	6.3.5 Data Flow in Workflow-Managed Task Nets
	6.3.6 Dynamic Changes to Workflow-Managed Tasks
	6.3.7 Time Management Data in Workflow Templates
	6.3.8 Conclusion

	6.4 Related Work
	6.4.1 Integration of Project and Workflow Management
	6.4.2 Direct Process Support in Engineering Design Projects

	6.5 Conclusion

	7 Scheduling of Dynamic Task Nets
	7.1 Partial Scheduling
	7.1.1 Zero-Duration Tasks
	7.1.2 Not Scheduled Tasks and Partially Scheduled Tasks

	7.2 Critical Path Analysis
	7.2.1 Hierarchical Critical Path Method
	7.2.2 Criticality and Consistency
	7.2.3 Correctness and Time Complexity

	7.3 Resource-Constrained Scheduling
	7.3.1 Initialization
	7.3.2 Task Durations
	7.3.3 Parallel Scheduling Scheme
	7.3.4 Scheduling Example
	7.3.5 Correctness and Time Complexity

	7.4 Scheduling of Workflow Instances
	7.4.1 Critical Path Analysis
	7.4.2 Resource-Constrained Scheduling

	7.5 Export to Database
	7.6 Related Work
	7.6.1 Resource-Constrained Scheduling
	7.6.2 Temporal Analysis and Scheduling of Workflows

	7.7 Conclusion

	8 Monitoring a Development Process
	8.1 Progress Measures
	8.1.1 Black-Box Progress Measures
	8.1.2 White-Box Progress Measures
	8.1.3 Comparison of Progress Measures

	8.2 Earned Value Analysis and Forecasts
	8.3 Visual Project Status Analysis
	8.3.1 Measures
	8.3.2 Dimensions
	8.3.3 Configurable Pivot Table for Project Status Analysis
	8.3.4 Analyzing the History of Plan Changes
	8.3.5 Coupling with Management Views

	8.4 Related Work
	8.4.1 Progress Measurement of Development Processes
	8.4.2 Visualization of Project Management Data

	8.5 Conclusion

	9 Change Management
	9.1 Enactment of Management Processes
	9.1.1 Management Tasks
	9.1.2 Parameterization of Task Types
	9.1.3 Parameterization of Management Workflow Templates
	9.1.4 Example Case

	9.2 Possible Disruptions and Compensating Actions
	9.2.1 Disruptions at Project Runtime
	9.2.2 Change Operations

	9.3 General Change Management Procedure
	9.3.1 Consistency Checks Before Change Operations
	9.3.2 Resolving Inconsistencies After Replanning
	9.3.3 Rescheduling of Workflow-Managed Task Nets
	9.3.4 Violations of Monitoring Constraints
	9.3.5 Changes to Dependent Task Properties

	9.4 Related Work
	9.4.1 Enactment of Project Management Processes
	9.4.2 Replanning and Rescheduling

	9.5 Conclusion

	10 Prototypical Implementation
	10.1 System Overview
	10.2 Design and Implementation
	10.2.1 Process Engine
	10.2.2 Workflow Engine
	10.2.3 Scheduler
	10.2.4 Project Data Warehouse
	10.2.5 Coupling with External Project Management System

	10.3 User Interface
	10.3.1 Project Management Views
	10.3.2 Process Definition Tools
	10.3.3 Monitoring Views
	10.3.4 Resource Management View

	10.4 Implementation Size
	10.5 Conclusion

	11 Conclusion
	11.1 Summary
	11.2 Outlook

	Bibliography

	Diss-Anhang
	Einleitung
	Automobilindustrie im Wandel
	Reaktionen der Automobilindustrie
	Problemstellung der Arbeit
	Lösungsansätze und Ergebnisse der Arbeit
	Aufbau der Arbeit
	Stand der Wissenschaft

	Grundlagen des Anforderungsmanagements
	Grundzüge und Definition des Anforderungs-Begriffs
	Begriff und Aufgaben des Anforderungsmanagements
	Traceability als Konzept des Anforderungsmanagements

	Evaluation des Anforderungsmanagements in der Marke Volkswagen
	Problemstellung und Vorgehen
	Modulare Fahrzeugbaukästen im Kontext des Anforderungsmanagements
	Allgemeine Problemstellung des Anforderungsmanagements in der Automobilindustrie
	Spezielle Problemstellung bei der Volkswagen AG

	Entwicklung von Szenarien für das Anforderungsmanagement
	Phase 1: Beobachten
	Phase 2: Erkennen
	Phase 3: Nachdenken
	Phase 4: Verstehen
	Phase 5: Planen
	Phase 6: Verändern

	Scouting von Anforderungsmanagementwerkzeugen
	Methodik zur Auswahl von Potentialkandidaten
	Fragebogen zur detaillierten Evaluation für das Anforderungsmanagement bei Volkswagen
	Beurteilung traditioneller Anforderungsmanagementwerkzeuge

	Modellbasierter Prozesseditor zur Formalisierung von Prozessinformationen
	Entwicklung eines Werkzeugs zur webbasierten Visualisierung von Informationen
	Ergebnisse des Projekts mit Volkswagen und erste Schlussfolgerungen

	Prozessartefakte als durchgängiges Konzept zur Formalisierung von Prozessinformationen
	Begriffsbildung
	Artefakte im Kontext von Komplexität und Veränderung
	Komplexität von Artefakten in Unternehmensprozessen
	Veränderungen von Artefakten in Unternehmensprozessen

	Beispiele zur Verdeutlichung der Thematik
	Allgemeines Beispiel für Komplexität erhöhende Evolution
	Spezielles Beispiel für Relationenkomplexität im Kontext der Produktentstehung

	Semantisch unterstütztes Anforderungsmanagement als Lösungskonzept
	Semantische Netze zur Abbildung formalisierter Artefakte
	Anforderungen an ein semantisch unterstütztes Anforderungsmanagementwerkzeug
	Modellierung, Instanzerstellung und -verwaltung
	Suchen und Analysen

	Nutzen des semantischen Netzes im operativen Anforderungsmanagement
	Beispiele zur Modellierung von Artefakten in Entwicklungsprojekten
	Nutzen des semantischen Netzes im erweiterten Kontext des Anforderungsmanagements
	Erweitertes Anforderungsmanagement
	Gemeinkosten
	Produktdefinition und Eigenschaftsplanung
	Änderungsmanagement
	Baukastenplanung und -management
	Generierung von juristisch relevanten Dokumenten

	Grundlagen der Umsetzung eines semantisch unterstützten Anforderungsmanagementwerkzeugs
	Entwicklung der Wissensbasis als Grundlage für das Anforderungsmanagement
	Modellbasierte Systementwicklung mit RDF, RDFS, OWL und SPARQL
	Technologie für die Infrastruktur des Werkzeugs

	Grundlegende Ontologien für die Erarbeitung unternehmensspezifischer Artefaktnetze
	Definition von Kernartefakten als Grundlage für eine Unternehmensontologie
	Einführung der Ontologien Core und RMNet zur Formalisierung und Verknüpfung der Kernartefakte

	Methodik zur Verwendung unternehmensspezifischer Artefaktnetze
	Initiale Erstellung des Artefaktnetzes
	Verwendung im Unternehmenskontext
	Markierungsprozess für Unstimmigkeiten
	Prüfung und Überarbeitung zur Aktualisierung des Netzes

	Anwendung auf eine exemplarische Artefaktlandschaft für die Produktentwicklung
	Erarbeitung der spezifischen Artefakte
	Einbindung des exemplarischen Artefaktnetzes in die Produktentwicklung
	Beispielhafte SPARQL-Abfragen zur Demonstration der Möglichkeiten der Wissensbasis

	Herausforderungen des beschriebenen Lösungsansatzes
	Automatisierte Kostenbetrachtungen
	Berechtigungen
	Leistungsfähigkeit
	Aktualität

	Ergebnisse und Erkenntnisse

	Zusammenfassung, Fazit und Ausblick
	Zusammenfassung und Fazit
	Zusammenfassung der Arbeit anhand der formulierten Eckpunkte
	Fazit

	Ausblick
	Aufgaben für ein Folgeprojekt
	Fachliche Herausforderungen

	Literaturverzeichnis
	Glossar und Abkürzungsverzeichnis
	Glossar
	Abkürzungen

	Ontologien
	Daten Werkzeug-Scouting
	Fragebogen zum Werkzeug-Scouting
	Lebenslauf

