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Abstract

Systems engineering has produced striking results in many domains. Researchers and
practitioners have devised concepts, methods, tools that autonomously move vehicles,
enable doctors to conduct remote surgeries across continents, and sent astronauts into
space. All of these cyber-physical systems are driven by software whose complexity in-
creases tremendously. Overcompensating this growth in software and systems complexity
demands novel methods that increase the abstraction in systems engineering, advance
automation, and facilitate the integration of domain expert solutions. Model-based sys-
tems engineering aims to address this complexity by advancing systems engineering from
its contemporary document-based processes to sophisticated model-based processes. In
the latter, abstract models serve as means for systems design, communication, documen-
tation, and basis for implementation. But to overcompensate the growth in complexity,
using models as secondary artifacts is insufficient. Comprehensive research in software
engineering has led to recognizing that model-driven processes, in which models are the
primary engineering artifacts, can significantly improve abstraction, automation, and
domain-specific modeling to address the increasing complexity in systems engineering.
Yet, model-based systems engineering focuses on informal models that are hardly acces-
sible to meaningful automation and overly generic.

This thesis summarizes 13 selected publications of a research program towards a model-
driven systems engineering that operates on domain-specific modeling languages, sup-
ports sophisticated modeling methods, and enables the systematic operation of cyber-
physical systems. The results of this research program cover four substantial challenges
towards the model-driven engineering of cyber-physical systems: First, it contributes
to understanding the use of models and modeling languages for cyber-physical systems
through a comprehensive literature study on modeling for cyber-physical systems in
Industry 4.0. The study surveyed over 4.000 publications and produced insights into
requirements for the efficient model-driven engineering and operations of cyber-physical
systems in Industry 4.0. Second, it conduces novel foundations for the efficient engineer-
ing of domain-specific modeling languages based on the requirements identified in the
literature study. These foundations introduce innovative notions of language components
and their composition upon which families of domain-specific modeling languages can
be created systematically efficiently. Third, it leverages these foundations to produce
modeling languages to describe functional architectures and geometric-physical architec-
tures of cyber-physical systems that support unprecedented automated modeling meth-
ods, including tracing, decomposition, and semantic differencing, to facilitate modeling,
maintaining, and evolving these architectures. Fourth, it exploits the novel language
engineering foundations and the unprecedented automated modeling methods to allevi-
ate the systematic operation of cyber-physical systems with digital twins that represent



and optimize the observed systems. Hence, this research program forges a bridge from
observations on modeling cyber-physical systems, over software language engineering
and modeling methods, to their operation that supports researchers and practitioners to
advance from the contemporary document-based engineering of cyber-physical systems
to their systematic model-driven engineering.



Contents

1 Introduction 1
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Modeling Languages for Cyber-Physical Systems 29
2.1 Modeling in Industry 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Modeling Language Engineering 37
3.1 Reusing Modeling Language Syntaxes . . . . . . . . . . . . . . . . . . . . 38
3.2 Reusing Code Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Systematic Black-Box Reuse of Language Components . . . . . . . . . . . 50
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Systems Modeling and Evolution 57
4.1 Functional Modeling of Cyber-Physical Systems . . . . . . . . . . . . . . . 58
4.2 Automated Semantics-Preserving Decomposition of Architectures . . . . . 62
4.3 Continuously Analyzing Architecture Models . . . . . . . . . . . . . . . . 66
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Operating Cyber-Physical Systems with Digital Twins 73
5.1 On Digital Twins and Digital Shadows . . . . . . . . . . . . . . . . . . . . 74
5.2 Pervasive Model-Driven Digital Twins . . . . . . . . . . . . . . . . . . . . 79
5.3 Representing Digital Twins with Information Systems . . . . . . . . . . . 83
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Conclusion 89

Bibliography 91

A Author Contribution to Publications 131

B Reprints of Selected Publications 133

ix





Chapter 1

Introduction

The scientific man does not aim at an immediate result. He does not expect that his
advanced ideas will be readily taken up. His work is like that of the planter - for the

future. His duty is to lay the foundation for those who are to come, and point the way.

Nikola Tesla

The research results presented in this thesis plant novel foundations, concepts, and meth-
ods that aim to facilitate the systematic model-driven engineering of the cyber-physical
systems of the future. This chapter motivates our research, details the challenges ad-
dressed through the publications summarized in this thesis, explains the background of
our research, clarifies terminology, and describes the outline of the remainder of this
thesis.

1.1 Context and Motivation

Our society thrives on cyber-physical systems. In these systems, cyber parts, i.e., soft-
ware, control physical sensors and actuators to make the overall system interact with its
environment, often including networks or the Internet, to perform services, such as com-
munication, creation of added-value, education, healthcare, mobility, and more. Well-
known cyber-physical systems are modern cars that leverage their sensors and telematics
to assist the driver, fitness trackers that compute work-out improvements in the Cloud,
service robots that support medical staff and guide visitors through exhibitions, or the
smart manufacturing systems of Industry 4.0 that are connected to another to optimize
production. Overall, there is a variety of cyber-physical systems of different forms and
functions that we rely upon in for recreational or professional activities.

Industrial engineering of cyber-physical systems always demands expertise from het-
erogeneous domains, including mechanical and electrical engineering, software and sys-
tems engineering, human-machine interaction, business administration, jurisprudence,
and many more. The domains participating in the engineering of cyber-physical systems
contribute to various concerns of the systems under development and follow different
schools of thought, paradigms, methods, and techniques to address these concerns. For
instance, mechanical engineers employ technical drawings in the form of 3D models to
prescribe geometries and physical properties, electrical engineers use circuit diagrams
to model electrical circuits, and software engineers use general-purpose programming
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Chapter 1 Introduction

languages (GPLs) or domain-specific languages (DSLs) to prescribe the structure and
behavior of the systems’ software. For the efficient engineering and operation of cyber-
physical systems, domain experts, such as mechanical engineers, electrical engineers, or
roboticists need suitable solution techniques that support for expressing their contribu-
tions using concepts and terminology established in their domain of expertise. These
different domain-specific techniques must support the automated analysis of integrated,
heterogeneous models and the synthesis of downstream artifacts (such as GPL code or
documentation) where possible. Leveraging domain-specific models raises the abstrac-
tion in the engineering of cyber-physical systems, which enables domain experts to focus
on challenges in their respective problem domains.

Humanity has been using models to describe, understand, and change the world for
millennia. In ancient Greece and Egypt, philosophers used mathematical models, geo-
metric models, or physical models to describe the world, to understand what it is that
holds it together, and to construct buildings and machines. Since then, scientists and en-
gineers model to comprehend and to design (parts of) the world. Nonetheless, it is fairly
recent that we have found methods to use models as blueprints that can be translated to
realizations automatically. Within the last few decades, the amount and the importance
of software and software-based cyber-physical systems have increased significantly and
their complexity has increased as well. Therefore, software engineering, has begun to
leverage models to reduce the conceptual gap [FR07] that arises from using different
abstractions in the problem domains of discourse, such as mechanical engineering or
jurisprudence, than in the solution domain of software engineering.

The umbrella term model-driven engineering (MDE) [AK03, FR07, VSB+13, WHR14]
describes software development methodologies that leverage (domain-specific) models
as primary development artifacts to reduce the conceptual gap. To support the effi-
cient engineering with such models, these must be reified in machine-processable mod-
eling languages. Consequently, efficiently engineering, customizing, and reusing mod-
eling languages is a prime concern in MDE and gave rise to the field of software lan-
guage engineering (SLE) [HRW18, Kle08]. Research in SLE devised concepts, meth-
ods, and techniques to design, engineer, and evolve (domain-specific) modeling lan-
guages. But as software languages are software as well, they are subject to the same
challenges regarding engineering, customization, and reuse as other software [FGLP10].
Based on such modeling languages, for instance, the Unified Modeling Language (UML),
the Systems Modeling Language (SysML), or various DSLs, many successful appli-
cations of MDE [BCOR15, HRW11, KR05, Rai05, Sta06, WWM+07] have been re-
ported in the context of systems engineering for various domains and studied systemat-
ically [HPE+16, LMT+14, Pet13, Val14].

Amplified by the successes of MDE in software and by the challenges of traditional sys-
tems engineering in overcompensating the complexity of engineering cyber-physical sys-
tems, the paradigm of model-based systems engineering (MBSE) [Mic14, Ogr00, RFB11]
has emerged. MBSE can be considered as the formalized application of modeling to
systems engineering, ranging from requirements elicitation through development to op-
eration. Consequently, MBSE aims at leveraging models and modeling languages to
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(1) support domain experts in describing their respective system parts and concerns
through suitable modeling languages that employ domain-specific concepts and termi-
nology to reduce the conceptual gap; (2) enable automated analyses and syntheses that
ease systems engineering, evolution, and operations in the presence of cyber-physical
components; and (3) optimize the operation of cyber-physical systems with encoded do-
main expertise after deployment. This vision of MBSE demands means to efficiently
engineer and customize suitable DSLs for domain experts. Such DSLs are the basis
for unprecedented automation that enables novel modeling methods for engineering and
evolving cyber-physical systems. Moreover, they greatly facilitate optimizing the use
of cyber-physical systems through data abstraction and integration of domain expertise
into their operations.

1.2 Problem Statement

MDE and model-driven systems engineering (MDSE) aim to overcompensate the growth
in software and systems complexity by making models the primary development artifacts.
These models can be more abstract than traditional GPL artifacts, e.g., to liberate
domain experts from dealing with the accidental complexities raising the conceptual
gap [FR07] between problems in their domain of expertise and the technical peculiarities
of the solution technologies. Moreover, these models can employ domain concepts and
terminology the corresponding experts are familiar with. Yet, there is little systematic
evidence on the use of (domain-specific) modeling techniques in the engineering of cyber-
physical systems.

To foster the application of truly domain-specific modeling languages, a novel and
effective method for the efficient development of DSLs is required that facilitates the
systematic engineering DSLs based on reusing existing languages and language modules
as well as customizing these. Ultimately, this fosters creating the DSLs that that domain
experts need. Such a method must consider language reuse systematically and holisti-
cally by supporting reusing syntax and semantics of independently developed language
modules in a black-box fashion.

When the models employed in cyber-physical system engineering conform to ex-
plicit modeling languages, i.e., modeling languages reified in software, they can become
machine-processable to support systems engineers, system integrators, and domain ex-
perts through modeling methods based on automated analyses that facilitate their con-
tributions. This opens novel possibilities to address challenges regarding design and
evolution of architectures and behavior of cyber-physical systems: A quintessential me-
thodical challenge is reducing the gap between functional system architectures and their
geometric-physical realizations. When both sides of this gap, functional architectures
and geometric-physical realizations, are made explicit through models, they can be in-
tegrated, traced, and reused more efficiently. A method for this must combine the func-
tional perspective typical to computer science with the geometric-physical perspective
typical to mechanical engineering. A subsequent challenge is the systematic refinement
and decomposition of functional architectures to support systems engineers in evolving
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and these architectures and to ease the integration of domain expert solutions.

Ultimately, cyber-physical systems are deployed and operated in different contexts,
where they process a plethora of data to optimize the processes they were designed
to realize. Often, these systems are intended to be integrated with other systems or
services, their use should be optimized, and their behavior predicted. For these purposes,
research and industry have coined the notion of the digital twin [BR16, DR18, GV17], a
digital representation of a cyber-physical system for a specific purpose, such as presenting
selected process data of a manufacturing system to the factory’s business intelligence and
decision making, optimizing the use of resources, reducing the downtime or production
of reject, or predicting when maintenance will be necessary.

The vision of digital twins as digital replicas of cyber-physical systems [SAOI18,
ZMHK18] often aims to provide a complete digital representation of the system under
investigation. Due to the technical complexity of the represented cyber-physical systems,
such a complete and functionally comprehensive digital replica of the production system
as a digital twin is costly and, due to the nature of digitization abstracting away from
continuous properties, hardly possible. Moreover, engineering digital twins for cyber-
physical systems is challenging, which is partly due to the lack of a suitable definition
of what a digital twin is supposed to be and do. Based on this missing foundation, only
a few systematic approaches towards engineering digital twins exist and these employ
semantics-agnostic modeling languages, which prevents applying methods for systematic
evolution and operation to digital twins. Moreover, where digital twins are intended to
control and optimize the behavior of the represented cyber-physical systems, they de-
mand domain expertise. Yet, no systematic methods to include this into the engineering
of digital twins have been devised. This habilitation thesis presents answers to these
challenges in the engineering of cyber-physical systems.

1.3 Research Objectives

The habilitation thesis at hand addresses the systematic model-driven engineering and
operation of cyber-physical systems. To this end, it addresses a scope of concerns in
cyber-physical systems engineering ranging from providing (1) suitable DSLs to partic-
ipating domain experts; (2) systematic modeling methods to systems engineers; and
(3) methods to facilitate and optimize operations of cyber-physical systems. From
our vantage point, SLE, as a means to efficiently develop and customize these mod-
eling languages, therefore, is the essential foundation for the successful MDSE of cyber-
physical systems. The modeling languages precisely engineered to the domain experts’ re-
quirements enable novel modeling methods leveraging unprecedented traceability, model
reuse, and automation. These, in turn, facilitate the engineering of cyber-physical sys-
tems and of the digital twins that monitor, represent, and optimize the operations of the
cyber-physical systems. Figure 1.1 illustrates our view on modeling for cyber-physical
systems with its foundations in SLE on which the efficient engineering of suitable DSLs,
systematic modeling methods, and optimized operations of cyber-physical systems builds
upon.
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Modeling

Methods

Domain-Specific
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Software Language

Engineering
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Figure 1.1: The research presented in this habilitation thesis covers foundations in soft-
ware language engineering that enable domain experts in cyber-physical sys-
tems engineering to use the most appropriate modeling languages as well as
systematic modeling methods for engineering cyber-physical system (CPS),
and novel methods for their model-driven operation with digital twins.

Through the contributions highlighted in this thesis, we aim to support researchers
and practitioners in cyber-physical systems engineering in (1) reducing the conceptual
gap between the participating experts’ problem domains and the solutions domains of
systems engineering by means of suitable DSLs; (2) methodically guiding the engineering
of functional system architectures, their evolution, as well as the mapping to geometric-
physical realizations; and (3) systematically constructing and deploying digital twins to
optimize the operation of cyber-physical systems. This section presents the research
questions motivating the research program leading to this thesis.

1.3.1 Research Questions

RQ1: What are challenges regarding modeling for cyber-physical systems?

Despite many promising results, MBSE still appears to be a niche approach to the
engineering of cyber-physical systems. Hence, the first objective of this thesis is to re-
port on the state-of-the-art regarding availability, use, and limitations of modeling for
cyber-physical systems. To uncover how modeling is applied to research and engineer-
ing of cyber-physical systems, which modeling techniques are used for which purposes,
and where suitable modeling techniques are missing, systematic evidence is necessary.
Aside from surveys regarding modeling for embedded systems [ASSS13, LMT+18], such
evidence was missing.

To investigate the application of modeling to the engineering and operation of cyber-
physical systems, we conducted a systematic mapping study in the advanced domains
of cyber-physical systems for Industry 4.0. The first study explores the application
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of modeling to the smart manufacturing of Industry 4.0 and identifies modeling trends,
ranging from the physical design of cyber-physical systems to their operation with digital
twins. The second survey researches the application of modeling in the engineering of
mobile robotic systems and identified modeling concerns, techniques, and automation
employed in robotics.

RQ2: How can software language engineering facilitate the model-driven engineering of
cyber-physical systems in collaboration with domain experts?

To be successful, MDSE demands suitable modeling languages. Yet, most modeling
for cyber-physical systems employs general-purpose modeling languages, such as UML,
SysML, or Simulink, which neither directly support modeling with domain concepts, nor
support the integration of contributions from experts of different domains. This often
alienates domain experts, which leads to modeling inconsistencies and errors that could
be prevented by employing suitable DSLs. As engineering such modeling languages is a
sophisticated endeavor requiring specific expertise and skills, neither system engineers,
nor domain experts can be expected to create these languages. To mitigate this, SLE
needs to provide means to easily and efficiently create truly domain-specific languages
from predefined modules, integrate these to obtain the desired modeling language, and
customize it with little effort. Through this, domain experts can be liberated from
using overly generic modeling languages, which facilitates the model-driven engineering
of cyber-physical systems.

To approach this research objective, we adapted established modularity concepts from
software engineering to SLE, including the notion of components with interfaces from
component-based software engineering (CBSE) [Crn01, KB98], the arrangement of lan-
guage components in language families from software product lines [PBL05, PM18], and
a reuse process derived from reuse in object-oriented software engineering [CKM+18].
Based on these, we conceived a novel systematic method for the reuse of customizable
language components, their integration in language families, resolving the families’ in-
herent variability, and supporting open variability through customization. At the core
of this method is a novel conceptual model of language components that encapsulate
realizations of syntax and semantics behind explicit interfaces. Based on this model, our
method is supported by a toolchain automating most of the corresponding activities.

RQ3: How can architecture and behavior modeling systematically facilitate the engineer-
ing and evolution of cyber-physical systems?

Successful MBSE needs to integrate the views and (mental) models of participating
disciplines. Between these there exist many gaps that need to be overcome to actually
engineer and deploy cyber-physical systems, including the gap between continuous and
discrete solutions, the gap between problem domain abstractions and solution domain
implementations, and the gap between functional and geometric-physical architectures
of the systems under development. When the gap between functional and geometric-
physical perspectives can be closed, models of the systems functional architectures can be
decomposed to into a set of components. These components then can be implemented by
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domain experts using the most suitable modeling languages. Prior to integrating these
components, the systems engineers then must check their compatibility with the initial
implementation. Ideally, these activities are automated.

To bridge the gap between functional architectures and geometric-physical product
architectures of cyber-physical systems, we apply concepts of the Focus [BS01, RR11,
RW18] theory of functional architectures to the geometric-physical perspective of me-
chanical solutions based on the Koller catalog [KK98] of physical effects. This en-
ables to systematically model functional architectures and their implementation through
geometric-physical realizations. For the functional architectures, we conceived methods
for their automated decomposition and checking whether two versions of an architecture
(or its parts) refine each other semantically. The former eases decomposing monolithic ar-
chitecture specifications into components realizable by domain experts, the latter enables
checking whether the implementations provided by domain experts actually conform to
the specifications.

RQ4: How can MDSE facilitate the systematic engineering of digital twins to optimize
the operation of cyber-physical systems?

MDSE aims to encompass all phases of a cyber-physical system’s life cycle, from its
eliciting its requirements over planning and implementation to operations and disposal.
Research and industry have produced various solutions to optimize the use of cyber-
physical systems through digital twins. Yet, systematic model-driven approaches to
engineering digital twins for cyber-physical systems are rare. Where they exist, they
either focus on digital twins being passive representations that cannot interact with, and
hence, optimize the behavior of the represented cyber-physical systems, or they do not
support incorporating domain expertise, which often is crucial to optimize operation of
cyber-physical systems.

Based on experiences within automotive, manufacturing, and robotics, we conceived a
functional and extensible reference architecture for digital twins that integrates domain-
specific modeling languages to ease the systematic connection of the digital twin to
the represented cyber-physical systems, data sources, and the description of actionable
domain expertise. Leveraging the same functional architecture modeling technique as
for modeling the CPS enables applying the systematic modeling methods mentioned
above to the digital twin as well, which facilitates the integrated development of a CPS
together with its digital twin.

1.3.2 Contributions

This habilitation thesis presents four substantial contributions to advance the model-
driven engineering of cyber-physical systems with respect to its research objectives.
First, it presents a systematic literature study to produce reliable evidence on the op-
eration of modeling in the advanced domain of cyber-physical systems engineering for
Industry 4.0, which guides researchers and practitioners to identify and select existing
modeling languages for their challenges at hand as well as uncover gaps in the litera-
ture that signpost potential research directions. Second, it presents a novel conceptual
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model and a systematic method for software language engineering that addresses find-
ings from the aforementioned study. With this, language engineers can provide more
appropriate domain-specific modeling languages to experts of the domains involved in
engineering cyber-physical systems. Third, it summarizes modeling methods to reduce
the gap between the functional view of computer science and the geometric-physical per-
spective of mechanical engineering and automate systems engineering activities in the
presence of domain experts. Fourth, it presents novel modeling methods for the sys-
tematic operation of cyber-physical systems with digital twins that facilitate modeling
platform-independent digital twins, integrating domain expertise into these, and bind
these to specific platforms.

The contributions presented in this thesis enable researchers and practitioners in cyber-
physical systems engineering to understand the state-of-the-art regarding modeling, to
leverage truly domain-specific modeling languages that ease creation and integration
of domain expert contributions, to reduce the gap between functional and geometric-
physical modeling, and to systematically create digital twins that monitor and optimize
the behavior of the cyber-physical systems after deployment.

1.4 Research Context

The research program summarized in this thesis presents novel concepts, methods, and
tools to facilitate the engineering of cyber-physical systems. To this end, this section
first illustrates the context of cyber-physical systems and their application to Industry
4.0 before it presents background relating to MDE, MDSE, and SLE.

1.4.1 Cyber-Physical Systems

Cyber-physical systems [Lee08, JCL11] are engineered systems that emerge from the
networking of physical (mechanical, electrical, hydraulic, biochemical, etc.) and compu-
tational (control, signal processing, logical inference, planning, etc.) processes that often
interact in highly uncertain environments and with human actors. Mundane examples
of such cyber-physical systems are interconnected cell phones and fitness trackers, driver
assistance systems, industrial manufacturing systems, medical devices, traffic control sys-
tems, or smart home appliances. Such systems enable many of our daily activities and
they have become innovation drivers in important domains, e.g., automotive, avionics,
civil engineering, Industry 4.0, robotics, and more.

Industrial engineering of cyber-physical systems requires the collaboration of experts
from heterogeneous domains to solve the challenges in their respective domain, but also
to make all domain-specific contributions interoperate, ensure system-wide properties
(e.g., safety in automotive, energy-efficiency in robotics, or performance requirements
in Industry 4.0). Hence, cyber-physical systems are notoriously complex because they
cross domain borders in applications that are often safety-critical.

In general, cyber-physical systems are costly to fully build and maintain. Thus, mod-
eling and simulation are crucial to their engineering as these (1) facilitate the integration
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1

54

2 3

6

Figure 1.2: Selected cyber-physical systems employed for demonstration and validation
throughout the research program presented in this thesis: (1) Arburg All-
rounder 520 injection molding machine, (2) FESTO Didactics Robotino 3,
(3-4) Fischertechnik Factory Simulation, (5) Parrot Bebop quadcopter; (6)
KUKA LWR robotic manipulator.

of domain experts by leveraging modeling techniques using the concepts and terminol-
ogy of their domain of expertise; (2) can yield the proper abstraction to reconcile and
integrate the multi-domain concerns expressed in the domain experts’ contributions; and
(3) enable the front-loading, i.e., early in the processes, integration of components and
validation of system-wide properties before the physical parts of the system are available.

Ongoing research on the systematic development of cyber-physical systems has pro-
duced concepts, theories, and modeling languages for the development of their software
functions and electronic functions [Alu15, Pto14], as well as for designing [SFA17], en-
gineering [BBL+16], and operating [BSP+16] these systems in different domains. Most
approaches focus on modeling through the lens of software engineering, i.e., on discrete
and functional systems. Where continuity and geometry are supported, the theories
and languages do rarely support established processes or modeling concepts from other
domains. Moreover, often the modeling techniques applied to the engineering of cyber-
physical systems are overly generic, hampering the effective contribution by domain
experts, complicating the integration of their solutions into the overall system, and are
a common source for errors. Hence, providing suitable domain-specific modeling tech-
niques for the different concerns of cyber-physical systems and properly integrating these
is crucial to the successful industrial engineering of these systems.
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Chapter 1 Introduction

Relation to this thesis:

Cyber-physical systems enable parts of our society, are important innovation drivers,
and create added-value. Hence, their efficient and systematic engineering is vital to
our wealth. This thesis summarizes research results contributing to advancing the
model-driven, efficient, and systematic engineering of cyber-physical systems through
enabling better modeling techniques in Chapter 3, systematic modeling methods in
Chapter 4, and their methodical operation in Chapter 5.

1.4.2 Industry 4.0

Industrial revolutions have always been step changes in manufacturing. The first in-
dustrial revolution (18th to 19th century) introduced to machine-driven manufacturing,
centralized in factories, and leveraging steam power [Dea79]. In the second industrial
revolution (1870 to 1914), electric power replaced steam power and introduced the con-
cept of interchangeable parts to enable the mass production of goods [Mok98]. The third
industrial revolution (1970 to 2010) was driven by the transition from analog to (largely
isolated) digital production systems. Industry 4.0 is a vision of smart manufacturing that
encompasses the complete life cycle of products, from design to ordering to production,
distribution, and recycling of its resources [WBCW20], which is considered the “fourth
industrial revolution”.

Originally, Industry 4.0 has been introduced as a part of the high-tech strategy of
the German Federal Ministry for Education and Research [Bun17] in 2011. Since then,
it has become an international phenomenon: The Japanese Industrial Value Chain Ini-
tiative [IVI18], the Advanced Manufacturing Initiative in the United States [Mol17],
the Chinese Made in China 2025 strategy [Mer18], Manufacturing 3.0 in South Ko-
rea [Man18], and the national Catapult research center on High Value Manufactur-
ing [CAT18] in the United Kingdom pursue the same or very similar goals.

Industry 4.0 gives rise to new challenges and opportunities for future manufactur-
ing, which are driven by four disruptions: (1) data volumes, computational power, and
connectivity; (2) the emergence of novel analytics and business-intelligence capabilities;
(3) new forms of human-machine interaction; and (4) improvements in transferring dig-
ital mdoels to the physical world, such as 3D printing and advanced robotics. Based on
these, stakeholders in Industry 4.0 aim to improve the participating systems towards indi-
vidualized mass production (“lot size 1”), flexible (real-time) production process control,
internationalization of the complete value-added chain, as well as reducing emissions, re-
source consumption, and cost. These aims yield a multitude of socio-technical challenges,
which include addressing the increasing complexity of production processes, integrating
heterogeneous and internationally distributed production chains, ensuring the security
of connected production systems, the perils of workforce surveillance, standardization of
technologies and norms, platformization of solutions, or data governance. To cope with
the challenges of the interconnected cyber-physical systems of Industry 4.0, researchers
and engineers need to overcompensate the growth in their complexity with new concepts,
methods, and tools for their engineering and operation.
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Figure 1.3: The four stages of industrial revolutions [KHHW13].

Relation to this thesis:

Industry 4.0 is an important domain of complex cyber-physical systems in which the
successful deployment of systems without the collaboration of a wide variety of experts
from different domains is impossible. Consequently, the challenges regarding modeling
in Industry 4.0 are of particular interest and contributing to advancing the engineering
of cyber-physical systems for Industry 4.0 can act as a litmus test regarding the broad
applicability of modeling in other domains. Thus, this thesis reports results from
investigating the challenges in modeling for the cyber-physical systems of Industry 4.0
in Chapter 3.

1.4.3 Mobile Robotics

Mobile robots are a particular complex form of cyber-physical systems that have begun
supporting many aspects of our professional and personal lives. They restock supplies in
automated warehouses, support caregivers in hospitals, assist in manufacturing, secure
perimeters, clean floors, mow lawns, and much more. As (partially) intelligent and au-
tonomous systems, their engineering demands expertise from a large variety of domains,
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including mechanical engineering, electrical engineering, localization, motion planning,
human-machine-interaction, artificial intelligence, and systems engineering.

For the efficient engineering of (mobile) robotics applications, a variety of technologies
have been developed in the past that aim to integrate contributions from participating
domain experts [JT09, QCG+09]. Most of these, however, focus on GPL artifacts,
i.e., expect the domain experts to reify their solutions in program code, which gives
raise to accidental complexities [FR07]. Since then, a variety of modeling languages for
robotics have been developed as well [NHWW16] By design, these generally address very
specific concerns, such as kinematics, path planning, scene understanding, etc. and are
not prepared for integration into an overall system.

Due to its intrinsic complexity, robotics is a domain of particular interests for systems
engineering in which advanced modeling languages, tools, and methods for specific as-
pects already exist. Yet, the modeling languages and methods in robotics largely are
syntactic only, which hampers automated analyses and syntheses necessary for a more
efficient engineering of cyber-physical robotic systems.

Relation to this thesis:

Mobile robotic systems are a form of CPS of particular complexity for which are
variety of advanced modeling technologies for different participating domains already
exist. Through this, investigating the state-of-the-art in modeling for mobile robotic
systems gives insights into challenges at the frontier of modeling for CPS. Thus, this
thesis summarizes results from investigating these challenges in Chapter 3.

1.4.4 Model-Based and Model-Driven Engineering

The number, importance, and complexity of software functions in cyber-physical systems
has increased significantly [FR07, KMS+18]. The increasing complexity of the software
of such systems requires novel concepts, methods, and tools that enable overcompensat-
ing this growth in complexity and harnessing their potentials. An important reason for
the complexity of cyber-physical systems’ software is the conceptual gap [FR07] between
the problem domain challenges and the solution domain peculiarities. Overcoming this
gap with handcrafted solutions requires enormous efforts and raises accidental complex-
ities [FR07], i.e., challenges in the solution domain that the problem domains abstract
away from. These accidental complexities increase software and systems engineering
risks. Hence, it is paramount to reduce these.

Model-based engineering captures software and systems development methodologies
that employ models to increase abstraction. To this end, researchers and practitioners
in cyber-physical systems utilize models as communication and development artifacts
for various engineering activities, ranging from design, to documentation, requirements
modeling, implementation, or deployment. Many successful applications of model-based
engineering [BCOR15, HRW11, KR05, Rai05, Sta06, WHR14, WWM+07] have been
reported in the context of software engineering for certain domains, such as aviation or
automotive. But despite modeling and model-based approaches becoming increasingly
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popular in systems engineering, there is no common notion of the term “model” [Sei03,
Kü05] as reflected in the different definitions:

– “A model is a simplification of a system built with an intended goal in mind. The
model should be able to answer questions in place of the actual system.” [BG01]

– “A model is a set of statements about some system under study.” [Sei03]

– “A model is an abstraction of a (real or language-based) system allowing predictions
or inferences to be made.” [Küh06]

Similar definitions of models focus on defining models as simplified abstractions of a
system that can replace the system for certain forms of use [Bal00, BD99, HBB+94].
Some of these definitions leave only little more room for interpretation regarding what
is modeled. In the following, we adopt a definition in which a model is characterized by
three features [MFBC12, Sta73]:

“A model needs to possess the following three features:

– Mapping feature: A model is based on an original.

– Reduction feature: A model only reflects a (relevant) selection of an original’s
properties.

– Pragmatic feature: A model needs to be usable in place of an original with respect
to some purpose.”

Moreover, in the following, we distinguish between “model-based” and “model-driven”
approaches [BCW12]. The qualification “model-based” characterizes approaches us-
ing models for communication, documentation, requirements engineering. In contrast,
“model-driven” characterizes approaches where models are the primary development ar-
tifacts used for automated analysis and synthesis [Sel03, Sel06]. Hence, in this under-
standing, the research program summarized in this habilitation thesis contributes to a
model-driven engineering and operation of cyber-physical systems.

Relation to this thesis:

Model-based and model-driven engineering are software and systems engineering
paradigms that enabled to successfully reduce the conceptual gap between various
problem domains and software engineering. This success highly depends on modeling
with suitable abstractions, which requires appropriate modeling languages and meth-
ods. Thus, the study presented in Chapter 2 investigates the challenges in applying
model-based and model-driven approaches to different the cyber-physical systems of
Industry 4.0. Afterwards, Chapter 3 summarizes foundations for creating appropriate
modeling language Chapter 4 reports novel modeling methods.

1.4.5 Systems Engineering

Systems engineering is an interdisciplinary approach to address the systematic design,
integration, and management of complex systems during their life cycle. The term sys-
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Figure 1.4: Model-driven systems engineering and software language engineering advance
each other mutually.

tems engineering was defined as early as 1995 in the NASA Systems Engineering Hand-
book [SA95] as “a robust approach to the design, creation, and operation of systems”.
In contrast, modern definitions of the term focus on its interdisciplinary challenges, e.g.,
according to International Council on Systems Engineering (INCOSE), systems engi-
neering can be defined1 as “a transdisciplinary and integrative approach to enable the
successful realization, use, and retirement of engineered systems, using systems principles
and concepts, and scientific, technological, and management methods”.

Systems engineering addresses concerns such as requirements engineering, design, re-
liability analysis, dimensioning, programming, logistics, coordination, verification and
validation, evaluation, maintainability, and many other issues necessary for successfully
realizing complex systems. It aims to ensure that all aspects of a project or system are
considered and properly integrated. To this end, systems engineering encompasses pro-
cesses, and methods. It overlaps with many technical and human-centered disciplines,
including industrial engineering, mechanical engineering, control engineering, software
engineering, organizational studies, and project management.

Currently, most systems engineering approaches rely on document-based processes
and methods, in which non-formal documents, e.g., natural language requirements or
sketches without well-defined semantics, are the majority of artifacts. Through domain
expertise and tremendous efforts, these are translated into physical components, software
components, etc. by domain experts. Based on the experience that systems engineering
with informal documents does not scale up to the challenges of modern cyber-physical

1https://www.incose.org/about-systems-engineering/system-and-se-definition
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systems, research and practice have begun to employ models in systems engineering.

According to INCOSE [INC07], MBSE “is the formalized application of modeling to
support system requirements, design, analysis, verification and validation activities be-
ginning in the conceptual design phase and continuing throughout development and later
life cycle phases”. To formally support engineering across the complete life cycle of a
cyber-physical system, document-based approaches have proven inappropriate. Experi-
ence in software engineering manifested in the transition from model-based to model-
driven methods has shown that only lifting models to primary development artifacts can
help to overcompensate the complexities in engineering modern systems. Consequently,
MBSE in the terminology used by INCOSE actually must refer to model-driven methods,
in which models conform to explicit modeling languages accessible to automation and are
considered the primary development artifacts [Lev09]. Thus, the efficient engineering of
appropriate domain-specific and semantically well-defined, modeling languages and their
systematic application must be prime concerns for successful MDSE.

This also becomes obvious when considering the entangled relation between the cy-
cles of SLE and of systems engineering as illustrated in Figure 1.4: Innovation (such as
machine learning) drives systems engineering, which in turn demands suitable modeling
techniques (such as differentiable languages [WZD+19]) capable of harnessing this inno-
vation. This in turn drives innovation in software language engineering, which yields the
evolution of modeling languages that then enable novel methods in systems engineering
that may yield more innovation.

Systems themselves also are subject to a typical life cycle as documented in the
ISO/IEC 15288 standard [ISO15] and illustrated in Figure 1.5: After analyzing busi-
ness or mission requirements as well as stakeholder needs and system requirements,
planning of the system begins. During planning the systems architecture and its design
are defined and analyzed. Subsequently the system is implemented, which covers devel-
opment, integration, verification, and validation. After successful validation, the system
is deployed, operated, and maintained until it is disposed. The results presented in this
thesis focus the phases of implementation and operations.

The research results presented in this thesis focus on improving planning, implemen-
tation, and operation of CPS: For all three phases, suitable domain-specific modeling
languages are required to reduce the conceptual gap between the participating domain
experts’ problem space expertise and the required solution domain expertise of software
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engineering (cf. Chapter 3). The planning & procurement phase then begins with mod-
eling the functional architecture of the system under development (cf. Chapter 4). Its
design then is systematically decomposed and components are passed to domain experts
for implementation. In the implementation phase, these experts use domain-specific
modeling languages and system integrators leverage refinement checking to verify the
reintegration the domain experts’ contributions into the architecture. In this phase,
geometric/physical solutions become part of the system architecture and linked to the
functional architecture to facilitate tracing of these solutions to system functions and,
hence, ease operating with changing requirements and reusing of solutions. In the op-
erations & maintenance phase, the system is deployed and operated. As systems and
their behavior change over time, such as due to wear and tear, explicating the domain
expertise necessary to compensate the effects of these changes, e.g., the production of
defect products, is crucial to optimizing system operations. By providing digital twins
that carry this expertise in form of domain-specific models, system use can be improved
accordingly. Obviously, such digital twins are software systems that are subject to these
life cycle phases as well. Especially, they also yield a functional architecture.

Hence, a central concern in systems engineering is the architecture of the system un-
der development. This architecture is the set of the principal design decisions [MDT07,
TMD09], including its fundamental concepts embodied in its elements [ISO11]. Ar-
chitecture descriptions are products expressing an architecture that can be defined in
terms of architecture description languages (ADLs) [ISO11]. Prime concerns of software
and system architectures and architecture descriptions are their structure and their be-
havior [Gro10, FMS14]. To model both, a variety of modeling languages have been
developed, including UML [Gro10], SysML [FMS14], and over 120 ADLs [MLM+13].
UML, for instance, is a family of modeling languages for the object-oriented description
of the structure and behavior of software architectures. As such, it does not support
the representation of geometric-physical concerns in a way useful to experts from these
domains. SysML is an extended subset of UML that introduces modeling languages to
address requirements modeling and inter-model constraints. Yet, despite its focus on
integrated systems modeling, neither SysML nor its successor SysML v2 support the
systematic integration of geometric-physical models (e.g., CAD, Modelica, Simulink).
Moreover, neither of these modeling language families yields the semantic foundations
necessary for effective automated analyses or syntheses.

In computer science, theories and well-defined mathematical frameworks for the syn-
tactic and semantic description of system architectures, such as communicating se-
quential processes [Hoa78], Focus [BS01], π-calculus [Mil99], have been devised. Fo-
cus [BS01, RR11], for instance, is a mathematical framework and semantic foundation
for distributed interactive systems that describes logical component & connector [MT00]
architectures as stream-processing functions. The stream-processing functions of Focus
describe the histories of messages exchanged over communication channels between the
interfaces of the components and support underspecification. Based on this foundation,
refinement and decomposition are compatible, i.e., beginning with an underspecified ini-
tial architecture, this architecture can be stepwise semantically refined and decomposed
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into a hierarchy of components presenting a deterministic implementation.

Notwithstanding the existence of semantically well-defined theories for systems model-
ing, most systems modeling languages focus on syntax, leaving giving semantics (mean-
ing) to the models to individual tool vendors or do not support the integration of concerns
from the physical domains (chemical engineering, electrical engineering, mechanical en-
gineering, etc.). This prevents effective modeling processes, leveraging automation, and
efficient collaboration with domain experts.

Relation to this thesis:

Systems engineering still is a predominantly document-based activity that covers the
complete lifecycle of systems from eliciting their requirements to their disposal. The
research results in this thesis forge a bridge from the contemporary document-based
systems engineering to a model-driven systems engineering by establishing pillars for
the model-driven implementation and operation of CPS.

MontiArc

MontiArc [HRR12, RRW14, BKRW17a] is an ADL for modeling the functional architec-
ture and behavior of CPS based on the semantics of Focus [BS01]. In MontiArc, archi-
tectures consist of hierarchically composed components that reify the stream-processing
functions of Focus and yield with stable interfaces of typed ports through which they
communicate with other components. It distinguishes component types from their in-
stances, supports component instance configuration, and features generic type parame-
ters to flexibly adjust port types before reusing component types in other contexts.

Atomic components feature state-based behavior models (e.g., time-synchronous port
automata (TSPA) [RRW14]) to describe their behavior and composed components define
configurations of subcomponents from which their behavior emerges. MontiArc can
be used to design architectures, refine these semantically into implementations, and,
ultimately, translate these into executable GPL artifacts. MontiArc models, architecture
descriptions [ISO11], are used in a variety of domains, including automotive [HKM+13],
cloud [NPR13], machine learning [KPRS19], robotics [ABH+16], and more [BHH+17].

MontiArc is realized as a MontiCore (cf. Section 1.4.6) modeling language. It consists
of a context-free grammar (CFG) with Java well-formedness rules, and a template-based
code generator that translate MontiArc models to various diverse languages, including
C++, Java, and Python. It leverages MontiCore’s language composition mechanisms
to define the data types of ports in terms of UML/P [Rum16, Rum17] class diagrams
that are aggregated with MontiArc’s components. Moreover, it leverages language em-
bedding to enable the integration of DSLs into components. Together with the natural
encapsulation of concerns into components, this enables systems engineers to easily de-
compose the functional architecture of a cyber-physical systems under development into
components. Through embedding of the most appropriate DSLs for component behav-
ior modeling [BHH+17], these components can be implemented efficiently by domain
experts using the most appropriate DSLs to this effect.
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Figure 1.6: Example MontiArc architecture comprising five subcomponents of four dif-
ferent component types and a state-based behavior model in its central con-
troller.

Relation to this thesis:

MontiArc is an advanced modeling technique for functional architectures and behav-
ior of CPS. Through the language engineering techniques summarized in Chapter 3,
modular variants of it have been used to enable the analyses presented in Chapter 4
and the operations recapitulated in Chapter 5.

1.4.6 Software Language Engineering

Software language engineering [Kle08, HRW18] is a field of research on investigating
the engineering, maintenance, evolution, and reuse of software languages, i.e., languages
reified in software. The objects of SLE research include GPLs, textual or graphical
modeling languages, external or internal [BDL+18] DSLs [Hud98], and more. In the
following, we will use the terms “modeling language” and “domain-specific language”
interchangeably as considering a language as domain-specific is in the eye of the beholder,
i.e., the distinction between general and domain-specific modeling languages is highly
subjective. Where evident from the context, we will refer to“modeling languages” simply
as “languages”. Moreover, we also do not distinguish between “technical DSLs” and
“application domain DSLs” [VBD+13].

Extensionally, a language can be considered as the set of sentences it comprises. Both,
for more sophisticated reasoning than on the membership of sentences and for a construc-
tive application, a more fine-grained, intensional, definition is required. Hence, research
has conceived various definitions of languages definitions focusing on their constituents
and meaning.
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For instance, a language definition may consist of [CGR09] (1) a concrete syntax, i.e.,
the form of the sentences of the language, (2) an abstract syntax, i.e., the structure of the
sentences of the language, (3) a semantic domain, which typically is a well-understood
mathematical theory, and (4) a semantic mapping relating elements of the abstract syn-
tax to elements of the semantic domain, which gives meaning [HR04] to sentences of the
language. Another approach to characterize language definitions [CBCR15] comprises
(1) a concrete syntax, (2) an abstract syntax, (3) its static semantics, i.e., its well-
formedness rules, and (4) the meaning of the sentences. We refer to the constituents
realizing concrete syntax, abstract syntax, static semantics, and semantics in the sense
of meaning [HR04] as dimensions of languages.

Leveraging SLE, many popular languages have been developed, such as Gradle [Ikk15],
Kotlin [SB17], Matlab Simulink [Cha15], Modelica [EOH+09], SparQL [SP07], or Ver-
ilog [TM02]. Depending on the observer’s perspective, these modeling languages can be
considered domain-specific (e.g., concerning the domain of software engineering) or not.

Similar to the term “model”, research in computer science has produced various char-
acterizations for DSLs, such as:

– “A domain-specific language is a programming or executable specification language
that offers, through appropriate notations and abstractions, expressive power fo-
cused on, and usually restricted to, a particular problem domain.” [vDKV00]

– “By focusing on a problem domain’s idioms and jargon, DSLs avoid the notational
noise required when using overly general constructs of a general-purpose language
to express the same thing. Moreover, DSLs are not necessarily programming lan-
guages: they are languages tailored to express something about the solution to a
problem.” [Wil01]

– A “DSL is a language designed to be useful for a limited set of tasks, in contrast to
general-purpose languages that are supposed to be useful for much more generic
tasks, crossing multiple application domains.” [JB06]

Notwithstanding the distinction between modeling languages and DSLs, employing
such languages promises benefits regarding productivity and quality as DSLs may provide
a platform-independent “thinking and communication tool” [VBD+13] that can leverage
the concepts and terminology the experts using the DSL are familiar with. Thus, the
availability of appropriate DSLs can greatly facilitate the engineering of cyber-physical
systems.

Language workbenches [ESV+13] are software tools facilitating the engineering of
DSLs. To this end, they often provide specific (meta-)modeling languages that enable
describing the syntax or semantics of modeling languages. For the syntactic dimension,
metamodels and grammars are widely applied to language engineering: For instance,
Ecore of the Eclipse Modeling Framework [SBMP08] is a modeling language for the
specification of metamodels. A metamodel of a language prescribes the structure of the
languages’ abstract syntax in terms of classes, their properties, and relations. Models
(sentences) conforming to these metamodels are considered valid elements of the implied
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language. The GEMOC Studio [CBW17] language workbench and others leverage Ecore
for the definition of abstract syntaxes and provide features for other dimensions based
on it, such as debugging, editing, or interpretation. Other language workbenches, such
as MontiCore [HR17], Neverlang [VC15], or Xtext [Bet16] leverage grammars as syntax
metamodeling languages instead. These grammars support prescribing the integrated
concrete and abstract syntax of languages through their productions as the set of deriv-
able sentences. Often, these syntax modeling languages are context-free [Cho56], i.e.,
they cannot express arbitrary well-formedness restrictions. For the dimension of well-
formedness, language workbenches most often employ either Object Constraint Language
(OCL) constraints [HJK+10] or GPL context conditions [HR17, VC15]. Regarding se-
mantics, language workbenches often focus on model transformations that either are
model-to-model (M2M) or model-to-text (M2T) transformations. M2M transformation
techniques, such as ATL [JABK08], epsilon [KPP08], or MOLA [KBC04], define trans-
lations of models between languages or within a language whereas M2T transformation
techniques, such as FreeMarker [For13], Velocity [SvB02], or Xtend [Bet16], describe the
transformation of models into other textual representations.

M2M transformations yield various benefits, e.g., the knowledge of the target language
encoded in the transformations can ensure that these always yield syntactically correct
models and may optimize the resulting models en passant. However, M2M transfor-
mations require specific transformation languages [HHRW15, JAB+06], which usually
are little domain-specific and, hence, demand domain-experts to learn a new model-
ing language. Lately, research in SLE has brought forth the notion of domain-specific
transformation languages, which are generated based on an input DSL and leverage its
domain-specific syntax [HRW18]. This can reduce the effort of employing M2M trans-
formation in practice. Another challenge in M2M transformations is in the fact that
the abovementioned correctness by construction only becomes possible because M2M
transformation languages require that both the language of the input models and the
language of the output models have been made explicit, i.e., reified in software. Where
the output language is not available, M2M transformations are of little use.

For M2T transformations, the output language is not required. Instead, these transfor-
mations aim to produce textual output models that resemble output language models,
e.g., GPL code artifacts, which enables these to be processed by tooling of the out-
put GPL without additional effort. Hence, the transformation user must not know the
abstract syntax of the output language, but only its concrete syntax. As M2T transfor-
mations are unaware of properties of the output language, they cannot ensure syntactic
correctness of the results. However, not requiring an explicit representation of the target
language and the relative ease of learning M2T transformations yields practical benefits.
Therefore, the remainder of the thesis will leverage M2T transformations and use the
terms “code generator” and “M2T transformation” accordingly. Especially, this entails
that a“code generator”does not need to produce GPL code, but can produce any textual
representation.

Overall, through the use of various metamodeling languages, language workbenches
span multi-dimensional technological spaces [KBA02], i.e., working contexts with as-
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sociated concepts, bodies of knowledge, tools, and skills. Leveraging these, a vari-
ety of modeling languages have been produced for, e.g., automotive software engineer-
ing [HF07a, DGH+19] avionics [EP11], business processes [GCD09], Internet of Things
applications [GEVD14], manufacturing systems and processes [WBCW20] software en-
gineering [Gro10, MLM+13], robotics [THR+13, NHW14], and many other application
domains in different technological spaces. For most of these, novel implementations of
the various language dimensions had to be developed. As software languages are software
too [FGLP10], these are subject to the same complexities as general software engineering
and impose additional complexities through the various meta levels and metamodeling
technologies language engineers have to operate with.

Relation to this thesis:

Software language engineering is an essential foundation of MDSE that enables lever-
aging the potential of DSLs in the engineering of cyber-physical systems. DSLs enable
domain experts to contribute solutions using familiar concepts and terminology while
at the same time reducing the conceptual gap between the domain experts and the
solution domains. Through the automated processing of models of these DSLs, e.g.,
in form of model checking or M2T transformations, engineering of cyber-physical sys-
tems can become more efficient. To expedite the MDSE of cyber-physical systems, this
thesis presents investigations on the state-of-the-art in applying modeling languages
to the engineering of such systems in Chapter 2 and reports the contribution of novel
methods and concepts for the systematic engineering of DSLs in Chapter 3.

MontiCore

MontiCore [GKR+08, HR17] is a language workbench for the efficient engineering of
textual languages. Essentially, MontiCore employs CFGs for the integrated definition of
abstract syntax and concrete syntax of modeling languages that defines which models
are principally possible. From each CFG, MontiCore generates model processing infras-
tructure, including the abstract syntax classes representing textual models in machine-
processable form, parser, lexer, a model checking framework, and a template-based code
generation framework [Kra10, HR17]. The infrastructure generated from a CFG trans-
lates textual models conforming to the syntax specified in the CFG into instances of
the generated abstract syntax classes and enables checking their well-formedness, as well
as transforming these into arbitrary textual target representations, such as (executable)
GPL code artifacts. As the language defining the syntax of MontiCore languages is a
MontiCore CFG, MontiCore can bootstrap itself.

To check properties not expressible with CFGs, e.g., whether a model features two
elements of the same name, MontiCore supports extending its model-checking frame-
work with context conditions. These context conditions are well-formedness rules spec-
ified in Java, that relate to the abstract syntax classes generated from the CFG of the
language they belong to. To transform syntactically conforming and well-formed mod-
els into other representations, MontiCore’s code generation framework can be extended
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Figure 1.7: Quintessential artifacts and components of MontiCore.

with FreeMarker [For13] templates describing these transformations. In these templates,
FreeMarker control structures relating to properties of the abstract syntax tree (AST)
govern the use of target language text fragments to produce target language artifacts.

Figure 1.7 illustrates these parts of MontiCore’s toolchain: Using MontiCore’s parser
for CFGs, the CFG of a DSL under development is loaded as a model of MontiCore’s
CFG language. Through this, MontiCore instantiates the abstract syntax classes of its
CFG DSL and obtains the abstract syntax tree (AST) of the CFG. The AST is processed
by MontiCore’s various functions, including M2M transformations and well-formedness
checking, and then passed to a template engine. The template engine translates the
AST into model-processing artifacts (“DSL tools”), such as parser, AST classes, etc.,
for the DSL specified in the CFG. The generated DSL tools then can parse models
conforming to that CFG into their specific ASTs conforming to the abstract syntax
classes generated from the aforementioned CFG. Afterwards, the DSL tools process
these with their functions and then pass the processed AST of the model to the DSL-
specific template engine. Being extended with templates describing the transformation
from models of that DSL to a textual target representation, the template engine then
produces the desired target artifacts.

To facilitate engineering modeling languages, MontiCore supports compositional lan-
guage integration in form of language extension, language embedding, and language
aggregation [HLMSN+15, HR17]. Language aggregation is the combination of multiple
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independent languages into a collection (“family”). This enables describing models for
different aspects in separate artifacts that can be processed together. This, for instance,
is essential when experts of different domains employ different modeling techniques, such
as CAD [GZ83], SysML block definition diagrams [FMS14], or Simulink [Cha15] to de-
scribe parts of the same system. In this case, language aggregation enables the SysML
blocks to refer to properties of the CAD models [DJR+19] or the Simulink models and
vice versa. Language embedding combines languages such that their elements can be
used in a single integrated model. By embedding domain-specific language parts (e.g., ex-
pressions, statements, etc.) into extension points of, possibly domain-independent, base
language (e.g., automata, architectures), this enables reusing the domain-independent
modeling concepts and related tooling in a variety of domains. Thus, language embed-
ding is a mechanism for planned language reuse that facilitates creating DSLs. Language
extension enables extending, refining, or even restricting existing languages. To this ef-
fect, the CFG of a new language can extend multiple CFGs and reuse, refine, or restrict
their productions independent of any extension points in the parent CFGs. Hence, lan-
guage extension can be considered a generalization of language embedding that greatly
facilitates creating DSLs through opportunistic reuse.

Relation to this thesis:

MontiCore is a powerful language workbench for the modular engineering of reusable
DSLs. We employ MontiCore as a vehicle to experiment with modeling languages,
evaluate concepts, and realize demonstrators. Hence, we realized modeling language
engineering concepts and their toolchain presented in Chapter 3 as well as Mon-
tiArc [BHH+17, BKRW17a], the modeling methods employing it described in Chap-
ter 4 and the DSLs reported in Chapter 5 with MontiCore.

1.5 Terminology

The results presented in this thesis are based on research in software language engineering
and model-driven systems engineering. To ensure a consistent terminology, this section
presents the most frequently used terms and principles and our current understanding
of these.

Architecture Description Language (ADL) A modeling language for the description of
software architectures.

Artifact An artifact is an individually storable unit with a unique name that serves a
specific purpose in a software engineering process.

Cyber-physical system (CPS) Engineered systems that emerge from the networking of
multi-physical (biochemical, electronic, hydraulic, mechanical, etc.) and computa-
tional (control, signal processing, logical inference, planning, etc.) processes, often
operating in highly uncertain environments that include human actors.
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Domain expert Person with expertise in an application domain. Often without formal
software engineering education.

Domain-specific language (DSL) A language for a specific domain [CBCR15].

General-purpose programming language (GPL) A programming language that can be
applied in any domain.

Language A means for communication between stakeholders (including humans and
machines). It describes the set of possible sentences that can be exchanged between
these stakeholders [CBCR15].

Language Component A reusable encapsulation of a, possibly incomplete, language
that includes a language definition and might include explicit language inter-
faces [CBCR15].

Language Definition A language is defined by a concrete syntax (the form of the lan-
guage’s sentences), an abstract syntax (the structure of its sentences), and seman-
tics (meaning [HR04]) [CBCR15].

Language Interface An abstraction of a provided or required part of a language com-
ponent for a specific purpose [CBCR15].

Model An element of a modeling language. Each model is a purposefully abstracted
representation of an original [Sta73].

Model-based A paradigm in which descriptive or prescriptive models are to support the
engineering of software and systems, e.g., for design-space exploration, documen-
tation, or requirements elicitation.

Model-driven A paradigm in which descriptive or prescriptive models are the primary
development artifacts for the engineering of software and systems, e.g., for simu-
lation, dimensioning, or generation of solution parts.

Model-based systems engineering (MBSE) The application of modeling to support
system design, analysis, verification, validation, deployment, and operation through-
out all life cycle phases.

Model-driven engineering A software engineering paradigm that considers models as
primary development artifacts (i.e., blueprints) and model transformations, code
generators, or interpreters to transform these blueprints into solutions directly.

Model-driven systems engineering (MDSE) The vision of the pervasive, systematic
application of DSLs that leverages models as the primary development artifacts to
support system design, analysis, verification, validation, deployment, and opera-
tion throughout all life cycle phases.

Modeling Language A language for modeling.
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Semantics Meaning of a model [HR04]. May be specified denotationally [Mos90], oper-
ationally [TP97], or translationally [LL81].

Software engineering The systematic application of scientific and technological con-
cepts, methods, and experience to the design, implementation, validation, docu-
mentation, and deployment of software.

Software language engineering (SLE) The application of systematic, disciplined, and
quantifiable approaches to developing, using, and maintaining modeling languages.

Systems engineering The interdisciplinary approach towards the successful realization,
use, and retirement of systems, using systematic engineering methods.

1.6 Thesis Outline

The remainder of this thesis is structured as illustrated in Figure 1.8: Chapter 2 sum-
marizes a study on the state-of-the-art in modeling for CPS and raises requirements on
modeling language engineering, systems modeling, and systems operation. Chapter 3
to Chapter 5 summarize research results on modeling language engineering, systems
modeling, and systems operation for CPS respectively. Chapter 6 concludes.
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Figure 1.8: Structure of this thesis: Chapter 2 identifies requirements for modeling lan-
guage engineering, systems modeling, and systems operation. Chapters 3 to
5 address these challenges. The foundations and all three pillars contribute
to the model-driven engineering of CPS with domain experts.
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In detail, the chapters are as follows:

Chapter 2 summarizes results from a systematic mapping study on the application of
modeling in the engineering of the smart manufacturing systems of Industry 4.0. Its
results describe the methods, findings, and conclusions that lead to research activities
yielding the results presented in the subsequent chapters.

Chapter 3 presents methods for the systematic and efficient engineering of DSLs through
the composition of independently developed DSL components in language product lines
and subsequent customization. The main focus of this chapter is laid on a novel concep-
tual model of holistic DSL components, and their use in resolving closed variability of the
language product lines, as well as for subsequent opportunistic customization. To this
end, the DSL comprising realizations of syntax and semantics behind stable interfaces
exposing provided and required extensions of that DSL component and we present a
method for composing these according to product line specifications and customization
specifications. The results outlined in this chapter are driven by insights presented in
Chapter 2. They facilitate the engineering of domain-specific modeling languages that
exploit concepts and terminology of the application domains contributing to the model-
ing of CPS to ease integration of domain experts into CPS engineering.

Chapter 4 describes modeling methods for engineering the functional architectures of
CPS, for relating these functional architectures to the geometric-physical realizations
of the cyber-physical systems, for automatically decomposing the functional architec-
tures prior to distributing these to domain experts, and for automatically checking their
stepwise refinement during evolution. Hence, this chapter introduces a novel conceptual
model that bridges the functional view of computer scientists with the geometric view
of mechanical engineers. The functional architectures are represented as functions of
interconnected channels, which enables their semantic processing for automated decom-
position and refinement checking. The results presented in this chapter are motivated
by findings presented in Chapter 2. Moreover, they rely on the modeling language engi-
neering achievements presented in Chapter 3 and foster the systematic modeling of CPS.

Chapter 5 presents the results of a survey and subsequent workshops on the nature of
digital twins as well as the resulting definition of digital twins. Based on this, it suggests
a functional and extensible architecture for digital twins that can leverage the methods
presented in the previous chapter and employs models of novel DSLs facilitating integrat-
ing digital twins with data sources and manufacturing systems. Moreover, it presents
integrated modeling methods to incorporate domain expertise into digital twins that is
tailored to capture such expertise in a rule-based fashion and enables the digital twin to
control and optimize the behavior of the represented system. The findings summarized
in this chapter also are based on research driven by the outcomes presented in Chapter
2. They leverage the modeling language engineering results presented in Chapter 3 and
exploit the modeling methods recapitulated in Chapter 4.
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Chapter 6 concludes the thesis, summarizes its results, and briefly sketches open chal-
lenges and future research opportunities.

Appendix A describes the author’s contribution to the publications summarized in this
thesis.

Appendix B comprises reprints of full versions of the selected papers presented in this
thesis.

All figures in the following sections are based upon similar figures that appeared first
in the publications summarized in the respective section. Only their appearance has
been harmonized for use in this thesis.

Trademarks appear throughout this thesis without any trademark symbol. They are
the property of their respective trademark owner. There is no intention of infringement.
The usage is to the benefit of the trademark owner.
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Chapter 2

Modeling Languages for Cyber-Physical
Systems

The limits of my language mean the limits of my world.

Ludwig Wittgenstein

Many domains have started adopting modeling to harness the increasing complexity of
engineering various cyber-physical systems. Yet, many of these approaches are ad-hoc
and lack the systematic rigor necessary to realize the vision of model-driven systems
engineering. To uncover the modeling limits in the world of cyber-physical systems’ en-
gineering, this chapter summarizes answers to the first objective (RQ1) of this thesis re-
garding state-of-the-art of availability, use, and limitations of modeling for cyber-physical
systems in Industry 4.0 through the lens of modeling languages. This chapter, there-
fore, presents the results of a systematic mapping study on modeling for cyber-physical
systems in Industry 4.0. The challenges identified in this study drive the research on
software language engineering, modeling methods, and operations summarized in the
subsequent chapters. The study, presented in Section 2.1, investigates the use of model-
ing in Industry 4.0 and the domain-specific challenges the modeling languages employed
in this field are applied to. It sheds light on the use of (domain-specific) modeling lan-
guages and techniques to address concerns in the engineering of cyber-physical systems
and signposts research directions. Section 2.2 summarizes its results.

2.1 Modeling in Industry 4.0

Industry 4.0 is driven by technological disruptions, such as improved management and
analysis of large amounts of data, increased connectivity, and enhanced autonomy of
systems, that enable its four design principles [HPO16]: (1) Interoperability of pro-
duction systems, processes, and people; (2) Information transparency based on large
amounts of run-time data collected from shopfloor sensors; (3) Technical assistance in
providing the right abstraction of the collected data to understand the complexity of In-
dustry 4.0 systems and processes; and (4) Decentralized decision-making which enables
automated manufacturing systems. As MDE has successfully been employed to address
such challenges with domain-specific modeling languages and methods in the past, we
investigate modeling for the cyber-physical systems of Industry 4.0 through the lens of
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modeling languages and relative to diverse challenges of smart manufacturing. Through
the systematic mapping study presented in this section, we aim to provide guidance
and feedback for the modeling community about challenges for their research and the
reception of their contributions in Industry 4.0.

Systematic mapping studies are a form of systematic literature research are an estab-
lished method to investigate research landscapes. In software engineering [PFMM08],
e.g., they have been applied to cartograph the research landscapes on software devel-
opment effort and cost estimation [JS07], on the use of experimental studies [SHH+05],
object-oriented design [BBT+07], on the usage of UML diagrams [PB08], on software
product lines [ER11, LC13], and on domain-specific languages [KBM16].

Moreover, this study provides an overview for the automation systems community
about the contributions to modeling languages and modeling techniques in their domain.
To this end, it details which challenges these modeling languages and techniques address.
Its results enable identifying limitations and challenges, as well as best practices and new
lines of research regarding modeling for Industry 4.0. Also, it provides a corpus for future
investigation.

MDE is one of the key enablers for successfully addressing the challenges of Industry 4.0
regarding engineering, integrating, and maintaining the cyber-physical systems realizing
this vision as indicated by the increasing number of related publications in key confer-
ences and journals investigating these challenges [SUN+17, CBWM18, FT17, HGS+16,
MDWA17, SZ16]. Yet the role of modeling in engineering cyber-physical systems for In-
dustry 4.0, its potential use for integrating domain contributions, and challenges related
to modeling in this domain were not systematically investigated.

To support researchers and practitioners in MDE and SLE in directing the focus of
their work and to support engineers in identifying suitable modeling languages and tools
for challenges in practice, we conducted a systematic mapping study on modeling in
Industry 4.0. In this study, we analyzed literature on modeling in Industry 4.0, the
concerns addressed with different modeling techniques and languages in this literature,
and identify directions for future research. This section presents results from that study.

Section 2.1 is based on the publication:

Paper 1 A. Wortmann, O. Barais, B. Combemale, M. Wimmer. Modeling Lan-
guages in Industry 4.0: an Extended Systematic Mapping Study. In: J.
Gray and V. Kulkarni, editors, Software and Systems Modeling, 19(1),
pages 67-94, Springer, 2020.
Reference: [WBCW20]

Context Engineering cyber-physical systems is an interdisciplinary endeavor [BLG17,
CCQB17, MKBZ16] that brings together experts from a variety of domains, such as me-
chanical engineering, electrical engineering, automation engineering, factory planning,
architecture, software engineering, and many more. These experts are trained in differ-
ent ways to conceive, describe, and solve the challenges in their domains. All of these
domains are employing modeling, sometimes even for decades, using domain-specific

30



2.1 Modeling in Industry 4.0

terminology, concepts, and methods, including technical drawing [HQ82], circuit dia-
grams [Ung96], architecture drawings [BWHR08], Simulink [Bis96], UML [UML20], and
more.

When collaborating, the different specific approaches, concepts, and methods em-
ployed by experts of these domains give rise to a wide conceptual gap [FR07] between
their different solution domains that needs to be closed to integrate their contributions to
functioning cyber-physical systems. Model-based systems engineering aims to close this
gap by making a central system model the single source of truth for integrating the mod-
els contributed by domain experts that realize domain-specific solutions. This demands
understanding modeling for cyber-physical systems in Industry 4.0, the modeling lan-
guages applied, and the concerns addressed with these languages. Systematic literature
research can contribute to this understanding. Yet, such studies on modeling are rare
and focus on specific automation techniques [MJ13] or on specific engineering concerns of
cyber-physical systems [GT18, NAY17]. There are, however, empirical studies on the ap-
plication of modeling in software engineering [ASSS13, LMT+14, TTR+13]. These con-
clude that practitioners in cyber-physical systems already leverage modeling [LMT+14],
despite a “lack of skills” and “lack of tools” [ASSS13], and that the automated transla-
tion of models into programming language artifacts is widely employed [TTR+13]. While
all of these studies focus on cyber-physical systems, they are restricted to modeling in
software engineering and, hence, cannot contribute much to a broader understanding of
modeling for cyber-physical systems in Industry 4.0.

Literature research in Industry 4.0 does not focus on modeling and its applications,
but usually on broad, systemic concerns, such as deficiencies in current Industry 4.0 re-
search [LDdP17], challenges for the domain in general [VHH16], for companies employ-
ing Industry 4.0 techniques [KT16], the state of related standards [TTG+16], the design
principles of Industry 4.0 [HPO16], or key technologies enabling Industry 4.0 [Lu17].
Hence, despite modeling, as the act of prescribing the systems-to-be, being one of the
key approaches in the individual domains contributing to engineering the cyber-physical
systems of Industry 4.0, a study providing systematic evidence on modeling in this con-
text was missing. Thus, until today, we still have little knowledge about how the different
(domain-specific) modeling techniques employed by domain experts are used to address
which concerns regarding engineering cyber-physical systems for Industry 4.0.

Contribution To improve the understanding of modeling for cyber-physical systems in
Industry 4.0, what the expected benefits of modeling are, where established modeling
techniques can be applied to the design principles of Industry 4.0, and where novel tech-
niques are required, we conducted a systematic mapping study on modeling in Industry
4.0 following established guidelines [PFMM08]. Through this mapping study, we charac-
terized the state of the art of modeling in Industry 4.0 in a broad sense, which includes
modeling techniques outside of traditional software engineering and branches into mod-
eling in systems engineering, such as 3D modeling, knowledge representation, business
process modeling, and more. To this effect, we collected a total of 4404 documents from
ACM Digital Library, Google Scholar, IEEE Xplore, Scopus, SpringerLink, and Web of
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("digital factory" OR "digital factories" OR "smart factory" OR �)

AND ("metamodel" OR "DSL" OR "UML" OR �)

ACM

138

Scholar

3133

IEEE

255

Springer

342

Scopus

504

WoS

32

Inclusion

Criteria

Exclusion

Criteria

Inclusion

Criteria

Exclusion

Criteria

Detailed reviewing removes 1323 papers

Screening removes 1613 irrelevant papers

Duplicate detection removes 1060 duplicates

408 papers left
(relevant)

4404 documents in total
(including duplicates, non-English, Patents, �)

3344 unique documents left
(including non-English, Patents, �)

1731 papers left
(potentially relevant)

Figure 2.1: Beginning with 4404 documents returned from applying our search query to
six mayor scientific literature databases, we ultimately identified 408 relevant
publications for analysis.

Science that feature keywords suggesting discussing modeling in Industry 4.0. Following
a systematic mapping process, as illustrated in Figure 2.1, through screening, filtering,
and detailed reviewing, we identified a corpus of 408 unique publications describing con-
tributions to this topic. Through keyword-based clustering, we obtained as classification
framework including the parameters (1) Industry 4.0 concern: ten clusters ranging from
the digital representation of systems to integration to their verification and validation;
and (2) modeling technique: 15 clusters of modeling techniques applied in this context.
The clusters are centered around

1. 3D modeling techniques, applied to product lines [SLF17], metal forming [ZLZ17],
or virtual robotics [GV15];

2. Various Architecture Description Languages (ADLs), such as AADL [FG12] or
EAST-ADL [DSLT04];

3. The Automation Markup Language (AutomationML) [DLPH08];

4. Business Process Modeling (BPM) [RRIG09];

5. The Core Manufacturing Simulation Data (CMSD) specification standard [RL10];

6. Various DSLs, e.g., Automax [SGBvB12] for robotics motion modeling, the ETRI
CPS Modeling Language (batch) Process Recipe DSL (PRD) [MBS16];

7. Entity-Relationship (ER) modeling [Che76];

8. Formal methods, including mathematical frameworks to reason about manufactur-
ing decisions [DMMP17] and Petri nets applied to product configuration [ZR13] or
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to risk analysis [FZG17];

9. Modeling with GPLs to describe the kinematic of robot manipulators [HAS+14]
or information models of control systems [MW00];

10. Different knowledge representation techniques, such as the Web Ontology Language
(OWL) [AVH04], e.g., applied to robotic kitting [HTKR+15];

11. Metamodeling techniques used to define and arrange concepts, e.g., to describe
task-oriented production [BR17] or potential situations that cyber-physical systems
could encounter [MHWM17];

12. Modeling of physical properties with Simulink [DH04];

13. Systems description and integration with SysML [FMS14];

14. Software modeling with UML [Gro10]; and

15. XML, e.g., applied to the specification of cyber-physical system properties [LSR+19]
and to the integration of Industry 4.0 components [MW17].

Based on these clusters, we analyzed which modeling techniques are used to address
which Industry 4.0 concerns.

We found that modeling in Industry 4.0 leverages DSLs (21% of the contributions)
as well as UML (18%), SysML (6%), and their variants, and knowledge representa-
tion techniques (14%) to describe the cyber-physical systems and their use. The use of
metamodeling and DSLs, as well as UML profiles or other extension mechanisms, might
suggest that specific concepts or their integration are not yet sufficiently supported by
wide-adopted modeling languages or not properly integrated. UML and DSLs are most
often used to address challenges in digital representation and integration of Industry
4.0 systems, which is consistent with identifying these as the most urgent challenges
regarding modeling in Industry 4.0. That digital representation and integration of sys-
tems are subject to intensive research also might imply that existing modeling languages
and techniques are not sufficiently expressive enough for these challenges. For process
modeling, another important concern of Industry 4.0, DSLs (4%) and knowledge repre-
sentation techniques (4%) are the two modeling techniques employed most often. The
overall low number of process modeling solutions might suggest that existing model-
ing techniques are insufficient for certain process-related challenges as well. Overall, the
modeling concerns of digital representation and integration, addressed by either Automa-
tionML [LS17], various DSLs, knowledge representation techniques, SysML [FMS14], or
UML [Gro10], 33% of the 700 concerns that are addressed with modeling techniques
according to our corpus.

While the large body of included publications contribute modeling methods for the
cyber-physical aspects of Industry 4.0 systems, we found that the overwhelming number
of contributions focus on purely syntactic contributions to the ad-hoc system modeling.
They contribute our employ modeling technologies without semantic foundation that
prevent the systematic evolution of CPS’ models. Similarly, we found few contributions
to the systematic operation of CPS after deployment and where this is considered, it
largely focuses on failure handling.

The study also shows that neither validation and verification, nor human factors, both

33



Chapter 2 Modeling Languages for Cyber-Physical Systems

crucial to the success of Industry 4.0, are investigated as often. Whereas the former
might require solving digital representation and integration first, the lack of research
on the latter two is elusive. Unless the smart factory of the future is fully automated,
human interaction and control are necessary and should be considered appropriately.
Moreover, we identified gaps between the worlds of 3D modeling, systems modeling, and
knowledge representation that only a few of the identified modeling techniques aim to
reduce [Elg14, KTY+16, VLG15].

Conclusions Research on modeling for Industry 4.0 is driven in different domains, in-
cluding automation engineering, knowledge engineering, and software engineering. It
addresses a variety of concerns ranging from the design of cyber-physical systems to
their integration in larger contexts (factories, business processes) to very specific appli-
cations. The contributions on modeling often either employ DSLs or general-purpose
modeling languages, such as SysML or UML, to describe or prescribe parts of the sys-
tems under development. Where DSLs are used, the authors often aim to reduce the
conceptual gap between a specific domain of expertise and software engineering. In
most of the publications reporting the application of DSLs, their implementation is not
discussed. Where this is the case, often JSON or similar implicit and ad-hoc language en-
gineering technologies–in contrast to highly specialized language workbenches [ESV+15]–
are employed [GLSC17, PBFS17]. Consequently, we observed little systematic reuse in
modeling languages and techniques, which may pose an entry barrier to modeling the
cyber-physical systems of Industry 4.0 due to the complex challenges of providing suit-
able (domain-specific) modeling languages and techniques. Where research addresses
the gaps between 3D modeling, knowledge representation, and systems modeling, DSLs
are employed rarely. Yet, DSLs are often used to reduce conceptual gaps in Industry 4.0.
This also might be due to the lack of sufficiently expressive languages to represent and
integrate these diverse systems concerns. Both suggest that modeling in Industry 4.0
can benefit from means to facilitate engineering explicit DSLs that can express or inte-
grate concerns from all domains participating in engineering cyber-physical systems for
Industry 4.0. Ultimately, research on modeling for Industry 4.0 CPS focuses on syntactic
technologies for implementation phase of the systems life cycle (cf. Figure 1.5), lacks so-
lutions for integration of participating domains, and contributes little to the systematic
operation of systems.

2.2 Summary

This chapter presents the results of a systematic mapping study on the use of modeling
for cyber-physical systems that aims to illuminate the state-of-the-art regarding modeling
for cyber-physical systems in Industry 4.0. The study uncovered that there is a large va-
riety of modeling languages and techniques that are applied to many different concerns in
engineering cyber-physical systems, ranging from the functional and geometric-physical
modeling of systems and their components, processes, knowledge, simulation, and inte-
gration. To address these concerns, a multitude of modeling languages, either created
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ad-hoc, based on UML, or as explicit DSLs, have been developed. Most of these lack ex-
plicit semantic foundations, but instead are grounded through transformation into GPL
code. This hampers analysis and systematic evolution of their models.

Overall, there is little systematic reuse of modeling techniques across different appli-
cations in both domains. In the domain of Industry 4.0, this might be due to being
driven by different communities, contributing different perspectives on the systems un-
der development, methods, standards, and, ultimately, modeling languages. Then again,
the increasing use of DSLs over general-purpose modeling languages, such as UML or
SysML, in Industry 4.0 suggests that engineering cyber-physical systems demands more
domain-specific approaches to overcome the conceptual gap and overcompensate the in-
creasing engineering complexity. This suggests that more efficient development of truly
domain-specific modeling languages tailored to domain challenges, using concepts and
terminology of the domain experts that are contributing solutions could facilitate the
MDSE of cyber-physical systems for Industry 4.0.

Further reading The study presented in this chapter is motivated by our own research
in modeling for cyber-physical systems in a variety of domains, including automotive,
Industry 4.0, and robotics, which are documented in a variety of publications.

[THR+13] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann. A
New Skill Based Robot Programming Language Using UML/P State-
charts, In: Conference on Robotics and Automation (ICRA’13), pages
461-466, IEEE, 2013.

[AHRW17] K. Adam, K. Hölldobler, B. Rumpe, and A. Wortmann. Engineering
Robotics Software Architectures with Exchangeable Model Transforma-
tions, In: International Conference on Robotic Computing (IRC’17),
pages 172-179, IEEE, 2017.

[ABH+17] K. Adam, A. Butting, R. Heim, O. Kautz, J. Pfeiffer, B. Rumpe, and A.
Wortmann. Modeling Robotics Tasks for Better Separation of Concerns,
Platform-Independence, and Reuse, Aachener Informatik-Berichte, Soft-
ware Engineering, Band 28, Shaker Verlag, ISBN 978-3-8440-5319-7,
2017.

[DJR+19] M. Dalibor, N. Jansen, B. Rumpe, L. Wachtmeister, and A. Wortmann.
Model-Driven Systems Engineering for Virtual Product Design, In: Loli
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Chapter 3

Modeling Language Engineering

If I had nine hours to chop down a tree,
I’d spend the first six sharpening my axe.

Abraham Lincoln

Sharp, precise, and effective software tools are quintessential to successfully engineer and
operate cyber-physical systems. Realizing the vision of MDSE, hence, demands for pre-
cise, i.e., domain-specific, modeling languages. But engineering such DSLs from scratch
is as complicated as engineering other software [FGLP10]. Consequently, facilitating
the engineering of new modeling languages by reusing tried-and-tested modules of other
languages [CKM+18] is crucial to the success of MDSE.

Language users (modelers) and language engineers can greatly benefit from reusing
common, established, and mature language modules. For modelers, reusing language
modules reifying established syntax and semantics reduces the effort of learning new
languages, e.g., Java reuses many concepts of C++, which lowers the barrier of using
Java for C++ experts. For language engineers, reuse reduces the effort in engineering
new languages from scratch and can enable reuse of language tooling (debuggers, editors,
interpreter) as well. For the efficient reuse of languages and language parts, it is essential
to support all relevant dimensions of languages (cf. Section 1.4.6), enable tailoring of
existing languages to challenges of different contexts, and should be applicable to different
technological spaces. In this chapter, we, therefore, present a novel systematic method for
efficient creating DSLs by reusing textual, external modeling languages with translational
semantics realizations that addresses the second objective of our research program (RQ2).
As such, this chapter establishes the foundations for engineering the modeling languages
used in the subsequent chapters and relates to the beginning of the implementation phase
of the systems’ life cycle, for which the suitable domains-specific modeling languages must
be provided.

Our method structures the systematic reuse of modeling language modules through
arranging these in the closed variability of language product lines (LPLs), deriving lan-
guage variants, and systematic open customization of these variants where necessary. It
rests upon a novel conceptual model separating reuse activities specific to technologi-
cal spaces from independent activities and leverages language components encapsulating
concrete syntax and abstract syntax, well-formedness rules, and code generators in a
black-box fashion. Section 3.1 introduces a notion of syntax modules and their composi-
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tion, Section 3.2 extends this with composable code generators, and Section 3.3 presents
a concept for language components based on these modules and integrates these into a
systematic, black-box reuse methodology. Section 3.4 summarizes our contribution to
modeling language engineering for cyber-physical systems.

3.1 Reusing Modeling Language Syntaxes

For many modelers and language engineers, the syntax is the most accessible dimension
of modeling languages. Hence, from these everything else, including the mapping to
a semantic domain, model analyses and syntheses, editors, and other tooling, follows.
As such, reusing language syntaxes in other contexts, e.g., embedded within other lan-
guages or tailored to domain-specific challenges, is an essential prerequisite for efficient
language engineering. Supporting forms of language reuse that are more powerful than
reconfiguring language modules through premeditated parameters demands for means to
compose the constituents of different languages into new languages, e.g., via extension,
embedding, delegation, or similar mechanisms [DCB+15, HR17, VC15].

Syntaxes of external modeling languages can be defined in a variety of ways, including
metamodels [CBW17, SBMP08, VBD+13], grammars [Bet16, HR17, VOSC14], or ab-
stract data types [WKV14]. Syntax definition in the form of metamodels and abstract
data types focuses on abstract syntaxes only, whereas some grammar-based syntax defi-
nitions support describing both, concrete and abstract syntax, in an integrated fashion,
increasing cohesion between both and fostering their joint reuse. Most of these syn-
tax definition formalisms are context-free, i.e., they cannot express properties over the
context of the use of their elements. For instance, expressing that a model yields no
two elements of the same name, such as attributes in Class Diagrams (CDs), is impos-
sible. To mitigate this, some approaches to language engineering augment these with
well-formedness rules in the form of OCL constraints [HJK+10] or GPL context con-
ditions [HR17]. These well-formedness rules can restrict the set of valid models of the
language they relate to further and in greater detail than the metamodels, grammars,
and abstract data types. Consequently, efficient reuse of syntaxes must consider both,
syntax definitions in the form of metamodels, grammars, or abstract data types, and
related well-formedness rules.

Software variability research to SLE can facilitate this. Research in software variability
has produced the notions of closed variability and open variability. Closed variability,
often represented by software product lines [CN02], is a paradigm to guide the reuse of
software modules by relating these as features in product line models, such as feature
diagrams [SHT06]. Through the hierarchical arrangement of features in these diagrams,
the options for their planned reuse are deliberately thought ahead. Thus, composition of
the represented software modules can follow premeditated ways also. This liberates the
users of software product lines from becoming experts in the structure and composition
mechanisms of the employed software modules. Open variability expresses the support
for unforeseen or unbounded tailoring choices, such as the injection of dependencies into
software modules [YTM08] or their configuration with principally unbounded parameters
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(e.g., floating-point numbers) for which the deliberate arrangement of all alternatives is
forlorn.

Hence, to support practitioners and researchers in SLE and modeling in engineering
and reusing modeling languages in different contexts, we conceived a concept for the
closed-variability reuse of syntaxes, including well-formedness rules. In this section, we
present our notion of language modules, their integration into feature models, and their
reuse through their composition based on feature selections.

Section 3.1 is based on the publications:

Paper 2 A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and A. Wortmann.
Controlled and Extensible Variability of Concrete and Abstract Syn-
tax with Independent Language Features, In: Proceedings of the 12th
International Workshop on Variability Modelling of Software-Intensive
Systems (VAMOS’18), pages 75-82, ACM, 2018.
Reference: [BEK+18a]

Paper 3 A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and A. Wortmann.
Systematic Composition of Independent Language Features, In: Rafael
Capilla Sevilla, Lidia Fuentes, Malte Lochau, editors, Journal of Systems
and Software, 152, pages 50-69, Elsevier, 2019.
Reference: [BEK+19]

Context Software language engineering is an important driver of innovation: most
new programming languages introduce concepts to facilitate software engineering. For
instance, Java introduced the language requirement that everything must be defined in
terms of classes to foster the reuse of software parts. Kotlin, another recent language
based on Java, introduced the removal of the null value, Tony Hoare’s famous “billion-
dollar mistake” [Hoa09], to reduce the possibility of programming errors. Similarly,
SysML [FMS14] is an extension–conceptually and technically–of a subset of UML that
extends the object-oriented concepts of UML to facilitate the systematic engineering of
complex systems.

Consequently, there has been fruitful research in SLE to expedite the engineering of
modeling languages that produced methods to reusing language syntaxes. This research
is manifested in various language workbenches that employ different language specifi-
cation and reuse techniques resting on grammars [Bet16, HLMSN+15, Sto11, VC15],
metamodels [DCB+15, SBPM09], or projectional editing [VV10]. All of these demand
white-box insights into the language definition constituents and a thorough understand-
ing of their structure, meaning, and options of extensibility. For instance, the language
workbench Neverlang [VC15, VOSC14] and its extension AiDE [KCO15] support ex-
tension of grammars through embedding. The extension points of grammars are un-
defined productions spread across the complete grammar definition. Hence, language
engineers reusing Neverlang grammars must understand these undefined productions,
identify these in the grammars, and validate that these indeed are meant for extension.
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In the Xtext [Bet16] language workbench, grammars may inherit from other grammars
to extend these, which enables overwriting inherited productions to adjust the inheriting
language for new challenges. Again, this demands a comprehensive understanding of
the grammar to be reused. The integrated systematic reuse of syntax definitions and
well-formedness rules is not supported by any of these language workbenches.

Motivated by the success of software product lines, research in SLE has produced ap-
proaches towards a more systematic, i.e., guided, reuse of language modules. In a recent
systematic literature review, its authors identified 14 different approaches for engineer-
ing LPLs [MAGD+16]. Most approaches found in that study supported metamodels,
i.e., without concrete syntax, only [JCB+15, PRB+09, WHG+09]. Hence, these enable
the reuse of language structure, but not vocabulary, which is crucial for language users.
Only a few support reusing abstract syntax and concrete syntax through grammars, such
as FeatureHouse [LDA13], LISA [Mer13], and Neverlang [VOSC14]. All of these focus
solely on metamodels or grammars without considering their conjoint systematic reuse.

Research on the systematic reuse of modeling language syntaxes, including well-
formedness rules, is absent, and research on their systematic reuse through explicit
variability is focusing on grammars or metamodels only. Consequently, methods for
the systematic reuse of modeling language syntaxes that consider the syntax definitions
(metamodels, grammars, abstract data types) and well-formedness rules were missing.

Contribution We conceived a novel method of controlled language reuse through open
and closed variability that facilitates a posteriori extensibility with additional features,
considers concrete syntax, and enables (re-)using languages as features without explicitly
foreseeing this usage at language design time. This method follows the observation
that syntax is the essential dimension of modeling languages. Consequently, extension
points of syntax definitions, whether they are explicit or implicit, govern the possible
combinations with other syntax definitions. As syntax definitions using grammars enable
the integrated definition of concrete syntax and abstract syntax, both, the language
modules, as well as their systematic reuse through closed variability, focus on reusing
grammars together with their well-formedness rules. The method for their reuse leverages
established concepts from software product lines, such as features, feature diagrams,
and bindings to prescribe possible combinations of participating language modules. But
where traditional software product lines often require that all features of the feature
model are provided in a 150% artifact [GKPR08], our approach to the variability of
LPLs realizes closed variability over features realized by independent language modules.
This alleviates a posteriori extension and evolution of LPLs. To further support reusing
language modules through LPLs, we systematically structured the process of creating
and using related artifacts to the participating roles.

Based on experience in industrial language engineering from various research projects,
we conceived a separation of the involved concerns between four stakeholder roles re-
flecting different language engineering capabilities: (1) Language engineers are experts
in developing language modules in specific technological spaces [KBA02]. They create
consistent language modules comprising module definitions, grammars with extension
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points, and related well-formedness rules. (2) LPL managers are language engineers
who create and maintain LPLs over these language modules by arranging these in the
feature diagrams of the LPLs. Through modeling the bindings between the features, they
decide upon possible and meaningful combinations of language features by considering
the available language modules. This might entail providing adapters between gram-
mars or well-formedness rules to ensure compatibility of features and their realizations
in language modules. (3) Language owners are domain experts with profound knowl-
edge about the concepts of a domain and, hence, responsible for selecting LPL feature
to derive a suitable language for their domain. To this end, they create suitable feature
configurations. (4) Modelers are domain experts that use the modeling language derived
by language owners. This separation of concerns between the participating stakeholders’
roles liberates the individual stakeholders from being involved in all activities of conceiv-
ing LPLs and language products and reduces the gap between language engineers that
yield expertise in specific technological spaces and domain experts.

The stakeholders create models and artifacts as illustrated in Figure 3.1. Here, lan-
guage engineers have produced various language modules for the description of archi-
tectures, different forms of component behavior, and object-oriented programming. The
LPL manager arranges the available modules in a feature diagram, prescribing their
relations based on their extension points. For example, when selecting the feature
ComponentBehavior, a production of the grammar of BehaviorModule, as defined
in the binding between the features, will be embedded into extension point d of the
CoreADLModule. The language owner then can configure a variant of the LPL by se-
lecting desired features and the corresponding modules are composed according to their
arrangement in the feature model. Based on this configuration, a new language can be
composed automatically. Afterwards, modelers can use this language fully transparently
without being aware of if being a variant of an LPL.

To manage language variability, we propose arranging language modules in feature
diagrams whose relations govern the composition of their grammars and the union of
their well-formedness rules. Bindings between the parent features and child features in
the feature diagram describe how the related grammars are embedded. To this end,
bindings relate grammar extension points of the grammar contained in the parent fea-
ture’s language module to productions of the grammar contained in the child feature’s
language module. Hence, arranging one feature as a child of another entails that (a
part of) the grammar of the language module realizing the child becomes embedded
into the grammar of the parent feature upon selecting both in a feature configuration.
Also, it entails that their well-formedness rules are joined. To resolve variability and
derive a language from the LPL, the language owner models the desired features as a
feature configuration from which a new language is derived by the pairwise, bottom-up
embedding of their related grammars and the union of their well-formedness rules. As
not all extension points of grammars used in modules of the LPL must be bound, LPL
managers and language owners can derive language modules that lack specific extensions
from the LPL. This enables novel language modules that can or need to be refined in
other contexts, e.g., because some syntax choices should be fixed prior to reusing the
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Figure 3.1: Stakeholder roles, main models, and artifacts involved in our method for
systematic language reuse.

module in another LPL or because the modules require additional tailoring with syntax
not provided by the LPL.

This method (1) enables compositional language reuse by decomposing languages into
composable language modules, (2) supports fully automated language derivation through
the composition of these modules, (3) fosters the reuse of grammars and their well-
formedness rules, and (4) decouple language engineering from LPL conception, language
configuration, and language use. However, as with all approaches to reuse in language
engineering, it relies on strong assumptions. The three major assumptions of our ap-
proach are:

A1 Identifiable grammar extension points: A compatible grammar definition language
must support the identification of grammar extension points to enable the binding
of grammar productions of child features to grammar extension points of par-
ent features. Whether this is realized through dedicated kinds of productions or
through naming conventions is irrelevant. Hence, most, if not all, grammar defini-
tion formalisms can support this.

A2 Individually applicable well-formedness rules: To enable reusing the well-formedness
rules of the different language modules after their related grammars have been com-
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posed, they must be individually applicable to the production of these grammars
that they relate to. Whether these rules are implemented in OCL [HJK+10], a
GPL [HR17, Bet16], or another modeling language [VC15] is irrelevant.

A3 Conservative language composition: The composition of language modules con-
serves productions and well-formedness rules. Otherwise, the composition of two
modules related in a parent-child relation in the LPL’s feature diagram could elim-
inate grammar extension points required for composing the parent’s module with
the language module of its own parent feature. While this restricts the structure
of the derivable grammars (i.e., they can increase in terms of productions only),
it does not restrict the languages expressiveness, as adding new well-formedness
rules can restrict the accepted models of the resulting languages.

By supporting the selection of arbitrary grammar production for embedding, our ap-
proach enables reusing parts of the grammars of language modules only. For instance, in
Figure 3.1, only the expression sub-language of the JavaModule is embedded into the
AutomataModule. Due to our first assumption, different productions of a grammar of
a language module can be declared as extension points. This significantly eases to reuse
modeling languages and their parts in different contexts and liberates language engineers
from being forced to create language modules for all specific embeddings. Instead, e.g.,
the JavaModule might be reused with other features in the same or other LPLs to
embed its statement sub-language or its type definition sub-language accordingly. Due
to our second assumption, the individually applicable well-formedness rules relating to
that part of the JavaModule can be reused without modification and applied to the
expression sub-language which then is part of the automata language. Due to our third
assumption, the resulting language module can be reused in another LPL as neither pro-
duction of its grammar, not its well-formedness rules or extension points can be removed
through composition.

Conclusions Our method for reusing language syntaxes is based on modules comprising
grammars and well-formedness rules. This notion of modules facilitates the integrated
engineering, maintaining, and evolution of LPLs of syntaxes. To this effect, this method
is aligned with different stakeholder roles to separate the concerns of engineering lan-
guage modules, guiding their composition, configuring language variants, and using these
accordingly. By enabling the binding of arbitrary language module grammar produc-
tions through the LPLs’ bindings and by defining them over encapsulated modules, our
approach facilitates reusing modules in different language families and extending families
with new modules. Overall, both can foster the engineering, and, hence, improve the
availability of domain-specific modeling languages.

Leveraging LPLs for the systematic reuse of language modules presents a foundation
for more efficient language engineering. Many time-honored reuse concepts from software
engineering can augment this reuse paradigm further, such as (1) specifying requirements
on valid extensions for extension points similar to abstract methods in object-orientation,
(2) supporting the reuse of language modules via inheriting from another, or (3) lifting
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language modules to language components with explicit interfaces describing their ex-
tension points. Moreover, supporting pure presentation variability [CGR09], different
composition mechanisms (such as aggregation [HR17] or coordination [LDCM15]), and
other dimensions of modeling languages and their tooling in language modules can fur-
ther foster engineering and application of modeling languages.

3.2 Reusing Code Generators

Despite syntax being considered the quintessential language dimension, well-defined se-
mantics [HR04] and their realization are crucial for MDE (cf. Section 2.1). Without
unambiguous semantics of the modeling languages, neither genuine comprehension, nor
automated analysis or synthesis of their models are possible. Hence, reusing seman-
tics realizations is another important challenge in the efficient engineering of modeling
languages.

While semantics often are specified denotationally [Mos90], their machine-processable
realizations for the large majority of languages are specified operationally [Plo81] or
translationally [LL81]. Operational semantics realization leverages interpreters, either
externally [ESM08] or integrated into the languages’ abstract syntax classes [JCB+15],
to reify the meaning of models in software. Often, an operational semantics realization
is used for the interpretation of executable models, such as statecharts (SCs). Realizing
semantics operationally demands that for the target system (i.e., the system using or
executing the models) a suitable interpreter exists. This can restrict the application of
models with operationally realized semantics severely. Translational semantics realiza-
tion leverages transformations that either translate models of one language to models
of another, semantically well-defined, language (M2M transformations) or to text (M2T
transformations, code generators). Model-to-model transformations yield the benefit of
producing correct models of the target language but require that an explicit realization
of that target language exists in a technological space the transformation is compatible
with. Model-to-text transformations instead can produce arbitrary text, which might
represent invalid models with respect to the target language. Therefore, code generation
can produce models of any language that can be represented in text without requiring
an explicit representation of the target language.

Moreover, code generation enables translating models into high-performance realiza-
tions, enriched with technical details, such as serialization or network communication,
and solution expertise, including leveraging established design patterns to make the re-
sulting artifacts modular and extensible. Through this, it can greatly reduce the efforts
in repetitive software engineering tasks and enforce consistency of the resulting artifacts
by construction. Hence, incorporating code generators into language modules yields
tremendous advantages for a more powerful language reuse that can improve availability
and accessibility of modeling.

The useful composition of two code generators realizing modeling language semantics
demands the compatibility of the generators as well as of the generated artifacts. The
specific requirements for compatibility depend on the way the code generators and the
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produced artifacts are meant to be composed. For template-based code generators, their
composition often can be realized by merging their templates at well-defined extension
points [GMR+16]. Such white-box approaches demand resolving name conflicts within
the templates to be merged, which may require in-depth changes to the participating
templates. Furthermore, they cannot ensure the compatibility of generated artifacts
without additional infrastructure. Code generators that employ object-orientation to
encapsulate template parts in methods, e.g., Xtend [Bet16], can be composed using
object-oriented mechanisms, such as inheritance, delegation, or injection. This supports
making the interfaces of generators and their templates (via encapsulation in methods)
explicit and facilitates their integration. As these also solely rely on templates to describe
the produced artifacts, such approaches to generator composition also cannot reason
about the compatibility of generated artifacts without additional infrastructure.

The research result presented in this section extends our notion of systematic language
reuse based on closed variability and composition of independently developed language
modules accordingly. It focuses on the embedding of code generators following the rela-
tions governed by the LPL. Thus, code generator embedding, as presented in this section,
complements embedding of syntaxes by the compliant embedding of code generators at
specific language extension points defined by their syntax.

This approach to generator composition gives rise to two specific challenges:

1. Generator composition challenge: Each generator responsible for translating a lan-
guage with extension points must provide black-box means to invoke other gener-
ators for specific parts of embedded languages when these are processed.

2. Artifact composition challenge: The artifacts produced by the generators must be
syntactically compatible and be able to interact at runtime of the product without
requiring white-box insights into their production.

To address these, we conceived a novel notion of language components encapsulating
realizations of syntax (grammars, well-formedness rules) and semantics (code genera-
tors), as well as a method for their composition that includes the black-box composition
of participating code generators. This approach solves both, the generator composi-
tion challenge and the artifact composition challenge. In this section, we present these
concepts and their integration into LPLs.

Section 3.2 is based on the publication:

Paper 4 A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and A. Wortmann.
Modeling Language Variability with Reusable Language Components,
In: International Conference on Systems and Software Product Line
(SPLC’18), September, ACM, 2018.
Reference: [BEK+18b]

Context Engineering code generators itself poses manifold challenges, out of which the
foremost is the creation of artifacts (templates, transformations) that operate on multiple
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(meta)modeling levels. Usually, such artifacts contain parts operating on the language
level (such as the abstract syntax structure of the model to be processed), on the level
of the specific model and its peculiarities, and on the level of the target representation
(e.g., the target GPL). Consequently, research on code generation focuses on developing
techniques to reduce this complexity and less on the reuse of code generators.

Where code generators leverage templates to describe the translation of models, the
template languages, such as FreeMarker [For13], Jinja21, Pug [Mar18], or Velocity [CH07],
often support some forms of template reuse. For instance, the FreeMarker [For13] tem-
plate language supports that templates import other templates and assign new values
to the properties of the imported template. Lacking interfaces, this white-box reuse
demands knowing the imported templates’ properties and assigning valid (i.e., type-
compatible) values to their properties. Similar inclusion mechanisms are supported by
Velocity [CH07]. In Pug [Mar18], a template language for HTML and JavaScript, blocks
define assignments of model elements to HTML elements. It supports white-box reuse
via template inclusion and inheritance. In both cases, the blocks of the included or
inherited template are made available to the including or inheriting template, respec-
tively. This modularity is possible as Pug blocks assign properties to HTML elements
and adding new blocks can be translated to adding new properties to these HTML ele-
ments. Jinja2 also is based on blocks and supports their inheritance in the same fashion.
Overall, the reuse mechanisms provided by template languages address reuse within code
generators but do not consider reusing complete generators in different contexts and de-
mand white-box insights. Hence, these reuse mechanisms do neither contribute to the
generator composition challenge, nor to the artifact composition challenge.

With Xtend [Bet16], a modeling language extending Java with the concept of tem-
plates, the flow of control is inverted. Here, templates are embedded into method defini-
tions and produce string objects that can be manipulated by the subsequent statements.
Consequently, code generators based on Xtend can leverage the full reuse potential of
object-orientation. While this provides a solution to the generator composition chal-
lenge, it does not support reasoning about generated artifacts, i.e., does not contribute
to the artifact composition challenge.

For the composition of complete generators, only a few approaches exist. Monti-
Core [HR17] features a template-based code generation framework that is based on the
FreeMarker [For13] template engine. This framework supports specifying different kinds
of hook points for templates, such as explicit in-template hook points for other templates
or Java code, and implicit hook points available before and after each template. Using
these hook points, multiple code generators can be composed through their templates.
By hooking templates of one code generator into another, integrated artifacts can be
produced. However, in lieu of explicit template interfaces, correctly hooking one tem-
plate into another requires that the template providing the hook point also provides all
data (model parts, configuration, etc.) required by the templates hooked into it.

GECO [Jun16] is an approach towards the composition of code generators for aspect-
oriented, metamodel-based DSLs. Generators following the GECO approach must be

1Jinja website: https://jinja.palletsprojects.com/
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designed as integrated “generator fragments” that can be reused at join points in the
related DSL. The restriction to aspect-orientation severely limits its applicability. In the
vision of a model-driven architectural framework [KR06], the authors suggest the concept
of a “generic code generator generator” that leverages a repository of language building
blocks to create suitable code generators. How this vision addresses the challenges of
black-box composition of code generators is not explained.

There is very little research on the black-box composition of code generators, which
might be due to their inherent complexity. Nonetheless, as code generators are a vital
part of language realizations, their reuse must be considered. One approach to this is the
investigation of arranging code generators in systematically reusable language modules.

Contribution To address both, the generator composition challenge and the artifact
composition challenge, for black-box code generator composition following the embed-
ding of their languages, we conceived a notion of generator interfaces, a method for
generator composition based on these interfaces, and integrated these into the language
modules presented in Section 3.1. The code generator interfaces make compatibility
requirements of the generators (producers) and generated artifacts (products) explicit
and support their systematic integration. Our generator composition method builds
on these to ensure that (1) generator embedding can follow language embedding such
that for each syntax extension point in the embedding language, there is a correspond-
ing extension point in the code generator belonging to that language; (2) the generator
(producer) interfaces of embedding and embedded generator are adapted to another to
ensure that the embedding generator and invoke the embedded generator; and (3) the
artifact (product) interfaces of embedding and embedded generator are also adapted to
another to ensure the product of the embedding generator can interact with the product
of the embedded generator. By integrating code generators into language modules and
making their provided extension points and required extensions explicit, providing the
product and producer interfaces, and applying our composition, their black-box reuse
becomes possible.

To enable black-box composition of generators, both, the generators and the pro-
duced artifacts must be properly encapsulated. Therefore, we leverage the time-honored
concept of separating interfaces and implementations to ensuring this encapsulation for
object-oriented code generators that produce object-oriented artifacts. For this, we iden-
tified that, if each code generator adheres to an explicit producer interface and produces
a main artifact that adheres to an explicit product interface, the syntactic extensions
points of the processed language can be also be understood as extension points of the
related code generator. Of course, the dedicated main artifact may relate to other arti-
facts. Hence, for each syntactic extension point of the processed language, the responsible
code generator then yields a generator extension point. The generator extension point
belongs to a syntactic language extension point, and specifies the required interfaces of
compatible producers and products as illustrated in Figure 3.2.

For the grammar of the language module BaseADL, as illustrated in Figure 3.1, the
responsible code generator yields a producer interface describing how it can be invoked
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Figure 3.2: The required generator extensions follow the required grammar extensions
of the containing language component and specify two kinds of interfaces to
enforce compatibility of embedding and embedded generators.

and a product interface describing how the main artifact it produces can be interacted
with. As the grammar of BaseADL yields four extension points, so does the BaseADL
Generator (out of which only two are illustrated in Figure 3.2). For each of these
generator extension points, the related grammar extension point, one required producer
interface, one required product interface are made explicit, and a registration method
accepting an instance of the required producer interface are specified. The required pro-
ducer interface characterizes compatible generators that are responsible for translating
grammar productions embedded into the specified grammar extension point and will
be invoked by the BaseADL generator if such an embedded production is found. The
required product interface describes the properties of the artifacts generated for this
particular embedding that the BaseADL generator experts and operates with.

Through adaptation between the provided and required producer and product in-
terfaces, the generators can be made compatible and their composition can follow the
embedding of the languages they translate. This notion of generator composition does
neither impose dependencies between the participating code generators, nor a common
dependency to a shared library of common interfaces that the different code generators
must adhere to. Instead, each code generator can be developed independently and com-
posed by providing two adapters, for producer and product, per extension point. Given
a description of the code generators participating in a composition, the structure of these
adapters is be generated based on the producer and product interfaces, such that only
the specific adaptation demands handcrafted efforts. Automating this as well demands
a greater semantics expressiveness than supported by object-oriented GPLs.
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Moreover, this method for generator composition supports transitive embedding of
code generators. For instance, if the I/O Automaton Generator would process a
language with extension points for transition guard expressions, it would yield a corre-
sponding generator extension point of requiring a producer and a product interface for
which suitable generators could be registered.

Overall, our approach to generator composition is subject to the following assumptions:

A4 Each extension point in the processed language implies an extension point in the
processing code generator.

A5 Code generators and produced artifacts must support the notion of object-oriented
interfaces.

A6 Each code generator must create a main GPL artifact adhering to the genera-
tor’s product interface through which that artifact can be invoked during product
runtime.

A7 Producer interfaces and product interfaces must be made explicit by the code
generators for themselves, their produced main artifacts, and all of their generator
extension points.

To integrate code generators and their black-box composition into our method for
systematic language reuse, we extended the notion of language modules to language
components yielding interfaces that specify grammar productions meant for embedding,
context conditions meant for reuse, and code generators meant for composition. Accord-
ingly, we extended the notions of bindings between features that are realized by language
components to describe the binding of code generators as well.

Ultimately, this enables the total black-box composition of code generators for object-
oriented target languages that only demands to provide suitable adapters post feature
configuration.

Conclusions Our method for reusing realizations of language semantics in the form
of code generators relies on four assumptions about the structure of the generators
and the generated artifacts. Through these, it enables a novel, non-invasive, black-box
reuse of code generators that solves the generator composition challenge and the artifact
composition challenge.

These assumptions also restrict the application of our approach. The first assumption
is a deliberate choice of our approach to ultimately enable the joint composition of syn-
tax and semantics realizations. The other three assumptions impose requirements on the
engineering of compatible code generators and restrict the applicability of our approach.
For instance, requiring object-oriented generator interfaces prevents applying our ap-
proach to code generators developed in GPLs following other programming paradigms.
Similarly, requiring object-oriented interfaces for generated artifacts prevents applying
our approach to various kinds of target languages and formats (such as CSV, SQL, or
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XML). Moreover, while assuming that every code generator produces a main artifact
does not limit the application of our approach technically, enforcing the existence of a
main artifact can make the generated code less efficient. This especially holds when
embedding code generators for cross-cutting concerns.

The notion of language components presented in this section is limited to one code
generator per component and only makes one grammar extension point of grammars
explicit. Not supporting multiple code generator specifications for different grammar
parts can hamper the reuse of code generators. Similarly, not specifying more than
one grammar extension point can hampers reuse of syntaxes through components. The
contribution presented in the next section addresses these challenges.

3.3 Systematic Black-Box Reuse of Language Components

The results presented in Section 3.1 and Section 3.2 enable the black-box composition of
modeling language syntaxes and code generators encapsulated and structured through
LPLs. The efficient black-box reuse of complete language components demands means to
explicate the required extensions (i.e., extension points) and provided extensions explicit
on the component level. Moreover, the presented language components only explicate
one provided grammar production, a set of well-formedness rules, and one provided code
generator. Where these components comprise multiple reusable artifacts and artifact
parts, such as additional grammar productions, well-formedness rules, or code generators
that might be reusable in different contexts, their interfaces currently prevent reusing
these as they are hidden from the user. Moreover, enabling the parametrization of
well-formedness rules and code generators can further facilitate their reuse.

Through making their interfaces support explication of multiple provided extensions
and extension points for grammars, well-formedness rules, and code generators, as well
as the parametrization of well-formedness rules and code generators, reusing the individ-
ual components in different contexts becomes easier, which can improve their maturity
through (re-)use [CBCR15].

A method for the black-box reuse of language components that supports this flexibil-
ity must consider language components, their interfaces, extension points and provided
extension at sufficiently detailed granularity. Systematically reusing such components
LPLs further requires more sophisticated bindings between the participating components
and, ultimately, a feature modeling technique supporting binding of these components.

Ideally, such a framework fosters language component reuse in different technologi-
cal spaces, as long as these conform to its assumptions on language specification and
composition (A1-A7). This imposes a separation of concerns into:

– Generic reuse concerns: For systematic reuse through variability, these include
defining LPLs, binding features to components, resolving feature configurations
by orchestrating the composition of the participating components’ artifacts, and
adjusting the component’s interfaces to reflect their post-composition properties.
These concerns are independent of the specific technological space the framework
is applied with and need to be taken care of for every application of the framework.
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– Technology-specific reuse concerns: These include the actual composition of the
language component’s artifacts following the framework’s assumptions and ensur-
ing the well-formedness of resulting artifacts.

Thus, separation of concerns imposes the requirement that a framework supporting
this technology-space-independent reuse must coordinate managing the generic reuse
concerns and support extension with technology-space-specific software components to
realize specific reuse concerns.

Section 3.3 is based on the publications:

Paper 5 A. Wortmann. Towards Component-Based Development of Textual
Domain-Specific Languages, In: Luigi Lavazza, Herwig Mannaert, Kr-
ishna Kavi, editors, International Conference on Software Engineering
Advances (ICSEA 2019), pages 68-73, IARIA XPS Press, 2019.
Reference: [Wor19]

Paper 6 A. Butting, J. Pfeiffer, B. Rumpe, and A. Wortmann. A Compositional
Framework for Systematic Modeling Language Reuse, In: Proceedings
of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, pages 35-46, ACM, 2020.
Reference: [BPRW20]

Context Various language workbenches, such as Melange [DCB+15], MontiCore [HR17],
MPS [Cam14], or Spoofax [WKV14] support the composition and the customization of
languages in their specific technological spaces. Similar to other approaches to system-
atically reuse language parts [Bet16, LDA13, KCO15, VC15], they neither consider the
joint multi-dimensional reuse of language constituents nor make their provided and re-
quired interfaces explicit. This restricts language reuse to a white-box reuse of individual
language dimensions (cf. Section 1.4.6) in specific technological spaces.

The different approaches that apply software product line techniques [PBL05] to
SLE [Kle08] either focus on closed variability expressed with LPLs or do not consider
open variability, i.e., subsequent customization (cf. Section 3.1).

Overall, there is no notion of multi-dimensional language components that feature
syntax, well-formedness, and code generation, which makes their integrated interfaces
explicit and supports their composition based on the interfaces provided and required
extensions. Consequently, there also are no top-down methods for systematic reuse that
abstract from peculiarities of the technological spaces they were developed for.

Concern-oriented reuse [AKM13] is a vision of software development based on con-
cepts from MDE, CBSE, and variability that aims to structure reuse of software parts
through components arranged in software product lines. In this vision, concerns are
reusable software modules supporting interfaces for expressing their variability, means
for customization, and use. Concern-oriented language development [CKM+18] is a con-
ceptual model extending concern-oriented reuse to SLE that focuses on grouping related
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language dimensions in facets. These facets comprise artifacts and can be reused by lan-
guage concerns that yield the three interfaces envisioned in concern-oriented reuse. As
such, concern-oriented language development is a vision that neither details the struc-
ture of these interfaces, nor explains the composition of language artifacts, or provides
an applicable framework.

Contribution Our method for systematic black-box reuse of language components con-
siders the language dimensions of (1) Integrated definitions of abstract and concrete
syntax in the form of grammars; (2) Restrictions to the abstract syntax through well-
formedness rules; and (3) Realization of translational semantics through code generators.

The contribution presented in this section, thus, is threefold: First, we present a novel
conceptual model for reuse that details the constituents of these 3D language compo-
nents with their interfaces, extension points, and relations and of LPLs with feature
diagrams and the binding of features to language components. Second, we describe a
systematic method for reusing 3D language components through resolving closed and
open variability as the composition of participating components build upon the com-
position mechanisms introduced in Section 3.1 and Section 3.2 that considers generic
reuse concerns as well as technology-space-specific reuse concerns. Third, we present an
extensible modeling framework that supports specifying language components and LPLs
through dedicated modeling languages and realizes our reuse method in generic soft-
ware components that can be extended with and delegate to technology-space-specific
components for the composition of language constituent artifacts.

Based on the results presented in Section 3.1 and Section 3.2, we devised concepts
for 3D component interfaces consisting of three kinds of provided extensions. Provided
grammar extensions expose productions of comprised grammars to be reused in other
contexts. Provided generator extensions reference a provided grammar extension for
whose translation they are responsible and a generator specification consisting of pro-
vided and required product and producer interfaces required for that translation (cf.
Section 3.2). Provided well-formedness rule extensions expose sets of well-formedness
rules meant for their joint reuse.

Also, 3D component interfaces yield two kinds of–mandatorily or optionally–required
extensions (extension points). Required grammar extensions expose extension points of
the comprised grammars into which provided grammar extensions of other components
can be embedded. Required generator extensions reference a required grammar extension
for whose translation a responsible generator is needed and a generator specification
consisting of provided and required product and producer interfaces required. There
are no required well-formedness rule extensions. Exactly specifying the expected input-
output behavior of well-formedness rules is generally as complicated as implementing
these.

Additionally, 3D component interfaces may yield parameters for the configuration of
well-formedness rules and code generators. For grammars, specification of parameters
aside from via the embedding of productions of other grammars rarely is supported.
Thus, lifting these to the conceptual model as well would severely restrict its appli-
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Figure 3.3: Our conceptual model of 3D components distinguishes language components
for their interfaces, which make the required and provided extensions of the
contained language implementation artifacts explicit.

cation of few compatible technological spaces. The resulting conceptual model for 3D
language components is illustrated in Figure 3.3. The conceptual model of language fam-
ilies features relates to the component interfaces through bindings that match required
extensions of parent features with provided extensions of child features.

Based on the separation of reuse concerns, the directed composition of two 3D language
components according to the bindings from interface elements of the child component
to the interface elements of the parent component then amounts to producing a new
component such that:

– Its interface results from combining the interfaces of both input components,
adding or removing interface elements as specified in the binding.

– The comprised grammars result from embedding the grammars of the child compo-
nent into the grammars of the parent component according to the bindings defined
in the feature model.

– The sets of well-formedness rules of the child component are either merged with
sets of well-formedness rules of the parent component, added as individual sets to
the interface, or removed.
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– The code generators are composed according to the bindings and their generator
specifications (cf. Section 3.2).

For LPLs over 3D language components, this process is applied bottom-up for all se-
lected features and their parents until all bindings have been resolved. If the resulting
language component is incomplete in the sense that there still are mandatory required ex-
tensions or unset parameters, subsequent customization dedicated customization models
can complete these.

The framework realizing our reuse method consists of four main components that are
illustrated in Figure 3.4 and focus on (1) processing models of language components
(ComponentProcessor) and checking their well-formedness; (2) composing models of
language components (ComponentComposer); (3) loading the feature models of LPLs,
checking their well-formedness, and resolving feature configurations (LPL Manager);
and (4) customizing language components through the embedding of components not
provided in the LPL. These components take care of generic reuse concerns presented in
this section. As such, they are independent of a specific technological space but require
extension with a component taking care of reuse concerns specific to the technological
space the language components are realized in. This component takes care of composing
grammars, joining well-formedness rules, and embedding code generators accordingly.
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Figure 3.4: Our language reuse framework reifies the concepts presented in this section
and separates the concerns of generic reuse from the reuse concerns specific
to a technological space.

Conclusions By making the constituents of language components meant for reuse ex-
plicit through dedicated interfaces comprising required and provided extensions, the
components can be composed in a black-box fashion. We systematically leverage this
component-based composition of language components through LPLs to structure and
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guide their reuse. By conceiving the concepts, process, and the framework realizing it to
be independent of technological spaces (under the assumptions A1-A7), our novel reuse
method can be applied to a wide variety of language engineering challenges. As such,
our approach can be considered a novel foundation for technology-space-independent
systematic language reuse that can be extended to support other dimensions of lan-
guage definition (transformations, editors, etc.), specification mechanisms for required
well-formedness rules, or different means of language composition.

3.4 Summary

This chapter presents a novel method that enables software language engineers to pro-
vide domain experts with more precise, and thus more effective, modeling languages.
To this end, they can define LPLs over independently developed language components
encapsulating realizations of syntax and semantics behind their explicit interfaces and
relate these in the LPLs feature models as seen fit for the intended domain. Based on a
selection of features from the LPLs, a novel DSL can be derived mostly automatically;
only implementations of the adapters between participating generators must be provided
manually. In the derivation process, grammars, well-formedness rules, and code genera-
tors of the language components of selected features are combined pairwise according to
their features’ relations in the LPL’s feature model. Our reuse method generally is in-
dependent of specific technological language engineering spaces as long as these conform
to the requirements laid out in this chapter. This novel form of systematic, planned lan-
guage engineering facilitates providing more truly domain-specific language to experts
contributing solutions to the engineering of CPS.

Further reading The publications summarized in this chapter relate to results of a
research program on SLE that investigates architecture-centric language engineering,
systematic modeling language reuse, and bridges between different technological spaces
of language engineering. Its results are documented in a multitude of publications.

[BHH+17] A. Butting, A. Haber, L. Hermerschmidt, O. Kautz, B. Rumpe, and
A. Wortmann. Systematic Language Extension Mechanisms for the
MontiArc Architecture Description Language, In: European Conference
on Modelling Foundations and Applications (ECMFA’17), LNCS 10376,
pages 53-70, Springer, 2017.

[ABK+18] K. Adam, A. Butting, O. Kautz, J. Pfeiffer, B. Rumpe, and A. Wort-
mann. Retrofitting Type-safe Interfaces into Template-based Code Gen-
erators, In: Proceedings of the 6th International Conference on Model-
Driven Engineering and Software Development (MODELSWARD’18),
pages 179 - 190, SciTePress, 2018.
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[HRW18] K. Hölldobler, B. Rumpe, and A. Wortmann. Software Language En-
gineering in the Large: Towards Composing and Deriving Languages,
Computer Languages, Systems & Structures, 54, pages 386-405, Else-
vier, 2018.

[DJK+19a] M. Dalibor, N. Jansen, J. Kästle, B. Rumpe, D. Schmalzing, L. Wacht-
meister, and A. Wortmann. Mind the Gap: Lessons Learned from Trans-
lating Grammars Between MontiCore and Xtext, In: Jeff Gray, Matti
Rossi, Jonathan Sprinkle, Juha-Pekka Tolvanen, editors, International
Workshop on Domain-Specific Modeling (DSM’19), pages 40-49, ACM,
2019.
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Chapter 4

Systems Modeling and Evolution

Architecture starts when you carefully put two bricks together.
There it begins.

Ludwig Mies van der Rohe

A quintessential challenge of modeling cyber-physical systems is defining their architec-
tures, i.e., fixing their principal design decisions (cf. Section 1.4.5). The “bricks” of such
architectures can assume many shapes, from the geometric-physical appearance of prod-
uct architectures to the abstract function networks of functional architectures. Putting
these together carefully is one of the prime challenges of product development pro-
cesses [UE09], including planning, design, validation, and production, for cyber-physical
systems. The research summarized in this chapter, thus, contributes to the third ob-
jective of our research program (RQ3) and establishes novel methods for the systematic
modeling and evolution of architectures and behavior of CPS and their digital twins. As
such, it largely focuses on the implementation phase of the system life cycle but can be
expected to extend into their operations through the increasing application of DevOps
(the combination of software development and IT operations) to CPS.

The dichotomy between the functional perspective on cyber-physical systems popu-
lar in computer science and the geometric-physical perspective popular in mechanical
engineering gives rise to a conceptual gap between functionally defined, reusable, trace-
able, and, ideally, automatically processable functional architectures and their geometric-
physical realizations. Successful engineering of cyber-physical systems needs to overcome
this gap. Due to incompatible abstractions on both sides of the gap, this demands signif-
icant efforts by experts of the implementation domains, who usually prefer to start with
geometric-physical implementations instead of functional architectures. This hampers
reusing solutions between different product development processes and product archi-
tectures.

Embracing semantically-grounded, functional architectures for the systematic engi-
neering of cyber-physical systems yields many benefits, including advanced possibili-
ties for automated analysis and synthesis of these architectures. Among these are the
possibilities to systematically evolve these architectures employing the methodology of
stepwise refinement [BS01]. In this, engineering of functional architectures starts with
coarse, largely underspecified, specifications of the architecture in question and proper-
ties that must hold for this architecture. If each subsequent version of this architecture
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is a semantic refinement of its predecessor, i.e., its observable behavior is a refinement
of the behavior of its predecessor, then the properties that held for the previous version
still hold for the successor version. This liberates engineers from validating and verifying
these properties again.

In stepwise refinement, decomposing the initial, monolithic, architectures into con-
nected components that can be implemented by experts of the participating domains
imposes significant effort to the systems engineers. Hence, in this activity, many errors
may occur. Through automated analysis and decomposition of the initial monoliths, this
can be mitigated.

Section 4.1 presents metamodels for supporting a functionally-driven product devel-
opment process for cyber-physical systems that enable reusing mechanical engineering
expertise reified in time-honored design catalogs [KK98]. Section 4.2 presents a novel
method for the automated, semantics-aware decomposition of functional architectures
based on the Focus [BS01] theory and its implementation in MontiArc (cf. Section 1.4.5).
This fosters the independent development of its components and facilitates integrating
domain experts into the overall systems engineering by assigning such components to the
respective experts. Section 4.3 introduces a method for the fully automated semantic
differencing of functional architectures. This method supports system integrators and
domain experts in ensuring the semantic compatibility of their independently developed
components with their predecessor versions assigned to them by the systems engineers.
Section 4.4 summarizes our contributions to systems modeling and evolution.

4.1 Functional Modeling of Cyber-Physical Systems

Cyber-physical systems are characterized by the interaction of mechanical, electronic,
and software systems. This raises various socio-technical challenges [Bro06, FR07] that
render engineering of such systems inherently complex. As customers increasingly de-
sire innovative functionalities and a shorter time-to-market, engineers developing cyber-
physical systems need to manage these complexities fast and cost-efficiently [DGH+19,
KMS+18, PBFG07]. Innovation in cyber-physical systems is driven by functionalities
and features that arise from the interaction of solutions from mechanical engineering,
electrical engineering, software engineering, and other contributing disciplines.

In mechanical engineering, engineers integrate the physical components of a product
into assemblies such that various constraints, e.g., regarding design space, mounting,
and maintenance are satisfied [PBFG07]. The resulting geometric-physical product ar-
chitecture fulfills the desired functionalities through physical effects acting between its
components and assemblies. In the product architecture, engineers control the impact of
physical effects by manipulating the geometric shape of components or their material, as
the effects themselves are set by laws of nature. Consequently, mechanical engineers tend
to directly design the geometry of components based on given requirements, i.e., without
explicating the functionality to implement, which is why the product architecture has
become the quintessential structuring element in mechanical engineering [PBFG07].

Where mechanical engineering is mainly concerned with the physical product architec-
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ture, software engineering has been very successful in adopting a functional perspective
on systems, which fosters the holistic design, engineering, and validation of functions.

In mechanical design methodology, functional architectures describe the functionality
of the system under development but are typically not considered in practice, let alone
modeled. Existing approaches utilizing mechanical functional architectures do not for-
malize the relation between the functional architecture and the product architecture.
Hence, the components of the physical product architectures are not directly linked to
the functions they implement. This raises a conceptual gap [FR07] between the func-
tional requirements of cyber-physical systems [KMS+18, DGH+19] (problem domain)
and their resulting physical product architecture (solution domain). Therefore, reusing
component implementations in other systems is hardly possible, and validation occurs
late in the product development process, i.e., when changes are cost-intensive.

This conceptual gap arises when the solution to a problem is described at a lower
level of abstraction than the problem itself [FR07]. A holistic MDSE for cyber-physical
systems, therefore, needs to bridge the gap between system functions and their implemen-
tation in a physical product architecture. In the following, we present two metamodels
to describe functional architectures that can be linked to their geometric-physical re-
alizations. This enables describing functional architectures of cyber-physical systems
and explaining their geometric-physical realizations based on mechanical design catalogs
in integrated models, which facilitates tracing of changes, joint evolution and mainte-
nance of the cyber parts and the physical parts, as well as systematic reuse of functional
architectures and their parts with different geometric-physical realizations.

Section 4.1 is based on the publication:

Paper 7 I. Drave, B. Rumpe, A. Wortmann, J. Berroth, G. Höpfner, G. Jacobs,
K. Spütz, T, Zerwas, C. Guist, J. Kohl. Modeling Mechanical Func-
tional Architectures in SysML, In: Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, pages 79-89, ACM, 2020.
Reference: [DRW+20]

Context Research has contributed modeling theories and languages for engineering
software and electronic functions of cyber-physical systems, e.g., [Alu15, Pto14], as well
as for designing [SFA17], engineering [BBL+16], and operating [BSP+16] these systems
in various domains. Most of these approaches solely consider modeling through the lens
of software engineering, i.e., they focus on discrete and functional systems. Where conti-
nuity and geometry are supported, the theories and languages do not support established
processes or modeling concepts from other domains (such as mechanical engineering).

In the Focus theory [BS01, RR11, RW18] for distributed interactive systems, sys-
tems are hierarchically composed of components that realize stream processing functions.
These functions communicate via channels only. Hence, they can be (de)composed (cf.
Section 4.2) and refined (cf. Section 4.3) systematically. Applying the Focus notion of
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refinement to a product development process based on mechanical function architectures
is subject to ongoing research.

Research in systems engineering produced various modeling languages specifically
tailored to engineering cyber-physical systems, including MechatronicUML [BGT04],
UML4IoT [TC16] SysML4Mechatronics [FHK+15], or SysML4Modelica [BFK15]. Nei-
ther of these are tailored to support the product development process.

Research in mechanical engineering produced methods supporting the modeling of
functional architectures in general [EGZ12, GDP+10, MKG+15, WS09, ZAMM12]. These
focus on informal modeling with sketches that do not distinguish between functional ar-
chitecture, physical geometry, or physical effect, which is hardly accessible to automation.
Hence, using these for systematic MDSE still demands to overcome the conceptual gap.

In mechanical engineering, design catalogs are means to support the design pro-
cesses [FLD04] by providing methods, processes, or components for recurring design
tasks. Consequently, various design catalogs have been conceived [KK98, GA09, Kol14,
PBFG07, Rot94, Rot96, Rot11]. The guidelines given in these catalogs are often given
in prose, which is ambiguous and imprecise, and, hence, cannot be leveraged directly
for MDSE. Approaches digitizing such catalogs solely focus on making their content
digitally accessible [FLD04, MEE+11]; again in form of drawings and prose. Hence,
engineers still need to overcome the conceptual gap when trying to make the digitized
design catalogs directly usable in MDSE. Currently, precise modeling languages tailored
to support the product development process based on the established foundations of
functional architectures in the sense of [KK98, Kol14] do not exist yet.

Contribution In mechanical design theory, the concept of functions is based on the
observation that a system or a part of it can be delimited by a boundary. Through this
boundary, physical quantities can enter and leave the system as functional flows [PBFG07].
The function of the delimited system is responsible for transforming the incoming func-
tional flows to the outgoing flows, which can be flows of signals, energies, and ma-
terials [UE03, PBFG07]. The function of a mechanical system then is composed of
sub-functions linked by functional flows [PBFG07]. Atomic functions, i.e., the transfor-
mation of flows they represent is not further decomposed, are referred to as elementary
functions [KK98]. Physical effects and geometries realize elementary functions. The
“Koller Catalog”, for instance, comprises 350 physical effects that are mapped to the el-
ementary functions they can realize [KK98]. Principle solutions then characterize how a
physical effect, given a qualitative geometry with certain material properties [PBFG07],
fulfills a physical function, i.e., the leaf of a functional structure [KK98].

To support a functional product development process of cyber-physical systems based
on established design catalogs, we applied concepts of CBSE, decomposition along chan-
nels of Focus [BS01], and separation of concerns to the engineering of functional architec-
tures of cyber-physical systems. Based on these concepts, we conceived two metamodels
that make functional architectures and their geometric-physical realizations explicit as
well as accessible to automated analysis, and traceable.

The first metamodel, illustrated in Figure 4.1, comprises concepts to describe the
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Figure 4.1: Our metamodel of functional architectures is inspired by the Focus theory
and combines selected concepts with mechanical design theory.

functional architecture of a CPS as functions that are connected via directed and typed
channels between their interfaces. Essentially channel type can be either signal, energy
flow, or material flow with their corresponding refinements, e.g., data structures, thermal
energy, or coolant fluid, respectively. Channel types feature attributes that are either
continuous, discrete, or fixed and represent properties of the flow modeled by the channel
type. Functions either are decomposed or elementary functions that require a geometry
and a effect.

The second metamodel, cf. Figure 4.2, features concepts to describe the geometric-
physical principle solutions in terms of attributes describing their characteristics, a prin-
ciple geometry, a single principle effect, and constraints over attributes. A principle
geometry consists of a number of geometric elements, each of which are of a material,
may feature attributes, and might be subject to constraints between their attributes. A
principle effect describes the interaction of multiple physical laws given in the form of
constraints over attributes. Solutions are special architectures that redefine the inherited
(elementary) functions of architectures to (principle) solutions, which are interconnected
by functional flows as inherited from the architecture.

With these metamodels in place, engineers of CPS can leverage the potential of func-
tional structures trace their components back to requirements, bridge the gap between
function and geometry in mechanics, apply a systematic separation of concerns between
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Figure 4.2: Out metamodel of principle solutions explicates concepts of the “Koller cat-
alog” [KK98] and relates these to functional architectures.

functional design and physical implementation, and facilitate integrating the heteroge-
neous domains participating in engineering CPSs. To further support the industrial
application of our metamodels for functional architectures and product architectures,
we also have encoded it as a SysML profile.

Conclusions In this contribution, we formalized the notion of functional CPS archi-
tectures and combined modeling these with applying the knowledge of design cata-
logs [KK98, PBFG07]. To this end, we applied concepts from software engineering
in metamodels that enable the explicit modeling of functional architectures, physical
solutions, and their connection to facilitate the functional design of CPS. Our results are
a first step towards the rigorous pervasive modeling of CPS that is necessary to overcom-
pensate their increasing complexity. Moreover, the metamodels enable separating the
concerns of involved domain experts into reusable functions and solutions, and facilitate
their contribution to the model-driven engineering of CPS.

4.2 Automated Semantics-Preserving Decomposition of
Architectures

Systems architectures combine and integrate concerns from a variety of stakeholders from
different domains. The better the architecture can be decomposed into domain-specific
components, the more cohesive components can be provided by the domain experts us-
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ing the concepts, methods, and paradigms of their choice. To support the systematic
and semantics-aware evolution of initial, monolithic components into architectures of
cohesive components, some theories for architecture modeling, such as communicating
sequential processes [Hoa78], Focus [BS01], and π-calculus [Mil99], support the notion
of stepwise refinement, a methodology for continuous architecture modeling based on
controlled evolution and progressive decomposition of components. During stepwise
refinement, monolithic components that realize multiple independent concerns are de-
composed and component behaviors are concretized, i.e., made increasingly determin-
istic, until, ultimately, an implementation, a hierarchical architecture of deterministic
components, is achieved. Thereby, each subsequent (possibly decomposed) version of a
component must adhere to properties already proven for its predecessors. A component
refactoring then is a special refinement step where the resulting component’s semantics
is equal to the semantics of the predecessor. Hence, from an external observer’s view-
point, the behaviors of the original and the resulting components are indistinguishable.
Manual stepwise refinement and refactoring without tool support, however, are tedious
and error-prone.component & connector

For the systematic engineering of software architectures with experts from multiple
domains contributing various components, automating the parallel decomposition of
software components into architectures of smaller, more cohesive software components is
important to achieve an efficient, modular, and parallel systems engineering. This raises
two challenges.

1. Analysis Challenge: Proving architectural properties already for initial, monolithic
architectures enables fixating relevant system properties early. However, model
checking the complete initial architecture might be challenging or impossible due
to it intertwining different concerns unrelated to the properties under consideration.

2. Implementation Challenge: Evolving functionalities implemented by monolithic
architectures is usually overly complicated: in the worst case, parts of the domain-
specific implementations are scattered over different components and hardly doc-
umented, which makes evolution error-prone and costly.

To support systems architects in semantically refining initial monoliths into architec-
tures of cohesive components that can be implemented independently by domain experts,
we conceived a novel method for the automated semantics-preserving decomposition of
component & connector architectures based on the influence exerted by messages re-
ceived via incoming ports on the messages sent via outgoing ports of components.

Section 4.2 is based on the publication:

Paper 8 O. Kautz, B. Rumpe, and A. Wortmann. Automated semantics-
preserving parallel decomposition of finite component and connector ar-
chitectures, In: Automated Software Engineering, 27, pages 119–151,
Springer, 2020.
Reference: [KRW20]

63



Chapter 4 Systems Modeling and Evolution

Context Only few ADLs support semantics-preserving stepwise refinement through
parallel decomposition and these are grounded in Focus [BS01] or the π-calculus [Mil99]:
AutoFocus 3 [HF07b] is a tool featuring an ADL for architectures of reactive software
systems grounded in Focus. While AutoFocus 3 supports model checking of architecture
behavior against temporal logics properties [CHN11], it lacks methods for the fully au-
tomated, semantics-preserving, decomposition of architectures. Hence, the challenge of
manually decomposing monolithic, initial architectures into components realizable by do-
main experts retains. The π-ADL [CQT+16, Oqu04] is an ADL based on the π-calculus
that supports model checking of software architectures against DynBLTL [QCT+16]
properties. To this end, a statistical model of system executions is created based on
which the probability of satisfying properties within confidential bounds is calculated.
We are unaware of any methods for automated, semantics-preserving decomposition
based on the π-calculus.

As our approach decomposes initial, monolithic components with large behavior au-
tomata, into architectures of smaller components, it also relates to the (automated)
parallel decomposition of automata [GG67]. More specifically, we aim for the practical
decomposition [Noz78, US13], i.e., the resulting components feature fewer states than
the component they were decomposed from, of TSPA. And while TSPA generally can be
decomposed into compositions comprising FIFOs and XORs only [KC09], the resulting
granularity produces automata too detailed for constructive systems engineering. For
probabilistic automata [CY15] and linear automata [PP15], related approaches exist.
None of these consider automated, semantics-preserving, decomposition in the presence
of influencing ports. Our method closes this gap to ease the modeling of fine-grained
software architectures that consist of independent component models, which can be im-
plemented by domain experts.

Contribution To support the automated semantics-preserving parallel decomposition
of architectures, we conceived a concept of influence between the ports of its components.
Based on the identification of non-influencing specifications, monolithic components can
be decomposed into independent, more cohesive and comprehensible components, which
are better accessible for analyses and development (e.g., for stepwise refinement or refac-
toring), automatically. The independence of resulting components facilitates their real-
ization by experts of different domains.

Our method uses TSPA to represent the abstract syntax (cf. Chapter 3) of com-
mon component & connector ADLs, such as AADL [FG12], AutoFocus [HF11], EAST-
ADL [DSLT04], SysML’s block diagrams [FMS14], MontiArc (cf. Section 1.4.5), and sim-
ilar languages. Given an initial component implementation, our method automatically
decomposes it into hierarchically composed subcomponents according to their influence
relation that yield the same behavior as the initial implementation. To achieve this, we
extend the Focus theory of time-synchronous components with the concept of influence,
present a decomposition procedure leveraging this, and prove that the resulting system is
semantically equivalent. Hence, our contributions are (1) A notion of influence between
ports of a software architecture that is grounded in the Focus theory; and (2) A method
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Figure 4.3: Initial architecture and intermediate, semantics-preserving, refinements of an
elevator control system.

to automatically refactor components with finite state spaces via parallel decomposition
according to the influence relation. The resulting architecture is semantically equivalent
to the previous architecture but can be evolved more efficiently by different stakehold-
ers. Thus, all original properties still hold, despite being less complicated and better to
evolve and maintain.

We identify an incoming port i and an outgoing port o of a component c as influencing
each other, if there are histories of messages with the same messages on all ports of c
except i that produce different behavior on o. By iteratively partitioning a component’s
implementation into two, with respect to two non-influencing ports, independent (sub-
)implementations, encapsulating these into new subcomponents, and composing these
based on their interfaces, we achieve a new architecture that is semantically equivalent
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but structurally refined.

Figure 4.3 illustrates the process of automated semantics-preserving decomposition
on the example architecture of an elevator control system [SW99]. The architecture is
responsible for controlling an elevator that serves three floors, including the movement
of the elevator cabin, opening and closing its doors, and operating the buttons and lights
of the elevator’s controls.

Beginning with an initial monolithic implementation (top left) that specifies a state-
based behavior, our method identifies that the incoming port btn2 and the outgoing
port light1 do not influence each other. Hence, the monolithic behavior implementa-
tion can be partitioned into an architecture of two subcomponents (top right), one,
Light1Control producing the behavior of the outgoing port light1, the other,
Rest depending on the incoming port button2. After three more iterations (bot-
tom right), our method identifies that the ports at2, at3, and button3 also to not
influence the port light1, which is why they are removed from the subcomponent
Light1Control. After four more iterations, (bottom left), the elevator control system
is refined further into three subcomponents responsible for controlling the lights on the
three floors this elevator serves. Further refinement will identify that the behavior of
subcomponent Light3Control is independent of the ports responsible for the behav-
ior of Light1Control and Light2Control. Moreover, a new subcomponent will
be identified that depends on button1 - button3, as well as onat1 - at3, and is
responsible for the behavior of the elevator cabin and its outgoing ports open, close,
up, and down.

Domain experts now can easily implement the different subcomponents with modeling
languages of their choice as long as the behavior of the components adheres to their
specification.

Conclusions Automatically decomposing monolithic architectures into hierarchically
composed subcomponents that retain the semantics of the initial architecture supports
providing independent components to domain experts who then can use the most appro-
priate domain-specific modeling languages to implement these independent components.
To this end, we have extended the focus theory with the concept of influence between
ports and proven that this refinement actually is a refactoring, i.e., semantics-preserving.

4.3 Continuously Analyzing Architecture Models

For engineering the software architectures of cyber-physical systems, knowing the precise
semantics of the participating models is essential with respect to automation, analysis,
communication, synthesis, and many domain-specific concerns (such as safety or reli-
ability). Current architecture modeling rarely considers the semantics of ADL, which
also is due to only very few ADLs being semantically well-defined. Stepwise refine-
ment [BF92, Bro10] is a software engineering methodology for the continuous modeling of
software architectures based on the controlled evolution and the progressive improvement
of the architecture’s components. Stepwise refinement requires that each subsequent ver-
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sion of a component model adheres to properties already proven for its predecessors. This
greatly reduces the effort for verifying these properties again for subsequent component
model versions. Hence, checking whether successor component model versions semanti-
cally refine their predecessors in terms of observable input-output behavior is essential.
Understanding the semantic differences of a continuously evolving architecture through
semantic analyses supports systems engineers during evolution analysis in understanding
the impact of the changes between two versions of the architecture under development.

However, where fully detailed denotational or operational architecture semantics are
available, e.g., as with Focus [BS01], these usually are too complex for fully automated
refinement checking. Hence, they typically require to (at least partially) manually prove
refinement between two versions of the same component model. This exacerbates step-
wise refinement so drastically that it becomes a “highly idealistic” [Bro10] idea.

To support architecture modelers in leveraging effective semantic differencing in prac-
tice, this requires means to fully automatically check whether one version of a system
admits behaviors that are not possible in another version. With automated refinement
checking and disproving, manual proofs become redundant, which enables domain ex-
perts without training in formal methods to validate the refinement of components they
evolved. This facilitates the efficient integration of domain experts into the engineering
of cyber-physical systems.

Section 4.3 is based on the publications:

Paper 9 A. Butting, O. Kautz, B. Rumpe, A. Wortmann. Semantic Differencing
for Message-Driven Component & Connector Architectures. In: Inter-
national Conference on Software Architecture (ICSA’17), Gothenburg,
pages 145-154. IEEE, 2017.
Reference: [BKRW17b]

Paper 10 A. Butting, O. Kautz, B. Rumpe, and A. Wortmann. Continuously An-
alyzing Finite, Message-Driven, Time-Synchronous Component & Con-
nector Systems During Architecture Evolution, Patrizio Pelliccione, Jan
Bosch, Mikic Marija, editors, In: Journal of Systems and Software, 149,
pages 437-461, Elsevier, 2019.
Reference: [BKRW19]

Context Studies on the verification techniques of ADLs emphasize the need for automa-
tion in architecture verification [TX00, ZML10]. Yet, only a few architecture modeling
techniques are sufficiently well-defined to support automated refinement and they are
grounded in Focus [BS01] or the π-calculus [Mil99]. AutoFOCUS 3 [HF07b] is based on
the semantics on Focus and supports model checking of architectures against LTL and
CTL formulas that specify properties of component behavior [CHN11]. It does not sup-
port fully automated refinement checking. The π-ADL, based on the π-calculus, could
support refinement, but considers finite traces of dynamic architectures only, where our
approach considers infinite traces of static architectures.
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Figure 4.4: Reduction of refinement checking to inclusion of ω-regular languages.

There is a concept for the refinement of architectures specified with timed I/O au-
tomata [KLSV03]. In that concept, the semantics of a timed I/O automaton is given
by a set of traces and the refinement of automata is defined in terms of trace inclu-
sion. However, timed I/O automata are limited to one message per transition, which
complicates architecture modeling and refinement with these[GR95]. Another approach
to refinement checking of software architectures also relies on Focus as its semantic do-
main [Rin14, RRW16]. To this end, it translates component semantics into WS1S and
uses the Mona [EKM98] model checker to (dis)prove refinement. The approach suffers
from the high computational complexity of solving W1S1 problems.

An efficient, fully automated refinement checking for complete architectures and indi-
vidual components, hence, still is missing. We conceived a representation of functional
architectures as message-driven time-synchronous systems and that leverages TSPA to
efficiently check their refinement.

Contribution To enable automated verification of component refinement by domain
experts without training in formal methods, we conceived a novel model of message-
driven time-synchronous system architectures. In this model, architectures are be rep-
resented as time-synchronous channel automata (TSCA), which are inspired by port
automata [GR95], I/O∗ automata [RR11, Rum96], and MAAts automata [Rin14]. All of
these models operate in time slices, in which they consume inputs and produce outputs,
but in contrast to these models, TSCA neither require initial outputs, nor control states,
consume and produce only a single message per time slice, and are guaranteed to have
finitely many transitions. In contrast to TSPA, TSCA support a more powerful compo-
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sition operator that is associative and commutative. Leveraging this operator enbables
defining an intuitive notion of system architecture, which is not possible with the TSPA
composition operator. Overall, checking refinement based on TSCA eliminates unneces-
sary complexity, yet TSCA can represent common component & connector architecture
models. Based on TSCA, we present a sound and complete method for the semantic
differencing of such architectures. Given an architecture model as a TSCA, our approach
reduces the semantic differencing problem for such automata to the language inclusion
problem for Büchi automata, which is PSCPACE-complete for nondeterministic Büchi
automata and decidable in general [KV96]. Through this reduction, we can calculate
semantic differences between two TSCA on a push-button basis, automatically produce
witnesses (counterexamples), and ultimately facilitate the semantic evolution of such
system architectures.

To this end, our contributions are the notion of TSCA, their novel composition op-
erator, a method for their semantics-preserving trimming to reduce the complexity of
refinement, and an efficient method for refinement checking that mitigates the state ex-
plosion problem by leveraging the aforementioned contributions. If an architecture is
not a refinement of another, our method fully automatically calculates a behavior that
is possible in the one architecture but not in the other. This behavior serves as a wit-
ness and is a concrete disproof for refinement. Domain experts can use the witness as
evidence for efficiently identifying the model parts that cause the non-refinement.

Figure 4.4 illustrates our approach on the example of an architecture model of an
elevator cabin ElevatorCabin, which is part of the elevator control system [SW99]
illustrated in Figure 4.3, and its successor version SmartElevatorCabin. In contrast
to the predecessor version, the SmartElevatorCabin only reacts to requests at floors
where there has not been made a request yet. The observable behavior of it shall be a
refinement of the observable behavior of ElevatorCabin. To verify that, first both ar-
chitectures are translated into TSCA (depicted left). In this process, their hierarchies are
eliminated. Then both are translated into the nondeterministic Büchi automata EC and
SEC (depicted right). Ultimately, it is checked whether the language of SEC is included
in the language of EC. If that holds, the behaviors of SmartElevatorCabin are a sub-
set of the behaviors of ElevatorCabin and the architecture SmartElevatorCabin
indeed is a refinement of the architecture ElevatorCabin.

Applying this transformation reduces semantic component refinement to language in-
clusion on Büchi automata, which can be solved automatically. Hence, for architectures
representable as TSCA, domain experts can easily check whether their contribution in
form of an atomic or composed components still is a refinement of its previous version
prior to contributing it to systems integration. If refinement is refuted, counterexam-
ples, i.e., difference-witnessing pairs of input/output message sequences are produced.
Hence, domain experts can easily comprehend why their evolved successor component is
no refinement of its predecessor.

Conclusions Refinement checking for components representable as TSCA can be fully
automated in an efficient fashion by translating the component and its predecessor into
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weak Büchi automata. With these, component refinement can be reformulated as the
language inclusion problem between these Büchi automata for which efficient algorithms
exist. Fully automating refinement checking can greatly increase the pace of each refine-
ment step, improve overall systems engineering efficiency, and facilitate the integration
of domain experts.

4.4 Summary

This chapter summarizes novel modeling techniques and methods to reduce the concep-
tual gap between functional and geometric-physical architectures of CPS, automatically
decompose functional CPS architectures and evolve these systematically. To this end,
we conceived a novel metamodel that combines results from the Focus theory and de-
sign catalogs and enables modeling, as well as tracing the implementation of desired
functionality within product architectures of geometric-physical realizations. The func-
tional architectures can be decomposed according to the influence relation between two
ports automatically and iteratively, yielding a collection of interconnected (less complex)
components that can be realized independently by experts of the participating domains.
Whether these realizations and other evolution of the architecture are indeed refinements
of their predecessors can then be checked automatically, significantly reducing the effort
for integration. And while we contributed three methods that can facilitate solving
central challenges in engineering CPS, the vision of a pervasive MDSE of CPS demands
additional contributions on modeling concepts, methods, and tools from all participating
domains.

Further reading The results presented in this chapter address three essential challenges
in the MBSE of CPS. To achieve the vision of a truly pervasive MDSE for CPS, many
other challenges, such as improving the reuse of architecture parts and components,
efficient verification of CPS properties, or the systematic structuring and analysis of
related development processes, need to be addressed as well. In the research program
leading to this thesis, solutions to some these challenges were conceived as well.

[ARW17] K. Adam, B. Rumpe, and A. Wortmann. Improving Reuse in Archi-
tecture Modeling with Higher-Order Components, In: Tagungsband des
Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter
Systeme XIII (MBEES’17), Universität Hamburg, 2017.

[BGRW18] A. Butting, T. Greifenberg, B. Rumpe, and A. Wortmann. On the Need
for Artifact Models in Model-Driven Systems Engineering Projects, In:
Martina Seidl, Steffen Zschaler, editors, Software Technologies: Applica-
tions and Foundations, LNCS 10748, pages 146-153, Springer, 2018.
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[KMS+18] S. Kriebel, M. Markthaler, K. S. Salman, T. Greifenberg, S. Hillemacher,
B. Rumpe, C. Schulze, A. Wortmann, P. Orth, and J. Richenhagen.
Improving Model-based Testing in Automotive Software Engineering, In:
International Conference on Software Engineering: Software Engineering
in Practice (ICSE’18), pages 172-180, ACM, 2018.

[DGH+18] I. Drave, T. Greifenberg, S. Hillemacher, S. Kriebel, M. Markthaler, B.
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Chapter 5

Operating Cyber-Physical Systems with
Digital Twins

There is a better way for everything. Find it.

Thomas Edison

Industrially operated cyber-physical systems can produce tremendous amounts of data.
The information hidden in this wealth of data can be used to optimize the behavior
of these systems and their use of resources. Yet, globally collecting all the data and
analyzing it in realtime, i.e., fast enough to act on analysis results with changes to the
process emitting that data, often is impossible due to the sheer amount of data. A
locally optimized data aggregation, abstraction, and processing that selects and com-
bines the relevant data for various purposes could be a better way for optimizing the
operation of cyber-physical systems. Model-driven concepts, methods, and tools can fa-
cilitate and improve all of these operations. Thus, this chapter summarizes model-driven
contributions to the operation of cyber-physical systems (RQ4).

A pillar of Industry 4.0 and other domains of cyber-physical systems is in the digi-
tization of participating systems, processes, and stakeholders to facilitate design space
exploration, integration verification & validation, monitoring, and their optimization.
Under the umbrella term “digital twinL” [BR16, GV17, SCD+12], research and industry
from many domains have produced various approaches to modeling the digital represen-
tations of systems for specific purposes. These approaches define digital twins as

– a “digital equivalent to a physical product” [ASP17],

– an “always current digital image of the production system” [BMKW19],

– “a mimic of a real-world asset displaying up to date information of what is currently
happening” [EDF+18],

– “an integrated virtual model of a real-world system containing all of its physical
information and functional units.” [PNL+19], or

– “a virtual representation of an asset used from early design through building and
operation.” [SHB+17].

And while there are many more approaches to define digital twins, most of these assume
the same main functionality inherent in the definitions above: the main function of a dig-
ital twin is to digitally represent a system, process, or person during their (potentially
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virtual) operation. Yet, most contributions on digital twins present ad-hoc solutions
to very particular challenges, e.g., representation of aircraft tires [ZM17], CNC ma-
chines [KLMX18], drilling rigs [MSO18], industrial robots [KOTB19], organs [LBK+19],
or complete manufacturing plants [LWG+19]. Hence, regarding the components of dig-
ital twins, their systematic engineering, the integration of domain expertise into digital
twins, and the use of data aggregation and abstraction in digital twins, there is a severe
need for research.

This chapter aims to shed light on these challenges and to guide researchers and
practitioners in leveraging MDSE concepts, methods, and tools in data aggregation
and abstraction as well as modeling and operating the digital twins of cyber-physical
systems. To this end, it leverages the software language engineering results and modeling
methods presented in previous chapters to combine modeling language for digital twins
and engineer these systematically.

Section 5.1 investigates the conception of “Digital Shadows”, data structures not aim-
ing to be a “digital equivalent” or and “integrated model [. . . ] containing all of its [. . . ]
information”, but specific, purposefully created, collected, aggregated, and abstracted
data used as the basis for optimizing operation if cyber-physical systems. Section 5.2
presents a novel method for the MDSE of digital twins of cyber-physical systems that
leverages the combination of MontiArc (cf. Section 1.4.5) and domain-specific languages
to ease the engineering, deployment, and reuse of digital twins for different contexts.
Section 5.3 summarizes results on the model-driven integration of digital twins with
information systems to facilitate their representation. Section 5.4 summarizes our con-
tributions to systems modeling and evolution.

5.1 On Digital Twins and Digital Shadows

Digital shadows [RSDT19, SDT18, WWB17] are the vision of collecting, aggregating,
and abstracting manufacturing data for specific purposes fast enough, such that decisions
made on this data can impact processes and cyber-physical systems having produced the
data. In contrast to digital twins, digital shadows therefore comprise only a reduced or
abstracted subset of the available data (and possibly models) to represent a system
with respect to a specific purpose. For this purpose, digital shadows need to comprise
various kinds of data (e.g., measurement data, simulation data, models) from different
sources that is abstracted and aggregated in domain-specific and application-specific
ways and augmented with necessary metadata to fulfill their purpose. Through their
specific abstraction and aggregation, digital shadows can be the optimal data structures
to ensure timely decision-making in cyber-physical systems.

Figure 5.1 illustrates the potential benefits of digital shadows using road systems and
traffic data as an example. To represent the physical road system, its digital topolog-
ical model (top) can serve for general orientation or for estimating distances. Yet, the
complete model is rarely necessary, but instead purposefully abstracted shadows of it,
enriched with additional data are required. For instance, to optimize route planning,
flexibly react to changes in the system (e.g., due to congestion), and reduce the cost
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Figure 5.1: Digital shadows are data structures produced by illuminating a represented
system for a specific purpose.

of traveling (in terms of time and fuel consumption), the aggregation of dynamic data
on traffic, weather, and other circumstances of potential impact is required. However,
this data is not required to precisely cover the complete road system model but needs
precision only for excerpts of it, whereas for areas related to the route planning in ques-
tion, details might be abstracted–and for unrelated areas the data is not needed at all.
Moreover, additional available data related to the model (e.g., restaurants in the re-
lated area and their latest reviews) can be omitted completely. By abstracting from
the complete topological road system model to a specific part and aggregating related
data on the current (bottom left) or predicted (bottom right) traffic situation, digital
shadows for different purposes can be created more efficiently than by enriching the
complete model. These purposefully created digital shadows comprise parts of the road
system model as well as specific data and can be processed more efficiently (e.g., to plan
routes in the depicted region) than the totality of models and data they were derived
from. A complete digital twin (in the sense of complete, high-precision digital replica)
of the earth with all possible data, not limited to traffic, is not necessary for this. On
the contrary, overwhelming decision-making systems with all available data might delay
decisions dramatically.

Analogous to this, e.g., manufacturing orders (models) can also be dispatched to the
manufacturing process on the basis of their rigid characteristics (necessary work steps,
average throughput times), but their completion dates can only be reliably planned by
taking into account the current capacity utilization, machine availability, etc. (data). We,
therefore, conceived a first explicit definition and model of digital shadows to facilitate
data-driven process optimization.
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The concept of digital shadows is novel and must integrate data, concerns, and meth-
ods from a variety of domains participating in Industry 4.0. Hence, realizing it needs
multi-disciplinary collaboration across the different stakeholders involved in designing,
engineering, deploying, operating, and maintaining manufacturing systems. Establish-
ing such a collaboration is challenging as the involved stakeholders follow different
paradigms, employ different methods, and use different terminology based on their do-
main of expertise. A first necessary foundation towards this collaboration, hence, is an
agreement on the concept of digital shadows in general.

The Internet of Production1 excellence cluster of RWTH Aachen University pursues
the vision of interdisciplinary collaboration based on continuous horizontal and vertical
exchange of manufacturing data, integrated development of specifications, efficient pro-
cessing of domain-specific tasks, and cross-domain validation. For a first conceptualiza-
tion of digital shadows, their use, and capabilities, we conducted a survey in the Internet
of Production through which we reached out to its 200 researchers of 25 departments
conducting research in a variety of domains, including artificial intelligence, computer
science, innovation research, labor science, mechanical engineering, and manufacturing
technology.

Section 5.1 is based on the publication:

Paper 11 G. Schuh, C. Häfner, C. Hopmann, B. Rumpe, M. Brockmann, A. Wort-
mann, J. Maibaum, M. Dalibor, P. Bibow, P. Sapel, and M. Kröger.
Effizientere Produktion mit Digitalen Schatten, In: Wilhelm Bauer, Wol-
fram Volk, Michael Zäh, editors, In: ZWF Zeitschrift für wirtschaftlichen
Fabrikbetrieb, 115, pages 105-107, Hanser, 2020.
Reference: [SHH+20]

Context The term “digital shadow” has been proposed by members of the Internet of
Production earlier [SBRB16, SWL+16] and is still considered essential for enabling the
data exchange necessary for the vision of the Internet of Production. The early publi-
cations on digital shadows have in common that the concept itself is neither sufficiently
distinguished from the concept of the digital twin, nor sufficiently precise.

This also explains why many publications use terms digital twin and digital shadow
interchangeably, whereas others consider qualitative differences between both concepts.
For instance, there are various conceptions of digital twins that consider these as models
of datasets aggregated and abstracted for a specific purpose that represent a cyber-
physical system, person, or process but cannot interact with it [DR18, HSFH18, Kue18,
SF18, SSP+16, WB17]. Others consider digital twins as systems that are able to in-
teract with the represented systems or processes. Such digital twins often are con-
sidered active models or systems that, maybe automatically, perform operations with
the represented systems or processes to optimize its use [PJIZ18, ZZL+19]. Hence,
there is a qualitative difference between both concepts that warrants investigation. Yet,

1Internet of Production: https://www.iop.rwth-aachen.de/
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surveys on digital twins focus on success stories [MSO18], state-of-the-art application
of digital twins [DHA+18, TZLN18], or specific challenges digital twins are applied
to [BWK18, DHA+18, Kra16]. There are no studies investigating or even considering
the distinction between digital twins and digital shadows.

Contribution To shed light onto the distinction between digital shadows and digital
twins, we conceived a novel interdisciplinary questionnaire of 21 questions arranged in
three sections on (1) the purpose and understanding of digital shadows in contrast to
digital twins; (2) the expected functions and capabilities of digital shadows and digital
twins; and (3) the use of digital shadows and digital twins through the engineering
lifecycle of a system. After a pilot survey with selected participants from mechanical
engineering, systems engineering, and factory planning, we revised our survey to use less
specific terminology and presumptions from computer science and software engineering
and rephrased the questions to be better comprehensible by experts of other domains.
Based on the results of the survey, we conducted multiple workshops with participants
of different research domains of the Internet of Production to better understand the
answers given in response to the questionnaire and to refine the findings further. Based
on these findings, we conceived the following definitions:

A digital shadow is a set of contextual data traces and/or their aggregation and
abstraction collected concerning a system for a specific purpose with respect to the
original system.

Digital shadows are digital artifacts without physical representation that consist of
data traces that are generated, preprocessed, and possibly augmented for a specific
purpose with respect to a specific system. In addition to the data traces, they need to
contain contextual data (e.g., source of data, time of creation, precision, reliability) that
is required for the semantic processing of the shadows by other systems, e.g., digital
twins, manufacturing systems, product lifecycle management systems, or others.

This entails that digital shadows can originate from different sources (e.g., sensor
signals, simulation data, strategic enterprise-level data) and that this data can be created
by aggregating or filtering other data traces (e.g., to include the temperature gradient
from several temperature measurements). This also entails that digital shadows can
contain complex models produced by the represent system or related systems. Especially,
the digital shadows might be models of modeling languages themselves.

While there are different opinions on whether a represented system can have multiple
digital twins, it is crucial that it can cast a multitude of different digital shadows depend-
ing on the illuminated aspects of observation. Thus, purpose-specific digital shadows are
created by selecting the required parameters, gathering the raw data from the source
of interest, cleaning and abstracting it. In contrast to digital twins, digital shadows al-
ways are passive in the sense that they do not interact with the represented system but
serve as the basis for making decisions about that system and for influencing it through
other systems and services. Based on these findings, we propose the conceptual model
of digital shadows as presented in Figure 5.2.
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Figure 5.2: Conceptual model of digital shadows.

In this model, digital shadows comprise data traces and models. Data traces consist
of datasets and related metadata. Each data trace yields a single data source describing
its origin, which can be a sensor, results from a simulation, a model, or a data trace
processing activity that itself is based on data traces. The models can be of different
kinds, such as structural models, e.g., SysML block diagrams or CAD models, behavior
models, such as physical equations or state-based behavior descriptions, knowledge bases,
and many more. Metadata comprises domain-specific data relative to the purpose of
the digital shadow, which may explain the semantics of data. Typical data processing
activities related to digital shadows are abstraction, aggregation, or data transformation.
Based on the survey and the subsequent workshops, we also conceived the following
definition of digital twins:

A digital twin of a system consists of a set of models of the system, a set of digital
shadows, and provides a set of services to use the data and models purposefully with
respect to the original system.

Again, we use the term system in a wide sense that includes, e.g., systems, processes,
and persons. Where the digital shadows are passive data structures focusing on data
that changes during system operation, the digital twins focus on representing a cyber-
physical system using structural and behavioral models as well as digital shadows. To
this end, we conceive digital twins as systems featuring models, data, and related services
that may manipulate the represented system themselves (e.g., to control or optimize its
behavior or prevent failures). Consequently, a digital twin might include CAD models
of manufacturing systems, models of the stakeholders of related business processes, or
name and birthday of a patient.

Conclusions Considering the digital twin as an exact replica of a represented system is
a highly idealistic vision hardly feasible in reality. To achieve such a vision, every concern
of the represented system, from its subatomic behavior to the impact that celestial bodies
effect on it, which, e.g., would be relevant to fluid processes such as injection molding,
must be considered. Our concept of digital shadows aims to capture, process, and analyze
only the data and models necessary for a specific purpose. Collecting, constructing, and
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combining digital shadows for specific purposes instead of aiming for all-encompassing
digital twins can greatly facilitate making the vision of Industry 4.0 (cf. Section 2.1) a
reality.

5.2 Pervasive Model-Driven Digital Twins

The investigation of digital twins detailed in the previous section assumes a birds-eye
view on the concept and its understanding in manufacturing. Through this, we found
that the large majority of publications on digital twins either reports on generic concepts
for digital twin engineering that abstract from technical realizations or presents success-
ful applications of nondescript digital twin realizations. The abstract presentations of
digital twins and their implementations make applying the presented solutions in other
application contexts or domains impossible.

There are only a few publications presenting reproducible and reusable architectures
for digital twins. Where such architectures are proposed, their integration with domain-
specific expertise is not considered. To mitigate this, we propose investigating digital
twins through the lens of MDE (1) top-down, from a systems engineering vantage point,
and (2) bottom-up, from the challenges of a specific domain, at the same time. Focusing
on the models of discourse can facilitate making domain expertise explicit. Investigating
their engineering top-down and bottom-up can shed light on the cross-domain systems
engineering concerns, challenges, and solutions for reproducible digital twin architectures
as well as on the domain-specific concepts, methods, and techniques relating to these.

This approach to digital twin research demands the close collaboration of experts
from participating domains, which the Internet of Production excellence cluster enables.
Hence, to support researchers and practitioners in engineering digital twins for cyber-
physical systems in manufacturing, we conceived a method for the pervasive model-
driven engineering of digital twins together with experts from plastics processing. This
method focuses on (1) a generic and extensional component & connector architecture;
(2) structure and behavior models reifying expertise, data sources, and machinery of
plastics processing; (3) the systematic customization of the architecture with the domain-
specific models; and (4) producing executable digital twins from their combination.

Section 5.2 is based on the publication:

Paper 12 P. Bibow, M. Dalibor, C. Hopmann, B. Mainz, B. Rumpe, D. Schmalz-
ing, M. Schmitz, A. Wortmann. Model-Driven Development of a Digital
Twin for Injection Molding, In: Advanced Information Systems Engi-
neering, 32nd International Conference, CAiSE 2020, Grenoble, France,
June 8–12, 2020, Proceedings, pages 85-100, Springer, 2020.
Reference: [BDH+20]

Context Digitization poses major challenges for companies worldwide. In the vision of
Industry 4.0, comprehensive data acquisition and analysis enables highly flexible, versa-
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tile value-added systems to increase productivity at reduced costs. One pillar of these
versatile value-added systems in Industry 4.0 is the idea of digital twins, replicas of cyber-
physical systems that represent these for various purposes, ranging from monitoring, be-
havior optimization and prediction in a multitude of application domains including auto-
motive [DB18, KMC+18], construction [KX18, SDLJ19], drilling and mining [NMR+18,
PNBL+19], manufacturing [WYG+19, ZLX18], medicine [CCSN19, LBK+19], robotics
[HE17, VCGP19], and sports [BC19], in which they represent the relevant systems, per-
sons, or processes.

Most of this research focuses on very specific applications with little generalizability.
Where more general architectures are presented, these most often focus on abstract
conceptual guidelines [BVM19, CAM+17, DDP+17] for engineering digital twins, such as
arranging the digital twins together with their environments in specific layers [ASLC17,
BS17, RBK18], or their implementation with specific GPLs [PJIZ18]. Overall, there is
a lack of research regarding the systematic engineering of generalizable architectures for
digital twins that support integrating domain expertise.

Contribution The systematic engineering of digital twins for cyber-physical systems
needs to consider the overall digital twin behavior, its connection to various kinds of
data sources, its connection to its cyber-physical system counterpart, and the integra-
tion of (domain-specific) expertise. Making these aspects of a digital twin explicit in
domain-specific models that can be understood and developed by experts of the respec-
tive domains, integrated, and translated into a digital twin implementation is a necessary
prerequisite for that.

To facilitate the engineering of digital twins with experts of participating domains, we
conceived a model-driven method centered around an extensible MontiArc architecture
that provides components to process operation data from the cyber-physical systems into
digital shadows, evaluate the necessity to act on the observed systems based on domain-
specific rules, and act accordingly. We conceived this architecture in close collaboration
with experts from plastics processing and evaluated it in the context of injection molding.

The digital twin architecture, illustrated in Figure 5.3, describes a single digital twin,
operates in the context of a UML/P class diagram domain model, and relies on two
DSLs tailored to domain experts: An event DSL describes the conditions under which
the digital twins need to act and a design of experiments (DoE) DSL that describes
experiments to find optimal values for manufacturing parameters. To further ease reusing
this architecture, it makes its connections to sources and the cyber-physical systems
explicit. Therefore, our method also includes a compact DSL for specifying connections
to the Apache Kafka [Gar13], a popular platform to stream manufacturing data [PC16,
PRCO16], to read live data from the observed CPS. To control the observed system, it
features a second compact DSL for specifying OPC-UA [LM06] connections to system.
With OPC-UA being a popular middleware for industrial automation [CJOC10, HS14,
IJ13], this enables applying our method and architecture to a variety of cyber-physical
systems.

Overall, the digital twin architecture comprises five subcomponents that itself are
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Figure 5.3: At the core of our method to the model-driven engineering of digital twins
is a MontiArc architecture connected to models of various DSLs.

composed again: To decouple the technical details of data retrieval from the logical
translation of data into digital shadows, the DataProcessor comprises the subcompo-
nents ProcessorAdapter and ProcessorLogic. The ProcessorAdapter sub-
component leverages novel Kafka streaming schema models to connect to the various
data sources of a data lake. The subcomponent ProcessorLogic which translates
data received from the to digital shadows based on queries from the Evaluator. It
creates the digital shadows and emits these through the corresponding outgoing port
of DataProcessor. The Evaluator interprets domain-specific event models to de-
cide whether the digital twin needs to react to changes in the observed system or its
environment. To clarify whether this is necessary, additional information might be re-
quired, which can be requested by sending queries for additional digital shadows to the
DataProcessor. During this, the knowledge base of the digital twin might be up-
dated to reflect these changes. If an event’s condition is fulfilled, a goal is emitted to the
Reasoner. The Reasoner receives goals from the Evaluator and selects suitable
DoE models to conduct experiments to find valid parameters for the cyber-physical sys-
tems. During this, it might update its knowledge base. Once a suitable DoE is identified,
this is emitted as a Solution to the Executor. Similar to the DataProcessor, the
Executor comprises two subcomponents to decouple execution logic from the techni-
cal connection to the cyber-physical systems. The subcomponent ExecutionLogic
translates the DoE into a sequence of platform-specific actions that should be applied
to the cyber-physical systems. The subcomponent ExecutionAdapter leverages an
OPC-UA connection model to translate these actions into OPC-UA commands that it
sends to the systems.

From the UML/P class diagram domain model, the architecture model, the event-
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action models, the DoE models, and the connection models, an integrated implementa-
tion of the digital twin is generated. This implementation connects to a cyber-physical
system and a data source, produces digital shadows according to event models and based
on data of the observed system, evaluates these with respect to the conditions of the
event models. If an event triggers, i.e., observed properties of the observed system de-
viate from expectations, a DoE is conducted to identify an operational configuration of
the system again. Unless continuing the operation is identified as hazardous, the cyber-
physical system continues to operate during the DoE, e.g., it continues producing goods,
to automatically improve operation parameters and evaluate results.

Through exchanging the event models and DoE models, our digital twin architecture
can easily be tailored towards different applications and by adjusting the Kafka mod-
els and OPC-UA model, the architecture also can be used with different cyber-physical
systems with little effort. To adjust the architecture to different applications and cyber-
physical systems, we conceived the systematic customization process illustrated in Fig-
ure 5.4.

First, domain experts create the domain model and the event models relating to the
data types defined in the domain model. After all relevant events have been identi-
fied and modeled, domain experts create the DoE models to react to these events. To
bind the digital twin architecture to data sources and the cyber-physical systems, the
afterwards create Kafka schema models and a single OPC-UA connection model. Based
on the architecture model and the models create during the customization process, our
toolchain generates an implementation of the architecture comprising Java artifacts reify-
ing the domain model’s data types, the architecture’s components, and the bindings for
data sources and the cyber-physical systems. Moreover, these artifacts generated to be
aware of the event models and DoE are capable of interpreting these. Ultimately, the
Reasoner and the Executioner can be adjusted further if necessary.

Conclusions Overall, leveraging MDE with DSLs for the engineering of digital twins
eases the inclusion of domain expertise in the digital twins, which is crucial to their
effective application. Using an extensible architecture as the basis for digital twins facil-
itate their future extension with novel components, such as user interfaces, sophisticated
planners, or additional failure handling. By selecting MontiArc (cf. Section 1.4.5) as the
basis of our method, engineers developing digital twins can leverage automated decom-
position (Section 4.3) and refinement checking (Section 4.3) without additional effort.
The separation of digital twin business logic and technical realization through Kafka
schema models and OPC-UA connection models encourages reusing the architecture
with different data sources and cyber-physical systems.

The presented architecture leverages an event DSL and a DoE DSL tailored to domain
experts. These languages might need adjustment for application in different domains.
Through the modular language engineering (cf. Chapter 3), this becomes feasible. Fur-
ther challenges are (1) that different digital twins will require different forms of reasoning
to control, optimize, and predict the behavior of the represented cyber-physical systems;
(2) the domain-specific visualization of digital shadows by the digital twin; (3) the diver-
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Figure 5.4: Our method for the systematic MDSE of domain-specific and reusable digital
twins leverages an extensible MontiArc architecture and four DSLs.

gence of expected behavior (e.g., as reified in event models) and actual behavior of the
observed systems, which might degrade the effectiveness of the digital twin; (4) encod-
ing mode complex domain expertise; and (5) the composition of digital twins of multiple
cyber-physical systems to a system of digital twins.

5.3 Representing Digital Twins with Information Systems

The efficient and agile creation of digital twins [TCQ+18] is a concern of interest in
many disciplines of cyber-physical systems, such as marine [JN19], smart manufac-
turing [TCQ+18, TQWN19], avionics [MPPU19], infrastructure and energy manage-
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ment [LXH+20] or automotive [BW19]. In many of these domains, the digital twins are
considered to comprise models of the systems, data traces (digital shadows), and often
services that enable using the digital twins purposefully with respect to the original sys-
tem (cf. Section 5.1). As the quintessential purpose of digital twins is representing (the
activities of) a cyber-physical system to human operators or other systems (e.g., produc-
tion dashboards), means for their efficient representation and integration into existing
representation mechanisms are vital to the success of digital twins.

Information systems [AMN+20, BD20], such as manufacturing dashboards [GHH+13,
GS14] or finance cockpits [ANV+18], provide established and effective means to man-
age cyber-physical systems [JYE19]. Hence, they also are an obvious interface for the
representation of digital twins and their data (i.e., shadows) as well as for structuring
the interaction with operators and the cyber-physical systems. Accordingly, the partic-
ipating cyber-physical systems and information systems have to share many interfaces
to communicate about data, models, and user inputs.

Traditionally, the connections between the interfaces of information systems and cyber-
physical systems are crafted manually. The corresponding implementation activities are
highly repetitive and do not demand a high cognitive performance of the developers. Yet
they are, due to the multitude of interfaces, time-consuming and error-prone. To support
researchers and practitioners in the engineering and operation of digital twins, applying
MDSE to creating the connections between digital twins and information systems can
mitigate these challenges, facilitate realizing the representation of digital twins, and
hence, foster their application.

To efficiently support engineers in representing digital twins via information systems,
a model-driven approach to their connection, thus, should ensure that (1) both systems
need to be able to exchange data of types known to both systems; (2) the communication
infrastructure connecting both should be completely generated; (3) the handcrafted parts
of cyber-physical systems and information system should be transparent to the systems’
communication; and (4) the information system should be able to influence the behavior
of the digital twin.

Section 5.1 is based on the publication:

Paper 13 J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, A. Wortmann. Model-
driven Digital Twin Construction: Synthesizing the Integration of Cyber-
Physical Systems with Their Information Systems, In: Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pages 90-101, ACM, 2020.
Reference: [KMR+20]

Context There are already various solutions to the MDSE of Internet of Things sys-
tems. For instance, ThingML [HFMH16, MHF17] is a modeling framework for describing
IoT systems and their behavior in a DSL. From these models, the framework generates
C, Java, or JavaScript artifacts realizing the different components of an IoT system.
Calvin [PA15] is a modeling language for defining the distributed architecture of IoT
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systems in a syntax similar to MontiArc (cf. Section 1.4.5) using its CalvinScript DSL.
MDE4IoT [CS16] uses a variant of UML to describe IoT systems and their deploy-
ment to physical devices. SysML4IoT [HLR17] is a modeling language for the engineer-
ing of adaptive IoT systems using a variant of SysML. CapeCode [BJK+18], based on
Ptolemy [Pto14], provides a graphical user interface for combining IoT components as
reusable building blocks.

These solutions support specifying message exchange and serialization between IoT
systems but lack means for automatically synchronizing the messages from the IoT
systems with information systems. And while it might be possible to leverage the DSLs
of these solutions to manually craft digital twins and information systems, there is no
systematic support for that in any of them. Hence, principally, the synchronization of
digital twins with information systems is generally supported but requires considerable
manual effort and in-depth expertise about information systems, cyber-physical systems,
and digital twins. Hence, even with popular IoT solutions, connecting devices as simple
as a temperature sensor can be unnecessarily complicated [LG18].

Contribution To address the abovementioned challenges and facilitate the representa-
tion of digital twins with information systems, we have conceived a model-driven method
for their integration. This method exploits that both the data structures the information
system is based upon, the architecture of the digital twins (cf. Section 5.2), and their con-
nection are modeled using appropriate modeling languages (cf. Chapter 2). Therefore, it
comprises the model-driven integration of the digital twins and the and information sys-
tems and a fully automated transformative extension of digital twin architecture models
and information system data models to keep their data synchronized.

MontiGem [AMN+19, GHK+20] is a code generation framework for enterprise infor-
mation systems that translates UML/P [Rum16, Rum17] class diagram models that are
augmented with user interfaces models into web-based information systems that operate
on databases [GMN+20] employing schemata generated from the class diagrams. Hence,
the essential information represented in the information systems are data conforming
to the class diagrams and stored in the generated databases. Our method for the in-
tegration of information systems generated with MontiGem with digital twins modeled
as MontiArc architectures therefore aims at connecting attributes of MontiGem’s data
model with ports of the digital twin’s architecture. Hence, we leverage the notion of
tagging languages [GLRR15].

Tagging is a modeling mechanism in which a base model is enriched with additional
information, such as platform-specific details, to prevent pollution of the base model and
to facilitate reusing it in different contexts [MRRW16]. To this effect, from a tagging
schema relative for the base DSL is specified from which a tagging language specific to the
base DSL, i.e., by reusing parts of its syntax, is generated. Using models of this domain-
specific tagging language, models of the base DSL can be annotated in a type-safe fashion,
which reduces the possibilities for error. Usually, models of the base language then
are processed together with their corresponding tag models, e.g., to consider platform-
specific information in the transformation of the base model [DJK+19b].
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Figure 5.5: Tagging facilitates the connection of digital twins and information systems
while clearly separating the related concerns.

To connect the information system with the digital twin, we developed a tagging
schema that supports tagging the attributes of a base UML/P class diagram model
with information from a MontiArc model, i.e., its ports. Through this, engineers can
easily establish a directed relation between a port reading or writing the value of an
attribute of a class presented by the information system (or vice versa). Based on
this tagging, the models of both systems, the information system class diagram and
the digital twin architecture are augmented with classes or components responsible for
sending or receiving information accordingly before both models are translated into
executable systems by their corresponding generators.

The overall process is illustrated in Figure 5.5: The activities of creating the digital
twin architecture and creating the information system models can be performed in par-
allel and without any exchange of information between the responsible developers. A
system integrator or digital twin operator then creates tag models that link ports of the
MontiArc digital twin architecture to information system class diagram attributes. Our
toolchain takes the digital twin models, information system models, and tag models as
input, transforms the architecture and the class diagram data models accordingly, and
adds GPL implementations for the behavior of digital twin components and information
system classes responsible for communication. Afterwards, these models are passed to
the respective generators. As the digital twin models and the data models are unaware
of any communication (which is realized through their GPL implementations), these
generators do not need to consider their communication at all.

Conclusions Representing digital twins properly is a quintessential concern in operating
cyber-physical systems with digital twins. By connecting digital twins to information
systems, their data can be represented using their powerful graphical interfaces. To ease
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the integration of cyber-physical systems with information systems, we exploited the
generative processes of the MontiGem information system and linked the data structures
that are generated from the class diagrams to the ports of the digital twin architecture.
Generalizing this demands that information systems are developed in a model-driven
fashion as well. Where this is possible, Leveraging the mechanism of tagging for the
model-driven integration of digital twins with information systems separates the concerns
of digital twin engineering and information system development, enables the automated
transformation of their models, and can be realized transparently with respect to the
individual toolchains of digital twins and information systems. Hence, our approach
yields significant benefits over their handcrafted integration and contributes to the overall
MDSE of cyber-physical systems and their operation.

5.4 Summary

The contributions summarized in this chapter address selected challenges in the digiti-
zation of CPS. To this end, it presented results of an interdisciplinary study aiming to
identify, shape, and separate the concepts of digital shadows and digital twins. Based on
the understanding gained from this study and constructive research conducted through-
out the research program presented in this thesis, we conceived a reusable, model-driven
architecture for digital twins that operates on digital shadows and incorporates domain
expertise through novel DSLs. These DSLs support the description of digital shadows,
the modular and platform-independent development of domain-aware digital twin archi-
tectures, and the binding of these architectures to specific platforms. Through linking
the digital twin model to the data model of an information system, we also contributed a
novel method for the model-driven integration of digital twins with information systems
that greatly facilitates their representation.

Our contributions, hence, foster an interdisciplinary understanding of the concepts
of digital shadows and digital twins and greatly facilitate the systematic engineering
of digital twins. The results of the presented contributions, thus, not only guide and
support researchers and engineers focusing on CPS to systematically conceive, develop,
and operate CPS with digital twins but also serve as a foundation for creating novel
model-driven methods to advance the digitization through digital twins.

Further reading Digitization is a tremendous challenge with manifold concerns to con-
sider. Throughout the research program presented in this thesis, we made further con-
tributions to the digitization of activities involving CPSs that address connecting the
digitized components of a smart factory, connecting CPS architectures to the Internet,
and making these self-explainable.
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Chapter 6

Conclusion

The habilitation thesis at hand summarizes substantial results for the pervasive model-
driven systems engineering of CPS with domain experts. This vision demands suitable
domain-specific modeling languages, semantics-aware automated modeling methods, and
systematic concepts for the efficient operation of CPS. Consequently, we pursued four
research questions.

First, we investigated the use of modeling and modeling languages in the advanced
and important domain of CPS for Industry 4.0. To produce systematic evidence on
modeling for the CPS of Industry 4.0, we conducted a systematic mapping study, in-
cluding more than 4.000 publications. In this study, we investigated which modeling
languages are applied in Industry 4.0, which concerns these languages are applied to,
and which automation support modeling contributes to Industry 4.0. We found that
modeling for CPS needs to address a variety of concerns, including the representation
of object-oriented concerns as well as geometric-physical concerns, and knowledge about
the systems under development. To this end, often general-purpose modeling languages,
such as UML or SysML, variants of these, or ad-hoc DSLs are employed. Our literature
study shows that there is a strong interest in leveraging the benefits of DSLs in systems
engineering, especially to address concerns and concern combinations hardly express-
ible with general purpose modeling languages. Moreover, code generation appears to
be an important motivation for modeling. We infer that easing the integration of truly
domain-specific modeling languages that cover the (combinations of) concerns identi-
fied essential in the study and employ concepts and terminology of the corresponding
domains as first-order elements, can greatly facilitate the model-driven engineering of
CPS. This, however, needs novel language engineering techniques that systematically
advance the engineering and combination of such languages.

Second, we conceived concepts and methods to expedite engineering of such DSLs
based on applying time-honored concepts from software engineering, including component-
based software engineering, software product lines, and separation of concerns, to soft-
ware language engineering. We presented a novel systematic method for the efficient
engineering of DSLs based on the efficient composition of grammar-based syntaxes and
semantics realizations based on code generators. For such languages, we conceived a
concept of language components with explicit interfaces that make their provided and
required extensions explicit. Through these, independently developed language compo-
nents can be composed into new components, which fosters the engineering of reusable
DSL building blocks and their efficient combination to truly domain-specific languages
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Chapter 6 Conclusion

as required by different experts. Leveraging a two-phase reuse process based on planned
reuse expressed through the closed variability of language product lines over these com-
ponents and open variability through post-hoc customization of these components, the
creation of complete DSLs actually tailored to domain experts can be achieved with
unprecedented efficiency. Of course, modeling languages need to be supported by useful
processes.

Third, we conceived novel modeling methods to address challenge typical to engi-
neering CPS, i.e., the integrated development of functional architectures and geometric-
physical product architectures, the decomposition of monolithic functional architectures
into components to be realized by domain experts, and the automated validation that
the domain experts’ solutions indeed are refinements of these components. To reduce
the conceptual gap between functional architectures and geometric-physical product ar-
chitectures, we conceived a modeling method integrating both, that facilitates tracing
functional requirements to geometric-physical realizations and hence fosters reuse in
product development processes for CPS. For separating monolithic functional architec-
tures into components to be realized by domain experts, we devised a notion of influence
relation between ports of the architecture’s components and a process to fully automati-
cally decompose such architectures according to that relation. This reduces the efforts of
systems engineering is systematically integrating components reifying domain expertise.
To validate that the component implementations provided by domain experts indeed
are refinements for the components received for implementation, we contrived a method
that enables checking such refinements automatically and produces witnesses if refine-
ment is violated. This facilitates systems engineering by liberating systems engineers
from checking refinement manually. But CPS, especially in Industry 4.0, are meant to
be operated for many years, hence supporting their operation is crucial to their success.

Fourth, to support the operation of CPS, we conceived a notion of digital shadows and
digital twins that support distinguishing passive data traces (digital shadows) from active
systems operating a CPS (digital twins). Based on the latter, we conceived an extensible
architecture for digital twins as a functional architecture that itself can be subjected to
the methods summarized in this thesis. This platform-independent architecture operates
on digital shadows and leverages a variety of DSLs to bind itself to data sources and
CPSs, as well as to reify the domain expertise necessary for the optimization of operation.
As the proper representation of a CPS is the quintessential purpose of digital twins, we
leverage this MontiArc architecture, the MontiGem information system generator, and
domain-specific tagging languages to connect digital twins to information systems with
minimal effort and while clearly separating the concerns of both. Through both, model-
driven methods greatly contribute to facilitating the operation of digital twins with
CPSs.

To realize the vision of pervasive MDSE, future work is necessary in, at least, three
areas, including SLE, digital twins, and support of model-driven development processes.
The notion of systematic language engineering is an unprecedented foundation for the
holistic composition and black-box reuse of DSLs. Yet, it focuses on textual DSLs
with code generators and relies on conservative embedding as the composition opera-
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tor of choice. As there are other technological options for language engineering, such
as metamodels or M2M transformations, as well as other operations for combining lan-
guages [EGR12], such as inheritance or aggregation, research in unifying these into a
holistic concept of language modules is necessary. To add further benefit, such mod-
ules should comprise language-related technology crucial to the success of DSLs, such
as editor fragments or debuggers. Moreover, functional architectures often exist in the
context of other modeling paradigms, such as geometric-physical modeling or knowledge
representation. Currently, the automated analyses and syntheses capable of processing
purely functional architectures cannot process such information. Here, novel concepts
for the translation of other modeling paradigms into functional architectures or lan-
guage engineering techniques enabling extending these analyses and syntheses to other
modeling paradigms are required. Research in the foundations of multi-paradigm mod-
eling [ABH+19] might yield contributions to this. Also, the integration of modeling
languages and tools that reify the concerns of the different domains participating in the
development of CPS is crucial to the success of MDSE for their systematic engineering.
And while there are various research contributions as well as commercial tools for this,
the integration of modeling tools still is one of the major challenges in industrial practice.

Overall, the research program presented in this thesis addresses selected interconnected
concerns in the engineering and operation of CPS with model-driven concepts, methods,
and tools that contribute to the efficient and systematic engineering of complex CPS
with domain experts. It produced systematic evidence on the use of modeling for CPS,
foundations for the efficient integration of domain experts through suitable DSLs, novel
methods for the systematic and automated modeling of architecture and behavior of
CPS architectures and unprecedented model-driven concepts for their operation. Yet,
there is much research to be done.
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Bernhard Rumpe, and Andreas Wortmann. Modeling Robotics Tasks for
Better Separation of Concerns, Platform-Independence, and Reuse. Aach-
ener Informatik-Berichte, Software Engineering, Band 28. Shaker Verlag,
December 2017.

[ABH+19] Moussa Amrani, Dominique Blouin, Robert Heinrich, Arend Rensink,
Hans Vangheluwe, and Andreas Wortmann. Towards a Formal Spec-
ification of Multi-paradigm Modelling. In Loli Burgueño, Alexander
Pretschner, Sebastian Voss, Michel Chaudron, Jörg Kienzle, Markus Völ-
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MDE in Practice for Computational Science. In International Conference
on Computational Science (ICCS 2015), Reykjav́ık, Iceland, June 2015.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice. Synthesis Lectures on Software Engineering,
2012.

[BD99] Bernd Bruegge and Allen A Dutoit. Object Oriented Software Engineering,
Conquering Complex and Changing Systems. Prentice Hall, 1999.

[BD20] Paul Beynon-Davies. Business information systems. Red Globe Press,
2020.

[BDH+20] Pascal Bibow, Manuela Dalibor, Christian Hopmann, Ben Mainz, Bern-
hard Rumpe, David Schmalzing, Mauritius Schmitz, and Andreas Wort-
mann. Model-driven development of a digital twin for injection molding.
In Schahram Dustdar, Eric Yu, Camille Salinesi, Dominique Rieu, and Vik
Pant, editors, Advanced Information Systems Engineering, pages 85–100,
Cham, 2020. Springer International Publishing.

[BDL+18] Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe,
and Andreas Wortmann. Deriving Fluent Internal Domain-specific Lan-
guages from Grammars. In International Conference on Software Lan-
guage Engineering (SLE’18), pages 187–199. ACM, 2018.

[BEK+18a] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Controlled and Extensible Variability of Concrete
and Abstract Syntax with Independent Language Features. In Proceedings
of the 12th International Workshop on Variability Modelling of Software-
Intensive Systems (VAMOS’18), pages 75–82. ACM, January 2018.

95



Bibliography

[BEK+18b] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Modeling Language Variability with Reusable Lan-
guage Components. In International Conference on Systems and Software
Product Line (SPLC’18). ACM, September 2018.

[BEK+19] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Systematic Composition of Independent Language
Features. Journal of Systems and Software, 152:50–69, June 2019.

[Bet16] Lorenzo Bettini. Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd, 2016.

[BF92] Manfred Broy and Max Fuchs. The Design of Distributed Systems - An
Introduction to FOCUS. Technical report, TU Munich, 1992.

[BFK15] Olaf Berndt, Uwe Freiherr von Lukas, and Arjan Kuijper. Functional
modelling and simulation of overall system ship-virtual methods for en-
gineering and commissioning in shipbuilding. In ECMS, pages 347–353,
2015.
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[GS14] Christoph Gröger and Christoph Stach. The mobile manufacturing dash-
board. In 2014 IEEE International Conference on Pervasive Computing
and Communication Workshops (PERCOM WORKSHOPS), pages 138–
140. IEEE, 2014.

[GT18] Havva Gulay Gurbuz and Bedir Tekinerdogan. Model-based testing for
software safety: a systematic mapping study. Software Quality Journal,
26(4):1327–1372, 2018.

[GV15] Xenofon V. Gogouvitis and George-Christopher Vosniakos. Construction
of a virtual reality environment for robotic manufacturing cells. Inter-
national Journal of Computer Applications in Technology, 51(3):173–184,
2015.

[GV17] Michael Grieves and John Vickers. Digital twin: Mitigating unpredictable,
undesirable emergent behavior in complex systems. In Transdisciplinary
perspectives on complex systems, pages 85–113. Springer, 2017.

106



Bibliography

[GZ83] Mikell Groover and EWJR Zimmers. CAD/CAM: computer-aided design
and manufacturing. Pearson Education, 1983.

[HAS+14] Alwin Hoffmann, Andreas Angerer, Andreas Schierl, Michael Vistein,
and Wolfgang Reif. Service-oriented robotics manufacturing by reason-
ing about the scene graph of a robotics cell. In ISR/Robotik 2014; 41st
International Symposium on Robotics, pages 1–8. VDE, 2014.

[HBB+94] Wolfgang Hesse, Georg Barkow, Hubert von Braun, Hans-Bernd Kitt-
laus, and Gert Scheschonk. Terminologie der Softwaretechnik. Ein Be-
griffssystem fur die Analyse und Modellierung von Anwendungssystemen.
Teil 2: Tätigkeits-und ergebnisbezogene Elemente. Informatik Spektrum,
17(2):96–105, 1994.
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Digital twin based synchronised control and simulation of the industrial
robotic cell using virtual reality. Journal of Machine Engineering, 19,
2019.

[KPP08] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. The
epsilon transformation language. In International Conference on Theory
and Practice of Model Transformations, pages 46–60. Springer, 2008.

[KPRS19] Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Sebastian
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Verbindungen und Verschlüsse - Lösungsfindung. Springer, Berlin, 2 edi-
tion, 1996.

[Rot11] Karlheinz Roth. Selection of Physical Effects Based on Disturbances and
Robustness Rations in The Early Phases of Robust Design. In Interna-
tional Conference on Engineering Design, 2011.

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams,
Stream Processing Functions, and State-Based Stream Processing. Inter-
national Journal of Software and Informatics, 2011.

[RRIG09] Jan Recker, Michael Rosemann, Marta Indulska, and Peter Green. Busi-
ness process modeling-a comparative analysis. Journal of the association
for information systems, 10(4):1, 2009.

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architec-
ture and Behavior Modeling of Cyber-Physical Systems with MontiArcAu-
tomaton. Aachener Informatik-Berichte, Software Engineering, Band 20.
Shaker Verlag, December 2014.

[RRW16] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Model-
Based Specification of Component Behavior with Controlled Underspecifi-
cation. In Modellbasierte Entwicklung eingebetteter Systeme (MBEES’16),
pages 1–12. fortiss, An-Institut TU München, Technical Report, March
2016.

[RSDT19] Michael Riesener, Günther Schuh, Christian Dölle, and Christian Tönnes.
The Digital Shadow as Enabler for Data Analytics in Product Life Cycle
Management. Procedia CIRP, 80:729–734, 2019.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorien-
tierter Systeme. Herbert Utz Verlag Wissenschaft, München, Deutschland,
1996.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods.
Springer International, 2016.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, 2017.

121



Bibliography

[RW18] Bernhard Rumpe and Andreas Wortmann. Abstraction and Refinement in
Hierarchically Decomposable and Underspecified CPS-Architectures. In
Lohstroh, Marten and Derler, Patricia Sirjani, Marjan, editor, Principles
of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His
60th Birthday, LNCS 10760, pages 383–406. Springer, 2018.

[SA95] Robert Shishko and Robert Aster. Nasa systems engineering handbook.
NASA Special Publication, 6105, 1995.

[SAOI18] Gurtej Saini, Pradeepkumar Ashok, Eric van Oort, and Matthew R Is-
bell. Accelerating Well Construction Using a Digital Twin Demonstrated
on Unconventional Well Data in North America. In Unconventional Re-
sources Technology Conference, Houston, Texas, 23-25 July 2018, pages
3264–3276. Society of Exploration Geophysicists, American Association
of Petroleum Geologists, Society of Petroleum Engineers, 2018.

[SB17] Stephen Samuel and Stefan Bocutiu. Programming kotlin. Packt Publish-
ing Ltd, 2017.

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: Eclipse Modeling Framework. Pearson Education, 2008.

[SBPM09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework. Addison-Wesley, Boston, MA, 2. edi-
tion, 2009.

[SBRB16] Günther Schuh, Matthias Blum, Jan Reschke, and Martin Birkmeier.
Der Digitale Schatten in der Auftragsabwicklung. ZWF Zeitschrift für
wirtschaftlichen Fabrikbetrieb, 111(1-2):48–51, 2016.

[SCD+12] Mike Shafto, Mike Conroy, Rich Doyle, Ed Glaessgen, Chris Kemp,
Jacqueline LeMoigne, and Lui Wang. Modeling, simulation, information
technology & processing roadmap. National Aeronautics and Space Ad-
ministration, 2012.

[SDLJ19] Chang-Su Shim, Ngoc-Son Dang, Sokanya Lon, and Chi-Ho Jeon. Devel-
opment of a bridge maintenance system for prestressed concrete bridges
using 3D digital twin model. Structure and Infrastructure Engineering,
15(10):1319–1332, 2019.

[SDT18] Günther Schuh, Christian Dölle, and Christian Tönnes. Methodology
for the derivation of a digital shadow for engineering management. In
2018 IEEE Technology and Engineering Management Conference (TEM-
SCON), pages 1–6. IEEE, 2018.

[Sei03] Ed Seidewitz. What Models Mean. IEEE Software, 20(5):26–32, Sept
2003.

122



Bibliography

[Sel03] Bran Selic. The Pragmatics of Model-Driven Development. IEEE Soft-
ware, 20(5):19–25, Sept 2003.

[Sel06] Bran Selic. Model-Driven Development: Its Essence and Opportunities. In
Ninth IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC 2006), April 2006.

[SF18] Bruno Scaglioni and Gianni Ferretti. Towards digital twins through
object-oriented modelling: a machine tool case study. IFAC-
PapersOnLine, 51(2):613–618, 2018.

[SFA17] Chantal Steimer, Jan Fischer, and Jan C. Aurich. Model-based design pro-
cess for the early phases of manufacturing system planning using SysML.
Procedia CIRP, 60:163–168, 2017.

[SGBvB12] Yu Sun, Jeff Gray, Karlheinz Bulheller, and Nicolaus von Baillou. A
Model-Driven Approach to Support Engineering Changes in Industrial
Robotics Software. In International Conference on Model Driven Engi-
neering Languages and Systems, pages 368–382. Springer, 2012.

[SHB+17] Partha Sharma, Hamed Hamedifar, Aaron Brown, Richard Green, et al.
The dawn of the new age of the industrial internet and how it can radi-
cally transform the offshore oil and gas industry. In Offshore Technology
Conference. Offshore Technology Conference, 2017.

[SHH+05] Dag I. K. Sjoberg, Jo E. Hannay, Ove Hansen, Vigdis By Kampenes,
Amela Karahasanovic, Nils-Kristian Liborg, and Anette C. Rekdal. A
Survey of Controlled Experiments in Software Engineering. IEEE Trans-
actions on Software Engineering, 31(9):733–753, September 2005.

[SHH+20] Günther Schuh, Constantin Häfner, Christian Hopmann, Bernhard
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Table A.1: Contribution by the author to the publications presented in this thesis.
# Publication Title Thesis Contribution to Publication Phase (%)

Chapter Research
Design

Research
Execution

Writing Revision

1 Modeling Languages in Indus-
try 4.0: an Extended System-
atic Mapping Study
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2 Controlled and Extensible
Variability of Concrete and
Abstract Syntax with Indepen-
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3 75 80 60 50

3 Systematic Composition of In-
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4 Modeling Language Variability
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Development of Textual
Domain-Specific Languages
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8 Automated semantics-
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position of finite component
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a Digital Twin for Injection
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Modeling Languages for Cyber-Physical Systems

This section comprises the publications summarized in Chapter 2.

Paper 1 A. Wortmann, O. Barais, B. Combemale, M. Wimmer. Modeling Lan-
guages in Industry 4.0: an Extended Systematic Mapping Study. In: J.
Gray and V. Kulkarni, editors, Software and Systems Modeling, 19(1),
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Abstract
Industry 4.0 integrates cyber-physical systems with the Internet of Things to optimize the complete value-added chain. Suc-
cessfully applying Industry 4.0 requires the cooperation of various stakeholders from different domains. Domain-specific
modeling languages promise to facilitate their involvement through leveraging (domain-specific) models to primary develop-
ment artifacts. We aim to assess the use of modeling in Industry 4.0 through the lens of modeling languages in a broad sense.
Based on an extensive literature review, we updated our systematic mapping study on modeling languages and modeling
techniques used in Industry 4.0 (Wortmann et al., Conference on model-driven engineering languages and systems (MOD-
ELS’17), IEEE, pp 281–291, 2017) to include publications until February 2018. Overall, the updated study considers 3344
candidate publications that were systematically investigated until 408 relevant publications were identified. Based on these,
we developed an updated map of the research landscape on modeling languages and techniques for Industry 4.0. Research
on modeling languages in Industry 4.0 focuses on contributing methods to solve the challenges of digital representation and
integration. To this end, languages from systems engineering and knowledge representation are applied most often but rarely
combined. There also is a gap between the communities researching and applying modeling languages for Industry 4.0 that
originates from different perspectives on modeling and related standards. From the vantage point of modeling, Industry 4.0
is the combination of systems engineering, with cyber-physical systems, and knowledge engineering. Research currently is
splintered along topics and communities and accelerating progress demands for multi-disciplinary, integrated research efforts.
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1 Introduction

Industrial revolutions always introduced step changes to
manufacturing. The first industrial revolution (eighteenth–
nineteenth century) advanced production from manual to
machine-driven manufacturing, introduced factories, and
enabled leveraging steam power for production [36]. The
second industrial revolution (1870–1914) introduced elec-
tric power to enable the mass production of goods using
the concept of interchangeable parts [108]. The third indus-
trial revolution (ca. 1980–2010) describes the transition
from analog to digital (mostly isolated) production systems.
Industry 4.0 is the fourth industrial evolution focusing on
integrating digitized cyber-physical production systems with
processes and stakeholders to optimize the complete value-
added chain. Originally, it has been announced as part of the
high-tech strategy of the German Federal Ministry for Edu-
cation and Research [27]. However, the essence of Industry
4.0 has become an international phenomenon as the Japanese
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Industrial Value Chain Initiative [146], the Advanced Man-
ufacturing Initiative in the USA [145], the Chinese Made
in China 2025 strategy [96], Manufacturing 3.0 in South
Korea [84], and the national Catapult research center onHigh
Value Manufacturing [65] in the UK indicate.

This “fourth industrial revolution” raises new challenges
for future manufacturing which are driven by four disrup-
tions: (1) data volumes, computational power, and connectiv-
ity; (2) the emergence of analytics and business-intelligence
capabilities; (3) new forms of human–machine interaction;
(4) and improvements in transferring digital instructions to
the physical world, such as advanced robotics and 3D print-
ing. The interplay of these four disruptions led to recognizing
four particular Industry 4.0 design principles [63]:

– Interoperability: connect production systems, devices,
sensors, and people.

– Information transparency: query data and connect digital
planning with the runtime data collected from sensors.

– Technical assistance: provide the right abstraction to
understand the complexity of Industry 4.0 systems and
processes.

– Decentralized decision making: enable autonomous sys-
tems.

All of these aim to enable more efficient production down to
the individualized the mass production of “lot-size 1” [42].

Model-based software development is one of the key
enablers for successfully engineering, integrating, and main-
taining complex systems of systems, which is indicated by
the increasing number of related publications in key confer-
ences and journals investigating these challenges, e.g., see
[29,49,62,97,129,143]. For successfully engineering Indus-
try 4.0 systems of systems, fostering research in modeling is
crucial to enable realizing the aforementioned design princi-
ples.

As a research area matures, there often is a significant
increase in the number of related reports and results. Thus,
it becomes important to summarize and to overview those
results. There are different methods for structuring a scien-
tific landscape, such as systematic literature reviews [24,76]
or systematic mapping studies [115]. Systematic literature
reviews are a “form of secondary study that use a well-
defined methodology to identify, analyze, and interpret all
available evidence related to a specific research question in
a way that is unbiased and (to a degree) repeatable” [76].
They aim to summarize the existing evidence concerning
the object of research (e.g., modeling languages) to identify
gaps in the current research. To this end, systematic literature
reviews follow an a priori defined review protocol of research
questions and a documented (hence, reproducible) search
strategy. Based on the obtained corpus of primary studies,
the research questions are answered. Systematic literature

reviews are common to software engineering [13,59], model-
based engineering [25,37], software product lines [32,47], or
domain-specific languages [53,82], etc., whilemapping stud-
ies are less common. A systematic mapping study (SMS)
structures a body of research through its reports by cate-
gorizing these. These often culminate in a visual summary,
the map, of its results. Such a map supports understanding
what has been addressed by the community for a particular
domain and its corpus can serve as the basis to answer in-
depth research questions of a subsequent systematic literature
review.

We investigate modeling in Industry 4.0 through the lens
of modeling languages and applied to the field’s diverse
challenges. Conducting a systematic mapping study onmod-
eling languages for Industry 4.0, hence, enables providing
guidance and feedback for the modeling community about
challenges for and reception of their contributions in the
domain of Industry 4.0.Moreover, it provides an overview for
the automation systems community about the contributions
to modeling languages and techniques in their domain and
which challenges these modeling languages and techniques
address. The resulting map enables identifying limitations
and challenges, as well as best practices in the field. Also,
it supports identifying new lines of research and provides a
corpus for future investigation.

In this paper, we present an extension of our SMS on
modeling languages in Industry 4.0 presented in [159]. The
previous study [159] included 1466 papers that were pub-
lished until April 2017. This contribution extends its investi-
gation with 1878 additional papers published until February
2018 to describe the use of modeling languages in Industry
4.0. Out of these, 186 additional papers were included in the
resulting map. With Industry 4.0 being a multi-disciplinary,
heterogeneous challenge, we consider modeling and model-
ing languages in a broad sense, i.e., we include 3Dmodeling,
knowledge representation, business process modeling, and
other modeling techniques into our study.

Following a detailed search strategy involving six digi-
tal libraries, we initially identified 3344 unique publications.
Out of these, 408 publications were selected and categorized
using a particular classification scheme focusing on the con-
tribution types, research types, Industry 4.0 concerns, and
modeling contributions. We present the concerns addressed
by research on modeling in Industry 4.0, how these concerns
are investigated, when and where the results are published,
and by whom. The resulting research landscape can help
to understand, guide, and compare research in this field. In
particular, this paper identifies the Industry 4.0 challenges
addressed by the modeling community as well as the chal-
lenges that seem to be less investigated. Through this, we
obtain a classification scheme and structure the research on
modeling languages and techniques for Industry 4.0. In sum-
mary, the contributions of this paper, hence, are:
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– Extension of the mapping study with 1878 novel and
unique primary studies published until February 2018 in
Sect. 4

– A detailed explanation of the research method used for
this extended systematic mapping study presented in
Sect. 3.3.

– Novel investigations on modeling for cyber and physical
concerns as well as on the use of standards in Sect. 4.3.

– The discussion and investigation of trends in modeling in
Industry 4.0 based on differences between the papers pre-
sented until April 2017 and the subsequently published
papers in Sect. 5.

– A vision on model-based DevOps for Industry 4.0 and its
relation to our findings in Sect. 5.3.

In the following, Sect. 2 discusses related mapping stud-
ies and literature reviews, before Sect. 3 details our research
method. Afterward, Sect. 4 presents our findings before Sect.
5 reports insights into modeling in Industry 4.0 and discusses
a vision of model-based DevOps for Industry 4.0 in the pres-
ence of our findings. Sect. 6 discusses threats to validity
before Sect. 7 concludes.

2 Related studies

Mapping studies are a common method to investigate
research trends in software engineering [115]. Current stud-
ies include, e.g., the classification of techniques for test-
set generation and selection [73], software development
effort and cost estimation [71], the use of experimen-
tal studies [135], object-oriented design [11], the use of
patterns [162], the usage of UML diagrams [121], the
empirical evaluation of software requirements specification
techniques [33], on software product lines [46,85], and
domain-specific languages [82]. Aside from investigating
different concerns, these mapping studies vary in the level
of analysis detail and in the number of included publications
(between 35 and 400). However, we found only a singlemap-
ping study on model-driven engineering [104]. That study
surveys existing research on aspect-oriented modeling and
code generation. However, several literature reviews and sur-
veys focus on the Industry 4.0 domain in general.

A recent systematic literature review of Industry 4.0
related research efforts [88] discusses the state of the art in
Industry 4.0, deficiencies in current research, and potential
research directions that culminate in a research agenda. In
this context, modeling is mentioned as a frequently used
technique for managing complex production systems as
well as products for both: development of new artifacts
and better understanding existing ones. XML, UML, and
AutomationML are mentioned as frequently used modeling
languages. However, a more in-depth study on the modeling

aspect is not provided that review focuses on giving a general
overview of Industry 4.0 literature.

Originally initiated in Germany in 2011, Industry 4.0 has
attracted much attention in recent literature. In their perspec-
tive on Industry 4.0, Vogel-Heuser and Hess identify a set of
challenges for the domain [154]. In particular, they identify
four key challenges for software engineering that are well
known to the modeling community:

1. Transition to modular and maintainable interfaces as a
fundamental basis for adaptable and evolvable systems.

2. Tracking of changes in hundreds of heterogeneous and
distributedmachines or plants on different operation sites
operated over decades.

3. Management while ensuring consistency of software
variants and versions, including self-adaptation and
reconfiguration at runtime.

4. Adaptation of big data algorithms and technologies.

Following this paper, Mosterman and Zander [109] dis-
cuss the needs and challenges of developing and operating
cyber-physical systems (CPS) along with corresponding
technologies to address the challenges and their potential
impact. In the same trend, Turowski et al. identify the cur-
rent challenges on Industry 4.0 faced by companies through
a survey [79]. The survey aims to understand the stakehold-
ers expectations, requirements and the potential challenges
Industry 4.0 poses in real case studies. Complementary to
these works, Trappey et al. [151] provide a consolidated
reviewof the latest CPS literature. In this survey, they provide
a complete review of international standards and an analysis
of patent portfolios related to the CPS architecture model.
Hermann et al. identify design principles of Industry 4.0
based on quantitative text analysis and a qualitative litera-
ture review [64]. Their paper illustrates how the identified
design principles support practitioners in identifying Indus-
try 4.0 scenarios.

A recent literature reviewon technologies and applications
in Industry 4.0 investigated a corpus of 88 papers retrieved
via Web of Science and Google Scholar [92]. In this study,
the author uncovers three popular frameworks for the real-
ization of Industry 4.0, presents key technologies (such as 5G
or agent-based systems) and discusses popular applications
(smart factories, smart products, and smart cities). Overall,
that paper serves as a compact signpost guiding through a
small subset of Industry 4.0 literature.

Similar studies have been conducted regarding the appli-
cation and benefits of model-based software engineering in
embedded systems [3,89,150]. The first study [89] surveyed
112 software developers from different companies on the
reasons for applying model-based software engineering, its
effects, and shortcomings. The authors conclude that devel-
opment in embedded systems already leverages models as
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Fig. 1 The five phases of a systematic mapping study as proposed in [115]

primary development artifacts but that adopting MBSE still
is challenging and that the tools are still challenging as well.

A study on the use of UML and model-driven techniques
in the design of embedded software in Brazil surveyed 209
embedded software engineers and researchers [3]. Through
the study, the authors identify a lack of knowledge about the
application of UML and model-based techniques due to “the
lack of skills” and “the lack of coherent tools”. Moreover,
the authors found that modeling is mainly used for docu-
mentation, whereas model-driven techniques, such as code
generation, are hardly used. In contrast to this study,we inves-
tigate Industry 4.0 assuming that modeling is used. Through
our search terms and exclusion criteria,we especially exclude
sources not about modeling. Consequently, the research of
our study differs not only on the subject but also on the focus.

However, with similar aspirations as [3], another study
investigates the relevance ofmodel-driven software engineer-
ing in the Italian industry [150]. The authors surveyed 155
Italian software professionals and inquired, inter alia chal-
lenges for the adoption of model-driven techniques, the use
of code generators, interpreters, UML, and DSLs. In con-
trast to the results of [3] the authors uncovered that 68% of
the surveyed professionals “produce models”, whereas only
48% use model-driven techniques and almost all of the latter
leverage code generation. Similar to the first study, they iden-
tified “easier maintenance” and “higher quality” as the main
drivers for modeling. The study also finds the “typical anec-
dotal” challenges for adoption ofmodeling, such as requiring
a high effort to create models and lack of supporting tools.

Thus, while there is already work on summarizing the
research done in the field of Industry 4.0 and related fields,
none of these studies is particularly concernedwith the devel-
opment or application of modeling languages.

3 Researchmethod

A systematic mapping study identifies and classifies primary
studies of the field under investigation. Through this, it aims
to provide a systematic overview of the topics of research
contributed to this area and the formsof contribution.Wecon-
ducted this study following established guidelines [76,115]
and included useful practices and suggestions from similar

studies [26,44,80,82]. Ultimately, we employed the five-
phase process for conducting this study proposed in [115] and
depicted in Fig. 1: (1) define research questions; (2) search
for primary studies; (3) identify inclusion and exclusion cri-
teria and screen primary studies based on these criteria; (4)
classify primary studies through keywording; and (5) extract
and aggregate data.

In the first phase, we defined the scope of this study. In the
second phase,we created the initial corpus of potentially rele-
vant publications. In the third and fourth phases, we sanitized
and reduced this corpus to include only relevant publications
and classified according to research qualities derived from
the research questions. In the fifth phase, we extracted data1

from the publications to enable answering our research ques-
tions. This section describes the activities and decisions of
these phases.

3.1 Research questions

We aim to identify relevant publications on development and
use of modeling languages in Industry 4.0, which Industry
4.0 concerns are addressed with modeling techniques, how
research addressing these concerns is conducted, and which
modeling languages are used to contribute to these concerns.
Moreover, we investigate who is contributing to modeling
in Industry 4.0, where the contributions are published, and
when they occurred. This manifests in the following research
questions:

RQ1 What are the expected benefits of applying model-
ing languages to Industry 4.0? This question aims to
uncover the high-level benefits expected by applying
modeling languages to Industry 4.0.

RQ2 Which Industry 4.0 concerns are addressed through
modeling languages? With this question, we investi-
gate which concerns and challenges of Industry 4.0
are addressed through the different kinds of modeling
languages.

RQ3 Which kinds of modeling languages are used in Indus-
try 4.0 and which concerns do they address? This

1 Available from companion website http://gemoc.org/
modeling4Industry4.0/.
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Fig. 2 Logical search clause
defined to identify relevant
literature

(”digital factory” OR ”digital factories” OR ”smart factory” OR ”smart factories”
OR ”factory of the future” OR ”factories of the future” OR ”Industry 4.0”) AND
(”metamodel” OR ”DSL” OR ”UML” OR ”domain-specific language” OR ”modeling
language” OR ”modelling language”)

question investigates the use of modeling languages
in Industry 4.0 and relates the findings of RQ2 to the
solutions contributed to the research field.

RQ4 What are the most frequently applied research meth-
ods in the context of modeling languages for Industry
4.0? This question aims to understand how research
on modeling and modeling languages in Industry 4.0
is performed and how this relates to the concerns of
RQ2 and the tools of RQ3.

RQ5 Who researches modeling languages in Industry 4.0?
This question investigateswho has adopted this notion
and contributes to modeling in Industry 4.0.

RQ6 Where have the contributions been published? Simi-
lar to the RQ5, we like to uncover which venues are
relevant to publishing on modeling for Industry 4.0.

RQ7 When did the contributions on modeling languages to
Industry 4.0 occur?With this question, we investigate
whenmodeling started contributing to smartmanufac-
turing.

To answer these questions, we conducted the literature search
presented in the next section.

3.2 Search strategy and data sources

The search strategy guides the identification of relevant pub-
lications to answer the research questions. This includes
conceiving an appropriate search query and identifying rel-
evant libraries to apply this clause to. Industry 4.0, at its
core, focuses on manufacturing, production processes, and
ultimately the “factory of the future” [54,140] or the “smart
factory” [86,118]. Thus, in contrast to [92], we included these
terms in our search clause. Similarly, the second part of our
search clause focuses on the objects of modeling research,
its modeling language technology, instead of specific model-
ing languages. Thus, we search for publications mentioning
metamodels, DSLs, modeling languages, or UML as rele-
vant contributions tomodeling in our context. This ultimately
leads to the logical search clause depicted in Fig. 2.

Essentially, this is a conjunction of two disjunctions: The
first part of the conjunction captures terms related to Industry
4.0. The second part captures terms representing the objects
of modeling research. As we conducted a full-text search
with this clause, we omitted including synonyms for “DSL”
or “modeling language”. Papers contributing to modeling
should at least use these terms in either related work or
the referenced literature. Although we cannot exclude omit-

ting a small number of possibly relevant publications that do
not provide such discussions, searching this way yields bet-
ter results than just searching titles and abstracts. Moreover,
we also did not enforce any inferior year-limit and included
papers published until February 2018. Where such complex
logical conditions were not supported, we searched for parts
of the query and joined the results manually. For ACM Dig-
ital Library we could reuse the query as is (modulo minor
changes to its concrete syntax). For Google Scholar we used
its advanced search mode to separate to split the query into
five queries, each containing one exact phrase of the model-
ing terms (i.e., “modeling language”, “metamodel”, etc.) and
at least one of the domain terms (i.e., “Industry 4.0”, “digital
factory”, etc.). We extracted the results using Harzing’s Pub-
lish or Perish2 software to extract results. Due to its limitation
to ca. 1.000 citations per query, we downloaded the citations
in multiple parts using inferior and superior year limits. We
manually merged the resulting lists of citations and removed
the Scholar-internal duplicates obtained by our process man-
ually. Through this, we aim to minimize the issues of using
Google Scholar for structured literature retrieval [21] (e.g.,
non-commutativity of logical disjunctions) while benefiting
from its wealth of provided publications.

IEEEXplore enforces a limit of 40 search terms,which did
not affect our query and supports the use of nested Boolean
queries through its advanced search, and hence data retrieval
was straightforward. Similarly, retrieving citations fromSco-
pus, SpringerLink, and Web of Science did not require any
changes to the query as all three libraries support nested
Boolean queries through their advanced search. Applying
our query—with the explained operative modifications—to
ACM Digital Library, Google Scholar, IEEE Xplore, Sco-
pus, SpringerLink, and Web of Science yields the results
presented in Table 1.

Due to includingGoogle Scholar, this search includes doc-
uments unsuitable to answer our research questions, such
as non-peer-reviewed publications, descriptions of curric-
ula, or patents. These were removed in the next phases as
illustrated in Fig. 3: First, we removed 1060 duplicate doc-
uments from the results, then we applied the criteria for
inclusion and exclusion to remove additional 1369 docu-
ments based on their title, keywords, and abstracts in the
screening phase (Sect. 3.3). Afterward, the results contain
1975 peer-reviewed, English, possibly relevant papers. We
reviewed each of these papers during the classification phase

2 Publish or Perish: https://harzing.com/resources/publish-or-perish.
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Table 1 Search results returned from the different digital libraries

Digital Library URL Papers

ACM Digital Library https://dl.acm.org 138

Google Scholar https://scholar.google.com 3133

IEEE Xplore https://ieeexplore.ieee.org 255

Scopus https://www.scopus.com/ 504

SpringerLink https://link.springer.com 342

Web of Science https://www.webofknowledge.com 32

Total (incl. duplicates) 4404

(Sect. 3.4) to understand whether these are relevant to our
study and applied the criteria for inclusion and exclusion to
the complete paper. In total, 408 papers remain in our cor-
pus. The next sections detail our criteria for inclusion and
exclusion as applied in the screening phase as well as in the
classification phase.

3.3 Screening papers for inclusion and exclusion

The inclusion of a study into the classification phase of a sys-
tematicmapping study usually is decided on its title, abstract,
and keywords. To reduce the corpus and enable reproduction

of the study, we established the following inclusion criteria
and exclusion criteria.

Inclusion criteria We identified potentially relevant docu-
ments based on the following three criteria:

1. Peer-reviewed studies published in journals, conferences,
and workshops.

2. Studies are accessible electronically.
3. From title, abstract, and keywords, we can deduce that

the paper focuses on developing or applying modeling
languages in Industry 4.0.

Exclusion criteria Documents fulfilling the inclusion criteria
may still be excluded based on the following four criteria:

1. Studies not available in English.
2. Studies not systematically peer-reviewed, such as books,

slides, websites.
3. Teasers and short papers of less than two pages, such as

calls for papers, editorials, or curricula.
4. Studies where Industry 4.0 ismentioned as a future appli-

cation, relatedwork, or broad context only, e.g., papers on
the Internet of Things (IoT) or CPS mentioning Industry
4.0 as a possible use case only.

Fig. 3 Data collection initially
produced 3344 unique
documents, out of which 408
were identified as relevant for
our study
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To align our understanding of Industry 4.0 and the clas-
sification scheme, each of the authors reviewed the first 20
(about 1%) documents of the corpus of 3344 unique docu-
ments on his own. We discussed results and built a shared
understanding of the documents as well as of our methodol-
ogy and goals. As a next step, the remaining 3324 documents
were filtered by the first author based on the unambiguous
criteria of being non-English, non-peer-reviewed, or teasers
only.

Removing 1593 documents left 1731 papers for review.
These were split into three corpora of 430 papers and one
corpus of 441 papers, which were reviewed and classified by
a single author each. To continuously align our shared under-
standing of the topic and our classification scheme, inclusion,
exclusion, and classification were discussed among the
authors in bi-weekly teleconference sessions. During these,
we excluded additional publications and refined our shared
understanding of the classification scheme. We did, how-
ever, not discard papers based on their comprehensibility or
venue alone.We also assigned each paper to themost suitable
research type facet to yield a clear partitioning of the data set
according to the categories in Table 3.Where the author read-
ing a paper was uncertain about its inclusion or classification,
we discussed this paper also among all authors. To prevent
classification fatigue, we performed classification in blocks
of at most one hour broken up by at least 15-minute breaks.

We then applied the criteria to titles, keywords, and
abstracts. Where this did not suffice to determine inclusion,
we temporarily included the publications for the classifica-
tion phase to prevent excluding relevant, but suboptimally
phrased publications. In that phase, the final inclusion or
exclusion could be decided based on the publication’s full
text. Hence, this phase only eliminates publications obvi-
ously not within our study’s scope and publications failing
on formal requirements (such as not being available in
English). In detail, we eliminated 1060 duplicates as well as
1369 publications outside this study’s scope, including non-
peer-reviewed publications (e.g., theses, technical reports,
websites, patents, project deliverables, etc.), non-English
publications, full proceedings (Google Scholar produces
complete conference proceedings as results), and teasers
(publications of two pages or less). Publications in lan-
guages other than English were excluded for this reason

alone. Concurring with [81], we did not conduct any addi-
tional quality evaluation, such as including papers published
at highly ranked conferences or workshops only. Hence, after
the screening phase, 1975 potentially relevant papers remain
in the corpus.

3.4 Classifying studies

In the classification phase, we reviewed the remaining 1975
papers to assign qualities of the dimensions derived from the
research questions. To this end, we followed [115] in consid-
ering at least the introduction and the conclusion. However,
for almost all most papers this was insufficient and we read
the complete paper for proper classification. This also is the
last phase in which publications were eliminated. Hence,
after further elimination of 1567 irrelevant papers, a total of
408 publications remained. We classified these papers along
the facets described in the following.

Contribution type facet

The first facet is inspired by [115] and classifies publications
according to the type of research they contribute (RQ4). We
adapted this to our study by employing the five contribution
types presented in Table 2. These contribution types are dis-
joint and each paper was classified to provide exactly one
contribution type. When a paper was suitable for more than
one contribution type, we discussed this and assigned the
most suitable contribution type.

Research type facet

Also inspired by [115], we classified the publications accord-
ing to the research type they contribute. This enables address-
ing RQ4 regarding the most frequently applied research
methods contributed to modeling in Industry 4.0. Again, we
adjusted these also to better fit to our study. In particular,
we eliminated the category of philosophical papers as such
papers did not occur. The resulting, disjoint, research types
are depicted in Table 3. Each paperwas classified to belong to
exactly one research type. Papers suitable for more than one
research type were discussed and assigned the most suitable
research type.

Table 2 Contribution type facets inspired by [115] and adjusted to our research questions and corpus

Analyses Papers contributing investigations without constructive contributions, such as [14,34,61]

Concepts Papers suggesting ways of thinking things, such as new metamodels or taxonomies (this was titled “models”
in [115], which is misleading in the context of this study), such as [113,124,144]

Methods Papers suggesting ways of doing things, for instance, [126,141,165]

Metrics Papers suggesting ways of measuring things, such as [72,152,155]

Tools Papers presenting novel software tools related to modeling in Industry 4.0, e.g., [78,114,164]
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Table 3 Research type facets also inspired by [115] and adjusted to our research questions and corpus as well

Evaluation Papers evaluating existing techniques, e.g., [35,50,161]

Experience Report of personal experiences, such as [17,18]

Solution A novel solution is presented and argued for with case studies, for instance [23,39,117]

Validation Papers presenting novel techniques and experimenting with them, such as [57,130,163])

Vision Non-disruptive research agendas, such as the vision of model-based logistics engineering presented in [7,69,93]

Table 4 Industry 4.0 concern facets defined for the corpus of 408 papers

Digital representation Publications on modeling systems, factories, or knowledge as well as the standardization of digital representations

Failure handling Publications focusing on failure management or safety aspects

Human factors Publications addressing the human side of Industry 4.0, such as worker localization or human–machine interaction

Information management Publications on accessing and distributing information

Integration Publications focusing on integrating CPS with something (other CPS, processes, the cloud) at design time and
runtime

Processes Publications on the modeling and management of processes

Product modeling Publications contributing to modeling (smart) products

(Re-)configuration Publications focusing on modeling configuration, monitoring, system resiliency, and self-* properties

Verification and validation Publications employing modeling to simulation and testing

Visualization Publications on using modeling to system visualization, such as 3D modeling, augmented reality, or virtual reality

Industry 4.0 concern facet

Wealso classified the publications along the Industry 4.0 con-
cerns addressed by the various publications. This addresses
RQ2 and aims to uncover which concerns are investigated
how often. During classification, keywording (cf. [115]) the
abstracts, introductions, conclusions, and, if necessary, of the
complete paper, we produced the following Industry 4.0 con-
cerns. In contrast to contribution types and research types,
these concerns are not disjoint and included papers can con-
tribute to multiple concerns (Table 4).

Modeling technique facet

To find answers to RQ3 regarding the modeling tools and
languages used in Industry 4.0, we also classified the publica-
tions along this dimension. Overall, we found various mod-
eling techniques (e.g., different CAD tools, UML dialects,
DSLs, knowledge representation languages, etc.) and many
papers addressed more than one modeling technique. To pre-
vent dissipating the resultswe sorted themodeling techniques
into groups (such as 3D modeling, architecture description
languages, or business process modeling techniques) and
isolated modeling techniques specific to Industry 4.0 (such
as AutomationML). This produced the 15 groups presented
in Table 5.

Moreover, we also investigated whether the included
publications report on real-world industrial applications.
Out of the 408 included publications, only 23 (5.64%)
reported such applications. The industrial domains include

automotive [38,68,78], avionics manufacturing [119,125],
packaging [155], production of white goods [8], oil produc-
tion [70,131], and production of windows and doors [6]. The
next section presents our main findings along the four clas-
sification dimensions.

4 Findings

This section presents our findings on the expected benefits
of applying modeling languages to Industry 4.0 as well as on
the contribution types, research types, Industry 4.0 concerns,
and modeling concerns for the included papers.

4.1 Expectations on the impact of modeling
languages on Industry 4.0

WithRQ1 (“What are the expected benefits of applyingmod-
eling languages to Industry 4.0?”), we address the expected
impact of contributing research in modeling to Industry 4.0
challenges. To this effect, we extracted these expectations
whenever these were made explicit. Out of the 408 publica-
tions included after classification, only 55 (13.48%) papers
explicitly described the authors’ expectations on the impact
of their contribution. The expectations include reducing the
cost of production system integration [52], saving energy
on production system reconfiguration [102], and remaining
internationally competitive in high-wage countries [141].We
classified the expectations into expectations on
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Table 5 Modeling language facets

3D Modeling Techniques for representing geometric properties, e.g., for factory planning or augmented reality systems, including
AutoCAD [43] and CATIA 3D [163]

ADL Techniques employing architecture description languages [103], e.g., [30,31]

AML Techniques employing the AutomationML [41] plant engineering data exchange format, such as [20,128]

BPM Techniques for business process modeling in the context of Industry 4.0, for instance [75,142]

CMSD Approaches based on Core Manufacturing Simulation Data (CMSD), such as [106]

DSL Domain-specific languages, e.g., EDDL [127] or SDL [136]

ER Entity-relationship modeling, cf. [9,125]

Formal Modeling Automata-based and mathematical modeling approaches, including Petri Nets [90] or Priced Timed Automata [102]

GPL Techniques employing general programming languages (GPLs), for instance, to model the services provided by a robotic
manufacturing system [67]

KR Knowledge representation languages, using, for instance, OWL [91]

Meta Various metamodeling techniques, such as [31,83]

Simulink Approaches using MATLAB/Simulink, e.g., [48,98]

SysML Techniques employing SysML, including [12,138]

UML UML and UML profiles, such as [95,123]

XML XML-based modeling techniques, for example [99,148]

– reducing time (development time, time-to-market),
– reducing costs (of development, integration, (re-)
configuration),

– improving sustainability, and
– improving international competitiveness.

Overall, the included publications explicated 59 expec-
tations. Out of these, most publications expected modeling
to either reduce cost (26x mentioned) or time (22x). Only a
few publications propose modeling to improve sustainability
(4x), increase international competitiveness (3x), to facili-
tate learning (2x), or to enhance the quality of products (2x).
However, as the number of papersmaking the expectations of
contributing modeling in Industry 4.0 explicit is rather small,
these motivations cannot be generalized.

4.2 Industry 4.0 concerns addressed withmodeling
languages

With RQ2 (“Which Industry 4.0 concerns are addressed
through modeling languages?”), we investigate which con-
cerns of Industry 4.0 are addressed using modeling tech-
niques and how they are addressed in terms of contribution
types (Table 2) and research methods (Table 3).

Investigating this, we found that most publications on
modeling in Industry 4.0 contributemethods to challenges in
digital representation (considered by 120 publications), inte-
gration (113), and processes (73). Out of the 614 concerns
addressed by the included publications, these three combi-
nations of contribution types and concerns make up 49.84%
of concerns addressed by papers of our corpus. Overall, the
majority of contributions are methods (69.71%) or concepts

(13.52%),whereas tools (9.61%), ormetrics (0.49%) are con-
tributed significantly less often.

With contributions claiming to reduce costs and time
(cf. Sect. 4.1), the lack of papers contributingmetrics to track
these claims is surprising. However, the new papers included
after April 2017 do not investigate metrics at all. The results
concerning contribution types—as inquired by RQ4 (“What
are the most frequently applied research methods in the con-
text of modeling languages for Industry 4.0?”)—are depicted
on the left part of Fig. 4 and these findings are reflected by
the research type contributions on its right part. Most con-
tributions are solution proposals (i.e., application of existing
techniques to solve particular problems) that focus either on
digital representation or on integration challenges. It is also
surprising that only a few publications investigate modeling
for the (smart) product, which is supposed to control its pro-
duction processes in many visions of Industry 4.0.

With respect to the publications’ research types, we found
that solution proposals make up 123.04% of the publica-
tions. These also most often address digital representation
(addressed in 141 publications), integration (123), and pro-
cesses (84). Out of the 614 concerns addressed by the
publications included in our corpus, these three combinations
of research types and concerns make up 49.84% of addressed
concerns (Fig. 5).

Other research contributions are significantly less com-
mon. Evaluation reports contribute only 12.25% of the
included papers, validation papers only 6.86%, vision papers
only 5.88%, and experience reports only 2.45% of the
included papers are contributed significantly less often. That
most solution papers also are method papers might reflect
the very constructive research typical to modeling. However,
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Fig. 4 Industry 4.0 concerns by research type and contribution type

the large number of method papers over papers contribut-
ing new concepts, validating new techniques, or proposing
visions implies that research mainly approaches Industry 4.0
with established methods and techniques. This is supported
by our findings on the modeling techniques contributed to
Industry 4.0 presented in the next section.

Moreover, we investigated whether research on modeling
languages in Industry 4.0 focusesmore on the cyber (i.e., soft-
ware) elements of automation or on its physical elements. To
this end, we noted whether the publications explicitly men-
tion which kind of parts the contributions are applied to. We
found that 252 (61.76%) explicate this. They provide con-
tributions focusing on cyber elements, physical elements,
activities, or a combination thereof. Overall, 59 (14.46%)
publications focus solely on cyber elements, 36 (8.81%)
focus solely on physical elements, and 29 (7.11%) focus
on activities that are not specified whether being cyber or
physical. Of the remaining publications, 106 (25.98%) focus
on cyber-physical elements, 10 (2.45%) on purely physical
activities, and 12 (2.94%) on activities incorporating cyber
and physical elements.

While research on modeling languages for Industry 4.0 is
very balanced between contributing to handling cyber ele-
ments and physical elements, modeling physical elements or
processes operating with them is important to modeling in
Industry 4.0.

4.3 Modeling languages applied to Industry 4.0

Regarding RQ3 (“Which kinds of modeling languages are
used in Industry 4.0 and which concerns do they address?”),
out of the 408 publications included in our classification,
a total of 86 (86.03%) publications explicitly specified the
(meta)modeling technique the authors applied to Industry
4.0. Examining these publications produced 124 different
modeling techniques. Most notably among these are:

– Variants of UML, such as DiSpa [16], Mechatronic
UML [134], UMM [100], and UML4IoT [149];

– The systems modeling language (SysML) [147] and
its variants, such as SysML4Mechatronics [48] and
SysML4Modelica [19];
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Fig. 5 Modeling language facet by research type and contribution type

– Knowledge representation techniques, mostly employ-
ing the Web Ontology Language (OWL) [60,110] or the
Semantic Web Rule Language (SWRL) [66,129].

– Metamodels specific to Industry 4.0 challenges, such as
the industrial metamodel for automation systems [107]
or AutomationML [83].

– Metamodeling techniques, such as ADOxx [45,156],
MetaEdit+ [30,31], or Xtext [55,77].

– Various DSLs, such as the EXPRESS DSL for product
data modeling [39], the virtual factory data model [74],
the Industry 4.0 process modeling language [116], the
graphical modeling language for value networks [133],
or the graphical modeling framework for production pro-
cesses [94].

Overall, out of the 408 classified papers, 85 (20.83%) con-
tribute or apply DSLs to specific to Industry 4.0 challenges
and total of 74 (18.14%) papers employ UML (including
variants). We also observed that leveraging UML and DSLs
is not mutually exclusive in Industry 4.0 as 8 of the publica-
tions, such as [5,56,139], employ both.A total of 74 (18.14%)
papers employ knowledge representation techniques, 29

(7.11%) papers use AutomationML [41], and 25 (6.13%)
papers use SysML to address Industry 4.0 challenges. We
also found 42 (10.29%) publications that discuss some form
of conceptual metamodeling, i.e., describing the entities and
their relations, of a specific aspect of Industry 4.0. Out of
these only eight papers explicitly identified the metamodel-
ing techniques used to define software languages for Industry
4.0 challenges. These either employed language work-
benches, such as Xtext [77,105,112] or MetaEdit+ [30,31],
or generic metamodeling frameworks, such as MOF [86],
and Ecore [83]. Overall, 127 (31.13%) of the overall con-
tributions address Industry 4.0 challenges with new DSLs
or metamodeling techniques. This could hint at modeling
challenges that cannot be properly addressed by established
modeling techniques.

To answer RQ3, we also investigate which modeling
languages are applied to address the different Industry 4.0
concerns. The results, depicted in Fig. 6, show that UML
is used mostly to solve challenges in digital representation
(39 publications) and integration (35 publications), which is
consistent with identifying these as the most important chal-
lenges addressed by included publications. Consequently,
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Fig. 6 Individual Industry 4.0 concerns and modeling techniques addressing these

these also are the two concerns most often addressed with
knowledge representation techniques, DSLs, SysML, and
AutomationML as well. For process modeling, another
important aspect if Industry 4.0, DSLs are most popular (17
publications), followed by the application of knowledge rep-
resentation techniques (35) publications), formal methods
(13) publications), and UML (also 13) publications)

Overall, the concerns digital representation and integra-
tion—addressed by either AutomationML, various DSLs,
knowledge representation techniques, SysML, or UML—
represent 33.43% of the 700 concerns addressed with mod-
eling languages. Together, these are a major focus of the
field’s research activities. While the usage of UML and
DSLs is almost equally distributed between both concerns,
knowledge representation techniques lean toward digital rep-
resentation challenges.

The results also show that neither validation and veri-
fication, nor the human factors crucial to the success of
Industry 4.0 or product modeling are investigated as much
as integration and digital representation. Whereas the former
might require solving digital representation and integration
(to some degree) first, the lack of research on the latter two
is elusive. Unless the smart factory of the future is fully
automated, human interaction and control are necessary and
should be considered appropriately.

We also observe that standards are crucial bases on shared
understanding in the context of Industry 4.0. And while
many papers apply techniques implementing standards to

Industry 4.0, out of the 408 papers, 66 (5.64%) papers explic-
itly discuss, relate to, or challenge 54 different standards
defined by the International Organization for Standardization
(ISO), theAmericanNational Standards Institute (ANSI), the
International Electrotechnical Commission (IEC), the Sim-
ulation Interoperability Standards Organization (SISO), the
American Society of Mechanical Engineers (ASME), and
the National Institute of Standards and Technology (NIST).
The standards are addressed in the context concerns identi-
fied as research contributions of the corpus, including digital
representation, human factors, integration, metamodeling,
processes, and visualization. But they also address cross-
cutting concerns, such as the environment, quality issues,
safety, and security.

With integration being one of the Industry 4.0 concerns
investigated most often, the most popular standards regard-
ing modeling for Industry 4.0 also focus on integration as
well. The standard for the exchange of product model data
(“STEP”, ISO 10303) is consideredmost often and discussed
12 times. It is followed by the standard for the integration of
lifecycle data for process plants including oil and gas produc-
tion facilities (ISO 15926), which is mentioned 9 times, and
the standard on enterprise-control system integration, men-
tioned 7 times (IEC 62264). The standard defining a data
model for computerized numerical controllers (“STEP-NC”,
ISO/TS 14649) also was mentioned 5 times. Other stan-
dards discussed at least once in the context of integration
include the standards on data element types with associated
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classification scheme (IEC 61630), the parts library stan-
dard (“PLIB”, IEC 13584), Core Manufacturing Simulation
Data (“CMSD”, SISO-STD-008), manufacturing message
specification (“MMS”, ISO 9506), industrial manufacturing
management data (“MANDATE”, ISO15531),metadata reg-
istries (ISO/IEC 11179), or the metamodel framework for
interoperability (ISO/IEC 19763). Overall, integration is the
main driver for the standardization of modeling techniques
in Industry 4.0.

Other important drivers for discussing, challenging, or
relating to standards are (1) processes and process modeling
which is addressed by the standards ANSI/ISA-88, ISO/DIS
18828-5, IEC 61499, ISO 22400, ISO 60848, ISO 6983,
ISO/IEC 19510, and ISO/IEC 6523; (2) digital representa-
tion in the context the standards IEC 61346, ASMEB5.59-2,
ISO 42010, ISO/IEC 10746 ISO/IEC 14662, and ISO/IEC
19501; and (3) visualization with the related standards ISO
10628, ISO 15519, ISO 3511, ISO 1219, ISO/PAS 17506,
ISO 14306, ISO 14739. Overall, this indicates that standard-
ization is in line with the general research direction in the
field.

Out of the 54 standards, at least 13 standards address top-
ics of direct interest for the modeling community in software
engineering, as these directly specify, imply, require, or con-
strain (meta) modeling techniques. These include standards
prominent in software engineering, such as Unified Mod-
eling Language (UML) in version 1.3 (ISO/IEC 19501),
the Business Process Model and Notation (BPMN, ISO/IEC
19510), or the Meta Object Facility (MOF, ISO/IEC 19502),
or architecture description (ISO/IEC 42010). Themajority of
modeling-related standards in Industry 4.0, however, appear
to be less prominent in the modeling community in software
engineering. We assume that this indicates a gap between
both communities, modeling in automation systems engi-
neering and modeling in software engineering.

4.4 Countries and institutions contributing to the
field

Investigating RQ5 (“Who researches modeling languages in
Industry 4.0?”), we found that 184 (45.1%) of the publica-
tions were contributed by teams including German authors,
followed by teams including authors from the USA (35
publications), Austria (29 publications), and France (28
publications) as depicted in Fig. 7. Overall 53 countries
contributed to research on modeling languages for Industry
4.0 in 521 contributions (papers with authors from multi-
ple countries count as multiple country contributions). Out
of these, the 10 most actively publishing countries produce
392 (75.24%).Among these 392 contributions, 325 (82.91%)
contributions are from Europe. This suggests that modeling
in Industry 4.0 still largely is a European research project

despite starting related initiatives in many countries across
the globe.

Aside from the contributing authors’ countries, we also
identified the institutions most actively engaging in research
on modeling languages for Industry 4.0. Overall 358 institu-
tions contribute to the field. Due to Industry 4.0 being coined
in Germany and 45.1% of the included publications hav-
ing German co-authors, it is unsurprising that out of the
10 most active institutions in this field, 6 are from Ger-
many (as depicted in Fig. 8). It is, however, interesting
that among these most active institutions are two national
research institutions, the USA’s National Institute of Stan-
dards and Technology (NIST) and the National Research
Council of Italy, whereas for Austria, Germany, and Spain
the most active institutions are universities or companies.
Multi-national institutions were assigned the country of their
headquarter.

Out of the 358 overall contributing institutions, 235
(65.64%) are universities, 72 (20.11%) are companies, and
51 (14.25%) are other kinds of research institutes, such as
the Department of Energy of the USA, the Greek ATHENA
Research and Innovation Centre, or the German Fraunhofer
institutes. While this might indicate that—despite being a
business-driven paradigm (cf. Sect. 4.1)—research on mod-
eling in Industry 4.0 could be driven by academic researchers,
our initial data collection also produced 235 (7.03% out of
the 3344 potentially relevant unique publications) patents
via Google Scholar. These indicate that there is industrially
driven research on Industry 4.0 that does not necessarily lead
to scientific publications.

4.5 Popular venues for publications onmodeling
languages for Industry 4.0

Regarding RQ6 (“Where have the contributions been pub-
lished?”), we found that most papers are published at con-
ferences (249, 61.03%), followed by journals (137, 33.58%),
and workshops (22, 5.39%).We also identified the most pop-
ular journals, conferences, and workshops of this particular
field of research, to answer RQ6 on the most popular venues
for modeling research in the context of Industry 4.0.

Figure 9 presents the 10 most popular journals, where
(15.26%) of the related journal papers are published. Where
journals produced the same number of publications, they are
represented in alphabetical order according to their name.
Notably, no publications of the Transactions on Industrial
Informatics (no. 4) or the International Journal of Produc-
tion Research (no. 5) were included in the dataset until
April 2017. However, the small numbers of publications in
these most popular journals, do not support conclusions over
their importance. As the Industry 4.0 matures, future studies
maybe could draw such conclusions based on larger corpora
of relevant publications.
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Fig. 7 The 10 most actively
publishing countries with
authors contributing to modeling
in Industry 4.0 are largely from
Europe and contribute 82.91%
of the publications

Fig. 8 The 10 most active
institutions engaging in research
on modeling for Industry 4.0

Fig. 9 Most popular journals
for publications on modeling for
Industry 4.0

The 10 most popular conferences regarding modeling in
Industry 4.0, depicted in Fig. 10, publish, with 38.15%, also
a large part of the related conference publications. Again,
conferences yielding the same number of publications are
represented in alphabetical order according to their full name.
The large number of conference publications supports the
conclusion that the conference on Emerging Technologies

and Factory Automation (ETFA)—publishing 31 (12.45%)
of included conference papers—is themost important confer-
ence for publications on modeling in Industry 4.0. The nine
other most popular conferences published between 4 and 15
papers on the topic. With some distance to ETFA, the Inter-
national Conference on Industrial Informatics (INDIN), the
CIRP Conference on Manufacturing Systems (CIRP CMS),

123

148



Modeling languages in Industry 4.0: an extended systematic mapping study

Fig. 10 Most popular conferences for publications on modeling for Industry 4.0

and the conference of the IEEE Industrial Electronics Society
(IECON) are the next most popular conferences for model-
ing in Industry 4.0. Together, they publish a similar share
(14.05%) of related papers.

Overall, the 10 most popular journals and conferences
publish 32.6%of the included papers,which hints at a healthy
distribution of publications over multiple venues. This is
reflected by the 22 workshop papers included in the clas-
sification, which were published at 20 different workshops.
In this context, no trends on workshop popularity can be
observed.

4.6 Publication activities over time

Regarding RQ7 (“When did the contributions on modeling
languages to Industry 4.0 occur?”), we found that modeling
for Industry 4.0was already addressed as early as 1991 [158],
although the term “Industry 4.0” was not coined yet. Over
half (219, 84.56%) of related publications were published
starting in 2016 and 345 (84.56%) of the publications are
from 2011 (the year the term “Industry 4.0” was coined) or
later (cf. Fig. 11) and later.We also observe that the number of
papers increased by (31.82%) on average per year since 2011.
Whether this trendwill continue requires future investigation.

5 Trends and perspectives onmodeling for
Industry 4.0

Updating our previous mapping study provided the unique
opportunity to investigate publication trends between April

2017 and February 2018.While we are aware of this compact
time frame, comparing both data sets produced interesting
observations. Subsequently, this section presents perspec-
tives on potential future trends of research in modeling for
Industry 4.0.

5.1 Trends inmodeling for Industry 4.0

We extended the mapping study with papers published
between April 2017 and February 2018. Through this, we
included 186 (an increase of 83.78%) additional papers
into our observations, which corresponds to the increase of
addressed concerns of 76.94%. Comparing both data sets
yields insights into differences between publications until
April 2017 and afterward.

Considering changes in contribution types with respect
to addressed Industry 4.0 concerns, we found significant
increases regarding methods (450%) for product modeling,
validation and verification (183.33%), and failure handling
(150%), as well as regarding tools for validation and ver-
ification (150%). Concerning the research types of the
publications in the updated corpus, we found that solu-
tions for product modeling (183.37%), for validation and
verification (146.67%), and for information management
(135.67%) increased the most. The absolute numbers of
increases regarding contribution types and research types are
depicted in Fig. 12.

Nonetheless, we also found that analyses (54.55%), meth-
ods (53.85%), tools (27.27%) for digital representation
showed a disproportionately lower increase. This might indi-
cate that some techniques for digital representation have
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Fig. 11 Number of publications
per year until February 2018
(missing numbers identify years
without related publications)

Fig. 12 Numbers of addressed Industry 4.0 concerns relative to the different contribution types and research types contributed by the 186 publications
included since April 2017

become a stable basis for other research to build upon. Over-
all, contributions investigating product modeling (300%),
validation and verification (186.67%), and information man-
agement (135.70%) increased the most. This change of focus

from digital representation and integration, as found in [159],
to validation and verification and processes could be in line
with building on top of established representation and inte-
gration techniques.
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Fig. 13 Numbers of applied modeling techniques relative to the different contribution types and research types contributed by the 186 publications
included since April 2017

Regarding the technologies addressed by the included
publications, we found that, relatively, the use of metamodel-
ing techniques (425%), formalmethods (169%), anddomain-
specific languages (158%) for Industry 4.0 increased the
most. This could be an effect of a wave of early approaches
investigating applying more general or established model-
ing techniques, based, e.g., on UML or XML [159], abating.
Moreover, this underlines the importance ofmodeling knowl-
edge in Industry 4.0.

In contrast, the use of pure XML or Simulink increased by
27% and 50%, respectively, only. However, with their abso-
lute numbers—as presented in Fig. 13—of publications con-
sidering pureXMLor Simulink being low to beginwith, their
relative small increases might not imply any trends (Fig. 14).

Investigating trends regardingmodeling techniques applied
to Industry 4.0 concerns, we found that the application of
the different metamodeling techniques to processes (800%)
and integration (633%), as well as the application of knowl-
edge representation techniques to information management
(600%) increased the most. In contrast, the overall applica-
tion ofADLs (0%) andCMSD (13%),XML (25%), Simulink

(44%), and AutomationML (48%) increased the least. How-
ever, the low number of publications on metamodeling
found initially [159] explains their relatively sharp increase,
whereas the low numbers of publications applying ADLs,
UML, or XML-based techniques emphasize the trend toward
novel and specific modeling languages for Industry 4.0.

Considering the different venues relevant to publishing on
modeling for Industry 4.0, it is notable that no publications
of the International Journal of Production Research or the
Transactions on Industrial Informatics were included in the
dataset until April 2017.

5.2 Different perspectives onmodeling

In line with our findings of standardization activities, the
identified publication venues also indicate a gap between the
different modeling communities (automation engineering,
software engineering, etc.) related to Industry 4.0. From our
experience, this also is visible in some of the topics relevant
to modeling in Industry 4.0, such as 3D modeling, knowl-
edge representation, or simulation that seem to attract fewer
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Fig. 14 Numbers of Industry 4.0 concerns addressed by the different modeling techniques as contributed by the 186 publications included since
April 2017

publications in the software engineering modeling commu-
nity (e.g., the MODELS or ECMFA conferences). This also
is reified by the different standardization or specification
bodies of the different communities. While the OMG con-
siders automation engineering standards, as well as software
engineering standards, or cross-cutting standards (e.g., on
environment, safety, or quality), there are modeling-related
standards by standardization bodies not primarily consider-
ing software engineering, such as the Core Manufacturing
SimulationData (CMSD) standardizedbySISO(SISO-STD-
008) or the related standards by IEC (e.g., IEC 61630 or IEC
62424).

Moreover, there are various standards addressing issues
relevant to the software engineering modeling community,
such as (1) the standard for the “exchange of product model
data” (“STEP” [120]) reified in ISO 10303, which comprises
the EXPRESS [120] modeling language, the standard data
access interface, or the STEP-NC [160] machine tool control
language; (2) the standard for “industrial automation systems
and integration - Parts library” (“PLIB”) reified in ISO13569,
which defines theOntoMLontologymarkup language; or the
(3) the process specification language of ISO 18629. Hence,
we suggest for software engineering researchers to consider
these standards when contributing to modeling in Industry
4.0.

Moreover, with AutomationML [14], research and indus-
try have started a promising initiative on modeling automa-

tion systems for Industry 4.0 that features research groups for
all participating communities. However, the underlying tech-
nologies that define models and languages (e.g., XML) can
significantly improve from research conducted in the com-
munity around model-driven software development.

We also found that research on modeling languages for
Industry 4.0 to a large extent addresses challenges either
typical to software and systems engineering, such as digital
system representation and integration, or typical to arti-
ficial intelligence, such as representing knowledge about
processes and resources and reasoning about these (cf. Fig.
6). Despite these challenges being central to computer sci-
ence research, themost popular venues (cf. Sect. 4.5) suggest
that this research is not discussed in computer science, but in
journals and conferences related to automation engineering
instead. Whether this is due to the contributing researchers’
backgrounds is subject to ongoing research and cannot be
answered from the data on contributing institutions alone
(cf. Sect. 4.4).

Research on modeling languages for Industry 4.0 focuses
on constructive contributions, i.e., methods solving specific
problems (cf. Sect. 4.2), while there are few experience
reports, validation research, or evaluation papers. Similarly,
metrics and analyses, expected to be prominent for such a
business-driven research agenda, are very rare. This is in line
with the observation that only a few papers conduct empirical
evaluations in industrial settings (5.64%) and might suggest
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that the majority of solutions provided to the field are not
mature enough for to be evaluated in the field, or that there
is a significant amount of research not targeted at industrial
needs. Also, there is a noticeable lack of vision papers on
modeling for the newly coined research agenda of Industry
4.0, which might contrast the hypothesis that research on
modeling for Industry 4.0 is of insufficient maturity.

5.3 Looking ahead onmodeling for Industry 4.0

We are currently striving for new opportunities, but at the
same time facing a dramatically increasing complexity in
the development and operation of systems with the emer-
gence of Cyber-Physical Production Systems (CPPS) [153]
in Industry 4.0. This demands for more comprehensive and
systematic views on all aspects of systems (e.g., mechanics,
electronics, software, and network) not only in the engineer-
ing process but in the operation process as well [22]. More-
over, flexible approaches are needed to adapt the systems’
behavior to ever-changing requirements and tasks, unex-
pected conditions, as well as structural transformations [87].
Modeling languages are traditionally more focused on the
development phases as also indicated by our literature study.
However, the reference architecture of Industry 4.0 explicitly
targets themanagement of the complete lifecycle, going from
development (i.e., type level) to operation (i.e., instance level)
in addition to vertical and horizontal integration require-
ments. In this context, the later phases of the lifecycle may
become a new playground for existing modeling languages.
Although some of the surveyed languages already provide
some support for type and instance level such as UML,
typically the instance level modeling did not receive much
attention compared to the type level.

To tackle the challenges of Industry 4.0, such as the flexi-
ble and resilient adaption of CPPS to changing requirements,
the operation processes of CPPS, as well as their interplay
with the engineering processes and vice verse, has to be taken
into consideration also by the employedmodeling languages.
This raises the question of how model-based DevOps prac-
tices for CPPS can be achieved. Such practices are currently
highly needed to reduce the time between identifying the
necessity for a change and putting the appropriate change
into production. Definitely, we have to go beyond the current
support offered by current Product Lifecycle Management
(PLM) tools [1].

Furthermore, current DevOps practices have to be com-
pleted to be applicable not only for code-based artifacts but
for a larger variety of artifacts such as models, engineering
documents, CAD drawings, simulation data, etc.

In the following, we present a vision for model-based
DevOps as well as challenges related to the development of
the next-generation modeling languages that have to be tack-
led to realize model-based DevOps for Industry 4.0. Finally,

we conclude with the potential benefits of model-based
DevOps but also enumerate potential barriers tomodel-based
DevOps.

5.3.1 Model-based DevOps: a vision

While current DevOps practices apply to code integration,
deployment and delivery, we envision the application of the
very same practices at the model level. In such a vision, the
various domain-specific development models are seamlessly
integrated with operations, either models at runtime (e.g.,
model-based MAPE-K loop or digital twins) or a combina-
tion of software and hardware components within a given
environment. In the last two decades, the MDE community
developed a rich and useful toolset for implementing such
a vision through the efficient development, usage, main-
tenance, and evolution of modeling languages. Figure 15
presents some of the modeling techniques that can be used
across the DevOps cycle.

5.3.2 Model-based DevOps: What is needed frommodeling
language research?

Integration of the MDE Technologies with DevOps Tech-
nologies In the past decade, a plethora of different modeling
languages for design, validation, verification, evolution, and
transformation ofmodels have been proposed.However, how
these languages may be bundled into a pipeline for continu-
ously integrating, building, testing, and deploying models
into production environments is less explored. The only
exception is the work by García and Cabot [51] who married
continuous deployment technologies and model-driven tech-
nologies. Some approaches toward leveraging MDE in the
context of PLM that might serve as a vantage point for mov-
ing from PLM with MDE to model-based DevOps include
model- and standards-based data integration [101], increas-
ing virtualization [2,30], or domain-specific languages tai-
lored to the industry’s processes [105].

Integration of different artifact kindsWhile currentmodel-
based technologies provide common services for model-
based artifacts, other artifact kinds such as software compo-
nents or hardware descriptions cannot be directly integrated
with models. However, this demands integration techniques
on the language level that support a progressive integration
of models starting in the engineering process and extend-
ing into the deployment process even going to the operation
processes. Activities in this direction include, e.g., inte-
grating geometric tolerance information into STEP (ISO
10303) [132] or integrated representations of products, pro-
cesses, and resources [10] to model system changes over its
lifecycle.

Aligning operational data and design models A major
challenge is the back-propagation of operational data (e.g.,
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Fig. 15 A vision of model-based DevOps that aims to facilitate addressing the challenges of the CPPS of Industry 4.0 through pervasive modeling
across their complete lifecycle

measures about performance, energy consumption, masses,
costs, etc.) into the documentation provided on top of hetero-
geneous designmodels—whichmaybe software engineering
models, formal models of physical processes, knowledge
bases, CAD, or something else. Currently, most of the mod-
eling languages identified in our study lack a dedicated
viewpoint for operations. Extensions to these languages are
required to link to operational data or to store summaries of
operational data in models (cf. [54,122]).

Visualizing operational data in designmodelsOperational
data is becoming huge in size for complex systems. Even
if operational data is aligned with design models, current
modeling languages most often fail short in visualization
support for non-2D-diagram-based data. Additional require-
ments for visualization of designmodels occur such as how to
visualize the underlying quality of the data such as uncertain-
ties. Integrating sophisticated visualization techniques [4] are
required to provide an understanding of operation-enriched
design models.

Exploiting runtime models for continuous improvement
of design models Runtime models have gained considerable
attention in MDE, mostly in the context of self-* systems.
Interpreting runtime models for continuous improvement of
the design models (possibly through additional predictive
models) would enable reasoning about the next versions of a
system. Runtime models would indeed be very helpful here:
for instance, assume the transform of the runtime models
back into traces which can be replayed by simulators for ani-

mation, exploration, etc., on the designmodels.We, however,
found that most publications focus on modeling languages
to describe design-time models or runtime data is analyzed
without a deeper connection to the design models.

5.3.3 Perspectives of model-based DevOps for Industry 4.0

The path toward model-based DevOps for Industry 4.0
yields specific benefits and challenges. For instance, con-
sidering business concerns, as presented in the BizDevOps
approach [58], requires reasoning over the global system at
the business level - the highest vertical level in the reference
architecture of Industry 4.0. This level would benefit from
the application of the DevOps principles at themodel level as
models are closer to the application domain and can provide
a comprehensive representation of the system, including its
environment and possible extra-functional properties related
to business concerns.

Moreover, promoting DevOps principles at the model
level enables leveraging it earlier in the development pro-
cess. Hence, DevOps principles would not only apply to the
integration, deployment, delivery, and operation of the global
system, but could also apply at a finer level of granularity
for the different concerns addressed during the develop-
ment processes of plants, production systems, and products
their various abstraction levels. This could lead to power-
ful development processes where automation and continuous
feedback are not only available at the level of the global sys-
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tem, but also at the level of the different concerns and across
the various levels of abstraction. This, for instance, could
facilitate operating (partly) virtual factories [28,74] earlier
and support factory and CPPS integration planning as well
as simulation of manufacturing novel products.

Based on our findings, obstacles to the adoption of model-
driven DevOps in Industry 4.0 might arise from a gap
between the modeling communities of Industry 4.0 and soft-
ware engineering.AsDevOps is a set of software engineering
practices, it largely focuses on cyber (i.e., software) ele-
ments, a DevOps for Industry 4.0 must also incorporate its
physical parts (cf. Sect. 4.2) and leverage associated model-
ing languages. Where DevOps, i.e., introducing change, for
pure software elements is manageable, e.g., by over-the-air
updates at runtime, changing physical elements at runtime
is complicated to impossible. Similarly, software generally
can be released and monitored more easily than the physical
elements of Industry 4.0. Moreover, a DevOps for Indus-
try 4.0 must comply with relevant industry standards and
regulations (see Sect. 4.3). This is especially critical where
(manual) certification prior to deployment is required as
this can hamper the DevOps loop. Finally, while modern
software engineering tools are providing open APIs to be
integrated into DevOps pipelines which allow for automa-
tion and traceability, classical PLM tools for managing the
lifecycle of physical components by virtual representations
are often closed environments with proprietary data formats.

To sum up, with both communities generally leveraging
differentmodeling techniques, standards, and tools, realizing
DevOps for Industry 4.0 demands for concentrated efforts to
bridge this gap. Otherwise, realizing the reference architec-
ture of Industry 4.0 becomes a utopia.

6 Threats to validity

For identifying the threats to the validity of our SMS, we
follow the four basic types of validity threats according to
Wohlin et al. [157]. Our study is subject to threats to construct
validity (research design), internal validity (data extraction),
and conclusionvalidity (reliability). Threats to external valid-
ity (generalizability) are irrelevant as the results of this study
can neither be generalized to problems domains other than
Industry 4.0 nor to solution domains other than modeling.

Regarding threats to research design, the presented find-
ings are valid only for our sample of papers. Hence, it is
crucial to ensure the inclusion of as many relevant papers as
possible. To achieve this, we included the Google Scholar
digital library and only very carefully excluded publications.
We are aware that a great number of subsequent exclusions
for formal reasons (e.g., non-peer-reviewed materials) are
due to querying Google Scholar. However, its inclusion was
useful to capture venues not published in the other libraries.

Overall, using Google Scholar led to including 207 papers
that would have otherwise been omitted.

Moreover, we did not restrict our search to publications
mentioning “Industry 4.0” explicitly, but also included the
related terms of the search clause’s first disjunction. Simi-
larly, the search clause’s second disjunction included terms
closely related to modeling, without narrowing it to the
exact terms. Instead, we used terms one can expect from
relevant contributions to be included in the full text. This
enabled capturing related publications without focusing on
the very specific, partly ambiguous, modeling terminology.
Our search clause also might entail a bias toward Euro-
pean research by explicitly mentioning “Industry 4.0”, i.e.,
the name of a European initiative on smart manufacturing,
whereas the names of other national initiatives (e.g., the
Japanese “Industrial Value Chain” or the “Advanced Man-
ufacturing Initiative” of the USA) are not part of the search
clause.

Another threat to research design validity arises from the
definition of the criteria of inclusion and exclusion. During
the screening, only title, abstract, and keywords were con-
sidered. To prevent excluding relevant publications based on
the lack of investigation, we included papers we were uncer-
tain of temporarily. In the subsequent classification phase,
the complete papers were read and inclusion or exclusion
were decided ultimately.

Of course, our mapping study also is subject to the so-
called publication bias, i.e., it can report on published results
only. As publications focus on positive results, we cannot
derivewhichmodeling languages are not applicable from our
data sources. Also, we restrict our research to work applied
to Industry 4.0, instead of also considering potential appli-
cations to it. Due to its diversity, a study on the latter must
include at least publications focusing on robotics, the Internet
of Things, production planning, enterprise systems, human–
computer interaction, and much more. However, including
all these fields would dilute the validity of such a study.

Threats to conclusion validity arise drawing wrong con-
clusions and from the study’s replicability. Regarding the
former, we have discussed various issues that could lead
to wrong conclusions in the context of threats to internal
validity. For replicability, we detailed the complete research
method in Sect. 3, which enables replicating every phase of
this mapping study. Regarding some conclusions, such as the
most active institutions ormost relevant journals, our study is
by construction biased toward institutions and journals pub-
lishing in English.

7 Conclusion

We conducted a systematic mapping study to investigate the
state of research onmodeling languages for Industry 4.0. The
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study revealed that digital representation of cyber-physical
production systems, i.e., their interfaces and datamodels, and
their integration and (re-)configuration are the prime Industry
4.0 concerns addressed through modeling languages.

The number of papers explicating the authors’ expec-
tations of applying modeling languages to Industry 4.0 is
rather small. There also are no papers or benchmarks that
investigate evaluating the expected benefits through experi-
ments. This is in line with uncovering a lack of experience
papers and experience reports. Moreover, there appears lit-
tle published research on metrics and benchmarks to test
the explicated expectations. This might hint that research
on modeling languages for Industry 4.0 is still focusing on
foundational challenges and maturing the discipline could
produce these necessary validations. This also is indicated
by the high number of publications focusing on methods
and solutions, instead of validation research. Where eval-
uation research is reported, it mostly focuses on case studies
or lab-sized systems at universities possibly using industrial
components. To fully investigate the benefits of modeling on
Industry 4.0, more evaluation research in industrial settings
is necessary.

It is also startling that—despite the huge costs that pro-
duction system failures might entail—there is relatively little
research on validation and verification. However, with Indus-
try 4.0 being business-driven and aiming to reduce cost
and time, such contributions might arise once the field has
maturedmore. Recent trends indicate that validation and ver-
ification already are becoming a more important concern for
the field.

We found that domain-specific languages and UML
(including variants) are themodeling languages appliedmost
often, followed by knowledge representation techniques. The
use of metamodeling and DSLs, as well as UML profiles
or other extension mechanisms, might suggest that specific
challenges are not supported by current modeling languages.
However, in the 23 publications reporting an industrial eval-
uation of their contributions, this assumption is not reflected.
As expected, these publications report on applying more
established modeling languages, such as AutomationML (cf.
[40]), OWL (cf. [129,137,139]), or UML (cf. [119,129]).
Nonetheless, even among the publications with industrial
evaluation, we found contributions introducing novel meta-
models (cf. [70]) or extensions of established ontologies (cf.
[111]).

Also, with the majority 76% of contributions related to
DSLs being published since 2014—and in an increasing
number since then—we expect more research contributing
modeling techniques specifically tailored to Industry 4.0
in the future. The significantly growing number of papers
related to metamodeling and DSLs in the last year alone
suggests that the community on modeling for Industry 4.0
invests increasing efforts in tailoring specific modeling tools.

This matches the number of modeling standards and exten-
sions to these standards as well. Most notably, Computer
Aided Engineering Exchange (CAEX) [15] acts as a model-
ing language and metamodeling language which is used by
AutomationML [41] and enables its extension with domain-
specific concepts.

While integration still is a major challenge in Industry 4.0,
there seem to be trends to shift research from a mostly digi-
tal representation of CPPS toward information management
and process modeling. Moreover, research shifts away from
applying established (e.g.,UML-based)modeling techniques
toward specific and tailored modeling techniques. The latter
might be an effect of increasing adoption of modeling stan-
dards (such as ISO 10303 or IEC 62264) specific to Industry
4.0, which are worthwhile to investigate for everybody aim-
ing to contribute to the field.

Especially modeling knowledge about processes operat-
ing on established digital representations seems to become
increasingly important. To this end, integration of software
engineering and knowledge representation (e.g., on the inte-
gration of ontologies and class diagrams or SPARQL and
OCL) demands further research that supports its deploy-
ment in the Industry 4.0 field. Moreover, there also is less
research on modeling for (smart) products of Industry 4.0
than expected.

Future work on investigating the contribution of modeling
languages to Industry 4.0 should investigate details on the
modeling techniques applied to Industry 4.0, such as their
forms, integration, and usage. The dataset produced through
our systematic mapping study enables this.

Acknowledgements This work has been partially supported by the
Austrian Federal Ministry for Digital and Economic Affairs, the
National Foundation for Research, Technology and Development and
by the FWF in the Project LEA-xDSML under the Grant Number P
30525-N31.

References

1. Abramovici, M.: Future trends in product lifecycle management
(PLM). In: The Future of Product Development, pp. 665–674.
Springer, Berlin (2007)

2. Affonso, R.C., Cheutet, V., Ayadi, M., Haddar, M.: Simulation in
product lifecycle: towards a better information management for
design projects. J. Mod. Project Manag. 1(1) (2013)

3. Agner, L.T.W., Soares, I.W., Stadzisz, P.C., SimãO, J.M.: A
Brazilian survey on UML and model-driven practices for embed-
ded software development. J. Syst. Softw. 86(4), 997–1005 (2013)

4. Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualiza-
tion of Time-OrientedData.Human–Computer Interaction Series.
Springer, Berlin (2011)

5. Al-Fedaghi, S., Al-Shahin, F.: Control software modeling in pro-
duction systems. Open Autom. Control Syst. J. 7(1), 184–198
(2015)
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ABSTRACT
“Software languages are software too”, hence their creation, evolu-
tion, and maintenance is subject to the same challenges. Managing
multiple stand-alone variants of similar DSLs raises the related
maintenance and evolution efforts for the languages and their asso-
ciated tooling (analyses, transformations, editors, etc.) to a higher
power. Software variability management techniques can help to
harness this complexity. Research in software language variability
focuses on metamodels and consequently mainly supports manag-
ing the variability of abstract syntaxes, omitting concrete syntax
variability management. We present an approach to manage con-
trolled syntactic variability of extensible software language product
lines through identification of dedicated syntax variation points
and specification of variants from independently developed fea-
tures. This fosters software language reuse and reduces creation,
maintenance, and evolution efforts. The approach is realized with
the MontiCore language workbench and evaluated through a case
study on architecture description languages. It facilitates creating,
maintaining, and evolving the concrete and abstract syntax of fami-
lies of languages and, hence, reduces the effort of software language
engineering.
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1 INTRODUCTION
Model-driven development (MDD) leverages (domain-specific) mod-
eling languages (DSMLs) to reduce the conceptual gap between
problem domains and the solution domain of software engineer-
ing [8]. Hence, efficient engineering, customization, and reuse
of DSMLs has become a prime concern in MDD characterized
as software language engineering (SLE) [13]. But “software lan-
guages are software too” [7] and as such are subject to the same
challenges regarding creation, evolution, and maintenance. Con-
sequently, SLE has produced a multitude of solutions to create
languages based on metamodels or grammars, interpreters or gen-
erators, well-formedness rules in metalanguages or programming
languages. Metamodels encode the abstract syntax (i.e., structure)
of languages as classes and their associations without providing
means to instantiate models. Grammars also describe the structure
of a language, but can support integrated definition of concrete
syntax as well [9]. From these, model processing infrastructure
to translate textual models into abstract syntax instances can be
derived automatically, which greatly facilitates the efficient usage
of DSMLs.

Research and industry have contributed a wealth of different
DSMLs for different application domains and scenarios. A study [18]
on architecture description languages (ADLs), for instance, discov-
ered over 120 different ADLs for various domains. This requires
creating, evolving, and maintaining independent languages and
tooling for each of these individually. Research in software product
lines (SPLs) has produced means to capture and manage variability
of similar software in product lines. From these, different products
can be derived through selection of features. Leveraging SPLs to
DSMLs can facilitate engineering and maintaining product lines of
similar languages. Research to DSML SPLs focuses on metamod-
els [22, 29] or grammars [16]. Both requires to maintain variability
of the semantic mapping separately. Moreover, approaches to DSML
variability either are restricted to fixed 150% models, where every
possible feature must be known a priori [29], or support arbitrary
language feature extension, which allows to break the structure
imposed by feature diagrams easily.

We present a concept of controlled language variability that facil-
itates a posteriori extensibility with additional features, considers
concrete syntax, and enables (re-)using languages as features with-
out explicitly foreseeing this usage at language design time. It is
realized through a family of integrated MontiCore [9] DSMLs and a
composition mechanism based on well-defined language extension
points. The realization builds upon existing language composition
techniques of MontiCore and enables controlled language composi-
tion to support, e.g., validation on product line level. The individual
languages are independent of each other, which enables these to
be developed by different language engineers.

[BEK+18] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann: 
Controlled and Extensible Variability of Concrete and Abstract Syntax with Independent Language Features. 
In: Proceedings of the 12th International Workshop on Variability Modelling of Software-Intensive Systems (VAMOS'18), pg. 75-82. ACM, Feb. 2018. 
www.se-rwth.de/publications 
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The contributions of this paper, hence, are:

• A concept of controlled, extensible language product lines
(LPLs) leveraging composition of independent language fea-
tures that can be composed post hoc without invasion.

• Its realization with the MontiCore language workbench.
• A case study in architecture description languages.

To this end, Section 2 introduces our running example, before
Section 3 introduces preliminaries. Afterwards, Section 4 presents
our problem space concept for managing DSML variability and
Section 5 presents its solution space implementation. Section 6
describes the application of our approach to managing features of
an ADL. Section 7 highlights related work and Section 8 discusses
observations.

2 EXAMPLE
Consider developing software architectures for different domains.
To prevent the efforts of creating, maintaining, and evolving mul-
tiple stand-alone ADL variants tailored to the specific domains,
language engineering starts with a core ADL with specific exten-
sion points and independently developed language components
that provide modeling elements required for architectures of the
different domains. A feature model associates the different language
features (LFs) with extension points of the core ADL and of other
features. Based on a feature configuration, the language compo-
nents are combined such that an integrated ADL is created that
allows the different domain experts to use precisely the modeling
elements required. This enables a separation of concerns where
language engineers develop LFs independent of each other. The
arrangement of these features to a feature diagram is performed by
a LPL manager. A language product manager is a domain expert
who selects all features of a LPL that are relevant to the domain to
generate language-processing tooling. A modeler then uses such a
tool to implement models that conform to this language.

An example of a compact LPL for ADLs used for cloud systems
and embedded systems is depicted in Figure 1. Based on indepen-
dent language components (depicted right) with explicit extension
points provided by different language engineers, the LPL manager
defines the feature model governing, which features are available
and how these relate (depicted left). Besides a common base feature,
the LPL described by the feature model includes features typical
to ADLs for embedded systems (such as automated connection of
ports based on their types or names or component behavior mod-
els) as well features related to scalable and secure cloud systems
(such as replicating components and encrypted communication).
Each feature contains a language component that may yield fur-
ther extension points. The relation between two features defines
how their language components can be integrated. This decou-
pling enables reusing the language components in different feature
models. Based on a feature configuration defined by the product
manager (middle left), a software tool establishes the connections
between the selected features’ language components. Based on
the selection of features, their respective language components
are integrated into the extension points of the language compo-
nents of the respective feature’s parent. For instance, the language
component of feature InputOutputAutomata is integrated into the
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Figure 1: A LPL defined as feature model over language com-
ponents. Given a feature configuration (top), the variant is
transformed into a new language component (bottom).

extension point e of the language component contained in the fea-
ture ComponentBehavior. After integrating all referenced language
components of the selected features, a new language component
is generated, which can be used by the respective domain experts
to model corresponding software architectures using the modeling
elements selected through the feature configuration (in this case
automata models describing component behavior).

Being able to reuse language components without modification
enables to reuse the associated tooling (analyses, transformations)
with the generated language component as well. Changes to a
language component and its tooling are immediately available in
the generated language modules as well. Both reduces the effort
in creating, maintaining, and evolving modeling languages. The
loose coupling between features and language components also
enables to easily integrate new features into the feature diagram –
integrating a new feature below ComponentBehavior, for instance,
does not influence other features and language components. As the
resulting language component can yield extension points again, the
creation of intermediate products that require further refinement
also is supported. Where multiple similar domains are addressed,
creating refined domain-specific LPLs enables restricting a large
base LPL accordingly.

3 PRELIMINARIES
While our concept for syntactical language variability can be ap-
plied to metamodel-based languages (e.g., via abstract metamodel
classes) as well, its realization is based upon the MontiCore lan-
guage workbench [9]. MontiCore employs extended context-free
grammars (CFGs) supporting integrated definition of concrete and
abstract syntax [9] of DSMLs. From a DSML’s CFG, MontiCore gen-
erates its abstract syntax tree (AST) classes and parsers that trans-
late textual models into AST instances. To validate well-formedness
constraints not expressible with CFGs, MontiCore features com-
positional context conditions (CoCos). Template-based code gen-
erators realize the DSMLs’ semantics. MontiCore also supports
compositional DSML integration via inheritance, embedding, and
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aggregation [9]. Inheritance enables DSMLs to extend and override
productions of their (possibly multiple) parent DSMLs. From inher-
iting DSMLs, MontiCore produces refined AST classes that inherit
from the AST classes of the overridden productions. MontiCore
also features interface productions, which enable underspecifica-
tion in grammars that can be leveraged through inheritance to
contribute new productions at well-defined extension points as
depicted in Figure 2.

grammar ADLGrammar {
Component = "comp" Name " {"
Port* Subcomponent* Connector*

"}";
interface Port;
DefaultPort implements Port 
= "port" Type Name ";";

// .. Subcomponent, Connector, etc.
}

01
02
03
04 
05
06
07
08
09 

grammar CloudADLGrammar
extends ADLGrammar {

EncryptedPort implements Port = 
"secport" Protocol Name ";";

Protocol = ("DES"|"AES") ";";
}

01
02
03
04 
05
06

Component

Sub

component

«interface»

Port

Connector

Encrypted
Port

Protocol

DefaultPort

MCG AST

Figure 2: Example: Grammar Inheritance in MontiCore.

Here, the grammar ADLGrammar (top left) describes the quintes-
sential elements of an ADL [19], i.e., components that yield inter-
faces of typed ports and subcomponents that exchange messages
through connectors between their ports (ll. 2-4). The production
Port (l. 5) is an interface production that does not describe concrete
or abstract syntax. Instead, it acts as extension point, which can be
used in the defining language, such as the production DefaultPort
(ll. 6-7), which consists of a data type and a name. From this, Mon-
tiCore generates five AST classes (depicted top right), out of which
Port is an interface implemented by the AST class DefaultPort.

Interface productions can also be used in inheriting grammars,
such as illustrated with grammar CloudADLGrammar depicted bot-
tom. The grammar extends ADLGrammar (l. 2) and defines another
implementation of Port that features security properties and omits
port data types (ll. 3-4). Accordingly, MontiCore generates the two
AST classes EncryptedPort and Protocol. Through this, CloudADL-
Grammar can reuse all modeling elements of the extended gram-
mar and introduce new ones where foreseen by the developers of
ADLGrammar.

To leverage interface productions as extension points for DSML
features, we specify their use and relations through feature mod-
els [12]. We use a textual representation of feature trees, with the
usual relations (mandatory, optional) between parent- and sub fea-
tures and feature groups (alternative, exclusive). Besides this, the
possible feature configurations can be restricted via cross-tree con-
straints (requires, excludes). For visualization purposes, we some-
times provide the graphical representation.

4 MODELING DSML VARIABILITY
Generally, languages are characterized as “the set of sentences” [13]
that constitute the language, which also applies to modeling lan-
guages. With this definition being hardly accessible to investigation,
a common refinement [4] is that DSMLs comprise (1) a concrete
syntax (its sentences); (2) a minimal abstract syntax (structuring its

sentences); (3) a semantic domain (typically a well-defined math-
ematical theory); and (4) a semantic mapping (giving meaning to
the abstract syntax by mapping it to the semantic domain).

Software languages can be constructed from a variety of different
constituents. Abstract syntaxes can be defined through metamodels
(cf. EMF’s Ecore [24], MPS [28]) or grammars (cf. Neverlang [25],
Xtext [1]). Concrete syntaxes can be implemented through parsing
textual models [14] or graphical editors [27]. Semantic mappings
can be implemented through interpretation [5] or code genera-
tion [1]. Depending on the selected language constituents, various
different forms of language composition are possible as well [6]. To
manage variability and to explain composition, the definition above
needs refinement. In the following, we define language components
to comprise of (1) a grammar defining its abstract syntax (AS) and
concrete syntax (CS) in an integrated fashion, (2) a (possibly empty)
set of dedicated interface productions acting as abstract syntax ex-
tension points, and (3) a set of well-formedness rules. The dedicated
set of abstract syntax extension points is foreseen by the language
engineer to enable extending the language with new capabilities.
The language itself might provide (default) implementations for its
extension points. This, for instance, enables to define a Statechart
language with extension points for guard transition expressions
that already yields built-in expression but is open for future ex-
tension as well. The notion of AS extension points also applies
to metamodel-based AS definitions, where these can be realized
similarly.

As language components are unaware of being used with fea-
tures, the composition of LFs and their composition enables reusing
independently developed language components in different feature
models. This facilitates extending the feature model post-hoc with
new features, and prevents uncontrolled composition (cf. [25]). The
composition operator we use for composing language components
prevents invalidation of feature models through adding additional
features. This property, called conservative extension, holds because
it is impossible to remove syntactical language concepts by adding
new features. The property holds only for the language’s syntax
and guarantees tooling stability, but cannot guarantee semantical
correctness of analyses. The next section presents a realization of
language components, LFs, and the composition operator based on
MontiCore.

Our variability concept aims at enabling a well-defined inte-
gration of language components through definition of LPLs over
features using these components. To this end, we describe language
variability as trees of LFs supporting the usual relations [12] be-
tween feature diagram elements. Each feature contains a reference
to its parent feature, a language component, and a set of mappings.
Each of these mappings relates a production of its grammar to an
interface production of the grammar contained by its parent feature
(relative to a specific feature model). The concept also allows to
refine an extension point with another extension point, i.e., inter-
face production. For the top-level feature, the set of mappings is
empty. Through the relation to a parent feature, LFs are specific to
the feature model they are used in, which also governs the restric-
tions between LFs (such as being optional, mandatory, exclusive,
etc.). In particular, this enables reusing language components in
different features and with different extension points. We reuse the
requires relationship between two features to denote that a feature
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Component

Behavior

InputOutput

Automata

Base
CoreADLLngComponentcontains

grammar ADLGrammar {

Component = Name CmpElem*

interface CmpElem

Con implements CmpElem = ...

// ...

}
Well-formedness

rules

BehaviorLngComponent

grammar BehaviorGrammar {

interface BehModel

} Well-formedness

rules

contains

CmpElem → BehModel

BehModel → IOAutomaton

FM LC

AutomataLngComponent

grammar IOAutGrammar {

IOAutomaton = ...

} Well-formedness

rules

contains

Figure 3: An illustration of LFs based on language com-
ponents comprising grammars with dedicated extension
points.

relies on the presence of another feature, which, e.g., reflects in an
inheritance relationship between the grammars of these features.

Individual LFs are not required to implement all extension points
of their parent feature, which enables to refine LPLs by fixing the
binding of some extension points and leaving other to be bound
through features. Moreover, this enables using any suitable lan-
guage as base language without modifying the language itself. Cre-
ating a LPL requires identifying and arranging LFs in a feature
model based on their extension points. Language product man-
agers then can derive language products from the LPL according
to specific requirements (e.g., to derive a robot ADL). How lan-
guage components are related to LFs is depicted in Figure 3, which
highlights the contents of some of the features depicted in Figure 1.

Here, the Base LF contains the ADLGrammar grammar, which
describes quintessential elements of a component & connector
ADL. This includes the extension point CmpElem, which is real-
ized as an interface production of ADLGrammar and for which the
ADLGrammar might provide its own (default) implementations. The
feature ComponentBehavior contains the BehaviorGrammar com-
prising an interface BehModel that refines the extension point
CmpElem. The grammar of the feature InputOutputAutomata de-
scribe the syntax for input output automata, and the feature maps
these to the interface production BehModel of its parent feature.
Each feature can contribute well-formedness rules operating on its
abstract syntax: for instance, the AutomataLngComponent might
yield a well-formedness ensuring that names of automaton states
are unique. Based on the selected feature configuration, the features
are composed to ultimately produce an integrated language compo-
nent that enables the modeler to describe precisely what she needs
to express without facing the accidental complexities of superfluous
modeling elements. This composition is directed, as features lower
in the feature models’ hierarchy implement extension points of
their parent features.

Language features are composed pairwise one after another, such
that ultimately, a single, composed LF remains. The order in which
sibling features are composed has no influence on the overall result.
All context conditions are contained in the composed feature, and a

joined grammar is generated. The composed LF retains all extension
points.

To this effect, the composition is monotonically increasing in
number of the extension points as features cannot remove extension
points of their parents’ grammars. The notion of amandatory exten-
sion point only reflects in the feature model, but not in a single LF.
Moreover, if grammar extension is allowed in the implementation,
the approach only permits the grammars of a LPL to inherit from
another if this is indicated as a requires relation between the fea-
tures. As the composition relies on grammar extension, the newly
added inheritance relations might interfere with existing ones and
create a circular inheritance relation. To overcome this, we check
the validity of a feature selection also with regard to potential circu-
lar inheritance relationships. The next section presents a realization
of language components, language features, and composition based
on the MontiCore languages.

5 INTEGRATING DSML SYNTAXES
With MontiCore [9], languages are defined in terms of extended
context-free grammars (CFGs) that integrate concrete syntax with
abstract syntax and use well-formedness rules implemented in
Java, called context conditions (CoCos), to add restrictions not ex-
pressible through CFGs. Interface productions describe grammar
extension points for which the grammar itself may provide (de-
fault) implementations (cf. Figure 2). Our solution space variability
mechanisms, hence, are based on composing language components
provided as MontiCore CFGs and context conditions.

Language components are developed independent of how they
are used within a LPL. Nonetheless, language engineers have to
foresee potential extension points in terms of interface productions.
In our realization of the concept, language components are defined
by a MontiCore CFG (MCG) and a list of context conditions. The
approach generally permits the MCG of a language component to
extend another MCG, unless this grammar is also part of the LPL.
MontiCore supports dedicated interface productions that do not
have a right-hand side as illustrated in l. 5 of Figure 2. Interfaces can
be used in other productions (cf. Component in ll. 2ff). In another
production, which is not necessarily in the same grammar model,
interfaces can be implemented by other productions (cf. ll. 6f). The
resulting structure of the AS is depicted on the right of Figure 2.

A language component encapsulates all artifacts of the definition
of a single language into one dedicated artifact by holding explicit
links to the grammar and a set of links to CoCo classes. Figure 4
depicts an exemplary language component ADLLC that references
the ADL grammar (see Figure 2) and two CoCos. The exports key-
word starts a list of explicit extension points via the names of the
respective MontiCore interface productions. As the implementation
exploits MontiCore interface productions as extension points, it
might be that several interface productions are exposed as exten-
sion points undesiredly. To overcome this, we require language
engineers to explicate all language extension points in the language
component.

We separate LFs from language components to foster decoupled
development of a language component and its context in a LPL.
A LF defines (1) the language component it is based on, (2) the
parent feature in the feature tree, and (3) a binding of grammar
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language ADLLC {

grammar com.ma.ADLGrammar;

cocos {

com.ma.cocos.CompNameLowerCase,

com.ma.cocos.PortNamesUnique

}

exports { CmpElem }

}
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Figure 4: The language feature ADLLC.

feature BehaviorLF {

parent ADLLF;

language BehaviorLngComponent;

bindings { CmpElem -> BehModel; }

}

01
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04 
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LF feature ADLLF {

// no parent 

language ADLLC;

// no bindings

}

01

02
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04 

05

LF

Figure 5: The LFs BehaviorLF and ADLLF.

MCGMCG

Robot

ADL

grammar RobotADLGrammar extends BehaviorGrammar, IOAutGrammar {

start Component;

RobotADLBehModel extends IOAutomaton implements BehModel

= "ioautomaton" "{" AutElem* "}";

} 

MCG

grammar BehaviorGrammar {

interface BehModel;

//...

} 

grammar IOAutGrammar {

IOAutomaton

= "ioautomaton" "{" AutElem* "}";

//...

}
production
extension

interface
implementation

Figure 6: The composition (bottom) of two grammars (top).

productions to extension points of the parent feature. Language
features are the building blocks of the feature model of a LPL. Each
LPL requires a root feature, which has an empty parent feature
and must not have bindings. For all other features, we require the
parent to be present. If any bindings are present, the composition
operator realizes language embedding (cf. Section 2). Otherwise, if
no bindings are present, it realizes language aggregation.

Figure 5 depicts two LF models. BehaviorLF (left) references
ADLLF as parent feature (l. 2) and BehaviorLngComponent as the
implementing language component (l. 3). The binding relates the
extension point CmpElem of the parent feature with the BehModel
extension point of the grammar of the BehaviorLngComponent
(l. 4). ADLLF (right) neither yields a parent feature, nor bindings.

The features are arranged in a feature model. We reuse a lan-
guage and tooling for textual feature diagrams and selected variants
(i.e., feature configurations) implemented with MontiCore. With
the LPL defined by the LPL manager at hand, a product manager
can define a language variant by selecting a set of features. If the se-
lection is valid with regard to the feature model and with regard to
the approach’s constraints, a new, composed language component
is generated. From this, MontiCore generates language process-
ing infrastructure such as a parser and an AST data structure on
a push-button basis and iteratively composes two features from
the leaves of the feature tree to the root as explained in Section 4.
Figure 6 (top) depicts the grammars of the two LFs BehaviorLF
and InputOutputAutomata. The bottom of Figure 6 depicts the
grammar that results from the composition of these features, with

language RobotADLLC {

grammar com.ma.RobotADLGrammar;

cocos {

com.behavior.SingleBehaviorModel,

com.ioaut.SingleInitialState,

//...

}

exports { CmpElem, BehElem}

}
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Figure 7: Language component of the composed LFs.

the binding applied. The name of the generated grammar is de-
rived, with the feature configuration name as prefix before the
name of the grammar of the root feature. The resulting grammar
uses MontiCore’s inheritance mechanism to extend both grammars.
For technical reasons, the generated grammar has to reference the
start production of the grammar of the root feature, to be used as
top-level element for the generated parser. Further, the generated
grammar comprises a new, generated production for every binding
that has been applied. The left-hand side of the generated produc-
tion is a derived non-terminal name, that states that the production
extends the production of the extension and that it implements the
interface production of the extension point. The effect of imple-
menting an interface production has been explained in Section 3,
the effect of extending another production is that the production
can be applied wherever the extended production can be applied.
Additionally, the generated abstract syntax class extends the gener-
ated abstract syntax class of the extended production. This has the
advantage that all algorithms and tooling that are applicable to the
extended AS element can be applied to the new one. The right-hand
side of the generated production usually equals the right-hand side
of the extended production. An exception is that if the right-hand
side of a generated production contains a non-terminal symbol
that has been bound as part of mapping. This is replaced with the
left-hand side of the production generated from this mapping.

If an extension point is refined, both the extension and the ex-
tension point are realized as interface productions. In this case, a
new interface (with a derived name) is generated that extends both
interfaces. MontiCore generates parsers such that they are capable
of parsing, despite this ambiguity in the concrete syntax.

Figure 7 depicts the language component resulting from the
compositions of the two language features InputOutputAutomata
and BehaviorLF. The referenced grammar is the grammar depicted
at the bottom of Figure 6, which combines the abstract syntaxes
and concrete syntaxes of the composed grammars. The context
conditions of both features are joined. As the context conditions
are checked against certain AS classes (and therefore, also their
subclasses), all context conditions can be applied to the generated
classes. It also comprises all exported extension points of the in-
dividual language components. Generally, the composition of two
features f and д, where д is the parent of f , results in a composed
LF with the parent feature of д, the composed language component,
and the bindings of f .

6 EXTENDED EXAMPLE
This section demonstrates the application in context of an ADL to
adapt it towards different domains. Developing and maintaining

169



grammar ADLGrammar {

Component = "component" Name "{" CmpElem* "}"; 

interface CmpElem;

interface Port extends CmpElem;

DefaultPort implements Port = "port" Type Name ";";

/* Subcomponent and Connector productions omitted */

}
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language CoreADLLngComponent {

grammar ADLGrammar;

cocos {

com.adl.cocos.CompNameLowerCase,

com.adl.cocos.PortNamesUnique

}

exports { CmpElem }

}
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LC

BaseADL

for embedding further
top-level ADL elements

feature BaseADL { language CoreADLLngComponent; }01 LF

Figure 8: Parts of the BaseADL language feature.

domain-specific variants of an ADL is challenging [2]. To this effect,
we applied the approach presented in this paper to derive domain-
specific ADL variants from a domain-agnostic BaseADL. Figure 1
in Section 2 depicts the language feature model representing all
possible ADL variants. The root feature BaseADL contains the basic
elements such as components, ports, and connectors that are com-
mon to each variant. The Autoconnect feature adds syntax and
transformations to realize an automatic connection of ports with
either identical names or types. The feature Encryption enables
to describe secure ports (SecurePort) and encrypted connections
(EncryptedConnector) between them. The Replication feature
provides elements for modeling systems where components are
capable of replicating themselves when needed. This is useful in
client-server architectures, for instance, where a client component
is replicated on each request. The LPL manager considers compo-
nent replication to be a threat for autoconnecting ports. Choosing
one of the two corresponding features thus excludes the other.
The ComponentBehavior feature introduces behavior-blocks to the
ADL. Component behavior models are intended to be modeled in
such blocks, only. The subfeatures StructuredTextBehavior and
InputOutputAutomata contain different behavior languages. As it
should not be possible to model empty behavior blocks, choosing
the ComponentBehavior feature requires to choose at least one
feature that defines a component behavior language. Automata
use expressions on their transitions as guard conditions. For this
purpose, the LPL currently only includes JavaExpressions, which
are therefore marked mandatory.

Consider a product manager who aims at developing static soft-
ware architectures where atomic components’ behavior can be spec-
ified via input/output automata. She thus selects the configuration
containing the following features BaseADL, ComponentBehavior,
InputOutputAutomata, and JavaExpression. Parts of the config-
uration’s constituent are depicted in Figures 8-11. The BaseADL LF
(cf. Figure 8) neither has a parent feature nor defines a binding as it
is the LPL’s root feature. The feature’s grammar defines language
elements common to all ADL variants such as components, con-
nector, and ports. The language component further defines two
context conditions and exports the interface CmpElem.With this, it is
possible to extend component definitions with further top level ele-
ments through LF composition. The Subcomponent and Connector
productions of the BaseADL grammar are omitted. The grammar

component grammar ComponentBehaviorGrammar {

interface BehModel;

}
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language BehaviorLngComponent {

grammar BehaviorGrammar;

cocos {

com.compbeh.cocos.BehaviorUnique,

com.compbeh.cocos.BehaviorNotInComposedComponents

}

exports { BehModel }

}
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feature ComponentBehavior {

parent BaseADL;

language BehaviorLngComponent;

bindings { CmpElem -> BehModel }

}
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LF

ComponentBehavior

Figure 9: The ComponentBehavior language feature.

component grammar IOAutGrammar {

IOAutomaton = "ioautomaton" "{" AutElem* "}";

interface AutElem;

State implements AutElem = 

(["initial"])? "state" Name ";";

Transition implements AutElem = "transition" src:Name

"[" Guard "]" "{" PortAss* "}" trg:Name ";";

interface Guard;

interface PortAss;
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language AutLngComponent {

grammar IOAutGrammar;

cocos {

com.ioaut.cocos.StateNamesUpperCase,

com.ioaut.cocos.UniqueInitialStates

}

exports { Guard, PortAss }

}
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feature InputOutputAutomata {

parent ComponentBehavior;

language AutLngComponent;

bindings { BehModel -> IOAutomaton }

}
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LF

InputOutputAutomata

Figure 10: The InputOutputAutomata language feature.

of LF ComponentBehavior (cf. Figure 9) defines a single interface
BehModel where behavior models for atomic components are in-
tended to be embedded. The feature’s language component further
comprises two context conditions. The first ensures that each com-
ponent contains at most one behavior model. The second requires
that composed components must not contain behavior models. The
LF binds the BehModel interface to the CmpElem interface of its
parent feature’s grammar. As a result, it is possible to specify com-
ponent behavior models as top-level elements in component defini-
tions. However, the syntax of possible component behavior models
is still underspecified. For this reason, the ComponentBehavior LF
is connected to two further features via an or-node (cf. Figure 1).
Thus, each valid configuration containing the ComponentBehavior
feature also contains at least one of the two subfeatures. The prod-
uct manager chose the InputOutputAutomata feature out of these
two features. The feature’s grammar (cf. Figure 10) enables to
model input/output automata for specifying component behav-
ior. Transitions of such automata consist of guards (l. 7) and port
assignments (l. 7). The productions’ implementation remain un-
derspecified (ll. 8-9) and are exported by the feature’s language
component. Thus, the exported interfaces must be bound by the
LF’s sub-features. The language component further consists of two
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grammar JavaInADLExprGrammar extends JavaDSL {

GuardExpr = Expression;

PortAssExpr = Expression;

}
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language JavaExprInADLExprLC {

grammar JavaGuardExprGrammar;

cocos {

com.javaexprguard.cocos.PortAssSimpleNameOnLHS,

com.javaexprguard.cocos.PortAssCorrectlyTyped,

com.javaexprguard.cocos.GuardExprBoolean,

com.javaexprguard.cocos.ReferencedPortsExist

}

}
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imported from JavaDSL

feature JavaExpression {

parent InputOutputAutomata;

language JavaExprInADLExprLC;

bindings {Guard -> GuardExpr, PortAss -> PortAssExpr}

}
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Figure 11: The JavaExpression language feature.

context conditions ensuring each input/output automaton contains
exactly one initial state and that state names start with capital let-
ters. The grammar’s IOAutomaton production is embedded into
the BehModel production of the LF’s parent feature. Further, the
JavaExpression feature (cf. Figure 11) has to be embedded, as it
is marked as mandatory subfeature of InputOutputAutomata. Its
grammar inherits the productions from a Java grammar (l. 1) and
defines two new Productions (ll. 2-3). Using the new productions
GuardExpr and PortAssExpr enables to specify Java expressions
(The Expression production is part of the inherited Java grammar).
The two productions are bound to the Guard and PortAssExpr
interfaces exported by the InputOutputAutomata LF. The LF’s
grammar introduces two new productions and does not simply
directly bind the Java Expression production to the Guard and
PortAssignment productions to enable separate handling of guards
and port assignments via their types. The first two context con-
ditions of the feature’s language component, for instance, only
restrict the well-formedness of expressions used in port assign-
ments, whereas the third context condition only restricts guard
expressions, and the fourth context condition affects guards as well
as port assignments. Composing the four features as described
in Section 5 leads to the LF depicted in Figure 12 that models the
composed language. The grammar is composed of the grammars of
the selects LFs by iteratively applying the transformation described
in Section 5. The new LF’s CoCos are all CoCos of all selected LFs.
The new LF exports each interface exported by any selected LF. A
validmodel of the new language is depicted in Figure 13. The compo-
nent and port declarations (ll. 1-3) originate from the ADLGrammar
(cf. Figure 8). The InputOutputAutomata LF’s grammar (cf. Fig-
ure 10) provides the possibility to declare automata, states, and
transitions (ll. 5-7) through extending the interface added by the
ComponentBehavior LF (cf. Figure 9). The expressions true and in
= out used in the transition’s guard and port assignment originate
from the JavaExpression LF (cf. Figure 11).

7 DISCUSSION AND RELATEDWORK
Our notion of DSML features is based on unrestricted interfaces,
i.e., the interface productions do no prescribe parts of the required
abstract syntax or concrete syntax. While this prevents lifting func-
tionality considering these features to the LPL, it allows for great

language CompoundLC {

grammar CompoundGrammar;

cocos {

com.adl.cocos.CompNameLowerCase,

com.adl.cocos.PortNamesUnique,

com.compbeh.cocos.BehaviorUnique,

com.compbeh.cocos.BehaviorNotInComposedComponents,

/* CoCos of IOAutLC and JavaExprInADLExprLC omitted */

}

exports { CmpElem, BehModel, Guard, PortAssignment }

}
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feature CompoundLF { language CompoundLC; }01 LF

grammar CompoundADLGrammar extends ADLGrammar, 

BehaviorGrammar, IOAutGrammar,

JavaInADLExprGrammar {

start Component;

interface CompoundBehModel extends BehModel, CmpElem;

CompoundIOAutomaton extends IOAutomaton

implements CompoundBehModel =                        

"ioautomaton" "{" AutElem* "}";

CompoundGuardExpr extends GuardExpr

implements Guard = Expression;

CompoundPortAssExpr extends PortAssExpr

implements PortAss = Expression;

}
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Figure 12: Result of composing the configuration’s features.

component MyComponent {

port Integer in;

port Integer out;

ioautomaton {

initial state s1; state s2;

transition s1 [true] {in = out} s1;

}

}
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Figure 13: A valid model of the LF depicted in Figure 12.

extension flexibility. The inheritance relation between the feature
grammars and the base grammar is established after feature selec-
tion. This can liberate feature developers from comprehending the
base grammar at all, leading to fully independent DSML features.
However, our concept also supports feature grammars aware of
the base grammar to enable more specific features. Further, using
the requires mechanism of feature diagrams, more dependencies
between features can be described. Where most existing approaches
use either bottom-up or top-down development of LPLs [15], we
allow both directions as the feature model and the domain model
are only loosely coupled. This supports agile extension of the LPL.
The approach does not cover pure presentational variability [3]
in the concrete syntax that does not affect the abstract syntax. As
stated in [11], a usable language extension framework should have
independent language extensions, which shall be automatically
composable, and must not yield a corrupted composed compiler.
Our approach satisfies these assumptions, because language compo-
nents are (usually) independent of each other and can be composed
using the composition mechanism described above. Our form of
language (syntax) composition realizes the concept of conservative
extensions known from formal languages. To this effect, all models
that are conform to a language defined by a set of selected features,
are still valid models of a language that is based on these features
and arbitrary other additional selected features. Through a system-
atic literature review [20] comparing different approaches for LPLs,
the authors identified 14 approaches realizing LPLs, where many
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different concepts are involved. Some of the approaches support
variability in abstract syntax only [10, 23, 29]. Most approaches use
variability in metamodels, only few support variability in abstract
syntax and concrete syntax on grammars, such as Neverlang [25],
LISA [21], and FeatureHouse [17]. Our concept of LFs relates to
the language components of Neverlang [25, 26], which contain syn-
tax definitions in form of grammars and corresponding evaluation
phases realizing its semantics. It differs in the way extension points
are defined, which are realized in Neverlang using placeholders in
the grammar, which are resolved via matching names. AiDE [16],
built on top of Neverlang, also supports variability management of
language components.

8 CONCLUSION
We have presented a concept for syntactic DSML variability that
facilitates engineering, maintaining, and evolving product lines of
related languages. The concept relies on modularly composable
grammars encapsulated in DSML feature models related through
a feature diagram model. The composition of the modular DSML
features produces an integrated new feature that realizes the prop-
erty of a conservative extension. With the generated DSML feature,
a language workbench, such as MontiCore, can generate a parser
and further tooling on a push-button basis. We lay this as the foun-
dation for further research to be capable of covering not only the
syntax, but all constituents of DSMLs.
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Abstract

Systematic reuse is crucial to efficiently engineer and deploy software languages to software experts and domain experts alike.
But “software languages are software too”, and hence their engineering, customization, and reuse are subject to similar challenges.
To this effect, we propose an approach for composing independent, grammar-based language syntax modules in a structured way
that realizes a separation of concerns among the participants in the life cycle of the languages. We present a refined concept of sys-
tematic and controlled syntactic variability of extensible software language product lines through identification of syntax variation
points and derivation of variants from independently developed features. This facilitates reuse of software languages and reduces
the efforts of engineering and customizing languages for specific domains. We realized our concept with the MontiCore language
workbench and assessed it through a case study on architecture description languages. Ultimately, systematic and controlled soft-
ware language reuse reduces the effort of software language engineering and fosters the applicability of software languages.

1. Introduction

Model-driven development (MDD) [2, 88] leverages
(domain-specific) software languages to reduce the concep-
tual gap between problem domain challenges and the soft-
ware engineering solutions [26, 80]. Thus, efficient engineer-
ing, customization, and reuse of software languages has be-
come a prime concern in MDD and gave rise to the field of
software language engineering (SLE) [46, 35]. SLE develops
methods and techniques to engineer domain-specific modeling
languages (DSMLs) within language workbenches. But “soft-
ware languages are software too” [23] and as such are subject
to the same challenges regarding engineering, customization,
and reuse as other software. Consequently, research in SLE
has produced a variety of solutions to engineer languages based
on metamodels or grammars, interpreters or generators, well-
formedness rules in metalanguages or programming languages.
Metamodels [7, 41, 58, 72, 90, 94] describe the abstract syn-
tax (i.e., structure) of languages as graphs of associated classes
without providing a concrete syntax enabling instantiation of
models. Grammars also describe the structure of a language,
but can support an integrated definition of concrete syntax as
well [22, 47, 50, 67]. From these grammars, model processing
infrastructure (e.g., a parser that translates textual models into
abstract syntax instances) can be derived automatically, which
greatly facilitates the efficient usage of DSMLs.
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(Andreas Wortmann)

Efficient reuse is crucial to the success of software engineer-
ing [34] and software languages [13]: language users and lan-
guage engineers can greatly benefit from reusing common, es-
tablished, and mature language concepts. For software lan-
guage engineers, reuse reduces the effort in engineering new
languages from scratch. For language users, reusing concepts
reduces the effort required to comprehend a language. For in-
stance, Java reuses many concepts of C++, which lowers the
barrier of using Java for C++ developers. With the digitaliza-
tion of all aspects of our lives, more and more domain experts
(mechanical engineers, physicist, lawyers, etc.) become soft-
ware developers to some degree. They must be able to reify
their domain expertise in software, which can be integrated with
other systems. For some domains and challenges, such as soft-
ware architectures in general [54] or Industry 4.0 in particu-
lar [91], many specific languages have been developed already
and even more are under development.

Software product line engineering has produced methods and
means to capture variability and commonalities for increasing
software reuse, e.g., within feature models [14]. A software
product line describes several variants of software in an in-
tegrated fashion to mitigate cloning and owning of the com-
monalities in independent software projects. Software product
line engineering techniques have been applied to software lan-
guage engineering to form language product lines in several ap-
proaches [56].

We present a refined concept of controlled language vari-
ability based on reusable definitions of language syntaxes as
modules within language components that can be composed to
produce new languages from established building blocks. This
facilitates a posteriori extensibility with additional language
concepts, supports concrete syntax, and enables (re-)using lan-
guages (parts) without explicitly foreseeing this usage at the re-
spective languages’ design time. To enable a systematic reuse
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grammar Automation {
Script = "script" Name? "{" Rule* "}";
Rule = "if" "(" Condition ")" "then" (Action ";")+ ;
interface Condition = ServiceQuery;
interface ServiceQuery = user:Name;

DateCondition implements Condition 
= ServiceQuery "is" Date;

Date = Integer "." Integer "." Integer;
DateService implements ServiceQuery
= ntp:["ntp"] | ptp:["ptp"];

interface Action;
EMailAction implements Action 
= "email" "from" EMAddress "to" EMAddress

"subject" subject:String ;
EMAddress = Name "@" domain:Name "." tld:Name;

}

01
02
03
04 
05
06
07
08
09
10
11
12
13
14
15
16
17
18

MCG

grammar AutoTwitter extends Automation {
start Script;
TwitterCondition implements Condition = 
ServiceQuery;

TwitterKeywordQuery implements ServiceQuery = 
"@" user:Name "tweeted" key:String ";";

TwitterFollowersQuery implements ServiceQuery =    
"@" user:Name "has" Integer "new" "followers" ";";

interface TwitterAction extends Action = msg:String;
TweetAction implements TwitterAction

= "tweet" msg:String;
DirectMsgAction implements Twitter Action =

"@" Name ":" msg:String;
}

01
02
03
04 
05
06
07
08
09
10
11
12
13
14
15
16

MCG

base language list of rules

language extension

implementation of 
interface production

extension of interface production

script IceCream {
if ( ntp is 1.7.2018 )
then

email

from me@se-rwth.de
to staff@se-rwth.de
subject "ice cream at 3pm!"

;
}

01
02
03
04 
05
06
07
08
09

Automation

script NewYear {
if ( ntp is 1.1.2019 )
then

tweet

"A happy new year to you all!"
;
email

from sek@se-rwth.de
to staff@se-rwth.de
subject "A happy new year!"

;
}
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inherited DateCondition instance

language keywords
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s

grammars defining concrete and abstract syntax of languages models conforming to the grammars

instance of the 
new TweetAction

interface productions 
prescribe required 

abstract syntax 
properties of possible 

implementations

model of the Automation language

model of the extended AutoTwitter
language featuring a rule with two actions

Figure 1: The AutoTwitter grammar (bottom left) extends the Automation grammar (top left) and implements its extension points (e.g., interface Condition)
to enable interacting with Twitter. Conforming models are depicted on the right.

that can ensure syntactically valid language variants, we pro-
pose explicating this variability in form of language product
lines. Concrete language variants of the product line are de-
rived from composing the incorporated language components
and language-processing tooling for these can be derived on
push-button basis. The key ideas of our approach are:

• to enable compositional language development by decom-
posing languages into composable language components,

• to enable automated language derivation via composing
language components,

• to increase reuse of concrete and abstract syntax as well as
tooling (e.g., well-formedness check implementations) via
the composable language components, and

• to decouple language development from language compo-
sition and language variant derivation.

Our concept is realized using the MontiCore [67] language
workbench and leverages its composition mechanisms based

on well-defined language extension points. This enables a con-
trolled language composition supporting validation on product
line level. The individual languages can be independent of each
other, which enables these to be developed by different lan-
guage engineers.

This paper is an extended version of [8], in which the ba-
sic principles of composable language components have been
introduced, including a concept for systematic language reuse,
its MontiCore realization, and a case study on architecture de-
scription languages. The contributions of the extended version
include:

• An example product line for an imperative language.

• A concept for controlled abstract syntax extension through
interface productions.

• Integration with FeatureIDE [74].

• Extended description of the involved stakeholders and
more detailed discussion of related work.

In the remainder, Section 2 presents an example of an exten-
sible base language for imperative event-based programming
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and its configuration based on an explicit variability model. Af-
terwards, Section 3 introduces necessary preliminaries. Sec-
tion 4 details our concept for systematic and controlled lan-
guage reuse. Section 5 describes its realization, before Sec-
tion 6 presents a comprehensive case study on architecture de-
scription languages. Thereafter, Section 7 debates observations
and Section 8 discusses related work. Section 9 concludes.

2. Example

Consider engineering a modeling language for software au-
tomation that is supposed to be tailored to application-specific
requirements by other developers. This language should pro-
vide general concepts and a framework for specifying automa-
tion rules consisting of extensible trigger conditions and exten-
sible actions that are executed if the trigger condition holds.
With models of this language, users can describe system-level
rules (such as sending an email if a specific drive is full) as well
as service-crossing rules (e.g., whenever someone tweets about
the hashtag #SLE, attach it to a file and save it locally).

Engineering such a language raises two requirements:

1. The base language must be extensible to support easy in-
tegration of new conditions and actions (e.g., automati-
cally check a weather web service on your phone to show
whether you need an umbrella).

2. The extension must be restrictable to prevent interacting
with undesirable trigger conditions and rules (e.g., access-
ing a root drive of the server).

Regarding extensibility, we leverage controlled underspeci-
fication in the base language’s abstract syntax (i.e., the struc-
ture of a language) to enable a-posteriori integration of new
language elements in a restricted fashion. Consequently, in-
tegration of new language elements should be possible in pre-
defined places of the abstract syntax only and requires that the
new language elements fulfill specific properties. The Mon-
tiCore [30, 67] grammar Automation, depicted in Figure 1
(top), illustrates this. It defines both concrete syntax (i.e., the
appearance of models of the language) and abstract syntax of
conforming models and yields extension points that enable im-
plementation and extension by inheriting grammars. The tech-
nical necessities for this are explained in Section 3.

Models conforming to this grammar are named scripts con-
sisting of a list of rules. Hence, the grammar’s start produc-
tion Script (l. 2) begins with the concrete syntax keyword
script, followed by an optional (denoted by “?”) name and
a block comprising a list of Rule instances. Rules (l. 3) begin
with the keyword if, followed by a Condition, the keyword
then and at least one (denoted by “+”) Action. Both, Condi-
tion (l. 4) and Action (l. 13) are interface productions [67].
Other grammar productions can implement interface produc-
tions, which means that they can be applied in derivation wher-
ever the interface production is expected on a right-hand side
of another production. Technically, interface products are elim-
inated before handing the grammar to a parser generator. This
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configuration Services:
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FileIO
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Groupware
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Figure 2: Example of a language product line using the Automation language
a basis for language products featuring rules on twitter interaction, calendar
services, file access, and weather forecasts.

is done by introducing an ordinary production with a left-hand
side that is equal to the left-hand side of the interface produc-
tion and a right-hand side that defines an alternative between
all productions implementing the interface production. For ex-
ample, before handing the Automation grammar (cf. Figure 1)
to a parser generator, the interface production Condition is
eliminated via adding a production Condition = DateCon-

dition. Here, the right-hand side solely uses the nontermi-
nal DateCondition, because the DateCondition production
is the only production that implements the Condition inter-
face production. Interface productions are translated into inter-
face classes of the abstract syntax. Interface productions can
prescribe (on their right-hand sides) abstract syntax properties
required by possible implementations. For instance, Condi-
tion requires that every implementation yields a Service-

Query (l. 5), which is another interface that requires implemen-
tations to yield a Name. The Automation base language en-
ables conditions over dates (ll. 7-11) and actions to send emails
(ll. 13-17). If additional language features are desired, Automa-
tion must be extended properly.

With MontiCore [30, 67], language extension can have the
form of grammar inheritance between a base grammar and an
inheriting grammar, i.e., the inheriting grammar inherits pro-
duction rules from the base grammar, such as the AutoTwit-

ter grammar depicted at bottom left of Figure 1. The inherit-
ing grammar imports all productions of the inheriting grammar
and can optionally override or extend these. The AutoTwitter
grammar reuses the start production of its parent grammar (l. 2)
and defines the production TwitterCondition (ll. 3-4) as an
implementation of Condition. To this end, the TwitterCon-
dition introduces the concrete syntax keyword @, which is
followed by a name and a ServiceQuery. The latter is nec-
essary as it is required by the interface Condition of Automa-
tion. Moreover, the grammar introduces the two implementa-
tions TwitterKeywordQuery and TwitterFollowersQuery

of Automation’s interface ServiceQuery. The grammar also
extends the interface production Action of the Automation

grammar with the interface production TwitterAction, which
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prescribes that twitter actions always yield at least a String

message. Moreover, AutoTwitter introduces two implemen-
tations of TwitterAction (and, hence, Action) that enable
tweeting and sending direct messages.

Models conforming to both grammars are depicted in Fig-
ure 1 to their respective right. The script IceCream (top right)
uses a date condition and an email action to describe a rule in-
forming staff on the first of July about ice cream. To this end,
it uses elements of the Automation grammar only. The script
NewYear (bottom right) conforms to the AutoTwitter gram-
mar and hence can use its elements as well as the elements in-
herited from Automation. The model, hence, can use a date
condition of Automation (l. 2), a tweet action (ll. 4-6), and
an email action (ll. 7-11) to send out New Year’s greetings via
email and twitter. Leveraging this form of grammar inheritance
enables opportunistic reuse and extension, but lacks control re-
garding the languages that are combined, i.e., which services
are made available to the users. Thus, restricting the kinds of
services that rules can interact with is impossible. Also, it re-
quires comprehensive understanding of software language en-
gineering concepts (such as grammar inheritance and interface
productions) and that the inheriting languages are aware of in-
herited concepts (e.g., the interfaces of their parent grammars).
The latter also avoids reusing a language inheriting from a base
language in a context different from the base language,

To enable controlled reuse, liberate domain experts from be-
coming language experts, and facilitate language composition,
we leverage the concepts of software product lines: Available
trigger conditions and actions should be provided in form of
independent features arranged into a feature diagram by a lan-
guage product line engineer. After ensuring the validity of fea-
ture combinations, the responsible product line engineer can
use this to configure language products by selecting which fea-
tures to include. Based on this selection, for instance, a con-
crete Automation language product can be derived that con-
tains only the trigger conditions and actions desired by the ap-
plication context. The language modules in the features are in-
dependent of a concrete context and can be reused for different
language product lines. For the Automation language, a pos-
sible language product line is depicted in Figure 2. Here, the
product line engineer (e.g., the service provider) establishes the
language product line by relating the generally available lan-
guage modules in features in a meaningful way. To this end, she
ensures that the available feature combinations lead to mean-
ingful languages with respect to their syntax (e.g., prevent du-
plicate keywords). This requires language engineering exper-
tise and comprehending the available features, but liberates the
product line engineers and the modelers from this. Each of the
related features contains a complete language that can be inde-
pendent of other languages, e.g., of the base language. Through
establishing the language product line, the engineer also defines
which features implement which extension points of their par-
ent feature (or of the base language) in the language product
line. Through this, she ensures that, for instance, no actions im-
plement the Condition interface. Here, the feature Twitter

contributes conditions and actions, whereas the feature Weath-
erForecast contributes conditions only.

Based on a feature configuration, we derive a specific lan-
guage product comprising only the selected features. Through-
out the next sections, we describe how to decouple language
components of each other such that they can be developed in-
dependently, i.e., how to mitigate the inheritance relationship
between a base language and an extension. Furthermore, we
describe how to explicate extension points of language com-
ponents, how to compose independent language components
while being able to reuse tooling for a language component,
and how to separate the concerns involved in the process of de-
veloping and using language product lines.

3. Preliminaries

Languages, in general, are characterized as “the set of sen-
tences” [12, 46] that constitute the language, which also ap-
plies to software languages. As software languages – compared
to natural languages – typically have a simpler structure to be
processable by machines, this definition can be refined. This
also is necessary for these languages to be better accessible to
investigation. A common refinement [28, 31] is that DSMLs
comprise

• a concrete syntax, describing the sentences of the lan-
guage, which are build from words (textual languages),
diagram elements (graphical language), or other represen-
tations,

• a (minimal) abstract syntax, describing the (essential)
structure of sentences of the languages,

• a semantic domain (typically a well-defined mathematical
theory) that can express the meaning of sentences, and

• a semantic mapping, which gives each well-defined sen-
tence a meaning within the semantic domain.

The definition of the abstract syntax typically uses either
metamodels (such as with EMF Ecore [73] or MPS [87]) or
grammars (such as Neverlang [76] or Xtext [5]). The con-
crete syntax of textual models is usually also defined by gram-
mars [67], whereas the concrete syntax of graphical models is
usually defined via graphical or projectional editors, e.g., with
Sirius [82]. Textual models are usually parsed to translate the
concrete syntax into abstract syntax. Whereas some approaches
do not allow to create models that are not well-formed through
robust projectional editors [71], most approaches require ex-
plicit checks to ensure well-formedness.

The language workbench MontiCore [67, 48] leverages ex-
tended context-free grammars (CFGs) for the integrated defini-
tion of concrete and abstract syntax [30] of DSMLs. From a
CFG, MontiCore generates the corresponding (Java) abstract
syntax classes, a parser for models of the language based
on ANTLR [62], a model checking infrastructure that facil-
itates developing well-formedness rules realized in Java, and
a model-to-text code generation infrastructure based upon the
FreeMarker [25] template engine [1].
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The generated parsers translate textual models into instances
of the abstract syntax classes, the abstract syntax trees (ASTs),
which are processed by handcrafted well-formedness rules reg-
istered with the generated model checking infrastructure that
is realized with the visitor pattern [27]. Well-formed models
are processed further and can, ultimately, be transformed into
arbitrary target language artifacts by employing code genera-
tors. To validate well-formedness constraints not expressible
with CFGs, MontiCore features compositional context condi-
tions (CoCos). The target language artifacts then can realize
the DSLs semantics and be subject to further analyses.

An exemplary MontiCore grammar ADLGrammar is depicted
in Figure 3 (top left). It describes the quintessential elements
of an ADL [55], i.e., components that yield interfaces of typed
ports and subcomponents that exchange messages through con-
nectors between their ports (ll. 2-4). Nonterminals in Monti-
Core grammars start with an upper case letter and terminals are
surrounded by quotation marks. The right-hand sides of gram-
mar productions contain references to other nonterminals and
terminals and use cardinalities (’?’,’*’,’+’) known from regu-
lar expressions. To distinguish references to (non)terminals on
the right-hand side of a grammar production, they can option-
ally be named. For instance, the reference to the nonterminal
Name in l. 5 is named id. Besides ‘usual’ grammar produc-
tions, MontiCore supports abstract productions and interface
productions. These do not directly influence the parser, i.e.,
they cannot be derived. Instead, they influence the abstract
syntax: interface productions translate to interfaces of the ab-
stract syntax data structure and abstract productions are trans-
lated into abstract classes. Interface productions can prescribe
required abstract syntax elements of possible implementations
on their right-hand side. The interface production Port (l. 5),
for instance, prescribes the presence of exactly one nontermi-
nal Name with the name id and the presence of a Type. This
mechanism enables underspecification of the ordering of pre-
scribed abstract syntax elements as well as potential further
(non)terminals in any rule that implements the interface pro-
duction. Interface productions and abstract productions can be
used on any right-hand side in the same way as normal gram-
mar productions. A grammar production implementing an in-
terface production, e.g., the EncryptedPort implementing the
Port, has to provide the required abstract syntax elements of
the interface productions in the prescribed cardinality. If this
is not the case, MontiCore detects it and aborts generation of
language-processing tooling. In the abstract syntax this is re-
flected by the abstract syntax class (e.g., the class Encrypted-
Port) implementing the abstract syntax interface (e.g., the in-
terface Port). During parsing, a production implementing an
interface production can be applied at any point where the inter-
face production is expected. For example, an EncryptedPort

can be part of a component, as it implements the Port. In-
terface productions and abstract productions are translated into
ordinary productions before handing the grammar to a parser
generator. The interface and abstract modifiers in Monti-
Core grammars, however, effect the modifiers of the generated
abstract syntax classes: Interface productions are translated to
(Java) interfaces and abstract productions are translated to ab-

stract (Java) classes. Detailed documentation about MontiCore
is available [67].

MontiCore also supports compositional language integration
via extension, embedding, and aggregation [30, 67]. Through
extension of one or more parent grammars, a grammar inher-
its the grammar rules and terminal of its parent grammar(s)
and can extend and override these. This, for instance, enables
to eliminate rules, introduce new alternatives for inherited in-
terfaces, or extend individual inherited rules. From inheriting
grammars, MontiCore produces refined AST classes that inherit
from the AST classes of the extended or overridden rules.

grammar ADLGrammar {
Component = "comp" Name " {"
Port* Subcomponent* Connector*

"}";
interface Port = id:Name Type;
// Subcomponent, Connector, etc.

}

01
02
03
04 
05
06
07

grammar CloudADLGrammar
extends ADLGrammar {

EncryptedPort implements Port = 
"secport" Type Protocol id:Name ";";

Protocol = ("DES"|"AES") ";";
}

01
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Sub

component

«interface»

Port
Connector

Encrypted

Port

Protocol
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Name getID()

Type getType()interface rule 
prescribing 
two attributes

derived from 
interface rule

Component

Figure 3: Example of grammar inheritance in MontiCore.

Software product line engineering (SPLE) conceives meth-
ods to handle similar software products in an integrated fash-
ion within software product lines. Each software product, also
referred to as variant, of the product line has certain com-
monalities and differences with regard to other variants. De-
veloping commonalities independently is usually costly, time-
consuming, error-prone, and subject to co-evolution of the in-
dependent parts. The aim of SPLE, therefore, is a reduction
of developing commonalities independent of each other, but
rather to reuse commonalities across the variants. Feature di-
agrams [3, 14, 44] group common parts of software within fea-
tures. Features are arranged in feature trees. In our approach,
we employ feature diagrams with the usual relations (manda-
tory, optional) between parent features and sub features as well
as feature groups (alternative, exclusive). Besides this, the pos-
sible feature configurations can be restricted via cross-tree con-
straints (requires, excludes). Based on the restrictions in the
feature model, a selection of a set of features determines a cer-
tain variant. The selection can be validated according to the
constraints of the feature model.

4. Modeling Language Variability

In software engineering in general, and in component-
based software engineering in particular, bundling of software
into reusable components has proven to be helpful [39, 59].
Component-based software engineering pursues the idea of
“black-box” components that can be reused off-the-shelf. This
requires independent components with explicit interfaces for
their composition. As software languages are software too [23],
this also applies to software languages. Consequently, modu-
larization and variability of software languages are investigated
as well. Previous work [36, 67, 68, 86] conceived concepts
and methods to facilitate composition of software languages.
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For instance, the MontiArc [10] architecture description lan-
guage [55] composes a host component & connector language
with an embedded automata language and embedded state-
ments of a Java DSL, and it is aggregated [30] with the UM-
L/P [66] class diagram (CD) language to enable architectures
with behavior models operating in the context of a CD. From
applying this language and its variants to various domains in-
cluding cloud systems [60], automotive [29], and robotics [33],
we identified the following research questions that a concept for
software language variability should solve:

RQ1: How can variability of the syntax within a language
(module) be realized?
Answering this question requires a dedicated notion of variabil-
ity that applies to the syntax of languages. One possibility to
realize variability in general is the usage of underspecification.
The question should answer how elements of a language syntax
that are expected at a certain place can be properly underspec-
ified. While underspecification inherently abstracts from ex-
pected elements, a certain typing of such elements is desirable
for composition of syntaxes.

RQ2: How to compose independent language modules?
Composition integrates the syntax of two language modules.
There needs to be additional information on which exact parts
of the syntaxes, i.e., which extension and which extension point,
should be composed. This is typically realized via “glue”. The
solution to this question, therefore, requires a notion for this
glue and dedicated composition operators for the constituents
of a language module. Furthermore, proper handling of ambi-
guities that can arise in the composition of two language syn-
taxes must be assured.

RQ3: How can language composition be guided to obtain
meaningful combinations of language modules?
To control, which language modules can be combined in a
meaningful way, we explicate certain combinations of language
components within families of similar languages. Modeling a
family of similar languages requires selecting suitable model-
ing techniques to reflect the constituents realizing a language
(solution space) as well as to represent the variability using ap-
propriate techniques (problem space). Apart from this, an ap-
proach for guided combinations requires a notion of validity of
the composition, i.e., a member of the family of languages.

RQ4: How can development of language modules and their
composition be decoupled?
In practice, revealing all technical details of language modules
for their composition complicates their reuse and requires the
language engineer composing the modules to have detailed
knowledge about these. Instead, it should be sufficient to com-
municate the underlying conceptual model of each individually
developed language module, so that the composition could
be maintained by another person. This person can arrange
language modules such that only meaningful compositions are
allowed. This alleviates a domain engineer who selects a subset
of these meaningful compositions of modules from requiring
software language engineering expertise.

In the remainder, Section 4.1 presents a concept to model
variability of a single language component. Subsequently, Sec-
tion 4.2 explains a concept for modeling variability of multi-
ple language components and for engineering language product
lines. Then, Section 4.3 presents the roles involved in develop-
ing and using a language product line.

4.1. Reusable Language Components
The basis for our proposed variability mechanism are lan-

guage components, which are language modules comprising
(1) a grammar providing an integrated description of abstract
syntax and concrete syntax; (2) a (possibly empty) set of ded-
icated grammar productions acting as extension points of the
abstract syntax; and (3) a set of well-formedness rules. A lan-
guage component is an independent, standalone model that is
not aware of being used with an underlying variability model.
To foster maturing in the sense of component-based software
engineering [59], language components should be developed
independent of each other, to be reusable in different contexts
whenever possible. The aim of this is to enable reusing lan-
guage components “off-the-shelf” by only requiring limited
knowledge on the intricacies of a language component. We use
grammars as foundational description mechanism for language
syntaxes and show how to describe extension points and ex-
tensions of language syntax through grammars. The notion of
extension points in the abstract syntax, however, can be trans-
ferred to metamodel-based syntax definitions as well.

We explicate the extension points within language compo-
nents to denote the reduced effort of understanding the intrica-
cies of a grammar when a language component is reused. For
instance, in the exemplary language product line in Figure 2,
the language component AutomationBaseLanguage can be
used mainly by communicating the extension points Condi-

tion and Action. The language product line engineer has to
understand implementation details on other grammar produc-
tions (e.g., EMAddress) only on a more abstract level, unless
the composition is invalid, e.g., due to ambiguities. A further
advantage of explicating the extension points is that language
engineers who develop language components can hide certain
parts of the language that must not be extended as, e.g., known
from private methods in Java. In general context-free gram-
mars, our notion of extension points within a language’s syn-
tax applies to arbitrary grammar productions. This means any
grammar production can serve as extension point. A grammar
production used as extension point can provide a default im-
plementation (that is its right-hand side). In context-free gram-
mars in general, all productions must provide a right-hand side
and with these, all extension points must provide a default im-
plementation. Variability is realized through underspecification
of alternatives to the default implementation. In other words,
extending an extension point is realized by adding the exten-
sion as alternative to the right-hand side of the extension point.
To foster only meaningful combinations of languages and en-
able reusing a language component based on knowing its exten-
sion points, language engineers have to decide carefully which
grammar productions should act as extension points.
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We prescribe that the cardinality of an extension point is only
realized via the variability model, and not via the language com-
ponent itself. For example, the grammar should not restrict that
an extension point must be extended at all, once, or multiple
times. This increases the reusability of a language component
within different contexts. An extension is a grammar produc-
tion that provides syntactical elements to resolve the underspec-
ification of an extension point. To this effect, extensions pro-
vide the right-hand side that was underspecified in an extension
point. Typically, the extension is contained in a different gram-
mar than the extension point it implements. More precisely,
connecting two grammars via an extension point and an exten-
sion is realized within two steps: (1) Merge all productions of
both grammars to form a new grammar. The start production of
the grammar containing the extension point becomes the start
production of the new grammar. (2) Add the left-hand side of
the production of the extension as alternative to the right-hand
side of the extension point production.

In the realization of the concept, leveraging the powerful
language composition techniques of MontiCore, we represent
grammar extension points with interface productions (cf. Sec-
tion 3). These have the additional advantage, that a concrete
right-hand side can be underspecified (i.e., no default imple-
mentation is required), but assumptions on the abstract syn-
tax of possible productions implementing the interfaces can be
made. This enables controlled extension and reasoning over
possible implementations already on the interface level. In
this sense, interface productions resemble interfaces or abstract
classes in metamodels (depending on the formalism). Conse-
quently, for instance, abstract classes in a metamodel would
also enable to represent (controlled) extension points. The con-
cept of language components realizes RQ1.

In MontiCore, language components are not required to pro-
vide default implementations of their extension points. Monti-
Core enables a grammar to define an interface production with-
out providing a production implementing the interface produc-
tion. However, the components themselves are abstract in the
sense that it will not be possible to concretize all possible sen-
tences (models) of the language. Nevertheless, language com-
ponents may provide certain default implementations by pro-
viding grammar productions that implement the interface pro-
duction (or classes implementing the interfaces in metamodel-
based approaches). For example, a Statechart language com-
ponent with an extension point for guard conditions on transi-
tions can optionally include built-in default expressions but still
be extensible with additional kinds of expressions (e.g., OCL,
LTL, . . . ) through different language components.

However, explicating extension points via special grammar
constructs requires that language engineers have to foresee each
extension point during development of a language component.
The realization of our concept in MontiCore, for instance, con-
siders all interface productions as extension points, which liber-
ates language engineers in maintaining explicit extension points
as separate artifact(s).

Besides the context-free grammar, a language component
contains a set of well-formedness rules. These may check the
well-formedness of any abstract syntax element of the grammar

of the enclosing language component. Where the abstract syn-
tax is arranged as a tree, well-formedness rules should check the
most specific syntax element that is possible. This increases the
reusability of the well-formedness rule if only parts of the lan-
guage’s syntax are reused. Additionally, it reduces side effects
of the well-formedness rule that arise if it is applied for post-
hoc added language constructs for which it was not designed
to apply for. For example, consider a rule checking the well-
formedness of dates (e.g., 30.02.2019 is not considered well-
formed) for the Automation grammar depicted in Figure 1.
The well-formedness rule should be implemented against the
abstract syntax element introduced by the nonterminal Date
as the most specific possible element. If it was implemented
against more general elements, such as the DateCondition

nonterminal, and only the Date nonterminal was reused in an-
other context, then the well-formedness rule would not apply
there. With MontiCore, well-formedness rules can be imple-
mented against interface productions to assert well-formedness
of their right-hand sides. It is possible to check all imple-
mented context conditions via a checking infrastructure. This
infrastructure is automatically generated by MontiCore using
the grammar [67].

The composition of language components requires different
composition operators for the different constituents of a lan-
guage component. A language component with a grammar
and well-formedness rules requires composition operators for
these. A language component based on metamodels would re-
quire a composition operator for metamodels [17, 19]. Two lan-
guage components are composed by composing all constituents
of these language components.

Multiple language components can be composed at a time,
but the composition operator for grammars is directed. Apply-
ing all required composition operators produces an integrated,
new language component. This integrated language component
contains all details necessary to synthesize language-processing
tooling for the contained language. Furthermore, it can serve as
a language component within different language product lines,
e.g., by engineering a new language product line with the gen-
erated language component at its base, describing the common-
alities of all possible variants.

Our notion of syntactic language components requires com-
position operators for grammars and for context conditions.
The composition operator for grammars takes an ordered list
of input grammars and a binding from extensions to extension
points (of other grammars). Using these, it embeds extend-
ing implementations into the extension points. For MontiCore
grammars, this is realized as implementing interface produc-
tions, for other context-free grammar by introducing additional
alternatives at the extension point. For metamodels, this can be
realized by introducing new interface implementations or sub-
classes of abstract metamodel classes. For grammars, the result
would be a composed grammar that includes all grammar pro-
ductions of the input grammars. For metamodels, this would
be a joined metamodel including all concepts and relations of
participating metamodels. The composition operator does not
resolve potential conflicts, such as, through grammar produc-
tions with identical nonterminal names. Instead, this has to be
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resolved via additional transformations. All context-free gram-
mars have a single start production that defines the start of the
derivation process. The start production of the composed gram-
mar is the start production of the first input grammar1.

Independent of the abstract syntax realization mechanism,
the extension points of the composed language components are
the union of extension points of the input language components.
In other words, all extension points are preserved in the com-
posed language component.

Similarly, the sets of well-formedness rules are preserved.
The composition operator merges these such that the composed
language component contains the union of all participating
well-formedness rules. Again, the composition operator does
not check if well-formedness rules contradict. If this is the case,
the set of well-formed models may be empty. For instance, con-
sider a well-formedness rule assuming that automation models
(cf. Section 2) are well-formed if these contain exactly one ac-
tion and another rule considering well-formed models to have
more than one twitter action. Apart from that, composing sets
of well-formedness rules is straightforward. The concept for
composing language components (i.e., composing grammars,
their extension points, and well-formedness rules) realizes the
identified RQ2.

4.2. Language Product Lines

With language components and a notion of their composi-
tion, new languages can be built up from independent, reusable
modules. However, it is cumbersome and error-prone to iden-
tify, which language components can be reused for a certain
purpose and how their composition is arranged, i.e., which ex-
tension points and which extensions are connected.

To remedy this, our approach leverages a variability model to
organize language components and establish bindings between
these. For the realization, we identified feature models with
their usual relations [44] and constraints as a suitable mod-
eling technique. In the feature model of a language product
line, each feature of a feature model instantiates exactly one
language component. The concept, however, can be adapted
and applied to different variability modeling techniques as well.
As language components are unaware of being used with fea-
tures, they can be used with different feature models and even
with different features within a single feature model. For in-
stance, two features could instantiate the same language com-
ponent but embed it differently, which is useful when reusing
more generic language components – such as expression lan-
guages – with different extension points. Moreover, the loose
coupling between feature model and language components fa-
cilitates extending the language product line with new features
and language components to support their evolution.

Using a feature model, bindings, and language components,
a language product line can be constructed (cf. RQ3). Each pos-
sible variant (product) of the language product line is described

1This appears to be a limitation at this point, but in combination with a
feature model as described in Section 5, the first input grammar is always the
one used in the root feature.

by a valid feature configuration of the feature model. This pre-
vents uncontrolled composition of language components, i.e.,
a form of composition that is neither foreseen or nor intended
by the language product line engineer and leverages language
users from comprehending internals and composition of differ-
ent language components.

Moreover, properties of extension points, such as being
mandatory, optional, or exclusive with another extension point
are solely realized via the variability model. This yields the
advantage of the language components to be better reusable in
different contexts, with different applied extension points, and
to support staged configuration [15]. A requires relationship
between two features (denoting that one feature relies on the
presence of another feature), enables to indicate that a language
component of one feature must have knowledge about the lan-
guage component of the other feature. This reflects, e.g., inher-
itance between the respective grammars or dependencies be-
tween the metamodels. It enables modeling that, for instance, a
feature providing an expression language requires another fea-
ture providing a type system.

A binding between extension point and extension is specific
to two features of a concrete feature model and the language
components they instantiate. Therefore, we organize all bind-
ings of a language product line within a single dedicated bind-
ing model. The model describes for each feature of the fea-
ture model which language component it instantiates by stat-
ing a mapping from a feature name to a language component
name. Additionally, it defines binding rules that connect ex-
tension points and extension via their nonterminal names. To
this effect, it contains one name mapping per feature of the fea-
ture model and one binding rule per edge between two features
of the feature model. A binding model is specific to a language
product line and its related language components and is the only
connection between these, otherwise decoupled, parts as it indi-
cates that a language component is instantiated in each feature it
is bound to. Consequently, reusing the feature model of a lan-
guage product line, e.g., with language components based on
another language definition formalism, becomes feasible. Each
binding rule constitutes (1) the parent feature and the extension
point that the rule applies to and (2) the child feature and the
extension that is bound to the extension point.

Uncontrolled composition could occur if the connection be-
tween extension point and extension would be based upon, e.g.,
both grammar productions to have the same name or by “au-
toconnecting” an extension to all extension points. To miti-
gate this, we explicate bindings. As the root feature does not
have a parent feature, there is no binding rule that binds ex-
tensions of the root language feature to other extension points.
To this effect, our approach allows extensions to be extension
points (therefore in MontiCore, interface productions) as well.
Extending an extension point refines the extension point and
enables concretizing its required abstract syntax elements, as
well as to enable more sophisticated structuring of features of
the language product line. This is demonstrated by an example
in Section 6.

Extending a selected set of features with further features does
not invalidate the syntax of models that were valid before, as

180



adding new language components cannot eliminate syntax ele-
ments. This conservative extension [67] of the syntax, enables
reusing tooling for multiple language variants of the product
line. However, it cannot be used to guarantee semantical cor-
rectness of analyses. Through adding new language elements,
several analyses might produce different results. Consider, for
instance, an analysis counting actions defined in a model con-
forming to the Automation grammar (cf. Figure 1). If a lan-
guage extension would add nested actions, these would not be
taken into account individually unless the analysis is modified.

Deriving a language variant begins with selecting features to
compile a feature configuration. The feature configuration has
to be valid with regard to the feature model and its constraints.
Then, our language composition tool composes the language
components of all selected features at once. As the composi-
tion operator is ordered, the order of language components is
computed by a depth-first search starting from the root feature.
Here, the order of siblings is irrelevant.

Composition produces an integrated grammar, a joined set
of context conditions, and all extension points of the input lan-
guage component are retained. Furthermore, a new language
component containing these is generated that can be used, e.g.,
as root for a new language product line. A language component
should contain all information necessary to produce language-
processing tooling for the defined language. This activity can
be performed on the composed language component as last step
of language variant derivation.

Developing a language product line by organizing which lan-
guage components can be composed does not necessarily re-
quire to understand in-depth details of the language compo-
nents’ internals. This facilitates reusing language components
that the language product line engineer did not develop on
her own. Thus, she only has to consider all details of a lan-
guage component if side effects of composing the grammars
(such as ambiguities in abstract or concrete syntax) arise. To
avoid language compositions that cause invalid language vari-
ants, she can, for instance, establish cross-feature relations pre-
venting these (e.g., by mutual exclusion of features contributing
ambiguous grammars). This fosters a separation of concerns
between language engineers developing language components
and language product line engineers arranging these meaning-
fully (cf. RQ4).

4.3. Roles
Our method to enable modeling language reuse through vari-

ability rests on a separation on related concerns along different
roles:

• Language engineers develop language components that
encapsulate abstract syntax and concrete syntax.

• Language product line engineers are language engineers
that create language families as feature models that de-
scribe possible characteristics of the family’s language
products. To this end, they collect relevant language com-
ponents, assign these to features, and define how these
realize extension points of language components of their
parent features.

• Language product owners configure the language family
to obtain a language product for a specific domain, con-
text, or application. Based on this configuration, the tool
chain generates model-processing tooling for the selected
product.

• Modelers employ the generated modeling processing tool-
ing to analyze models and transform these into GPL arti-
facts.

The separation of concerns between the participating roles
frees the individual roles to be involved in all phases of con-
ceiving language product lines and language products. Figure 4
details the activities of the different stakeholders: Creating a
language product line begins with language engineers develop-
ing the modeling languages that the product line combines. We
assume the languages are defined using grammars defining the
concrete and abstract syntax and its possible extension points.
Extension points of the grammar become extension points of
the language component. After the grammar is defined, lan-
guage engineers define rules describing the well-formedness of
models of the language. Grammar and well-formedness rules
then are explicated within a language component model.

The language product line engineer collects the different lan-
guage components and arranges these into a feature model de-
scribing the product line. To this end, she first defines the
desired features within a feature model and models their con-
straints according to the domain’s needs. Then, within the bind-
ing model, she instantiates a language component for each fea-
ture or the feature model. Afterwards, she creates binding rules
for each connection between extension point and extension. In
the resulting product line, features denote selectable language
components and the language components of child features are
available for embedding into extension points of the language
components of their parent features. Optionally, language prod-
uct line engineers can create glue that is specific to the con-
nection between two instances of language components that are
connected via the feature model. This glue comprises e.g., well-
formedness rules and further analyses or tooling specific to the
composition of two languages. Apart from these, it is possi-
ble to perform handcrafted adaptations of, e.g., grammars that
cause ambiguities when they are composed through creating a
grammar that inherits from the original one and overrides con-
flicting productions.

Based on the language family, the language product owner
selects features of interest for a specific domain, context, or ap-
plication and uses the language variability infrastructure to au-
tomatically compose grammars and well-formedness rules into
new model processing tooling for the specific configuration.
With this, the modelers can process models using the selected
features transparently as if developed for a single monolithic
language.

To this end, the separation of concerns among the described
roles alleviates experts to have capabilities in all fields of exper-
tise among the process of developing language product lines as
depicted in Figure 5. This reflects in the different kinds of ar-
tifacts created and used throughout the process. The capability
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Figure 5: The roles involved in developing language product lines and their
required capabilities.

to create artifacts related to syntax and well-formedness of lan-
guages is solely required by language engineers, and partially
by language product line engineers. The latter only require to
create syntax or well-formedness artifacts if conflicts arising
in combinations of syntaxes or well-formedness rules result in
problems that are to be resolved manually. Language prod-
uct line engineers, however, have to understand the artifacts
realizing syntaxes and well-formedness rules of the involved
languages. Modelers are only required to understand these in
a more abstract way, e.g., through documentation. Language
product owners do not need to understand syntax and well-
formedness rules. Language components are created by lan-
guage engineers and have to be understood by language product
line engineers and product owners to create and configure lan-
guage product lines. Modelers do not have to be aware of the
existence of language components. The feature tree is created
by the language product line engineer and used by language
product owners for configuring language variants through fea-

ture configurations. The language product line engineer creates
a binding model for each feature tree, in which she connects
features to language components and binds extension points of
language components with extensions of other language com-
ponents. Language engineers and modelers do not have to be
aware of the presence of feature models, binding rules, and fea-
ture configurations.

5. Integrating Languages Syntaxes

This section describes the MontiCore realization of the con-
cept introduced in the previous chapter. The concrete and ab-
stract syntax of a MontiCore [30] language is defined within
an extended context-free grammar. Well-formedness checking
is realized via context conditions implemented as Java classes
(cf. Section 3). To define extension points of a grammar, our
approach leverages interface grammar productions (interface
nonterminals) that the grammar itself can provide default im-
plementations for by containing productions that implement the
interface production. As depicted in l. 13 of the top grammar in
Figure 1, interface production rules are not required to have a
right-hand side. If an interface production has a right-hand side,
it indicates nonterminal symbols required to be provided by
grammar productions that implement the interface production.
Similar to ordinary nonterminals, interfaces can be referenced
on the right-hand sides of other production rules (cf. Compo-
nent in ll. 2ff). Nonterminals can implement interfaces (ll. 6f),
resulting in an abstract syntax structure as depicted by example
on the right of Figure 3. Our approach supports composition of
independent language components. This mitigates the neces-
sity to use grammar composition via inheritance as explained in
Section 3 (cf. CloudADLGrammar in Figure 3), which requires
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language ADLLangComp {

grammar com.ma.ADLGrammar;

cocos {

com.ma.cocos.CompNameLowerCase,

com.ma.cocos.PortNamesUnique

}

}
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Figure 6: The language component ADLLangComp.

binding for ADL {

feature BaseADL uses ADLLangCmp;

feature Behavior uses BehaviorLangComp;

feature Automaton uses AutomatonLangComp;

bind Behavior.BehModel to BaseADL.ADLElement;

bind Automaton.IOAutomaton to Behavior.BehModel;

}

01
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07 

Binding

Behavior

Automata

BaseADL FM

Figure 7: The binding model for the composition of exemplary language com-
ponents.

that the inheriting grammar cannot be used without the inher-
ited grammar and therefore reduces reusability.

Composition of language components realizes the variability
in the solution space of our approach. The composition of lan-
guage syntaxes is performed by composing their context-free
grammars and context conditions. MontiCore grammars used
in language components can, in general, use grammar inher-
itance as supported by MontiCore. Grammar inheritance be-
tween grammars contained in different language components
of a language product line should be performed carefully, as it
can yield unintended side effects. Therefore, we recommend
indicating such a relationship via a “requires” constraint in the
feature model.

Figure 6 depicts a language component definition. It holds
a reference to a MontiCore grammar and a set of correspond-
ing context conditions. The language component has the name
ADLLangCmp, references the ADLGrammar presented in Fig-
ure 3, and references two context conditions. All interface non-
terminals defined in the referenced grammar are automatically
exported as extension points of the language component.

Consider a small language product line for ADLs with a base
feature BaseADL, an optional behavior feature, and an optional
Automaton feature for the realization of the behavior. The cor-
responding feature model is depicted in the right of Figure 7.
The binding model depicted in the left of Figure 7 contains the
relation between features in the feature model (depicted right)
and language components (ll. 2-4) that these instantiate. Fur-
ther, it defines binding rules between extension points and ex-
tensions(ll. 5-6). Thess rules define which nonterminals of a
child feature are bound to which extension points of a parent
feature. For example, in every language variant comprising the
Automata feature, the IOAutomaton nonterminal of the gram-
mar contained in the feature’s language component is bound to
the extension point BehModel exported by the language com-
ponent of feature Behavior (l. 6). Extension points and ex-
tensions have to be identified via names comprising feature and
grammar production to be uniquely identifiable within a prod-
uct line. A single language component, for instance, could
be instantiated more than once in a product line. The top of
Figure 8 depicts two MontiCore grammars that are part of lan-

MCGMCG

Robot

ADL

grammar RobotADLGrammar extends BehaviorGrammar, IOAutGrammar {

start Component;

RobotADLBehModel extends IOAutomaton implements BehModel

= "ioautomaton" "{" AutElem* "}";

} 

MCG

grammar BehaviorGrammar {

interface BehModel;

//...

} 

grammar IOAutGrammar {

IOAutomaton

= "ioautomaton" "{" AutElem* "}";

//...

}
production
extension

interface
implementation

Figure 8: The composition (bottom) of two MontiCore grammars (top).

guage components to be composed. The grammar IOAutGram-
mar is part of the language component AutomatonLangComp
and, inter alia, contains the grammar production IOAutoma-

ton. The BehaviorGrammar is part of the language compo-
nent BehaviorLangComp and provides the interface produc-
tion BehModel. The grammar RobotADLGrammar depicted at
the bottom is the result of the composition of the upper two
grammars with the binding model as described above. The rel-
evant part of the binding for this composition is contained in
l. 6. The production IOAutomaton of IOAutGrammar uses the
extension point (= interface production) BehModel of the gram-
mar BehaviorGrammar. The name of the synthesized gram-
mar is derived from the name of the language variant as prefix
and Grammar as suffix. The grammar inheritance mechanism of
MontiCore is used to extend both grammars, which enables to
reuse all of their grammar productions. For technical reasons,
the generated grammar has to reference the start production of
the grammar of the root feature, to produce the same top-level
abstract syntax element for each generated parser of the product
line. For each applied binding rule (= implemented interface
production), a new nonterminal is generated in the synthesized
grammar. The new production extends the extension nonter-
minal with extends IOAutomaton and implements the exten-
sion point interface with implements BehModel. The effect
of implementation of an interface has been explained in Sec-
tion 3. Extending a production has a similar effect, it can be
used in every place of the grammar where the extended produc-
tion has been applied. With the abstract syntax tree data struc-
ture MontiCore generates from a grammar, the corresponding
abstract syntax tree classes reflect the same extension and im-
plementation on the level of Java classes and interfaces. Con-
sequently, the abstract syntax class of RobotADLBehModel ex-
tends from the abstract syntax class of the IOAutomaton and
implements the interface BehModel. This bears the advantage
that all algorithms and tooling applicable to the base element
can also be applied to the extension. For example, a well-
formedness rule checking that an IOAutomaton has a single
initial state can also be applied to the generated RobotADL-
BehModel. With our approach in general, the right-hand side
of the generated production equals the right-hand side of the
extended production. If the right-hand side contains a nonter-
minal that was extended during composition, it is replaced with
the newly generated nonterminal name. This transformation is
especially necessary for recursive productions and refining in-
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grammar RobotADLGrammar extends BaseADLGrammar, BehaviorGrammar {

start Component;

interface RobotADLBehModel extends ADLElement, BehModel;

} 

MCG

component grammar 

BehaviorGrammar {

interface BehModel;

//...

} 

grammar BaseADLGrammar {

Component = /*…*/ ;

interface ADLElement;

//...

}

Figure 9: Composition with extension point refinement

terfaces to realize the expected behavior. Without this replace-
ment, parsers would create instances of the abstract syntax class
derived from the extension nonterminal instead of the abstract
syntax class of the newly generated one. Therefore, the con-
nection between extension point and extension would break,
because the extension nonterminal alone has no connection to
the extension point. With refinement of extension points, both
extension and (as always) extension point are interface produc-
tions. Here, a new name is derived in the same style as above
in the nonterminal case, but it extends both interfaces. This is
visualized in Figure 9.

The language component resulting from the compositions of
the two language components AutomatonLangComp and Be-

haviorLangComp is depicted in Figure 10. The referenced
grammar is the newly generated grammar depicted at the bot-
tom of Figure 8. It combines the abstract syntaxes and con-
crete syntaxes of the composed grammars. The set of con-
text conditions of the integrated language component is the set
union of all sets of context conditions of input language com-
ponents. Checking all context conditions of the composed lan-
guage component is possible, because of the compatibility of
the abstract syntax tree data structure – that MontiCore relies
on for checking context conditions – between the composed
grammar and the input grammar that the context condition has
been defined for. As no interface productions are removed in
the composed grammar, all extension points are joined and the
resulting language component comprises all extension points
of the input language components. The language component
synthesized for a certain language variant can optionally be ex-
tended with handwritten grammars and new context conditions
before MontiCore is executed to produce tooling for the lan-
guage variant.

6. Case Study

The following presents an extended case study of our ap-
proach in the context of architecture description languages
based on the extended example in [8]. Architecture description
languages (ADLs) [55] combine MDD with component-based
software engineering for the description of software architec-
tures. There are over 120 stand-alone ADLs [54], each tailored
towards a specific application domain, such as automotive [16],
avionics [24], consumer electronics [81], or robotics [69]. De-
veloping and maintaining domain-specific variants of an ADL

language RobotADLLangComp {

grammar com.ma.RobotADLGrammar;

cocos {

com.behavior.SingleBehaviorModel,

com.ioaut.SingleInitialState,

//...

}

}
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Figure 10: The resulting composed language component.

is challenging [10].

6.1. ADL Language Product Line Motivation and Overview
Our approach enables to prevent the efforts of creating, main-

taining, and evolving multiple stand-alone ADL variants tai-
lored to specific domains individually. Using feature-driven
language composition enables to start with a core ADL exhibit-
ing extension points and independently developing language
components that provide modeling elements required for archi-
tectures of the different domains. Modifying one language com-
ponent automatically updates all language variants that contain
the component if the variant derivation is executed again. In the
context of ADLs, our approach facilitates to produce tailored
ADL variants for new domains, e.g., architectures for machine
learning. Common ADL parts can be reused from the language
product line, and new features specific to the new domain can
easily be added.

Excerpts of a complete language product line for ADLs,
called MyADL, capable of describing software components for
modeling both cloud systems and embedded systems are de-
picted in Figure 11. Different language engineers contribute
language components (depicted right) with explicit extension
points defined via their interface productions in the grammar.
The language product line engineer defines the feature model
and therefore defines which features are available and how se-
lecting a feature may depend on the selection of other features
(depicted left). The product line comprises a common base
feature (BaseADL) and features that are typical to ADLs for
embedded systems (e.g., automated connection of ports based
on their types or names) as well as features related to scal-
able and secure cloud systems (e.g., replicating components
and encrypted communication). Each feature instantiates ex-
actly one language component that might define further exten-
sion points. The relation between two features in the feature
model describes how their language components are integrable
(parent-child relationship) or whether a feature’s language com-
ponent relies on or conflicts with another language component
(cross-tree constraints).

The decoupling between features of the language product
line and language components, as well as the decoupling among
different language components, enable to reuse the language
components in different feature models and to instantiate a lan-
guage component within different features of a single feature
model. Based on a feature configuration defined by the lan-
guage product owner (middle left), a software tool (implement-
ing the mechanisms described in the previous sections) estab-
lishes the connections between the selected features’ language
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Figure 11: A language product line defined as feature model over language
components. Given a feature configuration (top), the variant is transformed
into a new language component (bottom).

components. A feature’s language component is integrated into
the extension points of the language component of the respec-
tive parent feature. For instance, the language component of
feature InputOutputAutomata is integrated into the extension
point e (the label of the edge between the features Component-
Behavior and InputOutputAutomata in Figure 11) of the
language component contained in the feature ComponentBe-

havior. Integrating all language components of the selected
features yields a new language component, which can be used
by the respective domain experts to model corresponding soft-
ware architectures using exactly the modeling elements selected
through the feature configuration (in this case automata models
describing component behavior).

Being able to reuse language components without modifica-
tion enables reusing the associated tooling (analyses, transfor-
mations) with the generated language component as well. This
is possible because the generated AST classes of each individ-
ual language component are reused by the tooling of a gener-
ated language component. Reuse is possible because the re-
sult of the integration of each feature’s language component
with the language component of the feature’s parent stands in
a “conservative extension“ relationship (in the sense of [67])
with the parent feature’s grammar. With this, changes to a lan-
guage component and its tooling are immediately reflected in
all generated language components as well. Therefore, the ef-
fort of creating, maintaining, and evolving modeling languages
is minimized. The loose coupling between features and lan-
guage components also simplifies integration of new features
into the feature diagram. Integrating a new feature below Com-

ponentBehavior, for instance, does not influence other fea-
tures and language components. The language product line en-
gineer, however, has to ensure potential cross-tree constraints
(excludes, implies) of the new feature to existing features.

A generated language component can yield extension points.
Thus, the creation of intermediate products that require further
refinement is also possible. Where multiple similar domains are
addressed, creating refined domain-specific language product
lines enables to restrict a large base product line accordingly.

«interface»

IFeatureProvider
FeatureIDEPlugin

XMLParser

Tree<String> getFeatureTree(String fmPath)

List  <String> getSelectedFeatureList(String fcPath)

Tree<String> getSelectedFeatureTree(String fmPath, String fcPath)

CD

Figure 12: Integration of FeatureIDE [74] into the language composition tool.

Figure 13: The feature model and the feature configuration in the employed
FeatureIDE editors.

The tooling to process language product lines and derive vari-
ants is extensible into different directions: it enables to use dif-
ferent languages for the definitions of language components and
bindings, and it supports different feature modeling tools. For
example, the plug-in integration of FeatureIDE [74] for mod-
eling feature diagrams and feature configurations is depicted
in Figure 12. Our language composition tool provides an inter-
face IFeatureProvider that has to be implemented by plug-
ins for feature modeling tools. The plug-in for FeatureIDE em-
ploys the class FeatureIDEPlugin, which uses an XMLParser
to parse the XML artifacts of feature models and feature con-
figurations produced with FeatureIDE.

6.2. ADL Language Product Line Details
The following describes the language product line, its fea-

tures and language components depicted in Figure 11, and
presents a language component derived from a configuration
as well as valid and invalid models with regard to the de-
rived language component. The feature model and the se-
lected configuration in FeatureIDE are depicted in Figure 13.
The BaseADL feature must be domain-agnostic as it is part
of all possible product line configurations. It thus only con-
tains the basic elements of ADLs such as components, ports,
and connectors that are common to each language variant.
The feature Autoconnect adds syntax and transformations
to realize an automatic connection of ports with either iden-
tical names or types. The Encryption feature enables de-
scribing secure ports (SecurePort) and encrypted connections
(EncryptedConnector) between these. The Replication

feature provides syntax for modeling systems with components
that are capable of replicating themselves if a replication condi-
tion is satisfied. This is useful, for instance, in client-server
architectures where a client component replicates on a large
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bindings for MyADL {

feature BaseADL uses ADLGrammar;

feature ComponentBehavior uses ComponentBehaviorGrammar;

feature InputOutputAutomata uses IOAutGrammar;

feature JavaExpression uses JavaInADLExprGrammar;

feature DynamicReconfiguration uses DynReconBehGrammar;

feature ModeAutomata uses ModeAutGrammar;

//…

bind BaseADL.CmpElem to ComponentBehavior.BehModel;

bind ComponentBehavior.BehModel to InputOutputAutomata.IOAutomaton;

bind InputOutputAutomata.Guard to JavaExpression.GuardExpr;

bind InputOutputAutomata.PortAss to JavaExpression.PortAssExpr;

bind BaseADL.CmpElem to DynamicReconfiguration.ReconBehModel;

bind DynamicReconfiguration.ReconBehModel to ModeAutomata.ModeAut;

//…

}
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Figure 14: The binding rules for the language product line.

grammar ADLGrammar {

Component = "component" Name "{" CmpElem* "}"; 

interface CmpElem;

interface Port extends CmpElem;

DefaultPort implements Port = "port" Type Name ";";

/* Subcomponent and Connector productions omitted */

}
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language CoreADLLngComponent {

grammar ADLGrammar;

cocos {

com.adl.cocos.CompNameLowerCase,

com.adl.cocos.PortNamesUnique

}

}
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Figure 15: Parts of the BaseADL language component.

number of requests. The language product line engineer con-
siders component replication to be a threat for autoconnect-
ing ports. Choosing one of the two corresponding features
thus excludes the other. The ComponentBehavior feature
(cf. Figure 16) introduces behavior blocks to the ADL through
the interface BehModel. The language product line engineer
intends component behavior models to be modeled in such
blocks. The child features StructuredTextBehavior and
InputOutputAutomata contain different behavior languages.
It should not be possible to model empty behavior blocks and
thus, choosing the ComponentBehavior feature requires to
choose at least one feature that defines a component behav-
ior language. Automata use expressions on their transitions as
guard conditions. For this purpose, the language product line
currently only includes the JavaExpressions feature, which
is therefore marked mandatory.

The binding model depicted in Figure 14 describes the map-
ping from feature name to the name of the language component
instantiated by the feature (ll. 2-7) and the binding of extension
point of a feature to an extension of another feature (ll. 9-14).
The binding model belongs to the language product line MyADL
(l. 1). The layer of indirection between feature name and lan-
guage component name enables to use the same language com-
ponent within two different features (which must have a unique
name within a feature model) of a feature model. The explicit
binding between extension point and extension prevents uncon-
trolled composition (cf. Section 4).

component grammar ComponentBehaviorGrammar {

interface BehModel;

}
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language BehaviorLngComponent {

grammar BehaviorGrammar;

cocos {

com.compbeh.cocos.BehaviorUnique,

com.compbeh.cocos.BehaviorNotInComposedComponents

}

}
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Figure 16: The ComponentBehavior language feature.

Consider a language product owner who aims at developing
software architectures in which atomic components’ behavior
can be specified via input/output automata. She thus selects the
configuration containing the features BaseADL, Component-
Behavior, InputOutputAutomata, and JavaExpression.

component grammar IOAutGrammar {

IOAutomaton = "ioautomaton" "{" AutElem* "}";

interface AutElem;

State implements AutElem = 

(["initial"])? "state" Name ";";

Transition implements AutElem = "transition" src:Name

"[" Guard "]" "{" PortAss* "}" trg:Name ";";

interface Guard;

interface PortAss;
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language AutLngComponent {

grammar IOAutGrammar;

cocos {

com.ioaut.cocos.StateNamesUpperCase,

com.ioaut.cocos.UniqueInitialStates

}

}

01

02

03

04 

05

06

07

LC

InputOutputAutomata

Figure 17: The InputOutputAutomata language feature.

Figures 15-18 depict parts of the configuration’s constituents.
The BaseADL language component (cf. Figure 15) is the product
line’s root feature. The feature’s grammar defines language el-
ements common to all ADL variants such as components, con-
nector, and ports. The language component further defines two
context conditions and the interface CmpElem. With this, it is
possible to extend component definitions with further top-level
elements through language component composition via bind-
ing productions to the interface CmpElem. The Subcomponent
and Connector productions of the BaseADL grammar are omit-
ted. The grammar of the ComponentBehavior feature (cf. Fig-
ure 16) defines a single interface BehModel. Behavior models
for atomic components are intended to be embedded into the
BehModel interface. The feature’s language component further
comprises two context conditions. The first ensures that each
component contains at most one behavior model. The second
requires that composed components must not contain behav-
ior models. The language component binds the BehModel in-
terface to the CmpElem interface of its parent feature’s gram-
mar. The language component defines the BehModel inter-
face as extension point. With this, the BehModel extension
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grammar JavaInADLExprGrammar extends JavaDSL {

GuardExpr = Expression;

PortAssExpr = Expression;

}
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language JavaExprInADLExprLC {

grammar JavaGuardExprGrammar;

cocos {

com.javaexprguard.cocos.PortAssSimpleNameOnLHS,

com.javaexprguard.cocos.PortAssCorrectlyTyped,

com.javaexprguard.cocos.GuardExprBoolean,

com.javaexprguard.cocos.ReferencedPortsExist

}

}
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Figure 18: The JavaExpression language feature.

point refines the CmpElem extension point (cf. Section 4.2): Ev-
ery BehModel model can be embedded as a CmpElem, but the
opposite does not hold. Integrating the language components
of the BaseADL and ComponentBehavior features yields a
new feature that enables specifying component behavior mod-
els as top-level elements in component definitions. However,
the syntax of possible component behavior models is still un-
derspecified. For this reason, the ComponentBehavior lan-
guage component is connected to two further features via an
or-node (cf. Figure 11). Thus, each valid configuration contain-
ing the ComponentBehavior feature also contains at least one
of the two child features. The language product owner chooses
the InputOutputAutomata feature to obtain a valid config-
uration. The language component’s grammar (cf. Figure 17)
enables to model input/output automata for specifying compo-
nent behavior. Transitions (ll. 6-7) of such automata consist of
guards (l. 8) and port assignments (l. 9). The production’s im-
plementations remain underspecified (ll. 8-9). Thus, these are
modeled as interfaces by the feature’s language component and
must be bound by the InputOutputAutomata feature’s child
features. The language component further defines two context
conditions, which ensure each input/output automaton contains
exactly one initial state and that state names start with capi-
tal letters. The grammar’s IOAutomaton production is embed-
ded into the BehModel production of the language component’s
parent feature. The JavaExpression (cf. Figure 18) feature
is a mandatory child feature of InputOutputAutomata and
therefore has to be selected by the language product owner. Its
grammar inherits the productions from a Java grammar (l. 1)
and defines two new productions GuardExpr and PortAss-

Expr (ll. 2-3). These enable modeling guards and port assign-
ments with Java expressions. The Expression production is
part of the inherited Java grammar. The two productions are
bound to the Guard and PortAssExpr interfaces exported by
the InputOutputAutomata language component. Introducing
two new productions in contrast to directly binding the Java
Expression production to the Guard and PortAssignment

productions enables to separately handle guards and port as-
signments as they are distinguishable via their types. This is
necessary, for instance, if a context condition either only re-
stricts the syntax of port assignments or of guards. The first

language CompoundLC {

grammar CompoundGrammar;

cocos {

com.adl.cocos.CompNameLowerCase,

com.adl.cocos.PortNamesUnique,

com.compbeh.cocos.BehaviorUnique,

com.compbeh.cocos.BehaviorNotInComposedComponents,

/* CoCos of IOAutLC and JavaExprInADLExprLC omitted */

}

}
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grammar CompoundADLGrammar extends ADLGrammar, 

BehaviorGrammar, IOAutGrammar,

JavaInADLExprGrammar {

start Component;

interface CompoundBehModel extends BehModel, CmpElem;

CompoundIOAutomaton extends IOAutomaton

implements CompoundBehModel =                        

"ioautomaton" "{" AutElem* "}";

CompoundGuardExpr extends GuardExpr

implements Guard = Expression;

CompoundPortAssExpr extends PortAssExpr

implements PortAss = Expression;

}
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Figure 19: Result of composing the configuration’s features.

two context conditions of the feature’s language component,
e.g., only restrict the well-formedness of expressions used in
port assignments (cf. Figure 18, ll. 4-5), whereas the third con-
text condition only restricts guard expressions (cf. Figure 18,
l. 6). The fourth context condition affects guards as well as
port assignments. Composing the four features as described
in Section 5 yields the language component depicted in Fig-
ure 19 that represents the composed language. The grammar is
composed of the grammars of the selected features’ language
components by applying the transformation described in Sec-
tion 5. The new language component’s context conditions are
all context conditions of all selected language components. The
new language component retains all extension points defined
by at least one selected language component. Figure 20 depicts
the three models valid (ll. 1-8), invalid1 (ll. 9-17) and in-

valid2 (ll. 18-24). The model valid is a well-formed model
of the new language. The productions for modeling component
and port declarations (ll. 1-3) originate from the ADLGrammar

(cf. Figure 15). The InputOutputAutomata language compo-
nent’s grammar (cf. Figure 17) adds the possibility to declare
automata, states, and transitions (ll. 5-7) through extending the
interface added by the ComponentBehavior language com-
ponent (cf. Figure 16). The expressions true and in = out

used in the transition’s guard and port assignment (l. 7) origi-
nate from the JavaExpression language component (cf. Fig-
ure 18). The models invalid1 and invalid2 are no well-
formed models of the new language. Model invalid1 is an
element of the language defined by the new grammar but not
well-formed because it violates the three context conditions
PortNamesUnique, StateNamesUpperCase, and GuardEx-

prBoolean, which are defined by the three language features
BaseADL, InputOutputAutomata, and JavaExpression, re-
spectively. The model invalid2 is not well-formed because
the embedded ioautomaton model is not possible in the In-
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component MyComponent {

port Integer in;

port Integer out;

ioautomaton {

initial state S1; state S2;

transition S1 [true] {in = out} S1;

}

}
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09 component MyComponent {

port Integer in;

port Integer in; // PortNamesUnique

ioautomaton {

initial state s1; // StateNamesUpperCase

transition S1 [1+1] // GuardExprBoolean

{in = out} S1; 

}

}
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CompoundADL invalid1

CompoundADL valid

component MyComponent {

port Integer in;

port Integer out;

ioautomaton {

init state S1; // parse error

}

}
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CompoundADL invalid2

Figure 20: A valid model and two invalid models of the language component
depicted in Figure 19.

putOutputAutomaton feature’s grammar.
Based on the integrated language component, MontiCore

generates model-processing infrastructure to parse models and
perform well-formedness checks. Via handwritten extensions,
this infrastructure can be further customized.

7. Discussion

The presented approach relies on grammars as descriptions
of concrete syntax and abstract syntax. This limits the pro-
cessable models to be textual. However, building a graphical
concrete syntax on top of a textual one is possible [65]. Also,
our approach currently only realizes language embedding for
composition of language components, i.e., a form of compo-
sition that produces abstract and concrete syntaxes integrated
into a single model. Supporting further forms of language com-
position, such as language aggregation [67], is subject to fur-
ther research. The realization of our concept with MontiCore
uses all interface productions of a grammar as extension points.
It is possible to reduce this to a subset of these by explicat-
ing the extension point that should be “exported” [8] within
a language component model. We introduced this concept to
mitigate accidental or unintended extension points when using
interface productions for technical reasons. However, our ex-
periences have shown that defining exported extension points
explicitly, in practice, was cumbersome and using all interface
productions as extension points did not produce problems. To
this effect, we omitted the explicit statement of extension points
but delegate the decision of when to use interface productions
over alternatives to the language (component) engineer. Us-
ing disjunctions instead of interface productions can be used
to avoid creating unintended extension points. The current re-
alization of our concept does, however, prescribe designers of
language components to foresee all extension points by expli-
cating these through interface productions in the grammar. For

example in Figure 1, Condition and Action are the only ex-
tension points of the grammar Automation. Therefore, exten-
sion of Automation is restricted to new trigger conditions and
actions in the two foreseen places. Technically, MontiCore en-
ables to override any grammar production in order to add new
alternatives to their right-hand side [67], which can be lever-
aged to realize extension points as well. However, we currently
do not make use of this to obtain a cleaner abstract syntax and to
distinguish which productions are extension points and which
are not to foster hiding of internal details of language compo-
nents. Our concept to syntactic language variability relies on
underspecification in the abstract syntax through qualified ex-
tension points. These can, for instance, be realized through ab-
stract classes or interfaces in metamodel-based languages [73],
through controlled merging of abstract syntax elements [17],
or underspecification in grammars, such as binding elements of
different languages by name [76].

Designing language components in an appropriate granular-
ity is challenging: If the components are too fine-grained, the
feature model becomes complex even for small language prod-
uct lines. Further, the constituents of languages are scattered
across many different language components, which also com-
plicates the understandability and maintainability of these indi-
vidually. Furthermore, it is unlikely that all language compo-
nents can be developed independently. However, fine-grained
components facilitate the reuse of components in different con-
texts. Coarse-grained language components, on the other hand,
produce feature models that are better readable and reduce scat-
tering of language components, but become more complex. The
appropriate granularity is subject to the language engineers. Us-
ing a grammar production that is not the start production of the
grammar as extension to an extension point cuts off all parts of
the language’s concrete and abstract syntax that are not reach-
able as child elements of the abstract syntax induced by the new
start production.

Ultimately, our approach flattens the tree structure of the fea-
ture model and produces a single composed grammar that di-
rectly inherits from the grammars of all selected features and,
thereby does not introduce new inheritance relationships be-
tween the grammars of the selected features. To this effect,
we can allow inheritance dependencies between the grammars
contained in different features of a selected variant. Such a
dependency should be indicated in the feature model as a re-
quires constraint between the feature of the extending grammar
and the feature of the extended grammar. As with the compo-
sition no additional inheritance relationships are introduced to
the grammars of the selected features, inheritance is acyclic if
the requires constraints in the feature model are acyclic.

Our approach synthesizes a new grammar that integrates the
individual grammars of the language components via inheri-
tance. This layer of indirection complicates the readability and
understandability of the language syntax. Therefore, the gen-
erated grammar is not useful as documentation of the syntax.
Through a model-to-model transformation of these grammars,
the inheritance relations can easily be flattened to produce a
single integrated grammar with improved readability.

The separation of concerns in our approach usually alleviates
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grammar B {
IOAutomaton = //...

} 

(b) nonterminal name clash

MCG

grammar A {
IOAutomaton = //...

} 

MCG

grammar B {
ModelRef = "for" model:Name;

} 

(c) ambiguous terminals

MCG

grammar A {
ForLoop = "for" Expression;

} 

MCG

(a) ambiguous grammar

grammar A {
IOAutomaton = var:Name | State;
State = Name; 

} 

Figure 21: Grammars may be ambiguous (a). Composition of grammars can
yield (b) name clashes of nonterminals with the same name and (c) terminals
that make parsing ambiguous.

language product owners from being SLE experts and decou-
ples engineering of language components from their composi-
tion. In our current work, it is necessary that the language prod-
uct owner is an SLE expert only if she performs handcrafted,
variant-specific customizations. This can be the case, e.g., to
customize further tooling such as editors. It is, however, impos-
sible to completely alleviate the language product line engineer,
who maintains the composition of language components, from
being a software language engineer [78, 77].

MontiCore uses the mechanisms of ANTLR [62] to handle
ambiguous grammars, e.g., the grammar depicted in Figure 21
(a). Besides the automatic mechanisms, MontiCore grammars
can contain semantic predicates [62] of ANTLR to manually
control handling of ambiguities. Furthermore, the composition
of independent language components can raise several issues,
which are taken care of by the implementation of our approach.
As the grammars of different language components typically
are developed independent of each other, there might be con-
flicts in the nonterminals that share the same name unintention-
ally (cf. Figure 21 (b)). With grammar languages that have a
hierarchical name space of nonterminals, the qualified names
of the nonterminals would differ. For grammar languages with
a flat name space (such as the MontiCore grammar language), a
transformation of the grammars has to rename conflicting non-
terminals to resolve name clashes. As renaming a nonterminal
also influences tooling written against this nonterminal, the lan-
guage composition engineer has to adapt this manually. The re-
alization of our approach based on MontiCore checks whether
such name clashes of nonterminals exist and aborts derivation
of the language variant on name clashes. Furthermore, the gen-
erated parsers may be confronted with ambiguities caused by
terminals with the same name that both can occur at a certain
place in the model (cf. Figure 21 (c)). The parser has to be
aware of this, as otherwise two different valid abstract syntax
trees could be instantiated from the same model. Currently, our
realization with MontiCore aborts generation of a parser if such

terminal ambiguities occur. Cross-tree constraints in the feature
model restrict valid variants. In our approach, an excludes con-
straint can indicate that the composition causes ambiguities or
it indicates that the language product line engineer forbids the
composition due to other reasons. This is similar to requires
constraints, which can either have technical reasons or design
intentions. Future work should investigate how to derive such
constraints that are due to technical reasons or cause ambigui-
ties from the grammars.

Composition of context conditions can prevent other context
conditions to be applicable if the syntactical elements that these
operate on are forbidden by another context condition. Fur-
ther, through extension of the right-hand side of the grammar
production of a nonterminal N with a further alternative, a con-
text condition for N also applies to the new alternative. This
might be unintentional. For example, the language component
ComponentBehavior of the case study presented in Section 6
could include a context condition checking that each compo-
nent behavior declares a name starting with an upper case let-
ter. Later, the language product line is extended with a further
language component arranged as child feature of Component-
Behavior that enables a different way to specify component
behavior. The context condition then also applies to this new
language component, which might be unintended. This situa-
tion requires to either adapt the context condition to exclude the
newly added alternative or to replace it with a new one.

For language product lines with manageable size of involved
language components, the approach helps to structure these and
the feature model is understandable and well extensible. For
large feature models, and language product lines, respectively,
it is subject to further research how well the approach scales up.

Through conservative extension implemented by the gram-
mar composition operator, reusability of tooling is increased.
If this condition would not hold, tooling written for a certain
variant could only guarantee to operate on models of this single
language variant. With conservative extension, the set of mod-
els that are valid with regard to a language variant A are a subset
of the valid models with respect to a language variant B if the
set of selected features of A is a subset of the set of selected
features of B. As depicted in Figure 22, through conservative
extension, tooling of B can be used on models valid in A, be-
cause new language syntax can only be integrated by adding
further alternatives to existing syntax elements. This property
breaks when well-formedness rules are taken into account, for
instance, if a well-formedness rule considers those models that
do not use a new alternative as invalid. Considering only well-
formedness rules (and not the underlying syntax), the relation
between valid models A and B can be carried out into the other
direction: If through additional language components in the
language variants no existing rules can be eliminated, only new
rules can be added. As with each new rule, the set of valid
models can only decrease in size, valid models of B are a sub-
set of valid models in A. However, well-formedness rules are
checked after parsing and therefore, each activity realized be-
fore well-formedness checking benefits from the conservative
extension. With subsequent activities in the model-processing
pipeline, such as interpretation or code generation, the prop-
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Figure 22: If the set of features contained in configuration A is a subset of the
features contained in configuration B, the valid models of the language variant
derived from A are a subset of valid models of the language variant B.

erty of conservative extension for language components does
not hold anymore. With parsers, well-formedness checks, and
further analyses and transformations that operate on the abstract
syntax of (potentially ill-formed) models, the conservative ex-
tension property ensures proper reusability.

The presented approach has no explicit types for different
kinds of language components. Besides that, it is question-
able in which dimension typing languages should be carried out
(e.g., imperative or declarative languages, expression language
or behavior language, language with code generators translat-
ing to the same language, . . . ), it could limit reusability of a
language component for a different purpose. The advantage
of a type system of language components is obvious: if many
language components are available for similar purposes, typ-
ing these would limit the choice between finding a suitable one.
Further, typing could reduce the knowledge about a language
component’s content required by language product line engi-
neers. Instead of an explicit type system for language compo-
nents, the extension points defined in a language component
make assumptions about the language components that can be
employed to deliver possible extensions.

Many other approaches imply that either the feature model is
developed before the assets (top-down approach) or the assets
are available and the feature model is built or derived for exist-
ing assets (bottom-up approach) [49]. Due to the loose coupling
between the feature model and the language components of our
approach, both paradigms are supported. While in our current
work, we focus on a bottom-up approach, future work should
investigate developing a language product line top-down.

The realization of our approach leverages MontiCore gram-
mars as integrated descriptions of the concrete and abstract syn-
tax of language components. Due to the inherent coupling be-
tween these in being defined within the same grammar rules, the
realization does not support pure presentational variability [11],
i.e., variability within the concrete syntax only.

Another challenge arises from composing not only syntax but
also the languages’ behavior realizations (if available), which
usually have the form of code generators [5, 14] or inter-
preters [6, 80]. Composition of both has been achieved for spe-
cific languages [64, 66] or under various restrictions [4, 40]. We
presented a first approach for an integration of code generator
composition into our concept for language product lines in [9].

However, this concept has limitations that have to be mitigated
and a general approach towards code generator composition yet
remains to be conceived.

According to [43], a good language extension framework
must support independent language extensions and automated
composition of these. Our approach supports both, but is
even more powerful than a language extension framework, as
it leaves the choice of a base language open to the language
product line engineers, instead of being restricted to a fixed
base language. Further, [43] states that composition must not
produce a corrupted compiler. As with the transformations of
conflicting grammar productions described above, and the con-
servative extension property, our approach guarantees to pro-
duce either an uncorrupted parser or no parser. With context
conditions and the translation of a compiler (which would be
carried out to MontiCore code generators in the realization of
our approach), we cannot guarantee this anymore. Future work
should investigate extracting language product lines from exist-
ing handcrafted, cloned-and-owned language variants.

8. Related Work

Variability within software languages has been investigated
in a wealth of different approaches [56]. Modeling languages
are usually engineered by means of language workbenches, for
which different techniques of reusing and composing languages
exist [21]. Further, language workbenches differ in the lan-
guage constituents they process and the constituents of the lan-
guages they produce. Several language workbenches, including
Rascal [79], MontiCore [30], Neverlang [76], Spoofax [45], and
Xtext [5] define syntax via grammars. Other language work-
benches employ metamodels for syntax definitions, including
EMF [73], GEMOC Studio [17], or MetaEdit+ [75], or em-
ploy projectional editors, such as MPS [89]. Well-formedness
rules are usually either implemented with OCL [32] or as GPL
statements [30]. The following considers related work for each
research question (cf. Section 4) individually.

RQ1: Variability within language module
With language definitions that employ metamodels for syntax
definitions, concrete syntax often plays a minor role. To this
effect, metamodel-based approaches typically support variabil-
ity in abstract syntax only [38, 63, 90] while grammar-based
approaches often consider concrete syntax and abstract syn-
tax [53, 57, 76]. The language development framework Nev-
erlang [76] supports modular language definitions. A language
module comprises a grammar as syntax definition and a corre-
sponding ordered list of evaluation phases. These evaluation
phases realize the semantics of a language module and include
type checking, well-formedness checking, and code generation.
Extension points in Neverlang grammars are realized as place-
holders, which are unused nonterminal names on the right-hand
sides of grammar productions. Compared to our approach,
these cannot prescribe the presence of certain abstract syntac-
tical elements, enabling easier reusability, but bearing higher
complexity in finding a module providing a suitable extension.
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Further, explicating extension point through, e.g., interface non-
terminals reduces the risk of defining extension points unin-
tendedly (e.g., by misspelling a nonterminal).

The revisitor approach [52, 51] uses Ecore metamodels for
describing the syntax of language modules. It enables to de-
scribe variability within a language’s metamodel and the real-
ization of its semantics by using the revisitor pattern. Extension
points in a metamodel are realized as required metamodel ele-
ments.

The set of languages mbeddr [84, 85] is built upon MPS [83]
and thereby, uses its projectional editors and further sophisti-
cated tooling. In MPS, abstract syntax elements can extend
other abstract syntax elements to perform language extension.
Therefore, every abstract syntax element is a potential exten-
sion point.

Action-semantics modules [18] leverage context-free gram-
mars to describe the syntax of such modules. To realize ex-
tension points, context-free grammars can define unused non-
terminals. LISA [57] uses attribute grammars to describe the
concrete syntax, abstract syntax, and semantics of language
modules. LISA uses inheritance as known from object-oriented
programming to realize language inheritance on attribute gram-
mars. In principle, every rule of the grammar can be extended
by new rules. The combination of SDF and FeatureHouse re-
alizes compositional language modules [53] containing gram-
mar rules, typing rules, and evaluation rules. Variability is car-
ried out into two dimensions: the dimension of extension with
new language concepts and the dimension of extension with
new tooling (e.g., new typing rules). For realizing the variabil-
ity in the grammar rules, the SDF modularization is used and
Spoofax [45] is employed to generate parsers. Silver [93] is an
extensible attribute grammar system. It uses attribute grammars
modules whose syntax and semantics can be extended.

RQ2: Composition of language modules
Our approach uses composition to derive a language variant,
and therefore the related work focuses on compositional ap-
proaches as well. However, there are approaches that define
150% metamodels and use negative variability to reduce these
it to obtain language variants [90].

Neverlang supports several forms of composition for the syn-
tax of language components [76]. Language extension relies on
composition of the grammars, where one component provides
all implementations that another component requires. Lan-
guage unification employs glue code to match required and
provided implementations that do not match originally. The
approach for development of languages with action semantics
modules [18] relies on composition of the grammar productions
for composing syntaxes. In this, the unused nonterminals serv-
ing as extension points can be implemented by importing lan-
guage modules that realize these unused nonterminals. To the
best of our knowledge, the approach does not have a mecha-
nism to compose independent language modules for building
language product lines with an explicit variability model.

SugarJ [20] enables to specify syntactic extensions to Java.
These extensions are contained in syntactic sugar libraries. By
“desugaring”, the extended syntax is transformed into the base

syntax. SugarJ uses parsers that are capable of detecting ambi-
guities, on which they report an error.

The language framework ableC [42] is an extensible C lan-
guage implemented in Silver [93] that uses Copper as parser
generator. ableC uses attribute grammars for describing the
syntax of independent language extensions and provides differ-
ent composition mechanisms for these extensions. The mecha-
nism satisfies several criteria that make it expressive enough to
provide a solution to the expression problem. Their reliable and
automatic composition mechanism guarantees correct composi-
tion of attribute grammars and, therefore, also related analyses
and transformations. The base language C, however, cannot be
exchanged. Silver [93] uses an “import with syntax” mecha-
nism to compose the syntax of attribute grammars. The seman-
tics of the import is that rules of imported grammars are as if
they were specified in the importing grammar.

Wyvern [61] is a further extensible language system that
guarantees reliable composition. It uses delimiters (e.g., braces,
whitespace) to coordinate parsing between base language frag-
ments and language extension fragments. Our approach inves-
tigates language composition on a more abstract level as the
above-mentioned approaches. It is based on MontiCore that it-
self generates parsers by employing ANTLR [62]. The detected
ambiguities are therefore limited to those directly accessible in
the grammar (cf. Section 7).

In the revisitor approach [52], extension points do not have
to be foreseen by language developers at design time and com-
position leverages the revisitor pattern. Further, the several ex-
tensions can be independent of each other. A binding [51] re-
alizes an adapter functionality by connecting two metamodel
elements of different metamodels. Mbeddr [84] includes an ex-
tensible set of language modules that have C as their base lan-
guage. Therefore, it does not support to use a different base
language than C, which limits its applicability for, e.g., pure
model-driven development. mbeddr supports three types of lan-
guage composition: language modules can be loosely coupled
by remaining in separate artifacts with language referencing. In
this form of composition, a language module references a part
of another language module only. Embedding realizes a syntac-
tic composition between independent language modules similar
to our approach. Language extension is realized by a language
module extending the syntax of a host language module, which
it must be aware of. mbeddr mostly relies on language exten-
sion to realize composition of language modules. LISA [53]
uses an inheritance mechanism to compose attribute grammars.
SDF+FeatureHouse [53] employs techniques of FeatureHouse
to compose language modules with superimposition, weaving,
or inheritance as composition operators.

RQ3: Meaningful combinations of language modules
Copper uses modular analyses [70] to verify that the compo-
sition of grammars will result in a valid grammar and a deter-
ministic parser. These analyses are carried out independently
on each extension to a base grammar and, if they are fulfilled,
guarantee several properties.

Several approaches propose to employ feature diagrams to
arrange language modules in a form that restricts possible com-
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binations [37, 49, 50, 53, 78, 90]. There is an extension to Nev-
erlang [78] that uses the common variability language to orga-
nize language modules and their interrelations. Another exten-
sion, AiDE [50], builds upon Neverlang and derives variabil-
ity models from an existing landscape of interrelated Neverlang
modules. The addressed use case of this is to post-hoc derive a
language product line from an existing set of language modules
used for a specific purpose. To do so, AiDE first extracts all
dependencies between employed input language modules and
then synthesizes a feature model. AiDE can be leveraged to de-
scribe language product lines but is not capable of developing
language modules independently, and then build up a language
product line of these.

To the best of our knowledge, the organization of language
modules in mbeddr [84], LISA [57], action-semantics mod-
ules [18], the revisitor approach [51], and ableC [42] do not
support building dedicated language product lines with con-
trolled arrangement and interrelations between employed lan-
guage modules.

RQ4: Separation of concerns
A separation of concerns between different actors or roles that
are involved in developing a language product line, as described
in Section 4.3 is only described for some of the approaches.
Neverlang [78] distinguishes between language developers and
domain experts who are involved in the process of developing
language product lines. While language developers create lan-
guage.

Wyvern [61] and Copper [92] completely alleviate composi-
tion engineer from understanding the details of the components.
in mbeddr [84], any language engineer familiar with MPS can
create language extensions. The decision which language mod-
ules should be developed and when these are engineered should
be coordinated for rather central extensions used by many peo-
ple of, e.g., an organization. For small extensions, this is less
relevant. In Argyle [37], DSLs are constructed from language
assets. A feature model is created during domain analysis. The
DSL user is a programmer and selects necessary functions to
fulfill requirements of the target DSL.

9. Conclusion

We presented a concept to engineer and maintain syntactic
language features independent of another within language com-
ponents. The language components inherit the extension points
of the grammar they contain and enable controllable and sys-
tematic composition through these. This facilitates engineer-
ing new languages by reusing existing components instead of
recreating their concepts and related artifacts from scratch. To
guide composition of language components and liberate lan-
guage engineers and modelers from comprehending the inter-
nals of all participating components, we propose to relate the
language components through feature models. This enables
defining product lines of languages that can be arranged by ded-
icated language product line engineers, which ensure that only
valid (in a subjective sense) language products can be derived.
Based on a feature configuration, language product owners can

easily compose a new language from existing components with-
out language expertise. This, ultimately, facilitates the engi-
neering, maintenance, and evolution of software languages.
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ABSTRACT
Proliferation of modeling languages has produced a great variety of
similar languages whose individual maintenance is challenging and
costly. Reusing the syntax and semantics of modeling languages
and their heterogeneous constituents, however, is rarely systematic.
Current research on modeling language reuse focuses on reusing
abstract syntax in form of metamodel parts. Systematic reuse of
static and dynamic semantics is yet to be achieved. We present
an approach to compose syntax and semantics of independently
developed modeling languages through language product lines and
derive new stand-alone language products. Using the MontiCore
language workbench, we implemented a mechanism to compose
language syntaxes and the realization of their semantics in form of
template-based code generators according to language product line
configurations. Leveraging variability of product lines greatly facil-
itates reusing modeling language and alleviates their proliferation.
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1 INTRODUCTION
Modeling to understand and shape the world is an essential hu-
man abstraction technique that has already been used in ancient
Greece and Egypt. Scientists model to understand the world and
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engineers model to design parts of the world. Whilst humans em-
ployed modeling for ages and in virtually all disciplines, it is recent
that the form of models is made explicit in modeling languages.
Computer science has invented this approach to enable a precise
understanding of what is a well-formed model in the communi-
cation between humans and machines. The general aspiration of
such languages creates a conceptual gap between the problem do-
mains and the solution domains that raises unintended complexi-
ties [11]. Consequently, research in industry produced a large body
of domain-specific languages (DSLs) [37] to match domain-specific
needs. With the ongoing digitization of virtually every domain in
our life, work, and society, the need for even more DSLs raises. This
proliferation raises three questions:

(1) How to create new DSLs that fit specific purposes?
(2) How to engineer DSLs from predefined components?
(3) How to efficiently derive DSLs from other DSLs?

In this paper, we address the second question through reusable
language components arranged as a product line of software lan-
guages. From these, product owners can configure language prod-
ucts, i.e., variants of the product line, for specific purposes (e.g.,
domains, applications) without being forced to understand the in-
tricate details of each participating language. Based on the selected
language features, its grammars, well-formedness rules, and code
generators are composed automatically, such that the result can
be used transparently by the modelers. This extends our previous
work on syntactic language reuse [4] with composition of code
generators. The contributions of this paper, hence, are:

• A concept for syntactic and semantic modeling language
variability based on language product lines over language
components.

• An extension to our modeling technique for language com-
ponents combining grammars and well-formedness rules [4]
with code generators. Resulting language components are
decoupled from a specific language product line and, hence,
can be reused in different contexts as well.

• A composition mechanism for code generators of the partic-
ipating independent languages.

• A realization of our concept with the MontiCore [15] lan-
guage workbench [10].

With this extensible language variability mechanism in place,
new languages can be configured using existing components more
efficiently. Hence, the mechanism reduces the effort in engineering
software languages for specific contexts as well as the proliferation
of modeling languages.

In the following, Section 2 motivates the benefits of our approach
and Section 3 presents preliminaries. Afterwards, Section 4 presents

[BEK+18a] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann: 
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our language variability concept. Section 5 then describes code gen-
erators and our mechanism for their integration and Section 6 lever-
ages these to describe language product lines. Section 7 presents
an in-depth example, before Section 8 discusses observations and
highlights related work. Section 9 concludes.

2 BACKGROUND AND EXAMPLE
Conceptually, there are various techniques to combine two lan-
guages, e.g., through merging into embedded models [6] or inte-
gration of separate models [15]. Moreover, languages are rarely
homogeneous artifacts, but often their definition requires the in-
teraction of multiple meta-languages and programming languages.
Popular combinations of these technological spaces, for instance,
are ECore [28] metamodels to describe a languages’ abstract syntax
with OCL [14] for its well-formedness rules and Xtend [2] for code
generators. Alternatives are different forms of grammars [30, 39]
with GPL well-formedness rules [22] and dedicated languages for
model-to-model transformations [19]. There are almost as many
technological spaces as there are language workbenches [10] and
most support different language composition mechanisms [9].

Consequently, systematic reuse of languages in ameaningful [16]
fashion is nearly as complicated as engineering new languages from
scratch and capturing the dependencies and relations between the
loosely coupled language constituents requires in-depth language
engineering expertise. Leveraging dedicated language components
that capture these relations and structuring reuse through variabil-
ity modeling techniques can greatly facilitate language engineering.

Consider developing a language product line for modeling appli-
cations, in which the application structure is modeled with class
diagrams and there are different options how method bodies are
realized with embedded behavior languages. Explicating the vari-
ability of such a language product line through feature models over
consolidated language components reduces the complexity of iden-
tifying and integrating language constituents. Composition of these
is performed systematically and does not require an in-depth under-
standing of the individual language components. An overview of
a language product line, the employed language components, and
the derived language variant for the example scenario is visualized
in Figure 1. The top depicts the language product line comprising

a feature model, where each feature references a language com-
ponent, i.e., constituents of a language definition with respect to
a specific language workbench [10]. Each language component
contains a grammar (G), well-formedness rules (WFR), and a code
generator (Gen), which together realize the syntax and semantics of
the language. Moreover, a language component can define named
and typed extension points by underspecifying certain parts of its
syntax and semantics. Language components are independent of
each other and can be developed by different software language
engineers individually. The feature model defines combinations of
related language components considered valid by a product line
manager. Product line managers are language engineers who create
language families as feature models that describe possible charac-
teristics of the family’s language products. To this end, they collect
relevant language components, assign these to features, and de-
fine how these realize extension points of language components of
their parent features. The latter is realized by mapping an extension
point of a parent feature to an extension in the child feature. Further,
product line managers ensure that the employed code generators
translate to the same or a compatible target language.

In this example, every language variant of the product line uses
class diagrams to model the application’s structure. The behavior
of method bodies can be modeled with embedded Statecharts or
statements of the Java/P [7] action language. These Java/P state-
ments rely on expressions, which are either realized as Java expres-
sions, OCL expressions, or both. The bottom left part of Figure 1
depicts the feature configuration CDWithSC defining a language
variant. The feature configuration is selected by a language product
owner, who is an expert in the domain that the language variant
is to be used in. The variant includes the Classdiagram and the
Statechart feature. Given this feature configuration as input, the
variant derivation tool derives a language variant by composing
the language components of all selected features, resulting in a new
language component (depicted at the bottom right). This language
component has a composed grammar, aggregated well-formedness
rules, and a composed code generator. Afterwards, a language work-
bench, given this language component as input, produces tooling
capable of processing models conforming to the language variant.
This typically includes a parser, abstract syntax data structure, a
checking infrastructure for the well-formedness rules, and coor-
dination of code generation. The tailored tooling can be used by
modelers to develop models conforming to the language variant.

3 PRELIMINARIES
This section presents the language workbench MontiCore [15, 27]
and the concept for composition of independent MontiCore gram-
mars as presented in [4].

3.1 MontiCore Language Workbench
Our concept for language variability is realized with the MontiCore
language workbench [15, 27]. MontiCore supports development of
modular modeling languages. It comprises a grammar modeling
language and a tool chain for the efficient engineering of textual
languages and their infrastructure (parsers, analyses, transforma-
tions, code generators). MontiCore employs context-free grammars
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for integrated definition of abstract and concrete syntax. The gram-
mars describe, which models are principally possible and Java well-
formedness rules restrict these. Each grammar contains production
rules, may extend other grammars, and yields a dedicated start
rule. From the grammars, MontiCore generates model processing
infrastructure to parse textual models into abstract syntax trees
(ASTs), which store the content of models, such as their elements
and their relations. MontiCore supports compositional Java context
conditions checking the models’ well-formedness that a language-
specific, generated visitor applies to the ASTs. Template-based code
generators realize the DSMLs’ semantics. To this end, MontiCore
provides an extensible code generation framework based on the
FreeMarker template engine [1]. Figure 2 illustrates the quintessen-
tial components and artifacts of MontiCore and their relations.

MontiCore also supports compositional integration of modeling
languages through inheritance, embedding, and aggregation [15].
Inheritance enables modeling languages to extend and override
production rules of their (possibly multiple) parent languages. From
inheriting DSMLs, MontiCore produces refined AST classes that
inherit from the AST classes of the overridden production rules.
MontiCore also features interface production rules, which enable
underspecification in grammars by prescribing only the required
abstract syntax elements of implementations. We leverage this
through inheritance to integrate new production rules into these
well-defined extension points as depicted in Figure 3.

The grammar CD (top left) is an excerpt of a grammar describ-
ing textual class diagrams. Each of these class diagram comprises
classes that have a name and can contain methods (ll. 2-3). Meth-
ods have a signature and a method body, where the latter is real-
ized as an interface production rule that underspecifies a concrete
production rule body (l. 5). The interface production rule can be
implemented by other production rules, e.g., by the production rule
JavaMethodBody (ll. 6-7). From this grammar, MontiCore generates
six AST classes (depicted top right), out of which IMethodBody is
an interface implemented by the AST class JavaMethodBody. Inter-
face production rules can be used through grammar inheritance.
For instance, the grammar CDembedsSC (Figure 3, bottom) extends

grammar CD {
CD = "cd" Name “{” CDClass* “}”;
CDClass = "class" Name "{" CDMethod* “}";
CDMethod = Signature "{" IMethodBody “}";
interface IMethodBody;
JavaMethodBody implements IMethodBody

= //...
}

01
02
03
04 
05
06
07
08 

grammar CDembedsSC extends CD {
start CD;
SCDef implements IMethodBody

= “sc" Name "{“ 
(State | Transition)* "}";

State = "state" Name;
Transition = // ...

}

01
02
03
04 
05
06
07
08
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«interface»
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String name
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String name

Java
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Figure 3: Grammar inheritance in MontiCore.

the grammar CD (l. 1) and provides further implementation of the in-
terface IMethodBody, which in addition to the Java method bodies,
features Statecharts as method bodies (ll. 3-5). Accordingly, Monti-
Core generates new AST classes for newly introduced production
rules and reuses all modeling elements of CD. The start produc-
tion of a grammar determines the root of the generated AST and,
thereby, also the return type of a parser. MontiCore uses the first
production rule of a grammar as start production by default. With
the keyword start (cf. l. 2), MontiCore can be set to use a different
production rule than the one of a grammar as start production. In
this example, MontiCore is set to use the start production CD of the
grammar CD for the grammar CDembedsSC.

3.2 Composing Grammars and Context
Conditions

The composition of grammars for achieving language embedding
as explained in the last section requires that the embedded gram-
mar has a dependency to the embedding grammar. As one of our
concerns is independent development of language components, this
mechanism is not feasible. Composition of independent grammars
relies on syntactic extension points (interface production rules) of a
base grammar and a binding indicating, which production rules of
the implementing grammar connect to which extension point [4].
To achieve the composition of two grammars, we employ a specific
variant of language embedding [15], which combines the syntaxes
of the two languages through multiple-inheritance in a generated,
third grammar. This new grammar leverages MontiCore’s produc-
tion rule extension and production rule implementation mecha-
nisms to implement extension points of the base grammar with pro-
duction rules of the embedded grammar. This mechanism especially
enables to integrate arbitrary production rules of the embedded
grammar into the base grammar and does not require any language
developers being aware of this possible interaction. Extending the
embedded production rule causes the generated abstract syntax
classes of the extending production rules to become subclasses
of the classes generated from the extended production rule. Con-
sequently, all model analyses and transformations implemented
against the original abstract syntax class can be reused without
additional effort.

Embedding, for instance, Statecharts into class diagrams as de-
picted in Figure 4 requires that the CD grammar provides an interface

199



grammar CDWithSC extends CD, SC {

start CDCompilationUnit;

CDWithSCSCDef extends SCDef

implements IMethodBody

= "Statechart" "{"

State* Transition* 

"}";

}

MCG
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rule SCDef

implements extension 
point IMethodBody of 

grammar CD

Figure 4: The composition of two independent grammars.

production rule as extension point (here IMethodBody) and a bind-
ing from a Statechart production rule (here SCDef) to the interface
production rule extension point. In the example of CDWithSC, the
binding realizes the integration between method bodies and the
definition of Statecharts. This composition enables using the syntax
of Statecharts in method bodies of class diagrams to describe their
behavior. The grammar generated from this composition extends
both the base grammar CD and the embedded grammar SC. The
grammar CD is as depicted in Figure 3 and the grammar SC is sim-
ilar to the grammar CDembedsSC depicted in the same figure. In
contrast to CDembedsSC, SC does not require to extend the CD gram-
mar as it is independent of this. Further, it has no reference to the
start production of CD and SCDef does not implement the interface
IMethodBody. By generating a new, composed grammar extending
both individual grammars, all production rules from these become
available in the new grammar. Our grammar composition does not
prohibit dependencies between the base grammar and embedded
grammar per se [4]. However, embedding production rules of a
grammar into a base grammar on which the embedded grammar
depends may break the composition, which MontiCore detects.

The integration of well-formedness rules (context conditions) is
less complicated. These are realized as Java classes implementing an
interface specific to the AST class of the production rule they oper-
ate on. As the synthesized production rules extend from production
rules of the embedded grammar, the context conditions generally
are applicable to these as well. Our integration hence collects the
context conditions from both language components and registers
these to a generated visitor that applies these accordingly. Through
integration of handcrafted code, MontiCore also supports adding
inter-language context conditions specific to the integration of both
languages that cannot be defined for one language alone [13].

4 A CONCEPT FOR CODE GENERATOR
VARIABILITY

Creating a language product line begins with language engineers
developing the modeling languages that the language product line
combines. We assume the languages are defined in terms of gram-
mars, well-formedness rules, and code generators. Consequently,
development begins with the grammars, which prescribe the lan-
guages AS and CS, as well as its possible extension points using,
e.g., underspecification, in the grammar description mechanism [4].
Afterwards, the language engineers create well-formedness rules to
enable rejection of models not considered well-formed. This usually
is necessary as the meta-languages used with common grammar-
based language engineering methods lack sufficient mechanisms
to describe well-formedness without additional rules. We assume
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Figure 5: Conceptual representation of composable genera-
tors with required and provided interfaces on the example
of class diagrams that embed Statecharts.

that the dynamic semantics of a language are realized through
code generators that translate models into executable GPL artifacts.
Variability of language components consisting of grammar-based
languages using Java well-formedness-rules is presented in [4] and
briefly recapitulated in Section 3.2.

To extend this notion to code generators, we include a reference
to a code generator class into language component models. Based
on selected features, we compose the related generators by em-
bedding these into another. However, if the language components’
generators were not developed for usage in a language product
line, the product line manager’s feature model raises two kinds of
conflicts between features and their immediate parent features:

• Generator composition conflict: The code generator of a fea-
ture implements an interface not expected for embedding
with the generator of the parent feature.

• Artifact composition conflict: The code generator of a feature
produces artifacts of a type the embedding generator of the
parent feature is unaware of.

The language variability infrastructure presented in this pa-
per synthesizes adapters together with a lookup and instantiation
framework for both kinds of conflicts based on the feature model
and their language components’ generator properties. However, the
specific adaptation generally is inaccessible to automation as the
interfaces on both levels are completely unknown at design time
and, hence, may differ significantly. Consequently, the infrastruc-
ture generates a framework expecting handcrafted implementation
of generator adaptation and artifact adaptation by the product line
manager. Adding these two implementations per pair of composed
generators enables automated execution of code generation and
ensures structural compatibility of generated code by construction.

To resolve the generator composition conflict, generators for
grammars with extension points, i.e., underspecified elements, must
support similar extension points for responsible code generators.
For instance, a code generator for a class diagram grammar sup-
porting embedding various behavior languages for method body
implementations must yield an extension point for generators re-
sponsible for translating behavior models. As the class diagram
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generator generally is unaware of any concrete behavior genera-
tor it prescribes a code generator interface for compatible behavior
generators. One possible realization of behavior models could be
Statecharts. Statechart generators, however, are generally unaware
of the generator interfaces prescribed by the class diagram genera-
tor. To compose both generators nonetheless, we also require that
each code generator implements a dedicated code generator inter-
face itself. Making both, the required and the provided interfaces,
explicit enables automated construction of code generator adapters.
As the specific adaptation cannot be derived, the implementations
of the generated adapters must be handcrafted and extend the gen-
erated abstract adapter base classes. Our framework then uses these
for actual adaptation. Through this, e.g., the class diagram generator
can delegate generation of embedded Statechart models to the Stat-
echart generator. This includes to translate available information
into parameters that the Statechart generator requires.

This, however, does not resolve the artifact composition conflict,
i.e., that the jointly generated code is structurally compatible. The
target language of code generation is typically a general purpose
language, e.g., an object-oriented programming language. These
generally are not expressive enough to define contracts on arbi-
trary statements, expressions, or blocks. Therefore, we must rely
on structural compatibility between classes through contracts, e.g.,
through abstract base classes, implementation of interfaces, etc. En-
abling class-wise compatibility between code produced by different
generators requires that

• each embedded generator produces a dedicated main class
(which may interact with other classes produced by the same
generator);

• embedding generators specify the contract required by pos-
sible implementations (e.g., behavior implementations); and

• embedded generators specify the contract provided by the
generated main class as its artifact interface.

Explicating these provided and required contracts enables generat-
ing abstract artifact adapters between, e.g., the interface expected
for behavior implementations by the class diagram generator and
the interface provided by Statechart behavior implementations by
the Statechart generator. Similar to the generator interfaces, the
actual adaptation requires specific handcrafted implementations to
extend the generated adapter base classes, which then are incor-
porated by the framework automatically. Figure 5 illustrates the
generators and interface related to embedding Statecharts into class
diagrams. Our method to black-box composition of code generators
therefore raises the following requirements:
RQ1 Each participating code generator implements a dedicated

provided generator interface that describes its usage.
RQ2 Code generators for grammars with extension points sup-

port registration of other code generators responsible for
translating implementations of these extension points. For
each extension point, they describe the required generator
interface and the required artifact interface related to the
generated code.

RQ3 Each code generator produces a single main class and speci-
fies its provided artifact interface.

With this in place, the interfaces of generator adapters and of
artifact adapters (one of each per generator pair to be composed) can

language ClassDiagram {

grammar CD;

root CDCompilationUnit;

cocos { 

CDDiagramNameUpperCase,

CDClassNameUnique

}

generator CD2JavaGen;

}
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Figure 6: Two language component aggregating class dia-
gram and Statechart language constituents, respectively.

be derived automatically. Provided handcrafted implementations
are integrated into the composed generators automatically. We lift
this composition to language product lines by applying it to all
embedding (i.e., in a parent feature) and embedded (from its child
feature) code generators automatically. Hence, the product line
manager must implement twice the number of participating code
generators as adapters only.

The next section presents the realization of this variability con-
cept that addresses both generator composition conflicts. The sub-
sequent section explains how the product line manager leverages
this to create language product lines.

5 COMPOSING INDEPENDENT CODE
GENERATORS

The quintessential building blocks for language integration are lan-
guage components. These aggregate the syntax and the realization
of the semantics of a MontiCore language in terms of a grammar
(concrete and abstract syntax), Java context conditions (static se-
mantics), and a code generator (realizing dynamic semantics). For
instance, Figure 6 illustrates a language component for class di-
agrams, which references its grammar (l. 2), its well-formedness
rules (ll. 4-7), and its generator (l. 8). Optionally, a root production
(l. 3) of the grammar can be selected. This enables to reuse only
a subtree of the related grammar’s abstract syntax (e.g., to reuse
only Java expressions of a grammar describing the syntax of Java
classes). If no root production is specified, the default start produc-
tion of the grammar is used. Each interface rule of the grammar
becomes an extension point of the language component, where the
name of the extension point is the name of the respective inter-
face rule. Interfaces in the grammars therefore are used for typing
extension points. Deriving a variant of the language product line
entails composing the language components of all selected features.
The different language’s constituents require different composi-
tion mechanisms. The composition mechanisms for grammars and
context conditions have been explained in Section 3, this section
presents the realization of the black-box composition mechanism
for code generators.

Composing code generators is an ongoing challenge that raises
the questions of syntactic and semantic conformance. Our approach
to code generator composition enables syntactic integration of code
generators and generated code, which, by construction, ensures
that generators and generated code interact syntactically. Whether
behavior of generators or generated code generally is meaning-
ful [16] is as complex as the halting problem [29] and not part of
our composition.
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Our general approach is to employ adaptation between the ex-
plicit interfaces of code generators to enable their interaction at
generation time. Through the language components, it is clear
which generators must be combined and the grammars of their
language components prescribe the generators’ extension points
(e.g., the generator for CDmust be able to invoke generators respon-
sible for translating IMethodBody instances. Through architectural
constraints (such as implementing a single execution interface per
generator), abstract adapter classes for the composition of two
language components’ generators can be generated. Using the gen-
eration gap pattern [33], the developer composing two language
components with their code generators must provide a proper im-
plementation of the interface imposed by the generated adapter.
By construction, the generator of the base language then can call
the generators of the embedded languages, pass model parts to
these and invoke code generation. Leveraging the assumption that
each generator produces at least a main GPL artifact (e.g., a Java
class) responsible for interacting with the generated code, the base
language generator can produce code instantiating this and using
it as intended.

For the integration of generated code artifacts, the embedding
generator prescribes for each extension point what it expects from
the code produced by generators registered for this extension point
within a required artifact interface. For instance, the generator
translating CD instances could prescribe that code produced for
realizations of IMethodBody must implement a specific GPL inter-
face. As language components can be developed independent of
each other, this expectation, however, rarely is fulfilled. Hence, we
impose that all generators also explicate the interface of the main
GPL artifact they generated. Generators are mapped transitively to
language component extension points for which the generator of
the embedding language component prescribes a specific interface.
The code produced by the embedded generator provides a mapping
between expected GPL artifact interface and GPL artifact interface.
Thus, we also can leverage adaptation between these interfaces and
generate abstract adapters accordingly. For these, usually one per
pair of generators, also a proper implementation must be provided.
This also is integrated through the generation gap pattern [33].

For adaptations to work, all generators must be implemented in
the same GPL and produce code of the same GPL. The GPLs for
code generator implementation and for generated code may differ.
Future work on cross-GPL code generator invocation and platform-
independent artifact interfaces can mitigate this. Consequently,
we make the following assumptions for a realizing the generator
composition:

(1) All code generators are implemented in the same GPL and
all artifacts are implemented in the same GPL.

(2) Each code generator produces at least one main GPL arti-
fact for which it explicates its GPL interface. The generator
ensures that all generated main artifacts comply to this in-
terface.

(3) All extension points of generators have to be explicated at
design time of the generator. Generator extension points
are typed with the main abstract syntax element they trans-
late (e.g., IMethodBody) and the interface expected from a
generator registered to translate instances of this element.

(4) Operation of code generators may not rely on assumptions
regarding code generated by other generators that are not
made explicit through their interfaces.

We assume that each code generator constitutes a generator class
(e.g., CD2JavaGen and SC2JavaGen in Figure 7) realizing the actual
code generation. This class performs the code generation, e.g., by
invoking a template engine. Each generator class implements an
interface describing types of the input and output of the generator
(e.g., ICDGenerator and ISCGen in Figure 7) as presented in [1].
Further, each generator references the type of an interface typing
the main artifact of the generated code (e.g., IJavaClassArtifact
and IStatechart in Figure 7). For each extension point that is fore-
seen in the generated code of a generator, an additional class (cf.
ExtensionPointInfo) describes the type of the main artifact in the
code that is generated by a generator (e.g., IBehaviorArtifact).
Further, the additional class describes the interface of the gener-
ator producing the main artifact of the generator implementing
the extension point (e.g., IBehaviorJavaGen). Additionally, an ex-
tension point info has a reference to the abstract syntax type (e.g.,
IMethodBody) that is being translated. To this effect, extending an
extension point is realized by adapting an extension point interface
of the generator defining the extension point to an interface of a
generator realizing the extension.

These adapters are necessary to enable decoupled development
of the involved code generators. While the interface of the adapter
can be generated, it is impossible to automatically generate the
implementation of the adapter as it requires in-depth understand-
ing of the behavior and meaning of the generated code. The same
mechanism is applied at artifact interface level, where the expected
artifact interface of an extension point is adapted to the provided ar-
tifact interface of the embedded generator. We combine the classical
adapter pattern [12] with a mechanism to integrate a handwritten
implementation of the concrete adapter (the TOP mechanism [27]).
Each generated adapter is an abstract class that has a target (or
adaptee) that it implements, which is the (artifact or generator)
interface required by the extension point. Further, each generated
adapter yields an attribute delegate of the (artifact or generator) in-
terface provided by the embedded generator. The class realizing the
adapter has to be handcrafted and extends the generated abstract
adapter class. The name of the generated adapter, therefore, is fix
and can be derived automatically by the embedding generator to in-
teract with (a) the registered, embedded generators, and (b) artifacts
produced by these generators. The names of handcrafted adapters
are also fix, as these have to be identical to the generated adapter
names without the suffix TOP. This property simplifies instantiation
of the correct adapters, which is explained in Section 7. The above
mechanism is applied to all combinations of extension point and
extension that are possible within the generators of a language
product line to relieve product owners from being language engi-
neers. The developer combining two language components, hence,
is responsible for registering the generator of the embedded lan-
guage component with the generator of the embedding language
component. Also, the developer of the embedding generator must
be aware of the general existence of adapters.

Considering the example of embedding SC into CD, a class dia-
gram describes the architecture of an application and Statecharts
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LCClassDiagram

grammar CD {

CD = "cd" CDElement*;

interface CDElement;

Class implements CDElement

= "class" Name "{" Method* "}";

Method = Signature "{" IMethodBody "}";

interface IMethodBody;

// abstract classes, enumerations,…

}
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Figure 7: Constituents for a composition of two language components ClassDiagram and Statechart: The left depicts grammar,
context conditions, and a code generator for class diagrams and the right respective constituents for Statecharts. The middle
depicts the connection between these independent language components: The top visualizes the featuremodel and the binding
between extension point and extension. The bottom presents the generated adapters and their handcrafted implementations.

can be employed to describe the behavior of methods modeled
within the class diagram’s classes. Figure 7 depicts the constituents
of the individual generators of the class diagram language compo-
nent and the Statechart language component whose functionality
has been explained above. The generator for class diagrams has to
be aware of the existence of adapters adapting any (generator or
artifact) interface to the required (generator or artifact) interface of
each extension point. From the mapping within the language prod-
uct line, the code generator receives a map from the type of each
extension point (e.g., IMethodBody) to the concrete type of the ex-
tension (e.g., SCDef). This information is used to invoke the correct
generator. For instance, parsing a class diagram model containing
a method body with a statechart results in an abstract syntax tree
containing an object of type CDWithSCSCDef (cf. Figure 4). This
type is a subtype of SCDef and therefore, the class diagram code
generator invokes the generator for Statecharts via the registered
generator adapter.

6 FEATURE-ORIENTED LANGUAGE
ENGINEERING

This section explains how the variability and composition of lan-
guage components as explained in Section 5 (the solution space [5])
integrates with the variability model and the derivation of variants
in the problem space. With the feature model at hand, all possible
compositions of language components are described at product line
level. The composition mechanism and the definition of language
components are loosely coupled to an employed feature modeling
tool, which is therefore easily exchangeable. The set of bindings for
a concrete feature model is realized as a model conforming to a dedi-
cated small-scale DSL. The feature model restricts the cardinality of

the bindings between several extensions and the extension point. To
this effect, it also realizes the differentiation between optional and
mandatory extension points. Although in general, dependencies
between different language components may lead to unpredicted
issues, such dependencies sometimes can be very useful. Hence,
the feature model may indicate that a certain feature requires an-
other feature, which allows the respective language component to
have (e.g., grammar inheritance) dependencies to other language
components. Further, the composition of two specific language
components can be forbidden using excludes in the feature model.

The language product line manager assigns language compo-
nents to features and aligns the feature model meaningfully. After
completing the product line, she generates adapters for all gen-
erators and artifacts of language components, which are directly
related and implements the adaptations accordingly using the gen-
eration gap pattern.

Afterwards, a product owner can configure a language product
by selecting desired features. After validating the feature config-
uration against the feature model, the language components and
their constituents are resolved. Based on these, the new grammar
that extends from the grammars of all related features is synthe-
sized and for each binding, a new production rule is created that
realizes this binding through grammar rule extension and imple-
mentation. Based on this grammar, MontiCore generates a parser,
AST classes, context condition interfaces, and visitors. Further, all
context conditions are collected and a wrapper for the generated
context condition checking visitor is generated that parametrizes
the latter with the collected context conditions. Thus, parsing and
checking models of the language product already is possible.
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Figure 8: The generator CDWithSCJavaGen is generated from
the selected variant.

Generators are composed by generating a wrapper for the gen-
erator of the feature model’s root feature that parametrizes that
generator with the other selected generators. This is realized by
instantiating the respective (handcrafted) generator adapter class.
Where multiple levels of generators are selected, the parametriza-
tion is nested accordingly. This wrapper then is registered with the
new language model processing framework generated by Monti-
Core. On artifact level, adapters typically are instantiated within
the templates of the embedding generator. As the name of arti-
fact adapters is fixed (cf. Section 5) and derived from provided and
required artifact interfaces, the name can be calculated within tem-
plates. Finally, a new language component is generated that uses
the synthesized grammar, the context condition checker wrapper,
and the synthesized code generator to process and transform mod-
els. This composed language component can be reused, e.g., in a
new language product line.

7 EXAMPLE REVISITED
The previous sections explained composition mechanisms for the
grammars, context conditions, and generators of language compo-
nents. A more detailed explanation of the composition of grammars
is given in [4]. This section provides an insight into the composition
of code generators alongside of the example with the composition
of the Statechart language component and class diagrams (Figure 6).

Figure 7 depicts the involved classes of the CD2JavaGen, the
SC2JavaGen, and the adaptation, where the abstract adapters are
generated at product line level. The CD2JavaGen initializes its ex-
tension points in its constructor and yields a method to obtain a
registered generator for an extension point based on a given node
of the AST as depicted in Figure 8. For a single extension point
there might be multiple registered generators, but for a concrete
type of ASTNode (e.g., SCDef) there must be only a single generator
translating it. To use a generator with other generators embedded
via generator adapters, a wrapper is generated (cf. Section 6). This

<#-- requires: ASTClass ast, String package, CD2JavaGen cdGen -->

class ${ast.getName()} {

<#list ast.getMethods() as met>

<#assign name = met.getMethodHead().getName()>

<#assign fqName = package + name>

<#assign g = cdGen.getRegisteredGen(met.getMethodBody())>

<#assign genClassName = g.generate(met.getMethodBody(), fqName)

.getGenClassName()>

IBehaviorArtifact ${name}Body = 

new ${g.getTargetInterface()

.getSimpleName()}2IBehaviorArtifactAdapter(new ${genClassName}());

public void ${name}(Map<Object,Object> _input) {

${name}Body.compute(_input);

}

</#list> <#-- ... -->

}
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Figure 9: Excerpt of a template called by CD2JavaGen.

wrapper extends the host generator and in its constructor, registers
the employed handwritten extensions of the generator adapters.
Each generator adapter has to be parametrized with the concrete
instance of its adaptee. In the example, the employed generator
adapter adapts the SC2JavaGen as realization of an ISCGen to an
IBehaviorJavaGen and registers the adapter at the extension point
IMethodBody.

If invoked to translate a concrete model, the SC2JavaGen ex-
ecutes its main template as depicted in Figure 9. The template
produces a new Java class (l. 2) for each class of the class diagram.
For each method of the class to translate, it generates an artifact
adapter attribute (ll. 10-12) and a Java method (ll. 14-16). The correct
artifact adapter is determined according to the embedded generator
that translates the specific type of method body (i.e., in the example
only SCDef) and the fix naming scheme for adapters. The generated
method delegates the execution of the method of the class diagram
method to the respective artifact adapter. For generating an artifact
for an embedded IMethodBody, the template retrieves the method-
specific generator (l. 7) and executes it to synthesize the artifact
(ll. 8-9). Afterwards, the template instantiates the artifact adapter
and parametrizes it with a new instance of the generated artifact it
delegates to (ll. 11-12).

Figure 10 overviews the artifact adapter infrastructure. The arti-
fact interfaces of the code generators, in the example IBehavior-
Artifact of the CD2JavaGen and IStatechart of the SC2JavaGen,
are handwritten. The notion behind the IBehaviorArtifact, for in-
stance, is that the CD2JavaGen expects all generators corresponding
to productions bound to the IMethodBody extension point to pro-
duce classes that implement the IBehaviorArtifact interface. To
this effect, it provides an implementation of the method compute()
that has the given parameters and return type. IStatechart2-
IBehaviorArtifactAdapterTOP is a generated, abstract adapter
class. It implements the interface it adapts to and holds an attribute
for the adaptee. When initialized, each adapter has to specify the
concrete instance of the adaptee. Concrete adapter implementa-
tions have to be handcrafted (cf. Section 5). For instance, the class
IStatechart2IBehaviorArtifactAdapter is a concrete adapter
implementation that extends the abstract adapter and follows the
naming scheme. In this concrete adapter, all methods that are re-
quired by the interface that the adapter adapts to, have to be imple-
mented while delegating to the methods provided by the adaptee
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public class IStatechart2IBehaviorArtifactAdapter extends
IStatechart2IBehaviorArtifactAdapterTOP {

public IStatechart2IBehaviorArtifactAdapter(IStatechart adaptee) {
super(adaptee);  

}

@Override
public void compute(Map<Object,Object> _input) {

String scInput = (String)_input.get("trigger");
boolean wasFinal = false; int i = 0;
while(i<scInput.length() || !isFinal)
isFinal = getAdaptee().updateCurrentState(entry.charAt(i));

}
}

}

public interface IStatechart {
public boolean updateCurrentState(char trigger);

}

public abstract class IStatechart2IBehaviorArtifactAdapterTOP 

implements IBehaviorArtifact {
private IStatechart adaptee;
public IStatechart2IBehaviorArtifactAdapterTOP(IStatechart adaptee) {

this.adaptee = adaptee;
}

}

public interface IBehaviorArtifact {
public void compute(Map<Object,Object> _input);

}
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Figure 10: Parts of the artifact adaption infrastructure.

interface. In this example, the compute method has to be imple-
mented to adapt the execution of a method of the class diagram
to the execution of a Statechart. The implementation retrieves a
parameter trigger, which it assumes is present and of type String.
Then it iterates over the concrete String and updates the state of the
Statechart by invoking the method updateCurrentState() with
the next character of the String, until either the Statechart is in a
final state or the input word is processed completely.

The presented approach relieves product owners from being
software language engineers completely. A product owner should
know the language concepts required for a certain product, but
does not require to implement adapters or any form of “glue code”.
Further, all composition mechanisms applied during derivation of
a variant are completely automated. Product line engineers have to
be software language engineers as these have to connect extension
points to extensions and realize, e.g., the adapters for code genera-
tors. Nonetheless, product line managers do not have to be aware of
intricate details of the implementations within individual language
components, which greatly facilitates reusability of these.

8 DISCUSSION AND RELATEDWORK
Our work is a first approach to realize parts of the VCU (variability,
customization, use) model of reuse [21] for software languages as
sketched in [18]. To this end, we support aggregating language
concerns – including syntax and semantic realizations – through
features. We therefore currently investigate whether partial config-
uration of language products is suitable.

Our approach to compose code generators is limited to compos-
ing independent generators. Adding, e.g., aspect-like functionality
through a single feature is not supported and we are currently inves-
tigating this extension.Moreover, our approach limits the variability
of language syntax, well-formedness, and dynamic semantics to
a single dimension. While this reduces the effort of modeling a
language product line, it may require to produce multiple language

components that rely on common constituents. For example, if a
language can be translated either to Java or C using two different
code generators, our approach relies on two different language
components. These have references to the same grammar and well-
formedness rules, but each employs a different code generator. Our
approach also leverages language embedding as the composition
mechanism of choice. With this, a loose coupling of languages, in
which their abstract syntaxes are not composed – such as language
aggregation [15] – is not supported, but subject to ongoing research.
Another open challenge is to make language components an ac-
tive unit of systematic reuse, for instance through inheritance of
language components. Some approaches consider code generation
as the last step in a pipeline of tools that process a model. In this
representation, the language’s semantics is realized via applying
several model-to-model transformations in a certain order and then
translating the transformed model into text by employing a code
generator. Currently, our approach does not explicate model-to-
model transformations within language components. Considering
model-to-model transformations as first phase of executing a code
generator, however, is possible.

Our generator variability mechanism ensures compatibility be-
tween composed code generators, but cannot guarantee correctness
of the generated code. However, the syntactical correctness (e.g.,
avoiding that two generators generate a file with the same names)
can be checked. Also, the restriction to code generators producing
standalone artifacts enables a better investigation of their compati-
bility, but limits their modularity to be coarser grained. While many
use cases of code generator composition can be realized following
this premise, we are aware of its limitations. For instance, code
generators producing, a return statement of method bodies only,
are too fine-grained for our composition approach. Future work
will investigate how the composition of generators and artifacts
can be realized with finer grained modularity of generators.

For composition of generators and generated artifacts, the prod-
uct line engineer has to provide two adapters per combination
of code generators on product line level. If, however, we assume
that the product manager is also a software language engineer, the
adaptation could be performed later – while deriving the variant.
This reduces the number of adapters to be created to twice the
number of selected generators. Also, the product owner could per-
form variant-specific integration of handcrafted code to further
customize the other constituents of the language components (such
as integration of novel inter-language well-formedness rules). Ulti-
mately, our composition mechanism also relies on the constituents
of all language components to be implemented in the same techno-
logical space. This prevents, e.g., defining the language components
of a single product line in different language workbenches. Such
inter-space language definitions also subject to ongoing research.

Future work on the benefits of code generator composition
through feature must also investigate efficiency and usability con-
siderations. Our approach requires only little overhead (a language
component model per language and the interfaces per code genera-
tor) and leverages this to yield black-box composition of reusable
code generators. These interfaces are very compact and the lan-
guage composition merely aggregates existing artifacts. Code gen-
erator composition without explicit interfaces for generators and
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artifacts requires sophisticated and costly white-box generator in-
vestigation. To uncover the benefits of generator variability, future
work could investigate and apply metrics regarding size and com-
plexity of artifacts as well as empirical metrics regarding usability.

Research and practice have produced a number of languagework-
benches, i.e., software tools that support developing and (re)using
modeling languages [10]. These language workbenches employ
different language definition paradigms, e.g., to (1) define concrete
syntax and abstract syntax of languages (usually grammars [2, 15,
30, 32], metamodels [6, 28], or projectional editing [38]); (2) develop
the well-formedness rules applied to the abstract syntax (typically
OCL [17] or GPL rules [15]); and (3) describe the behavior of mod-
els (interpretation [3] or code generation [5]). Due to this wealth
of technological spaces and fragmentation in different solution
techniques for language development, support for reusing syntac-
tic and semantic language components is rare [31]. Consequently,
language reuse is an ongoing research challenge and different ap-
proaches [25] exist to address this challenge. Some approaches
employ plain negative variability to derive variants of a 150% meta-
model [40], which limits their extensibility. There are, however,
few approaches addressing both syntax and semantics of modeling
languages. The revisitor approach [24] is one of these. It uses a new
pattern to enable independent extensions of executable DSMLs
covering both metamodel and the realization of the semantics. It
supports to extend a language without foreseeing explicit extension
points at its design time and reusing language components without
recompilation. To the best of our knowledge, it does not support to
develop extending language and extended language independent
of another.

Neverlang [30] is a language development framework that en-
ables to develop compositional languages components comprising
a grammar-based syntax definition and several evaluation phases
realizing that, among other things, include type checking and code
generation. Extension points in these grammars are placeholders,
which are unused nonterminal names. To the best of our knowledge,
there is no dedicated typing system for placeholders. AiDE [23],
built on top of Neverlang, guides language developers in compo-
sition of the language components by extracting dependencies
between language components. From these, AiDE synthesizes a fea-
ture model for a language product line fully automated. There is an
extension to Neverlang using the common variability language for
organizing the variability across language components [31]. How-
ever, both extensions to Neverlang require dependencies between
the language components. Compared to our approach, this limits
their reuse in different contexts as language components cannot be
developed independently.

The approach presented in [8] enables developing programming
languages gradually from independent language modules contain-
ing context-free grammars as their syntaxes and action semantics.
Action semantics differ from the denotational semantics realized
with code generators as presented in our approach. Action seman-
tics modules are built from action notation symbols and as such
limited to the expressiveness of the underlying symbols. This yields
the advantage that composing semantics modules is more control-
lable compared to our approach. Further, such symbols are inter-
pretable from different target GPL interpreters. To the best of our

knowledge, the approach lacks an explicit variability model to build
up product lines of languages.

mbeddr [35, 36] is an extensible set of language modules that
builds upon C and the languageworkbenchMPS [34]. It is, therefore,
limited to use C as common base language and, to the best of our
knowledge, lacks a variability model to properly manage available
language modules and their conceptual interrelations. However, it
has great usability in terms of editors through MPS. The MPS code
generator is extensible by resolving all generator rules and mapping
configurations of the individual languages and then building a
generation plan. The order of executing the single code generators
is specified via priorities. Similarly, ableC [20] is an extensible
language framework that builds upon C. It uses Silver and Copper
as underlying technologies for the definition of attribute grammars
to describe the syntax, and provides several mechanisms to realize
composition of these.

In [26], generator composition is realized similar to our approach.
Here, each code generator implements one out of three predefined
interfaces and provides basic information required by the main
generator to call other generators. To this end, each generator yields
a model describing its interface-related properties. This approach
enables to compose generators, but the composed generators have
to implement the predefined interfaces and possible extensions are
restricted to existing generator interfaces. The runtime dimension
is not covered as all possibly existing generator types are known a
priori and, hence, generated source code matches by construction.
However, this approach is limited to embedding behavior languages
into architecture description languages.

9 CONCLUSION
We have introduced a method to reuse modeling language (parts)
through syntactic and semantic embedding of language compo-
nents. Based on this, modeling language product lines foster sys-
tematic reuse of languages and related tooling. Our method relies
on abstract syntax descriptions that support underspecification and
code generators that, yielding explicit interfaces, produce target
GPL artifacts whose contracts (e.g., interfaces), they make explicit.
With this, language product line engineers can arrange features rep-
resenting language components such that various domain-specific
language variants can be derived easily. All language engineer-
ing efforts (such as integration of inter-language well-formedness
rules or code generator adapters) are with the language product
line manager. Hence, all composition is transparent to the product
line users and modelers. Ultimately, this can facilitate reducing the
proliferation of (domain-specific) modeling languages.
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Towards Component-Based Development of Textual
Domain-Specific Languages

Andreas Wortmann
Software Engineering, RWTH Aachen University, http://www.se-rwth.de/

Abstract—Software-intensive systems are developed with ex-
perts of different domains. This requires reifying their domain
expertise in software, which raises the need for domain-specific
languages (DSLs) to bridge the gap between the problem space
of the experts’ experience and software development. Developing
suitable DSLs still is prohibitively complex due to the lack of
pervasive concepts for DSL reuse. Existing concepts either give
rise to a conceptual gap between their abstractions and language
definition constituents or are tied to specific technological spaces.
To mitigates this, we present a novel conceptual model for the
systematic reuse of textual DSLs. This technology-independent
model promotes modularity and reusability based on language
families that exhibit specific reuse interfaces. To realize these
concepts, we conceived an extensible modelling infrastructure
that supports engineering reusable textual DSLs using the Mon-
tiCore language workbench. This enables systematic reuse of
textual DSLs for compatible technological spaces from which
DSL engineers in many domains can greatly benefit.

I. MOTIVATION

Society increasingly depends on systems developed by
experts of various domains using domain-specific languages
(DSLs) [1]. DSLs have become innovation drivers in many
disciplines, including automotive, avionics, civil engineering,
Industry 4.0, robotics, and software engineering itself. This,
e.g., led to the engineering of over 120 DSLs for software
architectures [2] used in different domains and various tech-
nological spaces [3]. All of these need to be developed,
maintained, and evolved on their own, which is costly, error-
prone, and hinders progress in the multi-domain engineering
of modern software-intensive systems.

Research in software language engineering (SLE) [4] in-
vestigates the efficient and reliable engineering, maintenance,
deployment, use, and evolution of DSLs to support software
engineers and domain experts in efficiently developing future
systems. Despite attempts to a systematic SLE, many DSLs
are engineered ad-hoc, for very specific challenges, and very
limited purposes only [5]. Hence, research has produced a mul-
titude of solutions to facilitate creating DSLs. These include on
metamodels [6], grammars [7], or abstract data types [8], inter-
preters [9] or code generators [10], and well-formedness rules
defined in metalanguages [8] or programming languages [11].
For these, the SLE community has proposed various reuse
techniques, based on experiences from general software reuse
(e.g., polymorphic [12] and parametric [13] reuse, composi-
tion [7] or variability [14]). Although these techniques address
a wide range of scenarios, most support specific parts of DSL
definitions (e.g., abstract syntax or code generators) only and
are limited to specific technological spaces. This complicates

the engineering and customization of real-world DSLs for
different usage scenarios, which ultimately hinders systems
engineering with domain experts.

To mitigate this, we present the COLD4TXT conceptual
model for component-based language development of textual
DSLs that realize behavior with code generators (txtDSLs).
In this model, language components with explicit interfaces
of required and provided grammar rules, well-formedness
rules, and code generators are the principal elements of reuse.
Feature models arrange these components following their
required and provided extension points to language families.
Thus selecting features governs how the language components
are composed. Based on this model, we present a systematic
method to describe and resolve the component’s variability as
well as their customization.

As the technical realizations of composing grammars, well-
formedness rules, and code generators have been presented
already [10], [15], this contribution illustrates their conceptual
framework consisting of:

1) The COLD4TXT conceptual model for reusable txtDSL
components featuring explicit interfaces of required and
provided elements.

2) A systematic method for engineering languages based on
reusable txtDSL components.

3) A realization of both with the MontiCore language engi-
neering workbench.

With these, reusing language components in different lan-
guages families can greatly facilitate engineering DSLs.

In the following, Sec. II motivates our method by example.
Afterwards, Sec. III presents txtDSL language components
and Sec. IV our method to reuse theses for efficient txtDSL
engineering. Ultimately, Sec. V debates observations, Sec. VI
discusses related work, and Sec. VII concludes.

II. EXAMPLE

Consider using architecture description languages
(ADLs) [2] – DSLs for the specification of software
architectures – for the different departments of a large
corporation. In each of these departments, some developers
occasionally, maybe once a week, (re-)model parts of a
specific software architecture (e.g., of a train, a factory, or
a mobile service robot). Instead of learning overly generic
ADLs and operating with complex modeling guidelines that
describe how to properly model with these, modelers of each
department should be able to use their specific terminology

[Wor19] A. Wortmann: 
Towards Component-Based Development of Textual Domain-Specific Languages. 
In: International Conference on Software Engineering Advances (ICSEA 2019), pp. 68-73, IARIA XPS Press, Valencia, Nov. 2019. 
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Fig. 1. A language family comprising features of language components that
can fulfill the requirements of all three departments.

and learn only the modeling elements required for their
specific application.

Hence, while in general, these ADLs require some notion
of components, ports, and connectors, each department has
domain-specific requirements for the ADLs to be used:

• Department A (trains) requires components that support
dynamic reconfiguration via components modes [16] to
enable switching components related to country-specific
technology when the train crosses a border.

• Department B (smart factories) demands components
with assumption/guarantee contracts [17] that facilitate
correct integration of new components when the factory
reconfigures.

• Department C (robotics) demands novel connectors that
support bridging architecture models with the robot op-
erating system (ROS) [18].

Developing a general ADLs that captures all of these concepts
is not feasible as it complicates modeling in departments
where only some of these modeling elements are not required.
Alternatively developing three specific ADLs – each with
their specific infrastructure (e.g., parsers, model checkers, code
generators) – independently is costly and inefficient.

Instead, building suitable language components and com-
bining these as required can significantly reduce the effort
of fulfilling the deparments’ requirements. For our example,
consider the language family of Fig. 1: this family contains
the language features required by the different departments and
each feature is realized by a language component comprising
a combination of grammar, well-formedness rules, and code
generators. By developing independent language components
that realize the different features and by leveraging variability
modeling techniques, the configuration of the base ADL for
the different departments only requires selecting the appropri-
ate language components and (semi-)automatically integrating
these. If no appropriate features are available, developing and
integrating novel language components and integrating these

into existing language families reduces the effort of building
a suitable ADL.

Our method to engineer and reuse language components
considers both, planned variability and opportunistic reuse, and
supports semi-automated composition of language component
constituents in the technological space of the MontiCore [11]
language workbench.

III. COLD4TXT LANGUAGE COMPONENTS

The conceptual model of COLD is a vision of language
reuse that requires concretization. For txtDSLs, we have de-
veloped the COLD4TXT variant of COLD which realizes vari-
ability, explains how resolving variability affects the language
components, how variability and customizability interact, how
variability, customizability, the language facets’ artifacts relate,
and provides modeling techniques to realize this. At its core,
COLD4TXT resolves variability and customizability through
the additive composition of language components according
to their explicitly provided and required extension points.

To enable this, COLD4TXT differs from COLD: In
COLD4TXT, language families and language components
replace language concerns and language facets of COLD,
respectively: The language concerns of COLD provide both
variability and customizability. This entails that they pro-
vide the complete customizability of their intrinsic language
product line and express this towards the user despite only
a small subset of customization options being available in
the language product derived from the product line (namely
these provided by the features selected for the product). In
contrast, customizability should express means for tailoring
languages that are not resolved by variability. Therefore, the
language component comprising the derived language product
provides customizability options instead. Moreover, to enable
the proper composition of language components based on a
feature selection, the COLD4TXT language components yield
interfaces themselves. These interfaces guide and restrict their
use in the variation interface’s feature model and enable com-
posing two language components (semi-)automatically, with
only the implementation of adapters for generator composition
requiring manual interaction [10]. To explain the effects of
resolving variability and customizability in COLD4TXT, a
language component consists of a

• one language component interface,
• one customization interface,
• up to one grammar artifact,
• arbitrary many well-formedness rule artifacts, and
• arbitrary many code generator artifacts.
The language component interfaces explicitly provide or

require language grammar productions, well-formedness rules,
or code generators. Also, they may yield constraints between
these (e.g., representing whether an extension point is optional
or mandatory, or to express that selecting a provided code
generator entails selecting a grammar production as well).
The provided extension points for grammar rules identify
productions of the contained CFG that are meant for reuse
(e.g., expressions of an imperative modeling language, method
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Fig. 2. Conceptual model for txtDSL reuse focusing on language families
and their variation interfaces.

signatures of a class diagram language, . . . ). The required
extension points for grammar productions explicate produc-
tions that demand (optional or mandatory) extension for the
contained syntax to be completed.

Specifying required well-formedness rules within the in-
terface either demands for giving complete specifications
of the required well-formedness rules behavior (i.e., their
implementation) or specifying conditions under which an
independently provided well-formedness rule is suitable for
the required rule (i.e., some form of acceptance tests). The
former entails having a specification that is precise enough to
become a implementation automatically and the latter testing
rarely would be complete. Hence, we decided to consider
the set of well-formedness rules of a language component as
its extension point. Thus, a language component can provide
arbitrary many well-formedness rules that may or may not be
used by other components, but it cannot (yet) describe that
it requires additional well-formedness rules. This is subject
to ongoing work. For code generators, language components
leverage the notions of producer interface and product inter-
face as introduced in [10]. Hence, language components may
provide and require extension points that declare exactly one
producer interface and one product interface. The customiza-
tion interfaces of language interfaces comprise parameters of
well-formedness rules and generators that are not meant to
be resolved through the closed variation of language families
but enable open customization instead. Such customization
could be the numbers of initial states supported in models
of a language component for an automaton DSL or the path
a generator should produce artifacts in.

The language interfaces ground their required and provided
extension points the artifacts of their language components.
Here, the red concepts (solid lines) represent the language
components and the yellow concepts (dashed lines) highlight
their customization interface parts. The language components
are part of language families as depicted in Fig. 2: aside from
at least one language component, a language family contains
a variation interface comprising a single feature model and
a mapping that relates features to language component inter-
faces. By transitivity of language interface extension points,
this also identifies one language component per feature. The
feature model of the variation interface is developed by a
language family designer that intends to derive similar DSLs
of joint buildings blocks. As such, she models how selecting

language family CorpADL {

components

MontiArc, ContractAutomata, ComplexPortTypes, Expressions;

variation interface root BaseADL {

mandatory Components {

optional AsmGarContracts { optional Invariants; }

optional GenericPortTypes;

}

// additional features relations

}

root feature BaseADL uses MontiArc;

abstract feature Components;

feature AsmGarContracts uses ContractAutomata {

binds production Automaton to Components.ArcElement;

binds generator Automaton2Java to Components.BehaviorGenerator;

binds wfrs NonHierarchical; 

}

feature Invariants uses Expressions {

binds production Expression to AsmGarContracts.Expr.

binds Expression.All;

binds generator Expressions2POJO to AsmGarContracts.Guard2Java;

}

// additional features definitions

}

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

variation
interface

available language components

feature definition

feature to component mappings

Fig. 3. Textual model of the CorpADL language family of Fig. 1.

language component ContractAutomata {

grammar mc.automata.ca.ContractAutomata;

provides production ConractAutomatonMain;

provides AsmAutomaton for production AssumptionAutomaton;

provides GarAutomaton for production GuaranteeAutomaton;

requires mandatory Expr for production IGuardExpression;

provides generator Automaton2Java for ContractAutomatonMain {

producer IAutomatonGen; 

product IAutomatonPairRealization;

}

requires generator Guard2Java for IGuardExpression {

producer IGuardExpressionGenerator;

product IGuardExpression

}

provides wfrs Hierarchical { 

mc.automata.ca.coco.base.*;

mc.automata.ca.coco.hierarchical.*; 

}

provides wfrs NonHierarchical { 

mc.automata.ca.coco.base.*;

mc.automata.ca.coco.NoHierarchy; 

}

parameters { 

int max for mc.automata.cocos.NumHierarchyLevels.initialize;

String prefix for IAutomatonGen.generate;

} 

}
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Fig. 4. Model of the ContractAutomata component sketched in Fig. 1.

a specific child feature implements the extension points of its
parent feature and specifies constraints between features in the
Feature2ComponentMappting.

The language components are composed based on the
arragement of language components in the variation interfaces’
feature model. From this, a new language component compris-
ing their (possibly composed) artifacts together with a derived
interface are synthesized. If there are required extension points
not fulfilled by the selected features, these become part of the
new component’s interface.

COLD4TXT is realized in a language engineering frame-
work using the MontiCore language workbench. To this end,
we have developed modeling languages for language families,
language components, feature configurations, and customiza-
tion configurations as well as a toolchain that supports resolv-
ing variability and customizability.
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language component Expressions {

grammar mc.basic.expressions.Expressions;

provides production Expression; 

provides wfrs All { mc.basic.expressions.*; }

provides transformation Expressions2POJO for Expression {

producer IExpressionJavaGenerator; 

product IExpression;

}

}
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Fig. 5. Model of the Expression component sketched in Fig. 1.

The language family CorpADL of our example (cf. Fig. 1)
can be represented as illustrated in Fig. 3. This family de-
scribes which language components it comprises (ll. 2-3),
its variation interface in terms of a feature model (ll. 4-
10), and defines its features (ll. 11-24). A feature either is
a root feature (at most one), an abstract feature solely for
grouping other features (such as the feature Component),
or is realized by a language component. Each feature of the
latter kind defines how the provided extension points of its
language component are mapped to the required extension
points of its parent feature. For instance, selecting the feature
Invariants entails that (1) its production Expression
will be embedded [15] into the extension point Expr of
the language component AsmGarContracts (l. 21); (2) its
well-formedness rules provided via the extension point All
will be reused (l. 22); and (3) its code generator provided via
the extension point Expressions2POJO will be embedded
into the code generator Guard2Java of language component
AsmGarContracts (l. 23). The well-formedness rules of
the language family ensure that these mappings are valid w.r.t.
the language components illustrated in Fig. 4 and Fig. 5.

The next section explains how these language components
are combined.

IV. DERIVING LANGUAGES

Modeling language families with COLD4TXT first demands
its instantiation for a specific technological space by providing
modules for (1) analysing the compatibility of COLD4TXT
models with the referenced technology space artifacts and (2)
composing these artifacts according to COLD4TXT specifica-
tions as depicted in Fig. 6. The former modules, for instance,
check whether a well-formedness rule provided by a language
component exists or whether a grammar production declared
as an extension point indeed is an interface production. The
latter modules take composition instructions (the binding map-
pings) and related artifacts, and compose these accordingly.
For MontiCore, these modules are provided. Language engi-
neers than can use this instance of COLD4TXT to engineer
language components. Language family developers then can
reuse these in different contexts through arranging these in
the variation interfaces. Language family users then select the
desired language features matching their requirements and use
the COLD4TXT instance to synthesize a suitable language
component. If this language component is incomplete w.r.t. its
mandatory required extension points or parameters, it cannot
be used as a DSL yet. Then, the language family user has to

specify the missing customization configuration, before a fully
configured language component and the artifacts for a DSL in
the corresponding technological space are derived.

For MontiCore, these artifacts are a synthesized CFG the
union of the selected well-formedness rules, and a code
generator composed along its producer and product interfaces.
These artifacts can be processed by MontiCore to produce a
DSL that is completely independent of language families and
language components. Moreover, the (possibly incomplete)
language components derived from resolving variability and
customizability can be used as parts of other language families
again, which facilitates their reuse.

Based on a feature configuration, the COLD4TXT frame-
work composes the language components associated with
the selected features pairwise and top-down. The result-
ing component yields the provided extension points of the
parent and child components. For each mandatorily re-
quired extension point (e.g., Expr of language component
ContractAutomata), if an implementation is defined by
the binding mappings in the variation interface’s feature
model, then this extension point becomes optional and is
copied to the interface of the new component as well. The
sets of well-formedness rules from the parent component and
the ones from the selected provided extension point of the
child component are merged and provided as a new extension
point in the new component. For the CFGs, COLD4TXT
expects the responsible modules of the specific technology
space to produce combined CFGs and adapters between the
participating code generators accordingly.

For instance, selecting the features “Asm/Gar Contracts”
and “Invariants” depicted in Fig. 1 with the variation interface
specified in Fig. 3 entails combining the language components
ContractAutomata (Fig. 4) and Expressions (Fig. 5)
accordingly. The resulting language component is given in
Fig. 7. This component uses a synthesized CFG featuring
contract automata and expressions (l. 2), the union of selected
well-formedness rules, and the composed code generators.
Its interface reduces the cardinality of the required grammar
extension point Expr to optional (l. 7), adds the provided
extension point Expression (l. 8) as well as the code
generator for expressions (ll. 14-17) from the Expressions
language component of Fig. 5, and provides a new set of
well-formedness rules (ll. 19-23). As this component does not
require further extension, specifying values for its parameters
enables MontiCore to derive a complete DSL from it.

V. DISCUSSION

In contrast to the purely conceptual models of DSL
reuse [19], [20], COLD4TXT on capturing all DSL definition
constituents at a sufficient level of abstraction to support the
precise explanation of the effects of composing these, binding
their variability, and resolving their customizability on its own.

The conceptual model of COLD4TXT aims to be inde-
pendent of technological spaces as long as these enable to
(1) identify grammar extension points; (2) compose grammars,
sets of well-formedness rules, and code generators without
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Fig. 6. After tailoring CORE4TXT for a specific technological space, developers can engineer language components to be used by language family developers
to facilitate creating DSLs.

language component ContractAutomataWithExpresssions {

grammar mc.automata.ca.ContractAutomataWithExpressions;

provides production ConractAutomatonMain;

provides AsmAutomaton of production AssumptionAutomaton;

provides GarAutomaton of production GuaranteeAutomaton;

requires optional Expr for production IGuardExpression;

provides production Expression;

provides transformation Automaton2Java for ContractAutomatonMain {

producer IAutomatonGen; 

product IAutomatonPairRealization;

}

provides transformation Expressions2POJO for Expression {

producer IExpressionJavaGenerator; 

product IExpression;

}

provides wfrs All { 

mc.automata.ca.coco.base.*;

mc.automata.ca.coco.NoHierarchy;

mc.basic.expressions.*;

}

parameters { 

int max for mc.automata.cocos.NumHierarchyLevels.initialize;

String prefix for IAutomatonGen.generate;

} 

}
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Fig. 7. Language component synthesized as result from selecting the features
“Asm/Gar Contracts” and “Invariants” of Fig. 3.

eliminating the extension points in the process; (3) describe
code generators and the generated products in terms of their
interfaces; (4) identify parameters of well-formedness rules
and code generators in an object-oriented fashion. While
these are strong assumptions, we currently investigate applying
COLD4TXT and its realization within the technological spaces
of Neverlang [7] and Xtext [21]. Moreover, it currently only
supports embedding in the sense of [10], whereas there are
various other composition operators for txtDSLs. Whether and
how supporting these is possible, also is ongoing research.

In the future, we aim to extend the notion of language
components to feature additional constituents (e.g., model-to-
model transformations or editor fragments).

VI. RELATED WORK

Research on Language product lines (LPLs) [15], [22],
[23] is scattered across different kinds of DSL definition con-
stituents and technological spaces. And while we developed a
notion of LPLs for the technological space of MontiCore [15]
in particular, there currently is no actionable understanding
of the variability of complete txtDSLs (i.e., encompassing all
four kinds of constituents). Moreover, (closed) variation rarely
is connected with (open) customization to systematically reuse
DSLs in general. There are only a few solutions that consider
either txtDSL variation or customization across different kinds
of DSL definition constituents. These include a few language
workbenches [24], such as Argyle [23], Neverlang [7], or the
combination of SDF and FeatureHouse [22].

In Argyle [23], DSLs are constructed from language assets
that resemble concerns and comprise syntax, data types, and
code generation templates. A feature model arranges assets
according to their dependencies, which demands their white-
box apriori composition that hinders the reuse of facets.
In contrast, COLD4TXT will be based on our exploratory
work [15] that makes extension points of concerns explicit and
supports the black box composition of their artifacts through
the generation of suitable adapters between these.

SDF and FeatureHouse realize variability based on compo-
sitional language modules containing grammar rules, typing
rules, and evaluation rules [22]. It also focuses on the white-
box composition of artifacts and interpretation. Similar partial
solutions towards variation or customization of selected kinds
of DSL definition constituents are available from a variety
of language workbenches. For instance, ableC [25] is an
extensible C language that leverages attribute grammars to
reuse syntax and semantics, MPS [21] enables reuse of projec-
tional languages with views and model transformations, and
Spoofax [8] supports reuse of textual, interpreted languages.
All of these focus on specific technological spaces.
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VII. CONCLUSION

We have presented the novel COLD4TXT conceptual frame-
work to facilitate reusing textual DSLs through systematic
variability and customizability. In COLD4TXT, language fam-
ilies capture txtDSL variability as feature models and realize
it via composition of language components according to
their interfaces. Composing language components yields new
language components that may demand further extension or
customization before these can be translated into complete
DSLs for specific contexts. This facilitates engineering textual
DSLs for different contexts and fosters the application DSLs.
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ABSTRACT
Many engineering domains started using generic modeling lan-
guages, such as SysML, to describe or prescribe the systems under
development. This raises a gap between the generic modeling lan-
guages and the domains of experience of the engineers using these.
Engineering truly domain-specific languages (DSLs) for experts of
these domains still is too challenging for their wide-spread adop-
tion. One major obstacle, the inability to reuse multi-dimensional
(encapsulating constituents of syntax and semantics) language com-
ponents in a black-box fashion, prevents the effective engineering
of novel DSLs. To facilitate engineering DSLs, we devised a concept
of 3D components for textual, external, and translational DSLs that
relies on systematic reuse through systematic closed and open vari-
ability in which DSL syntaxes can be embedded, well-formedness
rules joined, and code generators integrated in a black-box fashion.
We present this concept, a method for its systematic application,
an integrated collection of modeling languages supporting system-
atic language reuse, and an extensible framework that leverages
these languages to derive novel DSLs from language product lines.
These can greatly mitigate many of the challenges in DSL reuse
and, hence, can advance the engineering of truly domain-specific
modeling languages.
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1 INTRODUCTION
Our society thrives on Cyber-Physical System (CPS) that enable
communication, education, healthcare, mobility, and more. These
systems are engineered in collaboration with experts from multiple
domains, such as mechanical engineering, electrical engineering,
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material sciences, jurisprudence, software engineering, and systems
engineering. To cope with the complexity of engineering these
systems, domain experts have begun to leverage the benefits of
modeling languages [49] to, among others, describe product ge-
ometries [17, 37] physical properties [19, 30], or the integration of
contributions from different domains [2, 40].

The efficient use of models by domain experts demands well-
defined, Domain-Specific Languages (DSLs) that support automated
analysis and synthesis of conforming models. Engineering DSLs
is a complex endeavor that demands understanding the domain
of interest, creating implementations capturing the DSL’s syntax
and semantics, integrating these properly, and providing tools sup-
porting to their use. Due to these challenges, experts often have
to use overly generic modeling languages, such as UML [25] or
SysML [22], instead of DSLs precisely tailored to the concepts and
notations of their respective domains. This hinders domain experts
in employing these languages efficiently. Reusing components to
engineer DSLs more efficiently can lead to more precise and specific
languages that can foster the adoption of modeling techniques and,
ultimately, facilitate engineering complex CPS. The contributions
of this paper support the efficient engineering of DSLs through
(1) a novel conceptual model of the reuse of 3D DSL components
through closed variability of DSL families (product lines) and open
customization; (2) a method for its systematic application; (3) a col-
lection of integrated modeling languages to describe DSL families
and their constituents; and (4) an extensible framework that sup-
ports engineering DSL families as well as deriving DSL components
and complete DSLs from these.

The research results presented in this paper extend the find-
ings presented in [6–8] by making extension points explicit on
the component level, introducing different kinds of bindings be-
tween the DSL families and their components, and providing an
integrated feature modeling language that describes how families
relate components through features.

In the remainder, Sec. 2 motivates the benefits of systematic lan-
guage reuse and Sec. 3 presents preliminaries. Sec. 4 introduces our
conceptual model and a method for its systematic application. Sec. 5
describes the modeling languages and the framework realizing the
conceptual model. Sec. 6 illustrates its application by example. Sec. 7
discusses observations and related research. Sec. 8 concludes.

2 MOTIVATING EXAMPLE
Consider a company engineering different kinds of CPS featur-
ing state-based behavior, such as robotics systems and appliances
for smart buildings. Instead of using the same generic modeling
language for all three departments, engineers in each department
should be enabled to use a DSL closely related to their domain of
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Figure 1: Feature model of an FSM Language Product Line
(LPL) (adapted from [38])

expertise. A team of language engineers, therefore, decides to engi-
neer a family of Finite-State Machines (FSMs) DSLs (cf. Figure 1).
State machines are commonly used behavior descriptions in a mul-
titude of application domains such as robotics [5, 9], aerospace
software [21], web applications [23] or game development [35].
Thus, different variants for FSM notations have been brought forth.

For instance, the company has engineered a DSL for describ-
ing state-based behavior of robot arms with limited computational
power. For this application, performance is crucial and managing
state histories and concurrency as induced by join and fork nodes
is not desired. However, the behavior of the robot arm should fea-
ture time-based triggers on transitions to ease its programming. In
another department of the company, a variant of the FSM DSL is
used to describe the behavior of web-based smart home appliances.
For these, a deep state history can improve the user experience by
continuing an interrupted procedure in the state it was interrupted.
Furthermore, the language engineers decide that for web applica-
tions, junctions in FSMs should simplify user response handling.

Through domain analysis, the engineers of the FSM DSL product
line consider these and a set of similarly fashioned applications
and decide to create the feature model depicted in Figure 1. Each
FSM DSL contains states and transitions that are not explicated in
the feature model, as they are contained in every variant of the
language. Further, each DSL must contain initial and final pseudo
states. These are explicated in the feature model, as the language
engineers plan to evolve the feature model in the near future by
providing an alternative textual notation for initial and final pseudo
states. Moreover, each DSL variant has the option of including deep
or shallow history pseudo states, junction pseudo states, fork and
join pseudo states, and condition pseudo states. Optionally, an FSM
DSL may support modeling hierarchical states that themselves con-
tain states and transitions. Timed transitions, also optional features,
enable users to model a passage of time as a transition trigger.

The team developing the above DSL family has four requirements
for the reuse of DSL components:

R1 Black-box reuse: To foster DSL reuse across time and in-
volved developers, it must be possible to reuse DSL parts in
a black-box fashion without needing to become an expert in
their internal implementation details.

R2 Structured reuse: To support reusingDSL parts for building
similar DSLs by domain experts without language engineer-
ing expertise, it should be possible to arrange the relevant

DSL components in the DSL family definition according to
their options for composition.

R3 Push-button reuse: To enable domain experts to derive
suitable languages with minimal effort, the composition of
selected DSL components based on their arrangement in the
DSL family should be automated.

R4 Open reuse: To enable extending DSL components with
capabilities unforeseen at time of their arrangement, it must
be possible to customize these systematically through open
variability [13].

A language engineering approach satisfying the above require-
ments can help the company to reduce cost and effort for engineer-
ing and maintaining modeling languages tailored to each kind of
CPS they develop.

3 PRELIMINARIES
Our method for efficient DSL engineering relies on research in
Software Language Engineering (SLE) [29, 32, 50] and leverages
the MontiCore language workbench as technological space [34] for
realization and for the case study.

3.1 Software Language Engineering
A modeling language usually is defined by the set of models it
accepts. To make languages machine-processable, language defi-
nitions in terms of their constituents have been proposed. These
usually require that (1) a language definition comprises a concrete
syntax, an abstract syntax, a semantic domain, and a mapping
from the abstract syntax to the semantic domain giving mean-
ing [26] to the language’s sentences [11]; or that (2) each language
definition comprises a concrete syntax, an abstract syntax, static
semantics (well-formedness rules), and dynamic semantics (behav-
ior) [12]. The abstract syntax of a modeling language defines the
structure of accepted models and is typically defined in terms of
grammars [3, 10, 47] or metamodels [16, 41, 43]. The concrete syn-
tax is the representation of models towards the user and can be, e.g.,
textual, graphical, or mixed. Often, this is defined by the editor used
to process models. Well-formedness rules can restrict the abstract
syntax further to prevent undesired model properties not express-
ible through the abstract syntax formalism itself. Interpreters and
model transformations can give meaning [26] (and possibly behav-
ior) to models by translating these into other languages.

In the following, we assume language implementations that are
• textual: they feature an integrated definition of concrete and
abstract syntax through a grammar;

• external: they are not defined in terms of a host language (in
contrast to internal DSLs [15]); and

• translational: they give meaning to models through transfor-
mation (in particular through code generation).

3.2 MontiCore
We use the language workbench MontiCore [28] to realize our ap-
porach as proof of concept. MontiCore is a language workbench
for the development of textual, external DSLs. The integrated con-
crete and abstract syntax of a DSL is specified in the form of a
context-free grammar. From this, MontiCore generates language
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grammar FSM {
StateMachine = "sm" Name "{" (IState | ITrans)* "}";
interface ITrans;
interface IState = Name ;
State implements IState = "state" Name ";" ;
Transition implements ITrans = from:Name "->" to:Name ";" ; 
}

MCG01
02
03
04
05
06
07

interface productions

concrete syntax only iteration

interface implementation

Figure 2: Example MontiCore grammar of an FSM DSL

tooling including an abstract syntax data structure, a parser that in-
stantiates this data structure, a visitor infrastructure for traversing
the abstract syntax, and infrastructures for defining and checking
well-formedness rules as well as for generating code from models
conforming to the grammar. Well-formedness rules in MontiCore
are realized as Java classes called context conditions and are checked
against the abstract syntax leveraging the generated visitor infras-
tructure. Code generation is realized through template-based code
generators based on the FreeMarker [20] template engine.

Each MontiCore grammar begins with the keyword grammar,
followed by the name of the grammar as depicted by example
in Figure 2. The body of a grammar (ll. 2-7) contains grammar pro-
ductions. By default, the first production is the start production
of a grammar. On the left-hand side, each production defines a
nonterminal, e.g., StateMachine (l. 2). On the right-hand side, a
production can contain terminals (in double quotes) and nontermi-
nals (starting with upper case letter) as well as iterations (’*’, ’+’
,’?’), alternatives (’|’), and concatenations (’ ’) thereof. Interface
nonterminals can underspecify a right-hand side completely (l. 3)
or prescribe abstract syntax elements (l. 4). Other productions can
implement interface productions (ll. 5-6). If the right-hand side
prescribes abstract syntax elements, implementing nonterminals
must provide these. The generated parser treats the usage of an
interface nonterminal equal to an alternative over all nonterminals
defined by productions implementing the interface nonterminal.

Moreover, MontiCore supports language inheritance [28], which
enables reusing complete grammars by inheriting from them and
using all inherited productions in the new grammar. We will lever-
age this to compose the grammars of DSL components according
to their arrangement in the DSL family.

4 A METHOD FOR SYSTEMATIC LANGUAGE
ENGINEERING

This section introduces the process of creating families of reusable
DSL components and composing these to derive novel DSLs. It
further presents a conceptual model describing DSL components,
their properties, and their relation to feature models of DSL families.
With this in place, it explains the effect of selecting twoDSL features
as the composition of the two related DSL components.

Ourmethod for systematic language composition relies on encap-
sulating related language constituents in DSL components, making
their provided and required extensions explicit, and composing the
language components according to these and guided by a feature
model. All these activities are related to roles with specific expertise
as illustrated in Figure 3. First, language engineering experts create
reusable DSL components for specific purposes, such as the fea-
tures illustrated in Figure 1. Each of these contains a combination
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Figure 3: The composition of twoDSL components processes
all bindings, and updates the interface of the resulting DSL
component accordingly. If all mandatory required exten-
sions have been fulfilled, a new DSL can be derived.

of grammars, well-formedness rules, and code generators relat-
ing to these grammars. By making their provided extensions (i.e.,
grammar productions, well-formedness rules, or code generators)
and their required extensions (grammar productions or generator
extensions) explicit, language family architects can arrange these
into a feature model representing a family of DSLs.

In this feature model, each feature either is related to a language
component or is an abstract feature [42] for logical grouping. By
relating features to DSL components and to other features (through
their parent-child relation), the language family engineer decides
how the components will be composed if their respective features
are selected. Once the DSL family is complete, DSL owners, who are
experts of the application domains, can derive a suitable DSL by se-
lecting appropriate features from the family. Based on the resulting
feature configuration, the selected DSL components are composed
and their provided and required extensions are updated accordingly.
Through extension points of our framework, the composition of
the language constituents (i.e., grammars, well-formedness rules,
code generators) is delegated to software modules of the specific
technological spaces (such as Neverlang [44], MontiCore [28], or
Xtext [18]). The result either is a new DSL component, if mandatory
extensions were not provided through the family or a new DSL
otherwise. In the former case, the DSL owner can specify additional
customization information that was either not available during
family creation (e.g., the action language needed for automata tran-
sitions for a specific domain) or not suitable for configuring in a
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feature model (such as numerical parameters). If the DSL family
was well-defined, i.e., options for all required extensions of its com-
ponents were provided, the DSL owner does not need to have any
expertise in SLE but can derive the most suitable DSL variant on a
push-button basis.

To foster DSL reuse, we have conceived and integrated modeling
languages for describing DSL components and DSL families. They
are tailored to language engineering experts and support making
provided and required DSL component extensions explicit. Their
models form the basis of component composition. The latter lan-
guage is an extension of features models that supports describing
DSL families and the binding of features to extension points of DSL
components. A customization language supports implementing
required extensions of DSL components not provided by their lan-
guage family. The modeling languages and the software modules
processing these support extension with new language elements
and analyses to support extending DSL component definitions and
to address challenges of different technological spaces. However,
conceptually, our approach assumes the following1:

A1 Composition leads to conservative extension [28], i.e., it is
purely additive in terms of language constituents, i.e., compo-
sition cannot eliminate grammar productions, well-formedness
rules, or generators. Otherwise, composition could elimi-
nate extension points, which yields undesired complexities.
Nonetheless, adding new well-formedness rules can restrict
the accepted models of the resulting DSL.

A2 The grammar language must support identification of exten-
sion points. Otherwise, binding extensions to grammars is
not possible. This identification, however, can be realized,
e.g., through dedicated forms of productions or naming con-
ventions. Hence, many grammar specification formalisms
can support this.

A3 Thewell-formedness rules of the technological spacemust be
identifiable and applicable individually. Otherwise, selecting
and reusing these rules in different contexts might not be
possible.Whether these rules are implemented in OCL [27], a
general-purpose programming language [18, 28], or another
modeling language [44] then does not matter.

A4 The code generators (producers) and generated artifacts (prod-
ucts) must be defined in a language that supports the notion
of object-oriented interfaces and both interfaces (producer
and product) must be made explicit by the code generators.
Otherwise, the form of adaptation between the generators
(producers) or generated artifacts (products) that we pro-
pose, will not be possible [6, 8]. This prevents applying our
approach to various kinds of target languages and formats
(such as CSV, SQL, XML, etc.)

A5 Each code generator must create a main artifact adhering to
the generator’s product interface through which that artifact
can be invoked during product runtime. If there is no such
product, adapting between the required product and the
provided product is not possible. While this does not limit
the application of our approach technically, enforcing the
existence of such a product can make the generated code
less efficient. Mitigating this is subject to current research.

1The reasoning for the code generator assumptions is discussed in detail in [6, 8].

4.1 A Conceptual Model for Black-Box
Language Reuse

Our conceptual model describes the properties of DSL components
(R1) and DSL families (R2) relevant to their systematic reuse. For
this purpose, the DSL components do not provide closed variability
themselves, but support customization through their required ex-
tensions. DSL families comprise feature models to describe closed
variability of potential DSLs by arranging DSL components (cf.
Figure 4).

4.1.1 3D DSL components and interfaces. DSL components pro-
vide the constituents of a language definition. They are three-
dimensional by comprising elements of each of the three essential
language definition constituents: (1) syntax, (2) well-formedness
rules, and (3) semantics-based code generators. To this end, each
DSL component comprises at least one grammar and can com-
prise multiple sets of identifiable (A3) well-formedness rules, as
well as multiple code generator specifications. As both, the well-
formedness rules and the generator specifications rely on a gram-
mar for the definition of the abstract syntax data types, it is manda-
tory for each component. The well-formedness rules are grouped
in sets to facilitate their reuse in different contexts. The generator
specifications identify a generator as a GPL code class that adheres
to an explicit producer interface (A4) and creates at least a main
GPL artifact that adheres to an explicit product interface (A5).

DSL interfaces expose (parts of) these constituents through
explicit extensions with cardinalities (optional or mandatory) to the
environment (e.g., the language family). For grammars and genera-
tors, the interfaces support both, provided and required extensions,
whereas for well-formedness rules, only provided extensions can be
made explicit. Specifying what is required from a well-formedness
rule is subject to ongoing research (cf. Sec. 7). For well-formedness
rules and code generators, additional parameters can be defined
that enable more fine-grained customization (such as numerical
constraints, paths, etc.).

Provided extensions offer DSL functionality to be reused by
other components. Provided grammar extensions reference a pro-
duction in the grammar that can be reused by other components’
grammars. Provided well-formedness rules extensions offer sets of
well-formedness rules for a specific production that can be reused
in different contexts. Provided generator extensions reference a
production for which they provide a transformation, a reference to
a GPL class, and the interfaces of producer and product.

Required extensions specify missing functionality of a DSL
component–e.g., an automaton DSL might need an expression DSL
for specifying guards–and can be either optional or mandatory.
Required extensions for grammars reference a production of a
contained grammar that supports extension. Required generator
extensions demand extension for a specific production (such as
the guard expressions above), with specific product and producer
interfaces as introduced in [6]. Required parameters also are either
optional or mandatory and parameterize well-formedness rules or
generator specifications, respectively.

Generator specifications describe code generators of compo-
nents in terms of processed product rules, provided producer and
product interfaces, and a set of extension points that follows the
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Figure 4: DSL components provide extensions, i.e., parts of
language constituents that are exposed by DSL component
interfaces. DSL component interfaces also specify required
extensions and parameters.

extension points of the processed grammar. For each required gram-
mar extension, the generator specification provides a generator
extension point that describes the required producer interface and
a required product interface. The required producer interface pre-
scribes the expected structure of a compatible generator being us-
able for translating productions embedded into the required gram-
mar extension this extension point relates to. The required product
interface prescribes the expected structure of a compatible main ar-
tifact produced for the required grammar extension this extension
point relates to.

4.1.2 DSL families and bindings. Language families [48] describe
closed variability through a central feature model [14]. Features
relate to the extensions of DSL components and the arrangement
of features in this model describes how the components will be
composed if their respective features are selected. To this effect,
DSL family architects select DSL components for specific purposes
and arrange these carefully for DSL owners to use (R2).

Figure 5 depicts the conceptual model of DSL families. A family
references one ormore DSL component(s) and yields a single feature
model [1, 4] consisting of features and bindings. A feature references
a DSL component of the family that realizes it.

The root (top) feature of the DSL family defines the base DSL
component into which the components related to all selected child
features are embedded according to the family’s feature model. As
such, it might yield provided extensions as well, for which the root
feature configuration can define bindings (i.e., selections) already.
This enables using a comprehensive DSL for the root feature while
giving the flexibility of reusing only selected parts of it.

Bindings relate features to DSL components. Our concept sup-
ports three kinds of bindings, matching the different kinds of re-
quired and provided extensions (grammar, well-formedness rule,
generator). Bindings are defined within features, i.e., each feature
describes how (a subset of) the provided extensions of its related
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Figure 5: A language family has a feature model with fea-
tures that reference and bind DSL components.

DSL component will be bound to (a subset of) the required exten-
sions of the DSL component related to its parent feature. To this
end, each non-abstract feature must define at least one such binding
and can define as many bindings as there are provided extensions
in its DSL component. The different kinds of bindings are:

Grammar bindings map a provided grammar extension of the
embedded component (e.g., of a child feature) to a required grammar
extension of the embedding component (e.g., of a parent feature).
The effect of such a binding is that everything producible from
the provided grammar extension will become producible from the
required grammar extension as well. For instance, when embed-
ding the provided grammar extension for arithmetic expressions
into a required grammar extension for Boolean expressions, arith-
metic expressions become an alternative to the former. This can
be realized through production inheritance [28] or adding an al-
ternative supporting the provided productions to the requiring
productions [5, 44]. This composition is supported by adhering to
(A1) and (A2).

Generator bindingsmap a provided generator extension of the
embedded component to the required generator extension of the
embedding component. Such a binding entails that the provided
generator will be used whenever the required generator is called.
For instance, embedding a generator for translating arithmetic ex-
pressions to Java into another generator requiring that translation
entails, per construction detailed in [8], that the embedding gen-
erator will call the embedded generator via an adapter between
the required producer for arithmetic expressions and the provided
producer interface of the generator for arithmetic expressions. This
composition is enabled by (A1), (A3), and (A4).

Well-formedness rule embeddings join a well-formedness
rule set of the embedded component into a well-formedness rule
set of the embedding component. The result is a novel component
with the same number of well-formedness rule sets than before, but
more well-formedness rules in its sets. This enables refining DSLs
by adding additional rules to its provided well-formedness rules.

Well-formedness rule addition adds a complete set of well-
formedness rules of the embedded component en-bloc to the em-
bedding component. Through this, a novel set of well-formedness
rules becomes present in the resulting component. Both forms of
well-formedness rule set composition rely on (A1) and (A5).
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Figure 6: DSL components are composed according to the bindings defined between DSL family features.

4.2 Composing DSL Components
The composition of two DSL components is the directed applica-
tion of bindings between these components. It produces a novel
component resulting from adding selected provided extensions of
the embedded component into the respective required extensions
of the embedding component. This comprises two main activities:
(1) Composition of the components’ interfaces; and (2) Composi-
tion of the comprised language definition constituents (grammars,
well-formedness rules, code generators);

Our method of reusing DSLs and DSL parts is independent of the
actual composition of language constituents in the different tech-
nological cases as long as these adhere to (A1)-(A5). Consequently,
the method and its realization anticipate extension with software
modules specific to the technological space of choice that take care
of the technical composition (cf. Sec. 5.4).

The process of composing two DSL components along their in-
terface is illustrated in Figure 6: As long as there are unprocessed
bindings, these and the related artifacts are passed to the technology
space-specific composition components (used by green activities
with fork icon) to perform the composition of DSL constituents.
Afterwards, the required extensions of the language interface of
the embedding component are updated accordingly by (a) setting
fulfilled extensions to be optional and (b) adding implied required
extensions of the embedded component. Provided extensions of the
embedded components are not added to the interface of the embed-
ding component as this would add options for reuse unintended
by the DSL family. For well-formedness rules, either a set of the
embedded component was meant to be reused en-bloc, in which
case the complete set is added to the interfaces of the embedded
component, or individual rules shall be reused. In this case, these
are added to the set of well-formedness rules of the embedding
component as indicated by the respective bindings.

Where an embedded component yields parameters, these are
added to the interfaces of the embedding component. If all required
extensions are fulfilled, the resulting DSL component can be trans-
lated into a new DSL automatically. Otherwise, it needs subsequent
customization.

For a feature configuration relative to a language family, the fea-
ture tree of the language family is traversed bottom-up. If a feature
is selected in the feature configuration, all associated bindings of
this particular feature are applied, and the components are com-
posed pairwise. The application of the bindings is similar to the
composition process stated in the former part of this section. The
traversing of the feature tree ends with the root feature configura-
tion, if present. When applying the root feature configuration, all
provided extensions and well-formedness rule sets not stated in the
root configuration are removed. If the component has no manda-
tory required extension or component parameter, a usable DSL can
be derived from it automatically (R3). Otherwise, customizing the
component (R4) is necessary to obtain a usable DSL. To this effect,
the bindings between the embedded and the customized compo-
nent are applied and the components are composed as if they were
related to a parent feature and its child.

5 MODELING LANGUAGES AND
FRAMEWORK

Based on the example of the FSM family of Figure 1, this section
presents the modeling languages for DSL components and families.

5.1 DSL Components
The DSL component language reifies our conceptual model of DSL
components and interfaces (R1) in form of a MontiCore modeling
language. Following the conceptual model, each DSL component
references exactly one grammar, zero to many generator contexts
(describing producers and products), as well as various provided
and required extensions and well-formedness rule sets.

Figure 7 illustrates this by example of theTransitionSystem
DSL component It references a grammar via its fully qualified
name mc.FSM (l. 2) and specifies the generator FSMG with context
FSMGenerators (l. 3, Figure 8). The generator context is a class
diagram describing the generator and its interfaces.

Afterwards, TransitionSystem defines a provided and two
required grammar extensions of different optionalities (ll. 5-7) us-
ing productions from the mc.FSM grammar. This defines that the
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dsl component TransitionSystem {

grammar mc.FSM;

gen FSMG context fsm._gen.FSMGenerators;

provides production StateMachine;

requires optional production IState;

requires mandatory production ITrans;

provides gen FSMMainGen for StateMachine with FSMG;

requires optional gen StateGen for IState with FSMG;

requires optional gen TransGen for ITrans with FSMG;

wfrs TransitionsCorrect {

fsm._cocos.TransitionSourceStateExists;

fsm._cocos.TransitionTargetStateExists;

}

wfrs TSCorrect {

fsm._cocos.AllStatesReachable;

fsm._cocos.NamesAreUpperCase;  

}

}
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Figure 7: A component representing a transition systemDSL.
It provides and requires extensions for the language’s gram-
mar, generator, and well-formedness rules.

component enables extension for the productions IState and
ITrans. For code generation, the component defines a provided
and two required generator extensions (ll. 9-11) relative to the gen-
erator context represented in Figure 8. The provided generator
extension FSMMainGen enables reusing the component’s genera-
tor. The required generator extensions StateGen and TransGen
enable to extend code generation of this component for states and
transitions accordingly. Ultimately, TransitionSystem also de-
fines two provided sets of well-formedness rules of two rules each
(ll. 13-20). The FSM grammar itself is illustrated in Figure 2 and
comprises four productions: it defines two interfaces that can act as
grammar extension points (ll. 3-4) and defines a transition system
as a named collection of instances of these interfaces (l. 2). For
states and transitions, it provides a default implementation (ll. 5-6).

Figure 8 depicts the generator context for the transition sys-
tem component. The top three classes, IFSMProducer, IFSM-
Product, and IFSMSystemGenerator define how this the
FSMGenerator can be embedded into other components, i.e.,
that it can act as an IFSMProducer and that its generated arti-
facts will adhere to the IFSMProduct interface. Moreover, FSM-
Generator yields registration methods corresponding to its two
extension points. For extension of states, e.g., the FSMGenerator
expects a producer of type IStateProducer and that this pro-
ducer generates a main artifact of type IStateProduct, hence
the corresponding code interfacing with implementations of this
interface can be generated.

When bindings between two DSL components specify embed-
ding FSMGenerator as IFSMProducer into a generator ex-
pecting another particular producer interface (as defined in the
embedding component’s generator context), an adapter between
the expected producer interface andIFSMProducer and a factory
for its injection is generated. When the adaptation is non-trivial,
this generated adapter needs to be extended with handcrafted adap-
tation functionality using the generation gap pattern [24]. For the
product interfaces, the same mechanism is applied. The classes of
the generator context and signatures of the registration methods
follow framework-wide naming conventions [6, 8].
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Figure 8: The generator context for the transition system
DSL component. It contains the generator interfaces and
classes for the extensions of the component.

5.2 DSL Families
DSL families consist of a feature model, components that realize
features of the model, and bindings between these components.

Figure 9 depicts an excerpt of the StateMachineFamily that
describes a family of FSM languages. The family contains a textual
feature model to arrange the components within the family (R2). It
is an excerpt of the one presented in Figure 1 (ll. 3-10). After the fea-
ture model, the family defines features in terms of names, realizing
component, and bindings (ll. 12-31) such that each feature of the fea-
turemodel is realized through aDSL component. For instance, in the
StateMachineFamily the feature StateMachines (ll. 12ff)
is realized through the DSL component TransitionSystem
(l. 13). A detailed insight into this component is given in Figure 7.

All non-root features yield bindings that connect the provided
extensions of their DSL components with the required bindings
of their parent feature’s component–or its ancestor, if the parent
feature is abstract. For instance, the InitialAndFinalState
feature is realized through the component InFinState (ll. 17ff),
which is illustrated in Figure 12. Afterwards (ll. 19-23), bindings
for productions, generators and well-formedness rules are defined
between the feature-realizing component InFinState and the
grandparent feature’s component TransitionSystem (cf. Fig-
ure 7). Through these bindings, e.g., the provided grammar exten-
sion InitialState of InFinState is bound to the required
grammar extension IState of TransitionSystem.

5.3 DSL Component Customization
The DSL component customization realizes open variability (R4). In
contrast to the DSL family configuration, it enables the DSL owner
to customize a DSL component by binding its required extensions
to other DSL components that might not have been part of the
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family StateMachineFamily {

feature diagram StateMachines {

mandatory PseudoStates {

mandatory InitialAndFinalState;

abstract History {…} or Junction or //...;

}

optional HierarchicalStates;

optional TimedTransitions;

}

feature StateMachines {

component ts.comp.TransitionSystem;

// Bindings of the StateMachines feature

}

feature InitialAndFinalState {

component ps.comp.InFinState;

bind production InitialState -> IState;

bind production FinalState -> IState;

bind generator  InitStateGen -> StateGen;

bind generator  FinalStateGen -> StateGen;

bind wfrs CheckStateCardinality;

}

feature TimedTransitions {

component tt.comp.TransitionsWithTiming;

bind production TimedTrans -> ITrans;

bind generator  TTGen -> TransGen;

bind wfrs TimingCorrectness;

}

// Definitions of further features

}
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Figure 9: Excerpt of a textual model of the
StateMachineFamily DSL family (cf. Figure 1).

DSL family. Furthermore, the customization can assign values to
parameters of the identified DSL component. Figure 10 illustrates a
customization by example.

The customizationRobotArmWithClock customizes the com-
ponent RobotArmLang (see Figure 14). Bindings in the customiza-
tion have the same syntax as in the feature definition of the language
family and are applied in the same fashion. The left side of the bind-
ing is the source, i.e., a provided extension or well-formedness rule
set, and the right side of the binding is the target, i.e., a required ex-
tension or well-formedness rule set. In the customization the source
of the binding is the fully qualified name of the language compo-
nent and the name of the respective provided extension or well-
formedness rule set. The required extension or well-formedness set
which is the target of the binding, always originates from the cus-
tomized component. The customization RobotArmWithClock
binds a grammar production and a generator for a clock expression
(ll. 3ff) of a DSL component ce.comp.Clock to the customized
component RobotArmLangComp. Furthermore, it limits the num-
ber of initial states to one by setting the corresponding parameter
(l. 6). Customization produces a new composed component that
contains the bound extensions and no longer contains the set pa-
rameter.

5.4 Language Engineering Framework
For demonstration of the feasibility of our approach, we have im-
plemented the framework for deriving languages from the family
(R3) in four different modules that each relate to different activities
and their modeling languages (cf. Figure 11).

The DSL Component Processor (top left) is responsible
for parsing, processing, and validating DSL components (cf. Fig-
ure 4) and used by the language engineering expert. Therefore, the

import ce.comp.Clock;

customization RobotArmWithClock for RobotArmLangComp {

bind production Clock.ClockExpr -> ITimedExpr;

bind generator Clock.ClockGen -> TimerGen;

assign numberOfInitialStates =  1;

}

CC
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Figure 10: The textual model of a customization for the DSL
componentRobotArmWithClock (cf. Figure 14). It contains
two bindings and a parameter assignment.
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Manager
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CompD

Figure 11: Our framework comprises modules for process-
ing, composing, customizing DSL components, and manag-
ing DSL families.

module holds the corresponding language processing tools (parser,
lexer, well-formedness checker) as well as an interface for calcu-
lating implications. A MontiCore-specific implication calculator
implements the calculator interface to resolve and validate implica-
tions. After processing a DSL component model, it produces a DSL
component that can be reused in DSL families and other contexts.

The DSL Component Composer (top right) takes two DSL
components with a set of bindings and composes these as pre-
sented in Sec. 4.2. It relies on the DSL Component Processor to
parse components, before it composes their interfaces and artifacts.
For the latter, it provides an interface to integrate modules specific
to the technological space operated within. The DSL Family
Manager (bottom left) evaluates and resolves the DSL families
and related feature configurations. To this end, it comprises three
modules that process feature models, feature configurations, and
resolve the latter. It also interacts with the DSL Component Com-
poser for composing DSL components in the process of applying the
DSL family configuration and deriving a new DSL (of component)..
The DSL Component Customizer (bottom right) reads and
applies the customization configuration. It parses and validates
customization configurations and applies these.

6 APPLICATION EXAMPLE
This section provides an insight into applying our concepts on the
example of deriving an FSM DSL used for describing state-based
behavior of a robot arm (cf. Sec. 2) [39]. This includes selecting re-
quired features from the DSL family, showing the feature-realizing
DSL components, their composition, and the artifact composition
exemplified via the composition of grammar productions.

Consider language engineering experts that design DSLs for dif-
ferent concerns of Figure 1 and create DSL components accordingly.
For instance, the DSL component InFinState (see Figure 12)
contains a grammar and a generator (ll. 2-3) to provide productions
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dsl component InFinState {

grammar mc.InitialAndFinalState;

gen IFG context infinstate._gen.InFinGenerators;

provides production InitialState;

provides production FinalState;

provides gen InGen for InitialState with IFG;

provides gen FinGen for FinalState with IFG;

wfrs CheckStateCardinality {

infinstate._cocos.InitStatesCardinality;

}

wfr parameter Integer numberOfInitialStates for

infinstate._cocos.InitStatesCardinality;

}
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well-formedness 
rule parameter

grammar InitialAndFinalState {

InitialState = "initial" "state" Name;

FinalState = "final"   "state" Name;

}
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Figure 12: The DSL component InFinState that provides
grammar productions and generator for the language ele-
ments initial and final state (top) and its grammar (bottom).

and generators for initial and final state definitions (ll. 5-9). In addi-
tion, it contains a well-formedness rule that limits the number of
initial states. The number itself is configurable via the parameter
numberOfInitialStates (ll. 15ff). Figure 12 depicts the refer-
enced grammar with the productions provided by the DSL compo-
nent. The TransitionsWithTiming (see Figure 13) provides
a production and a generator for timed transitions with a counter
that decreases over time and is extensible with additional timing
expressions. A DSL family architect then models a family for FSMs.
Therefore, she arranges several DSL components resulting in the
DSL family StateMachineFamily (cf. Figure 9).

Based on this family, a DSL owner then can derive an FSM
DSL for describing the state-based behavior of robot arms. For
this, she selects the features StateMachines, the abstract fea-
ture PseudoStates, InitialAndFinalState, and Timed-
Transitions in a feature configuration RobotArmLang. The
featureStateMachines is realized by theTransitionSystem
component, the feature InitialAndFinalState is realized
by the component InFinState (see Figure 12), and the feature
TimedTransitions is realized by the TransitionsWith-
Timing component. Based on the feature selection, the DSL com-
ponentsInFinState andTransitionsWithTiming are com-
posed with the DSL component TransitionSystem. This re-
sults in a composed DSL component RobotArmLangComp (see
Figure 14). Since bound provided extensions are embedded into the
component that is the target of the binding, the provided extensions
of the embedded components are no longer available in the com-
posed component. However, to preserve further extension, the re-
quired extensions of the embedded components remain available in
the composed component. Thus, the composed component adopts
the provided extensions of the component TransitionSystem
(ll. 7, 12). Furthermore, the required extensions of the embedded
component TransitionsWithTiming are available (ll. 10, 15).
Through binding thewell-formedness rule set in the featureTimed-
Transitions, the set TimingCorrectness is present in the
composed component (ll. 25ff) as well as the well-formedness rule

dsl component TransitionsWithTiming {

grammar mc.TimedTransition;

gen TTG context time._gen.TTGenerators;

provides production TimedTrans;

requires optional production ITimedExpr;

provides gen InGen for TimedTrans with TTG;

requires gen TimerGen for ITimedExpr with TTG;

wfrs TimingCorrectness {

time._cocos.IsTimingPositive;

} 

}
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grammar TimedTransition {

interface ITimedExpr;

TimedTrans = Name "–" timer:ITimedExpr ">" Name;

IntegerTimer implements ITimedExpr = IntLiteral "sec";

}
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Figure 13: The DSL component TransitionsWithTiming
(top) and its grammar (bottom).

sets of the component TransitionSystem (ll. 17-20 and ll. 21-
24). As bindings of the feature InitialAndFinalState in-
clude the well-formedness rule set CheckStateCardinality
(ll. 28ff) of component InFinState, the parameter number-
OfInitialStates is available in the composed component
(ll. 31ff).

The composition of the language artifacts according to the bind-
ings defined by the selected features results in a composed gram-
mar RobotArmLangGrammar (l. 2) named after the DSL fam-
ily configuration and a new generator context RobotArmLang-
Generators (l. 5). Our approach implements the composition
of grammars, generators, and well-formedness rule sets as pre-
sented in [6, 7]. Hence, the generator context contains the abstract
adapter classes between the producer and product interfaces of the
extended and embedded generators that are necessary to compose
the implementations of the bound generators.

Figure 15 depicts the composed grammar RobotArmLang-
Grammar. The grammar results from applying the bindings defined
in the selected features of the DSL family (see Figure 9). The feature
InitialAndFinalState defines grammar bindings that bind
the provided extensions InitialState and FinalState of
the component InFinState to the required extension IState
of componentTransitionSystem (ll. 20ff). Identifying the gram-
mar of the provided production requires insights into the DSL com-
ponent. The component model of InFinState (cf. Figure 12) ref-
erences the grammar InitialAndFinalState depicted in Fig-
ure 12. It contains the two productions referenced by the provided
extensions of the DSL component. The required extension of the
component TransitionSystem references the interface pro-
duction IState of the grammar TS (cf. Figure 7). From this, the
tooling generates the composed grammar depicted in Figure 15. For
the grammar bindings of the feature InitialAndFinalState,
the composed grammar extends the grammars TS and Initial-
AndFinalState referenced by the bound components (l. 2). Also,
the grammar defines two productions InitialState2IState
and FinalState2IState adapting the bound productions to
another. Processing the grammar bindings of the feature Timed-
Transitions is similar to the ones of the feature InitialAnd-
FinalState. Here, the composed grammar introduces a new
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dsl component RobotArmLangComp {

grammar mc.RobotArmLangGrammar;

gen FSMG context fsm._gen.TSGenerators;

gen TTG context time._gen.TTGenerators;

gen RAG context ra._.RobotArmLangGenerators;

provides          production TransSystem;

requires optional production IState;

requires optional production ITrans;

requires optional production ITimedExpr;

provides          gen TSMainGen for TransSystem with FSMG;

requires optional gen StateGen for IState with FSMG;

requires optional gen TransGen for ITrans with FSMG;

requires optional gen TimerGen for ITimedExpr with TTG;

wfrs TransitionsCorrect {

fsm._cocos.TransitionSourceStateExists;

fsm._cocos.TransitionTargetStateExists;

}

wfrs TSCorrect {

fsm._cocos.AllStatesReachable;

fsm._cocos.NamesAreUpperCase;  

}

wfrs TimingCorrectness {

time._cocos.IsTimingPositive;

}

wfrs CheckStateCardinality {

infinstate._cocos.InitStatesCardinality;

}  

wfr parameter Integer numberOfInitialStates for

infinstate._cocos.InitStatesCardinality; 

}
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Figure 14: The component resulting from the feature config-
uration contains the DSL components added by the bindings
defined in the selected features.

production implementing the interface of the required extension
and extends the production of the provided extension.

The DSL owner needs a timed expression to define a specific trig-
ger time. As this is not available in the DSL family, she customizes
the derived DSL component (see Figure 14). With the customization
depicted in Figure 10, she binds a production and generator real-
izing the expression that enables her to define a condition based
on a certain time. Here, she limits the number of initial states to
one state by setting the parameter numberOfInitialStates.
The composition produces a new DSL component containing the
language features added via the customization. A modeler then can
use an FSM DSL tailored specifically to her needs.

grammar RobotArmLangGrammar

extends FSM, TimedTransition, InitialAndFinalState {

start StateMachine;

InitialState2IState extends InitialState implements IState

= "initial" "state" Name;

FinalState2IState extends FinalState implements IState

= "final" "state" Name;

TimedTrans2ITrans extends TimedTrans implements ITrans

= Name "–" timer:ITimedExpr ">" Name;

}
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Figure 15: The composed grammar after applying the fea-
ture configuration. It adapts the provided grammar produc-
tions to the productions of the required extensions.

7 DISCUSSION AND RELATEDWORK
Encapsulating constituents relating to a language concern in an
explicit DSL component eases their reuse as it mitigates the chal-
lenge of identifying how the usually only loosely coupled language

constituents can be reused without becoming an expert in their im-
plementation (R1). Through arranging DSL components in families,
their systematic reuse can be guided, which eases composing these
components accordingly (R2). This separation of concerns along
the different roles also can liberate domain experts enacting as DSL
owners from needing in-depth language engineering expertise (R3).
Customization enables open variability of DSL components with
capabilities not foreseen in the DSL family (R4). However, our ap-
proach entails additional efforts in defining language components
and empirically measuring their impact demands further research.

Our approach to DSL engineering is limited to textual, external,
and translations DSL and has comprehensive requirements for com-
patible technological spaces. Based on these assumptions, it uses
specific composition operations, namely embedding (grammars),
merging (context conditions), and adapted embedding (code gener-
ators). Removing parts of a language by selecting features, thus, is
not possible. While the set of valid models can be restricted through
adding new features (that contain suitable context conditions), the
non-terminals, context conditions, and code generators selected
by other features remain part of the language (family). Moreover,
we currently use the technological space of MontiCore for real-
izing our concepts as well as for engineering language families.
This might introduce biases towards MontiCore in our concepts,
we are currently experimenting with the language workbenches
Neverlang [44] and Xtext [18].

Several language engineering tools such asMPS [46], Spoofax [47],
and Melange [16] provide means for language composition and
customization, but do not provide methods for systematic reuse
through DSL families. Other approaches for systematically reusing
language parts do not make their interfaces explicit, which hampers
reusing these modules [3, 33, 44, 45], or do not support all three
component dimensions [16, 36].

Overall, our approach builds upon ideas formulated as concern-
oriented language development [13, 31], which proposes to engineer
languages based on components (called “concerns”) with three
kinds of interfaces representing their variability, customization,
and use. In this vision, concerns comprise artifacts linked with
each other that conform to meta-languages which are typed by
“perspectives” contained in libraries. With respect to this vision,
our approach addresses the componentization of languages and
their systematic reuse only. However, we are unaware of any other
similar comprehensive realizations of this part of the vision.

8 CONCLUSION
Wehave presented concepts for reusing 3DDSL components through
closed variability of DSL families (product lines) and open cus-
tomization. These concepts are intended to be used in a systematic
fashion by different stakeholders involved in language engineering,
who are supported by a collection of integrated modeling languages
to model DSL families and their constituents. While our concepts
and their application method are currently limited to textual, ex-
ternal, and translational DSLs, they greatly facilitate DSL reuse
and, hence, foster the adoption of modeling languages by domain
experts. In the future, we plan to relax our method’s assumptions
(A1-A5) and integrate further language definition dimensions.
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ABSTRACT
Innovations in Cyber-Physical System (CPS) are driven by function-
alities and features. Mechanical Engineering, on the other hand, is
mainly concerned with the physical product architecture, i.e., the hi-
erarchical arrangement of physical components and assemblies that
forms the product, which is not explicitly linked to these functions.
A holistic model-driven engineering approach for CPS, therefore,
needs to bridge the gap between functions and the physical product
architecture to enable agile development driven by automation. In
the theoretical field of mechanical design methodology, functional
architectures describe the functionality of the system under devel-
opment as a hierarchical structure. However, in practice, these are
typically not considered let alone modeled. Existing approaches
utilizing mechanical functional architectures, however, do not for-
malize the relation between the functional architecture and the
geometric design. Therefore, we conceived a meta-model that de-
fines modeling-languages for modeling functional architectures of
mechanical systems and physical solutions, i.e., interconnections
of physical effects and geometries, as refinements of the functional
components. We have encoded the meta-model as a SysML pro-
file and applied it within an interdisciplinary, industrial project to
model an automotive coolant pump. Our contribution signposts
the potential of functional structures to not only bridge the gap
between function and geometry in mechanics but also to integrate
the heterogeneous domains participating in CPS engineering.

CCS CONCEPTS
• Cyber-Physical Systems; • Functions in Mechanical Engi-
neering; • Functional Architectures; • SysML-Profile;

KEYWORDS
Systems Engineering, Cyber-Physical Systems, Functional Archi-
tecture, Mechanical Design Methodology SysML, SysML-Profile,
Product Development Process
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1 INTRODUCTION
CPS are characterized by the interaction of mechanical, electronic,
and software systems [1, 10, 42]. Social and technological chal-
lenges [7, 17] as well as the customer’s demand for more func-
tionalities and a shorter time-to-market, raise the complexity of
engineering such systems [14, 29, 40].

In Mechanical Engineering (ME), engineers integrate the physi-
cal components of a product, into assemblies such that geometric
constraints, e.g., regarding design space, mounting, and mainte-
nance are satisfied [40]. Further design requirements, such as life-
time requirements, or energy efficiency, contribute to the complex-
ity of mechanical systems. We refer to the hierarchical arrangement
of physical components and assemblies that forms the product as
the (physical) product architecture. Mechanical systems fulfill cer-
tain functionalities through physical effects acting between compo-
nents and assemblies of the physical product. Thus, there is a strong
correlation between physical effects and the product architecture.
Engineers control the impact of physical effects by manipulating
the geometric shape of components or their material, as the effects
themselves are set by laws of nature [40]. As a result, mechani-
cal engineers tend to directly design the geometry of components
based on given requirements, without explicating the functionality
to implement. Therefore, the geometric and physical integration
of components into mechanical products has been optimized and
the physical product architecture has become the element that
structures the development activities in ME [40].

This raises a gap between the functional CPS requirements [14,
29] and the physical product architecture as the physical compo-
nents are not directly linked to the functions or features they imple-
ment. Therefore, reusing existing implementations in other systems
is hardly possible and functional testing occurs late in the Product
Development Process (PDP), i.e., when changes are cost-intensive.

In Software Engineering (SE), the problem-implementation gap
arises whenever the solution to a problem is described at a lower
level of abstraction than the problem itself [17]. Model-Driven
Engineering (MDE) aims to enable developers to focus on their
respective domains by abstracting from the complexities of the
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implementation platform [17]. The application of abstraction, sep-
aration of concerns, and architectural modeling [8] have shown
to reduce this gap effectively [8, 17]. A software architecture de-
scribes the functions of the software system under development
as a hierarchy of interacting, i.e., message-exchanging, functional
components [9]. Among others, formal modeling based on domain-
specific adjustable Architecture Description Languages [13, 35, 36]
enables verification at early design stages, reuse, and supports au-
tomation to enhance agile development in the software domain.

The problem-implementation gap present in automotive soft-
ware engineering [14, 17, 29] resembles the gap between functional
requirements and the product architecture in ME: Functional re-
quirements imposed upon the product are stated by the customer,
typically in natural language at a high level of abstraction [29].
Geometric models, such as e.g., Computer-Aided Design (CAD)
models, describe the assemblies and components at a level of detail
that reaches from the engine as a whole to the screws holding it
together. Thus, the product architecture which is part of the me-
chanical solution domain is described at a lower level of abstraction
(the level of screws) than the functional requirements which belong
to the mechanical problem domain.

Mechanical design theory considers functional structures, i.e.,
a hierarchical decomposition of the required system functionality,
as a means to systematize the design process in ME [28, 40]. Once
formalized as models, functional structures have the potential to
not only narrow the gap between functional requirements and the
physical product architecture, but also to bridge the gap between
the latter and the software architecture. Hence, the contributions
of this paper are

(1) a meta-model for functional architectures of CPS from an
ME point of view based on [28, 40];

(2) a demonstration of how to encode the meta-model as a
SysML profile, that enables mechanical engineers to model
these architectures in a way that fosters reuse and early
exploration of innovative solutions; and

(3) an example from industry modeling an automotive coolant
pump using the profile which emerged as part of an inter-
disciplinary project to demonstrate the profile’s usage and
possible benefits.

The contributions aim to signpost the potential of functional ar-
chitectures not only to systematize the PDP through reuse and
automation enabled by formal models but also to enhance collab-
oration of experts from heterogeneous domains in a holistic CPS
engineering approach.

The rest of this paper is structured as follows: Section 2 intro-
duces a running example. Section 3 provides preliminaries regard-
ing the SysML elements extended or reused in in the proposed
SysML profile. Section 4 gives insight into functional architectures
in mechanical design theory from a language engineering point
of view and constitutes the concepts in a meta-model. Section 5
encodes this meta-model as a SysML profile. Section 6 illustrates the
results from using the profile for engineering an automotive elec-
trical coolant pump within our project. Section 7 discusses related
work and the findings before Section 8 concludes.

Engine

Fuel

Pmech

Exhaust Gas

Ptherm

Ptherm

Combustion

Cooling Medium

Electrical

Coolant Pump

Cooler

Cooling

System

Figure 1: Diagrammatic illustration of an automotive com-
bustion engine with a cooling system.

2 RUNNING EXAMPLE
To illustrate domain and language concepts, we use the following
running example from automotive engineering throughout the pa-
per: For propulsion, automotive systems contain a drive system. The
main functionality of the drive system is to convert input energy
into mechanical energy and to transfer the mechanical energy onto
the road, where it causes the vehicle to move. Speaking in terms
of components, the engine performs the former, while the drive
train and the wheels perform the latter task. Combustion drives,
for instance, convert the chemical energy held by fuel into mechan-
ical energy. Electric drives, on the other hand, convert electrical to
mechanical energy.

Figure 1 shows the principle set up of a combustion engine dia-
grammatically. The physical effect that makes combustion engines
serve their purpose is the combustion of the fuel that is injected
into the engine’s cylinders. The combustion converts a portion of
the chemical energy held by the fuel into thermal energy which
causes the pressure in the combustion chamber to increase. The
released exhaust gas holds the rest of the chemical energy. The
increasing pressure acts on the surface of the engine’s piston as
mechanical energy (𝑃𝑚𝑒𝑐ℎ) causing the piston to move. However,
the thermal energy (𝑃𝑡ℎ𝑒𝑟𝑚) is released as heat which causes the
engine’s temperature to increase. Once a maximum temperature is
reached, the engine overheats and stops functioning. To prevent
the engine from overheating, it has to be cooled, i.e., the thermal
energy released as heat has to be dissipated. Often, water cooling
systems, as sketched at the bottom of Figure 1, take on this task.
Driven by an electric motor, a cooling medium circulates between
the combustion engine and a cooler. By the law of convection [50],
the circulating cooling medium absorbs the combustion heat at
the engine. The cooler releases the heat absorbed by the cooling
medium to the surrounding air. Keeping the cooling medium circu-
lating is required for absorbing the heat, as otherwise convection
would not take place. Thus, a cooling medium pump is a necessary
component of the cooling system.
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Figure 2: Top: SysML Block Definition Diagram (BDD) of the
functional architecture of the running example. Bottom: In-
ternal Block Diagram (IBD) of GenerateVolumeFlow. For de-
tails on stereotypes and contents see Sections 4 to 6.

3 PRELIMINARIES
The SysML profile introduced in Section 5.2 is tailored for ME and
provides a language for explicating the functional structure of a
mechanical system, which is understood as a reusable basis of the
PDP in [40], in a model. This section briefly summarizes the SysML
elements that are extended or reused in the profile.

SysML is a general-purpose modeling language family for sys-
tems engineering [33] that reuses and extends a subset of the Unified
Modeling Language (UML) 2.5 [32] to represent aspects of system
software and hardware in an integrated way [25]. To this end, it
comprises four behavior modeling languages, four structure model-
ing languages, and requirement diagrams. The structure modeling
languages comprise BDDs that describe the structure, interfaces,
and properties of blocks. IBDs provide a means to describe the in-
ternal structure of a block. Figure 2 shows examples for a BDD and
an IBD comprising most of the SysML modeling elements reused
or specialized in the profile presented in Section 5:

Blocks extend UML classes and are used to model system decom-
position, system interaction, and various system properties such as
values [33]. The properties of blocks are organized in compartments.
The values-compartment lists a block’s ValueProperties, which are
ValueTypes having composite aggregation, e.g., numPoles of the
block BiotSavart. PartProperties, listed in the parts-compartment,
are blocks that have composite aggregation [33], e.g., leverArm of
BiotSavart. ConstraintBlocks are specific blocks used to integrate
engineering analyses, e.g., reliability, but also to specify physical
constraints as mathematical expressions [33]. ConstraintProperties
of a block are ConstraintBlocks having composite aggregation, e.g.,

voltage of SynchronousDriving in Figure 2. ConstraintParame-
ters are the ValueProperties of ConstraintBlocks and represent the
variables of such expressions. ProxyPorts make features or internal
parts of a block available for other components, but do not repre-
sent separate parts of the system nor exhibit behavior or comprise
internal parts [33]. They are properties of a block typed by Inter-
faceBlocks and identified by the stereotype «proxy», e.g., p_el of
the block ConvertEnergyElToMech typed by the InterfaceBlock
ElEnergy_in. InterfaceBlocks specify the elements that flow be-
tween a block and its environment through FlowProperties with
direction in, out or, inout [33]. Section 5 gives more details on
InterfaceBlocks and their usage. An internal structure, i.e., the inter-
connection of a composition of blocks, is modeled by an IBD that
belongs to the composed block. The bottom of Figure 2 shows an
IBD that models the functional structure of the running example
introduced in Section 2. The IBD shows the interaction between the
PartProperties of the block GenerateVolumeFlow through Connec-
tors between the ProxyPorts of the PartProperties. In IBDs, Proxy-
Ports, typed by InterfaceBlocks that have FlowProperties of only
one direction which is not inout, hold an arrow showing this
unique direction. For example, p_el typed by the InterfaceBlock
ElEnergy_in in the IBD in Figure 2, has only FlowProperties of di-
rection in. Parametric diagrams are restricted IBDs that show only
the usage of ConstraintBlocks. BindingConnectors are connectors
that specify the equality of the numeric values of the properties at
both ends and hold the stereotype «equal» [33]. Being defined on
UML [32], SysML offers infrastructure to create profiles by defining
stereotypes as extensions of meta-classes or as sub-stereotypes [33].

4 A META-MODEL FOR FUNCTIONAL
ARCHITECTURES OF CPS

Ongoing research in ME deals with narrowing the gap between
functional requirements and the product architecture. Proclaimed
methods differ in terms of terminology and details. Prevalently,
these methods describe the product’s function as a functional struc-
ture and use descriptions of physical effects as links to geometric
components [40, 54]. Design catalogs [28, 44, 53] document recur-
ring elements, such as functions, physical effects, or geometries
to enable their systematic variation and rational reuse. In practice,
however, mechanical engineers rarely explicate functional struc-
tures or utilize design catalogs during development. Mostly, the
link between function and geometrical component is kept in the
engineer’s mind. Formalizing the knowledge from design catalogs
and linking the information to detailed models describing physical
effects and geometry provides the basis for systematic reuse in an
MDE approach. A modeling language that enables to model func-
tions, solutions, geometry and physical effects, where models of
solutions comprise the latter two serves this purpose. The formal na-
ture of the modeling language establishes systematic relationships
between models of functions and solutions, as well as geometry
and physical effect. Models in this language can be (re)used to, e.g.,
investigate different solutions for products at early development
stages by varying solutions to functions. This section summarizes
and extends the concepts of [28, 40] and presents a formalizing
meta-model [48] which provides the conceptual basis for defining
such modeling languages.
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Figure 3: Meta-model that describes the types of functional
flows. The shaded classes mark extensions to [28, 40].

4.1 Functional Structures
Mechanical design theory gives a definition of function based on
the concept that a system or a part of it can be delimited by a
boundary, through which physical quantities can enter and leave
the system as functional flows [40]. The function of the delimited
system transforms the incoming functional flows to the outgoing
flows. Therein, functional flows are classified as flows of signal,
energy andmaterial [40, 52]. In the running example (see Section 2),
the main function of the pump is to “apply fluid with mechanical
energy”. The function applies the incoming cooling medium flow
with mechanical energy (P𝑚𝑒𝑐ℎ), such that the cooling medium
leaving the system boundary is accelerated. The function of a me-
chanical system breaks down into several sub-functions linked
by functional flows [40]. Functions are referred to as elementary
functions if the transformation of flows they represent does not
physically decompose further [28]. The following section captures
and extends these concepts in the meta-models shown in Figure 3
and 4 from a language engineering point of view. The shaded classes
mark extensions of [28, 40] to enable the formalization.

Functional Interfaces: To capture kinds of functional flows, our
meta-model uses a concept of channel types. In an object-oriented
fashion [47, 48], channel types specify the type of a functional flow
by means of attributes and constraints. The channel types energy,
signal, and material flow [28, 40] comprise attributes representing
the characteristics of physical flows of energy or material and of
logical signal flows. A material flow may additionally reference a
material representing the physical material that is flowing in detail,
e.g., [31]. Material engineering is out of the scope of this paper
and we consider materials solely as types specified by attributes
and constraints. Here, constraints are mathematical expressions
and represent (physical) dependencies between the attributes of a
channel type or a material.

The attributes of channel types have a basic type specifying the
data type of the attribute. The dynamicity specifies how an attribute
changes its value during system runtime. For example, theory on
software functions often considers signals to change discretely [11].
Attributes that represent physical characteristics belong to either
an energy, or material flow channel type or to a material. These
attributes typically represent static, i.e., fixed, characteristics of the
physical entity, such as e.g., the specific heat capacity of a material,
or they represent characteristics that change continuously at system
runtime, e.g., the temperature of a physical part.
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MM Functions
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type
Channel

1
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*
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Function

Architecture Function

Elementary

Effect
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geometry

1

«Enumeration»
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1

effect

ChannelType
dir
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Figure 4: Meta-model of architectures. The shaded classes
are extensions of [28, 40].

Functional Architectures: Describing system functions as a de-
composed hierarchy is common to ME [28, 40] and SE [8, 17].
Therein, the functional composition of the sub-functions specifies
the behavior of the decomposed function [11, 40]. Each function has
an interface comprising a set of typed channels with an unambigu-
ous direction, that is either in or out (cf. Figure 4). The meta-model,
utilizes the composite pattern [19] to capture an architecture as
a hierarchical composition of functions. The meta-model defines
modeling languages for ME, thus, the leaves of a functional architec-
ture are physical functions, which capture the elementary functions
of [28]. The abstract elementary effect and elementary geometry
bridge the gap between the physical function and its principle solu-
tions since their implementations represent effects and geometries
suited to realize the physical function. As detailed in Section 4.2,
specifying an interaction of a physical effect and a quantitative
geometry adds a behavior to the physical function. Extending the
meta-model to capture functional architectures across domains, is
possible by integrating description techniques for the behavior of
leaf-functions from other domains: Software and control engineer-
ing, for example, often utilize various kinds, of automata to specify
functional behavior, e.g., [1, 13, 42, 47].

4.2 Effect Catalogs and Principle Solutions
ME created design catalogs to rationalize the PDP by storing proven
solutions for recurring design tasks [22, 40]. Various design catalogs
exist in ME, e.g., for machine elements [44] or mechanic connec-
tions [45]. A popular contribution focuses on physical effects to
support engineering solutions that realize a functional structure
within the PDP [27, 28, 40]. The catalog comprises 350 physical
effects that are mapped to the elementary function they are suited
to fulfill [28]. For the conversion of electrical to mechanical energy
in the running example (see Section 2), the effect catalog lists, e.g.,
the Biot-Savart effect (cf. Figure 11). Principle solutions characterize
how a physical effect, given a qualitative geometry with certain
material properties [40], fulfills a physical function, i.e., the leaf of
a functional structure. The principle solution of the physical func-
tion “apply fluid with mechanical energy” in the running example
(see Section 2) could, for example, specify that the selected effect
should be implemented with the principle geometry of a rotating
wheel mounted within the cylinder through which the fluid flows,
to which Section 5.3 provides further details.
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Figure 5: Meta-model of solutions. The shaded classes are
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Meta-model of Solutions. Figure 5 shows the meta-model for prin-
ciple solutions of physical functions. To enable systematic design of
principle solutions to physical functions, the former must be consis-
tent to the latter. That is, the specification of the function must be
fulfilled by the solution. Therefore, we consider a principle solution
to refine a physical function (cf. Figure 4) by selecting a principle
effect and a principle geometry. To support the idea of [28], that
elementary functions point to the physical effects suited to realize
them, principle effects implement the abstract elementary effect of
the physical function. Similarly, suitable principle geometries imple-
ment the elementary geometry of the respective physical function.
Models of physical functions, principle effects, and principle geome-
tries thereby become reusable. The implementation relation from
the elementary geometry and elementary effect to their principle
counterparts formalizes the mapping between elementary function
and physical effect proposed in [28].

Physical phenomena are described as mathematical formulas
over geometric and dynamic variables, captured by the constraints
a principle effect is composed of in the meta-model in Figure 5. The
lever effect, for example, requires a lever arm to be mounted on
a pivot. Putting force on the longer end of the lever arm, by the
lever effect, causes a larger force to occur at the other end. The
mathematical formula relates the strength of both forces to the
lengths of the lever emanating from the pivot. Principle solutions
describe how such phenomena can be utilized to fulfill a physi-
cal function by relating attributes of the principle effect and the
principle geometry through constraints. A physical effect often
comprises an interaction of multiple physical laws. Principle effects
model physical effects by specifying this interaction as a network
of constraints, where each constraint represents a physical law. A
principle solution relates the attributes of the principle effect to
the attributes of the principle geometry and the attributes of the
channel types of the incoming and outgoing channels. The prin-
ciple effect, thereby, mathematically describes the transformation
of the incoming flows to the outgoing flows, i.e., the behavior of
the physical function, dependent on the chosen principle geometry.
The meta-model considers principle geometries as compositions
of geometric elements which are types characterized by attributes
and constraints between these attributes. The fixed attributes of a

geometric element represent static characteristics, e.g., dimensions,
continuous attributes specify dynamic characteristics, e.g., velocity,
and constraints specify dependencies between these attributes, e.g.,
that the volume is the product of the dimensions. ME practition-
ers typically rely on simulation languages to model constraints or
physical effects [2, 6, 21, 41, 55], which are tailored particularly for
modeling differential equations, and respective tooling often comes
with powerful solvers. For geometry, CAD models are the typical
choice of the domain experts. Languages encoding the meta-model
may integrate such models.

Solutions implement architectures and redefine the inherited
physical functions or architectures to principle solutions or solu-
tions, respectively. A solution’s components, i.e., (principle) solu-
tions, are interconnected by functional flows as inherited from the
architecture. Constraints of a solution express the mathematical
dependencies between the attributes of its components.

5 MODELING MECHANICAL FUNCTIONS
AND SOLUTIONS IN SYSML

The previous section conceived an expressive meta-model which
formalizes and extends the concepts of mechanical design the-
ory [28, 40] from a language engineering point of view. The ex-
tension of [28, 40] includes, e.g., the notion of channel types, the
systematic mapping of principle solutions to elementary functions
as well as the relation between functions and solutions. The latter
provides the foundation to systematically define domain-specific
modeling languages for the ME domain which enable to model
the functional architecture of a mechanical system. In the follow-
ing, we propose SysML for Functional Mechanical Architectures
(SysML4FMArch), a SysML profile which gives a concrete syntax
that encodes the meta-model by specifying suitable stereotypes and
relations between them.

5.1 Functional Interface
Functions interact by means of signal, material or energy flows [40],
which our meta-model captures as channel types. To this effect,
SysML4FMArch specifies the stereotypes «Signal», «Energy», and
«MaterialFlow», as well as «Material» and «Attribute» which en-
code the respective elements of the meta-model (cf. Figure 3). At-
tributes are specific ValueTypes with a property of the enumer-
ation type «Dynamicity» which encodes the respective element
of the meta-model and indicates how the numeric value of the
modeled attribute changes during runtime. The abstract channel
type of the meta-model does not have a respective stereotype in
SysML4FMArch to assure that functional flows are always classi-
fied. The attributes of channel types or materials are represented
as «Attribute»-typed ValueProperties. Constraints between these
attributes are modeled by ConstraintBlocks and BindingConnec-
tors [33] .

The examples in Figure 6 illustrate this in the BDD and the
parametric diagram at the bottom left: A flow of fluid is represented
by a «MaterialFlow»-block with three attributes. One is of the real
number type Pressure and specifies the unit Pascal as well as the
«Dynamicity» cont, which indicates, that ValueProperties typed by
Pressure change their value continuously during system runtime.
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Figure 6: Top: SysML4FMArch’s encoding of themeta-model
in Figure 3. Bottom: Examples for channel types modeled in
SysML4FMArch.
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Figure 7: SysML encoding of functions as defined by the
meta-model in Figure 4.

The ConstraintBlock HydraulicPower, shown at the bottom left,
models the physical relationship between the attributes of Fluid.

Channels of functional interfaces are represented by Proxy-
Ports [33]. SysML4FMArch requires the InterfaceBlocks typing
these ProxyPorts to have FlowProperties of unambiguous direction,
i.e., the usage of direction inout or specifying FlowProperties of
multiple directions is not allowed. The bottom right of Figure 6
shows examples for InterfaceBlocks to be used for typing Proxy-
Ports. Note that Fluid and MechEnergy are models of the physical
entities and not of flows of information about these entities.

5.2 Functions
Figure 7 shows how SysML4FMArch encodes the notions of archi-
tecture, function, physical function, elementary effect and elemen-
tary geometry, that were introduced in Section 4.1.

Architectures and physical functions are encoded as stereotyped
blocks (see Figure 7). Since the profile is intended for users with a
background in ME, physical functions are encoded by the stereo-
type «ElementaryFunction» to convey the terminology of [28, 40].
SysML4FMArch provides the «Function»-stereotype that encodes
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Figure 8: SysML4FMArch encoding of solutions (cf. Figure 5).

the notion of function which is abstract in the meta-model. This
enables black-box use of functions and allows to postpone specify-
ing a behavior, as it may not be known at early development stages
whether the function has to be further decomposed.

To illustrate this, consider the example «Architecture» shown
in Figure 2. The IBD at the bottom shows the internal structure
of the «Architecture» GenerateVolumeFlow which comprises two
PartProperties of «ElementaryFunction»-type, i.e., moveFluid and
elToMech as well as the «Architecture» setVRot.

The physical functions described in [28] can be digitized by
storing respective «ElementaryFunction»-blocks in a SysML Mod-
elLibrary [33]. The general specifications of [28] often need to be
refined to integrate them as part of an architecture. Utilizing a
specialization of an «ElementaryFunction» allows to refine the
function’s interface while preserving consistency.

Elementary Effects and Elementary Geometries: A physical func-
tion can be realized by selecting a physical effect from a finite list [28,
40]. The interconnection of a physical effect and geometry can be in-
terpreted as the behavior of a physical function. Thus, physical func-
tions comprise an elementary geometry and an elementary effect
in the meta-model (cf. Section 4.1). SysML4FMArch encodes these
elements by abstract blocks with respective stereotypes (cf. Fig-
ure 7). The abstract «ElementaryGeometry» and «ElementaryEf-
fect» serve as placeholders for the «PrincipleEffect» and «Princi-
pleGeometry». The latter are implementations of their elementary
counterparts that can be selected when creating a «PrincipleSolu-
tion» that specializes an «ElementaryFunction» (see Section 5.3).
The example at the top of Figure 2 illustrates this: The «PrincipleSo-
lution» SynchronousDriving specializes ConvertEnergyElToMech
which redefines the elementary effect and elementary geometry to
their implementations BioSavart and RotorStator, respectively.

5.3 Solution Architectures
To specify a principle solution for a physical function in an archi-
tecture, the engineer chooses implementations of the elementary
geometry and elementary effect owned by the physical function
and specifies the constraints between the values of both compo-
nents. Figure 8 shows the encoding of the meta-model in Figure 5
in SysML4FMArch which is detailed in the following paragraphs.
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Figure 9: Principle effect representing the cause for turbu-
lences in flowing fluids, modeled in SysML4FMArch.

Effect Elements and Geometric Elements: SysML4FMArch rep-
resents geometric elements as blocks with the stereotype «Geo-
metricElement», comprising ValueProperties typed by «Attribute»-
ValueTypes. Constraints between attributes of geometric elements
are modeled, either as BindingConnectors in case of equalities or
as regular ConstraintBlocks in case of more complex mathematical
relationships. Effect elements, i.e., physical laws or relations be-
tween attributes of principle effects, are modeled as specific SysML
ConstraintBlocks with the «EffectElement»-stereotype. Their Val-
ueProperties are typed by «Attribute»-ValueTypes and represent
the attributes of the constraint (cf. Figure 8). An «EffectElement»
may link to a simulation model, which can be realized e.g., as pro-
posed in [25]. In SysML4FMArch, the variables of the simulation
are represented by the ConstraintProperties of «EffectElements».
The attributes of a geometric element are modeled by the Value-
Properties of a «GeometricElement».

Principle Geometry and Principle Effect: Principle geometries
comprise the active surfaces between which physical effects come
into action. In analogy to the meta-model, a «PrincipleGeometry»
therefore comprises «GeometricElement»-PartProperties, each rep-
resenting an active surface. Since a principle effect is an interaction
of physical laws, a «PrincipleEffect» in SysML4FMArch comprises
ConstraintProperties typed by an «EffectElement». BindingCon-
nectors connect the «Attribute»-ValueProperties of a «PrincipleEf-
fect» to attributes of its «EffectElement»-ConstraintProperties and,
thereby represent equality of the numeric values of the ValueProp-
erties at the connector’s ends.

To illustrate this, consider the principle effect modeled in Fig-
ure 9. The equation 𝑝 · 𝑄 = 𝑀 · 𝜔 (1) describes the physical law
that causes turbulences, i.e., a rotational velocity, within a flowing
fluid [43]. Here, 𝑝 is the fluid’s pressure, 𝑄 is the volume flow rate,
𝜔 is the rotational velocity, and𝑀 is a momentum imposed by a me-
chanical energy. Thus, the «PrincipleEffect» Hydrodynamics has
«Attributes» of respective types which all specify the «Dynamicity»
cont (e.g., Figure 6 shows the definition of Pressure). The momen-
tum strongly depends on the geometric setup, through which the
fluid is flowing. In the context of the running example (cf. Section 2),
we assume that the fluid flows through a tubular pipe with a length
of oCylWidth and a diameter of oCylDia. In the pipe, the fluid flows
through a paddlewheel with nW paddles, an outer diameter of oWDia,
an inner diameter of iWDia, and a width of wWidth. These Value-
Properties of Hydrodynamics represent geometric variables of fix
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Figure 10: Model of a possible principle solution to realize
the elementary function ApplyFluidWithMechanicalEnergy.

kind, as these attributes are assumed to not change their value at
system runtime. The «EffectElement» HydrodynamicEffect links
to a simulation model that calculates a difference p between pres-
sures of the incoming and the outgoing fluid, and a volume flow
rate q according to Equation (1). BindingConnectors between the
ConstraintParameters of the ConstraintProperty hydro model the
physical relationships between the attributes of the principle ef-
fect as stated by the physical law modeled by the «EffectElement»
HydrodynamicEffect.

Solutions and Principle Solutions: A principle solution inherits
the functional interface, the elementary geometry and the elemen-
tary effect from the physical function it fulfills. By redefining the
latter two to concrete implementations, i.e., principle effect and
principle geometry, the engineer creates a solution to realize the
functionality [28]. The interaction of the principle effect and the
principle geometry specifies the behavior of the principle solu-
tion. Figure 8 shows how SysML4FMArch encodes this: Principle
solutions are represented by blocks with the respective stereo-
type composed of parts typed by a «PrincipleGeometry» and a
«PrincipleEffect» (cf. Figure 8). A «PrincipleSolution» must spe-
cialize an «ElementaryFunction» and may redefine the inherited
«ElementaryGeometry» and «ElementaryEffect» to a «Principle-
Geometry» and a «PrincipleEffect», respectively. The selection
of either one may be delayed, indicated by the multiplicity 0..1.
SysML4FMArch uses BindingConnectors to specify the constraints
between attributes of principle geometries and principle effects
as well as the function’s interface. Effectively, this models the be-
havior of the function by specifying how the function changes the
attributes in the representations of the flows that enter or leave the
function through its interface. The physical interaction of principle
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geometry and principle effect are represented by BindingConnec-
tors between the «EffectElement»-ConstraintProperties and the
«GeometricElement»-PartProperties of a «PrincipleSolution». The
constraints between ValueProperties of a «Solution» and the con-
tained «PrincipleSolution» components are modeled equivalently.

Figure 10 shows an IBD of HydrodynamicPump, which special-
izes the «ElementaryFunction» ApplyFluidWithMechEnergy and
inherits its interface. Hydrodynamics specializes the «Elementary-
Effect» of ApplyFuidlWithMechEnergy (both specialization re-
lations are not shown in Figure 10). A simulation linked to the
«EffectElement» modeling Equation (1) assumes the fluid to flow
through a tubular pipe comprising a paddlewheel. The «Princi-
pleGeometry» WheelCyl specializes the «ElementaryGeometry»
of ApplyFluidWithMechEnergy and has PartProperties of type
PumpWheel and Cylinder. These represent a pair of active sur-
faces possible to enforce the represented effect, and assign the
attributes of the effect to distinguishable geometric shapes. The
pressure of the outgoing fluid is determined as the sum of the pres-
sure of the incoming fluid and the pressure difference which results
from the hydrodynamic effect acting on the fluid, which is mod-
eled by the «EffectElement» PressureDifference. The rotational
velocity, power, and torque imposed by the incoming mechanical
energy must obey the law of energy conservation modeled by the
«EffectElement» RotationalPower.

6 MODELING EXAMPLE: AUTOMOTIVE
ELECTRICAL COOLANT PUMP

This section presents an extract from the results of an interdisci-
plinary industrial project, involving researchers from SE and ME as
well as practitioners from the automotive industry. In the project,
we have applied SysML4FMArch to model the cooling system for
an automotive combustion engine drive train (cf. Section 2). This
section presents and explains the SysML4FMArch models of the
coolant pump, a part of the cooling system, in detail.

6.1 Architecture of the Electric Coolant Pump
The coolant pump’smain functionality is to keep the coolingmedium
flowing which is physically necessary for it to absorb the heat from
the engine’s cylinders. The IBD of the «Architecture» GenerateVol-
umeFlow in Figure 2 shows the decomposition of this functionality.
The architecture has ProxyPorts representing three incoming flows,
i.e., cm_inwhich represents an incoming coolingmedium, an electri-
cal energy pEl, and a signal flowControl, as well as cm_outwhich
represents the outgoing flow of the cooling medium. Figure 6 shows
the InterfaceBlocks for typing the ProxyPorts representing the func-
tional flows of fluid. The other InterfaceBlocks have FlowProperties
typed by a «Signal» ControlSignal which is defined similar to
Fluid but specifies the unit m/s and the AttributeKind discrete,
and by an«Energy» ElEnergywhich represents electrical energy by
means of a real number, the unit Watt, and the AttributeKind cont.
The flow flowControl represents an information flow (changing
its value discretely at runtime) telling how fast the outgoing fluid
has to flow, in order to absorb enough heat from the engine, which
enters the function SetRotationalVelocity. The latter is modeled
as «Architecture» that calculates a necessary amount of electrical
energy. The outgoing signal flow enters an actuator function which
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Figure 11: The Biot-Savart effect is an interaction of physi-
cal laws: Magnetism, the LeverEffect and the BiotSavartLaw.
The figure shows a model of this principle effect to be used
in principle solutions of ConvertEnergyElToMech .

outputs a flow of electrical energy (pEl_out). The «Elementary-
Function» ConvertEnergyElToMech represents a physical function
that converts the flow of electrical energy into a flow of mechani-
cal energy p_mech_out. The physical function represented by the
«ElementaryFunction» ApplyFluidWithMechEnergy impinges this
mechanical energy p_mech upon the incoming fluid cm_in and re-
sulting in the outgoing flow fluid_out.

6.2 Solution-Models
The «Architecture» GenerateVolumeFlow comprises two «Elemen-
taryFunctions» for which [28] lists physical effects suitable to real-
ize their functionality. In the solution of this architecture consid-
ered here, the hydrodynamic effect provides the acceleration of the
fluid specified by ApplyFluidWithMechEnergy. Figure 9 shows the
SysML4FMArch-model of the principle solution using the hydrody-
namic effect which was explained previously in Section 5.3. This
section details a principle solution to convert electrical to mechani-
cal energy using the Biot-Savart-Effect [24]. This principle solution
realizes the elementary function ConvertEnergyElToMech in our
running example (cf. Figure 2).

Principle Solution to Convert Electrical to Mechanical Energy: The
BDD in Figure 12 shows the «PrincipleEffect» BiotSavart which
specializes the «ElementaryEffect» EE_ConvEnElToMech. The prin-
ciple effect is an interaction of multiple physical laws, therefore,
BiotSavart comprises three «EffectElements», i.e., Magnetism,
BiotSavartLaw and LeverEffect, connected by BindingConnec-
tors which represents the following: An electromagnetic coil (stator)
is positioned within a magnetic field 𝐵. The magnetic field is cre-
ated by a permanent-magnet (rotor), that is placed at a distance 𝑟
to a rotation axis such that it may rotate around the stator. Once a
voltage implies a current 𝑖 in the conductor, the Lorentz-force starts
acting on the rotor. Due to the lever-effect, a mechanical torque𝑀
occurs around the rotation axis, causing the rotor to rotate. The
rotation reflects the existence of mechanical energy. The physical
laws are (1) 𝐵 = 𝜇0 · 𝜇𝑟 ·𝐻 , (2)𝑀 = 𝐹 ·𝑟 , and (3) 𝐹 = 𝐵 · 𝑖 ·𝑙 ·𝑁 , where
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Figure 12: Principle solution of ConvertEnergyElToMech us-
ing the «PrincipleEffect» BiotSavart, which represents the
electric drive of the cooling pump.

𝜇0 is the vacuum permeability, 𝜇𝑟 is the permeability of the rotor,
and 𝐻 is the magnetic field strength induced by the rotor. Further,
𝑙 is the length and 𝑁 the number of windings of the stator. If losses
are not considered, electrical input power is equal to mechanical
output power (see, e.g., [24] for details).

Figure 11 shows a SysML4FMArch-model of this principle ef-
fect: The magnetic field strength 𝐻 depends on the number of
poles numPoles and the diameter of the rotor as well as the di-
ameter of the conductor. By means similar to [25], the «EffectEle-
ment» Magnetism links to a simulation model that calculates the
magnetic field B from the geometric attributes of the stator, i.e.,
the conductor and the rotor, according to Equation (1). The «Ef-
fectElement» BiotSavartLaw models Equation (2): The Lorentz-
force F depends on the magnetic field B, the electric current i,
the stator’s statorWidth and the number of windings of the sta-
tor numWindingsStator. The «EffectElement» leverEffect mod-
els Equation (3): The torque that acts around the rotation axis
depends on the Lorentz-force acting on the rotor and length of the
lever arm, i.e., the diameter of the rotor rotorDia.

Figure 12 shows a principle solution to apply a fluid with me-
chanical energy that (re-)uses the «PrincipleEffect» BiotSavart:
SynchronousDriving specializes the «ElementaryFunction» Con-
vertEnergyElToMech (cf. Figure 2) and therefore inherits the in-
terface. Further, SynchronousDriving specifies the «PrincipleEf-
fect» BiotSavart explained above and the «PrincipleGeometry»
RotorStator which models a geometry comprising a rotor and a
stator, both characterized by attributes of fix AttributeKind. The
BindingConnectors between the attributes of the modeled principle
effect and of the geometric elements of the represented principle

geometry as well as the attributes of the represented channel types
model the equality of their numeric values. The «EffectElements»
ElectricalPower and MechanicalPower represent the physical
law of energy conservation.

Solution to Generate a Volume Flow. The models of the princi-
ple solutions introduced above can be used to model a solution to
the «Architecture» GenerateVolumeFlow whose internal structure
is modeled in Figure 2. A solution to GenerateVolumeFlow is a
«Solution»-block that specializes the «Architecture» GenerateVol-
umeFlow. The «PrincipleSolution»-blocks HydrodynamicPump and
SynchronousDriving specialize the «ElementaryFunction»-blocks
ApplyFluidWithMechEnergy as well as ConvertEnergyElToMech,
respectively. The latter type the PartProperties moveFluid and
elToMech of GenerateVolumeFlow, as shown in Figure 2. A «Solu-
tion» to this «Architecture» inherits the interface and the PartProp-
erties of GenerateVolumeFlow. By redefining ConvertEnergyEl-
ToMech to SynchronousDriving and ApplyFluidWithMechEnergy
to HydrodynamicPump, this solution integrates these «PrincipleSo-
lutions» and forms a model of the solution to the entire architecture.
In this case, the solution models an electrical coolant pump.

7 RELATEDWORK AND DISCUSSION
Modeling as the act of describing or prescribing properties of the
system under development, is the essential foundation for systemat-
ically engineering (cyber-physical) systems. MDE employs formal
modeling languages to enable frontloading of analysis and design
exploration to reduce engineering costs, facilitate collaboration
among domain experts, and supports the synthesis of system parts
by automation. Research on this topic is scattered across the do-
mains of CPS engineering, including ME and SE.

RelatedWork. Ongoing research has produced theories, and mod-
eling languages for engineering software and electronic functions
of CPS, e.g., [1, 42], as well as for designing [23, 49], engineering [4],
and operating [3] CPS in various domains. Most of these approaches
consider modeling only through the lens of software engineering,
i.e., for discrete and functional systems. Where continuity and ge-
ometry are supported, the theories and languages do not support
established processes or modeling concepts from other (i.e., the
“physical”) domains, such as ME.

In the Focus theory [11], systems are composed of components
that realize stream processing functions. As functions communicate
via channels only, they can be (de)composed and refined systemati-
cally, where refinement considers both, structure and the behavior
of components. Applying Focus’s notion of refinement within a
model-driven functional PDP is subject to ongoing research.

In ME, a variety of design catalogs to aid the design process
regarding various aspects [18] exist in the literature, e.g., [40, 46].
Approaches that digitize such catalogs, e.g., [18, 34], focus on mak-
ing the (extended) information from existing design catalogs ac-
cessible by providing digital textual descriptions complemented
with mathematical expressions or sketches. Lacking a represen-
tation in a formal modeling language that also enables to inte-
grate the information within a functional architecture of a me-
chanical system hinders to apply these approaches in a model-
driven PDP. Modeling languages based on UML or SysML have
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emerged or been used in theME domain, e.g.,MechatronicUML [12],
SysML4Modelica [5], or SysML4Mechatronics [26], in the field of
production systems engineering [16], and in the context of Industry
4.0 [58], e.g., UML4IoT [51]. Neither of these languages enable to
relate (elementary) functions and (principle) solutions of mechani-
cal systems as part of a systematic PDP. The FAS-method [30, 56],
extended for ME by FAS4M [39] promotes modeling functional
architectures for system design and both define respective SysML
profiles. As introduced in [37, 38] the latter uses trace links to
underly SysML elements with informal sketches of geometric com-
ponents. The focus of these contributions lies on the connection
between requirements and function. In contrast to our approach,
principle solutions, here, are described by informal sketches that
neither distinguish between principle geometry and principle ef-
fect nor enable automatic processing. This prevents utilizing the
information from design catalogs such as, e.g., [28], and to compose
the physical product architecture of geometric elements related
to physical effects by a principle solution. This holds similarly for
the techniques proposed in [15, 20, 57, 59]. In particular, the ap-
proaches in [15, 20] do not consider functional structures in the
sense of [28, 40] (see Section 4.1) and do not systematically es-
tablish consistency between function and principle geometry in
a model-driven approach. Currently, precise modeling languages
tailored to support the PDP based on the foundations of functional
architectures established in [27, 28] do not exist. Explicit modeling
techniques for the PDP in ME do not support the time-honored
paradigms that paved the way for the success of software engineer-
ing, such as abstraction, automation, composition, refinement, and
separation of concerns.

Discussion. The meta-model and its encoding in SysML emerged
during an interdisciplinary project comprising researchers from SE
andME as well as practitioners from the automotive industry. So far,
the meta-model captures and extends the notion of functional ar-
chitectures prevalent in mechanical design theory [28, 40]. Therein,
components interact through functional flows, and physical func-
tions are implemented by principle solutions, i.e., an interaction of
a physical effect and a geometry. Integrating description techniques
for functional behavior prevalent, e.g., in the software [11, 13] and
control engineering domains [1, 42], is subject to ongoing research.
As SysML is fairly in known in the automotive domain [14, 29] and
since there exist modeling tools with integrated model-processing,
we encoded the meta-model as a SysML profile. To test the approach
in the ME domain, we engineered an automotive coolant pump
and modeled its functional architecture as well as the solutions
to each function in SysML4FMArch. The model comprises mul-
tiple SysML4FMArch-diagrams which were presented exemplary
throughout the paper. The systematic relation between functions
and solutions in the SysML4FMArch-models enabled to use the tool-
ing effectively for automation during the mechanical design process.
For example, we tested the suitability of the chosen principle so-
lutions (cf. Figure 10 and Figure 12) by linking virtual simulations
to the effect elements in the SysML4FMArch model and for virtual
dimensioning of the pump wheel, i.e., the automatic manipulation
of values of its geometric attributes, (cf. Figure 10), which was en-
abled by utilizing the automatic model execution functionality of
existing SysML tools. Towards the end of the project, the pump

wheel was 3D-printed to obtain a prototype of a part of the physical
product. Further automation for functional testing and dimension-
ing as well as digitizing a design catalog such as [28] are subject
to ongoing research. However, SysML has its drawbacks, e.g., re-
garding modeling efficiency, and intuitiveness. SysML’s nature as
a general purpose language and the inherited UML concepts de-
crease understanding and ease of use for ME practitioners, as, for
them, these concepts are not as intuitive as for SE practitioners.
Further, the graphical nature of SysML may hinder manageability
of SysML4FMArch models with many attributes. The lack of formal
semantics for SysML hinder the implementation of product-specific
automatic model processing and tailored model analyses based on
mathematical theories.

8 CONCLUSION
This paper formalized and extended the concepts of [28, 40] in
a meta-model that defines modeling languages for the ME do-
main. Further, we encoded the meta-model in the SysML profile
SysML4FMArch and employed the language within in an inter-
disciplinary, industrial project to engineer an automotive coolant
pump. As a result, the models could be used for automatic, virtual
dimensioning and testing, which holds out the prospect of an ag-
ile model-driven PDP supported by automation. While SysML has
its drawbacks regarding formality and intuitiveness, the results of
the project signpost the potential of utilizing modeling languages
for explicating functional architectures of a technical system and
making the knowledge of design catalogs assimilable for a holistic
MDE approach that narrows the gap between the functional and
the product architecture by means of abstraction.
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Abstract
For the systematic development of logical, message-driven architectures, automat-
ing parallel decomposition of software components is important to achieve effi-
cient modular and parallel system development. During development, monolithic 
components that realize multiple independent concerns need to be decomposed to 
obtain a higher quality architecture of cohesively encapsulated, better comprehen-
sive components. Previous work did not address automated parallel decomposition 
of finite message-driven and logically timed components with respect to the influ-
ence of messages received via input channels on the messages sent via output chan-
nels. This, however, is a necessary prerequisite to enable the analysis of event chains 
across logically distributed architectures. To address this, we present a concept of 
influence between channels of components that supports automated semantics-pre-
serving parallel decomposition of finite deterministic component implementations 
into independent, more comprehensible components that are better accessible for 
analysis and development. Therefore, we extend the Focus theory of time-synchro-
nous components with the concept of influence, present a decomposition proce-
dure leveraging this, and prove that the resulting system is semantically equivalent. 
This enables automatically decomposing monolithic software components (e.g., for 
stepwise refinement or refactoring) into smaller components of better cohesion and 
comprehensibility and thus facilitates automated software engineering.
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1 Introduction

Component-based software engineering (Naur et al. 1968) promises efficient soft-
ware development through reuse of independently developed and validated com-
ponents. Usually, these components are realized in general-purpose programming 
languages (GPLs) and are hence subject to the conceptual gap between the prob-
lem domains and the software development, which arises from addressing prob-
lem domain challenges through programming complexities  (France and Rumpe 
2007).

Model-driven development (MDD)  (Völter et  al. 2013) reduces this gap by 
lifting domain-specific, abstract models to primary development artifacts. These 
models are specified in terms of domain-specific vocabulary to be better compre-
hensible, more abstract, and, hence, better suited towards analysis and transfor-
mation than the programs of GPLs.

Architecture description languages (ADLs) (Medvidovic and Taylor 2000) lev-
erage the potential of MDD for the description of software architectures. Research 
has produced over 120 ADLs (Malavolta et al. 2013 for different domains, such 
as automotive  (Debruyne et  al. 2005), avionics  (Feiler and Gluch 2012), con-
sumer electronics (Van Ommering et al. 2000), or robotics (Schlegel et al. 2011). 
In domains, where ADLs are popular, explicating the precise semantics of archi-
tecture models is crucial, e.g., due to safety concerns. Nonetheless, many ADLs 
provide translational semantics, i.e., ground the meaning of architectures through 
their transformation into better-understood formalisms (e.g., GPL code), only. 
And even where the ADL’s semantics are explicitly available, the MDD related 
processes rarely exploit these to facilitate modeling.

Where the semantics of an ADL is made explicit, semantically sound sys-
tem analyses and automated refactorings and refinements become possible. 
Focus (Broy and Stølen 2001; Broy 2010; Ringert and Rumpe 2011), for instance, 
is a framework and semantic foundation that captures logical component and con-
nector software architectures as stream-processing functions. Stream process-
ing functions describe the histories of messages communicated over communi-
cation channels established by connectors between the components’ interfaces. 
Architecture modeling formalisms explicating component semantics, such as 
Focus, communicating sequential processes (CSPs) (Hoare 1978), or the �-calcu-
lus (Milner 1999) enable systematic stepwise refinement (Broy 2010), a software 
engineering methodology for continuous architecture modeling based on con-
trolled evolution and progressive improvement of components: each subsequent 
version of a component model must adhere to properties already proven for its 
predecessors. Ideally, this process starts with several underspecified components 
which are iteratively refined according to their requirements. Focus is one of the 
rare frameworks, where refinement and decomposition are compatible, i.e., refin-
ing a single component of an architecture always refines the complete architec-
ture. A component refactoring is a special refinement step where the resulting 
component’s semantics is equal to the semantics of the original. With this, from 
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an external observer’s viewpoint, the behaviors of the original and the resulting 
components are indistinguishable.

Manual refinement and refactoring without tool support, however, is tedious and 
error-prone. To facilitate this, we present a method for automated refactoring via 
parallel component decomposition based on the notion of influence between chan-
nels of components. This method uses time-synchronous port automata to represent 
the essence (i.e., reduced abstract syntax) of common ADLs, such as AADL (Feiler 
and Gluch 2012), AutoFocus (Hölzl and Feilkas 2010), EAST-ADL (Debruyne et al. 
2005), MontiArc (Butting et al. 2017a), SysML’s blocks  (Friedenthal et al. 2011), 
and similar languages. Given a component implementation, we propose to automati-
cally decompose it into subcomponents according to their influence relation. To this 
effect, we assume the availability of a model that describes the external interface of 
the component (e.g., an ADL model) and a description of the implementation of the 
component. It is irrelevant whether the description of the component implementa-
tion is available in source code that can be transformed to a time-synchronous port 
automaton or whether the implementation is directly described by a time-synchro-
nous port automaton. To this end, our contributions are:

• A notion of influence between channels of a logical software architecture that is 
grounded in the Focus theory.

• A method to automatically refactor components with finite state spaces via par-
allel decompositions according to the influence relation.

The resulting architecture can be evolved more efficiently by different stakeholders, 
yet is guaranteed to be semantically equivalent to the previous architecture. Hence, 
all original properties still hold, despite being less complicated and better to evolve 
and maintain.

In the following, Sect. 2 sketches the idea of automated decomposition based on 
the influence relations between channels. Section 3 presents the system model that 
underlies the approach and has been introduced in previous work. Section  4 pre-
sents the notion of influence formalized in the Focus terminology and the process of 
decomposition based on it. Section 4.3 shows that the influence relation is decidable 
in the context of finite-state components. Afterwards, Sect. 5 presents its application 
on the example of the elevator control system presented and evaluated in Butting 
et al. (2017b). Section 6 discusses observations. Section 7 highlights related work, 
before Sect. 8 concludes.

2  Example

Modern software systems comprise hundreds or thousands of components. Start-
ing development with the correct and final software architecture structure is phan-
tasmal. Consequently, agile methods call for methods to iteratively evolve and 
complete software architectures. Stepwise refinement is such a method for agile 
software architecture modeling. With stepwise refinement, properties proven for 
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a specific version of a component hold for all its refined successors. Hence, even 
early versions of architectures can be used to prove properties relevant to the cus-
tomers without the burden of proving these for each new version again as long as 
refinement is respected.

Consider, for example, developing the software architecture for a cyber-phys-
ical system in terms of its components through stepwise refinement, such as the 
elevator control system (ECS) presented in  Strobl et  al. (1999). At some point, 
the team developed an initial ECS architecture that consists of a single, mono-
lithic component managing elevator requests, lights on the floors, cabin move-
ment, as well as opening and closing the elevator cabin’s door based on messages 
received from its environment. This component yields a single state-based behav-
ior implementation realizing parts of the customers’ requirements, i.e., is poten-
tially shippable. Figure 1 illustrates the ECS component, which receives environ-
mental messages through its input channels and outputs messages via its output 
channels. Engineering the (initial) software of such a system monolithically is 
valid with respect to stepwise refinement, but raises two challenges:

1. Analysis challenge: Proving architectural properties, for example, that the eleva-
tor control system eventually serves each floor for which the request button was 
pressed, already for initial architectures enables fixating properties relevant to 
customers early. However, model checking the complete ECS architecture might 
be challenging to impossible due to its complex implementation intertwining 
the different concerns unrelated to the property under consideration (here, e.g., 
management of floor lights).

2. Implementation challenge: Evolving functionalities implemented by such a mono-
lith usually is overly complicated: in the worst case, parts of the implementation 
are scattered over different places and are hardly documented. This makes evolu-
tion error-prone and costly.

Addressing both challenges can be facilitated by properly decomposing the 
monolithic software architecture prior to analyzing or evolving it. For instance, 
decomposing the ECS architecture into subcomponents focusing on the influence 
between channels related to the property under consideration (such as btn1 and 
at1) can facilitate model checking and implementation evolution. However, this 

Fig. 1  Initial software architecture of the elevator control system
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raises challenges in properly decomposing the architecture at hand, such that the 
resulting decomposition into interconnected subcomponents is actually a refac-
toring of the original.

An automated procedure for decomposing component and connector architec-
tures that supports both challenges must ensure that resulting subcomponent config-
urations are a valid refactoring of the input architecture, and support selecting input 
channels and output channels that should be considered as bundles to capture the 
developers’ knowledge about channel semantics and, hence, ultimately lead to use-
ful subcomponents. The following sections present a procedure that supports both.

3  Preliminaries

This section presents a system model for time-synchronous systems. The system 
model has been introduced in previous work  (Butting et  al. 2017b). Architectures 
are networks of autonomous components that interact with each other via messages 
on typed channels. A time-synchronous (Broy and Stølen 2001; Broy 2010; Ring-
ert and Rumpe 2011; Butting et al. 2017b; Grosu and Rumpe 1995) architecture is 
interpretable as a system where execution is divided into time-units. Time units are 
an abstract modeling concept. In implementations, components may be unaware of 
time, have local times, or even synchronize mimicking a global clock. In each time 
unit, each component receives finitely many input messages, performs finitely many 
internal computations, and then eventually outputs finitely many messages to its 
environment.

Notation We denote by [X → Y] the set of all functions from a set X to a set Y. 
For a function f ∈ [X → Y] and a set Z ⊆ X , we denote by f |Z ∈ [Z → Y] the func-
tion that satisfies f |Z(x) = f (x) for all x ∈ Z , called the restriction of f to Z.

3.1  Streams

The history of messages received or emitted by a component is formally described 
by a stream (sequence/word) of messages. Let M be an arbitrary non-empty set. 
Similar to  (Broy and Stølen 2001; Butting et  al. 2017b), M∗ denotes the set of 
all finite streams over M. M∞ denotes the set of all infinite streams over M and 
M� = M∗ ∪M∞ denotes the set of all finite and infinite streams over M. We denote 
the empty stream by � ∈ M∗ . The concatenation of two streams s, t ∈ M� is denoted 
by s ⋅ t . If s ∈ M∞ , then s ⋅ t = s for all t ∈ M� . The prefix relation ⊑ over streams 
is defined as usual: s ⊑ t ⇔ ∃u ∈ M𝜔 ∶ s ⋅ u = t . For t ∈ ℕ , the (t + 1)-th element 
of a stream s is denoted by s.t. Similarly, s ↓t denotes the prefix of s of length t. For 
example,

• p = 3, 1, 4 ∈ ℕ∗ is a finite stream over the natural numbers where p.0 = 3 , 
p.1 = 1 and p.2 = 4.

• The stream s = 7, 8, 9,⋯ ∈ ℕ∞ where s.0 = 7 and s.(t + 1) = 1 + s.t for all t ∈ ℕ 
is an example for an infinite stream of natural numbers.
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• It holds that 7, 8 ⊑ s , i.e., the stream 7, 8 is a prefix of the stream s.
• The concatenation p ⋅ s yields the infinite stream p ⋅ s = 3, 1, 4, 7, 8, 9,⋯ ∈ ℕ∞.
• The prefix of length two of s is the stream s ↓ 2 = 7, 8.

3.2  Messages, types

In the remainder, let M denote an arbitrary but fixed set of data elements (messages) 
that contains a designated element � ∈ M modeling the mathematical concept of an 
empty pseudo-message. In a time-synchronous setting, where in each time unit at 
most one message is communicated via each channel, the empty message � can be 
used to model the progress of time, i.e., the message � is not explicitly communi-
cated. It is important to emphasize that this communication model permits logical 
time while abstracting from real time. We model data types by sets of messages. 
Each message type contains the empty message. With this, it is possible to explicitly 
model the absence of a message on a communication channel in a time unit. Let 
Type denote a set of types where each type t ∈ Type satisfies t ⊆ M and � ∈ t . Types 
are used to restrict the set of messages that are allowed to be sent via a communi-
cation channel. As a concrete example, the type Nat ∈ Type containing all natural 
numbers and the empty message � can be defined by Nat = {�} ∪ ℕ.

3.3  Channels, histories

A channel is a communication link between components. Each channel has a 
unique name. In the remainder, let C denote a set of channels names. The function 
type ∈ [C → Type] maps each channel c ∈ C to its type type(c) ∈ Type . A channel 
assignment is a function that maps channels to messages of the channels’ types: A 
channel assignment for a set of channels B ⊆ C is a function a ∈ [B → M] that satis-
fies ∀b ∈ B ∶ a(b) ∈ type(b) . We denote by B→ the set of all channel assignments 
over B. A communication history for a set of channels B ⊆ C is an infinite stream 
h ∈ (B→)∞ . The set of all communication histories for a set of channels B ⊆ C is 
denoted by BΩ . Thus, a communication history is a function that maps time units to 
channel assignments over their types. With this, each communication history models 
a full observation of the messages sent and received by a component. It should be 
noted that the set of communication histories BΩ = (B→)∞ is isomorphic to the set 
[B → M∞] that satisfies ∀b ∈ B ∶ h(b) ∈ type(b)∞ , i.e., the set of all functions that 
map the channels in B to infinite streams of messages of their types. For a communi-
cation history b ∈ BΩ and a time unit t ∈ ℕ , the prefix b ↓t thus models the commu-
nication history observed up to time t. We lift the ↓ operator to sets of communica-
tion histories in a point-wise manner: For H ⊆ BΩ , we define H ↓t=

⋃
h∈H h ↓t . The 

restriction of a communication history h ∈ BΩ to the channels in R ⊆ B is defined as 
the communication history h|R that satisfies (h|R).t = (h.t)|R for all t ∈ ℕ , i.e., each 
channel assignment in h is restricted to the channels in R.

As concrete examples,
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• If a, b ∈ C are channels typed with the natural numbers, then 
type(a) = type(b) = Nat.

• A channel assignment for the set of channels {a, b} is given by 
� = {a ↦ 7, b ↦ 8} ∈ {a, b}→ . This assignment maps the channel a to the mes-
sage 7 and the channel b to the message 8.

• The infinite stream h = �∞ ∈ {a, b}Ω is a communication history for the set of 
channels {a, b} . In each time unit, this communication history maps the channel 
a to the message 7 and the channel b to the message 8.

• The prefix h ↓ 2 = �, � models the part of the communication history h observed 
in the first two time units.

• The restriction of the communication history h to the set of channels {a} is given 
by h|{a} = �|{a}, �|{a},… = {a ↦ 7}, {a ↦ 7},⋯ ∈ {a}Ω.

3.4  Finite time‑synchronous port automata

A finite time-synchronous port automaton (TSPA) specifies (an excerpt of) an 
interactive system architecture (Butting et al. 2017b; Grosu and Rumpe 1995). We 
assume a white-box view on components where each component implementation is 
represented by a finite TSPA. Complex system architectures are modeled via com-
ponent composition, i.e., via the composition of the TSPAs representing the indi-
vidual components’ implementations.

A finite TSPA is a tuple A = (I,O, S, �, �) where

• I,O ⊆ C with I ∩ O = � are finite and disjoint sets of the TSPA’s input and out-
put channels,

• the type type(c) of each channel c ∈ I ∪ O is finite,
• S is a finite set of states,
• � ∈ S is the initial state, and
• 𝛿 ⊆ S × (I ∪ O)→ × S is the transition relation.

In the following, we simply refer to a finite TSPA by TSPA. We sometimes refer-
ence the syntactic elements of A as follows: IA = I , OA = O , CA = C(A) = IA ∪ OA , 
SA = S , �A = � , and �A = � . A TSPA may fire a transition (s, �, t) ∈ � if it receives �|I 
while residing in state s. When firing the transition, the automaton changes its inter-
nal state to t and outputs �|O.

A TSPA A is called reactive iff 
∀s ∈ SA ∶ ∀i ∈ I→

A
∶ ∃(u, a, v) ∈ �A ∶ u = s ∧ a|I = i . Reactive TSPAs are adequate 

models for interactive components as they define a possible reaction to every pos-
sible input and every possible state. If a TSPA is not reactive, then it may be in 
a state in which it receives an input for which no reaction in terms of a transition 
is defined. This behavior is erroneous as components are required to be able to 
react to every possible input in every time unit. A TSPA A is called determin-
istic iff ∀s ∈ SA ∶ ∀i ∈ I→

A
∶ |{t ∈ SA | ∃� ∈ C→

A
∶ (s, �, t) ∈ �A ∧ �|IA = i}| = 1 , 

i.e., it defines exactly one transition for each possible input it may receive for 
each of its states. A nondeterministic TSPA resembles underspecification in 
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a component that can be resolved by subsequent refinement steps and/or left 
open to a nondeterministic implementation. An execution � of A is an infinite, 
alternating sequence of states and channel assignments starting with the ini-
tial state � : � = s0, �0, s1, �1,… such that s0 = � and ∀i ∈ ℕ ∶ (si, �i, si+1) ∈ � . We 
denote by execs(A) the set of all executions of A. The behavior of an execution 
� = s0, �0, s1, �1,… of A is defined as the infinite sequence beh(�) = �0, �1,… 
containing only the channel assignments in � . An execution comprises a TSPA’s 
internal behavior, which is invisible to its environment, whereas a behavior rep-
resents an execution from a black-box viewpoint. We denote by behs(A) the set of 
all behaviors of A.

As concrete examples, Fig.  2 depicts two TSPAs. As usual, circles represent 
states and edges between states represent transitions. Initial states are marked 
with an arrow that originates from a back dot. The transitions are labeled with 
their channel valuations. The TSPA A has a single input channel i and a single 
output channel o. The TSPA A is not deterministic and thus highly underspeci-
fied. In fact, it models all possible behaviors over the channels i, o ∈ C where 
type(i) = type(o) = {�, 1} . The other TSPA Switch can be interpreted to model a 
simple light control switch.

Initially, the TSPA is in state off, which models that the light is turned off. 
In case, the switch is not pressed, the TSPA does not receive a message via its 
input channel i, represented by the empty message � . If the switch is pressed, 
the TSPA receives the message 1 via its input channel i. If the TSPA is in state 
off and the switch is not pressed, the TSPA outputs the empty pseudo-mes-
sage � via its output channel o and remains in state off. This represents that 
the light remains turned off. In case the TSPA is in state off and the switch is 
pressed, the TSPA outputs the message 1 via its output channel o and switches 
its state to on. This represents that the light is turned on. Vice versa, the TSPA 
remains in state on and the light remains turned on as long as the switch is 
not pressed. As soon as the switch is pressed while the TSPA is in state on, 
the TSPA switches to state off and the light is turned off. A possible execu-
tion of the TSPA Switch is the infinite alternating sequence of states and transi-
tions e = (off , {i ↦ 1, o ↦ 1}, on, {i ↦ 1, o ↦ �})∞ . In the execution e, the light 
is frequently turned on and off. The behavior beh(e) of the execution e is given 

Fig. 2  An underspecified TSPA A and a deterministic TSPA Switch 
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by beh(e) = ({i ↦ 1, o ↦ 1}, {i ↦ 1, o ↦ �})∞ , which is the sequence of channel 
assignments that represents the externally visible behavior of the execution.

3.5  TSPA composition

The composition of two TSPAs is a TSPA that captures the behavior of the archi-
tecture resulting from synchronously executing the TSPAs simultaneously where 
communication is carried out via the TSPAs’ channels (Butting et al. 2017b; Grosu 
and Rumpe 1995). Multiple TSPAs may receive messages via the same channels, 
whereas at most one TSPA is permitted to send messages via a channel: Two TSPAs 
A, B are called compatible iff OA ∩ OB = �.

The composition of two compatible TSPAs A  and  B is defined as 
A⊗ B = (I,O, SA × SB, (𝜄A, 𝜄B), 𝛿) where

• O = OA ∪ OB,
• I = (IA ∪ IB)⧵O , and
• � = {((s1, s2), �, (t1, t2)) |(s1, �|C(A), t1) ∈ �A ∧ (s2, �|C(B), t2) ∈ �B}.

Figure 3 illustrates the composition of two TSPAs. If the two TSPAs A and B repre-
sent the implementations of two components, then the composed TSPA A⊗ B rep-
resents the implementation of the system obtained from running the components in 
parallel.

The composition of two compatible, reactive TSPAs does not always yield a 
reactive TSPA  (Butting et  al. 2017b; Grosu and Rumpe 1995). Thus, compos-
ing two components is not always meaningful as the composition of two compo-
nents represented by two TSPAs may not be well-defined. This is because of cau-
sality problems (Broy and Stølen 2001; Broy 2010; Butting et al. 2017b; Grosu 
and Rumpe 1995) that can only exist if each of the TSPAs has an output channel 
that is an input channel of the respective other TSPA. The causality problem is 
guaranteed to be avoided if one of the TSPAs is strongly-causal  (Butting et  al. 
2017b; Grosu and Rumpe 1995) with respect to its connected channels. However, 
if two reactive TSPAs are composed in parallel (without feedback), i.e., neither of 

Fig. 3  General TSPA composition with feedback
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the TSPAs has an output channel that is an input channel of the respective other 
TSPA, then the composition always yields a well-defined reactive TSPA  (Butt-
ing et al. 2017b; Grosu and Rumpe 1995). As this paper is solely concerned with 
parallel decomposition and thus, vice versa, only with parallel composition, we 
refer to related work (Broy and Stølen 2001; Broy 2010; Butting et al. 2017b) for 
a discussion about causality complications.

3.6  TSPA restriction

Hiding is an important concept to achieve modularity  (Broy and Stølen 2001; 
Broy 2010; Grosu and Rumpe 1995). Hiding an output channel facilitates con-
cealing unimportant information to an environment. Similarly, it is possible to 
hide an input channel. Hiding an input channel does not affect the set of output 
histories. It relaxes the transition relation in the sense that messages on the hid-
den channel do not constrain the TSPA’s behavior anymore. Thus, hiding an input 
channel effectively leads to more underspecification. Any transition is enabled 
independent of the messages received via the hidden channel, assumed that the 
messages received via the other input channels are part of the transition’s channel 
valuation.

Let A be a TSPA and let B ⊆ CA be a set of channels. The restriction of A to the 
channels in B is defined as A ↾ B = (IA ∩ B,OA ∩ B, SA, �A, �) where

As concrete examples, Fig. 4 depicts the TSPAs resulting from restricting the TSPA 
Switch (cf. Fig. 2) to the set of channels {i} and from restricting the TSPA Switch 
to the set of channels {o} . Restricting the TSPA Switch to its input channel yields a 
TSPA that is still deterministic. However, restricting the TSPA Switch to its output 
channel yields an underspecified TSPA that is not deterministic.

� = {(s, �, t) | ∃� ∈ C→
A
∶ � = �|B ∧ (s, �, t) ∈ �A}.

Fig. 4  The restriction of the TSPA Switch to the set of channels {o} and the restriction of the TSPA 
Switch to the set of channels {i}
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4  Semantics preserving parallel decomposition respecting 
influences between channels

This paper contributes to the parallel decomposition of deterministic TSPAs. Fig-
ure 5 overviews the key idea of the approach: The decomposition method takes a 
deterministic TSPA representing a component as input. Based on the influence rela-
tion between the TSPA’s input and output channels, the method decomposes the 
component into multiple subcomponents (further TSPAs). The parallel composi-
tion of the resulting TSPAs yields a TSPA that has the same behaviors as the input 
TSPA. For example, Fig. 5 indicates that the output channel p is influenced by the 
input channels i and j. In contrast, the output channel o is solely influenced by the 
input channel i. The method can be fully automated. Therefore, we obtain an auto-
matic method for refactoring monolithic components into multiple subcomponents 
such that the behaviors of the composition of the subcomponents are equal to the 
behaviors of the monolithic component.

The method may produce TSPAs that are not deterministic but unambiguously 
specified as intermediate decomposition results. Intuitively, a TSPA is unambigu-
ously specified if it defines exactly one (infinite) output for every (infinite) input. 
Every unambiguously specified TSPA can be transformed to a deterministic TSPA 
having the same behaviors (cf. Sect. 4.1). Thus, the transformation enables the defi-
nition of a decomposition procedure for deterministic TSPAs that again yields an 
architecture of deterministic TSPAs.

Fig. 5  Schematic representation of a monolithic component that is maximally decomposed along the 
influences between channels
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Section 4.1 formally defines the notion unambiguously specified for TSPAs and 
presents properties of unambiguously specified TSPAs that are relevant to show the 
decomposition method’s correctness. Afterwards, Sect.  4.2 defines the influence 
relation between channels of a TSPA. Then, Sect. 4.3 presents a decision procedure 
for determining whether an input channel of a TSPA influences an output channel of 
the same TSPA. Subsequently, Sect. 4.4 presents the fully automatic decomposition 
method based on the channel influence relation.

4.1  Unambiguously specified TSPAs

Hiding an input channel in a deterministic TSPA might result in a TSPA that is by 
definition not deterministic, but behaves as if it was deterministic from a black-box 
viewpoint. For example, this is because the TSPA’s reachable part is deterministic 
and there exists a non-reachable part that is not deterministic. Figure  6 depicts a 
concrete example: The TSPA D is deterministic, whereas restricting it to its out-
put channel yields a TSPA that exhibits the single behavior {o ↦ �}∞ , thus behaves 
deterministically from a black-box viewpoint. However, the restricted TSPA is inter-
nally non-deterministic, because of the non-reachable state b containing underspeci-
fication regarding the message sent via the output channel.

A TSPA might also be not deterministic and have multiple executions for the 
same inputs that produce the same outputs. In such a case, the TSPA is also not 
deterministic but behaves as if it was deterministic from a black-box viewpoint. 
Figure 7 depicts a concrete example: The TSPA U is not deterministic and exhibits 
the single behavior {i ↦ �, o ↦ �}∞ . Therefore, it behaves deterministically from a 
black-box viewpoint. TSPAs that behave deterministically from a black-box view-
point are unambiguously specified:

Definition 1 A TSPA A is unambiguously specified iff

∀i ∈ IΩ
A
∶ |{� ∈ behs(A) | �|I = i}| = 1.

Fig. 6  Deterministic TSPA D and underspecified and unambiguously specified TSPA D ↾ {o} resulting 
from hiding the input channel i in D 
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The notion unambiguously specified for TSPAs and infinite behaviors is related 
to the notion single-valued for finite transductions of transducers  (Weber and 
Klemm 1995; Weber 1998; Béal and Carton 2002). According to  Weber and 
Klemm (1995), Weber (1998), and Béal and Carton (2002), a transducer is sin-
gle-valued if it maps each input sequence to at most one output sequence. In con-
trast, we require that each input is mapped to exactly one output. Further, in each 
computation step, a transducer may map a single input symbol to a sequence of 
output symbols, whereas a TSPA maps one input channel valuation to exactly one 
output channel valuation.

Our approach aims at decomposing deterministic TSPAs. It is easy to see that 
every deterministic TSPA is also unambiguously specified but that the opposite 
does not necessarily hold. However, for every unambiguously specified TSPA, it 
is possible to construct an equivalent deterministic TSPA, i.e., the unambiguously 
specified and the deterministic TSPAs have the same behaviors.

Theorem 1 For every unambiguously specified TSPA A, there exists a deterministic 
TSPA D with behs(A) = behs(D).

Proof (Sketch) A TSPA is interpretable as a special transducer over infinite words 
where all states are final. Sufficient and necessary conditions enabling the determini-
zation of transducers over infinite words where all states are final are studied in Béal 
and Carton (2000, 2002).

Specifically, a TSPA is interpretable as a transducer over infinite words where

• Each transition transduces exactly one input symbol to exactly one output 
symbol,

• There is exactly one initial state,
• All states are final, and
• The transducer has no cyclic path with an empty output.

Fig. 7  Underspecified TSPA that behaves deterministically from a black-box viewpoint
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It has been shown that a transducer over infinite words where all states are final, 
the transducer has no constant states, and the transducer has no cyclic path with 
an empty output can be determinized, if the transducer obtained after removing 
all constant states  (Béal and Carton 2000, 2002) satisfies the twinning prop-
erty  (Béal and Carton 2000, 2002). When transferring these notions to TSPAs, 
the TSPA A obtained from removing the constant states from an unambiguously 
specified TSPA is a TSPA that satisfies ∀i ∈ IΩ

A
∶ |{� ∈ behs(A) | �|IA = i}| ≤ 1 . 

If this TSPA did not have the twinning property, then there would exist an input 
i ∈ IΩ

A
 such that |{� ∈ behs(A) | �|IA = i}| ≥ 2 . Furthermore,  Béal and Carton 

(2000, 2002) present a construction that can be used for transforming an unam-
biguously specified TSPA to an equivalent deterministic TSPA. The construction 
is a subset construction on the TSPA obtained from removing all unreachable 
states.   ◻

Thus, every unambiguously specified TSPA can be transformed to a TSPA in 
which the output in any time unit only depends on the current input and state.

The following introduces general properties of unambiguously specified 
TSPAs that are later used for proving the correctness of the decomposition 
method. Two unambiguously specified TSPAs are equivalent if, and only if, one 
of the automata is a refinement of the other automaton:

Theorem  2 Let A and B be unambiguously specified TSPAs with IA = IB and 
OA = OB . Then, behs(A) ⊆ behs(B) if, and only if, behs(A) = behs(B).

Proof Let A and B be given as above.
“⇒ ”: Assume behs(A) ⊆ behs(B) . Let I = IA and O = OA . Suppose towards a con-

tradiction behs(B) ⊈ behs(A) . Then, there exists a behavior b ∈ behs(B) such that 
b ∉ behs(A) . As A is unambiguously specified, IA = IB and OA = OB , there exists a 
behavior b� ∈ behs(A) with b�|I = b|I . As b ∉ behs(A) and b�|I = b|I , we have that 
b′|O ≠ b|O . As behs(A) ⊆ behs(B) , it holds that b� ∈ behs(B) . This contradicts that 
B is unambiguously specified, because b, b� ∈ behs(B) , b|I = b�|I and b|O ≠ b′|O 
implies for i = b|I that |{� ∈ behs(B) | �|I = i}| ≥ 2.

“⇐ ”: behs(A) = behs(B) implies behs(A) ⊆ behs(B) .   ◻

TSPAs do not influence the behaviors of each other when executed in parallel, 
i.e., when neither of the TSPAs has an output channel that is an input channel of 
the respective other TSPA. Thus, the parallel composition of two unambiguously 
specified TSPAs is again an unambiguously specified TSPA:

Theorem 3 Let A and B be two compatible unambiguously specified TSPAs such 
that OA ∩ IB = OB ∩ IA = �. Then, A⊗ B is an unambiguously specified TSPA.

Proof Let A and B be given as above and let K = A⊗ B . We need to show that 
|{� ∈ behs(K) | �|IK = i}| = 1 for all i ∈ IΩ

K
.

(1) We first show that |{𝛼 ∈ behs(K) | 𝛼|IK = i}| > 0 for all i ∈ IΩ
K

 : Let i ∈ IΩ
K

 . 
As A and B are unambiguously specified, there exist behaviors b ∈ behs(A) and 
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b� ∈ behs(B) such that b|IA = i|IA and b�|IB = i|IB . Let � = s0, �0, s1, �1 … be an 
execution of A such that beh(�) = b and let � = s�

0
, �0, s

�
1
, �1 … be an execution 

of B such that beh(�) = b� . As � and � are executions, we have that s0 = �A and 
s�
0
= �B and (st, �t, st+1) ∈ �A and (s�

t
, �t, s

�
t+1

) ∈ �B for all t ∈ ℕ . As b|IA = i|IA and 
b�|IB = i|IB , we have that i|IA∩IB = b|IA∩IB = b�|IA∩IB . Hence, for all t ∈ ℕ , we have 
that �t|IA∩IB = �t|IA∩IB . For all t ∈ ℕ , we define �t ∈ C→

K
 as follows: �t(c) = �t(c) , 

if c ∈ CA , and �t(c) = �t(c) , if c ∈ CB⧵CA . Then, by definition �t|CA
= �t . Further, 

�t|CB
= �t because �t|IA∩IB = �t|IA∩IB and by definition �t|CB⧵CA

= �t|CB⧵CA
 . Thus, by 

definition of TSPA composition, we have that ((st, s�t),�t, (st+1, s
�
t+1

)) ∈ �K for all 
t ∈ ℕ . This implies with s0 = �A and s�

0
= �B that e = (s0, s

�
0
),�0, (s1, s

�
1
),�1 … is an 

execution of K with beh(e)|IK = i.
(2) We now show that |{𝛼 ∈ behs(K) | 𝛼|IK = i}| < 2 for all i ∈ IΩ

K
:

Suppose towards a contradiction there exist i ∈ IΩ
K

 and �, � ∈ behs(K) such 
that �|IK = �|IK = i and � ≠ � . Thus, �|OK

≠ �|OK
 . As �, � are behaviors of 

K, there exist executions � and � of K such that � = beh(�) and � = beh(�) . 
Let � = (sA

0
, sB

0
), �0, (s

A
1
, sB

1
), �1 … be an execution of K such that beh(�) = � . 

Further, let � = (s�A
0
, s�B

0
), �0, (s

�A
1
, s�B

1
), �1 … be an execution of K such that 

beh(�) = � . Using the definitions of execution and composition, we obtain that 
�A = sA

0
, �0|CA

, sA
1
, �1|CA

… and �A = s�A
0
, �0|CA

, s�A
1
, �1|CA

… are execution of A. Simi-
larly, we have that �B = sB

0
, �0|CB

, sB
1
, �1|CB

… and �B = s�B
0
, �0|CB

, s�B
1
, �1|CB

… are 
executions of B. As OK = OA ∪ OB and �|OK

≠ �|OK
 , it holds that beh(�A) ≠ beh(�A) 

or beh(�B) ≠ beh(�B) . Without loss of generality, assume beh(�A) ≠ beh(�A) . Then, 
�|IK = �|IK implies beh(�A)|IA = beh(�A)|IA since IA ∩ OB = � and thus IA ⊆ IK by def-
inition of composition. This contradicts that A is unambiguously specified because 
beh(�A), beh(�A) ∈ behs(A) and beh(�A)|IA = beh(�A)|IA and beh(�A) ≠ beh(�A) .   ◻

The TSPA obtained from hiding an unambiguously specified TSPA’s output channel 
is again an unambiguously specified TSPA. Hiding an input channel does usually not 
preserve the unambiguously specified property.

Theorem 4 Let A be an unambiguously specified TSPA and let o ∈ OA be an output 
channel of A. Then, A ↾ (CA⧵{o}) is unambiguously specified.

Proof Let A and o be given as above. Let B = A ↾ (CA⧵{o}) . Suppose B is not 
unambiguously specified. Then there exist executions � = s0, �0, s1, �1 … and 
� = s�

0
, �0, s

�
1
, �1 … of B such that beh(�)|IB = beh(�)|IB and beh(�) ≠ beh(�) . 

By definition of TSPA restriction, this implies there exist executions 
�� = s0, �

�
0
, s1, �

�
1
… and �� = s�

0
, ��

0
, s�

1
, ��

1
… of A such that �i = ��

i
|B and �i = ��

i
|B 

for all i ∈ ℕ . This contradicts that A is unambiguously specified because 
beh(��)|IA = beh(�)|IB = beh(�)|IB = beh(��)|IA and beh(��) ≠ beh(��) since 
beh(��)|CB

= beh(�) ≠ beh(�) = beh(��)|CB
 .   ◻
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4.2  An influence relation between channels of components

A component’s input channel influences an output channel if the messages sent via 
the latter depend on the messages received via the former.

Definition 2 (Channel Influence Relation) Let A = (I,O, S, �, �) be an unambigu-
ously specified TSPA, let i ∈ I be an input channel of A, and let o ∈ O be an output 
channel of A. The channel i influences the channel o in A (denoted i ⇝A o ) iff

The above definition requires that there exist two behaviors �, � with the same 
messages on all input channels except i such that the behaviors are different on 
the output channel o. As the inputs are equal on all channels except i, the values 
received on i are responsible for the differences regarding the possible outputs on o.

The other way around, the channel i does not influence the channel o in A iff 
for any two possible inputs that are equal on all channels except i, the automaton 
A always produces the same outputs on o when processing the inputs. More for-
mally, negating the definition we obtain: a channel i does not influence a channel 
o in A (denoted i  ⇝A o) iff ∀�, � ∈ behs(A) ∶ �|I⧵{i} = �|I⧵{i} ⇒ �|{o} = �|{o} . Hid-
ing an input channel does not always preserve the unambiguously specified property 
(cf. Sect. 4.1). However, if an input channel i does not influence an output channel o 
in an unambiguously specified TSPA A, then hiding the input channel i and all out-
put channels except o results again in an unambiguously specified TSPA:

Theorem 5 Let A be an unambiguously specified TSPA, let i ∈ IA be an input chan-
nel of A, and let o ∈ OA be an output channel of A. If i ̸⇝A o , then A ↾ ({o} ∪ I⧵{i}) 
is unambiguously specified.

Proof Let A, i, and o be given as above. Let B = A ↾ ({o} ∪ I⧵{i}) . We need to show 
that |{� ∈ behs(B) | �|IB = h}| = 1 for all h ∈ IΩ

B
.

(1) We first show that |{𝛼 ∈ behs(B) | 𝛼|IB = h}| > 0 for all h ∈ IΩ
B

 : Let h ∈ IΩ
B

 . 
As A is unambiguously specified and IB ⊆ IA , there exists a behavior b ∈ behs(A) 
such that b|IB = h . Let � = s0, �0, s1, �1 … be an execution of A such that beh(�) = b . 
Then, by definition of execution s0 = �A and (sj, �j, sj+1) ∈ �A for all j ∈ ℕ . By defini-
tion of restriction, we have that s0 = �A = �B and (sj, �j|CB

, sj+1) ∈ �B for all j ∈ ℕ . 
Hence, � = s0, �0|CB

, s1, �1|CB
… is an execution of B with �|IB = h.

(2) We now show that |{𝛼 ∈ behs(B) | 𝛼|IB = h}| < 2 for all h ∈ IΩ
B

 : Suppose 
towards a contradiction there exist h ∈ IΩ and �, � ∈ behs(B) such that �|IB = �|IB 
and � ≠ � . Thus, �|OB

≠ �|OB
 . Let � = s0, �0, s1, �1 … and � = s�

0
, �0, s

�
1
, �1 … be exe-

cutions of B such that beh(�) = � and beh(�) = � . As � and � are executions of B, 
we have s0 = s�

0
= �B and (sj, �j, sj+1), (s�j , �j, s

�
j+1

) ∈ �B for all j ∈ ℕ . By definition of 
TSPA restriction, this implies s0 = s�

0
= �B = �A and for all j ∈ ℕ , there exist 

�j, �j ∈ C→
A

 such that (sj, �j, sj+1) ∈ �A and �j|CB
= �j and (s�

j
, �j, s

�
j+1

) ∈ �A and 
�j|CB

= �j . Hence, �� = s0, �0, s1, �1 … and �� = s�
0
, �0, s

�
1
, �1 … are executions of A. 

This contradicts that i ̸⇝A o because 

∃�, � ∈ behs(A) ∶ �|I⧵{i} = �|I⧵{i} ∧ �|{o} ≠ �|{o}.
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beh(��)|I⧵{i} = beh(��)|IB = beh(�)|IB = �|IB = �|IB = beh(��)|I⧵{i} and 
beh(��)|{o} = �|{o} ≠ �|{o} = beh(��)|{o} .   ◻

If there exists a pair of an input and an output channel of an unambiguously spec-
ified component such that the input channel does not influence the output channel, it 
is possible to split the component into a semantically equivalent architecture of two 
components. This architecture models a new component that is functionally better 
separated as the original component. This does not only improve the architecture’s 
design but also increases understandability of the architecture and enables independ-
ent functional testing. Further, dividing the component also facilitates compositional 
architecture verification: A property might be independent of the behaviors of one of 
a composed component’s subcomponents. Thus, verifying the property is possible 
without considering the subcomponent not influencing the property’s satisfaction.

Section 4.3 shows that the channel influence relation of every finite unambigu-
ously specified TSPA is decidable. Subsequently, Sect. 4.4 introduces the automated 
decomposition procedure based on the channel influence relation.

4.3  Deciding influence in unambiguously specified TSPAs

This section shows that it is decidable whether one channel influences another chan-
nel in an unambiguously specified finite TSPA. The decision relies on the construc-
tion of finite Büchi automata (BA) accepting infinite words  (Büchi 1962; Farwer 
2002; Safra 1988). BAs are well-known and studied in the automata theory domain. 
The next section fixes our notation for BAs and recaps decidability properties of 
BAs used in this paper before Sect. 4.3.1 presents the decision procedure.

A Büchi automaton (BA) is a tuple (Σ,Q, I,F, �) where

• Σ is a finite alphabet,
• Q is a finite set of states,
• I ⊆ Q is a set of initial states,
• F ⊆ Q is a set of accepting states, and
• 𝛿 ⊆ Q × Σ × Q is the transition relation.

Let A = (Σ,Q, I,F, �) be a BA. A run of A on a word w = �1, �2 ⋯ ∈ Σ∞ start-
ing in a state q0 ∈ Q is an infinite sequence q0, q1 … such that (qj−1, �j, qj) ∈ � 
for all j ∈ ℕ with j > 0 . The run q0, q1 … is accepting if q0 ∈ I and 
qi ∈ F for infinitely many i ∈ ℕ . The accepted language of A is defined as 
L(A) = {w ∈ Π∞ | there exists an accepting run of A on w} . The emptiness 
problem, asking whether L(A) = � for a BA A is decidable  (Büchi 1962; Farwer 
2002). The language of BAs is further closed under intersection  (Büchi 1962): 
For all BAs A and B , there exist an algorithm for constructing a BA C such that 
L(C) = L(A) ∩ L(B) . The languages accepted by BAs are closed under complement: 
For every BA A = (Σ,Q, I,F, �) , there is an algorithm for computing a BA B such 
that L(B) = Σ∞⧵L(A) (Safra 1988). We denote the BA accepting the complement of 
the language accepted by a BA A with A.
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4.3.1  Deciding influence

In the remainder of this section, let A be a finite unambiguously specified TSPA, let 
i ∈ IA be an input channel of A and let o ∈ OA be an output channel of A. The pro-
cedure for checking whether i influences o in A relies on constructing three Büchi 
automata A , I  , and O.

• The automaton A encodes all tuples of behaviors of A.
• The automaton I  models the set of all tuples of behaviors in CΩ

A
 that are equal on 

all input channels in IA⧵{i}.
• The automaton O encodes the set of all tuples of behaviors in CΩ

A
 that are equal 

on the output channel o.

Thus, the automaton accepting L(A) ∩ L(I) ∩ L(O) accepts all tuples of behaviors 
of A that are equal on the input channels in IA⧵{i} and not equal on the output chan-
nel o. We show that L(A) ∩ L(I) ∩ L(O) = � if, and only if, i does not influence o 
in A.

The Büchi automaton A that encodes all tuples of behaviors of A is constructed 
as follows:

A = (C→
A
× C→

A
, SA × SA, {(�A, �A)}, SA × SA, �), where

� = {((s, u), (a, b), (t, v)) |(s, a, t), (u, b, v) ∈ �A}
As A is finite, C→

A
 and SA are finite. Hence, C→

A
× C→

A
 and SA × SA are finite. This 

implies that � is finite. Therefore, A is a well-defined BA.

Theorem 6 For all �, � ∈ CΩ
A

 , it holds that 

Proof Let �, � ∈ CΩ
A

.
“⇒ ”: Assume it holds that �, � ∈ behs(A) . Then, there exist two executions 

� = s0, �0, s1, �1 ⋯ ∈ execs(A) and � = s�
0
, �0, s

�
1
, �1 ⋯ ∈ execs(A) such that 

beh(�) = � and beh(�) = � . By definition of execution we have that s0 = s�
0
= �A 

and (st, �t, st+1), (s�t , �t, s
�
t+1

) ∈ �A for all t ∈ ℕ . By definition of the transition rela-
tion � of the BA A , this implies ((st, s�t), (�t, �t), (st+1, s

�
t+1

)) ∈ � for all t ∈ ℕ . Hence, 
(s0, s

�
0
), (s1, s

�
1
)… is a run of A on the word (�0, �0), (�1, �1)… . As all states in A 

are accepting, all states on the run are accepting. As further (s0, s�0) = (�A, �A) , we 
have that the run is accepting. Thus, it holds that (�0, �0), (�1, �1)… is a word 
accepted by A . Observing that �t = �.t and �t = �.t for all t ∈ ℕ , we can conclude 
(�.0, �.0), (�.1, �.1)⋯ ∈ L(A).

“⇐ ”: Assume (�.0, �.0), (�.1, �.1)⋯ ∈ L(A) . This implies there exists an accept-
ing run � = (s0, s

�
0
), (s1, s

�
1
)… on the word (�.0, �.0), (�.1, �.1)… in A . Thus, we 

have (s0, s�0) = (�A, �A) and ((st, s�t), (�.t, �.t), (st+1, s
�
t+1

)) ∈ � for all t ∈ ℕ where � is 
the transition relation of A . Using the definition of the transition relation � of A , 
the above implies (st, �.t, st+1), (s�t , �.t, s

�
t+1

) ∈ �A for all t ∈ ℕ . Hence, by definition 
of execution � = s0, �.0, s1, �.1⋯ ∈ execs(A) and � = s�

0
, �.0, s�

1
, �.1⋯ ∈ execs(A) . 

�, � ∈ behs(A) ⇔ (�.0, �.0), (�.1, �.1)⋯ ∈ L(A).
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From observing that beh(�) = � and beh(�) = � , we can conclude that 
�, � ∈ behs(A) .   ◻

The constructions of the BAs I  and O are analogous to each other. We thus 
first present a more general construction before defining I  and O . Let B ⊆ CA be 
a set of channels of A. The BA E(B) encoding all pairs of behaviors in CΩ

A
 that are 

equal on the channels in B is constructed as follows:

As A is finite, C→
A

 is finite. Thus, C→
A
× C→

A
 is finite. Further, E(B) has exactly 

one state. Hence, � is finite and E(B) is well-defined.

Theorem 7 Let B ⊆ CA . For all behaviors �, � ∈ CΩ
A

 it holds that
�|B = �|B ⇔ (�.0, �.0), (�.1, �.1)⋯ ∈ L(E(B)).

Proof Let B ⊆ CA and let �, � ∈ CΩ
A

.
“⇒ ”: Assume �|B = �|B . This implies �.t|B = �.t|B for all t ∈ ℕ . Thus, by defini-

tion of the transition relation of E(B) , we have that (⊤, (𝛼.t, 𝛽.t),⊤) ∈ 𝛿 for all t ∈ ℕ 
where � is the transition relation of E(B) . Using the definition of accepting run, we 
have that ⊤,⊤,⊤… is an accepting run on the word (�.0, �.0), (�.1, �.1)… in E(B) . 
Thus, (�.0, �.0), (�.1, �.1), (�.2, �.2)⋯ ∈ L(E(B)).

“⇐ ”: Assume � = (�.0, �.0), (�.1, �.1)⋯ ∈ L(E(B)) . Then, there 
exists an accepting run � of E(B) on the word � . As ⊤ is the only state of 
E(B) , we have that 𝜎.t = ⊤ for all t ∈ ℕ . As � is a run of E(B) , we have 
(𝜎.t, (𝛼.t, 𝛽.t), 𝜎.(t + 1)) = (⊤, (𝛼.t, 𝛽.t),⊤) ∈ 𝛿 for all t ∈ ℕ where � is the transition 
relation of E(B) . By definition of the transition relation, this implies �.t|B = �.t|B for 
all t ∈ ℕ . This is equivalent to �|B = �|B .   ◻

The Büchi automata I  and O are defined as I = E(IA⧵{i}) and O = E({o}).

Theorem 8 It holds i ⇝A o iff L(A) ∩ L(I) ∩ L(O) ≠ �.

Proof Using Theorems 6 and 7, we have for all behaviors �, � ∈ CΩ
A

:

�, � ∈ behs(A) ⇔ (�.0, �.0), (�.1, �.1)⋯ ∈ L(A) and
�|IA⧵{i} = �|IA⧵{i} ⇔ (�.0, �.0), (�.1, �.1)⋯ ∈ L(I) and
�|{o} ≠ �|{o} ⇔ (�.0, �.0), (�.1, �.1)⋯ ∈ L(O).

Combining the three equivalences, we obtain for all behaviors �, � ∈ CΩ
A

:

(�, � ∈ behs(A) ∧ �|IA⧵{i} = �|IA⧵{i} ∧ �|{o} ≠ �|{o}) ⇔
(�.0, �.0), (�.1, �.1)⋯ ∈ L(A) ∩ L(I) ∩ L(O).

E(B) = (C→
A
× C→

A
, {⊤}, {⊤}, {⊤}, 𝛿) where 𝛿 = {(⊤, (a1, a2),⊤) | a1|B = a2|B}.
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“⇒ ”: Assume i ⇝A o . Then, there exist behaviors 
�, � ∈ behs(A) ∶ �|I⧵{i} = �|I⧵{i} ∧ �|{o} ≠ �|{o} . Using the above, this implies 
(�.0, �.0), (�.1, �.1)⋯ ∈ L(A) ∩ L(I) ∩ L(O) . Thus, L(A) ∩ L(I) ∩ L(O) ≠ �.

“⇐ ”: Assume L(A) ∩ L(I) ∩ L(O) ≠ � . This implies that there exists a word 
(�.0, �.0), (�.1, �.1)⋯ ∈ L(A) ∩ L(I) ∩ L(O) . Let �, � be two behaviors defined 
by: � = �.0, �.1⋯ ∈ CΩ

A
 and � = �.0, �.1⋯ ∈ CΩ

A
 . Using the above, we obtain 

�, � ∈ behs(A) ∧ �|IA⧵{i} = �|IA⧵{i} ∧ �|{o} ≠ �|{o} . This implies i ⇝A o .   ◻

For example, Fig. 8 depicts the TSPA B. The TSPA has the two input channels i 
and j and the three output channels o, p, and q. Each channel has the type {�, 1} . The 
graphical representation of the TSPA uses eight transition labels that are defined 
in the table, which is depicted at the bottom of Fig. 8. The top-right part of Fig. 8 
sketches the influence relation between the input and output channels of the TSPA 
B. For instance, the channel i influences the channel p, but the channel i does not 
influence the channel q. From the graphical representation, the channel influence 
relation in the TSPA B is not obvious. Using the procedure presented in this section, 
the channel influence relation can be computed fully automatically.

The following example demonstrates the construction to show that the input chan-
nel i influences the output channel p in the TSPA B. In the following, we construct 
the three BAs A, I, and O for determining whether the input channel i influences the 
output channel p. From these BAs, we construct the BA A × I × O that recognizes 

Fig. 8  TSPA where one output channel is not influenced by any input channel, one output channel is 
influenced by one input channel, and one output channel is influenced by two input channels
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the language L(A) ∩ L(I) ∩ L(O) . Using Theorem  8, the language recognized by 
A × I × O is not empty iff the channel i influences the channel p in the TSPA B. The 
BA A modeling all tuples of behaviors of the TSPA B is graphically illustrated in 
the top of Fig. 9. This BA uses the same transition labels as the TSPA B, which are 
defined in Fig. 8. The BAs I and O are depicted in the middle of Fig. 9. The BA I 
models the set of all tuples of behaviors in C(B)Ω that are equal on all input channels 
in IB⧵{i} = {j} . The BA O represents the set of all behaviors in C(B)Ω that are not 
equal on the output channel p. The bottom left of Fig. 9 depicts the reachable part 
of the BA A × I that accepts the intersection of the languages accepted by the BAs 

Fig. 9  The BA A models all tuples of behaviors of the TSPA B, which is depicted in Fig. 8. The BA I 
models the set of all tuples of behaviors in C(B)Ω that are equal on the input channels in IB⧵{i} . The 
BA O models the set of all tuples of behaviors in C(B) that are not equal on the output channel p. The 
reachable part of the BA A × I models all tuples of behaviors of A that are equal on all input channels in 
IB⧵{i} = {j} . The reachable part of the BA A × I × O models all tuples of behaviors of A that are equal 
on the input channel j and not equal on the output channel p 
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A and I. Thus, the BA A × I models the set of all tuples of behaviors of A that are 
equal on the input channel j. The bottom right of Fig. 9 depicts the reachable part of 
the BA A × I × O . This BA models all tuples of behaviors of A that are equal on the 
input channel j and not equal on the output channel p. As the language accepted by 
this BA is not empty, the channel i influences the channel p. For example, a word 
accepted by this BA is given by w = (v2, v4) ⋅ ((v5, v5), (v2, v2))

∞ . The word w rep-
resents the behaviors � = v2 ⋅ (v5, v2)

∞ and � = v4 ⋅ (v5, v2)
∞ where �|IB⧵{i} = �|IB⧵{i} 

and �|p ≠ �|p . Thus, the word w encodes a concrete proof in the form of two behav-
iors proving that the channel i influences the channel p.

The following example demonstrates the construction to show that the input 
channel i does not influence the output channel q in the TSPA B. To this effect, we 
first construct the BA O′ . This BA models all behaviors in C(B)Ω that are not equal 
on the output channel q. Afterwards, we construct the BA A × I × O� , which models 
all behaviors of A that are equal on all channels in IB⧵{i} = {j} and not equal on 
the output channel q. The reachable part of the BA O′ is depicted in the left part of 
Fig. 10. The right part of Fig. 10 depicts the reachable part of the BA A × I × O� . 
The language of this BA is empty. Thus, with Theorem 8, the input channel i does 
not influence the output channel q in the TSPA B: For every input, the output on the 
channel q does not depend on the input on channel i.

4.4  Decomposing components along influencers

Composing the TSPAs obtained from decomposing a TSPA into two compatible 
TSPAs in parallel, such that the composition contains exactly the channels of the 
original, always results in a TSPA that generalizes the behavior of the original. 
This holds because hiding an input channel from a TSPA removes information that 
restricts the TSPA’s behaviors:

Theorem  9 Let A be a TSPA and let D,E ⊆ CA such that D ∩ E ∩ OA = � and 
D ∪ E = CA . Then, behs(A) ⊆ behs(A ↾ D⊗ A ↾ E).

Proof Let A, D, and E be given as above. Let X = A ↾ D and let Y = A ↾ E . 
X and Y are compatible because D ∩ E ∩ OA = � implies OX ∩ OY = � . Let 
� = s0, �0, s1, �1,… be an execution of A. By definition of execution it holds that 
s0 = �A and (si, �i, si+1) ∈ �A for all i ∈ ℕ . Hence, using the definition of restric-
tion we have that (si, �i|CX

, si+1) ∈ �X and (si, �i|CY
, si+1) ∈ �Y for all i ∈ ℕ . Thus, 

Fig. 10  The BA O′ and the reachable part of the BA A × I × O� that models all tuples of behaviors of A 
that are equal on the input channel j and not equal on the output channel q 
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as by assumption CX ∪ CY = CA , by definition of TSPA composition, this implies 
((si, si), 𝜃i, (si+1, si+1)) ∈ 𝛿X⊗Y . Observing that (s0, s0) = (�A, �A) is the initial state 
of X ⊗ Y  , we can conclude that � = (s0, s0), �0, (s1, s1), �1,… is an execution of 
X ⊗ Y  . Thus, beh(𝜅) = beh(𝜎) ∈ behs(X ⊗ Y) . To conclude: for each execution 
of A, there exists an execution of X ⊗ Y  such that the executions have the same 
behaviors. This implies that each behavior of A is also a behavior of X ⊗ Y  . Thus, 
behs(A) ⊆ behs(X ⊗ Y) .   ◻.

As hiding may remove information that restrict a TSPA’s behaviors, the other 
direction does not necessarily hold. Thus, the composition of two TSPAs resulting 
from a decomposition may have behaviors that are not present in the original TSPA. 
However, if the decomposition is performed along channels that do not influence 
each other, then the composition of two TSPAs resulting from the decomposition 
has exactly the same behaviors as the original:

Theorem 10 Let A be an unambiguously specified TSPA, let i ∈ IA , and let o ∈ OA . 
If i ̸⇝A o , then behs(A ↾ ({o} ∪ IA⧵{i})⊗ A ↾ (CA⧵{o}) = behs(A).

Proof Let A, i and o be given as above. Let D = A ↾ ({o} ∪ IA⧵{i}) and let 
E = A ↾ (CA⧵{o}) . As A is unambiguously specified, Theorem  4 guaran-
tees that E is unambiguously specified. As i ̸⇝A o , Theorem  5 guarantees that 
D is unambiguously specified. As D and E are unambiguously specified and 
OD ∩ IE = {o} ∩ IA = � = (OA⧵{o}) ∩ (IA⧵{i}) = OE ∩ ID , using Theorem  3, we 
have that D⊗ E is unambiguously specified. By definition of D and E, we have 
OD ∩ OE = {o} ∩ (OA⧵{o}) = � and CD ∪ CE = ({o} ∪ IA⧵{i}) ∪ (CA⧵{o}) = CA . 
Hence, with Theorem 9, we have behs(A) ⊆ behs(D⊗ E) . Therefore, as A and D⊗ E 
are unambiguously specified and OA = {o} ∪ (OA⧵{o}) = OD ∪ OE = OD⊗E and 
behs(A) ⊆ behs(D⊗ E) , using Theorem 2 we can conclude behs(A) = behs(D⊗ E) .  
 ◻

This enables decomposing components based on channel pairs that do not influ-
ence each other. Algorithm 1 is a procedure for iteratively determining a maximal 
decomposition with respect to the influence relation between channels in a TSPA. 
The basic operations are TSPA restriction and checking whether there exist channels 
that influence each other in a TSPA. A procedure for determining whether an input 
channel influences an output channel is detailed in the previous Sect. 4.3.
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For example, decomposing the TSPA B of Fig.  8 with Algorithm  1 yields the 
decomposition represented by the set {B ↾ {j},B ↾ {o},B ↾ {j, q},B ↾ {i, j, p}}.

5  Elevator control system example revisited

Section 2 presented the software component for an elevator control system (ECS) 
as inspired by Butting et al. (2017b), Strobl et al. (1999) and Ringert et al. (2016). 
At some point, the engineers developed a monolithic ECS component as depicted 
in Fig. 1. The ECS component is a finite state system (Butting et al. 2017b; Strobl 
et al. 1999; Ringert et al. 2016) that can be transformed to a finite TSPA (Butting 
et al. 2017b). The component’s implementation has already been shipped but is still 
available. Due to changed requirements for the elevator’s successor version, the 
team needs to adjust the component’s behavior concerning the control of the floor 
lights in response to the elevator’s cabin position. The floor lights are controlled 
with messages sent via the channels li1, li2, and li3. The elevator’s position 
is indicated by messages received via the channels at1, at2, and at3. Changing 
the implementation is error-prone as the architecture is monolithic, i.e., changing 
the implementation may change the component’s behavior on channels that are not 
impacted by the changed requirement. For instance, as the component is not ade-
quately decomposed, changing the component’s implementation may result in a 
change of its behavior on the channels up and down for steering the elevator cabin, 
although the behavior on these channels does not need to be adjusted to satisfy the 
changed requirement. The engineering team is also uncertain which input channels 
influence which output channels, i.e., whether there are hidden influence dependen-
cies between channels. The team thus uses our method for the automated decompo-
sition of components.

Figure 11 depicts three ECS architectures that are obtained as intermediate results 
during the decomposition of the initial ECS implementation. The initial implemen-
tation is illustrated in the top-left of Fig. 11.

The decomposition procedure initially detects that the input channel btn2 does 
not influence the output channel li1 (cf. Algorithm 1, l. 2). An automatic procedure 
for checking whether an input channel influences an output channel is detailedly 
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described in Sect. 4.3.1. The algorithm splits the ECS implementation into the two 
components Li1Ctrl and Rest (called D and E in Algorithm  1, ll.  4–5). The 
resulting architecture is depicted in the top-right of Fig. 11. The component Li1C-
trl has the single output channel li1 and the five input channels btn1, btn3, 
at1, at2, at3. As the input channel btn2 does not influence the output channel 
li1 in the component ECS, the channel btn2 is no input channel of the component 
Li1Ctrl. At this stage during the decomposition procedure, it is not clear whether 
other input channels do not influence the output channel li1, either. Similarly, at 
this stage, it has not been detected which channels do not influence the other output 
channels. Therefore, all input channels of the initial ECS component are also input 
channels of the component Rest and all output channels of the initial ECS compo-
nent except the channel li1 are the output channels of Rest.

In the next three iterations of the decomposition, Algorithm  1 detects that the 
channels at2 , at3, and btn3 do not influence the channel li1 in Li1Ctrl, 
either. Therefore, Algorithm  1 decomposes the component Li1Ctrl accord-
ingly: The input channels at2, at3, and btn3 are removed from the component 

Fig. 11  Representation of different intermediate architectures obtained during the automatic decomposi-
tion. Top-left describes the initial behavior representation as presented in Fig. 1. The architectures repre-
sented clockwise describe intermediate results after various iterations
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Li1Ctrl. As byproducts from the decomposition, the algorithm produces compo-
nents without output channels. As these components do not sent messages to their 
environments, they can be safely removed without changing the semantics of the 
architecture and are not depicted above. The resulting architecture after the decom-
position and the removal of the components is depicted in the bottom-right of 
Fig. 11.

Similarly, in the next four iterations of the decomposition procedure, the algo-
rithm detects that the input channels btn1, btn3, at1, and at3 do not influence 
the channel li2 in Rest and decomposes the component Rest accordingly. The 
resulting architecture after removing the components without output channels is 
depicted in the bottom-left of Fig. 11.

Analogously, the input channels btn1, btn2, at1, and at2 do not influence 
the channel li3 in Rest. Therefore, the algorithm decomposes the component 
Rest accordingly. The resulting architecture after removing all components with-
out output channels is depicted Fig. 12. In this architecture, every input channel of 
every component influences every output channel of the component. Therefore, the 
decomposition procedure terminates.

By the decomposition procedure’s properties, the decomposed component 
(cf. Fig. 12) is semantically equivalent to the original and clearly better separated 
regarding the influence relation between channels. From reviewing the new architec-
ture, the engineers now understand that messages emitted via a channel for control-
ling a floor light only depend on the corresponding elevator cabin position sensor 
and whether the corresponding request button has been pressed. The implemen-
tation of a light controller can now be changed without the threat of accidentally 
changing the behavior on other channels. They also understand that all input chan-
nels influence the channels open, close, up, and down. Thus, the messages the 
component sends via these channels depend on the messages received via all input 

Fig. 12  Semantically equivalent decomposed variant of the ECS
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channels. The behavior of the floor lights controlling components and the cabin con-
trolling component can now be unit tested and formally verified individually. As the 
decomposition is a refactoring, the satisfactions of preexisting symbolic system tests 
and formally specified requirements for the ECS component are preserved.

6  Discussion

Currently, our approach applies only to unambiguously specified and deterministic 
component implementations. This prevents automated decomposition of component 
specifications, which usually are underspecified (e.g., by non-determinism). Also, 
our influence-based decomposition is limited to time-synchronous systems. While 
these are ubiquitous in embedded and cyber-physical systems, other domains, such 
as cloud computing, usually rely on event-based message passing. Although Focus 
supports both, non-deterministic specification and untimed communication, apply-
ing the notion of channel influencing requires additional research. We consider this 
as interesting future work.

As our notion of influencing channels establishes relations from input channels to 
output channels, the resulting decomposition always is parallel, i.e., produces sub-
components connecting a subset of the input channels to a subset of the output chan-
nels. Prescribing intermediate channels for more detailed decomposition might be 
additionally helpful. This also is subject to future research.

The algorithm for the decomposition of components as presented in  Sect.  4 
always computes a maximal decomposition: It decomposes the input component 
(respectively the intermediate decomposition results) as long as there exists at least 
one input/output channel pair where the input channel does not influence the out-
put channel. A user might consider an input channel to be associated with an out-
put channel, although the input channel does not influence the output channel. This 
might be the case, for instance, because the channels are functionally related. In the 
ECS example (cf. Fig. 12), for instance, a user might consider each button-channel 
(btn1, btn2, btn3) to be associated with each light-channel (li1, li2, li3). 
This might be the case, because the channels are functionally related in the sense 
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that they are all used for steering different floor lights. In such cases, the user might 
be not interested in a maximal decomposition of the system. Instead, she might be 
interested in a decomposition procedure that does definitely not decompose prede-
fined pairs of input and output channels, disregarding whether the input channel of 
a pair influences the output channel of the pair. Algorithm 2 is an adjusted version 
of Algorithm 1 for accomplishing this task. The algorithm additionally takes a set 
I (for inseparable) of pairs of input and output channels of the TSPA as input. The 
algorithm separates an input channel from an output channel iff the input channel 
does not influence the output channel and the input/output channel pair is no ele-
ment of the set I containing the pairs of inseparable channels. Thus, the adjusted 
algorithm computes a maximal decomposition while respecting pairs of channels 
that should not be separated from each other.

Focus operates on component instances, i.e., the information about component 
types is implicit only. Consequently, our approach produces component instances 
also. If these, as illustrated by components Li1Ctrl, Li2Ctrl, and Li3Ctrl of 
Fig. 12, are equivalent, we could deduce type information and synthesize new com-
ponent types for patterns identified through decomposition accordingly. This might 
facilitate component reuse. In this case, the decomposition would derive a new com-
ponent type LightCtrl and instantiate it three times accordingly.

This paper presents the theoretical foundations of automated decomposition 
along pairs of channels that influence each other. The automated decomposition 
rests on the assumption that the systems largely comprise components that are free 
of side effects, i.e., “pure”, Focus components. Where components yield side effects, 
checking whether system functions or capabilities have changed demands additional 
measures, such as sufficient test coverage or manual analysis. Another challenge in 
using our method for automated decomposition is its scaling-up. For instance, the 
ECS sketched in Fig. 1 and based on Butting et al. (2019) will be translated into a 
TSPA with a large number of transitions, which might be too large for human com-
prehension and reproduction in this paper. However, usually, the models that engi-
neers start with are specified manually and, from our experience, thus, small and 
comprehensible.

Our approach for automated decomposition is limited to Focus-compatible archi-
tectures, which belong to a group of more formal modeling techniques that might 
not yet be state-of-practice. For modelers operating within less well-defined or 
incompatible technological spaces, we consider our contribution towards the auto-
mated evolution of software architecture models a relevant case in point for at least 
investigating the benefits of more formal modeling techniques in practice. Whether 
the results from the decomposition are useful for engineers needs further evaluation 
including real systems and engineers. We consider this interesting future work.

7  Related work

While agile architecting has been under investigation lately, e.g., driven by change 
impact analysis  (Díaz et al. 2013), cost-and-risk analysis  (Poort 2014), or for spe-
cific domains  (Díaz et  al. 2014), there are only a few approaches towards agile 
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architecting with semantically well-defined ADLs and these usually rest on Focus or 
the �-calculus (Milner 1999).

7.1  Automata decomposition

The decomposition of automata has been subject to research for several decades. For 
instance, our contribution also relates to parallel decomposition of automata (Gerace 
and Gestri 1967). While it also aims at a practical decomposition (Nozaki 1978), i.e., 
the resulting components yield fewer states than the component they were decom-
posed from, in contrast to more current related work  (Uygur and Sattler 2013), it 
operates specifically on time-synchronous port automata. Similarly, while port 
automata generally can be decomposed into compositions consisting of FIFOs and 
XORs only (Koehler and Clarke 2009), this resulting granularity does not produce 
automata accessible for constructive systems engineering. Related decomposition 
approaches also exist for probabilistic automata  (Carlsson and Yu 2015) or linear 
automata (Plotkin and Plotkin 2015), none of which consider automated decomposi-
tion in the presence of influencing channels.

There also are related approaches in the parallel decomposition of pro-
cesses  (Jongmans et  al. 2016). Here, the decomposition leverages the underlying 
Reo  (Razavi and Sirjani 2006) process algebraic semantics  (Kokash et  al. 2010). 
With Reo, communication is untimed in the Focus  (Broy and Stølen 2001; Broy 
2010) sense and the decomposition follows process actions instead of shared chan-
nels. How the parallel decomposition of Reo processes can be translated to untimed 
Focus systems is subject to ongoing research.

7.2  Agile architecting

Industry and research have produced over 120 ADLs (Malavolta et al. 2013). Most 
of these feature the composition of components into larger architectures and some of 
these also feature the denotational semantics necessary to support agile architecting 
through automated decomposition. This section discusses related ADLs and their 
support for automated decomposition.

AutoFocus 3 (Hölzl and Feilkas 2010) and MontiArc (Butting et al. 2017a) are 
ADLs featuring tool chains for developing architectures of reactive software sys-
tems that are grounded in Focus (Broy and Stølen 2001). This paper’s system model 
describes the formal foundations of both ADLs. AutoFocus 3 supports model check-
ing the behavior of architectures against LTL and CTL properties (Campetelli et al. 
2011). MontiArc supports semantic differencing of components  (Butting et  al. 
2017b). However, both currently lack fully automated component decomposition 
methods. Hence, even if employed in agile processes, the challenge of manually 
decomposing monolithic architectures remains. Our approach can directly be inte-
grated into the tool chains of both ADLs.

The �-ADL supports model checking for verifying software architectures against 
DynBLTL properties (Cavalcante et al. 2016). Therefore, a statistical model of finite 
system executions is created and the probability of satisfying a property within 
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confidential bounds is calculated. However, we are unaware of any agile architect-
ing methods based on the �-calculus. As our approach is based on Focus and not on 
the �-calculus, it cannot be directly integrated into the tool chains of ADLs that are 
based on the �-calculus. Developing an influence relation and a decomposition pro-
cedure for systems based on the �-calculus is interesting future work.

7.3  Applicability to other automata models

Other automata models, such as I/O automata  (Lynch and Tuttle 1989), Interface 
automata  (de  Alfaro and Henzinger 2005), team automata  (ter Beek et  al. 2003), 
and component-interaction automata (Brim et al. 2006), do not include the notion of 
channel. Instead, they distinguish between input, internal, and output actions. Com-
position operators compose different automata according to their actions. As these 
automata models do not explicitly incorporate the notion of channel, it is not pos-
sible to define an influence relation between the channels of these automata. How-
ever, it could be interesting to define a notion of influence between input and output 
actions of the automata. The relation could be defined such that it identifies whether 
the receipt of a specific input action influences the output of a specific output action. 
Transferring this idea to the automata model used in this paper, the above corre-
sponds to the question whether a specific message on a specific input channel influ-
ences the output of a specific message on a specific output channel. We consider 
the definition of such a relation and the development of automated tool support as 
interesting future work. This would enable a more fine-grained analysis as presented 
in this paper. Whether this analysis or the analysis presented in this paper is more 
appropriate depends on the use case and intention by the developer.

For other automata models that include the notion of channel, such as port 
automata  (Grosu and Rumpe 1995), time-synchronous channel automata  (Butting 
et al. 2019), and MAAts automata (Ringert 2014), it is possible to transfer the notion 
of influence between channels. However, some of these automata models use a dif-
ferent semantics as the automaton model used in this paper. The method for detect-
ing whether one channel influences another channel needs to be adjusted depending 
on the semantics of the respective automaton model. Consequently, the decomposi-
tion method also needs to be adjusted depending on the composition operator of the 
respective automaton model.

8  Summary

We have presented a method to automatically decompose a monolithic deterministic 
component into an architecture consisting of multiple subcomponents that are com-
posed in parallel. This supports agile architecting by reducing the effort for analyz-
ing and implementing system behavior along subcomponents and facilitates refine-
ment and refactoring of architectures. To this end, we have conceived a notion of 
influence between channels and formalized it in the Focus (Broy and Stølen 2001) 
theory. We have proven that this decomposition is an actual refactoring, i.e., the 
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resulting systems are semantically equivalent to the original systems. Hence, this 
decomposition can be applied to stepwise refinement and ultimately facilitates archi-
tecture modeling.
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Abstract—Stepwise refinement is a development methodology
in which software components progressively evolve under strict
adherence of proven properties. This requires means to check
whether a new version of a component – with potentially different
interface and behavior implementation – refines the behavior
of its predecessor. Where architecture description languages
(ADLs) support refinement checking, the complexity of their
semantic domain requires (partially) manual proving to establish
refinement between component versions. We identified a subset of
the FOCUS semantics for describing distributed systems as stream
processing functions that is powerful enough to model complex
and realistic systems, yet sufficiently powerful to support fully
automated refinement checking. Leveraging this, we present a
refinement checking method for ADLs yielding semantics that can
be expressed as stream processing functions. This method relies
on transforming architectures into composed port automata and
translating these to Büchi automata prior to proving refinement
using RABIT for language inclusion checking. This method
enables to compare the behaviors of component versions with
minimal effort, yields witnesses for non-refining component pairs,
and, thus, ultimately facilitates stepwise component refinement.

I. INTRODUCTION

Stepwise refinement [3], [4] is a development methodology
for continuous architecture modeling based on controlled
evolution and progressive improvement of components: each
successor component version must adhere to properties already
proven for its predecessors. To this effect, checking whether
successor component versions refine their predecessors in
terms of observable input/output behavior is crucial.

Architecture description languages (ADLs) [20] leverage the
potential of model-driven engineering [32] for the description
of software architectures. Research has produced over 120
ADLs [19] for different domains, such as automotive [9],
avionics [11], consumer electronics [31], or robotics [28].

Similar to UML [21], the specific semantics of many ADL
details are encoded in their infrastructures and tools only.
Where fully detailed denotational or operational semantics are
available, such as FOCUS [5], these are usually too complex for
fully automated refinement checking and typically require to
(partially) manually prove refinement between two component
versions. This impedes stepwise refinement so severely that
it becomes a “highly idealistic” [3] idea. However, enabling
stepwise refinement for software architecture models would
greatly facilitate development in domains where component
adherence to certain properties is crucial.

We identified a subset of the FOCUS [5] semantics for time-
synchronous, distributed, interactive systems that is powerful
enough to model complex and realistic systems and yet enables

fully automated refinement checking between components.
Based on this, we present an approach to transform software
component models into a variant of port automata [12],
compose these syntactically, and translate these into Büchi
automata, where their refinement can be checked via lan-
guage inclusion. This approach is realized with the Monti-
ArcAutomaton component & connector ADL [23], [25] and
the RABIT [1], [2] tool for fully automated language inclusion
checking between Büchi automata. It enables modeling soft-
ware architectures with powerful ADLs and checking refine-
ment on a push-button basis. To this effect, the contributions
of this paper are:
• Formulation of the semantics domain of time-

synchronous [5] stream processing functions (TSSPFs)
inspired by the notion of stream processing function [24].

• Presentation of a time-synchronous variant of port au-
tomata (TSPA) [12] with operational semantics based on
execution traces and denotational semantics based on sets
of TSSPFs.

• A semantically compositional syntactic composition op-
erator for TSPAs: The semantics of the syntactic compo-
sition of two TSPAs is equal to the composition of the
semantics of the individual TSPAs.

• A transformation from finite TSPAs to Büchi automata.
• A proof showing the operational semantics of a finite

TSPA and the language accepted by the Büchi automaton
resulting from such a transformation coincide.

• The result that refinement checking and disproof genera-
tion in form of semantic difference witnesses for software
architectures where components can be mapped to finite
TSPAs can be reduced to language inclusion checking
and counterexample generation for Büchi automata.

• An implementation based on MontiArcAutomaton [23],
[25] and RABIT [1], [2].

In the following, Sec. II sketches the idea of stepwise
refinement, before Sec. III presents the FOCUS subset used
as semantics domain for components. Afterwards, Sec. IV
presents semantic differencing based on this subset and Sec. V
presents the implementation of our approach with MontiArc-
Automaton and RABIT and evaluates its applicability. Sec. VI
discusses observations and Sec. VII highlights related work.
Sec. VIII concludes.

II. EXAMPLE

Consider the model-driven development of an elevator con-
trol system (ECS) as presented in [29]. The ECS depicted
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in Fig. 1 comprises two hierarchically composed components
representing the three floors the elevator serves (component
Floors) and the elevator cabin (component Elevator)
itself. Whenever a button on a floor (indicated, for example,
by a message on the incoming port btn1) is pressed, the
ECS should activate the light (by sending a message via
outgoing port li1) on the corresponding floor and instruct
the elevator cabin to visit that floor. The control logic of the
elevator is modeled via a statechart variant embedded into
the Elevator’s subcomponent Control. This component
receives messages upon arriving at a specific floor (e.g., via
incoming port at1) and sends messages to Door and Motor
to operate its door and to move between the floors. The latter
two embed models of compact action languages to describe
their respective behavior.
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Fig. 1. The elevator control system ECS comprises subcomponents to manage
serving elevation requests on up to three floors.

For this version of ECS, the company has proven that
certain properties hold (e.g., that it cannot produce blocking
situations). Now the company aims to replace the Elevator
component with an improved version that reacts only to
elevator requests on a floor if there is no such request yet.
To this effect, the company employs stepwise refinement to
avoid proving the properties of Elevator again for its
successor version NewElevator. Therefore, the behavior
descriptions of all subcomponents are translated into port
automata. For composed components, the behavior descrip-
tions of their subcomponents are translated also and merged
iteratively. This ultimately eliminates all hierarchy levels but
the last. The result of this transformation is depicted in Fig. 2,
where the behavior descriptions of all three subcomponents
have been transformed accordingly and merged into a single
port automaton. The same is performed for the improved
NewElevator component before both are transformed into
nondeterministic Büchi automata as presented in Sec. V.

Using this transformation reduces semantic component re-
finement to language inclusion on Büchi automata and can
be solved automatically using RABIT. Hence, with this in-
frastructure in place, the company now can fully automated
ensure whether the NewElevator, and its potential suc-
cessors, actually refine their predecessors or require further
adjusting. Where refinement is refuted, difference witnessing
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Fig. 2. The composed components Elevator and NewElevator each are
transformed into flat components with a single port automaton prior to being
transformed into Büchi automata and checked for language inclusion.

input/output pairs are produced. This automation of stepwise
refinement can increase the pace of each refinement step and,
hence, overall development efficiency.

III. A SEMANTICS DOMAIN FOR COMPONENTS

This section introduces the semantics domain for compo-
nents based on the FOCUS framework [3], [5], [12], [24],
[27] and recaps the most important results from [12], which
underlie the approach presented in this paper.

We interpret software architectures as networks of au-
tonomously acting components communicating in a time-
synchronous manner via directed, typed channels connecting
the components’ interfaces. A time-synchronous architecture
can be interpreted as a system where component computations
are performed concurrently and controlled by a global clock
that splits runtime into discrete and equidistant time units. In
every time unit, each component receives finitely many input
messages via its interfaces and outputs finitely many messages
to its environment. The computations of each component in
every time unit must terminate.

In the remainder, we denote by [X → Y ] the set of all
functions from a set X to a set Y . For a function f ∈ [X → Y ]
and a set Z ⊆ X , the restriction of f to Z is the function
f |Z ∈ [Z → Y ] that satisfies f |Z(x) = f(x) for all x ∈ Z.
Given two functions f ∈ [X → A] and g ∈ [Y → B], the
overriding union of f with g is the function f + g ∈ [(X ∪
Y )→ (A∪B)] that satisfies (f + g)(x) = g(x) if x ∈ Y and
(f + g)(x) = f(x) if x ∈ X \ Y for all x ∈ X ∪ Y .

A. Streams, Messages, Types, and Communication Histories

The history of messages a component receives or sends via
an interface is formally described as a stream that contains
messages in order of their transmission. Let M be an arbitrary
alphabet. A stream over the set M is a finite or infinite
sequence of elements from M . Following [5], we denote by
• M∗ the set of all finite streams over M ,
• M∞ the set of all infinite streams over M ,
• 〈〉 the empty stream, which is an element of M∗,
• ŝt the concatenation of two streams s and t such that
((M∗∪M∞), ,̂ 〈〉) is a monoid. If s ∈M∞ then ŝt = s.

• � the prefix relation over streams, which is a partial order
defined by: ∀s, t ∈ (M∗∪M∞) : s � t⇔ ∃u : ŝu = t,

276



• s.t the t-th element of a stream s ∈M∞,
• s↓t the prefix of a stream s ∈M∞ of length t ∈ N.
In the remainder, let M denote an arbitrary but fixed set

of data elements, such as messages, and let Type be a set of
data types such that each t ∈ Type satisfies t ⊆ M . Types
facilitate restricting the set of messages a component may emit
or receive via an interface. We assume a discrete model of
time where component computation is divided into discrete
time units of equal and finite duration. In each time unit each
component receives at most one message via each incoming
interface, may perform finitely many state changes and emits
at most one message via each outgoing interface. We use the
special symbol ε ∈ M to denote the absence of a message
during a time unit and require ε ∈ t for each t ∈ Type.

A channel is an identifier for a communication link between
interface elements of components. In the following we denote
by C a set of typed channel names. The function type ∈ [C →
Type] maps each channel in the set C to its type. Let B ⊆ C
be an arbitrary set of channel names. A communication history
is an element of the set BΩ defined as follows:

BΩ def
= {h ∈ [B →M∞] | ∀b ∈ B : h(b) ∈ type(b)∞}.

A communication history h ∈ BΩ is used to model the
history of messages emitted via the channels in the set B.

Let h ∈ BΩ be a communication history, H ⊆ BΩ a set of
communication histories, and t ∈ N a natural number. We lift
the operator ↓ to communication histories and sets of commu-
nication histories in a point-wise manner, i.e., b↓t∈ [B →M∗]
denotes the function that satisfies b↓t(i) = b(i)↓t for all i ∈ B

and H↓t def
=

⋃
h∈H h↓t denotes the set resulting from applying

the operator to each element in H .

B. Time-Synchronous Stream Processing Functions

We model the semantics of distributed interactive sys-
tems as sets of time-synchronous stream processing functions
(TSSPFs). The notion of TSSPFs is inspired by the notion
of timed SPFs [5], [12], [24], [27]. The major and crucial
difference between the two notions is that TSSPFs process
exactly one message per channel per time unit, whereas SPFs
process a stream of messages per channel per time unit. The
key idea is to treat components as black-boxes having an
observable behavior characterized by the interactions on chan-
nels between systems and subsystems while hiding internal
implementation details. A component is mapped to a set of
functions describing the component’s possible behaviors. Such
a function maps communication histories over the set of input
channels of a component to communication histories over the
set of the component’s output channels. Thus, each function in
the semantics of a component with input channels I ⊆ C and
output channels O ⊆ C is of the form f ∈ [IΩ → OΩ].
However such functions are not always realizable in the
sense that they can be implemented [5], [22]. Intuitively, the
characterizing properties for realizability are that a component
cannot change messages received or sent in the past and cannot
react to messages received in the future [5], [22], [24], [27].
Thus, the output of a behavior describing function until time
t must be completely determined by its input until time t:

Definition 1 (Time-Synchronous Stream Processing Function).
Let I,O ⊆ C be two disjoint sets of input and output channels.
A function f ∈ [IΩ → OΩ] is called (weakly causal) time-
synchronous stream processing function iff
∀i, i′ ∈ IΩ : ∀t ∈ N : i↓t= i′↓t⇒ f(i)↓t= f(i′)↓t.
We denote by [IΩ

wc−−→ OΩ] the set of all TSSPFs mapping
input histories in IΩ to output histories in OΩ. The semantics
of components are modeled as closed sets of TSSPFs.

Definition 2 (Component Describing). Let I,O ⊆ C be two
disjoint sets of channels. A set of TSSPFs F ⊆ [IΩ

wc−−→ OΩ]
is called component (semantics) describing iff it satisfies ∀g ∈
[IΩ

wc−−→ OΩ] : ((∀i ∈ IΩ : ∃f ∈ F : g(i) = f(i))⇒ g ∈ F ).

The definition above makes the semantics domain of com-
ponents fully abstract [12], [13] in the sense of [15] and allows
to handle unbounded nondeterminism [12]. Full abstraction is
achieved by the closeness property, which requires that each
TSSPF resulting from a combination of TSSPFs included in
the set F is also included in F . The closeness property is also
important to make component semantics as little distinguishing
as possible. This is illustrated by the fact that two different
arbitrary sets of TSSPFs may encode the same component
behaviors. The reason for this is that one may find a TSSPF
g /∈ F that is not included in a set of TSSPFs F , which can
be interpreted as a combination of different TSSPFs contained
in F . It thus does not induce a new behavior not already
covered by a TSSPF in F but, for instance, induces a semantic
difference between a component with semantics described by
F and a component with semantics described by F ∪ {g}.
As a result the semantics of two components that have the
exact same observable behaviors may be considered unequal.
Consequently, full abstraction is not achieved. Thereby, the
closeness property is necessary.

1) Composition of TSSPFs: Composition is an important
concept to achieve modularity. Composing the semantics of
the individual components of a system leads to the semantics
of the whole system. Composing arbitrary sets of TSSPFs
can lead to realizability problems in delay-free feedback loops
where the output of a component in time unit t depends on
its input in time unit t and vice versa. Thus, composition
is only defined for TSSPFs where causality between inputs
and outputs on channels connected via a feedback loop is
ensured. This is the case if one of the TSSPFs participating in
a composition is strongly causal with respect to its channels
connected by the composition. Intuitively, a set of TSSPFs F
is strongly causal with respect to (J, P ), if the output of at
least one TSSPF f ∈ F on the channels in P until time unit
t+1 is not influenced by the function’s inputs received on the
channels in J after time unit t.

Definition 3 (Strongly Causal Modulo). Let f ∈ [IΩ
wc−−→ OΩ]

be a TSSPF and let J ⊆ I and P ⊆ O be two subsets of input
and output channels names. The TSSPF f is called strongly
causal with respect to (J, P ) iff
∀i, i′ ∈ IΩ : ∀t ∈ N : (i|J)↓t= (i′|J)↓t ∧i|I\J = i′|I\J ⇒

f(i)|P ↓t+1= f(i′)|P ↓t+1.
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A set of TSSPFs F is called strongly causal with respect to
(J, P ) iff there exists a function f ∈ F that is strongly causal
with respect to (J, P ). The causality complication is avoided,
if causality between the inputs and outputs on the connected
channels of a composition’s participant is guaranteed:

Definition 4 (Composable). Two sets of TSSPFs F1 ⊆
[IΩ1

wc−−→ OΩ
1 ] and F2 ⊆ [IΩ2

wc−−→ OΩ
2 ] are called composable

iff F1 is strongly causal with respect to (I1 ∩O2, I2 ∩O1) or
F2 is strongly causal with respect to (I2 ∩O1, I1 ∩O2).

Components communicate with each other via unidirected,
typed channels established by connectors connecting compo-
nent interfaces. Multiple components may read from the same
channel, whereas only one component is permitted to write
messages on a channel. This ensures that no merging of mes-
sages emitted from different components via the same channel
is necessary. Thus the output channels of the functions of two
sets of TSSPFs need to be disjoint to enable composition. The
composition of two sets of TSSPFs yields a set of TSSPFs:

Definition 5 (Composition). Let F1 ⊆ [IΩ1
wc−−→ OΩ

1 ] and F2 ⊆
[IΩ2

wc−−→ OΩ
2 ] be two component describing and composable

sets of TSSPFs with disjoint output channel sets O1∩O2 = ∅.
Let I = (I1\O2)∪(I2\O1) and O = O1∪O2. The composition
F1 ⊗ F2 ⊆ [IΩ

wc−−→ OΩ] of F1 and F2 is defined by
F1⊗F2

def
= {f | ∀i ∈ IΩ : ∃f1 ∈ F1 : ∃f2 ∈ F2 : f(i) = o+ p

where o = f1((i+ p)|I1), p = f2((i+ o)|I2)}
The composition operator is defined similar as in [12],

[13], [27] with the difference that we consider the time-
synchronous system model instead of the more general timed
system model [5]. The composition is well defined and thus
results in a component semantics describing set of TSSPFs.

Theorem 1. If F1 and F2 are two component describing and
composable sets of TSSPFs with disjoint output channel sets,
then F1 ⊗ F2 is also component describing.

Proof. Analogous to proof of Thm. 9 in [12] by replacing the
set the function f is chosen from with [IΩ

wc−−→ OΩ].

C. Time-Synchronous Port Automata

A TSPA specifies the behavior (of parts) of an interactive
system and represents a component semantics describing set of
TSSPFs that is given by its semantics. TSPAs as introduced in
this paper are strongly inspired by port automata as introduced
in [12], I/O∗ automata as introduced in [27], [24], and MAAts

automata as defined in [22]. Port and I/O∗ automata consume
and produce time slices of arbitrary but finitely many input
messages in every transition step. In contrast, TSPAs and
MAAts automata consume and output at most one message
per input channel in each time slice. Given the set of states
and the channel types of an automaton are finite, MAAts

automata and the automata presented here are guaranteed to
have finitely many transitions. This is not the case for I/O∗ and
port automata since both have to define a transition for each
state and each possible input communication history. Even if
the type of a channel is finite, the number of communication

histories (streams) of the channel’s type is infinite. I/O∗

and MAAts automata enforce causality between input and
output histories by requiring initial outputs on all channels. In
contrast, TSPAs do not require initial outputs. While the syntax
of MAAts automata treat variables explicitly, variables have to
be represented implicitly in the state space of TSPAs. TSPAs
can be treated as a special case of port automata as presented
in [12]. Thereby the proofs of many theorems presented in
the following are analog to proofs, which have already been
carried out in [12]. In case we are stating an analogous theorem
we refer to the appropriate corresponding proof in [12].

A TSPA consists of a set of states, an interface given by
input and output channels, and transitions defining the TSPA’s
behavior. The interface is encoded by a port signature.

Definition 6 (Port Signature). Let I,O ⊆ C be two disjoint
sets of channel names (ports). A port signature is a tuple Σ =
(I,O). We denote by C(Σ)

def
= I ∪O the set of all ports in Σ.

A port signature Σ is called finite iff C(Σ) and type(c) for
all c ∈ C(Σ) are finite.

Let B ⊆ C. A port assignment is an element of the set B→

defined as B→
def
= {a ∈ [B →M ] | ∀b ∈ B : a(b) ∈ type(b)}.

TSPAs must not block their environments and must be able
to react to any possible well-typed input in any time unit.
Therefore, a TSPA must define a reaction to every possible
input for each of its states. The reactions of a TSPA are defined
by its transitions. In each time unit, a TSPA performs exactly
one state change by executing one transition enabled by its
input and outputs exactly one message on each output channel.

Definition 7 (Time-Synchronous Port Automaton). A time-
synchronous port automaton is a tuple A = (Σ, S, ι, δ) where:
• Σ = (I,O) is a port signature,
• S is a set of states,
• ι ∈ S is the initial state,
• δ ⊆ S × C(Σ)→ × S is the transition relation, which is

required to be reactive, i.e., ∀s ∈ S : ∀i ∈ I→ : ∃t ∈ S :
∃θ ∈ C(Σ)→ : (s, θ, t) ∈ δ ∧ θ|I = i.

A is called finite iff Σ and S are finite.

For convenience we sometimes write s
θ−→δ t instead of

(s, θ, t) ∈ δ and simply s
θ−→ t if δ is clear from the context.

1) Execution and Behavior Semantics of TSPAs: This sec-
tion formalizes the intuitive descriptions of a TSPA’s behavior.

Definition 8 (Execution). Let A = (Σ, S, ι, δ) be a TSPA. An
execution σ of A is an infinite, alternating sequence of states
and port assignments starting with the initial state ι:

σ = s0, θ0, s1, θ1, ... s.t. s0 = ι and ∀i ∈ N : si
θi−→ si+1.

The set of all executions of A is denoted by execs(A).

Executions comprise the state changes and interactions
performed by a TPSA. Abstracting from state changes allows
to treat TSPAs as black boxes with hidden internal details.

Definition 9 (Behavior). Let A = (Σ, S, ι, δ) be a TSPA with
port signature Σ = (I,O). The behavior of an execution
σ = s0, θ0, s1, θ1, ... of A is defined as the sequence beh(σ)

def
=
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θ0, θ1, ... containing only port assignments. We denote by
behs(A)

def
=

⋃
σ∈execs(A) beh(σ) the set of all behaviors of

all executions of A. The named communication history hα

induced by a behavior α ∈ behs(A) with α = e0, e1, ...
is defined as the function hα ∈ (I ∪ O)Ω that satisfies
hα(x).t = et(x) for all x ∈ I ∪O and t ∈ N.

Given a TSPA A = (Σ, S, ι, δ) with Σ = (I,O) and an
input history i ∈ IΩ, we denote the set of communication
histories induced by a behavior of A with input i by

A[i]
def
= {o ∈ OΩ | ∃α ∈ behs(A) : o = hα|O ∧ hα|I = i}.

2) Composition of TSPAs: As for TSSPFs, causality ex-
presses the dependency between the inputs and outputs of
a TSPA. A TSPA’s output in time t must be completely
determined by its input until time t. Thus it cannot change
messages sent in the past and cannot predict messages it
receives in the future (cf. pulse drivenness in [12]):

Definition 10 (Weakly Causal TSPA). A TSPA A = (Σ, S, ι, δ)
with Σ = (I,O) is called weakly causal iff
∀i, i′ ∈ IΩ : ∀t ∈ N : i↓t= i′↓t⇒ A[i]↓t= A[i′]↓t.
Weak causality states that for every two inputs i, i′ having

a common prefix of length t and for every behavior α ∈ A[i]
there is a behavior β ∈ A[i′] having a common prefix of length
t with α. Similar as for TSSPFs, weak causality can lead to
composition complications, which are avoidable analogously.

Definition 11 (Strongly Causal Modulo). Let A = (Σ, S, ι, δ)
be a TSPA with port signature Σ = (I,O) and let J ⊆ I and
P ⊆ O be two sets of input and output ports of A. The TSPA
A is called strongly causal with respect to (J, P ) iff
∀i, i′ ∈ IΩ : ∀t ∈ N : (i|J)↓t= (i′|J)↓t ∧i|I\J = i′|I\J ⇒

(A[i]|P )↓t+1= (A[i′]|P )↓t+1.

Intuitively, a TSPA is strongly causal with respect to (J, P ),
if its outputs on the channels in P until time t + 1 are not
influenced by its inputs on the channels in J after time t.

TSPAs communicate with each other via their input and
output ports. Multiple automata may read from the same
channel, whereas only one automata is permitted to write
messages on a channel. This ensures no merging of messages
on channels emitted by different automata is necessary.

Definition 12 (Compatible Port Signatures). Two port signa-
tures Σ1 = (I1, O1) and Σ2 = (I2, O2) are called compatible
iff O1 ∩O2 = ∅.

By composing two TSPAs, the output ports of one automa-
ton are connected to the input ports with the same name of
the other automaton. The connected input channels are hidden
implicitly. The set of output channels of the new automaton is
the union of the sets of the output channels of the two original
TSPAs. The input channels of the new automaton are the input
channels of the two automata that do not share a common
name with the output channels of the other automaton.

Definition 13 (Composition of Signatures). The composition
of two compatible port signatures Σ1 = (I1, O1) and Σ2 =

(I2, O2) is defined as Σ1⊗Σ2
def
= (I,O) where I = (I1\O2)∪

(I2 \O1) and O = (O1 ∪O2).

The following defines the composition operator for TSPAs.

Definition 14 (Composition of TSPA). Let A1 =
(Σ1, S1, ι1, δ1) and A2 = (Σ2, S2, ι2, δ2) be two TSPAs with
compatible port signatures Σ1 = (I1, O1) and Σ2 = (I2, O2).
The composition of A1 and A2 is defined as A1 ⊗ A2

def
=

(Σ1 ⊗ Σ2, S1 × S2, (ι1, ι2), δ) where the transition relation
δ is defined by the following rule:

s1
θ|C(Σ1)−−−−−→δ1 t1 ∧ s2

θ|C(Σ2)−−−−−→δ2 t2

(s1, s2)
θ−→δ (t1, t2)

TPSAs can block each other if they simultaneously require
an input emitted by another TSPA to produce the next output.
Composing such TSPAs results in a structure with an empty
transition relation, which is no TSPA since the requirement for
reactiveness in Def. 7 implies that the transition relation of a
TSPA is not empty. However, there is a sufficient condition
ensuring the resulting transition relation is reactive.

Definition 15 (Composability of TSPAs). Two TSPAs A1 =
(Σ1, S1, ι1, δ1) and A2 = (Σ2, S2, ι2, δ2) with port signatures
Σ1 = (I1, O1) and Σ2 = (I2, O2) are called composable iff
A1 is strongly causal with respect to (I1∩O2, I2∩O1) or A2

is strongly causal with respect to (I2 ∩O1, I1 ∩O2).

The following theorem states that composing two compos-
able TSPAs always results in a well-formed TSPA.

Theorem 2. If A1 and A2 are composable TSPAs with
compatible port signatures, then A1 ⊗A2 is a TSPA.

Proof. Analogous to proof of Thm. 3 in [12] by replacing the
set the function i is chosen from with I→.

3) TSSPF semantics of TSPAs: This section defines the se-
mantics of TSPAs by sets of TSSPFs and reveals an important
relation between the composition operators: The semantics of
the syntactic composition of two TSPAs A and B is equal to
the composition of the semantics of the individual automata.

Definition 16 (TSSPF Semantics of a TSPA). The TSSPF
semantics �A� of a TSPA A = (Σ, S, ι, δ) with port signature
Σ = (I,O) is defined as follows:

�A� def
= {f ∈ [IΩ

wc−−→ OΩ] | ∀i ∈ IΩ : ∃α ∈ behs(A) :

i = hα|I ∧ f(i) = hα|O}
For each behavior, the semantics contain a function that

maps inputs to outputs as encoded by the history induced by
the behavior, i.e., no behavior is lost in the semantic mapping.

Theorem 3. Let A be a TSPA. For each α ∈ behs(A) there
is a function f ∈ �A� such that f(hα|I) = hα|O.

Proof. Analogous to proof of Thm. 11 in [12] by replacing
the definition of maximality with ∀i ∈ IΩ : i ∈ S|I .
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The semantics of TSPAs are well formed, i.e., TSPAs can
be used to specify component behavior because the semantics
of every TSPA is component semantics describing.

Theorem 4. The semantics �A� of a TSPA A is component
semantics describing.

Proof. Analogous to proof of Thm. 12 in [12] by replacing
the set the function f is chosen from with [IΩ

wc−−→ OΩ].

The semantics of the composition of two TSPAs is equal to
the composition of their individual semantics:

Theorem 5. For two composable TSPAs A and B with com-
patible signatures the following holds: �A⊗B� = �A�⊗ �B�.

Proof. Analogous to proof of Thm. 13 in [12] by replacing
the applications of �·� for PAs and ⊗ for SPFs by applications
of the corresponding definitions for TSPAs and TSSPFs.

An important implication of the theorem is that we can
first syntactically compose the individual automata of an
architecture and then perform analysis on the semantics of
the automaton encoding the behavior of the whole system.
This gives another basis for analysis that does not necessarily
require to compose the semantics of the individual components
of a system as, for example, done in [26].

IV. SEMANTIC DIFFERENCING OF COMPONENT
BEHAVIOR: FROM TSPAS TO BAS

After introducing the notations for Büchi Automata (BAs)
used in this paper, this section presents a theorem stating
that there is a nondeterministic BA for each finite TSPA that
accepts exactly the behaviors of the TSPA. Afterwards, it
is shown that refinement checking and semantic difference
witness generation for TSPAs can be reduced to language
inclusion checking and counterexample generation for BAs.

A. Büchi Automata

Büchi automata [2] are a variant of finite automata that
are acceptors for infinite words and thus induce languages
consisting of infinite words. They are well known and much
used in the model checking domain. Infinite words over an
alphabet Π are infinite sequences of symbols in Π. The set of
all infinite words over an alphabet Π is denoted by Πω .

Definition 17 (Büchi Automaton). A BA is a tuple (Π,
Q, I, F, δ) where Π is a finite alphabet, Q is a finite set of
states, I ⊆ Q is a set of initial states, F ⊆ Q is a set of
accepting states, and δ ⊆ Q×Π×Q is the transition relation.

Let B = (Π, Q, I, F, δ) be a BA. A run of B on a word
w = σ1, σ2... ∈ Πω starting in a state q0 ∈ Q is an infinite
sequence q0, q1, ... such that qj−1

σj−→δ qj for all j > 0. A
run q0, q1, ... is accepting if q0 ∈ I and qi ∈ F for infinitely
many i > 0. The accepted language of B is defined as
L(B) def

= {w ∈ Πω | there exists an accepting run for w in B}.
Checking language inclusion between two Büchi automata

is PSPACE-complete [18], though decidable. Although the
computational complexity is large, several approaches for

checking language inclusion and counterexample (diff witness)
generation have been implemented and produce promising
results in practice [2]. In the next section, we present a trans-
lation from finite TSPAs to BAs and thereby reduce semantic
differencing and refinement checking for finite TSPAs to the
language inclusion problem for Büchi automata.

B. From TSPAs to BAs

We consider semantic differencing and refinement checking
for architectures where the individual components have a finite
state space, communicate over finitely many communication
channels, and where the types of messages emitted via compo-
nent interfaces are finite. There exists a nondeterministic BA
for each finite TSPA that accepts exactly the TSPA’s behaviors.

Theorem 6. For any finite TSPA A there exists a BA B such
that behs(A) = L(B).
Proof. Let A = (Σ, S, ι, δ) with Σ = (I,O) be a finite TSPA.
Let B = (Π, S, {ι}, S,Δ) where
• Π = [(I ∪O)→ ⋃

c∈I∪O type(c)] and
• Δ = {(s, l, t) | ∃θ ∈ C(Σ)→ : (s, θ, t) ∈ δ ∧ θ = l}.
The TSPA A is finite. Thus, S, I , O, and

⋃
c∈I∪O type(c)

are finite. As therefore Π and Δ are finite, B is a well-defined
BA. It remains to show that behs(A) = L(B).
⊆: Let s0, θ1, s1, θ2, s2, ... ∈ execs(A) be an execution of

A. By definition of execution sj−1
θj−→ sj for all j > 0 and

s0 = ι. By definition of B we have that (sj−1, θj , sj) ∈ Δ
for all j > 0. Thus, s0, s1, s2, ... is a run of B on the word
θ1, θ2, .... Since all states s ∈ S are accepting, the run is ac-
cepting. Thus, beh(s0, θ1, s1, θ2, s2, ...) = θ1, θ2, ... ∈ L(B).
⊇: Assume that σ = σ1, σ2, σ3, ... ∈ L(B) and let

q0, q1, q2, ... be an accepting run of B on σ. By definition of
run we have qj−1

σj−→ qj for all j > 0. Thus, by definition of
Δ we have that there are θj ∈ C(Σ)→ with (qi−1, θj , qj) ∈ δ
and θj = σj for each j > 0. Thus τ = q0, θ1, q1, θ2, ... is an
execution of A. Therefore, by definition of behavior we have
that beh(τ) = σ1, σ2, ... ∈ behs(A) is a behavior of A.

C. Semantic Differencing for Component Behavior

The semantics of components are defined as sets of TSSPFs.
We denote the semantics of a component c by �c�. Each
function f ∈ �c� \ �c′� in the semantics of one component
c that is no member of the semantics of another component c′

is a representative for the difference between the components’
semantics. However, such a representative defines an output for
each possible component input, even if the semantic difference
is only given by a single input/output pair. Thus, such a
TSSPF does not effectively reveal the differences between
the component semantics. In contrary, the exact input/output
pairs for which there is a function in the semantics of one
component that maps the input to the output and for which
there is no function in the semantics of the other component
mapping the input to the output clearly reveals a difference. If
two components have different interfaces, i.e., they read and
write from and to different channels, each input/output pair of
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the first component indicates a difference to the semantics of
the other component. However, if the components have chan-
nels of the same types one can easily avoid this problem by
channel renaming and hiding [3]. Thus, we define the semantic
difference for components having the same interfaces, only.

Definition 18 (Diff Witness). Let F1, F2 ⊆ [IΩ
wc−−→ OΩ] be

two sets of TSSPFs. A diff witness distinguishing F1 from F2

is a communication history w ∈ (I ∪O)Ω satisfying
∃f1 ∈ F1 : f1(w|I) = w|O ∧ ∀f2 ∈ F2 : f2(w|I) �= w|O.

We denote by Δ(F1, F2) the set of all diff witnesses distin-
guishing F1 from F2.

A set of diff witnesses may be finite but is typically
infinite. The following theorem reveals the relation between
the differences of the behaviors and of the semantics of TSPAs.

Theorem 7. Let A1 = (Σ, S1, ι1, δ1) and A2 = (Σ, S2, ι2, δ2)
with Σ = (I,O) be two TSPAs and let w ∈ (I ∪ O)Ω be a
communication history. The following holds:

w ∈ Δ(�A1�, �A2�)⇔
∃α ∈ behs(A1) : w = hα ∧ α /∈ behs(A2).

Proof. Let A1, A2, and w be given as above.
⇒: Assume w ∈ Δ(�A1�, �A2�) is a diff witness. By

definition of Δ, we have that there is a function f1 ∈ �A1�
such that f1(w|I) = w|O and f(w|I) �= w|O for all f ∈ �A2�.
In the following let f1 be such a function that satisfies the
above. By definition of �·� we have that ∀i ∈ IΩ : ∃α ∈
behs(A1) : i = hα|I ∧ f1(i) = hα|O. When substituting w|I
for i, we get ∃α ∈ behs(A1) : w|I = hα|I ∧ f1(w|I) = hα|O.
Since f1(w|I) = w|O we can substitute w|O for f1(w|I) and
obtain ∃α ∈ behs(A1) : w|I = hα|I ∧ w|O = hα|O, which is
equivalent to ∃α ∈ behs(A1) : w = hα.

In the following, let such an α with w = hα be given.
It remains to show α /∈ behs(A2). Towards a contradiction
we assume α ∈ behs(A2). By Thm. 3 we get there is a
function g ∈ �A2� such that g(hα|I) = hα|O. By definition
of α we have w = hα and thus g(w|I) = w|O. But since
w ∈ Δ(�A1�, �A2�), it holds that ∀f ∈ �A2� : f(w|I) �= w|O.
Substituting g for f yields a contradiction.
⇐: Assume there is an α ∈ behs(A1) such that w = hα

and α /∈ behs(A2). Using Thm. 3 we get there is a function
f ∈ �A1� such that f(hα|I) = hα|O. By definition of w
we have that w = hα and thus obtain by substitution that
f(w|I) = w|O. Thus there is a function f ∈ �A1� such that
f(w|I) = w|O. It remains to show that g(w|I) �= w|O for all
g ∈ �A2�. Towards a contradiction we assume that there is a
function g ∈ �A2� such that g(w|I) = w|O. By definition of
�·� we get that ∀i ∈ IΩ : ∃β ∈ behs(A2) : i = hβ |I ∧ g(i) =
hβ |O. Substituting w|I for i we obtain ∃β ∈ behs(A2) : w|I =
hβ |I ∧ g(w|I) = hβ |O. Since by assumption w|I = hα|I and
g(w|I) = w|O by definition of g, this is equivalent to ∃β ∈
behs(A2) : hα|I = hβ |I ∧ w|O = hβ |O. By assumption we
have w = hα and thus obtain via substitution ∃β ∈ behs(A2) :
hα|I = hβ |I ∧ hα|O = hβ |O, which is equivalent to ∃β ∈
behs(A2) : hα = hβ . Using the definitions of hα and hβ , this

is equivalent to ∃β ∈ behs(A2) : α = β, which is equivalent
to α ∈ behs(A2) and contradicts the assumption.

In the previous section, we presented a translation from
finite TSPAs to BAs. Each word accepted by a BA resulting
from such a translation corresponds to a behavior of the input
TSPA. Existing algorithms for checking language inclusion
and counterexample generation for BAs can thus be used
for refinement checking and diff witness generation of ar-
chitectures as defined above: Given two TSPAs A1 and A2

we use the translation defined in proof of Thm. 6 to obtain
two Büchi automata B1 and B2 such that L(B1) = behs(A1)
and L(B2) = behs(A2). Using Thm. 7 and Thm. 6 we can
transform a word accepted by B1 that is not accepted by B2 to
a corresponding diff witness that semantically distinguishes the
automata A1 and A2. By definition, if L(B1) = L(B2) then the
two TSPAs A1 and A2 are equivalent and if L(B1) ⊆ L(B2)
then the automaton A1 refines the automaton A2.

V. IMPLEMENTATION AND EVALUATION

This section recapitulates the MontiArcAutomaton
ADL [23], [25], presents the application of refinement
checking to its models and evaluates our approach.

A. The MontiArcAutomaton ADL

The MontiArcAutomaton ADL [23], [25] comprises the
modeling elements common to many popular component &
connector ADLs [20], i.e., hierarchical components with in-
terfaces of typed, directed ports and unidirectional connectors
(typed FIFO channels) exchanging messages between these
ports. The components are black-boxes and either atomic
or composed: atomic components yield behavior descriptions
in form of embedded automata (following the I/Oω [27]
paradigm) or in form of Java implementations. The behavior of
composed components solely emerges from the interaction of
their subcomponents. Components are scheduled by a global
clock and perform cycles of 1.) read all messages on incoming
ports; 2.) compute behavior (which might entail invoking
subcomponents); 3.) produce a single message to each out-
going port. Each computation consumes a time slice, i.e., the
output for messages received at the global clock’s i-th tick is
produced at its i+1-th tick earliest. The MontiArcAutomaton
ADL also distinguishes between component types and their
instances, supports component type inheritance, generic type
parameters for components (e.g., to be used with generic port
types), and constructor-like configuration of these instances.

The MontiArcAutomaton ADL is a textual modeling lan-
guage implemented with the MontiCore [17] language work-
bench. The textual representation of the composed component
type Elevator is illustrated in Listing 1. It begins with
the keyword “component”, followed by the component type’s
name and a body delimited by curly brackets (l. 1). The body
contains an interface of typed ports (ll. 2-5), declares three
subcomponents (ll. 7-9), and multiple connectors (ll. 11-13).
The subcomponent declarations reference component types
imported from artifacts (such as Control).
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MontiArcAutomaton

1 component Elevator {
2 port in Bool req1, in Bool at1,
3 // ... further ports ...
4 out Bool open, out Bool close,
5 out Clear clear;
6

7 component Control ctrl; // named
8 component Motor m; // subcomponent
9 component Door d; // instances

10

11 connect req1 -> control.req1;
12 // ... further connectors ...
13 connect control.clear -> clear;
14 }

Listing 1. Textual representation of the component Elevator.

B. Semantic Differencing of MAA Components

The implementation comprises a translation from Monti-
ArcAutomaton architectures to semantically equivalent TSPAs.
TSPAs are only handled internally as representatives for sets of
TSSPFs modeling component semantics and are not explicitly
modeled by component developers. Each atomic component
directly translates to a TSPA. The TSPA of a composed com-
ponent is computed by composing the TSPAs of its subcompo-
nents according to the architectural configuration defined by
the composed component’s connectors. The implementation
further consists of a translation from TSPAs to BAs and
generators that produce models in the “BA format”, which is
the input format of the tool RABIT [2]. In case a BA does not
refine another BA, RABIT provides a counterexample serving
as a concrete disproof for refinement. The counterexamples
can be translated back to diff witnesses. Using the tool chain
described above enables automated refinement checking and
diff witness generation for MontiArcAutomaton architectures.

C. Evaluation

We evaluated the approach to semantic differencing with six
MontiArcAutomaton architectures previously used for eval-
uation in [26]. We specifically chose these architectures for
evaluation since the approach presented in [26] failed for some
specifications, which we considered to be challenging, and to
enable comparability. The architectures were slightly modified
for this evaluation to resolve technical MontiArcAutomaton
version compatibility issues. We reused the completion strate-
gies [26] for completing the automata implementations of the
architectures’ atomic components.

The first architecture is given by an implementation of an
elevator control system (ECS) (cf. Sec. II). It comprises 3
composed and 5 atomic components. The second example
consists of four variants of a mobile robot. We only report
on the evaluation of the most challenging variant. This vari-
ant comprises 4 components in total whereof 3 components
are atomic. The last architecture implements a pump station
consisting of 3 composed and 10 atomic components.

In [26], for each of the architectures three specification
checks are executed: it is checked whether the semantics

TABLE I
TIME FOR REFINEMENT CHECKING AND DIFF WITNESS CALCULATION.

Δ(�·�, �·�) Δ(�·�, Chaos) Δ(Chaos, �·�)
Floors 62ms 526ms 909ms
Elevator 75ms 2510ms 6064ms
ECS 463ms 7166ms 16537ms

SensorReading 94ms 764ms 1558ms
Controller 15ms 17ms 43ms
Pumpstation 119ms 334ms 486ms

MobileRobot 52ms 75ms 106ms

of a component is equal to itself, whether a component
refines a component with the same interfaces that implements
arbitrary behavior, i.e., all possible behaviors, and whether
the semantics of a component are equal to the semantics of
a component implementing arbitrary behavior. We performed
the same checks on a computer with 3.0 GHz Intel Core i7
CPU, 16 GB Ram, Windows 10, and RABIT 2.4 using our
translation from MontiArcAutomaton architectures to BAs and
the language inclusion checking tool RABIT [2] (cf Sec. V-B).

Table I summarizes the computation times of RABIT given
the BAs resulting from the transformation as input. For
component ECS, for instance, checking whether it refines
itself took 463ms, checking refinement with arbitrary behavior
took 7166ms, and calculating a diff witness distinguishing the
component from arbitrary behavior took 16537ms. Table II
depicts the sizes of the automata resulting from the transla-
tions. For component ECS, for instance, the TSPA and the BA
resulting from the transformation have 746 states and 98496
transitions. RABIT reported the tool has reduced the BA to
8 states and 1728 transitions after internal preprocessing. For
every component we modeled arbitrary behavior (Chaos) with
a TSPA consisting of one state and a transition for every
possible component input/output combination. The TSPA and
the BA modeling arbitrary behavior for component ECS, for
instance, comprise 472392 transitions (cf. Table II). In contrast
to the translation from MontiArcAutomaton architectures to
the model checker Mona [26], our implementation succeeded
for all example architectures. The longest computation time
of our evaluation (16537ms, cf. Table I) resulted from seman-
tic differencing arbitrary behavior with the ECS component.
We conclude that our translation provides promising results.
Nevertheless the evaluation was only performed on a few
specific architectures. Thus the results are not generalizable
to all possible architectures: the time needed by our tool may
vary strongly from system to system.

VI. DISCUSSION

If the semantics domain of an ADL is overly general, un-
decidability of the underlying mathematical problems renders
automated formal verification impossible. Then, architecture
properties have to be proven manually, which is too expensive
to be carried out in continuous architecture modeling and thus
hinders employing agile development in architecture modeling
projects: little changes to requirements or implementations can
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TABLE II
THE NUMBERS OF STATES AND TRANSITIONS OF THE TSPAS

TRANSLATED FROM THE ARCHITECTURES AND OF THE GENERATED BAS.

TSPA/BA BA AP Chaos
#states #trans. #states #trans. #trans.

Floors 32 1024 32 1024 23328
Elevator 34 10206 1 729 236196

ECS 746 98496 8 1728 472392

SensorReading 2 1296 2 1296 69984
Controller 1 9 1 9 108

Pumpstation 6 3888 4 2592 17496

MobileRobot 150 2700 12 216 1152

entail changing many manually performed proofs. In contrast,
where automated formal verification is possible, sound and
complete proofs can be generated automatically, supporting
agile implementation evolution.

FOCUS is a comprehensive framework that supports speci-
fying the observable input/output behavior of interactive sys-
tems. Its complexity requires carrying out proofs for system
behavior verification manually. FOCUS provides various con-
structs for describing the semantics of distributed systems [24].
Examples are relations, set-based functions, sets of functions,
assumption/guarantee predicates, or state-based representa-
tions. As identified in [24], the most fine-grained domain for
describing the semantics of distributed systems using FOCUS
are sets of SPFs. Independent of the style, specifications can
describe timed or untimed behavior. Untimed behavior only
considers the causality regarding the order of inputs and
outputs. Timed specifications additionally concern causality
regarding the passage of time. Many requirements are not
only concerned with the order of messages but also state
requirements with respect to passage of time. Thus, we employ
a variant of the timed subset of FOCUS and thereby use sets
of TSSPFs as semantics domain [24], [27].

Our approach is limited to systems where the data types’
domains are finite and is restricted to the time-synchronous
model of computation. However, our system model fits well
into the kinds of systems developed for embedded systems
such as automotive or robotics applications. Thus, our results
enable fully automated tool support for many systems in such
domains. Emphasizing that our approach cannot be generalized
to the timed model of FOCUS as, for example, used in [12],
is important: Timed SPFs (cf. [12], [24], [27]), for instance,
are too general to be applicable to our approach. A timed SPF
processes infinite sequences of finite sequences (of arbitrary
lengths) of messages. Each of the finite sequences represents
a finite stream of messages received or sent by a component
in a single time unit. In contrast, TSSPFs only process single
messages per time unit. The set of finite streams of messages
over a non-empty finite data type is already infinite. Thus,
for each time unit, a timed SPF needs to define a possible
behavior for infinitely many tuples of input streams, whereas
a TSSPF needs to define a reaction for all possible tuples of
input messages, which are finitely many if the messages’ data

types are finite. From a practical viewpoint it is rarely required
to specify the reaction in a time unit in response to the receipt
of an arbitrary number of messages. Usually it either requires
to handle single messages (TSSPFs) or sequences of messages
where the length of the sequence is bound by an arbitrary but
fixed natural number. The latter can be reduced to the former
by introducing lists of fixed length as message types.

The underlying theoretical problem for semantic differ-
encing used in our approach is language inclusion checking
between Büchi automata. Its complexity can be considered
as another limitation of our approach. However, our main
focus is not verifying a system’s properties (e.g., refinement
or semantic differencing) within seconds, which is most often
already rendered impossible due to the complex nature of
the safety critical system under development. We believe that
nonetheless the possibility to apply formal fully automated
verification (e.g., over night) greatly facilitates continuous
architecture modeling.

VII. RELATED WORK

Studies on the verification techniques of ADLs have been
conducted, e.g., in [30] and [33]. The study in [33] surveys
verification techniques supported by ADLs with formal se-
mantics, the translation of architectures to inputs for model
checkers, and tool support as well as usability, scalability, and
expressiveness. As supported by our approach, the study states
that architecture verification for practical applications requires
tool-support and automation. The study in [30] compares
different verification tools and applies them to various ADLs.
All architectures are transformed into intermediate labeled
transition systems before the verification tools are applied,
hampering the direct comparison with our approach.

The following surveys concrete approaches for for-
mally analyzing hierarchical architecture descriptions. Auto-
FOCUS 3 [14] is a tool for the development of reactive
embedded systems that also bases its semantics on FO-
CUS [5]. Although AutoFOCUS 3 supports model checking
architectures against LTL and CTL formulas that specify
properties concerning component behavior [6], we are not
aware of a fully automated refinement checking method
for AutoFOCUS 3. The π-ADL supports statistical model
checking for verifying dynamic software architectures against
DynBLTL properties [7]. To this effect, a statistical model
of finite system executions is built and the probability of
satisfying a property within a confidential bound is calculated.
This approach is particularly tailored to dynamic architectures
and is only concerned with finite traces. In contrast, our
approach deals with infinite traces, static architectures, and
full certainty. Refinement of architectures specified with timed
I/O is described in [16]. Similar to behaviors of TSPAs, the
semantics of a timed automaton is given by a set of traces.
Refinement between timed I/O automata is defined similar
as in our approach by trace inclusion. However, timed I/O
automata are only marked with one message per transition and
composition is defined differently. Further, the timing concept
of I/O automata is more powerful and complicated than the one
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of our approach [12]. A game-based extension of the timed I/O
automaton model enabling tool supported refinement checking
has been proposed in [8]. Another approach to automated
refinement checking based on the time synchronous frame of
FOCUS is described in [22], [26]. This approach is based
on a relational semantics domain where the semantics of a
component is given as a relation between the component’s
possible inputs and outputs. In contrast, our approach uses a
more fine grained [24] semantics domain consisting of sets of
functions. Refinement checking in [22], [26] relies on translat-
ing component semantics into WS1S and is implemented using
the model checker Mona [10]. The approach suffers from the
tool’s high computational complexity, which is grounded in
the non-elementary complexity of solving W1S1 problems.
In contrast, we define a translation to Büchi automata and
thereby obtain a PSPACE-complete complexity for refinement
checking. While the relational approach is based on analyzing
the result from composing the semantics of the individual
components of a system, our approach first syntactically
composes the individual components and bases analysis on
the semantics of the compound.

VIII. CONCLUSION

We have presented an implementation of stepwise refine-
ment for ADLs using a subset of the FOCUS semantics for
distributed systems. This subset consists of time-synchronous
stream processing functions, and hence the corresponding
software architecture models, can be translated to a variant
of port automata. Via a transformation from port automata
to Büchi automata, we can reduce component refinement to
language inclusion. As the evaluation has shown, the fully
automated implementation supports checking refinement for
MontiArcAutomaton architecture models in reasonable time.
While this might be improved further, we believe our approach
facilitates continuous architecture modeling.
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Abstract

Understanding the semantic differences of continuously evolving system architectures by semantic analyses facilitates engineers
during evolution analysis in understanding the impact of the syntactical changes between two architecture versions. To enable
effective semantic differencing usable in practice, this requires means to fully automatically check whether one version of a system
admits behaviors that are not possible in another version. Previous work produced very general system models for message-
driven time-synchronous (MDTS) systems that impede fully automated semantic differencing but very adequately describe such
systems from a black-box viewpoint abstracting from hidden internal component behavior. This paper presents a system model for
MDTS systems from a white-box viewpoint (assuming component implementation availability) and presents a sound and complete
method for semantic differencing of finite MDTS system architectures. This method relies on representing (sub-)architectures as
channel automata and a reduction from the semantic differencing problem for such automata to the language inclusion problem
for Büchi automata. The system model perfectly captures the logical basics of MDTS systems from a white-box viewpoint and
the method enables to fully automatically calculate semantic differences between two finite MDTS systems on push-button basis,
yields witnesses, and ultimately facilitates semantic evolution analysis of such systems.

Keywords: Component Software Engineering, Semantics, Automata, Refinement, Semantic Differencing, Evolution Analysis

1. Introduction

Component-based software engineering [30] promises im-
proving software development through reuse of independently
developed and validated off-the-shelf building blocks with sta-
ble interfaces. These building blocks usually are implemented
in general-purpose programming languages (GPLs), Hence,
they are subject to the conceptual gap between the problem do-
mains and solution domains of discourse, which arises from
addressing problem domain challenges with programming lan-
guage complexities [14].

Model-driven development (MDD) [44] aims at reducing this
gap by lifting domain-specific, abstract, models to primary de-
velopment artifacts. Such models can leverage domain-specific
vocabulary to be better comprehensible as well as more abstract
and hence are better suited towards analysis and transforma-
tion than GPL programs. Software engineering also applies
MDD to itself to facilitate addressing its challenges. Conse-
quently, modeling languages for various challenges in software
engineering, such as database manipulation languages, build
process description languages, and architecture description lan-
guages have been developed.

Architecture description languages (ADLs) [29] leverage the
potential of model-driven development [44] for the description
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of software architectures. In many domains, knowing the pre-
cise semantics of models is crucial due to safety concerns, but
current architecture modeling processes, such as MDA [31] do
not take these into account. Stepwise refinement [5, 6] is a
software engineering methodology for continuous architecture
modeling based on controlled evolution and progressive im-
provement of components: each subsequent version of a com-
ponent model must adhere to properties already proven for its
predecessors. To this effect, checking whether successor com-
ponent versions refine their predecessors in terms of observable
input/output behavior is crucial.

Similar to UML [32], the specific semantics of many ADL
details are encoded in their infrastructures and tools only.
Where fully detailed denotational or operational semantics are
available, such as with Focus [7], these are usually too complex
for fully automated refinement checking and typically require to
(partially) manually prove refinement between two component
versions. This impedes stepwise refinement so severely that it
becomes a “highly idealistic” [5] idea. However, enabling au-
tomatic stepwise refinement for software architecture models
would greatly facilitate development in domains where com-
ponent adherence to certain properties is crucial. With auto-
mated methods, manual proofs become redundant. This enables
users who are no experts in formal methods to prove or dis-
proof refinement between architecture versions. As program-
mers are rarely experts in formal methods, this opens the possi-
bility to apply stepwise refinement methodologies to a broader
user range. In case an architecture is no refinement of another,
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the method presented in this paper fully automatically calcu-
lates a behavior that is possible in the one architecture but not
in the other. This behavior serves as witness and is a concrete
disproof for refinement. Software engineers can use the witness
as evidence for efficiently identifying the syntactic elements in
the architecture’s implementation that cause non-refinement.

In [9], we identified a subset of the Focus [7] semantics for
time-synchronous, distributed, interactive systems that is pow-
erful enough to model complex and realistic systems and is
adaptable to enable fully automated refinement checking be-
tween components. Based on this, [9] describes an approach
to transform software component models into a variant of port
automata [16], compose these syntactically, and translate the
results into Büchi automata, where their refinement can be
checked through language inclusion [23]. This approach is re-
alized with the MontiArcAutomaton component & connector
ADL [35, 37] and the RABIT [2, 3] tool for fully automated
language inclusion checking between Büchi automata. It en-
ables modeling software architectures with powerful ADLs and
checking refinement on a push-button basis. To this effect, the
contributions of [9] are:

• A formulation of the semantics domain of time-
synchronous [7] stream processing functions (TSSPFs) in-
spired by the notion of stream processing function [36].

• A variant of port automata: time-synchronous port au-
tomata (TSPA) [16] with operational semantics based on
execution traces and denotational semantics based on sets
of TSSPFs.

• A semantically compositional syntactic composition oper-
ator for TSPAs: The semantics of the syntactic composi-
tion of two TSPAs is equal to the composition of the se-
mantics of the individual TSPAs.

• A transformation from finite TSPAs to Büchi automata.

• A proof showing the operational semantics of a finite
TSPA and the language accepted by the Büchi automaton
resulting from such a transformation coincide.

• The result that refinement checking and disproof genera-
tion in form of semantic difference witnesses for software
architectures where components can be mapped to finite
TSPAs can be reduced to language inclusion checking and
counterexample generation for Büchi automata.

• An implementation based on the MontiArcAutomaton
component & connector ADL [35, 37] and RABIT [2, 3].

In this paper, we enhance and extend the previous approach
to achieve practical efficiency improvements and technical en-
hancements of the underlying formal system model. To this
effect, this paper’s additional contributions are:

• Time-synchronous channel automata (TSCAs): an im-
proved variant of TSPAs that enables defining an asso-
ciative and commutative syntactic composition operator,
while retaining previous results regarding the relation be-
tween the system models and compositionality.

• The previous composition operator for TSPAs (cf. [9]) is
neither associative nor commutative. Using the commuta-
tivity and associativity of the TSCA composition operator
enables to define an intuitive notion of system architecture,
which is not possible with the TSPA composition operator.

• A method for trimming finite TSCAs to reduce complexity
of analyses.

• A method for composing finite TSCAs such that the com-
pound does not contain any unproductive states to mitigate
state explosions.

• The identification of a subclass of finite non-deterministic
TSCAs, which is a proper superset of deterministic
TSPAs, where semantic differencing is possible in poly-
nomial time.

• The insight that the Büchi automata resulting from trans-
forming TSCAs are always “weak” and therefore enable
the application of efficient algorithms enabling, for in-
stance, easy complementation or minimization.

• A notion of system architecture based on a white-box
viewpoint on message-driven time-synchronous (MDTS)
systems and the previously developed theory. The asso-
ciativity and commutativity of the composition operator
for TSCAs is important for the notion of system architec-
ture to be well defined. The system architecture definition
as introduced in this paper is not possible with TSPAs as
introduced in [9] because TSPAs do not have a commuta-
tive and associative composition operator.

• A method for mitigating the state explosion problem dur-
ing semantic differencing of finite system architectures,
which is especially useful during continuous architecting
when it comes to understanding the semantic differences
between two successor versions. The method not only re-
lies on trimming but also on iteratively applying refine-
ment checking to smaller sub-architectures.

• An extended evaluation including an additional example
and an improved composition method that combines com-
position with trimming.

This paper further contains many additional examples that
increase comprehensibility and illustrate this paper’s approach.
The resulting fully automatic analysis technique for compar-
isons of TSCAs greatly supports continuously evolving projects
where the overall architecture changes frequently. It also
greatly facilitates analyzing the semantic differences between
products of a product line architecture where the individual
products are syntactically only slightly different.

1.1. Paper Structure and Overview

Section 2 sketches the idea of stepwise refinement. To this
effect, it presents two architecture models, the elevator control
system presented and evaluated in [9] as well as a more compact
architecture serving as running example throughout this paper.
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Subsequently, Section 3 presents the Focus subset used as
semantics domain from a black-box viewpoint (as functions).
This paper’s approach is applicable to finite systems where it
is possible to describe the system’s semantics with the system
model described in this section. It is argued that the system
model is adequate for describing architectures while abstracting
from hidden internal details, but hiding internal details hampers
automated analyses.

This motivates Section 4, which describes a new system
model that represents components from a white-box perspec-
tive (as automata). The automata model is compatible to the
function model of the previous section and explicitly captures
internal component details.

Afterwards, Section 5 presents automated semantic differ-
encing based on the latter system model (automata). We obtain
a more efficient semantic differencing method as described in
previous work. The compatibility of the system models ensures
the results equally apply to both semantic domains. However,
this paper’s approach is only applicable if component imple-
mentations are available and can be transformed to the automata
introduced in Section 4.

Section 6 presents the implementation of our approach with
MontiArcAutomaton and RABIT and evaluates its applicabil-
ity. Section 7 discusses observations and Section 8 highlights
related work before Section 9 concludes. The appendix de-
scribes examples used throughout the paper in more detail.

2. Examples

This section presents two example architectures for stepwise
refinement. The first example illustrates the benefits of our ap-
proach on an elevator control system (Section 2.1) as presented
in [9]. The second example describes a distributed Modulo-
8-Counter (Section 2.2), which is used as running example
throughout the remainder of this paper. While the former is
suited to comprehending the benefits of stepwise refinement in-
tuitively, the latter is compact enough to be discussed in details
in the remainder.

2.1. An Elevator Control System

Consider the model-driven development of an elevator con-
trol system (ECS) as presented in [42]. The ECS depicted
in Figure 1 comprises two hierarchically composed compo-
nents representing the three floors the elevator serves (compo-
nent Floors) and the elevator cabin (component Elevator).
Whenever a button on a floor (indicated, for example, by a mes-
sage on the incoming port btn1) is pressed, the ECS should ac-
tivate the light (by sending a message via outgoing port led1)
on the corresponding floor and instruct the elevator cabin to
visit that floor. The control logic of the elevator is modeled via
a statechart variant embedded into the Elevator’s subcom-
ponent Control. This component receives messages upon ar-
riving at a specific floor (e.g., via incoming port at1) and sends
messages to Door and Motor to operate its door and to move
between the floors. The latter two embed models of compact
action languages to describe their respective behavior.

For this version of the ECS, the software architects have
proven that certain properties hold (e.g., that it cannot produce
blocking situations). Now they aim to replace the Elevator
component with a smarter version that reacts only to elevator
requests on a floor if there is no such request yet. To this ef-
fect, the company employs stepwise refinement to avoid prov-
ing the properties of Elevator again for its successor version
SmartElevator. Therefore, the behavior descriptions of all
subcomponents are translated into TSCAs. For composed com-
ponents, the behavior descriptions of their subcomponents are
translated also and merged iteratively. This ultimately elimi-
nates all hierarchy levels but the last. The result of this trans-
formation is depicted in Figure 2, where the behavior descrip-
tions of all three subcomponents have been transformed accord-
ingly and merged into a single TSCA. The same is performed
for the improved SmartElevator component before both
are transformed into weak non-deterministic Büchi automata
as presented in Section 6.

Using this transformation reduces semantic component re-
finement to language inclusion on Büchi automata and can be
solved automatically, for instance, by using the tool RABIT.
Hence, with this infrastructure in place, the company now can
fully automated ensure whether the SmartElevator, and its
potential successors, actually refine their predecessors or re-
quire further adjustment. Where refinement is refuted, differ-
ence witnessing input/output pairs are produced. This automa-
tion of stepwise refinement can increase the pace of each refine-
ment step and, hence, overall development efficiency.

2.2. A Modulo-8 Counter
This example presents a modulo-8 counter inspired by the

model presented in [15] as demonstration of stepwise refine-
ment along the depth of composition layers. The modulo-8
counter outputs the binary representation of a number n be-
tween 0 and 7, which can be incremented ((n + 1) % 8) or
reseted (n = 0). The initial value of n is 0. The modulo-
8 counter is modeled as the MontiArcAutomaton component
Mod8Counter depicted in Figure 3 (a). The component has
two incoming ports and three outgoing ports of the data type
Boolean. In the initial definition, only the behavior of the outer-
most component Mod8Counter is specified. The valuations
of the outgoing ports x2, x1, and x0 are equal to the Boolean
representations of the variables in the binary representation of
n (i.e., n = x2 · 22 + x1 · 21 + x0 · 20). Upon receiving true via the
incoming port inc, the value of n is increased if the value on
port res is not equal to true, and on receipt of true via the port
res, the value of n is set to 0, regardless of the value received
on port inc.

To decouple parts of the functionality of the modulo-
8 counter, e.g., for individual testing, the behavior of the
Mod8Counter is structurally refined by introducing the two
subcomponents Controller and Counter, as depicted in
Figure 3 (b). The controller component is responsible to dele-
gate a reset of the counted value to the counter. This reset is trig-
gered either after receiving a message true on its incoming port
rIn or if the current counted value is 7 and the value should be
further increased. The counter component realizes the counting
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Figure 1: The elevator control system ECS comprises subcomponents to manage serving elevation requests on up to three floors.

functionality, but is unable to reset a counted value from 7 to 0
after increasing. Using the method for refinement checking pre-
sented in this paper, it is possible to fully automatically check
whether the original version (atomic Mod8Counter) is equiv-
alent to its successor version (composed Mod8Counter).

Later, the behavior of the counter is refined in a further struc-
tural refinement step (cf. Figure 3 (c)) by introducing subcom-
ponents to the component Counter. The company reuses
these subcomponents from a different project. The behavior of
the component Counter is then defined by three counter bit
components pos0, pos1, and pos2, which all have the same
component behavior - denoted in MontiArcAutomaton by the
fact that they are of the same component type CBC. Each of
these can count a single bit component only. The MontiArc-
Automaton component CBC with an embedded automaton re-
alizing the component behavior is depicted in Figure 4. The
bit value can be increased (modulo 2) via a message true on
the incoming port i and reseted to f alse via a message true
on the incoming port r. The current value of the bit is output
via the outgoing port v, and the value of q is true iff, after in-
creasing, the bit value changes from true to f alse. Otherwise,
it emits f alse. Using our method, checking whether the new
architecture is semantically equivalent to any of the other two
architectures is possible within milliseconds.

At this point, another modeling expert notices that the design
of the mod-8 counter is too complex and can be simplified, as
the behavior of each CBC components already realizes the over-
flow of the modulo. Therefore, the expert proposes to model
the behavior as depicted in Figure 5. As it is not obvious if the

behaviors of Figure 3 (c) and Figure 5 are equivalent, the re-
finement check presented in this paper is employed and yields
sound and complete results within milliseconds.

3. A Semantics Domain for Components

This section introduces the semantics domain for compo-
nents based on the Focus framework [5, 7, 16, 36, 39] and reca-
pitulates the most important results from [9, 16], which underlie
the approach presented in this paper.

We interpret software architectures as networks of au-
tonomously acting components communicating in a time-
synchronous manner via directed, typed channels connecting
the components’ interfaces. A time-synchronous architecture
can be interpreted as a system where component computations
are performed concurrently and controlled by a global clock
that splits runtime into discrete and equidistant time units. In
every time unit, each component receives finitely many input
messages via its interfaces and outputs finitely many messages
to its environment. The computations of each component in
every time unit must terminate. To this end, components parti-
tion time slices into sequences of operations (e.g., assessing the
guard of an embedded automaton’s transition or assigning val-
ues according to its actions). Although these sequences of oper-
ations are untimed in the Focus sense, they are causally related.
The semantics of component behavior thus happens logically
in superdense time [28], which, following [26], distinguishes
between the discrete “time continuum” (global Focus time) and
“untimed causally-related actions” (a component behavior’s ac-
tions within the component’s time slice).
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In the remainder, we denote by [X → Y] the set of all func-
tions from a set X to a set Y . For a function f ∈ [X → Y] and a
set Z ⊆ X, the restriction of f to Z is the function f |Z ∈ [Z → Y]
that satisfies f |Z(x) = f (x) for all x ∈ Z. Given two functions
f ∈ [X → A] and g ∈ [Y → B], the overriding union of f with
g is the function f + g ∈ [(X ∪ Y) → (A ∪ B)] that satisfies
( f + g)(x) = g(x) if x ∈ Y and ( f + g)(x) = f (x) if x ∈ X \ Y for
all x ∈ X ∪ Y .

3.1. Streams, Messages, Types, and Communication Histories
The history of messages a component receives or sends via

an interface (e.g., channel) is formally described as a stream that
contains messages in order of their transmission. Let M be an
arbitrary alphabet. A stream over the set M is a finite or infinite
sequence of elements from M. Following [7, 39], we denote by

• M∗ the set of all finite streams over M,

• M∞ the set of all infinite streams over M,

• 〈〉 the empty stream, which is an element of M∗,

• ŝt the concatenation of two streams s and t such that
((M∗ ∪ M∞), ,̂ 〈〉) is a monoid. If s ∈ M∞ then ŝ t = s.

• v the prefix relation over streams, which is a partial order
defined by: ∀s, t ∈ (M∗ ∪ M∞) : s v t ⇔ ∃u : ŝ u = t,

• s.t the (t + 1)-st element of a stream s ∈ (M∗ ∪ M∞),

• s↓t the prefix of a stream s ∈ M∞ of length t ∈ N.

Example 1. The finite sequence f ib7 = 0, 1, 1, 2, 3, 5, 8 ∈ N∗
is a finite stream of natural numbers. It contains the first seven
Fibonacci numbers. The infinite stream of all Fibonacci num-
bers f ib ∈ N∞ is defined by f ib.0 = 0 ∧ f ib.1 = 1 ∧ ∀t ∈
N : t ≥ 2 ⇒ f ib.t = f ib.(t − 2) + f ib.(t − 1). By defini-
tion, we have f ib̂ f ib7 = f ib. Further, f ib7 v f ib because
the prefix of length 7 of f ib is equal to f ib7, i.e., f ib↓7= f ib7.
Thus, the first seven elements of f ib7 and f ib are equal, e.g.,
f ib7.0 = f ib.0 = 0 and f ib7.3 = f ib.3 = 2.

In the remainder, let M denote an arbitrary but fixed set of
data elements, such as messages, and let Type be a set of data
types such that each t ∈ Type satisfies t ⊆ M. Types facilitate
restricting the set of messages a component may emit or receive
via an interface. We assume a discrete model of time where
component computation is divided into discrete time units of
equal and finite duration. In each time unit each component re-
ceives at most one message via each incoming interface, may
perform finitely many state changes and emits at most one mes-
sage via each outgoing interface. We use the special symbol
ε ∈ M to denote the absence of a message during a time unit
and require ε ∈ t for each t ∈ Type.

A channel is an identifier for a communication link between
interface elements of components. In the following, we denote
by C a set of typed channel names. The function type ∈ [C →
Type] maps each channel in the set C to its type. Let B ⊆ C
be an arbitrary set of channel names. We model the history of
messages emitted via the channels in the set B as a communica-
tion history h ∈ BΩ, which is an element of the set BΩ defined
as follows: BΩ def

= {h ∈ [B → M∞] | ∀b ∈ B : h(b) ∈ type(b)∞}.
Let h ∈ BΩ be a communication history, H ⊆ BΩ a set of com-
munication histories, and t ∈ N a natural number. We lift the
operator ↓ to communication histories and sets of communi-
cation histories in a point-wise manner, i.e., b↓t∈ [B → M∗]
denotes the function that satisfies b↓t(i) = b(i)↓t for all i ∈ B
and H↓t

def
=
⋃

h∈H h↓t denotes the set resulting from applying the
operator to each element in H.

Example 2. Let c ∈ C be a channel of natural numbers.
Then, in each time unit, the channel c can be either assigned
a natural number or the empty message. Thus, type(c) =

N ∪ {ε} ∈ Type ⊆ M. The communication history that as-
signs the channel c the sequence of Fibonacci numbers is given
by h = {c 7→ f ib} ∈ cΩ where f ib is defined as in Exam-
ple 1. The stream containing all negative integers neg de-
fined by ∀t ∈ N : neg.t = −t is no valid assignment to
channel c because there exists a time unit t ∈ N such that
neg.t < type(c) = N ∪ {ε}, e.g., we have neg↓2= −1,−2.
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Thus, {c 7→ neg} < aΩ is no communication history. The func-
tion mapping the channel c to its first 7 elements is given by
h↓7= {c 7→ f ib7} where f ib7 is defined as in Example 1. Let
empty ∈ {c}Ω be defined by ∀t ∈ N : empty(c).t = ε denote the
communication history that always assigns the channel c to the
empty message. Then, {h, empty}↓7= {h↓7, empty↓7} = {{c 7→
f ib7}, {c 7→ ε, ε, ε, ε, ε, ε, ε}}.

3.2. Time-Synchronous Stream Processing Functions
We model the semantics of distributed interactive sys-

tems as sets of time-synchronous stream processing functions

(TSSPFs) [9]. The notion of TSSPFs is inspired by the notion
of timed SPFs [7, 16, 36, 39]. The major and crucial differ-
ence between the two notions is that TSSPFs process exactly
one message per channel per time unit, whereas SPFs process a
stream of messages per channel per time unit. The key idea is to
treat components as black-boxes having an observable behavior
characterized by the interactions on channels between systems
and subsystems while hiding internal implementation details. A
component is mapped to a set of functions describing the com-
ponent’s possible behaviors. Such a function maps communi-
cation histories over the set of input channels of a component to
communication histories over the set of the component’s output
channels. Thus, each function in the semantics of a component
with input channels I ⊆ C and output channels O ⊆ C is of the
form f ∈ [IΩ → OΩ]. However, such functions are not always
realizable in the sense that they can be implemented [7, 34]. In-
tuitively, the characterizing properties for realizability are cap-
tured by the notion of weak-causality: a component cannot
change messages it received or sent in the past and cannot react
to messages it receives in the future [7, 34, 36, 39]. Thus, the
output of a behavior describing function until time t must be
completely determined by its input until time t:

Definition 1 (Time-Synchronous Stream Processing Function).
Let I,O ⊆ C be two disjoint sets of input and output chan-
nels. A function f ∈ [IΩ → OΩ] is called (weakly causal)
time-synchronous stream processing function iff
∀i, i′ ∈ IΩ : ∀t ∈ N : i↓t= i′↓t⇒ f (i)↓t= f (i′)↓t.

We denote by [IΩ wc−−→ OΩ] the set of all (weakly causal)
TSSPFs mapping input histories in IΩ to output histories in OΩ.
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Example 3. This example defines the stream processing func-
tion add that specifies the behavior of a component for adding
natural numbers. The interface of the TSSPF is graphically
illustrated on the left hand side of Figure 6. The input chan-
nels are I = {a, b} and the set of output channels is O = {c}.
The type of all channels is the type of natural numbers, i.e.,
type(a) = type(b) = type(c) = N ∪ {ε} ∈ Type ⊆ M. If the
function add receives natural numbers on both channels a and
b in a time unit t, then the function outputs the sum of the re-
ceived messages via the channel c in time unit t. Otherwise, if
the function receives the empty message ε on any of the input
channels in time unit t, then the function outputs ε in time unit t.
The function add ∈ [IΩ → OΩ] is formally defined by ∀i ∈ IΩ :

∀t ∈ N : (add(i))(c).t = .


i(a).t + i(b).t, if i(a).t, i(b).t ∈ N
ε, otherwise

The function add is weakly causal because its output in each
time unit is fully specified by its inputs in the same time unit,
i.e., in each time unit, the function’s output does not depend on
future input and the function does not change previously pro-
cessed messages. This is verifiable with a short proof by induc-
tion over the lengths of prefixes of communication histories.

The following example illustrates that the weak causality re-
quirement on TSSPFs is necessary.

Example 4. This example defines the function u (unrealizable)
over communication histories that is not weakly causal. We
define the function over Boolean messages. The function’s input
channel set is given by I = {in} and its output channel set is
given by O = {out}. The types of in and out are type(in) =

type(out) = {>,⊥, ε} ∈ Type ⊆ M where > represents the
value true and ⊥ represents the value f alse. In each time unit
t, the function u ∈ [IΩ → OΩ] outputs the value it receives in
time unit t + 1. It is formally defined by ∀i ∈ IΩ : ∀t ∈ N :
u(out).t = i(in).(t + 1). Obviously, the functionality described
by the function u cannot be implemented by a component: A
component implementing the function would be able to predict
its future input to determine its present output. This is formally
captured by weak-causality. To proof that the function u is not
weakly causal, we need to find two input channel histories i, i′ ∈
IΩ and a time unit t ∈ N such that i↓t= i′↓t ∧u(i)↓t, u(i′)↓t.
We choose i and i′ such that ∀t ∈ N : i(in).t = ⊥ and i′(in).0 =

⊥ ∧ ∀t ∈ N : t ≥ 1 ⇒ i′(in).t = >. Then, i↓1= {in 7→ ⊥} = i′↓1
and u(i)↓1= {out 7→ ⊥} and u(i′)↓1= {out 7→ >}. Thus, i↓1=

i′↓1 ∧u(i)↓1, u(i′)↓1.

A single TSSPF is well-suited to model the semantics of a
deterministic component. However, as a TSSPF maps each in-
put to exactly one output, TSSPFs are not general enough to
model the semantics of underspecified components where the

exact output to an input is not fully specified. We thus model
the semantics components as sets of TSSPFs:

Definition 2 (Component Semantics Describing). Let I,O ⊆ C
be two disjoint sets of channels. A set of TSSPFs F ⊆ [IΩ wc−−→
OΩ] is called component semantics describing iff it satisfies
∀g ∈ [IΩ wc−−→ OΩ] : ((∀i ∈ IΩ : ∃ f ∈ F : g(i) = f (i))⇒ g ∈ F).

The definition above makes the semantics domain of com-
ponents fully abstract [16, 17] in the sense of [19] and allows
to handle unbounded non-determinism [16]. Full abstraction
is achieved by the closeness property, which requires that each
TSSPF resulting from a combination of TSSPFs included in the
set F is also included in F. The closeness property is also im-
portant to make component semantics as little distinguishing as
possible. This is illustrated by the fact that two different arbi-
trary sets of TSSPFs may encode the same component behav-
iors. The reason for this is that one may find a TSSPF g < F that
is not included in a set of TSSPFs F, which can be interpreted as
a combination of different TSSPFs contained in F. It thus does
not induce a new behavior not already covered by a TSSPF in F
but, for instance, induces a semantic difference between a com-
ponent with semantics described by F and a component with
semantics described by F ∪ {g}. As a result the semantics of
two components that have the exact same observable behav-
iors may be considered unequal. Consequently, full abstraction
is not achieved. Thereby, the closeness property is necessary.
However, each arbitrary set of TSSPFs F ⊆ [IΩ wc−−→ OΩ] can
be lifted to a component semantics describing set of TSSPFs
F def

= {g ∈ [IΩ wc−−→ OΩ] | ∀i ∈ IΩ : ∃ f ∈ F : g(i) = f (i)} that

satisfies F ⊆ F and F = F.

3.2.1. Composition of TSSPFs
Composition is an important concept to achieve modularity.

Composing the semantics of the individual components of a
system leads to the semantics of the whole system. Compos-
ing arbitrary sets of TSSPFs can lead to realizability problems
in delay-free feedback loops where the input of a component in
time unit t depends on another component’s output in time unit
t and vice versa. Thus, composition is only defined for TSSPFs
where causality between inputs and outputs on channels con-
nected via a feedback loop is ensured. This is the case if one
of the TSSPFs participating in a composition is strongly causal
with respect to its channels connected by the composition. Intu-
itively, a TSSPFs f is strongly causal modulo the input channels
J and output channels P, if the function’s outputs on the chan-
nels in P until time unit t + 1 is not influenced by the function’s
inputs received on the channels in J after time unit t. Other than
with weak causality, this especially includes that the outputs do
not rely on the inputs received in the same time unit.

Definition 3 (Strongly Causal Modulo). Let f ∈ [IΩ wc−−→ OΩ]
be a TSSPF and let J ⊆ I and P ⊆ O be two subsets of input and
output channels names. The TSSPF f is called strongly causal
modulo (J, P) iff ∀i, i′ ∈ IΩ : ∀t ∈ N :

((i|J)↓t= (i′|J)↓t ∧i|I\J = i′|I\J)⇒ f (i)|P↓t+1= f (i′)|P↓t+1.
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The following example illustrates that there are weakly
causal TSSPFs that are not strongly causal.

Example 5. The function add ∈ [IΩ wc−−→ OΩ] as defined in
Example 3 and depicted in Figure 6 is not strongly causal mod-
ulo (I,O). This holds because the function’s output in a time
unit always depends on its present input. To formally show that
add is not strongly causal modulo (I,O), we need to find two
inputs i, i′ ∈ IΩ and a time unit t ∈ N such that i|I↓t= i′|I↓t

and add(i)|O↓t+1, add(i′)|O↓t+1. We chose i and i′ such that
∀t ∈ N : i(a).t = i(b).t = 1 and ∀t ∈ N : i′(a).t = 2∧ i′(b).t = 1.
Then, i|I↓0= {c 7→ 〈〉} = i′|I↓0 and add(i)|O↓1= {c 7→ 2} and
add(i′)|O↓1= {c 7→ 3}. Thus, i|I↓t= i′|I↓t and add(i)|O↓t+1,
add(i′)|O↓t+1, which we needed to show. Using the same coun-
terexample, it is possible to show that add is not strongly causal
with respect to ({a},O), either. Analogously, it can be shown
that add is not strongly causal modulo ({b},O).

The following example describes a strongly causal TSSPF:

Example 6 (Strongly Causal TSSPF). Consider the strongly
causal TSSPF acc ∈ [IΩ wc−−→ OΩ] where I = {c} and O = {b}
and type(c) = type(b) = N∪ {ε}. The interface of the TSSPF is
graphically illustrated on the right hand side of Figure 6. The
TSSPF acc specifies the behavior of an accumulator compo-
nent. In each time unit, the component outputs the sum of the
values it received in the past. The component initially outputs
the message 0, which reflects that it has not received positive
integers, yet. When the component receives a positive integer
in a time unit, it outputs the sum of the received integer and
the value emitted in the current time unit in the next time unit.
When the accumulator receives the empty message ε, the accu-
mulated value remains unchanged. Thus, in the next time unit,
the component again emits the value that it emits in the current
time unit. Thus, the output of the function acc at time unit t + 1
only depends on its input up to and including time unit t. We
formally define the TSSPF acc by the following equation:

∀i ∈ IΩ : ∀t ∈ N : acc(i)(b).t =

0 if t = 0
acc(i)(b).(t − 1) + i(c).(t − 1) if t ≥ 1 ∧ i(c).(t − 1) ∈ N
acc(i)(b).(t − 1) if t ≥ 1 ∧ i(c).(t − 1) = ε

The function acc is strongly causal modulo (I,O) by defini-
tion. This can be formally proven by induction over the length
of prefixes of input communication histories:

t = 0: The property is satisfied because the TSSPF add al-
ways outputs the same initial value in time unit t = 0, indepen-
dent of its inputs in time unit t = 0.

Let n ∈ N. Assume for all t ≤ n and all i, i′ ∈ IΩ, it holds that
i|I↓t= i′|I↓t⇒ acc(i)|O↓t+1= acc(i′)|O↓t+1.

Let t = n + 1.
Let i, i′ ∈ IΩ such that i|I↓t= i′|I↓t.
We need to show acc(i)|O↓t+1= acc(i′)|O↓t+1.
Using the induction hypothesis: acc(i)|O↓t= acc(i′)|O↓t.
Therefore, especially acc(i)(b).(t − 1) = acc(i′)(b).(t − 1).
By assumption i|I↓t= i′|I↓t and thus i(c).(t− 1) = i′(c).(t− 1).
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�
��
��
�	

F⊗G

F⊆ ���
�
��
��
�	 �� ∖ ��

�� ∩ ��

�� ∩ ��

�� ∖ ��
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�� ∖ ��

�� ∩ ��
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Figure 7: Graphical representation of the composition of two sets of TSSPFs.

As t = n + 1, we have that t ≥ 1.
If i(c).(t − 1) = i′(c).(t − 1) ∈ N, then the above implies
acc(i)(b).t = acc(i)(b).(t − 1) + i(c).(t − 1) =

acc(i′)(b).(t − 1) + i′(c).(t − 1)} = acc(i′)(b).t
Similarly, if i(c).(t − 1) = i′(c).(t − 1) = ε, then
acc(i)(b).t = acc(i)(b).(t−1) = acc(i′)(b).(t−1) = acc(i′)(b).t
We can conclude that acc(i)|O↓t+1= acc(i′)|O↓t+1.

A set of TSSPFs F is called strongly causal with respect to
(J, P) iff there exists a function f ∈ F that is strongly causal
with respect to (J, P). With this, the set of TSSPFs F is re-
quired to exhibit at least one realization that is strongly causal
with respect to (J, P). The causality complication is avoided,
if causality between the inputs and outputs on the connected
channels of at least one composition participant is guaranteed:

Definition 4 (Composable). Two sets of TSSPFs F1 ⊆ [IΩ
1

wc−−→
OΩ

1 ] and F2 ⊆ [IΩ
2

wc−−→ OΩ
2 ] are called composable iff F1 is

strongly causal with respect to (I1∩O2, I2∩O1) or F2 is strongly
causal modulo (I2 ∩ O1, I1 ∩ O2).

Example 7 (Composability). The TSSPFs add and acc are
described and formally defined in Example 3 and Example 6.
The interfaces of the TSSPFs are graphically presented in Fig-
ure 6. Let Add = {add} and Acc = {acc} denote the single-
ton sets containing the TSSPFs add and acc. The two sets
of TSSPFs are composable because, as shown in Example 6,
the TSSPF acc ∈ Acc is strongly causal modulo ({c}, {b}) =

(Iacc ∩ Oadd,Oacc ∩ Iadd).

Components communicate with each other via unidirected,
typed channels established by connectors connecting compo-
nent interfaces. Multiple components may read from the same
channel, whereas only one component is permitted to write
messages on a channel. This ensures that no merging of mes-
sages emitted from different components via the same channel
is necessary. Thus the output channels of the functions of two
sets of TSSPFs need to be disjoint to enable composition. The
output channels of the composition result are the output chan-
nels of both composition’s participants. The compound’s input
channels are exactly the input channels of both components that
are no output channels of any of the two components.

The composition of two sets of TSSPFs F and G is graphi-
cally illustrated in Figure 7. The input channels of F ⊗ G are
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the input channels I1 \O2 of F that are no output channels of G
and the input channels I2 \ O1 of G that are no output channels
of F. The output channels of F ⊗G are all output channels of F
and G. The composition of two sets of TSSPFs yields a set of
TSSPFs:

Definition 5 (Composition). Let F1 ⊆ [IΩ
1

wc−−→ OΩ
1 ] and

F2 ⊆ [IΩ
2

wc−−→ OΩ
2 ] be two component semantics describing and

composable sets of TSSPFs with disjoint output channel sets
O1 ∩O2 = ∅. Let I = (I1 \O2)∪ (I2 \O1) and O = O1 ∪O2. The
composition F1 ⊗ F2 ⊆ [IΩ wc−−→ OΩ] of F1 and F2 is defined by

F1 ⊗ F2
def
= { f | ∀i ∈ IΩ : ∃ f1 ∈ F1 : ∃ f2 ∈ F2 : f (i) = o + p,

where o = f1((i + p)|I1 ), p = f2((i + o)|I2 )}

The composition operator is defined similar as in [16, 17, 39]
with the difference that we consider the time-synchronous sys-
tem model instead of the more general timed system model [7].

Example 8. The following demonstrates the composition of
sets of TSSPFs by example. Let Add = {add} and Acc = {acc}
be sets of TSSPFs as defined in Example 7. The sets Add and
Acc are composable (cf. Example 7). As both sets contain
a single TSSPF, the sets are component semantics describing
(cf. Definition 2). Further, the sets of output channels of the
sets’ TSSPFs are disjoint. Thus, the composition operator ⊗ is
applicable. Figure 8 graphically illustrates the result from com-
posing the two sets Add and Acc. The set of TSSPFs Add ⊗ Acc
contains the single TSSPF f ∈ [{a}Ω wc−−→ {b, c}Ω] that satis-
fies ∀i ∈ {a}Ω : f (i) = o + p where o = add((i + p)|Iadd ) and
p = acc((i+o)|Iacc ). Given an input i ∈ {a}Ω, iteratively comput-
ing the values of o, p, c, and b is possible because the TSSPF
acc is strongly casual. For instance, let i = {a 7→ 1, 1, ...} ∈ {a}Ω
denote the communication history that always assigns channel
a to 1, i.e., ∀t ∈ N : i(a).t = 1. The first output of acc via
channel b is by definition always 0 (cf. Example 6). With this,
we can compute that add outputs 1 = 0 + 1 via channel c in
time unit 0. This determines the output 1 of acc at time unit 1.
This again enables to determine that add outputs 2 = 1 + 1 via
channel c in time unit 1. This determines that acc outputs value
3 via channel b in time unit 2. Thus, add outputs 4 via channel
c in time unit 2. We can approximate the value of the TSSPF f
up to every fixed time unit t ∈ N for every fixed input i ∈ {a}Ω
by using the method sketched above.

The composition is well defined and results in a component
semantics describing set of TSSPFs. This is a consequence of
the requirement that one set of TSSPFs must be strongly causal
modulo its connected channels.

Theorem 1. If F1 and F2 are two component semantics de-
scribing and composable sets of TSSPFs with disjoint output
channel sets, then F1 ⊗ F2 is also component semantics de-
scribing.

Proof. Analogous to proof of Theorem 9 in [16] by replacing
the set the function f is chosen from with [IΩ wc−−→ OΩ].

Adda

b

Acc

c

Add⊗Acc

c c

b b

a

Figure 8: Graphical representation of the composition of Add and Acc.

4. Time-Synchronous Channel Automata

A TSCA specifies the behavior (of parts) of an interactive
system and represents a component semantics describing set of
TSSPFs that is given by its semantics. We later use TSCAs
to model components. TSCAs as introduced in this paper are
based on our previous work on TSPAs [9] and are strongly
inspired by port automata [16], I/O∗ automata [36, 39], and
MAAts automata [34]. Port automata and I/O∗ automata con-
sume and produce time slices of arbitrary but finitely many
input messages in every transition step. In contrast, TSCAs,
TSPAs, and MAAts automata consume and produce at most one
message per input channel in each time slice. Given the set of
states and the channel types of an automaton are finite, MAAts

automata, TSPAs, and TSCAs are guaranteed to have finitely
many transitions. This is not the case for I/O∗ and port au-
tomata since both have to define a transition for each state and
each possible input communication history. Even if the type
of a channel is finite, the number of communication histories
(streams) of the channel’s type is infinite. I/O∗ automata and
MAAts automata enforce causality between input and output
histories by requiring initial outputs on all channels. In con-
trast, TSPAs and TSCAs do not require initial outputs. While
the syntax of MAAts and TSCAs models variables explicitly,
in TSPAs [9] variables have to be represented implicitly in the
state space. While MAAts automata distinguish between data
and control states (i.e., variables and (control) states), TSCAs
consist of data states (variables) only. This eliminates unneces-
sary complexity and notational clutter as control states can be
easily represented as data states. Some proofs of some theo-
rems presented in the following are analog to proofs that have
already been carried out in [9, 16]. In case we are stating an
analogous theorem, we refer to the appropriate corresponding
proof in [9, 16].

A TSCA consists of a set of states, an interface of input and
output channels, and transitions defining the TSCA’s behavior.
The interface is encoded by a channel signature.

Definition 6 (Channel Signature). Let I,O ⊆ C be two disjoint
sets of channel names. A channel signature is a tuple Σ = (I,O).
We denote by C(Σ) def

= I∪O the set of all channels in Σ. A channel
signature Σ is called finite iff C(Σ) and type(c) for all c ∈ C(Σ)
are finite.

A channel assignment maps channels to messages of the
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channels’ types. Let B ⊆ C. A channel assignment is an el-
ement of the set B→ defined as B→ def

= {a ∈ [B → M] | ∀b ∈
B : a(b) ∈ type(b)}. Channel assignments are used as TSCA
transition labels.

Definition 7 (TSCA). A time-synchronous channel automaton
is a tuple A = (Σ, X, S , ι, δ) where:

• Σ = (I,O) is a channel signature,

• X ⊆ C is a set of variable symbols (internal channels),

• S ⊆ X→ is a set of states,

• ι ∈ S is the initial state,

• δ ⊆ S ×C(Σ)→ × S is the transition relation.

For convenience, we sometimes write s
θ−→δ t instead of

(s, θ, t) ∈ δ and simply s
θ−→ t if δ is clear from the context.

To avoid notational clutter, we often denote the components of
a TSCA A = (Σ, X, S , ι, δ) with Σ = (I,O) by ΣA

def
= Σ, XA

def
= X,

S A
def
= S , ιA

def
= ι, δA

def
= δ, IA

def
= I, and OA

def
= O. We also omit the

subscripts if they are clear from the context.

Example 9 (TSCA of the component CBC). The TSCA of the
component CBC is similar to the behavior automaton of the
CBC component, which is graphically depicted in Figure 4.
The channel signature comprises input and output channels.
States and transitions reflect states and transitions in the behav-
ior automaton, and the internal channel state reflects the cur-
rent state of the behavior automaton. We interpret the absence
of a message (“ε”) equal to the Boolean value “ f alse” and,
again, denote “>” as the Boolean value “true”. The TSCA
of the component CBC then can be formulated as TS CACBC =

(ΣCBC , XCBC , S CBC , ιCBC , δCBC) with

• channel signature ΣCBC = (ICBC ,OCBC) = ({i, r}, {v, q}),
• channel data types: type(i) = type(r) = type(v) =

type(q) = {>, ε},
• internal channel XCBC = {state} with type(state) = {0, 1},
• states S CBC = X→CBC = {a, b} with a = {state 7→ 0} and

b = {state 7→ 1},
• initial state ιCBC = a,

• and transition relation δCBC = {
{(a, θ, a) | (θ(i) = ε ∨ θ(r) = >) ∧ θ(v) = ε ∧ θ(q) = ε}
∪{(a, θ, b) | θ(i) = > ∧ θ(r) = ε ∧ θ(v) = > ∧ θ(q) = ε}
∪{(b, θ, b) | θ(i) = ε ∧ θ(r) = ε ∧ θ(v) = > ∧ θ(q) = ε}
∪{(b, θ, a) | θ(r) = > ∧ θ(v) = ε ∧ θ(q) = ε}
∪{(b, θ, a) | θ(i) = > ∧ θ(r) = ε ∧ θ(v) = ε ∧ θ(q) = >}}.

The reactions of a TSCA are defined by its transitions. In
each time unit, a TSCA performs one state change by executing
one transition enabled by its input and outputs one message on
each output channel. Let A be a TSCA. A is said to be reac-
tive iff ∀s ∈ S : ∀i ∈ I→ : ∃t ∈ S : ∃θ ∈ C(Σ)→ : (s, θ, t) ∈

δ∧ θ|I = i. A reactive TSCA is called component. Components
must not block their environments and must be able to react
to any possible well-typed input in any time unit. Therefore,
a component must define a reaction to every possible input for
each of its states. A is called finite iff Σ and S are finite. The
size of A, denoted |A|, is defined as the sum of the number of
its states and transitions, i.e., |A| = |S | + |δ|. A is called de-
terministic iff ∀s ∈ S : ∀i ∈ I→ : |{t ∈ S | ∃θ ∈ C(Σ)→ :
θ|I = i ∧ (s, θ, t) ∈ δ}| = 1. A is called I/O-deterministic iff
∀s ∈ S : ∀θ ∈ C(Σ)→ : |{t ∈ S | (s, θ, t) ∈ δ}| ≤ 1. Reactive
TSCAs are adequate models for components as they specify at
least one output for each input. The size of TSCAs is used for
measuring algorithmic complexities. Intuitively, if A is deter-
ministic, then for each state and each input, A only has at most
one choice for switching the state when processing the input. It
thus acts as a system part in a deterministic implementation. If
A is reactive and deterministic, then it has exactly one choice
for switching its state. In contrast, if A is I/O-deterministic,
for each state, the state A switches to when it reads an input
and produces an output can be uniquely identified by the in-
put/output pair. As shown in Section 5, semantic differencing
of I/O-deterministic TSCAs is possible in polynomial time in
the sizes of the automata.

Example 10 (TS CACBC is reactive and deterministic).
TS CACBC (cf. Example 9) is reactive because in both of its
states, there is an outgoing transition with a channel assign-
ment that has all input channels in its domain. In other words,
it defines an output for each possible state/input combination
and therefore it describes a component. TS CACBC is finite, be-
cause |S | and Σ are finite: The set of states S is finite since
|S | = 2. The channel signature Σ is finite because |C(Σ)| = 4
and ∀c ∈ C(Σ) : |type(c)| = |{>, ε}| = 2. TS CACBC is reactive
and deterministic because in both states and for each possible
input, there is exactly one state that the TSCA may change to.

The following theorem shows that determinism implies I/O-
determinism. The other direction, however, does not hold.

Theorem 2. Any deterministic TSCA is I/O-deterministic.

Proof. Let A = (Σ, X, S , ι, δ) with Σ = (I,O) be a deterministic
TSCA. Suppose towards a contradiction there exists a state s

and a channel valuation θ ∈ C(Σ)→ such that |{t ∈ S | s
θ−→

t}| > 1. Thus, there exist u, v ∈ S such that u , v and s
θ−→ u

and s
θ−→ v. Let i = θ|I . Then, as u , v and s

θ−→ u, it holds
that u, v ∈ {t ∈ S | ∃θ ∈ C(Σ)→ : θ|I = i ∧ s

θ−→ t}. Thus,
|{t ∈ S | ∃θ ∈ C(Σ)→ : θ|I = i ∧ s

θ−→ t}| ≥ 2, which contradicts
that A is deterministic.

With this, problems that are efficiently solvable for I/O-
deterministic TSCAs are at least as efficiently solvable for de-
terministic TSCAs.

4.1. Execution and Behavior Semantics of TSCAs
This section formalizes the intuitive descriptions of a TSCA’s

behavior. Further analyses on TSCAs will be based on the op-
erational semantics introduced in this section.
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Definition 8 (Execution). Let A = (Σ, X, S , ι, δ) be a TSCA. An
execution σ of A is an infinite, alternating sequence of states
and channel assignments starting with the initial state ι:

σ = s0, θ0, s1, θ1, ... such that s0 = ι and ∀i ∈ N : si
θi−→ si+1.

The set of all executions of A is denoted by execs(A).

Executions comprise the state changes and interactions per-
formed by a TPSA. Abstracting from state changes allows to
treat TSCAs as black boxes with hidden internal details. This
requires explicating the behavior of a TSCA.

Definition 9 (Behavior). Let A = (Σ, X, S , ι, δ) be a TSCA
with channel signature Σ = (I,O). The behavior of an ex-
ecution σ = s0, θ0, s1, θ1, ... of A is defined as the sequence
beh(σ) def

= θ0, θ1, ... containing only channel assignments. For
P ⊆ C(Σ), the restriction of beh(σ) to P is defined as beh(σ)|P def

=

θ0|P, θ1|P, .... We denote by behs(A) def
=
⋃
σ∈execs(A) beh(σ) the set

of all behaviors of all executions of A. The named commu-
nication history hα induced by a behavior α ∈ behs(A) with
α = e0, e1, ... is defined as the function hα ∈ (I ∪O)Ω that satis-
fies hα(x).t = et(x) for all x ∈ I ∪ O and t ∈ N.

Given a TSCA A with ΣA = (I,O) and an input history i ∈ IΩ,
we denote the set of communication histories induced A with
input i by A[i] def

= {o ∈ OΩ | ∃α ∈ behs(A) : o = hα|O ∧ hα|I = i}.

Example 11 (Execution and behavior of TS CACBC). An exe-
cution of a TSCA is an infinite sequence in general. Let a, b,
θab, θba, θres, and θnop be given as follows:

• a = {state 7→ 0}, b = {state 7→ 1},

• θab = {i→ >, r 7→ ε, v 7→ >, q 7→ ε},

• θba = {i 7→ >, r 7→ ε, v 7→ >, q 7→ >},

• θres = {i 7→ >, r 7→ >, v 7→ ε, q 7→ ε}, and

• θnop = {i 7→ ε, r 7→ ε, v 7→ ε, q 7→ ε}.

An execution of the TS CACBC , for instance, is
e = a, θab, b, θba, a, θab, b, θres, a(, θnop, a)∞. Accord-
ingly, the behavior of this execution is given by
beh(e) = θab, θba, θab, θres(, θnop)∞. This behavior can be
restricted to include only a subset of the involved channels,
which is done by restricting the individual channel assign-
ments. For instance, the restriction e|{q} of e to {q} is given by
e|{q} = θab|{q}, θba|{q}, θab|{q}, θres|{q}(, θnop|{q})∞ = {q 7→ ε}, {q 7→
>}, {q 7→ ε}, {q 7→ ε}, {q 7→ ε}∞. The communication history he

induced by the behavior e maps the channel q, for instance, to
the stream he(q) = ε,>, ε, ε, ε∞.

If a state is not visited by any of the TSCA’s executions, then
it is not productive in the sense that it does not influence any
behavior. Thus, when analyzing the set of behaviors of a TSCA
it suffices to analyze only the TSCA’s reachable part that only
consists of states visited by at least one execution. A state is
reachable in a TSCA if there is an execution that visits it.

Definition 10 (Reachable). Let A = (Σ, X, S , ι, δ) be a TSCA
with channel signature Σ = (I,O). A state s ∈ S is called
reachable in A if there exists a finite alternating sequence of
states s0, θ1, s1, θ2, ..., θn, sn starting in the initial state s0 = ι

and ending in state s = sn such that si
θi+1−−→ si+1 for all 0 ≤ i < n.

The set of all reachable states in A is denoted by reach(A).

Non-reachable states are redundant in the sense that they do
not affect a TSCA’s behavior.

Example 12 (Reachable states in TS CACBC). In TS CACBC ,
both states are reachable because reach(TS CACBC) = {a, b}.
The execution e depicted in Example 11 reaches both states of
the TSCA. To this effect, any prefix of e ending in state a and
any prefix of e ending in state b are valid finite alternating se-
quences of states and channel assignments. This shows that
both states are reachable.

Removing the unreachable states from a TSCA results in a
TSCA with exactly the same behaviors.

Theorem 3. Let A = (Σ, X, S , ι, δ) be a TSCA with channel
signature Σ = (I,O) and let R = reach(A) denote the reachable
states of A. Then, B def

= (Σ,R, ι, δ ∩ R × C(Σ)→ × R) is a TSCA
that satisfies behs(A) = behs(B).

Proof. Let A and B be given as above and let ∆ = δ ∩ R ×
C(Σ)→ × R denote the transitions of B.

behs(A) ⊆ behs(B): Let σ = s0, θ1, s1, θ2, s2... be an execu-

tion of A. Then, it holds that s0 = ι and ∀i ∈ N : si
θi+1−−→δ si+1.

Now, let j ∈ N. As ∀i ∈ N : si
θi+1−−→δ si+1 is satisfied, it espe-

cially holds that si
θi+1−−→δ si+1 for each 0 ≤ i < j. Thus, the fi-

nite sequence s0, θ1, s1, θ2, s2, ..., θ j, s j satisfies si
θi+1−−→δ si+1 for

all 0 ≤ i < j. From this, we can conclude that each state s j

where j ∈ N is reachable in A. As ∀i ∈ N : si ∈ R, we have
that ∀i ∈ N : (si, θi+1, si+1) ∈ R × C(Σ)→ × R. From this and
∀i ∈ (siθi+1, si+1) ∈ δ, we can conclude (siθi+1, si+1) ∈ ∆ =

δ ∩ R × C(Σ)→ × R, i.e., ∀i ∈ N : si
θi+1−−→ si+1. From the

above we can conclude σ ∈ execs(B). All in all, we obtain
execs(A) ⊆ execs(B) and therefore behs(A) ⊆ behs(B).

behs(B) ⊆ behs(A): Let σ = s0, θ0, s1, θ1, ... be an execution

of A. Then, it holds that s0 = ι and ∀i ∈ N : si
θi−→ si+1. As

R ⊆ S and ∆ ⊆ δ, we obtain ∀s, t ∈ R : ∀θ ∈ C(Σ)→ : s
θ−→∆⇒

s
θ−→δ t. Therefore, ∀i ∈ N : si

θi−→∆ si+1 implies ∀i ∈ N :

si
θi−→δ si+1. Thus, it holds that σ ∈ execs(A). We can conclude

execs(B) ⊆ execs(A) and therefore behs(B) ⊆ behs(A).

Algorithm 1 shows a procedure for removing the unreachable
states from any finite TSCA. The algorithm performs a depth-
first traversal on the input TSCA to only retain the input TSCA’s
states that are reachable from its initial state. While traversing
the automaton, the algorithm also adds the transitions originat-
ing from any reachable state to the resulting automaton. As any
state that is the target of any transition with a reachable source
state is also reachable, the transitions added in Algorithm 1 al-
ways connect reachable states. The operations push, pop, and
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top denote the standard stack operations and the symbol ⊥ de-
notes the empty stack. The algorithm terminates because the
input TSCA is required to be finite and every state is visited at
most once.

Algorithm 1 Trimming a finite TSCA.
Input: Finite TSCA A = (Σ, X, S , ι, δ)
Output: TSCA containing only reachable parts of A

define R← {ι} as set /* reachable, visited states */

define U ← ⊥ as empty stack /* states to visit */

define δ′ ← ∅ as set
push(ι,U)
while U , ⊥ do

s← top(U)
δ′ ← δ′ ∪ {t ∈ δ | ∃θ ∈ C(Σ)→ : ∃r ∈ S : t = (s, θ, r)}
if {r ∈ S | ∃θ ∈ C(Σ)→ : (s, θ, r) ∈ δ} ⊆ R then

pop(U)
else

let s′ ∈ {r ∈ S | ∃θ ∈ C(Σ)→ : (s, θ, r) ∈ δ} \ R be
arbitrary
push(s′,U)
R← R ∪ {s′}

end if
end while
return (Σ,R, ι, δ′)

Removing the unreachable states from a component again
results in a component. Thus, the reactivity property is not lost
by removing unreachable states.

Theorem 4. Let A = (Σ, X, S , ι, δ) be a component with channel
signature Σ = (I,O) and let R = reach(A) denote the reachable
states of A. Then, B def

= (Σ,R, ι, δ∩R×C(Σ)→×R) is a component.

Proof. Let A and B be given as above and let ∆ = δ ∩ R ×
C(Σ)→ × R denote the transitions of B.

We need to show that B is reactive: Let r ∈ R be a state of
B. As r ∈ R is a reachable state in A, it clearly holds that each
target state of any transition in A with source state r is also an

element of R, i.e., ∀u ∈ S : (∃θ ∈ C(Σ)→ : s
θ−→ u) ⇒ u ∈ R.

Thus, we have that {(s, θ, t) ∈ δ | s = r} ⊆ R × C(Σ)→ × R. As
further {(s, θ, t) ∈ δ | s = r} ⊆ δ, it holds that {(s, θ, t) ∈ δ | s =

r} ⊆ δ∩R×C(Σ)→ ×R. This is equivalent to ∀t ∈ S : r
θ−→δ t ⇒

r
θ−→∆ t. As A is reactive and each transition of A starting from

a reachable state r ∈ R is also a transition of B, we obtain that
B is also reactive.

Therefore, the resulting from trimming a component is again
an equivalent component that uses less space than the original.
This eases analyses of the original component’s behaviors.

4.2. Composition of TSCAs
As for TSSPFs, causality expresses the dependency between

the inputs and outputs of a TSCA. A TSCA’s output in time t
must be completely determined by its input until time t. Thus
it cannot change messages sent in the past and cannot predict
messages it receives in the future (cf. pulse-drivenness in [16]):

A

s

�	 	� ∈ {�, �}→}

a b

Figure 9: A strongly causal TSCA A that permits every possible output in reac-
tion to every possible input.

Definition 11 (Weakly Causal TSCA). A TSCA A with ΣA =

(I,O) is called weakly causal iff
∀i, i′ ∈ IΩ : ∀t ∈ N : i↓t= i′↓t⇒ A[i]↓t= A[i′]↓t.

Weak causality states that for every two inputs i, i′ having
a common prefix of length t and for every behavior α ∈ A[i]
there is a behavior β ∈ A[i′] having a common prefix of length
t with α. Similar as for TSSPFs, weak causality can lead to
composition complications, which are avoidable analogously.

Definition 12 (Strongly Causal Modulo). Let A be a TSCA with
channel signature ΣA = (I,O) and let J ⊆ I and P ⊆ O be two
sets of input and output channels of A. The TSCA A is called
strongly causal modulo (J, P) iff
∀i, i′ ∈ IΩ : ∀t ∈ N :

((i|J)↓t= (i′|J)↓t ∧i|I\J = i′|I\J)⇒ (A[i]|P)↓t+1= (A[i′]|P)↓t+1.

Intuitively, a TSCA is strongly causal with respect to (J, P), if
its outputs on the channels in P until time t+1 are not influenced
by its inputs on the channels in J after time t.

Example 13 (Strongly Causal Modulo: TS CACBC). The TSCA
TS CACBC , for instance, is not strongly causal with respect to
({r}, {v}). This is simple to show by contradiction: Let in = {r 7→
>∞, i 7→ >∞} ∈ IΩ

CBC and in′ = {r 7→ ε∞, i 7→ >∞} ∈ IΩ
CBC

be two input histories. As (in|{r})↓0= (in′|{r})↓0= {r 7→ 〈〉}
and in|{i} = in′|{i} = {i 7→ >∞}, the premises of the implica-
tion in Definition 12 hold for the chosen input histories and
time t = 0. But as (TS CACBC[in]|{v})↓1= 〈{v 7→ ε}〉 and
(TS CACBC[in′]|{v})↓1= 〈{v 7→ >}〉, the conclusion is not sat-
isfied. Thus, the property stated in Definition 12 does not hold
and TS CACBC is not strongly causal modulo ({r}, {v}).

At first sight, it might seem that a TSCA is strongly causal
if, and only if, it always delays it’s outputs. However, delay-
ing of outputs is only a sufficient, not a necessary condition for
a TSCA to be strongly causal. This holds because a TSCA A
might simultaneously model a realization that is not strongly
causal and another realization that is strongly causal, i.e., a de-
terministic strongly causal component that only exhibits behav-
iors that are also possible in A. An example TSCA modeling
arbitrary behavior illustrates this situation:

Example 14 (Arbitrary Behavior is Strongly Causal). Let
a, b ∈ C be two channels over Boolean values, i.e., type(a) =

type(b) = {ε,⊥,>}. Further, let e ∈ C be a channel that
only permits the empty message, i.e., type(e) = {ε}. We de-
fine the reactive TSCA A as illustrated in Figure 9 that is
able to react with every possible output to every possible in-
put as follows: ΣA = ({a}, {b}), XA = e, S A = {s}, ιA = s,
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δA = {(s, θ, s) | θ ∈ {a, b}→} where s = {e 7→ ε}. It is easy
to proof by induction that A is strongly causal modulo (IA,OA)
because A permits every possible output in reaction to every
possible input. Intuitively, this holds because when interpreting
A as specification, we can find a strongly causal implementa-
tion I (a reactive deterministic component) that implements A,
i.e., behs(I) ⊆ behs(A). An example for I is a TSCA that always
outputs ε via channel b, independent of the input on channel a.

TSCAs communicate with each other via their input and out-
put channels. Multiple automata may read from the same chan-
nel, whereas only one automaton is permitted to write messages
on a channel. Thus, no merging of messages on channels emit-
ted by different automata is necessary.

Definition 13 (Compatible Channel Signatures). Two channel
signatures ΣA = (IA,OA) and ΣB = (IB,OB) are called compat-
ible iff OA ∩ OB = ∅.

By composing two TSCAs, the output channels of one au-
tomaton are connected to the input channels with the same
name of the other automaton. The connected input channels
are hidden implicitly. The set of output channels of the new
automaton is the union of the sets of the output channels of the
two original TSCAs. The input channels of the new automaton
are the input channels of the two automata that do not share a
common name with the output channels of the other automaton.

Definition 14 (Composition of Signatures). The composition
of two channel signatures ΣA = (IA,OA) and ΣB = (IB,OB) is
defined as ΣA ⊗ ΣB

def
= (I,O) where I = (IA \OB)∪ (IB \OA) and

O = (OA ∪ OB).

The composition of two TSCAs should be a TSCA that rep-
resents the behaviors of the TSCAs when they run in parallel.
Therefore, we require the TSCAs participating in a composition
must not share any internal variables (states).

Definition 15 (Compatible TSCAs). Two TSCAs A and B are
called compatible iff ΣA and ΣB are compatible and XA∩XB = ∅.

Figure 10 illustrates the composition of two TSCAs A and
B. The input channels of the compound A ⊗ B is the union of
the input channels of A and B minus the union of the output
channels of both TSCAs. The output channels of A ⊗ B are
exactly the output channels of A and B. The composition of the
TSCAs’ states and transitions reflect the parallel execution of
both TSPAs. The following formally defines the composition
operator for TSCAs.

Definition 16 (Composition of TSCA). Let A and B be two
compatible TSCAs. The composition of A and B is defined as
the TSCA A ⊗ B def

= (Σ, X, S , ι, δ) where

• Σ = ΣA ⊗ ΣB,

• X = XA ∪ XB,

• S = {sA ∪ sB | sA ∈ S A ∧ sB ∈ S B}
• ι = ιA ∪ ιB

B

t

A⊗B

u

A

s

�� ∖ ��

�� ∩ ��

�� ∩ ��
�� ∖ ��

�� ∩ ��

�� ∖ ��

�� ∩ ��

�� ∖ ��

s	∪	t s ∪ u

A⊗B

��

�� ∖ ��

�� ∖ ��

��

Figure 10: Composition of two compatible TSCAs.

• δ = {(s, θ, t) ∈ S ×C(Σ)→ × S |
(s|S A , θ|C(ΣA), t|S A ) ∈ δA ∧ (s|S B , θ|C(ΣB), t|S B ) ∈ δB}

The union of the functions of S A and S B used in the definition
of S (cf. Definition 16) is well defined since the the functions’
domains XA and XB are disjoint.

Example 15 (Composition of two instances of TS CACBC).
This example describes the composition of the TSCAs of the
components pos0 and pos1 as depicted in Figure 3 (c). In
MontiArcAutomaton, port names of different components may
be equal and connectors establish channels between connected
ports. In contrast, TSCAs communicate via shared channels.
With this, a connector between two MontiArcAutomaton com-
ponents describes a channel in the TSCA that formally de-
scribes the composed component’s behaviors. Thus, the port
names of the MontiArcAutomaton components have to be ad-
justed to achieve compatibility on TSCA level. We denote the
TSCA of pos0 by CBC0 and the TSCA of pos1 by CBC1. The
two TSCAs as well as their compound are depicted in Figure 11.

They are defined by CBC0 = ((I0,O0), S 0, X0, ι0, δ0) and
CBC1 = ((I1,O1), S 1, X1, ι1, δ1) with

• input channels I0 = {i, r} and I1 = {q0, r} where type(c) =

{ε,>} for all c ∈ I0 ∪ I1,

• output channels O0 = {x0, q0} and O1 = {q1, x1} where
type(c) = {ε,>} for all c ∈ O0 ∪ O1,

• internal channels X0 = {state0} and X1 = {state1} where
type(state0) = type(state1) = {0, 1},

• states S 0 = {s0, s1} and S 1 = {t0, t1} where si = {state0 7→
i} and ti = {state1 7→ i} for all i ∈ {0, 1},

• initial states ι0 = s0 and ι1 = t0,
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represents a set of transition labels

Figure 11: Composition of two CBC instances.

• transition relations as depicted in the top part of Figure 11
where the transition labels of CBC0 are defined as:

n0
0 = {i 7→ ε, r 7→ ε, x0 7→ ε, q0 7→ ε},

n0
1 = {i 7→ ε, r 7→ ε, x0 7→ >, q0 7→ ε},

i00 = {i 7→ >, r 7→ ε, x0 7→ >, q0 7→ ε},
i01 = {i 7→ >, r 7→ ε, x0 7→ ε, q0 7→ >},
r0 = {θ ∈ (I0 ∪ O0)→ | θ(r) = > ∧ θ(x0) = ε ∧ θ(q0) = ε},
and the transition labels of CBC1 are defined as:

n1
0 = {q0 7→ ε, r 7→ ε, x1 7→ ε, q1 7→ ε},

n1
1 = {q0 7→ ε, r 7→ ε, x1 7→ >, q1 7→ ε},

i10 = {q0 7→ >, r 7→ ε, x1 7→ >, q1 7→ ε},
i11 = {q0 7→ >, r 7→ ε, x1 7→ ε, q1 7→ >},
r1 = {θ ∈ (I0 ∪ O0)→ | θ(r) = > ∧ θ(x1) = ε ∧ θ(q1) = ε}.

The TSCAs CBC0 and CBC1 are compatible because
the channel signatures are compatible (O0 ∩ O1 = ∅)
and the internal channels are pairwise disjoint
X0 ∩ X1 = {state0} ∩ {state1} = ∅.

The composed TSCA CBC0 ⊗ CBC1 is depicted in the lower
part of Figure 11 and is formally given by CBC0 ⊗ CBC1 =

(Σ, X, S , ι, δ) with

• the channel signature Σ = Σ0⊗Σ1 = ({i, r}, {q0, x0, q1, x1}),
• internal channels X = {{state0}, {state1}},
• states S = {s00, s01, s10, s11}, where

s00 = {{state0 7→ 0}, {state1 7→ 0}},
s01 = {{state0 7→ 0}, {state1 7→ 1}},
s10 = {{state0 7→ 1}, {state1 7→ 0}}, and
s11 = {{state0 7→ 1}, {state1 7→ 1}}

• the initial state ι = s00, and

• the transition relation as depicted in the bottom part
of Figure 11 where the transition labels of CBC0 ⊗ CBC1
are defined as:

i0 = {i 7→ >, r 7→ ε, x0 7→ >, q0 7→ ε, x1 7→ ε, q1 7→ ε},
i1 = {i 7→ >, r 7→ ε, x0 7→ ε, q0 7→ >, x1 7→ >, q1 7→ ε},
i2 = {i 7→ >, r 7→ ε, x0 7→ >, q0 7→ ε, x1 7→ >, q1 7→ ε},
i3 = {i 7→ >, r 7→ ε, x0 7→ ε, q0 7→ >, x1 7→ ε, q1 7→ >},
n0 = {i 7→ ε, r 7→ ε, x0 7→ ε, q0 7→ ε, x1 7→ ε, q1 7→ ε},
n1 = {i 7→ ε, r 7→ ε, x0 7→ >, q0 7→ ε, x1 7→ ε, q1 7→ ε},
n2 = {i 7→ ε, r 7→ ε, x0 7→ ε, q0 7→ ε, x1 7→ >, q1 7→ ε},
n3 = {i 7→ ε, r 7→ ε, x0 7→ >, q0 7→ ε, x1 7→ >, q1 7→ ε},
r = {θ | θ(r) = > ∧ θ(q0) = θ(q1) = θ(x0) = θ(x1) = ε}.

The result of this composition of two CBC components, i.e.,
two mod-2 counters, is a mod-4 counter. In this composed
TSCA, all four states are reachable.

Components can block each other if they simultaneously re-
quire an input emitted by the other component to produce the
next output. Composing such components results in a TSCA
that is not reactive and therefore no component. However, there
is a sufficient condition ensuring the resulting transition relation
is reactive and the compound is a component.

Definition 17 (Composability of TSCAs). Two components A
and B are called composable iff

• A and B are compatible and

• A is strongly causal with respect to (IA ∩ OB, IB ∩ OA) or
B is strongly causal with respect to (IB ∩ OA, IA ∩ OB).

Example 16 (Composability of TS CACBC). As shown in Ex-
ample 15, the TS CA0 of pos0 and the TS CA1 of pos1 are
compatible. To show composability between these, it is to show
that TS CA0 is strongly causal modulo (I0 ∩ O1, I1 ∩ O0). This
holds because I0 ∩O1 = ∅ and I1 ∩O0 = {q0}: It is not possible
that the messages emitted via an output channel of CBC1 influ-
ence the behavior of CBC0 because no output channel of CBC1
is an input channel of CBC0.

The following theorem states that composing two compos-
able components always results in a well-formed component.

Theorem 5. If A and B are composable components, then the
reachable part of A ⊗ B is a component.
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Proof. Analogous to proof of Theorem 3 in [16] by replacing
the set the function i is chosen from with I→.

Example 17 (The composition of two TS CACBC is a com-
ponent). Example 16 shows that the TSCAs CBC0 of pos0
and the CBC1 of pos1 are composable. Further, Example 10
proves that CBC0 and CBC1 are reactive, i.e., describe compo-
nents. With Theorem 5, the composition of TS CA0 and TS CA1
is a component as it can be seen in Example 15.

The composition operator further is commutative and asso-
ciative. This guarantees the component resulting from compos-
ing several components is independent of the order in which
the components are composed. Section 5.4 defines a notion of
system architecture, which is well-defined because of the asso-
ciativity and commutativity of the TSCA composition operator.

Theorem 6. If A, B, and C are three pairwise compatible
TSCAs, then the following holds:

1. A ⊗ B and C are compatible,

2. A ⊗ B = B ⊗ A, and

3. (A ⊗ B) ⊗C = A ⊗ (B ⊗C).

Proof. Let A, B, and C be three pairwise compatible TPSAs.
A ⊗ B and C are compatible: As A, B, and C are pairwise

compatible, it holds that XA ∩ XB = XA ∩ XC = XB ∩ XC = ∅.
Thus, XA⊗B∩XC = (XA∪XB)∩XC = (XA∩XC)∪ (XB∩XC) = ∅.
As A, B, and C are pairwise compatible, it holds that ΣA, ΣB, and
ΣC are pairwise compatible and therefore OA∩OB = OA∩OC =

OB∩OC = ∅. Thus, it holds that OA⊗B∩OC = (OA∪OB)∩OC =

(OA ∩ OC) ∪ (OB ∩ OC) = ∅. As XA⊗B ∩ XC = OA⊗B ∩ OC = ∅,
A ⊗ B and C are compatible.

A ⊗ B = B ⊗ A: The set operations used in the definitions
are all commutative. Commutativity for each part of the tuple
follows directly by applying the sets’ definitions.

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C): Let D = (A ⊗ B) ⊗ C and let
E = A ⊗ (B ⊗ C). As A, B, and C are all pairwise compatible,
it holds by (1.) that A ⊗ B and C as well as A and B ⊗ C are
compatible. The composition operator is therefore applicable
for constructing D and E. Applying the operator, we obtain:

• ΣD = ΣA⊗B ⊗ ΣC

= ((IA \ OB) ∪ (IB \ OA),OA∪B) ⊗ ΣC

= (((IA\OB)∪(IB\OA))\OC∪IC \(OA∪OB),OA∪OB∪OC)
= (IA \ (OB ∪OC)∪ IB \ (OA ∪OC)∪ IC \ (OA ∪OB),OA ∪
OB ∪ OC)
= (IA \ (OB∪OC)∪ (IB \OC ∪ IC \OB) \OA,OA∪OB∪OC)
= ΣA ⊗ ((IB \OC) ∪ (IC \OB),OB ∪OC) = ΣA ⊗ (ΣB ⊗ ΣC)
= ΣE ,

• XD = XA ∪ XB ∪ XC = XE ,

• S D = {sA ∪ sB ∪ sC | sA ∈ S A ∧ sB ∈ S B ∧ sC ∈ S C} = S E ,

• ιD = ιA ∪ ιB ∪ ιC = ιE ,

• δD = {(s, θ, t) | (s|S A⊗B , θ|C(ΣA⊗B), t|S A⊗B ) ∈ δA⊗B ∧
(s|S C , θ|C(ΣC ), tS C ) ∈ δC}
= {(s, θ, t) | (s|S A , θ|C(ΣA), tS A ) ∈ δA ∧ (s|S B , θ|C(ΣB), tS B ) ∈
δB ∧ (s|S C , θ|C(ΣC ), tS C ) ∈ δC}
= {(s, θ, t) | (s|S B⊗C , θ|C(ΣB⊗C ), t|S B⊗C ) ∈ δB⊗C ∧
(s|S A , θ|C(ΣA), tS A ) ∈ δA} = δE .

There exists a “neutral element” with respect to the compo-
sition operator. We will use this TSCA to lift the composition
operator to arbitrary finite sets of TSCAs.

Definition 18 (Neutral TSCA). The neutral TSCA is defined as
the TSCA N where ΣN = (∅, ∅), XN = ∅, S N = {∅}, ιN = ∅, and
δN = {(∅, ∅, ∅)}. The neutral TSCA has no channels and no vari-
ables. Its sole and initial state is the empty channel valuation
v ∈ ∅→ = [∅ → M] = {∅}. It consists of one transition looping
from the initial state to itself with the empty channel valuation.

It is possible to compose the neutral TSCA with any other
TSCA. It is the neutral element with respect to composition.

Theorem 7. Let A be an arbitrary TSCA. Then, the TSCA A and
the neutral TSCA N are compatible and A ⊗ N = A = N ⊗ A.

Proof. Let A be an arbitrary TSCA. It holds that OA ∩ ON =

OA ∩ ∅ = ∅. Thus ΣA and ΣN are compatible. As further XA ∩
XN = XA∩∅ = ∅, we can conclude that A and N are compatible.
The composition of A and N is A ⊗ N = (Σ, X, S , ι, δ) where
Σ = ((IA \ ∅) ∪ (∅ \ OA),OA ∪ ∅) = (IA,OA), X = XA ∪ ∅ =

XA, S = {sA ∪ sB | sA ∈ S A ∧ sB ∈ {∅}} = S A, ι = ιA ∪
∅ = ιA, δ = {(s, θ, t) | s|S A

θ|C(ΣA )−−−−→δA t|S A ∧ s|{∅} θ|∅−−→δN t|{∅}}. As

s|{∅} θ|∅−−→δN t|{∅} holds for each θ ∈ C(Σ)→, the above is equal

to {(s, θ, t) | s|S A

θ|C(ΣA )−−−−→δA t|S A } = δA. Hence, A ⊗ N = A. By
commutativity of ⊗ (cf. Theorem 6), we obtain A = N ⊗ A.

Theorem 6 guarantees that the TSCA resulting from com-
posing several pairwise compatible TSCAs is independent of
the order in which the TSCAs are composed. Theorem 7 shows
that the neutral TSCA is a neutral element with respect to TSCA
composition. We therefore lift the TSCA composition operator
to the unique function

⊗
that takes a finite set of pairwise com-

patible TSCAs as input and outputs their composition under the
operator ⊗ as usual, i.e.,

⊗
satisfies

⊗ ∅ = N and
⊗{c} = c

for all TSCAs c and
⊗

(A ∪ B) = (
⊗

A) ⊗ (
⊗

B) for all all fi-
nite sets of TSCAs A and B such that A∩ B = ∅ and the TSCAs
in A ∪ B are pairwise compatible. The operator is well-defined
because of the properties stated in Theorem 6 and Theorem 7.

Naively applying the construction given in Definition 16 may
cause the compound to consist of many unreachable states.
Theorem 3 revealed that unreachable states can be safely re-
moved from a TSCA without changing its behaviors. Unreach-
able states thus do not contribute to a TSCA’s behavior. To defer
a state explosion that occurs when composing several TSCAs
with each other, adding unreachable states to TSCAs during a
composition procedure should be avoided. Algorithm 2 depicts
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an algorithm that takes two finite and composable TSCAs as in-
put and outputs the trimmed TSCAs’ compound. The algorithm
performs a breadth-first search starting in the initial state of the
compound. For each state determined as reachable, the algo-
rithm calculates all transitions possible in the compound origi-
nating from the reachable state and checks whether the transi-
tions’ target has not been visited. In case the latter is true, the
algorithm adds the state not yet visited to the set of states that
are still to visit and proceeds as above.

Algorithm 2 Joined composition and trimming of finite TSCAs
Input: Two Finite and compatible TSCAs A and B
Output: Trimmed composition of A and B

define ι = ιA ∪ ιB as tuple /* initial state */

define δ← ∅ as set /* transitions */

define R← ∅ as set /* visited states */

define U ← ⊥ as empty stack /* states to visit */

push(ι,U)
while U , ⊥ do

s← top(U)
pop(U)
R← R ∪ {s}
for all (u1, θ1, v1) ∈ {t ∈ δA | ∃u : ∃θ : (s|A, θ, u) = t} do

for all (u2, θ2, v2) ∈ {t ∈ δB | ∃u : ∃θ : (s|B, θ, u) = t} do
if θ1|C(Σ1)∩C(Σ2) = θ2|C(Σ1)∩C(Σ2) then

define θ ← θ1 + θ2 as channel valuation
δ← δ ∪ {(s, θ, v1 ∪ v2)}
if (v1 ∪ v2) < R then

push(v1 ∪ v2,U)
end if

end if
end for

end for
end while
return (Σ1 ⊗ Σ2,R, ι, δ)

Composition preserves I/O-determinism. This fact is im-
portant, because the size of the compound from composing
several TSCAs is exponential in the number of the composed
TSCAs. Thus, using the fact greatly reduces the complexity
of determining whether a compound is I/O-deterministic if all
the composition’s participants are already I/O-deterministic.
Section 5 describes the importance of I/O-determinism in de-
tail: I/O-deterministic TSCAs induce a special structure when
transforming them to Büchi automata, i.e., the Büchi automata
are always deterministic and weak, which enables to apply a
simple complementation procedure.

Theorem 8. If A and B are two I/O-deterministic and compat-
ible TSCAs, then A ⊗ B is an I/O-deterministic TSCA.

Proof. Let A and B be two I/O-deterministic and composable
TSCAs. Let A ⊗ B = (Σ, X, S , ι, δ) denote the composition of
A and B where Σ = ΣA ⊗ ΣB = (I,O). We need to show that
A ⊗ B is I/O-deterministic. Suppose towards a contradiction
that A ⊗ B is not I/O-deterministic. Then there exists a state
s ∈ S ⊆ X→ = (XA ∪ XB)→ and a channel valuation θ ∈ C(Σ)→

such that |{t ∈ S | s
θ−→δ t}| > 1. This guarantees there exist

t, t′ ∈ S with t|XA ∈ S A and t|XB ∈ S B and t′|XA ∈ S A and

t′|XB ∈ S B such that t , t′ and s
θ−→δ t and s

θ−→δ t′. By definition
of composition for TSCAs we have that the following holds:

s|XA

θ|C(ΣA )−−−−→δA t|XA and s|XA

θ|C(ΣA )−−−−→δA t′|XA and s|XB

θ|C(ΣB)−−−−→δB t|XB

and s|XB

θ|C(ΣB)−−−−→δB t′|XB . Since t , t′, it holds that t|XA , t′|XA or
t|XB , t′|XB . The case t|XA , t′|XA stands in contradiction to the
assumption that A is I/O-deterministic, as this would imply |{t ∈
S A | s|XA

θ|C(ΣA )−−−−→ t}| ≥ 2. Similarly, the case t|XB , t′|XB stands in
contradiction to the assumption that B is I/O-deterministic.

Example 18 (The composition of two TS CACBC instances is
I/O-deterministic). Theorem 8 guarantees that the composi-
tion of CBC0 and CBC1 as depicted in Example 15 is I/O-
deterministic, because CBC0 and CBC1 are I/O-deterministic
and compatible. We will now reconsider this according to the
proof of Theorem 8. If CBC0⊗CBC1 was not I/O-deterministic,
the composition would have to have two transitions with the
same channel valuation from a single state s to at least two
other states t and t′ (with t , t′). The fact that t and t′ are
different implies that the restrictions of t and t′ to the inter-
nal variables of CBC0 are different or the restrictions to the
internal variables of CBC1 are different. Therefore, in CBC0
or CBC1 there must be a transition from one source state to at
least two different target states that have the same channel val-
uation. This is a contraction to the assumption that both CBC0
and CBC1 are I/O-deterministic.

The behaviors of a compound A ⊗ B are all behaviors over
C(ΣA⊗B) that are possible in A when restricted to the channels
of A and possible in B when restricted to the channels of B.
Section 5.4 later uses this fact in Theorem 18 to show that re-
finement of TSCAs is compatible with composition. This is an
important property, which enables independent development of
different system parts. The following formalizes this property.

Theorem 9. Let A and B be two compatible TSCAs and let
C def

= A ⊗ B. It holds that behs(C) = {α ∈ C(ΣC)∞ | α|C(ΣA) ∈
behs(A) ∧ α|C(ΣB) ∈ behs(B)}.
Proof. Let A, B, and C be given as above.
⊆: Let α ∈ behs(C) and let σ = s0, θ1, s1, θ2, s2, ... be an ex-

ecution of C such that beh(σ) = α. By definition of execution

its holds that s j−1
θ j−→δC s j for all j > 0 and s0 = ιC . By defi-

nition of composition it holds that s j−1|XA

θ j |C(ΣA)−−−−−→δA s j|C(ΣA) and

s j−1|XB

θ j |C(ΣB)−−−−−→δB s j|C(ΣB) for all j > 0.
Further it holds that s0|XA = ιC |XA = (ιA ∪ ιB)|XA = ιA

and s0|XB = ιC |XB = (ιA ∪ ιB)|XB = ιB because
ιA and ιB are disjoint. We can conclude σA

def
=

s0|XA , θ1|C(ΣA), s1|XA , θ2|C(ΣA), s0|XA , ... ∈ execs(A) is an execu-
tion of A and σB

def
= s0|XB , θ1|C(ΣB), s1|XB , θ2|C(ΣB), s0|XB , ... ∈

execs(B) is an execution of B. This implies beh(σA) =

θ1|C(ΣA), θ2|C(ΣA), ... ∈ behs(A) is a behavior of A and beh(σB) =

θ1|C(ΣB), θ2|C(ΣB), ... ∈ behs(B) is a behavior of B. We can ob-
serve that beh(σA) = beh(σ)|C(ΣA) = α|C(ΣA) and beh(σB) =
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beh(σ)|C(ΣB) = α|C(ΣB). Thus, α|C(ΣA) ∈ behs(A) and α|C(ΣB) ∈
behs(B).
⊇: Let α = θ1, θ2, ... ∈ C(ΣC)∞ such that α|C(ΣA) ∈ behs(A)

and α|C(ΣB) ∈ behs(B). Let σA = sA
0 , θ

A
1 , s

A
1 , θ

A
2 , s

A
2 , ... be an

execution of A such that beh(σA) = α|C(ΣA) and let σB =

sB
0 , θ

B
1 , s

B
1 , θ

B
2 , s

B
2 , ... be an execution of B such that beh(σB) =

α|C(ΣB). By definition of execution it holds that sA
j−1

θA
j−→ sA

j and

sB
j−1

θB
j−→ sB

j for all j > 0. As θA
i = θi|C(ΣA) and θB

i = θi|C(ΣB)

for all j > 0, it holds that sA
j−1

θ j |C(ΣA )−−−−−→ sA
j and sB

j−1

θ j |C(ΣB)−−−−−→ sB
j

for all j > 0. Using the definition of TSCA composition,
we obtain ((sA

j−1 ∪ sB
j−1), θ j, (sA

j ∪ sB
j )) ∈ δC for all j > 0.

As additionally ιC = ιA ∪ ιB = sA
0 ∪ sB

0 , it holds that σ def
=

(sA
0 ∪ sB

0 ), θ1, (sA
1 ∪ sB

1 ), θ2, (sA
2 ∪ sB

2 ), ... ∈ execs(C) is an ex-
ecution of C. Observing that beh(σ) = α, we can conclude
α ∈ behs(C).

Hiding is an important concept to achieve modularity. The
channels present in the compound resulting from the compo-
sition of several other TSCAs is always the union of the out-
put channels of the composed TSCAs. For specifying software
architectures, it is often necessary to hide several output chan-
nels to the environment. This is, for example, useful to hide
unnecessary information not relevant to the architecture’s en-
vironment or to explicitly hide “secret” information. Hidden
channels become internal channels of the compound. For ex-
ample, the bottom architecture depicted in Figure 3 illustrates
this: the output channel q of component pos2 is not part of the
interface of component Mod8Counter. It is hidden from the
environment, i.e., the TSCA representing the Mod8Counter
is restricted to the output channels x0, x1, and x2.

Definition 19 (TSCA Channel Restriction). Let A be a TSCA
and let O ⊆ OA be a set of output channels of A. The re-
striction of A to the channels in O is defined as the TSCA
A�O = (Σ, XA, S A, ιA, δ) where Σ = (IA,O) and δ = {(s, θ, t) ∈
S A ×C(Σ)→ × S A | ∃(u, θ′, v) ∈ δA : u = s ∧ v = t ∧ θ′|C(Σ) = θ}.

The set of output channels in A�O is restricted to the channels
in O. A�O has the same input channels, internal variables, and
states as A. The TSCA A�O contains a transition for each tran-
sition of A where the transition’s channel valuation is restricted
to the channels present in A�O.

Example 19 (Restriction of CBC0). Example 15 describes
the TSCA CBC0 = ((I0,O0), S 0, X0, ι0, δ0). The restriction
CBC0�{x0} of CBC0 to the set of its output channels {o}
is depicted in Figure 12. It is defined as CBC0�{x0} =

(Σ, S 0, X0, ι0, δ) where Σ = ({i, r}, {x0}) with transition relation
δ as depicted in Figure 12. Each individual transition label is
restricted to the channels of I0 ∪ {x0} = {i, r} ∪ {x0}.

4.3. TSSPF semantics of TSCAs

This section defines the semantics of TSCAs by sets of
TSSPFs and reveals an important relation between the compo-
sition operators: the semantics of the syntactic composition of

CBC� ↾ ����

�� �	
��
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�
 ↦ , � ↦ , �� ↦ �,
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Figure 12: Graphical representation of the TSCA CBC0�{x0}.

two TSCAs A and B is equal to the composition of the seman-
tics of the individual automata.

Definition 20 (TSSPF Semantics of a TSCA). The TSSPF se-
mantics JAK of a TSCA A = (Σ, X, S , ι, δ) with channel signature
Σ = (I,O) is defined as follows:

JAK def
= { f ∈ [IΩ wc−−→ OΩ] |

∀i ∈ IΩ : ∃α ∈ behs(A) : i = hα|I ∧ f (i) = hα|O}
Example 20 (TSSPF Semantics of CBC0). The TSSPF se-
mantics JCBC0K of the TSCA CBC0 = ((I0,O0), S 0, X0, ι0, δ0)
(cf. Example 15) contains a single function f because CBC0
is a deterministic component. For example, the function f
maps the input communication history hI ∈ IΩ

0 that satisfies
h(i).t = h(r).t = ε for all t ∈ N to the output channel history
hO ∈ OΩ

0 that satisfies hO(x0).t = hO(q0).t = ε for all i ∈ N.
This holds because there exists a behavior α ∈ behs(CBC0)
(with execution looping in the initial state forever), which sat-
isfies α.t(i) = α.t(r) = α.t(x0) = α.t(q0) = ε for all t ∈ N.

For each behavior of a component, the semantics contain a
function that maps inputs to outputs as encoded by the history
induced by the behavior. Thus, no behavior is lost in the seman-
tic mapping.

Theorem 10. Let A be a component. For each α ∈ behs(A)
there is a function f ∈ JAK such that f (hα|I) = hα|O.

Proof. Analogous to proof of Theorem 11 in [16] by replacing
the definition of maximality with ∀i ∈ IΩ : i ∈ S |I .

The semantics of components are well-formed, i.e., compo-
nents specify component semantics describing sets of TSSPFs.

Theorem 11. The semantics JAK of a component A is compo-
nent semantics describing.

Proof. Analogous to proof of Theorem 12 in [16] by replacing
the set the function f is chosen from with [IΩ wc−−→ OΩ].

The semantics of the composition of two components is equal
to the composition of their individual semantics:

Theorem 12. For two composable components A and B with
compatible signatures the following holds: JA⊗BK = JAK⊗JBK.
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Proof. Analogous to proof of Theorem 13 in [16] by replacing
the applications of J·K for PAs and ⊗ for SPFs by applications
of the corresponding definitions for TSCAs and TSSPFs.

An important implication of the theorem is that we can first
syntactically compose the individual automata of an architec-
ture and then perform analysis on the semantics of the automa-
ton encoding the behavior of the whole system. This gives
another basis for analysis that does not necessarily require to
compose the semantics of the individual components of a sys-
tem as, for example, done in [38]. The next sections introduce
a method for semantic differencing of TSCAs and additionally
shows that semantic differencing for finite I/O-deterministic
TSCAs is possible in polynomial time. This paper further de-
fines a notion of system architecture based on TSCAs. After-
wards, we introduce a method for mitigating the state explosion
problem during semantic differencing of finite system architec-
tures. In our previous work [9], we only considered semantic
differencing for TSPAs in general and we did not introduce the
notion of I/O-determinism. It is straightforward to transfer the
results to TSCAs. The definition of system architecture as in-
troduced in this paper is not possible with TSPAs as introduced
in [9] because TSPAs do not have a commutative and associa-
tive composition operator.

5. Semantic Differencing of Component Behavior: From
TSCAs to BAs

After introducing the notations for Büchi Automata (BAs)
used in this paper, this section presents a theorem stating that
there is a non-deterministic BA for each finite TSCA that ac-
cepts exactly the behaviors of the TSCA. Afterwards, we show
that refinement checking and semantic difference witness gen-
eration for finite TSCAs can be reduced to language inclusion
checking and counterexample generation for non-deterministic
BAs. For finite I/O-deterministic TSCAs, semantic differenc-
ing can even be reduced to language inclusion checking for de-
terministic BAs, which is possible in polynomial time in the
sizes of the automata.

5.1. Büchi Automata

Büchi Automata [3, 8] are a variant of finite automata that are
acceptors for infinite words and thus induce languages consist-
ing of infinite words. They are well known and much used in
model checking. Infinite words over an alphabet Π are infinite
sequences of symbols in Π.

Definition 21 (Büchi Automaton). A BA is a tuple (Π,
Q, I, F, δ) where Π is a finite alphabet, Q is a finite set of states,
I ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting states,
and δ ⊆ Q × Π × Q is the transition relation.

For convenience we again sometimes write s
σ−→δ t instead of

t ∈ δ(s, σ) and simply s
σ−→ t if δ is clear from the context. Let

B = (Π,Q, I, F, δ) be a BA. The size ofB, denoted |B| is defined
as the number of states and transitions in B, i.e., |B| = |Q| + |δ|.
A run of B on a word w = σ1, σ2... ∈ Π∞ starting in a state

�� ��

�, �

�

�

	, �

BA 


�� ��

�, �
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�

	, �

BA 
̅

Π ∖ {�, �, �} Π ∖ {�, �, 	}

� Π

Figure 13: Two Büchi automata A and A. The automaton A accepts the com-
plementary language of A.

q0 ∈ Q is an infinite sequence q0, q1, ... such that q j−1
σ j−−→δ q j

for all j > 0. A run q0, q1, ... is accepting if q0 ∈ I and qi ∈ F
for infinitely many i > 0. The accepted language ofB is defined
as L(B) def

= {w ∈ Π∞ | there exists an accepting run for w in B}.
The BA B is called deterministic iff |I| ≤ 1 and ∀q ∈ Q : ∀σ ∈
Π : |{t ∈ S | s

σ−→ t}| ≤ 1. B is called total iff |I| = 1 and
∀q ∈ Q : ∀σ ∈ Π : |δ(q, σ)| = 1. A BA B = (Π,Q, I, F, δ)
is called weak iff for all pairs of states p, q ∈ Q belonging
to the same strongly connected component it holds that p is
accepting iff q is accepting. Deterministic weak BAs can be
minimized in polynomial time [27]. This enables to efficiently
minimize intermediate BA representations of an architecture to
mitigate a state explosion during composition. In the general
case, the minimization problem is PSPACE-complete for non-
deterministic BAs [4, 21] and NP-complete for deterministic
BAs [41]. Checking language inclusion between two arbitrary
non-deterministic Büchi automata is PSPACE-complete [23],
though decidable, in general. Although the computational com-
plexity is large, several approaches for checking language in-
clusion and counterexample (diff witness) generation have been
implemented and produce promising results in practice [3].
Checking language inclusion L(A) ⊆ L(B) is typically done
in three steps by proving that there are no words inL(A), which
are not included in L(B):

1. Construct a complementary automaton B of B that accepts
exactly the words not accepted by B, i.e., L(B) = Π∞ \ B.

2. Construct a Büchi automaton C that accepts exactly the
words accepted by A and B, i.e., L(C) = L(A) ∩ L(B).

3. Check whether L(C) = ∅, which is possible by examining
whether C contains a reachable final state that is part of a
cycle.

The computational hardness of checking language inclusion
arises from constructing the BA B that might be exponentially
larger than the BA B in the general case [24, 40]. However, in
case B is deterministic, the BA B can be constructed in polyno-
mial time in the size of B [25].

Example 21 (Büchi Automata). Figure 13 depicts two BAs A
and A. The BA A is formally defined by A = (Π,Q, I, F, δ) where
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• Π = {a, b, c, d, e},
• Q = {t0, t1, s},
• I = {t0},
• F = {t0, t1}, and

• δ = {(t0, a, t0), (t0, b, t0), (t0, c, t1),

(t1, d, t1), (t1, e, t0), (t1, b, t0)}.
The automaton A is defined analogously. The BA A accepts

exactly the complementary language of A, i.e., it holds that
L(A) = Π∞ \ L(A). Both automata are deterministic and weak.

In the next section, we present a translation from finite
TSCAs to BAs and thereby reduce semantic differencing and
refinement checking for finite TSCAs to the language inclu-
sion problem for Büchi automata. We show that the translation
transforms a rather large subclass of TSCAs to BAs that can be
complemented in polynomial time in the sizes of the resulting
BAs. The subclass contains all finite I/O-deterministic TSCAs.

5.2. From TSCAs to BAs
In model-driven development, models are the primary engi-

neering artifacts, i.e., engineers (manually) create finite models
to describe parts of the system under development. Hence, we
consider semantic differencing and refinement checking for ar-
chitectures where the individual components have a finite state
space, communicate over finitely many communication chan-
nels, and where the types of messages emitted via component
interfaces are finite. There exists a non-deterministic BA for
each finite TSCA that accepts exactly the TSCA’s behaviors.

The BA associated to a finite TSCA A = (Σ, X, S , ι, δ) with
Σ = (I,O) is defined as ba(A) def

= (C(Σ)→, S , {ι}, S , δ). As the
TSCA A is finite, the sets S , I, O, and δ are finite. As therefore
C(Σ)→ is finite, ba(A) is a well-defined BA. The size of ba(A)
is equal to the size of A. The following theorem shows that the
language accepted by ba(A) and the behaviors of A coincide.

Theorem 13. For any finite TSCA A, it holds that behs(A) =

L(ba(A)).

Proof. Let A = (Σ, X, S , ι, δ) be a finite TSCA with channel
signature Σ = (I,O). Further let ba(A) = (C(Σ)→, S , {ι}, S , δ) be
the BA associated to A.
⊆: Let s0, θ1, s1, θ2, s2, ... ∈ execs(A) be an execution of A.

By definition of execution s j−1
θ j−→ s j for all j > 0 and s0 = ι.

Thus, s0, s1, s2, ... is a run of B on the word θ1, θ2, .... Since
all states s ∈ S are accepting, the run is accepting. Thus,
beh(s0, θ1, s1, θ2, s2, ...) = θ1, θ2, ... ∈ L(B).
⊇: Assume that σ = σ1, σ2, σ3, ... ∈ L(B) and let

q0, q1, q2, ... be an accepting run of B on σ. By definition of

run we have q j−1
σ j−−→ q j for all j > 0. Thus τ = q0, θ1, q1, θ2, ...

is an execution of A. Therefore, by definition of behavior we
have that beh(τ) = σ1, σ2, ... ∈ behs(A) is a behavior of A.

Example 22. The BA ba(CBC0) associated to the finite TSCA
CBC0 (cf. Example 15) is equal to the BA A depicted in Fig-
ure 13 when assuming a = n0

0, b = r0, c = i00, d = n0
1, e = i01.

The following reveals a sufficient condition that guarantees
the translation of a TSCA to its associated BA yields a deter-
ministic BA. As language inclusion checking for deterministic
BAs is possible in polynomial time [25], we obtain a method
for efficiently determining if the set of behaviors of a TSCA is
a subset of the behaviors of another I/O-deterministic TSCA.

Theorem 14. The associated BA ba(A) of each finite and I/O-
deterministic TSCA A is deterministic.

Proof. Let A = (Σ, X, S , ι, δ) be a finite and I/O-deterministic
TSCA and let ba(A) = (C(Σ)→, S , {ι}, S , δ) be the BA associated
to A. The BA ba(A) has a unique initial state. As the TSCA A
is I/O-deterministic, it holds that ∀s ∈ S : ∀θ ∈ C(Σ)→ : |{t ∈
S | (s, θ, t)}| ≤ 1. This implies that ba(A) is deterministic.

Example 23 (The ba(TS CACBC) is deterministic). Example 10
shows that TS CACBC is finite. Thus, the TSPAs state space S is
also finite. TS CACBC is I/O-deterministic, i.e., there is at most
one state that the TSCA can change to, from a given source state
and a given channel assignment. This follows from the fact that
the TSCA is deterministic, which has been shown in Example 10
and the application of Theorem 2. According to the definition of
BAs, a BA is deterministic if it has at most one initial state and
for each state and for each input word, there is at most one state
that the BA can change to. The BA ba(TS CACBC) has a single
initial state and for each input, i.e., each channel assignment,
there is only one transition from each state, because TS CACBC

is deterministic. With this (and the proof of Theorem 14), the
constructed BA ba(TS CACBC) is deterministic.

There exist non-deterministic BAs for which no determin-
istic BAs exist that accepts the same language. On the other
hand, for each non-deterministic weak BA, there exists a de-
terministic weak BA that accepts the same language [27]. The
translation from TSCAs to BAs always yields weak BAs, which
can be determinized and minimized. Further, each determinis-
tic and complete weak BA can be complemented in polynomial
time by exchanging the automaton’s sets of accepting and non-
accepting states.

Theorem 15. The associated BA ba(A) of each finite TSCA A
is weak.

Proof. Let A = (Σ, X, S , ι, δ) be a finite and I/O-deterministic
TSCA and let ba(A) = (C(Σ)→, S , {ι}, S , δ) be the BA associ-
ated to A. As every state in ba(A) is accepting, it especially
holds that each strongly connected component in ba(A) solely
contains accepting states. This implies that ba(A) is weak.

5.3. Semantic Differencing for Component Behavior
The semantics of components are defined as sets of TSSPFs.

Each function f ∈ JcK \ Jc′K in the semantics of one component
c that is no member of the semantics of another component c′

is a representative for the difference between the components’
semantics. However, such a representative defines an output
for each possible component input, even if the semantic differ-
ence is only given by a single input/output pair. Thus, such a
TSSPF does not effectively reveal the differences between the
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component semantics. In contrast, the exact input/output pairs
for which there is a function in the semantics of one component
that maps the input to the output and for which there is no func-
tion in the semantics of the other component mapping the input
to the output clearly reveals a difference. If two components
have different interfaces, i.e., they read and write from and to
different channels, each input/output pair of the first component
indicates a difference to the semantics of the other component.
However, if the components have channels of the same types
one can easily avoid this problem by channel renaming and hid-
ing [5]. Thus, we define the semantic difference for components
having the same interfaces, only.

Definition 22 (Diff Witness). Let F1, F2 ⊆ [IΩ wc−−→ OΩ]
be two sets of TSSPFs. A diff witness distinguishing F1
from F2 is a communication history w ∈ (I ∪ O)Ω satisfying
∃ f1 ∈ F1 : f1(w|I) = w|O ∧ ∀ f2 ∈ F2 : f2(w|I) , w|O.

We denote by ∆(F1, F2) the set of all diff witnesses dis-
tinguishing F1 from F2.

A set of diff witnesses may be finite but is typically infinite
and can thus not be completely enumerated.

Example 24 (Diff Witness). This example presents a diff wit-
ness between the TS CACBC = (ΣCBC , XCBC , S CBC , ιCBC , δCBC)
and a modified version of it. The modified version
TS CAmod = (ΣCBC , XCBC , S CBC , ιCBC , δmod) has the same inter-
face as TS CACBC and a similar behavior – the only difference
is that it does not emit > on the outgoing channel q if the state
changes from b to a after an increase of the counted value. More
technically, δmod = (δCBC \ δba) ∪ δba′ , where
δba = {(b, θ, a) | θ(i) = > ∧ θ(r) = ε ∧ θ(v) = ε ∧ θ(q) = >} and
δba′ = {(b, θ, a) | θ(i) = > ∧ θ(r) = ε ∧ θ(v) = ε ∧ θ(q) = ε}

Let in = {r 7→ 〈ε∞〉, i 7→ 〈>,>, ε∞〉} ∈ IΩ be an input history
over the common interface of TS CACBC and TS CAmod. The
input history describes two increase steps that change the state
of the TSCA from a to b, back to a, and then remains in state a.
For all h ∈ TS CACBC[in|{q}] and h′ ∈ TS CAmod[in|{q}], it holds
that h.1 = >, whereas h′.1 = ε. Therefore, for the given input
history, the TSCAs produce different output histories.

We consider architectures where the whole system behavior
can be mapped to a TSCA. The following theorem reveals the
relation between the differences of the behaviors and of the se-
mantics of TSCAs.

Theorem 16. Let A1 = (Σ, S 1, ι1, δ1) and A2 = (Σ, S 2, ι2, δ2)
with Σ = (I,O) be two TSCAs and let w ∈ (I ∪ O)Ω be a com-
munication history. The following holds: w ∈ ∆(JA1K, JA2K) ⇔
∃α ∈ behs(A1) : w = hα ∧ α < behs(A2).

Proof. Let A1, A2, and w be given as above.
⇒: Assume w ∈ ∆(JA1K, JA2K) is a diff witness. By defini-

tion of ∆, we have that there is a function f1 ∈ JA1K such that
f1(w|I) = w|O and f (w|I) , w|O for all f ∈ JA2K. In the fol-
lowing let f1 be such a function that satisfies the above. By
definition of J·K we have that ∀i ∈ IΩ : ∃α ∈ behs(A1) :
i = hα|I ∧ f1(i) = hα|O. When substituting w|I for i, we get

that ∃α ∈ behs(A1) : w|I = hα|I ∧ f1(w|I) = hα|O. Since
f1(w|I) = w|O we can substitute w|O for f1(w|I) and obtain
∃α ∈ behs(A1) : w|I = hα|I ∧ w|O = hα|O, which is equivalent
to ∃α ∈ behs(A1) : w = hα. In the following, let such an α with
w = hα be given. It remains to show α < behs(A2). Towards
a contradiction we assume α ∈ behs(A2). By Theorem 10 we
get there is a function g ∈ JA2K such that g(hα|I) = hα|O. By
definition of α we have w = hα and thus g(w|I) = w|O. But
since w ∈ ∆(JA1K, JA2K), it holds that ∀ f ∈ JA2K : f (w|I) , w|O.
Substituting g for f yields a contradiction.
⇐: Assume there is an α ∈ behs(A1) such that w = hα and

α < behs(A2). Using Theorem 10 we get there is a function
f ∈ JA1K such that f (hα|I) = hα|O. By definition of w we have
that w = hα and thus obtain by substitution that f (w|I) = w|O.
Thus there is a function f ∈ JA1K such that f (w|I) = w|O. It
remains to show that g(w|I) , w|O for all g ∈ JA2K. Towards a
contradiction we assume that there is a function g ∈ JA2K such
that g(w|I) = w|O. By definition of J·K we get that ∀i ∈ IΩ :
∃β ∈ behs(A2) : i = hβ|I ∧ g(i) = hβ|O. Substituting w|I for i
we obtain ∃β ∈ behs(A2) : w|I = hβ|I ∧ g(w|I) = hβ|O. Since
by assumption w|I = hα|I and g(w|I) = w|O by definition of g,
this is equivalent to ∃β ∈ behs(A2) : hα|I = hβ|I ∧ w|O = hβ|O.
By assumption we have w = hα and thus obtain via substitution
∃β ∈ behs(A2) : hα|I = hβ|I ∧ hα|O = hβ|O, which is equivalent
to ∃β ∈ behs(A2) : hα = hβ. Using the definitions of hα and hβ,
this is equivalent to ∃β ∈ behs(A2) : α = β, which is equivalent
to α ∈ behs(A2) and contradicts the assumption.

In the previous section, we presented a translation from fi-
nite TSCAs to BAs. Each word accepted by a BA resulting
from such a translation corresponds to a behavior of the in-
put TSCA. Existing algorithms for checking language inclu-
sion and counterexample generation for BAs can thus be used
for refinement checking and diff witness generation of architec-
tures as defined above: Given two TSCAs A1 and A2 we use
the translation defined in Section 5.2 to obtain two Büchi au-
tomata ba(A1) and ba(A2) such that L(ba(A1)) = behs(A1) and
L(ba(A2)) = behs(A2). Using Theorem 16 and Theorem 13 we
can transform a word accepted by ba(A1) that is not accepted
by ba(A2) to a corresponding diff witness that semantically dis-
tinguishes the automata A1 and A2. If A2 is I/O-deterministic,
the BA ba(A2) is deterministic and weak and can thus be easily
complemented in polynomial time in the size of B2, which is
equal to the size of A2. Then, inclusion checking is possible in
polynomial time in the sizes of ba(A1) and ba(A2).

5.4. Mitigating the State Explosion Problem When Applying
Semantic Differencing to System Architectures

This section summarizes practical performance improve-
ments to mitigate a state explosion during semantic differencing
of system architectures consisting of multiple TSCAs. We first
define an abstract notion of system architecture (SA) inspired
by [33]. While [33] considers a black-box view on SAs, in this
paper we assume a white-box view where component imple-
mentations are available. A SA consists of an interface observ-
able by the system’s environment given by a channel signature
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and of finitely many components represented by TSCAs that
are connected via their channels.

Definition 23 (System Architecture). A system architecture is
a tuple S = (Σ,C) where:

• Σ = (I,O) is a channel signature,

• C is a finite non-empty set of pairwise compatible compo-
nents,

• the channels of S exist in the composition of the TSCAs’
channel signatures, i.e., I = J and O ⊆ P where (J, P) =⊗

c∈C Σc denotes the composition of the channel signa-
tures of all TSCAs in C, and

• (
⊗

C)�O is a component.

S is called finite iff Σ is finite and each c ∈ C is finite.

The channel signature Σ defines the SA’s external interface.
The set C consists of the SA’s components. The channels en-
coded by the channel signature Σ are required to exist in the
compound resulting from composing the SA’s components. The
last condition stating that (

⊗
C)�O must be a component is the

most abstract well-formedness rule guaranteeing the result from
composing the architecture’s components is a component itself.
More restricting well-formedness rules implying that (

⊗
C)�O

is a component are also possible to describe more restricted SA
subclasses. One example is to require each component c ∈ C
to be strongly causal with respect to all its channels. Another,
more relaxed, example is to require each component c ∈ C to
be composable with each possible intermediate composition re-
sult
⊗

D for each D ⊆ C \ {c}. We omit the proofs showing
that these two examples imply that (

⊗
C)�O is a component.

Each individual TSCA participating in a SA is interpreted as
an atomic component, i.e., is not considered to have any sub-
components. As the TSCAs’ channel signatures must be pair-
wise compatible, multiple components may read from the same
channel whereas only one component is permitted to write on
a channel. The input channels of a SA are equal to the input
channels of the TSCA resulting from the subcomponents’ com-
position. The set of output channels must be a subset of the
output of the TSCA resulting from the composition. With this,
output channels not specified by the architecture are hidden to
the environment.

Example 25 (System architecture of the Mod8Counter).
This example presents the system architecture of the alternative
representation of the Mod8Counter, depicted in Figure 5, as
composition of the TSCAs of its subcomponents pos0, pos1,
and pos2. The system architecture is S Mod8b = (Σ,C) with

• the channel signature ΣMod8 = ({inc, res}, {x0, x1, x2}) and

• the set of components
C = {TS CApos0,TS CApos1,TS CApos2}.

The input channel set of S Mod8b is equal to the input channel
set of the composition of the three TSCAs. The output chan-
nel set of S Mod8b is a subset of the output channel set of the

composition of the TSCAs in C. The output channel set of the
composition of the TSCAs in C is {x0, q0, x1, q1, x2, q2}. Chan-
nels included in the set of output channels of the composition
that are no elements of the set of output channels of the sys-
tem architecture S Mod8b are hidden. The composition

⊗
C is a

component, as shown in Example 17. Intuitively, the restriction
of this composition to the output channels O is also a compo-
nent, because the restriction of output channels does not influ-
ence the TSCA’s reactiveness. The system architecture is finite,
because all c ∈ C are finite (cf. Example 10) and ΣMod8 is finite.

A system architecture’s TSCA semantics is the result from
restricting the channels of the compound resulting from com-
posing the SA’s components to the channels specified by the
SA’s interface. The behavior and TSSPF semantics are given
by the behavior and TSSPF semantics of the TSCA semantics.

Definition 24 (TSCA, Behavior, and TSSPF Semantics of
SAs). Let S = (Σ,C) with Σ = (I,O) be a SA. The TSCA se-
mantics of S is defined as tspa(S ) = (

⊗
C)�O. The behavior

semantics of S is defined as behs(S ) def
= behs(tspa(S )). The

TSSPF semantics of S is defined as Jtspa(S )K.

Composing SAs with each other is also possible as the TSCA
semantics of a SA can be interpreted as a component, again.

In continuous architecting and especially in combination
with agile software development methodologies, requirements
typically change during system development. In case additional
requirements are added or existing requirements are strength-
ened, underspecification in component behavior models typi-
cally needs to be restricted to adapt the current specification or
implementation to match the additional requirements. The be-
havior of the system under development is said to be refined.

Definition 25 (Refinement). A TSCA A is called (behavior)
refinement of a TSCA B, denoted A � B, iff ΣA = ΣB and
behs(A) ⊆ behs(B).

Refinement is lifted to SAs: A SA S is called refinement of
a SA S ′, denoted S � S ′, iff tspa(S ) � tspa(S ′). As a refine-
ment exhibits less behaviors as the original system, there cannot
exist a diff witness distinguishing the refined system from the
original one.

Theorem 17. Let A and B be two TSCAs. If A � B, then
∆(JAK, JBK) = ∅.
Proof. Let A and B be two TSCAs such that A � B. Thus, it
holds that behs(A) ⊆ behs(B). Suppose towards a contradiction
there exists a diff witness w ∈ ∆(JAK, JBK) , ∅. Using Theo-
rem 16, this implies there exists α ∈ behs(A) such that w = hα
and α < behs(B). This contradicts behs(A) ⊆ behs(B).

Example 26 (Refinement of the Mod8Counter system
architecture). Consider the system architectures of the
Mod8Counter as depicted in Figure 3 (a) with the TSCA
specified in Appendix B and the system architecture as depicted
in Figure 5. In the following, we will refer to the first as the
system architecture S and to the latter as the system architec-
ture S ′. First, we will investigate if S ′ � S by showing that
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tspa(S ′) � tspa(S ). Therefore, it must hold that ΣS ′ = ΣS

and behs(tspa(S ′)) ⊆ behs(tspa(S )). The first is satisfied,
because both system architectures have the same channel sig-
nature ΣS ′ = ΣS = ({inc, res}, {x0, x1, x2}). Further, it holds
that tspa(S ′) = (

⊗
CS ′ )�OS ′ = (TS CApos0 ⊗ TS CApos1 ⊗

TS CApos2)�OS ′ and tspa(S ) = (
⊗

CS )�OS = TS CAMod8a.
The result of TS CApos0 ⊗ TS CApos1 ⊗ TS CApos1 has been ex-
plained in Example 25. Due to the channel restriction, we
have tspa(S ′) = tspa(S ) and therefore, behs(tspa(S ′)) =

behs(tspa(S )) holds.

Behavior refinement is reflexive and transitive. More impor-
tantly, it is compatible with composition:

Theorem 18. Let A, B, and C be TSCAs such that A and C
are compatible and B and C are compatible. If A � B, then
A ⊗C � B ⊗C.

Proof. Let A, B, and C be given as above such that A �
B. Let α ∈ behs(A ⊗ C). Using Theorem 9, this implies
α|C(ΣA) ∈ behs(A) and α|C(ΣC ) ∈ behs(C). As A � B, it holds
that behs(A) ⊆ behs(B). Thus, as α|C(ΣA) ∈ behs(A) and
behs(A) ⊆ behs(B), we obtain α|C(ΣA) ∈ behs(B). In summary,
it holds that α|C(ΣA) ∈ behs(B) and α|C(ΣC ) ∈ behs(C). Using
Theorem 9, this implies α ∈ behs(B ⊗C).

Refinement is also preserved by TSCA restriction.

Theorem 19. Let A and B be TSCAs and let O ⊆ OB. If A � B,
then A�O � B�O.

Proof. Let A and B be TSCAs and let O ⊆ ΣB. Assume A � B.
By definition A � B it holds that ΣA = ΣB. Let I def

= IA = IB.
Let A′ def

= A�O denote the restriction of A and let B′ def
= B�O

denote the restriction of B. As ΣA = ΣB, it especially holds
that ΣA′ = ΣB′ . Let σ = s0, θ1, s1, θ2, s2, ... ∈ execs(A′) be
an execution of A. By definition of execution, it holds that

s j−1
θ j−→δA′ s j for all j > 0. By definition of TSCA restric-

tion, we have that s j−1
θ j−→δA′ s j is equivalent to ∃(sA

j−1, θ
A
j , s

A
j ) ∈

δA : sA
j−1 = s j−1 ∧ sA

j = s j ∧ θA
j |I∪O = θ j for each j > 0.

Let such θA
j with θA

j |(I∪O) = θ j be given for each j > 0. As

s j−1

θA
j−→δA s j for each j > 0, it holds by definition of execu-

tion that σA
def
= s0, θ

A
1 , s1, θ

A
2 , s2, ... ∈ execs(A) is an execution

of A. As A � B, it holds that beh(σA) ∈ behs(B). There-
fore, there exists an execution σB ∈ execs(B) of B such that
beh(σB) = beh(σA). Hence, there exist sB

0 , s
B
1 , s

B
2 ... ∈ S B

such that σB = sB
0 , θ

A
1 , s

B
1 , θ

A
2 , s

B
2 , ... ∈ execs(B). This is by

definition of execution equivalent to (sB
j−1, θ

A
j , s

B
j ) ∈ δB for

each j > 0. Using the TSCA restriction definition, this im-
plies (sB

j−1, θ
A
j |(I∪O), sB

j ) ∈ δB′ for each j > 0. Thus, τ def
=

sB
0 , θ

A
1 |(I∪O), sB

1 , θ
A
2 |(I∪O), sB

2 , ... ∈ execs(B′) is an execution of
B′. As by definition θA

j |(I∪O) = θ j for each j > 0, we obtain
beh(τ) = θ0, θ1, θ2, ... ∈ behs(B′). Observing that τ = σ and
beh(τ) ∈ behs(B′), we obtain beh(σ) ∈ behs(B′). We can con-
clude that for each execution σ ∈ execs(A′) there exists an ex-
ecution τ ∈ execs(B′) such that beh(σ) = beh(τ). Hence by
definition of behaviors, behs(A′) ⊆ behs(B′).

Changing a SA to a successor version for adapting to evolved
requirements often only requires to adapt the implementations
of a proper subset of the SA’s components without changing
the architecture’s topology, i.e., the SA’s interface is left un-
changed and components neither need to be added nor removed
but some component implementations are changed. In this case,
it is often not strictly necessary to check whether the TSCA cor-
responding to the new SA is a refinement of the TSCA corre-
sponding to the original architecture. It suffices to show that the
composition of the evolved sub-architecture with any common
subsystem of the original and the evolved SA is a refinement of
the composition of the original sub-architecture with the same
common subsystem:

Theorem 20. Let S A = (Σ,CA) and S B = (Σ,CB) be two SAs
having the same channel signature Σ. If there exists a set of
components S ub ⊆ (CA ∩CB) such that

⊗
((CA \CB)∪ S ub) �⊗

((CB \CA) ∪ S ub), then S A � S B.

Proof. Let S A = (Σ,CA) and S B = (Σ,CB) be two syntactically
conform SAs with channel signature Σ = (I,O). Suppose there
exists a set of components S ub ⊆ CA ∩ CB such that

⊗
((CA \

CB) ∪ S ub) � ((CB \ CA) ∪ S ub). Let C = ((CA \ CB) ∪ S ub)
and let C′ = ((CB \CA) ∪ S ub).

In the following we show that (
⊗

C) and (
⊗

CA \C) as well
as
⊗

C′ and
⊗

CB \ C′ are compatible, which shows that the
corresponding compositions are well-defined: As S A is a SA,
the components in CA are all pairwise compatible. Thus, the
components in C ⊆ CA and the components in CA \ C ⊆ CA

are also pairwise compatible. Therefore, (
⊗

C) and (
⊗

CA \
C) are well-defined. As it holds that CA = C ∪ (CA \ C) and
C ∩ (CA \ C) = ∅, applying the first part of Theorem 6 at most
|C| times, we obtain that (

⊗
C) and c are compatible for each

c ∈ CA \ C. As all components in CA are pairwise compatible
and each component c ∈ CA is compatible to (

⊗
C), applying

the first part of Theorem 6 at most |CA \C| times, we obtain that
(
⊗

C) and (
⊗

CA \ C) are compatible. A similar argument
shows that

⊗
C′ and

⊗
CB \C′ are compatible.

In the following we show that CA\C = CB\C′, which enables
to apply Theorem 18: It holds that CA \ C = CA \ ((CA \ CB) ∪
S ub) = (CA \ (CA \ CB)) \ S ub = ((CA \ CA) ∪ (CA ∩ CB)) \
S ub = (CA ∩ CB) \ S ub. Using a similar argument, we obtain
CB \ C′ = CB \ ((CB \ CA) ∪ S ub) = (CB \ (CB \ CA)) \ S ub =

((CB \ CB) ∪ (CB ∩ CA)) \ S ub = (CB ∩ CA) \ S ub. We can
conclude CA \C = CB \C′.

Having shown the compatibility and CA \ C = CB \ C′ and
since by assumption

⊗
C � ⊗C′, Theorem 18 guarantees

(
⊗

C) ⊗ (
⊗

CA \ C) � (
⊗

C′) ⊗ (
⊗

CB \ C′). It holds that
C ∩ (CA \ C) = ∅ = C′ ∩ (CB \ C′) and that all components in
C ∪ (CA \ C) = CA and in C′ ∪ (CB \ C′) = CB are pairwise
compatible. Thus, by definition of

⊗
, the above is equivalent

to
⊗

CA �
⊗

CB. Since Theorem 19 guarantees that hiding
preserves refinement, this implies (

⊗
CA)|O � (

⊗
CB)|O. This

is by definition of refinement equivalent to S A � S B.

Nevertheless, it might be the case that no such subsystem as
described in Theorem 20 exists. Thus, in the worst case, the
complete TSCAs for both architectures have to be considered.
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However, we believe in practice this rarely occurs. The above
leads to the following algorithm for mitigating the state explo-
sion problem during semantic differencing of finite system ar-
chitectures:

Algorithm 3 Mitigating the state explosion problem during re-
finement checking of system architectures.
Input: Two finite SAs S A = (ΣA,CA) and S B = (ΣB,CB).
Output: Yes, if S A � S B, and w ∈ ∆(JS AK, JS BK), otherwise.

define C =
⊗

(CA \CB) as TSCA
define C′ =

⊗
(CB \CA) as TSCA

for all S ⊆ CA ∩CB in increasing size do
if behs(S ⊗C) ⊆ behs(S ⊗C′) then

return Yes /* Composition without hiding */

end if
end for
if behs(S A) ⊆ behs(S B) then

return Yes /* Composition with hiding */

else
return w ∈ ∆(JS AK, JS BK)

end if

In case the if-condition in the for-loop is satisfied, Theo-
rem 20 guarantees the refinement relation holds. In case the
condition is not satisfied for any S ⊆ CA ∩ CB, it has to be
checked whether the complete SA S A refines the SA S B. The
difference between comparing

⊗
CA with

⊗
CB and tspa(S A)

with tspa(S B) is that the former comparison does not consider
hiding of internal channels, while the latter does. For the be-
havior inclusion checks and diff witness generation, existing
algorithms for language inclusion checking between BAs may
be used (cf. Section 5.1 and Section 5.3).

Example 27 (Application of Algorithm 3). Consider the sys-
tem architectures of the Mod8Counter as depicted in Fig-
ure 3 (c) and the system architecture as depicted in Figure 5.
We denote to the first one as S A and to the second one as S B.
The goal is to determine whether S B � S A holds. Applying se-
mantic differencing checking to these two system architectures
reveals they refine each other. Both also refine the initial spec-
ification for the Mod8Counter as explained in Appendix B.
More details on the evaluation regarding refinement checking
between the three architectures are given in Section 6.3.

6. Implementation and Evaluation

This section recapitulates the MontiArcAutomaton ADL [35,
37], presents the application of refinement checking to its mod-
els and evaluates our approach.

6.1. The MontiArcAutomaton ADL

The MontiArcAutomaton ADL [35, 37] comprises the mod-
eling elements common to many popular component & con-
nector ADLs [29], i.e., hierarchical components with interfaces
of typed, directed ports and unidirectional connectors (typed
FIFO channels) exchanging messages between these ports. The

components are black-boxes and either atomic or composed:
atomic components yield behavior descriptions in form of em-
bedded automata (following the I/Oω [39] paradigm) or in form
of Java implementations. Such automata and Java implemen-
tations are transformable to TSCAs for semantic differencing.
The behavior of composed components solely emerges from the
interaction of their subcomponents. Composing the TSCAs be-
longing to a composed component’s subcomponent implemen-
tations results in a TSCA modeling the composed component’s
behavior. With this, semantic differencing of composed compo-
nents is possible. Components are scheduled by a global clock
and perform cycles of

• reading all messages on incoming ports;

• computing behavior (which might entail invoking subcom-
ponents)

• producing a single message to each outgoing port.

Each computation consumes a time slice, i.e., the output for
messages received at the global clock’s i-th tick is processed
at its i+1-th tick earliest. All MontiArcAutomaton compo-
nents are thereby strongly causal. The MontiArcAutomaton
ADL also distinguishes between component types and their
instances, supports component type inheritance, generic type
parameters for components (e.g., to be used with generic port
types), and constructor-like configuration of these instances.

component Elevator {

port in Bool req1, in Bool at1,

// ... further ports ...

out Bool open, out Bool close,

out Clear clear;

component Control ctrl; // named

component Motor m; // subcomponent

component Door d; // instances

connect req1 -> control.req1;

// ... further connectors ...

connect control.clear -> clear;

}

01

02

03

04 

05

06

07
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09

10

11
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13

14

Figure 14: Textual representation of the component Elevator.

The MontiArcAutomaton ADL is a textual modeling lan-
guage implemented with the MontiCore [22] language work-
bench. The textual representation of the composed component
type Elevator is illustrated in Figure 14. It begins with the
keyword “component”, followed by the component type’s name
and a body delimited by curly brackets (l. 1). The body contains
an interface of typed ports (ll. 2-5), declares three subcompo-
nents (ll. 7-9), and multiple connectors (ll. 11-13). The subcom-
ponent declarations reference component types imported from
artifacts (such as Control).

6.2. Semantic Differencing of MontiArcAutomaton Compo-
nents

The implementation comprises a translation from MontiArc-
Automaton architectures to semantically equivalent TSCAs.
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TSCAs are only handled internally as representatives for sets of
TSSPFs modeling component semantics and are not explicitly
modeled by component developers. Each atomic component
directly translates to a TSCA. The TSCA of a composed com-
ponent is computed by composing the TSCAs of its subcompo-
nents according to the architectural configuration defined by the
composed component’s connectors. A composed component’s
TSCA is either constructed using the composition operator’s
definition (cf Definition 16) or using Algorithm 2 to directly
compute the trimmed TSCA of the compound. The implemen-
tation further consists of a translation from TSCAs to BAs and
generators that produce models in the “BA format”, which is
the input format of the tool RABIT [3]. In case a BA does not
refine another BA, RABIT provides a counterexample serving
as a concrete disproof for refinement. The counterexamples are
translated back to diff witnesses, which technically are finite
prefixes of behaviors of one component that are no behaviors of
another component. An engineer can use the witness to either
manually inspect the component implementation for the syn-
tactic reasons causing the semantic difference, or create a unit
test where the component is provided the input encoded by the
witness. When executing the unit test, the engineer may em-
ploy the usual debugging techniques provided by all common
integrated development environments to identify the compo-
nent implementation’s elements causing the diff witness. Using
the tool chain described above enables automated refinement
checking and diff witness generation for MontiArcAutomaton
architectures and ultimately supports engineers in detected the
semantic differences between component implementations.

6.3. Semantic Differencing Evaluation
We evaluated the approach to semantic differencing with six

MontiArcAutomaton architectures previously used for evalua-
tion in [9, 38] and the modulo-8 counter architectures used as
running example throughout this paper. We specifically chose
the first six architectures for evaluation since the approach pre-
sented in [38] failed for some specifications, which we con-
sidered to be challenging, and to enable comparability. The
architectures were slightly modified for this evaluation to re-
solve technical MontiArcAutomaton version compatibility is-
sues. The example models as well as the BAs resulting from the
translations are available online [1]. This paper extends the pre-
vious evaluation of [9] with the modulo-8 counter architecture
that is used as running example. Further, the previous evalua-
tion [9] always naively composes TSCAs using the definition of
the composition operator (cf. Definition 16). This paper extends
this evaluation by further applying the advanced composition
method that simultaneous trims the compound while compos-
ing the composition’s participants (cf. Algorithm 2). We reused
the completion strategies [38] for completing the automata im-
plementations of the architectures’ atomic components.

The first architecture is given by an implementation of an ele-
vator control system (ECS) (cf. Section 2). It comprises 3 com-
posed and 5 atomic components. The second example consists
of four variants of a mobile robot. We only report on the evalu-
ation of the most challenging variant. This variant comprises 4
components in total whereof 3 components are atomic. Another

Table 1: Time for refinement checking and diff witness calculation.
∆(J·K, J·K) ∆(J·K,Chaos) ∆(Chaos, J·K)

Naive

Floors 62ms 536ms 885ms

Elevator 83ms 2510ms 5927ms

ECS 461ms 7124ms 15339ms

SensorReading 62ms 753ms 1401ms

Controller 12ms 17ms 19ms

Pumpstation 120ms 321ms 570ms

MobileRobot 61ms 67ms 85ms

Mod8Counter 14ms 17ms 15ms

Trim

Floors 69ms 560ms 914ms

Elevator 39ms 2525ms 5927ms

ECS 94ms 9263ms 15850ms

SensorReading 57ms 787ms 1390ms

Controller 11ms 13ms 16ms

Pumpstation 112ms 326ms 543ms

MobileRobot 23ms 57ms 76ms

architecture implements a pump station consisting of 3 com-
posed and 10 atomic components. The modulo-8 counter spec-
ification is completely defined in Figure B.16. The result from
executing the refinement checks presents in this paper slightly
differ from the results presented in [9] because we repeated the
evaluation of the pre-existing examples to enable comparabil-
ity between the two different composition method variants. We
conducted the evaluations of both composition variants on the
same computer at the same date.

In [38], for each of the architectures, three specification
checks are executed: it is checked whether the semantics of
a component is equal to itself, whether a component refines a
component with the same interfaces that implements arbitrary
behavior, i.e., all possible behaviors, and whether the semantics
of a component are equal to the semantics of a component im-
plementing arbitrary behavior. We performed the same checks
on a computer with 3.0 GHz Intel Core i7 CPU, 16 GB Ram,
Windows 10, and RABIT 2.4 using our translation from Monti-
ArcAutomaton architectures to BAs and the language inclusion
checking tool RABIT [3] (cf Section 6.2).

Table 1 summarizes the computation times of RABIT given
the BAs resulting from the transformation as input. For
the component ECS constructed using the naive composi-
tion method, for instance, checking whether it refines itself
took 461ms, checking refinement with arbitrary behavior took
7124ms, and calculating a diff witness distinguishing the com-
ponent from arbitrary behavior took 15339ms. Table 2 depicts
the sizes of the automata resulting from the translations and
the time required to construct a TSCA from its subcomponents’
TSCAs using the denoted composition method. For compo-
nent ECS, for instance, it took 3465ms to construct the TSCA
using the naive composition method. The TSCA and the BA
resulting from the transformation have 746 states and 98496
transitions. RABIT reported the tool has reduced the BA to 8
states and 1728 transitions after internal preprocessing. For ev-
ery component we modeled arbitrary behavior (Chaos) with a
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Table 2: The numbers of states and transitions of the TSCAs translated from
the architectures and of the generated BAs.

TSCA/BA BA AP Chaos

time #states #trans. #states #trans. #trans.

Naive

Floors 25ms 32 1024 32 1024 23328

Elevator 460ms 34 10206 1 729 236196

ECS 3465ms 746 98496 8 1728 472392

SensorReading 7ms 2 1296 2 1296 69984

Controller 1ms 1 9 1 9 108

Pumpstation 19ms 6 3888 4 2592 17496

MobileRobot 4ms 150 2700 12 216 1152

Mod8Counter 0ms 8 32 8 32 32

Trim

Floors 267ms 32 1024 32 1024 23328

Elevator 10ms 1 729 1 729 236196

ECS 2829ms 8 1728 8 1728 472392

SensorReading 118ms 2 1296 2 1296 69984

Controller 1ms 1 9 1 9 108

Pumpstation 3482ms 6 3888 4 2592 17496

MobileRobot 10ms 12 216 12 216 1152

TSCA consisting of one state and a transition for every possi-
ble component input/output combination. The TSCA and the
BA modeling arbitrary behavior for component ECS, for in-
stance, comprise 472392 transitions (cf. Table 2). In contrast to
the translation from MontiArcAutomaton architectures to the
model checker Mona [38], our implementation succeeded for
all example architectures. The longest computation time of our
evaluation (15850ms, cf. Table 1) resulted from semantic dif-
ferencing arbitrary behavior with the ECS component. We ad-
ditionally used the implementation to automatically verify se-
mantic equivalence of the three architectures depicted in Fig-
ure 3. We checked whether the specifications are semantically
equivalent by checking refinement in both directions. Proving
equivalence between the initial specification and the first struc-
tural refinement took 41ms. Checking equivalence between the
initial specification and the second structural refinement took
47ms. The same check between the first and the second struc-
tural refinements was possible in 46ms.

The composition method that includes trimming the com-
pounds yields a smaller composition duration in case the com-
pound is smaller than the compound obtained from using the
naive composition method (cf. Table 2). In case both composi-
tion methods yield the same compound, the naive composition
method outperforms the method that includes trimming. This
is plausible because of the overhead caused by trimming the
TSCA. We conclude that our translation provides promising re-
sults. Nevertheless, the evaluation was only performed on a few
specific architectures. Thus, the results are not generalizable to
all possible architectures: the time needed by our tool may vary
strongly from system to system.

7. Discussion

If the semantics domain of an ADL is overly general, un-
decidability of the underlying mathematical problems renders
automated formal verification impossible. Then, architecture
properties have to be proven manually, which is too expen-

sive to be carried out in continuous architecture modeling and
thus hinders employing agile development in architecture mod-
eling projects: little changes to requirements or implementa-
tions can entail changing many manually performed proofs. In
contrast, where automated formal verification is possible, sound
and complete proofs can be generated automatically, supporting
agile implementation evolution.

Focus is a comprehensive framework that supports specify-
ing the observable input/output behavior of interactive systems.
Its complexity requires carrying out proofs for system behav-
ior verification manually. Focus provides various constructs
for describing the semantics of distributed systems [36]. Ex-
amples are relations, set-based functions, sets of functions, as-
sumption/guarantee predicates, or state-based representations.
As identified in [36], the most fine-grained domain for describ-
ing the semantics of distributed systems using Focus are sets
of SPFs. Independent of the style, specifications can describe
timed or untimed behavior. Untimed behavior only considers
the causality regarding the order of inputs and outputs. Timed
specifications additionally concern causality regarding the pas-
sage of time. Many requirements are not only concerned with
the order of messages but also state requirements with respect
to passage of time. Thus, we employ a variant of the timed
subset of Focus and thereby use sets of TSSPFs as semantics
domain [36, 39].

Our approach is limited to systems where the data types’ do-
mains are finite and is restricted to the time-synchronous model
of computation. However, our system model fits well into the
kinds of systems developed for embedded systems such as au-
tomotive or robotics applications. Thus, our results enable fully
automated tool support for many systems in such domains. Em-
phasizing that our approach cannot be generalized to the timed
model of Focus as, for example, used in [16], is important:
Timed SPFs (cf. [16, 36, 39]), for instance, are too general to
be applicable to our approach. A timed SPF processes infi-
nite sequences of finite sequences (of arbitrary lengths) of mes-
sages. Each of the finite sequences represents a finite stream
of messages received or sent by a component in a single time
unit. In contrast, TSSPFs only process single messages per time
unit. The set of finite streams of messages over a non-empty
finite data type is already infinite. Thus, for each time unit,
a timed SPF needs to define a possible behavior for infinitely
many tuples of input streams, whereas a TSSPF needs to de-
fine a reaction for all possible tuples of input messages, which
are finitely many if the messages’ data types are finite. From a
practical viewpoint it is rarely required to specify the reaction
in a time unit in response to the receipt of an arbitrary number
of messages. Usually it either requires to handle single mes-
sages (TSSPFs) or sequences of messages where the length of
the sequence is bounded by an arbitrary but fixed natural num-
ber. The latter can be reduced to the former by introducing lists
of fixed length as message types.

The underlying theoretical problem for semantic differencing
used in our approach is language inclusion checking between
Büchi automata. Its complexity can be considered as another
limitation of our approach. However, our main focus is not ver-
ifying a system’s properties (e.g., refinement or semantic differ-
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encing) within seconds, which is most often already rendered
impossible due to the complex nature of the safety critical sys-
tem under development. We believe that nonetheless the pos-
sibility to apply formal fully automated verification (e.g., over
night) greatly facilitates continuous architecture modeling.

8. Related Work

Studies on the verification techniques of ADLs have been
conducted, e.g., in [43] and [45]. The study in [45] surveys ver-
ification techniques supported by ADLs with formal semantics,
the translation of architectures to inputs for model checkers, and
tool support as well as usability, scalability, and expressiveness.
As supported by our approach, the study states that architecture
verification for practical applications requires tool-support and
automation. The study in [43] compares different verification
tools and applies them to various ADLs. All architectures are
transformed into intermediate labeled transition systems before
the verification tools are applied, hampering the direct compar-
ison with our approach.

The following surveys concrete approaches for formally
analyzing hierarchical architecture descriptions. Auto-
FOCUS 3 [18] is a tool for the development of reactive embed-
ded systems that also bases its semantics on FOCUS [7]. Al-
though AutoFOCUS 3 supports model checking architectures
against LTL and CTL formulas that specify properties concern-
ing component behavior [10], we are not aware of a fully auto-
mated refinement checking method for AutoFOCUS 3. The π-
ADL supports statistical model checking for verifying dynamic
software architectures against DynBLTL properties [11]. To
this effect, a statistical model of finite system executions is built
and the probability of satisfying a property within a confiden-
tial bound is calculated. This approach is particularly tailored to
dynamic architectures and is only concerned with finite traces.
In contrast, our approach deals with infinite traces, static archi-
tectures, and full certainty. Refinement of architectures speci-
fied with timed I/O is described in [20]. Similar to behaviors of
TSCAs, the semantics of a timed automaton is given by a set
of traces. Refinement between timed I/O automata is defined
similar as in our approach by trace inclusion. However, timed
I/O automata are only marked with one message per transition
and composition is defined differently. Further, the timing con-
cept of I/O automata is more powerful and complicated than
the one of our approach [16]. A game-based extension of the
timed I/O automaton model enabling tool supported refinement
checking has been proposed in [12]. Another approach to au-
tomated refinement checking based on the time-synchronous
frame of FOCUS is described in [34, 38]. This approach is
based on a relational semantics domain where the semantics of
a component is given as a relation between the component’s
possible inputs and outputs. In contrast, our approach uses a
more fine grained [36] semantics domain consisting of sets of
functions. Refinement checking in [34, 38] relies on translat-
ing component semantics into WS1S and is implemented us-
ing the model checker Mona [13]. The approach suffers from
the tool’s high computational complexity, which is grounded in
the non-elementary complexity of solving W1S1 problems. In

contrast, we define a translation to Büchi automata and thereby
obtain a PSPACE-complete complexity for refinement check-
ing. While the relational approach is based on analyzing the
result from composing the semantics of the individual compo-
nents of a system, our approach first syntactically composes the
individual components and bases analysis on the semantics of
the compound.

9. Conclusion

We have presented an implementation of stepwise refinement
for C&C ADLs using a subset of the Focus semantics for time-
synchronous, distributed, interactive systems that is powerful
enough to model complex and realistic systems. Based on pre-
vious work [9], we describe an approach to transform com-
ponent models into time-synchronous channel automata that is
based on an associative, commutative, and semantically compo-
sitional, syntactic composition operator for time-synchronous
channel automata. Using this operator, the automata are com-
posed syntactically and translated into Büchi automata, where
their refinement can be checked through language inclusion. To
this effect, we proved that the operational semantics of a fi-
nite time-synchronous channel automaton and the language ac-
cepted by the Büchi automaton resulting from the transforma-
tion coincide. This enables fully automated refinement check-
ing for software architecture models in reasonable time.

We extended the previous approach [9] to improve its perfor-
mance through technical enhancements of the underlying for-
mal system model and extended previous evaluations. We fur-
ther defined a notion of system architecture based on a white-
box view where component implementations are assumed to
be available. For such system architectures, we presented an
algorithm leading to practical performance improvements for
refinement checking.

This form of stepwise refinement supports continuous archi-
tecting through ensuring evolved components adhere to proper-
ties already proven for their predecessors. This ultimately re-
duces the effort for component evolution and, hence, facilitates
continuous architecting.
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Appendix A. Mod8Counter component in FOCUS

In MontiArcAutomaton, there is an explicit language con-
struct (the connector) to indicate that two ports are con-
nected. Besides this, MontiArcAutomaton distinguishes com-
ponent types and component instances. Therefore, MontiArc-
Automaton obtains unique port names by the fully qualified
name of component instance and the port name. On the con-
trary, FOCUS has no notion of component type and has no
explicit construct to indicate connectors. With this, Monti-
ArcAutomaton is better suited for praxis, whereas FOCUS ab-
stracts from implementation details to avoid notational clut-
ter and improve formal representation. Thus, a MontiArc-
Automaton architecture is conceptually transformed to a FO-
CUS architecture by omitting component types and by re-
naming ports such that they have identical names iff they
are connected. A transformed version of the component
mod8Counter as depicted in Figure 3 is depicted in Fig-
ure A.15.
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Figure A.15: FOCUS architecture of the mod8Counter.

Appendix B. TSCA of the Mod8Counter component

This section explains the TSCA of the initial specification of
the Mod8Counter component as presented in Figure 3 (a).
Figure B.16 demonstrates the TSCA in its graphical represen-
tation, where abbreviations for states and transitions are used.
Transitions that increase the counted value start with the letter i,
those that reset the value start with r, and those that do not alter
the counted value start with an n. The textual representation of
the TSCA and the abbreviations are explained in the following.

The TSCA depicted in Figure B.16 is a tuple TS CAMod8a =

(Σ, X, S , ι, δ), where

• Σ = ({res,inc}, {x0,x1,x2}),
• the internal channels are X = {lv} with type(lv) = {0, .., 7},
• the set of states is defined by the set of all functions S =

X→ = {θ ∈ [{lv} → M] | θ(lv) ∈ N ∧ 0 ≤ θ(lv) ≤ 7}, where
for notational simplicity, we denote by si = {lv 7→ i},

• the initial state is ι = {s0},
• the transition relation δ = I ∪ R ∪ N comprises the sets

of increasing transitions I =
⋃

k=0,..,8 ik, resetting tran-
sitions R =

⋃
k=0,..,16 rk, and state conserving transitions

N =
⋃

k=0,..,8 nk, where

– i0 = {(s0, θ, s1) | θ (res) = ε∧θ (inc) = >∧θ (x0) = >∧θ (x1) =

ε ∧ θ (x2) = ε}
– i1 = {(s1, θ, s2) | θ (res) = ε∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

> ∧ θ (x2) = ε}
– i2 = {(s2, θ, s3) | θ (res) = ε∧θ (inc) = >∧θ (x0) = >∧θ (x1) =

> ∧ θ (x2) = ε}
– i3 = {(s3, θ, s4) | θ (res) = ε∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = >}
– i4 = {(s4, θ, s5) | θ (res) = ε∧θ (inc) = >∧θ (x0) = >∧θ (x1) =

ε ∧ θ (x2) = >}
– i5 = {(s5, θ, s6) | θ (res) = ε∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

> ∧ θ (x2) = >}
– i6 = {(s6, θ, s7) | θ (res) = ε∧θ (inc) = >∧θ (x0) = >∧θ (x1) =

> ∧ θ (x2) = >}
– i7 = {(s7, θ, s0) | θ (res) = ε∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– r0 = {(s0, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– r1 = {(s1, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– r2 = {(s2, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– r3 = {(s3, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– r4 = {(s4, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– r5 = {(s5, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– r6 = {(s6, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– r7 = {(s7, θ, s0) | θ (res) = >∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– r8 = {(s0, θ, s0) | θ (res) = >∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– r9 = {(s1, θ, s0) | θ (res) = >∧θ (inc) = >∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– r10 = {(s2, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧
θ (x1) = ε ∧ θ (x2) = ε}

– r11 = {(s3, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧
θ (x1) = ε ∧ θ (x2) = ε}

– r12 = {(s4, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧
θ (x1) = ε ∧ θ (x2) = ε}

– r13 = {(s5, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧
θ (x1) = ε ∧ θ (x2) = ε}
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TSPA
Represents a set of transitions

Figure B.16: TSCA of a modulo 8 counter.

– r14 = {(s6, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧
θ (x1) = ε ∧ θ (x2) = ε}

– r15 = {(s7, θ, s0) | θ (res) = > ∧ θ (inc) = > ∧ θ (x0) = ε ∧
θ (x1) = ε ∧ θ (x2) = ε}

– n0 = {(s0, θ, s0) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = ε}
– n1 = {(s1, θ, s1) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = >∧θ (x1) =

ε ∧ θ (x2) = ε}
– n2 = {(s2, θ, s2) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

> ∧ θ (x2) = ε}

– n3 = {(s3, θ, s3) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = >∧θ (x1) =

> ∧ θ (x2) = ε}
– n4 = {(s4, θ, s4) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

ε ∧ θ (x2) = >}
– n5 = {(s5, θ, s5) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = >∧θ (x1) =

ε ∧ θ (x2) = >}
– n6 = {(s6, θ, s6) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = ε∧θ (x1) =

> ∧ θ (x2) = >}
– n7 = {(s7, θ, s7) | θ (res) = ε∧θ (inc) = ε∧θ (x0) = >∧θ (x1) =

> ∧ θ (x2) = >}
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Operating Cyber-Physical Systems with Digital Twins

This section feature the publications summarized in Chapter 5.

Paper 11 G. Schuh, C. Häfner, C. Hopmann, B. Rumpe, M. Brockmann, A. Wort-
mann, J. Maibaum, M. Dalibor, P. Bibow, P. Sapel, and M. Kröger.
Effizientere Produktion mit Digitalen Schatten, In: Wilhelm Bauer, Wol-
fram Volk, Michael Zäh, editors, In: ZWF Zeitschrift für wirtschaftlichen
Fabrikbetrieb, 115, pages 105-107, Hanser, 2020.
Reference: [SHH+20]

Paper 12 P. Bibow, M. Dalibor, C. Hopmann, B. Mainz, B. Rumpe, D. Schmalz-
ing, M. Schmitz, A. Wortmann. Model-Driven Development of a Digital
Twin for Injection Molding, In: Advanced Information Systems Engi-
neering, 32nd International Conference, CAiSE 2020, Grenoble, France,
June 8–12, 2020, Proceedings, pages 85-100, Springer, 2020.
Reference: [BDH+20]

Paper 13 J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, A. Wortmann. Model-
driven Digital Twin Construction: Synthesizing the Integration of Cyber-
Physical Systems with Their Information Systems, In: Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pages 90-101, ACM, 2020.
Reference: [KMR+20]
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Effizientere Produktion mit  
Digitalen Schatten 

Die Digitalisierung verspricht Unternehmen, die Wandlungsfähigkeit 
und Produktivität bestehender Fertigungssysteme zu fördern. Durch 
die Komplexität cyber-physischer Produktionssysteme liegen Produk-
tionsdaten jedoch heterogen, unstrukturiert und isoliert vor. Die für 
eine konkrete Aufgabe oder Fragestellung benötigten Daten werden 
durch Digitale Schatten zielgerichtet verknüpft, abstrahiert und agg-
regiert, sodass eine wissensbasierte und echtzeitfähige Entschei-
dungsfindung in der Produktion möglich wird.*)

G. Schuh, C. Häfner, 
C. Hopmann, B. Rumpe, 
M. Brockmann, A. Wortmann, 
J. Maibaum, M. Dalibor, 
P. Bibow, P. Sapel und 
M. Kröger, Aachen

Digitale Schatten bereiten hete-
rogene Daten zielgerichtet auf

Die Digitalisierung stellt Produktionsun-
ternehmen weltweit vor große Heraus-
forderungen. Durch umfangreiche Daten-
erfassung und -analyse sollen hochflexi-
ble, wandlungsfähige Wertschöpfungs-
systeme entstehen, die bei reduzierten 
Kosten die Produktivität steigern. Auf-
grund zahlreicher domänenspezifischer 
IT-Systeme und komplexer cyber-physi-
scher Produktionssysteme liegen Daten 
sehr heterogen vor und erschweren da-
durch eine zielgerichtete Optimierung [1, 
2]. Durch die Komplexität des betrachte-
ten Systeme ist ein vollständiges und 
funktional umfassendes digitales Abbild 
des Produktionssystems als Digitaler 
Zwilling aufwändig [3, 4], kann aber bei 
adäquater Vorgabe der notwendigen Ge-
nauigkeit erreicht werden, da der Begriff 
„digital“ per se eine Abstraktion von dem 
physischen System beinhaltet. 

Im Gegensatz zum Digitalen Zwilling 
umfasst der Digitale Schatten lediglich 
eine für eine konkrete Aufgabe oder Fra-
gestellung benötigte Teilmenge der ver-
fügbaren Daten. Dazu werden Daten (u. a. 
Mess- und Simulationsdaten) domänen- 
und anwendungsfallspezifisch kombi-
niert sowie auf inhaltlicher und zeitlicher 
Betrachtungsebene geeignet aggregiert. 
Entscheidungssituationen in der Produk-

sich die tatsächliche Fahrzeit verlässlich 
und routenspezifisch ermitteln. Ein voll-
ständiger Digitaler Zwilling des betrach-
teten Erdausschnitts ist dazu nicht not-
wendig.

Analog zu Google Maps lassen sich 
Fertigungsaufträge in der Produktion 
ebenfalls anhand ihrer starren Merkmale 
(notwendigen Arbeitsschritte, durch-
schnittlichen Durchlaufzeiten) in den 
Produktionsablauf einlasten, doch wird 
der Fertigstellungstermin erst durch Ein-
beziehen der aktuellen Auslastung und 
etwaiger Maschinenausfälle verlässlich 
planbar. Aufgrund der komplexen Wirk-
beziehungen in der Produktionstechnik 
werden im Exzellenzcluster „Internet of 
Production“ daher Methoden entwickelt, 
um Digitale Schatten in der Produktion 
flexibel zu generieren und zur datenge-
stützten Optimierung der Prozesse zu 
nutzen.

tion werden durch die gezielte Aufberei-
tung der Daten bestmöglich unterstützt 
und in Bezug auf konkrete Optimierungs-
modelle teilautomatisiert auflösbar. Zu-
dem bieten sie die Möglichkeit, bestehen-
de produktionstechnische Modelle durch 
datenbasierte Ansätze weiterzuentwi-
ckeln und in der Praxis zu erproben. 

Bild 1 verdeutlicht den potenziellen 
Nutzen Digitaler Schatten am Beispiel 
von Google Maps. Während das physi-
sche Straßennetz zur allgemeinen Orien-
tierung oder zur Abschätzung von Ent-
fernungen bereits als starres, Digitales 
Modell genutzt werden kann, werden zur 
Abschätzung der realen Fahrzeit und zur 
Identifikation der fahrzeitoptimierten 
Route dynamische Daten zum Verkehrs-
verhalten benötigt. Durch Anreichern 
des geographischen Modells um Daten 
zur aktuellen oder prognostizierten Ver-
kehrslage als Digitaler Schatten lässt 

*) Förderhinweis
 Gefördert durch die Deutsche Forschungs-

gemeinschaft (DFG) im Rahmen der Ex-
zellenzstrategie des Bundes und der Län-
der – EXC-2023 Internet of Production. 

Bild 1. Beispielhafte Digitale Schatten dynamischer Daten in dem von Google Maps gebotenen 
Strukturmodell
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[SHH+20] G. Schuh, C. Häfner, C. Hopmann, B. Rumpe, M. Brockmann, A. Wortmann, J. Maibaum, M. Dalibor, P. Bibow, P. Sapel, M. Kröger: 
Effizientere Produktion mit Digitalen Schatten. 
In: ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 115(special), Carl Hanser Verlag, Munich, April 2020. 
www.se-rwth.de/publications/
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zugssystem unzugänglich sind (z. B. His-
torien-, Wartungs- oder Entwicklungsda-
ten) und ermöglichen multiperspektivi-
sche und systemübergreifende Analysen.

K4: Digitale Schatten benötigen ange-
passte IT Infrastrukturen im Fabrikbe-
trieb
Die aufgabenspezifische Verarbeitung 
(z. B. Aggregation, Filterung) der Daten-
spuren multiperspektivischer Digitaler 
Schatten stellt die derzeit verfügbaren IT-
Systeme vor große Herausforderungen, 
da ebenso flexibel veränderbare Soft- und 
Hardware-Systeme notwendig werden. 
Datenerfassungs- und Verarbeitungssys-
teme im Fabrikbetrieb müssen für einen 
transparenten und konsistenten Daten-
zugriff veränderbaren Anforderungen 
(z. B. domänenspezifische Echtzeit, de-
zentraler Datenzugriff) genügen. 

K5: Digitale Schatten nehmen keinen 
Einfluss auf das reale Systemverhalten
Digitale Schatten sind kontextbehaftete 
Datenspuren. Sie dienen der aufgaben-
spezifischen Analyse und der Anreiche-
rung zugrundeliegender Modelle um re-
levante Daten. Als solche üben sie keinen 
aktiven Einfluss auf das reale Bezugs-
system aus. Erst auf den Digitalen Schat-
ten reagierende Systeme (z. B. Sensor-
Aktor-Systeme) können voll- oder teilau-
tomatisiert Aktionen ausführen und die 
Produktion beeinflussen.

Digitale Schatten  
in der Produktion

Die notwendige Infrastruktur zum Erzeu-
gen und Nutzen Digitaler Schatten wird 
im Exzellenzcluster derzeit anhand zwei-
er praxisnaher Anwendungsfälle erprobt. 
Einerseits werden die Anforderungen an 
Digitale Schatten bei Ultrakurzpuls 
(UKP)-Laseranwendungen (z. B. zur Mi-
krostrukturierung von Bauteilen) und 
der damit einhergehenden Verarbeitung 
hoher Datenmengen in kürzester Zeit zur 
präzisen Ansteuerung des Lasers unter-
sucht. Andererseits werden phasenbezo-

Daten typisieren und strukturieren. Für 
Digitale Schatten der Produktion ergeben 
sich daher folgende Konsequenzen 
(K1 – K5) hinsichtlich der Modellierung, 
Datenerfassung und Funktionalität:

K1: Digitale Schatten müssen domä-
nenspezifisches Wissen beinhalten
Zur zielgerichteten Analyse Digitaler 
Schatten und der semantischen Verknüp-
fung enthaltener Daten ist es notwendig, 
auf domänenspezifisches Wissen zurück-
zugreifen. Hierzu müssen die bei Pla-
nung und Betrieb eines Produktionssys-
tems genutzten Modelle (z. B. Verhaltens-
modelle, Simulationsmodelle) in geeig-
neter Form digitalisiert werden. In der 
Modellbasierten Systementwicklung ha-
ben sich dazu bereits verschiedene Mo-
dellierungssprachen (z. B. SysML, UML, 
CAD, Modellica) etabliert, um Wissen 
domänenübergreifend abzubilden. Da-
durch wird es möglich, Modelle über Di-
gitale Schatten mit dynamischen Daten 
anzureichern, um gleichzeitig die Mo-
dellgenauigkeit und das Bezugssystem 
kontinuierlich zu optimieren. 

K2: Digitale Schatten sind stets kon-
textbezogen
Ziel des Digitalen Schattens ist es, die 
Entscheidungssituation einer spezifi-
schen Aufgabe oder Fragestellung hinrei-
chend gut zu unterstützen. Der Kontext 
(z. B. Wartung, Betriebspunktoptimie-
rung) bestimmt den Analysefokus und 
wird in den Metadaten der Datenspur zur 
semantischen Verknüpfung hinterlegt. 
Der Digitale Schatten bildet das reale 
System daher nicht vollständig ab, son-
dern gewährt lediglich einen zweckge-
richteten Blick auf das Original. Derselbe 
Datensatz kann dadurch in einem verän-
derten Kontext wiederverwendet werden 
und andere Erkenntnisse liefern.

K3: Digitale Schatten ermöglichen do-
mänenübergreifende Analysen 
Digitale Schatten verknüpfen Daten aus 
heterogenen Datenquellen. Dadurch kön-
nen sie Daten beinhalten, die dem Be-

Das Wesen Digitaler Schatten

Um Digitale Schatten in der Produktion er-
fassen und nutzen zu können, muss zu-
nächst eine Informationsarchitektur auf-
gestellt werden, die es ermöglicht, die 
Vielzahl der in der Produktion anfallenden 
Daten zu erfassen, zu verarbeiten und zu 
verstehen. Im Software Engineering wer-
den hierzu Modelle verwendet, die zu-
gleich die konzeptionelle Kluft zwischen 
domänenspezifischen Abstraktionsebenen 
schließen [5]. Bestehende digitale Modelle, 
die zumeist statisch und unintegriert sind 
[6], werden dagegen zur Typisierung Digi-
taler Schatten und der notwendigen Daten-
strukturen genutzt. Der Digitale Schatten 
wird hierzu gemäß des entwickelten Meta-
modells aus Bild 2 wie folgt definiert: 

Ein Digitaler Schatten ist eine Menge 
von Modellen und Datenspuren, die neben 
dem reinen Datensatz auch kontextbe-
schreibende Metadaten zum jeweiligen 
Verwendungszweck enthalten. 

Digitale Schatten bestehen demnach aus 
Datenspuren, die zu einem bestimmten 
Verwendungszweck oder Analysefokus er-
zeugt und ausgewertet werden. Hierzu be-
inhalten die Datenspuren neben den reinen 
Datensätzen kontextbehaftete Metadaten 
(z. B. Bezugsquelle, Erfassungszeitpunkt, 
Auflösung), die zur semantischen Verarbei-
tung benötigt werden. Sie können aus ver-
schiedenen Quellen (z. B. Sensorsignale, Si-
mulationsdaten) stammen, oder als Verar-
beitung durch Aggregation oder Filterung 
anderer Datenspuren (z. B. Temperaturgra-
dient aus mehreren Temperaturmessun-
gen) entstanden sein. Darüber hinaus kön-
nen Digitale Schatten Modelle enthalten, 
die sie um dynamische Daten anreichern 
oder zur Analyse der Datenspur nutzen. 

Kontextspezifische Digitale Schatten 
entstehen daher durch zielgerichtete Se-
lektion der benötigten Parameter, Berei-
nigung der Rohdaten und Kombination 
von Daten aus verschiedenen Quellen. Da-
mit diese heterogenen Daten semantisch 
verwertet werden können, werden Model-
le und Metadaten benötigt, die das Be-
zugssystem und die darin anfallenden 

Bild 2. Metamodell 
des Konzepts Digita-
ler Schatten
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Das Konzept des Digitalen Schattens 
wird daher angewendet, um einen selbst-
adaptiven Digitalen Zwilling der Ferti-
gungszelle zu erzeugen, der die heteroge-
nen Datensätze der angeschlossenen Sub-
systeme verarbeitet (K3) und daraufhin das 
reale Produktionssystem ansteuert (K5). 
Zur Kommunikation mit den angeschlosse-
nen Geräten liegt eine angepasste Software-
Architektur vor, welche die Daten über ver-
schiedene Schnittstellen (z. B. OPC-UA, 
EUROMAP, RS232) erfasst und einen kon-
sistenten zyklusbezogenen Zugriff ermög-
licht (4). Dazu wird das Domänenwissen zu 
relevanten Prozessparametern der Prozess-
phasen des Spritzgießzyklus in UML Klas-
sen- und Aktivitätsdiagrammen abgebildet 
(K1). Je nach Analysefokus erzeugt der Digi-
tale Zwilling daraus automatisiert eine Da-
tenbank und erfasst die relevanten Prozess-
daten als kontextbehaftete Datenspur (K2). 

Zusammenfassung und Ausblick

Ein vollständiger und umfassend funktio-
naler Digitaler Zwilling ist in der Produk-
tion kaum realisierbar, da eine Vielzahl 
heterogener Daten unter ständiger Konsis-
tenzprüfung verarbeitet werden müsste 
[4]. Mit dem Konzept des Digitalen Schat-
tens wird daher das Ziel verfolgt, lediglich 
die zu einer spezifischen Aufgabe oder Fra-
gestellung notwendigen Daten zu erfassen, 
zu verarbeiten und zu analysieren. Da-
durch werden Entscheidungssituationen in 
der Produktion bei geringen Latenzzeiten 
möglich. Das Konzept des Digitalen Schat-
tens als kontextbehaftete Datenspur und 
sich daraus ergebende Konsequenzen für 
die IT-Infrastruktur innerhalb einer intelli-
genten Fertigung wurden hierzu erläutert. 

Anhand der beschriebenen Anwen-
dungsfälle (UKP, Spritzgießen) werden die 
umfassenden Rahmenbedingungen zum 
Erzeugen und nutzwertstiftenten Analysie-
ren Digitaler Schatten in der Produktion 
erprobt. Hierzu müssen insbesondere Me-
thoden entwickelt werden, wie gleichzeitig 
hohe Effizienz bei der Erstellung, aber 
auch Flexibilität und Konfiguration bei der 
Nutzung gewährleistet werden können. 
Durch die parallele Betrachtung zweier ge-
gensätzlicher Anwendungsfälle sollen die 
Methoden eine breite Anwendbarkeit in 
unterschiedlichen Branchen finden.

gene Digitale Schatten beim Spritzgießen 
von Kunststoffbauteilen erzeugt und zy-
klisch ausgewertet, um einen selbstadap-
tiven Digitalen Zwilling an das aktuelle 
Maschinenverhalten anzupassen.

Im UKP-Prozess hat die Komplexität des 
Bauteils kaum einen Einfluss auf die Ge-
schwindigkeit des Verfahrens. Vielmehr 
beeinflussen die Absorptionsrate des Ma-
terials und die Bewegungsgeschwindig-
keit des Lasers die finale Prozess- und 
Bauteilqualität. Aufgrund der meist hohen 
Individualität und Produktionszeit der mi-
krostrukturierten Bauteile, kann die Quali-
tät der Bauteile erst nach der vollständigen 
Bearbeitung evaluiert werden. 

Zur Optimierung des Verfahrens wird 
mittels spezieller Sensorik und Edgedevice 
(K4) hochfrequent die spektrale Emission 
vom Verdampfen des Werkstoffs positions-
genau aufgenommen (K1). Durch eine auto-
matisierte Auswertung dieser Datenströme 
entsteht ein dreidimensionaler digitaler 
Schatten der eingebrachten Mikrostruktur 
(K2), welcher für die automatische Anpas-
sung der aktuellen Prozessparametern und 
der Bahnplanung auf die über das Werk-
stück heterogenen Materialeigenschaften 
genutzt werden kann. Somit ermöglicht die 
Nutzung dieses gezielten digitalen Schat-
tens (K5) durch geeignete Services einen 
geregelten und gleichmäßigen Abtrag und 
verringert somit die Nachbearbeitung und 
den Ausschuss, schon während der Struk-
turierung.

Im Spritzgießen liegen dagegen in der 
Regel kurze Zykluszeiten zur Fertigstel-
lung eines Bauteils und eine Vielzahl in-
teragierender Systeme, wie z. B. Spritz-
gießmaschine, Temperiergeräte, Werk-
zeugsensorik, vor welche die Komplexität 
der Prozessführung und der verfügbaren 
Datenspur steigern. Mithilfe von Metho-
den der statistischen Versuchsplanung 
können Prozessmodelle ermittelt und ro-
buste Arbeitspunkte für eine spezifische 
Werkzeug-Maschinen-Kombination identi-
fiziert werden. Die ermittelten Prozess-
modelle können jedoch nur bedingt auf 
andere Maschinen übertragen werden [7]. 
Da jede Maschine auch bei gleicher Spezi-
fikation ein einzigartiges Betriebsverhal-
ten aufweist (z. B. aufgrund des individuel-
len Verschleißzustands), müssen zur Mo-
dellierung funktionaler Digitaler Zwillinge 
zunächst Probleme bei der Datenerfassung 
heterogener Datenquellen, der Ansteue-
rung von Sensor-Aktor-Systemen sowie 
der echtzeitfähigen Datenanalyse zur Op-
timierung und Vorhersage der Bauteil- 
und Prozessqualität gelöst werden [8]. 
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Abstract. Digital Twins (DTs) of Cyber-Physical Production Systems
(CPPSs) enable the smart automation of production processes, collection
of data, and thus can reduce manual efforts for supervising and control-
ling CPPSs. Realizing DTs is challenging and requires significant efforts
for their conception and integration with the represented CPPS.
To mitigate this, we present an approach to systematically engineering
DTs for injection molding that supports domain-specific customizations
and automation of essential development activities based on a model-
driven reference architecture. In this approach, reactive CPPS behavior is
defined in terms of an event DSL and the reference architecture connects
to the CPPS through a novel DSL for representing OPC-UA bindings. We
have evaluated this approach with a DT of an injection molding machine
that controls the machine to optimize the Design of Experiment (DoE)
parameters between experiment cycles before the products are molded.
Through this, our reference implementation of the DT facilitates the
time-consuming setup of a DT and the subsequent injection molding
activities. Overall, this facilitates to systematically engineer digital twins
with reactive behavior that help to optimize machine use.

Keywords: Digital Twin · Injection Molding· Cyber-Physical Production Sys-
tem · Model-Driven Development · Reference Architecture

1 Introduction

DTs are an integral component of intelligent digitization [25] for smart manu-
facturing in Industry 4.0 [29]. Engineering DTs is time-consuming, complicated,
and often not tightly integrated with the development of the system. Where

? Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy EXC 2023 Internet of Production.
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DTs are incapable of utilizing the knowledge about the system that exists in
the form of engineering models, they cannot efficiently optimize the digitized
system’s behavior.

Injection molding is a manufacturing process to produce plastic parts by
injecting plasticized material into a mold. Determining an ideal operation point
usually requires experienced operators and extensive trials [23]. We use DTs to
automate the execution of a DoE on an injection molding machine to learn about
the current process characteristics and thus find ideal setting parameters. The
presented architecture thereby gets evaluated in a real CPPS.

We propose a modeling method for DTs that partly automates engineer-
ing DTs to enable automated reaction to changes in the system structure and
to synchronize the DT with its physical counterpart. To this end, we propose
modeling the DT as a component and connector architecture with UML class
diagrams specifying data objects that are exchanged between components. Fur-
thermore, we present a Domain Specific Language (DSL) to describe events that
the production system’s DT reacts to. Models of this DSL are integrated into the
software architecture model. From these, an integrated, reactive DT is generated
that controls and optimizes injection molding behavior. The key contributions
of this paper, hence, are

1. a model-driven methodology to efficiently developing DTs for CPPSs,
2. a reference architecture for DTs evaluated in injection molding,
3. a DSL connecting digital twins to their physical counterparts, and
4. modeling techniques to specify a DT’s event-driven behavior.

In the following Sect. 2 introduces preliminaries, Sect. 3 presents a motivating
example, and Sect. 4 explains the methodology. Subsequently, Sect. 5 describes
required models and the realization, Sect. 6 describes how the DT is applied to
the injection molding machine, and Sect. 7 discusses the reference architecture
and methodology. Finally, Sect. 8 highlights related work, and Sect. 9 concludes.

2 Background

We realize a DT for injection molding based on our reference architecture that
we implemented in MontiArc (see Sect. 2.3) [2,8]. The DT controls the molding
machine via Open Platform Communication Unified Architecture (OPC-UA)
[16].

2.1 Digital Shadows and Twins

The term digital twin is broadly used to describe any form of data that describes
a physical system. We develop a digital twin that is partly derived from models
describing the system under development. Furthermore, the twin shall provide
services that allow interacting with the system or the twin itself.

Definition (Digital Twin (DT)). A digital twin of a system consists of a set of
models of the system, a set of digital shadows, and provides a set of services to
use the data and models purposefully with respect to the original system.
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These models may be engineering models (CAD, Simulink, etc.) or software
models (UML, SysML, MontiArc, etc.) and the services may include monitoring,
optimization, projection, visualization, and many more. Since the twin reflects
a real system, it must also provide data that describes the system. As CPPSs
produce immense amounts of data that often are too large to be fully processed
by DTs, we introduce the concept of Digital Shadows (DSs).

Definition (Digital Shadow (DS)). A digital shadow is a set of temporal data
traces and/or their aggregation and abstraction collected concerning a system for
a specific purpose with respect to the original system.

Thus, DSs comprise the information that DTs require for fulfilling their tasks.

2.2 Injection Molding

Injection molding represents a highly automated, but to the same extent complex
manufacturing process to produce, e.g., plastic parts without the necessity of
post-processing. Different data sources, like machinery or peripheral sensors,
cavity sensors or quality control systems, enable gaining knowledge about the
process. The heterogeneity in industrial machinery equipment thereby raises
challenges in setting up DTs of production systems that monitor the process or
execute complex machine tasks.

Due to complex interactions of production assets and setting parameters,
determining settings of an ideal operation point at a specific machine is a chal-
lenging task. A well-experienced operator is capable of respecting the machine-
specific characteristics in process setup as each machine differs in its respective
process behavior. Differences in the process behavior exist even for machines of
the same type or manufacturer due to wear of machine components or alternat-
ing control loops [14]. A DT might be able to support operators in such complex
tasks by gathering current process data and providing a knowledge base for e.g.,
process setup. The DT, therefore, needs to learn about the machine-specific be-
havior of the real production system it represents and adjust setting parameters
according to current process data to work as a self-adaptive system.

The injection molding process consists of cyclic process phases for plasticizing
the granular material, injecting it into a mold according to a specific injection
flow profile and solidifying it under a set holding pressure until a molded part can
be ejected. Via standardized communication protocols like OPC-UA, machine
movements, and sensor data from the machine and its subordinated components
are accessible. Thereby, relevant process parameters like temperatures, current
volume flow or injection pressure get monitored to build up an extensive knowl-
edge base for a DT to use.

The machine initializes an OPC-UA server during production start and no-
tifies the server about changes in monitored items due to machine movements.
For data gathering and accessing the OPC-UA server, the OPC Foundation pro-
vides standard libraries to develop connectors. The connector acts as OPC-UA
client and subscribes to the server to monitor specific parameters of consider-
ation via so-called Node-IDs. Gathered data is then passed on to a message
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broker. Apache Kafka [27] is a communication platform that receives messages
from a connector, acknowledges the receipt, stores the messages in a save log
file, and delivers messages in case of a request. Many Kafka Brokers form a
Kafka Cluster that distributes incoming data streams and messages into logical
groups, so-called Kafka Topics, to keep the individual processing workload low
and guarantee data access to further systems like the digital twin.

2.3 MontiArc

MontiArc is an architecture description language [17]. Its prime modeling el-
ements are component types with interfaces of typed and directed ports. The
components either are atomic, and feature a behavior model or General Pur-
pose Language implementation, or composed. Composed components contain a
topology of subcomponents that exchange messages via unidirectional connec-
tors between the ports of their typed, directed interfaces. Their behavior emerges
from the behavior of their hierarchically contained subcomponents.

InjectionMoldingMachine

InjectionControl

controller

Timer

timer

Boolean TimerCMD

signal

alarm

cmd

time

composed component type

incoming Port “signal“ of data type “Boolean”

MAsubcomponent “controller” of component type “InjectionControl”

Command

cmd
ClampingUnit

clampingUnit

MachineMechanics mechanics

cUnit

outgoing Port “time“ of data type TimerCMD

MoldingTool

mold

ActuatorDosing

dosingMovement

PlasticizingUnit plastUnit

ActuatorScrew

screwMovement

PressureSensor

sensor

Command

cmd pUnit

atomic component

ActuatorEjector

ejector

Fig. 1. MontiArc model of a simplified injection molding control flow showing injection
molding machine components involved in the process

Fig. 1 illustrates the quintessential modeling elements of MontiArc by exam-
ple of an injection molding machine. The component type InjectionMolding-

Machine hierarchically contains subcomponents of types PlasticizingUnit,
InjectionControl, Timer, and MachineMechanics. The subcomponent plast-
Unit of component type PlasticizingUnit is composed again and features
three subcomponents itself. At the core of the model is the component controller
of type InjectionControl that interacts with plastUnit and mechanics and
manages the injection molding process.

3 Example and Challenges

Several setting parameters like the volume flow profile, the ideal switchover vol-
ume from injection phase to holding pressure phase as well as the right processing
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temperatures influence the reproducibility and the profitability of the current op-
erating point in injection molding processes. To produce plastic parts with high
quality, the interdependencies of these parameters need to be respected during
setup. However, a correlation of setting parameters to the final part quality is,
in most cases, only possible implicitly as the settings induce a specific process
behavior – represented via process models – that results in process data like a
respective cavity pressure. A quality model afterward describes the correlation
of process data to the final part quality [13]. To determine the ideal operating
point, a well-experienced operator is necessary or an extensive DoE that uncovers
correlations by statistical analysis of targeted trials.

The phases of the cyclic process require specific values that – in most cases
– refer to basic estimations. The clamping force, for example, is necessary to
keep the mold closed during injection and to hold against the injection pressure.
Therefore, basic estimations refer e.g., to a known specific clamping force (e.g.,
3.0 - 6.5 kN/cm for a standard polypropylene) multiplied by the projected area of
the part geometry and the number of cavities inside the mold [20]. However, high
values for the clamping force can lead to high energy consumption and increased
wear of the mold that can be avoided by an automated adaption to the realized
injection pressure during injection. Nevertheless, feedback of the machine data
for automated adaption to current process behavior is rarely implemented.

The actual injection is one of the most crucial process phases as it determines
crucial quality aspects like weld lines, incomplete filling or burners. Therefore
an operator needs to set an injection flow profile [cm/s] in accordance with the
respective part geometry. Due to differences in the wall thickness of the part
and the overall part geometry, the melt front velocity tends to accelerate or
decelerate if the screw induces a constant volume flow. A constant melt front
velocity inside the mold, on the contrary, is beneficial to realize high quality
for the molded parts. Cavity pressure sensors are capable of monitoring the
characteristic volume flow as a constant melt front velocity results in a linear
slope of the pressure curve during injection [22,28]. A digital twin thereby might
be able to analyze the incoming digital shadow from the filling process as data
trace from cavity pressure sensors and adjust the volume flow profile to realize
a constant melt front velocity for high-quality parts.

4 Methodology

In the industry, there are digital twins of products, CPPSs and their services,
and complete production facilities. We present a reference architecture for digital
twins on the use case of injection molding that facilitates adaptivity and exten-
sibility while reusing existing engineering artifacts that describe the system,
the production process, or the workpiece. Thereby, our development method
is model-driven, facilitates consistency, and reduces manual effort. The term
Model-Driven Engineering is typically used to describe software development
approaches in which abstract models of software systems are created and sys-
tematically transformed into concrete implementations [5].
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Fig. 2. Architecture that enables self-adaptation based on digital shadows.

4.1 Digital Twin Reference Architecture

We describe the reference architecture for DTs as a component and connector
architecture in MontiArc. The components of the DT interact with each other
via typed and directed ports. Fig. 2 depicts the reference architecture and its
layers: cyber-physical layer, data layer, connection layer, and application layer.

Cyber-Physical Layer. The cyber-physical layer describes the CPPS and its com-
ponents that the DT controls. The reference architecture specifies one general
component that may be hierarchically composed of more specific components
describing the system in detail.

Data Layer. The Data Lake [9] is an extensive data storage consisting of multiple
databases or other data providers and is situated in the data layer. It stores data
from a wide variety of sources e.g., sensors inside of the CPPS in a raw format or
in a preprocessed form. It can contain both unstructured and structured data.
To support reusability, the data is annotated with metadata containing semantic
information. Data Lakes also offer logic for data preparation and processing. This
logic is implemented by the suppliers of data lakes, thus we do not model its
components here.

Connection Layer. The connection layer contains a Data Processor and an
Executor. The Data Processor links the Data Lake with components at the
application layer. It creates digital shadows that encapsulate exactly the in-
formation that is required by components at the application layer. The Data
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Processor contains two inner components. The Data Processor Logic receives
DS queries of the application layer and transforms these into data requests.
The Data Processor Adapter transforms data requests into queries for spe-
cific databases that are part of the Data Lake. The Data Processor Adapter

returns the collected data to the Data Processor Logic that links this data,
and creates a DS. The Executor interacts with the CPPS and controls its be-
havior. It receives DSs that describe the CPPS’s operating context and current
status from the Data Processor. Further, it receives a solution from the applica-
tion layer that describes how the CPPS should behave. To realize this behavior,
it potentially requires knowledge about the system and its structure that is
available in the knowledge base. The executor has two inner components: the
Execution Logic and the Execution Adapter. The Execution Logic derives
a concrete plan that shall be executed at the CPPS and its surrounding sys-
tems. The Execution Adapter sends concrete commands to specific parts of
the CPPS and thus controls the next actions. Feedback about the success of
these commands is also processed and handed back to the application layer.

Application Layer. The application layer contains the actual smartness of the
digital twin. The Evaluator analyzes DSs and reacts to events that occur within
the system or its context. To decide on which events it must react, it refers to
design-time models that describe the expected behavior of the system and also
possibly erroneous behavior. The Evaluator also relies on knowledge from the
knowledge base to decide when an event is considered negative and must be
handled. If the Evaluator detects patterns that indicate an event, it can query
more detailed DSs from the Data Processor. The Evaluator also learns about
changes in the system, and adds new knowledge to the knowledge base, e.g.,
that a new sensor is detected. Depending on the system’s state and evaluation
results, the Evaluator creates goals that it sends to the Reasoner. The Reasoner
receives goals that specify what should be changed in the system’s state. The
Reasoner uses the knowledge contained in the knowledge base to decide how to
adapt the system’s behavior.

4.2 Model-Driven Development of a Digital Twin

We develop a model-driven methodology that facilitates automatic generation of
DTs from models describing a CPPS. Fig. 3 describes the development and adap-
tation process for developing DTs that ground on our reference architecture. The
reference architecture is implemented in MontiArc but leaves domain-specific de-
cisions open. Thus, software engineers can adapt it to various domains. The first
step is to create a domain model that describes the structure of data that is
exchanged between components of the DT. As the twin monitors the system’s
state, the next step is to decide what kinds of events occur in the system and
how the twin should react if they occur. To this end, we developed a domain-
specific language that facilitates the specification of events and actions. An event
describes a situation in the real system, e.g., a monitored parameter reaching a
threshold. Actions specify the twin’s reaction to an event. Rules link events and
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Create rules
Domain Model

[all nodes 

described]

[else]

Fig. 3. Activity diagram of the development process of DSs based on our reference
architecture and tooling.

actions. Thus, if an event occurs, the twin reacts with one or multiple actions.
Events reference classes of the domain model that specify the structure of data
that the event processes. The state-defining attribute specifies on which changes
of the system’s data the event should be evaluated.

The Data Processor receives raw data from the data lake and transforms
it into DSs that the evaluator can monitor and evaluate. Tagging [7] the class
diagrams allows enriching the domain model with specific data retrieval infor-
mation in order to build up DSs. The Executor interacts with the CPPS and
sends commands that adapt the CPPS’s behavior. We developed the OPC-UA
Description Language (OPCDL) to specify the communication interface to the
CPPS. If the production system provides an OPC-UA interface, it suffices to
specify the endpoint, credentials, and nodes to realize the executor. The gener-
ator parses the models describing the DT MontiArc architecture, domain, data
processor, and executor and creates Java code for the DT. Finally, the developer
of the DT adapts the generated code where necessary. The developer imple-
ments the Reasoner’s behavior that describes the purpose of the DS and how
it manipulates the physical system. The DT developer also implements adapter
for specific databases of the data lake and in case the CPPS does not provide
an OPC-UA interface another adapter for interacting with the system. As the
domain model centrally specifies the parameters relevant for the process and the
control and the other models reference these, only one model has to be adapted
when changes occur. The generator links information from all models and derives
Java artifacts for the DT. This way, we can ensure that component implementa-
tions always stay consistent and syntactically understand the exchanged data.
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behavior Phases from inj_mould_machine {

event plasticizingEnded for PlasticizingPhase {

stateAttribute: machineCycle

checkTemperature(nozzleTemperature@(0)) 

&& checkTemperature(nozzleTemperature@(-1))

&& dosingVolume@(0) > 60.0

}  

action startInjectionPhase for InjectionPhase {

initInjectionPhase(switchOverVolumeSetting@(0))

}

rule plasticizingEnded => startInjectionPhase;

}

classdiagram Phases {

class PlasticizingPhase {

int machineCylcle;

double nozzleTemperature;

double dosingVolume;

}

class InjectionPhase {

double switchOverVolumeSetting; 

}

}

CD

defining structure
of digital shadow

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

EL

plasticizingEnded:DigitalShadow

machineCycle_0 = 15617

nozzleTemperature_-1 = 219.9

nozzleTemperature_0  = 220.0

machineOperable_0 = 0

dosingVolume_0 = 49.71

startInjectionPhase:DigitalShadow

switchOverVolumeSetting_0 = 40.0

OD

current switchover 
volume setting

digital shadow of injection phase
containing the current  switchover 

volume setting

class specifying the 
structure of data processed 
by plasticizingEnded event

Fig. 4. Behavior description defining events, rules, and actions based on class diagrams.
Additionally, showing that the structure of the DS is determined by the behavior
definition.

5 Technical Realization

The DT reference architecture presented in this paper is built to be flexible by
using exchangeable components implemented in MontiArc and a model-based
approach for describing CPPS-specific properties. Our DT detects and reacts
to patterns gathered from CPPS data. The Event Language (EL) supports the
formulation of events based on attributes of class diagrams (CDs). A generator
then produces code which comprises the logic for checking events and performing
the related actions.

Fig. 4 shows an excerpt of the behavior definition of the phases of an injec-
tion molding machine, which contains the event plasticizingEnd and the action
startInjectionPhase. The keyword for (l. 2) indicates the corresponding do-
main class whose information is used to check the event. A stateAttribute is
an attribute whose value is stored, and the corresponding event is only triggered
if the evaluated value of the state attribute has changed compared to the last
event trigger. The event definition block contains expressions about the values
of the DT, such as external calls (l. 5), logical expressions (&&, ||, !), and value
comparisons (l. 7), . The rule (l. 13) links the event and the corresponding ac-
tion. The right side of the figure shows the corresponding DS, which are used
to either check the event or perform the action. Type safety is ensured by the
CD. The @-notation specifies the point in time from which the value is queried.
@(0) specifies the current value, whereas @(−1) specifies the previous value of
a parameter. As DTs work remotely, some information about data retrieval is
required. A tagging language [7] is used to add this information to the CD while
at the same time keeping it clean. Hence, the tagged values are available for
the DataProcessor. When configuring the injection molding machine for pro-
duction, the optimal values of the parameters highly depend on the wear of
the machine, and environmental influences. To this end, usually, a series of ex-
periments with varying parameter values are evaluated. The DT architecture
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design of experiment VarySwitchOverVolumeAndNozzleTemp {

factorized = fully 

// injection phase

param StageCountInjectionPhase = 2 

param SwitchOverVolume = (min = 39, intermediate = 40.5, max= 41), 20

param InjectionFlow = 30.0, 31.0

param InjectionPressure = 800.0, 800.0

param TemperatureFeedingZone = 40

param CylinderHeating1         = 210.0

param NozzleTemperature = (min = 215.0, max = 218.0)

// dosing phase

param StageCountDosingPhase = 2  

param DosingVolume = 80.0

param BackPressure = 150, 145

// ...

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

DoE

fully factorial design method

second stage with
a fixed value of 20

first stage with variable 
values between 39 and 41

Fig. 5. Fully factorial design of experiment for varying switch-over volumes and nozzle
temperatures.

automates the design of such experiments by providing the modeling language
DoE. The language supports the fixed or variable assignment of parameter val-
ues, optionally configuring the number of adjustment and measuring cycles, and
several factorial design methods, including fractional factorial designs [4]. When
a DoE model is provided, the Reasoner manages the optimal and automated
execution of the trials.

Fig. 5 shows the DoE for varying the switchover volume (l. 6 first stage)
and nozzle temperature (l. 11). As the factorial design method is set to fully

(l. 2), the plan represents 32 = 9 (all combinations of three variable values
for the two parameters) different parameter settings. A value can be assigned
directly to a parameter or is described variably with a minimum, an intermediate
value, and a maximum. The intermediate value is inferred as the average if
only a minimum and maximum is specified (l. 11). Furthermore, in practice,
some parameters are finely adjustable in several stages. BackPressure (l. 15)
has a value of 150 bar in the first stage and 145 bar in the second stage. The
Reasoner orders all resulting parameter settings such that the overall number of
changes in temperature values between consecutive settings is minimized. Thus,
it optimizes the resulting work piece and reduces production and waiting times.
Closely related to the DoE is the configuration and accessibility of the parameters
on the actual machine. The provided interfaces across different machines and
domains vary, but more and more machine manufacturers implement OPC-UA
or a respective specification as standard communication interface. We developed
the OPCDL that provides the definition of OPC object nodes. Additionally,
the model designer has the option to specify connection information, including
authentication and encryption aspects.

Fig. 6 shows the parts of the OPC-UA interface of an all-electric injection
molding machine of the type ARBURG ALLROUNDER 520 A 1500 that is
used in the field test. Login, endpoint, and encryption information are stated
to enable establishing a connection to the machine (ll. 2-8). An OPC object
node is provided also (ll. 10-22). It comprises all important information about
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opc interface arburg520m {

endpoint  "opc.tcp://URL:4880/Arburg"

auth { 

user "foo" 

password "bar“ 

}

security  none

encryption binary

1

2

3

4

5

6

7

8

OPC UA connection 

information

// opc nodes

node InjectionFlow1 {

nodeID 201090

nameSpaceIndex 2

browsePath /ARBURG/InjectionUnits/

Unit1/Injection"

manufacturerID "Q305"

description "Injection Flow for 

Phase 1"

type FLOAT

min 0.0

max 394.0

} // ... 

}

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

OPC

Fig. 6. OPC UA Description Language model describing OPC object nodes.

the node, such as the nodeID and the type. The properties min and max help
the Reasoner and Executor to detect an invalid value before sending it to the
machine. The manufacturerID is not required for the communication with the
machine but usually known and used as term by the machine operator and
mechanical engineers. The node InjectionFlow1 (l. 10) corresponds to the first
stage of the DoE in Fig. 5 (l. 7, first value). Both models, DoE and OPCDL, are
automatically linked in the Executor based on the names of the DoE parameters
and OPC nodes.

6 Case Study

Injection molding requires time-consuming experiments to determine the ideal
settings to run a reproducible and high-quality production process. A central
composite design for three variating parameters already takes 15 operating points,
each with several process cycles to run until the injection molding machine
reaches a steady state and additional process cycles and parts produced for
the actual measuring of data and quality criterions. Therefore, a digital twin is
necessary that is capable of generating and executing DoEs autonomously and
evaluating the resulting influences.

The proposed architecture supports the desired purpose as the developed
DT is generally capable of performing experiments autonomously. Based on an
analysis focus for specific parameters, the DT generates a DoE and suggests ap-
propriate upper and lower values. Additionally, the twin arranges the planned
trials in such a way that changes between the parameters of each trial are min-
imal. The order of trials is crucial, as, e.g., temperature variations require some
time for balancing and, thus, should be minimal. At the current proof-of-concept
status, the DT implementation accesses the control of the injection molding ma-
chine by ARBURG. Via OPC-UA, it sets the respective values for running an
operating point of the DoE. Currently, an operator still has to finally start the
process and accompany it, while the DT changes parameters in the ongoing pro-
cess. For data gathering, the DT connects to the Kafka Broker and gathers data
about, e.g., the injection phase as a digital shadow.

331



In our case study, the DT investigates the optimal values injection phase,
where the significant parameters are the injection flow, nozzle temperature, and
switchover volume. The injection flow defines how fast the machine injects plas-
ticized material in terms of volume per time. The nozzle temperature describes
the temperature at the nozzle through which the machine injects material into
the mold cavity. The switchover volume specifies the volume for a phase transi-
tion from injection to holding pressure to occur. The DT automatically designs
experiments that test different values for these parameters. The DoE variates
the injection flow from 30 cm/s to 50 cm/s, the nozzle temperature from 220
C to 260 C and the switchover volume from 10 cm to 20 cm. In the upcoming
developments, the DT will analyze the machine and process data it gets from the
Kafka Broker and parameterizes a static process model (e.g., regression model).
The first estimation for a local optimum can thereby be derived and set as an
operating point with ongoing data monitoring as a continuous digital shadow.
However, further CPPS components like the linear handling robot and the weight
control need, therefore, to be automated.

7 Discussion

The presented methodology and reference architecture enable the automated
generation of a DT for setting up and executing a DoE on an injection molding
machine. The DT gathers relevant data and is able to transmit commands to
the machine in order to make changes to its current settings. The DT is thus
capable of detecting events and reacting to these. However, a fully-automated
production run cannot be initialized as an operator is required to access physical
controls. Respective signals cannot be set digitally as the machine denies write
access to these values. The current technical implementation furthermore only
covers a proof-of-concept state. Further integration of and interconnection with
additional assets, like a tempering unit or a weight control, needs to follow, as
must enhanced automation, in order to give the DT extensive control access.

However, the model-driven approach of the architecture highly supports ex-
changeability and flexibility. For example, if in another setup, we want to exam-
ine the machine data and adapt the injection molding process in real-time, an
exchange of the Reasoner component (Fig. 2) is required while leaving the other
parts of the architecture unaffected. The Reasoner itself, on the contrary, has
to be developed and implemented manually for specific use cases as various ap-
plications of DTs for CPPS exist. In the case study, we realized the execution of
a DoE but in other scenarios, DTs have different behaviors and goals. Another
entry barrier for using our reference architecture and methodology is the use
of domain-specific languages. They are tailored to support the specification of
DTs but in other fields of application different notations might be common and
therefore, modeling relevant data elements and behaviors might be challenging.
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8 Related Work

In the field of Industry 4.0, Internet of Things and Internet of Production, there
exist various application domains of DTs. In the automotive domain among oth-
ers, [6] presents DT approach addressing safety, maintenance and reliability of
parts or built-in systems of vehicles. Furthermore, the prediction of potential
future actions of neighboring vehicles in order to increase safety is presented
in [3]. [1, 25, 30] on the contrary address smart shopfloor management. Linking
of human-based production tasks [18], geometry assurance in individualized pro-
duction [24], and parallel controlling of smart workshops [15], and the integration
of edge, fog and cloud computing in smart manufacturing [19] shows the diver-
sity of DT in manufacturing. All DTs mentioned above represent very specific
and individualized solutions to the respective problems. Contrary to this, the
DT reference architecture presented in this paper is highly flexible and supports
reusability for different use case scenarios. It is adaptable to all kinds of problems
and domains. The model-driven development process enables automating major
parts of the development process and thus reduce manual effort for adapting the
DT for new CPPS.

Injection molding represents a relevant use case for realizing smart produc-
tion processes. Previous work in the Cluster of Excellence at RWTH Aachen
University and at the Institute for Plastics Processing have already elaborated
data-driven approaches for process setup [10–12,26]. Artificial Neural Networks,
therefore, are trained with simulation data to learn about parameter correla-
tions from engineering models. Each process point of the previously simulated
DoE is conducted at the real production system. The resulting data is then fed
back to the Neural Network for post-training and adjusting the estimations. The
methodology has already been implemented as a closed-loop system that uses au-
tonomously conducted DoEs for targeted data gathering and post-training [21].
However, the implementation caused high effort for a single application scenario
that serves now as starting point for autonomous code generation and for devel-
oping self-adjusting DTs.

9 Conclusion

We have presented a model-driven reference architecture and DSLs to realize
reactive DT for Cyber-Physical Production Systems. The reference architecture
is specified in MontiArc and thus facilitates the exchangeability of components
of the DT. The presented method relies on models describing the DT’s situations
(events) and reactions. We, therefore, introduced a DSL to specify events that
occur in the CPPS and how the twin should react to these events. Furthermore,
we presented a DSL for specifying the communication with the CPS via OPC-UA
that facilitates connecting MontiArc models with embedded behavior models to
manufacturing CPS. We evaluated the described methodology for automating
experiments that determine an ideal operating point for an injection molding
machine. Thus, we showed that the DT reference architecture serves as a starting
point for systematically developing DTs for injection molding. In the future, we
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plan to apply our reference architecture and its DSLs to different manufacturing
domains to improve the usage of manufacturing equipment and resources. This,
ultimately, can reduce resource consumption, manufacturing time, and cost.
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ABSTRACT
Digital twins emerge in many disciplines to support engineering,
monitoring, controlling, and optimizing cyber-physical systems,
such as airplanes, cars, factories, medical devices, or ships. There
is an increasing demand to create digital twins as representation
of cyber-physical systems and their related models, data traces,
aggregated data, and services. Despite a plethora of digital twin
applications, there are very few systematic methods to facilitate the
modeling of digital twins for a given cyber-physical system. Existing
methods focus only on the construction of specific digital twin
models and do not consider the integration of these models with the
observed cyber-physical system. To mitigate this, we present a fully
model-driven method to describe the software of the cyber-physical
system, its digital twin information system, and their integration.
The integration method relies on MontiArc models of the cyber-
physical system’s architecture and on UML/P class diagrams from
which the digital twin information system is generated. We show
the practical application and feasibility of our method on an IoT case
study. Explicitly modeling the integration of digital twins and cyber-
physical systems eliminates repetitive programming activities and
can foster the systematic engineering of digital twins.

CCS CONCEPTS
• Software and its engineering → Architecture description lan-
guages; Integration frameworks; • Computer systems organi-
zation → Embedded and cyber-physical systems.
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ital Twins, Information Systems, Software Architecture
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1 INTRODUCTION
Motivation. There is an increasing demand for the fast and agile
creation of digital twins [56, 67], namely digital representations
of cyber-physical systems (CPSs), in a variety of disciplines, e.g.,
marine [33, 39, 70], smart manufacturing [68, 69], avionics [35, 41],
building information and energy management [21, 31, 40], auto-
motive [10, 11] or health care [15, 32, 37]. Such a digital twin (DT)
comprises models, data traces, (aggregated) data representations,
and services to represent, monitor, control, or even optimize the ob-
served CPS. Digital twin information systems (DTISs) with a set of
graphical user interfaces provide a convenient and effective way to
manage a CPS [34]. The DTIS would be responsible for displaying
the data and allowing for interaction with both users and the CPS.
The CPS then handles all the cyber-physical elements and shares
its data with the DTIS. As such, DTISs can serve as viable bases for
representing and monitoring CPSs, i.e., acting as their DTs. Clearly,
the DTIS and CPS have to share a great number of interfaces to be
able to communicate about data and models.

Open Challenges. Until now, large parts of the connections be-
tween such interfaces had to be crafted manually. These implemen-
tation tasks do not require high cognitive performance of the devel-
opers but are, due to the number of interfaces, time-consuming, and
hence, error-prone. As the tasks and the artifacts to be developed
are highly repetitive, this is a good candidate for improvements [64].
Following the idea of model centered architecture [43, 44], mod-
els can be used for the flexible definition of any kind of system
interfaces and communication. Through making these interfaces
and their connections explicit in suitable models, creating these
repetitive artifacts can be automated. This improves efficiency and
consistency in engineering DTs for CPSs. Although model-driven
software engineering (MDSE) provides the necessary methods to
generate these connections, these methods have not yet been ap-
plied to integrated development and connection of DTs to CPSs.

Contribution. In this paper, we address the challenge of reducing
the effort for engineering the communication interfaces between
cyber-physical systems and digital twins implemented as infor-
mation systems. To this end, the paper conceives a model-driven
method for the integration of CPSs andDTISs using a novel, domain-
specific tagging language that decouples the development of both
systems. This separates the concerns involved, and many related
development tasks can then be fully automated.

Our contribution, hence, consists of

• A development process for the model-driven integration of
CPSs and DTISs.

• A model-driven solution for the generative extension of
architecture models and class diagrams (CDs) with elements
that keep their data synchronized.
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• A method for clearly separating business logic and synchro-
nization infrastructure in model-driven systems using DTs.

Structure of the paper. In the following, Section 2 introduces
preliminaries on concepts, modeling languages, and tools used in
the remainder. Section 3 presents the requirements for our sys-
tem. Section 4 introduces our running example, the automatic fire
extinguishing system, and shows how it can be represented with
different types of models. Section 5 presents how to enhance mod-
els with further information about component communication and
how to generate the synchronization infrastructure between a DTIS
and the corresponding CPS. Section 6 shows the application of our
method in a case study. Section 7 relates our approach to other
approaches and Section 8 discusses it. Section 9 concludes.

2 BACKGROUND
This section introduces our notion of digital twins, the MontiArc
architecture description language, which we leverage to model the
architecture of CPSs, the MontiGem code generation framework
for the efficient engineering of DTISs, and the tagging language
framework used to combine the CPSs with the DTISs.

2.1 Digital Twins
DTs are digital representations of cyber-physical assets or processes
that enable advanced control, decision making, and optimization.
They are used in a variety of domains, including avionics, automo-
tive, and smart manufacturing [12, 26, 68].

While the use of DTs promises to improve the use of CPSs in
many ways, intensional definitions of DTs are rare and vague, such
as (1) “An always in sync digital model of existing manufacturing
cells throughout the life cycle” [66], (2) “[. . . ] virtual product models,
which are frequently referred to as DTs” [60], or (3) “[. . . ] a set of
virtual information constructs that fully describes a potential or
actual physical manufactured product from the micro atomic level
to the macro geometrical level” [26]. Such approaches to definitions
often use the term model—opposed to the commonly accepted
definition of Stachowiak [63]—in a sense that the reduction property
(i.e., themodel is an abstraction of the original for a specific purpose)
cannot be adhered to. Often, these definitions also focus on very
specific applications, such as “manufacturing cells” or “product
models.” Hence, a commonly accepted definition still is lacking.

Based on a joint effort within the German “Internet of Produc-
tion”1 cluster of excellence research project of 200 researchers of 25
departments conducting research in artificial intelligence, computer
science, innovation research, labor science, mechanical engineer-
ing, and production technology [61], we conceived the following
definition on the constituents of DTs that is liberated from specific
applications, focuses on its contents, and separates data and models:

A DT of a system consists of a set of models of the system, a set
of contextual data traces and/or their aggregation and abstraction
collected from a system, and a set of services that allow using the data
and models purposefully with respects to the original system.

From this, it follows that (1) A DT is not a model itself: instead
it comprises models of the system it represents. These can be the
engineering models used to build the developed system, models
derived from these, or abstractions of the data traces observed
1Internet of Production: https://www.iop.rwth-aachen.de/
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by the DT. (2) A DT can be made active by invoking its services,
which may comprise databases, user interfaces, analyses, and even
the interaction with other systems. (3) A DT leverages its models
and data traces to converge the observations coming from the
represented system and from itself.

This supports the investigation of a variety of DTs, such as
development digital twins used during the development of the
(to be) represented system, usage DTs that represent the system
as operated, diagnostic DTs that support detailed analysis of the
represented system in its context, and many more.

In this respect, our contribution focuses on efficiently modeling
DTs comprising data structures representing properties of CPSs by
relating interfaces of the CPSs’ architecture models to data struc-
ture properties. The data structures are used by a DTIS that may
aggregate and abstract this data prior to visualization and further
use. These DTs offer services through their software architecture
as well as through human interaction with the DTIS.

2.2 MontiArc
MontiArc [18, 27] is an extensible [17, 57] architecture description
language [45] for the efficient engineering of CPSs. The language
comprises modeling elements for atomic and composed component
types that exchange messages via the directed and typed ports
of their interfaces. Atomic component types yield embedded be-
havior (e.g., automata) models or general-purpose language (GPL)
implementations that define their behavior directly. Composed
components are hierarchically composed and yield topologies of
subcomponents. Hence, their behavior emerges from their subcom-
ponents’ behavior.

Figure 1 illustrates MontiArc’s most important modeling ele-
ments on the software architecture for a smart home: the system
boundaries are defined by the SmartHome component type that
contains ten subcomponents of different component types, such
as the subcomponent mic of component type Microphone. The
subcomponents mic, light, and doorCam sense the smart home’s
environment and send their data either into post-processing compo-
nents (such as speechRec or faceDet) or directly into the central
component assistant. Based on these inputs, the central controller,
i.e., the assistant, decides on the next actions and activates the
actuators fex, bedroomLight, and lock on the right.
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MontiArc supports various features to facilitate architectural
programming, such as generic data type parameters for compo-
nent types, interface components, component type inheritance,
component parametrization, injection of component instances into
composed components, or dynamic reconfiguration [29]. In Fig-
ure 1, the component type Camera, e.g., defines a generic data type
parameter that can be used to define the data type of its single out-
going port. For the component instance doorCam, this parameter
bound to the data type Image. Camera, as well as the component
types Microphone and LightSensor, also is an abstract component
type that does not yield an implementation by design. Instead, this
type is replaced by a platform-specific component type that extends
it and yields a specific implementation before deployment.

MontiArc models can be translated to Java [58] for educational
purposes, to Python [4] for service robotics, and to C++ for Internet
of Things (IoT) systems. Through modular language engineering,
the MontiArc language and its code generation capabilities can be
extended with novel language elements and transformations [17].

2.3 MontiGem
MontiGem [6, 23], the generator framework for enterprise infor-
mation systems, uses models to generate complete (enterprise)
information systems [24]. Different UML/P [59] languages, such as
CDs and the object constraint language (OCL), are used as sources.
Further domain-specific languages (DSLs) are incorporated for code
generation such as the GuiDSL, a graphical user interface (GUI)
description language. Using these models, MontiGem generates
the data structure, database schema, and (web-)pages, including
corresponding data views (ViewModels). Together with the basic
runtime environment for the frontend, i.e., the user interface, and
the backend, i.e., the data processing, of the information system (IS),
the generated code forms an executable application which is ex-
tendable by handwritten code.

We derive the database schema and data structure in front- and
backend from CDs. This ensures consistency between front- and
backend by construction. We use OCL as a restriction language on
the data structure and generates validators for data inputs. Com-
mands handle the communication between front- and backend and
also depend directly on the CD input. Additional structure and
behavior commands can be defined. GUI models describe the lay-
out of the generated (web)page, as well as the used ViewModels.
Those ViewModels map the data structure to specified GUI mod-
els enabling the generation of views with specific extracts from
the data. This enables defining the ViewModels in place, where
they are to be displayed. To improve usability and speed up the
development process, a set of standard GUI models does not need
to be defined manually but can be generated based on the domain
models (CDs). This provides an overview of all used data classes
but still allows for adaption and extension of the (web)pages using
handwritten GUI models and/or code. Additionally, we use a tag-
ging language [25, 42] to enrich the domain model described in the
CD. This DSL enables the use of different generator configurations,
i.e., what should be generated, or adds implementation-specific
information to CD or GUI models.

The MontiGem generator framework enables the generation of
a complete IS using only domain-specific CDs citeGMN+20 but
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allows to use further DSLs for detailed behavior. To allow the inclu-
sion of further DSLs, e.g., behavior and goal models [49] or privacy
concepts [48] is in discussion. By now, the resulting IS presents
stored data and provides operations to create, edit, or delete data
sets. MontiGem is used in several application areas, such as finance
cockpits [7, 23], IoT or energy management dashboards. Each spe-
cific implementation adapts and extends the generated code with
domain-specific logic and additional functionality.

2.4 Tagging
In this work, we use tagging to connect CPSs with their DTs. Tag-
ging [25] is a language engineering technique that enables the non-
invasive annotation of existing models of a given base language
through models of a domain-specific tagging language automati-
cally derived from the base language. Through this, domain experts
can reuse established syntax of the base language in the tagging
models for annotating it and do not need to convolute the base
model with these annotations. In consequence, this increases the
reusability of the base models.

As depicted in Figure 2, tagging is based on a common tag base
language (bottom left), which predefines various tag types, and
a common tag schema base language (bottom right), which pre-
scribes the structure of tag schemata. Based on these and the base
language (bottom middle), the tagging code generators derive a
domain-specific schema language and a domain-specific tag lan-
guage. Models of the former govern the type, number, and shape
of tags in conforming tag models. This, e.g., enables annotating the
base models with non-functional properties [42] or adding commu-
nication information [20]. In general, for a single base language,
multiple tag schemata can be defined, and models of the domain-
specific tagging language then are validated against the schema
they reference. Models of the domain-specific tag language refer
to a base model they annotate and to a tag schema model they
conform to.

3 REQUIREMENTS
Within the last decade, we have gained experience in various do-
mains including avionics [36, 72], automotive [9, 22], robotics [5,
57], smart homes [50, 65], and manufacturing [47, 48, 71]. These
domains are facing the same challenges in creating a connection
between a CPS and a DTIS. To automate engineering of these con-
nections, we identified the following requirements based on an
analysis of popular IoT tools such as Arduino IoT Cloud, Amazon
AWS, or Microsoft Azure (see Section 7 for details):
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(R1) The CPS and the DTIS shall be able to synchronize any data
type known to both the CPS and the DTIS. Until now, integrat-
ing CPS and DTIS demands for error-prone handcrafting to
map each datatype from one system to the other one from
various languages.

(R2) The communication infrastructure that keeps the CPS and the
DTIS synchronized shall be completely generated from corre-
sponding models. Until now, the integration of both demands
repetitive handcrafting and is error-prone.

(R3) The handwritten artifacts (e.g., models, code) specifying the
CPS and DTIS shall not contain information about their inte-
gration and the integration of the systems shall not presuppose
the content of the handwritten artifacts. Component devel-
opers and system architects of the CPS and frontend and
backend developers of the DTIS should be able to work in-
dependently on the design of these systems, including mod-
eling aspects. R3 ensures the independent modeling of CPS
and DTIS. In addition, R3 ensures that the integration can
be applied to legacy artifacts that were not created with DTs
in mind.

(R4) The DTIS shall enable users to manually override the specified
behavior of the CPS temporarily or permanently. This is im-
portant to be able to handle exceptional situations. Thus, a
user’s manual intervention should be possible and override
the automatic behavior of the system.

(R5) The CPS should support heterogeneous platforms as long as
they can communicate with the Internet.Toworkwith platform-
independent versions offers hardware flexibility.

The following sections discuss each of these requirements in
detail and show how these requirements are met.

4 EXAMPLE: AUTOMATIC FIRE
EXTINGUISHING SYSTEM

In IoT environments, systems need to interact with the real world
and connect to DTISs to receive the goals of their users. In the
following, we use an automatic fire extinguisher in a smart home
environment (cf. Figure 1) as a running example. This example
is motivated by Google’s fire alarm system Nest Protect2—though
our example is simplified for better comprehension. Our simplified
version of the architecture is based on the fire alarm architecture
shown in [46]. Figure 3 depicts the models used to specify this
automatic fire extinguishing system: (a) the MontiArc architecture
of the CPS and (b) a CD describing the DTIS’s data structures.

The CPS architecture shows two sensors (top), a central con-
troller (middle), and two actuators (bottom). The sensors measure
the carbon monoxide concentration in air and the current temper-
ature. This raw data is sent to the central controller, which then
decides whether there is a fire or not. If a fire is detected, the con-
troller can react by turning on the sprinklers or triggering a fire
alarm. To do so, the controller sends commands to the actuators via
its outgoing ports and the attached connectors. While the sprinkler
only needs to be prompted to switch on, the Alarm component
also requires a sound file with the alarm tone and a volume level
at which the alarm should be played. The architect, however, did

2Nest Protect: https://store.google.com/product/nest_protect_2nd_gen_specs
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(a) Underspecified CPS architecture describing a fire extinguishing system that
detects fire based on smoke and temperature sensors and uses this information to

trigger an alarm and turn on a sprinkler
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(b) Domain model of the DTIS describing the data structure used to monitor the fire
extinguishing system in online platform

Figure 3: Automatic fire extinguisher system. The MontiArc
model (a) describes the logical software architecture of IoT
devices. The CD (b) describes the IS data model.

not specify how this information should be provided. This under-
specification is reflected by the two ports on the left side of the
alarm component that are not connected to another component.
Allowing such underspecification is crucial in the development
process as it allows to defer design decisions to a later stage of the
development process where more information about the system is
available. However, to generate code from the architecture model,
the gaps resulting from underspecification have to be filled.

The DTIS domain model shows four data classes that might be
used in a DT of the CPS. For example, turning up the volume of
the Speaker in the domain model should cause the volume of the
real Alarm to increase (R1). Similarly, if the temperature sensor
detects a temperature change, the temperature information in the
DTIS needs to be updated. While the DTIS’s domain model repre-
sents a view on the same system, the data structure is different,
as the DTIS may contain information that is not required by the
CPS architecture, omit data used by the CPS, and structure the data
differently. For example, the DTIS domain model also includes a
Date nextService storing the due date of the next required main-
tenance. Though this might be valuable information to the user
who interacts with the DTIS, the sprinklers themselves do not need
this information.

The two models are used as input for MontiArc and MontiGem
to generate code that is executed on the IoT devices and in the
backend of the DTIS. However, these models do not define the
interfaces between the CPS architecture and DTIS, i.e., the CPS
does not know how to exchange data with the DTIS and vice versa.
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mations create the necessary interfaces between the architecture and the IS.

Implementing connections between both systems is a repetitive
and time-consuming task. Clearly, the automatic generation of such
interfaces and their automatic integration into existing systems is
an attractive option for the development of such systems (R2).

5 INTEGRATING CYBER-PHYSICAL AND
INFORMATION SYSTEMS

Our process for developing integrated CPSs and DTISs consists of
four activities (cf. Figure 4), the first two of which can be performed
in parallel: (1) Developing the CPS architecture; (2) Developing the
DTIS; (3) Integrating the CPS with the DTIS; and (4) Generating
the CPS and DTIS.

The first two steps consist of developing a set of models from
which the software running on the CPS’s devices and the DTIS can
be generated. The two systems can, but do not have to, be developed
independently of each other (R3). As the systems may be developed
independently of each other, our process can be applied to already
existing systems as well as to greenfield, i.e., newly developed,
systems including both the development of the CPS and the DTIS.
In the third step, the models generated in the first two steps are
integrated. The fourth step generates GPL code from the models.
This is fully automated.

Step (1): The CPS architecture development starts with devel-
oping a set of reusable software components—in our case using
the MontiArc architecture description language. Next, the architect
connects the components to create an integrated architecture of
the CPS. While first developing a set of reusable components inde-
pendently of the architecture is useful, it is not required to apply
our method. It is also possible to start developing architectures
for specific products and then later decide which components are
worth maintaining independently of the product.

Step (2): The DTIS development includes the development of
the front- and backend. The frontend depends on accessing data
provided by the backend. Nevertheless, the front- and backend can
be developed (partly) in parallel. In our case, the DTIS is developed
using MontiGem, i.e., we use class diagrams to describe the domain
model, i.e., the data structures used by the backend.

Step (3): Once the CPS architecture and the DTIS have been
developed, the integrator tags ports of the CPS architecture with
attributes of the domain model and vice versa. This tagging is
conceptually based on [25]. Section 5.1 describes this in more detail.

Step (4): Using the tagging created in Step 3, the CPS archi-
tecture, and the DTIS’s data model as input, a model-to-model
transformation extends the CPS and DTIS by the necessary com-
munication and synchronization infrastructure. This step is fully
automated (R2). The process for transforming the CPS architec-
ture is described in Section 5.2, and the process for transforming
the DTIS is described in Section 5.3. The transformation results
in integrated product models using the same MontiArc and class
diagram languages that were used by the input models. This allows
forwarding the resulting models of the integrated CPS and DTIS
to MontiArc’s and MontiGem’s code generators that produce the
necessary GPL code to be executed on the CPS devices and the
server that provides the DTIS.

5.1 Tagging CPS Architectures and IS Domain
Models

DTs need to stay synchronized with the original system. While the
logic that the DTIS may apply to the data of the DT is application-
specific, the task of keeping the data values of two systems in
sync is repetitive and, therefore, automatable. If both the CPS and
the DTIS are developed in a model-driven fashion, tagging can be
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utilized to select the model elements of both systems that should
stay synchronized.

The tagging model serves two purposes: First, it specifies how to
match DTs, i.e., objects instantiated from the domain model, to the
physical devices they represent. Secondly, it specifies which ports
of the CPS architecture should connect to which attributes of the
domain model. Ports are architecture elements that components
use to exchange data with other components. Hence, they are ideal
candidates for injecting data into or extracting data from the system.
Attributes in the domain model are used to store the actual data
values. Accordingly, tagging attributes of the domain model and
connecting them to ports of the architecture allows specifying
which data reflects the state of the CPS. Figure 5 shows such a
tagging model.

The two purposes of the tagging model leave two tasks for the
integrator (Figure 4) who is responsible for connecting the CPS
and the DTIS: (1) Identify which attributes of the domain model
are designed to store device identifiers or detect there is no such
attribute for a certain device type. (2) Select which attributes of the
objects instantiated from the domain model should be synchronized
to which ports of the CPS architecture.

For the first task, the integrator needs to find out which attributes
of the domain model are intended to store device identifiers of the
CPS. If the integrator finds an attribute that stores a device identifier,
(s)he specifies it as an identifier in the tagging (ll. 4-5 of Figure 5).
Manually specifying the identifier enables the user of the DTIS to
create digital twins for future devices. If the user sets the values of
these attributes to hardware identifiers of the devices, the system
can match the actual devices to their DTs once the devices first
go online. Here, objects of the Speaker class are identified by the
attribute Speaker.serial, which stores the serial numbers of the
physical devices. Objects of the Sound class are identified by the
serial attribute of the Speaker object, which references the Sound.
This is possible as there is exactly one Speaker for every Sound
(Figure 3(b)).

If the integrator does not find an attribute that stores a device
identifier, (s)he can choose to automatically instantiate DTs for
devices once they first connect to the DTIS (l. 8 of Figure 5). The
auto identify keyword is followed by the qualified name of a
class from the domain model. This class is then instantiated every
time a device with a port that should be synchronized to one of the
class’s attributes first connects to the DTIS. Each physical device
is identified by a unique hardware-specific identifier of the device,
e.g., the MAC address of the network interface. The DTIS uses
this identifier to connect the ports of the architecture to the new
instance of that class, but the identifier will not be part of the data
model.

To ensure that any communication with a device is always as-
signed to the same digital twin, the DTIS must know a permanent
device identifier for each device. For the second task, the integrator
needs to specify which attributes of the domain model should be
synchronized to which ports of the architecture. The remaining
lines of Figure 5 (ll. 9-18) show how to connect ports of the CPS
architecture to attributes of the domain model of the DTIS and
vice versa. If data from the CPS architecture should be sent to the
DTIS, the CPS architecture will update the DTIS whenever a new
message is sent through the port. For this, the integrator specifies

// Objects of the Sound and Speaker classes serve as 

// digital twins for CPS devices that use the value of 

// Speaker.serial as identifier

identify Sound    by attr Speaker.serial

identify Speaker  by attr Speaker.serial

// Automatically create and link a digital twin when 

// a device first connects to the IS

auto identify FireDetector

// Send data from the CPS architecture to the IS

connect port smokeSensor.value

--> attr FireDetector.carbonmonoxy

connect port temperatureSensor.value

--> attr FireDetector.temperature

// Send data from the IS to the CPS architecture

connect attr Sprinkler.on --> port sprinkler.on

connect attr Speaker.on --> port alarm.on

connect attr Speaker.volume --> port alarm.volume

connect attr Speaker.sound.audio --> port alarm.sound

1
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Figure 5: Taggingmodel connecting the architecture and the
domain model from Figure 3. Ports of the architecture are
mapped to attributes of the domain model and vice versa.

the sending port and the receiving attribute (ll. 9-13). To this ef-
fect, a message containing the fully qualified name of the port, the
identifier of the device, and the new value is generated and sent to
the DTIS. Inversely, if updates of an attribute are to be forwarded
to a port of the CPS (ll. 14-18), the DTIS generates such a message
whenever the attribute in the DTIS is updated and sends it to the
corresponding device.

5.2 Cyber-Physical System Architecture
Transformation

Our method leverages model-to-model transformations to extend
(possibly underspecified) CPS architectures by components that
carry out the communication and synchronization with the DTIS.
Figure 6 conceptually depicts this transformation. The input ar-
chitecture consists of a sensor, a controller, and an actuator. The
tagging defines with ports need to send data to or receive data
from the DTIS. Accordingly, for each such tag, a component is
generated. The transformation distinguishes between three cases:
Tagging (1) outgoing ports, (2) incoming ports without connectors,
and (3) incoming ports with connectors.

Case (1): The tagged port is an outgoing port that should send
data from the architecture to the DTIS. The generated sender com-
ponent (Figure 7) has an incoming port that takes data of the
type given to the component as a generic type parameter (R1).
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The generator uses the type of the tagged port to instantiate the
sender component and, thus, ensures matching types. A gener-
ated connector then connects the tagged port to the generated
component. As soon as the generated sender component receives
data, it serializes and forwards the data, together with identifiers of
the emitting device and port, to the DTIS. The Sender component
specifies the NetworkSender as an interface component. This com-
ponent is exchanged during the deployment process by a hardware
platform-specific version. This ensures portability across hardware
platforms (R5) by exchanging the interface components that re-
quire platform-specific network functionalities by platform-specific
variants during deployment of the architecture.

Case (2): The tagged port is an incoming port without connec-
tions. The process for injecting data into the architecture is inverse
to the process of extracting data: If the tagged port should process
data from the DTIS, the generated receiver component (Figure 7)
has an outgoing port with a generic type (R1). The generator again
uses the type of the tagged port to instantiate the generated compo-
nent and, thus, guarantees that the type of the port of the receiver
component matches the tagged port. A generated connector con-
nects the outgoing port of the generated receiver component to the
tagged (incoming) port. If the NetworkReceiver component inside
the generated receiver component receives data from the DTIS, it
creates a message on its outgoing port that is then deserialized and
forwarded to the tagged port.

Case (3): The tagged port is an incoming port with a connector.
In this case, a more complex injector component is generated that
replaces the connector and synchronizes incoming messages with
the DTIS. This injector has two subcomponents: A transceiver and
a multiplexer (MUX). The transceiver can be realized by combining
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Figure 8: Additional endpoint for the example domain (Fig-
ure 3(b)). Each mapping has its own adapter to transform
given data. Generated elements illustrated in bold.

the generated sender and receiver components from the previous
two cases (Figure 7). This is done by using them as subcomponents
of the transceiver, where connectors forward the data to or from
the ports of the enclosing transceiver component. The generated
sender and receiver keep the device synchronized with the DTIS.

The MUX gives manual decisions of the user priority over au-
tomatic decisions by the CPS, as the user’s manual intervention
expresses the explicit decision to override the automatic behavior
of the system (R4). If the MUX receives valid input from both of
its incoming ports, the port connected to the DTIS is preferred.
The MUX does not accept any value from the original system until
the transceiver component explicitly releases the connection by
sending an empty message. This is done to prevent immediately
overriding the user’s messages.

5.3 Information System Transformation
The generated sender and receiver components of the CPS commu-
nicate with endpoints of the DTIS. Endpoints store the necessary
communication-related information about the connection to the
CPS (cpsConnect in Figure 8), e.g., a socket. Moreover, an endpoint
maps a port of the CPS architecture to the respective adapter of the
DTIS. Adapters are responsible for processing incoming data and
monitoring data updates in the DTIS. For each connect statement
of the tagging, we extend the DTIS with an adapter.

Depending on the tagging, the adapter either processes data
received from the CPS (ll. 10-13, Figure 5) or monitors data updates
that need to be sent to the CPS (ll. 15-18, Figure 5). An adapter that
processes data received from the CPS determines to which object in
the data source of the DTIS, e.g., database, the data belongs. Figure 9
describes the process of how an object is loaded. The first step is
to find the adapter that knows how to load the data from the data
source and which parts (attributes) of the object to load. If the
adapter is found, the object can be loaded directly. If the adapter
cannot be found, that is, it has not yet been created, it is created
together with the object in the DTIS data source and connected to
it. Now that the adapter is created, the object can be retrieved. After
the loading of the connected data object, the adapter then updates
the data source accordingly. An adapter that informs the CPS about
data updates listens to changes in the data objects. Changes in data
objects can either originate from a user or external sources, e.g.,
data imports. On every change, the adapter creates a message and
forwards the data to the CPS via the endpoint.
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Endpoints handle the DTIS’s communication with the CPS and
can be created either manually by the user or automatically when
a CPS device first connects to the DTIS and no corresponding end-
point exists. The connection information of a device (cpsConnect)
is set when the device first connects to the DTIS. As IoT devices
may be mobile and the network topology cannot be assumed to
be static, the endpoint updates this information whenever a CPS
sends a message to the DTIS. To enable these updates, devices of
the CPS include a unique device identifier (cpsId), e.g., a name or
serial number, in their messages to the DTIS.

This identifier can also be used to link devices to existing data
objects when they first connect to the DTIS. To this effect, an at-
tribute in the existing data class can be set in the tagging model
(ll. 4-5, Figure 5). This also enables creating DTs of devices even
before their counterparts in the CPS first connect to the DTIS. A
special variant of this is choosing an attribute of a connected ob-
ject. This only works for *-to-1-associations as the object has to be
uniquely identified. If the identifier of the CPS device is unknown
to the DTIS, a new object is created. If the tagging model specifies
automatic mapping (l. 8, Figure 5), a new object is created whenever
a device first connects.

The application itself does not need to know any of the exten-
sions to the backend data structure, because the data is transformed
by the respective adapter to match the internal data structure. The
existing data structure or database schema used by the application
does not need to be changed; it is only extended to handle the
communication (Figure 8). These extensions are non-invasive and
do not require the system to know the adapters.

6 CASE STUDY
Our case study uses the fire extinguisher example (Section 4), which
is based on Google’s Nest Protect. The goal is to build an extensible
fire extinguisher system that can be monitored and controlled at
runtime from an online dashboard. For monitoring the system,
sensor values need to be sent to a DTIS. For controlling the system,
the state of the actuators and its representation in the DTIS needs
to be synchronized and the DTIS should be enabled to influence

actuators. From an engineering perspective, the synchronization
of the systems should be realizable with as little effort as possible.
Since writing high-level communication protocols is a repetitive
task, the communication between the DTIS and the CPS should be
generated to a large extent instead of handwritten (R2). The CPS
was implemented using three Raspberry Pi 4B (R5). Two of them
were connected to a gas sensor and a siren, and one was connected
to a temperature sensor. All of them executed C++ Code generated
from MontiArc models. The sprinklers were only virtually present
to prevent damage to our laboratory.

We integrate the architecture model (Figure 3(a)) of the CPS
and the domain model (Figure 3(b)) of the DTIS using the tagging
model from Figure 5. A major advantage of our approach is that the
integration of the two systems only takes nine statements. This not
only makes very efficient use of the engineers’ time but also enables
rapid prototyping of DTs as no time is needed for implementing
communication infrastructures to keep the CPS and DTIS in sync.

Using the tagging model, we transform the CPS architecture and
extend the DTIS according to this tagging model (cf. Section 5.2).
Through this, we automatically include appropriate endpoints for
the communication with the cyber-physical devices. The result-
ing architecture (Figure 10(a)) shows generated elements in bold.
Clearly, all concepts from the original architecture are still present
in the resulting architecture except for the connectors between
the controller and the actuators. The two absent connectors are
replaced by connectors to the added Injector components that
tap the data and forward it to the DTIS. The new sender and re-
ceiver components connect to the already existing components of
the architecture to extract or inject data. Figure 3(a) shows two
underspecified ports that leave the decisions open how the Alarm
component gets the desired volume and the sound played in case
of an alarm. The generated VolumeReceiver and SoundReceiver
components eliminate this underspecification. The fact that the
original components remain unchanged ensures that the behavior
description of the components, which relies on communication via
the ports, does not need to be changed.

Figure 10(b) shows the changes in the DTIS based on the specified
elements defined by the tagging model (Figure 5). Adapters for each
mapping are added to the existing infrastructure of the DTIS. Once
again, the additions do not interferewith the system’s business logic,
but only add the ability to update the internal data objects and send
data update from the DTIS to the respective CPS. It is not necessary
to modify the system’s data- or view-logic. The added parts interact
with the preexisting infrastructure. To load data objects which are
sent to the CPS, the adapters are used to load the specific data from
the database. The adapters then transform the domain data to a
format that suits the communication with the CPS. When data is
sent from the CPS to the DTIS an adapter transforms the message
to an internal data object and stores it in the database.

7 RELATED WORK
Multiple tools support the model-driven engineering of IoT sys-
tems. ThingML [28, 51] enables defining devices and their logic
using a C-like DSL that is used to generate C, Java, or JavaScript
artifacts. Ericsson’s Calvin [54] enables defining the architecture of
IoT applications in a MontiArc-like syntax using the CalvinScript
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DSL. MDE4IoT [19] uses the Foundational Subset for Executable
UML Models (fUML) and the action language for foundational
UML (ALF) [53] to describe IoT applications and possible deploy-
ments to physical devices. SysML4IoT [30] describes how to develop
adaptive IoT systems using a SysML-based DSL. Node-RED [2] pro-
vides a graphical editor that allows connecting the in- and outputs
of software components. Node-RED comes with a library of pre-
defined components to access, e.g., Twitter or Amazon S3 cloud
storage. Similarly, the Ptolomy-based CapeCode [13] offers a user in-
terface for graphically combining software components as reusable
building blocks.

While some of these systems enable specifying message ex-
changes and serialization, they lack mechanisms for automatically
synchronizing them to DTISs or defining DTs (R2). Though it might
be possible to execute some of the actors defined in the above lan-
guages inside the DTIS, none of these languages is designed to
define a DTIS. Therefore, synchronization with the DTIS data struc-
tures is possible (R1), but requires considerable manual effort (R2)
and that the DTIS and CPS developers agree on messages or topics
for synchronization (R3). Especially, this requires the developer of
the CPS architecture to have in-depth knowledge about an already
existing DTIS and vice versa. In our approach, only the integra-
tor is required to know both systems and only on a high level of
abstraction.

Even with popular IoT solutions, such as IBM’s Bluemix Cloud
platform, connecting devices as simple as a temperature sensor, can
be unnecessarily complicated [38]. Following our method, reading
and synchronizing the values of a sensor to the data structure in
the DTIS requires only two statements in the model (cf. ll. 8-11, Fig-
ure 5). Moreover, as all of the above approaches to IoT development
platforms are based on components exchanging data with each
other, our method could be applied to any of the above systems if
the generated sender and receiver components were adapted to the
platforms’ respective interfaces.

The robot operating system (ROS) [55] serves to develop (dis-
tributed) robotic software as collections of loosely connected nodes
that perform computations and exchange messages over topics
(typed message buses). These topics can exchange messages of com-
plex data types known to participating nodes (R1) and a generic

communication infrastructure takes care of handling message han-
dling. However, sending and reacting to messages has to be hand-
written (R2) and requires developers to agree on topics (R3). As
such, ROS architectures can already represent small-scale IoT appli-
cations. While the communication infrastructure of ROS is generic,
the data types that can be communicated are, similar to our ap-
proach, defined in (rosmsg) models that resemble C++ structs. From
these, platform-specific implementations of the data types are gen-
erated. However, ROS does not feature any notion of system repre-
sentation aside from logging and debugging information that could
be considered a representation of the CPS.

AutoFocus 3 [8] is a modeling framework based on the Focus [14]
calculus to describe the architectures of embedded systems. As
such, it covers modeling from requirements to logical and technical
architectures to their deployment. It neither facilitates engineering
of DTISs to represent DTs, nor connecting DTs to themodeled CPSs.
None of the platforms provide specific infrastructure for users to
overwrite values out-of-the-box (R4).

Many popular commercial IoT platforms support the develop-
ment of digital twins but lack means for the model-driven develop-
ment and integration of CPSs and DTISs. Examples include the ar-
guably largest cloud providers: Microsoft Azure’s “device twin” [3]
and Amazon AWS’s “device shadow” [1]. Both of them exchange
data with the CPSs using a combination of JSON and MQTT to
synchronize values known to both the CPS and the cloud (R1).
Those messages can also be used for manually overwriting val-
ues (R4). Structurally, the DT services offered by Azure and AWS
resemble the tripartite division into CPS, DTIS and integration of
our development process with one important difference: While
AWS and Azure require lots of error-prone low-level programming
for communicating with the DTIS and synchronizing values, our
model-driven approach can automatically generate this infrastruc-
ture (R2). Hence, our approach decouples the business logic of
the systems from the communication and synchronization tasks
required to create a DTs. Thus, we argue that our systems are easier
to understand and maintain as the implementation of the business
logic is not cluttered with code needed by the infrastructure (R3).
In contrast, the Arduino IoT Cloud takes works at a lower level
of abstraction. It allows users to define variables of primitive data
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R5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 𝑃3

1 Only primitive data types (optionally with unit)
2 Users can set values, but devices can immediately reset them
3 Only Arduino-compatible hardware

Table 1: Comparison to related work. ✓= fulfilled, ✗= not
fulfilled, 𝑃 = partially fulfilled

types online (R1) for which it then generates the necessary code
to keep them synchronized with the Arduino IoT Cloud (R2). This,
however, pollutes the business logic with synchronization-specific
code and requires the developers to use the variables defined by
the generated code (R3). While all other tools usually only require
support for a specific GPL, the Arduino IoT Cloud is limited to
Arduino-compatible devices (R5).

While our concept is designed for combining MontiArc and
MontiGem, there is no conceptual limitation that forbids adapting
the generated MontiArc components to use the interfaces offered
by Azure and AWS. Adding support for them only requires im-
plementing cloud-specific NetworkSender and NetworkReceiver
components and adapting the DataSerializer to use the JSON
structures expected by the respective cloud (cf. Figure 7).

8 DISCUSSION
One of the main advantages of our solution is the separation of
concerns that is achieved by defining communication and synchro-
nization related structures separately from the business logic of the
application. This makes the models easier to understand because de-
velopers who encounter them for the first time can concentrate on
the business logic without being distracted by the technical details
of synchronizing values. Also, this enables generating the necessary
infrastructure to keep the CPS synchronized with the DTs. This
eliminates a repetitive and error-prone task for the developers.

Our separation of concerns comes at the cost of the integrator
needing to have a high-level understanding of models for both the
CPS and DTIS. While this is a simple task for small systems, it
can quickly become complicated as systems become more complex.
Therefore, ideally, the integrator is not a single person, but a group
consisting of at least one developer of both the CPS and the DTIS.
Commercial solutions like the “spatial graph” used by Microsoft
Azure’s DT require similar roles. In Azure’s spatial graph, each
device can contain multiple sensors producing data of a certain
type. The devices have to be aware of this information and react
to requests created based on the information in the spatial graph.
This leads to problems if there is a mismatch between the sensors

offered by the actual device and the sensors specified in the spatial
graph. Since our solution directly utilizes the models used to create
the CPS and DTIS, we can detect potential inconsistencies caused
by this integration step automatically before deploying the system.

While we think a model-driven approach to developing CPSs and
DTISs offers many advantages [16], we do acknowledge that many
real-world systems do not use a model-driven approach [62]. DTISs,
in particular, are today often programmed by hand. Therefore, it is
necessary to leave open the option of communicating with those
systems. By allowing customization of the communication mecha-
nisms through abstract components, our solution can also easily be
adapted to communicate with popular commercial solutions like
Amazon AWS instead of our MontiGem DTIS. This would be done
by providing network components (cf. Figure 7) that use the APIs
of the commercial or handwritten solutions.

In some situations, however, it might also be useful to convert
between the data types offered by the CPS and the data types
used by the DTIS. For example, the CPS might process values of
a temperature sensor given in Fahrenheit, while the DTIS stores
temperature in Celsius. Currently, the data types used by the CPS
have to match the data types used by the DTIS. As future work,
we plan to allow conversions and transformations that are applied
during the synchronization.

Furthermore, the logic of the synchronization can be further
investigated. Currently, the CPS gives priority to the messages com-
ing from the DTIS. However, the component that sends a message
to the tagged port is not aware of this process and therefore does
not change its behavior. Thus, it would immediately overwrite the
value set by the user in the DTIS. To prevent this, the user can
(temporarily) lock a value in the DTIS. As long as the lock is set,
messages from the CPS are then ignored in favor of the last value set
in the DTIS for this port. This prevents user-set values from being
overwritten by the CPS. This process, however, may not be desired
for all use cases. If the CPS should adapt its behavior to match the
user-set values, a more complex synchronization is required.

Moreover, our evaluation only shows the general feasibility of
the approach. For productive use, further investigations regarding
the scalability would be necessary. To ensure scalability on the
server side, common load distribution methods can be used. On
the CPS device side, the available processing power and network
bandwidth limit the number of values synchronized with the DTIS.

9 CONCLUSION
Creating DTs for a system comprises creating models of the sys-
tem, means to process and represent data received from that sys-
tem, and connecting the represented system to its DT. The latter
usually involves manually programming the connection using a
communication framework of choice, such as MQTT [52]. This is
tedious, error-prone, and complicates the analysis of connections.
Our method to connect DTs with DTISs facilitates their integra-
tion and separates concerns in DT development by decoupling the
development of the CPS architecture and the DTIS. The generated
infrastructure consists of consistent-by-construction interfaces be-
tween CPS and DTIS that synchronize both systems and accelerates
developing DTs for CPSs. Overall, explicitly modeling the integra-
tion can facilitate the systematic engineering of DTs.
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