

An Extensible Component & Connector

Architecture Description Infrastructure

for Multi-Platform Modeling

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom Informatiker Diplom-Wirtschaftsinformatiker

Andreas Wortmann

aus Joinville, Brasilien

Berichter: Universitätsprofessor Dr. Bernhard Rumpe
Professor Benoit Combemale, Ph. D.

Tag der mündlichen Prüfung: 12. Juli 2016

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

[Wor16] A. Wortmann:

An Extensible Component & Connector Architecture Description Infrastructure for Multi-Platform Modeling.

Shaker Verlag, ISBN 978-3-8440-4724-0. Aachener Informatik-Berichte, Software Engineering, Band 25. 2016.

www.se-rwth.de/publications/

I was born not knowing
and have had only a little time
to change that here and there.

Richard P. Feynman

Abstract

Efficient software engineering for complex systems requires abstraction, expertise from
multiple domains, separation of concerns, and reuse. Domain experts are rarely software
engineers and should be enabled to formulate solutions using their domain’s vocabulary
instead of general-purpose programming languages (GPLs). The successful integration
of domain-specific languages (DSLs) into a software system requires a separation of
concerns between domain issues and integration issues while retaining a loose enough
coupling to support reusing a DSL in different contexts.

Component-based software engineering (CBSE) aims to increase software reuse and
separation of concerns by encapsulating functionalities in components. This enables
domain experts to develop solutions separated from integration concerns. Usually com-
ponents are artifacts of GPLs, which gives rise to accidental complexities [FR07] and
ties these to specific target platforms.

Model-driven engineering (MDE) abstracts from programming by lifting models to
primary development artifacts. Models can be more abstract and better comprehensible
by using domain vocabulary instead of a GPL. Furthermore, they can be platform-
independent and translated into GPLs for different target platforms.

Component & connector (C&C) architecture description languages (ADLs) combine
CBSE and MDE to enable composition of software architectures from component mod-
els. Such models define stable interfaces required to separate domain concerns from
integration concerns. They can also employ the most appropriate DSLs to describe com-
ponent behavior and support translation into GPL artifacts specific to different target
platforms. Current research in MDE with ADLs focuses on structural modeling and re-
quires component behavior either in terms of GPL artifacts or fixed component behavior
languages. The former gives rise to accidental complexities, the latter demands that
domain experts learn modeling languages foreign to their domain.

This thesis presents concepts for engineering complex software systems with exchange-
able component behavior languages that enable contribution of domains experts us-
ing the most appropriate DSLs. The concepts are realized in a software architecture
modeling infrastructure that comprises multiple modeling languages to develop appli-
cations based on C&C software architectures with exchangeable component behavior
languages. It supports model-to-model transformations from platform-independent to
platform-specific software architectures and compositional code generation. With this, it
enables domain experts to (re-)use the most appropriate component behavior languages
and facilitates composition of domain solutions through encapsulation in components.

It also enables reusing a single platform-independent software architecture with multiple
platforms. To this effect, it combines results from software language engineering, model
transformations, and code generator development to C&C ADLs.
The main contributions of this thesis are:

• Concepts to integrate domain-specific languages into component & connector soft-
ware architectures to reduce accidental complexities, separate concerns, and facil-
itate their reuse.

• Methodical guidance to transform platform-independent into platform-specific ar-
chitectures minor effort to increase reuse of components and architectures.

• Concepts of reusable compositional code generators for specific system aspects.

• A family of modeling languages to support architecture development with ex-
changeable behavior DSLs.

• A model-driven infrastructure, based on an extensible component & connector
architecture description language that realizes these concepts.

• An evaluation of presented concepts in multiple contexts.

Employing these methodologies facilitates engineering of complex software systems
by abstracting from programming issues, separating concerns, and reusing components,
domain-specific languages, as well as code generators.

Kurzfassung

Die effiziente Softwareentwicklung komplexer System bedarf hoher Abstraktion, der
Beteiligung von Experten aus verschiedenen Domänen, der Trennung von Belangen und
eines hohen Grades an Wiederverwendung. Domänenexperten sind selten Softwareex-
perten und sollten daher befähigt werden Lösungen im Vokabular ihrer Domänen zu
entwickeln. Um dies zu erreichen wurden in der modellgetriebenen Softwareentwicklung
eine Vielzahl von domänenspezifischen Sprachen entwickelt Die erfolgreiche Integration
domänenspezifischer Sprachen in Softwaresysteme bedarf einer angemessenen Trennung
von Domänen- und Integrationsbelangen, wobei die Kopplung dieser Sprachen lose genug
sein muss um deren Wiederverwendung in anderen Kontexten zu ermöglichen.

Komponentenbasierte Softwareentwicklung versucht die Wiederverwendung von Soft-
ware Kapselung von Funktionalitäten in Komponenten zu erhöhen. Dies ermöglicht
Domänenexperten Lösungen unabhängig von Integrationsbelangen zu entwickeln. In
komponentenbasierter Softwareentwicklung werden Komponenten üblicherweise durch
Allzweck-Programmiersprachen beschrieben. Dies führt zu “unbeabsichtigten Komplex-
itäten” [FR07], welche darin bestehen Programmierdetails anstelle von Domänenprob-
lemen zu lösen und führt dazu, dass die Lösungen nur zu bestimmten Zielplattformen
kompatibel sind.

Modellgetriebene Softwareentwicklung abstrahiert von Programmierdetails durch die
Verwendung von Modellen als primäre Entwicklungsartefakte. Diesen können abstrak-
ter und, durch Verwendung von Domänenvokabular, besser verständlich sein. Weiter-
hin können sie plattformunabhängig sein und durch Übersetzung in mehrere Allzweck-
Programmiersprachen mit mehreren Plattformen wiederverwendet werden.

Komponenten und Konnektor Architekturbeschreibungssprachen kombinieren kom-
ponentenbasierte Softwareentwicklung mit modellgetriebener Softwareentwicklung zur
Komposition von Softwarearchitekturen aus Komponentenmodellen. Diese Modelle ver-
fügen über stabile Schnittstellen zur Trennung von Belangen, können Komponentenver-
halten in angemessen domänenspezifischen Sprachen ausdrücken und ermöglichen eine
automatisierte Übersetzung in plattformspezifische Artefakte. Gegenwärtige Forschung
in der modellgetriebenen Entwicklung mit Architekturbeschreibungssprachen untersucht
strukturelle Systemaspekte und erwartet Komponentenverhalten entweder in Form von
Artefakten von Allzweck-Programmiersprachen oder in Form apriori festgelegter Mod-
ellierungssprachen. Ersteres führt zu unbeabsichtigten Komplexitäten, zweites erfordert
dass Domänenexperten domänenfremde Sprachen lernen.

Diese Dissertation präsentiert Konzepte für die Entwicklung komplexer Softwaresys-
teme mit austauschbaren Komponentenverhaltenssprachen. Diese Konzepte sind in einer
Infrastruktur zur Modellierung von Software-Architekturen realisiert welche mehrere
Modellierungssprachen umfasst. Sie unterstützt die agile Einbettung angemessener Ver-
haltenssprachen, Modell-zu-Modell Transformationen von plattformunabhängigen zu plat-
tformspezifischen Softwarearchitekturen, und kompositionale Code Generatoren. Dies
ermöglicht Domänenexperten die angemessensten Komponentenverhaltenssprachen zu
verwenden und eine einzige, plattformunabhängige, Softwarearchitektur mit verschiede-
nen Plattformen wieder zu verwenden. Um dies zu erreichen, kombiniert diese Infras-
truktur Erkenntnisse aus der Entwicklung von Software-Sprachen, Modell-zu-Modell
Transformationen, und aus der Code Generator Entwicklung mit Komponenten- und
Konnektor Architekturbeschreibungssprachen.
Die wichtigsten Beiträge dieser Arbeit sind somit:

• Konzepte für die die Integration domänenspezifischer Sprachen in Komponenten-
und Konnektor Softwarearchitekturen zur Reduktion unbeabsichtigter Komplex-
itäten, Trennung von Belangen und Erleichterung von deren Wiederverwendung.

• Eine Methodik zur Transformation plattformunabhängiger Softwarearchitekturen
in plattformabhängige Softwarearchitekturen zur Erhöhung der Wiederverwend-
barkeit von Komponenten und Architekturen.

• Ein Konzept zur Wiederverwendung kompositionaler Code Generatoren für bes-
timmte Systemaspekte.

• Eine Familie von Modellierungssprachen für die Architekturmodellierung mit aus-
tauschbaren Verhaltenssprachen.

• Eine modellgetriebene Werkzeugkette die diese Konzepte realisiert.

• Eine Evaluierung vorgestellter Konzepte in verschiedenen Kontexten.

Die Anwendung dieser Methodiken erleichtert die Entwicklung komplexer Softwaresys-
teme durch Abstraktion von Programmierungsdetails, durch eine gründliche Trennung
von Belangen und durch Wiederverwendung von Komponenten, Architekturen, domä-
nenspezifischen Sprachen und Code Generatoren.

Danksagung

Während meiner Promotion wurde ich von vielen Menschen unterstützt die damit zu
dem Erfolg dieser Dissertation beigetragen haben und denen ich dafür sehr dankbar bin.

Größter Dank gebührt meinem Doktorvater Prof. Dr. Bernhard Rumpe, welcher diese
Dissertation durch Unterstützung meiner Promotion erst möglich gemacht hat. Neben
der Leitung einer großartigen Arbeitsgruppe haben viele fruchtbare Diskussionen mit
ihm und seine Ratschläge diese Dissertation und meine wissenschaftlichen Tätigkeiten
mitgeformt.

Ich danke außerdem Prof. Benoit Combemale, Ph.D., dem Zweitgutachter dieser Ar-
beit, für die sehr gute Zusammenarbeit und seine Unterstützung meiner Promotion.
Mein Dank gebührt weiterhin Prof. Dr. Joost-Pieter Katoen dafür mein Promotion-
skomitee zu leiten und Prof. Dr. Ulrik Schroeder dafür in diesem mitzuarbeiten.

Außerdem danke ich den wundervollen Kollegen und Freunden am Lehrstuhl für Soft-
ware Engineering der RWTH Aachen, welche die letzten fünf Jahre zu einer spannenden
Zeit gemacht haben. Ohne das hervorragende Arbeitsklima, die fruchtbaren Anregungen
und Diskussionen, und die gemeinsamen Arbeit an akademischen und organisatorischen
Herausforderungen wäre diese Zeit kaum derart interessant gewesen. Besonders dankbar
bin ich Dr. Jan Oliver Ringert, dessen Motivation, Unterstützung und Bereitschaft zu
intensiven Diskussionen diese Dissertation stark beeinflusst haben. Besonderer Dank
gilt auch Markus Look, welcher mich in vielen Dingen unterstützte und immer für auf-
schlussreiche Diskussionen da war, so wie Dr. Arne Haber, der geduldig für viele Fragen
und Ideen zur Verfügung stand, und Andreas Horst, ohne dessen Hilfe manche Her-
ausforderungen ungelöst wären. Weiterhin bedanke ich mich bei Robert Heim, dessen
Unterstützung in verschiedenen Tätigkeiten den Endspurt der Promotion erleichtert hat.

Außerdem bedanke ich mich bei Prof. Dr. Christian Berger und Prof. Dr. Ulrike
Thomas, welche mir die Möglichkeit gaben mich mit weiteren spannenden Forschungs-
fragen zu befassen und an Ihrer Erfahrung teilhaben ließen. Ich danke auch Dr. Stefan
Schiffer, Dr. Martin Schindler und Prof. Dr. Christian Schlegel, deren Erfahrungen auf
dem Weg zur Dissertation und darüber hinaus sehr hilfreich waren. Weiterer Dank
gebührt Kai Adam, Marita Breuer, Arvid Butting, Angelika Fleck, Timo Greifenberg,
Sylvia Gunder, Lars Hermerschmidt, Dr. Christoph Herrmann, Gabriele Heuschen, Ka-
trin Hölldobler, Steffi Kaiser, Oliver Kautz, Dennis Kirch, Carsten Kolassa, Evgeny Kus-
menko, Thomas Kurpick, Achim Lindt, Klaus Müller, Antonio Navarro Pérez, Jerome
Pfeiffer, Prof. Dr. Manfred Nagl, Pedram Mir Seyed Nazari, Dr. Claas Pinkernell,
Dimitri Plotnikov, Deni Raco, Holger Rendel, Dirk Reiss, Alexander Roth, Christoph

Schulze, Galina Volkova, Michael von Wenckstern, Dr. Ingo Weisemöller und Dr. Steven
Völkel ohne deren Unterstützung in den vielen Herausforderungen dieser Promotion
diese nicht derart möglich gewesen wäre. Nicht zuletzt danke ich meiner Familie, meiner
Partnerin und meinen Freunden für ihre Unterstützung während dieser Zeit und für
ihr Verständnis, wenn ich mich für die Arbeit rar gemacht habe. Besonders danke ich
meinen Eltern für Ihre durchgängige Unterstützung aller Schritte die zu dieser Arbeit
geführt haben.

Trademarks appear throughout this thesis without any trademark symbol; they are
the property of their respective trademark owner. There is no intention of infringement;
the usage is to the benefit of the trademark owner.

Contents

1 Introduction and Motivation 1

1.1 Motivation . 2

1.2 Main Goals and Results . 4

1.3 Thesis Organization . 5

1.4 Related Publications . 5

2 Preliminaries for Architecture Modeling 7

2.1 Model-Based Software Engineering . 7

2.2 MontiCore . 11

2.2.1 Symbol Table Framework . 14

2.2.2 Language Integration Mechanisms 15

2.2.3 Code Generation Framework . 18

2.2.4 Related Language Workbenches . 19

2.3 Architecture Description Languages . 21

2.4 The MontiArc Architecture Description Language 23

3 Scope and Methodology 29

3.1 Scenario . 30

3.2 Requirements . 33

3.2.1 Modeling Requirements . 34

3.2.2 Model Transformation Requirements 36

3.3 Methodical Guidance . 37

3.3.1 Extension with Behavior Languages 41

3.3.2 Architecture Modeling . 41

3.3.3 Composed Code Synthesis . 43

4 C&C Architectures with Application-Specific Behavior 45

4.1 MontiArcAutomaton ADL . 46

4.1.1 Language Elements . 47

4.1.2 Symbol Table . 51

4.1.3 MontiArcAutomaton Symbol Table 51

4.1.4 Context Conditions . 53

4.1.5 Transformations on the MontiArcAutomaton ADL AST 65

xiii

4.2 Embedding Component Behavior Languages 68

4.2.1 Syntactic Behavior Language Embedding 69

4.2.2 Symbolic Language Integration . 73

4.2.3 Language Integration Infrastructure 76

4.2.4 Language Integration Semantics 81

4.3 Discussion . 82

4.4 Related Modeling Languages . 83

5 A Behavior Language with I/Oω Automata. 87

5.1 Language Elements . 89

5.1.1 Automaton Declaration . 90

5.1.2 Inputs, Outputs, and Local Variables 91

5.1.3 Values . 91

5.1.4 State Declarations, Initial States, and Initial Outputs 92

5.1.5 Transitions . 93

5.1.6 Alternative Stimuli . 94

5.2 Symbol Table . 95

5.3 Context Conditions . 97

5.3.1 Uniqueness Conditions . 97

5.3.2 Convention Conditions . 98

5.3.3 Referential Integrity Conditions . 102

5.3.4 Type Correctness Conditions . 104

5.4 A Transformation on the Automata AST 107

5.5 Integrating Automata into MontiArcAutomaton 107

5.5.1 Semantics of Integrated Automata Models 109

5.5.2 Integration Infrastructure . 109

5.6 Discussion . 110

6 Reusable Architectures through Bindings and Libraries 111

6.1 Modeling Platform-Independent Architectures 113

6.2 Interface Libraries and Implementation Libraries 118

6.2.1 BumperBot Interface Library . 121

6.2.2 JavaNXT Implementation Library 123

6.2.3 Python ROS Implementation Library 125

6.3 Deriving Platform-Specific Architectures 128

6.4 Discussion and Related Approaches . 130

7 Compositional Code Generation 135

7.1 Code Generator Kinds . 137

7.2 Code Generator Description Language . 141

7.2.1 Language Elements . 141

7.2.2 Symbol Table . 146

7.2.3 Context Conditions . 147

7.3 Code Generator Composition . 152

7.3.1 Developing MontiArcAutomaton Generators 154

7.3.2 Instantiating and Executing Composable Generators 156

7.4 Two Compositional Code Generator Families 159

7.4.1 A Code Generator Family for Java Systems 160

7.4.2 A Code Generator Family for ROS Python Systems 166

7.5 Discussion and Related Work . 173

8 Describing Component & Connector Applications 175

8.1 Application Configuration Language . 176

8.1.1 Language Elements . 176

8.1.2 Symbol Table . 179

8.1.3 Context Conditions . 180

8.2 Processing MontiArcAutomaton Applications 191

8.3 Modeling MontiArcAutomaton Applications 193

8.4 Discussion and Related Work . 196

9 Experiments 197

9.1 Evaluations . 197

9.1.1 NXT Java Coffee Delivery . 198

9.1.2 Robotino ROS Python Transport Services 200

9.1.3 Robotino SmartSoft Java Transport Services 205

9.2 Case Studies . 208

9.2.1 Lego NXT Distributed Toast Service 208

9.2.2 Multi-Platform BumperBot . 209

9.2.3 The iserveU Hospital Logistics Project 212

9.3 Discussion . 214

10 Conclusions and Future Work 217

10.1 Contributions . 217

10.2 Potential for Future Research . 219

10.3 Conclusion . 220

Bibliography 221

A Modeling Language Grammars 249

A.1 MontiArcAutomaton ADL Grammars . 249

A.1.1 MontiArc Grammar for Human Comprehension 249

A.1.2 MontiArcAutomaton ADL Grammar for Human Comprehension . 250

A.1.3 MontiArcAutomaton ADL Grammar for MontiCore 251
A.2 Automata Grammars . 254

A.2.1 Automata Grammar for Human Comprehension 254
A.2.2 Automata Grammar for MontiCore 255

A.3 Generator Description Grammar . 255
A.4 Application Configuration Grammar . 259

B Survey Materials 261
B.1 NXT Java Coffee Delivery . 261
B.2 Robotino ROS Python Transport Services 263
B.3 Robotino SmartSoft Java Transport Services 268

C Kinds of Names in MontiArcAutomaton 275

D Diagram and Listing Tags 277

E Curriculum Vitae 279

List of Figures 281

List of Listings 285

Chapter 1

Introduction and Motivation

Wisdom begins in wonder.

Socrates

Software engineering for modern application domains, such as cloud-based systems,
cyber-physical systems (CPS), or robotics is a complex endeavor due to the heteroge-
neous and distributed nature of their applications. While component-based software
engineering has been applied to such domains successfully, the application of model-
driven engineering (MDE) is still emerging. The resulting variety of languages covers
from geometric, spatial, and kinematic properties (CPS, robotics) to load distribution,
system replication, and database access (cloud) to behavior descriptions and software ar-
chitectures. Software engineering with C&C software architecture description languages
facilitates distributed development and evolution by separating functionality into ex-
changeable components with stable interfaces, thus increasing reuse and maturity of the
software. Describing component behavior by the most appropriate modeling languages
liberates domain experts from becoming software engineering experts. Instead, model
processing tools embody the knowledge required to transform problem domain models
into solution domain source code. The approaches to MDE are diverse and the necessity
of reusable, compositional modeling languages has been argued for [KRV08b, JMD+14].
Nonetheless, current architecture modeling languages and frameworks do not consider
extensibility and reuse sufficiently. Software language engineering (SLE) investigates
such traits and has provided solutions realized in form of language workbenches for the
compositional development of modeling languages.

This thesis contributes to the application of MDE to complex domains by providing
concepts for architecture engineering with exchangeable component behavior languages
and code generators. These concepts are realized in the extensible MontiArcAutomaton
software architecture modeling infrastructure based on the SLE principles realized in
the language workbench MontiCore [KRV08b, Kra10] and the architecture description
language (ADL) MontiArc [HRR12]. We extend the MontiCore language MontiArc with
concepts to integrate exchangeable component behavior languages, introduce concepts
and modeling languages to describe the use of architectures for model transformation

1

Chapter 1 Introduction and Motivation

and code generation. The concepts and modeling languages are integrated into an infras-
tructure to increase reuse of components, architectures, languages, and code generators
while separating concerns of participating experts. This infrastructure reduces the effort
for integration of the most appropriate component behavior languages into components,
enables black-box composition of code generators, and facilitates transformation of soft-
ware architecture models into executable systems for multiple platforms.

1.1 Motivation

Our work on software architecture modeling with exchangeable component behavior lan-
guages, transformations from platform-independent to platform-specific architectures,
and composable code generators is driven from experiences with robotics. As modern
robotics systems are distributed and concurrent, connected to cloud-systems and data
bases, perform complex on-board calculations based on input fused from multiple sen-
sors, and require participating of experts from multiple domains, the results should be
generalizable to other domains as well.

Robotics is a heterogeneous domain in which successful deployment of even simple
applications requires tremendous effort in crafting solutions specific to participating
domains (such as path planning, vision, grasping) and in integration of the resulting
software modules. Software engineering for robotics applications thus is a sophisticated
endeavor which poses many challenges and successful robotics applications usually are
the joint effort of teams of domain experts. This domain-intrinsic complexity forces
robotics experts to become software engineering experts as well [BBC+07, SSL11] or
leads to monolithic and hardly reusable applications [BS06, Mos09, SSL11]. A study
on the RoboCup@Home competition of service robots [Mue13] analyzed 31 teams and
found that more than 50% develop their own robots instead of reusing existing hardware
and software. Of the 31 teams, less than 25% used the same middleware, and at least
six different programming languages were used.

Robotics has turned to software engineering, to adopt methodologies, technologies,
and tools to tackle these complexities via component-based software engineering [Bru01,
ASK+05, BBC+07, QGC+09, NFBL10], and, recently, model-based software engineer-
ing [BGBK08, BDHN10, MAHR10, SSL11, ASH+12, BBH13, BKH+13, OAR+14]. With
the help of component-based software engineering, robotics researchers aim to separate
system complexity behind stable component interfaces, which enables exchanging and
reusing components. Such components are developed with general-purpose programming
languages (GPLs) and thus are bound to specific paradigms, concepts, and platforms.

From this conceptual gap [FR07] between challenges of the problem domains (e.g.,
path planning) and answers from the solution domain software engineering - in form of
software programs - complexities arise. These are not tied to the challenges itself, but
to hand-crafting and integrating solutions with specific implementation details. Such
accidental complexities [FR07] increase risks and costs of software projects and require
domain experts to become software engineering experts. This conceptual gap can be
alleviated by solving domain challenges abstracted from implementation details.

2

1.1 Motivation

Model-driven engineering [Sel03, SVEH05] aims to reduce this gap by introducing mod-
els as development artifacts which can be domain-specific, concise, platform-independent,
and better comprehensible than source code programs [MHS05, SMTS09, WHR14]. Such
models can be used for communication, documentation, and generation of actual imple-
mentations [WHR14]. They can capture domain-specific information (such as kinemat-
ics [SCS07, FBC11], force-controlled motions [KSBDS11], geometric relations [LSGB12],
manipulation plans [THR+13, Van13], or perception information [Hoc13]). They also
can capture information specific to software engineering (for instance in form of UML
diagrams [OMG10] or software architecture models [MT00, SSL11, BKH+13]). Espe-
cially software architecture modeling has been applied successfully to robotics [NFBL10,
SSL11, Tro11, DKS+12, NW12, BKH+13], as it combines component-based software
engineering with the benefits of model-driven engineering: Architecture models allow
identification and separation of logically and physically independent components and to
structure the application under development hierarchically.

In contrast to GPL artifacts, architecture and component models can be agnostic of
the target programming language, provided by respective experts, and thus can be highly
reusable. Therefore, architecture modeling can reduce the conceptual gap by describ-
ing large parts of the overall application under development with greater abstraction
- for instance via component models, component behavior models, data type models,
or deployment models. It furthermore facilitates reuse by enabling exchange of compo-
nent models with stable interfaces and enables transformation of executable models into
multiple target systems via software engineering expertise embodied in code generation
tools. Thus it can liberate robotics experts from becoming software engineering experts
and integration experts from becoming robotics experts.

Current software architecture description languages (ADLs) lack expressiveness and
extensibility with respect to generative software engineering (GSE). Either component
behavior is omitted [GMW97, Tro11, BKH+13], required as GPL artifacts [MRT99,
VVKM00, ACN02, MCWF02, JBCG05, CKS11, SSL11, FG12], or as fixed component
behavior languages [BDC02, NFBL10, DKS+12]. The former two approaches are of
limited use and give rise to accidental complexities. The third approach requires to use
any of the prescribed languages. These are usually little abstract and lack the clarity of
domain-specific languages (DSLs) [vDKV00, MHS05, FR07, Fow10].

Similar issues hold for employed data type modeling languages: either types are omit-
ted [Tro11, BKH+13], GPL types [NFBL10, SSL11], or modeled using a type modeling
language (such as UML [OMG10] class diagrams) [Tro11]. The two former approaches
are of limited use and tied to GPLs again, while the latter restricts developers to a certain
language with specific properties (such as complexity or underspecification). Only few
ADLs support integration of arbitrary component behavior languages [NDZR04, FG12]
and these are either overly complicated or do not consider integrated code generation
for language aggregates.

3

Chapter 1 Introduction and Motivation

1.2 Main Goals and Results

This thesis’ research objective is to enable seamless model-driven engineering of appli-
cations based on C&C architectures with exchangeable component behavior languages.
This entails a number of subsequent research questions regarding modeling language
integration, model transformation, and code generator composition. We therefore in-
vestigate how a C&C architecture description language, its concepts, and infrastructure
can be extended to enable language integration, how their models can be enriched with
platform-specific information, and how to generate code for combinations or exchange-
able languages. For such, we introduce modeling languages, methods, and tools for
different aspects of model-driven robotics software engineering with C&C software ar-
chitectures.

The contributions presented in this thesis are:

• Requirements for an extensible architecture description language that allows inte-
gration of exchangeable component behavior languages.

• An investigation and modeling concepts for the distinction of platform-specific and
platform-independent component models.

• An architecture description language realizing these concepts.

• Concepts of behavior language integration exploiting the C&C nature of that ADL
and a mechanism to realize their integration.

• A state-based component behavior language based on I/Oω automata and its in-
tegration.

• Concepts of platform-specific and platform-independent software architecture mod-
els and their relation to another.

• A model-to-model transformation from platform-specific to platform-independent
software architecture models.

• Concepts for black-box code generator composition exploiting structural properties
of C&C software architectures and its realization.

• The MontiArcAutomaton architecture modeling infrastructure comprising the con-
cepts, ADL, state-based behavior language, model transformation and code gen-
eration framework to enable multi-platform generative software engineering.

• Methodical guidance describing the application of the MontiArcAutomaton infras-
tructure with its features to software engineering projects.

4

1.3 Thesis Organization

1.3 Thesis Organization

We present concepts, a methodical guidance, and their realization to overcome the lim-
itations presented in Section 1.1. With these, software engineers can model platform-
independent logical software architectures and gradually transform these into platform-
specific implementations. For this, the remainder of this thesis is organized as follows.
First, Chapter 2 introduces the concepts of model-driven development with C&C soft-
ware architectures and software language engineering. To this effect, it also introduces
the language workbench MontiCore [KRV10] and the ADL MontiArc [HRR12]. Chap-
ter 3, presents a usage scenario from which we derive requirements for model-driven
engineering of C&C architectures with exchangeable component behavior languages,
and describe the resulting software engineering process for MontiArcAutomaton. Chap-
ter 4 presents the MontiArcAutomaton ADL with its language elements, well-formedness
rules, and AST transformations. Furthermore, it describes how component behavior
languages are integrated into MontiArcAutomaton and the MontiArcAutomaton ADL.
Afterwards, Chapter 5 presents a state-based behavior language based on the I/Oω

automata paradigm [Rum96, Rin14] and its integration into MontiArcAutomaton. Sub-
sequently, Chapter 6 explains the concepts of multi-platform generative software en-
gineering with MontiArcAutomaton. To this end, it introduces interface components,
interface libraries, and implementation libraries. It also introduces the modeling lan-
guages and model transformations realizing the aforementioned concepts. Chapter 7
describes the code generator composition with its concepts, constituents, and infrastruc-
ture. It also introduces code generator kinds, the code generator description modeling
language, and two code generator families for different platforms. Chapter 8 introduces
the notion of applications and their configuration for concrete combinations of languages
and code generators. Chapter 9 subsequently presents evaluations and case studies using
MontiArcAutomaton in various scenarios ranging from academic to industrial projects.
Finally, Chapter 10 concludes.

1.4 Related Publications

The results presented in this thesis were produced within five years of research. As such,
various parts have been published prior to this thesis. This section describes related
publications.

• In the first version of MontiArcAutomaton [RRW12], the ADL consists of a sin-
gle language featuring language elements for software architectures and automata.
Furthermore, the code generation infrastructure is limited to monolithic code gen-
erators producing a specific form of Java source code.

• Subsequently, MontiArcAutomaton is extended with a code generation infrastruc-
ture for usage with multiple code generators and results on the effort of developing
code generators with it are reported [RRW13b].

5

Chapter 1 Introduction and Motivation

• That state of MontiArcAutomaton was used in a lab course to develop a system
of distributed Lego NXT robots with Java. Results of this course are presented
in [RRW13a].

• That state of the MontiArcAutomaton language is also presented in detail a techni-
cal report [RRW14a], which omits Java expressions to describe transition actions.

• The first extension of MontiArcAutomaton with other behavior languages is pre-
sented in [RRW13c], where automata are a fixed part of the MontiArcAutomaton
architecture description language. There, a rules language is manually integrated
into MontiArcAutomaton to describe component behavior statelessly.

• Concepts for modeling language integration of MontiArcAutomaton are based on
the language workbench MontiCore and are introduced in [LNPR+13] and ex-
plained in greater detail in [HLMSN+15].

• First results on multi-platform generative software engineering with MontiArc-
Automaton are presented in [RRRW14]. The notion of code libraries and interface
components are extensively revised.

• Preliminary results on code generator composition are reported in [RRW14b]. The
presented generator kinds and their interfaces have been modified for this thesis.

• Integration of handcrafted GPL artifacts into generative development is examined
in [GHK+15].

• The tailoring required to configure a MontiArcAutomaton application is introduced
in [RRW15b, RRW15a].

• Translating platform-independent to platform-specific architectures is sketched
in [RRW15c].

• An intermediate version of the MontiArcAutomaton software architecture em-
ployed in the iserveU research project presented in the case studies is discussed
in [HLMSN+15].

• An example for language integration and generator composition with MontiArc-
Automaton is presented in [RRRW15]

6

Chapter 2

Preliminaries for Architecture Modeling

The scientific man does not aim at an immediate result. He does
not expect that his advanced ideas will be readily taken up. His

work is like that of the planter - for the future. His duty is to lay
the foundation for those who are to come, and point the way.

Nikola Tesla

The work presented in this thesis builds upon foundations laid by other researchers.
Its prime foundations are in model-driven engineering, software language engineering,
and architecture description languages. This chapter presents these foundations. First,
it introduces foundations in model-based software engineering and related concepts. Af-
terwards, it describes the language workbench MontiCore [KRV08b, Kra10] and the
architecture development framework MontiArc [HRR12], which MontiArcAutomaton re-
lies upon. Subsequent chapters describe contributions based on these and will elucidate
details where necessary.

2.1 Model-Based Software Engineering

Within the last decades, amount and importance of software and software-based systems
have increased significantly and with this, their complexity has increased as well [FR07]:
current state-of-the-art systems are multi-platform1 distributed heterogeneous systems,
which often include physical parts. This increasing complexity of modern software re-
quires methods, concepts, tools, and infrastructures to develop software systems more
efficiently.

A significant reason for the complexity of modern software systems lies in the “wide
conceptual gap” [FR07] between the problem domains or business domains and the so-
lution domain software engineering. Overcoming this gap with handcrafted solutions
requires tremendous effort and gives rise to so-called accidental complexities [FR07], i.e.,
problems of the solution domain, such as programming language peculiarities, network-
ing communication issues, persistence, deployment, which are not conceptually relevant
in the problem domain. These accidental complexities, however, increase software de-
velopment risks and need to be reduced.

1In this context, “platform” refers to computers that can execute GPL programs and describes the
hardware and software necessary to provide certain functionality.

7

Chapter 2 Preliminaries for Architecture Modeling

Model-based software engineering (MBSE) is an umbrella term for software develop-
ment methodologies which employ domain-specific models to reduce the conceptual gap
and with it the accidental complexities. Therefore, MBSE utilizes models as development
artifacts in various stages of a software development process, ranging from requirements
modeling to implementation to deployment. Computer science, however, does not have a
common notion of a “model” [Sei03, Kü05], which is reflected in the numerous definitions
produced:

• “A model is a simplification of a system built with an intended goal in mind. The
model should be able to answer questions in place of the actual system.” [BG01]

• “A model is a set of statements about some system under study.” [Sei03]

• “A model is an abstraction of a (real or language based) system allowing predictions
or inferences to be made.” [Küh06]

Similar definitions are proposed in [HBB+94, BD99, Bal00] where most define a model
as a simplified abstraction of a system, which can replace the system for certain form of
use. Some of these definitions leave only little more room for interpretation regarding
what is modeled. We thus follow [Sta73], in which a model is characterized by three fea-
tures. While the definition is available in German only, it can be translated as presented
in [MFBC12]:

“A model needs to possess the following three features:

• Mapping feature: A model is based on an original.

• Reduction feature: A model only reflects a (relevant) selection of an original’s
properties.

• Pragmatic feature: A model needs to be usable in place of an original with respect
to some purpose.”

We also distinguish between “model-based” and “model-driven” approaches as pro-
posed by [BCW12] and [Sch12], where “model-based” characterizes approaches employ-
ing models for documentation, requirements engineering [HPB11], and system design,
and “model-driven” [VSB+13] characterizes approaches where models are the primary
development artifacts used for automated analysis and synthesis (cf. [Sel03, Sel06]).
Model-driven architecture (MDA) [OMG03, PM06] can be considered a specialization
of MDE with focus on the Unified Modeling Language (UML) [OMG10] standardiza-
tion efforts proposed by the Object Management Group. A key idea of MDA, driven
by the rationale that business concepts outlive their technical realizations, is the separa-
tion of platform-independent (but domain-specific) business models and their subsequent
application to specific platforms. Model-driven architecture therefore divides an applica-
tion into different layers representing the application’s computation independent model
(CIM), platform-independent model (PIM), platform-specific model (PSM), and GPL

8

2.1 Model-Based Software Engineering

code. In these terms, we propose a pervasive approach to MDE with C&C architectures
that employs software architectures on the PIM layer, application models on the PSM
layer, and produces GPL code automatically.

Describing models requires corresponding notations, which can have the form of “meta
models” [Kü05, SRVK10] or grammars [GKR+08] to describe corresponding modeling
languages. As modeling aims to increase abstraction, many successful applications of
MDE [WWM+07, Rai05, KR05, Sta06, HRW11, EvdSV+13, WHR14, BCOR15] have
been in the context of software engineering for certain domains, such as aviation or au-
tomotive. Therefore, the term domain-specific language (DSL) has become popular for
such languages. Popular DSLs are, for example, HTML [HTM] (structured documents),
Matlab Simulink [Sim] (control systems engineering algorithms), SQL [DD96] (database
management), or Verilog [TM02] (hardware description of electronic systems). Employ-
ing DSLs promises benefits regarding productivity, quality, validation and verification
as they may provide a platform-independent “thinking and communication tool” [Vö11]
with minimal overhead. As for the term “model”, computer science has produced a
number of definitions for DSLs, such as:

• “A domain-specific language is a programming or executable specification language
that offers, through appropriate notations and abstractions, expressive power fo-
cused on, and usually restricted to, a particular problem domain.” [vDKV00]

• “By focusing on a problem domain’s idioms and jargon, DSLs avoid the“notational
noise” [Wil01] required when using overly general constructs of a general-purpose
language to express the same thing. Moreover, DSLs are not necessarily pro-
gramming languages: they are languages tailored to express something about the
solution to a problem.” [Wil01]

• A“DSL is a language designed to be useful for a limited set of tasks, in contrast to
general-purpose languages that are supposed to be useful for much more generic
tasks, crossing multiple application domains.” [JB06]

We consequently do not distinguish between “technical DSLs” and “application do-
main DSLs” [VBD+13], distinguish between modeling languages and general-purpose
programming languages. The latter are characterized by imposing “notational noise
by using overly general constructs” [Wil01], which results in the accidental complexi-
ties we aim to avoid. There is, however, a certain consensus regarding the components
of a modeling language, which, following [HR04b], are a concrete syntax describing
models graphically or textually, an abstract syntax describing the language’s “structural
essence” [Kra10], well-formedness rules restricting the valid models, and the language’s
dynamic semantics.

Model-driven engineering yields many benefits ranging from abstraction from acciden-
tal complexities to providing comprehensible means to communication and documenta-
tion to a formality allowing translation of models into executable systems [VSB+13,
WHR14]. Avoiding the accidental complexities of the manual translation of models into

9

Chapter 2 Preliminaries for Architecture Modeling

executable systems requires tools that translate such models into GPL artifacts auto-
matically while employing codified software engineering expertise.

Tools for generative software engineering [Jéz07, RSVW10] either employ model-to-
model (M2M) transformations or model-to-text (M2T) transformations to translate
models into GPL artifacts [CH03, EvdSV+13]. Model-to-model transformations trans-
late models of the input modeling language into models of the output modeling language
(usually based on their abstract syntax). The transformed models’ syntax afterwards
looks exactly like target language code and, after printing it to plain text, can simply
be processed by tooling of the target GPL. While M2M transformations yield various
benefits, for instance well-formedness checking of properties of the generated GPL code
via checking properties of the target language’s model might require less effort than an-
alyzing target language artifacts, engineering and maintaining various target languages
requires considerable effort. Furthermore, M2M transformations require transformation
languages [JAB+06, HHRW15], which usually are little domain-specific and hence im-
pose similar efforts to learning a GPL.

Model-to-text transformations process models of the input language to produce text
representing source code of the target GPL. This process does not require a representa-
tion of the target language and such transformations usually are implemented employing
template languages [CH03, TRMS09]. Usually, these languages allow generator devel-
opers to produce templates closely resembling the intended target language artifacts.
Thus, M2T facilitates generator development but complicates checking properties of the
generated result. Regardless of the nature of performed transformations, we refer to
such tools as code generators in this thesis. This conforms the IEEE’s definition of a
“code generator”, which, according to [CoEEB90], is as follows:

Definition 1 (Code Generator). (1) A routine, often part of a compiler, that transforms
a computer program from some intermediate level of representation (often the output of a
root compiler or parser) into a form that is closer to the language of the machine on which
the program will execute. (2) A software tool that accepts as input the requirements or
design for a computer program and produces source code that implements the requirements
or design.

For the scope of this thesis we consider code generators as software tools that trans-
form models conforming to a modeling language into GPL artifacts. Regardless of the
generated artifacts, we use the terms “generator” and “code generator” interchangeably
throughout this thesis.

Using modeling languages to automatically generate executable systems requires ap-
propriate tool support for language engineering and generator development. Monti-
Core [KRV08b, Kra10] is a language workbench [EvdSV+13] for the development of
modular modeling languages and we employ it to engineer the modeling languages pre-
sented throughout this thesis. The MontiArcAutomaton ADL architecture description
language presented builds upon the C&C ADL MontiArc [HRR12] which is developed
with MontiCore as well. The subsequent sections present both and the following chapters
will particularize where necessary.

10

2.2 MontiCore

2.2 The MontiCore Language Workbench

The MontiCore [GKR+06, GKR+08, KRV08b, KRV08a, KRV10] language workbench
comprises a modeling language and a toolchain for the efficient and modular devel-
opment [KRV08a] of modeling languages [RSVW11]. MontiCore employs context-free
grammars (CFGs) for integrated definition of abstract and concrete syntax [KRV07,
KRV10] of modeling languages. The grammars describe which models are principally
possible and well-formedness rules restrict these. The resulting languages are augmented
with language configuration files that describe additional language properties (regarding
language composition and tooling).

From these CFGs, MontiCore generates model processing infrastructure to parse tex-
tual models [GKR+07] into abstract syntax trees (ASTs) [Kra10, Vö11]. The ASTs store
the content of models, such as their elements and their relations.

MCG
1 grammar ARC {

2 Component = "comp" Name "{" (Port | Connector | Body)* "}";

3 Port = "port" Type Name? ";";

4 Connector = "connect" src:Name "to" tgt:Name ";";

5 external Body;

6 }

Listing 2.1: MontiCore grammar of the ARC language to define software components
with ports and connectors.

Listing 2.1 displays the grammar for a simplified software component modeling lan-
guage. A grammar begins with the MontiCore keyword “grammar” followed by its
name and comprises EBNF-like productions. The displayed grammar begins with the
grammar-level keyword grammar, has the name ARC (l. 1) and contains four produc-
tions: Component (l. 2) models the structure of software components; Port (l. 3) defines
a typed, named connection point between components; Connector (l. 4) describes a
connection between components; and the external production Behavior (l. 5) serves
as grammar extension point and must be implemented by MontiCore language configu-
ration files.

Everything enclosed in quotation marks is considered a model-level keyword (such
as "comp" in l. 2) and is part of the concrete syntax of this language. Everything
else is part of both concrete and abstract syntax. The production Component starts
with the keyword component, followed by a name, and a body in curly brackets. The
body can consist arbitrary many instance of Port, Connector, Behavior (denoted
by the disjunction operator “|” in combination with the star operator “*”). A Port

element begins with the model-level keyword port and is followed by a type and an
optional (denoted by “?”) name. Please note that both productions Type and Name are
provided by MontiCore. A Connector consists of the model-level keyword connect,
followed by a name, the model-level keyword to and another name. To distinguish both
properties of type Name, they are assigned names src and tgt, respectively. Whenever

11

Chapter 2 Preliminaries for Architecture Modeling

CD
ASTComponent

*

Type type

String name

ASTConnector

String src

String tgt

ASTPort «interface»

ASTBehavior

* *

String name

port behavior

connector

Figure 2.1: The AST node classes resulting from the ARC grammar (cf. Listing 2.1).

this is omitted, such as for the component property of type Name (l. 2), its name is
derived from the type, i.e., the property name of Name is derived as name. The external
production Behavior has no definition itself. A detailed explanation of the MontiCore
grammar language is presented in [Kra10].

For each grammar, MontiCore generates model processing infrastructure, such as
parser and lexer [Wir96, ALSU06, Kra10] to create and instantiate the AST node classes.
In case of the ARC grammar, this comprises the four classes depicted in Figure 2.1, which
represent the respective AST node types. For each production of the grammar, Mon-
tiCore creates a class of the production’s name with prefix AST. Similarly, MontiCore
produces a parser for each production of the grammar. It also translates lists into one-
to-many relations, alternatives into multiple fields, and various literals (such as Name
into primitives). Thus, MontiCore translates the production component into the class
ASTComponent, which has a String property name and three one-to-many relations -
one for each alternative. Similarly, it translates the productions Port and Connector.
External productions are translated into interfaces. Given a model corresponding to the
ARC grammar, the MontiCore parser instantiates the AST node classes to store model
properties. The resulting AST instances are basis for subsequent model processing.

Checking properties not expressible with context-free grammars, for instance whether
a component contains two ports of the same name, requires additional mechanisms.
For such well-formedness checks, MontiCore comprises a compositional context con-
dition framework [Vö11]. Context conditions are well-formedness rules formulated in
Java to check model properties. MontiCore distinguishes intra-language context con-
ditions from inter-language context-conditions. The former check properties of mod-
els of a single language, the latter check model properties across languages. Monti-
Core further comprises a model-to-text (M2T) code generation framework [Sch12] to
transform ASTs into arbitrary target representations. The actual transformation is
described in form of FreeMarker [Fre, TRMS09] templates with additional data man-
agement structures [Sch12, RRW13b]. MontiCore also supports compositional language
integration [HR13] in form of language extension, language embedding, and language
aggregation [LNPR+13, HLMSN+15].

12

2.2 MontiCore

Template

Helpers

Model

AST

Language Grammar

Templates

Parser

FreeMarker

instantiates

reads reads

uses

creates

DSLTool

Context

Conditions

Symbol

Tables

code generation

model processing

Artifacts

conforms CpD

creates

generates

Figure 2.2: Important components and artifacts of the MontiCore toolchain.

Figure 2.2 illustrates parts of the MontiCore toolchain relevant to this thesis and relates
produced and required artifacts. Given the context-free grammar of a language, the Mon-
tiCore generator creates the model processing infrastructure (abbreviated to “Parser”)
to translate conforming textual models into an AST. The language developer also de-
velops intra-language context conditions and inter-language context conditions [Sch12].
Intra-language context conditions check properties of models of a single language. In
case models of the language under development are related to models of other lan-
guages, inter-language context conditions check related models, which are considered an
important source for errors [TVT+13]. MontiCore also generates a framework to cre-
ate and manage a language’s symbol table entries. These entries encapsulate a model’s
essence without the technical necessities of the AST and are stored in so-called symbol
tables [Vö11, LNPR+13, HLMSN+15], which take care of creating and resolving entries.
Context conditions may rely on AST and symbol table. The FreeMarker-based code gen-
eration framework of MontiCore [Sch12] comprises templates and template helpers. The
former describe production of target language artifacts and the latter perform complex
calculations. Templates only rely on the AST, but may invoke template helpers which
can access AST and symbol table. Both, the model processing frameworks and the code
generation framework of MontiCore are controlled by so-called DSLTools [Kra10, Vö11]
that configure and execute model processing.

The activities from a textual model to an AST to the symbol table and their entries re-
quired for model well-formedness checking are depicted in Figure 2.3, where each activity
corresponds to one or more workflows (depending on the processed language). Work-
flows in MontiCore 3.1.1 are visitors [GHJV95] that are registered with a certain name

13

Chapter 2 Preliminaries for Architecture Modeling

parse
textual
models

[syntax

ok]

AD

abort
model

processing

create
symbol

table

check
well-formed

ness

[syntax error]

[models ok]

AST

AST and

Symbol Table

checked

AST and

symbol

table[well-formedness error]

act MontiCore Model Processing Activities

[no symbols]

[no well-

formedness

rules]

generate
artifacts

create
AST

instance

Figure 2.3: A typical MontiCore execution consists of multiple activities to parse models
into an AST representation, create their symbol tables, check their well-
formedness, and ultimately generate artifacts.

and process certain models. For each language, MontiCore generates workflows to parse
models and to prepare their symbol table entries. At start, MontiCore is configured with
the workflows to execute by passing their names to it. At first, MontiCore uses the parser
generated from the language’s grammar to parse the input models. If their syntax con-
forms to the grammar, their AST instances are created next. Otherwise, model process-
ing is aborted. After creating the AST instances, optional language-specific workflows
create symbol table data structures that store improved representations of the parsed
models based on their ASTs. Afterwards, MontiCore checks optional well-formedness
rules using the ASTs and, if available, the symbol table. If successful, toolchain-specific
generators may produce (GPL) artifacts. Otherwise, model processing aborts.

2.2.1 Symbol Table Framework

Symbol tables enable compositional language engineering by providing a data structure
to store, manage, and retrieve entries of models. Entries encapsulate the “interface”
of models in terms of important names and information relevant to their use (such
as types and signatures). Entries are free from the technical details of the AST and,
hence, provide a greater composition stability regarding grammar (and AST) changes.
Thus, they serve as interfaces between interacting models of different languages and
their combination is independent from the languages’ actual AST’s. Intra-language
well-formedness checks utilize symbol tables to reason over the well-formedness of inte-
grated models and changing the language aggregation thus requires proper adaptation
only [Vö11, LNPR+13, HLMSN+15].

14

2.2 MontiCore

CD

ComponentEntry

KIND

name

connectors

PortEntry

KIND

name

type

ports

*

Figure 2.4: Example symbol table entries for the ARC language.

Each symbol of a symbol table has a name and is of a certain kind . Further proper-
ties are optional. For the ARC grammar, the symbol table entries could be as depicted
in Figure 2.4. The class ComponentEntry encapsulates all information on components
required for further processing. This includes a static symbol KIND, a name, connectors,
and an arbitrary number of ports. The latter are represented by class PortEntry,
which has a different KIND, and members name and type. Every symbol table provides
additional infrastructure not depicted here, such as an entry creator and entry-specific
qualifiers, resolvers, and deserializers. The entry creator processes AST nodes and pro-
duces symbol table entries of specific kinds from these. These entries are persisted by
MontiCore. Whenever a name, for instance of a port type, is looked up, first the qualifier
translates the port type’s unqualified name (e.g., Number) into a qualified name (e.g.,
types.Number) based on the processed model’s import statements. Afterwards, the
resolver uses this name and the kind of the symbol table entry to look up (e.g., PORT).
The resolver looks up this combination of name and kind in all relevant namespaces
and can invoke the deserializer to load matching persisted entries. The implementation
of related artifacts, namespace construction, and resolving strategies are explained in
different degrees of detail in [Vö11, LNPR+13, HLMSN+15].

After creating the symbol tables and, with their help, validating the well-formedness of
models, they are considered correct. Such models can be used by MontiCore’s code gen-
eration framework, which comprises templates and template helpers [Sch12] to transform
models into target language artifacts. The whole process is invoked and orchestrated by
a language-specific DSLtool [Vö11] (cf. Figure 2.2) that serves as interface to language
users and orchestrates model processing.

The following subsections present the language integration mechanisms and the code
generation framework of MontiCore in greater detail. Afterwards, we highlight related
language workbenches.

2.2.2 Language Integration Mechanisms

Effective MDE of complex software systems requires appropriate descriptions of different
system aspects. To this effect, efficient integration of modeling languages for these
aspects is essential. Integration of modeling languages is tedious and requires profound
knowledge on multiple levels. Traditional approaches to modeling language integration
require language engineers to compose languages to monolithic aggregates, which are
hardly adaptable and reusable in different contexts.

15

Chapter 2 Preliminaries for Architecture Modeling

MontiCore languages can be developed independently, are syntactically composable,
and ultimately reusable. The enabling concepts are language aggregation, language
embedding, and language inheritance [KRV10, LNPR+13, HLMSN+15], which support
generalizable, systematic, syntax-oriented language composition. With these, Monti-
Core supports the language integration mechanisms as distinguished in [EGR12]. Dif-
ferences arising from the notion of language embedding identified in [EGR12] (based
on [Hud98]) and the notion of language embedding in MontiCore [Vö11] are discussed
in [HLMSN+15].

Language aggregation denotes the combination of multiple independent languages into
a collection (called language family), which enables formulating models for different sys-
tem aspects in separate artifacts that can be interpreted together. This, for instance,
is essential when using a domain model formulated in a type definition language (such
as UML/P class diagrams [Rum11]) with different behavior or structure modeling lan-
guages. The type of a ARC port, for instance, could refer to a class diagram type. Lan-
guage families describe a loose coupling where participating languages can reference each
other’s elements by name via their symbol tables. Conceptually, the symbol table entries
describe the essence of AST nodes independent of the AST structure and, thus, invariant
to language evolution. To enable modular language components and ultimately decou-
ple participating languages the symbol table framework employs adapters [GHJV95]
between entries of different languages. For instance, using CD data types with Mon-
tiArc requires to provide an adapter from MontiArc type entries to CD type entries,
such that resolving a port type Number of ARC type returns this adapter.

Language embedding combines languages such that their elements can be used in a
single integrated model. Such embedding is useful where embedding languages require
different levels of expressiveness depending on the target platform, for example in form
of different SQL [DD96] dialects embedded into class diagram domain models. To this
effect, embedding languages provide distinguished extension points where language frag-
ments from other languages can be embedded (such as the external production of the
ARC grammar illustrated in Listing 2.1). This is realized by mapping productions of other
languages to these extension points. Integration is defined in language configuration files
(cf. [Kra10, Vö11]), omitting a tight coupling between the languages’ grammars.

Language inheritance enables extending, refining, or even restricting existing lan-
guages. To this end, MontiCore allows definition of new modeling languages based
on existing modeling languages by altering, reusing, and overriding their grammars’
productions. Inheritance is especially useful for extending existing languages with new
concepts - for instance to engineer restricted versions of complex languages for specific
domains (i.e., to add replicating components for load balancing in cloud-based variants
of ARC [NPR13]). Language inheritance thus requires both inheriting and inherited
language to be conceptually similar.

Figure 2.5 illustrates the technical realization of (a) language aggregation, (b) language
embedding, and (c) language inheritance on grammar and parser level. Each language’s
CFG is accompanied by a language configuration file that describes additional language
properties. For instance, such models describe which productions of the embedded lan-

16

2.2 MontiCore

guage are mapped to the embedding language’s extension points (cf. the external

production Body of Listing 2.1). For language aggregation, the language configuration
files (L1, L2) reference each language’s own grammar (G1, G2) only. From this, Mon-
tiCore generates the independent parsers P1 and P2. The languages’ symbol tables S1
and S2 rely on these parsers to produce symbol table entries used for well-formedness
checking. The language family combining both languages contains not only their symbol
tables, but also adapters between symbols and inter-language context conditions. The
language families’ DSLTool class relies its symbol table to process the individual lan-
guages’ models and to interpret these together. For language embedding, the grammar
of the embedding language must provide extension points in form of external produc-
tions. The language configuration file L2 of the embedding language defines how these
are implemented. To this effect, it maps productions from the embedded language’s
grammar G1 to external productions of the embedding language’s grammar G2. The
resulting combined parser P2 delegates parsing of embedded productions to the embed-
ded P1 where applicable. Each language maintains its own symbol table and the symbol
table of the embedding language may reference symbols table entries of the embedded
language. The embedding language’s DSLTool class uses the symbol table S2 only. Lan-
guage configuration files are unaware of language inheritance. Here, the grammar G2
inherits from the grammar G1. MontiCore generates parsers for both and the language
family DSLTool uses the parser generated for the inheriting language P2 which uses P1
whenever a production of the inherited language is processed. Both languages provide
their own symbol tables, although the inheriting language’s symbol table S2 may extend
the inherited language’s symbol table S1. MontiCore processes language embedding and
language inheritance similarly, however, embedding enables use of selected productions
from the embedded language only while extension enables use of all productions of the
inherited language.

The language integration mechanisms of MontiCore affect the resulting AST nodes
differently: for language aggregation, the languages’ ASTs are not affected at all as the
languages are integrated on symbol table level only. For language embedding, the inte-
grated language’s AST has subtrees of the embedded language at the external production
extension points. For language inheritance, the AST contains individual nodes of the
extended language. Only the latter enables to arbitrary mix nodes of both languages.

Figure 2.6 illustrates the effects on the ASTs of integrated languages. Language aggre-
gation (a) integrates independent models of different modeling languages into a language
family: first the models are parsed individually and their ASTs are created, afterwards,
the symbol table framework resolves and manages references between independent ASTs
of such models. Their actual integration, for instance to check inter-language properties,
is performed via their symbol table entries. The language family’s symbol table refer-
ences both languages’ symbol tables and performs entry adaptation where necessary. For
language aggregation, existing tooling can be reused or easily combined. Instances of em-
bedded languages (b) are defined in integrated models, from which MontiCore produces
combined ASTs. Here, subtrees of the embedded language replace external productions
of the embedding language. Nevertheless, context conditions for subtrees can easily

17

Chapter 2 Preliminaries for Architecture Modeling

G1 G2

P1 P2

L1

cfg
L2

cfg

G1 G2

P1 P2

L1

cfg

L2

cfg

G1 G2

P1 P2

L1

cfg

L2

cfg

(b) Language

Embedding
(c) Language

Inheritance

(a) Language

Aggregation

language
configuration

files

grammars

generated
parsersdefines

optional

Language

Family DSLTool

S1 ST2

contains
adapters for
symbol table
entry
adaptation Language

Family DSLTool

Language

Family DSLTool

Language

Family

embeds extends

S1 S2 S1 S2

Figure 2.5: Effects of the language integration mechanisms on the generated parsers,
symbol tables, and language processing tools.

be reused. In case inter-language context conditions between embedded language and
embedding language are required, the context condition and symbol table frameworks
enable integration of such. Using language inheritance (c) also yields integrated models,
but allows reusing all productions and context conditions of the super grammar.

2.2.3 Code Generation Framework

The MontiCore code generation framework [Sch12] employs the FreeMarker [Fre] Java
template engine to facilitate development of code generators. A MontiCore code gener-
ator consists of a set of FreeMarker templates, which can access the currently processed
models’ AST, and additional data management and computation infrastructure specific
to MontiCore. The latter comprises template operators and template helpers [Sch12,
RRW13b]. Template operators are generic to MontiCore generators and provide data
management and template control methods, such as blackboard-like [AZ05] storage and
persistence, as well as access to AST, template helpers, and sub templates. Templates
contain FreeMarker expressions, control structures, and target language elements. Tem-
plate helpers are specific to individual code generators and encapsulate complex calcu-
lations not conveniently expressible with FreeMarker. To this effect, they have access to
template operators, AST nodes, and the symbol table.

18

2.2 MontiCore

AST of
first

language

ASTs of
embedded
languages

(b) Language

Embedding
(c) Language

Inheritance

AST nodes
extended by
sublanguage

(a) Language

Aggregation

AST of second
language

Figure 2.6: Effects of language aggregation, language embedding, and language inher-
itance on the ASTs of the participating languages: aggregation produces
separate ASTs for each model, embedding produces a single AST with sub-
trees at leaves of the embedding language, and inheritance also produces a
single AST containing extended nodes of the inheriting language.

Listing 2.2 illustrates part of a MontiCore FreeMarker template usable to translate
ARC models into Java classes. The template uses FreeMarker expressions and the AST
node of the currently processed model part (accessible via variable ast) to produce a
class declaration with the AST node’s name (l. 1). Here, public and class are plain
text and will be printed to the resulting artifact as stated. The subsequent FreeMarker
loop <#foreach>...</#foreach> (ll. 2-10) iterates over the ports of the current AST
node (l. 2) and utilizes methods of their AST nodes to print corresponding Java members
to the generated artifact (ll. 3-8). As the name of ports is optional (cf. Listing 2.1,
l. 3), the template uses the FreeMarker conditional <#if>...</#if> to determine the
port’s name and assigns it to the template variable name (ll. 4,6). In case the name
was omitted (l. 6), name holds the port’s type name starting with a lower-case letter
(via the FreeMarker built-in function lower_case). Finally, the member is printed
(l. 8) and another template to produce the member’s get() method (l. 9) is included.
The transformations of Connector and Body AST nodes (cf. Listing 2.1, l. 5) employ
similar mechanisms and are omitted for clarity.

MontiCore code generation is invoked with a map from AST types to templates and
will apply the specified templates to each instance of the corresponding AST type. With
this, invoking different code generators for (different parts of) a model and thus gener-
ating code for different aspects of the target system requires little effort.

2.2.4 Related Language Workbenches

A detailed review of different language workbenches has been conducted in [EvdSV+13].
The authors examined the language workbenches Ensō [vdSCL14], Más [Má], MetaEdit+
[KLR96], MPS [VBD+13], Onion [EvdSV+13], Rascal [KvdSV09], Spoofax [KV10], Sug-
arJ [ERKO11], Whole Platform [Sol05], and Xtext [EB10] regarding syntax, validation,
semantics, and editor services. All workbenches support syntactical composition, but

19

Chapter 2 Preliminaries for Architecture Modeling

FM
1 public class ${ast.getName()} {

2 <#foreach p in ast.getPorts()>

3 <#if p.getName()??>

4 <#assign name = p.getName()>

5 <#else>

6 <#assign name = p.getType()?lower_case>

7 </#if>

8 private ${p.getType()} ${name};

9 ${op.includeTemplates(getter, p)}

10 </#foreach>

11 }

Listing 2.2: FreeMarker template for transformation of ARC (cf. Listing 2.1) models
to Java code.

compositional validation of integrated models, for instance for naming and type check-
ing, similar to MontiCore is supported by MPS, SugarJ, and Xtext only.

The language design concepts of MontiCore are similar to Xtext [EB10] which also
employs parser generation from context-free grammars to produce ASTs of DSLs that
can be subject of further processing. Xtext supports language inheritance and language
aggregation similar to MontiCore but does not provide support for language embedding.
Code generation with Xtext is template-based as well and employs the Xtend [Bet13]
language to define templates.

The Kermeta [JBF11, JCB+13] language workbench focuses on meta-language com-
position for the different concerns of software systems. To this effect, the workbench
employs a modeling language based on EMOF [OMG06] for metamodel definition, a
variant of OCL [OMG10] to describe well-formedness rules, and the Kermeta language
to define dynamic semantics. In contrast to MontiCore, Kermeta focuses on model in-
terpretation, for which it utilizes dynamic semantics specified in the Kermeta language.

The Meta Programming System (MPS) [VS10] employs a parser-less, projectional,
approach to language engineering. Here, language engineers directly specify the AST
and editors for specific AST nodes. Language users directly manipulate the model’s AST,
which omits the need for parsing. However, the lack of an abstraction such as the symbol
table, ties language integration to the participating languages’ ASTs and hence breaks
whenever the AST changes sufficiently. Code generation with MPS is realized with
model-to-model (M2M) transformations, which requires ASTs of the target languages
as well. Furthermore, due to the projectional editing, MPS is tied to the MPS IDE and
cannot be integrated into other development environments easily.

Another language integration approach are “domain-specific embedded languages”
(DSELs) [Hud96, vDKV00, Fow10] or “internal DSLs”, which employ GPLs to design
APIs resembling DSLs [HO10, Gho10]. While circumventing the need for DSL aggre-
gation and enabling reusing existing infrastructure, integration is limited to the host
language’s expressiveness and there are no established concepts for language embedding
or inheritance yet. Furthermore, DSELs are subject to notational noise [Wil01].

20

2.3 Architecture Description Languages

Attribute grammars [Knu68] are grammars enriched with computation rules, which
can be used to add semantic information to the corresponding AST. Multiple inheritance
of attribute grammars is an interesting approach [Mer13] to language integration as
well. While research led to further promising results on language integration, such as
Forwarding [WdMBK02], and produced apt language workbenches [WBGK08], we focus
on syntactic language integration. Further discussions of related language workbenches
have been conducted earlier and detailed arguments for the development of modeling
languages [Kra10], their integration [Vö11], and development of code generators [Sch12]
with MontiCore have been raised accordingly.

2.3 Architecture Description Languages

Engineering complex software systems requires expertise from various domains: on one
hand are problem domains with specific concepts, knowledge, and requirements - on the
other hand are solution domain concepts and technologies, such as specific programming
languages, network communication, or data management. Following this dichotomy, suf-
ficiently sophisticated software projects would require domain experts to become software
engineering experts or vice versa [BBC+07, SSL11]. As this usually is unfeasible, result-
ing software systems are often monolithic and hardly reusable [BS06, Mos09, SSL11].

Computer science, and software engineering in particular, have brought forth concepts
of software modularization to alleviate this issue. The level of abstraction ranges from
the encapsulation of object-oriented software construction [Sny86] to component-based
software engineering (CBSE) [McI68], where software components can be full-fledged ap-
plications, to MDE, where primary development artifacts focus on domain issues instead
of technical issues. Component-based software engineering is a software development
paradigm which aims to increase reuse of software by encapsulating functionality behind
well-defined, stable interfaces of software components. Such software components are,
following [SGM02], “a unit of composition with contractually specified interfaces and ex-
plicit context dependencies only. A software component can be deployed independently
and is subject to third-party composition”. The contractually defined stable interfaces
enable a distributed development of components by their respective experts, increase
reuse and ultimately maturity of software components. Isolated software components are
insufficient to describe the system aspects required to achieve executable systems. They
may, however, serve as building blocks for a system’s software architecture. The software
architecture of a system is the set of its principal design decisions [MDT07, TMD09],
which “involves the description of elements from which systems are built, interactions
among those elements, patterns that guide their composition, and constraints on these
patterns” [SG96]. This may include, for instance, the connections between components,
their behavior and configuration, or their deployment onto target platforms. The notion
of component & connector architectures (C&C) [MT00, BS01, TMD09] is a popular ap-
proach to describe the logical decomposition of a system’s software architecture. Com-
ponents of such architectures perform computations and communicate by exchanging
messages via connectors between ports of their interfaces.

21

Chapter 2 Preliminaries for Architecture Modeling

Many domains have adopted notions of software architectures with GPL or binary
components successfully [HK00, Bru01, BHH02, NTN+04, ASK+05, LTR05, BBC+07,
QGC+09, TRMS09, NFBL10, MAKT11, SSL11, NPR13]. Such components limit ex-
change and reuse to systems that can process the same GPL components and fulfill the
same software dependencies. Facilitating reuse of components requires describing com-
ponents and their composition abstract from technological dependencies. This conforms
to the definition of software components contributed by [HC01], where a software compo-
nent “conforms to a component model and can be independently deployed and composed
without modification according to a composition standard”. Such conformance requires
explicating rules for component creation, composition, and deployment, but ultimately
facilitates reuse. However, neither the definition of [SGM02] nor the definition of [HC01]
entail that a software component is executable, instead [HC01] introduces the notion of a
“component model implementation [as] the dedicated set of executable software elements
required to support the execution of components that conform to the model”.

While component models may be expressed in GPLs, this distinction between compo-
nent models and their implementation helps to understand the conceptual gap between
abstract, high-level models and their GPL implementations full of accidental complexi-
ties. Employing component behavior languages, this gap can be reduced by describing
the intended behavior or the component implementation on model level as proposed
by [BGM10]. This also enables utilizing MDE methods and tools that embody software
engineering expertise to produce executable component implementations.

Component & connector architecture description languages (ADLs) [MT00, MDT07]
are languages to express software architectures in terms of components, connectors,
and configurations. Popular examples for such languages are the architecture analy-
sis & design language AADL [BFBFR07, FG12], ACME [GMW97, GMW00], Arch-
Java [ACN02], AutoFocus [BHS99], Darwin [MDEK95], EAST-ADL [DSLT05], Frac-
tal [BCL+06], Koala [VVKM00, ASM04], Mechatronic UML [BGT05], MontiArc [HRR12],
UML [OMG10] component diagrams, SysML [FMS11] internal block diagrams, and
xADL [DVdHT01, NDZR04].

A recent survey investigating industrial demands on architectural languages [MLM+13],
the authors interviewed 48 software engineering practitioners from 40 companies. Thereby,
they identified that the most important properties of such are well-defined semantics and
support for iterative development, proper tooling, extensibility, versioning, and views.
Similar to [MT00], the survey finds that ADLs furthermore should be intuitive and
should avoid notional noise [Wil01]. Conforming to [WHR14], the survey also finds that
abstraction and comprehensibility are more important than code generation.

MontiArc [HRR12] is a C&C ADL that employs the messaging semantics of Fo-
cus [BS01, BDD+93] as foundational theory and realizes these in form of a MontiCore
modeling language. The work presented in this thesis builds upon MontiArc, wherefore
the next section introduces the language.

22

2.4 The MontiArc Architecture Description Language

2.4 The MontiArc Architecture Description Language

MontiArc [HRR10, HRR12] is a MontiCore language for intuitive modeling of compre-
hensible C&C software architectures. As such, versioning and model-differencing are
available and foundations for language extension are provided. It features the core el-
ements of C&C ADLs as identified by [MT00], i.e., components with interfaces, types,
and semantics, connectors, and architectural configurations. MontiArc extensions for
variability [HKR+11], refinement [Rin14], and views [MRR13, MRR14] are available.

With MontiArc, a system’s functionality is decomposed into hierarchical components,
which provide interfaces as sets of typed and directed ports. Types of ports are either
defined in terms of UML/P class diagrams [Rum11, Sch12] or in terms of Java/P types.
The latter is a modeling language resembling Java 1.5 [Sch12]. Hence, the basic data
types of MontiArc are models of the primitive data types of Java 1.5. As the Java/P
and UML/P class diagrams are integrated, complex types can be composed from com-
binations of both. Components encapsulate subsets of the systems functionality and
are either composed or atomic. Composed components contain a hierarchical topology
of subcomponents (their subcomponent hierarchy) that exchange messages via unidirec-
tional, logical connectors between the typed ports of their interfaces and their behavior
emerges solely from the subcomponents and their interaction. Connectors may connect
one outgoing port to many incoming ports but not vice versa. Atomic components per-
form calculations via handcrafted GPL behavior implementations integrated via naming
conventions. Furthermore, MontiArc also employs a powerful type system featuring
component configuration parameters and generic type parameters. The latter can char-
acterize port types as well. As MontiArc does not provide languages to describe the
input-output behavior of components explicitly, behavior of atomic components must be
defined in Java classes related to components by name conventions (i.e., for a component
Robot, MontiArc expects the Java class RobotImpl in the same package). As such,
similar to other ADLs [MT00], its components are tied to a GPL.

MontiArc distinguishes the definition of component types from their instantiation,
which allows reusing component types where desired. Component types can be subject
to inheritance similar to classes in object-oriented programming languages: a compo-
nent type extending another inherits the super component type’s ports, configuration
parameters, and generic type parameters, but not its behavior. MontiArc also features
a sophisticated type system to describe the types of ports and their relations. The
type system resembles Java in being object-oriented, supporting inheritance, interfaces,
multi-dimensional types, and generic types. Instead of using the Java type system, using
its own type system enables adapting MontiArc to other type systems with little effort.

Figure 2.7 illustrates the most important modeling elements of MontiArc by example
of a software architecture for a simple robot. The robot comprises of a front-mounted
ultrasonic sensor to detect obstacles, and two parallel motors to propel the robot. Once
an obstacle is detected, the robot backs up, rotates, and continues to drive forward.

The software architecture consists of components of the types UltraSonic, Timer,
BumpControl, Navigation, Translator, Motor, and MontiArcBumperBot. The

23

Chapter 2 Preliminaries for Architecture Modeling

MontiArcBumperBot

IntegerUltraSonic BumpControl

controller

Timer(5) Boolean

TimerCMD

data dist

signal alarm

cmd cmd

UML/P class
diagram type

composed
component

incoming Port cmd
of type TimerCMD

outgoing port cmd
of type TimerCMD

connector of
type TimerCMD

MA

parametrized subcomponent
right of component type Motor

subcomponent controller
of component type BumpControl

Motor

left(10)

Motor

right(10)

Direction

cmd

Translator<Direction>

trans

Navigation<Direction>(10)

nav

generic type
argument

Figure 2.7: A MontiArc software architecture of a simple robot. The composed compo-
nent MontiArcBumperBot contains four subcomponents of different types
to read sensor data, interpret it, and actuate two motors.

component MontiArcBumperBot is the top level component of the software architec-
ture and contains subcomponents of the types UltraSonic, Timer, BumpControl,
and Navigation. We denote the top-level component of an architecture as architec-
ture root or root when the context is unambiguous. The component Navigation is
composed again and contains three subcomponents trans, left, and right. It also
yields a generic type parameter that needs to be passed at instantiation to define the
type of its incoming port cmd. In Figure 2.7 the component trans is instantiated with
the type argument Direction for its generic type parameter. This argument passed to
subcomponents of type Navigation is also passed down to its subcomponent trans,
which uses it to define the type of its incoming port. Furthermore, Navigation expects
a numerical configuration argument (here instantiated with the value 10) that is passed
down to left and right.

Whenever the subcomponent instance name is omitted, as for example with the
component of type UltraSonic, the name is derived automatically to be the type
name with uncapitalized first letter (e.g., ultraSonic). The resulting subcomponent
ultraSonic uses the outgoing port data to emit Integer messages to subcompo-
nent controller of type BumpControl. The subcomponent controller also re-
ceives Boolean input from subcomponent timer of type Timer and sends messages to
navigation. The subcomponent timer is parametrized with the value 5 and starts
intervals of that length whenever triggered. The subcomponent navigation passes in-
coming Direction messages to its subcomponent trans, which translates these into
messages for two connected subcomponents left and right of type Motor. Figure 2.7
does not reveal whether the component types UltraSonic, Timer, and BumpControl

24

2.4 The MontiArc Architecture Description Language

CD

SINGLE_DELAY

DOUBLE_DELAY

STOP

«enum»

TimerCMD

FORWARD

BACKWARD

STOP

«enum»

MotorCMD

FORWARD

BACKWARD

LEFT

RIGHT

STOP

«enum»

Direction

Figure 2.8: The data types Direction, MotorCMD, and TimerCMD as used by the
MontiArcBumperBot software architecture depicted in Figure 2.7.

are composed or atomic. This is hidden in component interfaces and facilitates modular
and iterative development of architectures.

The data types of the ports BumpControl.nav, BumpControl.cmd, Motor.cmd,
and Timer.signal are modeled as UML/P class diagrams (CDs) [Rum11, Sch12].
Figure 2.8 shows the corresponding CD, where the types Direction, MotorCMD,
TimerCMD are implemented as enumeration types. Messages of data type Direction
describe the direction the robot should move. MotorCMD messages describe how the
motor is supposed to rotate and are be translated by component Motor into a format
the underlying software understands. Messages of type TimerCMD control the com-
ponent Timer and start a countdown of the interval length, the subcomponent was
parametrized with (in this case 5), of twice the interval length, or stop it.

MA
1 package robots;

2

3 import datatypes.*;

4 import robots.sensors.*;

5 import robots.actuators.*;

6

7 component MontiArcBumperBot {

8 component UltraSonic;

9 component Timer(5);

10 component BumpControl controller;

11 component Navigation<Direction>(10);

12

13 connect ultraSonic.data -> controller.dist;

14 connect timer.signal -> controller.alarm;

15 connect controller.nav -> navigation.cmd;

16 connect controller.cmd -> timer.cmd;

17 }

Listing 2.3: Textual model of the MontiArcBumperBot component depicted in
Figure 2.7. The names for the subcomponents of types UltraSonic,
Timer, and Navigation are derived from their types’ names.

25

Chapter 2 Preliminaries for Architecture Modeling

MontiArc models are textual and each model contains at least one component type def-
inition. Listing 2.3 presents the textual model for the component MontiArcBumperBot
as depicted in Figure 2.7. First, the package is declared (l. 1) and the required data types
(l. 3) and component types (ll. 4-5) are imported. Afterwards, the component type defini-
tion begins (ll. 7-17) which starts with the keyword component followed by the compo-
nent’s name. A component definition may contain subcomponent declarations (ll. 8-11)
and connectors (ll. 13-16). Each subcomponent declaration references a component type
and may specify a name and further arguments to describe how the subcomponent of the
referenced type should be instantiated. The declaration of subcomponent navigation
(l. 11) shows the application of type arguments in angle brackets and configuration ar-
guments in round brackets. This follows the notation of Java and similar languages.
Connectors connect one incoming port of either the containing component definition
or one of its subcomponents to multiple outgoing ports of the containing component
definition or its subcomponents. Modeling generic type parameters, configuration argu-
ments, and subcomponents with multiple instances is illustrated with component type
Navigation as depicted in Listing 2.4.

MA
1 package robots;

2

3 import datatypes.*;

4

5 component Navigation<T>[int maxSpeed] {

6 port

7 in T cmd;

8

9 component Translator<T> trans;

10 component Motor(maxSpeed) left, right;

11

12 connect cmd -> translator.input;

13 connect translator.a -> left.cmd;

14 connect translator.b -> right.cmd;

15 }

Listing 2.4: Textual model of the component type Navigation as depicted in
Figure 2.7 and Listing 2.3.

The signature (l. 5) of component type Navigation declares the type parameter T
in angle brackets followed by the configuration parameter maxSpeed of data type int
enclosed in square brackets. The type parameter T defines the type of incoming port
cmd (l. 7) and is passed to its subcomponent trans (l. 9). Similarly, the configura-
tion parameter maxSpeed is passed down to both Motor instances defined by a single
subcomponent declaration (l. 10).

MontiArc employs context conditions to check the well-formedness of models, such as
uniqueness of names, existence of referenced model elements, and naming conventions.
The language elements and context conditions of MontiArc are available [HRR12].

26

2.4 The MontiArc Architecture Description Language

Communication of MontiArc components is based on the Focus [BS01, BR07, RR11]
framework. Components send and receive sequences of messages via unidirectional chan-
nels (represented by connectors). A channel transports messages of its type in order of
their transmission. Its semantics over time is formalized as an ordered stream of messages
〈m1,m2,m3, . . .〉. While streams preserve the order of messages, no assumptions on the
time lag between two messages can be derived. Focus allows simulating the progress of
time using time slices delimited by tick messages (

√
). For messages contained within

a time slice, only the order of transmission is preserved. Focus provides three differ-
ent timing paradigms: untimed , timed , and time-synchronous: untimed streams contain
messages only, timed streams contain an arbitrary but finite number of messages in each
time slice, and time-synchronous streams contain up to one message per time-slice. The
effects of different time paradigms on MontiArc components are illustrated in [HRR12].
The code generation and simulation framework of MontiArc generates Java code for
timed and time-synchronous communication [Mon]. Furthermore, Focus distinguishes
components that produce output immediately from components that produce output
in the next time slice. The former are called weak-causal and may lead to issues with
component cycles (see [HRR12] for a discussion). The latter are called strong-causal and
automatically produce a delay, hence, cycles with at least one strong-causal component
are unproblematic.

However, the MontiArc code generation framework is available in Java only and atomic
components always require GPL behavior implementations. Consequently, the frame-
work assumes that for each generated implementation of an atomic component a Java
behavior implementation following certain naming conventions exists. This prohibits
usage with platforms that cannot support Java (which, for instance, in robotics is the
majority [Mue13]). Furthermore, this also implies that domain experts, who contribute
components, know Java as well. MontiArc also does not distinguish between platform-
independent and platform-specific components. As this link is established for generated
code, the software architecture cannot disclose whether a certain component has an
implementation in the required platform GPL. Replacing the GPL behavior implemen-
tation of a component with another of the same GPL (e.g., to use a different type of
sensor) requires error-prone handcrafting and expertise of coed generator details. With
MontiArc, the software architecture is the single development model. This prohibits to
explicate properties of the generated implementations, or the architectures usage without
narrowing its applicability further.

27

Chapter 3

Scope and Methodology

The game of science is, in principle, without end.
He who decides one day that scientific statements do

not call for any further test, and that they can be
regarded as finally verified, retires from the game.

Karl Popper

Efficient model-driven engineering of reusable multi-platform applications with C&C
software architectures requires modeling languages to express all “principal” design de-
cisions of such architectures. This does not only comprise structural decisions, such as
component topology, message data types, or architectural configurations, but also de-
cisions regarding system behavior, and interaction. The principality of such decisions
depends on the system goals and thus varies between applications. Hence, the modeling
elements required to describe such decisions vary as well. This can be condensed to: “In
architecture modeling, one size will never fit all” [MDT07].

To achieve acceptance and reuse of an ADL for multiple applications, it must be
applicable to many challenges. Thus, “extensibility is a key property of modeling nota-
tions” [MDT07]. We therefore propose an extensible architecture modeling infrastruc-
ture, which is supported by the powerful language definition and integration mechanisms
of the MontiCore language workbench and supports extension of its C&C ADL with ex-
changeable component behavior languages, development of platform-specific implemen-
tations from platform-independent architecture models, and automated translation of
such models with compositional code generators into artifacts for arbitrary platforms.

The following section illustrates the intended usage of MontiArcAutomaton by the ex-
ample of developing a robotics application with a specific component behavior language
and code generation for two different platforms. Afterwards, Section 3.2 presents the re-
quirements for efficient development of platform-independent C&C software architectures
with exchangeable component behavior languages. Finally, Section 3.3 describes the
important parts of the MontiArcAutomaton infrastructure and the corresponding soft-
ware engineering process including tailoring MontiArcAutomaton to company-specific
or application-specific requirements.

29

Chapter 3 Scope and Methodology

motor actuating left track ultrasonic sensor

Lego NXT
computation

unit
ultrasonic
sensors

body with embedded dual core computer

Figure 3.1: The hardware platforms to be used for exploration: a Lego NXT robot run-
ning LeJOS [LeJ] and a Pioneer 3-AT (photo via www.activrobots.com)
running ROS [QGC+09].

3.1 Scenario

Consider a company that is going to produce robots for exploration of unknown areas.
These robots are supposed to drive around the area they are deployed into until they
approach an obstacle, then they should back up, rotate, and start exploring again. The
company is going to produce two versions of the system to serve different customer
requirements: the first version should be affordable and mostly for indoor education
purposes, while the second version should be robust and usable for outdoor all-terrain
exploration. To reduce cost, the company is going to use off-the-shelf hardware and
software. The educational system is supposed to use Lego NXT robots as depicted on
the left of Figure 3.1. These robots employ two parallel tracks, an ultrasonic distance
sensor, a central computing unit (the Lego NXT “brick”) with a CPU speed of 48 MHz,
and 64 KB RAM, which has to support execution of the complete software architecture.
Each track is powered by a single motor and all motors and sensors are connected to the
computation unit. The company chooses the Java LeJOS NXT operating system [LeJ]
as robot operating system, which provides interfaces to the NXT hardware in form of a
reduced Java virtual machine with a concise API. For the second system the company
chooses to use a Pioneer 3-AT four wheel drive robot with 8 front-mounted ultrasonic
sensors and an embedded dual core computer with 2.26 GHz and 8 GB RAM. Interfaces
to the robot’s hardware can be accessed using the robot operating system ROS [QGC+09]
with multiple programming languages. As the ROS support for Java is less mature than
for Python, the company is going to use the Python implementation of ROS.

While both platforms require different programming languages to provide the same
functionality, the logical architecture and high-level functionality of both applications
will be mostly identical. To reduce software engineering costs, the company is going to
model the software architecture, which enables reusing the same architecture model with

30

www.activrobots.com

3.1 Scenario

both robots. As the behavior of both robots is identical as well, their central controller
also is modeled to be reusable.

Now, a software engineer has to develop the common software architecture for both
platforms. Based on the company’s requirements, she decides to use a C&C ADL to
model the architecture and class diagrams for the architecture’s data types. This enables
her to model the structure of the architecture platform-independently and to delegate
development of component behavior for sensors and actuators to respective experts. She
therefore decomposes the system’s functionality into five component types:

1. A DistanceSensor component which emits the distance to the next obstacle.
Whether this actually uses ultrasonic, laser, or infrared is left underspecified.

2. Components of type Motor propel either one of the tracks and or two wheels on
one side of each robot. To this effect, their implementations must interface the
motor drivers. How these are interfaced is independent of the component type’s
interface and transparent to component users.

3. The Timer component type manages countdowns to support timing operations.

4. The component type ExplorationControl realizes the robots behavior. To de-
scribe it platform-independently, the company’s exploration behavior expert uses
a behavior language that can be translated into platforms-specific GPL implemen-
tations, such as the company’s specific variant of UML Statecharts [OMG10].

5. The top-level component ExplorerBot, which contains subcomponents of the
other types and their connections.

Figure 3.2 depicts the resulting software architecture. Here, the central subcomponent
controller of component type ExplorationControl receives messages from sub-
components sensor of component type DistanceSensor and timer of component
type Timer. Based on these messages, controller calculates the robot’s next action
and translates it into messages for components left, right, and timer.

The component types DistanceSensor, Motor, and Timer require platform-specific
implementations to interface the ultrasonic sensors, motors, and operating system fea-
tures of the underlying platform. Describing their component behavior requires in-
teraction with the corresponding, platform-specific GPL APIs. Hence, modeling their
behavior with abstract DSLs is beneficial only if these DSLs are designed to interface
these specific APIs or are general enough to resemble the APIs’ GPLs. The former DSLs
are hardly reusable, the latter resemble GPLs. In lieu of developing such three DSLs
for these component types, a LeJOS API DSL, or a reduced Java DSL to interface the
required APIs, these components are developed as interface components and integrated
into the software architecture.

Interface components may not describe component behavior in any form and need to be
replaced by platform-specific components of the same interface later in the development
process (at the latest prior to code generation). The component ExplorationControl

31

Chapter 3 Scope and Methodology

ExplorerBot

Integer
ExplorationControl

controller

Timer

timer(5)
Boolean

Motor

left

Motor

right

MotorCmd

TimerCMD

data distance

signal signal

left cmd

MotorCmd

right cmd
cmd

cmd

MAA

DistanceSensor

sensor

interface subcomponent right of
component type Motor

subcomponent controller of component
type ExplorationControl with behavior model

Drive

Turn

Idle

Back

Figure 3.2: The software architecture model ExplorerBot describes the logical, struc-
tural software architecture of the system under development and uses inter-
face components as extension points.

is atomic and its behavior is modeled using a variant of UML Statecharts [OMG10].
Thus, the component has no dependencies to the underlying platform, which allows
generating implementations for – and to reuse it with – different target platforms. To
enable the company’s exploration expert to model component behavior by reusing this
language, she integrates it into the ADL without changing it.

Realizing the intended functionality requires the software engineer to develop platform-
specific components to replace DistanceSensor, Motor, and Timer for each plat-
form. Therefore, she describes the behavior of these components in a platform-specific
GPL, i.e., Java for the Lego NXT robot components and Python for the Pioneer 3-AT
robot components. To describe how generated components and their GPL implemen-
tations interact, she also develops two run-time environments (RTEs), one for each
robot. These define the interfaces of components, realize message passing, and inte-
gration of handcrafted component behavior implementations in terms of the respective
robot’s GPL. Given these run-time environments, she develops platform-specific compo-
nent models and RTE-compatible implementations for each component models in the re-
spective GPL. These are the component models NXTUltrasonicSensor, NXTMotor,
and JavaTimer for the NXT robot and Py3UltrasonicSensor, Py3Motor, and
Py3Timer for the Pioneer 3-AT robot. The behavior implementations of the compo-
nents NXTUltrasonicSensor and NXTMotor use the LeJOS API to translate sensor
readings into messages, and messages into actuator movement. The implementation of
components JavaTimer uses Java API time functions to manage a timer and translates
timer events into messages and vice versa. For the Pioneer 3-AT robot, the compo-
nents Py3Motor and Py3UltrasonicSensor interface with ROS to translate sensor
readings into messages, and messages into actuator movement. The implementation
Py3Timer uses Python functions to manage a timer.

32

3.2 Requirements

Given the interface components and platform-specific components required for the ap-
plication as well as the run-time environments, the software engineer needs to provide
two code generators: one to translate components (with integrated Statecharts) to Java
and one to translate such components to Python. As all functions related to the robots’
operating systems are encapsulated into components, the code generators do not have
to consider LeJOS or ROS, but generate plain GPL representations of components with
Statecharts for the respective languages only. While code generators for Java compo-
nents and Python components already exist, neither generates code for components with
embedded Statecharts. The software engineer thus develops two new code generators
that generate Statechart implementations that conform to the interfaces of the respective
run-time environment. Their integration into the existing code generation framework is
application-specific and defined in an application configuration model.

So far, the software engineer can generate GPL-specific code for both target platforms
from the platform-independent software architecture of ExplorerBot (cf. Figure 3.2).
The resulting code does not interface the platform-specific components developed earlier,
as the architecture does not know that these are to be used. Instead of integrating these
components manually, which would lead to two new software architectures that have to
be developed, evolved, and maintained separately, she describes these replacements in
models of a concise application configuration language. These define how such compo-
nents should be replaced and which code generators to apply. Based on these models,
the ADL’s model processing framework applies M2M transformations to translate the
single platform-independent software architecture into two platform-specific software ar-
chitectures. For the Lego NXT robot, the transformed software architecture is depicted
in Figure 3.3. Here, the platform-independent, interface components of subcomponents
sensor, left, right, and timer have been replaced with the platform-specific com-
ponents NXTUltrasonicSensor, NXTMotor, and JavaTimer respectively.

From this platform-specific architecture, executable implementations of the systems
can be generated and deployed. With another application configuration model specify-
ing the replacement of interface components with ROS-specific components, the software
engineer produces a platform-specific architecture for the Pioneer 3-AT robot. Reusing
the same software architecture with other platforms requires minimal effort: if the new
platform supports a GPL for which proper code generators exist, the software engineer
needs to develop new platform-specific components and to define corresponding replace-
ments only. If new component behavior languages should be integrated, for instance to
describe timing functions, sensor data interpretation, or robot movement, these can be
reused and integrated easily. They only require proper code generators for embedded
models of this language. Finally, a new application configuration model must be created
and properly configured.

3.2 Requirements

The software engineering process intended for the development of multi-platform ap-
plications with C&C ADLs and exchangeable component behavior languages imposes

33

Chapter 3 Scope and Methodology

MAA

platform-specific and replaced
sensor subcomponents

NXTExplorerBot

Integer
ExplorationControl

controller

JavaTimer

Timer(5)
Boolean

NXTMotor

left

NXTMotor

right

MotorCmd

TimerCMD

data distance

signal signal

left cmd

MotorCmd

right cmd
cmd

cmd

NXTUltrasonic

sensor

Drive

Turn

Idle

Back

platform-specific and replaced
actuator subcomponents

Figure 3.3: The intermediate, platform-specific architecture of the NXTExplorerBot

exploration robot.

multiple requirements upon supporting infrastructures. These requirements can be sep-
arated into requirements on modeling capabilities (Section 3.2.1) and requirements on
model transformation capabilities (Section 3.2.2).

3.2.1 Modeling Requirements

Obviously, most important constituents of model-driven engineering processes are the
employed modeling languages. For the intended process, these are the languages to
model software architectures, their configuration, and the participating infrastructure
constituents. Most of the modeling requirements are derived from experience with de-
scribing service robotics applications as illustrated within the scenario.

MRQ-1 Platform-independent architectures: To foster reuse, the infrastructure to
develop reusable software architectures supports modeling of logical, platform-
independent software architectures.

MRQ-2 Platform-specific architectures: Executing platform-independent software
architectures ultimately requires their transformation into platform-specific
representations. While smart code generators could produce such, analysis
of resulting GPL artifacts is complex and depends on the generator’s trans-
lation. Transforming platform-independent architectures into valid platform-
specific architectures prior to code generation enables such analyses. Hence, all
participating modeling languages must support modeling of platform-specific
architectures as well.

MRQ-3 Pervasive model-driven engineering: It is possible to model complete,
executable applications without requiring handcrafted GPL artifacts.

34

3.2 Requirements

MRQ-4 Exchangeable modeling languages: Employing the most-appropriate com-
ponent behavior languages for the application under development is possible.

MRQ-5 Embeddable language fragments: Models usually exist in a well-defined
context. For instance, they might expect to operate in the context of specific
data sources. Embedded component behavior models may not need such infras-
tructure as they exist encapsulated in the context of the embedding component.
Therefore, it is possible to define which language elements are embedded into
the extension points of the ADL, instead of reusing complete languages only.

MRQ-6 Non-invasive language integration Reusing input-output modeling lan-
guages to describe component behavior is possible without changing these.

MRQ-7 Platform-independent data types: Reusing a software architecture model
can be restricted by the referenced data types: a component relying on a
port data type only available for a certain robot platform or in a certain GPL
limits the options to reuse the surrounding architecture severely. Therefore,
it is possible to describe a software architecture model solely with platform-
independent data types.

MRQ-8 Platform-independent software architecture reuse: The concepts real-
ized in structure, data types, and control logic of complex applications can
often be formulated independently of the actual target platform. Instead of
re-developing the required software architecture and its constituents for each
target platform, it is possible to reuse the complete software architecture with
different platforms without (platform-specific) modifications and with minimal
effort. In detail, this requires:

MRQ-8.1 Additional parametrization: Platform-specific components might re-
quire additional configuration information, such as the hardware port a
sensor is connected to. Introducing this information to the base software
architecture would tie it to specific platforms. Hence, such information
is defined besides the platform-independent software architecture.

MRQ-8.2 Parametrization stability: Platform-independent software architec-
tures can specify arguments of subcomponents. These arguments charac-
terize properties of all derivable platform-specific software architectures.
Therefore, platform-specific arguments may not overwrite arguments of
the platform-independent architecture.

MRQ-8.3 Behavior decomposition: Realizations of platform-specific compo-
nents might be of arbitrary complexity. Consequently their decompo-
sition is desired.

MRQ-8.4 Architecture validity: The resulting platform-specific architecture is
a valid MontiArcAutomaton model, hence the platform-specific behavior
replacements for interface components are compatible to their interfaces.

35

Chapter 3 Scope and Methodology

MRQ-8.5 Code generator compatibility: Retaining compatibility with exist-
ing code generators [RRW13b], requires architecture integration to be
performed completely prior to code generation and may not rely on gen-
erator specifics.

MRQ-9 Structural completeness: Usage of partial software architecture structures
(such as omitting components to describe extension points) reduces compre-
hensibility and is a source for errors. Thus, the modeling languages prohibit
such structural incompleteness.

3.2.2 Model Transformation Requirements

Translating C&C architecture models with exchangeable component behavior languages
also raises requirements regarding model transformations. For instance, the languages to
be embedded into components are apriori unknown to code generator developers. Hence,
there must be mechanisms to support composition of code generators for such features
after deployment. As we furthermore aim at reusing a single software architecture with
multiple target platforms, it must be possible to translate that software architecture
into representations compatible to these platforms. This section introduces the code
generation requirements derived from the scenario and the modeling requirements.

TRQ-1 Arbitrary GPLs and platforms: Complex application domains, such as
robotics [Mue13], employ various programming languages and platforms. To
support both, code generators for arbitrary GPLs and platforms can be used.

TRQ-2 Integration of handcrafted code: When it is not feasible to describe com-
ponent behavior platform-independently (for instance when components need
to access operating system functionality), handcrafted GPL code can be inte-
grated to describe component behavior as well.

TRQ-3 Code generator reuse: Increasing reuse of code generators demands flexible
composition of generator modules. Achieving this requires well-defined code
generators and composition mechanisms.

TRQ-3.1 Explicit code generator interfaces: Composing code generators requires
formalization of their interfaces in which code generators must explicate
their expected inputs, constraints and execution information.

TRQ-3.2 Explicit code generator responsibilities: Each code generator is respon-
sible for a well-defined set of languages and exchangeable without modi-
fications to the other generators.

TRQ-4 Monolithic code generators: There are use cases where monolithic code
generators, tied to a limited set of behavior languages and specific target plat-
forms are more useful than compositional generators. Hence, employing such
code generators is supported as well.

36

3.3 Methodical Guidance

TRQ-5 Code generation for language fragments: As components may embed
fragments of other languages’ models (Req. MRQ-5), code generators may
generate code for such language fragments as well.

TRQ-6 Non-invasive code generator composition: Composition of code genera-
tors requires no modification of the participating generators.

TRQ-7 Light-weight code generators: To avoid re-implementation of common
M2M transformations for different code generators, the infrastructure supports
execution of arbitrary M2M transformations prior to code generation.

TRQ-8 Efficient code generators: To reduce the number of generated artifacts,
which, for instance, is crucial when using platforms with small memory, code
generators may process component types and produce artifacts representing
component types instead of individual subcomponents.

3.3 Methodical Guidance

Software development with the MontiArcAutomaton infrastructure relies on a separa-
tion of concerns between software engineering experts for infrastructure extension and
domain experts for application engineering. This separation is reflected by its engineer-
ing process and constituents. Developing a MontiArcAutomaton application comprises
modeling the system’s platform-independent architecture with components developed
in a variety of behavior languages, adding realizations of platform-specific components,
and generating platform-specific GPL artifacts. MontiArcAutomaton differs from es-
tablished C&C software architecture development frameworks in aiming for a flexible
extensibility. To this effect, it allows integration of new component behavior languages
into its ADL, automated translation of platform-independent into platform-specific ar-
chitecture, and composition of code generators. While language engineering, extension,
and code generator development require certain software engineering expertise, they need
to be performed at different stages of the development process associated with Monti-
ArcAutomaton. Engineering new languages and extending existing languages need to be
performed prior to modeling. Code generators can be developed parallel to the software
architecture model or subsequently and are integrated in a black-box fashion after de-
ployment. Enabling such a form of software engineering requires concepts, methods, and
an appropriate infrastructure that separates concerns not only logically, but also sequen-
tially over the different development activities. To achieve this, the MontiArcAutomaton
infrastructure comprises the following elements:

• An extensible ADL based on MontiArc [HRR12] that allows to describe structural
properties of C&C software architectures, such as hierarchical components with
typed interfaces and their interconnection.

• Concepts to distinguish platform-independent components models from platform-
specific component models.

37

Chapter 3 Scope and Methodology

• The UML/P class diagram language [Sch12] for platform-independent data type
description.

• An extension mechanism for exchangeable component behavior modeling languages,
which enable platform-independent description of component behavior.

• An integrated, state-based, component behavior language based on the I/Oω au-
tomata paradigm [Rin14].

• A model transformation translating platform-independent architectures with ex-
tension points into platform-specific architectures with supporting library infras-
tructure.

• A code generator composition framework to produce executable GPL implemen-
tations from component models with embedded behavior models.

• A mechanism to configure concrete applications with selected code generators and
libraries.

Figure 3.4 illustrates these with the corresponding roles following [KRV06]. The
quintessential elements of MontiArcAutomaton are its modeling languages, its language
integration framework, and its model transformations. The infrastructure provides two
extension points: its ADL provides an extension point for component behavior languages
and its code generation framework supports extension with code generators for different
platforms and combinations of behavior languages. This enables reusing both, languages
and generators, in different contexts and applications.

Once the first extension point is implemented with languages provided by language en-
gineers, application modelers can develop C&C software architectures with components
embedding these languages. In case the architecture under development is supposed to be
platform-independent, the architecture imports interface components from interface li-
braries provided by interface library providers to indicate its extension points. The appli-
cation modeler then describes how these components are replaced with platform-specific
implementation library components developed by implementation library providers. Im-
plementation libraries realize interface libraries. Therefore, they contain specializations
of interface components and corresponding, platform-specific, handcrafted GPL behavior
implementations, as well as required data types.

The application modeler defines component replacement in application configuration
models, which also reference the architecture to process. In case the architecture is sup-
posed to be platform-specific, this is not necessary. Application configuration models
also describe which code generators to apply. To this effect, they reference compatible
code generators provided by generator developers. Generator description models define
generator properties important to composition and execution, such as the run-time envi-
ronment the produced artifacts are compatible to. This is achieved by agreeing on RTE
interfaces for components and their behavior implementations. Hence, run-time envi-
ronment developers must comprehend details programming of the target platform and

38

3.3 Methodical Guidance

UML/P CD

Java/P

Language

Integration

Generator

M2M

Transformations

M2T

Transformations

MontiArcAutomaton Tool Chain

Generator

Gen
Desc

Templates

Application

C&C
App
Cfg

Interface Library

GPL Code ModelModelSoftware Architecture

Generated
Component

Artifacts

Platform: Operating

System, Drivers,

Middleware

Handcrafted
Behavior
Artifacts

Impl. Library

ADL

RTE

Usage Optional usage ConformanceRelations:

«gen» «hc»

«hc»

application
programmer

application
modeler

interface library
provider

generator
developer

implementation
library provider

Behavior DSL

Grammar Context
Conditions

language
engineer

run-time
environment

developer

C&C App

modeling language

infrastructure
module

model

Generator

Description
C&C Application

Configuration

Figure 3.4: Quintessential MontiArcAutomaton infrastructure components, artifacts,
and relations with responsible roles.

software engineering details as well. Run-time environments can also contribute solu-
tions for component communication, integration of handcrafted artifacts, and arbitrary
additional functionality.

The MontiArcAutomaton infrastructure processes configuration models, configures
its component replacement M2M transformation according to it, and passes the selected
code generators to its code generator composition framework. The latter combines the
generators and uses the resulting aggregate to produce generated component artifacts.
Per agreement on an RTE and its interfaces, the generators produce components that are
compatible to it. This enables application programmers to develop handcrafted behavior
implementations for atomic components without behavior models (i.e., to interface the
target platform’s GPL functionality) without considering the generated code. Instead,
the application programmer must comprehend the RTE only.

With these extension points and modules, MontiArcAutomaton enables describing
component behavior not conveniently expressible with existing modeling languages with
more appropriate behavior languages. These languages must be provided by language
engineers and can be stand-alone languages that describe some form of input-output
behavior (such as Statecharts reading from and writing to data sources). Alternatively,

39

Chapter 3 Scope and Methodology

AD

act Using MontiArcAutomaton

use provided
language

family

develop PS
architecture

select
existing

generator

add
behavior

languages

develop PI
architecture
and bindings

compose
code

generators

generate
target
code

[DSLs

sufficient]

[behavior

DSLs

missing]

[single

platform]

[multiple

platforms]

[generator

exists]

[no

generator

exists]
stage 1 stage 3

reuse and
extend

architecture

develop a
new software
architecture

[reusable

architecture exists]

[no reusable

architecture exists] stage 2

Figure 3.5: The three stages to configure and use MontiArcAutomaton. Each activity
can result in failure (for instance due to modeling an invalid architecture or
composing incompatible code generators). These transitions are omitted for
clarity.

these languages can be designed for embedding into MontiArcAutomaton. In both cases,
the language integration infrastructure of MontiArcAutomaton minimizes integration
efforts. For each additional language, a generator developer then has to provide a code
generator to produce executable component implementations according to the RTE of
the component generator the new behavior generator should be combined with.

This modularization of MontiArcAutomaton and division of responsibilities to roles
addresses the different skill sets of engineers: domain experts may enact the roles of
application modelers and are liberated from becoming experts in software language en-
gineering, code generator development, or the platform details. The latter expertise
can be provided by implementation library providers, who produce implementation li-
braries that can be reused for multiple applications performing on the same platform,
and application programmers, who produce application-specific components.

Developing an application for a new platform from scratch requires the enactment
of the majority of roles defined above and can be separated into the three stages as
depicted in Figure 3.5: In the first stage, language engineers extend the MontiArc-
Automaton ADL and integrate required component behavior languages. In the second
stage, the application modeler develops either a platform-specific software architecture
or a platform-independent software architecture and the related model. In this stage, the
application modeler also decides whether to reuse an existing architecture or to develop
a new architecture from scratch. In the last stage, either a component generator for the
specific language aggregate composed in the first stage is (re)used or an appropriate code
generator family is composed. Finally, code for the target systems can be generated.

As the activities depicted on top of each stage are subsumed by the respective corre-
sponding bottom activities, the following sections describe the only the bottom activities
of each stage.

40

3.3 Methodical Guidance

L
a
n
g
u
a
g
e

E
n
g
in

e
e
r create

behavior
languages

extend behavior
languages
accordingly

[languages missing]

handcraft
language
integration

A
p
p
lic

a
ti
o
n

M
o
d
e
le

r

[languages

insufficient]

AD

identify behavior
language

requirements

act Behavior Language Integration

model
language
integration

[languages suffice]

[no special

integration

requirements]

[special

integration

requirements]

Figure 3.6: Instantiation and configuration of MontiArcAutomaton begins with integra-
tion component behavior languages.

3.3.1 Extension with Behavior Languages

MontiArcAutomaton combines at least two kinds of languages to model software archi-
tectures: a C&C architecture description language and a data type description language.
To enable modeling of platform-independent software components with behavior, it fur-
ther enables integration of component behavior languages. The configuration and inte-
gration efforts to integrate new component behavior languages are part of the behavior
language extension stage of MontiArcAutomaton deployment (cf. Figure 3.6).

The application modeler begins this stage identifying the required component behavior
languages. If any languages are missing or are insufficient to the requirements, the
language engineers need to develop proper component behavior languages or extend
existing languages accordingly. In case the languages to be integrated do not yield special
integration requirements (such as parts crucial to integration missing), the application
modeler can model their integration. Otherwise, the language engineers can handcraft
integration using the language embedding features of MontiCore.

Chapter 4 presents the integration of component behavior languages by introducing
the MontiArcAutomaton ADL and its extension mechanisms. Chapter 5 afterwards
describes the state-based Automata behavior language and its integration into the
MontiArcAutomaton ADL.

3.3.2 Architecture Modeling

After the language family has been extended with component behavior modeling lan-
guages, the actual software architectures can be modeled. For platform-specific architec-
tures this is straightforward and the application modeler needs to provide the required
components and data types only. For components with modeled behavior the applica-
tion modeler also defines their behavior as well. In case a component requires a GPL

41

Chapter 3 Scope and Methodology

In
te

rf
a
c
e

L
ib

ra
ry

 P
ro

v
id

e
r

A
p
p
lic

a
ti
o
n

M
o
d
e
le

r

AD

identify
required PI
components

[matching

interface libraries

do not exist]

identify
required PS
components

[matching code

libraries do

not exist]

[matching interface

libraries exist]

[matching code

libraries exist]

[all

comp.

bound]

act Develop Platform-Independent Architecture Model

interface

components

platform-specific

components

[component bindings missing]

Im
p
le

m
e
n
ta

ti
o
n

L
ib

ra
ry

 P
ro

v
id

e
r

create libraries of
platform-specific

models

create libraries
of interface
components

model platform-
independent
architecture

define
bindings

Figure 3.7: The steps involved in modeling a MontiArcAutomaton software architecture
differ depending on the intended platform-independence: if the architecture
should be platform-independent, it relies on interface components imported
from interface libraries and later replaced with platform-specific components
from implementation libraries.

behavior implementation, the application programmer implements it accordingly. Af-
terwards, the architecture can be processed by MontiArcAutomaton to parse it into an
AST representation and perform well-formedness checks.

Reusable, platform-independent software architectures may not rely on behavior pro-
vided in form of GPL artifacts without restricting reuse to compatible platforms. There-
fore, components with behavior not expressible in modeling languages are replaced by
interface components (Figure 3.7). These components provide the required interfaces to
describe the structure of the software architecture, but omit behavior implementations,
i.e., they act as architecture extension points. To enable this, the application modeler
defines the required interface components as part of interface libraries that are used by
the software architecture model. The corresponding platform-specific components are
modeled as part of platform-specific implementation libraries and implemented by the
implementation library providers. After selecting implementation libraries for each tar-
get platform and creating an application configuration model (describing replacement of
interface components and selected code generators), code generation can be started. To

42

3.3 Methodical Guidance
G

e
n
e
ra

to
r

D
e
v
e
lo

p
e
r

A
p
p
lic

a
ti
o
n

M
o
d
e
le

r
R

T
E

D
e
v
e
lo

p
e
r

create
component
generator

select
component
generator

create or update
application

model

identify RTE
requirements

create
run-time

environment

create RTE
conform behavior

generators

select
behavior

generators

identify data
type generator
requirements

create
data type
generator

select
data type
generator

[RTE

insufficient]

[generator

insufficient]

[generators

insufficient]

identify comp.
generator

requirements

identify
behavior gen.
requirements

[generator

insufficient]

[generator

sufficient]

act Configure with Compositional Code Generator

AD

[existing RTE

sufficient]

[generator

sufficient]

[generators

sufficient]

[all platforms

represented]

[unrepresented platforms]

Figure 3.8: Code generators for MontiArcAutomaton either are monolithic (i.e., they
contain translations for all participating component behavior languages) and,
thus, hardly reusable or they are composed from modular component gener-
ators, behavior generators, and data type generators.

this end, MontiArcAutomaton replaces the interface components of the software archi-
tecture with corresponding platform-specific components as defined in the application
configuration model prior to well-formedness checking and code generation. Chapter 6
describes this stage by introducing the interface libraries, implementation libraries, and
the M2M transformation realizing the replacement.

3.3.3 Composed Code Synthesis

Producing executable systems automatically requires code generators that can process
the language aggregate of the software architecture model. MontiArcAutomaton enables
using monolithic code generators for specific language aggregates as well as composition
of modular, reusable, code generators. Composition of modular code generators for C&C
architectures requires at least three generator kinds for different concerns:

43

Chapter 3 Scope and Methodology

1. Component generators produce GPL artifacts representing component structure,
i.e., ports, variables, messaging infrastructure, and the topologies of composed
components.

2. Behavior generators produce GPL artifacts representing models of a single compo-
nent behavior language.

3. Data type generators produce GPL artifacts representing data types.

Accordingly, this stage begins with the application modeler identifying required code
generators suitable for the intended use. If a proper monolithic code generator exists,
its usage has to be defined in the application configuration model.

In case compositional code generators are to be used (Figure 3.8), first a proper compo-
nent generator has to be selected. If no such generator exists, a generator developer needs
to provide a suitable one. To integrate generated component code with handcrafted and
generated behavior code, the component generator relies on a run-time environment . If
no suitable RTE for the target platform, its GPL, and required functionalities exists, the
run-time environment developer provides one. Afterwards, for each component behavior
language, target platform, and RTE, a suitable behavior generator has to be selected
as well. This may include involving a generator developer to develop proper genera-
tors. Finally, data type generators (e.g., for data types of ports) are required as well.
Again, if no proper data type generator exists, a generator developer needs to provide
one for the target platform. After selection of proper code generators, transformation
in executable systems can be invoked without effort. Chapter 7 describes this stage by
introducing run-time environments, code generator kinds, and a generator description
modeling language to describe compositional code generators.
Afterwards, Chapter 8 presents the application configuration modeling language, which

enables defining component replacement and to select generators for a software archi-
tecture model.

44

Chapter 4

Component & Connector Architectures
with Application-Specific Behavior

Architecture starts when you carefully put two bricks together.
There it begins.

Ludwig Mies van der Rohe

Component & connector architecture description languages enable developers to com-
pose complex systems from component models. These models abstract from implemen-
tation details of GPLs and provide well-defined interfaces to hide component behavior
complexity. Most ADLs, however, require component developers to describe component
behavior in form of GPL artifacts tied to components by convention or explicit reference.
Thus, although ADLs contribute abstraction to system integration, their usage entails
coping with accidental complexities and notational noise nonetheless. That all intended
target platforms must support the GPL featured by the ADL furthermore hampers reuse
of components with different platforms. Enabling component developers to use modeling
languages to describe component behavior facilitates abstraction and reuse.

MontiArcAutomaton is an infrastructure that realizes concepts to integrate (domain-
specific) component behavior languages into a MDE process focused on C&C architecture
modeling and model transformation. At its core, the infrastructure contains a C&C ADL
that describes how structural architecture parts can be modeled and provides and exten-
sion points for exchangeable component behavior languages. This MontiArcAutomaton
ADL inherits from MontiArc [HRR12], extends its symbol table, and introduces new
well-formedness rules to reflect language integration and related modeling elements. As
MontiArc enables modeling of platform-specific software architectures, inheriting from
it enables MontiArcAutomaton to model such software architectures as well. This ful-
fills Req. MRQ-2 . Furthermore, this allows modeling data types in terms of UML/P
class diagrams and, hence, also fulfills Req. MRQ-7 .

This chapter presents the MontiArcAutomaton ADL. To this effect, this section in-
troduces the extensions of MontiArcAutomaton over MontiArc on the example of the
software architecture ImprovedBumperBot as depicted in Figure 4.1.

The component type ImprovedBumperBot is a variant of the BumperBot robot
(cf. Figure 2.7) that contains the subcomponents distance, clock, controller, and
navigation to provide the same functionality. The components Distance, Clock,

45

Chapter 4 C&C Architectures with Application-Specific Behavior

ImprovedBumperBot

MAA

Integer StateBasedController

controller

Boolean

Motor

left

Motor

right

Direction

TimerCMD

data dist

signal time

nav cmd

cmd

cmd

Drive

Turn

Idle

Back

Translator

trans

Navigation

Clock(3,10)

impl JavaTimer

rte java-timesync

Distance

var Integer minDist = 0

var Integer maxDist

interface
component

implementation
reference

run-time environment
reference

component
variables

component
behavior model

Figure 4.1: A variant of the BumperBot robot illustrating language elements of Mon-
tiArc and of MontiArcAutomaton.

StateBasedController, and Motor feature modeling elements specific to Monti-
ArcAutomaton, while the component types Navigation and Translator feature
MontiArc language elements only. The component Distance is of interface component
kind, and must be replaced with a platform-specific realization prior to code genera-
tion. The component Clock employs new component properties to reference its GPL
behavior implementation artifacts, as well as the RTE it expects its implementation to
be compatible to. The behavior of component StateBasedController is defined in
terms of an embedded component behavior model and defines two component variables.

The following Section 4.1 introduces the MontiArcAutomaton ADL with its modeling
elements, symbol table, context conditions, and post-processing model transformations.
Section 4.2 describes how to embed component behavior languages into the MontiArc-
Automaton ADL. Afterwards, Section 4.3 discusses the MontiArcAutomaton ADL and
Section 4.4 discusses related modeling languages.

4.1 MontiArcAutomaton Architecture Description Language

The MontiArcAutomaton ADL enables application modelers to describe software ar-
chitectures as the hierarchical composition of components with encapsulated behavior
models. This encapsulation allows logically distributed development and the composi-
tion of components separate from their behavior implementations. MontiArcAutomaton
exploits this encapsulation and allows embedding of behavior languages into components.
This enables the application modelers to use the most suitable behavior language per
component. To this effect, the MontiArcAutomaton ADL adopts the structural language
elements from MontiArc (cf. Section 2.4) and introduces additional language elements.

46

4.1 MontiArcAutomaton ADL

Thus, following the language design guidelines of [KKP+09], MontiArcAutomaton ADL
inherits the elegance of MontiArc and remains “as simple as possible, [yet] as rich as
needed” [Gli02] without the overwhelming language complexity of other ADLs.

This section introduces the new language elements and their concrete syntax via small
examples in Section 4.1.1. The complete grammar of the MontiArcAutomaton ADL is
available in Section A.1 in two versions: One version is meant for documentation and
prepared for better comprehension by the reader. The other is the version processed by
MontiCore. Afterwards, Section 4.1.2 describes the symbol table structure and symbol
table entries of MontiArcAutomaton. Based on these, Section 4.1.4 presents the context
conditions of MontiArcAutomaton. Subsequently, MontiArcAutomaton performs two
transformations to facilitate further model processing. Section 4.1.5 describes these.

4.1.1 Language Elements

The modeling language elements defined by the MontiArcAutomaton ADL introduce
new keywords to the component signature, default parameter values for component con-
figuration parameters, component variables, platform-specific component properties, and
an extension point for component behavior. As the MontiArcAutomaton ADL extends
MontiArc’s grammar, the language elements to model ports, subcomponent declara-
tions, and connectors that it inherits from MontiArc remain unchanged. Consequently,
MontiArcAutomaton inherits the abstract syntax of MontiArc as well.

Interface Components

MontiArc does not enable to model component interfaces decoupled from their inter-
nals (behavior or subcomponents). However, the MontiArcAutomaton infrastructure
requires such a notion to describe extension points of platform-independent software
architectures. Implementing these extension points differently for specific platforms
(cf. Section 3.1) facilitates to reuse a single software architecture with different plat-
forms. MontiArcAutomaton thus introduces interface components. Interface compo-
nents may not describe component behavior (neither via composition, nor embedded
models, nor via handcrafted GPL behavior implementations) and must be replaced with
platform-specific components prior to code generation. As they yield complete interfaces,
their usage retains a valid software architecture. This enables modeling the structure of
platform-independent software architectures completely and to reuse these as common
base for subsequent, platform-specific software architecture as required by Req. MRQ-1 .
The component type DistanceSensor depicted in Figure 4.1 and Listing 4.1 is of such
an interface component. In its component type definition (l. 1), this is indicated by the
keyword interface at the beginning of its signature.

Using interface components in a software architecture requires replacing their types
prior to well-formedness checking and code generation. MontiArcAutomaton supports
replacing their types with component types extending the corresponding interface com-
ponent to replaced (Chapter 6).

47

Chapter 4 C&C Architectures with Application-Specific Behavior

MAA
1 interface component DistanceSensor {

2 port

3 out Integer data;

4 }

Listing 4.1: The interface component DistanceSensor.

Default Parameter Values

MontiArc components may declare configuration parameters to describe the information
required for proper component instantiation. Complex component types might require
dozens of configuration parameters and instantiation of all parameters is not always
necessary. As MontiArc components may yield a single set of mandatory configuration
parameters only, this requires engineering components for each required parameter com-
bination. The MontiArcAutomaton ADL reduces this effort by borrowing the notion
of default parameter values [Oli07] from the Python programming language.1 Default
parameter values enable omitting arguments for component configuration parameters
that then use the default values instead. To this end, the component type may specify
default values for each configuration parameter under the following restriction: if any
configuration parameter yields a default value, all subsequent parameters must yield a
default value as well. Otherwise, assigning arguments at component instantiation would
require providing arguments for all parameters without default values and preceding
parameters (even if they yield default values) or becoming non-deterministic.

MAA
1 package robots;

2

3 component Clock[Integer short, Integer long = 10] {

4 port

5 in TimerCMD cmd,

6 out Boolean signal;

7

8 implementation robots.sensors.SecClockImpl;

9

10 rte java-timesync;

11 }

Listing 4.2: The component type Clock defines two configuration parameters short
and long of which the latter has the default value 10.

In Listing 4.2, the component Clock requires two configuration parameters short
and long. The parameter short is mandatory and the parameter long is optional
with a default value of 10 as indicated by the assignment long = 10 following its name.

1The Python 3.0 default parameter value documentation is available at https://docs.python.org/
3/reference/lngound_stmts.html#index-21

48

https://docs.python.org/3/reference/lngound_stmts.html#index-21
https://docs.python.org/3/reference/lngound_stmts.html#index-21

4.1 MontiArcAutomaton ADL

This value is applied whenever a subcomponent instance of Clock with only a single
argument is declared. Hence, both subcomponent declarations depicted in Listing 4.3
(ll. 2-3) are valid.

MAA
1 component DoubleClock {

2 component Clock(1,2) clock0;

3 component Clock(1) clock1;

4 // ..

5 }

Listing 4.3: The composed component DoubleClock declares two instances
clock0 and clock1 of component type Clock. The former applies
two arguments to the parameters of Clock and the latter uses its default
value for the parameter long.

Component Behavior Implementation Reference

For atomic components with handcrafted GPL behavior implementation, MontiArc ex-
pects the implementation to reside in the same logical package2 as the component
type under a name consisting of the components name with suffix Impl. As this as-
sumption prohibits directly exchanging component implementations and hinders reuse,
MontiArcAutomaton introduces the keyword implementation. With this, applica-
tion programmers can develop component types that reference GPL behavior imple-
mentations existing in different packages or under different names. For instance, the
component type Clock of Listing 4.2 references the GPL behavior implementation
robots.sensors.SecClockImpl (l. 8) that performs its computations. References
to component implementations are bequeathed to inheriting components and override
the implicitly expected behavior following MontiArc’s naming conventions.

Component Variables

A central feature of MontiArcAutomaton is the integration of component behavior
modeling languages. Experimenting with various languages [RRW13c, RRW15b] has
shown that most languages require some form of variables to store states for per-
forming complex calculations. To facilitate development of behavior languages for the
MontiArcAutomaton ADL, it introduces variables to components. Variables follow the
notions of component configuration parameters and ports, i.e., they are defined by
a type and a name and employ similar well-formedness rules. The component type
StateBasedController (Listing 4.4) defines two component variables min and max,
both of type Integer (ll. 8-9). The variable min is preceded by the keyword var,
which is optional. Also, initialization of variables (l. 8) is optional as well. If omitted,
a variable’s value is undefined. The types of MontiArcAutomaton component variables

2Interpretation of packages with different GPLs is within the generator developers’ duties.

49

Chapter 4 C&C Architectures with Application-Specific Behavior

rest on MontiArc’s type system and may be of arbitrary complexity employing array
dimensions and generic type parameters. Variables are locally visible in the defining
component only and can be referenced by its behavior model.

MAA
1 component StateBasedController {

2 port

3 in Integer dist,

4 in Boolean time,

5 out Direction nav,

6 out TimerCmd cmd;

7

8 var Integer min = 0;

9 Integer max;

10

11 behavior automaton ControllerAutomaton {

12 // Embedded behavior language model

13 }

14 }

Listing 4.4: The atomic component StateBasedController contains the two
component variables min (l. 8) and max (l. 9) of type Integer.

Run-Time Environment Reference

Proper integration of platform-specific atomic components (i.e., components tied to a
GPL behavior implementation) requires integration of their model into the software
architecture under development as well as integration of their GPL behavior imple-
mentation into the generated system. The latter requires means to describe which
implementations of components, ports, and connectors the component GPL behavior
implementation is compatible to.

We identify the set of artifacts that represent components and related concepts in a
GPL as a run-time environment and platform-specific MontiArcAutomaton components
may indicate which run-time environment their implementations conform to. Explicating
this is crucial for code generator composition to ensure proper integration of generated
code with handcrafted code. Declaration of the required run-time environment is part
of the component body (delimited by curly brackets) and begins with the keyword rte

followed by a name. Component Clock (Listing 4.2) declares that the required run-time
environment for its implementation is java-timesync (l. 10). References to run-time
environments are bequeathed to inheriting components also.

Component Behavior Model

The MontiArcAutomaton ADL provides an extension point for component behavior lan-
guage models within atomic components. This extension point starts with the keyword
behavior, followed by an identifier for the behavior’s kind, an optional name, and the

50

4.1 MontiArcAutomaton ADL

behavior’s content in curly brackets. The component type StateBasedController
(Listing 4.4), for instance, contains an automaton model to describe its behavior. Hence,
its body contains a behavior block (ll. 11-13) that starts with the keyword behavior,
followed by the identifier automaton, the automaton’s name ControllerAutomaton,
and a block containing the actual automaton model. As multiple behavior modeling lan-
guages can be embedded, the identifier automaton is required to distinguish embedded
models and improves parsing (cf. Section 2.2.2). The language engineer integrating a
behavior language can assign an arbitrary identifier for her languages as long as it is
unique. Specifying a behavior model overrides MontiArc’s expectation of a GPL behav-
ior artifact of the component’s name.

Language Elements of Different Component Kinds

With the introduction of interface components and the distinction between platform-
independent and platform-specific components, the MontiArcAutomaton ADL extends
MontiArc’s dichotomy of atomic and composed component kinds. Essentially, interface
components correspond to component interfaces of other ADLs, i.e., they are atomic, do
not describe behavior and are intrinsically platform-independent. Platform-independent
component kinds can be atomic or composed. They must avoid references to GPL
behavior implementations and run-time environments. Platform-specific components
may actually be platform-independent, but do not guarantee this, hence they may be
atomic or composed, refer to GPL behavior implementations, and run-time system, but
must avoid the keyword interface. Overall, MontiArcAutomaton introduces two new
component kinds: interface components and atomic components with behavior models.
Table 4.5 describes the component kinds of MontiArcAutomaton.

4.1.2 Symbol Table

MontiArcAutomaton extends MontiArc with component behavior, component variables,
default parameters, interface components, and references to component implementa-
tions as well as to run-time environments. To make this information amenable to well-
formedness checking and language integration, the MontiArcAutomaton ADL symbol
table must store this information. To this end, the MontiArcAutomaton ADL extends
the MontiArc symbol table entries for components as depicted in Figure 4.2. These
entries encapsulate the essence of C&C structures in form of entries for components,
connector, ports, and related entities.

4.1.3 MontiArcAutomaton Symbol Table

The MontiArcAutomaton ADL inherits its grammar as well as symbol table infras-
tructure from MontiArc. The symbol table entries inherited from MontiArc describe
important properties of structural modeling elements as depicted in Figure 4.3.

3In the transitive closure of its subcomponent relation.

51

Chapter 4 C&C Architectures with Application-Specific Behavior

Table 4.5: Component kinds of the MontiArcAutomaton ADL.

Component

Kind

Required

Properties
Prohibited Properties

Platform

Dependence

Composed
Sub-
components

Behavior models, GPL
behavior implementation
references, RTE references,
component variables

Platform-specific
if it contains a
platform-specific
subcomponent3

Atomic with
behavior model

Behavior
model

Subcomponents, GPL
behavior implementation
references, RTE references

Platform-
Independent

Atomic without
behavior model

RTE
reference

Subcomponents, behavior
models, component variables

Platform-Specific

Interface
component

Keyword
“interface”

Subcomponents, behavior
models, component variables,
GPL behavior
implementation reference,
RTE references

Platform-
Independent

Component entries represent component type definitions and store related informa-
tion. This comprises the component type the represented component type inherits from
as well as its subcomponents, connectors, ports, inner components, type parameters, and
configuration parameters. References to the inherited component type and to subcom-
ponents are stored in component reference entries that represent instantiated component
types, i.e., contain the required configuration arguments and type arguments. Ports are
stored in separate entries as well. Type entries represent MontiArc’s data types and
resemble types of UML/P class diagrams [Sch12]. A type has a name and may feature
an array dimensionionality, generic type parameters, and fields. The latter are field en-
tries with types again. Fields entries resemble members of UML/P classes and provide
a multitude of qualifiers, such as, for instance, visibilities. These types can be adapted
to types of other languages, such as the types of embedded behavior languages, to check
the validity of embedded models. Value entries contain a name, the string representation
of a value, and a TypeEntry.

MontiArcAutomaton extends MontiArc’s component entry to store additional infor-
mation, introduces variable definitions to represent variables with their optional initial
values, and behavior entries to represent information about component behavior mod-
els. Thus, the MontiArcAutomaton ADL extends the MontiArc symbol table with the
entry types MAAComponentEntry and VariableEntry as depicted in Figure 4.3,
where the entry kind of MAAComponentEntry entries is the same as for MontiArc
component entries. MAAComponentEntry entries hold a map from default parameter
names to their values (via qualifier defaultParameter), two strings representing the
references to component implementation and run-time environment, a Boolean flag indi-
cating whether the component type this entry represents is an interface component, and

52

4.1 MontiArcAutomaton ADL

CD

ComponentEntry

FieldEntry

String KIND

String name

TypeEntry

String KIND

String name

Integer arrayDimension

*

configurationParameters

typetype

innerComponents

*

ComponentReferenceEntry

String KIND

String name

typeParameters

configurationArguments

*

*

componentType

superComponent

*

subComponents

typeParameters
*ValueEntry

String KIND

String name

String value
type

fields

*

String KIND

String name

Boolean isInnerComponent

String packageName

List<String> stereotype

String behaviorLanguage

PortEntry

String KIND

String name

incomingPorts

outgoingPorts*

*

Figure 4.2: An excerpt of the entries of the MontiArc symbol table that represents struc-
tural aspects of C&C software architectures.

an optional4 string representing its behavior model’s language fragment. Additionally,
it inherits all members of MontiArc’s ComponentEntry. Variable entries extend the
field entries of MontiArc with a member value of MontiArc’s ValueEntry type, to
store their values.

The MontiArcAutomaton ADL also provides a new workflow to create symbol ta-
ble entries (cf. Figure 2.3). This workflow extends the symbol table creation work-
flow of MontiArc and produces ComponentEntry entries instead of MontiArc compo-
nent entries. In consequence, resolving a component entry by kind and name yields a
MAAComponentEntry instead of a ComponentEntry. Following Liskov’s substitution
principle [Lis87], instance of MAAComponentEntry can substitute ComponentEntry
instances wherever required and thus the complete well-formedness checking and the
MontiArc symbol table are reused.

4.1.4 Context Conditions

The modeling elements of the MontiArcAutomaton ADL characterize the parseable mod-
els. MontiArcAutomaton, however, can produce executable systems only from well-
formed models. The context conditions of the MontiArcAutomaton ADL restrict the
MontiArcAutomaton architectures to well-formed MontiArcAutomaton ADL models

4Optionality is represented using java.util.Optional of Java 1.8.

53

Chapter 4 C&C Architectures with Application-Specific Behavior

CD

MAAComponentEntry

String KIND

String implementationReference

Boolean isInterface

String rteReference

Optional<String> behaviorLanguage

FieldEntry

VariableEntry

ValueEntry

variables

*

defaultParameter

0..1

value

ComponentEntry

Figure 4.3: The most important MontiArcAutomaton symbol table entry types with
their quintessential features.

(e.g., without references to missing component types). Therefore, after parsing and
creating both AST and symbol table, MontiArcAutomaton checks the well-formedness
of each input model and raises a warning or rejects the model. The MontiArcAutomaton
ADL models are checked by context conditions that are either inherited from MontiArc or
introduced with the MontiArcAutomaton ADL. This section presents four types of con-
text conditions following [RRW14a] as introduced with the MontiArcAutomaton ADL.
The context conditions inherited from MontiArc are presented in [HRR12] and all valid
MontiArc models are MontiArcAutomaton ADL models as well.

Uniqueness Conditions

Uniqueness conditions ensure that language elements of a certain type only occur once
per model and that the names of language elements are unique. MontiArc, for instance,
ensures that the names of configuration parameters, ports, subcomponents are unique per
component type definition [HRR12]. Ambiguous names produce ambiguous behavior.
Hence, all uniqueness context conditions raise errors that prohibit further processing.
MontiArcAutomaton inherits the uniqueness conditions of MontiArc presented in Section
3.1 of [HRR12].

MU1: The name of each component variable is unique among ports, variables, and
configuration parameters.

All component variables coexist in the namespace of the component together with its
ports and configuration parameters. Therefore, their names must be unique. Listing 4.5
shows four errors: The first two errors arise from defining a component configuration
parameter and a port of the same name distance (ll. 1-3). The subsequent two errors
arise from defining a port and a variable of the same name min (ll. 4-6).

54

4.1 MontiArcAutomaton ADL

MAA
1 component Recorder[int distance] { // Ambiguous name.

2 port

3 in int distance; // Ambiguous name.

4 in int min; // Ambiguous name.

5

6 var int min; // Ambiguous name.

7 }

Listing 4.5: The component Recorder defines a configuration parameter (l. 1) and
a port (l. 3) of name distance, as well as port (l. 4) and variable (l. 6)
of name min. Both are prohibited.

MU2: Each atomic component contains at most one behavior model.

Atomic components may contain a single behavior model at most. If an atomic com-
ponent contains no behavior model, the MontiArcAutomaton infrastructure expects a
handcrafted GPL behavior implementation - either following MontiArc’s naming con-
ventions or as referenced by its component implementation property.

MAA
1 component BehaviorController {

2

3 behavior statechart CautiousBehavior { // Redundant

4 // ... // behavior model.

5 }

6

7 behavior statechart PressingBehavior { // Redundant

8 // ... // behavior model.

9 }

10 }

Listing 4.6: The atomic component BehaviorController contains two behavior
models (ll. 3-9).

Defining more than one behavior model in a component is redundant as MontiArc-
Automaton does currently bot support switching between behavior models. The issued
error resulting from defining two behavior models in a single atomic component is de-
picted in Listing 4.6. Here, the component type BehaviorController contains the
two behavior models CautiousBehavior (ll. 3-5) and PressingBehavior (ll. 7-9).

MU3: Atomic components reference at most one GPL behavior implementation.

Similarly to defining multiple behavior models, referencing multiple GPL behavior
implementations is prohibited. Listing 4.7 shows the resulting errors.

55

Chapter 4 C&C Architectures with Application-Specific Behavior

MAA
1 component MultiSensor<T> {

2 port

3 out T data;

4

5 implementation UltrasonicImpl; // Multiple implementations.

6

7 implementation ColorSensorImpl; // Multiple implementations.

8 }

Listing 4.7: MultiSensor references the two component implementations
UltraSonicImpl (l. 5) and ColorSensorImpl (l. 7).

MU4: Atomic components either contain a behavior model or reference a GPL be-
havior implementation.

Atomic components that contain a component behavior model while declaring a GPL
behavior implementation introduce an ambiguity as the source of their behavior is un-
derspecified. Consequently, the MontiArcAutomaton ADL prohibits such models. The
reference to a GPL behavior implementation may be implicit. In this case, the name
of the behavior implementation artifact is derived from the component’s name. This
ensures compatibility with MontiArc [HRR12] models.

MU5: Atomic components reference at most one run-time environment.

Although it is possible that a handcrafted GPL behavior implementation of an atomic
component conforms to more than one run-time environment, working with multi-
ple run-time environments in the same application is prohibited. Therefore, atomic
MontiArcAutomaton ADL components may reference only a single run-time environ-
ment. Referencing multiple run-time environment produces the error depicted in List-
ing 4.8, where component type MultiSystemDistanceSensor references the RTE
java-timesync (l. 5) and the RTE python-timed (l. 6).

MAA
1 component MultiSystemDistanceSensor {

2 port

3 out Integer distance;

4

5 rte java-timesync; // Multiple run-time environments.

6 rte python-untimed; // Multiple run-time environments.

7 }

Listing 4.8: The component type MultiSystemDistanceSensor references two
run-time environments (ll. 5-6).

56

4.1 MontiArcAutomaton ADL

For components with behavior models, the declaration of RTE conformance is prohib-
ited. How the component is translated is subject to the processing code generator.

Convention Conditions

Convention conditions check the well-formedness of names. Similar to most GPLs that
impose certain naming conventions on their constituents (for instance, Java classes should
begin with an upper-case letter), MontiArc and MontiArcAutomaton impose such nam-
ing conventions to improve model comprehensibility as well.

MontiArcAutomaton reuses all convention conditions of MontiArc and adds new con-
vention conditions regarding variable names and behavior names. The convention in-
tegrity conditions that MontiArcAutomaton inherits from MontiArc are presented in
Section 3.4 of [HRR12]. Violation of convention conditions produces warnings.

MC1: Variable names begin with a lower-case letter.

Following the conventions for ports and configuration parameters, component variable
names should start with a lower-case letter as well. Listing 4.9 illustrates the resulting
warning for the atomic component HistogramPrinter, which contains a variable
History of type collections.List<T>. As MontiArcAutomaton expects variables
to start with a lower-case letter, it emits a warning.

MAA
1 component HistogramPrinter<T> {

2 port

3 in T data;

4

5 collections.List<T> History; // Variable names

6 // start lower-case.

7 }

Listing 4.9: The component type HistogramPrinter declares a variable of name
History (l. 5) which produces a warning regarding its name.

MC2: Behavior model names begin with capital letters.

Component behavior models are considered singleton instances as well. Hence, the
optional names of component behavior models should start with capital letters. The
component behavior model of the atomic component RobotController, as illustrated
in Listing 4.10, contains a behavior model of type fsm and name controller (ll. 2-
4), which violates this context condition. Consequently, MontiArcAutomaton raises the
depicted warning.

57

Chapter 4 C&C Architectures with Application-Specific Behavior

MAA
1 component RobotController {

2 behavior fsm controller { // Behavior names should

3 // ... // begin with capital letters.

4 }

5 // ...

6 }

Listing 4.10: The behavior implementation of RobotController (l. 2) violates the
context condition to start its name with an upper-case letter.

Referential Integrity Conditions

Referential integrity context conditions check the well-formedness of references to lan-
guage elements. This includes checking whether subcomponent declarations provide
enough type arguments and configuration arguments, whether referenced ports exist,
and whether referenced elements are of expected types. Violation of referential integrity
context conditions produces errors. The MontiArcAutomaton ADL inherits all referen-
tial integrity conditions from MontiArc are described in Section 3.3 of [HRR12]. Only
its context condition on subcomponent declaration is relaxed regarding component con-
figuration parameters with default values (cf. Section 4.1.1).

MR1: Arguments of configuration parameters with default values may be omitted
during subcomponent declaration.

MontiArcAutomaton introduces default parameter values to component configuration
parameters. Subcomponent declarations thus may omit arguments for parameters with a
default value (Section 4.1.1). Therefore, the context condition R9 of MontiArc [HRR12],
which requires that all configuration parameters of a component type have to be assigned
during subcomponent declaration, is replaced. Instead, MontiArcAutomaton requires
subcomponent declarations to give arguments for all configuration parameters with-
out default values only. Nonetheless, a valid MontiArc model, which correctly defines
possible arguments for all parameters of a subcomponent declaration (even those with
default values), remains a valid MontiArcAutomaton ADL model. Regarding the com-
ponent type Clock (Listing 4.2), with the mandatory configuration parameter short
and the optional configuration parameter long, the composed component ClockWork
depicted in Listing 4.11 is erroneous: The subcomponent declaration of orange (l. 4)
provides too few arguments. The subcomponent declaration of red (l. 5) provides too
many arguments.

MR2: No initial values for variables of pure generic types.

Checking the compatibility of initial assignments to component variables of generic
types is impossible without component instantiation information. Consequently, Monti-

58

4.1 MontiArcAutomaton ADL

MAA
1 component ClockWork {

2 component Clock(1) green;

3 component Clock(1,2) yellow;

4 component Clock orange; // Too few arguments.

5 component Clock(1,2,3) red; // Too many arguments.

6 // ...

7 }

Listing 4.11: Component ClockWork declares subcomponents of type Clock with
too few arguments (l. 4) and too many arguments (l. 5).

ArcAutomaton prohibits such assignments. Listing 4.12 illustrates the error resulting
from assigning the value 255 to component variable lastReading of component type
RGBSensor. Please note that this does not prohibit initial values for variables of com-
plex types that employ generic types (such as Set<T>).

MAA
1 component RGBSensor<T> {

2 port

3 out T data;

4

5 T lastReading = 255; // Assigning to generic type.

6 // ...

7 }

Listing 4.12: The component type RGBSensor provides a generic type parameter T
and contains a port data (l. 3) and variable lastReading of type T
(l. 5). Assigning initial values to lastReading thus is prohibited.

MR3: No default values for configuration parameters of purely generic types.

Arguments for generic type parameters are assigned in subcomponent declarations.
Component configuration parameters may refer to the component’s generic types. How-
ever, checking the compatibility of a default value assigned to a configuration parame-
ter of generic type is impossible without component instantiation information as well.
Thus, the component type defining such an assignment cannot be checked at design time.
Hence, MontiArcAutomaton prohibits such assignments as well.

The component type MaxMotor depicted in Listing 4.13 provides the configuration
parameter max with default value 10 (l. 1). The parameter is of generic type. Hence,
assigning a default value is prohibited.

59

Chapter 4 C&C Architectures with Application-Specific Behavior

MAA
1 component MaxMotor<T>[T max = 10] { // Assigning to

2 port // generic type.

3 in T command;

4 // ...

5 }

Listing 4.13: The component MaxMotor uses the generic type parameter T as data
type of its configuration parameter max and assigns a default value of
10 to it.

MR4: All mandatory component configuration parameters precede the parameters
with default values.

Component types may define default values for each configuration parameter (Sec-
tion 4.1.1). However, if any configuration parameter defines a default value, all following
parameters must define a default value as well. Otherwise, assigning arguments at com-
ponent instantiation requires more complex argument mapping semantics that might
become confusing or even non-deterministic.

The component type Validator illustrates this issue with three configuration argu-
ments (ll. 1-3): the first parameter, min has a default value of 0, the second parameter
avg has a default value of 1, and the third parameter, max, is mandatory. Instantiating
the component as Validator(10) leaves open whether 10 should be mapped to min,
avg, or max. Similarly, the mapping semantics of Validator(10,20) are confusing.
Consequently, MontiArcAutomaton produces the error depicted.

MAA
1 component Validator[int min = 0,

2 int avg = 1,

3 int max] { // Invalid parameter order.

4 // ...

5 }

Listing 4.14: The component Validator defines two configuration parameters. The
first two parameters feature a default value but the third does not.

Type Correctness Conditions

Type correctness context conditions check the correct usage and combination of typed
elements, including components, parameters, ports, and variables. For the type correct-
ness conditions inherited from MontiArc see Section 3.1 of [HRR12]. The type correct-
ness conditions of MontiArcAutomaton are illustrated below. Their violation generally
produces errors.

60

4.1 MontiArcAutomaton ADL

MT1: Interface components prescribe no component behavior.

Interface components describe extension points of platform-independent software ar-
chitectures that need to be replaced with compatible, platform-specific components prior
to code generation. Replacing composed components or atomic components with a be-
havior is not desired: replacing composed subcomponents may change the software ar-
chitecture dramatically and deviate from its original intentions. Replacing atomic com-
ponents with behavior model replaces behavior intended to be common for the derivable
architectures. To this effect interface components are prohibited to comprise behavior
models or references to GPL behavior implementations.

MAA
1 interface component Inverter { // Interface component

2 port // with behavior model.

3 in Integer input,

4 in Integer output;

5

6 behavior statechart {

7 // ...

8 }

9 }

Listing 4.15: The interface component Inverter contains a behavior model (ll. 6-8).

The interface component Listing 4.15 illustrates the error resulting containing a be-
havior model (ll. 6-8). Similarly, Listing 4.16 illustrates the error resulting from defining
composed interface components. The component Clocks is declared to be of interface
kind (l. 1) but contains two subcomponents (ll. 2-3), which is prohibited.

MAA
1 interface component Clocks { // Composed interface

2 component Clock(1,2) clock0; // component.

3 component Clock(1) clock1;

4 // ..

5 }

Listing 4.16: The interface component Clocks is composed as it contains two
subcomponents (ll. 2-3), which is prohibited.

MT2: Only platform-specific, atomic components declare a run-time environment

Composed components, atomic components with behavior models, and interface com-
ponents are independent of the target GPL. Their translation is solely up to the employed
code generators. Hence, they do not need to be tied to a run-time environment. Instead,
this even restricts their applicability without necessity. As MontiArcAutomaton aims to
increase reuse, this consequently is prohibited as depicted in Listing 4.17.

61

Chapter 4 C&C Architectures with Application-Specific Behavior

Here, the atomic component AtomicController contains a behavior model (ll. 3-5)
but also declares a run-time environment (l. 6). Thus MontiArcAutomaton raises the
depicted error.

MAA
1 component AtomicController {

2 // ...

3 behavior petrinet {

4 // ...

5 }

6 rte java-timesync; // Components with behavior models

7 } // may not declare run-time environments.

Listing 4.17: The component AtomicController is atomic and contains a
behavior model (ll. 3-5), but declares a run-time environment (l. 6).

MT3: Only atomic components may declare component variables.

Component variables describe part of a component’s state to support component be-
havior modeling. Allowing variables in composed components could be misused to de-
scribe the shared state of its subcomponents and hence is prohibited. Listing 4.18 illus-
trates the resulting error with component type SensorArray, which is composed and
defines the variable threshold (l. 5). This consequently produces an error.

MAA
1 component SensorArray {

2 component Ultrasonic;

3 component ColorSensor;

4

5 int threshold; // Variable in composed component.

6 // ...

7 }

Listing 4.18: The composed component SensorArray erroneously declares a
variable (l. 5).

MT4: Interface components only inherit from interface components.

Interface components describe platform-independent extension points of the architec-
ture in terms of comprise ports, configuration parameters, and generic type param-
eters only. Platform-specific components may inherit from interface components to
concretize these. Interface components that inherit from platform-specific types would
inherit the parent’s types platform-specific properties (such as RTE or GPL behav-
ior reference) and thus would be platform-specific themselves. Therefore, MontiArc-
Automaton prohibits such inheritance. Listing 4.19 illustrates this with two compo-

62

4.1 MontiArcAutomaton ADL

nent types NXTUltrasonic (ll. 1-7) and Sensor (ll. 9-12). The component type
NXTUltrasonic is concrete in being atomic and referencing a GPL component im-
plementation (l. 5) as well as a run-time environment (l. 6). The interface component
Sensor extends NXTUltrasonic (ll. 9-10), which produces an error.

MAA
1 component NXTUltrasonic {

2 port

3 out Double distance;

4

5 implementation nxt.sensors.Ultrasonic;

6 rte java-timesync;

7 }

8

9 interface component Sensor

10 extends NXTUltraSonic { // Interface type extends

11 // ... // platform-specific type.

12 }

Listing 4.19: Component NXTUltrasonic (ll. 1-7) references an implementation
(l. 5) and declares a RTE (l. 6), i.e., it is platform-specific, but the
inheriting component Sensor (ll. 9-12) is an interface component.

MT5: Inheriting platform-specific, atomic components override the component im-
plementation reference of their super types.

Platform-specific atomic components must override the component implementation
reference of their parents. It is possible to have two component types with the same
GPL behavior implementation (which entails reading from the same incoming ports,
respecting the same parameters, and writing to the same outgoing ports). However,
this creates multiple component types for the exact same behavior and is hardly useful.
Consequently, MontiArcAutomaton prohibits this by enforcing inheriting component
types to override their parents’ component implementation references. The component
type RegulatedMotor (ll. 7-10) of Listing 4.20 illustrates this problem: it inherits from
the component type ROSMotor (ll. 1-5) that references a GPL behavior implementation
(l. 4), but does not override this property. Thus, the port maxSpeed (l. 9) introduced
by RegulatedMotor will not be considered by the GPL behavior implementation of
ROSMotor as the latter is unaware of this port. Consequently, either maxSpeed is
superfluous or the component will not work as expected.

MT6: Initial assignments to variables conform to their type.

Initial assignments to variables of concrete types have to conform to the variable’s type.
This applies to assigning values as well as to references as depicted in Listing 4.21. Here,

63

Chapter 4 C&C Architectures with Application-Specific Behavior

MAA
1 component ROSMotor {

2 port

3 in Float speed;

4 implementation nxt.sensors.Ultrasonic;

5 }

6

7 component RegulatedMotor extends ROSMotor { // Implementation

8 port // reference not

9 in Float maxSpeed; // overridden.

10 }

Listing 4.20: The component RegulatedMotor (ll. 7-10) extends from ROSMotor

(ll. 1-5), but does not override its implementation reference.

the component type Logger contains two variables: bufferSize of type Integer
(l. 2) and logToFile of type Boolean (l. 3). It initializes the variable bufferSize
with the Boolean value true, which produces an error. Furthermore, it initializes the
variable logToFile with a reference to the String configuration parameter prefix.
Hence, it produces a second error.

MAA
1 component Logger[String prefix] {

2 Integer bufferSize = true; // Incompatible type.

3 Boolean logToFile = prefix; // Incompatible type.

4 // ...

5 }

Listing 4.21: The component type Logger defines two variables with initial values
incompatible to their types (ll. 2-3).

MT7: Default values of parameters conform to their type.

Similar to variable assignments, assigning default values to configuration parameters
has to respect the parameters’ types. The component type IMotor, illustrated in List-
ing 4.22, provides a configuration parameter max (l. 1) of type int with default value
"10" of type String. MontiArcAutomaton detects this and raises the depicted error.

MAA
1 component IMotor[int max="10"] { // Incompatible type.

2 port

3 in int command;

4 // ...

5 }

Listing 4.22: The component type IMotor defines the configuration parameter max
of type int with a default value "10" of type String.

64

4.1 MontiArcAutomaton ADL

parse
textual
models

create
AST

instance

[syntax

ok]

AD

abort
model

processing

create
symbol

table

check
well-formed

ness

generate
artifacts

[syntax error] [models ok]

AST

AST and

Symbol Table

Checked AST and

Symbol Table

[well-formedness error]

Instances
Unification

Default
Parameter
Application

AST AST

act MontiArcAutomaton ADL Activities

Figure 4.4: MontiArcAutomaton extends the typical MontiCore execution with the two
new activities for both model transformations.

4.1.5 Transformations on the MontiArcAutomaton ADL AST

The AST resulting from parsing a MontiArcAutomaton ADL software architecture model
is a representation of the processed model’s content. As the AST is the central data struc-
ture for symbol table creation and code generation, two model transformations optimize
it for subsequent usage (cf. Figure 4.4). The first translates subcomponent declarations
with multiple subcomponents into multiple subcomponent declarations with a single
subcomponent each. The latter applies the default parameter values to subcomponent
declarations. The MontiArcAutomaton ADL applies all transformations prior to symbol
table creation and context condition checking. Hence, all transformed software archi-
tectures must pass the context conditions prior to code generation and further analyses.
This ensures that transformations yield a valid MontiArcAutomaton software architec-
ture. To this effect, MontiArcAutomaton extends the default activities of MontiCore as
depicted in Figure 2.3 with two new activities prior to symbol table creation. This also
yields the benefit that applying the transformations to the AST suffices and their effects
do not need to be recreated manually for the model’s symbol table entries. Further-
more, performing transformations prior to code generation allows code generators to be
unaware of any model transformations performed beforehand (cf. Req. TRQ-7).

Subcomponent Instances Unification

MontiArc distinguishes between subcomponent declarations and subcomponents. A sub-
component declaration consists of a component type, arguments for its configuration pa-

65

Chapter 4 C&C Architectures with Application-Specific Behavior

rameters, and a list of subcomponent names. This construction allows defining multiple
subcomponents of the same component type and with the same component arguments
conveniently. Listing 4.23 depicts a subcomponent declaration with two instances (l. 7).
Here, the composed component DoubleAdder takes two numbers via incoming ports a
and b and performs multiple additions using only subcomponents of type Adder (ll. 7-8)
with the output being emitted via outgoing port c. The subcomponents of type Adder
are instantiated with arguments for offsets.

MAA
1 component DoubleAdder {

2 port

3 in Integer a,

4 in Integer b,

5 out Integer c;

6

7 component Adder<Integer>(1) first, second;

8 component Adder<Integer>(2) third;

9

10 // first calculates a+b+1

11 connect a -> first.a;

12 connect b -> first b;

13

14 // second calculates a+b+1

15 connect a -> second.a;

16 connect b -> second b;

17

18 // third calculates ((a+b+1) + (a+b+1)) + 2

19 connect first.c -> third.a;

20 connect second.c -> third b;

21

22 connect third.c -> c;

23 }

Listing 4.23: The composed component DoubleAdder declares three
subcomponents in two subcomponent declarations (ll. 7-8).

However, subsequent processing has to consider all subcomponent instances of all
subcomponent declarations. This has led to issues with the inherited MontiArc AST
calculating the actual subcomponent instances lazily. Developers got confused by finding
two unnamed subcomponents of type Adder in the AST but no subcomponent instances
(due to lazy calculation). As the MontiArcAutomaton AST inherits from the MontiArc
AST, this issue is propagated to MontiArcAutomaton as well. To facilitate development
with MontiArcAutomaton ASTs, the subcomponent instances unification transformation
iterates over the architecture’s AST and replaces each subcomponent declaration of
multiple instances with multiple subcomponent declarations of a single instance each.
The configuration arguments of subcomponents are preserved and the result is a valid
MontiArcAutomaton software architecture again.

66

4.1 MontiArcAutomaton ADL

Applying the transformation to the software architecture MultiAdder changes its
AST in-place and results in the architecture depicted in Listing 4.24, which contains
three subcomponent declarations (ll. 7-9) with a single subcomponent instead.

MAA
1 component MultiAdder {

2 port

3 in Integer a,

4 in Integer b,

5 out Integer c;

6

7 component Adder<Integer>(1) first;

8 component Adder<Integer>(1) second;

9 component Adder<Integer>(2) third;

10

11 // Connectors remain unchanged

12 }

Listing 4.24: The transformed MultiAdder component features three
subcomponent declarations with a single subcomponent instance each.

Default Parameter Value Application

MontiArcAutomaton introduces default values to configuration parameters. Respect-
ing these during subcomponent instantiation either requires aware code generators or
appropriate model transformations prior to code generation. Since multiple code gen-
erators have been developed prior to the introduction of default parameters, retaining
their compatibility was of the essence as required by Req. TRQ-7 . Therefore, Monti-
ArcAutomaton ADL models are transformed prior to code generation to apply default
values to the configuration parameters of instantiated component types.
To this effect, this transformation traverses the AST of composed components (such

as the component type DoubleClock depicted in Listing 4.3) and checks every sub-
component declaration for missing arguments. If such a subcomponent declaration is
encountered, its type is loaded and the default values for omitted arguments are applied.

MAA
1 component DoubleClock {

2 component Clock(1,2) clock0;

3 component Clock(1,10) clock1;

4 // ..

5 }

Listing 4.25: The component type DoubleClock after applying the default
parameter value to its second subcomponent declaration (l. 3).

After applying this transformation, the component type DoubleClock (Listing 4.3)
is transformed in-place into the component type depicted in Listing 4.25. Here, the

67

Chapter 4 C&C Architectures with Application-Specific Behavior

Syntax

Definition

Symbolic

Representations

Syntax

Definition

Symbolic

Representations

Syntax

Embedding

Symbolic

Adaptation

imports

syntax

elements

implements

extension

point

targets

adapts

Behavior Language

Host ADL

Integration

Well-formedness

Rules

Well-formedness

Rules

Well-formedness

Checking

reuses

reuses

Intra-Language

Checks

Figure 4.5: Language integration relies on syntax embedding, symbolic adaptation, and
well-formedness rule reuse.

subcomponent declaration of instance clock1 (l. 3) is completed with the default value
10 for its second configuration parameter.

4.2 Embedding Component Behavior Languages

Integrating component behavior languages into an ADL either requires to compose the
languages a priori, or to provide composition mechanisms for independently engineered
languages. A priori composed language aggregates are tightly coupled and hinder in-
tegration of new languages. Hence, they are hardly reusable in projects with different
language requirements. A posteriori language integration either requires changes to the
participating languages (invasive approaches) or employing languages designed for com-
position. The latter enables composition without language modifications (non-invasive
approaches). For the integration of component behavior languages into the MontiArc-
Automaton ADL, we present a concept for non-invasive, a posteriori language integra-
tion. This concept rests on the separate integration of syntax and static semantics
and relies on the assumptions that (a) the behavior languages to be integrated describe
input-output behavior, and (b) they can be integrated into a single, well-defined exten-
sion point of the ADL. Both assumptions rest on the nature of C&C architectures that
encapsulate behavior in components. Integration of DSLs into other C&C constituents
(such as ports or connectors) requires definition of an according extension point and
clarification of the integration semantics. We currently do not consider this.

Our language integration concept employs syntax embedding, symbolic adaptation,
and well-formedness checking as depicted in Figure 4.5. The integration combines the
syntaxes of the component behavior language and of the host ADL at the single, well-
defined extension point. This already enables creating and parse models of the resulting

68

4.2 Embedding Component Behavior Languages

language aggregate. However, to check the well-formedness of integrated models, their
joint interpretation requires adapting the languages’ symbols accordingly (e.g., adapt
names of an embedded language’s inputs to incoming ports of the MontiArcAutomaton
ADL). With the symbolic adaptation in place, checking the well-formedness of inte-
grated models reuses the well-formedness rules of both languages and may include new
inter-language well-formedness rules. Thus, language engineers can easily develop and
integrate modeling languages as required by the participating domain experts that enact
the roles of application modelers.
We present a realization of this concept for MontiArcAutomaton that builds on the

language integration mechanisms of MontiCore to enable pervasive model-driven engi-
neering (Req. MRQ-3). This realization employs language embedding to integrate the
syntax of behavior languages into the MontiArcAutomaton ADL and language aggre-
gation to enable interpretation of embedded models. For the former, it exploits parser
integration, for the latter it relies on language families. Both mechanisms are presented
in Section 2.2.2.
Section 4.2.1 presents embedding of component behavior language syntax. Based

on this, Section 4.2.2 explains symbolic integration, which includes adaptation and in-
tegrated well-formedness checking. Finally, Section 4.2.3 describes the infrastructure
required for language integration and a modeling language to configure integration.

4.2.1 Syntactic Behavior Language Embedding

Language embedding is a syntactic integration mechanism, where the host language’s
grammar provides an extension point in form of a designated production. A production
of the language to be embedded is registered for this extension point and whenever an
integrated model is parsed, the infrastructure for processing the embedded language’s
production is invoked. To facilitate reuse, we do not integrate the behavior languages’
and host language’s grammars, but the parsers MontiCore generates (cf. Section 2.2).
This facilitates exchange of embedded languages and does not impose modification of
the languages’ grammars.

The MontiArcAutomaton ADL provides an extension point for behavior languages
inside components. Productions of behavior languages are mapped to this extension
point. The parser MontiCore generates for the MontiArcAutomaton ADL then delegates
parsing of the behavior languages’ non-terminal productions to their responsible parsers.
The mapping required to enable such embedding can easily be specified as both languages
are available to the integrator.

Conceptually, our approach to behavior language integration amounts to describe (a)
which element of the host language serves as extension point and (b) which element of
the behavior languages should be mapped to this extension point. In MontiCore, such
extension points are defined in terms of external productions. The productions of the
behavior languages require no designation and each production of a behavior language
may be embedded. While convenient, this may lead to hardly useful combinations (for
instance, embedding only the production representing states of a finite state machine
into components will hardly produce input-output behavior). Checking this is subject

69

Chapter 4 C&C Architectures with Application-Specific Behavior

FSM.Content in

BehaviorARC.Behavior(finite)

language embedding
description

comp Stopper {

in int input;

out bool result;

behavior {}

}

host language with external production model without embedding

MCG BARC

MCG BARC

grammar BehaviorARC {

Component = "comp" Name "{"

(Port|Connector|Body)*

"}";

Port = ("in"|"out") Type Name ";";

Connector = Name "->" Name ";";

Body = "behavior" kind:Name "{"

Behavior(parameter kind)

"}";

external Behavior;

}

comp Stopper {

in int input;

out bool result;

behavior finite {

state Off;

state On;

[input==4] Off -> On;

}

}

grammar FSM {

FSM = "fsm" Name "{"

Content;

"}";

Content = (Field|State|Transition)*;

Field = "field" Type Name;

State = "state" Name;

Transition = "[" Name == Value "]"

Name "->" Name "/" Name = Value ";";

}

behavior language with production to be embedded model with embedding

Figure 4.6: Language embedding requires to specify which productions of the behavior
language are embedded under which conditions into the extension point of
the host language.

to future work in the context of language interfaces [CVdBCR15] and their application
to language composition [CCF+15b]. Figure 4.6 depicts the syntactic language embed-
ding and resulting models with a variant of the ARC grammar (top left) as introduced in
Listing 2.1. This variant, BehaviorARC uses a different Body production to enable em-
bedding behavior languages into its Behavior production. The latter is a parametrized
production that expects the single parameter kind, which is used to distinguish embed-
ded languages. The top right of Figure 4.6 shows a BehaviorARC component model
with two ports, but without embedded behavior.

At its bottom left, Figure 4.6, presents an excerpt of a grammar for finite state ma-
chines. The FSM grammar comprises the container production FSM and its Content.
The latter contains arbitrary many fields, states, and transitions, where fields are either
input data sources or output data sinks, states are names, and transitions employ guards
of single equality checks over fields to describe the possibilities to switch between states.
If the guard holds, a transition can fire and emit messages via a single outgoing port.
As depicted at the center of Figure 4.6, the production Content of FSM is embedded
into Behavior of BehaviorARC. The argument for this embedding is finite which
is passed to be the kind of Body and helps MontiCore to distinguish which parsers to

70

4.2 Embedding Component Behavior Languages

select. It also becomes a pseudo-keyword in the concrete syntax of integrated models:
Whenever MontiCore parses the name after behavior, it looks up which parsers are
registered for this name and delegates parsing to the responsible parser. Hence, if the
value parsed for kind does not match the keyword a parser is registered to, parsing fails.
Consequently, the integrated model depicted at the bottom right of Figure 4.6 uses this
pseudo-keyword and arbitrary FSM.Content elements for its Behavior.
With pure MontiCore, language embedding must be specified in language configura-

tion files as depicted in Figure 2.5. These files specify, among embedding information,
various other language-specific information to configure MontiCore’s model processing
infrastructure. This includes a reference to the generated data type to represent root el-
ements of this language (which represent model files), configuration of a factory for root
elements of this language (which includes specification of embedding), and declaration
of a workflow to parse models of this language. Listing 4.26 shows an excerpt of the
language configuration of a previous version of the MontiArcAutomaton ADL, which
specifies a root class (l. 2), a root factory (ll. 4-9), and a parsing workflow (ll. 11-12).
The root factory specification contains a declaration of a designated start production
(l. 7). As some productions, for instance to process package declarations and import
statements, are provided by MontiCore, the language engineer must specify where her
own language begins. The start production declaration defines this with the name of
maa. Also the root factory describes embedding of the FSMContent production into
the BehaviorModel production of the MontiArcAutomaton ADL under condition of
the keyword finite. Here, maa identifies the parser where the parser of FSMContent
should be embedded. The token ef is the name for the embedded parser of FSMContent
and allows embedding productions into this parser as well.

LNG
1 language MontiArcAutomatonADL {

2 root MontiArcAutomatonRoot<MCCompilationUnit>;

3

4 rootfactory MontiArcAutomatonRootFactory

5 for MontiArcAutomatonRoot<MCCompilationUnit> {

6

7 MCCompilationUnit maa <<start>>;

8 FSMContent ef in maa.BehaviorModel(finite);

9 }

10

11 parsingworkflow MontiArcAutomatonParsingWorkflow

12 for MontiArcAutomatonRoot<MCCompilationUnit>;

13 }

Listing 4.26: A MontiCore language configuration file for the integration of
production FSMContent of the Automata language (Chapter 5) into
components.

Language configurations require in-depth knowledge about MontiCore and its language
processing concepts, such as the root elements and which parsing workflow to select.

71

Chapter 4 C&C Architectures with Application-Specific Behavior

With MontiArcAutomaton, all of these are fixed by design, hence only the embedded
productions must be specified. For these, also the extension point is fixed. Hence,
language embedding amounts to specifying productions of the behavior language with
the discriminating keyword (e.g., finite) only. MontiArcAutomaton therefore provides
means to liberate language engineers from MontiArcAutomaton ADL internals such as
selecting correct root and parsing workflows. Section 4.2.3 presents these.

MAA
1 component Filter[int max] {

2 port

3 in int value,

4 in Boolean doFilter,

5 out int result;

6

7 behavior finite {

8 state permeable;

9 state impermeable;

10

11 [doFilter == false] permeable -> permeable / result = value;

12 [doFilter == true] permeable -> impermeable / result = max;

13 [doFilter == true] impermeable -> impermeable / result = max;

14 [doFilter == false] impermeable -> permeable / result = value;

15 }

16 }

Listing 4.27: The component Filter contains an embedded FSM model comprising
two states and four transitions to describe its behavior.

For example, to embed models of the FSM language (Chapter 5) into MontiArc-
Automaton ADL components, the language engineer integrating FSM must specify which
of its productions should be used. In case, she selects to embed the FSMContent pro-
duction into the BehaviorModel extension point of the MontiArcAutomaton ADL
grammar, models such as Filter depicted in Listing 4.27 are possible.

This component model contains an embedded state machine (ll. 7-15) to filter integer
numbers. If filtering is active (the component’s input port doFilter receives true),
values are capped to the components configuration parameter max. To this effect, the
state machine defines two states (l. 8-9) and four transitions (ll. 11-14). These transi-
tions read the value of doFilter and send corresponding values via the port result.
Everything between the opening curly bracket after finite (l. 7) to the next closing
curly bracket (l. 15) is embedded from the FSM grammar.

The embedded state machine expects to read data from an input of name doFilter
and expects to write data to an output of name result. In stand-alone FSM models,
these names are symbols referring to fields of the state machine itself. In the con-
text of a component, these symbols should refer to ports of the component, which
the FSM language is independent of. For proper integration, including inter-language
well-formedness checking, this change of symbol meaning must be explicated, such that

72

4.2 Embedding Component Behavior Languages

MontiArcAutomaton can ensure that doFilter and result are of data types com-
patible to the valuations and assignments on the transitions. Thus, syntactic language
embedding alone does not suffice, but requires symbolic integration as well.

4.2.2 Symbolic Language Integration

The names used in a model to reference parts of the same or other models are symbolic
references with certain meaning. For instance, the left-hand side of the assignment
doFilter = false of the first transition depicted in Listing 4.27 is only meaningful
in an integrated state machine if doFilter references a component port or variable.
Other interpretations, such as assigning values to a state or to another value are not
intended. However, the FSM language is independent of the MontiArcAutomaton ADL
and, hence, unaware of the concepts of component ports and variables. In stand-alone
FSM models, doFilter references an output of the automaton. This interpretation
must change for integrated FSM models.
Generally, when integrating a behavior modeling language into MontiArcAutomaton

ADL components, the meaning of these symbolic references may change. MontiArc-
Automaton and its ADL rely on MontiCore’s language aggregation mechanisms (cf. Sec-
tion 2.2.2) to reflect these changes in meaning. These mechanisms require that each
participating language explicates their symbols for relevant models parts. MontiArc-
Automaton utilizes adaptation between the symbols describing input and output models
elements of behavior languages and its port and variable symbols. This enables their
correct interpretation and to reuse the language’s well-formedness checks.
Non-invasive symbolic integration requires no changes to participating languages and

only little additional infrastructure. The additional infrastructure consists of adapters
between the languages’ relevant symbols and new well-formedness rules that arise from
integration. Furthermore, the integration requires specifying, how to create and manage
symbols of the behavior languages as well as to select which well-formedness rules of the
behavior languages to apply to embedded models. For both, existing infrastructure in
the respective behavior languages can be reused. Thus, symbolic integration of behavior
languages into the MontiArcAutomaton ADL requires:

• Adaptation: Integration of behavior languages into the MontiArcAutomaton ADL
requires to identify their symbols relevant to input and output. The ports and
variables of the MontiArcAutomaton ADL must be adapted to these to allow their
interpretation in the context of embedded behavior models.

• Restriction: Behavior language integration may change the requirements on well-
formedness of models. To reflect this, new well-formedness rules might need to be
added as well as existing ones removed.

• Infrastructure Integration: The MontiArcAutomaton ADL and behavior languages
provide means to create, manage, and resolve symbols. These must be integrated
into a language family, such that the joint interpretation of their symbols is possi-
ble. This includes the related infrastructure as well.

73

Chapter 4 C&C Architectures with Application-Specific Behavior

MontiArcAutomaton ADL

Language Family
UML/P

Language Family

CD

JavaDSL

�
Behavior

DSL
Behavior

DSL
Behavior

DSLs
MontiArcAutomaton

ADL

MCL

MontiCore

Common
MontiArc

Figure 4.7: The MontiArcAutomaton ADL language family comprises the MontiArc-
Automaton ADL, MontiArc, languages of the UML/P, and provides exten-
sion points to integrated component behavior languages.

As MontiCore prescribes only minimal language infrastructure (for instance, symbol
tables and well-formedness rules are optional), the integration might require to provide
such infrastructure for a behavior language.

In general, combined interpretation of models of different languages (whether em-
bedded or in separate artifacts) requires aggregation of adapters, well-formedness rules,
and infrastructure into a joint language family. The language family of the MontiArc-
Automaton ADL (Figure 4.7) aggregates the MontiArc [HRR12] language, from which
it inherits not only syntactically, but also symbolically (i.e., it inherits and extends Mon-
tiArc’s syntax as well as its symbols). Via MontiArc, it transitively extends also from the
MontiCore Common language that provides common productions, such as types and
literals. It also aggregates the UML/P language family [Rum11] to use Java/P and class
diagrams for data type modeling. Furthermore, it provides extension points to aggregate
the different infrastructure necessary to integrate component behavior languages.

The MontiCore infrastructure required for symbolic language integration comprises:

• Symbol table modules: In MontiCore, creation and management of symbols is
performed by its symbol table infrastructure, which takes care of producing symbol
table entries from corresponding AST nodes, persisting, qualifying, and resolving
these. Integration reuses the symbol table infrastructure of behavior languages
without modifications.

• Adapters: To reflect changes in the meaning of references, MontiCore relies on
adaptation between symbol table entries of related concepts. These adapters are
specific to integration and must be developed as explained in [HLMSN+15].

• Context conditions: Integrating models of behavior languages into components
requires to apply the behavior languages’ well-formedness rules as well. Addi-
tionally, integration might entail to new well-formedness rules. With MontiCore,
well-formedness rules are implemented as context conditions and integration must

74

4.2 Embedding Component Behavior Languages

comp Stopper {

in int input;

out bool result;

behavior {}

}

MCG BARC

MCG BARC

grammar BehaviorARC {

Component = "comp" Name "{"

(Port|Connector|Body)*

"}";

Port = ("in"|"out") Type Name ";";

Connector = Name "->" Name ";";

Body = "behavior" kind:Name "{"

Behavior(parameter kind)

"}";

external Behavior;

}

comp Stopper {

in int input;

out bool result;

behavior finite {

state Off;

state On;

[input==4] Off -> On;

}

}

grammar FSM {

FSM = "fsm" Name "{"

Content;

"}";

Content = (Field|State|Transition)*;

Field = "field" Type Name;

State = "state" Name;

Transition = "[" Name == Value "]"

Name "->" Name ";";

}

adaptation of
language concepts

Figure 4.8: Adaptation between names of different languages enables interpreting refer-
ences in embedded behavior language properly.

provide the context conditions to apply. The intra-language context conditions can
be reused with minimal effort, the new context conditions must be implemented
as presented in [Vö11].

• Workflows: MontiCore languages may employ different workflows to optimize their
ASTs or symbols. If required, integration must consider a behavior language’s
workflows as well.

Non-invasive context condition reuse commands the existence of adapters: consider a
well-formedness rule of FSM that checks whether the value assigned to a field matches
the field’s type (such as the field int a, depicted at bottom right in Figure 4.6). If the
embedding of FSM models into MontiArcAutomaton ADL components prohibits fields in
favor of ports, checking the well-formedness of assignments tries to resolve the symbol for
the name a and will fail to produce a field symbol table entry. Instead, the MontiArc-
Automaton ADL must provide the corresponding port symbol. Adapters bridge that
gap by interpreting the names in transition guards as references to ports as depicted
in Figure 4.8. The adapters ensure that certain names expected by the CFG of FSM are
interpreted as references to BehaviorARC elements defining these names.

Figure 4.9 shows the realization of the adaptation of BehaviorARC ports to FSM

75

Chapter 4 C&C Architectures with Application-Specific Behavior

part of language integration
infrastructure

Port2FieldAdapterFactory

AdapterFactory

+ String getName() {

return adaptee.getName()

}

+ Type getType() {

return adaptee.getType()

}

FieldEntry

+ String KIND

PortEntry

+ String KIND

adaptee

port entry of
BehaviorARC

field entry of the
FSM language

CD

Port2FieldAdapter

+ String getName()

+ Type getType()

+ Boolean isIncoming()

+ FieldEntry create(PortEntry t) + String SOURCE_KIND

+ String TARGET_KIND

+ String getName()

+ Type getType()

part of
MontiCore‘s
symbol table
framework

Figure 4.9: An adapter to use port entries of BehaviorARC as field entries for symbolic
integration of FSM models.

fields via their symbol table entries. Whenever a name expected to reference a field is
looked up by BehaviorARC, it returns a port symbol table entry disguised as a field
entry instead. To this effect, the language engineer integrating FSM into BehaviorARC
must develop and register the available adapters. Each adapter references the source
symbol kind (cf. Section 2.2.1) of the entry type it adapts, the target symbol kind of the
entry it disguises as, and provides a factory to create adapters of its type. Whenever
a resolver looks up the name and kind of the field entry corresponding to the expected
field name input, MontiCore will return an instance of Port2FieldAdapter instead.
The adapter acts as a field entry and can be used, for instance, to check whether the
Type associated with input matches the type of the value it is compared to.
Aside from reflecting changes in meaning, language engineers may exploit adapta-

tion to make other concepts available to participating languages. With the MontiArc-
Automaton ADL, components may yield configuration arguments that are passed at
component instantiation and are constant from then on. Although FSM does not have
such a concept, adapting configuration arguments to non-writable fields (which requires
another inter-language well-formedness rule prohibiting assignments to fields that actu-
ally are component arguments) might be useful to allow usage of configuration arguments
for behavior calculation.
The next section presents the infrastructure to integrate symbol tables, context con-

ditions, adapters, and workflows into the MontiArcAutomaton ADL language family.

4.2.3 Language Integration Infrastructure

Integrating a behavior language into the MontiArcAutomaton ADL requires declaring
which of its productions should be embedded, specifying a keyword for this production,

76

4.2 Embedding Component Behavior Languages

AD

select production
of behavior

language

add symbol table
infrastructure of

behavior language

add
inter-language

context conditions

add
workflows

add
intra-language

context conditions

[has

symbol

table]

[no inter cocos] [no workflows][no symbol table] [no intra cocos]

add adapters

act Configure Behavior Language Integration

Figure 4.10: Integrating behavior languages into MontiArcAutomaton requires consider-
ation of symbol table infrastructure, adapters, and context conditions.

and integrating of symbol table infrastructure, context conditions, and workflows. The
symbol table infrastructure comprises entries, entry creators, qualifiers, resolvers, and
deserializers. Specification of context conditions enables including intra-language condi-
tions of the behavior language (as not all its well-formedness rules might be applicable in
the context of a component) and adding new intra- and inter-language well-formedness
rules. Not all of these modules are necessary. Figure 4.10 therefore describes the lan-
guage engineer’s efforts for integration of a single behavior language. It begins with
selecting the production of the behavior language to embed into components including
its embedding keyword. This production defines which behavior language models parts
can be processed inside components and governs which part of the language’s generated
MontiCore parser to integrated (cf. Section 4.2.1). If the language to be embedded has
symbol table infrastructure, it needs to be integrated and adapters between relevant
symbols must be provided as explained in Section 4.2.2. Afterwards, if available, intra-
language context conditions and inter-language context conditions, as well as workflows
are integrated. To integrate multiple languages, this must be repeated for each language.

As MontiCore relies on DSLTools to process models, configuration with behavior lan-
guages must be provided in form of a language combination specific DSLTool. MontiArc-
Automaton supports two ways to define such tools: either via handcrafting subclasses of
certain MontiCore classes and implementing their methods correctly, or using a domain-
specific embedded language (DSEL) [Fow10] that parametrizes a generic integration tool.
While the DSEL’s expressiveness is restricted to support the most common use cases of
behavior language integration, it enables configuring the MontiArcAutomaton ADL with
new component behavior languages with little effort. If the behavior language to embed
has special integration requirements, handcrafting the integration enables harnessing the
full language integration power of MontiCore. Either way, language integration requires
no changes to participating languages as required by Req.MRQ-6 . The following sections
explain how the MontiArcAutomaton ADL can be extended with behavior languages via
handcrafting integration artifacts or using the DSEL.

77

Chapter 4 C&C Architectures with Application-Specific Behavior

MAAADLTool MAAADLRootFactory

FSMContextConditions FSMContentParser

M
A

A
 A

D
L

cl
as

se
s

F
S

M
cl

as
se

s
in

te
gr

at
io

n
to

ol
cl

as
s

MAAADLLanguage

MontiArcAutomaton ADL
with CD and Java/P

parses the
FSM Content
production

FSMSymbolTable

«gen»

CD

MAAFSMTool()

initLanguageFamily()

aggregates FSM
infrastructure and

parametrizes MAA ADL

configures
parsers to

apply

generated by
MontiCoreFSMLanguage

FSMTool

FSMWorkflows
*

add(Parser p, String keyword)

registers behavior parsers
at extension point

add(Parser p, String keyword)

add(SymbolTable table)

add(Workflow workflow)

add(Adapter adapter)

add(ContextCondition coco)

MAAFSMTool

MAAFSMTool()

initLanguageFamily()

*

Figure 4.11: Integrating FSM behavior into the MontiArcAutomaton ADL requires pro-
vision of a single new class inheriting from MAAADLTool only.

Handcrafting the Integration Infrastructure

With MontiCore languages, language family configuration is part of their DSLTools.
Each language’s DSLTool contains an instance of MontiCore’s LanguageFamily class,
which contains symbol table entry creators, resolvers, qualifiers, deserializers as required
by the individual language. It also contains the context conditions and workflows to
apply. The MontiArcAutomaton ADL is defined in terms of the MAAADLanguage

class used by the MAAADLTool. The language class MAAADLanguage extends from
LanguageFamily and configures the MontiArcAutomaton ADL to interact with Mon-
tiArc, UML/P, and Java/P. Furthermore, it provides methods to add language infras-
tructure of behavior languages. It also controls which parsers to use via configuring an
instance of MAAADLRootFactory (cf. Section 4.2.1).

Figure 4.11 illustrates handcrafted integration with the FSM language of Figure 4.6.
The top three classes starting with MAAADL are part of the MontiArcAutomaton ADL
and can be reused for integration of arbitrary MontiCore behavior languages. The
class MAAFSMTool implements the integration of FSM infrastructure into the Monti-
ArcAutomaton ADL. To this effect, it overrides the method initLanguageFamily()
of MAAADLTool and adds relevant information retrieved from the FSMTool to the
MAAADLLanguage. The remaining bottom five classes starting with FSM are part of
the FSM language and used by the accessed via the FSMTool.

78

4.2 Embedding Component Behavior Languages

The stand-alone DSLTool FSMTool holds an instance of the FSMLanguage class,
another descendant of LanguageFamily, and the workflows (such as model transfor-
mations) that are applied to FSM models. The FSMLanguage class contains symbol
table infrastructure (including symbol table entries, entry creators, qualifiers, resolvers,
and deserializers) and context conditions of the FSM language. All of these can be reused
via integration into the MAAADLLanguage language. To this effect, the MAAFSMTool
extends the MAAADLTool, which contains the parametrizable MAAADLLanguage, and
references the FSMTool. From the latter, it retrieves FSM workflows, context conditions,
and symbol table to the MontiArcAutomaton ADL. It also contributes inter-language
context conditions, adapters, and overrides the root factory to register the parser for the
FSM.Content production the extension point of the MontiArcAutomaton ADL. Hence,
when using the MAAFSMTool to parse integrated models, the MontiArcAutomaton ADL
parser invokes the FSMContentParser for each component behavior of the FSM lan-
guage, combines their ASTs, creates the corresponding symbol table entries, checks its
well-formedness, and performs workflows using the provided infrastructure.
Handcrafting integration infrastructure requires development of a single class with a

few lines of code only. However, MontiCore gives languages engineers much freedom
regarding the implementation of languages (for instance it does not prescribe how to
create and manage symbol tables). Thus, integration requires in-depth expertise about
the behavior language to be integrated and specifying universal implementations of the
relevant methods is impossible.

A Groovy DSEL for Behavior Language Integration

To facilitate integration of behavior languages, MontiArcAutomaton employs a domain-
specific embedded language based on the GPL Groovy [KKL+15]. Groovy is a pro-
gramming language for the Java virtual machine, which allows omitting syntactic sugar
(such as brackets around method arguments and dots for method concatenation). Thus,
it lends itself to develop DSELs [Fow10, Gho10] with similar feature than Java but
a less verbose syntax. Models of the Groovy behavior configuration language (GBC)
specify which modules of a behavior language are contributed to integration. Monti-
ArcAutomaton processes these and configures the modeling language infrastructure of
MontiCore with collected relevant integration properties. As Groovy is compatible to
Java and MontiCore language modules are implemented in Java, the GBC can inter-
face the MontiCore modules with ease. This, for instance, allows interacting with the
FSMTool class depicted in Figure 4.11 to retrieve its information instead of specifying
each required module manually. It ultimately liberates developers performing language
integration from requiring expertise about behavior language implementation details.
Listing 4.28 illustrates these benefits with a GBC model integrating the FSM lan-

guage into the MontiArcAutomaton ADL. First, it defines a unique name (l. 1), which
is used to identify components of the language in the resulting aggregate and as the
pseudo-keyword under which the parser of the selected production will be embedded.
Afterwards, it references the behavior language production to be embedded (l. 2). The
latter is identified by a qualified name consisting of its dot-separated path, grammar

79

Chapter 4 C&C Architectures with Application-Specific Behavior

GBC
1 name "finite"

2 behavior "FSM.Content"

3 tool new fsm.FSMTool()

4 coco new maafsm.NoFieldsInEmbeddedModels()

5 adapter new maafsm.Port2FieldAdapter()

Listing 4.28: Groovy behavior configuration model for embedding the FSM language
using instances of MontiCore language implementation classes.

name, and production name. It references the language’s DSLTool class FSMTool (l. 3),
from which it retrieves the FSMLanguage and workflows. From the language, it retrieves
entries, entry creators, qualifiers, resolvers, and deserializers of the FSM symbol table. As
integrated FSM models should act on ports and variables of the surrounding component,
(a) using Field elements should be prohibited and (b) the interpretation of references
on transitions must be changed to ports and variables. The former requires a new context
condition and the latter an adapter as presented in Section 4.2.2. Hence, the GBC model
references a context condition class (l. 4) as well as an adapter class (l. 5). The syn-
tax of this language is defined by the fluent interface [Fow10] of the class GBCBuilder
depicted in Figure 4.12. This class employs a variant of the builder pattern [GHJV95]
to create instances of BehaviorConfiguration that describe integrated languages.
The GBCTool extends the MAAADLTool, interprets its BehaviorConfiguration

instances, and configures the MontiArcAutomaton ADL accordingly. With Groovy’s
feature to omit syntactic sugar, instances of BehaviorConfiguration can be de-
fined as depicted in Listing 4.28. Please also note that the order of method invocations,
and hence the order of model keywords, is arbitrary.
Usage of GBC models with the GBCBuilder imposes the requirements on language

implementation with MontiCore: For one, the behavior language must provide a class
inheriting from MontiCore’s DSLTool class. As MontiCore processes models with in-
stances of DSLTools, this is de facto standard and a requirement that is fulfilled almost
naturally by using MontiCore [Vö11]. However, technically, it is possible to use Monti-
Core without a DSLTool and languages providing no tool are not supported for Groovy
configuration. The GBCBuilder also expects all context conditions to inherit from Mon-
tiCore’s ContextCondition class. Although this is standard for MontiCore languages
as well [Vö11], it technically is possible to check well-formedness rules differently. If the
well-formedness rules do not inherit from ContextCondition, GBCBuilder cannot
support these. Finally, the object passed to method adapter() must implement Mon-
tiArcAutomaton’s IEntryAdapter interface. Implementing this interface entails that
each adapter provides an instance of MontiCore’s AdapterConfiguration, which
contains a qualifier, a resolver, and a deserializer for each adapter. The interface
IEntryAdapter is not part of MontiCore. However, the required adapters are specific
to the integrated languages and hence, must be created for each language combination
anyway. Thus, enforcing implementing of IEntryAdapter is no severe requirement.

80

4.2 Embedding Component Behavior Languages

CD

GBCBuilder BehaviorConfiguration

GBCToolMAAADLTool

*

produces

interprets

the GBCTool extends MAAADLTool to parametrize its
MAAADLLanguage with behavior configuration information

uses

names of GBCBuilder methods
are the keywords of GBC models

- String name

- String behaviorProduction

- DSLTool tool

- Set<Adapter> adapters

- Set<ContextCondition> cocos

- String name

- String behaviorProduction

- DSLTool tool

- Set<Adapter> adapters

- Set<ContextCondition> cocos

+ GBCBuilder name(String name)

+ GBCBuilder behavior(String behavior)

+ GBCBuilder tool(DSLTool tool)

+ GBCBuilder adapter(IEntryAdapter adapter)

+ GBCBuilder coco(ContextCondition coco)

+ BehaviorConfiguration build()

+ void setName(String name)

+ void setBehavior(String behavior)

+ void setTool(DSLTool tool)

+ void addAdapter(IEntryAdpater adapteR)

+ void addCoco(ContextCondition coco)

Figure 4.12: Quintessential classes of MontiArcAutomaton’s Groovy behavior configura-
tion infrastructure.

Using the GBC language to integrate behavior languages amounts to providing the
required GBC models (one per language) as well as the required types and instances
of the language implementation infrastructure explained above. With this, the overall
project layout for integration of FSM into MontiArcAutomaton could be as depicted
in Figure 4.13. Elements of the FSM project and of the MontiArcAutomaton project
are reused without modification. For convenience, the integration artifacts are placed
into a third project. Is also is possible to place these into the application project, which
might be useful in contexts where the specific language combination is not intended to be
reused with different applications. Invoking the GBCTool with the configuration enables
processing integrated models, parses the model into a combined AST, and produces ad-
ditional infrastructure not depicted here (such as the symbol table entries of component
and behavior elements).

4.2.4 Language Integration Semantics

Models of integrated languages must be able to describe input-output behavior reading
from discrete data sources (incoming ports and variables) and writing to discrete data
sinks (outgoing ports and variables). They perform their calculations (typically in read-
compute-write cycles) within a single Focus time slice of the surrounding architecture.
Hence, they partition time slices into sequences of operations. We consider these untimed
in the Focus sense, but causally related. The semantics of integrated behavior thus
follows the concept of superdense time [MP93], which, following [Lee10], distinguishes
between a discrete “time continuum” (the global Focus time) and “untimed causally-

81

Chapter 4 C&C Architectures with Application-Specific Behavior

Application

MAA AST-ODStopper

:Component

input

:Port

result

:Port

finite

:Behavior

On

:State

Off

:State :Transition

MAAFSM

Port2FieldAdapter

NoFieldsInEmbeddedModels

FSM

ContentFactory

FSMTool

DSLRootFactory

MAAADLTool

MontiArcAutomaton

GBCRootFactory

references processes

parametrized

GBCTool

execution

uses

name "finite"

behavior "FSM.Content"

tool new FSMTool()

coco new NoFieldsInEmbeddedModels()

adapter new Port2FieldAdapter()

GBC

GBCTool

component Stopper {

port

in int input,

out bool result;

behavior finite {

state Off;

state On;

[input==4] Off -> On;

}

}

reused projects

integration project usage project

Figure 4.13: Exemplarily behavior language configuration and artifacts in the context of
their containing projects.

related actions” (a behavior model’s actions within the time slice of a component).
We also assume that the operations performed in the superdense time of a component

are computed fast enough to not interrupt the architecture’s functionality. Also, in
every time slice, the MontiArcAutomaton ADL provides values on each incoming port
of a component. Hence, behavior languages may evaluate complex expressions over the
complete interface of a component, instead of reacting on single messages only.

4.3 Discussion

MontiArcAutomaton models describe structure and behavior of logically distributed
component & connector software architectures. The MontiArcAutomaton ADL itself is
compact and easy to comprehend (cf. Chapter 9). To achieve this, it focuses on the core
elements of C&C software architectures, which are components, connectors, and configu-
rations (subcomponent topology) [MT00]. While this eases the learning curve [MDT07],
the MontiArcAutomaton ADL thus lacks direct support of interesting features of other
ADLs, such as

• ways to change the subcomponent topology at run-time [VVKM00, ACN02, SOK05,
JBCG05, RBH+07, FG12],

82

4.4 Related Modeling Languages

• supporting multiple primitive behaviors per component [FG12] and switching be-
tween these at component instantiation or during run-time,

• a distinction between different types of ports [SSL11, FG12, BKH+13],

• properties of ports (aside from their types) [MRT99, ACN02, JBCG05],

• more complex connectors [GMW00, KGO+01, MCWF02, JBCG05, BCL+06, FG07,
UNT10], or

• dynamic subcomponent replication [MDEK95, NPR13].

Integrating any of these comes at the price of introducing additional notational noise
[Wil01] and accidental complexities [FR07]. As MontiArcAutomaton and its ADL rely on
the language workbench MontiCore [KRV08b, KRV10], adding new features by means
of language integration (cf. Section 2.2.2) is possible in a structured way and allows
reusing great parts of the existing model processing infrastructure [Vö11, LNPR+13,
HLMSN+15]. Hence, whenever tailoring the MontiArcAutomaton ADL to certain re-
quirements is necessary, the implementation can rely upon the powerful language defi-
nition and integration features of MontiCore.
While MontiArcAutomaton supports integration of arbitrary modeling language for

component behavior, embedding languages without dynamic semantics (such as class
diagrams) will not produce input-output behavior without further interpretation. Future
research on the globalization of modeling languages [CDB+14, CCF+15a] might help
to make the requirements for meaningful behavior language embedding explicit and
evaluable. In the same vein, embedding arbitrary productions of behavior languages
will rarely produce meaningful models. Making language interfaces explicit and marking
“behavior productions” as such could support automated integration efforts.

MontiArcAutomaton currently integrates syntax and static semantics only. Explicat-
ing dynamic semantics of MontiCore languages is subject to research and hence integra-
tion of dynamic semantics is not considered in this thesis.
Behavior language integration in MontiArcAutomaton is easier than general language

composition as it only requires embedding into a single, well-defined extension point and
joint interpretation of a few symbols (mostly ports and variables) to reuse most of the
embedded languages infrastructure. The single extension point of MontiArcAutomaton
must be implemented by a single production per behavior language.

4.4 Related Modeling Languages

Multiple architecture modeling languages and frameworks for C&C systems have been
brought forth [MT00, MLM+13, RMT14a]. These languages and frameworks have
emerged from different domains, such as automotive [BHS99, Hö07], avionics [FG12],
or robotics [SSL11, DKS+12, BKH+13] and focus different aspects and challenges of ar-
chitecture engineering from academic and industrial perspectives. Most of these are
“first-generation ADLs” [MDT07] that are “solely focused” on technology instead of

83

Chapter 4 C&C Architectures with Application-Specific Behavior

business-related or domain-specific aspects. The flexible integration of domain-specific
modeling languages with ADLs is rare and usually overly complicated. Where an archi-
tecture modeling infrastructure is driven by the demands of specific domain, extensibility
usually is focused to a lesser extent and domain-specific issues are challenged instead.

Although extensibility is considered “a key property of modeling notations” [MDT07]
most C&C software ADLs support a fixed set of language elements and component be-
havior languages. A recent survey on industrial use of ADLs observed that tailoring
an ADL “towards whole company needs” [MLM+13] is partly feasible with “pre-existing
extension mechanisms” yet these mechanisms are insufficient, the corresponding tools
are “too generic”, and the ADLs are of “insufficient expressiveness”. This limits the
language’s expressible principal design decisions and ultimately requires to describe im-
portant design decisions in GPL artifacts bundled with the architecture or renders the
language makes it unusable.

The AADL [FG12] modeling language for hardware and software components of em-
bedded systems features language elements to model hardware components, software
components, and related properties, where MontiArcAutomaton focuses on modeling
logical software architectures. AADL distinguishes component types from their imple-
mentations and the former defines the type’s interface. Component implementations
inherit the implemented type’s interface and describe the type’s internals, such as sub-
components or calls to subprograms. Components implementations of type thread may
define unconditional sequences of subprogram calls. Subprograms comprise component-
like interfaces and represent a “callable unit of sequentially executable code” [FG12].
AADL can also be extended with behavior languages through sub-languages conforming
to the behavior annex [BFBFR07], which lacks integrated semantics with the surround-
ing architecture [YHMP09] and is overly complicated.

AutoFOCUS [HF11] is a C&C ADL and modeling infrastructure for the engineering
of embedded distributed systems. It is based on the semantics of Focus [BS01, RR11]
as well. It supports time-synchronous messaging with weakly causal and strongly causal
component behavior. Behavior is modeled as state transition diagrams. However, Aut-
oFOCUS does not distinguish between component types and their instantiations. This
hampers component reuse.

The xADL [DVdHT01, DVdHT02] focuses on architecture extensibility as well and
is grounded on a metamodel for XML-based ADLs. It shares many features with the
MontiArcAutomaton ADL (such as atomic and composed components, instantiation,
component behavior models), and provides language elements for product lines and vari-
ability the MontiArcAutomaton ADL does not support. Extension in xADL focuses on
language integration on the metamodel level and does neither support non-invasive lan-
guage integration, nor integration of model processing infrastructure [NDZR04]. Also, to
the best of our knowledge, xADL does not support code generator composition. Instead,
its “architecture instantiation schemas” [DVdHT01] tie software architecture models to
specific implementations.

MathWorks Simulink [Tya12] features a block diagram language for the description
of software as components and connectors. Stateflow [Sta] extends blocks with state

84

4.4 Related Modeling Languages

transition diagrams. The Stateflow semantics are not completely defined and have been
formalized in various ways [HR04a, MC12]. In contrast to MontiArcAutomaton, State-
Flow does not support behavior language integration.

SysML [Wei06, FMS11] is a collection of graphical modeling languages for the devel-
opment of complex software systems. It is based on a subset of extended UML [OMG10]
and comprises languages to describe requirements, structure, and behavior of systems.
Structure is defined in block definition diagrams, internal block diagrams, and package
diagrams. The internal block diagram language contains components (called “parts”),
connectors, and ports. Hence it is similar to MontiArc models. Behavior is modeled with
activity diagrams, sequence diagrams, state machine diagrams, and use case diagrams. In
contrast to SysML, the semantics of the MontiArcAutomaton ADL yields well-defined
semantics based on the Focus framework. The SysML semantics is grounded in the
employed code generator.

Few other ADLs, for instance ArchJava [ACN02] or Plastik [JBCG05], are imple-
mented as domain-specific embedded languages [Hud96, vDKV00]. This usually allows
reusing arbitrary concepts of the host language, including loops and conditional expres-
sions, but limits their application to platforms supporting the host GPL.

Research in robotics software engineering produced a number of approaches to mod-
ular robot components [VNE+01, Bru01, BKM+05, BBC+07, QGC+09, NFBL10]. Si-
multaneously, research towards model-driven robotics software engineering has received
attention [Mur02, WICE03] as well: by now, there are specific modeling languages for
imperative and event-driven robot programming [MAHR10, BDHN10, LW11, ASH+12,
BBH13], kinematics and geometric relations [SCS07, FBC11, LSGB12], definition of
assembly tasks [THR+13, Van13], perception tasks [Blu13, Hoc13], and software archi-
tectures [SSL11, Tro11, DKS+12, NW12, BKH+13].

Established robot architecture programming frameworks such as CARMEN [MRT03],
Fawkes [NFBL10], OpenRDK [CCIN08], ROS [QGC+09], or YARP [FMN08] require
definition of software architectures in terms of GPLs. Therefore, they lack abstraction,
comprehensibility, and reuse of frameworks employing ADLs.

Many popular robotics architecture modeling frameworks [RMT14a], such as Smart-
Soft [SSL11], SafeRobots [RMT14b], RobotML [DKS+12], or BRICS [BKH+13] enable
seamless development of robotics software architectures. These frameworks provide solu-
tions to domain-specific issues, such as advanced communication patterns, deployment,
or planning that are not tackled by MontiArcAutomaton. Although most of these frame-
works employ state of the art language workbenches, they neither support integration
of application-specific behavior languages, nor code generator composition. The authors
of [SSL11] explicate this as “freedom from choice” to support application developers in
creating solutions instead of dealing with infrastructure mechanisms. If the employed lan-
guage workbenches however support language aggregation, inheritance, and embedding
(or similar mechanisms [EGR12]) the presented language integration activities might be
applied to these frameworks as well.

Most robotics ADLs employ notions of components and connectors to describe the
structure of the system under development and require development of component be-

85

Chapter 4 C&C Architectures with Application-Specific Behavior

havior with GPLs [Tro11, SSL11, BKH+13]. The RobotML [DKS+12] modeling lan-
guage for design and deployment of robot applications uses finite state machines to
describe component behavior, which is similar to the MontiArcAutomaton version pre-
sented in [RRW13b]. In contrast to MontiArcAutomaton, the RobotML does not provide
facilities to extend it with different DSLs for data types or component behavior. The
AMARSi language family [NW12] enables modeling of “Motor Skill Architectures” and
therefore models software components with behavior as well. Component behavior is
modeled in terms of differential equations. AMARSi also does not consider modeling
language extension. The BRICS [BKH+13, VKB14] metamodel of component & con-
nector software architectures focuses on the separation of concerns between development
responsibilities. Therefore, the metamodel explicates features like scheduling, monitor-
ing, and component configuration. BRICS does not consider behavior modeling yet and
thus relies on GPL component behavior implementations as well. DiasSpec [CKS11]
is a modeling language for development of Sense/Compute/Control [TMD09] software
architectures that supports modeling of structural aspects as well. Similar to previous
approaches, component behavior has to be provided in terms of GPL artifacts. The
OpenRTM [ASK+05, ASK08] ADL provides a sophisticated component model, where
components may contain state machines that use C++, Java, Python, or C# expres-
sions to enable and fire transitions. This notion of state machines is tightly coupled
to the component model and corresponding infrastructure parts, and OpenRTM does
not support using different component behavior languages. The data types of Open-
RTM are specified as CORBA (Common Object Request Broker Architecture) [Sie00]
types which enables platform-independence of data types. Orocos [Bru01, KSB10] is
another modeling language for robot software architectures which supports component
behavior implementation in the GPLs C++, Python, Lua. The latter enables describ-
ing component behavior with Lua DSELs, which is employed to some degree by the
FAWKES [NFBL10] framework as well.

Overall, to the best of our knowledge none of the existing approaches towards software
architecture modeling support the minimally invasive language integration features as
provided by MontiCore and hence do not support easy integration of application-specific
component behavior modeling languages. Most ADLs also are tied to in-extensible frame-
works supporting code generation for only a few target languages – sometimes due to
the employed type system being one of a GPL.

86

Chapter 5

A Behavior Language with I/Oω Automata

MontiArcAutomaton comprises the Automata modeling language based on the I/Oω

automata paradigm [Rum96] to describe the state-based input-output behavior of com-
ponents platform-independently. Using Automata models to describe component be-
havior decouples components from GPLs and enables their reuse with different plat-
forms. A previous version of this language was presented, where the automata language
elements were part of the MontiArcAutomaton grammar [RRW14a]. The language pre-
sented in the following is a stand-alone language for I/Oω automata, which is integrated
into MontiArcAutomaton using the language integration mechanism presented in Sec-
tion 4.2. Furthermore, Automata embeds the Java/P modeling language to describe
expressions, which is a MontiCore language that resembles Java 1.5 [Sch12]. These en-
hancements have been initially developed in a Master’s thesis [Sch14] and have been
refined since then.

Automata

Drive

Back

input Integer distance

input Boolean time

Idle
/ STOP

[distance < 5]

/ System.minDist = min(minDist, distance),

System.maxDist = max(maxDist, distance),

BACKWARD,

DOUBLE_DELAY

time = true /

FORWARD

output Direction nav

output TimerCMD cmd

variable Integer minDist = 0

variable Integer maxDist

Turn

statestimulus action guard Java/P expressions

typed inputs typed outputs typed local variables

initial state

automaton RobotController

time = true / BACKWARD,

SINGLE_DELAY

[distance < 5] / FORWARD

Figure 5.1: The stand-alone automaton RobotController demonstrates most features
of the Automata language.

Figure 5.1 illustrates the features of the Automata language with the automaton
RobotController. This automaton could be used describe the input-output behavior
of the atomic component StateBasedController as illustrated in Figure 4.1.

87

Chapter 5 A Behavior Language with I/Oω Automata.

CD

SINGLE_DELAY

DOUBLE_DELAY

STOP

«enum»

TimerCMD

FORWARD

BACKWARD

LEFT

RIGHT

STOP

«enum»

DIRECTION

Integer min(Integer a, Integer b)

Integer max(Integer a, Integer b)

Minutes now()

System

Figure 5.2: The data types the automaton RobotController operates on.

The automaton operates in the context of the class diagram types Direction,
TimerCMD, and System (depicted in Figure 5.2). It also defines inputs distance
and time, outputs nav and cmd, and variables minDist and maxDist of the cor-
responding CD data types. The automaton consists of the four states Idle, Drive,
Back, and Turn that describe the different states the exploring robot can assume (as
motivated in Section 2.4). Initially, the robot stops. Once it is signaled to start by
simulating an obstacle1, it starts to drive forward until it encounters an obstacle (i.e.,
the distance measured is less than 5). Then, it updates the variables minDist and
maxDist using corresponding methods provided by the class diagram type System.
The variables are updated in order of occurrence in the textual model. Afterwards, it
sends BACKWARD to the output nav, and DOUBLE_DELAY to output cmd. Again, the
assignments are performed in the order of occurrence. Embedded into the component
StateBasedController of Figure 4.1, this would invoke the timer to count down
an interval of twice its normal interval length and steer the robot backwards. After it
receives true from the input time, (i.e., the timer signaled that the set interval has
passed) it first sends BACKWARD to the output nav, and then SINGLE_DELAY to output
cmd. In the context of component type StateBasedController, this would rotate
the robot for a normal interval length. Finally, once it again receives true on input
time (i.e., the set single interval has passed) it sends FORWARD to output nav.
The automaton RobotController illustrates most features of Automata: It dis-

tinguishes between typed inputs, typed outputs, and typed, local, variables. All of these
may reference class diagram types. Variables may be initialized with appropriate values.
Transitions may feature a guard (denoted by square brackets “[...]”), stimuli that
describe expected values of inputs, and actions that assign values to outputs. Each of
these is optional and may use Java/P expressions. The transition from Idle to Drive,
for instance, features a guard that checks the value of input distance and an action
that assigns the value FORWARD. The output that the value FORWARD is assigned to is
determined automatically based on the type Direction of FORWARD and the avail-
able outputs and variables. In case there is only a single output or variable of type
Direction, the assignment’s name can be omitted. The same holds for inputs. For
the assignments to variables minDist and maxDist on the transition from Drive to

1In lieu of integrating additional activation hardware.

88

5.1 Language Elements

Back, this is not possible, as the value returned by method min() is of type Integer
and can be assigned to both variables.

Listing 5.1 displays the textual model of the RobotController automaton. Similar
to MontiArc and MontiArcAutomaton, Automata models are structured in packages
(l. 1) and support to import types from class diagram models (ll. 3-5). Automaton def-
initions start with the keyword automaton (l. 7) followed by the automaton’s name.
The automaton’s context is defined in terms of inputs, outputs, and variables (ll. 8-13).
Each consists of a type and a name, where the type is an (un-)qualified reference to an
imported class diagram data type. Variables may also have a value or are left unini-
tialized initially. For the latter, Automata assumes default values similar to popular
GPLs. The automaton defines its content in terms of states and transitions in arbitrary
order. States are defined by the keyword states followed by a set of names (l. 15).
Initial states are, following the notation of [Rum96], declared explicitly by the keyword
initial, followed by a set of names (l. 17). Initial state definitions may declare initial
behavior – such as initially assigning the value STOP to output nav (l. 17). Automata
supports multiple (initial) state declarations for structuring purposes.

Transitions require no special keyword, but are defined by their unique syntax instead:
a transition consists of a source state name, a target state name, a guard, multiple
stimuli, and multiple actions (ll. 19-29). Stimuli and actions may refer to imported data
types. For instance, the action minDist = System.min(...) refers to the imported
data type System as depicted in Figure 5.2. Everything but the source state name is
optional and specifying a transition by a single name describes an unconditional loop
from the state to itself. Stimuli and actions may be contained in optional curly brackets
for structuring purposes (ll. 22-27).

In the following, Section 5.1 introduces the language elements of Automata by ex-
ample. Afterwards, Section 5.2 presents the symbol table structure and entries of Au-
tomata. Section 5.3 describesAutomata’s context conditions which rely on the symbol
table entries. Section 5.4 presents a post-processing model transformation before Sec-
tion 5.5 describes the integration of Automata into MontiArcAutomaton.

5.1 Language Elements

Automata provides language elements to describe non-hierarchical, finite automata
with underspecification that operate in the context of inputs, outputs, and variables.
Inputs represent the accessible environment, outputs represent parts of the environment
that can be effected, and variables are part of the automaton’s state. In this this con-
text, automata describe state-based input-output behavior and, hence, can read values
from inputs and variables and assign values to outputs and variables. The intuition
of Automata semantics is that they are performed in cycles, where they read all cur-
rent values on their inputs and variables, perform up to one transition, and write the
next values to their outputs and variables. They are not integrated into components
or connected to other automata. Hence, neither timing, nor communication feedback
cycles [HRR12] are issues with this language. These become important issues when em-

89

Chapter 5 A Behavior Language with I/Oω Automata.

Automata
1 package robot;

2

3 import Direction;

4 import TimerCMD;

5 import System;

6

7 automaton RobotController {

8 input Integer dist;

9 input Boolean time;

10 output Direction nav;

11 output TimerCMD cmd;

12 variable Integer minDist = 0;

13 variable Integer maxDist;

14

15 states Idle, Drive, Back, Turn;

16

17 initial Idle / STOP;

18

19 Idle -> Drive [distance < 5] / FORWARD;

20

21 Drive -> Back [distance < 5]

22 / { minDist = System.min(minDist, dist),

23 maxDist = System.max(maxDist, dist),

24 BACKWARD,

25 DOUBLE_DELAY };

26

27 Back -> Turn true / { BACKWARD, SINGLE_DELAY };

28

29 Turn -> Drive true / FORWARD;

30 }

Listing 5.1: The textual model of the automaton RobotController depicted
in Figure 5.1.

bedding Automata models into components and, thus, are discussed in Section 5.5.1.
This section introduces the Automata language elements by example, which can be
used with models of different semantics. The complete Automata grammar is available
in Section A.2 of the appendix in two versions: one simplified for human comprehension
and the actual MontiCore grammar.

5.1.1 Automaton Declaration

An automaton declaration begins with the keyword automaton followed by the automa-
ton’s unqualified name and curly brackets. The latter contain the automaton’s context
consisting of inputs, outputs, and variables, and its content comprising states and tran-
sitions. Listing 5.2 shows the declaration of the automaton MotorController.

90

5.1 Language Elements

Automata
1 automaton MotorController {

2 // ...

3 }

Listing 5.2: The declaration of the automaton MotorController begins with the
keyword automaton followed by its name and curly brackets.

5.1.2 Inputs, Outputs, and Local Variables

An automaton may define the inputs, outputs, and variables to describe the context
it operates in. Each consists of a keyword, a type, and a name. Inputs start with
the keyword input, outputs with the keyword output, and variables with the key-
word variable. Listing 5.3 depicts the automaton TimedMotorController, which
defines three inputs (ll. 2-4), one output (l. 5), and two variables (ll. 6-7).

Automata
1 automaton TimedMotorController {

2 input Minutes ts;

3 input Float cur;

4 input Float max;

5 output Float speed,

6 variable Boolean stopLights;

7 variable Minutes t0 = System.now();

8 }

Listing 5.3: The automaton TimedMotorController defines three inputs, one
output, and two variables (ll. 2-7).

Where initial values for variables are omitted, the values default to specific values
similar to Java: numerical values default to 0, Boolean values default to false, and
complex objects default to null.

5.1.3 Values

Values checked by guards and inputs or assigned to outputs are expressions of the Java/P
language. This includes values and literals for common types, such as true and false
for Boolean types, various number formats, and strings, and complex expressions over
CD types, such as concatenated method calls with multiple parameters. Listing 5.4
illustrates this with initial values for the automaton’s variables stopLights and t0

(ll. 6-7). The first assignment assigns the literal value false to stopLights and the
second assignment retrieves and assigns the current time via method now() of data type
System (as depicted in Figure 5.2).

Additionally, Automata introduces the (pseudo) value NoData, denoted by “--”, to
describe the case of explicitly assigning no message in architectures using timed stream
semantics [RR11, RRW14a].

91

Chapter 5 A Behavior Language with I/Oω Automata.

Automata
1 automaton InitializedMotorController {

2 input Minutes ts;

3 input Float cur;

4 input Float max;

5 output Float speed,

6 variable Boolean stopLights = false;

7 variable Minutes t0 = System.now();

8 }

Listing 5.4: The automaton InitializedMotorController initializes its
variables (ll. 6-7).

5.1.4 State Declarations, Initial States, and Initial Outputs

A state declaration introduces one or multiple states and begins with the keyword
states. An automaton must contain at least one state declaration with at least one
state. Defining multiple state declarations is allowed. They are interpreted as a sin-
gle state declaration. The automaton StatebasedMotorController of Listing 5.5
features two state declarations (ll. 9-10) defining multiple states each. Each state declara-
tion begins with the keyword states, followed by a list of state names. Each state may
be preceded by an optional list of stereotypes (cf. state Error in l. 9). Such stereotypes
facilitate language extension to a certain degree but lack the documentation of language
elements codified in the grammar. In MontiArcAutomaton, stereotypes are provided as
means to extend the language in-place for developers of model processors (such as code
generators). Consequently, evaluation of stereotypes is left to model processing tools.

Automata
1 automaton StatebasedMotorController {

2 input Minutes ts;

3 input Float cur;

4 input Float max;

5 output Float speed,

6 variable Boolean stopLights;

7 variable Minutes t0 = System.now();

8

9 states Idle, Stopping, <<log>> Error;

10 states Accelerating, Decelerating;

11

12 initial Idle, Stopping / { speed = 0, true };

13 }

Listing 5.5: The automaton StatebasedMotorController introduces five states
to operate on (ll. 9-10).

Following the notion of initial states in [Rum96], they are declared separately. Initial
state declarations begin with the keyword initial followed by a list of state names and

92

5.1 Language Elements

a single initial output per initial state declaration. Listing 5.5 declares that the states
Idle and Stopping are initial and that starting with one of these states initially assigns
0 to speed and the value true to stopLights (l. 12). Defining multiple initial states
is a form of underspecification that must be realized by the responsible code generators
accordingly. Again, Automata derives that true should be assigned to stopLights
via type matching and the curly brackets are optional.

5.1.5 Transitions

A transition declares a source state from which it originates, a target state the automaton
reaches if the transition’s guard holds and its stimuli are satisfied, and actions in terms
of assignments. Generally, transitions have the form

Source -> Target [Guard] {Stimulus} / {Action};

where Source and Target are names of the automaton’s states. The guard is a Boolean
Java/P expression over the automaton’s context. Stimulus is a set of valuations of the
form name = expression, where name must be the name of an input or of a variable
and multiple valuations are separated by commas. Action is a set of assignments of
the form name = expression, where name must be the name of an output or of a
variable and multiple assignments are separated by commas as well. The right-hand
side of valuations and assignments (expression) are Java/P expressions and may
reference data types. As target, guard, inputs, and outputs are optional, Source; is a
valid transition as well. This transition describes an unconditional loop from Source to
itself that neither reads values, nor assigns values. If the square brackets of a guard are
present, the guard may not be empty. The same holds for the curly brackets of inputs
and outputs.
Listing 5.6 illustrates part of a system to prohibit truck drivers from skipping breaks

by controlling a truck’s speed based on the current maximum speed and the time since
the last break. To this effect, the automaton TruckMotorController defines multiple
transitions to describe when the system should accelerate, decelerate, and stop (ll. 14-
33). The first transition (ll. 14-15) defines that the automaton should switch from state
Idle to Accelerating when the current speed (provided via input cur) is less than
the current maximum speed (via input max) and the truck is driving for less than 240
minutes. In that case, it should increase speed by 10 and not flash the stop lights. To
check this, it defines a guard with a Boolean Java/P expression over inputs cur, max,
and variable t0. If the guard expression holds, the two assignments speed = cur

+ 10 and stopLights = false are applied and the automaton switches to state
Accelerating. The transition from state Decelerating to state Waiting (l. 26)
omits a guard but is enabled if the valuation cur = 0 holds, i.e., if the truck is standing.
If this holds, it switches to Waiting without assigning values to outputs or variables.
After waiting 60 minutes, the transition from Waiting to Accelerating (ll. 28-31)
defines that the truck starts driving again, it deactivates its stop lights, and the count
down to the next break starts again. The last transition (l. 33) denotes a loop from state
Accelerating to itself that increases speed if slower than the current speed limit.

93

Chapter 5 A Behavior Language with I/Oω Automata.

Automata
1 automaton TruckMotorController {

2 input Minutes ts;

3 input Float cur;

4 input Float max;

5 output Float speed,

6 variable Boolean stopLights;

7 variable Minutes t0 = System.now();

8

9 states Idle, Stopping, <<log>> Error;

10 states Accelerating, Decelerating;

11

12 initial Idle, Stopping / { speed = 0, true };

13

14 Idle -> Accelerating [cur < max && t0 - ts <= 240]

15 / speed = cur + 10, false;

16

17 Accelerating -> Decelerating [cur >= max]

18 / speed = cur - 10, true;

19

20 Accelerating -> Decelerating [t0 - ts > 240]

21 / speed = cur - 10, true;

22

23 Decelerating -> Decelerating [t0 - ts > 240]

24 / speed = cur - 10, true;

25

26 Decelerating -> Waiting cur = 0;

27

28 Waiting -> Accelerating [t0 - ts >= 60]

29 / { speed = cur + 10,

30 false,

31 t0 = System.now() };

32

33 Accelerating [cur < max] / speed = cur + 10, false;

34

35 // ...

36 }

Listing 5.6: The automaton TruckMotorController contains multiple states and
transitions to control a truck within speed limits.

5.1.6 Alternative Stimuli

Alternatives enable stimuli to react on different input values similar to a logical disjunc-
tion. While this behavior can be emulated with multiple transitions, alternatives reduce
the number of required transitions and hence improve the model’s comprehensibility.
Listing 5.7 illustrates an alternative in the stimulus of the automaton’s first transition
(l. 8). This transition is enabled, if the current value at mode is either 1 or 2. Specifying

94

5.2 Symbol Table

the valuations name (i.e., mode) is optional if it can be identified unambiguously via its
type. The values in alternatives may be sequences of expressions, nested alternatives are
however prohibited.

Automata
1 automaton BinaryMotorController {

2 input Integer mode;

3 output Boolean brake;

4

5 states Idle, Accelerating;

6 initial Idle, Stopping / true;

7

8 Idle -> Accelerating mode = alt{1,2} / false;

9 // ...

10 }

Listing 5.7: The automaton BinaryMotorController uses an alternative (l. 9)
to enable a transition for alternative values.

5.2 Symbol Table

The Automata symbol table serves two purposes: it facilitates checking the well-
formedness of models as its entries capture the essence of models without the AST in-
frastructure. This allows using automata in conjunction with other models without com-
bining their ASTs (and thus hindering evolution of the participating languages). To this
effect, it consists of multiple entry types that represent parts of automata or data types in
terms of theAutomata language. Providing its own type system decouples it from exist-
ing type systems, yet enables easy integration via adaptation [LNPR+13, HLMSN+15].
Similar to visibilities in object-oriented programming languages, where selected items of
a class are hidden from the remaining system (for instance using the keyword private),
the Automata symbol table hides initial state outputs, guards, stimuli, and actions.

CD

String KIND

String name

Set<String> stereotypes

FieldEntry

String KIND

String name

StateEntry

String KIND

String name

Set<String> stereotypes

inputs

variables

outputs*

*

*
*

type

states

AutomatonEntry

fields *

String KIND

String name

KIND

name
methods

*

returnType
AutomataTypeEntry AutomataMethodEntry

* parameters

Figure 5.3: An excerpt of the Automata symbol table entries.

95

Chapter 5 A Behavior Language with I/Oω Automata.

Automata

Language Family

MontiCore

Common

UML/P

Language Family

CD

JavaDSL

�

MCL

Automata

Figure 5.4: The Automata language family.

The main symbol of Automata models is the AutomatonEntry depicted in Fig-
ure 5.3 that contains the most important elements of an automaton. It features a
set of states in form of StateEntry instances, which have a name, and indicate
whether the represented state is initial and whether it has an initial output. The
AutomatonEntry also contains the automaton’s context in terms of FieldEntry
instances that are either inputs, outputs, or variables. Each FieldEntry has a type
represented by an AutomataTypeEntry that has a name, methods, and fields. The
latter are FieldEntry instances again.

Automata employs an object-oriented type system. Adaptation enables integra-
tion with the MontiArcAutomaton ADL as well as employing the Java/P type checking
mechanisms. Therefore, analyses, such as context condition checks, can reason over
such types without being closely tied to the Java/P type system. The Java/P mech-
anisms are unaware of Automata type entries and hence, adaptation is required to
exploit the Java/P well-formedness checks. The Automata language family is depicted
in Figure 5.4. It combines the Automata language with Java/P and class diagrams of
UML/P. Automata extends the MontiCore Common language, which provides various
fundamental productions (such as types and literals).

The Automata language also allows using class diagram types and provides corre-
sponding adapters from and to class diagram type entries as well. This approach uses
symbol table entries only, thus changes to a language’s syntax are transparent to lan-
guage integration. Furthermore, integration of other data types languages, such as C++
or Python, for expressions and types, requires proper adapters only. The adaptation
from Automata inputs, outputs, and variables to MontiArcAutomaton ports and vari-
ables follows the same pattern and employs adapters between Automata field entry and
ports and between Automata type entries and MontiArcAutomaton type entries. That
adaptation is part of the behavior language integration explained in Section 4.2. Prior
to that, the intra-language context conditions check well-formedness of stand-alone Au-
tomata models based on their AST and symbol table entries. The next section presents
these context conditions.

96

5.3 Context Conditions

5.3 Context Conditions

Well-formedness of Automata models is checked with context conditions that rely on
the checked model’s AST and symbol table entries. These context conditions are based
on the context conditions developed for a previous version of this language [RRW14a]
and have been refined in a Master’s thesis [Sch14]. Similar to the MontiArcAutomaton
ADL context conditions, they are grouped into four categories as well [RRW14a].

5.3.1 Uniqueness Conditions

The uniqueness conditions of Automata guarantee that the names of language elements
are unique and restrict use of modeling elements where appropriate. This, for instance,
includes prohibiting multiple states, inputs, outputs, and variables of the same name.
Violation of uniqueness conditions produces errors unless noted otherwise.

AU1: The name of each state is unique.

Defining multiple states of the same name is a source of errors, especially when used
in conjunction with different stereotypes. To avoid such confusion, Automata prohibits
models with multiple states of the same name. Listing 5.8 shows an automaton with two
state declarations (ll. 4-5) that each define a state named Explaining. Furthermore,
the third state declaration (l. 6) defines two states of name Idle.

Automata
1 automaton HRI {

2 input String userInput;

3 output String systemOutput;

4 states Explaining; // Duplicate state ’Explaining’.

5 states Explaining; // Duplicate state ’Explaining’.

6 states Idle, Idle // Duplicate state ’Idle’.

7 initial Idle;

8 }

Listing 5.8: The automaton HRI defines multiple states of the same name (ll. 4-6).

AU2: Each state is declared initial at most once.

Each state should be declared initial at most once. As declaring a state initial multiple
times does not obstruct the meaning of it being initial, this context condition produces a
warning only. Listing 5.9 illustrates the automaton Logging that contains three initial
state declarations (ll. 4-6). The first declaration designates the state File to be initial
twice and hence produces a warning accordingly. The second and third initial state
declarations (ll. 5-6) each declare the state Cloud to be initial and therefore produce
warnings as well.

97

Chapter 5 A Behavior Language with I/Oω Automata.

Automata
1 automaton Logging {

2 input String message;

3 states Screen, File, Cloud;

4 initial File, File; // ’File’ multiply initial.

5 initial Cloud; // ’Cloud’ multiply initial.

6 initial Cloud; // ’Cloud’ multiply initial.

7 }

Listing 5.9: The automaton Logging declares the states File (l. 4) and Cloud as
initial multiple times (ll. 5-6).

AU3: The names of all inputs, outputs, and variables are unique.

Defining multiple inputs, outputs, or variables of the same name leads to underspec-
ification when using these in stimuli or actions. Hence, it is prohibited to have inputs,
outputs, and variables of the same name. Listing 5.10 depicts a violation of this context
condition: The automaton Buffer uses the name data for an input (l. 2), for an output
(l. 3), and for a variable (l. 4).

Automata
1 automaton Buffer {

2 input Integer data; // ’data’ multiply defined.

3 output Boolean data; // ’data’ multiply defined.

4 variable String data // ’data’ multiply defined.

5 states Buffering;

6 initial Buffering;

7 }

Listing 5.10: The automaton Buffer defines an input (l. 2), an output (l. 3), and a
variable (l. 4) of the same name.

5.3.2 Convention Conditions

The convention conditions of Automata check the well-formedness of names and au-
tomata structure. Convention conditions produce warnings unless stated otherwise.

AC1: The automaton has at least one input.

Automata without inputs are rarely useful and omitting inputs might hint at issues.
Hence, Automata produces warnings for models without inputs as illustrated in List-
ing 5.11. The depicted automaton ColorSensor defines no inputs and consequently,
Automata produces a warning (l. 1).

98

5.3 Context Conditions

Automata
1 automaton ColorSensor { // No inputs.

2 output Color color;

3 states Offline, Measuring;

4 initial Offline;

5 }

Listing 5.11: The automaton ColorSensor provides no inputs.

AC2: The automaton has at least one output.

Automata models without outputs cannot produce observable output behavior and
hence are also rarely useful. Therefore, Automata prohibits such models as well. List-
ing 5.12 displays an automaton without inputs and the corresponding warning (l. 1).

Automata
1 automaton BinaryMotor { // No outputs.

2 input Boolean run;

3 states Offline, Online;

4 initial Offline;

5 }

Listing 5.12: The automaton BinaryMotor declares no outputs.

AC3: The automaton has at least one state.

Trivially, automata without states cannot produce any input-output behavior. Thus,
Automata produces an error for such models. Listing 5.13 shows an automaton without
states and the corresponding error. The automaton StatelessBuffer defines two
inputs (ll. 2-3) and an output (l. 4), but no states.

Automata
1 automaton StatelessBuffer { // No states.

2 input Boolean store;

3 input Data data;

4 output Data result;

5 }

Listing 5.13: The automaton StatelessBuffer defines no states.

AC4: The automaton has at least one initial state

Automata models must define at least one initial state. Otherwise, the automaton
will never activate, and hence, produce no output behavior. This context condition also
produces an error. The automaton MapBuilder given in Listing 5.14 defines multiple

99

Chapter 5 A Behavior Language with I/Oω Automata.

inputs and outputs (ll. 2-5) and a single state Storing (l. 6). It omits declaration of
any initial states and hence, Automata produces the depicted error (l. 1).

Automata
1 automaton MapBuilder { // No initial states.

2 input Pose pose;

3 input Obstacle obstacle;

4 input Float probability;

5 output Map updatedMap;

6 states Storing;

7 }

Listing 5.14: The automaton MapBuilder declares no initial states.

AC5: The automaton’s valuations and assignments use only allowed Java/P model-
ing elements.

The Java/P modeling language allows recreating all language elements of Java 1.5.
Hence, it features control structures, conditional expressions, and further elements un-
suitable for stimuli and actions. This context condition therefore restricts the right-hand
sides of valuations and assignments to the following well-defined expressions, which are:

• Array access: data[0]

• Class cast: (Float) data[0]

• Field access: data.length

• Infix expression: data[0] + 1

• Object instantiation: new Integer(3)

• Method invocation: data.clone()[0]

• Parenthesized expression: (data[0] + 1)

• Prefix expression: ++data[0]

• Names: x

• and all type-compatible values.

Where the examples hold for a Float input, output, or local variable x of the au-
tomaton and an array data of type Integer. Automata reuses all Java/P context
conditions related to these expressions.
Listing 5.15 illustrates the error resulting from using a prohibited expression with

the automaton PersonFollower. The automaton contains a transition from its state
Idle to its state Following that is enabled if the value of startFollowing is true.
It uses an embedded conditional expression of the Java/P as assignment to its output
speed (ll. 9-10).

100

5.3 Context Conditions

Automata
1 automaton PersonFollower {

2 boolean startFollowing;

3 input Float dist;

4 output Integer speed;

5 states Idle, Following, Lost;

6 initial Idle;

7

8 Idle -> Following true

9 / speed = if (dist < 2) { speed; } // Prohibited

10 else { speed + 2 } // expression.

11 // ...

12 }

Listing 5.15: The automaton PersonFollower uses a prohibited Java/P
conditional expression for an assignment (ll. 9-10).

AC6: The names of automata start with capital letters.

Each Automata model defines a specific automaton type of the modeled structure.
Hence, similar to components in MontiArcAutomaton or classes in Java, Automata
expects these to start with a capital letter. If the name starts with a lower-case letter,
Automata issues a warning as depicted in Listing 5.16.

Automata
1 automaton robotArm { // Automata start upper-case

2 // ...

3 }

Listing 5.16: The automaton’s name begins with a lower-case letter (l. 1).

AC7: The names of inputs, outputs, and variables start with a lower-case letter.

Inputs, outputs, and variables resemble ports of the MontiArcAutomaton ADL or
fields in GPLs. Consequently, Automata expects these to start with a lower-case letter.
Inputs, outputs, and variables starting with a capital letter produce warnings accord-
ingly. Listing 5.17 illustrates the warnings arising from inputs (l. 2), outputs (l. 3), and
variables (l. 4) with names that begin with capital letters.

AC8: State names begin with a capital letter.

For better comprehensibility and distinction between inputs, outputs, variables, and
states, Automata expects state names to start with a capital letter. State names start-
ing with lower-case letters produce a warning as displayed in Listing 5.18. The depicted

101

Chapter 5 A Behavior Language with I/Oω Automata.

Automata
1 automaton Scheduler {

2 input Proc[] Procs; // Inputs start lower-case.

3 output Proc Next; // Outputs start lower-case.

4 variable Proc[] Buf; // Variables start lower-case.

5 states Scheduling, Error;

6 initial Scheduling;

7 }

Listing 5.17: Automaton Scheduler contains an input, an output, and a variable
of names starting with capital letters (ll. 2-4).

automaton ToastService defines two states of which the second state, toasting
(l. 4), begins with a lower-case letter. For this, Automata produces a warning.

Automata
1 automaton ToastService {

2 input Integer numToasts;

3 output Error message;

4 states Idle, toasting; // States start upper-case.

5 initial Idle;

6 }

Listing 5.18: Automaton ToastService defines the state toasting that starts
with a lower-case letter (l. 4).

5.3.3 Referential Integrity Conditions

The referential integrity context conditions of Automata ensure the well-formedness of
references to modeling elements. This includes checking references for missing inputs,
outputs, variables, and states as well as considering their direction (e.g., for references
to inputs and outputs) correctly. Referential integrity context conditions produce errors
unless stated otherwise.

AR1: Names used in guards, valuations, and assignments exist in the automaton.

Names used in guards, valuations, and assignments refer to inputs, outputs, or vari-
ables. Consequently, referencing inexistent inputs, outputs, or variables obviously is a
mistake that entails incomplete and erroneous automata. Consequently, Automata re-
jects such models and raises errors. Listing 5.19 displays the automaton LaneFollower
that contains a transition (ll. 7-8) referencing a inexistent input or variable (whether an
input or a variable is missing, cannot be inferred from the name start as it might ref-
erence to both). As Automata employs Java/P expressions on transitions, this context
condition also checks names used in such expressions.

102

5.3 Context Conditions

Automata
1 automaton LaneFollower {

2 input Color lane;

3 output Integer speed;

4 states Idle, Follow, Lost;

5 initial Idle;

6

7 Idle -> Follow [lane == RED && start] // Unknown input or

8 / speed = 3; // variable ’start’.

9 // ...

10 }

Listing 5.19: The automaton LaneFollower contains a transition from Idle to
Following that contains a guard referencing the missing input or
variable start (ll. 7-8).

AR2: Inputs, outputs, and variables are used correctly.

Automata models may define transitions featuring guards, stimuli, and actions.
Guards and stimuli may read values from inputs and variables only, while actions may
assign values to outputs and variables only. This prohibits that an automaton reads its
own output as well as that it writes to its inputs. Both may lead to self-cycles and is
rarely useful.

Automata
1 automaton CoffeeService {

2 input Integer numCoffees;

3 input Integer strength;

4 output Error msg;

5 output Pose next;

6 states Idle, Preparing, Deploying;

7 initial Idle;

8

9 Idle -> Preparing [msg == ""] // Reading from output.

10 / next = new Pose(3,4,5);

11

12 Preparing -> Idle numCoffees = 0 // Writing to input.

13 / strength = 10;

14 // ...

15 }

Listing 5.20: The automaton CoffeeService contains two transitions: one (ll. 9-
10) reads from the output msg, the other (ll. 12-13) assigns a value to
the input strength.

The automaton CoffeeService depicted in Listing 5.20 displays two transitions.
The first transition (ll. 9-10) is enabled if the value of the output msg is the empty

103

Chapter 5 A Behavior Language with I/Oω Automata.

string. This comparison is prohibited and produces the illustrated error. The second
transition (ll. 12-13) assigns the value 10 to the input strength, which is also forbidden.
In consequence, Automata produces a second error.

AR3: Used states exist.

Similar to inputs, outputs, and variables, the states used as initial states or referenced
by a transition must exist for the automaton to be well-formed. The context condition
AR3 ensures this by producing errors for initial state declarations and transitions using
undefined states. Listing 5.21 shows the resulting errors from declaring the inexistent
state Idle to be initial (l. 5) and from using this state in a transition (l. 7).

Automata
1 automaton WindowController {

2 input Float temp;

3 output WindowState state;

4 states Working;

5 initial Idle; // Inexistent state ’Idle’.

6

7 Working -> Idle [temp < -100]; // Inexistent state ’Idle’.

8 // ...

9 }

Listing 5.21: The automaton WindowController uses the inexistent state Idle
in an initial state declaration (l. 5) and in a transition (l. 7).

AR5: Types of valuations and assignments without names are unambiguous.

Automata allows omitting the names of valuations in stimuli and the names of as-
signments in actions if the type of the right-hand side matches unambiguously to the
type exactly one corresponding input, output, or variable. In case this is ambiguous,
Automata cannot derive the intended names and raises errors. Listing 5.22 shows two
erroneous transitions with ambiguous assignments: the stimulus of the first transition
(l. 11) is enabled if the value true holds. However, true is of type Boolean and
hence may be read from the input start (l. 2) or from the variable paused (l. 5).
Consequently, Automata produces an error (l. 11). The action of the second transition
(l. 12) assigns the values 1 and 2. This is ambiguous as well as both may be assigned
either to the outputs x, y (ll. 3-4), or to the variable step (l. 6). Therefore, Automata
produces another error (l. 12).

5.3.4 Type Correctness Conditions

The type correctness context conditions of Automata ensure correct usage of typed el-
ements. This includes inputs, outputs, variables, valuations, and assignments. Violation
of type correctness conditions raises errors.

104

5.3 Context Conditions

Automata
1 automaton AssemblyController {

2 input Boolean start;

3 output Integer y;

4 output Integer x;

5 variable Boolean paused;

6 variable Integer step;

7

8 states Init, Work;

9 initial Init;

10

11 Init -> Work true / x = 3, y = 4; // Ambiguous stimulus.

12 Work -> Init paused = true / 1, 2; // Ambiguous action.

13 }

Listing 5.22: The automaton AssemblyController contains a transition with an
ambiguous stimulus (l. 11) and another transition with an ambiguous
action (l. 12).

AT1: Guard expressions evaluate to a Boolean truth value.

The guards of transitions represent logical expressions that restrict when transitions
are enabled. As such, they ultimately must evaluate to a truth value. As Automata
operates on binary truth values, its transition guards must evaluate to a Boolean value.
The IrrigationController depicted in Listing 5.23 contains a transition from state
Working to itself (l. 7). This transition features with a guard that does not evaluate
to a Boolean truth value and is erroneous as marked by Automata. The evaluation is
performed using the Java/P type checking framework.

Automata
1 automaton IrrigationController {

2 input Float aridity;

3 output Boolean water;

4 states Working;

5 initial Working;

6

7 Working [aridity + 1] / true; // Non-Boolean guard.

8 }

Listing 5.23: The automaton IrrigationController contains a transition with
non-Boolean guard (l. 7).

AT2: Types of valuations and assignments must match the type of the assigned
input, output, or variable.

The types of valuations of stimuli must conform to the type of the referenced input or
variable. Similarly, the types of assignments of actions must conform to the type of the

105

Chapter 5 A Behavior Language with I/Oω Automata.

referenced output or variable. To ensure this, Automata evaluates the right-hand side
of valuations and assignments and compares the resulting type to their left-hand side
using the type checking framework of the Java/P (see Section 2.2.1).

Automata
1 automaton ElevatorCabinController {

2 input Integer floor;

3 input Boolean fl1Pressed;

4 input Boolean fl2Pressed;

5 output Direction dir;

6 variable Integer prevFloor;

7

8 states Wait, Drive;

9 initial Wait / prevFloor = "N/A"; // Incompatible assignment.

10

11 Wait -> Drive floor = "1", // Incompatible valuation.

12 fl2Pressed = true

13 / dir = UP,

14 prevFloor = 1;

15

16 Wait -> Drive floor = 2,

17 fl1Pressed = true

18 / dir = true, // Incompatible assignment.

19 prevFloor = 2;

20 // ...

21 }

Listing 5.24: Automaton ElevatorCabinController contains two incompatible
assignments (ll. 9,18) and one incompatible valuation (ll. 12-14).

The automaton ElevatorCabinController of Listing 5.24 features an initial out-
put and two transitions to describe the behavior of an elevator cabin running between
two floors. The initial output of state Waiting (l. 9) assigns the String value "N/A"
to the Integer variable prevFloor. The first transition (ll. 11-14), features a stimulus
with an invalid valuation as it compares the expression "1" of type String with the
input floor of type Integer. The second transition (ll. 16-19) features an action with
an incompatible assignment to the output dir of type Direction, which it assigns the
Boolean value true to.

AT3: The special literal value NoData is not used for variables.

The special literal NoData (denoted“--”) represents the absence of messages between
two time slices for timed streams (cf. Section 2.4). Its use with variables is prohibited.
Listing 5.25 shows the automaton AlarmController that controls a time-based alarm
system that supports manual overriding (input over) and stores the latest override in
the variable latest. The automaton features an initial output (l. 8) and two transitions
(ll. 10-13) that violate this context condition: The initial output and the first transition

106

5.4 A Transformation on the Automata AST

(ll. 10-11) assign NoData to latest. The second transition (l. 13) reads NoData from
latest.

Automata
1 automaton AlarmController {

2 input Time t;

3 input Boolean over;

4 output Boolean activateAlarm;

5 variable Time latest;

6

7 states Off, On;

8 initial Off / latest = --; // Assigning -- to variable.

9

10 Off -> On [t > 1800 && !over] // Assigning -- to variable.

11 / false, latest = --;

12

13 Off -> On latest = -- / true; // Reading -- from variable.

14 // ...

15 }

Listing 5.25: The automaton AlarmController assigns the special literal NoData
to variable latest (ll. 8, 11) and compares NoData to it (l. 13).

5.4 A Transformation on the Automata AST

Automata features a single model transformation that is applied prior to its context
conditions. This transformation identifies names of stimuli and actions where these
haven been omitted due to the unambiguous matching of the assigned expression’s types
(cf. Section 5.1.6). It determines the type of the assigned expressions via adaptation to
Java/P entries and employing the Java/P type evaluation mechanism. If a name of an
input, output, or variable - depending on the expression’s source - of matching type is
found and unambiguous, it is added to the stimulus or action accordingly. In case no
matching name is found, the transformation aborts model processing.

5.5 Integrating Automata into MontiArcAutomaton

Automata models can be integrated into MontiArcAutomaton ADL components us-
ing the integration mechanisms presented in Section 4.2. Using these requires inte-
gration of an Automata non-terminal production into the MontiArcAutomaton ADL
BehaviorModel extension point as well as symbolic adaption and integration of spe-
cific inter-language well-formedness rules. This enables definition of integrated models as
depicted in Listing 5.26. Here, the Automata model parts embedded after behavior
(ll. 16-34) describe various transitions that reference inputs and outputs to read and
write data. As the embedded automaton operates in the context of a component, the

107

Chapter 5 A Behavior Language with I/Oω Automata.

names of these inputs and outputs must be interpreted as ports and variables of the
surrounding component.

MAA
1 package architecture;

2

3 import bumperbotmodels.types.TimerCmd;

4 import bumperbotmodels.types.TimerSignal;

5 import bumperbotmodels.types.MotorCmd;

6

7 component BumpControl {

8 port

9 in Integer distance,

10 in TimerSignal signal,

11 out TimerCmd timer,

12 out MotorCmd right,

13 out MotorCmd left;

14

15 behavior automaton {

16 state idle, driving, backing, turning;

17

18 initial idle / {right=MotorCmd.STOP, left=MotorCmd.STOP};

19

20 idle -> driving [ocl:distance < 1] /

21 {right = MotorCmd.FWD,

22 left = MotorCmd.FWD};

23

24 driving -> backing [ocl:distance < 5] /

25 {right = MotorCmd.BWD,

26 left = MotorCmd.BWD,

27 TimerCmd.DOUBLE};

28

29 backing -> turning {TimerSignal.ALERT} /

30 {right = MotorCmd.FWD,

31 TimerCmd.SINGLE};

32

33 turning -> driving {TimerSignal.ALERT} /

34 {left = MotorCmd.FWD};

35 }

36 }

Listing 5.26: The component BumpControl contains an embedded Automata
model with four states and four transitions (ll. 15-35).

Integration changes consideration of the dynamic semantics of Automata performing
in MontiArcAutomaton ADL components regarding Focus timing and modification
the static semantics via integration-specific well-formedness rules. This section first
discusses the semantics of Automata that are integrated into MontiArcAutomaton
ADL components and describes the required integration artifacts afterwards.

108

5.5 Integrating Automata into MontiArcAutomaton

5.5.1 Semantics of Integrated Automata Models

Stand-aloneAutomatamodels are executed in cycles. In each cycle, an automaton reads
all values from its inputs and variables, evaluates its guards, fires up to one transition,
changes state, and writes new values to its outputs and variables. As Automata are
intended to describe behavior or a software part, reading values and writing values are
conceived sequentially. Thus, each iteration of an automaton’s cycle actually consists of
an ordered sequence of computation steps.
Two different dynamic semantics for Automata models are introduced in [RRW14a]:

the automata can be interpreted time-synchronously or event-driven. The former reacts
once messages on all inputs are available; the latter reacts once the first input is available.
For integration, we assume the time-synchronous interpretation and interpret the indi-
vidual steps of an automaton’s read-compute-write cycle as “untimed causally-related
actions” [Lee10] happening in the superdense time of a single Focus time slice as intro-
duced in Section 4.2.4. Embedded Automata models also operate in another context
than stand-alone models. The former operate in a component. Thus they receive inputs
via incoming ports and component variables and write outputs to outgoing ports and
component variables. Enabling this requires access to ports and component variables.
Embedded automata also may access the configuration parameters and type parame-
ters of the embedding component. These changes in static semantics are described by
adaptation and well-formedness rules as introduced Section 4.2.2. Their realization for
automata is presented next.

5.5.2 Integration Infrastructure

Embedded Automata models reference ports and variables to read and write val-
ues. Thus declaration of automaton inputs and outputs must be prohibited and the
references to these on transitions must be interpreted accordingly. We solve the for-
mer by embedding only the production AutomatonContent of the Automata gram-
mar (cf. Listing A.1) into MontiArcAutomaton ADL components. As inputs, outputs,
and automaton variables are part of AutomatonContext, which is underivable from
AutomatonContent, prohibiting these does not require context conditions. Changing
the meaning of names on transitions requires adapters from ports and component vari-
ables to inputs, outputs, and automaton variables. These adapters resemble the adapters
between FSM fields and ports as depicted in Figure 4.9. With these two adapters in
place, all context conditions regarding inputs, outputs, and automaton variables are
automatically applied to ports and component variables. Besides specifying which pro-
duction to embed and providing adapters, integration of Automata into the MontiArc-
Automaton ADL also requires to specify how to create, qualify, resolve, and deserialize
Automata symbol table entries. As explained in Section 4.2.2, the corresponding mod-
ules of Automata can be reused without modification. Furthermore, the workflow of
the Automata AST transformation (Section 5.4) must be registered with the Monti-
ArcAutomaton ADL family as well.

109

Chapter 5 A Behavior Language with I/Oω Automata.

GBC
1 name "automaton"

2 behavior "Automata.AutomatonContent"

3 tool new AutomataTool()

4 adapter new AutomataType2TypeReferenceAdapter();

5 adapter new TypeReference2AutomataTypeAdapter();

6 adapter new Port2AutomataFieldAdapter();

7 adapter new Variable2AutomataFieldAdapter();

8 adapter new AutomataField2JavaFieldAdapter();

9 adapter new JavaType2AutomataTypeAdapter();

Listing 5.27: Groovy behavior configuration model for embedding part of the
Automata language.

Listing 5.27 illustrates the Groovy behavior configuration model to embed Automata
models into MontiArcAutomaton. After declaration of parser discriminator and model
keyword automata (l. 1), it specifies to embed the AutomataContent production (l. 2)
and uses the AutomataTool to provide information about symbol table infrastructure,
context conditions, and workflows (l. 3). Afterwards, the model specifies six adapters.
The first two adapters (ll. 4-5) adapt between data type symbols of both languages. The
second two adapters (ll. 6-7) adapt between automaton fields and ports and variables
of components. The last two adapters adapt between Automata symbols and Java/P
symbols, which is required to reason about expressions on transitions.

5.6 Discussion

The Automata behavior language enables describing state-based input-output behavior
of components platform-independently. The language implements a variant of I/Oω au-
tomata [Rum96] and conforms to the Focus [BS01, BR07, RR11] messaging semantics.
Modeling with Automata requires comprehension of few modeling elements only, but
describes component behavior in a structured way that is better amenable to analyses
than GPL implementation. This comes at the cost of expressiveness: in contrast to
UML Statecharts [OMG10], Automata cannot represent hierarchies. While this is not
necessary as hierarchical composition is possible on component level, there also are var-
ious component kinds, for which better behavior modeling formalisms than state-based
automaton behavior may exist. Describing the behavior of components interfacing soft-
ware libraries, APIs, or frameworks to interact with hardware, operating system func-
tionalities, or to perform complex calculations currently seems be more efficient with
GPL implementations. For components with behavior specific to certain contexts, other
modeling languages are better suitable. As MontiArcAutomaton enables developers to
describe the behavior of components either with GPLs or the most-appropriate modeling
languages, selection of the best formalisms is up to the application modelers.

110

Chapter 6

Reusable Architectures through Bindings
and Libraries

Architecture should speak of its time and place,
but yearn for timelessness.

Frank Gehry

Enabling reuse is crucial to engineering. Without the reuse enabled by standard-
ization of parts and components, many disciplines, such as civil engineering, electrical
engineering, or mechanical engineering would have flourished less. However, according
to a recent survey on architecture language usage [MLM+13], “reuse is not commonly
performed during architecting activities” and the most common form of structured reuse
is reusing component definitions or realizations (29% of the respondents).

With the MontiArcAutomaton ADL, we aim for two dimensions of reuse. First, it
enables reusing components in multiple architectures. Second, it also facilities reusing
complete architectures via interface components. For the latter, we developed concepts
of component replacement that are realized as a modeling language and a M2M transfor-
mation. While both dimensions facilitate component maintenance and evolution efforts,
the former is a common feature of C&C ADLs. This chapter therefore introduces the
modeling language and transformation to develop and reuse platform-independent soft-
ware architectures models as illustrated in Section 3.3.2.

The MontiArcAutomaton modeling language family introduced in Chapter 4 enables
a pervasive model-driven engineering of C&C software architectures with exchangeable
behavior languages and platform-independent as well as platform-specific components.
Platform-independent components either are composed or contain behavior models and,
hence, can be translated to arbitrary target platforms. However, a typical application
requires components that interact with GPL artifacts to wrap operating system func-
tionalities, libraries, or APIs as well. Interfacing such artifacts is often not supported by
abstract and concise modeling languages [MHS05]. Thus, component application pro-
grammers and implementation library providers have to develop component behavior
implementations in form of GPL artifacts. This gives rise to notational noise [Wil01]
and accidental complexities [FR07]. Furthermore, these behavior implementations tie
the components using the contributed GPL behavior implementations, and with it the
complete software architecture, to the employed GPLs. While this is less important if

111

Chapter 6 Reusable Architectures through Bindings and Libraries

the logical software architecture is intended to be used for a single target platform, it
hampers reuse with different target platforms (Req. MRQ-8) severely. Reusing an archi-
tecture containing platform-specific components tied to a specific GPL with other target
platforms not supporting that GPL could be enabled by leaving out these components,
hence creating “holes” in the architecture, filled by platform-specific components prior
to code generation. Such holes represent extension points of the platform-independent
software architecture, but introduce structural incompleteness to the software architec-
ture. Such incompleteness renders validating an architecture’s integrity prior to code
generation impossible, therefore MontiArcAutomaton aims to avoid this (Req. MRQ-9).
Instead, a mechanism to represent such extensions points has to integrate into the C&C
nature of MontiArcAutomaton. This either requires introducing new language elements
to the MontiArcAutomaton ADL or to provide a solution apart from the ADL. In both
cases, the implementations of the extension points need to be specified prior to code
generation as the generated code relies on using the platform-specific implementations
to compute component behavior. This information cannot be part of the software archi-
tecture model without tying it to specific GPLs or platforms, thus it needs to be stored
in separate artifacts.

Our concept to architecture reuse relies on modeling the platform-independent ar-
chitecture with interface components where modeling behavior is unfeasible. Applica-
tion configuration models reference such abstract architectures and describe how the
interface components are replaced by inheriting components for a certain platform.
MontiArcAutomaton processes these application configuration models prior to well-
formedness checking and performs the replacement model transformations. As the
platform-independent architecture before applying replacement transformations is a valid
MontiArcAutomaton ADL model, it can be resued without modifications as required
by Req. MRQ-8 .

This approach enables application modelers to engineer logical, platform-independent
architectures containing interface components and to transform these to platform-specific
architectures by binding the interface components to platform-specific, parametrized
component types. Therefore, the architecture modeler develops the architecture to
contain interface components from interface libraries developed by interface library
providers. Afterwards, the implementation library provider develops proper implemen-
tation libraries. These realize interface libraries with platform-specific components ex-
tending their interface components. With application configuration models, the ap-
plication modeler configures how the interface subcomponents should be replaced. In
the end, MontiArcAutomaton processes the application configuration models, the ref-
erenced platform-independent software architecture, and library components to trans-
form the platform-independent architecture into different platform-specific architectures
according to the bindings. From these models, MontiArcAutomaton can generate exe-
cutable systems. Figure 6.1 depicts the prime binding constituents and their relations.
The platform-independent architecture uses platform-independent and interface library
components only. The transformed platform-specific architecture uses platform-specific
implementation library components only. The application configuration describes how

112

6.1 Modeling Platform-Independent Architectures

realizes

Application

Configuration

Architecture

Model

Application

InterfaceLibrary

references

*

Component

Models

references

imports
*

ImplementationLibrary

Component

Models

Transformed

Architecture

describes

imports
*

GPL

Implementations

Figure 6.1: The most important constituents of bindings and their relations.

to derive the transformed, platform-specific architecture from the platform-independent
architecture in terms of bindings.

This chapter introduces bindings, interface components, platform-specific components,
and outlines the binding transformation in Section 6.1. Afterwards, Section 6.2 intro-
duces interface libraries, implementation libraries, and three example libraries. Sec-
tion 6.3 describes how MontiArcAutomaton applies bindings. Finally, Section 6.4 dis-
cusses observations and related approaches.

6.1 Modeling Platform-Independent Architectures

Behavior of MontiArc components is either specified by a corresponding GPL behavior
artifact in the target platform GPL or emerges from their subcomponents’ interaction.
MontiArcAutomaton offers a third way to specify component behavior with embedded
component behavior models. Furthermore, it introduces means to explicitly reference be-
havior implementation artifacts in primitive component types without behavior model
(cf. Section 4.1). In the following, the umbrella term behavior description covers all
mechanisms of MontiArcAutomaton to denote component behavior of atomic compo-
nents, i.e., component behavior models as well as explicit and implicit references to
implementation artifacts (see Section 2.4).

Modeling platform-independent architectures without structural underspecification re-
quires means to describe the existence of components with platform-specific behavior
without tying the architecture to a specific platform. MontiArcAutomaton therefore
introduces the notion of interface components (cf. Section 4.1.1), which act as archi-
tecture extension points. Such components follow the general concept of interfaces in
object-oriented software engineering, i.e., they can be used at architecture design time
to describe properties expected from realizations, but they cannot be used to create
executable systems. Instead, they need to be realized by platform-specific components
that extend the interface component to be replaced. We define interface components as:

113

Chapter 6 Reusable Architectures through Bindings and Libraries

NavigationBot

Controller

Motor

left

Motor

right

NavigationControl

navcontrol

Navigator

DistanceSensor

sensor

MAA

Right

Left

Fwd

Stop

Bwd

Timer

clock(10)

Turn

Idle

Back

Drive

Figure 6.2: The NavigationBot is a variant of ExplorerBot (Figure 3.2) with an
additional hierarchy level. Port names and types are omitted for clarity.

Definition 2 (Interface Component). An interface component is a component without
subcomponents, behavior model, or component behavior implementation reference.

Thus, the interface components of MontiArcAutomaton resemble component inter-
faces [KGO+01, BCL+06, FG12] or component hulls [SSL11]. As they do not prescribe
any form of component behavior, they can be used for modeling and analysis purposes,
but not for code generation. Ultimately, an interface component neither has ties to a
GPL, nor to a target platform, but defines the model elements MontiArcAutomaton
requires to validate the containing architecture. This allows software architectures that
contain interface components mixed with platform-specific components. This is useful if
the architecture is intended to work with a single GPL but multiple different components
for similar purposes (for instance, to easily exchange one sensor component for another).
In contrast, we define platform-specific components as:

Definition 3 (Platform-Specific Component). Platform-specific components are atomic
components without behavior models, which declare conformance to a run-time environ-
ment.

The NavigationBot depicted in Figure 6.2 is a variant of the software architecture
ExplorerBot (cf. Figure 3.2) that relies on the interface components distance sensor
and two motors to explore an unknown area. Contrary to ExplorerBot, the robot’s
Controller is connected to a composed component NavigationControl instead of
being directly connected to two Motor instances. The Controller sends high-level
movement commands to the navcontrol instance that uses an instance of compo-
nent type Navigator to translate these into commands for two motors. The interface
component clock provides an incoming port of CD type TimerCMD (cf. Figure 2.8), an
outgoing port of CD type Boolean, and a configuration parameter of CD type Integer
(here instantiated with value 10).

114

6.1 Modeling Platform-Independent Architectures

MAA
1 interface component Timer[Integer offset] {

2 port

3 in TimerCmd cmd,

4 out Boolean signal;

5 }

Listing 6.1: The interface component Timer with configuration parameters and
ports of platform-independent CD types.

The textual representation of interface components (cf. Listing 6.1) begins with the
keyword interface followed by a component definition and a body that may con-
tain ports only. Obviously, interface components may not contain component behavior
descriptions or references to run-time environments. The MontiArcAutomaton ADL con-
text conditions (cf. Section 4.1.4) take care to reject such malformed models. Interface
components are subject to inheritance and both, interface components and platform-
specific components, may inherit from interface components. It is, however, not allowed
to define interface components that inherit from platform-specific components as inher-
itance could propagate platform-specific properties of the super type. Such models are
rejected by MontiArcAutomaton ADL context conditions as well.

With MontiArcAutomaton transforming software architectures to define only a single
subcomponent per subcomponent declaration (cf. Section 4.1.5), a binding is a mapping
from an interface subcomponent to a platform-specific subcomponent. It consists of
a source, identifying a subcomponent in the architecture’s subcomponent hierarchy to
be replaced, and of a target, describing how it should be replaced. The latter consists
of a platform-specific components and corresponding configuration arguments. Hence,
together with the instance name of the subcomponent to be replaced, a binding’s right-
hand side describes a new subcomponent.

Definition 4 (Binding). A binding for a MontiArcAutomaton software architecture A
is a tuple (s, t (a0, . . . , an)), denoted as s → t(a0, . . . , an), where:

– s = (s0 . . . sm) is a sequence of names that identifies an interface component Ts

with configuration parameters p0, . . . , pk, k ≤ n in the subcomponent hierarchy of
A,

– t is the name of a platform-specific component T with configuration parameters
p0, . . . , pk, pk+1 . . . , pn for k ≤ n, such that T extends Ts, and

– a0, . . . , an is a list of configuration expressions, such that for each expression ai its
type matches the type of pi.

with i, n,m, k ∈ N.

The subcomponent path s = (s0 . . . sm) unambiguously identifies a subcomponent s by
following the sequence of subcomponent names through the subcomponent hierarchy of

115

Chapter 6 Reusable Architectures through Bindings and Libraries

A. The context conditions MontiArcAutomaton inherits from MontiArc (cf. [HRR12])
prohibit multiple subcomponents of the same name in a composed component, i.e., on
each level of the subcomponent hierarchy. In consequence each prefix of s is unambiguous
and, hence, s is. Given the component type NavigationBot depicted in Figure 6.2,
valid subcomponent paths are (sensor), (clock), (controller), (sensor), (navcontrol), (nav-
control,navigator), (navcontrol,left), (navcontrol,right). Furthermore, requiring that the
platform-specific component T inherits from the interface component Ts allows adding,
platform-specific configuration parameters to the platform-specific software architecture
without adding it to the platform-independent architecture and hence fulfills Req. MRQ-
8 .1 . As T can be composed, its behavior can be composed from arbitrary subcomponents
as required by Req. MRQ-8 .3 . We write s0.s1 . . . sm to denote the subcomponent path
(s0, . . . , sm) and s → T(a0, . . . , an) to describe the binding (s, t, a0, . . . , an). Further-
more, we omit empty lists of configuration arguments where appropriate, such that s →
t describes the same binding as s → t().

We employ bindings to define transformations of platform-independent software ar-
chitectures into platform-specific software architectures. To transform the platform-
independent software architecture of NavigationBot (see Figure 6.2) into a platform-
specific software architecture, an implementation library provider has to develop platform-
specific components that realize the interface components DistanceSensor, Timer,
and Motor relative to the intended target platform. The application modeler then binds
the subcomponents of these types properly. Given component types NXTUltrasonic,
JavaTimer, and NXTMotor, such that NXTUltrasonic extends DistanceSensor,
JavaTimer extends Timer, and NXTMotor extends Motor, the software engineer
could specify bindings sensor → NXTUltrasonic(S1), left → NXTMotor(A),
and right → NXTMotor(B) binding the NavigationBot architecture to a platform
supporting the NXT components. The platform-specific software architecture resulting
from applying these bindings to NavigationBot is depicted in Figure 6.3.

The bindings have also augmented the subcomponents sensor, left, and right

with platform-specific arguments (S1, A, and B). These arguments identify hardware
ports the behavior implementations of the respective component types interface with.
As these are platform-specific, adding this information to the software architecture model
would result in tying it to this very specific platform.
For more complex software architectures, bindings may lead to consistency issues if

the subcomponent s of a component type T , which is instantiated multiple times as t0,
t1, is bound to different component types, e.g., t0.s → X, t1.s → Y with X 6= Y . In this
case, application of these bindings would result in

• a subcomponent t0 of type T with a subcomponent s of type X, and

• a subcomponent t1 of a type T with a subcomponent s of type Y .

As MontiArc requires that the subcomponent t0 of component type T has the same
component type for all instances of T , the type T would be inconsistent. Furthermore,
code generators that produce artifacts based on component types (Req. TRQ-8) will fail
to produce proper artifacts.

116

6.1 Modeling Platform-Independent Architectures

MAA

NavigationBot

Controller NavigationControl

navcontrol

NXTUltraSonic

sensor(S1)

Timer

clock(10)

Turn

Idle

Back

Drive

Navigator

Right

Left

Fwd

Stop

Bwd

NXTMotor

left(A)

NXTMotor

right(B)

Figure 6.3: A platform-specific variant of the software architecture NavigationBot,
where the interface subcomponents sensor, navcontrol.left and
navcontrol.right have been bound to platform-specific components.

Figure 6.4 illustrates this with the component type Motors that contains two sub-
components left and right of component type ValidatedMotor. The latter receive
messages for the motor and validate these before they are passed to the actual motor. To
this effect, it consists of two subcomponents: val of component type Validator and
motor of component type Motor. Given bindings left.val → NXTVal, right.val
→ NXTVal, left.motor → NXTMotor(A), and right.motor → ROSMotor(A),
the resulting component MotorsTwould be inconsistent in the type of its subcomponent
motor. This inconsistency arises from a clash between the two bindings left.motor
→ NXTMotor and right.motor → ROSMotor, which bind the subcomponent motor
instantiated by the component type ValidatedMotorTdifferently. In general, there is
a clash between two bindings for the same software architecture if they bind the same
subcomponent differently.

Definition 5 (Binding Clash). There is a clash between two bindings a0 . . . an → Ta (. . .)
and b0 . . . bm → Tb (. . .) if they bind a subcomponent of a common parent component type
to different component types, i.e., subcomponents an−1 and bm−1 have the same type, an
and bm have the same name but Ta 6= Tb.

Resolving clashes prior to applying bindings is crucial to the resulting software archi-
tecture’s validity and the procedure presented in Section 6.3 takes care of that.

Overall, reusing a logical, platform-independent software on multiple target platforms
requires the artifacts displayed in Figure 6.5. The MontiArcAutomaton language fam-
ily provides a workflow to transform software architectures based on their application
configuration’s bindings. The application modeler develops the platform-independent ar-
chitecture model and one application configuration model per target platform. The soft-
ware architecture model uses interface components imported from platform-independent

117

Chapter 6 Reusable Architectures through Bindings and Libraries

MAA

MotorsT

NXTMotor

motor(A)

ValidatedMotorT

left

NXTVal

val

ROSMotor

motor(A)

ValidatedMotorT

right

NXTVal

val

Motors

Motor

motor

ValidatedMotor

left

Validator

val

Motor

motor

ValidatedMotor

right

Validator

val

the component type ValidatedMotorT is inconsistent:
„motor“ must either be of type NXTMotor or of type ROSMotor

created by applying bindings

Figure 6.4: Example for a conflict between two bindings for the same software architec-
ture: Subcomponent motor of component type ValidatedMotor must be
of unambiguous kind.

interface libraries to describe the architecture’s extension points. Each application con-
figuration references the software architecture and contains bindings that describe how
interface components of the software architecture should be replaced with components
from the respective implementation libraries. MontiArcAutomaton invokes the binding
transformation for each application configuration to transform the architecture into a
platform-specific variant according to the bindings. This transformed architecture does
not rely on interface components anymore and, thus, can be used for further analyses as
well as for code generation. The application configuration modeling language to describe
bindings is presented in Chapter 8. In the following, Section 6.2 presents interface and
implementation libraries, before Section 6.3 describes the binding model transformation.

6.2 Interface Libraries and Implementation Libraries

MontiArcAutomaton employs a distinction between interface libraries and implementa-
tion libraries to enforce reuse of platform-independent software architectures with mul-
tiple platforms. Therefore, interface libraries may contain platform-independent models
only and implementation libraries realize a specific interface library with components
that extend the interface libraries’ components for a specific target platform. This en-
ables modeling software architectures without ties to specific platforms or GPLs and
clarifies which components implementation library providers need to develop to realize
a given platform-independent architecture on a specific platform. Hence, we define both
kinds of libraries as follows:

118

6.2 Interface Libraries and Implementation Libraries

Application

Configuration

Architecture

Model

Binding

Transformation

Application

MontiArcAutomaton

reads

InterfaceLibrary

platform-
specific
components and
data types

references

*

Platform-

Independent

Components

imports

Data

Types

*

platform-
independent

components and
data types

Bindings

uses contains

MontiArcAutomaton

Model Processing

invokes

references
*

ImplementationLibrary

Platform-

Specific

Components

Data

Types

component
inheritance

uses

Transformed

Architecture

produces

used for
analyses and
code generation

references
*

resolves
clashes

application
modeler

interface
library provider

implementation
library provider

Figure 6.5: The MontiArcAutomaton ADL transforms a single platform-independent ar-
chitecture model into one platform-specific architecture model per applica-
tion configuration model.

Definition 6 (Interface Library). An interface library is a named set of interface com-
ponents with referenced data type models.

Definition 7 (Implementation Library). An implementation library is a named set of
component models with referenced data type models and GPL behavior implementations.
All components inherit from interface components of a single interface library.

As platform-independent architectures may contain composed components, compo-
nents with a behavior model, and interface components only, interface libraries are re-
stricted to the same elements. This guarantees platform-independent interface libraries
and that the importing software architectures remain platform-independent as well. The
interface components of interface libraries need to be replaced by platform-specific com-
ponents of implementation libraries prior to further processing. To ensure interface
compatibility, implementation libraries must provide an inheriting component type for
each interface component of the architecture. This ensures that it must provide at least
the ports and configuration parameters of the interface component. Additionally, im-
plementation libraries must contain the data type models required by their component
models, corresponding platform-specific GPL behavior implementations and their re-
quired GPL data type artifacts. Furthermore, they may contain platform-independent,
non-interface components as well.

119

Chapter 6 Reusable Architectures through Bindings and Libraries

SenseActModels
platform-
independent CD
data types used
by the libraries‘
component types

platform-
independent

interface
library

�
DistanceSensor Motor(int max)

component
inheritance

NXTLejos

GPL artifact required
by NXTMotor

«enum»

Port

UltraSonic

platform-specific
implementation library

for leJOS NXT systems

NXTUltraSonic

(Port p)

NXTMotor

(int max, Port p)

�
ROSPython

�

�ROSDistance ROSMotor

platform-specific
implementation library

for ROS Python systems

GPL behavior
implementation for

ROSMotor

ROSDistance

(String node)

ROSMotor

(int max,

String node)

MotorImpl

conforms

.java .java .py .py

conforms conforms conforms

Figure 6.6: An excerpt of the interface library SenseActModels and the corresponding
implementation libraries NXTLejos for NXT robots and ROSPython for
robots employing the robot operating system (ROS [QGC+09]) in its Python
implementation.

Figure 6.6 describes the relations between interface components and platform-specific
components in the context of the containing libraries: The SenseActModels interface
library comprises interface components to describe the interfaces of actuators and sen-
sors as well as platform-independent class diagram data types to describe the types
of the components’ parameters, ports, and variables. The NXTLejos implementa-
tion library contains their platform-specific realizations in form of the component types
NXTUltraSonic and NXTMotor. These extend the DistanceSensor and Motor

interface components, respectively. Both platform-specific realization types introduce
new parameters that require the bound subcomponents to provide proper arguments
for. The library also contains the handcrafted Java behavior implementations for both
component types and the platform-specific data types required by the components and
their Java behavior implementations. The ROSPython implementation library provides
platform-specific component realizations for platforms supporting the robot operating
system (ROS [QGC+09]) and their handcrafted Python behavior implementations. To
this effect, it contains the two component types ROSDistance and ROSMotor, which
also inherit from the platform-independent components, but introduce different config-
uration parameters than the NXT-compatible component types.

120

6.2 Interface Libraries and Implementation Libraries

MAA

DistanceSensor Float

distance

Logger<T>

[String prefix]

T

message

MotorMotorCMD

cmd

Boolean

signal

BumperBotModels

«enum»

TimerCMD

«enum»

MotorCMD

FORWARD

BACKWARD

STOP

Timer

[Integer delay]

TimerCMD

cmd

SINGLE_DELAY

DOUBLE_DELAY

STOP

FORWARD

BACKWARD

LEFT

RIGHT

STOP

«enum»

DIRECTION

Translator<T,U>

MotorCMD

left

MotorCMD

right

Direction

input

Button Boolean

pressed

ColorSensor

Integer

red

Integer

green

Integer

blue

Figure 6.7: The component types and data types of interface library
BumperBotModels. Although interface libraries may contain com-
posed components as well as components with behavior models, this library
requires interface components only.

The components of implementation libraries are referenced by the bindings of ap-
plication configuration models, which imported the respective implementation library.
Hence, bindings must provide proper arguments for the new, platform-specific, parame-
ters. Hence, platform-specific parameters are part of the binding, but not of the platform-
independent software architecture. Section 6.3 describes how to apply bindings.

The remainder of this section describes three example libraries: the interface library
BumperBotModels, an implementation library for the LeJOS Java platform, and an
implementation library for the ROS Python platform. For the evaluations presented
in Section 9.1, further libraries were developed.

6.2.1 BumperBot Interface Library

The BumperBotModels interface library provides component types and UML/P class
diagram data types to describe sensors and actuators of the exploration robots displayed
throughout this thesis (as for instance in Figure 6.2), but independent of the GPL actu-
ally used to control these robots. The interface library BumperBotModels comprises
the three sensor component types Button, ColorSensor, DistanceSensor, the ac-
tuator component type Motor, and the three component types Logger, Timer and
Translator that wrap operating system functionalities. Figure 6.7 illustrates these

121

Chapter 6 Reusable Architectures through Bindings and Libraries

component types with their ports, configuration parameters, generic parameters, and
the related data types Direction, MotorCMD, and TimerCMD.

Component Type Button

The component type Button wraps all forms of binary sensors that emit whether they
are pressed currently. Whether these are complex touch screen devices or simple buttons
is irrelevant to the component model that emits whether the measured data corresponds
to being touched via port pressed of type Boolean.

Component Type ColorSensor

The component ColorSensor serves as an extension point for all forms of color sensors
providing RGB data of a single point. To this effect, it omits incoming ports and emits
messages via the three integer ports red, green, and blue. The data type Integer
is a class diagram type and can be translated into GPLs as required.

Component Type DistanceSensor

The component type DistanceSensor provides the distance to the single next obstacle
in the direction the sensor is faced. This distance is emitted via the port distance of
class diagram type Float.

Component Type Logger

Components of type Logger persists incoming messages received via the incoming port
message. For greater flexibility, it yields the generic type parameter T to define the
type of its incoming port message. The component type also features the configuration
parameter prefix that is supposed to be prefixed before each incoming message and
has a default value of "". Where the Logger logs the received messages to is subject
to the component implementation and invisible to the component model.

Component Type Motor

Components of type Motor serve to control motors with a single degree of freedom.
Such motors can rotate in two directions or stop. Thus the data type MotorCMD of
incoming port cmd is restricted accordingly.

Component Type Timer

The component type Timer implements countdown functionalities. To this end, it fea-
tures an incoming port cmd to platform-independent class diagram type TimerCMD and
an outgoing port signal of platform-independent class diagram type Boolean. Fur-
thermore, it features the configuration parameter delay of type Integer that describes
how long the standard length of a countdown is. Depending on the received command,

122

6.2 Interface Libraries and Implementation Libraries

MAA

«ColorSensor»

NXTColor

[SensorPort p]

Integer

red

Integer

green

Integer

blue

«DistanceSensor»

NXTUltraSonic

[SensorPort p]

Float

distance

«Button»

NXTButton

[Button button]

Boolean

pressed

T

message

MotorCMD

cmd

JavaNXT

TimerCMD

cmd

«Translator»

JavaTranslator

MotorCMD

left

MotorCMD

right

Direction

input

«enum»

MotorPort

PORT_A

PORT_B

PORT_C

«enum»

SensorPort

PORT_1

PORT_2

PORT_3

PORT_4

rte java-timesync

rte java-timesync

rte java-timesync

rte java-timesync

«Logger»

JavaLogger<T>

[String prefix]

rte java-timesync

rte java-timesync

«Motor»

NXTMotor

[MotorPort p]

rte java-timesync

«Timer»

JavaTimer

[Integer delay]

Boolean

signal

Figure 6.8: The component types and data types of implementation library JavaNXT.
The corresponding GPL behavior implementation artifacts are omitted for
clarity.

the timer either starts a countdown of standard length, of double length, or stops the
active countdown. This restriction is arbitrary and was introduced to reduce interface
complexity [RRW13b].

Component Type Translator

The component type Translator translates a single input of type Direction received
port via the port input into two outputs of type MotorCMD. This component type is
used, for instance, with the MontiArcBumperBot displayed in Figure 2.7 on page 24.

6.2.2 JavaNXT Implementation Library

The JavaNXT implementation library realizes the component types of the interface li-
brary BumperBotModels for platforms that support the Java LeJOS [LeJ] operating
system. To this effect, it contains one component type for each interface component of
the interface library BumperBotModels as well as platform-specific data types. Fig-
ure 6.8 displays the component types and data types JavaNXT comprises. Please note,
that due to comprehensibility, the interface components of BumperBotModels the
respective component types of JavaNXT inherit from are omitted and illustrated via
stereotypes instead.

123

Chapter 6 Reusable Architectures through Bindings and Libraries

Furthermore, JavaNXT contains a GPL behavior implementation for each contained
component type. As each component type of JavaNXT is compatible to the run-time
environment java-timesync, each component types’ GPL behavior implementation
artifact implements a certain interface of that run-time environment. This enables inter-
action of generated component artifacts. The following paragraphs explain the individual
components’ types of the JavaNXT implementation library and point to the LeJOS Java
classes they interface.1

Component Type NXTButton

Components of type NXTButton inherit from the component type Button of the im-
plementation library BumperBotModels. Therefore, they provide the same interface,
consisting of outgoing port pressed of data type Boolean and introduce the configu-
ration parameter button of platform-specific data type lejos.nxt.Button to define
the wrapped hardware button. The behavior implementation of NXTButton interfaces
the LeJOS Java class lejos.nxt.Button to detect the configured button’s state.

Component Type NXTColor

The component type NXTColor provides color measurements. To this effect, it wraps
the LeJOS API class lejos.nxt.ColorSensor. Therefore, it extends the component
type ColorSensor of the BumperBotModels library and introduces the configuration
parameter p of type SensorPort that describes which physical port the behavior im-
plementation of NXTColor is connected to. It emits color measurements via the ports
red, green, and blue inherited from ColorSensor.

Component Type NXTUltraSonic

Components of type NXTUltraSonic inherit from DistanceSensor and interface
ultrasonic-based distance sensors via the LeJOS class lejos.nxt.UltrasonicSensor.
After measuring the distance to a single obstacle, it emits this distance via the port
distance of type Float. Therefore, NXTUltraSonic introduces the configuration
parameter p of type SensorPort.

Component Type JavaLogger

The JavaLogger component type extends the component type Logger of the inter-
face library BumperBotModels to provide logging capabilities for Java-based systems
such as LeJOS. It retains the inherited generic type parameter T and the configuration
parameter prefix. Received messages are printed to the system’s standard output.

1The LeJOS API is available from: www.lejos.org/p technologies/nxt/nxj/api/.

124

6.2 Interface Libraries and Implementation Libraries

Component Type NXTMotor

The component type NXTMotor inherits from the interface component Motor of in-
terface library BumperBotModels and introduces a new configuration parameter p
of platform-specific type MotorPort. As NXTMotor inherits the complete interface of
Motor, it also may receive messages via the port cmd of platform-independent data type
MotorCMD. Its behavior implementation interfaces the Java class lejos.nxt.Motor
connected to the NXT brick’s port passed to NXTMotor via component instantiation.

Component Type JavaTimer

The component type JavaTimer extends the component type Timer of interface li-
brary BumperBotModels to realize countdown functionality with help of LeJOS class
lejos.util.Stopwatch. To this effect, it sets the Stopwatch to a duration of either
a single delay (as received via its configuration parameter) or a double delay. Each tick,
it checks whether the delay received as TimerCMD via incoming port cmd has elapsed.
In this case, it emits true via its outgoing port signal, otherwise false.

Component Type JavaTranslator

Component type JavaTranslator translates each incoming message of data type
Direction into two outgoing messages of data type MotorCMD. To this effect, it ex-
tends Translator of the BumperBotModels interface library and provides a proper
Java implementation for translation.

6.2.3 Python ROS Implementation Library

The implementation library PythonROS provides component types extending the com-
ponent types of interface library BumperBotModels to realize their functionality on
platforms using the robot operating system ROS [QGC+09] in its Python implementa-
tion. ROS describes software architectures as networks of interacting nodes that com-
municate via topics (typed, ordered message buffers that exist at system run-time only).
Consequently, each component type of PythonROS creates a node for a specific task
and, hence, yields a configuration parameter node of type String to define the created
node’s name. Similar to JavaNXT, the components interacting with hardware interface
Lego NXT hardware via ROS. Therefore, these components use the nxt_ros package.2

These components also yield additional configuration parameters to interface the con-
nected hardware (either frameID or motorID). Figure 6.9 displays the component types
of PythonROS. All are compatible to the run-time environment python-timesync.
Details on ROS are available published [QGC+09] and online3.

2Available via http://wiki.ros.org/nxt_ros
3ROS website: http://wiki.ros.org/

125

http://wiki.ros.org/nxt_ros
http://wiki.ros.org/

Chapter 6 Reusable Architectures through Bindings and Libraries

MAA

«DistanceSensor»

ROSDistance

[String node,

String frameID]

Float

distance

Boolean

pressed

«Timer»

PytTimer

[String node,

Integer delay]

TimerCMD

cmd

Boolean

signal

PythonROS

«Logger»

PyLogger<T>

[String prefix,

String node]

T

message

«Translator»

PyTranslator

[String node]

MotorCMD

left

MotorCMD

right

Direction

input

rte python-timesync

rte python-timesync

rte python-timesync

rte python-timesync

«Button»

ROSButton

[String node,

String frameID]

rte python-timesync

«ColorSensor»

ROSColor

[String node,

String frameID]

Integer

red

Integer

green

Integer

blue

rte python-timesync

Integer

intensity

MotorCMD

cmd

rte python-timesync

«Motor»

ROSMotor

[String node,

String motorID]

Figure 6.9: The component types and data types of implementation library PythonROS.
The corresponding GPL behavior implementation artifacts and ROS message
types are omitted for clarity.

Component Type ROSButton

The component type ROSButton wraps a touch sensor. Therefore, it extends the in-
terface component Button provided by the interface library BumperBotModels and
reads ROS messages of type nxt_msgs/Contact from the topic /touch_sensor.
These messages are translated into a Boolean value send via the inherited outgoing port
pressed. To configure the ROS node created by its component behavior implementa-
tion properly ROSButton introduces the configuration parameter node. Furthermore,
it features the configuration parameter frameID to interface the correct touch sensor.

Component Type ROSColor

ROSColor realizes the functionalities of component ColorSensor of interface library
BumperBotModels. To this effect, it extends ColorSensor and introduces two new
configuration arguments as well as the new outgoing port intensity. The configu-
ration arguments node and frameID configure the node created by the component’s
behavior implementation. This node reads ROS messages of type nxt_msgs/Color
from topic /color_sensor and translates these into RGB values of type Integer.
The new outgoing port intensity emits the measured intensity of the current RGB

126

6.2 Interface Libraries and Implementation Libraries

color reading. As bindings prohibit rewiring, this port cannot be connected through
bindings but can be used by platform-specific architectures only.

Component Type ROSDistance

Components of type ROSDistance extend DistanceSensor of the interface library
BumperBotModels and emit distance measurements via the inherited outgoing port
distance of platform-independent type Float. The component type reads sensor data
messages of type nxt_msgs/Range from the ROS topic /ultrasonic_sensor and
translates these accordingly. To this effect, it introduces the two configuration param-
eters node and frameID of type String to configure the ROS node their behavior
implementation creates properly.

Component Type PyLogger

The component type PyLogger extends the component type Logger of interface library
BumperBotModels to realize logging functionalities in Python-based ROS systems.
Therefore, it introduces the configuration parameters node and frameID. For greater
flexibility, it retains the generic type parameter T inherited from Logger as well as its
configuration parameter prefix. It prefixes each received message with the value of
prefix and prints it to the system’s standard output.

Component Type ROSMotor

The component type ROSMotor extends the Motor of the BumperBotModels interface
library. It receives messages of platform-independent data type MotorCMD and trans-
lates these into ROS messages of message type nxt_msgs/JointCommand passed to
the topic /joint_command. The motor driver of nxt_ros reads messages from that
topic and controls the motor identified via configuration parameter frameID through a
node of name name accordingly.

Component Type PyTimer

PyTimer components realize countdown functionality for Python-based ROS systems.
Hence, they introduce the configuration parameter node to configure their ROS node.
The configuration parameter delay describes the duration of a single countdown. On re-
ceiving a TimerCMD message, the component either starts a countdown of single length,
of double length, or stops an active countdown.

Component Type PyTranslator

Components of type PyTranslator realize the functionality of the component type
Translator of interface library BumperBotModels for Python-based ROS systems.
As such it also requires to create a node of the name passed via configuration parameter
node. The component type does inherit from Translator, but not extend its interface.

127

Chapter 6 Reusable Architectures through Bindings and Libraries

MAA

Motors2

NXTMotor

motor(A)

ValidatedMotor_1

left

NXTVal

val

ROSMotor

motor(B)

ValidatedMotor_2

right

NXTVal

val

Motors1

Motor

motor

ValidatedMotor_1

left

Validator

val

Motor

motor

ValidatedMotor_2

right

Validator

val

new, unique component types
introduced to prevent clashes

bound, platform-specific
components

Figure 6.10: The clash between two bindings for subcomponent motor of type
ValidatedMotor is resolved by introducing new component types.

6.3 Deriving Platform-Specific Architectures

The application of bindings to a platform-independent software architecture may raise
clashes and, hence, produce invalid platform-specific software architectures. Nonethe-
less, MontiArcAutomaton allows binding interface subcomponents of the same compo-
nent type differently, if these bindings refer to different instances of that type. Such
– intended – clashes (cf. Figure 6.4) must be resolved by MontiArcAutomaton prior
to code generation. The binding model transformation presented in this section takes
care of resolving clashes while applying the bindings. Therefore, it replaces the types of
all subcomponents with copies of new, unique names. For the component type Motors
depicted in Figure 6.4, this results in the component type Motors1 (as illustrated in Fig-
ure 6.10) prior to applying the bindings left.motor→ NXTMotor and right.motor
→ ROSMotor and in Motors2 afterwards. The resulting component Motors2 is a valid
MontiArcAutomaton component as it does not feature a component type with subcom-
ponents of the same name but different types anymore. To achieve this, the binding
transformation conducts a breadth-first search through the subcomponent hierarchy of
the architecture’s component type. During this search, it replaces the component types
of interface subcomponents and applies the arguments according to the bindings. It
also replaces the types of other subcomponents with copies of their original types with
new and unique names to prevent clashes. The corresponding procedure is depicted in
Listing 6.2.

The procedure bind expects an architecture root and a set of bindings. The latter
must be free of conflicts and otherwise invalid bindings. Conflicts occur if two bindings

128

6.3 Deriving Platform-Specific Architectures

PC
1 bind(ComponentType root, Bindings b)

2 Stack stack = new Stack()

3 newRoot = uniqueCopy(root)

4 stack.put("", newRoot)

5 while not s.isEmpty()

6 (pre, comp) = stack.pop()

7 for each subcomponent sc = (name,type(args)) of comp

8 if (pre == "")

9 q = sc.name

10 else

11 q = pre + "." + sc.name

12 if b(q).exists()

13 sc.type = b(q).type

14 sc.args = apply(args, b(q).args)

15 else

16 sc.type = uniqueCopy(sc.type)

17 stack.put(q, sc.type)

18 newRoot = reduce(newRoot)

19 return newRoot

Listing 6.2: The bind procedure replaces the types of subcomponents with either
platform-specific bound types or new, unambiguous types.

reference the same subcomponent and bind it differently. Checking a set of bindings for
such is trivial due to the MontiArcAutomaton well-formedness rules. Invalid bindings
refer to inexistent or subcomponents of non-interface types and bind these subcompo-
nents to component types not extending the subcomponent’s component type, or fail to
parametrize the component type properly. To calculate bindings, bind utilizes a stack
of tuples of subcomponent path names and component types. Initially, bind puts the
empty qualified name and a copy of the architecture’s root component on the stack (ll. 2-
4). The name of the copy’s type is ensured to be unique by the function uniqueCopy()
(l. 3), which produces a copy of the passed component type including all constituents
but changes its name accordingly. Afterwards, bind iterates over the stack’s tuples
and inspects every subcomponent sc of the component type currently visited (ll. 5-17).
Then, it constructs the subcomponent path q of the currently inspected subcomponent
sc to check with the current prefix and the subcomponent’s name (ll. 8-11). Finally,
bind checks whether q is bound (l. 12), i.e., b contains a binding for q, and determines
the new type of sc accordingly (ll. 12-17). If a binding for sc exists, the component type
of sc is changed to the bound type and the bindings arguments are applied (ll. 13-14).
Otherwise, the type of sc is changed to a unique copy of itself and it is put onto the
stack for further inspection (ll. 16-17). All these changes take place in newRoot, which
is processed by procedure reduce() (l. 18) prior to returning it for further processing
(l. 19). The procedure reduce() iterates over the subcomponent hierarchy of newRoot
and reverts type renaming for subtrees where no bindings were applied. The procedure
bind terminates for leaves of the subcomponent hierarchy (i.e., atomic components)

129

Chapter 6 Reusable Architectures through Bindings and Libraries

and therefore terminates for architectures with finite number of subcomponents on each
level and finite subcomponent hierarchy depth.

The procedure bind returns a valid MontiArcAutomaton software architecture that
describes the platform-specific architecture completely (as required by Req. MRQ-8 .4 .)
Hence, the architecture can be processed by existing tooling (such as code generators,
Req. MRQ-8 .5) without need for modifications. It prevents clashes but creates new
component types (ll. 3,16) for each subcomponent. Consequently, the number of new
component types is bound by the number of subcomponents in the subcomponent hier-
archy. Whether this number influences the resulting number of artifacts in a generated
system depends on the code generators employed and their translation from component
types to artifacts.

6.4 Discussion and Related Approaches

Bindings require a white-box view on subcomponent hierarchies as the left-hand sides
of bindings pierce through component hulls to reference subcomponents normally hid-
den behind the containing components’ interfaces. As MontiArcAutomaton extends
MontiArc, the composition of components is always visible to the application modelers
without means to hide it. If the latter was supported, post-modeling analyses could
access the architectures’ root elements only.

For architectures employing untimed or timed messaging semantics, bindings also
do not change the architecture’s structural semantics, which is invariant to applying
bindings. Hence, the application configuration depends on the architecture but not vice
versa. The architecture can be developed and evolved independently of possible bindings.
Changes to the architecture model impact the bindings only in case components are
(re)moved - which can render the bindings invalid. Adding or decomposing components
does not impact the bindings. Hence, enabling the architecture modeler’s white-box view
on the complete architecture enables important functionality and provides a maximal
stability between both models.

Application configuration models may define a single binding per subcomponent. For
large software architectures, where multiple subcomponents of the same component type
should be replaced by the same platform-specific component this is might be inconve-
nient. Defining bindings between component types would facilitate such specification.
The ramifications of such bindings can be calculated easily by translating these into sets
of bindings of each type’s subcomponents. Furthermore, bindings replace subcompo-
nents unconditionally. Conditional bindings might be useful if applied in the context
of the target systems platform or domain model. Future work could investigate which
forms of conditions are appropriate and integrate these.

Currently, bindings can introduce component types with additional ports not part
of the inherited interface component’s interface. However, bindings cannot connect
these ports. Such rewiring might be useful, but entails greater changes to the platform-
independent architecture than intended with our notion of bindings. Also, our notion
requires the interfaces of interface components to be broad enough to support arbitrary

130

6.4 Discussion and Related Approaches

inheriting platform-specific components. With our approach, the interfaces are broad
enough by design, as the platform-independent software architecture defines what is re-
quired. We also bind interface components only. Although the procedure bind supports
binding of arbitrary subcomponents, such bindings are not intended. Especially bind-
ing composed components may change the software architecture beyond recognition and
deviate it far from its original intentions. The procedure bind iterates the passed archi-
tecture root two times: once to transform the software architecture without clashes and
a second time to reduce the number of new component types. In a future implementation
this could be reduced to a single iteration that performs binding impact analysis before
applying bindings.

Platform-specific, atomic components are restricted to declare conformance to a single
run-time environment. While we did non encounter scenarios where conformance to
multiple run-time environments was crucial, it would facilitate reuse of platform-specific
components and implementation libraries with different contexts. Implementation of this
is easy and requires changes to the rte modeling element (Section 4.1.1) and related
context conditions only.

Replacing subcomponents with bindings requires interface-compatibility. MontiArc-
Automaton enforces this via requiring an inheritance relation between the replaced sub-
component’s type and the replacing type. As this does not suffice in the light of generic
component type parameters, it also requires that the actual port types - after resolving
the generics - are compatible as well. This notion of compatibility allows bindings to
introduce new, unconnected, ports into the software architecture. As bindings do not
provide means to introduce new connectors, these ports cannot be connected. While it
is possible to restrict bindings to platform-specific components that provide exactly the
ports of the replaced subcomponent, this restricts reuse and relaxing this did not pose
problems in practice. Ports left unconnected by bindings are treated to receive no data
and hence, binding component types relying on these ports might lead to unexpected
effects. As the inherited MontiArc context condition CV6 (presented in [HRR12], p. 36)
produces warnings for unconnected ports, the application modeler will be informed about
this potential issue.

Another means to mark architecture extension points besides interface components
could be achieved declaring component types as configuration parameters of other com-
ponent types. Hence, passing instantiated components and using these to replace sub-
components could realize bindings as well. However, as component instantiation is part of
the architecture, specifying platform-specific components as arguments for such param-
eters in it would tie the architecture to the respective platform. Furthermore, this also
would require introducing new language elements to describe how component instances
passed as configuration arguments would replace subcomponents and, thus, introduce
additional notational noise [Wil01]. Describing replacement in form of bindings outside
of the software architecture liberates component modelers from dealing with such unless
they actually want to employ bindings.

Currently, MontiArcAutomaton supports translating the complete architecture to a
target platform only. It is yet impossible to translate different parts of an architecture

131

Chapter 6 Reusable Architectures through Bindings and Libraries

to different platforms. This can be useful, for instance, to deploy part of an architecture
to a cloud-based Java infrastructure while deploying components for sensors and actua-
tors to a mobile platform requiring C++. Its realization entails many issues regarding
augmentation with communication components, cross-platform marshalling, and timing,
which are not within the scope of this thesis.

A solution for architectural extension points is described in [RRW14b] where abstract
components are introduced to C&C software architectures to describe architecture ex-
tension points. Such components are abstract in providing only a component inter-
face (cf. [SSL11, FG12]) without behavior and refer to platform-independent types only.
Thus, these components are independent of specific APIs, libraries, or communication
protocols and their structural information can be transformed into code for arbitrary
target platforms. Nonetheless, from a structural view, these components are complete
and are available to model checking. Current MontiArcAutomaton uses interface com-
ponents instead, which are more restricted than abstract components. Application con-
figuration models (as introduced in Chapter 7) refer to the software architecture and de-
scribe how its abstract components are replaced prior to code generation. Consequently,
the platform-independent architecture is agnostic of its reuse with different target plat-
forms. The solution presented in [RRW14b] relies on exchanging the actual behavior
implementation artifacts of subcomponents prior by replacement-aware code generators.
Subcomponents of the software architecture that are of abstract component types are
mapped to platform-specific, component behavior implementations. Respecting replace-
ment information requires binding-aware code generators to exchange the component
behavior implementation during generation. Such replacements enable software archi-
tecture developers to delay commitment to a specific platform and ultimately increase
reuse of architecture models and component models. While useful, that approach lacks
expressiveness: Components, aside from their interfaces, are black-boxes to the envi-
ronment and only they are responsible for configuration of their behavior descriptions
(stored in aforementioned behavior implementation artifacts). Thus, component behav-
ior descriptions can receive their configuration information solely from the component
they belong to. As components are configured by the software architecture, passing
additional, for instance platform-specific, configuration arguments (such as information
on the physical connection of hardware) requires adding this information to the soft-
ware architecture model – which ties it to specific platform properties. We enhanced the
previous approach with a more explicit description mechanism to exchange subcompo-
nent types instead of their behavior implementations. Thus, the new approach impacts
the architecture model only and requires no consideration by code generators. Conse-
quently, current MontiArcAutomaton uses different notions of bindings, which emphasize
on the distinction between interface components and platform-specific components, and
libraries. This yields the following improvements over [RRW14b]:

• Applying bindings to architectures with interface components produces type-safe
architectures instead of changing component implementation details.

• Binding to platform-specific components may introduce new platform-specific pa-

132

6.4 Discussion and Related Approaches

rameters on model level.

• Existing code generators can be reused.

• Model libraries are replaced by interface libraries.

• Code libraries and their library models are redundant.

Current approaches to MDE with C&C ADLs do either not consider multi-platform
reuse [GBWK09, BGP+10, CKS11, SSL11, FG12], or demand modeling platform details
explicitly [ADvSP05, DKS+12, HGS+13]. Ignoring multi-platform reuse requires copy-
ing the architecture models and changing the platform-specific components manually.
As the copied architecture models need to be maintained and evolved in parallel, this
introduces additional efforts. Modeling platform properties explicitly [HGS+13] intro-
duces complex notions to describe the target platform and the binding of components
to it, which raises efforts regarding definition, maintenance, and evolution of platform
models. Additionally, deployment may consider optimized code generation for specific
target platform elements, realization of connectors between physically distributed com-
ponents, or mechanical and electrical properties of the target platforms. Bindings alter a
logical software architecture on component level to enable subsequent code generation of
target GPL artifacts. How these are deployed on target platform elements is not within
the scope of this approach.

The notion of “abstract platforms” [ADvSP05] in MDA is closely related as well.
Abstract platforms are means to separate the “technology independent” and “technology
related” aspects of target platforms. An abstract platform “represents the platform
support that is assumed by the application developer at some point” [ADvSP05], which
corresponds to the set of interface components used by a MontiArcAutomaton software
architecture. Similar to our approach, the platform-independent model depends solely on
the abstract platform and the platform-specific model depends on the concrete platform.
In the same vein, the authors introduce a different notion of bindings. These bindings
describe mappings from abstract platforms to concrete platforms and rely on “model
libraries” [ADvSP05], which resemble our interface libraries, as well. In contrast to our
approach, they do not restrict the content of interface libraries, which does not ensure
that these are actually platform-independent.

133

Chapter 7

Compositional Code Generation

On two occasions I have been asked [by members of Parliament]:
’Pray, Mr. Babbage, if you put into the machine wrong figures, will

the right answers come out?’ I am not able rightly to apprehend
the kind of confusion of ideas that could provoke such a question.

Charles Babbage

Pervasive, multi-platform, model-driven engineering with MontiArcAutomaton re-
quires translation of components with embedded behavior models of flexibly integrated
behavior modeling languages into GPL implementations for different target platforms.
Thus, the code generation infrastructure must be able to integrate new generation ca-
pabilities for integrated languages and to translate the same architecture model into
different GPLs (cf. Req. TRQ-1).

Currently, this either imposes development of a new monolithic code generator for
the participating languages and target GPL from scratch, which usually entails infor-
mal reuse and duplicates knowledge, maintenance, and evolution efforts, or white-box
extension of existing code generators. The former are hardly reusable with new lan-
guage aggregates or different target GPLs (Req. TRQ-3). The latter requires the source
artifacts of the generator to be extended, introduces hardly maintainable dependencies
between the generators, and enforces generator developers to comprehend all partici-
pating generators. Also, both integration approaches must be repeated for each new
component behavior language and hence either yield a multitude of similar code gen-
erators or a monolithic, and hardly maintainable, all-purpose code generator. Instead,
MontiArcAutomaton introduces a compositional code generation framework that enables
black-box integration of participating generators with minimal effort.

In the context of C&C architectures with embedded component behavior modeling
languages, such as the MontiArcAutomaton ADL, code generation has to consider three
prime translation concerns: (1) Translation of structural model elements, such as com-
ponent interfaces and connectors; (2) Translation of behavior models; (3) Translation
of data types. This chapter presents a concept to combine code generators for these
translation concerns based on:

• Generator kinds that yield different properties to characterize the information pro-
vided and required to combine and execute generators (cf. [RRRW14]).

135

Chapter 7 Compositional Code Generation

Templates

parses

Generator

Description

Model

Generator

Description

Implementation

creates

MontiArcAutomaton

Generator

Composition

Framework

uses

conforms

«interface»

DataType

Generator

«interface»

Behavior

Generator

«interface»

Component

Generator

Representation

Generator

interfaces characterize
code generator kinds

represents code generator, identifies its
kind and provides according information

used for composition
and execution

Generator

GeneratorInterfaces

uses

Figure 7.1: Each code generator provides a generator description model from which
MontiArcAutomaton a description implementation is generated. The lat-
ter implements the interface referenced in the description model and is used
by MontiArcAutomaton for composition.

• Explicit generator interfaces based on generator kinds.

• Behavior language integration as presented in Section 4.2.

This enables code generation for software architecture models using exchangeable com-
ponent behavior languages, and separation of language and code generator concerns
between language engineers, behavior code generator developers, and component struc-
ture generator developers (Figure 3.4). MontiArcAutomaton therefore enables black-box
composition of code generators such that each participating code generator can be ex-
changed without changes to other participating generators. The compositional code gen-
eration framework of MontiArcAutomaton coordinates different generators, where each
code generator is responsible for specific languages (Req. TRQ-3 .2). Thus, composition
requires no modification of the participating generators (Req. TRQ-6).

Figure 7.1 illustrates the code generator composition constituents and their relations.
Each code generator provides a single code generator description model that represents
it and references a single code generator interface. From this description, MontiArc-
Automaton’s representation generator produces an implementation of the referenced
interface that is used by MontiArcAutomaton’s generator composition framework to
instantiate and configure the represented generator properly.

136

7.1 Code Generator Kinds

In the following, Section 7.1 introduces code generator kinds and their interfaces,
before Section 7.2 describes the modeling language to describe these interfaces. Code
generator composition exploits these implementations to configure, compose, and ex-
ecute code generators automatically. Section 7.3 describes the composition process.
Afterwards, Section 7.4 describes two sets of compositional code generators for the gen-
eration of MontiArcAutomaton ADL architectures with embedded I/Oω automata into
Java artifacts and into Python artifacts respectively. Finally, Section 7.5 discusses the
presented approach and related approaches.

7.1 Code Generator Kinds

The MontiArcAutomaton ADL language family comprises the MontiArcAutomaton ADL,
which provides extension points (see Section 4.2) for embedding component behavior into
components. The components exchange messages via typed ports, whose type is modeled
using a data type modeling language, such as class diagrams. Therefore, code generation
for such integrated language families requires to cover at least the three prime translation
concerns regarding C&C structures, component behaviors, and data types (cf. the in-
terfaces depicted in Figure 7.1). On language level, component behavior languages and
data type languages are exchangeable. On code generation level this is not reflected.
We employ the three code generator kinds component generator , behavior generator ,
and data type generator to enable the modularity required from MontiArcAutomaton
(Req. TRQ-3), which requires that code generators for all of the above aspects are ex-
changeable and that it should be possible to reuse, for instance, the same component
structure generator with different behavior generators and data type generators - as long
as these produce compatible GPL artifacts. Additionally, we require (Req. TRQ-3) that
it is possible to employ different code generator implementations for the same target
language, (e.g., in case a new target platform requires additional constraints not met by
existing generators). Providing such compositionality requires a more precise definition
of code generators than presented in Def. 1. Thus, for the scope of MontiArcAutomaton,
a compositional code generator is defined as follows:

Definition 8 (Compositional Artifact Code Generator). A compositional artifact code
generator is a software that accepts models conforming to modeling language and produces
valid GPL artifacts. It conforms a single code generator kind.

This definition leaves open whether a compositional artifact code generator employs
M2M or M2T transformations (cf. Section 2.1), how the input models are defined and
passed to the generator, and which GPL the target artifacts conform to. It albeit
requires that the GPL artifacts produced by a code generator are valid, relative to their
language (e.g., a single Java method declaration is no valid Java artifact). This is not
ensured by MontiArcAutomaton generators itself, but a requirement imposed on the
component developers. Furthermore, it requires that each code generator conforms to a
single code generator kind. For each code generation concern that requires participation
in code generator composition, a unique generator kind has to be defined. Within the

137

Chapter 7 Compositional Code Generation

scope of this thesis, component structure, behavior, and data types define the entirety
of code generation concerns and thus, the entirety of code generator kinds as well. Each
code generator kind explicates all information that corresponding generators provide and
require for configuration, composition, and execution. A code generator kind therefore
is as follows (Req. TRQ-3 .1):

Definition 9 (Code Generator Kind). A MontiArcAutomaton code generator kind con-
sists of the following information provided and required to configure, compose, and exe-
cute the implementing code generator:

1. Name: A name uniquely identifying this generator kind in the employing applica-
tion’s context.

2. Input modeling languages: The modeling languages or language fragments the gen-
erator can process.

3. Well-formedness rules: Constraints restricting the processable models of the input
languages.

4. Execution information: Information describing how the generator is invoked. With
template-based code generators, this might refer to a main template, while GPL-
implemented code generators might explicate a method and its signature.

5. Context information: Additional information that may be provided or required at
generation time. This, for instance, might include the names of the artifacts to
produce.

6. Output properties: Information on the generated artifacts (e.g., GPL or run-time
environment the generated artifacts conform to).

All generators participating in MontiArcAutomaton must provide a unique generator
kind. However, the concept of generator kinds and their exploitation for generator com-
position is not limited to the three generator kinds defined in the scope of this thesis.
In [RRRW14], we introduce a factory generator kind, which produces object instantiation
mechanisms following the factory pattern [GHJV95]. Further generator kinds for vari-
ous specific translation aspects are conceivable, such as code generators for serialization
or communication issues. Furthermore, generators conforming to the generator kinds
ComponentGenerator and BehaviorGenerator require to provide input modeling
language, execution information, context information, and output properties. Well-
formedness rules are optional for both. While behavior generators may specify a single
input modeling language only, component generators may specify additional input mod-
eling languages to reflect their ability to provide behavior generator capabilities (which
allows modeling partly monolithic generators with MontiArcAutomaton as well). For
generator descriptions representing generators conforming to the DataTypeGenerator
kind, the required information is a single input modeling language and execution infor-
mation only. Well-formedness rules are optional and output properties are prohibited.

138

7.1 Code Generator Kinds

Table 7.1: Each generator description requires specific information depending on the
referenced generator kind (cf. Figure 7.2).

Kind Mandatory Optional Prohibited

Component

Generator

execution information,
input modeling
language, output
properties

additional input
modeling languages,
well-formedness rules

Behavior

Generator

execution information,
input modeling
language, output
properties

well-formedness rules
additional input
modeling languages

DataType

Generator

execution information,
input modeling
language

well-formedness rules
output properties,
additional input
modeling languages

Table 7.1 summarizes which generator description elements are required, allowed, and
prohibited depending on the implemented generator kind.

MontiArcAutomaton identifies the participating code generators by their generator
description models. Each generator description represents a code generator, for which it
declares conformance to a single generator kind and provides information corresponding
to the information required and provided by the generator kind. For each description,
an implementation is generated. This implementation encapsulates the information the
code generator provides and requires as defined in its description. MontiArcAutomaton
instantiates this implementation to use the represented code generator. Afterwards,
it first invokes code generation of data types, as this generation process in unrelated
to component generation. It is in the application modeler’s duty to ensure the data
type artifacts and component artifacts produced by the code generators she selected are
compatible. Once the data type generation has finished, MontiArcAutomaton configures
the component generator. Besides passing the AST to generate code for, this includes
passing the instantiated behavior generators as only the component generator is aware
of their integration. MontiArcAutomaton then invokes the component generator which
first checks the component models applying its own well-formedness rules and the well-
formedness rules of the behavior code generators it received. If the AST is well-formed,
the component generators traverses the passed AST and invokes behavior generators
when necessary (i.e., when it visits an AST node of a behavior language).

The code generator kinds are realized in form of interfaces that prescribe the existence
of methods providing or requiring the characterizing information of the respective gener-
ator kind for MontiCore code generators (Section 2.2.3). In this context, input modeling
languages are productions in MontiCore grammars (cf. Req. TRQ-5), starting points are
either FreeMarker templates or factory methods, well-formedness are realized as context
conditions, and output properties are references to run-time environments. Hence, for
MontiArcAutomaton, the code generator interfaces are as illustrated in Figure 7.2. Each

139

Chapter 7 Compositional Code Generation

*

«interface»

ComponentGenerator

1

«interface»

DataTypeGenerator
«interface»

BehaviorGenerator

CD

getLanguage()

getStart()

getContextConditions()

getRTE()

configure(className,

packageName,

imports)

input
modeling language

getLanguage()

getStart()

getContextConditions()

getRTE()

getAdditionalLanguages()

configure(behaviorGenerators)

getStart()

getContextConditions()

configure()

starting
point

well-formedness
rules

context
information

additional input
modeling languages

Figure 7.2: An overview of the generator interfaces employed by MontiArcAutomaton
with their most important methods.

of these interfaces provides the method getLanguage() to retrieve the input modeling
language, the method getStart() to return its execution information, the method
getContextConditions() that returns its generator well-formedness rules. These
well-formedness rules are not part of the language definition but restrict the models that
can be translated to the target GPL. For instance, the Java code generators cannot
resolve underspecification or non-determinism. Hence, they provide corresponding well-
formedness rules. The interfaces representing component generators and behavior gen-
erators also impose a method getRTE() to retrieve the run-time environment the gen-
erated artifacts conform to (part of the output properties). The interface of component
generators also imposes implementation of the method getAdditionalLanguages()
to retrieve the component behavior languages processable by the component generator
itself. All generator kinds also provide a method configure() to pass the context
information required to generate proper GPL artifacts. The parameters expected by
this method are specific to the represented generator kind.

These interfaces wrap all information required to enable code generator composition
with MontiArcAutomaton. The composition mechanisms of MontiArcAutomaton can
be applied to other interfaces and hence other C&C ADLs as well. Overall, the re-
lations between compositional artifact code generators, generator description models,
generator interfaces, and generator kinds are as depicted in Figure 7.3. A compositional
artifact code generator contains exactly one generator description models. That model
declares conformance to exactly one generator interface, which represents exactly one
code generator kind.

Before composing code generators based on their kinds, the content of the respective
interfaces’ implementations has to be defined. Therefore, Section 7.2 presents the code
generator description language to provide the interfaces’ implementations.

140

7.2 Code Generator Description Language

Code

Generator

CD

Generator

Interface

Generator

Kind

Generator

Description

conformsyields represents

1 1 1

Figure 7.3: The relations between code generators, generator description models, gener-
ator interface, and generator kinds.

7.2 Code Generator Description Language

MontiArcAutomaton code generators must exhibit which generator kind they conform
to and provide information on the properties required by that generator kind. Therefore,
Section 7.2.1 presents the code generator description language elements, which provide
a concise formalism to describe that information. Afterwards, Section 7.2.2 presents the
language’s symbol table and Section 7.2.3 its context conditions.

7.2.1 Language Elements

The code generator description language elements reflect the properties of generator
kinds in terms of their MontiCore realization, i.e., for each code generator kind property
as realized with the corresponding interface, there is a corresponding language element.
Listing 7.1 illustrates most of the code generator description language elements with
the generator description ComponentsJava for a generator that translates component
models into Java artifacts.

Generator descriptions are structured in packages (l. 1) and begin with the keyword
generator followed by a name, the keyword conforms, and the name of the genera-
tor interface the represented generator implements (l. 3). Afterwards it describes three
properties of the represented code generator (ll. 5-9). First it describes how the rep-
resented generator is invoked (l. 5). Afterwards, it describes which the input modeling
language the represented code generator can process (l. 7), which is identified by the rule
MAAComponent of the MontiArcAutomaton ADL MontiCore grammar (cf. Listing A.2).
Finally, it describes that the represented code generator produces artifacts conforming
to a specific run-time environment, which, for instance, describes how generated GPL
artifacts and handcrafted GPL artifacts interact (l. 9) as presented in Section 7.4.

The following paragraphs detail the individual language elements and their properties
before subsequent sections describe the language’s symbol table and context conditions.

Generator Description Declaration

A generator description begins with the keyword generator, followed by the descrip-
tion’s name. After the keyword conforms it references the interface of the type the
represented code generator implements. This construction restricts each generator de-
scription, and hence each code generator, to a single generator kind. The referenced

141

Chapter 7 Compositional Code Generation

GD
1 package generators.componentsjava;

2

3 generator ComponentsJava conforms ComponentGenerator {

4

5 start generators.componentsjava.MainTemplate;

6

7 language languages.adl.MontiArcAutomaton.MAAComponent;

8

9 rte runtimes.javatimesyncdelegation;

10 }

Listing 7.1: The code generator description model ComponentsJava represents a
code generator that translates component models into Java artifacts.

interface’s name must be fully qualified1 and after this name, curly brackets delimit the
generator description’s body.

GD
1 generator AutomataPython

2 conforms generators.BehaviorGenerator {

3 // ...

4 }

Listing 7.2: The generator description AutomataPython implements the generator
interface generators.BehaviorGenerator.

Listing 7.2 illustrates a generator description of name AutomataPython (l. 1) that
represents a behavior generator. The generator description establishes the latter by
declaring conformance to the generator interface generators.BehaviorGenerator
representing the behavior generator kind (l. 2).

Starting Point

Each code generator must be invoked and the ways to invoke code generators differ.
While most MontiCore generators employ a FreeMarker template as starting point, there
is neither a convention on that template’s name or a general consensus that a code
generator must start with a template. Therefore, MontiArcAutomaton enables specifying
factory methods of Java classes as starting point as well. The start element of generator
description models thus may refer to a template or a static method only and does so by
stating its complete name.

1The interface’s name is used once only and hence importing it, which requires referencing it via is fully
qualified name, provides no advantage.

142

7.2 Code Generator Description Language

GD
1 generator ClassdiagramPython

2 conforms generators.DataTypeGenerator {

3

4 start generators.cdpython.MainTemplate;

5 // ...

6 }

Listing 7.3: The generator description ClassdiagramPython defines that
the represented generator implements the DataTypeGenerator

generator interface (l. 2) and that it is started via the template
generators.cdpython.MainTemplate (l. 4).

Input Modeling Language

To enable proper composition, each code generator must explicate which models it can
process. Therefore, the generator description characterizes the processable models by
the modeling language that defines these models. MontiArcAutomaton code generators
generally process models of MontiCore languages. Therefore, MontiArcAutomaton iden-
tifies this modeling language with a MontiCore grammar production and code generator
descriptions refer to these productions.

Requiring a concrete production instead of a complete grammar allows selecting an
arbitrary production that grammar. This reflects that language embedding also does
not require to embed complete languages into the MontiArcAutomaton ADL. Each code
generator description thus must contain the keyword language, followed by the name of
a production of a MontiCore grammar. This name consists of the referenced grammar’s
package name concatenated with the grammar’s name and the name of the production
defining the language. Listing 7.4 illustrates this with a reference to the production
TableContent of the grammar

GD
1 generator IOTablePython

2 conforms generators.BehaviorGenerator {

3

4 start generators.componentspython.MainTemplate;

5

6 language languages.iotable.IOTable.TableContent;

7 // ...

8 }

Listing 7.4: Generator description IOTablePython explicates that the represented
generator can process models derivable from production TableContent
of grammar languages.iotable.IOTable (l. 6).

143

Chapter 7 Compositional Code Generation

Well-formedness Rules

Code generators may additionally restrict the processable models with well-formedness
rules, which enables preventing code generation for unsuited models, such as the trans-
lation of non-deterministic automata to Java. For MontiArcAutomaton code generators,
well-formedness has the form of context conditions. Code generator descriptions declare
context conditions as sets of qualified names referencing MontiCore context conditions.

As illustrated in Listing 7.5, generator description models may declare the repre-
sented generators’ context conditions in two ways and both begin with the keyword
contextconditions. If this keyword is followed by a set of qualified names that
reference the context conditions’ Java classes (ll. 10-13), these must fully identify the
respective classes. However, as these usually are part of the represented code genera-
tor and reside in the same or similar packages, a common prefix of the package name
may be extracted to abbreviate the individual references and ease generator descrip-
tion modeling. Therefore, the keyword contextconditions may be followed by the
keyword in and a qualified name representing a prefix of the package the context con-
ditions reside in. The second context condition declaration block of generator descrip-
tion RobotArmPython (ll. 15-18) uses this pattern to define that both context condi-
tions AtMostTenLocations and determinism.NoUnderspecification (l. 17)
reside in the package generators.robotarmpy. The qualified name after in must
not describe the complete package of the following context conditions as illustrated
with NoUnderspecification. This context condition ultimately resides in the pack-
age generators.robotarmpy.determinism. MontiArcAutomaton determines the
complete set of code generator context conditions by collecting all contextconditions
blocks and calculating the complete qualified name of each referenced context condition.
Specifying multiple contextcondition blocks allows declaring multiple logically dis-
tributed context conditions conveniently.

Run-Time Environment

Run-time environments are means to provide common mechanisms to applications of
MontiArcAutomaton without generating these for each application anew. The issues
tackled by run-time environments include, but are not limited to, compatibility of gen-
erated and handcrafted artifacts, component communication, serialization, and error
handling. MontiArcAutomaton, for instance, considers artifacts for component struc-
ture and for component behavior compatible if they agree on interacting each other
using the same run-time environment. Therefore, generator descriptions explicate which
run-time environment the represented generators conform to. These declarations start
with the keyword rte, followed by the qualified of a run-time environment (cf. Sec-
tion 7.4.1). The generator description ComponentsPython depicted in Listing 7.6
represents a code generator that transforms MontiArcAutomaton components (l. 6) into
Python artifacts. To enable checking whether the behavior generators it might be com-
posed with are compatible, it declares that the represented code generator produces
artifacts compatible to the run-time environment runtimes.pythonuntimed (l. 8).

144

7.2 Code Generator Description Language

GD
1 generator RobotArmPython

2 conforms generators.BehaviorGenerator {

3

4 start generators.robotarmpy.EmbeddedMain;

5

6 language ra.RobotArm.RobotArmProgam;

7

8 rte runtimes.pythontimesync;

9

10 contextconditions {

11 generators.robotarmpy.NoComplexDataTypes,

12 generators.robotarmpy.RestrictedProgramSize

13 }

14

15 contextconditions in generators.robotarmpy {

16 AtMostTenLocations,

17 determinism.NoUnderspecification

18 }

19 }

Listing 7.5: Generator description RobotArmPython contains two sets of context
conditions (ll. 10-18) describing the contained conditions directly (ll. 10-
13) and via abbreviation (ll. 15-18).

GD
1 generator ComponentsPython

2 conforms generators.ComponentGenerator {

3

4 start generators.cdpython.MainTemplate;

5

6 language languages.MontiArcAutomaton.MAAComponent;

7

8 rte runtimes.pythonuntimed;

9 }

Listing 7.6: The code generator represented by description ComponentsPython

produces artifacts compatible to the runtimes.pythonuntimed run-
time environment (l. 8).

Additional Input Modeling Languages

Component code generators may provide means to produce artifacts for component
behavior languages as well. This, for instance, is useful, when the base language,
prior to component behavior language embedding, already provides means to model
component behavior. Similar to the input modeling language, the supported compo-
nent behavior modeling languages are identified via their defining grammar produc-
tions. The corresponding production starts with the keyword behaviors followed

145

Chapter 7 Compositional Code Generation

by a comma-separated list of input modeling languages identified by their complete
path, grammar name, and production to be embedded. The generator description
ArchitecturePython depicted in Listing 7.7 illustrates this by representing a com-
ponent code generator (l. 2) that transforms components of MontiArcAutomaton’s pro-
duction MAAComponent (l. 4), via start method arcpy.Main.generate() (l. 6) into
artifacts compatible to the run-time environment runtimes.pythonuntimed (l. 8).
The represented generator also can process components with embedded TableContent
models and embedded RobotArmProgram models (ll. 10-13).

GD
1 generator ArchitecturePython

2 conforms generators.ComponentGenerator {

3

4 language languages.MontiArcAutomaton.MAAComponent;

5

6 start arcpy.Main.generate();

7

8 rte runtimes.pythonuntimed;

9

10 behaviors {

11 iotable.IOTable.TableContent,

12 ra.RobotArm.RobotArmProgam

13 }

14 }

Listing 7.7: Generator description ArchitecturePython describes that the
represented code generator can translate models of the behavior
languages TableContent and RobotArmProgram (ll. 10-13).

7.2.2 Symbol Table

Properties of the generators to be integrated need to be checked prior to composition.
For instance, the processable modeling languages must be checked against the mod-
eling languages employed in the software architecture to be processed. This requires
integration of the MontiArcAutomaton language family with the generator description
language. Enabling such integrated well-formedness checking without coupling both lan-
guages ASTs requires integration on symbol table level. MontiArcAutomaton integrates
the generator description language via language aggregation, as models of both languages
remain independent artifacts, but are interpreted together. Thus, the generator descrip-
tion language must provide a symbol table. The generator description symbol table
consists of a single entry type that provides all information relevant to context condition
checking and further analyses. The properties of GeneratorDescriptionEntry en-
tries, depicted in Figure 7.4, directly translate to generator description model properties,
but omit AST details, such as whether the context conditions are modeled as a single
set or multiple sets.

146

7.2 Code Generator Description Language

CD

GeneratorDescriptionEntry

String KIND

String name

String start

String language

List<String> contextConditions

String rte

List<String> additionalLanguages

Figure 7.4: Entries of type GeneratorDescriptionEntry provide all information
from the corresponding generator description model.

All properties of GeneratorDescriptionEntry symbol table entries are names,
which must be interpreted correctly for context condition checking. For instance, the
property language references to a production of a grammar. The context conditions
checking the validity of this reference must interpret the contained name properly.

7.2.3 Context Conditions

The generator description context conditions ensure the well-formedness of generator
descriptions’ elements. This includes ensuring the uniqueness of specific elements, the
adherence of certain conventions, the elements’ referential integrities, and their type
correctness. As many properties of generator description models reference other arti-
facts, checking their well-formedness requires resolving these artifacts using MontiCore’s
symbol table mechanisms (cf. Section 2.2.1). The following presents the uniqueness
conditions, convention conditions, referential integrity conditions, and type correctness
conditions of generator description models.

Uniqueness Conditions

Uniqueness conditions ensure that certain elements of generator descriptions occur at
most once per model. Violated context conditions may produce errors or warnings
depending on the duplicated elements.

GU1: Only context condition blocks and behavior blocks may occur multiple times.

All generator description language elements but context condition blocks and be-
havior blocks (i.e., start, language, and rte) may occur only once. Declaring
multiple of these elements would entail inconsistent code generator representations.
Only contextconditions and behaviors may be declared multiple times. Vi-
olating this raises errors as depicted in Listing 7.8, where the generator description
ComponentsWithAutomata declares multiple start elements (ll. 4-5) and multiple
contextconditions elements (ll. 7-8). The former produces errors as displayed.

147

Chapter 7 Compositional Code Generation

GD
1 generator ComponentsWithAutomata

2 conforms generators.ComponentGenerator {

3

4 start cwa.Main.run(); // Multiple start elements.

5 start cwa.EmbeddedMain; // Multiple start elements.

6

7 contextconditions { generators.cwa.NoInnerComponents }

8 contextconditions { generators.cwa.NoGenericTypes }

9 //...

10 }

Listing 7.8: The generator description ComponentsWithAutomata is not well-
formed as it declares two start elements (ll. 4-5).

GU2: No duplicate context conditions.

Executing a context condition multiple times produces new warnings or errors for
each execution. However, as MontiArcAutomaton considers the entirety of context con-
ditions declared in generator description models as a single set of context conditions,
each context condition will be executed at most once per model. Thus, specifying a
context condition multiple times does not change the resulting number of warnings or
errors. Therefore, this context condition raises warnings for generator description models
mentioning the same context condition multiple times.

GD
1 generator IOTablesGroovy

2 conforms generators.ComponentGenerator {

3

4 contextconditions {

5 iotgen.NoInnerComponents // Duplicate context condition.

6 }

7

8 contextconditions in iotgen {

9 NoInnerComponents, // Duplicate context condition.

10 NoGenericTypes

11 }

12 // ...

13 }

Listing 7.9: The generator description IOTablesGroovy mentions the context
condition iotgen.NoInnerComponents two times: once in the first
contextconditions block (l. 5) and once in the second block (l. 9).

148

7.2 Code Generator Description Language

GU3: No duplicate behaviors.

For component generators, declaring an additional input modeling language multi-
ple times is prohibited as well. As MontiArcAutomaton treats these input modeling
languages treated as a set, such redundancy does not raise errors, but warnings only.

Convention Conditions

Convention conditions facilitate modeling by enforcing conventions on modeling ele-
ments, thereby reducing the effort of comprehending models. For instance, a typical
convention of many object-oriented GPLs is that the names of classes begin with a cap-
ital letter. Hence they are easier to distinguish from non-class names and reduce the
need to look up names. As the generator description language references existing artifacts
only, these names are governed by the artifacts’ respective type (i.e., a reference to a Java
class must conform to the requirements for naming Java classes). Hence there is only a
single generator description convention condition, which ensures the well-formedness of
generator description names and raises an error.

GC1: Generator descriptions start with a capital letter.

To help distinguishing the names of generator descriptions other elements, their names
must start with a capital letter. Listing 7.10 illustrates this with a generator description
of name flowchartPython (l. 1) that violates this rule.

GD
1 generator flowchartPython // Generator descriptions

2 conforms BehaviorGenerator { // start upper-case.

3 // ...

4 }

Listing 7.10: The generator description flowchartPython violates GC1 as its
name starts with a lower-case letter (l. 1).

Referential Integrity Conditions

Context conditions regarding referential integrity ensure that names referenced in gener-
ator description models refer to existing artifacts and that they are used correctly. Their
existence is crucial and, hence, violation of referential integrity conditions raises errors.

GR1: The referenced generator interface exists.

Each generator description must refer to a generator interface to define the type of
generator it represents. As MontiArcAutomaton composes generators based on their
interfaces the referenced interface must exist and be available to the code generator.

149

Chapter 7 Compositional Code Generation

Otherwise, generator configuration, composition, and execution will fail. The generator
description SequenceDiagramPython references the interface ArcGenerator (l. 2),
which in unavailable to the code generator. Consequently, MontiArcAutomaton rises
the depicted error.

GD
1 generator SequenceDiagramPython

2 conforms ArcGenerator { // Inexistent interface

3 // ... // ’ArcGenerator’.

4 }

Listing 7.11: The interface referenced by generator description ArcGenerator

cannot be resolved as it does not exist or is unavailable.

GR2: The referenced starting point exists.

Similarly, the starting point of the represented generator must exist and be available.
For the generator description StatechartPython of Listing 7.12, this does not hold,
as the referenced template scp.Embedded (l. 4) is not available. Hence, MontiArc-
Automaton produces an error.

GD
1 generator StatechartPython

2 conforms generators.BehaviorGenerator {

3 // ...

4 start scp.Embedded; // Inexistent template ’scp.Embedded’.

5 }

Listing 7.12: The generator description StatechartPython references a template
as starting point (l. 4) that is unavailable to the generator it represents.

GR3: The referenced input modeling language exists.

The third mandatory constituent of each code generator description is the input mod-
eling language of the represented generator. If the referenced input modeling language
is unavailable to the generator, MontiArcAutomaton raises an error as depicted in List-
ing 7.13. Here, the behavior generator RecipePython referenced the rule Main of the
grammar Recipe, which is unavailable to the represented generator.

GR4: The referenced starting point exists.

Generator description models can either reference main templates or Java factory
methods as entry points. Whichever it references must exist. For templates, this is

150

7.2 Code Generator Description Language

GD
1 generator RecipePython

2 conforms generators.BehaviorGenerator {

3

4 language Recipe.Main; // Inexistent language ’Recipe.Main’.

5 }

Listing 7.13: The generator represented by description RecipePython cannot
access the referenced language Recipe.Main (l. 4).

validated on file-basis. For factory methods, the referenced type is parsed using the
Java/P modeling language and the existence of the specified method is validated.

GR5: The referenced context conditions exist.

Whenever context conditions are declared, these must exist as well. Please note that
for multiple references to the same missing context condition, MontiArcAutomaton
raises multiple errors. Listing 7.14 illustrates this error with the context condition
tap.RequireDetermnism (ll. 4-5).

GD
1 generator TimedAutomataPython

2 conforms generators.BehaviorGenerator {

3 // ...

4 contextconditions in tap {

5 RequireDetermnism; // Inexistent context condition

6 } // ’tap.RequireDetermnism’.

7 }

Listing 7.14: The generator description TimedAutomataPython references the
missing context condition tap.RequireDeterminism (ll. 4-5).

GR6: The additionally provided behavior languages exist.

The existence of the behavior input modeling languages of component generators is
crucial as well. Consequently, MontiArcAutomaton produces errors if any of these is
missing. The generator description PlainComponents of Listing 7.15 references the
missing language lng.Automata.Body. Consequently, MontiArcAutomaton produces
the depicted error.

Type Correctness Conditions

The generator description language features a single type correctness condition. This
condition ensures that all required information for the referenced generator interface is
defined in the generator description, so that MontiArcAutomaton can generate proper

151

Chapter 7 Compositional Code Generation

GD
1 generator PlainComponents

2 conforms generators.ComponentGenerator {

3 // ...

4

5 behaviors { // Inexisting language ’lng.Automata.Body’.

6 lng.Automata.Body,

7 lng.IOTable.Table,

8 lng.RobotArm.Progam;

9 }

10 }

Listing 7.15: The generator represented by PlainComponents cannot access the
referenced language lng.Automata.Body (l. 6).

implementations of the referenced interface. As this also is crucial to generator compo-
sition, violating this condition raises an error as well.

GT1: Generator descriptions provide the information required for implementing the
referenced generator kind.

Each generator description references a generator interface that represents the gen-
erator type the represented code generator should conform to. MontiArcAutomaton
generates proper generator description implementations (cf. Figure 7.1) to be part of
the generator to utilize these for composition. Hence, the code generator description
models must provide all information required by the referenced generator interface as
summarized in Table 7.1.

Listing 7.16 shows the exemplary generator description AutomataLisp that describe
a component behavior code generator that translates automata to Lisp artifacts. As
the represented generator should implement the interface BehaviorGenerator (l. 2),
MontiArcAutomaton expects the generator description to provide information on the
run-time environment the generated artifacts conform to. For the same reason, desig-
nating additionally supported behavior languages (ll. 8-10) is prohibited.

7.3 Code Generator Composition

Generating integrated component artifacts with reusable component generators and be-
havior generators requires ensuring compatibility of the generators and the produced
artifacts as well as their execution for whichever model parts they are responsible. To
ensure the compatibility of generators, we have introduced code generators types. These
types govern how and when conforming generators are executed. Artifact compatibility
instead is based on conformance to run-time environments. Generator composition in
MontiArcAutomaton is realized as the execution of responsible code generators while
traversing the AST nodes of architectures with embedded behavior language models.

152

7.3 Code Generator Composition

GD
1 generator AutomataLisp // Run-time system missing.

2 conforms generators.BehaviorGenerator {

3

4 start gen.lisp.Starter.run();

5

6 language lng.Automata.AutomatonContent;

7

8 behaviors { // Prohibited for behavior generators.

9 lng.SimpleArc.Component

10 }

11 }

Listing 7.16: The generator description AutomataLisp declares to represent a
BehaviorGenerator (l. 2), but omits designation of a run-time
environment. Also is specifies additionally supported behaviors (ll. 8-
10), which is prohibited for behavior generators.

The implementations generated from generator description models are the prime con-
stituents of MontiArcAutomaton code generator composition. These implementations
provide all information required for composition and yield mechanisms to enable struc-
tured information exchange between code generators. Each MontiArcAutomaton code
generator is deployed with such an implementation that can be identified via naming
convention based on the generator descriptions name. Hence, composition requires to
instantiate, configure, and execute the code generators represented by these implemen-
tations in the correct order.

Actual composition of component structure generators and component behavior gener-
ators can be performed in three ways that differ in the composition controlling elements
and the granularity of code generation control required:

1. The generator composition framework traverses the AST itself and invokes the
responsible generators for each AST node.

2. The component generator traverses the AST and passes each component behavior
AST node it encounters and additional context information to the composition
framework. The framework delegates generation of proper behavior artifacts to
the respective behavior generators and returns control to the component generator
again.

3. The component generator traverses the AST and delegates calls to behavior gen-
erators itself.

The first alternative requires very broad interfaces to code generators that allow spec-
ification of required information per AST node type and passing each AST subtree to
the component generator requires it manage these trees properly. For instance, the com-
ponent generator developer has to decide whether to generate something from the AST

153

Chapter 7 Compositional Code Generation

subtree representing the interface of a component or from the individual interface ele-
ment subtrees. Usually, code generators process the AST elements as required and do not
need to manage invocation with redundant AST elements. Enforcing such management
complicates code generator development. In the second alternative, component code
generators traverse the AST and generate component structure artifacts as required.
Whenever the generator encounters a behavior AST node, it collects all information
required to produce a compatible artifact from the behavior node and passes that, to-
gether with the behavior node, to the composition framework. The latter configures
and invokes the behavior generators that produce according artifacts. This alternative
requires only small interfaces between component code generators and the composition
framework, but produces redundancy as the composition framework delegates invocation
to behavior generators without adding information. Removing this indirection leads to
the third alternative, in which the component generators invoke behavior generators di-
rectly. MontiArcAutomaton implements the third alternative. Here, the infrastructure
provides all necessary information, such as the configured behavior generators and the
component generators invoke these. This leaves control at the component generators
without composition framework interferences and enables optimizing code generation.

In the following, Section 7.3.1 describes the process to develop MontiArcAutomaton
code generators, which includes production of these implementations. Afterwards, based
on participating code generators selected by the application modeler, the generators’
implementations must be instantiated and executed. Therefore, Section 7.3.2 explains
how MontiArcAutomaton instantiates, configures, and executes code generators.

7.3.1 Developing MontiArcAutomaton Generators

MontiCore code generators employ M2T transformations powered by the FreeMarker2

template engine. Usually, these code generators employ dedicated start templates that
configure and control code generation. However, these start templates do not specify
which information the generator requires to produce proper artifacts and the only means
to specify such is in form of template commands. This requires the generator developer of
a component generator to understand the internals of templates of participating behavior
generators – which assumes the white-box view on code generators MontiArcAutomaton
aims to avoid. MontiArcAutomaton code generators also employ FreeMarker, support
template operators and template helpers, and may begin with a start template, but re-
quire a more sophisticated machinery to enable composition. With MontiArcAutomaton,
application modelers may use monolithic code generators (cf. Req. TRQ-4) for specific
language aggregates as well as modular code generators where each translates a subset
of the participating languages into compatible GPL code. Composition of modular code
generators is aligned with MontiArcAutomaton’s language extension mechanisms and
exploits the three code generator kinds introduced earlier (cf. Section 7.1).

Development of according code generators follows the activities depicted in Figure 7.5.
First, the generator developer decides which generator kind the generator under devel-

2Website of the FreeMarker template engine: http://freemarker.org/

154

http://freemarker.org/

7.3 Code Generator Composition

act Develop Compositional Code Generator

L
a
n
g
u
a
g
e

E
n
g
in

e
e
r

G
e
n
e
ra

to
r

D
e
v
e
lo

p
e
r select or

create RTE

[data type generator]

[component

or behavior

generator]

[behavior

generator]

generator kind

RTE

define
additional
behaviors

identify
starting
point

identify
context

conditions

identify
modeling
language

add
context

conditions

[component

generator]

[requires

context conditions]

[does not

require context

conditions]

behavior

language

fragments

start

template

context

conditions

AD

create
generator
description

create
description

impl.

identify
generator

kind

Figure 7.5: The activities required to develop a compositional MontiArcAutomaton code
generator.

opment implements and selects the proper generator interface. For component genera-
tors and behavior generators, she afterwards selects a run-time environment the gener-
ated code will conform to. If no such RTE exists, the run-time environment developer
must provide one. If the generator under development is a component generator, she
also defines which additional input modeling languages the generator supports (cf. Sec-
tion 7.2.1). Afterwards, invariant of the generator’s kind, she identifies its input modeling
language and its starting point (either a FreeMarker template or a Java factory method).
If the generator requires context conditions - a question answered in collaboration with
the language engineer of the generator’s input modeling language, she develops these
as well. Then, she documents the selected generator kind, run-time environment, input
modeling languages, starting point, and context conditions in the generator description
model. Finally, she creates an implementation from this model.

While MontiArcAutomaton supports handcrafted generator description implementa-
tions, it also yields a code generator for this. The generator representation generator
processes generator description models and transforms these into Java classes imple-
menting the referenced interfaces such that the implemented methods return the values
of their related properties (e.g., getStart() of the implementation returns the quali-
fied name of the start template or start method as declared via start by the generator
description model). The generated implementation also persist the configuration infor-
mation, which enables the represented generator to access this information at run-time.

155

Chapter 7 Compositional Code Generation

Generator

Description

ComponentsPython

Description

Generator Description

Context Conditions

Templates

processes generates

conforms

«interface»

ComponentGenerator

«interface»

DataTypeGenerator
«interface»

BehaviorGenerator

Generator Description

Java Generator

Template

Helpers

Generator Description

Parser & Symbol Table

used for
compositionComponentsPython

GeneratorInterfaces

MontiArcAutomaton

Figure 7.6: The constituents of the component generator presented in Listing 7.6.
(cf. Figure 7.1).

Considering the generator description ComponentsPython depicted in Listing 7.6,
the generator description infrastructure of MontiArcAutomaton will create a proper im-
plementation of this interface as depicted in Figure 7.6. This implementation contains
all information of the generator description model and, as the generator description de-
clares that the represented generator implements the interface ComponentGenerator,
implements that interface as well. The code generator thus comprises templates that
describe the target artifacts, template helpers that perform complex calculations, a gen-
erator description model, and the generated description implementation that can be
exploited for composition.

7.3.2 Instantiating and Executing Composable Generators

The application modeler selects the code generators appropriate for the target plat-
form the software architecture should run with. To this end, she selects a component
generator, multiple behavior generators, and a data type generator per target platform
(cf. Figure 3.8). After selecting the participating generators, their qualified names are
passed to the MontiArcAutomaton generator orchestrator .

The latter instantiates the generator description implementation of each referenced
generator via the corresponding generator kind’s interface to avoid dependencies of
MontiArcAutomaton to the participating generators. Afterwards, it configures the
component generator with the participating behavior generators via its configure()
method. The component generator persists this information for generator execution.

Figure 7.7 depicts the participating components, models, and implementations trans-

156

7.3 Code Generator Composition

Code

Generator

Selection

ComponentsJava

Description Impl.

«interface»

IBehaviorGenerator

StatechartJava

Description Impl.

AutomatonJava

Description Impl.

«interface»

IComponentGenerator

*1

configures Generator

Orchestrator

ComponentsJava

Generator Description

IOAutomatonJava

Generator Description
StatechartJava

Generator Description

represents represents represents

configure(filename, packageName,

imports)
configure(behaviorGenerators)

part of
MontiArcAutomaton

infrastructure

*

Figure 7.7: The MontiArcAutomaton generator orchestrator instantiates generators via
the interfaces representing their kinds and implemented by their generated
description implementations.

lation of components with embedded automata and Statecharts to Java. The generator
selection is input to the generator orchestrator, which knows the MontiArcAutomaton
code generator interfaces and how to compose these. The generator selection also refer-
ences the three code generators required to translate such components by their generator
description models. MontiArcAutomaton generates a Java implementation of the inter-
face referenced in each model that contains all information from the respective model.
The generator orchestrator can instantiate these generators via their interfaces and ex-
ecute these to produce Java artifacts. To this end, the generator orchestrator starts
code generation by invoking the starting point of the data type generator as explicated
by its description implementation as depicted in Figure 7.8. This generation phase is
independent of component generation and behavior generation as the participating code
generators do not need to exchange information at generation-time. Afterwards, the data
type generator has produced data type artifacts and the generator orchestrator invokes
the component generator via its starting point. After passing the instantiated behavior
generators to it, the component generators traverse the AST of MontiArcAutomaton
components during which they also visit contained embedded behavior models. If the
currently visited AST node represents an element of the MontiArcAutomaton ADL, it
is processed by the component generator. If it is an element of a behavior language, the
component generator identifies the responsible behavior generator via the input model-

157

Chapter 7 Compositional Code Generation
G

e
n
e
ra

to
r

O
rc

h
e
s
tr

a
to

r

AD

load
application

configuration

traverse
model

elements

start
component
generator

produce
behavior
artifact

[finished][unfinished]
[component

element]

[unknown

element]

produce
component

code

behavior

generators

C
o
m

p
o
n
e
n
t

G
e
n
e
ra

to
r

[responsible

behavior generator available]

[responsible generator missing]

B
e
h
a
v
io

r

G
e
n
e
ra

to
rs

check
application

configuration

start
data type
generator

instantiate
code

generators

act Generator Orchestration

[OK]

[Error]

mark subtree
of element as

finished

Figure 7.8: Generator orchestrator, component generators, and behavior generators in-
teract to compose their activities.

ing language explicated by the respective generator’s description implementation. While
there may be more than one generator per behavior language, composition currently
supports only a single behavior generator per behavior language. MontiArcAutomaton
informs about invalid generator selections.

In case a responsible behavior generator is available, the component generator config-
ures it with the information required to produce a compatible component behavior arti-
fact. In case of the interface BehaviorGenerator, this amounts to passing the name
of the resulting class, the package it should reside in, and the import statements of the
component model via the interface’s configure() method. The behavior generator’s
description implementation persists this information and the component generator in-
vokes the behavior generator via its starting point, thereby passing the behavior model’s
AST node. The behavior generator traverses the behavior model’s AST and may access
information persisted in its description implementation to produce compatible artifacts.
After processing the behavior model’s AST, each behavior generator produces a valid
GPL artifact (cf. Def. 8) and returns control to the component generator. The compo-
nent generator marks the currently processed behavior model AST node and its subtree
as processed and continues traversing until all nodes have been processed.

Figure 7.8 illustrates the activities of generator orchestrator, component generator
and behavior generators during composition. The main composition activity is part of

158

7.4 Two Compositional Code Generator Families

Vector<T>

Selector<T>

Number

T
list

i

item

[i < list.length()]

/ list.get(i)

[i >= list.length()]

/ --

Idle

Error

Vector

void add(T item)

T get(Number index)

Number length()

T

Number

MAA

var T last

data types defined
in class diagrams

CD

ports referencing class
diagram data types

component variable of
generic data type

embedded
automaton

Figure 7.9: The atomic component Selector returns the i-th element of the passed list
using the depicted class diagram data types.

the component generator, which processes the components surrounding the embedded
behavior models. Therefore, of the three generator kinds, only the component generator
knows the context information (cf. Req. 5) required to configure the behavior generators.
Consequently, it manages execution of responsible behavior generators.

7.4 Two Compositional Code Generator Families

MontiArcAutomaton code generators are of specific kinds and implement the respective
interfaces. They do so by providing generator description models that hold correspond-
ing information and are translated into generator description implementations. These
implement the generators’ interfaces and provide means to persist context information
for generator composition.

This section presents two code generator families. A code generator family is a set of
code generators comprising at least one component code generator, at least one data type
generator, and arbitrary many behavior generators that produce artifacts conforming to
the same run-time environment. Hence, these artifacts and, by design of the generator
interfaces, the generators can be composed. The families comprise five code generators:
Three of these conform to a Java RTE and translate MontiArcAutomaton with embedded
Automata models that reference UML/P class diagrams for data types into artifacts
compatible to Java 1.8. The remaining two translate the same modeling language family
into Python 3.3 artifacts compatible to ROS Indigo3. While the Java generators are
completely modular, i.e., there are separate code generators for models of MontiArc-
Automaton ADL, Automata, and UML/P class diagrams, the Python/ROS component
generator takes care of creating artifacts for Automata models as well.

3ROS Indigo website: http://wiki.ros.org/indigo

159

http://wiki.ros.org/indigo

Chapter 7 Compositional Code Generation

Running example for both generator families is the component Selector depicted in
Figure 7.9. This component employs an embedded automaton to select elements from
a list. To this end, it features an input port list of class diagram type List<T> and
another input port i of class diagram type Number (provided by MontiCore). If the
received index i is within the list’s length. The embedded automaton returns the i-th
element. Otherwise, it switches to an error state that cannot be left.

7.4.1 A Code Generator Family for Java Systems

The code generator family for Java translates MontiArcAutomaton models into Java
classes without further requirements on target platforms. A monolithic code generator
for this translation was presented in [RRW13b]. The language family produces similar
artifacts but differs in comprising modular code generators and integrating handcrafted
artifacts and behavior artifacts differently.

While composability of the participating generators is enabled by design of the gener-
ator interfaces and MontiArcAutomaton’s composition procedure (cf. Section 7.3), the
compatibility of generated artifacts depends on the run-time environment they are com-
patible to. Therefore, the next sections describe a run-time environment for Java that
component generators and behavior generators conform to, present the family’s compo-
nent code generator with its generator description and the behavior generator responsible
for translating embedded Automata models into compatible artifacts, and describe the
family’s class diagram generator, which extends the generator presented in [Sch12].

The Run-Time Environment

MontiArcAutomaton run-time environments are sets of target GPL modules that provide
solutions to common component tasks. This includes, for instance, communication,
serialization, persistence, and integration of handcrafted artifacts. As such, it is tied
to a specific GPL and target platform properties. For the latter, it may assume the
existence of certain, APIs, framework, or libraries. Correct usage of these modules must
be ensured via convention and documentation.

The javats run-time environment for this family of Java generators describes the
interfaces and interaction of components, ports, and variables work, as well as the inte-
gration of handcrafted and generated behavior implementations with component imple-
mentations. Although only the component generator produces artifacts depending on
components, ports, and variables at generation time, bundling these with the component
generator would introduce ties from the generated system to it. Instead, these types are
part of the run-time environment, which generated system and component generator
depend on. Thus, the javats run-time environment comprises of Java classes and in-
terfaces to represent components, ports, variables, and behavior implementations the
family’s generator developers agree on.

Figure 7.10 shows the constituents of javats, which are an abstract class Component,
the two classes Port and Variable that both extend the abstract class DataSource,
and the three interfaces Computable, Result, and Input. Code generators whose

160

7.4 Two Compositional Code Generator Families

CD

T currentValue

T nextValue

DataSource

T

T

T

T getCurrentValue()

void setNextValue(T val)

void update()

void compute()

void init()

void setUp()

void update()

«interface»

Computable

Result compute(Input in)

«interface»

Result
«interface»

Input

Variable

Port

javats

Component

realizes component
interaction

stores
data

integrates handcrafted
component behavior artifacts

decouple behavior implementation data
access from ports and variables

Figure 7.10: The javats run-time environment for Java component implementations.

descriptions declare conformity to javats are expected to produce component arti-
facts that extend the class Component. The class Component is unaware of Port
and Variable instances. As the actual ports and variables of a component model are
available at code generation time only, Component cannot know these apriori. Instead
of managing lists of ports and variables, the code generators producing subclasses of
Component are expected to produce proper realizations. This enables, for instance,
producing individual members per port and variable. Furthermore, this decouples the
notion of components from ports and variables and enables component generators to
employ their own types for that. The types Port and Variable wrap functionalities
of ports and variables. In consequence, they provide the similar features and behavior,
wherefore they extend the abstract class DataSource. The class DataSource pro-
vides access to two values of generic type T: the current value of this data source and its
next value.

Atomic components conforming to javats are expected to integrate handcrafted and
generated component behavior implementations via the delegator pattern [GHJV95],
where the delegate implements the interface Computable, to fulfill Req. TRQ-2 . Em-
ploying the delegator pattern is a feature of this run-time environment and using other
integration patterns [GHK+15] is feasible as well. This interface yields two generic type
parameters T and U that require type arguments to implement the interfaces Input,
and Result respectively. As behavior generators conforming to javats are expected
to produce component behavior implementations that implement Computable as well,
the integration of handcrafted and generated component behavior implementations can
be treated uniformly for both. The interfaces Result and Input are expected to be

161

Chapter 7 Compositional Code Generation

implemented by data structures generated from the components’ ports and variables.
At design-time, these data structures separate the concerns of application programmers
of handcrafted component behavior implementations from component generator con-
cerns by providing the single means of communication between component artifacts and
component behavior artifacts. This liberates application programmers from learning
about component generation details (such as the correct use of ports) and shields the
component internals from application programmers. At run-time, the data structure
implementing Input conveys the current values of incoming ports and variables and
Result conveys the resulting values after component behavior calculation.

In conclusion, the component generator of this language family produces Java classes
that extend the class Component and employ Port and Variable to represent ports
and variables, respectively. Furthermore, atomic components produced with this com-
ponent generator yield a member that implements Computable. For components with
behavior models, the family’s behavior generators produce Java classes implementing this
interface and conforming either to naming conventions of following the containing com-
ponent’s implementation reference (cf. Section 4.1.1). For atomic components without
behavior models, application programmers provide according Java classes implementing
the Computable interface.

The javats Component Code Generator

The component code generator ComponentsJavaTS translates composed and atomic
components with their ports, variables, subcomponents, and embedded behavior models
into Java classes. For the latter, it delegates generation the available behavior generators.
As the component generator must produce artifacts compatible to the javats run-time
environment, it produces up to four Java classes per component:

1. A component implementation class that extends the abstract class Component and
owns multiple ports and variables according to the corresponding model. If the
model is an atomic component, this class also has a member of type Computable,
otherwise, it contains the references to the model’s subcomponents.

2. For atomic component models, it also generates a class implementing Input wrap-
ping component’s input ports and variables with their current values. Instances of
it are passed to the component’s behavior implementation which performs calcu-
lations based on these values.

3. A similar class for output ports and variables implementing Result. This also is
generated for atomic components only.

4. A class implementing the factory pattern [GHJV95] for the component implemen-
tation class. Component implementations of composed components rely on this
class to create subcomponent instances. Employing this pattern allows exchanging
the actually created factory products for testing purposes.

162

7.4 Two Compositional Code Generator Families

selector

javats CD

Selector

- Port<Vector<T>> list

- Port<Number> i

- Port<T> item

- Variable<T> last

- Computable delegate

Component

T

+ void compute()

+ void init()

+ void setUp()

+ void update()

«interface»

Input
«interface»

Result

SelectorInput SelectorResult

T T

- Vector<T> list

- Number i

- T last

- T item

- T last

+ Vector<T> getVector()

+ Number getI()

+ T getLast()

+ void setList(Vector<T> list)

+ void setLast(T last)

SelectorFactory

SelectorImplFactory
provided by behavior generator
for embedded automata

Figure 7.11: Java classes resulting from applying component generator
ComponentsJavaTS to component Selector.

For the component type Selector of Figure 7.9, the generator produces the four
classes as depicted in Figure 7.11. To achieve this, the component generator employs 29
templates and 9 template helpers. Most templates are responsible for small parts of the
resulting class to enable reuse with other code generators (as discussed in [RRW13b]). For
instance, there are individual templates for each of the methods illustrated in Figure 7.11
for atomic components and composed components. Furthermore, there are templates for
connectors, parameters, ports, and variables. The helpers, for instance, collect various
component constituents into data structures convenient for processing by templates.

The generated class Selector of Figure 7.11, for instance, represents the compo-
nent type Selector and can be reused for every subcomponent instance of this type
(cf. Req. TRQ-8). It has a member of type Computable to which the component
implementation delegates compute() calls. To instantiate this member, component
implementations rely on factories provided by behavior generators, such as the class
SelectorImplFactory. Its name is derived from the behavior implementations name
and passed to the behavior generator via its generator description implementation. The
behavior generator responsible for translating automata models is hence also responsible
for providing a proper factory. This requires the component generator’s integration into
MontiArcAutomaton’s generator composition. Therefore, the component generator’s de-

163

Chapter 7 Compositional Code Generation

scription model is defined as depicted in Listing 7.17. The generator description resides
in the generators root package (l. 1) and has the name ComponentsJavaTS (l. 3). The
generator description declares that its description implementation implements the in-
terface ComponentGenerator (l. 4) and that its start template is templates.Main
(l. 5). The represented generator also processes the language defined by MAAComponent
of grammar MontiArcAutomaton and produces artifacts compatible to run-time en-
vironment javats.

GD
1 package d.m.generators.componentsjava;

2

3 generator ComponentsJavaTS

4 conforms d.m.c.i.ComponentGenerator {

5 start d.m.generators.componentsjava.templates.Main;

6 language d.m.c.l.adl.MontiArcAutomaton.MAAComponent;

7 rte de.montiarcautomaton.runtimes.javats;

8 }

Listing 7.17: Generator description of the ComponentsJavaTS component
generator with abbreviated package names.

The javats Automata Code Generator

The AutomataJavaTS code generator provides means to translate Automata mod-
els embedded in components into Java classes compatible to the run-time environment
javats. The generator produces three artifacts per Automata model:

1. An enumeration to represent the automaton’s states.

2. The actual behavior implementation realizing the automaton. This class imple-
ments the BehaviorGenerator interface and relies on the surrounding compo-
nent’s Input and Result data structures (cf. Figure 7.11). These are wrappers to
receive current port and variable values (Input) and to emit new values for ports
and variables (Result). This liberates component behavior generator developers
and application programmers from these structure implementation details.

3. A factory [GHJV95] for the behavior implementation class.

For the component type Selector of Figure 7.9, AutomataTS produces the enu-
meration type SelectorState with values Idle and Error, the behavior implemen-
tation class SelectorImpl, which implements the interface Computable, and the
behavior factory SelectorImplFactory as used by the class Selector. Figure 7.12
illustrates these classes and shows that SelectorImpl relies on the data structures
SelectorInput and SelectorResult provided by the component generator. Fur-
thermore, it shows that the behavior artifacts are created in the same package as the
other component artifacts. This decision is made within the component generator and

164

7.4 Two Compositional Code Generator Families

SelectorImpl

selector

SelectorImpl

Factory

+ Result compute(Input)

+ SelectorResult init(Input)

«enum»

SelectorState

Idle

Error

produces

javats CD

Component
«interface»

Input
«interface»

Computable
«interface»

Result

used by component generator to produce
GPL behavior implementations

automaton
states

GPL behavior
implementation

Figure 7.12: The AutomataJavaTS behavior generator produces three classes per em-
bedded Automata model.

passed to AutomataJavaTS via its generator interface (cf. Figure 7.2). This decision
is arbitrary and extending the behavior generator interface to receive a package path
would enable the behavior generators to produce artifacts in different package paths.

AutomataJavaTS translates Automata models that allow underspecification, for
instance in form of defining multiple initial states to Java classes, multiple transitions
leaving a state on the same stimulus, or multiple transitions leaving a state on the same
guard expression. However, Java does not support such non-determinism and therefore
some resulting behavior artifacts will not adhere to the behavior of the input model.
To prevent this, AutomataJavaTS provides context conditions to reject problematic
models. While these can identify Automata models with multiple states and identical
stimuli on the same state easily, evaluating whether two guards are enabled for the same
inputs is generally undecidable. This, however, is a problem of verification and beyond
the scope of this thesis.

Nevertheless, AutomataJavaTS must explicate its context conditions to MontiArc-
Automaton. Therefore, its generator description must declare these as introduced in Sec-
tion 7.2.1. The description of AutomataJavaTS is as depicted in Listing 7.18, which,
after declaring a package (l. 1) and its name (l. 3), denotes that AutomataJavaTS
is a behavior generator (l. 4). Consequently, it must declare a start template (l. 5),
the modeling language it processes (l. 6), and compatibility to a run-time environ-
ment (l. 7) – in this case javats. Additionally, it declares the context conditions
MultipleInitialStates and MulitpleIdenticalStimuliInState (ll. 8-11).

165

Chapter 7 Compositional Code Generation

GD
1 package d.m.generators.automatajava;

2

3 generator AutomataJavaTS

4 conforms d.m.c.i.BehaviorGenerator {

5 start d.m.generators.automatajava.EmbeddedAutomaton;

6 language d.m.c.l.automata.Automata.AutomatonContent;

7 rte de.montiarcautomaton.runtimes.javats;

8 contextconditions in d.m.g.a.cocos {

9 MultipleInitialStates,

10 MulitpleIdenticalStimuliInState

11 }

12 }

Listing 7.18: Generator description of behavior generator AutomataJavaTS with
abbreviated package names.

The javats Data Type Code Generator

For the translation of UML/P class diagrams into Java artifacts, the language family
employs the code generator introduced in [Sch12]. This code generator is template-based
and utilizes FreeMarker as well. However, it does not provide a generator description
and hence is not composable. To amend this, the ClassdiagramJava generator wraps
that generator’s functionality and adds the description model depicted in Listing 7.19.

GD
1 package de.montiarcautomaton.generators.cdjava;

2

3 generator ClassdiagramJava

4 conforms d.m.c.i.DataTypeGenerator {

5 start mc.umlp.arc.ClassCodegen;

6 }

Listing 7.19: A composable class diagram generator based on the generator presented
in [Sch12].

The ClassdiagramJava generator description consequently refers to the wrapped
generator’s start template mc.umlp.arc.ClassCodegen instead of providing its own.
The generator’s translation of class diagrams to Java and the integration of handcrafted
method implementations is described in [Sch12].

7.4.2 A Code Generator Family for ROS Python Systems

The pythonts code generator family produces Python artifacts relying on the robot
operating system (ROS) [QGC+09] as middleware. To this effect, it employs concepts
similar to the Java code generator family. As the Python component generator takes
care of translating embedded Automata models as well, a behavior code generator is

166

7.4 Two Compositional Code Generator Families

not necessary. Also, as Python differs from Java, the Python implementations differ
accordingly. The most important differences are the lack of interfaces in Python and
that the language is dynamically typed. Consequently, the members produced for con-
figuration parameters, ports, and variables are untyped in resulting Python artifacts.
Furthermore, ROS [QGC+09] considers software systems as graphs of nodes communi-
cating over typed message buses. These nodes especially do not support hierarchical
decomposition, wherefore this generator translates composed components accordingly.

The next sections introduce ROS, describe the family’s run-time environment, its
component code generator and data type generator.

ROS

ROS [QGC+09] is a communication middleware and build system for distributed robotics
applications multiple GPLs, including C++ and Python. ROS applications consist of
nodes and topics. Nodes are stand-alone processes that perform computations, may
not be hierarchically composed, and communicate via topics. Topics are ordered, typed
message buses. Nodes can register subscribers to get informed about new messages on
topics and publishers to send message to topics. Such communication can be established
dynamically, which allows multiple nodes to send messages to a single topic. ROS expects
topic types to be defined in msg4 models. These models resemble simplified UML class
diagrams (or C++ struct types) without visibilities, methods, and inheritance. Besides
these, ROS project require so-called launch files5, describing which nodes to start, and
manifests characterizing the ROS application. For instance, the data type MotorCMD
of Figure 2.8 can be translated into a msg model as depicted in Listing 7.20.

ROS msg
1 # MotorCMD message format.

2 # Sending component

3 string sender

4 # Enumeration constants

5 uint8 FORWARD

6 uint8 BACKWARD

7 uint8 STOP

8 # Data type enumeration

9 uint8 data

Listing 7.20: The data type MotorCMD of Figure 2.8 as a ROS msg.

Please note that this msg model declares the field sender, which identifies the sending
subcomponent. As ROS allows that multiple nodes send messages to a topic, but Monti-
ArcAutomaton allows only a single sender per incoming port, this is used to ensure
component implementations deny messages from wrong senders. However, this cannot
prohibit malevolent ROS nodes from faking sender information and publishing messages

4rosmsg website: http://wiki.ros.org/rosmsg
5roslaunch website: http://wiki.ros.org/roslaunch

167

http://wiki.ros.org/rosmsg
http://wiki.ros.org/roslaunch

Chapter 7 Compositional Code Generation

ROS

distance left

right

node topic publishing subscribing

clock

controller

data-to-dist left-to-cmd

nav-to-cmd

right-to-cmd
signal-to-time

cmd-to-cmd

trans

Figure 7.13: A ROS graph representing the ImprovedBumperBot software architecture
of Figure 4.1. Atomic components are translated to nodes, composed com-
ponents to configuration information stored in launch files (not depicted),
and connectors to topics.

to topics resembling connectors. Also ROS msg models are strongly typed but do not
support generics. The data type generator of this family takes care of proper translation.

Figure 7.13 illustrates the ROS graph for the ImprovedBumperBot software archi-
tecture of Figure 4.1. Here, each atomic component is represented by a node and each
connector by a topic of the corresponding ROS msg data type. The composed com-
ponents ImprovedBumperBot and Navigation are absent and have been translated
into a launch file starting their subcomponents’ processes.

The issues in translating MontiArcAutomaton ADL models into ROS systems there-
fore originate in employing Python’s type system and the lack of node decomposition.
Also allowing arbitrary many-to-many communication and demanding topic types in
ROS msg models must be considered. Furthermore, producing proper configuration files
and starting subcomponents as individual processes is crucial.

The following sections explain the code generation from MontiArcAutomaton to ROS,
the interaction of nodes and components, as well as the translation of architectures with
embedded automata into multiple artifacts including configuration files.

Run-Time Environment

The pythonts run-time environment of the ROS-Python code generator family resem-
bles the javats run-time environment in employing similar concepts. It also features
classes to describe components, ports, and variables. Python component implementa-
tions also integrate GPL behavior implementations via delegation and hence also rely on
classes to represent these with their input and output. Ports and variables also extend
a common base class. The run-time environment itself is unaware of ROS as the com-
ponent implementations are executed by manager classes that start ROS nodes, connect
to topics, and transmit data to and from ports.

The constituents of pythonts are the seven classes depicted in Figure 7.10. As
with javats, there is the abstract base class Component, which defines methods all
component implementations have in common. This besides the methods reflecting the

168

7.4 Two Compositional Code Generator Families

CD

Component Variable

Port
T

T

void compute()

void setUp()

void update()

void publish()

void callback()

Computable

Result getInitialValues()

Result compute(input)

Result Input

pythonts
realizes component

interaction

integrates handcrafted
component behavior artifacts

decouple behavior implementation data
access from ports and variables

stores
data

T currentValue

T nextValue

DataSource

T getCurrentValue()

void setNextValue(value)

void update()

T

Figure 7.14: The run-time environment pythonts supports execution of Python com-
ponents that communicate via ROS.

component life-cycle, implementations of this class also must define the two methods
callback() and publish() which connect messaging to the ROS infrastructure.
The run-time environment also contains the two classes Port and Variable, which
inherit from the abstract class DataSource to provide access to ports, variables, and
their values. Although DataSource conceptually relies on the generic type parame-
ter T, its implementation does not. As the types of Python members are determined
dynamically, it relies on duck typing [Bea09] to determine data types. Thus it omits
syntax to handle generic types. With pythonts, GPL behavior implementations are
integrated via delegation [GHJV95] as well. Hence, it also contains the three abstract
classes Computable, Input, and Output (Python does not support interfaces). For
the same reasons as with javats, the Python Component class is oblivious of port and
variable implementation details.

This run-time environment prescribes component life-cycles, their interaction, and
integration of GPL behavior implementations similar to javats. Employing the full
power of ROS, distributed component implementation processes exchanges messages via
topics. Hence, their distribution is transparent to the user. To enable this, this code
generator family must eliminate composed components, produce proper ROS msg models
for port data types, start ROS nodes, and connect these to the ROS infrastructure. The
next section presents the family’s component generator, which takes care of this.

169

Chapter 7 Compositional Code Generation

The pythonts Component Code Generator

The pythonts component code generator produces Python artifacts and ROS con-
figuration artifacts implementing component structure and automata behavior using
FreeMarker. To this effect, it first eliminates composed components from the architec-
ture and lifts their subcomponents to the next higher level until all subcomponents are
direct subcomponents of the architecture root. For instance, regarding the software ar-
chitecture ImprovedBumperBot of Figure 4.1, the subcomponents trans, left, and
right become subcomponents of ImprovedBumperBot. Once all subcomponents re-
side in the architecture root, it is eliminated as well. The resulting software architecture
is a graph of components for which the generators produces component implementations
and further ROS artifacts.

Similar to the javats component generator, this generator produces at least five
classes per component type (Figure 7.15). The component implementation extends
from Component of the run-time environment and comprises members representing
ports and variables. It interfaces handcrafted or generated GPL behavior implemen-
tations via delegation to an instance of Computable. Therefore, each time a mes-
sage on the topics it is connected to arrives, these value are stored in its incoming
ports and variables. Every compute() step, it compiles current port and variable data
into an instance of SelectorInput and passes it to the behavior implementation of
SelectorImpl. The behavior implementation computes one transition in its automa-
ton implementation, compiles the resulting port and variable values into an instance of
SelectorResult, and passes that back to the component implementation. On re-
ceiving this data, Selector assigns the contained values to its ports and variables and
finishes computation. Every update() step, it publishes the results to ROS. Receiving
data from a topic via callback() and sending data to a topic via publish() includes
marshalling the data into ROS msg types. As this is part of the generated component
implementation, application programmers do not have to deal with ROS msg data types.
The method callback() also takes care of denying messages from senders not con-
nected to the component’s ports. The component generator also produces a manager to
create, execute, and manage component instances of type Selector. Its main purpose
is creation of a component instance and managing its life-cycle.

After producing Python artifacts, the component generator also generates the launch
file referencing the component managers to start the respective components’ nodes. Fur-
thermore, it produces the build configuration files (makefile, CMakeLists, and manifest)
required by the rosbuild6 infrastructure to create ROS packages.

The code generator description of this generator (Listing 7.21) consequently conforms
to the component generator interface (l. 4). It also declares a start template (l. 5),
to process models of the MontiArcAutomaton ADL language (l. 6), and to produce
artifacts conforming to the pythonts run-time environment (l. 7). As this generator
produces artifacts for embedded automata models as well, it declares the additional
input modeling language AutomatonContent (ll. 9-11). Consequently, it employs the

6rosbuild website: http://wiki.ros.org/rosbuild

170

http://wiki.ros.org/rosbuild

7.4 Two Compositional Code Generator Families

Selector

Port list

Port i

Port item

Variable last

Computable delegate

selector

SelectorInput SelectorResult

list

i

last

item

last

getList()

getI()

getLast()

getList()

void setList(list)

getLast()

void setLast(last)

SelectorManager

pythonts CD

Component Input Result

creates, starts,
and manages
Selector
instances

Computable

SelectorImpl

States

Idle

Errorvoid initialize()

void compute()

void setUp()

void update()

void publish()

void callback()

Result compute(input)

Result getInitialValues()

void __main__()

Selector create()

Figure 7.15: The pythonts component generator produces five classes per component
without behavior model (atomic or composed).

same context conditions as the AutomataTS generator regarding multiple initial states
and identical stimuli (ll. 13-16).

The pythonts Data Type Code Generator

The pythonts data type generator translates UML/P class diagram types into two
representations: First, it creates Python data types for the component-internal repre-
sentation. Second, it also creates ROS msg data types for the communication between
nodes. The translation of UML/P class diagrams into plain Python data types trans-
lates CD classes into Python classes under consideration of Python idioms: there are no
visibilities but conventions, and Python does not support interface types, and method
overloading is prohibited as well. The code generator translates UML/P classes into sim-
ilar Python representations, i.e, visibilities are translated into member names according
to typical Python conventions, interfaces are translated into abstract classes (as Python
supports multiple inheritance), and method overloading is prohibited by a generator con-
text condition. The part of this generator translating to plain Python was prepared in
a Bachelor’s thesis [Deu14]. Translation into ROS msg models is slightly more complex
as both, UML/P CD and ROS msg are strongly typed, but ROS msg (cf. Listing 7.20)
does neither support generics, nor interfaces, inheritance, generic types, static mem-
bers, or methods. The lack of interfaces and methods is unproblematic as component
implementations take care of marshalling ROS msg types into plain Python types sup-

171

Chapter 7 Compositional Code Generation

GD
1 package d.m.generators.componentsros;

2

3 generator ComponentROS

4 conforms d.m.c.i.ComponentGenerator {

5 start d.m.g.c.MainTemplate;

6 language d.m.c.l.adl.MontiArcAutomaton.MAAComponent;

7 rte de.montiarcautomaton.runtimes.pythonts;

8

9 behaviors {

10 d.m.c.l.automata.Automata.AutomatonContent;

11 }

12

13 contextconditions in d.m.g.c.cocos {

14 MultipleInitialStates,

15 MulitpleIdenticalStimuliInState;

16 }

17 }

Listing 7.21: Description of a composable component generator that produces
Python implementations interfacing the ROS middleware.

porting both. Inheritance, and static members are prohibited by context conditions.
For UML/P classes yielding generic type parameters, the data type generator calculates
the actual types of members apriori and produces corresponding ROS msg types with
the generic types replaced. Thus, for a component instantiating two subcomponents of
type Selector with different arguments for its generic type parameter, this generator
produces two different ROS msg types to communicate with these instances.

GD
1 package d.m.generators.rospythontypes;

2

3 generator DataTypesROS

4 conforms d.m.c.i.DataTypeGenerator {

5 start d.m.g.rospythontypes.Main;

6

7 contextconditions in d.m.g.rospythontypes.cocos {

8 NoMethodOverloading,

9 NoInheritance,

10 NoStaticMembers

11 }

12 }

Listing 7.22: A composable data types generator for the production of Python classes
and ROS msg types.

DataTypesROS code generator description of Listing 7.22 represents this data type
generator (l. 4) for use with MontiArcAutomaton. To this effect, it declares a start

172

7.5 Discussion and Related Work

template (l. 5), and multiple context conditions (ll. 7-11) regarding method overloading,
interfaces, inheritance, and static members to realize the discussed restrictions.

7.5 Discussion and Related Work

The assumption of these three specific generator kinds is tightly coupled to the C&C
nature of MontiArcAutomaton and cannot be generalized to code generator composi-
tion challenges in different contexts. Approaches to software composition that could
be applied to code generators are, for instance, GenVoca [BO92, BST+94] and the
Genesys [Jö13] extension of the application building center [SMN+07] as well as generator
composition via aspect-oriented programming [ZR11], or feature-driven MDE [TBD07].
Their relation to the MontiArcAutomaton approach has been discussed in [RRRW14]:
being generic, these approaches are agnostic to properties of the composed generators.
As such they introduce additional complexities to code generator development which can
be reduced taking the C&C nature of MontiArcAutomaton its generators into account.
While it may be useful to add other generator kinds - for instance a code generator
kind for object instantiation using the factory pattern [GHJV95] has been introduced
in [RRRW14] - these are not required to separate of MontiArcAutomaton concerns.

Code generator composition in MontiArcAutomaton relies on exploiting the genera-
tor description implementations generated from the generator description models that
implement interfaces according to the three generator kinds. Hence, the validity of a
specific generator description model depends on the interface the represented generator
should implement. In consequence, changes to generator interfaces entail changes to
the generator description modeling language and their context conditions as well. This
derivation could be automated by parsing the generator interfaces using the Java/P and
generating a proper grammar according to naming and data type conventions (such as
lists in the interfaces translated to lists in the grammar).

Furthermore, generator composition also relies on artifact compatibility as expressed
in terms on run-time environments. Such run-time environments may comprise mul-
tiple classes and artifacts for different purposes. Hence, developing a code generator
that produces conforming artifacts requires an understanding how this conformance is
achieved (for instance by producing artifacts implementing specific interfaces). Intro-
ducing a modeling language to describe such dependencies may reduce the need for such
coordination. Whether it can be eliminated completely needs to be investigated.

The actual execution of behavior generators is performed by the component generators.
This imposes requirements on the development of compositional MontiArcAutomaton
code generators. As component generators already must translate all component model
parts besides any embedded behavior models, they must traverse and process almost the
complete AST anyway (only the subtree containing the behavior model is not processed
by the component generator). Although the generator orchestrator could traverse the
AST itself - and call either the component generator or an appropriate behavior gen-
erator - this would require a very broad component generator interface and complicate
component generator development.

173

Chapter 7 Compositional Code Generation

Development of the pythonts generator family that interfaces the ROS [QGC+09]
middleware via ROS msg data types has shown that using class diagrams as data type
modeling language may pose issues when translating to less expressive formalisms. Multi-
platform applications requiring such translation must either restrict data types to the
minimum expressiveness available on all platforms or employ code generators supporting
proper data type translation.

The code generators presented in this chapter produce GPL implementations base
on component types. Although this helps to reduce the number of generated artifacts,
depending on the target GPL, generation based on component instances might be easier
to implement. As MontiArcAutomaton does not prescribe how generators work - besides
from employing certain generator kinds - this decision is left to the generator developers

174

Chapter 8

Describing Component & Connector
Applications

All models are wrong but some are useful.

George E. P. Box

Employing software architectures (Chapter 4), bindings (Chapter 6), and code gen-
erators (Chapter 7) requires their integration. Bindings and code generators are both
platform-specific but also interdependent: Bindings map platform-independent interface
components to platform-specific components, which are tied to GPL implementations
conforming to a specific run-time environment. Code generators produce GPL arti-
facts from platform-independent components that conform to a run-time environment
as well. Hence, specifying bindings or generators within the software architecture mod-
els ultimately ties it to platforms compatible to the run-time environments referenced
by bound components or selected code generators. Instead, we decouple the platform-
independent software architecture to be (re-)used from code generators and bindings
by defining both in application configuration models. This loose coupling between an
application’s constituents allows reusing code generators and architecture models in dif-
ferent applications without modification. Platform-independent architectures, imple-
mentation libraries, and selected code generators can be referenced by multiple appli-
cations and in different combinations. Figure 8.1 depicts the typical constituents of a
MontiArcAutomaton application. MontiArcAutomaton applications are characterized
by application configuration models that reference the platform-independent software
architecture, import types of implementation libraries, describe how the interface com-
ponents of the referenced architecture are bound to implementation library components
(cf. Chapter 6), and define which code generators should be applied to the resulting
architecture (cf. Chapter 7). Thus, the MontiArcAutomaton language family comprises
the MontiArcAutomaton ADL, the generator description language, and the application
configuration language.

Therefore, Section 8.1 presents the MontiArcAutomaton application configuration lan-
guage with its language elements, symbol table, and context conditions. Afterwards,
Section 8.2 describes how MontiArcAutomaton processes MontiArcAutomaton applica-
tions before Section 8.3 describes their usage by example. Finally, Section 8.4 discusses
findings and related work.

175

Chapter 8 Describing Component & Connector Applications

1..*

Implementation

Library
Implementation

Library

Code

Generator
Code

Generator

Platform-Independent

Architecture

Application

Configuration

C&C Application

Interface

Library

references

imports

Implementation

Library

Generator

Family

uses

1..* 1..*

may use platform-
independent composed,
atomic, and interface
components

may contain platform-
specific composed and
atomic components

contains bindings
and selects code

generators

Figure 8.1: The constituents of a typical MontiArcAutomaton application are multiple
application configuration models referencing a single platform-independent
architecture and multiple generator families as well as implementation li-
braries to translate the architecture into multiple platform-specific imple-
mentations.

8.1 Application Configuration Language

The application configuration modeling language combines a single software architecture
with bindings and code generators for a single target platform. Therefore, a software
development project employing MontiArcAutomaton may contain multiple application
configuration models. The following sections present the language’s modeling elements,
symbol table, and context conditions.

8.1.1 Language Elements

Application configuration models have a name, reference a software architecture, con-
tain a set of bindings, and select a set of code generators. The application configura-
tion modeling language defines language elements to represent this information prop-
erly. Listing 8.1 shows the application configuration NavigationBotNXTJava for the
NavigationBot software architecture depicted in Figure 6.2. The model first declares
a package (l. 1) and subsequently imports the NXTJava component types and data types
depicted in Figure 6.8 (l. 3).
The application configuration begins with the keyword application, followed by a

name, the keyword for, the qualified name of the architecture this application config-
uration refers to, and application configuration’s body in curly brackets (ll. 5-6). The
body may contain bindings and references to code generators in arbitrary order. The
application configuration of Listing 8.1 first contains three bindings (ll. 8-10) followed by
four qualified names referencing code generators (ll. 12-15). The bindings reference the
subcomponent instance names of the interface subcomponents of NavigationBot and
describe how their types should be replaced. The remainder of this section introduces

176

8.1 Application Configuration Language

the language elements for application configuration declaration, definition of bindings,
and selection of code generators in detail.

App
1 package navigationbot;

2

3 import NXTJava.*;

4

5 application NavigationBotNXTJava

6 for architecture.NavigationBot {

7

8 bind sensor to NXTUltrasonic(SensorPort.PORT_1);

9 bind navcontrol.left to NXTMotor(MotorPort.PORT_A);

10 bind navcontrol.right to NXTMotor(MotorPort.PORT_B);

11

12 componentgenerators.ComponentsJava;

13 datatypegenerators.ClassdiagramJava;

14 behaviorgenerators.AutomataJava;

15 behaviorgenerators.IOTableJava;

16 }

Listing 8.1: The application configuration NavigationBotNXTJava references the
NavigationBot software architecture and defines three bindings.

Application Configuration Declaration

MontiArcAutomaton supports multiple application configurations per project, hence, it
must be able to distinguish these. The application configuration declaration provides
means to do so by requiring a name. It begins with the keyword application followed
by the application’s unqualified name as illustrated in Listing 8.2.

App
1 application BumperBot

2 for architecture.NavigationBot {

3 // ...

4 }

Listing 8.2: The application configuration BumperBot (l. 1) references the software
architecture architecture.NavigationBot (l. 2).

In conjunction with the package, its name identifies the application configuration
model (l. 1). After the name, the keyword for declares which software architecture
model this application configuration relates to – restricting it to a single architecture
(l. 2). The architecture’s name must either be fully qualified or imported. Curly brackets
follow the architecture’s name to delimit the application configuration’s body.

177

Chapter 8 Describing Component & Connector Applications

Bindings

Bindings describe a mapping from a subcomponent path in the transitive subcomponent
hierarchy of the referenced software architecture denoted by s0.s1 . . . sn to a parametrized
component type. Here, s0.s1sn is a dot-separated sequence of subcomponent names
that unambiguously identifies a subcomponent in the subcomponent hierarchy of the ref-
erenced architecture (cf. Section 2.4). The identified subcomponent must be an interface
component to be replaced. Forfeiting this restriction would allow replacing arbitrary
components and, hence, would allow to change the software architecture beyond com-
prehension. Whether this is more useful than harmful requires investigation. T is a
component that extends the interface component of sn and a0, . . . , am are proper argu-
ments for T (cf. Section 6.1). Application configuration models specify such bindings in
the form

bind s0.s1 . . .sn to T (a0, . . . ,am)

The application configuration BoundBumperBot depicted in Listing 8.3 defines three
bindings (ll. 4-6). Each begins with the keyword bind, followed by a dot-separated
sequence of names indicating a path in the subcomponent hierarchy of NavigationBot.
After this, the keyword to, and the parametrized component type to replace the interface
subcomponent follow.

App
1 application BoundBumperBot

2 for architecture.NavigationBot {

3

4 bind sensor to ROSUltrasonic("ultra", "front_us");

5 bind navcontrol.left to ROSMotor("lm", "motor_1");

6 bind navcontrol.right to ROSMotor("rm", "motor_2");

7 // ...

8 }

Listing 8.3: The application configuration BoundBumperBot defines three bindings
(ll. 4-6) from interface subcomponents of the component type
architecture.NavigationBot to platform-specific components.

The bindings of BoundBumperBot describe how the interface subcomponents sensor
of NavigationBot and left and right of component type NavigationControl
(cf. Figure 6.2) should be replaced. As NavigationBot instantiates the component
type NavigationControl as navcontrol, the qualified name of the latter two
bindings begins with navcontrol accordingly. Each binding’s right-hand side refers
to a component type of the PythonROS implementation library (cf. Figure 6.9) and
parametrizes if correctly. The bound component types may be imported and referenced
by their unqualified name or their qualified name if not imported. Bindings may provide
arguments for parameters not set by the software architecture only. This prohibits for
bindings to overwrite architecture properties as required by Req. MRQ-8 .2 .

178

8.1 Application Configuration Language

Code Generators

Application configuration models also select the code generators to apply. To this effect,
application configuration models may contain a set of qualified code generator names.
In contrast to an earlier version of this language presented in [RRRW14], there are no
keywords for the selection of individual generator kinds. Instead, the context conditions
take care, that the selection is valid and MontiArcAutomaton derives the referenced
generator’s types via their symbol table entries (cf. Section 7.2.2).

App
1 application BoundBumperBotPythonROS

2 for architecture.NavigationBot {

3

4 bind sensor to ROSUltrasonic("ultra", "front_us");

5 bind navcontrol.left to ROSMotor("lm", "motor_1");

6 bind navcontrol.right to ROSMotor("rm", "motor_2");

7

8 componentgenerators.ROSPythonComponents;

9 datatypegenerators.PythonCD;

10 behaviorgenerators.AutomataPython;

11 behaviorgenerators.IOTablePython;

12 }

Listing 8.4: Application configuration BoundBumperBotPythonROS selects four
code generators for translation of components (l. 8), class diagrams (l. 9),
and two behavior languages (ll. 10-11).

The application configuration BoundBumperBotPythonROS of Listing 8.4 selects
four code generators by their qualified names (ll. 8-11). These names refer to the gener-
ators’ configuration models (cf. Section 7.2), which provide all information to determine
whether this selection is valid.

8.1.2 Symbol Table

The application configuration language symbol table defines a single entry type: the
ApplicationConfigurationEntry. It comprises all information required to check
the well-formedness of application configuration models: the MAAComponentEntry of
the referenced architecture (cf. Figure 4.3), the GeneratorDescriptionEntry sym-
bol table entries (cf. Figure 7.4) of the participating generators, and a map from sub-
component paths to subcomponent entries that represents bindings. This integration is
enabled by the language aggregation of MontiCore and allows reasoning about models of
other languages (i.e., components and code generator descriptions) from the perspective
of a MontiArcAutomaton application.

Figure 8.2 depicts the application configuration symbol table entries and their rela-
tions. Note that this structure ties the application configuration symbol table and the ap-
plication configuration language to the symbol table entries of the MontiArcAutomaton

179

Chapter 8 Describing Component & Connector Applications

CD

String KIND

String name

String packageName

CodeGeneratorEntry

1

1

*

ApplicationConfigurationEntry MAAComponentEntry
architecture

behaviorGenerators

componentGenerator

dataTypeGenerator

ComponentReferenceEntry

path

0..1

component entry of the MontiArcAutomaton ADL

entry of the
MontiArcAutomaton ADL

entry of the generator
description language

Figure 8.2: The symbol table of the application configuration language references entries
of the MontiArcAutomaton ADL and of the generator description language.

ADL and the code generator description language. However, as long as their symbol
table entries remain unchanged, changes to their respective abstract syntax trees do not
affect the application configuration language.

8.1.3 Context Conditions

The application configuration context conditions ensure the models’ well-formedness by
checking whether the referenced architecture, subcomponents, and code generators exist,
and whether the code generator selection and bindings are valid. To this effect, the
application configuration context conditions are separated into uniqueness conditions,
convention conditions, referential integrity conditions, and type correctness conditions.
The following sections describe these context conditions. Some of the context conditions
operate in the context of the application configuration’s software architecture. For the
following examples, we assume the ExplorerBot architecture illustrated in Figure 3.2.

Uniqueness Conditions

The application configuration uniqueness conditions check uniqueness of bindings and
participating code generators. Restrictions on code generators are derived from the
nature of embedding behavior languages into components: there may be only a single
data type generator, a single component code generator per application, and multiple
behavior generators. The structure of the application configuration’s grammar already
restricts application configuration’s to reference a single software architecture, hence,
this requires no context condition. Violation of uniqueness conditions raises errors.

180

8.1 Application Configuration Language

CU1: All subcomponents are bound unambiguously.

Defining two bindings to the same subcomponent introduces underspecification that
must be resolved prior to code generation. Such underspecification is unsolicited and
processing such an application configuration creates unexpected results as the order of
bindings is not intended to imply an order of their application. Hence, binding the same
subcomponent of the architecture’s subcomponent hierarchy multiple times is prohibited.

The application configuration BumperBotNXTJava of Listing 8.5 violates this condi-
tion by binding the subcomponent sensor multiple times (ll. 4-8). It specifies that the
type of sensor should be replaced with NXTUltraSonic (ll. 4-5) and with NXTColor
(ll. 7-8), which is impossible in the target software architecture.

App
1 application BumperBotNXTJava

2 for arc.ExplorerBot {

3

4 bind sensor // Component ’sensor’ bound multiple times.

5 to NXTUltraSonic(PORT_1);

6

7 bind sensor // Component ’sensor’ bound multiple times.

8 to NXTColor(PORT_2);

9 // ...

10 }

Listing 8.5: The BumperBotNXTJava application configuration binds the
subcomponent sensor twice (ll. 4-8).

CU2: Exactly one code generator for component structure.

Each application describes transformation and code generation for exactly one software
architecture and one target platform. Hence, each application configuration may refer-
ence only a single component code generator. Although referencing, and thus executing,
two component generators might not raise issues, it is unspecified whether executing
the second code generator interferes with (artifacts produced by) the first generator.
Therefore, this context condition prohibits such configurations.

In case the generators CompPythonV272 (l. 4) and CompPythonV330 (l. 5) as ref-
erenced in Listing 8.6 are valid component generators, i.e., their generator descrip-
tions are valid and declare that the represented generators implement the interface
ComponentGenerator, the application configuration BumperBotROSPython vio-
lates this context condition. This context condition is checked against the application
configuration’s AST, as its symbol table does not support multiple component generators
(cf. Section 8.1.2). Generator names are resolved as GeneratorDescriptionEntry
instances (cf. Section 7.2.2). If two or more symbol table entries claim to contribute a
component generator, this context condition raises the error depicted in Listing 8.6.

181

Chapter 8 Describing Component & Connector Applications

App
1 application BumperBotROSPython

2 for arc.ExplorerBot {

3

4 CompPythonV272; // Multiple component generators.

5 CompPythonV330; // Multiple component generators.

6 // ...

7 }

Listing 8.6: This application configuration is invalid as it contains multiple code
generators responsible for the same language fragment (ll. 4-5).

CU3: Exactly one code generator for data types.

For the same reasons application configuration models may reference only a single
component generator, they may reference a single data type generator only. The proce-
dure to check whether the generator selection contains two or more data type generators
also checks the models’ AST and resolves all generators to find multiple generator models
referencing data type generators. In case the context condition finds such generators, it
raises the errors depicted in Listing 8.7, where CDJava (l. 4) and CDPython (l. 5) are
both data type generators.

App
1 application BumperBotROSNative

2 for arc.ExplorerBot {

3

4 dtg.CDJava; // Multiple data type generators.

5 dtg.CDPython; // Multiple data type generators.

6 // ...

7 }

Listing 8.7: The application configuration BumperBotROSNative contains two
code generators responsible for transformation of data types (ll. 4-5)
and, hence, is invalid.

CU4: Exactly one code generator per behavior language.

The MontiArcAutomaton code generator composition also requires that there is ex-
actly one code generator per behavior language embedded in the referenced software
architecture. To check this, the context condition resolves all components of the architec-
ture and collects their behavior languages. If there is any behavior language for which no
code generator is responsible, it raises the error illustrated with application configuration
ExpJava depicted in Listing 8.8. This application configuration references the archi-
tecture ExplorerBot as depicted in Figure 3.2 on page 32, which employs embedded
Automata models. As the application configuration does not provide a code generator

182

8.1 Application Configuration Language

responsible for the embedded Automata grammar production Automaton.Body, it
raises the depicted error (ll. 16-17).

AC
1 generator ADComponentsJava

2 implements ComponentGenerator {

3 start ComponentMain;

4 language MontiArcAutomaton.MAAComponent;

5 runtime javats;

6 behaviors ActivityDiagram.Body;

7 }

8

9 generator ActivityDiagramsJava

10 implements BehaviorGenerator {

11 start ActivityDiagram;

12 language ActivityDiagram.Body;

13 runtime javats;

14 }

15

16 application ExpJava // Missing generator for behavior

17 for ExplorerBot { // ’Automaton.Body’.

18

19 ADComponentsJava; // Redundant generator for

20 // ’ActivityDiagram.Body’.

21

22 ActivityDiagramJava; // Redundant generator for

23 // ’ActivityDiagram.Body’.

24

25 ClassdiagramJava;

26 }

Listing 8.8: This application configuration is missing a code generator for the
language Automata.AutomatonContent and provides too many code
generators for the language fragment ActivityDiagram.Body

Overspecification of generators responsible for a specific language fragment is pro-
hibited as well. As component generators can contribute behavior language generation
capabilities, this context condition considers behavior generators and component code
generators for provided behavior language translation capabilities.

The two example behavior generators depicted in Listing 8.8, ADComponentsJava
(ll. 1-7) and ActivityDiagramsJava (ll. 9-14), for instance, support translation of
the UML/P activity diagram language fragment ActivityDiagram.Body (ll. 6,12).
Hence, the application configuration ExpJava (ll. 16-25), which employs both code
generators, is invalid and this context condition produces the displayed errors (ll. 19-24).

183

Chapter 8 Describing Component & Connector Applications

Convention Conditions

Application configuration models resemble singleton [GHJV95] classes of object-oriented
systems in the sense that they cannot be instantiated multiple times for different projects.
Therefore, the single naming convention requires that the names of application configu-
ration models begin with a capital letter as well.

CC1: The names of application configuration models begin with a capital letter

The names of application configuration models should begin with a capital letter.
Otherwise, this context conditions produces a warning as displayed in Listing 8.9. Here,
the illustrated application configuration expRob begins with a lower-case letter, which
produces the displayed warning (ll. 1-2).

App
1 application expRob // Application configurations

2 for rob.Explorer { // start upper-case.

3 // ...

4 }

Listing 8.9: Application configuration expRob begins with a lower-case letter and
consequently raises a warning (ll. 1-2).

Referential Integrity Conditions

The application configuration language’s referential integrity conditions check whether
the constituents referenced by name exist and whether these references are valid. This
comprises checking that all subcomponents of the referenced architecture are bound and
that the code generators are compatible.

CR1: The referenced architecture exists.

An application configuration is meaningful only in the context of a software architec-
ture. Hence, it is crucial that the referenced software architecture exists. In case the
architecture is missing, the context conditions regarding bindings are meaningless and
some of the conditions related to code generators are as well. Considering ExplorerBot
(Figure 3.2) and related component types being the only component types available, the
application configuration BBRobotino of Listing 8.10 is invalid as the referenced soft-
ware architecture arc.XumperBot cannot be resolved. Hence, this context condition
raises the depicted error (ll. 1-2).

184

8.1 Application Configuration Language

App
1 application BBRobotino // Inexistent architecture

2 for arc.XumperBot { // ’arc.XumperBot’.

3 // ...

4 }

Listing 8.10: This application configuration references the inexistent software
architecture arc.XumperBot, which raises the error depicted.

CR2: All interface subcomponents of the referenced architecture are bound.

Code generation for software architectures with interface components either cannot
produce executable systems or must produce executable systems with underspecified be-
havior. This is due to the interface components omitting any executable behavior. While
individual code generators may produce executable systems from interface components,
MontiArcAutomaton cannot assume this in general. Therefore, application configura-
tions that reference architectures with interface components, but do not bind all of these
components are considered erroneous and are rejected by this context condition.

App
1 application TurtleBumper // Unbound interface

2 for arc.ExplorerBot { // component ’sensor’.

3

4 bind left to TurtleBotMotor();

5 bind right to TurtleBotMotor();

6

7 generators.ComponentsWithAutomataPython;

8 generators.CDPython;

9 }

Listing 8.11: This application configuration does not bind the interface component
sensor of the referenced software architecture, which gives rise to the
depicted error.

The application configuration TurtleBumper of Listing 8.11 references the software
architecture ExplorerBot depicted in Figure 3.2, which contains the three interface
subcomponents sensor, navigation.left, and navigation.right. As it only
provides bindings for the latter two, this context condition raises the error depicted in
the listing (ll. 1-2).

CR3: All bound subcomponents exist and are of interface components.

Application configurations binding subcomponents that do not exist in the referenced
software architecture or that are no interface components are obviously considered er-
roneous as well (cf. Def. 4). Permitting bindings to other component types would al-
low replacing all subcomponents of the referenced software architecture, and therefore

185

Chapter 8 Describing Component & Connector Applications

render the initial architecture meaningless. Listing 8.12 illustrates both errors: The
application configuration DistributedBB for the platform-independent architecture
arc.ExplorerBot binds the subcomponent controller, which is of non-interface
kind (l. 4). The binding of subcomponent logger (l. 7) raises another error as that
subcomponent does not exist in the software architecture.

App
1 application DistributedBB

2 for arc.ExplorerBot {

3

4 bind controller to JavaCtrl(); // Subcomponent ’controller’

5 // is no interface component.

6

7 bind logger to JavaLogger(); // Inexistent subcomponent

8 // ... // ’logger’.

9 }

Listing 8.12: The application configuration DistributedBB binds a subcomponent
of non-interface type (l. 4) and a inexistent subcomponent (l. 7).
Therefore, it gives rise to two errors.

CR4: All implementation components types used for bindings exists.

As the bound subcomponents must exist in the software architecture, so must the
bound platform-specific implementation component types exist as well. Otherwise,
trying to apply the binding transformation (cf. Listing 6.2) will fail. Consequently,
such application configurations are prohibited and rejected by this context condition.
The application configuration ScalaBumperBot of Listing 8.13 demonstrates the error
raised by context condition CR4 on a binding from interface subcomponent sensor of
ExplorerBot to the inexistent component type NXTLadar. Therefore, this context
condition raises the error depicted (ll. 4-5)

App
1 application ScalaBumperBot

2 for arc.ExplorerBot {

3

4 bind sensor to NXTLadar(); // Inexistent component type

5 // ... // ’NXTLadar’

6 }

Listing 8.13: Binding the existing interface subcomponent sensor to an inexistent
component type raises the depicted error.

186

8.1 Application Configuration Language

CR5: All referenced code generators exist.

Obviously, all code generators referenced in an application configuration must ex-
ist. Otherwise, checking code generator related context conditions and proper code
generation are impossible. Considering only the Java generators AutomataJavaTS,
ClassdiagramJava, and ComponentsJavaTS (introduced in Section 7.4), the ap-
plication configuration EmbeddedJavaBot of Listing 8.14 is invalid as it references the
inexistent code generator SmallComponentsJava (l. 4).

App
1 application EmbeddedJavaBot

2 for arc.ExplorerBot {

3

4 SmallComponentsJava; // Generator does not exist.

5 // ...

6 }

Listing 8.14: The application configuration EmbeddedJavaBot references an
inexistent code generator (l. 4) and, thus, is erroneous.

CR6: All referenced code generators conform to the same run-time environment.

Application configuration models select multiple code generators to produce an in-
tegrated, executable system. To ensure proper integration, the participating compo-
nent code generator and the behavior generators must produce compatible artifacts.
With MontiArcAutomaton, this is expressed as conformance to the same run-time en-
vironment. Considering the Java code generators AutomataJavaTS, CDJava, and the
Python code generator ComponentsPython (Section 7.4), the application configuration
model SimulationBot of Listing 8.15 is invalid: the generators AutomataJavaTS
and ComponentsPython produce artifacts conforming to different run-time environ-
ment (ll. 1-2).

App
1 application SimulationBot // Generators ’AutomataJavaTS’

2 for arc.ExplorerBot { // and ’ComponentsPython’ use

3 AutomataJavaTS; // different run-time environments.

4 CDJava;

5 ComponentsPython;

6 }

Listing 8.15: Two of the code generators used by application configuration
SimulationBot rely on different run-time environments (ll. 1-2).

187

Chapter 8 Describing Component & Connector Applications

CR7: Code generators and bound component types conform to the same run-time
environment.

Considering the component generator ComponentsPython of Listing 7.6 and the
platform-specific components of the javats library depicted in Figure 6.8, the applica-
tion configuration OfficeBot of Listing 8.16 is erroneous. The component generator
produces artifacts that conform to the run-time environment pythonuntimed (cf. List-
ing 7.6, l. 8), while subcomponent left is bound to component type NXTMotor con-
forming to the run-time environment java-timesync. Applying bindings and code
generators would produce a GPL implementation of component type ExplorerBot,
which, for instance, expects behavior implementations to conform to the run-time envi-
ronment pythonuntimed – which is incompatible to the behavior implementation of
component type NXTMotor.

App
1 application OfficeBot

2 for arc.ExplorerBot {

3

4 bind left to NXTMotor(PORT_A); // Bound component type does

5 // not use the component

6 ComponentsPython; // generator’s RTE.

7 // ...

8 }

Listing 8.16: The application configuration OfficeBot employs a code generator
and a binding of incompatible run-time environments.

Type Correctness Conditions

The type correctness conditions of the application configuration language check the type
correctness of bindings. This includes checking that interface subcomponents are bound
to platform-specific components only and that they are parametrized properly.

CT1: The bound implementation’s component type is platform-specific.

Binding interface components to interface components does not contribute behavior to
the architecture. In consequence, this is prohibited and context condition CT1 performs
the according checks. To this end, it resolves all implementation component types refer-
enced in bindings and checks whether these are of interface components. The application
configuration GroovyExplorer shown in Listing 8.17 contains such a binding (l. 4) that
maps the interface component sensor to the interface component DistanceSensor
(cf. Figure 6.7). Context condition CT1 detects this and produces the displayed error.

188

8.1 Application Configuration Language

App
1 application GroovyExplorer

2 for arc.ExplorerBot {

3

4 bind sensor to DistanceSensor(); // Cannot bind to interface

5 // ... // component kind.

6 }

Listing 8.17: The component type DistanceSensor is interface and, therefore,
cannot be bound (l. 4).

CT2: The bound subcomponent’s type is a super type of the component type to be
replaced.

To ensure interface compatibility, the types of interface subcomponents may only
be replaced with inheriting component types. Context condition CT2 ensures this by
traversing the inheritance hierarchy of each replacing type mentioned in a binding and
raises an error if that hierarchy does not contain the bound subcomponent’s type. As-
suming, for instance, that component type NXTMotor does not extend - directly or
transitively - the component type DistanceSensor (cf. Figure 6.7), the application
configuration ROSPythonNXT as depicted in Listing 8.18 violates this context condition
as it binds the subcomponent sensor to NXTMotor (l. 4).

App
1 application ROSPythonNXT

2 for arc.ExplorerBot {

3

4 bind sensor to NXTMotor(); // NXTMotor does not extend

5 // ... // component type of ’sensor’.

6 }

Listing 8.18: The depicted application configuration binds the subcomponent
sensor to the component type NXTMotor. As NXTMotor does not
descend from DistanceSensor, this is invalid.

CT3: Arguments for all new implementations component types’ configuration pa-
rameters without default values are provided.

Bindings introduce new component types to the software architecture, which must ex-
tend the bound subcomponent’s type. The extension mechanisms of MontiArcAutomaton
allow to extend the list of configuration parameters inherited from a super component,
which is exploited to specify additional platform-specific configuration parameters (as
required by Req. MRQ-8 .1). If these parameters do not provide default values, the
bindings must specify arguments for these. However, as arguments for some of these

189

Chapter 8 Describing Component & Connector Applications

parameters may be already defined in the software architecture, these are considered
paramount and may not be redefined by bindings (cf. Req. MRQ-8 .2). This follows the
idea that the original software architecture is decisive and therefore, bindings may give
arguments for the parameters of implementation component types that are not already
given in the software architecture only.

In consequence, this context conditions can raise two different errors: First, bindings
can omit arguments required by the bound component type. Second, they can overwrite
arguments already specified in the software architecture. Both errors are illustrated in
the application configuration BumperBotCPP depicted in Listing 8.19, which binds the
subcomponents sensor (l. 4) and timer (l. 6). The component type NXTUltrasonic
bound to sensor extends DistanceSensor (cf. Section 6.2.1) and introduces the
configuration parameter port to describe which physical port of the NXT robot its
behavior implementation is connected to. The binding omits to specify an argument for
this parameter and thus, this context condition raises the displayed error (l. 4). The
second binding from timer to JavaTimer specifies an argument for the parameter
delay, which JavaTimer inherits from Timer. This is prohibited as the software
architecture already defines an argument for it, which is considered paramount. Hence,
this context condition raises the second error (l. 6).

App
1 application BumperBotCPP

2 for arc.ExplorerBot {

3

4 bind sensor to NXTUltrasonic(); // Missing argument.

5

6 bind timer to JavaTimer(2); // Overwriting argument

7 // ... // of component ’timer’.

8 }

Listing 8.19: Application configuration BumperBotCPP contains two bindings with
missing (l. 4) and redundant (l. 6) arguments.

CT4: Arguments for all generic type parameters of bound subcomponents are pro-
vided and correct.

Extending platform-specific implementation component types may add new generic
type parameters or reduce these by assigning values to the super component’s generic
type parameters. Generic type parameters can govern types of ports. To retain the
validity of connectors, ports of the platform-specific component type must be of the
same types than the ports of the bound interface component. Therefore, this context
condition requires that for each port of the interface subcomponent, there is a port of the
same name and type in the subcomponent derived from applying the bindings’ generic
type arguments to the replacing component type. This is a stronger requirement than
extension and suffices to ensure the integrity of the connectors.

190

8.2 Processing MontiArcAutomaton Applications

MAA
1 interface component GenericSensor<T> {

2 port

3 out T data;

4 }

5

6 component RGBASensor<U> extends GenericSensor<U> {

7 // Component modeling elements.

8 }

9

10 component ExtendedBumperBot {

11 port

12 out Integer reading;

13

14 component GenericSensor<Integer> gs;

15 connect gs.data -> reading;

16 // Additional components and connectors.

17 }

Listing 8.20: The composed component ExtendedBumperBot instantiates
RGBASensor and defines its generic parameter to be Integer.

Consider the component types GenericSensor, RGBASensor and their usage with
component type ExtendedBumperBot as depicted in Listing 4.12. The interface com-
ponent GenericSensor declares the generic type parameter T to define the type of
its outgoing port data. Hence, the possible connectors are restricted by the actual ar-
gument for parameter T passed to it at subcomponent instantiation. The component
type RGBASensor extends GenericSensor and employs a generic type parameter U
which it expects to be defined a instantiation and passes to its GenericSensor part
(l. 6). Hence, instantiating RGBASensor with a specific data type entails that it de-
fines a port data of that type. The component type ExtendedBumperBot yields an
interface consisting of the single Integer port reading (l. 12) and instantiates a sub-
component gs of type GenericSensor with type argument Integer (l. 14), which
entails that this subcomponent’s port data is of type Integer. It furthermore con-
nects that port to its outgoing Integer port reading. In this context, the application
configuration of Listing 8.21 is invalid: If the new component type of gs should become
RGBASensor<Float>, its port data will assume the type Float and, hence, cannot
be connected to port reading. Thus, this context condition raises an error as depicted
and rejects this application configuration.

8.2 Processing MontiArcAutomaton Applications

MontiArcAutomaton MontiArcAutomaton applications are projects containing a Monti-
ArcAutomaton ADL software architecture and at least one application configuration
model. MontiArcAutomaton processes applications in two phases: First, it processes

191

Chapter 8 Describing Component & Connector Applications

App
1 application RobotinoJava

2 for ExtendedBumperBot {

3

4 bind gs to RGBASensor<Float>(); // Invalid type parameter.

5 // ...

6 }

Listing 8.21: Application configuration RobotinoJava produces an error by
binding sensor to component type RGBSensor<Float> (l. 4), hence,
changing the type of port data from Integer to Float and, thus,
violating the integrity of ExplorerBot.

the application configuration model, checks its context conditions, applies the bindings,
and stores the selected code generators. Afterwards, it processes the transformed soft-
ware architecture, checks its context conditions, applies further transformations, starts
generator composition, and ultimately generates GPL artifacts. Enabling this procedure,
requires integration of the participating languages. To this end, MontiArcAutomaton
employs the MontiCore language integration mechanisms as follows:

• Behavior languages are embedded into the MontiArcAutomaton ADL and aggre-
gated into the MontiArcAutomaton ADL language family.

• The MontiArcAutomaton ADL language family is aggregated with the genera-
tor description language and the application configuration language to the overall
MontiArcAutomaton language family.

This coupling results in the overall MontiArcAutomaton language family as depicted
in Figure 8.3. Hence, the MontiArcAutomaton can resolve application configurations,
as well as the referenced architecture and generator descriptions.
In processing applications in two phases, executing MontiArcAutomaton differs from

typical MontiCore executions (cf. Figure 2.3). Fully processing a MontiArcAutomaton
application requires participation of the toolchains of the application configuration lan-
guage, the generator description language, and the MontiArcAutomaton ADL.
First, the application configuration infrastructure parses the application’s configura-

tion model as depicted in Figure 8.4. This may include loading the symbol table entries of
referenced generators, which requires the generator description infrastructure to provide
these symbol table entries. Providing these entries may include parsing the generator
description models of participating generators, checking their context conditions, and
creating their symbol table entries. Similarly, the MontiArcAutomaton ADL infrastruc-
ture must produce the component symbol table entries for the software architecture.
This may also include parsing, context condition checking, and symbol table creation.
Afterwards, the symbol table for the processed application configuration model can be
created and the language’s context conditions are checked. Subsequently, the binding
transformation (cf. Section 6.3) of the application configuration language transforms the

192

8.3 Modeling MontiArcAutomaton Applications

MontiArcAutomaton ADL

Language Family
UML/P

Language Family

CD

JavaDSL

�
Behavior

DSL
Behavior

DSL
Behavior

DSLs

MontiArcAutomaton

ADL

MCL

MontiCore

Common
MontiArc

MontiArcAutomaton

Language Family
Generator

Description

Application

Configuration

Figure 8.3: The MontiArcAutomaton language family combines software architectures,
code generator descriptions, and application configurations.

referenced software architecture and passes it to the MontiArcAutomaton ADL infras-
tructure. The latter checks the well-formedness of the architecture model, composes the
participating code generators, and ultimately generates the target GPL artifacts.

8.3 Modeling MontiArcAutomaton Applications

Reusing a single platform-independent architecture with two platforms employing dif-
ferent GPLs (cf. Section 3.1) with C&C applications builds on the modeling languages
presented in Chapter 4, the bindings and libraries of Chapter 6, and the code generation
framework of Chapter 7.

Figure 8.5 depicts the constituents of the MontiArcAutomaton application comprising
a platform-independent MontiArcAutomaton software architecture ExplorerBot and
the artifacts to derive two platform-specific implementations from it. Creating these two
implementations from the ExplorerBot software architecture of Figure 3.2 (interface
subcomponents are shaded blue), requires the application modeler to provide correspond-
ing application configuration models. Therefore, she integrates a behavior language
provided by a language engineer into MontiArcAutomaton as presented in Section 4.2.
Afterwards, she models the software architecture as required, but uses the interface com-
ponents DistanceSensor, Timer, and Motor from the BumperBotModels library.
To transform the platform-independent ExplorerBot into platform-specific variants for
the robot platforms depicted in Figure 3.1, she selects proper implementation libraries
for both platforms. For the scenario, these are the JavaNXT library of Section 6.2.2 for
the Lego NXT platform and the PythonROS library presented in Section 6.2.3 for the
Pioneer 3-AT platform. Given the ExplorerBot software architecture containing in-
terface components and their platform-specific realizations, she creates two application

193

Chapter 8 Describing Component & Connector Applications

parse
application

configuration

AD

load
generator
symbols

load
component

symbols

apply
bindings

produce
generator
symbols

M
o
n
ti
A

rc
A

u
to

m
a
to

n

A
D

L
 T

o
o
lc

h
a
in

A
p
p
lic

a
ti
o
n

C
o
n
fi
g
u
ra

ti
o
n

T
o
o
lc

h
a
in

G
e
n
e
ra

to
r

D
e
s
c
ri
p
ti
o
n

T
o
o
lc

h
a
in

produce
component

symbols

check
context

conditions

create
symbol
table

check
context

conditions

compose
code

generators

generate
GPL

artifacts

[exist][exist]

[do not

exist]

act MontiArcAutomatonActivities

[do not exist]

Figure 8.4: A typical MontiArcAutomaton execution involves the toolchains of all par-
ticipating languages.

configuration models (cf. Chapter 6), one for each platform and models proper bind-
ings for each platform. Afterwards, she selects appropriate combinations of run-time
environments and code generators as presented in Chapter 7. From these application
configuration models MontiArcAutomaton produces platform-specific architecture mod-
els (arrow“A”), which are translated into platform-specific GPL implementations (arrow
“B”) afterwards.

194

8.3 Modeling MontiArcAutomaton Applications

Java
NXT

Python
ROS

BumperBot
Models

NXT

AppConfig
ROS

AppConfig

JavaJavaJava PythonPythonPython

A A

BB
ExplorerBot

Figure 8.5: Constituents of a reusable, platform-independent C&C application, their
prime relations, and produced artifacts.

This supports non-invasive reuse along six dimensions:

1. Single components: Both platform-independent and platform-specific components
can be reused with corresponding architectures in a black-box fashion. The former
with all platform-independent architectures, the latter with all platform-specific
architectures for the same target GPL and RTE.

2. Complete architectures: Platform-independent architectures with interface com-
ponents can be reused in a black-box fashion with similar applications as well.
It suffices to provide required platform-specific components and to specify corre-
sponding bindings.

3. Behavior languages: Behavior modeling languages can be reused in different lan-
guage combinations with little effort.

4. Component generators: Generators that produce artifacts for the representation
of structural architecture elements with respect to a specific target GPL and RTE
can be reused with all platforms supporting both.

5. Data type generators: The production of data types is decoupled from RTEs,
hence for each platform supporting a data type generators target GPL, reusing it
amounts to simply selecting it in an application configuration.

6. Behavior generators: For the same combination of target GPL and RTE, reusing
behavior generators also amounts to selecting these with a compatible generator
family as well.

195

Chapter 8 Describing Component & Connector Applications

Furthermore, if a new target platform requires implementations in a yet unsupported
GPL, the effort to develop required infrastructure parts is well separated between the
participating experts: The run-time environment developer creates a RTE and the gen-
erator developers provide proper code generators. The implementation library provider
provides platform-specific components and their implementations for this new GPL. Af-
terwards, the application modeler integrates these by simply defining a new application
configuration model.

8.4 Discussion and Related Work

Architecture configuration models tie together software architecture, implementation li-
braries, and code generators of a C&C application. To this effect, they specify bindings
and select code generators in a concise syntax close to the MontiArcAutomaton ADL.
With these, reusing a single software architecture with multiple target platforms requires
minimal effort. However, to the best of our knowledge, other architecture modeling lan-
guages consider software architectures the only development models [MDEK95, GMW97,
GMW00, VVKM00, PM03, NDZR04, DSLT05, BCL+06, LPJ10, FG12]. Hence, ex-
pressing features about a software architectures, such as how to replace subcomponents,
or how to generate code for it, pushed into the modeling framework and rarely doc-
umented. An exception to this is ArchJava, which enriches Java with architecture
modeling elements and hence is tied to Java [ACN02]. Where code generation is sup-
ported [KGO+01, BGBK08, FG12, SSL11, DKS+12] this is tied to a few fixed code
generators and neither their reuse, nor their composition are taken into account.

Also, MontiArcAutomaton currently does not support composition of multiple code
generators that support the same input modeling languages (e.g., a component generator
and a behavior generator that both process the same behavior language). While devel-
opment of a heuristic or selection mechanism for this is easy, introducing new elements to
the code generator selection mechanism (Section 8.1.1) would complicate the modeling
language and introduce additional notational noise [Wil01]. Whether employing a more
general modeling language for this (such as feature diagrams [SHT06]) is better suitable
to express the requirements in generator composition is to investigate.

Application configuration models define model transformations from single platform-
independent software architecture into single platform-specific implementations. Sup-
porting multiple related blocks of bindings and code generators in a single applica-
tion configuration is generally possible. However, such multi-application configurations
would entail updating this central artifact whenever a new target platform is included
or platform-specific components for a single target platform change. Changes to a single
target platform in configurations consisting of multiple models do not interfere with the
other application configuration models and, hence, reduce the risk of introducing errors
by side effects.

196

Chapter 9

Experiments

Man prefers to believe what he prefers to be true.

Francis Bacon

We have evaluated MontiArcAutomaton with various component behavior languages
on multiple robot platforms ranging from simulators to educational Lego NXT robots
to complex service robots. To this effect, we have developed code generators for dif-
ferent target languages [RRW13b], which includes code generation to Mona [EKM98]
for formal analysis, EMF Ecore [SBMP08] for graphical editing, and Java and Python
for deployment. Many applications require additional components to access platform-
specific software and hardware. Hence, proper libraries for specific target platforms and
applications were developed. This enables to use MontiArcAutomaton with

• Lego NXT robots and simulators using ROS [QGC+09],

• Festo Robotino robots using ROS [QGC+09], SmartSoft [SSL11],

• Lego NXT robots using LeJOS [LeJ], and

• the Simbad1 simulator.

Additionally, we have developed GPL specific libraries to provide GPL functionalities
(e.g., file I/O). The libraries comprise from 4 (ROS turtlesim2) to 21 (LeJOS NXT) com-
ponents and can be easily imported by MontiArcAutomaton applications to use these
with different platforms. In the following, Section 9.1 illustrates three evaluations in
academic contexts before Section 9.2 presents three case studies in academic and indus-
trial contexts. For each evaluation and case study, we describe the evaluated features of
MontiArcAutomaton. For evaluations, we also discuss the results of surveys performed
at different states of the projects.

9.1 Evaluations

We have performed three evaluations in lab courses at RWTH Aachen University. These
lab courses were performed in different semesters, with students of different courses,

1Simbad website: http://simbad.sourceforge.net/
2ROS turtlesim simulator: http://wiki.ros.org/turtlesim

197

http://simbad.sourceforge.net/
http://wiki.ros.org/turtlesim

Chapter 9 Experiments

coffee
preparation

robot

coffee delivery
robot

cup provider
robot

Figure 9.1: The distributed robotic coffee service implemented with Lego NXT robots
using the LeJOS JVM as operating system.

and with different versions of MontiArcAutomaton. In each lab course, we conducted
interviews with the participants and questionnaires. For each evaluation, the following
sections discuss observations and threats to validity.

9.1.1 NXT Java Coffee Delivery

With the JavaNXT library presented in Section 6.2.2, and the javats code generator
family presented in Section 7.4.1, we evaluated MontiArcAutomaton during a lab course
in winter term 2012/13 with eight master level students [RRW13a]. We employed a
development process following Scrum [Rub12]. The students acted as application mod-
elers by developing a distributed robotic coffee service consisting of the three robots
illustrated in Figure 9.1 and as application programmers for implementing the behavior
of components not easily expressible as automata (cf. Req. TRQ-2). The run-time en-
vironment and system component implementations were provided.3 In this evaluation,
the students used the MontiArcAutomaton ADL language family with embedded Au-
tomata to model a platform-specific software architecture and employed a monolithic
code generator (cf. Req. TRQ-4) to reduce the number of Java artifacts of the resulting
implementations (cf. Req. TRQ-8) for better performance on the Lego NXT robots.

With the system, users can issue coffee requests via a website. This website is hosted
on a smart phone connected to the coffee preparation robot depicted in Figure 9.1 via
Bluetooth. Once it receives a request, it commands the coffee delivery robot to fetch a
plastic mug from the mug provider robot. Afterwards, the coffee delivery robot returns

3A video of the system in action is available via https://www.youtube.com/watch?v=

xvlYN-6awfk

198

https://www.youtube.com/watch?v=xvlYN-6awfk
https://www.youtube.com/watch?v=xvlYN-6awfk

9.1 Evaluations

to the coffee preparation robot, instructs it via Bluetooth to prepare coffee and drives to
the user who ordered the coffee. In lieu of sophisticated localization sensors, navigation
was guided by black lanes with colored junctions. The system’s software architecture
consists of 23 component type definitions used in 60 component instances. Of these, 39
are components imported from various libraries.

The lab course was divided into three stages: First, the students prepared presenta-
tions of the course’s topics ranging from MontiCore to MontiArcAutomaton to develop-
ment infrastructure. Afterwards, they produced the coffee delivery system and finally,
they worked on different aspects of the MontiArcAutomaton infrastructure. After the
second stage, the students participated in a questionnaire on the modeling tools and
their complexities [RRW13a]. The detailed survey results are available in Section B.1 of
the appendix.

Observations

We observed that behavior modeling using automata was considered most complex (con-
sumed 37% of the students’ time), followed by physical robot construction (24%), Java
behavior implementation (20%), and structure modeling (19%). Consequently, the stu-
dents were more confident in using the other students’ Java classes and component
models (70%), than their automata (60%) and estimated the complexity of their team
members’ artifacts accordingly. Figure 9.2 (a) illustrates the estimates of the latter.
Although the students considered Automata models more complex (6.3 points out of
10 points) than Java artifacts (4.3 points), they were similarly confident with both as
displayed in Figure 9.2 (b). Exposing the same confidence to MontiArcAutomaton com-
ponents as to Java, which the students learned in the first semester and used many times
afterwards, highlights its benefits regarding comprehensibility.

The students of this lab course modeled atomic and composed MontiArcAutomaton
components to describe the three robots’ software architectures. In the development
stage, they changed the behavior description of most atomic components from Java
artifacts to behavior models. We therefore assume that MontiArcAutomaton is suitable
for modeling the software architecture of complex, distributed software systems. Further
observations have been published in [RRW13a].

Threats to Validity

This evaluation was performed in an educational context at RWTH Aachen University
and the eight master level students participated to obtain a rated certificate. Due to
the complexity of the task at hand and the size of the group, we could not separate the
lab course into an experimental group and a control group. This raises threats to the
evaluation’s internal validity (causality) and to its external validity (generalizability).

Threats to this evaluation’s internal validity arise from the student’s lack of previous
modeling experience compared to experience with Java as prescribed by their curriculum.
This selection bias manifested in the greater confidence in Java artifacts compared to
automata. Furthermore, the instruments to evaluate MontiArcAutomaton are subject to

199

Chapter 9 Experiments

(a) Rate from 1 (simple) - 10

(almost impossible) the effort to

understand and work on artifacts

created by your team members.

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

2.9 4.4 6.3 4.3

C&CLego Behavior Java

7

6

5

4

3

2

1

0 0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

8.3 7.1 6.1 6.6

C&CLego Behavior Java

9

8

7

6

5

4

3

2

1

0

(b) Rate your confidence in the

correctness of the artifacts created by

your team members from 1 (no

confidence) - 10 (works perfectly).

Figure 9.2: The students estimated Automata behavior modeling most complex and
had the least confidence in atomic components with Automata models de-
veloped by their team members.

issues themselves. For instance, participants interpret the scales of questionnaire answers
differently and give answers based on their self-perception only. We tried to alleviate
this bias with interviews. However, as this lab course was on model-driven development
of robotics applications and the students knew that they were assessed, the study may
also be subject to compensatory rivalry. As the study did not comprise a control group
and an experimental group, the effect of such rivalry can be hardly estimated.

Threats to external validity arise from the small number of participating students and
from the interviews being performed by the advisors instead of interviewers unrelated to
the desired certificate’s grade. Whether the results of this case study are reproducible
with other groups of similar master students or whether the same students would perform
differently in another context is hardly predictable in a university context. Lab courses
are performed every semester and hence, the modeling languages and infrastructure
advance from one lab course to another. Furthermore, master level students at RWTH
Aachen University must participate in a single lab course only, hence assembling the
same group for a similar task in another context is rarely possible.

9.1.2 Robotino ROS Python Transport Services

In the winter term of 2013/14, we evaluated MontiArcAutomaton with a Python code
generator family (cf. Req. TRQ-1), a Python run-time environment, and the ROS
Python Robotino modules in another lab course. In this course, nine master level stu-
dents developed a model-driven logistics application for a Festo Robotino4 robot using
a Kinect and speakers for user interaction. The group again employed a Scrum [Rub12]

4Robotino website: http://servicerobotics.eu/robotino/

200

http://servicerobotics.eu/robotino/

9.1 Evaluations

Festo Robotino3
robot

rear-mounted
Kinect sensor

front-mounted
camera

front-mounted
laser scanner

cargo bay

Figure 9.3: The Robotino ROS transport service robot with Kinect, speakers, and front-
mounted laser scanner.

methodology.5 The robot, depicted in Figure 9.3, also used a front-mounted laser sensor
and integrated distance sensors to navigate and avoid obstacles. The students used the
robot operating system ROS [QGC+09] in its Python implementation to interface robot
drivers and a version of Automata without embedded Java expressions. The former is
interesting as the students curricula did not prescribe to learn Python, which we assumed
to reduce the selection bias regarding previous experiences with one of the languages.

The software architecture was modeled with 31 components. Of these components,
nine are atomic with automata and 17 are atomic with platform-specific implementations.
The architecture’s top-level is depicted in Figure 9.4. The subcomponents Navigation,
MapProvider, and TaskManager are composed from further components.

In this course, the students enacted the roles of application modelers and application
programmers. The latter was necessary as, for example, the behavior of the ROS-
specific components interfacing the Kinect sensor had to be handcrafted. In this system,
a website is hosted on the robot, which receives tasks such as “fetch item X from room
Y” from this website. Embedded Automata transform these tasks into motion and
interaction commands. These commands are send to the components Navigation and
UserInterface, which transform these into platform-specific primitives.

This lab course consisted of two stages: In the beginning, the students prepared and
held introductory talks on the course’s topics. Afterwards, they developed parts of the
logistics software in groups of two or three students organized in a Scrum teams. We

5A short video documentation is available via https://www.youtube.com/watch?v=u6LF8KjvDgM

201

https://www.youtube.com/watch?v=u6LF8KjvDgM

Chapter 9 Experiments

UserInterfaceNavigation

MapProvider

TaskManager

RobotHealth

Dispatcher

Kinect

LogisticsRobot

connected to HTML
UI on a webserver

provides robot state data

connects
to ROS MAA

controls path planning
and movement

wraps Kinect capabilitiesschedules and solves tasks

Figure 9.4: Software architecture of the Robotino ROS Python transport service. The
components Navigation, MapProvider, and TaskManager are com-
posed.

conducted two surveys in this lab course: the first after a few weeks in the development
stage, the second shortly before the course ended. The first questionnaire contained 12
questions and the second contained 18 questions. The additional 6 questions focused on
reuse and the applicability of Scrum in university courses. Both questionnaires and the
aggregated results are available in Section B.2 of the appendix.

Observations

In the beginning, the students spent more time learning to use the ROS infrastructure
(27% of their time) than modeling automata (22%) or plain components (21%). We
assume this is partly due the complexity of the ROS infrastructure as well as due to
the conciseness of the modeling languages. In the end, the components and automata
consumed less time (14% and 15%, respectively), but the time required to understand
ROS (44%) and the plain Python artifacts (16%) increased. This might be due to ROS
hiding its complexity, i.e., simple and well-documented features are easy to use but once
the software grows, the complexity of solving the underlying problems grows even faster.
Figure 9.5 (a) illustrates this development. It also shows the actual development times
(b) estimated by the students in both questionnaires. Initially, the students spent much
time developing component & connector structures (35% of their development time)
and developing Python artifacts (45% including ROS infrastructure). In the end, the
development effort shifted towards Python development (64%), which hints at the C&C

202

9.1 Evaluations

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5Behavior

50%

40%

30%

20%

10%

0%

C&C ROS Gen

1st
survey

2nd
survey

PY

21 22 15 27 1514 15 16 44 12

(a) What percentage of the time did you

spend on understanding ...

35 15 4517 19 64
0

10

20

30

40

50

60

70

1 2 3

70%

60%

50%

40%

30%

20%

10%

0%

BehaviorC&C PY

(b) What percentage of the time

did you spend on developing -

35 17 14 19 45 64

Figure 9.5: The estimated distribution of the students’ time learning and developing with
the respective languages. The left column represents survey results from the
first questionnaire, the right column results from the second questionnaire.
Numbers in the columns represent the actual values.

and automata models being more stable than the Python artifacts. We assume this is
due to their reduced complexity compared to Python code.

We also asked the students to estimate the complexity of artifacts of their team mem-
bers to reduce the bias of overestimating their skills. The results indicate that the
students in the beginning underestimated the complexity of almost all participating
technologies and languages as depicted in Figure 9.6 (a). It is notable that the students’
estimate in the complexity of Python artifacts developed by their colleagues did not
increase, where the estimated complexity of ROS nodes, Automata behavior models,
and C&C models increased between 41% (Automata) and 81% (C&C structure). In
the same vein, we asked the students to estimate their confidence in the correctness of
artifacts created by their team members (Figure 9.6 (b)). The estimated correctness of
C&C structure artifacts and Automata models remained stable while the confidence
in Python artifacts and ROS nodes increased slightly. We assume this is due to the
similarity of Python and Java (which is taught in the students’ curriculum).

The students also estimated the correctness of the artifacts created by themselves.
While the estimates regarding C&C models, behavior models, and Python artifacts
remained stable between 6.8 points and 8.6 points (both out of 10 points), the confidence
in the correctness of ROS nodes raised from 2.8 points in the first survey to 7.3 points
in the second survey.

This is due to the inherent complexity of developing ROS nodes, selecting the correct
nodes from their vast repository, and configuring the individual nodes properly with
arguments determined by trial-and-error. Once selection and configuration are stable,
ROS seems to perform reliably. The second questionnaire also revealed that the students
assumed that they could have modeled twice as many components with automata than

203

Chapter 9 Experiments

(a) Rate from 1 (simple) - 10 (almost

impossible) the effort to understand and work

on artifacts created by your team members.

0

1

2

3

4

5

6

7

1 2 3 4BehaviorC&C PY ROS

7

6

5

4

3

2

1

0 0

1

2

3

4

5

6

7

8

9

1 2 3 4

9

8

7

6

5

4

3

2

1

0

BehaviorC&C PY ROS

(b) Rate your confidence in the correctness of

the artifacts created by your team members

from 1 (no confidence) - 10 (works perfectly).

2.2 4.0 3.2 4.5 3.0 3.1 4.3 6.1 7.8 7.9 6.1 6.1 6.7 7.2 4.5 6.0

Figure 9.6: Estimated complexity of their team members’ artifacts and the students’
confidence.

they actually did and that ROS was considered the most complex technology (4.4 points
out of 6 points) of that lab course. ROS was followed by the employed continuous
integration toolchain (4.1 points), the automata behavior language (3.8 points), plain
C&C models (2.9 points), and Python (1.9 points). This highlights that the object-
oriented Python language was closer to Java, which the students had plenty experience
with, than to MontiArcAutomaton. Nonetheless, the students assumed that reusing
their solution with a different but similar robot is possible within 5 days of development.
Regarding the application of Scrum, the seven of the eight students assumed that Scrum
helped development and that sprint planning meetings and daily Scrum meetings were
most helpful (9.11 points and 8.6 points out of 10 points, respectively).

Overall, the students understanding of both the MontiArcAutomaton C&C language
elements as well as of Automata converged during the lab course, whereas their un-
derstanding of Python and ROS diverged. We assume that this is due to the restricted
complexity of the modeling languages, which points at the benefit of modeling C&C
software architectures with MontiArcAutomaton. This also correlates with the fact that
the students increased Automata modeling activities towards the end. The decrease of
C&C modeling activities during the lab course points at the expected increase of archi-
tecture stability. We thus assume that MontiArcAutomaton also facilitates development
with more complex systems than presented in the previous lab course (Section 9.1.1).
Furthermore, transforming MontiArcAutomaton ADL architectures to other GPLs than
Java has shown to be feasible as well (cf. Req. TRQ-1).

Threats to Validity

Due to the task’s complexity and the small group size, separating the students into a
control group that uses only general-purpose programming languages and an experimen-

204

9.1 Evaluations

JobManager Backend

Communication

Controller

TaskTo

Speech

TextToSpeech

Sequencer

Proxy

TCPConnector

RobotLab14

comprises web
server and database

schedules
jobs

translates actions
to SmartSoft

commands

MAA

Figure 9.7: Top-level architecture of the logistics software system implemented in sum-
mer term 2014 for a Robotino robot controlled via SmartSoft and Python.
Five of the displayed component types are composed.

tal group using mostly modeling languages was not feasible. This raises threats to both
internal and external validity. Regarding the internal validity, there is a selection bias as
all participants were well-trained in developing object-oriented systems, which suppos-
edly influenced their estimates on the modeling techniques. Furthermore, questionnaires
are an insufficient instrument as the answers are biased by their self-perception and
regarding avoidance of extreme answers (avoiding the provided scales upper and lower
ends). The external validity of this evaluation is threatened as the course had the topic
model-driven development and the students received grades for their participation.

9.1.3 Robotino SmartSoft Java Transport Services

In a lab course of summer term 2014, we again assigned the task to develop a robotics
logistics application. In this lab course, 14 students from different computer science
courses participated.6 The students developed the software architecture with MontiArc-
Automaton and used to the SmartSoft [SSL11] middleware to control the robot. The
students employed Scrum [Rub12] again and used MontiArcAutomaton with integrated
Automata models and the javats code generator family. The students acted as
application modelers, application programmers, and implementation library providers
and produced the architecture depicted in Figure 9.7. Of the depicted subcomponents,
TextToSpeech and TCPConnector are atomic, the others are composed. In total,
the software architecture consists of 28 component types. Of these, 6 are composed

6A video of the results is available at https://www.youtube.com/watch?v=TIspANC9TY4

205

https://www.youtube.com/watch?v=TIspANC9TY4

Chapter 9 Experiments

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

1 2 3 4BehaviorC&C SM
0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

1 2 3 4

(b) What percentage of the time

did you spend on developing �

BehaviorC&C Java SM

50%

40%

30%

20%

10%

0%

40%

30%

20%

10%

0%

1st
survey

2nd
survey

(a) What percentage of the time

did you spend on understanding �

15 1713 435 5 47 10 6 5 41 37 30 23

Figure 9.8: The students of this lab course spent most time understanding the SmartSoft
middleware. The consumed time increased towards the end, while the time
actually developing SmartSoft modules decreased.

containing 30 subcomponent instances. To communicate with the robot, a website and
a tablet PC were used. Both were connected to the architecture via subcomponents of
the component Backend. Logistics tasks are passed from the component Backend to
the component JobManager. The latter translates these into commands send to the
SmartSoft middleware via the component SequencerProxy.

Similar to the previous lab courses, we performed two surveys: one a few weeks after
the course started and the other shortly before the course ended. Both surveys were
conducted using questionnaires containing 12 (first) and 18 (second) questions again.
The additional questions of the second survey are designed to measure the students’
participation and the applicability of Scrum in this setting. Both questionnaires are
available in Section B.3 of the appendix.

Observations

The observations during this course differ from the previous in various ways: First, the
students spent more time understanding SmartSoft (SM) in the end of the course than
in the beginning (see Figure 9.8 (a)), while the C&C structure and behavior languages
consumed more time in the beginning than in the end. As SmartSoft and the modeling
languages were introduced and worked with parallely, we ascribe this to the intended
specificness of MontiArcAutomaton. However, this contradicts with the second finding,
that the students spent less time developing with SmartSoft in the end (Figure 9.8 (b)).

The students of this lab course also initially required more time in trying conceptually
wrong approaches with Java than in the previous courses as depicted in Figure 9.9
(a). For both Java and SmartSoft (SM) this reduced clearly during the course, whereas
the time spent for conceptually wrong approaches using the MontiArcAutomaton C&C
modeling elements and Automata almost remained constantly low. Figure 9.9 (b) also
shows that the students of this course students were more confident in modeling with

206

9.1 Evaluations

components and Automata models than in developing with Java or SmartSoft (SM).
This also contradicts the findings from the previous courses. The correlation between
making mistakes in Java and the confidence in our modeling languages might point to
the benefits of DSLs over GPLs regarding the better comprehension, smaller complexity,
and lower notational noise [Wil01] of models.
In the beginning of this course, the SmartSoft modules were revised more often (4.55

times) than in the end (2.80 times). This correlates with the observation that the stu-
dents put more effort in understanding SmartSoft initially and, during this, revised the
modules more often. All other constituents were refined more often in the beginning
than afterwards. Another remarkable observation is that the students considered Au-
tomata (2.33 points out of 10 points) less complex than C&C modeling and Java (both
3.00 points), and SmartSoft (7.33 points). This changed towards the end into consid-
ering C&C modeling (3.83 points) less complex than developing Java implementations
(4.25 points), modeling Automata (4.67 points), and developing SmartSoft modules
(8.75 points). It is, however, consistent with the previous lab course that the students’
complexity estimations increased over time.
The fact that the students participating in this lab course had background in differ-

ent computer science bachelor and master courses may be one reason for the different
evaluation results compared to the previous lab courses. It is remarkable that the stu-
dents’ confidence in the artifacts created by their colleagues decreased, while the confi-
dence in artifacts produced by themselves increased (see Section B.3 of the appendix).
Nonetheless, this lab course also showed that the students grasped the concepts of Monti-
ArcAutomaton and afterwards increased their modeling activities, which reinforces the
assumption that MontiArcAutomaton is useful to facilitate the model-driven engineering
of complex systems.
Regarding the applicability of Scrum, the students were less confident that it facilitated

development than the students of the previous course. Nonetheless, the sprint planning
meetings and daily Scrum meetings were considered most useful again.

Threats to Validity

Both internal and external validity of this evaluation are threatened by its university
context. Announcing the lab course as model-driven robotics software development and
the students expecting grades gave rise to multiple biases. Furthermore, the complexity
of the development effort prohibited separating the students into a control group and
an experimental group. While the students’ different backgrounds reduced the selection
bias, all participating students have at least taken three semesters in a bachelor’s com-
puter science course. While this clearly is a bias, the modeling languages applied in this
course are designed for software engineers, such that the selection bias should not impact
this evaluation as much.
The threats to the evaluation’s internal validity (causality) arise from the employ-

ing questionnaires (subject to statistical regression) and the lack of a control group.
Both should be improved in future lab courses. Improving the former requires means
to evaluate the students’ experience with the participating modeling languages other

207

Chapter 9 Experiments

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

10,00

1 2 3 4

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

1 2 3 4

(a) What percentage (0% - 100%) of the

time was wasted because you tried

something that was conceptually wrong?

BehaviorC&C Java BehaviorC&C Java SM

40%

30%

20%

10%

0%

10

9

8

7

6

5

4

3

2

1

0

SM

(b) Rate your confidence in the correctness of

the artifacts created by your team members

from 1 (no confidence) - 10 (works perfectly).

9.0 7.2 7.8 6.3 7.17.2 6.35.513 8 9 8 26 7 35 17

Figure 9.9: The students spent less time with conceptually wrong approaches to any
of the development tools, but lost confidence in most of their colleagues’
artifacts over time.

than interviews and questionnaires. The evolution’s external validity (generalizability)
is threatened by the students expecting grades, the expectation that model-driven ap-
proaches are taught because they are superior to GPL programming, and of course the
group composition. Treating the latter requires a lab course big enough to separate into
two groups where both groups’ participants have similar background regarding GPL and
MDE expertise. Unfortunately, this is hardly realizable in university contexts.

9.2 Case Studies

We conducted multiple case studies in different contexts to assess various features of
the MontiArcAutomaton infrastructure. These case studies usually were performed by
software engineering experts and took place either in academic or industrial contexts.

9.2.1 Lego NXT Distributed Toast Service

We examined MontiArcAutomaton with its behavior language integration and code gen-
erator composition mechanisms with a behavior language specific to the robot arm de-
picted in Figure 9.10. The arm’s behavior is controlled by RobotArm language models
that describe positions in the depicted arm’s joint space and programs over these posi-
tions as presented in [RRRW14, RRW15a]. This language is embedded into components
of a software architecture distributed over two Lego NXT bricks to control a total of
three motors. After inserting a slice of toast into the toaster, the arm controlling brick
invokes the second brick to start the motor pulling the toaster’s lever. After a certain du-
ration, the toast is retrieved from the toaster and delivered to a nearby plate.7 This case

7A video of the system in action is available from https://www.youtube.com/watch?v=

5EggJHtTg0c

208

https://www.youtube.com/watch?v=5EggJHtTg0c
https://www.youtube.com/watch?v=5EggJHtTg0c

9.2 Case Studies

Lego NXT robot arm
with three degrees of
freedom

toaster controllermotor pulling toaster lever

Figure 9.10: The toast service setup uses two Lego NXTs controlled by MontiArc-
Automaton with embedded RobotArm programs to steer an arm with
three degrees of freedom and a motor to pull the toaster’s lever.

study’s setup also employed a platform-specific software architecture and used the code
generator composition features of MontiArcAutomaton to integrate a code generator for
translation of RobotArm programs to Java artifacts.

The software architecture of the system was modeled using platform-specific compo-
nents (cf. Req. MRQ-2) and translated into Java implementations compatible to the
LeJOS8 JVM. Embedding the RobotArm component behavior language into the com-
ponent controlling the Lego robot arm allowed to use a more specific and concise language
than Java to control the arm (cf. Req. MRQ-4). With MontiArcAutomaton’s code gen-
erator composition framework, we could reuse the Java code generator for Automata
models without modifications (cf. Requirements TRQ-3 and TRQ-6). Integration actu-
ally embedded the RobotArm parts considering locations in the arm’s joint space and
individual RobotArm programs only (cf. Req. MRQ-5) and required less effort than
integrating the Automata language (Section 5.5.1) as less adapters were required.

9.2.2 Multi-Platform BumperBot

We also have evaluated a variant of the ImprovedBumperBot (as depicted in Fig-
ure 4.1) software architecture with Lego NXT robots using LeJOS and the Python

8LeJOS website: http://www.lejos.org/

209

http://www.lejos.org/

Chapter 9 Experiments

BumperBot

MAA

Integer BumpControl

controller

Boolean

Motor

left

Motor

right

MotorCMD

TimerCMD

data dist

signal time

left cmd

cmd

cmd

Timer(10)

DistanceSensor

MotorCMD

left

cmd

Drive

Turn

Idle

Back

interface component

Figure 9.11: Platform-independent software architecture of the BumperBot system
reused with platforms relying on different GPLs.

implementation of ROS. The BumperBot variant depicted in Figure 9.11 employs a
similar structure to detect and avoid obstacles but, relies on a subcomponent of type
BumpControl to describe its behavior, which directly communicates with both Motor
instances. The software architecture is completely platform-independent (cf. Req. MRQ-
1) and employs interface components to declare extension points for sensors and actu-
ators. It also platform-independent class diagram data types (cf. Req. MRQ-7) and
Automata models to describe the behavior of component type BumpControl and was
translated into two platform-specific architectures using bindings (cf. Req. MRQ-8) and
the interface libraries and implementation libraries presented in Section 6.2. These soft-
ware architectures were translated into Java artifacts for the NXT robot using LeJOS,
and into Python ROS nodes with corresponding configuration artifacts.

Reusing the platform-independent architecture required 4 interface components as
extension points and 4 platform-specific components per platform. The bindings replaced
the interface subcomponents. The code generator families for Java systems and ROS-
Python systems (Section 7.4) translated the resulting architectures into GPL artifacts.

Listing 9.1 shows an excerpt of the Java code produced for the composed component
BumpControl, which is a class BumpControl that implements the Component in-
terface (l. 1) of the javats run-time environment (Section 7.4.1). The class yields a
member of RTE class Port (cf. Figure 7.10) for each port of the component model
(ll. 4-8) and a member of RTE interface type Computable, which it delegates behavior
computation to (l. 11). The actual implementation of this member is produced by the
AutomataTS code generator (Section 7.4.1). The class also contains two members im-
plementing the Input and Result interfaces of the javats RTE, which wrap data of
incoming and outgoing ports and variables (ll. 14-15). The method compute() of inter-
face Component (ll. 17-30) saves the current input values, invokes computation of the
behavior delegate, and saves the resulting values to its ports and variables. Whenever
the component is invoked to communicate, it emits these values.

210

9.2 Case Studies

Java
1 public class BumpControl implements Component {

2

3 // Ports

4 protected Port<Integer> distance;

5 protected Port<TimerSignal> signal;

6 protected Port<TimerCmd> timer;

7 protected Port<MotorCommand> right;

8 protected Port<MotorCommand> left;

9

10 // Behavior implementation

11 protected Computable delegate;

12

13 // Wrappers for port and variable values

14 private BumpControlInput input;

15 private BumpControlResult result;

16

17 public void compute() {

18 // Create data structure of incoming port values

19 input = new BumpControlInput(

20 distance.getCurrentValue(),

21 signal.getCurrentValue());

22

23 // Perform calculations

24 result = delegate.compute(input);

25

26 // Assign computation result to ports

27 timer.setNextValue(result.getTimer());

28 right.setNextValue(result.getRight());

29 left.setNextValue(result.getLeft());

30 }

31

32 // Additional methods, e.g., initialize() and update()

33 }

Listing 9.1: An excerpt of the Java implementation generated for the component type
BumpControl with its most important members and methods.

Overall, the Java implementation consists of 33 classes, of which 30 are implementa-
tions, component factories, implementation factories, input wrappers, and output wrap-
pers of the respective component types. The remaining three classes are the starter of
BumperBot and the data types MotorCMD and TimerCMD. An excerpt of the Python
implementation of BumpControl is depicted in Listing 9.2. As Python does not sup-
port interfaces, the Python class BumpControl extends the abstract class Component
of the pythonts run-time environment (Section 7.4.2). Its constructor (ll. 3-16) ini-
tializes a ROS node with the name bumperbot (l. 4). If ROS is running, it creates a
member for each port (ll. 6-15). For incoming ports, it initializes a ROS Subscriber

211

Chapter 9 Experiments

with each port’s name, data type, and pointer to a callback function that should be
executed whenever new data arrives for that port (ll. 7-10). For outgoing ports, it
initializes a ROS Publisher with each port’s name and data type (ll. 11-13). This
publisher allows sending messages of the port’s type to the corresponding topic. The
Python component implementations also rely on delegation to compute component be-
havior and consequently, the implementation component type BumpControl owns a
member delegate produced by the BumpControlImplFactory (l. 15).

Afterwards, the BumpControl class defines that whenever its distanceCallback
method (assigned as callback to incoming port distance) is invoked with a new ROS
message msg, the payload part of this message is assigned to the port distance. Simi-
larly, the method leftPublish() employs a ROS message of type MotorCommandMSG
to wrap the current value of port left and publishes it to a ROS topic.

The pythonts run-time environment also imposes a method compute() on com-
ponents. For the Python implementation component type BumpControl, this method
(ll. 26-38) behaves similarly to the Java implementation: after collecting the current
input values from ports distance and signal, it passes these to its behavior imple-
mentation delegate (l. 33) and assigns the results back to its ports (ll. 38-38).

As the Python implementation of BumperBot employs similar patterns, it is little
surprising that it produces a similar amount of Python classes. However, ROS does
not support composed nodes, and hence, there is no implementation for the composed
component BumperBot, but only a so-called launch file that describes how to start each
of its subcomponents as a ROS node. To interface with ROS, the publisher and subscriber
instances rely on ROS messages (a simple data type description language), which were
created from the class diagram data types MotorCMD and TimerCMD accordingly.

9.2.3 The iserveU Hospital Logistics Project

The iserveU research project was conducted with partners from industry and academia
to investigate pervasive mode-driven engineering for complex software systems. The
industrial partners were the Robert Bosch GmbH, the Robotics Equipment Corpora-
tion (REC), and the Symeo GmbH. Academic expertise was contributed by Friedrich-
Alexander-Universität Erlangen-Nürnberg, Clausthal University of Technology, RWTH
Aachen University, and Ulm University of Applied Sciences. The project focused on
model-driven engineering and deployment of robotics applications for real-world con-
texts. This 3-year project was funded by the German Federal Ministry of Education and
Research (BMBF) to investigate pervasive model-driven engineering of service robotics
applications. Here, we used MontiArcAutomaton to model parts of architecture and
behavior for a logistics service robotics application deployed to a complex hospital en-
vironment. In this project, MontiArcAutomaton served as ADL for a high-level con-
troller [HNR+15] that interfaces SmartSoft [SSL11] and all development roles were dis-
tributed among the consortium.

Figure 9.12 shows the core component BehaviorController of the iserveU top-
level software architecture. This component contains six subcomponents of the types
TaskManager, ActionExecuter, StateProvider, Planner, PlanVerifier, and

212

9.2 Case Studies

Python
1 class BumpControl(Component):

2

3 def __init__(self):

4 rospy.init_node(’bumperbot’)

5 if not rospy.is_shutdown():

6 # Ports are connected to ROS topics

7 self.distance = Port()

8 rospy.Subscriber("~distance",

9 IntegerMSG,

10 self.distanceCallback)

11 self.left = Port()

12 self.leftPub = rospy.Publisher("~left",

13 MotorCommandMSG)

14 # Behavior implementation

15 self.delegate = BumpControlImplFactory.create()

16

17 def distanceCallback(self, msg):

18 self.distance.setNextValue(msg.data)

19

20 def leftPublish(self):

21 value = self.left.getCurrentValue()

22 msg = MotorCommandMSG()

23 msg.data = numpy.uint8(value)

24 self.leftPub.publish(msg)

25

26 def compute(self):

27 # Create data structure of incoming port values

28 input = BumpControlInput(

29 self.distance.getCurrentValue(),

30 self.signal.getCurrentValue())

31

32 # Perform calculations

33 result = self.delegate.compute(input)

34

35 # Assign computation result to ports

36 self.timer.setNextValue(result.getTimer())

37 self.right.setNextValue(result.getRight())

38 self.left.setNextValue(result.getLeft())

Listing 9.2: An excerpt of the Python implementation generated for the component
type BumpControl with its most important members and methods.

PropertyCalculator. The TaskManager subcomponent receives tasks and de-
composes these into individual goals that are passed to the component task Planner.
The latter is capable of reasoning about the goals using the Metric-FF planner [Hof02]
to reach goals based on the current situation and the actions available to the robot.
To deduct a valid plan it may access properties of the robot and its environment

213

Chapter 9 Experiments

MAA

BehaviorController

Task

Manager
Planner

Plan

Verifier

,
Property

Calculator

Action

Executer

State

Provider

Figure 9.12: The core software architecture of the high-level robot controller employed
in the iserveU project.

via StateProvider. Once a plan is deduced and verified by PlanVerifier, the
controller executes the plan’s actions via ActionExecuter. The latter utilizes the
PropertyCalculator to check whether the environment has remained stable enough
during planning, such that the plan, and hence the action to be executed, is still valid.

Afterwards, the action is translated properly and sent to the underlying SmartSoft
middleware via handcrafted GPL behavior implementations (cf. Req. TRQ-2). All com-
ponent types depicted are composed from multiple subcomponents and in total, the
software architecture employs 23 component types and instantiates 57 subcomponents.
Applying MontiArcAutomaton in a context with multiple stakeholders from industry

and academia has shown that it scales to industrial requirements. Although discussions
pointed out that the embedded Automata language is insufficient for various purposes
(such as describing behavior of components interfacing system APIs), the ability to easily
develop and integrate the most appropriate behavior languages redeems for that.

9.3 Discussion

All three lab courses were conducted in a university environment, which entails various
threats to their validity. Most students had prior training in Java and object-oriented
concepts, but only little experience in modeling techniques or state-based description
formalisms. Furthermore, the students were graded, hence there was an intrinsic moti-

214

9.3 Discussion

vation to accept the modeling tools presented by the lab course organizers. Also, due
to the nature of this thesis, the lab courses conducted earlier were performed with less
sophisticated versions of this infrastructure, which hampers their comparability. Future
evaluations should also separate the participants into a test group employing the mod-
eling techniques and into a control group employing GPLs. However, due to the size of
lab courses of RWTH Aachen, this was not feasible.
The case studies were conducted with students, research assistants, and industrial

partners and examined more complex infrastructure features than the evaluations. As
these were of a more experimental nature, the results are merely observations from which
no generalizable conclusions regarding the benefits of modeling over programming can
be drawn. Nevertheless, they help to illustrate the features of MontiArcAutomaton.

215

Chapter 10

Conclusions and Future Work

Better a little which is well done,
than a great deal imperfectly.

Plato

The concepts presented in this thesis combine software language engineering with ar-
chitecture modeling to enable pervasive model-driven engineering with an ADL that can
be adjusted to specific requirements using the most appropriate DSLs and code genera-
tors. The insights gained are presented in 15 publications discussing individual aspects of
MontiArcAutomaton at different development stages (Section 1.4). The presented state
of MontiArcAutomaton combines these contributions and contributes improvement of
various aspects as well as their integration.
This chapter concludes the thesis. First, Section 10.1 discusses its contributions rel-

ative to its goals as presented in Section 1.2. Afterwards, Section 10.2 sketches future
work, before Section 10.3 concludes with a discussion of overall observations that span
multiple concerns and parts of MontiArcAutomaton.

10.1 Contributions

We presented concepts for the development of complex, multi-platform software sys-
tems as C&C software architectures with exchangeable behavior languages. To this
effect, we introduced a concept for the integration of component behavior modeling lan-
guages into a C&C ADL, which facilities contribution by domain experts and language
reuse. We also presented a concept for the development of platform-independent soft-
ware architectures and their translation into platform-specific architectures, which relies
on designated architecture extension points, model transformations, and code generator
composition. These concepts are realized in the MontiArcAutomaton architecture mod-
eling infrastructure that enables reusing component behavior languages, components,
complete architectures, and code generators in different contexts and applications.
Concepts and realization are based on the requirements raised in Section 3.2. The

basis to fulfilling these requirements is the extensible MontiArcAutomaton ADL, which
supports modeling of platform-independent and platform-specific software architectures
(Chapter 4) with extensible component behavior modeling languages. Off-the-shelf,
MontiArcAutomaton provides theAutomata language (Chapter 5) to model component

217

Chapter 10 Conclusions and Future Work

behavior platform-independently. Based on the MontiArcAutomaton ADL, a concept
to derive platform-specific architecture models utilizing a distinction between platform-
independent components, interface components, and platform-specific components is pre-
sented (Chapter 6). This concept relies on interface components, interface libraries and
implementation libraries to maximize reuse in contexts with multiple target platforms.
It uses bindings to describe replacement of interface components with platform-specific
components and application configuration models to define these bindings. Defining
bindings requires little effort as their syntax resembles the MontiArcAutomaton ADL’s
syntax and the platform-specific components are required without bindings as well. Most
additional effort rises from developing interface components, which reuse the vocabulary
of the MontiArcAutomaton ADL and can be developed with little effort.

Producing platform-specific implementations from the resulting software architectures
requires code generators capable to translate architecture with exchangeable component
behavior languages into GPL artifacts. Therefore, concepts and realization of a compo-
sitional code generation framework are presented in Chapter 7, which support black-box
code generator composition and, thus, effortless combination of required code genera-
tors. This framework exploits the C&C nature of MontiArcAutomaton and identifies
three code generator kinds for composition. Participating generators implement one of
these types and explicate this via generator configuration models from which MontiArc-
Automaton produces composable implementations.

MontiArcAutomaton ADL, bindings, and code generators are combined into a com-
pact tool chain that can be used out-of-the-box or extended with new behavior modeling
languages and code generators as required (Chapter 3). Different parts of this infras-
tructure were evaluated in different contexts throughout its development (Chapter 9)
and results have been integrated subsequently.

Although the implementation of MontiArcAutomaton fulfills all requirements identi-
fied initially Section 3.2, the infrastructure comprises many modules that can be config-
ured. This enables various forms of mis-configuration, ultimately leading to development
issues, hindrances, and failures. However, off-the-shelf MontiArcAutomaton does not re-
quire configuration if developing platform-specific software architectures with target GPL
Java as it already contains the Automata behavior language and the javats code gen-
erator family. Generating to different target platforms and GPLs requires proper code
generators. If these are available, their selection requires only specifying their qualified
names in an application configuration model - which requires only very little effort. The
effort required to make the code generators under development compositional consists
of providing a generator description model and invoking the corresponding generator -
which is negligible as well. Integration of new behavior languages usually requires the
application modeler to provide a simple language configuration model only. For lan-
guages with special integration requirements, MontiArcAutomaton supports to harness
the full power of the MontiCore language workbench and provide means to specify the
complete integration information in a single artifact.

Evaluations and case studies have shown that MontiArcAutomaton is suitable to de-
velop complex applications with various component behavior modeling languages. The

218

10.2 Potential for Future Research

MontiArcAutomaton ADL is an accessible architecture description language and integra-
tion of other languages enables modeling great parts of software architectures. Through-
out the different projects, we could reuse components, complete architectures, modeling
languages, and code generators with little effort.

The findings and insights gained in this thesis are generalizable to other modeling
scenarios with varying degree depending on the employed architecture description lan-
guages and frameworks. Usually, integration of behavior languages into ADLs is ei-
ther not anticipated or overly complicated. However, ADLs build on top of language
workbenches generally could support some form of behavior language integration (via
embedding, inheritance, or AST composition). The notion of bindings translates natu-
rally to ADLs that distinguish component interfaces from component implementations,
and hence, the binding transformation and the corresponding library concept can be
translated to replacing component implementations instead. Similarly, the notions of
platform-independent interface libraries and platform-specific implementation libraries
could be translated. Most ADL modeling frameworks do not consider code generation
for multiple target platforms a prime concern. Hence, they usually support only a fixed
– and small – set of target GPLs. For frameworks employing language workbenches that
consider code generation, development of new code generators might be feasible. To the
best of our knowledge, code generator composition is not considered by any ADL mod-
eling infrastructure. However, in contexts where the generator kinds are fixed apriori,
applying the presented mechanisms is feasible as well.

10.2 Potential for Future Research

Although the presented MontiArcAutomaton infrastructure satisfies its goals regarding
the development of multi-platform applications with little effort, future research could
improve the MontiArcAutomaton ADL and other constituents. Previous sections have
presented future work regarding MontiArcAutomaton ADL (Section 4.3), bindings (Sec-
tion 6.4), and code generation (Section 7.5).

Aside from enhancements argued in those sections, the MontiArcAutomaton tool sup-
port could be improved. While there is a MontiArcAutomaton plugin1 for the Eclipse
IDE, this does not support configuration besides editors for the MontiArcAutomaton
modeling languages. Also, for a previous version of MontiArcAutomaton, it supported
visualization of components with automata [RRW13b]. For generic visualization of com-
ponents with arbitrary behavior languages, language embedding must be reflected by
integration of the respective languages’ editors and visualizers.

A central benefit in model-driven engineering is that abstract models are better amend-
able to analyses than GPL artifacts. The MontiArcAutomaton modeling languages im-
plement various analyses regarding the well-formedness of models. There are many other
analyses that could improve engineering with MontiArcAutomaton, such as refinement
of components to ensure proper architecture evolution [Rin14], verification of structural

1Available via http://www.monticore.de/robotics/montiarcautomaton/

219

http://www.monticore.de/robotics/montiarcautomaton/

Chapter 10 Conclusions and Future Work

and behavior architecture properties, or compliance of component implementations to
the run-time environment the corresponding models specify.

Validating the integration of model processing infrastructure, models transformations,
and code generators require inter-framework well-formedness checking. The context con-
ditions checking whether exactly one code generator per behavior language is used is an
effort into this direction. Nonetheless, there are many inter-framework relations and
properties not yet validated. This includes checking whether the modeling languages’
semantics match the generated artifacts semantics, whether new workflows and transfor-
mation produce artifacts processable by subsequently executed infrastructure parts, and
whether the code generators produce artifacts conforming to the run-time environments.

Another issue in model-driven engineering with complex tool chains arises from meta-
model evolution. If the grammar of any participating language changes, various parts of
the infrastructure need to evolve as well. While research in metamodel evolution itself
has produced some results [IK04, GG07], pervasive change tracing from metamodels to
transformations to code generation has not.

Future work also requires evolution of MontiArcAutomaton in industrial-scale con-
texts with multiple target-platforms. As MontiArcAutomaton also aims at architecture
modeling in academic contexts, further evaluation in this direction is required as well.

10.3 Conclusion

The research presented in this thesis aims to enable seamless model-driven multi-platform
engineering with component & connector software architectures that support flexible
integration of component behavior languages. This facilitates contribution by domain
experts and increases reuse of components, software architectures, modeling languages,
and code generators.

The MontiArcAutomaton ADL is an extensible C&C architecture description language
that can express the most important elements common to C&C architecture without
introducing too much notational noise [Wil01]. While its expressiveness is limited com-
pared to industrial ADLs, it reduces the risk of accidental complexities [FR07]. Nonethe-
less, built upon the powerful language workbench MontiCore, it allows the extension and
tailoring deemed crucial [MDT07, WHR14] for professional application. A unique fea-
ture of MontiArcAutomaton is its non-invasive extensibility with component behavior
languages, which employs the language integration mechanisms of MontiCore. Lan-
guage integration in MontiArcAutomaton is supported by a concise DSL, which reduces
its complexity severely. With this, application modelers can develop platform-specific
software architectures with the most-appropriate modeling languages easily.

Our approach to multi-platform reuse is of minimal effort in terms of new concepts
and requires only interface components and application configuration models. It exploits
being tailored to the MontiArcAutomaton ADL by reusing its instantiation syntax and
enforces reuse by relying on explicit interface libraries and implementation libraries.
In contrast to generic model transformation mechanisms [Sch91, FNTZ00, JABK08]
or delta-modeling approaches [HKR+11, HRRS11], it is specific to replacing component

220

10.3 Conclusion

types and parameters of instances. This minimizes its complexity and is less error prone.
Thus, application modelers targeting multiple platforms can engineer such applications
with minimal effort.
The code generator composition framework of MontiArcAutomaton is built upon the

code generation framework of MontiCore and reuses its concepts. Nonetheless, its com-
position is decoupled from templates and transformations, but relies only on generator
kinds derived from the C&C nature of MontiArcAutomaton. Conformance to these
types is expressed by generator description models providing information required by
the respective types. MontiArcAutomaton transforms these models into implementa-
tions implementing the explicated interfaces. These implementations are exploited for
code generator composition.
Finally, the application configuration language expresses C&C applications as combi-

nation of their constituents. It therefore integrates a single platform-independent soft-
ware architecture with implementation libraries, bindings, and code generators to define
platform-specific implementations. Based on these models, MontiArcAutomaton pro-
cesses the corresponding artifacts and produces implementation artifacts. The separation
of concerns into different modeling languages and artifacts enables reusing components
with different architectures, complete architectures with different target platforms, com-
ponent behavior languages within different language combinations, and code generators
as required. We believe that combining software architecture modeling with software lan-
guage engineering is a promising area and that our research produces useful results for
the flexible model-driven engineering of C&C systems with domain-specific languages.

221

Bibliography

[ACN02] Jonathan Aldrich, Craig Chambers, and David Notkin. Connecting Soft-
ware Architecture to Implementation. In Proceedings of the 24th Interna-
tional Conference on Software Engineering (ICSE 2002), pages 187–197.
IEEE, 2002. 1.1, 2.3, 4.3, 4.4, 8.4

[ADvSP05] João Paulo Almeida, Remco Dijkman, Marten van Sinderen, and Lúıs Fer-
reira Pires. Platform-Independent Modelling in MDA: Supporting Ab-
stract Platforms. In Uwe Aßmann, Mehmet Aksit, and Arend Rensink,
editors, Model Driven Architecture, volume 3599 of Lecture Notes in Com-
puter Science, pages 174–188. Springer Berlin Heidelberg, 2005. 6.4

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley,
2006. 2.2

[ASH+12] Andreas Angerer, Remi Smirra, Alwin Hoffmann, Andreas Schierl,
Michael Vistein, and Wolfgang Reif. A Graphical Language for Real-
Time Critical Robot Commands. In Proceedings of the Third Interna-
tional Workshop on Domain-Specific Languages and Models for Robotic
Systems (DSLRob 2012), 2012. 1.1, 4.4

[ASK+05] Noriaki Ando, Takashi Suehiro, Kosei Kitagaki, Tetsuo Kotoku, and Woo-
Keun Yoon. RT-Middleware: Distributed Component Middleware for RT
(Robot Technology). In 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, volume 1, pages 3933–3938, 2005. 1.1,
2.3, 4.4

[ASK08] Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku. A Software Plat-
form for Component Based RT-System Development: OpenRTM-Aist. In
Simulation, Modeling, and Programming for Autonomous Robots, pages
87–98. Springer, 2008. 4.4

[ASM04] Timo Asikainen, Timo Soininen, and Tomi Männistö. A Koala-Based Ap-
proach for Modelling and Deploying Configurable Software Product Fam-
ilies. In Software Product-Family Engineering, pages 225–249. Springer,
2004. 2.3

[AZ05] Paris Avgeriou and Uwe Zdun. Architectural Patterns Revisited - A
Pattern Language. In 10th European Conference on Pattern Languages

223

Bibliography

of Programs (EuroPlop 2005), Irsee. Universitaetsverlag Konstanz, 2005.
2.2.3

[Bal00] Helmut Balzert. Software-Entwicklung (Lehrbuch der Software-Technik,
Band 1), 2000. 2.1

[BBC+07] Davide Brugali, Alex Brooks, Anthony Cowley, Carle Côté, AntonioC.
Domı́nguez-Brito, Dominic Létourneau, Françis Michaud, and Christian
Schlegel. Trends in Component-Based Robotics. In Davide Brugali, editor,
Software Engineering for Experimental Robotics, volume 30 of Springer
Tracts in Advanced Robotics, chapter 8, pages 135–142. Springer Berlin
Heidelberg, 2007. 1.1, 2.3, 4.4

[BBH13] Johannes Baumgartl, Thomas Buchmann, and Dominik Henrich. To-
wards Easy Robot Programming: Using DSLs, Code Generators and Soft-
ware Product Lines. 8th International Conference on Software Paradigm
Trends (ICSOFT-PT’13), 2013. 1.1, 4.4

[BCL+06] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The FRACTAL component model and its support
in Java. Software, Practice, and Experience, 36(11-12):1257–1284, 2006.
2.3, 4.3, 6.1, 8.4

[BCOR15] Jean-Michel Bruel, Benoit Combemale, Ileana Ober, and Héléne Raynal.
MDE in Practice for Computational Science. In International Conference
on Computational Science (ICCS 2015), Reykjav́ık, Iceland, June 2015.
2.1

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice. Synthesis Lectures on Software Engineering,
2012. 2.1

[BD99] Bernd Bruegge and Allen A Dutoit. Object Oriented Software Engineering,
Conquering Complex and Changing Systems. Prentice Hall, 1999. 2.1

[BDC02] Marco Bernardo, Lorenzo Donatiello, and Paolo Ciancarini. Stochas-
tic Process Algebra: From an Algebraic Formalism to an Architectural
Description Language. In Performance Evaluation of Complex Systems:
Techniques and Tools, pages 236–260. Springer, 2002. 1.1

[BDD+93] Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs, Thomas
Gritzner, and Rainer Weber. The Design of Distributed Systems - An
Introduction to FOCUS. Technical report, TUM-I9202, SFB-Bericht Nr.
342/2-2/92 A, 1993. 2.3

224

Bibliography

[BDHN10] Jean-Christophe Baillie, Akim Demaille, Quentin Hocquet, and Matthieu
Nottale. Events! (Reactivity in urbiscript). In First International Work-
shop on Domain-Specific Languages and Models for ROBotic Systems,
October 2010. 1.1, 4.4

[Bea09] David M. Beazley. Python Essential Reference (4th Edition). Addison-
Wesley Professional, 2009. 7.4.2

[Bet13] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing Ltd, 2013. 2.2.4

[BFBFR07] Ricardo Bedin Franca, Jean-Paul Bodeveix, Mamoun Filali, and Jean-
Francois Rolland. The AADL behavior annex-experiments and roadmap.
In Proceedings of the 12th IEEE International Conference on Engineering
Complex Computer Systems. Washington, DC: IEEE Computer Society,
pages 377–382, 2007. 2.3, 4.4

[BG01] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the
OMG/MDA Framework. In Proceedings 16th Annual International Con-
ference on Automated Software Engineering (ASE 2001), pages 273–280.
IEEE, 2001. 2.1

[BGBK08] Simon Barner, Michael Geisinger, Christian Buckl, and Alois Knoll. Ea-
syLab: Model-Based Development of Software for Mechatronic Systems.
2008 IEEE/ASME International Conference on Mechtronic and Embed-
ded Systems and Applications, pages 540–545, October 2008. 1.1, 8.4

[BGM10] Barrett R. Bryant, Jeff Gray, and Marjan Mernik. Domain-Specific Soft-
ware Engineering. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, pages 65–68. ACM, 2010. 2.3

[BGP+10] Rainer Bischoff, Tim Guhl, Erwin Prassler, Walter Nowak, Gerhard
Kraetzschmar, Herman Bruyninckx, Peter Soetens, Martin Haegele, An-
dreas Pott, Peter Breedveld, et al. BRICS – Best practice in robotics.
In Robotics (ISR), 2010 41st International Symposium on and 2010 6th
German Conference on Robotics (ROBOTIK), pages 1–8. VDE, 2010. 6.4

[BGT05] Sven Burmester, Holger Giese, and Matthias Tichy. Model-Driven Devel-
opment of Reconfigurable Mechatronic Systems with Mechatronic UML.
In Model Driven Architecture, pages 47–61. Springer, 2005. 2.3

[BHH02] M Brian Blake, Gail Hamilton, and Jeffrey Hoyt. Using Component-Based
Development and Web Technologies to Support a Distributed Data Man-
agement System. Annals of Software Engineering, 13(1-4):13–34, 2002.
2.3

225

Bibliography

[BHS99] Manfred Broy, Franz Huber, and Bernhard Schätz. AutoFOCUS – Ein
Werkzeugprototyp zur Entwicklung eingebetteter Systeme. Informatik-
Forschung und Entwicklung, 14(3):121–134, 1999. 2.3, 4.4

[BKH+13] Herman Bruyninckx, Markus Klotzbücher, Nico Hochgeschwender, Ger-
hard Kraetzschmar, Luca Gherardi, and Davide Brugali. The BRICS
Component Model: A Model-Based Development Paradigm For Complex
Robotics Software Systems. In Proceedings of the 28th Annual ACM Sym-
posium on Applied Computing, SAC ’13, pages 1758–1764, New York, NY,
USA, 2013. ACM. 1.1, 4.3, 4.4

[BKM+05] Alex Brooks, Tobias Kaupp, Alexei Makarenko, Stefan Williams, and An-
ders Oreback. Towards Component-Based Robotics. In 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
163–168. IEEE, 2005. 4.4

[Blu13] Blumenthal, Sebastian and Bruyninckx, Herman. Towards a Domain Spe-
cific Language for a Scene Graph based Robotic World Model. In Fourth
International Workshop on Domain-Specific Languages and Models for
ROBotic Systems, November 2013. 4.4

[BO92] Don Batory and Sean O’Malley. The Design and Implementation of Hi-
erarchical Software Systems with Reusable Components. ACM Transac-
tions on Software Engineering and Methodology, 1(4):355–398, October
1992. 7.5

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Model-
lierung als Grundlage der Software- und Systementwicklung. Informatik
Spektrum, 30(1):3–18, 2007. 2.4, 5.6

[Bru01] Herman Bruyninckx. Open Robot Control Software: the OROCOS
project. In 2001 ICRA IEEE International Conference on Robotics and
Automation (ICRA), volume 3, pages 2523–2528. IEEE, 2001. 1.1, 2.3,
4.4

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Inter-
active Systems. Focus on Streams, Interfaces and Refinement. Springer
Verlag Heidelberg, 2001. 2.3, 2.4, 4.4, 5.6

[BS06] Davide Brugali and Paolo Salvaneschi. Stable Aspects In Robot Software
Development. International Journal of Advanced Robotic Systems, 3, 2006.
1.1, 2.3

[BST+94] Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, and
Marty Sirkin. The GenVoca Model of Software-System Generators. IEEE
Software, 11(5):89–94, September 1994. 7.5

226

Bibliography

[CCF+15a] Betty H.C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jéze-
quél, and Bernhard Rumpe. On the Globalization of Domain-Specific Lan-
guages. In Globalizing Domain-Specific Languages, volume 9400 of LNCS.
Springer International Publishing, 2015. 4.3

[CCF+15b] Betty H.C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc
Jézéquel, and Bernhard Rumpe, editors. Globalizing Domain-Specific Lan-
guages. Springer, 2015. 4.2.1

[CCIN08] Daniele Calisi, Andrea Censi, Luca Iocchi, and Daniele Nardi. OpenRDK:
a modular framework for robotic software development. In 008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1872–
1877. IEEE, 2008. 4.4

[CDB+14] Benoit Combemale, Julien DeAntoni, Benoit Baudry, Robert B. France,
Jean-Marc. Jézequél, and Jeff Gray. Globalizing modeling languages.
Computer, 47(6):68–71, June 2014. 4.3

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of Model Trans-
formation Approaches. In Proceedings of the OOPSLA’03 Workshop on
the Generative Techniques in the Context Of Model-Driven Architecture,
Anaheim, California, USA, 2003. 2.1

[CKS11] Damien Cassou, Pierrick Koch, and Serge Stinckwich. Using the DiaSpec
design language and compiler to develop robotics systems. In Proceedings
of the Second International Workshop on Domain-Specific Languages and
Models for Robotic Systems (DSLRob 2011), 2011. 1.1, 4.4, 6.4

[CoEEB90] IEEE Computer Society. Standards Coordinating Committee, Institute
of Electrical, Electronics Engineers, and IEEE Standards Board. IEEE
Standard Glossary of Software Engineering Terminology. IEEE Standards.
IEEE, 1990. 2.1

[CVdBCR15] Tony Clark, Mark Van den Brand, Benoit Combemale, and Bernhard
Rumpe. Conceptual model of the globalization for domain-specific lan-
guages. In Globalizing Domain-Specific Languages, pages 7–20. Springer,
2015. 4.2.1

[DD96] Christopher John Date and Hugh Darwen. A Guide to SQL Standard.
Addison-Wesley Professional, 1996. 2.1, 2.2.2

[Deu14] Yannick Deuster. Entwicklung eines Generators für Python Code aus UM-
L/P Klassendiagrammen. Bachelor’s thesis, RWTH Aachen, 2014. 7.4.2

[DKS+12] Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, and Mikal
Ziane. RobotML, a Domain-Specific Language to Design, Simulate and

227

Bibliography

Deploy Robotic Applications. In Itsuki Noda, Noriaki Ando, Davide Bru-
gali, and JamesJ. Kuffner, editors, Simulation, Modeling, and Program-
ming for Autonomous Robots, volume 7628 of Lecture Notes in Computer
Science, pages 149–160. Springer Berlin Heidelberg, 2012. 1.1, 4.4, 6.4,
8.4

[DSLT05] Vincent Debruyne, Françoise Simonot-Lion, and Yvon Trinquet. An Ar-
chitecture Description Language. In Architecture Description Languages,
pages 181–195. Springer, 2005. 2.3, 8.4

[DVdHT01] Eric M. Dashofy, André Van der Hoek, and Richard N. Taylor. A Highly-
Extensible, XML-Based Architecture Description Language. In Working
IEEE/IFIP Conference on Software Architecture, pages 103–112. IEEE,
2001. 2.3, 4.4

[DVdHT02] Eric M. Dashofy, Andre Van der Hoek, and Richard N. Taylor. An Infras-
tructure for the Rapid Development of XML-based Architecture Descrip-
tion Languages. In 24rd International Conference on Software Engineering
(ICSE 2002), pages 266–276. IEEE, 2002. 4.4

[EB10] Moritz Eysholdt and Heiko Behrens. Xtext - Implement your Language
Faster than the Quick and Dirty way. In Proceedings of the ACM inter-
national conference companion on Object oriented programming systems
languages and applications companion, SPLASH ’10, pages 307–309, New
York, NY, USA, 2010. ACM. 2.2.4

[EGR12] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. Language
Composition Untangled. In Proceedings of the Twelfth Workshop on Lan-
guage Descriptions, Tools, and Applications, LDTA ’12, New York, NY,
USA, 2012. ACM. 2.2.2, 4.4

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders Møller. MONA 1.x: new tech-
niques for WS1S and WS2S. In Computer-Aided Verification, (CAV ’98),
volume 1427 of LNCS, pages 516–520. Springer-Verlag, 1998. 9

[ERKO11] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Oster-
mann. SugarJ: Library-based Syntactic Language Extensibility. In ACM
SIGPLAN Notices, 2011. 2.2.4

[EvdSV+13] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout,
Steven Kelly, Alex Loh, Gabriël D.P. Konat, Pedro J. Molina, Mar-
tin Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler, Ric-
cardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido H.
Wachsmuth, and Jimi van der Woning. The State of the Art in Language
Workbenches. In Martin Erwig, Richard F. Paige, and Eric Van Wyk,

228

Bibliography

editors, Software Language Engineering, volume 8225 of Lecture Notes
in Computer Science, pages 197–217. Springer International Publishing,
2013. 2.1, 2.1, 2.2.4

[FBC11] Marco Frigerio, Jonas Buchli, and Darwin G. Caldwell. A Domain Spe-
cific Language for kinematic models and fast implementations of robot dy-
namics algorithms. In Proceedings of the Second International Workshop
on Domain-Specific Languages and Models for Robotic Systems (DSLRob
2011), 2011. 1.1, 4.4

[FG07] Lidia Fuentes and Nadia Gámez. Adding Aspects to xADL 2.0 for Software
Product Line Architectures. In First International Workshop on Variabil-
ity Modelling of Software-Intensive Systems (VaMoS), pages 87–96, 2007.
4.3

[FG12] Peter H. Feiler and David P. Gluch. Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language.
Addison-Wesley, 2012. 1.1, 2.3, 4.3, 4.4, 6.1, 6.4, 8.4

[FMN08] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-lived
robot genes. Robotics and Autonomous systems, 56(1):29–45, 2008. 4.4

[FMS11] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to
SysML: The Systems Modeling Language. Morgan Kaufmann, 2011. 2.3,
4.4

[FNTZ00] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story
Diagrams: A New Graph Rewrite Language Based on the Unified Mod-
eling Language and Java. In Hartmut Ehrig, Gregor Engels, Hans-Jörg
Kreowski, and Grzegorz Rozenberg, editors, Theory and Application of
Graph Transformations, volume 1764 of Lecture Notes in Computer Sci-
ence, pages 296–309. Springer Berlin Heidelberg, 2000. 10.3

[Fow10] Martin Fowler. Domain-Specific Languages. Addison-Wesley Professional,
2010. 1.1, 2.2.4, 4.2.3, 4.2.3, 4.2.3

[FR07] Robert France and Bernhard Rumpe. Model-Driven Development of Com-
plex Software: A Research Roadmap. In Future of Software Engineering
2007 at ICSE, pages 37–54, 2007. (document), 1.1, 2.1, 4.3, 6, 10.3

[Fre] Freemarker Website. http://freemarker.org/. Accessed: 2016-01-
22. 2.2, 2.2.3

[GBWK09] Michael Geisinger, Simon Barner, Martin Wojtczyk, and Alois Knoll. A
Software Architecture for Model-Based Programming of Robot Systems.
Advances in Robotics Research, pages 135–146, 2009. 6.4

229

http://freemarker.org/

Bibliography

[GG07] Ismenia Galvao and Arda Goknil. Survey of Traceability Approaches in
Model-Driven Engineering. In 11th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC 2007), pages 313–313, Oc-
tober 2007. 10.2

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1995. 2.2, 2.2.2, 4.2.3, 7.1, 7.4.1, 4, 3, 7.4.2, 7.5,
8.1.3

[GHK+15] Timo Greifenberg, Katrin Hoelldobler, Carsten Kolassa, Markus Look,
Pedram Mir Seyed Nazari, Klaus Mueller, Antonio Navarro Perez, Dim-
itri Plotnikov, Dirk Reiss, Alexander Roth, Bernhard Rumpe, Martin
Schindler, and Andreas Wortmann. A Comparison of Mechanisms for
Integrating Handwritten and Generated Code for Object-Oriented Pro-
gramming Languages. In Proceedings of the 3rd International Conference
on Model-Driven Engineering and Software Development, Angers, France,
2015. Scitepress. 1.4, 7.4.1

[Gho10] Debasish Ghosh. DSLs in Action. Manning Publications Co., Greenwich,
CT, USA, 1st edition, 2010. 2.2.4, 4.2.3

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und Ve-
rarbeitung domänenspezifischer Sprachen. Technical Report Informatik-
Bericht 2006-04, Software Systems Engineering Institute, Braunschweig
University of Technology, 2006. 2.2

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Textbased Modeling. In 4th International Workshop on
Software Language Engineering, 2007. 2.2

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Monticore: a framework for the development of textual
domain specific languages. In 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, Compan-
ion Volume, pages 925–926, 2008. 2.1, 2.2

[Gli02] Martin Glinz. Statecharts For Requirements Specification - As Simple As
Possible, As Rich As Needed. In International Conference on Software
Engineering (ICSE) 2002. ACM Press, 2002. 4.1

[GMW97] David Garlan, Robert T. Monroe, and David Wile. ACME: An Architec-
ture Description Interchange Language. In Proceedings of CASCON’97,
pages 169–183, Toronto, Ontario, November 1997. 1.1, 2.3, 8.4

230

Bibliography

[GMW00] David Garlan, Robert T. Monroe, and David Wile. ACME: Architectural
Description of Component-Based Systems. Foundations of Component-
Based Systems, 68:47–68, 2000. 2.3, 4.3, 8.4

[Hö07] Frank Höwing. Effiziente Entwicklung von AUTOSAR-Komponenten mit
domänenspezifischen Programmiersprachen. In Proceedings of Workshop
Automotive Software Engineering, LNI. Springer, 2007. 4.4

[HBB+94] Wolfgang Hesse, Georg Barkow, H von Braun, Hans-Bernd Kittlaus,
and Gert Scheschonk. Terminologie der Softwaretechnik. Ein Begriff-
ssystem fur die Analyse und Modellierung von Anwendungssystemen.
Teil 2: Tatigkeits-und ergebnisbezogene Elemente. Informatik Spektrum,
17(2):96–105, 1994. 2.1

[HC01] George T. Heineman and William T. Councill. Component-Based Software
Engineering: Putting the Pieces Together. Addison Wesley, 2001. 2.3

[HF11] Florian Hölzl and Martin Feilkas. AutoFocus 3-A Scientific Tool Proto-
type for Model-Based Development of Component-Based, Reactive, Dis-
tributed Systems. In Model-Based Engineering of Embedded Real-Time
Systems, pages 317–322. Springer, 2011. 4.4

[HGS+13] Nico Hochgeschwender, Luca Gherardi, Azamat Shakhirmardanov, Ger-
hard K Kraetzschmar, Davide Brugali, and Herman Bruyninckx. A model-
based approach to software deployment in robotics. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
3907–3914. IEEE, 2013. 6.4

[HHRW15] Lars Hermerschmidt, Katrin Hoelldobler, Bernhard Rumpe, and Andreas
Wortmann. Generating Domain-Specific Transformation Languages for
Component & Connector Architecture Descriptions. In 2nd International
Workshop on Model-Driven Engineering for Component-Based Software
Systems (ModComp) 2015, volume 1463 of CEUR Workshop Proceedings,
pages 18 – 23, Ottawa, Canada, September 2015. 2.1

[HK00] Charles Herring and Simon Kaplan. Component-Based Software Systems
for Smart Environments. IEEE Personal Communications, 7(5):60–61,
2000. 2.3

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina
Schaefer. Delta-Oriented Architectural Variability using MontiCore. In
Proceedings of the 5th European Conference on Software Architecture:
Companion Volume. ACM, 2011. 2.4, 10.3

[HLMSN+15] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio
Navarro Perez, Bernhard Rumpe, Steven Voelkel, and Andreas Wort-
mann. Integration of Heterogeneous Modeling Languages via Extensi-
ble and Composable Language Components. In Proceedings of the 3rd

231

Bibliography

International Conference on Model-Driven Engineering and Software De-
velopment, Angers, France, 2015. Scitepress. 1.4, 2.2, 2.2, 2.2.1, 2.2.2,
4.2.2, 4.3, 5.2

[HNR+15] Robert Heim, Pedram Mir Seyed Nazari, Jan Oliver Ringert, Bernhard
Rumpe, and Andreas Wortmann. Modeling Robot and World Interfaces
for Reusable Tasks. In 2015 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 1793–1798, 2015. 9.2.3

[HO10] Christian Hofer and Klaus Ostermann. Modular Domain-Specific Lan-
guage Components in Scala. In ACM SIGPLAN Notices, 2010. 2.2.4

[Hoc13] Hochgeschwender, Nico and Schneider, Sven and Voos, Holger, and Kraet-
zschmar, Gerhard K. Towards a Robot Perception Specification Lan-
guage. In Fourth International Workshop on Domain-Specific Languages
and Models for ROBotic Systems, November 2013. 1.1, 4.4

[Hof02] Jörg Hoffmann. Extending FF to Numerical State Variables. In 15th
European Conference on Artificial Intelligence (ECAI 2002), pages 571–
575, 2002. 9.2.3

[HPB11] Jon Holt, Simon Perry, and Mike Brownsword. Model-Based Requirements
Engineering (Iet Professional Applications of Computing). The Institution
of Engineering and Technology, 2011. 2.1

[HR04a] Gregoire Hamon and John Rushby. An Operational Semantics for State-
flow. In Fundamental Approaches to Software Engineering: 7th Inter-
national Conference (FASE), volume 2984 of Lecture Notes in Computer
Science, pages 229–243, Barcelona, Spain, March 2004. Springer-Verlag.
4.4

[HR04b] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the
Semantics of “Semantics“? Computer, 37(10):64–72, 2004. 2.1

[HR13] Andreas Horst and Bernhard Rumpe. Towards Compositional Domain
Specific Languages. In Proceedings of the 7th Workshop on Multi-
Paradigm Modeling (MPM’13), pages 1–5, 2013. 2.2

[HRR10] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. Towards Architec-
tural Programming of Embedded Systems. In Tagungsband des Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme VI,
pages 13–22, Munich, Germany, February 2010. fortiss GmbH. 2.4

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernard Rumpe. MontiArc - Archi-
tectural Modeling of Interactive Distributed and Cyber-Physical Systems.
Technical Report AIB-2012-03, RWTH Aachen, february 2012. 1, 1.3, 2,
2.1, 2.3, 2.4, 2.4, 3.3, 4, 4.1.4, 4.1.4, 4.1.4, 4.1.4, 4.1.4, 4.1.4, 4.1.4, 4.2.2,
5.1, 6.1, 6.4, A.1.1, 32, A.1.2, E

232

Bibliography

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta
Modeling for Software Architectures. In Tagungsband des Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme
VII, Munich, Germany, February 2011. fortiss GmbH. 10.3

[HRW11] John Hutchinson, Mark Rouncefield, and John Whittle. Model-Driven
Engineering Practices in Industry. In Proceedings of the 33rd International
Conference on Software Engineering (ICSE), pages 633–642, May 2011.
2.1

[HTM] HTML Specification: http://www.w3.org/html/wg/html5/. [On-
line; accessed 2015-01-02]. 2.1

[Hud96] Paul Hudak. Building Domain-Specific Embedded Languages. ACM Com-
puting Surveys (CSUR), 28(4):196, 1996. 2.2.4, 4.4

[Hud98] Paul Hudak. Modular Domain Specific Languages and Tools. In Fifth
International Conference on Software Reuse, pages 134–142, 1998. 2.2.2

[IK04] Ivinca Ivkovic and Kostas Kontogiannis. Tracing Evolution Changes of
Software Artifacts through Model Synchronization. In 20th IEEE Inter-
national Conference on Software Maintenance, pages 252–261, September
2004. 10.2

[Jö13] Sven Jörges. Construction and Evolution of Code Generators: A Model-
Driven and Service-Oriented Approach. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2013. 7.5

[JAB+06] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick
Valduriez. ATL: a QVT-like Transformation Language. In Companion
to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 719–720. ACM, 2006. 2.1

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL:
A model transformation tool. Science of Computer Programming, 72(1-
2):31–39, 2008. 10.3

[JB06] Frederic Jouault and Jean Bezivin. KM3: a DSL for Metamodel Speci-
fication. In Proceedings of 8th IFIP International Conference on Formal
Methods for Open Object-Based Distributed Systems (LNCS 4037), pages
171–185, 2006. 2.1

[JBCG05] Ackbar Joolia, Thais Batista, Geoff Coulson, and Antonio T.A. Gomes.
Mapping ADL Specifications to an Efficient and Reconfigurable Runtime
Component Platform. In 5th Working IEEE/IFIP Conference on Software
Architecture, 2005. WICSA 2005, pages 131–140. IEEE, 2005. 1.1, 4.3,
4.4

233

http://www.w3.org/html/wg/html5/

Bibliography

[JBF11] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. Generative and
Transformational Techniques in Software Engineering III: International
Summer School, GTTSE 2009, Braga, Portugal, July 6-11, 2009. Revised
Papers, chapter Model Driven Language Engineering with Kermeta, pages
201–221. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. 2.2.4

[JCB+13] Jean-Marc Jézéquel, Benoit Combemale, Olivier Barais, Martin Monper-
rus, and Francois Fouquet. Mashup of Meta-Languages and its Imple-
mentation in the Kermeta Language Workbench. Software & Systems
Modeling, 14(2):905–920, 2013. 2.2.4

[Jéz07] Jean-Marc Jézéquel. Generative Software Engineering. In Labit, Claude,
editor, Shaping the Future: 10 years of IrisaTech, pages 51–54. IrisaTech,
2007. 2.1

[JMD+14] Jean-Marc Jézequél, David Mendez, Thomas Degueule, Benoit Combe-
male, and Olivier Barais. When Systems Engineering Meets Software Lan-
guage Engineering. In Complex Systems Design & Management (CSD&M
2014), Paris, France, November 2014. Springer. 1

[Kü05] Thomas Kühne. What is a Model? In Language Engineering for Model-
Driven Software Development, number 04101 in Dagstuhl Seminar Pro-
ceedings. Internationales Begegnungs- und Forschungszentrum fuer Infor-
matik (IBFI), Schloss Dagstuhl, pages 200–0, 2005. 2.1

[KGO+01] Rohit Khare, Michael Guntersdorfer, Peyman Oreizy, Nenad Medvidovic,
and Richard N. Taylor. xADL: Enabling Architecture-Centric Tool In-
tegration with XML. In System Sciences, 2001. Proceedings of the 34th
Annual Hawaii International Conference on. IEEE, 2001. 4.3, 6.1, 8.4

[KKL+15] Dierk König, Paul King, Guillaume Laforge, Hamlet D’Arcy, Cédric
Champeau, Erik Pragt, and Jon Skeet. Groovy in Action. Manning Pub-
lications, 2015. 4.2.3

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Design Guidelines for Domain Specific Lan-
guages. In Proceedings of the 9th OOPSLA Workshop on Domain-Specific
Modeling (DSM’09), pages 7–13, 2009. 4.1

[KLR96] Steven Kelly, Kalle Lyytinen, and Matti Rossi. Metaedit+ A Fully Con-
figurable Multi-User and Multi-Tool CASE and CAME Environment. In
Advanced Information Systems Engineering, 1996. 2.2.4

[Knu68] Donald F. Knuth. Semantics of Context-Free Languages. Mathematical
systems theory, 12:127–145, 1968. 2.2.4

234

Bibliography

[KR05] Vinay Kulkarni and Sreedhar Reddy. Model-Driven Development of Enter-
prise Applications. In UML Modeling Languages and Applications, pages
118–128. Springer, 2005. 2.1

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen
Sprachen im Software-Engineering. Aachener Informatik-Berichte, Soft-
ware Engineering, Band 1. Shaker Verlag, 2010. 1, 2, 2.1, 2.1, 2.2, 2.2,
2.2, 2.2.2, 2.2.4, A.1.3, A.2.1

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software
Development using Domain Specific Modelling Languages. In Proceedings
of the 6th OOPSLA Workshop on Domain-Specific Modeling 2006, pages
150–158, Finland, 2006. University of Jyväskylä. 3.3

[KRV07] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition
of Abstract and Concrete Syntax for Textual Languages. In Proceedings
of Models 2007, pages 286–300, 2007. 2.2

[KRV08a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Mit Sprachbaukästen
zur schnelleren Softwareentwicklung: Domänenspezifische Sprachen mod-
ular entwickeln. Objektspektrum, 4:42–47, 2008. 2.2

[KRV08b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore: Modular
Development of Textual Domain Specific Languages. In Proceedings of
Tools Europe, 2008. 1, 2, 2.1, 2.2, 4.3, A.2.1, A.2.2

[KRV10] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: a frame-
work for compositional development of domain specific languages. In In-
ternational Journal on Software Tools for Technology Transfer (STTT),
volume 12, pages 353 – 372, 2010. 1.3, 2.2, 2.2.2, 4.3, A.2.1, A.2.2

[KSB10] Markus Klotzbücher, Peter Soetens, and Herman Bruyninckx. Orocos
RTT-Lua: an Execution Environment for building Real-time Robotic Do-
main Specific Languages. In International Workshop on Dynamic lan-
guages for RObotic and Sensors, 2010. 4.4

[KSBDS11] Markus Klotzbücher, Ruben Smits, Herman Bruyninckx, and Joris
De Schutter. Reusable Hybrid Force-Velocity controlled Motion Speci-
fications with executable Domain Specific Languages. In 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
4684–4689. IEEE, September 2011. 1.1

[Küh06] Thomas Kühne. Matters of (meta-) modeling. Software & Systems Mod-
eling, 5(4):369–385, 2006. 2.1

[KV10] Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench.
Rules for declarative specification of languages and IDEs. In Martin Ri-
nard, editor, Proceedings of the 25th Annual ACM SIGPLAN Conference

235

Bibliography

on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2010., pages 444–463, 2010. 2.2.4

[KvdSV09] Paul Klint, Tijs van der Storm, and Jurgen Vinju. RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation. In Ninth
IEEE International Working Conference on Source Code Analysis and
Manipulation (SCAM ’09), 2009. 2.2.4

[Lee10] Edward A Lee. CPS Foundations. In Proceedings of the 47th Design
Automation Conference, pages 737–742. ACM, 2010. 4.2.4, 5.5.1

[LeJ] LeJOS - Java for Lego Mindstorms. http://www.lejos.org. Ac-
cessed: 2015-10-07. 3.1, 3.1, 6.2.2, 9

[Lis87] Barbara Liskov. Keynote Address - Data Abstraction and Hierarchy. In
Addendum to the Proceedings on Object-oriented Programming Systems,
Languages and Applications (Addendum), OOPSLA ’87, pages 17–34, New
York, NY, USA, 1987. ACM. 4.1.3

[LNPR+13] Markus Look, Antonio Navarro Perez, Jan Oliver Ringert, Bernhard
Rumpe, and Andreas Wortmann. Black-box Integration of Heterogeneous
Modeling Languages for Cyber-Physical Systems. In Proceedings of the 1st
Workshop on the Globalization of Modeling Languages (GEMOC), Miami,
Florida, USA, 2013. 1.4, 2.2, 2.2, 2.2.1, 2.2.2, 4.3, 5.2

[LPJ10] Marc M. Lankhorst, Henderik A. Proper, and Henk Jonkers. The
Anatomy of the ArchiMate Language. International Journal of Infor-
mation System Modeling and Design (IJISMD), 1(1):1–32, 2010. 8.4

[LSGB12] Tinne De Laet, Wouter Schaekers, Jonas De Greef, and Herman Bruyn-
inckx. Domain Specific Language for Geometric Relations between Rigid
Bodies targeted to robotic applications. In Proceedings of the Third Inter-
national Workshop on Domain-Specific Languages and Models for Robotic
Systems (DSLRob 2012), 2012. 1.1, 4.4

[LTR05] Perttu Laurinen, Lauri Tuovinen, and Juha Röning. Smart Archive:
a Component-based Data Mining Application Framework. In 5th In-
ternational Conference on Intelligent Systems Design and Applications
(ISDA’05), pages 20–25. IEEE, 2005. 2.3

[LW11] Ingo Lütkebohle and Sven Wachsmuth. Requirements and a Case-Study
for SLE from Robotics: Event-oriented Incremental Component Construc-
tion. Workshop on Software-Language-Engineering for Cyber-Physical
Systems, 2011. 4.4

[Má] Más website http://www.mas-wb.com. [Online; accessed 2014-10-12].
2.2.4

236

http://www.lejos.org
 http://www.mas-wb.com

Bibliography

[MAHR10] Henrik Mühe, Andreas Angerer, Alwin Hoffmann, and Wolfgang Reif. On
reverse-engineering the KUKA Robot Language. In First International
Workshop on Domain-Specific Languages and Models for ROBotic Sys-
tems, 2010. 1.1, 4.4

[MAKT11] Fumio Machida, Ermeson Andrade, Dong Seong Kim, and Kishor S
Trivedi. Candy: Component-based Availability Modeling Framework for
Cloud Service Management Using SysML. In 30th IEEE Symposium on
Reliable Distributed Systems (SRDS), pages 209–218. IEEE, 2011. 2.3

[MC12] Alvaro Miyazawa and Ana Cavalcanti. Refinement-oriented models of
Stateflow charts. Science of Computer Programming, 77(10):1151–1177,
2012. 4.4

[McI68] Douglas McIlroy. Mass-Produced Software Components. In Proceedings
of the 1st International Conference on Software Engineering, Garmisch
Pattenkirchen, Germany, pages 88–98, 1968. 2.3

[MCWF02] Hong Mei, Feng Chen, Qianxiang Wang, and Yaodong Feng. ABC/ADL:
An ADL Supporting Component Composition. In Formal Methods and
Software Engineering, pages 38–47. Springer, 2002. 1.1, 4.3

[MDEK95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Spec-
ifying Distributed Software Architectures. In Software Engineering —
ESEC’95, pages 137–153. Springer, 1995. 2.3, 4.3, 8.4

[MDT07] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Taylor. Moving ar-
chitectural description from under the technology lamppost. Information
and Software Technology, 49(1):12–31, 2007. 2.3, 3, 4.3, 4.4, 10.3

[Mer13] Marjan Mernik. An Object-oriented Approach to Language Compositions
for Software Language Engineering. Journal of Systems and Software,
2013. 2.2.4

[MFBC12] Pierre-Alain Muller, Frédéric Fondement, Benoit Baudry, and Benoit
Combemale. Modeling Modeling Modeling. Software & Systems Mod-
eling, 11(3):347–359, 2012. 2.1

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to
Develop Domain-specific Languages. ACM Computing Surveys (CSUR),
37(4):316–344, December 2005. 1.1, 6

[MLM+13] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and
Antony Tang. What Industry Needs from Architectural Languages: A
Survey. IEEE Transactions on Software Engineering, 39(6):869–891, 2013.
2.3, 4.4, 6

237

Bibliography

[Mon] MontiArc. http://www.monticore.de/languages/montiarc/,
[Online; accessed 2015-12-17]. 2.4

[Mos09] Pieter J. Mosterman. Elements of a Robotics Research Roadmap: A
Model-Based Design Perspective, 2009. Accessed: 2014-11-21. 1.1, 2.3

[MP93] Zohar Manna and Amir Pnueli. Verifying Hybrid Systems. In Hybrid
Systems, pages 4–35. Springer, 1993. 4.2.4

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of
Component and Connector Models from Crosscutting Structural Views.
In Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE’13), pages 444–454. ACM, 2013. 2.4

[MRR14] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Com-
ponent and Connector Models against Crosscutting Structural Views.
In 36th International Conference on Software Engineering (ICSE 2014),
pages 95–105, Hyderabad, India, June 2014. ACM New York. 2.4

[MRT99] Nenad Medvidovic, David S. Rosenblum, and Richard N. Taylor. A Lan-
guage and Environment for Architecture-Based Software Development
and Evolution. In Proceedings of the 1999 International Conference on
Software Engineering, pages 44–53. IEEE, 1999. 1.1, 4.3

[MRT03] Michael Montemerlo, Nicholas Roy, and Sebastian Thrun. Perspectives
on Standardization in Mobile Robot Programming: The Carnegie Mel-
lon Navigation (CARMEN) Toolkit. In 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), volume 3, pages
2436–2441. IEEE, 2003. 4.4

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classification and Compar-
ison Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 2000. 1.1, 2.3, 2.4, 4.3, 4.4

[Mue13] Ken Mueller. Literature Research and Analysis on Robotic Architectures
and Frameworks. Bachelor’s thesis, RWTH Aachen, 2013. 1.1, 2.4, TRQ-1

[Mur02] Jan Murray. Specifying Agents with UML in Robotic Soccer. In The First
International Joint Conference on Autonomous Agents and Multi-Agent
Systems, AAMAS ’02, pages 51–52, New York, NY, USA, 2002. ACM. 4.4

[NDZR04] Leila Naslavsky, Hadar Ziv Dias, H Ziv, and D Richardson. Extend-
ing xADL with Statechart Behavioral Specification. In Third Workshop
on Architecting Dependable Systems (WADS), Edinburgh, Scotland, pages
22–26. IET, 2004. 1.1, 2.3, 4.4, 8.4

238

http://www.monticore.de/languages/montiarc/

Bibliography

[NFBL10] Tim Niemueller, Alexander Ferrein, Daniel Beck, and Gerhard Lakemeyer.
Design Principles of the Component-Based Robot Software Framework
Fawkes, volume 6472 of Lecture Notes in Computer Science, pages 300–
311. Springer, Darmstadt, Germany, 2010. 1.1, 2.3, 4.4

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architec-
tures as Interactive Systems. In I. Ober, A. S. Gokhale, J. H. Hill, J.-M.
Bruel, M. Felderer, D. Lugato, and A. Dabholka, editors, Proceedings of
the 2nd International Workshop on Model-Driven Engineering for High
Performance and Cloud Computing, volume 1118 of CEUR, pages 15–24,
Miami, Florida, USA, 2013. CEUR-WS.org. 2.2.2, 2.3, 4.3

[NTN+04] Dag Nyström, Aleksandra Tešanovic, Mikael Nolin, Christer Norström,
and Jörgen Hansson. COMET: A Component-Based Real-Time Database
for Automotive Systems. In Proceedings of the Workshop on Software
Engineering for Automotive Systems, pages 1–8. IET, 2004. 2.3

[NW12] Arne Nordmann and Sebastian Wrede. A Domain-Specific Language for
Rich Motor Skill Architectures. In Proceedings of the Third International
Workshop on Domain-Specific Languages and Models for Robotic Systems
(DSLRob 2012), 2012. 1.1, 4.4

[OAR+14] Francisco J. Ortiz, Diego Alonso, Francisca Rosique, Francisco Sánchez-
Ledesma, and Juan A. Pastor. A Component-Based Meta-Model and
Framework in the Model Driven Toolchain C-Forge. In Davide Brugali,
Jan F. Broenink, Torsten Kroeger, and Bruce A. MacDonald, editors,
Simulation, Modeling, and Programming for Autonomous Robots, volume
8810 of Lecture Notes in Computer Science, pages 340–351. Springer In-
ternational Publishing, 2014. 1.1

[Oli07] Travis E. Oliphant. Python for Scientific Computing. Computing in Sci-
ence Engineering, 9(3):10–20, May 2007. 4.1.1

[OMG03] Object Management Group. MDA Guide Version 1.0.1, June 2003.
http://www.omg.org/news/meetings/workshops/UML_2003_

Manual/00-2_MDA_Guide_v1.0.1.pdf [Online; accessed 2015-12-
17]. 2.1

[OMG06] Object Management Group. MOF Specification Version 2.0 (2006-01-01),
January 2006. http://www.omg.org/docs/ptc/06-05-04.pdf. 2.2.4

[OMG10] Object Management Group. OMG Unified Modeling Language (OMG
UML), Superstructure Version 2.3 (10-05-05), May 2010. http://www.
omg.org/spec/UML/2.3/Superstructure/PDF/ [Online; accessed
2015-12-17]. 1.1, 2.1, 2.2.4, 2.3, 4, 3.1, 4.4, 5.6

239

http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

Bibliography

[PM03] Jorge Enrique Pérez-Mart́ınez. Heavyweight extensions to the UML meta-
model to describe the C3 architectural style. ACM SIGSOFT Software
Engineering Notes, 28(3), 2003. 8.4

[PM06] Roland Petrasch and Oliver Meimberg. Model Driven Architecture: Eine
praxisorientierte Einführung in die MDA. dpunkt Verlag, 2006. 2.1

[QGC+09] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an open-
source Robot Operating System. In ICRA Workshop on Open Source
Software, 2009. 1.1, 2.3, 3.1, 3.1, 4.4, 6.6, 6.2, 6.2.3, 7.4.2, 7.4.2, 7.5, 9,
9.1.2

[Rai05] Chris Raistrick. Applying MDA and UML in the Development of a Health-
care System. In UML Modeling Languages and Applications, pages 203–
218. Springer, 2005. 2.1

[RBH+07] Ralf Reussner, Steffen Becker, Jens Happe, Heiko Koziolek, Klaus Krog-
mann, and Michael Kuperberg. The Palladio Component Model, 2007.
4.3

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and
Connector Systems. Aachener Informatik-Berichte, Software Engineering,
Band 19. Shaker Verlag, 2014. 1.3, 2.4, 3.3, 10.2

[RMT14a] Arunkumar Ramaswamy, Bruno Monsuez, and Adriana Tapus. Model-
driven Software Development Approaches in Robotics Research. In Pro-
ceedings of the 6th International Workshop on Modeling in Software En-
gineering, 2014. 4.4

[RMT14b] Arunkumar Ramaswamy, Bruno Monsuez, and Adriana Tapus. SafeR-
obots: A Model-Driven Framework for Developing Robotic Systems. In
2014 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 1517–1524. IEEE, 2014. 4.4

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams,
Stream Processing Functions, and State-Based Stream Processing. In-
ternational Journal of Software and Informatics, 5(1-2):29–53, July 2011.
2.4, 4.4, 5.1.3, 5.6

[RRRW14] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas
Wortmann. Code Generator Composition for Model-Driven Engineer-
ing of Robotics Component & Connector Systems. In 1st International
Workshop on Model-Driven Robot Software Engineering (MORSE 2014),
volume 1319 of CEUR Workshop Proceedings, pages 66 – 77, York, Great
Britain, July 2014. 1.4, 7, 7.1, 7.5, 8.1.1, 9.2.1

240

Bibliography

[RRRW15] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas
Wortmann. Language and Code Generator Composition for Model-Driven
Engineering of Robotics Component & Connector Systems. Journal of
Software Engineering for Robotics (JOSER), 6(1):33–57, 2015. 1.4

[RRW12] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Re-
quirements Modeling Language for the Component Behavior of Cyber
Physical Robotics Systems. In Norbert Seyff and Anne Koziolek, editors,
Modelling and Quality in Requirements Engineering: Essays Dedicated to
Martin Glinz on the Occasion of His 60th Birthday, pages 143–155. Mon-
senstein und Vannerdat, Münster, 2012. 1.4

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Case
Study on Model-Based Development of Robotic Systems using Mon-
tiArc with Embedded Automata. In Holger Giese, Michaela Huhn,
Jan Philipps, and Bernhard Schätz, editors, Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteter Systeme, pages 30–43, 2013. 1.4,
9.1.1, 9.1.1, 9.1.1

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From
Software Architecture Structure and Behavior Modeling to Implementa-
tions of Cyber-Physical Systems. In Stefan Wagner and Horst Lichter,
editor, Software Engineering 2013 Workshopband, volume 215 of LNI,
pages 155–170. GI, Köllen Druck+Verlag GmbH, Bonn, 2013. 1.4, 2.2,
2.2.3, MRQ-8 .5 , 4.4, 6.2.1, 7.4.1, 7.4.1, 9, 10.2

[RRW13c] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiAr-
cAutomaton: Modeling Architecture and Behavior of Robotic Systems.
In Workshops and Tutorials Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), Karlsruhe, Germany, May
6-10 2013. 1.4, 4.1.1

[RRW14a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Archi-
tecture and Behavior Modeling of Cyber-Physical Systems with MontiAr-
cAutomaton. Number 20 in Aachener Informatik-Berichte, Software En-
gineering. Shaker Verlag, 2014. 1.4, 4.1.4, 5, 5.1.3, 5.3, 5.5.1

[RRW14b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Multi-
Platform Generative Development of Component & Connector Systems
using Model and Code Libraries. In 1st International Workshop on Model-
Driven Engineering for Component-Based Systems (ModComp 2014), vol-
ume 1281 of CEUR Workshop Proceedings, pages 26 – 35, Valencia, Spain,
September 2014. 1.4, 6.4

[RRW15a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Compos-
ing Code Generators for C&C ADLs with Application-Specific Behavior

241

Bibliography

Languages (Tool Demonstration). In Proceedings of the 2015 ACM SIG-
PLAN International Conference on Generative Programming: Concepts
and Experiences, GPCE 2015, pages 113–116, New York, NY, USA, 2015.
ACM. 1.4, 9.2.1

[RRW15b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Tailor-
ing the MontiArcAutomaton Component & Connector ADL for Genera-
tive Development. In Proceedings of the Joint MORSE/VAO Workshop
on Model-Driven Robot Software Engineering and View-based Software-
Engineering, 2015. 1.4, 4.1.1

[RRW15c] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Trans-
forming Platform-Independent to Platform-Specific Component and Con-
nector Software Architecture Models. In 2nd International Workshop on
Model-Driven Engineering for Component-Based Software Systems (Mod-
Comp) 2015, volume 1463 of CEUR Workshop Proceedings, pages 30 –
35, Ottawa, Canada, September 2015. 1.4

[RSVW10] Bernhard Rumpe, Martin Schindler, Steven Völkel, and Ingo Weisemöller.
Generative Software Development. In Proceedings of the 32nd Interna-
tional Conference on Software Engineering (ICSE 2010), volume 2, pages
473–474. ACM, 2010. 2.1

[RSVW11] Bernhard Rumpe, Martin Schindler, Steven Völkel, and Ingo Weisemöller.
Agile Development with Domain Specific Languages. Modelling Founda-
tions and Applications, pages 387–388, 2011. 2.2

[Rub12] Kenneth S. Rubin. Essential Scrum: A Practical Guide to the Most Pop-
ular Agile Process. Addison-Wesley Professional, 2012. 9.1.1, 9.1.2, 9.1.3

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektori-
entierter Systeme. Doktorarbeit, Technische Universität München, 1996.
1.3, 5, 5, 5.1.4, 5.6

[Rum11] Bernhard Rumpe. Modellierung mit UML. Xpert.press. Springer Berlin,
2nd edition, September 2011. 2.2.2, 2.4, 2.4, 4.2.2

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro.
EMF: Eclipse Modeling Framework. Pearson Education, 2008. 9

[Sch91] Andreas Schürr. Operationales Spezifizieren mit Programmierten Gra-
phersetzungssystemen: Formale Definitionen Anwendungsbeispiele and
Werkzeugunterstützung. Wiesbaden: Deutscher Universitäts-Verlag, 1991.
10.3

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P. Aachener Informatik-Berichte, Software Engineering, Band

242

Bibliography

11. Shaker Verlag, 2012. 2.1, 2.2, 2.2, 2.2.1, 2.2.3, 2.2.4, 2.4, 2.4, 3.3, 4.1.3,
5, 7.4.1, 7.4.1, 7, 7.4.1, A.2.1, A.2.2, E

[Sch14] Stefan Schubert. Entwicklung einer I/Oω Modellierungssprache zur Ein-
bettung in die MontiArcAutomaton-Sprachfamilie. Master’s thesis, RWTH
Aachen, 2014. 5, 5.3

[SCS07] Ulrik Pagh Schultz, David Johan Christensen, and Kasper Stoy. A
Domain-Specific Language for Programming Self-Reconfigurable Robots.
In Workshop on Automatic Program Generation for Embedded Systems,
pages 28–36, 2007. 1.1, 4.4

[Sei03] Ed Seidewitz. What Models Mean. Software, IEEE, 20(5):26–32, Sept
2003. 2.1

[Sel03] Bran Selic. The Pragmatics of Model-Driven Development. Software,
IEEE, 20(5):19–25, Sept 2003. 1.1, 2.1

[Sel06] Bran Selic. Model-Driven Development: Its Essence and Opportunities. In
Ninth IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC 2006), April 2006. 2.1

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996. 2.3

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component
Software: Beyond Object-Oriented Programming. ACM Press Series. ACM
Press, 2002. 2.3

[SHT06] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux.
Feature Diagrams: A Survey and a Formal Semantics. In Proceedings
of the 14th IEEE International Requirements Engineering Conference
(RE’06), pages 136–145, Washington, DC, USA, 2006. IEEE Computer
Society. 8.4

[Sie00] Jon Siegel. CORBA 3 Fundamentals and Programming, volume 2. John
Wiley & Sons Chichester, 2000. 4.4

[Sim] MathWorks Simulink. http://www.mathworks.com/products/

simulink/, [Online; accessed 2015-12-17]. 2.1

[SMN+07] Bernhard Steffen, Tiziana Margaria, Ralf Nagel, Sven Jörges, and Chris-
tian Kubczak. Model-Driven Development with the jABC. In Eyal Bin,
Avi Ziv, and Shmuel Ur, editors, Hardware and Software, Verification and
Testing, volume 4383 of Lecture Notes in Computer Science, pages 92–108.
Springer Berlin Heidelberg, 2007. 7.5

243

http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/

Bibliography

[SMTS09] Jonathan Sprinkle, Marjan Mernik, J Tolvanen, and Diomidis Spinellis.
Guest editors’ introduction: What Kinds of Nails Need a Domain-Specific
Hammer? Software, IEEE, 26(4):15–18, 2009. 1.1

[Sny86] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Program-
ming Languages. ACM Sigplan Notices, 21(11):38–45, 1986. 2.3

[SOK05] Adel Smeda, Mourad Oussalah, and Tahar Khammaci. MADL: Meta Ar-
chitecture Description Language. In Third ACIS International Conference
on Software Engineering Research, Management and Applications, 2005,
pages 152–159. IEEE, 2005. 4.3

[Sol05] Riccardo Solmi. Whole platform. PhD thesis, University of Bologna, 2005.
2.2.4

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Kar-
sai. Metamodelling: State of the Art and Research Challenges. In
Model-Based Engineering of Embedded Real-Time Systems, pages 57–76.
Springer, 2010. 2.1

[SSL11] Christian Schlegel, Andreas Steck, and Alex Lotz. Model-Driven Soft-
ware Development in Robotics : Communication Patterns as Key for a
Robotics Component Model. In Daisuke Chugo and Sho Yokota, editors,
Introduction to Modern Robotics. iConcept Press, 2011. 1.1, 2.3, 4.3, 4.4,
6.1, 6.4, 8.4, 9, 9.1.3, 9.2.3

[Sta] Mathworks Stateflow. http://www.mathworks.de/products/

stateflow/, [Online; accessed 2015-12-17]. 4.4

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie, 1973. 2.1

[Sta06] Miroslaw Staron. Adopting Model Driven Software Development in In-
dustry - A Case Study at Two Companies. In Model Driven Engineering
Languages and Systems, pages 57–72. Springer, 2006. 2.1

[SVEH05] Thomas Stahl, Markus Völter, Sven Efftinge, and Arno Haase. Mod-
ellgetriebene Softwareentwicklung: Techniken, Engineering, Management.
Dpunkt Verlag, 2005. 1.1

[TBD07] Salvador Trujillo, Don Batory, and Oscar Diaz. Feature Oriented Model
Driven Development: A Case Study for Portlets. In Proceedings of the
29th International Conference on Software Engineering, ICSE ’07, pages
44–53, Washington, DC, USA, 2007. IEEE Computer Society. 7.5

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and
Andreas Wortmann. A New Skill Based Robot Programming Language
Using UML/P Statecharts. In 2013 ICRA IEEE International Conference
on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013. 1.1, 4.4

244

http://www.mathworks.de/products/stateflow/
http://www.mathworks.de/products/stateflow/

Bibliography

[TM02] Donald E. Thomas and Philip R. Moorby. The Verilog Hardware Descrip-
tion Language, volume 2. Springer, 2002. 2.1

[TMD09] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. John Wiley and Sons,
Inc., 1 edition, 2009. 2.3, 4.4

[TRMS09] Lucy A. Tedd, Jelena Radjenovic, Branko Milosavljevic, and Dusan Surla.
Modelling and implementation of catalogue cards using FreeMarker. Pro-
gram, 43(1):62–76, 2009. 2.1, 2.2, 2.3

[Tro11] Piotr Trojanek. Model-driven engineering approach to design and imple-
mentation of robot control system. In Proceedings of the Second Interna-
tional Workshop on Domain-Specific Languages and Models for Robotic
Systems (DSLRob 2011), 2011. 1.1, 4.4

[TVT+13] Federico Tomassetti, Antonio Vetro, Marco Torchiano, Markus Voelter,
and Bernd Kolb. A Model-Based Approach to Language Integration. In
5th International Workshop on Modeling in Software Engineering (MiSE
2013), 2013. 2.2

[Tya12] Agam Kumar Tyagi. MATLAB and SIMULINK for Engineers. Oxford
University Press, 2012. 4.4

[UNT10] Naoyasu Ubayashi, Jun Nomura, and Tetsuo Tamai. Archface: A Con-
tract Place Where Architectural Design and Code Meet Together. In Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering, volume 1, pages 75–84. ACM, 2010. 4.3

[Vö11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer
Sprachen. Aachener Informatik-Berichte, Software Engineering Band 9.
2011. Shaker Verlag, 2011. 2.1, 2.2, 2.2, 2.2, 2.2.1, 2.2.1, 2.2.2, 2.2.4, 4.2.2,
4.2.3, 4.3, C.1

[Van13] Vanthienen, Dominick and Klotzbuecher, Markus and De Laet, Tinne and
De Schutter, Joris and Bruyninckx, Herman. Rapid application develop-
ment of constrained-based task modelling and execution using Domain
Specific Languages. In Proceedings of the 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1860–1866, Tokyo,
Japan, 2013. 1.1, 4.4

[VBD+13] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,
Mats Helander, Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth.
DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org, 2013. 2.1, 2.2.4

245

Bibliography

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Lan-
guages: An Annotated Bibliography. ACM SIGPLAN Notices, 35(6):26–
36, 2000. 1.1, 2.1, 2.2.4, 4.4

[vdSCL14] Tijs van der Storm, William R. Cook, and Alex Loh. The design and
implementation of Object Grammars. Science of Computer Programming,
2014. 2.2.4

[VKB14] Dominick Vanthienen, Markus Klotzbuecher, and Herman Bruyninckx.
The 5C-based architectural Composition Pattern: lessons learned from re-
developing the iTaSC framework for constraint-based robot programming.
JOSER: Journal of Software Engineering for Robotics, 5(1):17–35, 2014.
4.4

[VNE+01] Richard Volpe, Issa Nesnas, Tara Estlin, Darren Mutz, Richard Petras,
and Hari Das. The CLARAty Architecture for Robotic Autonomy. In
2001 IEEE Aerospace Conference Proceedings, volume 1, 2001. 4.4

[VS10] Markus Voelter and Konstantin Solomatov. Language and IDE Mod-
ularization, Extension and Composition with MPS. Software Language
Engineering (SLE’10), page 16, 2010. 2.2.4

[VSB+13] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, Simon Helsen,
and Krzysztof Czarnecki. Model-Driven Software Development: Technol-
ogy, Engineering, Management. Wiley Software Patterns Series. Wiley,
2013. 2.1

[VVKM00] Rob Van Ommering, Frank Van Der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33(3):78–85, 2000. 1.1, 2.3, 4.3, 8.4

[WBGK08] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an
Extensible Attribute Grammar System. Electronic Notes in Theoretical
Computer Science, 2008. 2.2.4

[WdMBK02] Eric Van Wyk, Oege de Moor, Kevin Backhouse, and Paul Kwiatkowski.
Forwarding in Attribute Grammars for Modular Language Design. In
Proceedings of 11th International Conference on Compiler Construction,
volume 2304 of Lecture Notes in Computer Science LNCS, 2002. 2.2.4

[Wei06] Tim Weilkiens. Systems Engineering mit SysML/UML. UML. dpunkt.
verlag, 2006. 4.4

[WHR14] Jon Whittle, John Hutchinson, and Mark Rouncefield. The State of Prac-
tice in Model-Driven Engineering. Software, IEEE, 31(3):79–85, 2014. 1.1,
2.1, 2.3, 10.3

246

Bibliography

[WICE03] Brian C. Williams, Michel D. Ingham, Seung H. Chung, and Paul H.
Elliott. Model-Based Programming of Intelligent Embedded Systems and
Robotic Space Explorers. In Proceedings of the IEEE: Special Issue on
Modeling and Design of Embedded Software, pages 212–237, 2003. 4.4

[Wil01] David S. Wile. Supporting the DSL Spectrum. Computing and Informa-
tion Technology, 4:263–287, 2001. 2.1, 2.2.4, 2.3, 4.3, 6, 6.4, 8.4, 9.1.3,
10.3

[Wir96] Niklaus Wirth. Compiler Construction. Addison-Wesley, 1996. 2.2

[WWM+07] Thomas Weigert, Frank Weil, Kevin Marth, Paul Baker, Clive Jervis,
Paul Dietz, Yexuan Gui, Aswin Van Den Berg, Kim Fleer, David Nelson,
et al. Experiences in Deploying Model-Driven Engineering. In SDL 2007:
Design for Dependable Systems, pages 35–53. Springer, 2007. 2.1

[YHMP09] Zhibin Yang, Kai Hu, Dianfu Ma, and Lei Pi. Towards a Formal Semantics
for the AADL Behavior Annex. In Design, Automation Test in Europe
Conference Exhibition, pages 1166–1171, April 2009. 4.4

[ZR11] Steffen Zschaler and Awais Rashid. Towards Modular Code Generators
Using Symmetric Language-Aware Aspects. In Proceedings of the 1st In-
ternational Workshop on Free Composition, FREECO ’11, pages 6:1–6:5,
New York, NY, USA, 2011. ACM. 7.5

247

Appendix A

Modeling Language Grammars

This appendix presents the grammars of the modeling languages presented throughout
this thesis. First, Section A.1 describes two variants of the MontiArcAutomaton ADL
grammar. Afterwards, Section A.2 presents two variants of the Automata grammar
before Section A.3 describes the generator description grammar.

A.1 MontiArcAutomaton ADL Grammars

The MontiArcAutomaton ADL extends from MontiArc. Hence, this appendix first
presents the MontiArc grammar before it introduces two variants of the MontiArc-
Automaton ADL grammar. The MontiArc grammar and one MontiArcAutomaton ADL
grammar are simplified for human comprehension, the other MontiArcAutomaton ADL
is the grammar actually used with MontiCore. The former omit technical details to
improve clarity.

A.1.1 MontiArc Grammar for Human Comprehension

The MontiArcAutomaton ADL extends MontiArc and inherits productions to describe
components, connectors, and ports. We therefore present as simplified variant of the
MontiArc grammar for better comprehension. The MontiArc grammar extends from
another grammar (CommonValues) itself (l. 1) and inherits commonly used produc-
tions (such as Expression) from it (l. 25). In MontiArc, most productions implement
the interface ArcElement (l. 3), which allows reusing these in component bodies. This
for instance holds for components as well (l. 5) and allows to easily define inner compo-
nents [HRR12]. A component (ll. 5-8) has a name, an optional instance name (for inner
components), a head, and a body. The head is defined by ArcComponentHead and
consists of an optional list of configuration parameters followed by up to one extension
declaration. A component’s body (l. 15) consists of a set of ArcElement instances.
This can be either an ArcInterface (ll. 17-18), consisting of a set of ports (l. 20),
a subcomponent (ll. 22-27) with a list of instance names (l. 26), or a connector (ll. 28-
30). These and more productions, as well as the corresponding well-formedness rules are
presented in [HRR12].

249

Appendix A Modeling Language Grammars

MCG
1 grammar MontiArc extends CommonValues {

2

3 interface ArcElement;

4

5 ArcComponent implements ArcElement =

6 "component" Name (instanceName:Name)?

7 head:ArcComponentHead

8 body:ArcComponentBody;

9

10 ArcComponentHead = ("[" ArcParameter ("," ArcParameter)* "]")?

11 ("extends" superComponent:ReferenceType)?;

12

13 ArcParameter = Type Name;

14

15 ArcComponentBody = "{" ArcElement* "}";

16

17 ArcInterface implements ArcElement =

18 "port" ports:ArcPort ("," ports:ArcPort)* ";";

19

20 ArcPort = (in:["in"] | out:["out"]) Type Name?;

21

22 ArcSubComponent implements ArcElement =

23 "component"

24 type:ReferenceType

25 ("(" Expression ("," Expression)* ")")?

26 (instances:Name ("," instances:Name)*)? ";";

27

28 ArcConnector implements ArcElement=

29 "connect" source:QualifiedName "->"

30 targets:QualifiedName ("," targets:QualifiedName)* ";";

31 }

Listing A.1: The quintessential elements of the MontiArc grammar [HRR12] for
human comprehension.

A.1.2 MontiArcAutomaton ADL Grammar for Human Comprehension

The MontiArcAutomaton ADL grammar for human comprehension concisely describes
the new modeling language elements of MontiArcAutomaton. After declaring a pack-
age (l. 1), the grammar declaration begins with the keyword grammar, followed by the
grammar’s name, and a declaration that it extends the MontiArc grammar (l. 3). Thus,
MontiArcAutomaton ADL inherits all productions from MontiArc (the MontiArc gram-
mar is presented in [HRR12]). Afterwards, MontiArcAutomaton declares an external
production for embedding of component behavior modeling languages (l. 5). This pro-
duction serves as MontiArcAutomaton ADL extension point and is used to integrate
component behavior languages grammatically.

250

A.1 MontiArcAutomaton ADL Grammars

The central production of the MontiArcAutomaton ADL grammar is MAAComponent
(ll. 7-10), which describes a component type definition in MontiArcAutomaton. The
MAAComponent consists of an optional stereotype, followed by the optional keyword
interface (cf. Section 4.1.1), the keyword component, its name, a component head,
and a body. Both, component head and body, are inherited from MontiArc. The com-
ponent head contains a list of ArcParameter instances and the body a list of instances
of the ArcElement interface. The following productions make use of these.
The production DefaultParameter (ll. 12-13) introduces parameters with default

values (cf. Section 4.1.1) to MontiArcAutomaton. To this effect, it inherits from the pro-
duction ArcParameter used by MontiArc and requires the assignment of a value. The
value is created as an instance of the production CVExpression, which is MontiArc’s
expression language. Behavior models are integrated via the ArcComponentBehavior
production (ll. 15-18), which implements the interface ArcElement and thus can be
used throughout component bodies (cf. Section 4.1.1). It begins with an optional stereo-
type, followed by the keyword behavior, an identifier (kind), and an optional name.
Afterwards, in curly brackets, it contains a single instance of the external produc-
tion BehaviorModel, which is instantiated with the identifier. Embedding replaces
BehaviorModel with the embedded production of a behavior language.

Productions for references to run-time environments (cf. Section 4.1.1) and GPL be-
havior implementations (cf. Section 4.1.1) follow (ll. 20-24). Both implement ArcElement
as well, begin with a unique keyword, and require a single name.
Component variables (cf. Section 4.1.1) follow (ll. 26-29). MontiArcAutomaton ADL

components can contain multiple variable declarations (ll 26-27), each of which begin
with the optional keyword var, followed by their type (also inherited from MontiArc),
and a list of variables. This resembles variable declarations in Java and allows declaring
multiple variables of the same type conveniently. The individual variables (l. 29) also
begin with an optional stereotype, followed by a name and an optional CVExpression
initial assignment.

A.1.3 MontiArcAutomaton ADL Grammar for MontiCore

This complete MontiArcAutomaton ADL grammar also begins with a package decla-
ration, the grammar’s name, and extension of MontiArc (ll. 1-3) as introduced above.
Afterwards, a MontiCore options follow (ll. 4-8), which declare the main production
(compilationunit) of this grammar and arguments for the parser and lexer to be
employed. Subsequently, the grammar defines an external production for embedding
of component behavior productions from other languages (l. 10) and an interface for
keywords (l. 12). Currently, this interface is used with the single keywords interface
only (ll. 14), but defining keywords via the interface allows to easily add new keywords.
All subsequent productions begin with a slash to indicate that they are derived [Kra10].
This entails generation of so-called prototype classes for AST nodes, which expect to
be inherited by handcrafted AST node classes, and enables adding functionality to the
language’s AST classes.

251

Appendix A Modeling Language Grammars

MCG
1 package de.montiarcautomaton.core.languages.adl;

2

3 grammar MontiArcAutomaton extends mc.umlp.arc.MontiArc {

4

5 external BehaviorModel;

6

7 MAAComponent = Stereotype? ("interface")?

8 "component" Name

9 head:ArcComponentHead

10 body:ArcComponentBody;

11

12 DefaultParameter extends ArcParameter =

13 Type Name "=" value:CVExpression?;

14

15 ArcComponentBehavior implements ArcElement =

16 Stereotype? "behavior" kind:Name Name? "{"

17 BehaviorModel(parameter kind)

18 "}";

19

20 GPLBehaviorImplementation implements ArcElement =

21 Stereotype? "implementation" name:QualifiedName ";";

22

23 RTE implements ArcElement =

24 Stereotype? "rte" name:QualifiedName ";";

25

26 VariableDeclaration implements ArcElement =

27 "var"? Type Variable ("," Variable)* ";";

28

29 Variable = Stereotype? Name ("=" CVExpression)?;

30 }

Listing A.2: The MontiArcAutomaton ADL grammar for human comprehension.

In this grammar, the production MAAComponent extends ArcComponent and thus
inherits its properties. It also features an optional instance name, as MontiArc uses
the same production for inner components (see context condition MU6). The fol-
lowing productions employ so-called syntactic predicates to guide parsing. For in-
stance, the production DefaultParameter (ll. 20-21) utilizes the syntactic predi-
cate (Type Name "=") => ArcParameter that helps the parser to distinguish in-
stances of DefaultParameter (which must be followed by “=”) from instances of
ArcParameter. Aside from begin derived and employing syntactic predicates, the
remaining productions to not differ from the MontiArcAutomaton ADL grammar for
human comprehension.

252

A.1 MontiArcAutomaton ADL Grammars

MCG
1 package de.montiarcautomaton.core.languages.adl;

2

3 grammar MontiArcAutomaton extends mc.umlp.arc.MontiArc {

4 options {

5 compilationunit MAAComponent

6 parser lookahead=5

7 lexer lookahead=7

8 }

9

10 external BehaviorModel;

11

12 interface Keyword;

13

14 InterfaceKeyword implements Keyword = "interface";

15

16 / MAAComponent extends ArcComponent =

17 Stereotype? Keyword? "component" Name (instanceName:Name)?

18 head:ArcComponentHead body:ArcComponentBody;

19

20 / DefaultParameter extends (Type Name "=") => ArcParameter =

21 Type Name "=" value:CVExpression?;

22

23 / ArcComponentBehavior implements

24 (Stereotype? "behavior" kind:Name Name? "{")

25 => ArcElement =

26 Stereotype? "behavior" kind:Name Name? "{"

27 BehaviorModel(parameter kind)

28 "}";

29

30 / GPLBehaviorImplementation implements

31 (Stereotype? "implementation" name:QualifiedName ";")

32 => ArcElement =

33 Stereotype? "implementation" name:QualifiedName ";";

34

35 / RTE implements

36 (Stereotype? "rte" name:QualifiedName ";")

37 => ArcElement =

38 Stereotype? "rte" name:QualifiedName ";";

39

40 / VariableDeclaration implements ArcElement =

41 "var"? Type Variable ("," Variable)* ";";

42

43 / Variable = Stereotype? Name ("=" CVExpression)?;

44 }

Listing A.3: The MontiArcAutomaton ADL grammar for processing by MontiCore.

253

Appendix A Modeling Language Grammars

A.2 Automata Grammars

The Automata grammar comprises productions to describe finite automata that op-
erate in a context of inputs, outputs, and variables. We provide two versions of the
Automata grammar: one for human comprehension that omits parser directives and
elements to influence AST generation and one version as processed by MontiCore. The
next sections introduce both grammars and the language configuration file that defines
embedding of Java/P expressions.

A.2.1 Automata Grammar for Human Comprehension

The following grammar is prepared for human comprehension. Therefore, it omits
parser directives, production derivation information, and syntactic predicates. Mon-
tiCore provides such elements to improve parser performance and to influence AST
generation [KRV08b, Kra10, KRV10].

The Automata grammar depicted in Listing A.4 begins with the keyword grammar

followed by its name. Afterwards it declares to extend the grammar CommonValues
(presented in [Sch12]), which provides productions common to many grammars, such as
Name and Type. The productions GuardExpression (l. 3) and Valuation (l. 4)
are external non-terminals and act as extension points for productions from other
languages (for instance Java/P expressions). Separating both forms of expressions via
different non-terminals allows easy integration of other expressions languages into guards,
while retaining valuation expressions. A previous version of MontiArcAutomaton, for
instance, embedded OCL/P [Sch12] expressions into guards.

The main production of the Automata grammar is Automaton (ll. 6-9) which holds
the modeled automaton’s stereotype, name, context, and content. An automaton’s con-
text (production AutomatonContext) consists of an arbitrary number of inputs, out-
puts, and variables (l. 11) in arbitrary order. Each of these (ll. 14-16) begins with a
certain keyword and a type followed by a list of Channel non-terminals. Each channel
(l. 17) is a name with an optional assignment of external non-terminal Valuation.

An automaton’s content (production AutomatonContent, l. 12) comprises an arbi-
trary number of state declarations, initial state declarations, and transitions in arbitrary
order. Each state declaration (States, l. 19) begins with the keyword state followed
by a list of states. Each State is a name with an optional stereotype (l. 20). Initial
state declarations (l. 22) begin with the keyword initial, followed by a list of initial
state names and an optional Block that describes the states’ initial output. Transitions
omit introductory keywords, but are recognized by their unique syntax instead. Each
transition (ll. 24-27) begins with the name of its source state, followed by an optional
target state name, an optional guard, an optional stimulus Block, and an optional
action Block.

Guards (l. 29) consist of square brackets that delimit their expressions of external
non-terminal GuardExpression. The Block productions (l. 30) used for stimuli and
actions comprise assignment lists of non-terminal Assignment, optionally enclosed in
curly brackets. Assignment lists (l. 32) are comma-separated lists of assignments, which

254

A.3 Generator Description Grammar

consist of at least one assignment. Consequently, empty curly brackets {} are prohibited.
Each assignment (l. 33) may begin with an optional name to identify the referenced input,
output, or variable, followed by either an alternative or a list of values. Alternatives
(l. 35) begin with the keyword alt followed by alternative value lists, enclosed in curly
brackets. Thus, nesting alternatives is not possible. Each value list (ll. 37-38) consists
either of a comma-separated list of external Valuation non-terminals delimited by
square brackets, of of a single Valuation element.

Reflecting the distinction between AutomataContext and AutomatonContent

in the grammar facilitates language embedding, as the embedding language can reuse
AutomatonContent directly (cf. Section 4.2).

A.2.2 Automata Grammar for MontiCore

The Automata MontiCore grammar contains all elements of the simplified Automata
grammar for human comprehension presented in Section A.2.1. This section therefore
only discusses their differences, which begin by stating a package declaration (l. 1) and
extending CommonValues [Sch12] via its full name (l. 4). Afterwards it specifies options,
such as the name of the compilation unit non-terminal and the parser’s and lexer’s look-
ahead (ll. 7-9). After declaring the familiar external non-terminals, each subsequent
production begins with a dash / to indicate that the AST generator should prepare
the AST classes for manual extension. The resulting AST infrastructure thus expects
handcrafted subclasses of the AST classes following a naming convention. Automata
employs this mechanism to enrich the generated AST classes with additional fields and
methods for easier access and to encapsulate related calculations [KRV08b, KRV10].
Another difference arises from the option greedy added to ValueList (ll. 42-43),
which instructs MontiCore to process comma-separated Valuation lists modestly.

A.3 Generator Description Grammar

Models of the generator description modeling language (Section 7.2) represent code gen-
erators in terms of their type (as represented by the interface), and their most important
properties for composition, configuration, and execution. To this effect, the generator
description grammar must provide means to identify a code generator description, refer-
ence the interface the represented generator should implement, declare the processable
language fragment, context conditions, additionally supported behavior languages, a
start template, and a run-time environment.

The code generator description grammar begins with a package declaration followed
by a grammar declaration (ll. 1-4). The latter also declares, that this grammar inherits
from the CommonValues grammar. After the AST options (ll. 6-8) declaring the compi-
lation unit (i.e., the ’top-level’ model element containing all other model elements of this
language), the grammar defines the production GeneratorDescription (ll. 10-13)
which consists of the keyword generator followed by a name, the keyword conforms
and a the qualified name of the interface the represented generator should implement.

255

Appendix A Modeling Language Grammars

MCG
1 grammar Automata extends CommonValues {

2

3 external GuardExpression;

4 external Valuation;

5

6 Automaton = Stereotype? "automaton" Name "{"

7 AutomatonContext

8 AutomatonContent

9 "}";

10

11 AutomatonContext = (Input | Output | Variable)*
12 AutomatonContent = (States | Initial | Transition)*;

13

14 Input = "input" Type Channel ("," Channel)* ";";

15 Output = "output" Type Channel ("," Channel)* ";";

16 Variable = "variable" Type Field ("," Channel)* ";";

17 Channel = Name ("=" ValueExpression)?;

18

19 States = "states" State ("," State)* ";" ;

20 State = Stereotype? Name;

21

22 Initial = "initial" Name ("," Name)* ("/" Block)? ";";

23

24 Transition = source:Name ("->" target:Name)?

25 Guard?

26 stimulus:Block?

27 ("/" action:Block)? ";";

28

29 Guard = "[" GuardExpression "]";

30 Block = ("{" AssignmentList "}") | AssignmentList;

31

32 AssignmentList = Assignment ("," Assignment)*;

33 Assignment = (Name "=")? (Alternative | ValueList);

34

35 Alternative = "alt{" ValueList ("," ValueList)* "}";

36

37 ValueList = (("[" Valuation ("," Valuation)* "]")

38 | Valuation);

39 }

Listing A.4: A simplified Automata grammar for human comprehension.

Afterwards, a body consisting of a list of DescriptionElement productions, delim-
ited by curly brackets, follows. The interface production DescriptionElement (l. 15)
allows adding different productions to the body, as long as these implement this interface.
Currently, these productions are Start, Language, RTE, ContextConditions, and
Behaviors (ll. 17-34), which allow to define the aforementioned properties.

256

A.3 Generator Description Grammar

MCG
1 package de.montiarcautomaton.core.languages.ioautomaton;

2

3 grammar Automata

4 extends de.monticore.lang.common.CommonValues {

5

6 options {

7 compilationunit Automaton

8 parser lookahead = 3

9 lexer lookahead = 5

10 }

11

12 external GuardExpression;

13 external Valuation;

14

15 / Automaton = Stereotype? "automaton" Name "{"

16 AutomatonContext AutomatonContent "}";

17

18 / AutomatonContext = (Input | Output | Variable)*
19 / AutomatonContent = (States | Initial | Transition)*;

20

21 / Input = "input" Type Field ("," Field)* ";";

22 / Output = "output" Type Field ("," Field)* ";";

23 / Variable = "variable" Type Field ("," Field)* ";";

24 / Field = Name ("=" ValueExpression)?;

25

26 / States = "states" State ("," State)* ";" ;

27 / State = Stereotype? Name;

28

29 / Initial = "initial" Name ("," Name)* ("/" Block)?";";

30

31 / Transition = source:Name ("->" target:Name)?

32 Guard? stimulus:Block? ("/" action:Block)? ";";

33

34 / Guard = "[" GuardExpression "]";

35 / Block = ("{" AssignmentList "}") | AssignmentList;

36

37 / AssignmentList = Assignment ("," Assignment)*;

38 / Assignment = (Name "=")? (Alternative | ValueList);

39

40 / Alternative = "alt{" ValueList ("," ValueList)* "}";

41

42 / ValueList = (Valuation | (options {greedy=false;}:(

43 ("[" Valuation ("," Valuation)* "]")));

44 }

Listing A.5: The complete Automata MontiCore grammar.

257

Appendix A Modeling Language Grammars

The productions Start (ll. 17-18), Language (ll. 20-21), and RTE (ll. 23-25) each
consist of distinct keyword followed by a qualified name. Slightly more complex are
the productions ContextConditions (ll. 26-30) and Behaviors (ll. 32-34). Both
begin with a distinct keyword and span a body containing lists of names delimited
by curly brackets. For ContextConditions, the keyword contextconditions

may be followed by the keyword in and a qualified name to describe a common base
package the context conditions listed afterwards reside in (cf. Section 7.2.1). As this
does not prohibit defining, for instance, multiple start templates, the language’s context
conditions (Section 7.2.3) take care of this.

MCG
1 package montiarcautomaton.languages.generatordescription;

2

3 grammar GeneratorDescription

4 extends de.monticore.lang.common.CommonValues {

5

6 options {

7 compilationunit GeneratorDescription

8 }

9

10 / GeneratorDescription =

11 "generator" Name "conforms" interface:QualifiedName "{"

12 DescriptionElement*
13 "}";

14

15 interface DescriptionElement;

16

17 Start implements DescriptionElement =

18 "start" QualifiedName ("(" ")")? ";";

19

20 Language implements DescriptionElement =

21 "language" QualifiedName ";";

22

23 RTE implements DescriptionElement =

24 "rte" QualifiedName ";";

25

26 ContextConditions implements DescriptionElement =

27 "contextconditions" ("in" cocoPackage:QualifiedName)? "{"

28 coco:QualifiedName ("," coco:QualifiedName)*
29 "}";

30

31 Behaviors implements DescriptionElement =

32 "behaviors" "{"

33 QualifiedName ("," QualifiedName)*
34 "}";

35 }

Listing A.6: The generator description grammar for processing by MontiCore.

258

A.4 Application Configuration Grammar

A.4 Application Configuration Grammar

The application configuration grammar realizes the application configuration language
elements as introduced in Section 8.1.1.

MCG
1 package montiarcautomaton.languages.applicationconfiguration;

2

3 grammar ApplicationConfiguration

4 extends de.monticore.lang.common.CommonValues {

5

6 options { compilationunit ApplicationConfiguration }

7

8 / ApplicationConfiguration =

9 "application" Name "for" architecture:QualifiedName "{"

10 ApplicationConfigurationElement*
11 "}";

12

13 interface ApplicationConfigurationElement;

14

15 / Generator implements ApplicationConfigurationElement

16 = name:QualifiedName ";";

17

18 / Binding implements ApplicationConfigurationElement =

19 "bind" subcomponent:QualifiedName "to"

20 componentType:ReferenceType

21 "(" (CVExpression ("," CVExpression)*)? ")" ";";

22 }

Listing A.7: The application configuration grammar for processing by MontiCore.

After the package declaration (l. 1), the grammar begins with keyword grammar

followed by the name ApplicationConfiguration and the declaration to extend
the grammar de.monticore.lang.common.CommonValues (ll. 3-4). The produc-
tion ApplicationConfiguration defines an application configuration and begins
with the keyword application followed by the configuration’s name, the keyword
for, and the qualified name of the architecture it references (ll. 8-11). Afterwards, it
contains a list of ApplicationConfigurationElement productions (l. 10), where
ApplicationConfigurationElement is an interface (l. 13) implemented by the pro-
ductions Generator (ll. 15-16) and Binding (ll. 18-21). The production Generator
consists of a qualified name followed by a semicolon and represents the name of a par-
ticipating generator. Binding begins with the keyword bind, followed by a qualified
name representing the path to the bound subcomponent, a ReferenceType and a list
of CVExpression items in brackets. The production ReferenceType is inherited
from the super grammar CommonValues and consists of qualified names with optional
angle brackets containing further reference types. This allows modeling qualified type
names with generic type arguments. CVExpression is a compact expression language

259

Appendix A Modeling Language Grammars

similar to the expressions of Java and imported from CommonValues as well. Bindings
use CVExpression instead of Java expressions to ensure compatibility with MontiArc
2.5.0, which uses the same production for component configuration arguments.

260

Appendix B

Survey Materials

This chapter provides the complete surveys and aggregated results of the evaluations
presented in Chapter 9.

B.1 NXT Java Coffee Delivery

In the first lab course on MontiArcAutomaton, the MontiArc was introduced as the
predecessor of MontiArcAutomaton and Automata models were part of the MontiArc-
Automaton grammar. Hence, the survey differentiates between MontiArc and Monti-
ArcAutomaton to identify C&C structure modeling (MontiArc) and behavior modeling
(MontiArcAutomaton).

Questionnaire

1. What percentage (0% - 100%) of the time did you spend on. . .

• understanding MontiArc: 86%

• understanding MontiArcAutomaton: 29.00%

• understanding LeJOS: 10.71%

• understanding the code generation process: 33.29%

2. What percentage (0% - 100%) of the time did you spend on. . .

• building LEGO robots: 24.29%

• modeling the architecture using MontiArc: 19.29%

• modeling behavior using MontiArcAutomaton: 36.43%

• implementing behavior using Java: 20.00%

3. What percentage (0% - 100%) of the time was wasted because you tried something
that was conceptually wrong?

• Building LEGO robots: 40.71%

• Modeling the architecture using MontiArc: 12.86%

• Modeling behavior using MontiArcAutomaton: 33.57%

• Implementing behavior using Java: 12.86%

261

Appendix B Survey Materials

4. What percentage (0% - 100%) of the time was wasted because you tried something
that failed due to bugs in the code generator?

• Building LEGO robots: 2.14%

• Modeling the architecture using MontiArc: 25.71%

• Modeling behavior using MontiArcAutomaton: 52.14%

• Implementing behavior using Java: 5.71%

5. How many times did you revise or recreate the. . .

• LEGO robots: 1.33

• architecture using MontiArc: 1.33

• behavior using MontiArcAutomaton: 1.80

• implementation using Java: 0.40

6. Rate from 1 (simple) – 10 (almost impossible) the effort to understand and work
on artifacts created by your team members.

• LEGO robots: 2.86

• Architecture using MontiArc: 4.43

• Behavior using MontiArcAutomaton: 6.29

• Implementation using Java: 4.29

7. Rate the amount of documentation 1 (no documentation) – 10 (well documented)
of the artifacts of the team.

• LEGO robots: 2.57

• Architecture using MontiArc: 4.43

• Behavior using MontiArcAutomaton: 5.14

• Implementation using Java: 4.71

8. Rate your confidence in the correctness of the artifacts created by you from 1 (no
confidence) – 10 (works perfectly). Assume a perfectly working code generator.

• LEGO robots: 7.40

• Architecture using MontiArc: 7.17

• Behavior using MontiArcAutomaton: 6.29

• Implementation using Java: 6.50

9. Rate your confidence in the correctness of the artifacts created by your team mem-
bers from 1 (no confidence) – 10 (works perfectly). Assume a perfectly working
code generator.

• LEGO robots: 8.29

262

B.2 Robotino ROS Python Transport Services

• Architecture using MontiArc: 7.14

• Behavior using MontiArcAutomaton: 6.14

• Implementation using Java: 6.57

10. Rate the effort to fix bugs in the artifacts 1 (simple) – 10 (almost impossible).
Assume a perfectly working code generator.

• LEGO robots: 4.71

• Architecture using MontiArc: 6.29

• Behavior using MontiArcAutomaton: 6.29

• Implementation using Java: 3.17

11. How often did you run interactive tests with the following?

• LEGO robots: 33.29

• Architecture using MontiArc: 15.14

• Behavior using MontiArcAutomaton: 43.57

• Implementation using Java: 11.57

12. How many non-interactive regression (aka. junit) tests did you implement?

• LEGO robots: 0.00

• Architecture using MontiArc: 0.00

• Behavior using MontiArcAutomaton: 0.00

• Implementation using Java: 0.29

13. What percentage of the components you’ve developed does use automata? 57.29

14. What percentage of the components do you think could have been developed using
automata? 64.57

B.2 Robotino ROS Python Transport Services

In this lab course, we conducted two surveys using questionnaires. The students answered
the first survey a few weeks into development and the second survey at the end of the
course. The first questionnaire consists of 12 questions and the second consists of 18
questions.

First Questionnaire

1. What percentage (0% - 100%) of the time did you spend on. . .

• understanding MontiArcAutomaton C&C modeling elements: 21.11%

• understanding the automata behavior language: 21.67%

263

Appendix B Survey Materials

• understanding Python: 14.44%

• understanding ROS: 26.67%

• understanding the code generation process: 15.00%

2. What percentage (0% - 100%) of the time did you spend on. . .

• modeling the C&C structure: 35.00%

• modeling behavior: 14.44%

• implementing behavior using Python: 45.00%

3. What percentage (0% - 100%) of the time was wasted because you tried something
that was conceptually wrong (i.e., you tried something not supposed to be possible
that way) while. . .

• modeling the C&C structure: 4.44%

• modeling behavior: 3.33%

• implementing behavior architecture using Python: 33.89%

• using ROS modules: 11.11%

4. What percentage (0% - 100%) of the time was wasted because you tried something
that failed due to bugs in the code generator while. . .

• modeling the C&C structure: 8.89%

• modeling behavior: 15.00%

• implementing behavior architecture using Python: 27.78%

5. How many times did you revise or recreate the. . .

• C&C models: 1.89

• behavior models: 0.67

• Python implementations: 1.56

• ROS nodes: 0.22

6. Rate from 1 (simple) – 10 (almost impossible) the effort to understand and work
on artifacts created by your team members.

• C&C models: 2.22

• Behavior models: 3.25

• Python implementations: 3.00

• ROS nodes: 4.29

7. Rate the amount of documentation 1 (no documentation) – 10 (well documented)
of the artifacts of the team.

• C&C models: 6.22

264

B.2 Robotino ROS Python Transport Services

• Behavior models: 5.11

• Python implementations: 7.44

• ROS nodes: 2.8

8. Rate your confidence in the correctness of the artifacts created by you from 1 (no
confidence) – 10 (works perfectly).

• C&C models: 8.63

• Behavior models: 6.50

• Python implementations: 6.78

• ROS nodes: 2.86

9. Rate your confidence in the correctness of the. . . artifacts created by your team
members from 1 (no confidence) – 10 (works perfectly).

• C&C models: 7.75

• Behavior models: 6.11

• Python implementations: 6.67

• ROS nodes: 4.50

10. Rate the effort to fix bugs in the. . . artifacts 1 (simple) – 10 (almost impossible).

• C&C models: 4.56

• Behavior models: 5.25

• Python implementations: 2.78

• ROS nodes: 4.60

11. What percentage of the components you’ve developed does use automata? 16.50%

12. What percentage of the components do you think could have been developed using
automata? 34.75%

Second Questionnaire

1. What percentage (0% - 100%) of the time did you spend on. . .

• understanding MontiArcAutomaton C&C modeling elements: 13.80%

• understanding the automata behavior language: 14.39%

• understanding Python: 16.40%

• understanding ROS: 43.66%

• understanding the code generation process: 11.76%

2. What percentage (0% - 100%) of the time did you spend on. . .

265

Appendix B Survey Materials

• modeling the C&C structure: 16.67%

• modeling behavior: 18.89%

• implementing behavior using Python: 64.44%

3. What percentage (0% - 100%) of the time was wasted because you tried something
that was conceptually wrong (i.e., you tried something not supposed to be possible
that way) while. . .

• modeling the C&C structure: 5.00%

• modeling behavior: 9.44%

• implementing behavior architecture using Python: 8.33%

• using ROS modules: 6.11%

4. What percentage (0% - 100%) of the time was wasted because you tried something
that failed due to bugs in the code generator while. . .

• modeling the C&C structure: 14.44%

• modeling behavior: 27.78%

• implementing behavior architecture using Python: 10.00%

5. How many times did you revise or recreate the. . .

• C&C models: 3.00

• behavior models: 2.86

• Python implementations: 6.14

• ROS nodes: 3.00

6. Rate from 1 (simple) – 10 (almost impossible) the effort to understand and work
on artifacts created by your team members.

• C&C models: 4.00

• Behavior models: 4.56

• Python implementations: 3.11

• ROS nodes: 6.14

7. Rate the amount of documentation 1 (no documentation) – 10 (well documented)
of the artifacts of the team.

• C&C models: 5.56

• Behavior models: 4.89

• Python implementations: 7.89

• ROS nodes: 5.00

266

B.2 Robotino ROS Python Transport Services

8. Rate your confidence in the correctness of the artifacts created by you from 1 (no
confidence) – 10 (works perfectly).

• C&C models: 8.00

• Behavior models: 6.50

• Python implementations: 7.22

• ROS nodes: 7.33

9. Rate your confidence in the correctness of the. . . artifacts created by your team
members from 1 (no confidence) – 10 (works perfectly).

• C&C models: 7.88

• Behavior models: 6.11

• Python implementations: 7.72

• ROS nodes: 6.00

10. Rate the effort to fix bugs in the. . . artifacts 1 (simple) – 10 (almost impossible).

• C&C models: 4.56

• Behavior models: 5.22

• Python implementations: 4.78

• ROS nodes: 7.25

11. What percentage of the components you’ve developed does use automata? 10.22%

12. What percentage of the components do you think could have been developed using
automata? 19.33%

13. Do you think Scrum helped to enable you develop the common code base? (Yes/No/-
Don’t know): (7/0/1)

14. How many days do you think would it take to reuse your solution with another
(similar, e.g., Roomba) robot? 5.00

15. Please order the technologies by the complexity to understand them.

• C&C models: 2.89

• Behavior models: 3.78

• Python implementations: 1.89

• ROS nodes: 4.44

• Continuous integration: 4.40

16. How many hours per week did you ca. spend with this lab? 12.44

267

Appendix B Survey Materials

17. Rate the different parts of the established Scrum methodology 1 (totally useless)
– 10 (great benefit). Rate 0 if you do not know what is meant by the proposed
artifact / methodology.

• Product Backlog: 5.89

• Impediment Backlog: 6.33

• Sprint Backlog: 5.11

• Daily Scrum: 8.56

• Spring Planning Meeting: 9.11

• Sprint Retrospective: 5.56

• Definition Of Done: 6.00

18. Rate the concrete implementation of the different parts of the Scrum methodology
1 (bad implementation) – 10 (best possible integration). Rate 0 if you do not
understand the question.

• Product Backlog: 6.50

• Impediment Backlog: 6.00

• Sprint Backlog: 4.89

• Daily Scrum: 8.22

• Spring Planning Meeting: 8.56

• Sprint Retrospective: 6.44

• Definition Of Done: 6.78

B.3 Robotino SmartSoft Java Transport Services

Both surveys were conducted via questionnaires. The first questionnaire, answered a few
weeks into the lab course consists of 12 questions. The second questionnaire, answered
at the course’s end, consists of 18 questions. The additional six questions inquire about
the students’ participation and their experiences with Scrum during the course.

First Questionnaire

1. What percentage (0% - 100%) of the time did you spend on. . .

• understanding MontiArcAutomaton C&C modeling elements: 14.67%

• understanding Automata models: 12.71%

• understanding the SmartSoft platform: 40.08%

• understanding the code generation process: 16.21%

2. What percentage (0% - 100%) of the time did you spend on. . .

268

B.3 Robotino SmartSoft Java Transport Services

• modeling the architecture using MontiArcAutomaton C&Cmodeling elements:
16.91%

• modeling behavior using Automata models: 6.05%

• implementing behavior using Java: 40.50%

• implementing technological foundations using SmartSoft: 30.18%

3. What percentage (0% - 100%) of the time was wasted because you tried something
that was conceptually wrong (i.e., you tried something not supposed to be possible
that way)?

• Modeling the architecture using MontiArcAutomaton C&C modeling ele-
ments: 12.50%

• Modeling behavior using Automata models: 8.50%

• Implementing behavior architecture using Java: 26.00%

• Using SmartSoft modules: 35.45%

4. What percentage (0% - 100%) of the time was wasted because you tried something
that failed due to bugs in the code generator?

• Modeling the architecture using MontiArcAutomaton C&C modeling ele-
ments: 12.50%

• Modeling behavior using Automata models: 6.00%

• Implementing behavior architecture using Java: 24.60%

5. How many times did you revise or recreate the. . .

• architecture using MontiArcAutomaton C&C modeling elements: 3.00

• behavior using Automata models: 0.45

• implementation using Java: 7.55

• usage of SmartSoft nodes: 4.55

6. Rate from 1 (simple) – 10 (almost impossible) the effort to understand and work
on artifacts created by your team members.

• Architecture using MontiArcAutomaton C&C modeling elements: 3.00

• Behavior using Automata models: 2.33

• Implementation using Java: 3.00

• Usage of SmartSoft nodes: 7.33

7. Rate the amount of documentation 1 (no documentation) to 10 of the artifacts of
the team

• MontiArcAutomaton C&C modeling elements: 4.36

• Automata models: 4.89

269

Appendix B Survey Materials

• Java implementations: 7.00

• SmartSoft nodes: 3.29

8. Rate your confidence in the correctness of the artifacts created by you from 1 (no
confidence) – 10 (works perfectly). Assume a perfectly working code generator.

• MontiArcAutomaton C&C modeling elements: 8.78

• Automata models: 8.33

• Java implementations: 7.78

• SmartSoft nodes: 4.60

9. Rate your confidence in the correctness of the artifacts created by your team mem-
bers from 1 (no confidence) – 10 (works perfectly). Assume a perfectly working
code generator:

• MontiArcAutomaton C&C modeling elements: 9.00

• Automata models: 7.83

• Java implementations: 7.09

• SmartSoft nodes: 8.50

10. Rate the effort to fix bugs in the artifacts 1 (simple) – 10 (almost impossible).
Assume a perfectly working code generator:

• MontiArcAutomaton C&C modeling elements: 3.73

• Automata models: 3.50

• Java implementations: 4.18

• SmartSoft nodes: 8.50

11. How often did you run interactive tests with the following?

• MontiArcAutomaton C&C modeling elements: 4.50

• Automata models: 3.57

• Java implementations: 10.10

• SmartSoft nodes: 1.00

12. How many non-interactive regression (aka. junit) tests did you implement?

• MontiArcAutomaton C&C modeling elements: 0.00

• Automata models: 0.00

• Java implementations: 4.33

• SmartSoft nodes: 0.00

13. What percentage of the components you’ve developed does use automata? 11.00%

14. What percentage of the components do you think could have been developed using
automata? 20.00%

270

B.3 Robotino SmartSoft Java Transport Services

Second Questionnaire

1. What percentage (0% - 100%) of the time did you spend on. . .

• understanding C&C models: 5.00%

• understanding Automata models: 5.00%

• understanding SmartSoft: 46.82%

• understanding the code generation process: 6.36%

2. What percentage (0% - 100%) of the time did you spend on. . .

• modeling the architecture using C&C models: 10.08%

• modeling behavior using Automata models: 4.75%

• implementing behavior using Java: 36.50%

• implementing technological foundations using SmartSoft: 23.25%

3. What percentage (0% - 100%) of the time was wasted because you tried something
that was conceptually wrong (i.e., you tried something not supposed to be possible
that way)?

• Modeling the architecture using C&C models: 8.33%

• Modeling behavior using Automata models: 7.92%

• Implementing behavior architecture using Java: 7.08%

• Using SmartSoft components: 16.75%

4. What percentage (0% - 100%) of the time was wasted because you tried something
that failed due to bugs in the code generator?

• Modeling the architecture using C&C models: 8.13%

• Modeling behavior using Automata models: 8.75%

• Implementing behavior architecture using Java: 9.38%

5. How many times did you revise or recreate the. . .

• architecture using C&C models: 11.00

• behavior using Automata models: 1.18

• implementation using Java: 12.20

• usage of SmartSoft components: 2.80

6. Rate from 1 (simple) – 10 (almost impossible) the effort to understand and work
on artifacts created by your team members.

• C&C models: 3.83

• Automata models: 4.67

• Java implementations: 4.25

271

Appendix B Survey Materials

• SmartSoft components: 8.75

7. Rate the amount of documentation 1 (no documentation) to 10 of the artifacts of
the team members.

• C&C models: 7.70

• Automata models: 4.38

• Java implementations: 7.73

• SmartSoft components: 2.14

8. Rate your confidence in the correctness of the artifacts created by you from 1 (no
confidence) – 10 (works perfectly).

• C&C models: 8.20

• Automata models: 5.20

• Java implementations: 7.58

• SmartSoft components: 7.40

9. Rate your confidence in the correctness of the artifacts created by your team mem-
bers from 1 (no confidence) – 10 (works perfectly).

• C&C models: 7.17

• Automata models: 6.33

• Java implementations: 7.18

• SmartSoft components: 5.40

10. Rate the effort to fix bugs in the artifacts 1 (simple) – 10 (almost impossible).

• C&C models: 3.67

• Automata models: 2.83

• Java implementations: 5.25

• SmartSoft components: 8.22

11. What percentage of the components you’ve developed does useAutomatamodels?
6.00

12. What percentage of the components do you think could have been developed using
Automata models? 7.91

13. Do you think Scrum helped to enable you develop the common code base individ-
ually? (Yes/No/Don’t know): (9/0/3)

14. How many days do you think would it take to reuse your solution with another
(similar, e.g., Roomba) robot? 18.90

15. Please order the technologies by the complexity to understand them.

272

B.3 Robotino SmartSoft Java Transport Services

• SmartSoft components: 5.90

• C&C models: 3.60

• Automata models: 3.33

• Java implementations: 1.70

• Maven: 3.90

• Continuous Integration (Jenkins / Nexus): 2.30

16. How hours per week did you ca. spend with this lab? 15.92

17. Rate the different parts of the established Scrum methodology 1 (totally useless)
– 10 (great benefit). Rate 0 if you do not know what is meant by the proposed
artifact / methodology.

• Product Backlog: 5.25

• Impediment Backlog: 4.08

• Sprint Backlog: 5.67

• Daily Scrum: 7.92

• Sprint Planning Meeting: 8.50

• Sprint Retrospective: 6.17

• Definition of Done: 5.50

18. Rate the concrete implementation of the different parts of the Scrum methodology
1 (bad implementation) – 10 (best possible integration). Rate 0 if you do not
understand the question:

• Product Backlog: 3.45

• Impediment Backlog: 2.91

• Sprint Backlog: 4.09

• Daily Scrum: 7.27

• Sprint Planning Meeting: 7.36

• Sprint Retrospective: 5.55

• Definition of Done: 4.18

273

Appendix C

Kinds of Names in MontiArcAutomaton

MontiArcAutomaton integrates at least four modeling languages for structural aspects of
software architectures, their data types, description of code generators, and configuration
of applications. Most related entities are referenced by name in or between models of
these languages. This appendix thus describes the different types of names and illustrates
their usage.

Table C.1: Important kinds of names in MontiArcAutomaton.

Name Example Definition Usage

Architecture
root
component
name

robots.BumperBot

MontiArc-
Automaton ADL
component type
definition
(cf. Listing 2.3)

In application
configuration
models (such
as Listing 8.3)

Code
generator
name

ComponentsJava

In generator
description models
(e.g., Listing 7.1)

Application
configuration
models reference it
to select generators
(Listing 8.1)

Component
type name

BumpControl

Component type
definition (for
instance List-
ing 5.26)

Subcomponent
declarations
(e.g. Listing 2.3)

Context
condition
name

robotarmpy.

NoComplexTypes

By constituting
Java classes [Vö11]

In MontiCore
language definition
classes and code
generators
(Listing 7.5)

275

Appendix C Kinds of Names in MontiArcAutomaton

Table C.2: Important types of name in MontiArcAutomaton (continued).

Name Example Definition Usage

Data type
name

commands.TimerCMD

Class diagram
model or Java/P
model (Figure 5.2)

Definition of port
types in component
type definitions
(Listing 4.2)

Generator
kind name

generatorkinds.

Behavior

MontiArc-
Automaton
infrastructure

Conformance
declaration in
generator
description models
(Listing 7.5)

GPL
behavior im-
plementation
name

hazards.

AirQualityChecker

GPL behavior
implementation
artifacts

Platform-specific
atomic components
(Section 4.1.1)

Non-
terminal
production
name

MontiArcAutomaton.

MAAComponent

MontiCore
grammar of a DSL
(Section A.1.2)

Processable
languages of code
generators
(Listing 7.7)

Run-time
environment
name

runtimes.javats
RTE package
declaration

Generator
descriptions
(Listing 7.1) and
platform-specific
atomic components
(Listing 4.2)

Subcompo-
nent
instance
name

controller

Definition of
containing
component type
(also Listing 5.26)

Definition of
connectors
(Listing 5.26) and
specification of
bindings (e.g.,
Listing 8.1)

Starting
point name

componentsjava.

MainTemplate or
componentsjava.

Generator.start()

By the generator’s
artifacts

Declared by
generator
description models
(Listing 7.7)

276

Appendix D

Diagram and Listing Tags

This appendix describes the tags and stereotypes used to describe models, artifacts, and
their constituents through this thesis. Both tags and stereotypes are used with figures
and listings. First, Table D.1 describes the used tags. Afterwards, Table D.2 displays
the used stereotypes.

Table D.1: Tags used in listings and figures throughout this thesis.

Tag Description

AD UML/P activity diagram
App Application configuration model
AC Combined application configuration with generator description

Automata Automata model
BARC BehaviorARC model
CpD Component diagram
FM FreeMarker template
GBC Groovy behavior configuration model
GD Generator description model
Java Java/P model
LNG MontiCore language configuration file
MA MontiArc model
MAA MontiArcAutomaton model
MCG MontiCore grammar
MCL MontiCore languages
PC Pseudo code

Python Python code
ROS ROS graph

ROS-MAA ROS graph connected to MontiArcAutomaton model
ROS msg ROS msg model

277

Appendix D Diagram and Listing Tags

Tag Description

«gen» Generated element

«hc» Handcrafted element

Table D.2: Explanation of the stereotypes used throughout this thesis.

278

Appendix E

Curriculum Vitae

Andreas Wortmann, born March 07, 1982 in Joinville, Brazil

Academic Employment

Since 10/2014 RWTH Aachen University: Team leader automotive and robotics
software engineering.

Since 03/2011 RWTH Aachen University: Research and teaching assistant.

04/2006-08/2007 RWTH Aachen University: Student research assistant at the
embedded systems laboratory.

Education

Since 03/2011 RWTH Aachen University: Ph.D. studies in Software Engineering

04/2007-09/2011 RWTH Aachen University: Business Informatics studies.
Diploma in Business Informatics.

10/2003-08/2010 RWTH Aachen University: Computer Science studies.
Diploma in Computer Science.

06/2003 Wirtschaftsschulen Steinfurt: German Abitur.

279

List of Figures

2.1 Example grammar AST nodes. 12

2.2 MontiCore toolchain overview. 13

2.3 Typical MontiCore activities. 14

2.4 ARC symbol table entries. 15

2.5 Language integration effects on parsers. 18

2.6 Language integration effects on ASTs. 19

2.7 MontiArcBumperBot software architecture. 24

2.8 Data types of BumperBot. 25

3.1 Exploration robot platforms. 30

3.2 Platform-independent software architecture of ExplorerBot. 32

3.3 Platform-specific software architecture of NXTExplorerBot. 34

3.4 MontiArcAutomaton infrastructure with roles. 39

3.5 The three stages of MontiArcAutomaton. 40

3.6 Instantiation and configuration of MontiArcAutomaton begins with inte-
gration component behavior languages. 41

3.7 Modeling a platform-independent architecture. 42

3.8 Monolithic and compositional code generators. 43

4.1 A MontiArcAutomaton variant of BumperBot. 46

4.2 An excerpt of the entries of the MontiArc symbol table that represents
structural aspects of C&C software architectures. 53

4.3 MontiArcAutomaton symbol table entries. 54

4.4 MontiArcAutomaton activities overview. 65

4.5 Language integration relies on syntax embedding, symbolic adaptation,
and well-formedness rule reuse. 68

4.6 An example for language embedding. 70

4.7 The MontiArcAutomaton ADL language family. 74

4.8 Adaptation between names of different languages enables interpreting ref-
erences in embedded behavior language properly. 75

4.9 An adapter to use port entries of BehaviorARC as field entries for sym-
bolic integration of FSM models. 76

4.10 Integrating behavior languages into MontiArcAutomaton. 77

4.11 Integrating FSM behavior into the MontiArcAutomaton ADL requires pro-
vision of a single new class inheriting from MAAADLTool only. 78

4.12 Quintessential classes of MontiArcAutomaton’s Groovy behavior config-
uration infrastructure. 81

281

List of Figures

4.13 Exemplarily behavior language configuration and artifacts in the context
of their containing projects. 82

5.1 Automaton RobotController. 87
5.2 RobotController data types. 88
5.3 Automata symbol table entries. 95
5.4 The Automata language family. 96

6.1 Binding constituents overview. 113
6.2 The NavigationBot architecture. 114
6.3 Platform-specific variant of the NavigationBot architecture. 117
6.4 A conflict between two bindings. 118
6.5 Constituents of binding platform-independent architectures. 119
6.6 An implementation library and a interface library. 120
6.7 Components of the interface library BumperBotModels. 121
6.8 JavaNXT component types. 123
6.9 PythonROS component types. 126
6.10 Resolving a clash between two bindings for subcomponent motor. 128

7.1 The prime constituents of generators and their composition. 136
7.2 The generator interfaces of MontiArcAutomaton. 140
7.3 Code generators, interfaces, and kinds. 141
7.4 Generator description symbol table. 147
7.5 The activities required to develop a compositional MontiArcAutomaton

code generator. 155
7.6 Example component generator constituents. 156
7.7 The generator orchestrator instantiates participating code generators via

the implementations of their descriptions. 157
7.8 Code generator composition activities. 158
7.9 Atomic component Selector with embedded behavior model. 159
7.10 A RTE for Java component implementations. 161
7.11 Java classes generated by component generator ComponentsJavaTS for

component Selector. 163
7.12 Artifacts produced by behavior generator AutomataJavaTS 165
7.13 ROS graph of ImprovedBumperBot. 168
7.14 RTE for Python component implementations using ROS. 169
7.15 Artifacts produced by the pythonts component generator. 171

8.1 Constituents of a typical MontiArcAutomaton application. 176
8.2 Application configuration language symbol table. 180
8.3 The MontiArcAutomaton language family. 193
8.4 Typical MontiArcAutomaton activities. 194
8.5 MontiArcAutomaton application constituents. 195

9.1 A robotic coffee service with Lego NXT robots. 198

282

List of Figures

9.2 Confidence in coffee service lab course artifacts. 200
9.3 Robotino ROS transport service robot. 201
9.4 Robotino ROS transport service architecture. 202
9.5 Distribution of the students’ lab course time. 203
9.6 Complexity of and confidence in created artifacts. 204
9.7 Top-level architecture of the logistics application. 205
9.8 Time consumption in the Robotino SmartSoft logistics lab. 206
9.9 Complexity of Robotino SmartSoft lab course artifacts. 208
9.10 A toast service robot system using the RobotArm behavior language. . . 209
9.11 BumperBot platform-independent architecture. 210
9.12 iserveU top-level architecture. 214

283

Listings

2.1 MontiCore grammar of the ARC language to define software components
with ports and connectors. 11

2.2 FreeMarker template for transformation of ARC (cf. Listing 2.1) models
to Java code. 20

2.3 Textual model of the MontiArcBumperBot component depicted in Fig-
ure 2.7. The names for the subcomponents of types UltraSonic, Timer,
and Navigation are derived from their types’ names. 25

2.4 Textual model of the component type Navigation as depicted in Fig-
ure 2.7 and Listing 2.3. 26

4.1 The interface component DistanceSensor. 48

4.2 The component type Clock defines two configuration parameters short
and long of which the latter has the default value 10. 48

4.3 The composed component DoubleClock declares two instances clock0
and clock1 of component type Clock. The former applies two argu-
ments to the parameters of Clock and the latter uses its default value
for the parameter long. 49

4.4 The atomic component StateBasedController contains the two com-
ponent variables min (l. 8) and max (l. 9) of type Integer. 50

4.5 The component Recorder defines a configuration parameter (l. 1) and a
port (l. 3) of name distance, as well as port (l. 4) and variable (l. 6) of
name min. Both are prohibited. 55

4.6 The atomic component BehaviorController contains two behavior
models (ll. 3-9). 55

4.7 MultiSensor references two component implementations. 56

4.8 The component type MultiSystemDistanceSensor references two
run-time environments (ll. 5-6). 56

4.9 The component type HistogramPrinter declares a variable of name
History (l. 5) which produces a warning regarding its name. 57

4.10 The behavior implementation of RobotController (l. 2) violates the
context condition to start its name with an upper-case letter. 58

4.11 Component ClockWork declares subcomponents of type Clock with too
few arguments (l. 4) and too many arguments (l. 5). 59

4.12 The component type RGBSensor provides a generic type parameter T
and contains a port data (l. 3) and variable lastReading of type T
(l. 5). Assigning initial values to lastReading thus is prohibited. 59

285

Listings

4.13 Component MaxMotor uses a configuration parameter of generic data type. 60

4.14 The component Validator defines two configuration parameters. The
first two parameters feature a default value but the third does not. 60

4.15 The interface component Inverter contains a behavior model (ll. 6-8). . 61

4.16 The interface component Clocks is composed as it contains two subcom-
ponents (ll. 2-3), which is prohibited. 61

4.17 The component AtomicController is atomic and contains a behavior
model (ll. 3-5), but declares a run-time environment (l. 6). 62

4.18 The composed component SensorArray erroneously declares a variable
(l. 5). 62

4.19 Component NXTUltrasonic (ll. 1-7) references an implementation (l. 5)
and declares a RTE (l. 6), i.e., it is platform-specific, but the inheriting
component Sensor (ll. 9-12) is an interface component. 63

4.20 The component RegulatedMotor (ll. 7-10) extends from ROSMotor

(ll. 1-5)m but does not override its implementation reference. 64

4.21 The component type Logger defines two variables with initial values
incompatible to their types (l. 2-3). 64

4.22 The component type IMotor defines the configuration parameter max of
type int with a default value "10" of type String. 64

4.23 The composed component DoubleAdder declares three subcomponents
in two subcomponent declarations (ll. 7-8). 66

4.24 The transformed MultiAdder component features three subcomponent
declarations with a single subcomponent instance each. 67

4.25 The component type DoubleClock after applying the default parameter
value to its second subcomponent declaration (l. 3). 67

4.26 A MontiCore language configuration file. 71

4.27 The component Filter contains an embedded FSM model comprising
two states and four transitions to describe its behavior. 72

4.28 Groovy behavior configuration model for embedding the FSM. 80

5.1 Textual model of the automaton RobotController depicted in Figure 5.1. 90

5.2 The declaration of the automaton MotorController begins with the
keyword automaton followed by its name and curly brackets. 91

5.3 The automaton TimedMotorController defines three inputs, one out-
put, and two variables (ll. 2-7). 91

5.4 Automaton InitializedMotorController initializes variables (ll. 6-7). 92

5.5 The automaton StatebasedMotorController introduces five states
to operate on (ll. 9-10). 92

5.6 The automaton TruckMotorController contains multiple states and
transitions to control a truck within speed limits. 94

5.7 The automaton BinaryMotorController uses an alternative (l. 9) to
enable a transition for alternative values. 95

5.8 The automaton HRI defines multiple states of the same name (ll. 4-6). . . 97

286

Listings

5.9 The automaton Logging declares the states File (l. 4) and Cloud as
initial multiple times (ll. 5-6). 98

5.10 The automaton Buffer defines an input (l. 2), an output (l. 3), and a
variable (l. 4) of the same name. 98

5.11 The automaton ColorSensor provides no inputs. 99

5.12 The automaton BinaryMotor declares no outputs. 99

5.13 The automaton StatelessBuffer defines no states. 99

5.14 The automaton MapBuilder declares no initial states. 100

5.15 The automaton PersonFollower uses a prohibited Java/P conditional
expression for an assignment (ll. 9-10). 101

5.16 The automaton’s name begins with a lower-case letter (l. 1). 101

5.17 Automaton Scheduler contains an input, an output, and a variable of
names starting with capital letters (ll. 2-4). 102

5.18 Automaton ToastService defines the state toasting that starts with
a lower-case letter (l. 4). 102

5.19 Automaton LaneFollower references missing input or variable. 103

5.20 One transition of automaton CoffeeService (ll. 9-10) reads from the
output msg, the other (ll. 12-13) assigns a value to the input strength. 103

5.21 The automaton WindowController uses the inexistent state Idle in
an initial state declaration (l. 5) and in a transition (l. 7). 104

5.22 The automaton AssemblyController contains transitions with am-
biguous stimuli and actions. 105

5.23 The automaton IrrigationController contains a transition with
non-Boolean guard (l. 7). 105

5.24 Automaton ElevatorCabinController contains two incompatible as-
signments (ll. 9,18) and one incompatible valuation (ll. 12-14). 106

5.25 The automaton AlarmController assigns the special literal NoData
to variable latest (ll. 8, 11) and compares NoData to it (l. 13). 107

5.26 The component BumpControl contains an embedded Automata model
with four states and four transitions (ll. 15-35). 108

5.27 Groovy behavior configuration model for embedding part of the Au-
tomata language. 110

6.1 The interface component Timer with configuration parameters and ports
of platform-independent CD types. 115

6.2 The bind procedure replaces the types of subcomponents with either
platform-specific bound types or new, unambiguous types. 129

7.1 The code generator description model ComponentsJava represents a
code generator that translates component models into Java artifacts. . . . 142

7.2 The generator description AutomataPython implements the generator
interface generators.BehaviorGenerator. 142

287

Listings

7.3 Generator description ClassdiagramPython defines that the repre-
sented generator implements the interface DataTypeGenerator (l. 2)
and that it is started via the generators.cdpython.MainTemplate
template (l. 4). 143

7.4 Generator description IOTablePython explicates that the represented
generator can process models derivable from production TableContent
of grammar languages.iotable.IOTable (l. 6). 143

7.5 Generator description RobotArmPython contains two sets of context
conditions (ll. 10-18) describing the contained conditions directly (ll. 10-
13) and via abbreviation (ll. 15-18). 145

7.6 The code generator represented by description ComponentsPython pro-
duces artifacts compatible to the runtimes.pythonuntimed run-time
environment (l. 8). 145

7.7 Generator description ArchitecturePython describes that the repre-
sented generator can translate models of the behavior languages TableContent
and RobotArmProgram (ll. 10-13). 146

7.8 The generator description ComponentsWithAutomata is not well-formed
as it declares two start elements (ll. 4-5). 148

7.9 Generator description IOTablesGroovy references the context condition
iotgen.NoInnerComponents two times. 148

7.10 The generator description flowchartPython violates GC1 as its name
starts with a lower-case letter (l. 1). 149

7.11 The interface referenced by generator description ArcGenerator cannot
be resolved as it does not exist or is unavailable. 150

7.12 The generator description StatechartPython references a template as
starting point (l. 4) that is unavailable to the generator it represents. . . . 150

7.13 The generator represented by description RecipePython cannot access
the referenced language Recipe.Main (l. 4). 151

7.14 The generator description TimedAutomataPython references the miss-
ing context condition tap.RequireDeterminism (ll. 4-5). 151

7.15 The generator represented by PlainComponents cannot access the ref-
erenced language lng.Automata.Body (l. 6). 152

7.16 Code generator description AutomataLisp declares that the represented
generator is a BehaviorGenerator, but omits designation of a run-time
environment. 153

7.17 Generator description of the ComponentsJavaTS component generator
with abbreviated package names. 164

7.18 Generator description of behavior generator AutomataJavaTS with ab-
breviated package names. 166

7.19 A composable class diagram generator based on the generator presented
in [Sch12]. 166

7.20 The data type MotorCMD of Figure 2.8 as a ROS msg. 167

288

Listings

7.21 Description of a composable component generator that produces Python
implementations interfacing the ROS middleware. 172

7.22 A composable data types generator for the production of Python classes
and ROS msg types. 172

8.1 The application configuration NavigationBotNXTJava references the
NavigationBot software architecture and defines three bindings. 177

8.2 The application configuration BumperBot (l. 1) references the software
architecture architecture.NavigationBot (l. 2). 177

8.3 Application configuration BoundBumperBot defines three bindings. . . . 178

8.4 Application configuration BoundBumperBotPythonROS selects four code
generators for translation of components (l. 8), class diagrams (l. 9), and
two behavior languages (ll. 10-11). 179

8.5 The BumperBotNXTJava application configuration binds the subcom-
ponent sensor twice (ll. 4-8). 181

8.6 This application configuration is invalid as it contains multiple code gen-
erators responsible for the same language fragment (ll. 4-5). 182

8.7 Application configuration BumperBotROSNative contains two data type
code generators. 182

8.8 An application configuration providing insufficient and wrong code gen-
erators. 183

8.9 Application configuration expRob begins with a lower-case letter and
consequently raises a warning (ll. 1-2). 184

8.10 This application configuration references the inexistent software architec-
ture arc.XumperBot, which raises the error depicted. 185

8.11 This application configuration does not bind the interface component
sensor of the referenced software architecture, which gives rise to the
depicted error. 185

8.12 The application configuration DistributedBB binds a subcomponent of
non-interface type (l. 4) and a inexistent subcomponent (l. 7). Therefore,
it gives rise to two errors. 186

8.13 Binding the existing interface subcomponent sensor to an inexistent
component type raises the depicted error. 186

8.14 The application configuration EmbeddedJavaBot references an inexis-
tent code generator (l. 4) and, thus, is erroneous. 187

8.15 Two of the code generators used by application configuration SimulationBot
rely on different run-time environments (ll. 1-2). 187

8.16 The application configuration OfficeBot employs a code generator and
a binding of incompatible run-time environments. 188

8.17 The component type DistanceSensor is interface and, therefore, can-
not be bound (l. 4). 189

289

Listings

8.18 The depicted application configuration binds the subcomponent sensor
to the component type NXTMotor. As NXTMotor does not descend from
DistanceSensor, this is invalid. 189

8.19 Application configuration BumperBotCPP contains two bindings with
missing (l. 4) and redundant (l. 6) arguments. 190

8.20 The composed component ExtendedBumperBot instantiates RGBASensor
and defines its generic parameter to be Integer. 191

8.21 Application configuration RobotinoJava binds the generic type of an
interface component erroneously. 192

9.1 An excerpt of the Java implementation generated for the component type
BumpControl with its most important members and methods. 211

9.2 An excerpt of the Python implementation generated for the component
type BumpControl with its most important members and methods. . . . 213

A.1 The quintessential elements of the MontiArc grammar [HRR12] for human
comprehension. 250

A.2 The MontiArcAutomaton ADL grammar for human comprehension. . . . 252
A.3 The MontiArcAutomaton ADL grammar for processing by MontiCore. . . 253
A.4 A simplified Automata grammar for human comprehension. 256
A.5 The complete Automata MontiCore grammar. 257
A.6 The generator description grammar for processing by MontiCore. 258
A.7 The application configuration grammar for processing by MontiCore. . . . 259

290

Related Interesting Work from the SE Group, RWTH Aachen

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an executable, yet

abstract and multi-view modeling language for modeling, designing and programming still allows to use

an agile development process.” Modeling will be used in development projects much more, if the benefits

become evident early, e.g with executable UML [Rum02] and tests [Rum03]. In [GKRS06], for example,

we concentrate on the integration of models and ordinary programming code. In [Rum12] and [Rum11],

the UML/P, a variant of the UML especially designed for programming, refactoring and evolution, is

defined. The language workbench MontiCore [GKR+06] is used to realize the UML/P [Sch12]. Links

to further research, e.g., include a general discussion of how to manage and evolve models [LRSS10], a

precise definition for model composition as well as model languages [HKR+09] and refactoring in various

modeling and programming languages [PR03]. In [FHR08] we describe a set of general requirements for

model quality. Finally [KRV06] discusses the additional roles and activities necessary in a DSL-based

software development project. In [CEG+14] we discuss how to improve reliability of adaprivity through

models at runtime, which will allow developers to delay design decisions to runtime adaptation.

Generative Software Engineering

The UML/P language family [Rum12, Rum11] is a simplified and semantically sound derivate of the

UML designed for product and test code generation. [Sch12] describes a flexible generator for the UML/P

based on the MontiCore language workbench [KRV10, GKR+06]. In [KRV06], we discuss additional

roles necessary in a model-based software development project. In [GKRS06] we discuss mechanisms

to keep generated and handwritten code separated. In [Wei12] demonstrate how to systematically derive

a transformation language in concrete syntax. To understand the implications of executability for UML,

we discuss needs and advantages of executable modeling with UML in agile projects in [Rum04], how

to apply UML for testing in [Rum03] and the advantages and perils of using modeling languages for

programming in [Rum02].

Unified Modeling Language (UML)

Many of our contributions build on UML/P, which is described in the two books [Rum11] and [Rum12]

implemented in [Sch12]. Semantic variation points of the UML are discussed in [GR11]. We discuss for-

mal semantics for UML [BHP+98] and describe UML semantics using the “System Model” [BCGR09a],

[BCGR09b], [BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied to define class

diagram semantics [CGR08]. A precisely defined semantics for variations is applied, when checking va-

riants of class diagrams [MRR11c] and objects diagrams [MRR11d] or the consistency of both kinds of

diagrams [MRR11e]. We also apply these concepts to activity diagrams [MRR11b] which allows us to

check for semantic differences of activity diagrams [MRR11a]. We also discuss how to ensure and iden-

tify model quality [FHR08], how models, views and the system under development correlate to each other

[BGH+98] and how to use modeling in agile development projects [Rum04], [Rum02]. The question how

to adapt and extend the UML is discussed in [PFR02] describing product line annotations for UML and

more general discussions and insights on how to use meta-modeling for defining and adapting the UML

are included in [EFLR99] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need

appropriate tooling. The MontiCore language workbench [GKR+06], [KRV10], [Kra10] allows the spe-

cification of an integrated abstract and concrete syntax format [KRV07b] for easy development. New

languages and tools can be defined in modular forms [KRV08, Völ11] and can, thus, easily be reused.

[Wei12] presents a tool that allows to create transformation rules tailored to an underlying DSL. Varia-

bility in DSL definitions has been examined in [GR11]. A successful application has been carried out

in the Air Traffic Management domain [ZPK+11]. Based on the concepts described above, meta mode-

ling, model analyses and model evolution have been discussed in [LRSS10] and [SRVK10]. DSL quality

[FHR08], instructions for defining views [GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-

based tooling for DSLs [KRV07a] complete the collection.

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of

telephone or video data, method invocation, or data structures passed between software services. We use

streams, statemachines and components [BR07] as well as expressive forms of composition and refi-

nement [PR99] for semantics. Furthermore, we built a concrete tooling infrastructure called MontiArc

[HRR12] for architecture design and extensions for states [RRW13b]. MontiArc was extended to des-

cribe variability [HRR+11] using deltas [HRRS11] and evolution on deltas [HRRS12]. [GHK+07] and

[GHK+08] close the gap between the requirements and the logical architecture and [GKPR08] extends

it to model variants. [MRR14] provides a precise technique to verify consistency of architectural views

against a complete architecture in order to increase reusability. Co-evolution of architecture is discussed

in [MMR10] and a modeling technique to describe dynamic architectures is shown in [HRR98].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling. The me-

chanisms for distributed systems are shown in [BR07] and algebraically underpinned in [HKR+07]. Se-

mantic and methodical aspects of model composition [KRV08] led to the language workbench MontiCore

[KRV10] that can even be used to develop modeling tools in a compositional form. A set of DSL design

guidelines incorporates reuse through this form of composition [KKP+09]. [Völ11] examines the compo-

sition of context conditions respectively the underlying infrastructure of the symbol table. Modular editor

generation is discussed in [KRV07a].

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and detailedness

is discussed in [HR04]. We defined a semantic domain called “System Model” by using mathematical

theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version especially suited for the UML

is given in [BCGR09b] and in [BCGR09a] its rationale is discussed. [BCR07a, BCR07b] contain detai-

led versions that are applied to class diagrams in [CGR08]. [MRR11a, MRR11b] encode a part of the

semantics to handle semantic differences of activity diagrams and [MRR11e] compares class and object

diagrams with regard to their semantics. In [BR07], a simplified mathematical model for distributed sys-

tems based on black-box behaviors of components is defined. Meta-modeling semantics is discussed in

[EFLR99]. [BGH+97] discusses potential modeling languages for the description of an exemplary object

interaction, today called sequence diagram. [BGH+98] discusses the relationships between a system, a

view and a complete model in the context of the UML. [GR11] and [CGR09] discuss general require-

ments for a framework to describe semantic and syntactic variations of a modeling language. We apply

these on class and object diagrams in [MRR11e] as well as activity diagrams in [GRR10]. [Rum12] de-

fines the semantics in a variety of code and test case generation, refactoring and evolution techniques.

[LRSS10] discusses evolution and related issues in greater detail.

Evolution & Transformation of Models

Models are the central artifact in model driven development, but as code they are not initially correct

and need to be changed, evolved and maintained over time. Model transformation is therefore essential

to effectively deal with models. Many concrete model transformation problems are discussed: evoluti-

on [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactoring [Rum12, PR03], trans-

lating models from one language into another [MRR11c, Rum12] and systematic model transformati-

on language development [Wei12]. [Rum04] describes how comprehensible sets of such transformati-

ons support software development and maintenance [LRSS10], technologies for evolving models wi-

thin a language and across languages, and mapping architecture descriptions to their implementation

[MMR10]. Automaton refinement is discussed in [PR94, KPR97], refining pipe-and-filter architectures is

explained in [PR99]. Refactorings of models are important for model driven engineering as discussed in

[PR03, Rum12]. Translation between languages, e.g., from class diagrams into Alloy [MRR11c] allows

for comparing class diagrams on a semantic level.

Variability & Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one manufacturer

develops several products with many similarities but also many variations. Variants are managed in a

Software Product Line (SPL) that captures product commonalities as well as differences. Feature dia-

grams describe variability in a top down fashion, e.g., in the automotive domain [GHK+08] using 150%

models. Reducing overhead and associated costs is discussed in [GRJA12]. Delta modeling is a bottom

up technique starting with a small, but complete base variant. Features are additive, but also can modify

the core. A set of commonly applicable deltas configures a system variant. We discuss the application of

this technique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can

not only describe spacial variability but also temporal variability which allows for using them for soft-

ware product line evolution [HRRS12]. [HHK+13] describes an approach to systematically derive delta

languages. We also apply variability to modeling languages in order to describe syntactic and semantic

variation points, e.g., in UML for frameworks [PFR02]. Furthermore, we specified a systematic way to

define variants of modeling languages [CGR09] and applied this as a semantic language refinement on

Statecharts in [GR11].

Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical en-

tities. Contributions for individual aspects range from requirements [GRJA12], complete product lines

[HRRW12], the improvement of engineering for distributed automotive systems [HRR12] and autono-

mous driving [BR12a] to processes and tools to improve the development as well as the product itself

[BBR07]. In the aviation domain, a modeling language for uncertainty and safety events was develo-

ped, which is of interest for the European airspace [ZPK+11]. A component and connector architecture

description language suitable for the specific challenges in robotics is discussed in [RRW13b]. Monito-

ring for smart and energy efficient buildings is developed as Energy Navigator toolset [KPR12, FPPR12,

KLPR12].

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including Petri nets

or temporal logics. Software engineering is particularly interested in using statemachines for modeling

systems. Our contributions to state based modeling can currently be split into three parts: (1) under-

standing how to model object-oriented and distributed software using statemachines resp. Statecharts

[GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement [PR94, RK96, Rum96] and

composition [GR95] of statemachines, and (3) applying statemachines for modeling systems. In [Rum96]

constructive transformation rules for refining automata behavior are given and proven correct. This theory

is applied to features in [KPR97]. Statemachines are embedded in the composition and behavioral speci-

fication concepts of Focus [BR07]. We apply these techniques, e.g., in MontiArcAutomaton [RRW13a]

as well as in building management systems [FLP+11].

Robotics

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-

ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics

applications requires composition and interaction of diverse distributed software modules. This usually

leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensible, which

hampers broad propagation of robotics applications. The MontiArcAutomaton language [RRW13a] ex-

tends ADL MontiArc and integrates various implemented behavior modeling languages using MontiCore

[RRW13b] that perfectly fit Robotic architectural modelling. The LightRocks [THR+13] framework al-

lows robotics experts and laymen to model robotic assembly tasks.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication systems

as well as advanced active and passive safety-systems result in complex embedded systems. As these

feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct va-

riants needs to be managed, developed and tested. A consistent requirements management that connects

requirements with features in all phases of the development for the automotive domain is described

in [GRJA12]. The conceptual gap between requirements and the logical architecture of a car is clo-

sed in [GHK+07, GHK+08]. [HKM+13] describes a tool for delta modeling for Simulink [HKM+13].

[HRRW12] discusses means to extract a well-defined Software Product Line from a set of copy and

paste variants. Quality assurance, especially of safety-related functions, is a highly important task. In

the Carolo project [BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-

based functions through fully-automatic simulation [BBR07]. This technique allows a dramatic speedup

in development and evolution of autonomous car functionality, and thus enables us to develop software

in an agile way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in development and

evolution on a more general level by considering any kind of critical system that relies on architectural de-

scriptions. As tooling infrastructure, the SSElab storage, versioning and management services [HKR12]

are essential for many projects.

Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emissions is

an important challenge. Thus, energy management in buildings as well as in neighbourhoods becomes

equally important to efficiently use the generated energy. Within several research projects, we developed

methodologies and solutions for integrating heterogeneous systems at different scales. During the design

phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12, KPR12] is used for tech-

nical specification of building services already. We adapted the well-known concept of statemachines to

be able to describe different states of a facility and to validate it against the monitored values [FLP+11].

We show how our data model, the constraint rules and the evaluation approach to compare sensor data

can be applied [KLPR12].

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based

application and service architectures with high complexity, criticality and new application domains. It

promises to enable new business models, to lower the barrier for web-based innovations and to increa-

se the efficiency and cost-effectiveness of web development [KRR14]. Application classes like Cyber-

Physical Systems [HHK+14], Big Data, App and Service Ecosystems bring attention to aspects like

responsiveness, privacy and open platforms. Regardless of the application domain, developers of such

systems are in need for robust methods and efficient, easy-to-use languages and tools [KRS12]. We tack-

le these challenges by perusing a model-based, generative approach [NPR13]. The core of this approach

are different modeling languages that describe different aspects of a cloud-based system in a concise

and technology-agnostic way. Software architecture and infrastructure models describe the system and its

physical distribution on a large scale. We apply cloud technology for the services we develop, e.g., the

SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for our tool demonstrators and

our own development platforms. New services, e.g., collecting data from temperature, cars etc. can now

easily be developed.

References

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems Enginee-

ring Process and Tools for the Development of Autonomous Driving Intelligence. Journal of

Aerospace Computing, Information, and Communication (JACIC), 4(12):1158–1174, 2007.

[BCGR09a] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Conside-

rations and Rationale for a UML System Model. In K. Lano, editor, UML 2 Semantics and

Applications, pages 43–61. John Wiley & Sons, November 2009.

[BCGR09b] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Definition

of the UML System Model. In K. Lano, editor, UML 2 Semantics and Applications, pages

63–93. John Wiley & Sons, November 2009.

[BCR07a] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System Model

for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU Munich, Germany,

February 2007.

[BCR07b] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System Model

for UML. Part 3: The State Machine Model. Technical Report TUM-I0711, TU Munich,

Germany, February 2007.

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger, Bernhard Rumpe,

Monika Schmidt, and Wolfgang Schwerin. Exemplary and Complete Object Interaction

Descriptions. In Object-oriented Behavioral Semantics Workshop (OOPSLA’97), Technical

Report TUM-I9737. TU Munich, Germany, 1997.

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin. Systems,

Views and Models of UML. In Proceedings of the Unified Modeling Language, Technical

Aspects and Applications, pages 93–109. Physica Verlag, Heidelberg, Germany, 1998.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katharina Spies. Soft-

ware and System Modeling Based on a Unified Formal Semantics. In Workshop on Require-

ments Targeting Software and Systems Engineering (RTSE’97), LNCS 1526, pages 43–68.

Springer, 1998.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als Grundlage

der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3–18, Februar 2007.

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the Urban

Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In Automotive Software

Engineering Workshop (ASE’12), pages 789–798, 2012.

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Software. In

C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban Challenge, pages

243–271. Springer, Germany, 2012.

[CEG+14] Betty Cheng, Kerstin Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi Müller,

Patrizio Pelliccione, Anna Perini, Nauman Qureshi, Bernhard Rumpe, Daniel Schneider,

Frank Trollmann, and Norha Villegas. Using Models at Runtime to Address Assurance

for Self-Adaptive Systems. In Models@run.time, LNCS 8378, pages 101–136. Springer,

Germany, 2014.

[CGR08] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model Semantics

of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig, Germany, 2008.

[CGR09] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability within Mode-

ling Language Definitions. In Conference on Model Driven Engineering Languages and

Systems (MODELS’09), LNCS 5795, pages 670–684. Springer, 2009.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling Semantics

of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of

Businesses and Systems, pages 45–60. Kluver Academic Publisher, 1999.

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indikator für

Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5):408–424, Oktober 2008.

[FLP+11] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe.

State-based Modeling of Buildings and Facilities. In Enhanced Building Operations Con-

ference (ICEBO’11), 2011.

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The Energy Na-

vigator - A Web-Platform for Performance Design and Management. In Energy Efficiency

in Commercial Buildings Conference(IEECB’12), 2012.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard Rumpe.

View-based Modeling of Function Nets. In Object-oriented Modelling of Embedded Real-

Time Systems Workshop (OMER4’07), 2007.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Rothhardt, and

Bernhard Rumpe. Modelling Automotive Function Nets with Views for Features, Vari-

ants, and Modes. In Proceedings of 4th European Congress ERTS - Embedded Real Time

Software, 2008.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Modeling Variants

of Automotive Systems using Views. In Modellbasierte Entwicklung von eingebetteten

Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76–89. TU Braunschweig, 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System Model

with State. Technical Report TUM-I9631, TU Munich, Germany, July 1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.

MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domänspezifischer Spra-

chen. Informatik-Bericht 2006-04, CFG-Fakultät, TU Braunschweig, August 2006.

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler. Integration von

Modellen in einen codebasierten Softwareentwicklungsprozess. In Modellierung 2006 Con-

ference, LNI 82, Seiten 67–81, 2006.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical Report

TUM-I9533, TU Munich, Germany, October 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In Workshop on

Modeling, Development and Verification of Adaptive Systems, LNCS 6662, pages 17–32.

Springer, 2011.

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level Require-

ments Management and Complexity Costs in Automotive Development Projects: A Problem

Statement. In Requirements Engineering: Foundation for Software Quality (REFSQ’12),

2012.

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of Activity Dia-

grams with Semantic Variation Points. In Conference on Model Driven Engineering Lan-

guages and Systems (MODELS’10), LNCS 6394, pages 331–345. Springer, 2010.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bernhard

Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In Software Product

Line Conference (SPLC’13), pages 22–31. ACM, 2013.

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard Rumpe, and

Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based Services in the Internet of

Things. In Conference on Future Internet of Things and Cloud (FiCloud’14). IEEE, 2014.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bernhard Rum-

pe, and Ina Schaefer. First-Class Variability Modeling in Matlab/Simulink. In Variability

Modelling of Software-intensive Systems Workshop (VaMoS’13), pages 11–18. ACM, 2013.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.

An Algebraic View on the Semantics of Model Composition. In Conference on Model

Driven Architecture - Foundations and Applications (ECMDA-FA’07), LNCS 4530, pages

99–113. Springer, Germany, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völ-

kel. Scaling-Up Model-Based-Development for Large Heterogeneous Systems with Com-

positional Modeling. In Conference on Software Engineeering in Research and Practice

(SERP’09), pages 172–176, July 2009.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-In-Based

Framework for Web-Based Project Portals. In Developing Tools as Plug-Ins Workshop

(TOPI’12), pages 61–66. IEEE, 2012.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of ”Se-

mantics”? IEEE Computer, 37(10):64–72, October 2004.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Component Inter-

faces. In Technology of Object-Oriented Languages and Systems (TOOLS 26), pages 58–70.

IEEE, 1998.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der Linden.

Hierarchical Variability Modeling for Software Architectures. In Software Product Lines

Conference (SPLC’11), pages 150–159. IEEE, 2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural Modeling

of Interactive Distributed and Cyber-Physical Systems. Technical Report AIB-2012-03,

RWTH Aachen University, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling for Soft-

ware Architectures. In Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte Ent-

wicklung eingebetteterSysteme VII, pages 1 – 10. fortiss GmbH, 2011.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-oriented

Software Product Line Architectures. In Large-Scale Complex IT Systems. Development,

Operation and Management, 17th Monterey Workshop 2012, LNCS 7539, pages 183–208.

Springer, 2012.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung eines Pro-

duktlinienansatzes in die automotive Softwareentwicklung am Beispiel von Steuergeräte-

software. In Software Engineering Conference (SE’12), LNI 198, Seiten 181–192, 2012.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler, and

Steven Völkel. Design Guidelines for Domain Specific Languages. In Domain-Specific

Modeling Workshop (DSM’09), Techreport B-108, pages 7–13. Helsinki School of Econo-

mics, October 2009.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Modeling Cyber-

Physical Systems: Model-Driven Specification of Energy Efficient Buildings. In Modelling

of the Physical World Workshop (MOTPW’12), pages 2:1–2:6. ACM, October 2012.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification and Refine-

ment with State Transition Diagrams. In Workshop on Feature Interactions in Telecommu-

nications Networks and Distributed Systems, pages 284–297. IOS-Press, 1997.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navigator. In

H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von Forschungssoftware.

Tagungsband, Rolduc, 10.-11.11.2011, Aachener Informatik-Berichte, Software Enginee-

ring Band 14. Shaker Verlag, Aachen, Deutschland, 2012.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im

Software-Engineering. Aachener Informatik-Berichte, Software Engineering Band 1. Sha-

ker Verlag, März 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical model

for distributed information processing systems - SysLab system model. In Workshop on

Formal Methods for Open Object-based Distributed Systems, IFIP Advances in Information

and Communication Technology, pages 323–338. Chapmann & Hall, 1996.

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Computing. Springer,

Schweiz, December 2014.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical Systems

- eine Herausforderung für die Automatisierungstechnik? In Proceedings of Automation

2012, VDI Berichte 2012, Seiten 113–116. VDI Verlag, 2012.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Development using

Domain Specific Modelling Languages. In Domain-Specific Modeling Workshop (DSM’06),

Technical Report TR-37, pages 150–158. Jyväskylä University, Finland, 2006.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Generation for Com-

positional DSLs in Eclipse. In Domain-Specific Modeling Workshop (DSM’07), Technical

Reports TR-38. Jyväskylä University, Finland, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of Abstract and

Concrete Syntax for Textual Languages. In Conference on Model Driven Engineering Lan-

guages and Systems (MODELS’11), LNCS 4735, pages 286–300. Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular Development

of Textual Domain Specific Languages. In Conference on Objects, Models, Components,

Patterns (TOOLS-Europe’08), LNBIP 11, pages 297–315. Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for Com-

positional Development of Domain Specific Languages. International Journal on Software

Tools for Technology Transfer (STTT), 12(5):353–372, September 2010.

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan Sprinkle. Model

Evolution and Management. In Model-Based Engineering of Embedded Real-Time Systems

Workshop (MBEERTS’10), LNCS 6100, pages 241–270. Springer, 2010.

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture Descriptions

of Critical Systems. IEEE Computer, 43(5):42–48, May 2010.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Differencing

for Activity Diagrams. In Conference on Foundations of Software Engineering (ESEC/FSE

’11), pages 179–189. ACM, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Semantics for

Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH Aachen University,

Aachen, Germany, July 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Diagrams Ana-

lysis Using Alloy Revisited. In Conference on Model Driven Engineering Languages and

Systems (MODELS’11), LNCS 6981, pages 592–607. Springer, 2011.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Diagrams. In Object-

Oriented Programming Conference (ECOOP’11), LNCS 6813, pages 281–305. Springer,

2011.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Configurable Consis-

tency Analysis for Class and Object Diagrams. In Conference on Model Driven Engineering

Languages and Systems (MODELS’11), LNCS 6981, pages 153–167. Springer, 2011.

[MRR14] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component and Connec-

tor Models against Crosscutting Structural Views. In Software Engineering Conference

(ICSE’14), pages 95–105. ACM, 2014.

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures as Interac-

tive Systems. In Model-Driven Engineering for High Performance and Cloud Computing

Workshop, CEUR Workshop Proceedings 1118, pages 15–24, 2013.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Annotations with

UML-F. In Software Product Lines Conference (SPLC’02), LNCS 2379, pages 188–197.

Springer, 2002.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for Behaviour

Modelling with Automata. In Proceedings of the Industrial Benefit of Formal Methods

(FME’94), LNCS 873, pages 154–174. Springer, 1994.

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architectures. In Con-

gress on Formal Methods in the Development of Computing System (FM’99), LNCS 1708,

pages 96–115. Springer, 1999.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications. In Kilov,

H. and Baclavski, K., editor, Practical Foundations of Business and System Specifications,

pages 281–297. Kluwer Academic Publishers, 2003.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In B. Harvey

and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages 265–286. Kluwer

Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes mathematisches

Modell verteilter informationsverarbeitender Systeme - Syslab-Systemmodell. Technischer

Bericht TUM-I9510, TU München, Deutschland, März 1995.

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software Architec-

ture Structure and Behavior Modeling to Implementations of Cyber-Physical Systems. In

Software Engineering Workshopband (SE’13), LNI 215, pages 155–170, 2013.

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAutomaton: Mo-

deling Architecture and Behavior of Robotic Systems. In Conference on Robotics and

Automation (ICRA’13), pages 10–12. IEEE, 2013.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme.

Herbert Utz Verlag Wissenschaft, München, Deutschland, 1996.

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare? In T. Clark

and J. Warmer, editors, Issues & Trends of Information Technology Management in Con-

temporary Associations, Seattle, pages 697–701. Idea Group Publishing, London, 2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In Symposium on

Formal Methods for Components and Objects (FMCO’02), LNCS 2852, pages 380–402.

Springer, November 2003.

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical Innovations of

Software and Systems Engineering in the Future (RISSEF’02), LNCS 2941, pages 297–309.

Springer, October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML. Springer Berlin, 2te Edition, September 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring.

Springer Berlin, 2te Edition, Juni 2012.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P. Aa-

chener Informatik-Berichte, Software Engineering Band 11. Shaker Verlag, 2012.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Metamodelling:

State of the Art and Research Challenges. In Model-Based Engineering of Embedded Real-

Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 57–76. Springer, 2010.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas Wort-

mann. A New Skill Based Robot Programming Language Using UML/P Statecharts. In

Conference on Robotics and Automation (ICRA’13), pages 461–466. IEEE, 2013.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen. Aachener

Informatik-Berichte, Software Engineering Band 9. Shaker Verlag, 2011.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen. Aachener

Informatik-Berichte, Software Engineering Band 12. Shaker Verlag, 2012.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Kumardev Chat-

terjee, Andreas Horst, and Bernhard Rumpe. On Demand Data Analysis and Filtering for

Inaccurate Flight Trajectories. In Proceedings of the SESAR Innovation Days. EUROCON-

TROL, 2011.

