
Matthias Vianden

M
at

th
ia

s 
Vi

an
de

n
   

   
   

   
   

S
ys

te
m

at
ic

 M
et

ric
 S

ys
te

m
s 

E
ng

in
ee

rin
g

Band 26

B
an

d 
26

Systematic Metric Systems 
Engineering
Reference Architecture and 
Process Model

Matthias Vianden

Systematic Metric Systems
Engineering
Reference Architecture and
Process Model

Berichte der Aachener Informatik
Software Engineering Band xx
Hrsg.: Prof. Dr. B. Rumpe

Prof. Dr. H Lichter

M
at

th
ia

s 
Vi

an
de

n
S

ys
te

m
at

ic
M

et
ric

S
ys

te
m

s 
E

ng
in

ee
rin

g
R

ef
er

en
ce

 A
rc

hi
te

ct
ur

e
an

d
P

ro
ce

ss
M

od
el

B
an

d 
xx

Metric
Portfolio

Measurement Infrastructure

Metric Management

Development

Operation

Architecture

Reference Architecture

Development 
Process Model

Operation
Process Model

Metric Management 
Process Model

MeDIC

Aachener Informatik-Berichte,
Software Engineering

Hrsg: Prof. Dr. rer. nat. Bernhard Rumpe
 Prof. Dr. rer. nat. Horst Lichter 

 



Systematic Metric Systems Engineering:
Reference Architecture and Process Model

Der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University vorgelegte Dissertation zur Erlangung des

akademischen Grades eines Doktors der Naturwissenschaften

vorgelegt von

Diplom-Informatiker
Matthias Vianden

aus
Aachen





Abstract
In the recent past, the research community contributed a considerable amount of work
to extend the understanding of the theoretical foundations of metric systems. However,
a dedicated approach for engineering of metric systems is still missing. As a result, they
are often developed chaotically. This thesis introduces MeDIC – a dedicated metric
systems engineering approach, which fills this gap. MeDIC supports flexible conception,
design, construction, and operation of metric systems. The approach is based on two
pillars: the MeDIC process model and the MeDIC reference architecture. They integrate
software engineering best practices, emerging concepts, and well-established metric-related
standards and techniques. The MeDIC reference architecture provides technical guides
with a layered architecture blue-print of loosely interconnected micro-services. The MeDIC
process model provides ready-to-use process elements and artifacts (fragments), which
drastically ease the setup of a specific engineering process. The reference architecture
and process model are based on formal foundations, which provide additional benefits for
conceptual analysis of metrics systems. Various field studies, in cooperation with multiple
industry partners, were used to evaluate the approach. This thesis provides insight
into three selected field studies, which utilize various aspects of MeDIC in industrial
environments. The evaluation shows the practical application, usefulness, and efficiency
of MeDIC. Challenges associated with the development and operation of metric systems
in industrial environments can thus be overcome by MeDIC. As a result, the engineering
of better, more reliable, and sustainable metric systems is possible.



Kurzfassung

In der Vergangenheit wurde vermehrt an den theoretischen Grundlagen der (Software-)
Metriken gearbeitet. Das allgemeine Verständnis hat sich seitdem stark weiterentwickelt
und neben den theoretischen Grundlagen hat sich auch das Verständnis des
Metrikmanagement weiterentwickelt. Hieraus entwickelte sich ein etablierter Stand der
Technik, welcher sich in diversen Standards widerspiegelt (ISO 15939, CMMI MA). Es
fehlt allerdings immer noch ein spezieller Engineering-Ansatz für Metriksysteme und die
damit verbundene Messinfrastruktur, was dazu führt, dass diese oft chaotisch entwickelt
werden. Der in dieser Arbeit vorgestellte flexible Engineering-Ansatz MeDIC schließt
diese Lücke und adressiert sowohl die klassischen Phasen des Software-Engineerings:
Konzeption, Entwurf und Konstruktion, als auch Betrieb von Metriksystemen.
MeDIC besteht aus zwei fundamentalen Teilen: dem MeDIC-Prozessmodell und der
MeDIC-Referenzarchitektur. Diese integrieren best-practices der Software-Entwicklung,
moderne Konzepte und etablierte Techniken und Standards im Bereich der Metriken
miteinander. Die MeDIC-Referenzarchitektur stellt eine Blaupause einer geschichteten
Architektur von lose gekoppelten Micro-Services zur Verfügung und erhöht damit
das Verständnis der technischen Konzepte. Das MeDIC-Prozessmodell enthält fertig
verwendbare Prozessbausteine und Artefakte (-Fragmente), welche den Aufbau eines
dedizierten Engineering-Prozesses drastisch vereinfachen. Die Referenzarchitektur und
das Prozessmodell sind mit einer formalen Basis untermauert, welche zusätzlich die
Analyse von Metriksystemen auf einem theoretischen und konzeptuellen Niveau ermöglicht.
MeDIC wurde in zahlreichen industriellen Feldstudien evaluiert. Diese Arbeit stellt drei
ausgewählte Feldstudien vor, welche unterschiedliche Aspekte von MeDIC im industriellen
Umfeld verwenden. Hierdurch wird die praktische Anwendbarkeit, Nützlichkeit und
Effektivität des Ansatzes gezeigt. MeDIC hilft, viele der praktischen Probleme beim
Entwickeln und Betreiben von Metriksystemen im industriellen Umfeld zu überwinden.
In der Zukunft können diese Systeme mit Hilfe von MeDIC demnach besser, zuverlässiger
und nachhaltiger entwickelt werden.



Contents

I. Introduction and Foundations 1

1. Introduction 3
1.1. Metric Systems Engineering Challenges . . . . . . . . . . . . . . . . . . . 6

1.1.1. Large Software Development Companies . . . . . . . . . . . . . . . 6
1.1.2. Small and Medium Software Development Companies . . . . . . . 7
1.1.3. Main Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2. Top-Level Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1. Literature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3. Research Questions and Contribution . . . . . . . . . . . . . . . . . . . . 17
1.3.1. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4. Research Field and Central Related Work . . . . . . . . . . . . . . . . . . 19
1.4.1. Service-Oriented Measurement Infrastructures . . . . . . . . . . . . 19
1.4.2. Software Project Control Centers . . . . . . . . . . . . . . . . . . . 22
1.4.3. Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 25

1.5. MeDIC - A Metric Systems Engineering Approach . . . . . . . . . . . . . 27
1.5.1. Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.2. Information Need Driven . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.3. Usable Metric Systems . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2. Conceptual Foundations 35
2.1. Metric Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1.1. Metric Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.2. Metrics System Dynamics and Measurement Data Flow . . . . . . 38
2.1.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2. Metric Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.1. Metric Reuse Dimensions . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2. Metric Reuse in the Literature . . . . . . . . . . . . . . . . . . . . 42
2.2.3. Metric Reuse by Metric Variability . . . . . . . . . . . . . . . . . . 43
2.2.4. Formal Foundation to Metric Variability . . . . . . . . . . . . . . . 44
2.2.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3. Formal Foundation to Metric System Dynamics . . . . . . . . . . . . . . . 46
2.3.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.3. Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.4. Measurement Data and Measurements . . . . . . . . . . . . . . . . 49
2.3.5. Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3.6. Satisfiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

i



2.3.7. Measurement Producer . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.8. Calculation Termination . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

II. MeDIC Reference Architecture 63

3. Introduction, Requirements and Foundations 65
3.1. Design Foundations and Reference Architecture Requirements . . . . . . . 67

3.1.1. Polylithic Micro Service-based Measurement Infrastructures . . . . 67
3.1.2. Specific Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1.3. Reference Architecture Requirements Summary . . . . . . . . . . . 73

3.2. The API Specification Language . . . . . . . . . . . . . . . . . . . . . . . 74
3.3. Integration Architecture Alternatives . . . . . . . . . . . . . . . . . . . . . 77

4. Logical Reference Architecture and Physical System View 79
4.1. Logical Reference Architecture . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2. Physical System View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1. Data Provider Systems . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2. Support Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.3. Core Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5. Technical Reference Architecture 87
5.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1. Measurement Data Flow . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1.2. Concept to Implementation Mapping . . . . . . . . . . . . . . . . . 92
5.1.3. Discussion and Design Alternatives . . . . . . . . . . . . . . . . . . 92

5.2. Data Transport and Integration . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.1. Enterprise Measurement Data Bus (EMDB) . . . . . . . . . . . . . 98
5.2.2. EMDB Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.3. Integration and Reuse . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.4. Important EMDB Services . . . . . . . . . . . . . . . . . . . . . . 101
5.2.5. Additional Service Topics . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3. Calculation Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.1. Design Decisions and Related Work . . . . . . . . . . . . . . . . . 111
5.3.2. EUrEKA Indicator Access APIs . . . . . . . . . . . . . . . . . . . 112
5.3.3. EUrEKA Kernel Description Meta Model . . . . . . . . . . . . . . 114
5.3.4. EUrEKA Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.5. EUrEKA Producer Gateway (optional) . . . . . . . . . . . . . . . 120
5.3.6. EUrEKA Consumer . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.7. EUrEKA Indicator Wrapper (optional) . . . . . . . . . . . . . . . 123
5.3.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



5.4. Data Adapter Reference Architecture . . . . . . . . . . . . . . . . . . . . . 127
5.4.1. Adaption Patterns and Dynamic View . . . . . . . . . . . . . . . . 127
5.4.2. Static Reference Architecture . . . . . . . . . . . . . . . . . . . . . 134
5.4.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5. Metric Kernel Reference Architecture . . . . . . . . . . . . . . . . . . . . . 137
5.5.1. Design Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5.2. Dynamic View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6. Visualization Reference Architecture . . . . . . . . . . . . . . . . . . . . . 145
5.6.1. Metric-based Monitoring Dashboards . . . . . . . . . . . . . . . . . 146
5.6.2. Visualization Frontend Classification . . . . . . . . . . . . . . . . . 146
5.6.3. Component View . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.6.4. Dynamic View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.6.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.7. Technical Integration of Operation Services . . . . . . . . . . . . . . . . . 152
5.8. Summary of the Technical Reference Architecture . . . . . . . . . . . . . . 154

6. Operation Systems and Services 155
6.1. Monitoring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.1.1. Information Needs Satisfied by the Monitoring System . . . . . . . 156
6.1.2. Monitoring System Reference Architecture . . . . . . . . . . . . . 162
6.1.3. Monitoring System Summary . . . . . . . . . . . . . . . . . . . . . 167

6.2. Logging System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2.1. Information Needs Satisfied by the Logging System . . . . . . . . . 169
6.2.2. Logging System Reference Architecture . . . . . . . . . . . . . . . 171
6.2.3. Logging System Summary . . . . . . . . . . . . . . . . . . . . . . . 172

6.3. Lookup System (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.1. Use Cases and Requirements for the Lookup System . . . . . . . . 173
6.3.2. Directory System Reference Architecture . . . . . . . . . . . . . . 174

7. MeDIC Reference Architecture Formalisms 179
7.1. Formalism for Service States . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.1.1. Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.1.2. Sync with Data Provider . . . . . . . . . . . . . . . . . . . . . . . 181

7.2. Formal Basis of the Technical Reference Architecture . . . . . . . . . . . . 182
7.2.1. Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.2.2. Measurement Messages . . . . . . . . . . . . . . . . . . . . . . . . 183
7.2.3. Data Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2.4. Metric Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.2.5. Data Processing in an EMI . . . . . . . . . . . . . . . . . . . . . . 189
7.2.6. Formalism Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.3. Formalism Example: Ticket Statistics . . . . . . . . . . . . . . . . . . . . 192
7.3.1. Introduction and Definition of the EMI . . . . . . . . . . . . . . . 192
7.3.2. Metric Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192



7.3.3. Metric Kernel: Measurement Consumer . . . . . . . . . . . . . . . 195
7.3.4. Metric Kernel: Data Storage . . . . . . . . . . . . . . . . . . . . . 195
7.3.5. Correctness Proof of the Storage Function . . . . . . . . . . . . . . 197
7.3.6. Metric Kernel: Measurement Producer . . . . . . . . . . . . . . . . 200
7.3.7. Termination Proof of the Kernel and the EMI . . . . . . . . . . . . 200
7.3.8. Example Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

III. MeDIC Process Model 203

8. Process Model Foundations 205
8.1. Process Environment Assumptions . . . . . . . . . . . . . . . . . . . . . . 207

9. The Metric System Engineering Process Model 209
9.1. Process Model Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.2. Process Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.3. Roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9.3.1. Metric Customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.3.2. Metric Expert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.3.3. Architect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.3.4. Developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.3.5. Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.3.6. Role Involvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

9.4. Process Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

10.The Conception Phase 227
10.1. Requirements Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

10.1.1. Activity Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
10.1.2. Plan Requirements Gathering and Information Need identification 230
10.1.3. Execute RE Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.1.4. Process Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

10.2. Prototype and Evaluate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.2.1. Consolidate Info Needs . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.2.2. Design Monitors, Design Metrics and Prepare Prototypes . . . . . 235
10.2.3. Evaluate With Metric Customers . . . . . . . . . . . . . . . . . . . 236

10.3. Plan Increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
10.3.1. Integrate Information Needs and Design Logical Architecture . . . 238
10.3.2. Review and Prioritize Increment Plan . . . . . . . . . . . . . . . . 239
10.3.3. Finish Increment Planing . . . . . . . . . . . . . . . . . . . . . . . 239

10.4. Conception Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

11.The Design Phase 241
11.1. Identify Metric Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

11.1.1. Setup the Design Plan and Design Document . . . . . . . . . . . . 243



11.2. Design and Evaluate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
11.2.1. Design Services and Integration . . . . . . . . . . . . . . . . . . . . 244
11.2.2. Design Metric Service Tests . . . . . . . . . . . . . . . . . . . . . . 245
11.2.3. Evaluate design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

12.The Construction and the Operation Phase 247
12.1. The Construction Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
12.2. The Operation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

12.2.1. Deploy and Setup a new Metric Kernel . . . . . . . . . . . . . . . 249
12.2.2. Best Practices for Handling Common Errors and Exceptions . . . 249
12.2.3. Triggering a new Iteration . . . . . . . . . . . . . . . . . . . . . . . 255

12.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

IV. Evaluation, Tool Support, and Lessons Learned 257

13.Evaluation by Selected Field Studies 259
13.1. Project Risk Metric System for a Large IT Service Provider . . . . . . . . 260

13.1.1. Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
13.1.2. Risk Metrics Architecture . . . . . . . . . . . . . . . . . . . . . . . 265
13.1.3. Experience and Best Practices . . . . . . . . . . . . . . . . . . . . 268

13.2. Software Project Metrics System for SSE Lab . . . . . . . . . . . . . . . . 271
13.2.1. Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
13.2.2. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
13.2.3. Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

13.3. Flow-based Visual Ticket Analysis . . . . . . . . . . . . . . . . . . . . . . 277
13.3.1. Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
13.3.2. Architecture - First Version . . . . . . . . . . . . . . . . . . . . . . 280
13.3.3. Architecture - Second Version . . . . . . . . . . . . . . . . . . . . . 282
13.3.4. Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

14.Tooling 289
14.1. MeDIC Metric Documentation Tools . . . . . . . . . . . . . . . . . . . . . 290
14.2. MeDIC Metric Management Support Tool . . . . . . . . . . . . . . . . . . 293
14.3. MeDIC Dashboard and SCREEN . . . . . . . . . . . . . . . . . . . . . . . 296

14.3.1. Architecture - MeDIC Dashboard . . . . . . . . . . . . . . . . . . . 298
14.3.2. Architecture - SCREEN . . . . . . . . . . . . . . . . . . . . . . . . 299

14.4. EMI Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
14.4.1. EMS - EMI Monitoring Service . . . . . . . . . . . . . . . . . . . . 301
14.4.2. ELS - EMI Logging Service . . . . . . . . . . . . . . . . . . . . . . 302
14.4.3. EDS - EMI Directory Service . . . . . . . . . . . . . . . . . . . . . 303
14.4.4. ERS - EMI Render Service . . . . . . . . . . . . . . . . . . . . . . 303

14.5. EMI Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306



15.Lessons Learned and Discussion 309
15.1. Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
15.2. Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
15.3. Ease-of-Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

15.3.1. Ease-of-Use of the Reference Architecture . . . . . . . . . . . . . . 311
15.3.2. Ease-of-Use of the Process Model . . . . . . . . . . . . . . . . . . . 312

15.4. Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
15.4.1. Effectiveness of the Reference Architecture . . . . . . . . . . . . . 312
15.4.2. Effectiveness of the Process Model . . . . . . . . . . . . . . . . . . 313

15.5. Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

V. Conclusion and Future Work 315

16.Conclusion and Future Work 317
16.1. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
16.2. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

VI. Appendix 321

A. Symbol Lists 323
A.1. Symbols used in the Foundation Formalism . . . . . . . . . . . . . . . . . 323
A.2. Symbols used in the Reference Architecture Formalism . . . . . . . . . . . 325

B. Process Guides, Checklists, and Document Descriptions for the Process Model327
B.1. Conception Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

B.1.1. Information Need Gathering – Guidelines for the Execution . . . . 327
B.1.2. Plan Increment – Guidelines for Coherent Increments . . . . . . . 329

B.2. Design Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
B.2.1. Services Reuse Decision Aid – Checklist . . . . . . . . . . . . . . . 330
B.2.2. Design Guides for EMI Services . . . . . . . . . . . . . . . . . . . . 332
B.2.3. Design Guide for Test Selection and Test Stage Description . . . . 334

B.3. The Design Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
B.3.1. Rough Design of the Complete Metric Application . . . . . . . . . 336
B.3.2. Exception Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 336
B.3.3. Fine Design of the Integration . . . . . . . . . . . . . . . . . . . . 337
B.3.4. Fine Design of each Services . . . . . . . . . . . . . . . . . . . . . . 337
B.3.5. Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

C. Student Theses in the Context of this Thesis 341
C.1. Diploma Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
C.2. Master Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
C.3. Bachelor Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342



Bibliography 345





List of Figures

1.1. Metric system decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Development gap in metric systems engineering. . . . . . . . . . . . . . . 11
1.3. The main parts of MeDIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4. MeDIC metric system engineering: Overview . . . . . . . . . . . . . . . . 28

2.1. Static relations between metric portfolio terms . . . . . . . . . . . . . . . 37
2.2. Metric dynamics of a metric system by the means of measurement producers

and measurement consumers . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3. Metric dynamics and measurement data flow example . . . . . . . . . . . 39
2.4. Conceptual model of the data flow in a metric system . . . . . . . . . . . 39
2.5. Static view on central metric variability concepts . . . . . . . . . . . . . . 44
2.6. Overview of the central parts to our formal foundations to metric system

dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.7. Measurement producer connecting metric, measurement, and the variability

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1. Model for the logical reference architecture as UML class diagram . . . . 80
4.2. Example for the logical architecture and logical decomposition of an

enterprise measurement infrastructure . . . . . . . . . . . . . . . . . . . . 81
4.3. System View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1. Technical layers and services in an enterprise measurement infrastructure 88
5.2. Simplified data and control flow in an EMI . . . . . . . . . . . . . . . . . 91
5.3. Metric concepts and their corresponding implementations in an enterprise

measurement infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4. Zoom into the data transport and integration layer of the MeDIC reference

architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5. Publish/subscribe topics inside the EMDB . . . . . . . . . . . . . . . . . . 98
5.6. Example for a EMDB message specialization hierarchy and relation to

EMDB topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.7. Integration between Data Adapter and Metric Kernel via EMDB Messages100
5.8. Reusing a general metric kernel with specific EMDB messages . . . . . . . 101
5.9. Message Gateway internal component view . . . . . . . . . . . . . . . . . 102
5.10. Message Cache internal component view . . . . . . . . . . . . . . . . . . . 104
5.11. Zoom into the calculation access layer of the MeDIC reference architecture109
5.12. Overview and layers of the enterprise uniform metric kernel access

(EUrEKA) design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.13. EUrEKA metric kernel description meta model as UML class diagram . . 115
5.14. Example for a risk matrix that can be feed by the risk data type from the

previous example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.15. EUrEKA registry service internal component view . . . . . . . . . . . . . 118

ix



5.16. EUrEKA overview using the EUrEKA producer gateway service . . . . . 120
5.17. EUrEKA producer gateway service internal component view . . . . . . . . 121
5.18. EUrEKA consumer internal component view . . . . . . . . . . . . . . . . 122
5.19. Wrapper Configuration Model and Wrapper production . . . . . . . . . . 123
5.20. EUrEKA indicator wrapper service internal component view . . . . . . . 124
5.21. Zoom into the data adapter layer of the MeDIC reference architecture . . 127
5.22. Icons for the different data adapter pattern . . . . . . . . . . . . . . . . . 127
5.23. UML sequence diagram for the concept of the push-forward adapter pattern128
5.24. UML sequence diagram for the concept of the pull-forward adapter pattern129
5.25. UML sequence diagram for the concept of the invoke-pull adapter pattern 130
5.26. UML sequence diagram for the concept of the invoke-dump adapter pattern132
5.27. Static reference architecture for Data Gateways . . . . . . . . . . . . . . . 134
5.28. Static reference architecture for pull-based data adapter . . . . . . . . . . 135
5.29. Zoom into the metric kernel related layers of the MeDIC reference architecture137
5.30. Static monolithic metric kernel reference architecture. . . . . . . . . . . . 138
5.31. Static metric kernel reference architecture with separated components. . . 140
5.32. EMDB Message Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.33. UML sequence diagram for the behavior of the metric kernel components

when data is requested via an indicator access API . . . . . . . . . . . . . 143
5.34. Zoom into the visualization layer of the MeDIC reference architecture . . 145
5.35. Dashboard Application - Component View . . . . . . . . . . . . . . . . . . 148
5.36. Typical M2 dashboard visualization dynamic as UML sequence diagram . 150
5.37. Typical analysis tool visualization dynamic as UML sequence diagram . . 151
5.38. Integration in an Operation System between the Operation Service and

EMI Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.39. Operation System Component View . . . . . . . . . . . . . . . . . . . . . 153

6.1. Static reference architecture for the monitoring client agent . . . . . . . . 163
6.2. UML activity diagram for the behavior of the monitoring service and

monitoring client agent during an alive-check. . . . . . . . . . . . . . . . . 165
6.3. UML sequence diagram for the production of the performance indicators

in a monitoring client agent. . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4. Static reference architecture for the logging client agent . . . . . . . . . . 171
6.5. Static reference architecture for the directory system . . . . . . . . . . . . 175

8.1. Scope of the metric systems engineering process model . . . . . . . . . . . 205

9.1. Metric Systems Engineering Process: phases, increments, and iterations . 210
9.2. MeDIC engineering process model: phase details and core activities . . . . 213
9.3. Workload of the roles in the different phases of the development process . 222

10.1. Conception phase overview . . . . . . . . . . . . . . . . . . . . . . . . . . 227
10.2. Requirements Gathering activity as BPMN diagram . . . . . . . . . . . . 230
10.3. Prototype and evaluate activity as BPMN diagram . . . . . . . . . . . . . 234



10.4. Plan Increment activity as BPMN diagram . . . . . . . . . . . . . . . . . 238

11.1. Design phase overview as BPMN diagram . . . . . . . . . . . . . . . . . . 241
11.2. Metric Service identification activity as BPMN diagram . . . . . . . . . . 242

13.1. BPMN diagram of the main process steps used to develop the metric
system at the IT service provider . . . . . . . . . . . . . . . . . . . . . . . 262

13.2. Prototypes for metric-based risk monitors: Risk Matrix and Open Risk
Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

13.3. Static architecture overview of the data adapter and metric kernel of the
EMI for risk metrics at our cooperation partner. . . . . . . . . . . . . . . 266

13.4. UML activity diagram for the data adaption for risk metrics. . . . . . . . 267
13.5. UML activity diagram for the data storage and pre-calculation of the risk

metric kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
13.6. UML class diagram for the data model of the risk metric kernel. . . . . . 268
13.7. Prototype for the specific SSE Lab metric-based monitoring dashboard. . 272
13.8. Static architecture overview of the EMI core for the software project

metrics in sse lab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
13.9. Screenshot of the realization of the SSE Lab metric-based monitoring

dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
13.10.Ticket flow visualized as Senkey diagram in the RiVER analysis tool (taken

from [Cha12] p.75). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
13.11.Indication of the smell “loosing the battle of the inbox” using a radiogram

visualization for the overview page of the RiVER analysis tool (taken from
[Gji13] p.76). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

13.12.Specific ticket status changes visualized as work-item-history in the detail
view of the RiVER analysis tool (taken from [Gji13] p.77). . . . . . . . . . 280

13.13.Static architecture overview of the first version of the RiVER analysis tool.281
13.14.Senkey diagram from the second version of the RiVER analysis tool showing

approximately 1.5 million ticket status changes (taken from [Rab15] p.26).
We drastically simplified the visualization (e.g. removed the names of the
nodes) to make it more compact. . . . . . . . . . . . . . . . . . . . . . . . 283

13.15.Static architecture overview of the second version of the RiVER analysis
tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

13.16.Comparison of the Senkey diagram provision speed of the two versions of
the RiVER analysis tool based on the number of status changes in the
databases (smaller is better). . . . . . . . . . . . . . . . . . . . . . . . . . 285

14.1. Overview of the modeling workflow of the tool. . . . . . . . . . . . . . . . 290
14.2. Screenshot of the metric documentation model in the documentation tool. 291
14.3. Screenshot of a web page of the generated metric documentation. . . . . . 292
14.4. Screenshot of the overview page for a project in the metric management

support tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293



14.5. Screenshot of the edit page for a monitor and its metrics in the metric
management support tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

14.6. Screenshot of the dashboard frontend from MeDIC Dashboard. . . . . . . 296
14.7. Screenshot of the dashboard frontend from SCREEN. . . . . . . . . . . . 297
14.8. High level architecture overview of MeDIC Dashboard. . . . . . . . . . . . 298
14.9. Architecture overview of SCREEN and its connection to the Render-Service

and the Window-Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
14.10.Screenshot of the EMI Monitoring Service graphical user interface. . . . . 301
14.11.Screenshot of the technical log view in the GUI of the EMI Logging Service

(taken from [Dör14] p. 71) . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
14.12.Screenshot of the logger configuration in the GUI of the EMI Logging

Service (adapted from [Dör14] p. 68). . . . . . . . . . . . . . . . . . . . . 302
14.13.Screenshot of the EMI Directory Service graphical user interface. . . . . . 303
14.14.Screenshot of the configuration of a specific renderer in the GUI of the

EMI Render Service (adapted from [Röl13] p. 61). . . . . . . . . . . . . . 304
14.15.UML package diagram of parts of the common core of the EMI Framework.306
14.16.Example for the implementation of a measurement cache using EMI

Framework components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307



Part I.

Introduction and Foundations

1





1
Introduction

Gathering process and product data are central necessities for a mature software
development organization. The gathering and measurement of these data is defined
by metrics. Consequently, the IEEE software glossary defines metrics as “a quantitative
measure of the degree to which a system, component, or process possesses a given
attribute” [Ele90]. In this thesis we follow the operation focused definition for metric
from the ISO 15939 as the specification of a measurement (the measurement approach
and process) [ISO07].

Process improvement models such as CMMI or SPICE encourage software development
organizations to build up abilities to systematically utilize metrics and measure the
quality of the development processes and software systems as one of the basic steps
to higher maturity [Tea10]. By analyzing metrics, process managers are able to
identify processes that contribute to project success or failure [HL11, Dyb05, Kir01].
Metrics provide the harness for organization strategies in the sense of performance
measurement systems [Mel04]. Furthermore, metrics provide the basis for solid project
management [WGT07, Mul13].

Even though metrics are important, the research community and industry agrees that it
is often difficult to find the right metrics and provide good measurements [Fen94, Bas92].
Quality standards like the ISO 25000 series try to overcome this problem by providing a
broad number of metrics embedded in a rich quality model to guide metric selection [ISO03,
ISO14]. Kilidar et al., however, question the usefulness of the standard. They conclude
that “the standard was ambiguous in meaning, incomplete with respect to quality
characteristics and overlapping with respect to measured properties” [AKCK05]. Another
problem of quality models is that they are rarely practically applicable because a lot of
the metrics are not calculable. Wagner et al. bridge this problem with their QUAMOCO
approach which uses measurements from a broad variety of measurement instruments to
feed the calculation inside their quality model [WGH+15, WLH+12, WBD+10]. Thus,
enabling practical usage of the quality model. However, most stakeholders are interested
in very specific aspects of the software development process or product. Hence, it is often
necessary to define suitable metrics specific to the questions at hand.

3



1. Introduction

Metric System

Metric
Portfolio

Measurement 
Infrastructure

Realizes 

Figure 1.1.: Metric system decomposition

Figure 1.1 shows our differentiation of metric systems into two parts: the metric portfolio
which contains the definitions for the metrics and indicators1 and the measurement
infrastructure which contains the actual software systems that calculate the metrics and
provide the visualizations specified by the indicators. In this thesis, in accordance with
international standards and related literature, we therefore define:

Metric portfolio as a set of definitions for metrics and indicators (see section 2.1 for
further details).

Measurement infrastructure as all the technical components that realize and are
required for the realize of metrics and indicators.

Metric system as a metric portfolio and a measurement infrastructure which realizes
the metric portfolio.

Most existing approaches focus on the management and changes to the metric
portfolio [ISO07, Tea10, USE, FP98, CK94]. Some approaches focus on the measurement
infrastructure [HM04, Hei08, YDSN10]. Very few approaches combine the two sides
and from our knowledge no approach exists that explicitly addresses the realization
from metrics in the metric portfolio in parts of the measurement infrastructure (the
development). From our experience most of the measurement infrastructures that
implement specific metric systems are poorly build [VLJ13, VLS13]. They are often
implemented using spreadsheet applications plus additional scripts to implement the
measurement of the base data from different sources [SMN09, VLJ13, Pia07]. This often
results in poorly maintainable solutions, which are not able to evolve with constant
changes of the environment [VLJ13].
This thesis presents MeDIC2 a dedicated metric systems engineering approach to

overcome these problems. MeDIC consists of two main parts: a reference architecture for
measurement infrastructures founded on the ideas of enterprise application integration,
microservices, and separation of concerns as well as a metric systems engineering
process model that integrates metric specific tools like GQM for requirements elicitation
and software engineering best practices like prototyping, incremental and iterative
development, and defined staging and release of the software tools.

1Again, we use the ISO 15939[ISO07] definition for “metric” and “indicator”.
2MeDIC is an acronym for Metric systems Development, Infrastructure, and Concepts. These are the
key parts of the engineering approach.

4



A thesis should not repeat over and over what others wrote many times before, what
is well known, and what is available through various literature. It should be build on
these foundations. Therefore, we do not provide a separate introduction into metric
and measurement theory and processes. This includes special metrics and measurement
aspects like a description of the measurement process from the ISO 15939 and CMMI
Measurement and Analysis [ISO07, Tea10] as well as general aspects such as working with
and defining metrics, which is included in most popular SE text books [Som11, LL13],
often taught in universities, and included in various theses3. This thesis focus on the
challenges when building measurement infrastructures and defining metrics in different
environments and tackles these with a dedicated engineering approach for metric systems.

Thesis Structure

This thesis contains three central parts covering the main aspects of our engineering
approach. The details of our reference architecture for measurement infrastructures
are presented in part II. Part III then contains the process model for metric systems
development and operation. The evaluation of these two aspects based on our tooling
and selected field studies is presented in part IV. This core of the thesis is surrounded
by the conclusion and outlook part V and the introduction and foundations in part I.
This first part contains the central metric systems engineering challenges, our research
contribution, and a quick introduction to the research field as well as the conceptual
foundations including the formal foundations for MeDIC.

3Very good introductions to these topics are provided in the PhD thesis of Jens Heidrich [Hei08] as well
as the PhD thesis of Martin Kunz [Kun09].

5



1. Introduction

1.1. Metric Systems Engineering Challenges
The analysis of metric systems engineering in practice presented in this section is based
on our experiences from building metric systems with different cooperation partners
over the past 8 years [Via08, Hut13, Cho11, Han12, VLJ13, Eve10, VBR09]. We like to
differentiate our experience into large software development companies and small/medium
sized software development companies because the environment for projects in these
categories drastically differs from each other. The definitions for software company sizes
differs a lot over various studies. For this thesis we define small software companies as
companies with less than 40 (full time equivalent) employees, medium sized companies
range from 41 until 250 employees, and large companies employ more than 250 people.
We also did a lot of work focusing on research projects. However, from our experience
research projects roughly behave like small/medium sized companies. Hence, we do not
provide an additional section for our experience in research projects.

The focus of this section is to analyze the status-quo of the engineering approaches for
metric systems at our cooperation partners before we started working with them as well
as best practices from our experiences. From this we identify a set of common challenges
that need to be tackled when engineering metric systems.

1.1.1. Large Software Development Companies
Our experience witch large software development companies is based on our cooperation
with two large IT service providers for insurance companies located in Germany. One
of these companies is CMMI level 3 certified. During the last 30 years both companies
produced a broad legacy of systems which support all kinds of processes in the insurance
domain. This leads to a lot of challenges maintaining and enhancing the existing systems.
In both companies this is supported by company wide processes and tools. Also they
based their processes on well established process models like the rational unified process
(RUP). Even though they currently investigate the use of agile software development ideas
most of the existing projects are based on traditional (PM BoK) project management.
This section only provides a summary of the problems and challenges that we faced
while working with our cooperation partners 4. The following list states the three main
challenges that we found with the existing metric system and dashboards in large software
development companies.

Purposefulness The metrics need to serve a purpose i.e. they need to answer questions
(information needs) from metric customers. Furthermore, all roles5 involved with
developing and operating the metric system need to be addressed as well.
Unfortunately, our experience showed that the metric systems often provide
unnecessary information and do not answer crucial questions of the metric customers.
Therefore, an engineering approach for metric systems needs to include a thorough

4A more detailed analysis of our experience is available in our paper for the first QuASoQ workshop
2013 in Bangkok [VLHH13] as well as the diploma thesis from Andrea Hutter [Hut13].

5See section 9.3 for more information on the different stakeholders and roles.

6



1.1. Metric Systems Engineering Challenges

requirements phase to identify the information needs of the metric customers.
Furthermore, it needs to include constant validation of the proposed metrics with
the metric customers.

Reuse Both large cooperation partners run approximately 90 projects per year. Each
of the 90 project managers have similar (yet slightly different) information needs
focusing on the status of the project. This leads to the development of templates for
the project management dashboards which are then used by the project managers
to create the project dashboard. Unfortunately, the template were arbitrarily
instantiated and engineered because the companies do not define systematic metric
reuse concepts. Problems emerged for example with the metric definitions and
metric documentations when the template was instantiated and arbitrarily altered
to fit other needs. These problems then escalated because the CMMI level 3
requirements for tailoring documentation and definition were not met. Hence, an
engineering approach for metric systems needs to include a systematic approach for
metric reuse and reuse in measurement infrastructure components like dashboards.

Usability We noticed that the interpretation of the metrics is often hard for people
that only temporarily work with them. Furthermore, the configuration of the
metrics and selection of the metrics was far from intuitive. These two aspects lead
to misinterpretations either because the metric was not understood, was wrongly
configured, or wrongly selected. All of this renders the metric system effectively
useless. Therefore, an engineering approach for metric systems needs to enforce
usability of the metric tools and needs to include metric documentation.

Environmental changes Environmental changes include process and organizational
changes, tool changes, and technological changes. All these changes influence the
metric system. Most of them change the information needs of the metric customers
and some of them influence the data collection mechanism in the measurement
infrastructure. Hence, a flexible engineering approach for metric systems needs to
address these changes pro actively.

From our experience, providing flexibility and enabling metric evolution is the most
crucial aspect that we identified from our work with large cooperation partners.

1.1.2. Small and Medium Software Development Companies
During the period between 2007 and 2014 we were able to build several metric systems with
multiple small and medium sized software development companies [Via08, VBR09, Han12,
Hut13]. They produce specific software products supporting smaller markets (energy
contract management, license management, leasing calculation, and price information
systems). The company size ranges from 10 to 250 employees. Unfortunately, we did not
have the chance to work with an IT consulting company or IT infrastructure provider.

7



1. Introduction

Contrasting the large companies from above these companies did not have a company
wide metric system or metric program. However, most of them did monitor the working
hours of their employees. This information was then used to keep track of the effort for
specific working packages or projects. Sometimes the project managers did use specific
reports from their requirements management systems (mostly ticketing systems) to get
an overview over the current work status. However, non of the companies that we worked
with utilized software metrics. We believe the reasons for this lack of metrics at small
and medium sized companies are:

Special Development Environment and Tools Most of the companies used very
specific environments to build their software. One of the companies for example
uses Delphi to build the clients for their products. These clients connect to oracle
databases. The business logic of the applications, however, is spread between these
two environments. Some of the business methods are located in the Delphi clients;
some are located in PL/SQL stored procedures in the database. Therefore, we
needed to develop a specific measurement tool that was able to provide statical
analyzes for code in both languages. It also needed to analyze the links between
the two systems [Via08, VBR09]. However, building and maintaining such a
specific metric system and measurement infrastructure is costly and not necessarily
something the management of small and medium sized companies want to invest in.

Special Information Needs require special Metrics Each of the different
stakeholders from each company had very specific information needs that needed to
be answered. Unfortunately, the answers to these specific questions are very rarely
provided by standard measurement tools. For example, the company from the
example above was confronted with multiple questions related to the complexity
of their software. More specifically, questions related to source code complexity
based on a prediction of the test effort. Even though, some scientific work on
this topic exists, non fitted the need of the company. Hence, new metrics, which
predict the test effort from static source code analysis needed to be specified and
implemented [VLR09].
Another company uses PHP to build a large system over the last 10 years. The
GQM workshops showed that classic source code metrics like LOC or CC do not
provide answers for the questions that the managers and quality assurance staff
had. For example, they were facing the challenge to enforce object orientation
over imperative procedures located near the corresponding HTML code. Therefore,
again we needed to implement specific metrics to answer this question [Han12].

Technology and tools change frequently Again contrasting the large companies
one of the characteristics of small companies is that they are able to quickly
change tools and technology if they feel they need to. This not only includes
standard tools like issue tracker / ticketing systems but also specific tools like time
sheet software. Also, development methodologies constantly change. We observed
multiple methodology shifts from procedural imperative development towards object

8



1.1. Metric Systems Engineering Challenges

oriented framework-based development. Such changes always imply changes in the
metric system.

No company wide standard Some of the companies did have multiple branches that
develop different software for similar or sometimes different markets. The branches,
however, often did not share similar technologies or development metaphors. This,
again, induced a broad variety amongst the information needs of even similar
stakeholders in multiple branches. Consequently, this leads to a broad variety in
the metric system as well.

Summarizing the brief description of our experiences from above a metric systems
engineering approach for small and medium sized companies needs to be very flexible to
support the large variety amongst the different information needs and needs to support
constant change (evolution) of the metric system. The measurement infrastructure of the
metric system needs to support this by providing clear separation between the different
central tasks: measurement, calculation, and visualization. Again, this section only
summarized our findings6.
We also analyzed the use and usefulness for metric systems in a broad variety of

research projects (mostly software engineering research) [Hut13] and build dedicated
measurement infrastructures for software engineering research projects [Ott13]. In essence
our experience with engineering metric systems for (software) research projects mirrors our
findings for small an medium sized companies. Hence, we do not address the challenges
and needs for research projects explicitly in this thesis.

1.1.3. Main Challenges
Our field studies generally show a lack of solid engineering when developing metric systems.
Thus, the overall goal of a systematic metric systems engineering approach should be
to support the development, and operation of metric systems which are successful (e.g.
cost efficient) in the long run. Summarizing our experience from above and adding to
the list in our existing publications (see [VLJ13]) we extracted the following three main
challenges:

C1 - Flexibility: All of our field studies registered environmental changes to the
metric system. Change sources were heterogeneously distributed across different
aspects. They included the utilized tools and processes of the company for example.
Thus, these changes need to be reflected in the metric system by the means of
changed metrics and according changes in the measurement infrastructure. These
maintenance related tasks make up a majority of the overall costs and effort of a

6A more detailed description of the challenges with building metric systems at small companies as well
as a detailed description about the engineering of metric systems using our engineering approach can
be found at the bachelors thesis from Christian Hans [Han12]. Also, again Andrea Hutter provides an
analysis of the metric needs of small companies in her diploma thesis [Hut13]. Finally, the diploma
thesis of Matthias Vianden also contains important information on the challenges and engineering of
metric systems at medium sized companies [Via08].

9



1. Introduction

software system throughout its lifetime [Som11, BR00, BDKZ93]. Hence, aiming for
flexible metric systems must be one of the mayor goals of the engineering approach.

C2 - Solid and Specific (Software) Engineering: Similar to changes, all of our field
studies indicated a lack of adhering to solid software engineering practices when
developing metric systems and measurement infrastructures in the field. This lack
can also be observed with typical prototypes developed in research environments
and tools out in the field. Other fields like development of web applications
/ web pages, information systems, or databases reflected equivalent lack with
specific software engineering approaches [SGN08, CCP07, Bah09, ST]. We believe
that the development of metric systems similarly requires a dedicated metric
systems engineering approach. This approach then needs to reflect current software
engineering best practices.

C3 - Usefulness and Usability: Like many others [Hei08, Kun09, DLGP10, NV01,
HMO08, CSS09] we noticed that most of the metric systems did not answer the
specific information needs of the metric customers. Which renders most of them
useless and degenerate them to a pure reporting tool. Some problems that we
observed were the lack of dedicated (metric) requirements analysis techniques like
GQM, the lack of quality assurance techniques like prototyping for the requirements,
missing or unusable documentation for the metrics, and missing integration between
metric specification and measurement infrastructure and dashboards. Additionally,
we often observed a lack in usability of the metric specification and dashboard tools.
They were often very much driven by technology like data warehouse front ends
to specify ETLs or spreadsheet applications. Furthermore, the specification and
documentation of the metrics (if present) often lacks the link to the information
needs of the customers that are answered by the specific metric.

1.1.4. Summary
This section presented an overview of metric systems engineering challenges that we faced
when analyzing metric systems engineering in the field. Most importantly we noticed a
lack of solid software engineering practices when developing metric systems. Figure 1.2
depicts the situation like we faced it in the industry. Metric management processes, based
on metric management process models like the ISO 15939, change the items in the metric
portfolio. New metrics are added and existing metrics evaluated by usage feedback from
the measurement infrastructure. The development, maintenance, and operation of the
measurement infrastructure from the metric portfolio, however, is performed chaotically,
unplanned, and far from solid software engineering. Furthermore, we noticed that the
architecture of the measurement infrastructure is not explicitly engineered as well.
The success of measurement best practices, like GQM for metric requirements

engineering, and success of specific engineering approaches, for example for quality
aware web engineering [CCP07], indicates the benefits for a dedicated metric systems
engineering approach. Still, such an engineering approach needs solid foundations. As

10



1.1. Metric Systems Engineering Challenges

Metric
Portfolio

Measurement 
Infrastructure

Metric 
Management

Architecture

Metric Management 
Process Model

Development

Figure 1.2.: Development gap in metric systems engineering.

such, the condensed list of top level challenges for the engineering approach from our
field study experiences presented above are used to formulate a short list of top level
requirements in the next section.

11



1. Introduction

1.2. Top-Level Requirements
The challenges presented in the last section provide an incentive for a dedicated metric
systems engineering approach. However, they are still quite vague and unspecific. Thus,
this section derives a list of top level requirements for solid metric systems engineering
from the challenges and our field study experiences. We address the metric systems
development process and measurement infrastructure separately because they aim on
different part of an engineering approach (method versus tool). With each requirement
we list the index of the challenge from above that is addressed with the requirement.

Metric System Development Process Requirements

Our hands-on experience shows that metric system development is often chaotic
and common software engineering best practices are ignored. Even metric initiatives
launched in companies that apply good development processes and best practices for
the development of high quality and successful software seem to ignore all of this when
it comes to the development of metric systems. Hence, the following list provides a
condensed set of requirements for the development of metric systems from a process
perspective:

ReT-P1 The process model needs to clearly define the roles and responsibilities for the
different stakeholders associated with the development and operation of a metric
system. (C2, C3)

ReT-P2 The process model needs to include developers and operators. (C2)

ReT-P3 The process model needs to include activities to continuously evaluate the
information needs underlying each metric. (C2, C3)

ReT-P4 The process model needs to encourage the development of diverse metric
systems that include specific dashboards and analysis tools which address the
different roles and their specific information needs differently. (C1)

ReT-P5 The process model needs to be founded on software engineering best
practices. Most importantly, it should include prototyping activities to validate the
requirements for the metric system before investing time and money into actually
building a measurement infrastructure. (C2)

ReT-P6 The process model needs to embrace flexibility by including iterative and
incremental development. (C1)

Measurement Infrastructure Requirements

From our brief description above an obvious requirement for the measurement
infrastructure is its flexibility. The following list of requirements further specifies flexibility
of the measurement infrastructure by addressing specific aspects of the infrastructure:

12



1.2. Top-Level Requirements

ReT-I1 The measurement infrastructure needs to support easy integration of
heterogeneous data sources as the basis for different metrics and visualizations.
(C1)

ReT-I2 The measurement infrastructure needs to enable fast and up-to-date recognition
and update of the metrics on a change in a data source. (C1, C3)

ReT-I3 The measurement infrastructure needs to clearly separate system integration,
metric calculation and visualization. (C1, C2, C3)

ReT-I4 The measurement infrastructure needs to be robust to avoid a complete system
failure if a small part of the system fails. (C2, C3)

ReT-I5 The measurement infrastructure needs to be isolated in the sense that a failure
of the infrastructure does not result in a failure in the data source. (C2, C3)

ReT-I6 The measurement infrastructure needs to not force one central data schema
or one database technology. This avoids schema-mapping problems and support
flexible isolated evolution of different data schemata. It also enables to select the
database (technology) that best fits the specific need. (C1)

ReT-I7 The measurement infrastructure needs to support the evolution of metrics,
measurements, and visualizations. (C1, C2)

ReT-I8 The measurement infrastructure needs to offer support for dedicated operation
tools. (C2)

1.2.1. Literature Analysis
The top level requirements from above are based on the challenges that we experienced
when analyzing and developing metric systems in our industrial and research projects.
This section provides an analysis of various best practices, guidelines, and critical success
factors from the literature based on our requirements. The goal is to find additional
support for our requirements in the literature. We also discuss missing support or different
opinions on certain parts.
Ciolkowski et al. presented a comprehensive list of guidelines when building

measurement systems in their 2008 article “Practical Guidelines for Introducing Software
Cockpits in Industry” [CHM08]. Another very rich and valuable resource is the
measurement maturity model by Diaz-Ley et al. [DLGP08b, DLGP10] defined between
2008 and 2010. Looking back even further Niessink et al. investigated key success factors
for measurement programs in 2001 [NV01]. Also in 2008 Harjumaa, Markkula, and Oivo
published a meta analysis on measurement program success factors that also includes
the list by Niessink et al. [HMO08]. Their success factors, however, are not indexed.
Hence, we reference the original lists and mention the meta analysis when needed. In
2009 Coman, Sillitti, and Succi published a case study on using an automated in-process
software engineering measurement and analysis system in an industrial environment at

13



1. Introduction

the ICSE [CSS09]. The paper starts with another meta analysis on critical success factors
for establishing software measurement programs. Again, the list is not indexed and we
refer to the items when needed.

From our experience, most measurement success factors and guidelines are easily found
or known. Hence, organizations typically follow the guidelines and success factors when
starting a metric initiative. For example: they almost always get management support.
Unfortunately, from our experience the software development part is often ignored and
tools are implemented in an ad-hoc manner. This lack of solid software engineering for
the tools and integration between the metrics, measurement infrastructure, and tools is
also reflected in the standards. The ISO 15939 measurement process for example does
only reflect the pure measurement related phases: “Establish and sustain measurement
commitment”, “Plan the measurement process”, “Perform the measurement process”,
and “Evaluate measurement”. Hence, our requirements focus more on the neglected
development part of the metric process. In the following paragraphs the key success
factors for measurement programs from Niessink et al. are prefixed by an “I” and an “E”,
reflecting the original index, whereas the guidelines from Ciolkowski et al. are prefixed
by a “G”, again similar to the original work. We refer to the two references simply as the
lists because success factors and guidelines are on different maturity levels.

Process Requirements

One success factor that always shows up is the need for a well planed process and good
project management when initiating a metric initiative (I2 and G10-G14). This is mostly
reflected in a very thoroughly planed measurement process. Sadly, as stated before
we did not find any publication that also included the software development part of
the measurement initiative. However, this process and project management emphasize
provides a valid support for our process requirements ReT-P1 to ReT-P6.
Investigating these factors in more detail, the requirement ReT-P1 for clearly defined

development roles is supported by I13 (metric expert at company) and G2 (address all
stakeholders). The work by Coman et al. also lists a “Dedicated team for measurement” as
a crucial success factor. The requirement ReT-P2 to include developers and operators in
the process is obvious from common SE knowledge but not included in any measurement
related guideline or best practice. The continuous evaluation of information needs
listed as requirement Ref-P3 is supported by I12 (constantly improve the measurement
program), E4 (monitor the implemented changes), and G23 (conduct post-mortem
analysis). Requirement ReT-P4 to encourage diversity in the metric system is supported
by I6 (usefulness of metric data), G6 (customize solution), and G9 (respect heterogeneity).
ReT-P5 to base the development process on common SE best practices again should
be obvious. However, we like to list it explicitly because it is not listed in any of the
other lists. Strangely, non of the lists explicitly lists prototyping as an important factor
because it proved to be very successful and useful in our cases and is listed as a crucial
success factor in other areas [BBHM95]. Very short iterations are a suitable substitute
for prototyping in agile software development. However, establishing a metric program
in a large organization is a lot of effort and short iterations are not possible. We event

14



1.2. Top-Level Requirements

found this to be true in smaller organizations. Flexibility as required by ReT-P6 is
not included in the lists. We believe the reason for this is that the case studies that
support the guidelines and success factors were too short7 or the companies where too
small. However, both of them list incremental development as a crucial success factor: I1
(incremental implementation) and G7 (follow incremental approach).

Infrastructure Requirements

The infrastructure requirements are harder to correlate to the literature because most
of the existing work focuses on the measurement process and mostly only touches
upon the development and infrastructure aspects. However, Ebert et al. published
a book about best practices in software measurement that contains a specific section
on measurement infrastructure ([EDBS04], pp. 81-94). They list flexibility of the
measurement infrastructure as an important factor: “The system must be able to
incorporate new metrics and their interpretations [. . . ] relatively easily”. Unfortunately,
measurement infrastructures in their work is just a metric database plus additional
services. Kunz et al. also investigated measurement infrastructures [Kun09, KSDW06].
The requirements for their measurement infrastructure, however, only contain very
abstract goals like “Overcoming of general measurement tool shortcomings” or “Support
of corporate measurement programs” as well as non measurement related and from our
experience unimportant aspects like “Enable different license models”. We discuss their
work in greater detail later in this thesis in section 1.4. Additionally to these resources,
the need for a specific measurement infrastructure and dedicated tool support is always
included in most of the literature. It is also included in the lists as G6 (customize solution)
and I11 (use automated data collection tools).

The support for easy integration in requirement ReT-I1 is supported by G8 (integrate
into process and tools), G5 (integrate existing data), and I3 (integrate existing metrics
material). The requirement ReT-I2 for low latency in the measurement is not explicitly
included in the lists. However, it is listed as an important information need for
(project) managers in the work from Kunz (“Immediate project review” [Kun09], p. 35).
Additionally, the work by Coman et al. lists “Prompt feedback” and “High frequency of
data collection” as critical success factors [CSS09]. Low latency increases transparency
because changes on the base data is immediately reflected in the measurements.
Transparency is listed as an important factor in the lists as G12 (guarantee transparency)
and I5 (measurement process transparent [. . . ]). Low latency and specific tool support
also increases accessibility as required from G21. A clear separation between the different
tasks of a measurement infrastructure as required in ReT-I3 is supported by differentiation
between these tasks in the guideline list (G18-G20 and G11). Additionally, these tasks
are typically performed by different tools. The requirements ReT-I4 and ReT-I5 for
robustness and isolation of the measurement infrastructure are obvious for distributed

7If the time frame is too short the chance for the measurement system to reflect changes is very small.
However, the organization, development processes, and tools will change if the time frame is long
enough. Hence, it is necessary to enforce flexibility of the measurement infrastructure and in the
development process.

15



1. Introduction

systems [FT02, Fie00]. Also, these two factors are important quality attributes in
common quality models like the ISO 25010:2011 [ISO05]. The requirement ReT-I6 for
not relying on a central data schema (and hence not central database) goes against
common measurement guidelines. These typically require one central database and
hence one central data schema. However, our experience with evolving measurement
infrastructures and common database and information system knowledge indicates the
benefits of avoiding a central data schema [AS07, BR01, Ber11, Bey07]. Hence, even
though the requirement conflicts with typical measurement best practices we believe
requirement ReT-I6 is important for long time success of evolving metric systems and
corresponding measurement infrastructures. This implies requirement ReT-I7 to support
such evolving metric systems. Unfortunately, most of the case studies, field studies, and
experience reports in the literature only cover small time frames and small teams8. The
meta analysis by Harjumaa et al., however, lists the two success factors “Capability
to change” and “Constant improvement of the metrics program” as more important
than for example “Ensuring integrity of data” [HMO08]. The requirement ReT-I8 for
dedicated operation support is very technical and hence not included in the lists from
above. However, the need for dedicated operation support, especially for loosely coupled
distributed systems, and stronger integration between development and operation is a
main claim by DevOPs initiatives [Hüt12].

1.2.2. Summary
This section manifests the challenges from the previews section by forging two specific
lists of dedicated top level requirements for a metric systems engineering approach. The
requirements address the two crucial parts of a dedicated metric systems engineering
approach: the development process and the measurement infrastructure. Even though
the requirements and goals are justified by our field study experience we closed the section
with a thorough discussion of our requirements based on established literature. The
discussion showed the strong support for our requirements from established literature.
Also, the discussion again showed the need for a dedicated metric systems engineering
approach. Based on this, the following section introduces our research questions and
contributions of this thesis based on our experiences, the challenges, and requirements
from the previews and this section.

8The measurement program in the case study in the 2010 paper from Diaz-Ley et al. was only one
year old (start in 2007 and evaluation in 2008) [DLGP10]. The four case studies in the work from
Niessink et al. only cover very specific measurement initiatives on a very small time frame as well.
They start with a specific question, for example: “Are function points a means to overcome problems
with the negotiation of the price of changes with the customer?”, which is then tackled with a specific
measurement initiative. As soon as the particular question is answered, in the example: “No.”, the
measurement is over.

Such short measurement initiatives do not need to adhere to environmental changes. Hence, do not
need to evolve.

16



1.3. Research Questions and Contribution

1.3. Research Questions and Contribution
The challenge from our field studies, the top level requirements and several indicators
from the literature discussed above imply the need for a dedicated holistic software
engineering approach for metric systems. The engineering approach addresses our main
research question:

Q1: How to support flexible, information need driven (goal oriented)
engineering (development and operation) of usable metric systems?

An engineering approach according to established software engineering literature needs
to include: a method or process component, a tool or technological component, and a
notation component. Therefore, we differentiate our main research question into the
following three questions:

Q2,3,4: How to support flexible, information need driven engineering for
usable metric systems from the [process, technology, notation] perspective?

Last but not least this thesis addresses the research question (Q5) on how effective and
efficient is the engineering approach in practice?

1.3.1. Contribution
The overall contribution of this thesis is our metric systems engineering approach MeDIC,
which addresses research question Q1. The details of the approach are outlined in
section 1.5. To our knowledge this is the first time that a complete engineering approach
for metric systems is defined. The two main parts of the engineering approach (answering
research question Q2 and Q3 respectively) are additional major contributions of this
thesis. We briefly provide an overview over these two parts in the next paragraphs. The
details of each are found in part I and part II of this thesis.
The first major part of our contribution, addressing research question Q2, is a

reference architecture for metric systems based on enterprise application integration,
SOA and REST. The reference architecture specifically empowers flexibility and reuse of
the measurement infrastructure components and a clear separation of the three main
measurement infrastructure parts: measurement, calculation, and visualization. This
enables fast, easy, and specific reaction to changes in the environment of the metric system;
for example new stakeholders, new tools, or new visualization challenges. Additionally, the
literature and our experience in the field indicated missing operation support in current
measurement infrastructures. Existing metric research tools often include documentation
about metrics and information needs. Therefore, we included these, a metric and
information need focused documentation system and operation support, directly in the
reference architecture to build metric systems that last for a long time. The details of
the reference architecture can be found in part I of this thesis.
The second major part of our contribution, addressing research question Q3, is a

process model for the development, construction, and operation of metric systems based

17



1. Introduction

on best practices for metric requirements elicitation, up-to-date software development
best practices, and established process models. Most existing metrics literature focuses
on the requirements and early parts of the software development process. We included
these best practices in our process model as well as specific activities to design, build,
and operate reliable and flexible measurement infrastructures based on our reference
architecture. Hence, we provide a process model that covers all parts of the software
development process specifically for metric systems. The details of the process model
can be found in part II of this thesis. Additionally, we provide a lot of details on specific
activities, best practices, checklists, and document descriptions in the appendix of this
thesis.
We do not provide a new notation, addressing research question Q4, in this thesis.

Specific metric systems notations are required while specifying the metric system or in
the documentation to provide an overview of the while system. Our experience, however,
showed that existing UML and EAI-Pattern notations are sufficient for this. We provide
a lot of examples for this in the definition of the reference architecture in part I and the
field studies and tool description in part III of this thesis which also address research
question Q5.
A side contribution is our formal approach to measurements provided in section 2.3.

Our approach is based on established best practices and standards. We extended these
to provide more flexibility as required by our process model and feeding our reference
architecture. The formal approach provides a deep insight into the foundations of our
interpretation of metric systems. Additionally, it enables conceptual termination proofs.
It also provides formal requirements for reuse of metric system parts.
Metric reuse and a formal model for metric variability is another side contribution of

this thesis. Flexibility and cost reduction are good drivers for reuse. Hence, we always
included variability in our designs and formal approaches. Section 2.2 provides an inside
into our metric reuse and variability concepts. We also include variability at key parts in
the reference architecture and address reuse explicitly in the process model.

18



1.4. Research Field and Central Related Work

1.4. Research Field and Central Related Work
After we defined our research questions in the last section this section briefly introduces
the core related articles and theses that contribute to our research field. One of the most
related work to this thesis is the research on service-based measurement infrastructures by
Martin Kunz during his time at Magdeburg working together with Rainer Dumke. Their
work is aggregated in the PhD thesis of Martin Kunz: “Framework for Service-oriented
Measurement Infrastructures” [Kun09]. The following first subsection describes the
different parts of this thesis in detail. Another important work in our research field,
especially the integration between GQM and measurement infrastructures, is the work on
Software Project Control Centers performed by Jens Heidrich and others at Fraunhofer
IESE. This work was embedded in the soft-pit project coordinated by Jürgen Münch.
We provide a broad overview of their work in the second subsection. Our requirements
from the field (section 1.1) are used to evaluate the two approaches and indicate missing
parts. The last subsection concludes the research field and indicates central flaws and
missing aspects in the two approaches.

1.4.1. Service-Oriented Measurement Infrastructures
Between 2005 and 2009 Martin Kunz et al. investigated service-based metrics and
measurement infrastructures [KSDW06, Kun09, LDBK05, KMZB08]. The core of their
approach is a service-oriented measurement process based on the ISO 15939. The
process is supported by semantic measurement descriptions, a service repository, and a
process called quality driven design. According to the ISO 15939 measurement process the
measurement service is evaluated. The result of this evaluation is feed to the measurement
process evaluation which influences the measurement process definition ([Kun09], p. 119).

The heart of the service-oriented measurement process is a service-oriented measurement
database. The database feeds a measurement service for “performing measurement
activities” ([Kun09], p. 134) such as: analysis, storage, collection, and measurement.
The database itself has a very simple data schema. Metric, Measurement, and
MeasurementResult form the core of the data schema. They are enriched by information
about the quality model and associations to projects, organizations, and technical concepts
(like classes) because they mainly consider static source code metrics for object oriented
software ([Kun09], p. 160). The measurement service is divided into or9 surrounded by
several other services. Most importantly the data extraction service10 which is feed with
data by the resource view service, the process view service, and the product view service
([Kun09], p. 158). The measurement data is then feed to the visualization service11 and
the traffic light controller to visualize measurement values.

Another important aspect of the proposed infrastructure and process is quality based
selection of services which is manifested in the QuaD2 framework. The framework

9Unfortunately, the thesis is not very specific about this and most of the component and architecture
diagrams contradict each other.

10The extraction service on page 158 is called import service on page 154 of [Kun09].
11The visualization service from page 158 is called presentation service on page 154 [Kun09].

19



1. Introduction

requires a set of quality attributes for each service like restorability, memory utilization,
and response time to select the services based on the requirements of the service consumer
([Kun09], p. 148 and [KMZB08]). The framework requires a quality model which is stored
in a quality model database. The actual definition and tailoring of the quality model is
supported by the experience factory.

Evaluation

We evaluate the approach by the means of our list of requirements from above. Similar
to the requirements list we start with the process requirements and then move to the
infrastructure requirements.

ReT-P1: Clearly defined development roles The process model proposed in the
work covers important measurement stakeholders. From a development point
of view, however, it only contains activities for the requirements and evaluation
(maintenance) phase of the software development life cycle.

ReT-P2: Include developers and operators The process model is not focused on
the construction of the measurement infrastructure, but focuses on the application
of the infrastructure in an ISO 15939 oriented measurement process. Therefore,
the important roles developer, architect and operator are missing.

ReT-P3: Continuous information need evaluation The strong ISO 15939 process
orientation of the proposed process model implies continuous evaluation of the
information need as continuous evaluation using a measurement experience base is
the core of the ISO 15939 process model. Hence, it is also included in the proposed
process.

ReT-P4: Encourage diversity The ISO 15939 process and accordingly this work
focuses on individual measurements with specific phases for each measurement
(plan measurement, perform measurement, and evaluate measurement). It also
includes a diverse scope selection on the start which could be interpreted as a support
for diverse metric systems and dashboards. Hence, this encourages diversity of the
measurement infrastructure.

ReT-P5: Found on SE best practices The process model proposed is found on ISO
15939 and includes GQM. However, it is focused on the overall measurement process
and not explicitly on the construction of the measurement infrastructure. It nicely
reflects our experience from the field that software engineering best practices are
not considered when working with measurement infrastructures and metric systems.
As an example: the process model does not contain prototyping in the requirements
(GQM) phase.

20



1.4. Research Field and Central Related Work

ReT-P6: Embrace flexibility by iterative and incremental development The
process model does allow iterative and incremental development. But flexibility is
not addressed explicitly. On the contrary, we believe the complex measurement
definition and service selection is overly complex which hinders flexibility.

ReT-I1: Easy integration The service-based nature of the infrastructure supports
extension. The measurement service can be extended by the means of extending the
data extraction service. New visualizations can be added to the presentation service.
However, we argue that the extension is not easy because the actual services need
to be altered.

ReT-I2: Low latency The infrastructure stores measurement values in a central
measurement database. The data is then consumed by the analyzation service and
forwarded to the presentation service. Sadly the work does not provide additional
information on the measurement latency. We, hence, conclude that latency was not
a design issue and assume that it is not low explicitly.

ReT-I3: Separation The three important aspects system integration, metric calculation
and visualization are clearly separated in the approach as already discussed with
ReT-I1.

ReT-I4: Robustness Due to central storage of the data inside one measurement
database and only single services for analysis, extraction, and presentation we
conclude that the system is only partially robust. If one of these components fail
all of the specific part will not work anymore. If the database is not available the
whole system will stop working.

ReT-I5: Isolation The data extraction service just consumes data and is not integrated
in other systems. The proposed measurement infrastructure is therefore isolated.

ReT-I6: No central data schema This is directly violated by only using a single
measurement database.

ReT-I7: Evolution support Evolution of metrics, measurements, and visualizations
is not explicitly addressed in the infrastructure. The approach also does not
include mechanisms to avoid schema mapping and does not specifically address data
evolution problems. However, the iterative process and separation of the central
aspects into dedicated services supports it to a certain degree.

ReT-I8: Operation support Operation and development is not mentioned nor
included in the infrastructure. It is also not included in the processes which
again reflects our experience from the field that system operation is not something
that is considered important when designing measurement infrastructures.

21



1. Introduction

Discussion

The work from Kunz et al. contains a lot of important aspects and aligns the measurements
with ISO 15939 and GQM. It also integrates service oriented ideas into the approach
and provides a set of tools to evaluate the proposed ideas. From our experience, however,
a lot of the ideas like service selection for the measurement services, the complex process
feedback including the experience factory and huge measurement taxonomy are over
engineered and cost-benefit ratio is not sufficient for an industrial application [VLJ13].
For example quality model driven selection of measurement services is a nice idea but
typically there will only be one measurement service for a certain measurement.
Even though the work explicitly models the measurement process with some details

([Kun09], pp. 123-128) it completely lacks support for the actual software development and
operation of measurement services. This also leads to a lot of violations to our requirements
list from above. Operation and development support by the means of monitoring, logging,
or configuration services is also missing in the infrastructure. These factors, however,
are crucial to produce high quality distributed service oriented systems that last a
long time [Jos07, BGR05]. Additionally, the work contains several inconsistencies, we
mentioned a few of these in the previous sections, which often makes it hard to see the
overall picture and follow the ideas.

1.4.2. Software Project Control Centers
Heidrich and Münch define Software Project Control Centers (SPCC) as follows
(see [HM04], p. 4):

[. . . ] we define a SPCC as a means for process-accompanying interpretation
and visualization of measurement data: It consists of (1) underlying techniques
and methods to control software development projects and additional rules to
select and combine them, (2) a logical architecture that clearly defines logical
interfaces to its environment, and (3) a supporting tool that implements
(parts of) the logical architecture.

They further propose an identification taxonomy which helps to classify SPCCs based
on five different dimensions (purpose, technical, improvement, role, and tool). This
taxonomy helps, as they used it, to analyze existing solutions. The dimensions also show
a root source for the difficulties when specifying and constructing metric systems and
measurement infrastructures: all these dimensions need to be addressed. Additionally,
a solid measurement infrastructure and company wide metric systems often needs to
address multiple items in each purpose category. Software Project Control Centers
also enable control by the means of using innovative visualizations to gain project
control [LHM+09]. The Specula tool/framework developed as part of this effort enables
flexible visualizations be defining visualization catenas based on the underlying GQM
analysis [HM08b, HM07, LHM+09].
The logical architecture supporting SPCCs contains three layers: the application

layer, the functional layer, and the information layer. This architecture very much

22



1.4. Research Field and Central Related Work

reflects traditional three tier architectures for information systems [Fow02, Net14, Eck95a].
However, they specify a number of metric and control center specific components in these
layers. In the bottom layer (information) they specify a reuse oriented component: Pool
Management as well as two experience-bases: a project specific and an organizational
one. The functional layer on top of this consists of components for typical BI-tasks:
Customization, Data Processing, and Presentation. Additionally, this layer contains a
Packaging-component. The focus of this component is abstraction and support tasks
for the experience-bases. The application layer just contains a user-communication
component as a front-end.
Heidrich and Münch also address the development of SPCCs by attaching the

development of the SPCC to the software development process of the project that
is supported by the SPCC. This is based on the “tailoring a measurement environment”’
(TAME) software development model by Basili and Rombach [Rom91, BR88]. Later
TAME was supported by the Specula approach developed as part of this effort [HM08b,
HMW06a, Hei08].
The approach was evaluated by Ciolkowski et al. as part of the Soft-Pit research

project [CHM+07, CHSR08, CHM08]. The evaluation shows that the approach is able
to produce project control centers that allow to detect 80% of the listed plan derivations,
faster risk identification than traditional approaches, and “people perceived the usefulness
and ease of use of the Specula control center as positive”’ [CHSR08]. The evaluation also
provides a list of lessons learned. Among those they list the importance for a holistic
approach towards software project quality control by the means of measurement. They
also mention the importance of moving towards a learning organization by the means of
using systematic project control mechanisms. This specifically provides benefits for small
and medium sized companies by optimizing their development process. Last but not
least they list scalability towards large projects as another success factor. Also in 2008
Ciolkowski et al. published a set of practical guidelines for the introduction of SPCCs in
the industry [CHM08].

Evaluation

Again, we evaluate the work from Heidrich, Münch et al. based on the requirements
defined in section 1.1.

ReT-P1: Clearly defined development roles Defined responsibilities are listed as
an important practical guideline [CHM08]. However, this statement focuses on
measurement responsibilities because the development process of the measurement
system is not explicitly addressed in this work.

ReT-P2: Include developers and operators As mentioned before and similar to
the work from Kunz et al., Heidrich et al. align their work with the ISO
15939 measurement process and GQM. Hence, they do not address the software
development side of the measurement system and do not address developers and
operators of the software control center.

23



1. Introduction

ReT-P3: Continuous information need evaluation Again, similar to the previous
work from Kunz et al., Heidrich et al. include an experience base to store
measurement knowledge and continuously evaluate the measurement process.

ReT-P4: Encourage diversity Different scopes for different stakeholders are
encouraged (requirement ReT-P4) as they state: “In general, an important success
factor in the software engineering domain is that these solutions are customized to
the specific goals, organizational characteristics and needs, as well as the concrete
project environment.” ([HM08b], p. 5). A customized solution is also listed as an
important practical guideline [CHM08].

ReT-P5: Found on SE best practices The process and especially the tool support
are based on current SE best practices. The Specula framework, for example,
includes a model driven approach to define the measurement system by the means
of visualization catenas [HM07]. However, other software engineering best practices
are not included. For example: prototyping is not included in the requirements
phase of the process to validate the GQM results.

ReT-P6: Embrace flexibility by iterative and incremental development
Reuse and model-based initialization by the means of visualization catenas
support flexibility. Incremental development is stated as one of the practical
guidelines [CHM08]. However, flexibility was not states as a goal of the approach.

ReT-I1: Easy integration The service-based nature of the infrastructure supports
extension. The measurement service can be extended by the means of extending
the data extraction service. New visualizations can be added to the presentation
service. However, we argue that the extension and hence integration of new data
sources is not easy because the actual services need to be altered.

ReT-I2: Low latency The infrastructure stores measurement values in a central
measurement database. The data is then consumed by the analyzation service and
forwarded to the presentation service. Sadly the work does not provide additional
information on the measurement latency. We, hence, conclude that latency was not
a design issue and assume that it is not low explicitly.

ReT-I3: Separation The three important aspects system integration, metric calculation
and visualization are clearly separated in the approach as already discussed with
ReT-I1.

ReT-I4: Robustness Due to central storage of the data inside one measurement
database and only single services for analysis, extraction, and presentation we
conclude that the system is only partially robust following the arguments presented
above.

ReT-I5: Isolation The data extraction service just consumes data and is not integrated
in other systems. The measurement infrastructure is therefore isolated.

24



1.4. Research Field and Central Related Work

ReT-I6: No central data schema This is directly violated by only including a single
measurement database and no mechanism to avoid schema mapping and data
evolution problems.

ReT-I7: Evolution support Providing an easy-to-extend solution for SPCCs was the
third central goal of the Specula approach ([Hei08], p. 8). Hence, the iterative
process and separation of the central aspects into dedicated services supports
evolution of metrics, measurements, and visualizations to a certain degree. However,
the focus of the Specula approach is on cost-efficient setup and application
of SPCCs rather than on producing maintainable measurement infrastructures
(hypothesis H4, [Hei08], p. 9). Also, Extensibility, by the means of integrating
new data processing techniques, and adaptability are listed as an important data
processing requirement (PR3 and PR4, [Hei08], p. 30).

ReT-I8: Operation support Operation and development is not mentioned nor
included in the infrastructure. It is also not included in the processes which
again reflects our experience from the field that system operation is not something
that is considered important when designing measurement infrastructures.

Discussion

The central and most important aspect of the work on SPCCs is the flexible and
GQM-based combination of measurement data, control techniques, and visualizations.
This is supported by an experience-base and aligned with goals and characteristics for
the development project supported by the SPCC. Additionally, they align the SPCC
development with the project development process. However, even though they provide a
tool (Specula) and a reasonable logical architecture they did not provide a solid technical
architecture. Additionally, their work also lacks a dedicated software development process
model for the development of SPCCs. The interlinking between development project
and metric system development is a feasible and good approach. However, this only
addresses a very course grained level and misses specific activities for the development of
metric systems like design, construction, and operation support. The lack of dedicated
development and operation support might also be a reason for high additional cost
overhead of 9% to 11%, which the approach produces for a development project of 6-15
developers [CHSR08].

1.4.3. Summary and Conclusion
Existing approaches are able to assist the overall measurement process defined in the
ISO 15939. They specifically focus on the assistance of the measurement process by
the means of experience-bases and taxonomies. Additionally, both approaches provide
elaborate measurement support either by the means of a service-oriented measurement
infrastructure or a full stack software project control center. Also, both approaches
include a process component based on QGM to define measurement goals as a solid
foundation for the utilized metrics.

25



1. Introduction

The evaluation of both approaches based on our requirements specifically indicate
the lack of dedicated software development support during the implementation of the
metric systems. Especially requirement ReT-P5 and ReT-P2 as well as ReT-P1 to a
large extend are not satisfied by both approaches. Focusing on the infrastructure aspect,
both approaches utilize central data storage which violates requirement ReT-I6 and
hinders ReT-I4 as well as ReT-I2. Additionally, (like many others) both approaches
ignore operation of the measurement infrastructure and do not include specific tools to
support it, which violates requirement ReT-I8.
Both approaches provide a solid framework to support metric initiatives and build

service-oriented measurement infrastructures. However, both approaches lack the support
for some of our core requirements. We assume that both approaches would also struggle
with the challenges presented in section 1.1.3. Especially the challenges C1 and C2 are
not addressed with both approaches. From this and the related work presented before we
conclude that a dedicated metric systems engineering approach is still missing. Therefore,
the following section presents the core of our approach, which is then supported by the
foundations in the following chapter 2.

26



1.5. MeDIC - A Metric Systems Engineering Approach

1.5. MeDIC - A Metric Systems Engineering Approach

Conceptual Foundations

Measurement
Infrastructure

Reference Architecture

Metric Systems
Engineering

Process Model

Tools, Frameworks, Best Practices, Process Guides, 
Checklists, Document Templates

Metric Systems Engineering

Figure 1.3.: The main parts of MeDIC

Reflecting the challenges presented in section 1.1.3 and as stated in the research
questions the overall goal of this thesis is to provide an approach for

• engineering (development and operation)

• flexible,

• information need driven,

• and usable

• metric systems (concepts and implementation)

MeDIC addresses the core goal of our challenges from above to support the development
and operation of successful metric systems in the long run. Hence, following common
software engineering knowledge, the focus is not to be as cost efficient as possible during
the initial implementation of the metric system but to produce professional solutions
that are cheaper to maintain. Because over time maintenance costs will dwarf initial
development costs.

The focus of this section is to provide an overview of our engineering approach: MeDIC.
The main parts of MeDIC are depicted in figure 1.3. Most importantly, MeDIC contains
a reference architecture for measurement infrastructures, presented in part II, as well
as a process model to guide metric systems engineering activities, presented in part III.
The basis of MeDIC are the conceptual foundations presented in chapter 2.

27



1. Introduction

Metric
Portfolio

Measurement Infrastructure

Metric
Management

Development

Operation

Architecture

Reference Architecture

Development 
Process Model

Operation
Process Model

Metric Management 
Process Model

MeDIC

Concrete Artifact

Legend:

Concrete Process Process Model

Artifact Model Input to

Changes

Instantiates

Figure 1.4.: MeDIC metric system engineering: Overview

Figure 1.4 provides an overview on the central processes, process models, and
artifacts in metric systems engineering using MeDIC. It contrasts the situation
depicted in figure 1.2 in section 1.1.3. Contrasting the chaotic and ad-hoc development
of measurement infrastructures, MeDIC-based metric systems engineering includes a
dedicated development process between the metric portfolio and the measurement
infrastructure. The development process is based on the engineering process model
included in MeDIC. Furthermore, the operation of the measurement infrastructure is
also supported by operation processes. These are also based on the processes in the
MeDIC engineering process model. The architecture of the measurement infrastructure
is addressed specifically, in MeDIC base metric system engineering. The engineering of
the architecture is also supported by the MeDIC measurement infrastructure reference
architecture. As depicted in figure 1.4, MeDIC only scratches the metric management
process and metric management process model.

28



1.5. MeDIC - A Metric Systems Engineering Approach

To our knowledge and as discussed in the previous section existing approaches cover
metric management quiet thoroughly. However, we some metric management aspects
because the engineering process model and reference architecture need to rely on certain
properties of metrics in the metric portfolio. The development process model also
addresses the metrics requirements engineering phase, which is sometimes included in
metric management process models as well.
The following subsections break down the different adjectives associated with the

engineering approach for the two main parts. For each part we describe central design
elements associated with the specific adjective. They also reflect our top level requirements
from section 1.2.

1.5.1. Flexibility
Following our arguments for challenge C1 (section 1.1.3) metric systems will inevitably
change over time because they need to reflect changes in their environment. MeDIC needs
to address this with flexibility as required in the process requirements ReT-P3, ReT-P4,
and especially ReT-P6 as well as the infrastructure requirements ReT-I1, ReT-I3, and
specially ReT-I6 and ReT-I7.

Process Aspects

Most importantly, using the MeDIC process model stops big-bangs that introduce and
changes huge parts of the metric system at once. Big-bangs cause problems because they
change too much to fast. Hence, big-bangs will create a large overhead while developing
the measurement infrastructure. Additionally it will raise problems with an overwhelming
amount of stakeholders. Addressing these problems, the MeDIC process model follows
an incremental development approach (requirement ReT-P6 and ReT-P5) that (should)
result in small changes, which are easier to manage. Incremental development also allows
to continuously adjust the metric system. Continuous evaluation is also included in the
iterative nature of the process model (requirement ReT-P3 and ReT-P5). The information
needs of the measurement customers are continuously evaluated to trigger new iterations
of the development process. This reflects measurement best practices, which also require
continuous evaluation of metrics typically supported by metric experience bases.
The MeDIC process model also addresses flexibility by including activities to define

and include variability in metrics. As described in section 2.2.3 metric variability is a
tool to reduce the amount of metrics by allowing metric definitions to contain variable
aspects. Again, this features diverse metric systems (requirement ReT-P4). For example
the metrics number of change requests per month and number of change requests per
week are two different metrics. Classically, both of these metrics need to be defined,
documented, and implemented. By using variability a metric expert is able to define a
metric number of change requests per time slot in which time slot can either by month
or week. This may sound trivial, but solid foundations and tool support for variability
in metrics is still missing. Hence, we included metric variability ideas and concepts in
MeDIC [Tav11, Mei11, Gre11, Röl13, Mäd12].

29



1. Introduction

Infrastructure Aspects

Information needs and hence metrics and visualizations are constantly evolving to
reflect changes in the environment of the metric system. Therefore, the measurement
infrastructure needs to support flexibility and constant changes. Similar to the
process aspects from above, MeDIC supports flexibility by avoiding a large monolithic
measurement infrastructure (requirement ReT-I3). Most importantly MeDIC enforces
measurement infrastructures with multiple heterogeneous databases with multiple different
data schemata and redundancies (requirement ReT-I6 and ReT-I7). This avoids hard and
dangerous data migration and schema migration activities. However, additional effort is
needed to address problems related to redundancies and setup of the different databases.

Similar to above, metric customers should be able to tailor metrics and visualizations
according to defined variabilities. This also needs to be supported by the measurement
infrastructure. MeDIC reflects this by addressing variability in the metric calculation
and visualization by specific parts of the measurement infrastructure.
Flexibility does come at a price, however. Most importantly, the measurement

infrastructure needs to deal with the heterogeneity of data sources (additionally
supporting requirement ReT-I1). We differentiate between different types of heterogeneity
(see [Ste13], pp. 35-44). Most importantly: data type heterogeneity and data access
heterogeneity. Both need to be addressed by different means. The reference architecture
addresses data access heterogeneity at the lowest level: the data adapter level (see
section 5.4 for further details) by the means of different data adaption patterns. Data
type heterogeneity is addressed by the measurement data transport on the enterprise
measurement data bus. Specifically by an object oriented and reuse focused type system
on measurement messages. Further details on this are introduced in the conceptual
foundations on metric system dynamics in section 2.3 and section 5.2 on data integration
and measurement data transport.

1.5.2. Information Need Driven
Specifying clear information needs and metric goals is hard. Therefore, they need to
be addressed early to find the real needs of the metric customers. Similar to other
types of requirements it is important to get as much reviews and feedback in this early
stage as possible (requirement ReT-P5). Hence, the MeDIC process model addresses the
requirements phase iteratively and supports it with prototyping.

Information needs of metric customers make up the requirements for the measurement
infrastructure. Hence, they need to drive the development and design decisions. They
should also be referenced by the documentation and be accessible from the different tools.
Thus, reflecting the requirements directly where the metric customers are interacting
with the metric system.

30



1.5. MeDIC - A Metric Systems Engineering Approach

Process Aspects

Existing approaches include experience-bases to support organizational learning on
metrics definition. From our experience, however, this is very rarely used in industrial
environments. Most metric definitions and metric documentation, if they are present at
all, are plain text documents. Hence, metric documentation and heavy focus on metric
definition early in the development process is a key part of the MeDIC process model.
Additionally, information needs of the metric customers are the driving and directing force
of the MeDIC process model. Ergo, the functional requirements of a metric infrastructure
(the metric specifications) are rooted in specific information needs of metric customers.
Reflecting the aspects from above, this information need focus helps to avoid big-bangs
by incrementally focusing on a cohesive set of information needs at a time.
However, it is still hard to derive the right metrics and visualizations to satisfy the

information need(s). Consequently, as mentioned above and following SE best practices,
the MeDIC process model integrates prototyping activities after the initial information
need gathering activities. Additionally, the MeDIC process model addresses and involves
different roles involved with the metric system differently (requirement ReT-P1 and
ReT-P2). As already mentioned several times: information needs will inevitably change
over time. The MeDIC process model, hence, addresses this by continuously validating
the metric system, for example by performing regular interviews with metric customers.

Infrastructure Aspects

All design decisions in the measurement infrastructure (according to the reference
architecture elements) need to be justified by specific information needs of metric
customers (or other metric related stakeholders). Colloquially summarized, the
measurement infrastructure should be designed in way that only those things that
are really needed should be build. A nice fitting saying goes: “Something is not good
if you can add something. It is good if you can not take away from it anymore.”; we
call this information need focused. This also interplays with separation of concerns when
addressing the business view on a measurement infrastructure. MeDIC-based metric
applications and infrastructure elements must reflect specific information need clusters.
These clusters are also enforced by the coherent information need driven increments
mentioned above.

Focusing more on the tool perspective of a metric system, dashboard tools should allow
the metric customers to configure the dashboards on their level of abstraction. Their level
are the information needs they have. Hence, dashboard tools should prefer configuration
via information needs over direct access to metrics and visualizations. The reference
architecture enables this with a specific reference architecture for flexible dashboard tools
that can be configured by metric customers. Additionally, information needs should
always be accessible (best: always visible) from the dashboard(s).

31



1. Introduction

Operation of measurement infrastructures is often ignored. We followed the specific
information needs from operators for measurement infrastructures in the design of our
reference architecture (requirement ReT-P2 and ReT-I8). This lead to the integration of
dedicated operation services and related tools in the reference architecture. Section 6.1
describes the details of this monitoring system.

1.5.3. Usable Metric Systems
The intention of metrics is often unclear to metric customers. The reasons for this are
missing metric documentation, uncertainties in metric goals, and complex or innovative
visualizations. Hence, the interpretation of the metric system becomes difficult; rendering
the metric system almost useless. Consequently, the third goal of MeDIC is to produce
usable metric systems.

Process Requirements

Most importantly, the MeDIC process model includes activities to document metrics
and visualizations. This documentation contains the specifics of the metric like the
measurement method or calculation formula. It also contains a description of the
visualization as well as a list of possible metric customers. Following other approaches,
the documentation also contains specific interpretation aids to guide the interpretation by
the metric customers. Additionally, the MeDIC process model allows metric customers to
analyze and interpret metric results on a collaborative basis. This can also be supported
in the dashboard tools and collaboration results can be feed back to the metric experts.

Infrastructure Requirements

As mentioned before, information needs and interpretation aids should be included in
the dashboards together with the visualizations. This eases the use for metric customers
because the high level documentation (the information need) is directly located (and
accessible) with the visualization.

Another important aspect to ensure usability is direct feedback for the metric customer.
This, however, requires real time data processing in the measurement infrastructure
(requirement ReT-I2). The reference architecture addresses this by favoring data push
over data pull and specifically adding latency as an important design criterion.
As required in ReT-I4 the measurement infrastructure also needs to be robust to

avoid complete application loss after a small local problem. The reference architecture is
based on small (coherent) independent micro-services. If one of these services fail, the
functionality provided by the service is no longer available but the rest of the application
will still work. The MeDIC process model also contains specific activities to deal with
service failures. These activities are also supported by specific services in the measurement
infrastructure.

32



1.6. Summary

1.6. Summary
This chapter provided an introduction into metric systems engineering. Specifically, an
introduction to our metric systems engineering approach MeDIC. We first presented
metric systems engineering challenges that we faced during our field studies with industrial
and research cooperation partners. From this we summarized three main challenges that
a metric systems engineering approach needs to face. Most importantly we notices the
need for flexibility and solid software engineering for the measurement infrastructure.
We proceeded to formulate 14 top level requirements from the challenges. They are
split into six requirements for the development process and eight requirements for the
measurement infrastructure. We then discussed the requirements based on existing work
in the literature. We concluded that all the requirements are valid and hence proceeded
to formulate our research questions based on the requirements and challenges. Next,
we presented an overview over our research field. We mainly discussed two research
projects on service-based measurement infrastructures and software project control centers.
The discussion was based on our top level requirements and concluded that a solid
metric systems engineering approach is still missing. We then proceeded to present our
metric systems engineering approach MeDIC. The goal of MeDIC is to provide and
approach for flexible, information need driven, engineering (development and operation),
of usable metric systems (concepts and implementation). These key adjectives for our
engineering approach guided the overview of the two main parts of MeDIC: the reference
architecture for measurement infrastructures and the metric systems engineering process
model; thereby concluding the chapter.

The next chapter will formalize certain aspects which are only roughly described in this
chapter. Most importantly it will define and decompose metric systems into their two
parts: metric portfolio and measurement infrastructure. It will also provide a further and
more formal introduction to our ideas for metric reuse and metric variability. Last but
not least, the chapter features a formalism for metric system dynamics. This provides
further requirements for the reference architecture for measurement infrastructure and
certain activities in the metric systems engineering process model. It also enables to
prove the termination of the calculation in a given metric system on a conceptual level.

33





2
Conceptual Foundations

The last chapter provided an introduction to metric systems engineering by presenting
central engineering challenges and top level requirements. This chapter provides the
foundations for our engineering approach MeDIC presented in the last chapter. We define
the scope of our engineering approach by decomposing metric systems and defining central
terms as well as their static and dynamic relations. These guide the definition of the
reference architecture and the process model. Furthermore, the conceptual foundations
introduce our approach to metric reuse, which is a key aspect in the process model and
an important tool to reduce complexity in the metric portfolio and the measurement
infrastructure. Finally, the conceptual foundations also introduces a formalism to model
metric system dynamics. This allows to prove the termination of a given metric system
(under certain conditions) on a conceptual level. The basis for the proofs also provides
a number of constraints for the construction of certain elements in the measurement
infrastructure. These constraints are later reflected in activities in the process model as
well as the construction of the reference architecture. The definitions and examples also
help to further understand our concepts in the metric portfolio and our idea for metric
system dynamics.

35



2. Conceptual Foundations

2.1. Metric Portfolio
Before we dive into our ideas for metric reuse and the formalism in the end of the section,
we first need to define central terms and dynamic relations between the different parts in
the metric portfolio. The metric portfolio contains metrics and other central concepts for
metric systems. From here on we use the term metric definition and metric synonymously
because for us a metric is a definition of measurement. Thus, contrasting some definitions
were metric also refers to “a set of figures or statistics that measure results” 1.

Metrics and indicators form the core of the metric portfolio. Their importance is also
reflected in the fact that metric definitions are required to reach CMMI level 2 [Tea10].
Thorough metric definitions are a necessity for well-planed metric systems. Thus, this
is also a crucial success factor for metric systems [HMO08, DLGP08b]. Hence, the
topic of metric definition is addressed in a lot of research papers concerning metric
documentation [PAFM04, dO03, DSZ06]. Most of these approaches are based on
metric meta-models or on metric ontologies resulting in more formal definition rather
than informal plain text. However, our experience shows that most of the metric
definitions used in the industry (if they are used at all) are plain text documents.
Sometimes these documents are on a more formal level by containing dedicated sections
for specific attributes. For example the twelve steps to useful software metrics by Linda
Westfall [Wes05], the required definitions for CMMI, or at least “goal", “question” and
“metric” sections [Bas92].

The following subsections provide an overview of our understanding of the metric
portfolio. This section defines the core static concepts and their dynamic behavior. After
this we introduce our concept for metric variability which avoids an explosion of metric
definitions by enabling dedicated reuse of metric definitions in section 2.2.

2.1.1. Metric Terminology
Figure 2.1 shows central terms and relations for the items in the metric portfolio using
the UML class diagram notation. The diagram is separated into two parts. The left
hand side contains the items that define the measurement and calculation of data inside
a metric system. The right hand side contains the items that define the visualization and
interpretation of those data. We first describe the items on the left and then continue to
the right.
We use the term metric, similar to the majority of other approaches and the ISO

15939 standard [OM04, MGRP09, MJCH08, ISO07, CCP07, CET07], just as a naming
container. The actual definition of the work performed by the metric is contained in the
measurement approach of the metric. In accordance with our top goal for MeDIC, to
keep everything as simple as possible, we define very little items in this model. This
could be extended with a lot of additional information. But again we like to stick to the
idea of: “Something is not good if you can add something. It is good if you can not take
away from it anymore.”

1See http://www.oxforddictionaries.com/definition/english/metric (in business).

36

http://www.oxforddictionaries.com/definition/english/metric


2.1. Metric Portfolio

1..* Satisfied by

1..* Satisfies

Metric

Base
Metric

Derived
Metric

- Measurement 
Function

Measurement
Definition

1

- Calculation
Function

Calculation 
Definiton

1

Measurement
Approach

1

Visualization

Interpretation
Aids

0..*

Metric
Customer

Information
Need

1..*

1..*

guide
interpretation

1..*
Indicator

*

*

*

Measurement and Calculation Visualization and Interpretation

Figure 2.1.: Static relations between metric portfolio terms

In this thesis, again similar to all the other ontologies and metric meta models, we
differentiate metrics into base metrics and derived metrics. The ISO 15939 defines base
metrics as “a measure in terms of an attribute” [ISO07]. It further defines an attribute to
be a “property or characteristic of an entity that can be distinguished quantitatively or
qualitatively by human or automated means” [ISO07]. Derived measures are defined as
“measure[s] that [are] defined as a function of two or more values of base [metrics]” [ISO07].

Following the ISO 15939, we need to differentiate the means of measurement –
the measurement approach – for the two different types of metrics. We call the
measurement approach for the base metrics measurement definition. It contains the
measurement function which defines the measuring of data from a number of data providers.
Furthermore, we call the measurement approach for derived metrics calculation definition.
This contains the calculation function which defines how the data from other metrics
need to be processed. Contrasting the ISO 15939 we do not limit the number of (base)
metrics feeding the derived measures because in a practical application we also need to
be able to define unary derived measures for example aggregation functions like “sum”
or “avg". Additionally, we do not limit the source for derived metrics to base metrics.
The visualization definitions, as the name suggests, define the different visualizations

in a metric system. The visualizations require data from the metrics. Again similar to
the ISO 15939 we call this data indicators. Indicators can be simply measurement data
or transformations of such data to suite a particular visualization. The visualization
definitions can contain interpretation aids to guide metric customers. Each visualization
satisfies information needs of metric customers.

37



2. Conceptual Foundations

2.1.2. Metrics System Dynamics and Measurement Data Flow
Following the literature and our definition from above a metric defines a function that
specifies a measurement. Hence, a measurement is the application of a metric. However,
this model does not define how measurements are interconnected. That is, how the
output of one measurement is feed to another measurement. We call the model for
the interconnection of measurement metric system dynamics because this is still on a
conceptual level, hence metric, and defines the dynamic aspects of the interconnection
between the applications of the metrics, the measurements. Hence, this provides a model
for the measurement data flow in a metric system.
Metric system dynamics and the transition from metrics to something that executes

measurements (the development process) is, as already mentioned several times, rarely
addressed in the literature. However, we believe modeling metric system dynamics is as
important as a good model for the static metric concepts.

Our model of the data flow in a metric system and hence our model for metric system
dynamics is an extension of the data flow presented in the ISO 15939 standard [ISO07].
The ISO data flow is strictly tree oriented with data flowing from base measures to
derived measures that feed other derived measures which then become indicators. The
term definition for derived measures in the standard is even more restrictive by only
allowing base measures to feed derived measures. This tree structure is stiff and hinders
easy reuse of derived measures because they always require specific other measures feeding
them. Our extension addresses this problem by opening the communication between
metrics.

Producer A

Producer B

Producer C

Consumer A

Consumer B

Guard

Communication 
Channel

Figure 2.2.: Metric dynamics of a metric system by the means of measurement producers
and measurement consumers

Rather then hard-wiring derived metrics and base metrics our idea is to model
derived metrics as data consumers which consume suitable data (see section 2.3.6)
on a communication channel from distributed data producers. Figure 2.2 provides a
brief example of the dynamics between producers and consumers. The figure shows three
measurement producers and two measurement consumers. The measurement data is

38



2.1. Metric Portfolio

exchange on the communication channel which follows the publish/subscripe principle
[HW03a]. Each measurement consumer is connected to the communication channel via a
guard. This guard checks each measurement data on the communication channel before
it is feed to the measurement consumer. This mechanism allows the consumers to only
receive certain measurement data and ignore others.

Producer A

Producer B

Producer C

Consumer A

Consumer B

Producer A

Producer B

Producer C

Consumer A

Consumer B

Producer A

Producer B

Producer C

Consumer A

Consumer B

Figure 2.3.: Metric dynamics and measurement data flow example

Figure 2.3 provides an example of the exchange of a measurement data produced by
Producer A. After production, the measurement data is transported to all guards of
connected measurement consumers. Each guard checks whether the measurement data
may pass or not. The guard from consumer A rejects the measurement data. The guard
from consumer B accepts it. Hence, the measurement data is received by consumer B.
Figure 2.2 and 2.3 are simplifications. Real measurement infrastructure are build

on multiple physical communication channels which each contains several logical
communication channels. A formalism provides additional insights into the dynamics.
Hence, we provides more details on the formal exchange of data between measurement
producers and consumers in section 2.3. Additionally, this idea provides the foundations
for the enterprise measurement data bus in the core of our reference architecture for
measurement infrastructures presented in part II.

Measurement 
Function

Calculation 
Function

Base Metric Derived Metric

Data Provider

Measurement 
Producer

Monitor
Indicator

Visualization

Figure 2.4.: Conceptual model of the data flow in a metric system

Figure 2.4 provides a brief overview of how we model the overall dynamics in metric

39



2. Conceptual Foundations

systems. The measurement data producers from above are either defined by base metrics
or derived metrics. Base metrics utilize their measurement function to transport data from
the data providers to the communication channel. Derived metrics consume measurement
data which is then feed to their calculation function. Derived metrics utilize a number of
producers (see section 2.3.7) to send derived measures to the communication channel.
Similar to the ISO data flow and in accordance to our static structure from above,
the derived metrics can also produce indicators which then satisfy the needs of metric
customers.

2.1.3. Summary
This section presented the central terms and items in a metric portfolio as we see it. Our
terminology is founded on common metric best practices and standards. Contrasting
these, we kept the terminology very minimal. This minimalism helps to focus on the
important aspects like the interplay between derived metrics and their inputs from other
metrics. On the visualization side we also included a central stakeholder: The metric
customer in the model. Hence, emphasizing the information need driven and usability
aspect of our engineering approach.

Again contrasting a lot of popular articles, we also discussed metric system dynamic or
measurement data flow. Measurement data producers and measurement data consumers
create an implicit communication structure rather then an explicit one. Like all loosely
coupled systems the price to pay for this flexibility is an increase of communication and
structural complexity. However, this design also leads to a very flexible metric system
and helps to reuse derived metrics. The next section will discuss the topic of metric reuse
even further and extend it with our ideas for metric variability.

40



2.2. Metric Reuse

2.2. Metric Reuse
In the last section we defined a terminology for the definition of metrics and measurement
data flow. However, defining metrics just for one project (in a multi project organization
with a lot of similar projects) is costly and ineffective. Hence, it is wise to reuse metric
experience (metric definitions, evaluations, and models) [DLGP08a] as all experience in
software development can and should be reused [BR91]. Well-planned metric frameworks
and reuse of existing metrics material is also mentioned as one key success factor for
successful metric programs [HF97]. The work from Heidrich et al. as well as Kunz et
al. covered in the central related work section (1.4) also heavily focus on reusing metric
experience. Both approaches include experiences-bases to support iterative optimization
of the metric portfolio.

Before introducing our approach to metric reuse, based on variability modeling similar
to product line engineering, we investigate the different dimensions of metric reuse and
discuss existing metric reuse approaches in the literature. The last part of this section
contains a short overview of a formal definition for our metric variability model.

We investigated metric variability modeling in a variety of different theses from Tavizon,
Meiliana, Mädler, and Röllig [Tav11, Mei11, Mäd12, Röl13] in the past. Consequently,
this section summarizes a lot of the ideas that we investigated and provides a brief inside
into the topic.

2.2.1. Metric Reuse Dimensions
Different aspects of metrics can be reused. Measurement tool reuse occurs very often
because many organizations use the same LOC counters or even complete measurement
tool suits like sonar qube [Son14]. Measurement processes like GQM [Bas92] are reused
as well. The reuse of measurement values also increased during the last ten years.
These (baseline) values are often used to enhance estimations. A popular example
for this are the database and tools from the ISBSG [Lim, LWHS01]. Even though
various measurement aspects are being reused metric specifications are very rarely
reused. This ignores the fact that a database of metric specifications can spread
metric knowledge across the organization and different projects (only 29% of the project
managers and 24% of other practitioners know how measurement data was used in other
measurement projects [PCN+08]). Furthermore, the tailoring of modern metric based
project management cockpits to fit the need of specific project roles [HMW06b] is a form
of (implicit) reuse of metric specifications.

Although considerable research has been devoted to the modeling of metrics and metric
frameworks, rather less attention has been paid to investigating how the results of this
research (metric meta models, metric frameworks, and metric experience bases) can lead
to a sound reuse concept for metrics and their specifications.

41



2. Conceptual Foundations

2.2.2. Metric Reuse in the Literature
Metric reuse is often implied or indicated but very rarely it is addressed. For example,
the first three steps in the CAME Framework (Choice, Adjustment, Migration, Efficiency)
by Dumke et al. indicate the benefits of an explicit modeling of metric variability [DK01].
However, the formal description of measurement and evaluation by Dumke and
Schmietendorf [DSZ06] only mentions the importance of maintaining a metric experience
base also included in the work of Kunz et al. [Kun09, KSDW06, KMZB08, LDBK05].
Later, Dumke et al. again imply the reuse of metrics because different usages and
applications are modeled for measurement methods [DYAG09]. However, the concept of
metric reuse is not covered in more detail. Hihn and Lewicki indicate a common set of
standard metrics which is (re)used over several projects [HL11]. But no explicit tailoring
of these metrics is mentioned nor is management or specification of variability. Starons
and Medings pre configured wizards for the definition of metrics [SMN09] also implies
metric reuse by automatically adding pre configured base measures. Again, reuse is not
addressed by a sound concept but rather used pragmatically.
Most of nowadays model driven measurement approaches also imply metric reuse.

For example as proposed by Clavel et al. [CET07] and extended by McQuillan and
Power [MP06] by defining metrics based on UML concepts and OCL. Yet, this only
allows the (pragmatic) reuse of complete metric definitions; only reusing fragments
of metrics or the modeling of metric variability is not addressed. Reuse of existing
metric components (like line charts, project plan structure and MS Project Import)
is mentioned by Heidrich and Münch [HM08b]. But neither the reusable components
nor their variability is explicitly modeled. Garcia et al. have proposed a model based
environment for the integrated management of software measures [GSC+07]. They provide
“generic metrics defined within the meta model scope” which according to the case study
by Mora et al. on this environment homogenized the measurement process [MGRP09].
However, the variability of the metrics is again not reflected in the models (and in the
meta model).

Reusable (sets of related) metrics are often represented by metric frameworks. According
to Mendonsa and Basili these frameworks may also contain data collection mechanisms
and information about data usage [MB00]. The framework implied by MIS-PyME –
Software Measurement Maturity Model [DLGP08a, DLGP10, DLGP08b] suggests the
reuse of existing measurement models of the organization, because “defining measurement
programs for certain projects or products, . . . will be costly, difficult to handle and of
little worth for future developments” [DLGP08a]. Similarly, one of the goals of the
INCAMI framework for (Web-based) metric documentation [OM04, dO03] is to “allows
an organization to run different projects by making use of common measurement and
evaluation mechanisms” [MO07]. But neither MIS-PyME nor INCAMI provide sound
concepts for metric reuse.

Sets of reusable metrics could also be stored in an organizational wide metric experience
base of a Learning Organization. As research by Krein et al. shows: providing a
knowledge repository helps to push information back to the consumer [KWS+11]; in
our case: supports reuse. Learning Organizations also avoid local optimization of

42



2.2. Metric Reuse

projects (and metrics) and focus on global optimization of the organization. The work of
Althoff et al. indicates that learning organizations and avoidance of local optimizations
reward reuse [ABT00]. Palza et al. describe specific metric experience bases which
store the definition of and experience with specific metrics [PAFM04]. But, they also
do not model metric reuse or metric variability. Metric experience bases are also a
central aspect in the approach for software project control centers by Heidrich and
Münch [HM04, HM08b, HMW06a]. Yet again, metric variability is not modeled explicitly.

2.2.3. Metric Reuse by Metric Variability
As addressed in section 2.2 we would like to reuse metric and visualization definitions
from the metric portfolio. Unfortunately our investigations did not show a satisfiable
approach for metric reuse in the existing literature. Our approach utilizes concepts from
product line engineering to define reusable metrics. The details of this are listed in the
following two sections. Furthermore, we define the formal foundation to our variability
model.

Variability Modeling

Variability is an everlasting problem in software development and addressed in special
areas like product line engineering [Kru02, Rom05]. We will focus on two possible solutions
for dealing with variability: Parameterization (especially genericity), and variation points.
Genericity, a special form of parameterized polymorphism, is a well known concept of
programming languages like Java. Following Betrand Meyer, genericity “is a technique
for defining elements that have more than one interpretation depending on parameters
representing types” [Mic12]. In instantiating a concrete element from a generic one, the
formal generic parameters need to be replaced by concrete types. Variation points are a
concept from product line engineering. They are used to model the variability of a set
of software products. Variation points are used to scope the system i.e. to determine
what should be realized in a product line and what needs to be realized individually.
Each variation point can specify a set of possible variations or allow all variations by
remaining open. Additionally, constraints between variation points and variants can limit
the configuration. A typical example for this is a variability model for cars in which the
manual gear box, a variant of the gear box variation point, implies the selection of a
specific clutch for the clutch variation point.

Metric Variability

We suggest applying a combination of genericity and variation points to realize variability
in metric specifications [VLN12]. The “adaptation points” of reusable metric specifications
are modeled as variation points. Of course, these variation points and the variants need
to be clearly marked in the specification and need to be documented to ease and support
tailoring. These variation points are the formal parameters of the reusable metric

43



2. Conceptual Foundations

specification. When reused, concrete values for all formal parameters need to be specified
to derive a fully specified metric specification.

Metric variability allows a metric calculation, measurement, or visualization to define
a number of variable aspects. The concept of metric variability is used to reduce the
number of metrics defined in a real world environment by defining general metrics with
variable aspects. For example a metric calculation for number of tickets could use slightly
different inputs (trac tickets and jira tickets) for its calculation or different timings for
the calculation output (daily, weekly, monthly). However, strictly speaking there is no
such thing as Metric-Variability! Because every variable aspect in a metric will lead to a
new metric. The example above really describes a number of different metrics for number
of trac tickets per day, number of trac tickets per week, number or track tickets per month,
number of jira tickets per day . . . .Since all these metrics are required in a real world
scenario to answer slightly different information needs for slightly different situations
this will inevitably lead to an explosion of metrics. Hence, from our experience with real
world metric experts, metric customers, and architects for metric systems there is a need
for variability in the metric specification.

2.2.4. Formal Foundation to Metric Variability

Metric Visualization

Variability Model

Variability 
Constraints

Variation Point

Variability 
Configuration

Closed Variation 
Point

Open Variation 
Point

Variant

**

0..1

0..1

0..1

0..1

OR

* 1..*

...

...

1..*

1

* 1

...

Figure 2.5.: Static view on central metric variability concepts

44



2.2. Metric Reuse

Variability (and its configuration) should not be applied arbitrarily. The boundaries
for this should be defined by the metric experts. However, they need a formal framework
to define these boundaries. Figure 2.5 shows a UML class diagram of the integration of a
simple variability model attached to metric and visualization definitions. The variability
model enables the definition of variation points and variability constraints which need to be
defined in the context of the concrete metric system. The variability model distinguishes
between open variation points and closed variation points. Open variation points allow
an arbitrary configuration of a specific variation point contrasting closed variation points
which only allow the selection of one (or more) of the given variants.

Each calculation function fi provides a corresponding variability model VMfi
. The

variability model contains a set of variation points VMfi
= {vp1, . . . , vpn} which can be

either open or closed. Closed variation points simply contain the set of possible variants
vpclosed = {varclosed1 , . . . , varclosedk

}. Open variation points need to define the criteria
for suitable variants for example as a (infinite) set or function. The actual variant of a
given variability point vp in a config conf can be accessed via the .-Notation: conf.vp.

2.2.5. Summary
This section presented our approach for metric reuse based on a flexible variability model.
We realized, and our literature review shows, that a sound concept for metric reuse is
still missing. Hence, we investigated the concept of metric variability from different
approaches in past theses. These showed the benefits of a flexible variability model
inspired by concepts from product line engineering. The core of the model is formed
by open and closed variation points. Open variation points and variability constraints
provide a flexible mechanism to tailor the variability model for specific applications. We
also included a formalism for metric variability in the last subsection. The following
section will continue these ideas by the means of a formalism for metric system dynamics
from the initial section. This formalism will also include the variability model.

45



2. Conceptual Foundations

2.3. Formal Foundation to Metric System Dynamics
This section formalizes our abstract concepts for metric systems from sections 2.1.1
and 2.1.2. Our formalization to metric system dynamics should be suitable for the
dynamics proposed before. Furthermore, the approach should contain a solid formal
basis to measurement data and measurements. This should provide the formal basis
to investigate termination of the calculation of measurements on a conceptual level.
These investigations raise a number of important constraints for the construction of the
(derived) metrics (see section 11.2.1 and appendix section B.2). These directly influence
the construction of the reference architecture and activities in the engineering process
model.
Figure 2.3 suggests a formalization to the exchange of measurements between

measurement producers and measurement consumers similar to colored Petri nets.
However, our formalism is not based on colored Petri nets because using colored Petri
nets adds additional complexity to the formalism but does not reveal any additional
insights over our more simplistic approach. Hence, our approach utilizes a combination
of algebraic and functional formalisms to formalize metric system dynamics. However,
our approach is compatible, and can be extended, to a formalism based on colored Petri
nets; if needed.
We start this section with a brief discussion on some of the popular approaches to

formalizing software measurements in subsection 2.3.1. After this, in subsection 2.3.2,
we provide a rough overview over the central terms and relations in our approach.
We then start with the formal definition of measurements and measurement data in
subsection 2.3.4. The metric reuse concepts introduced in the last section requires a
formalization of compatibility between measurements and measurement data, which is
defined in subsection 2.3.5. subsection 2.3.6 defines satisfiability between measurement
data and data types as the formal basis for the guards on measurement consumers
introduced above in section 2.1.2. subsection 2.3.7 continuous these ideas by introducing
a formal approach to measurement producers. These combine the measurements with
metrics and measurement approaches from section 2.1.1 and also integrates the variability
model and configurations from section 2.2.3 with variable derived metrics. The final
subsection 2.3.8 then utilizes all these definitions to investigate calculation termination
for a metric portfolio.

2.3.1. Related Work
Most of the existing formal approaches to measurement are approaches for model-based
measurement. Some example for model-base approaches to measurement are the work
by Mora et al. [MGRP09], by Staron et al. [SMN09, SM07, SMN09], and Lavazza et
al. [LdBG08, Lav00, Lav05]. The models provide a good abstraction and solid foundation
for the measurements. However, none of the papers that we investigated formalized the
measurement process and metric system dynamics.

Formal foundations for software measurements emerged in the 1990s. Most noticeable
work was contributed by Fenton and Zuse [Fen94, Zus91]. Other notable work was

46



2.3. Formal Foundation to Metric System Dynamics

contributed by Briand and Morasca [MB97, BEM96]. Their approaches map classic
measurement theory to software measurement. However, maybe due to the trends of
the time, they heavily focus on complexity measures and ignore process and project
management metrics. Additionally, a core commonality for all their investigations is the
view on metrics as a function that takes in some software entities and results a number.
Fenton et al. themselves state ([Fen94] p. 203):

It is popular in software engineering to use the word “metric” for any number
extracted from a software entity.

A very rich overview on formal approaches to software measurements was given
by Dumke, Schmittendorf, and Zuse in 2006 [DSZ06]. They categorize existing
formal approaches into algebraic, axiomatic, functional, rule-based, structure-based,
information-theoretic, and statistical approaches. Most of the examples for the different
approaches again only see metrics as the measurement of a number. The algebraic
and functional approaches, however, provide some flexibility in the representation of
measurement data. Non of the examples provide a general abstraction of measurement
data due to the theoretical nature of a lot of the papers. Additionally, non of the
approaches reflect the ISO 15939 measurement model. Dumke et al. later integrated the
ISO 15939 and declarative measurement approaches into the CAME approach [DBK+06].
CAME proposes a set of measurement principles, which are also provided on a formal
level. Unfortunately, these principles again lack a formalization for measurement data.
In 2009 Martin Kunz extended the CAME approach in his Phd thesis into a framework
for service oriented measurement infrastructure [Kun09]. His approach uses web services
and is heavily based on the ISO 15939. For more on his work also see our discussion in
section 1.4.1.
This small subsection only scratched the surface of the body of knowledge on formal

approaches to software measurement. However, all off the approaches that we investigated
lack a formal definition for measurement data. Additionally, the formal abstractions
presented hardly fit our loose coupling between metrics by the means of producers
and consumers. Hence, we require a suitable formal abstraction for our metric system
dynamics as defined above.

2.3.2. Overview
Figure 2.6 provides an overview over the central terms and relations of our formalism.
The core of the formalism are measurements in the center. Measurements are produced
and consumed by measurement producers and measurement consumers according to the
dynamics provided in section 2.1.2. Measurements contain measurement data which
are data records that are transported in the metric system. Measurements are also
associated with an entity of measurement to identify the source of the measurement data.
Measurement data and measurements are typed because a lot of the formal concepts
(compatibility, satisfiability, and termination proof) are defined on their types. As defined
in section 2.1.2 measurements are consumed by measurement consumers. Each consumer
has an associated guard that decides whether a given measure should be consumed or

47



2. Conceptual Foundations

Mid : Text

Measurement

Measurement 
Producer

*

1

produces

Measurement Data

Entity of 
Measurement

Measurement 
Consumer

Guard

Consumes
suitable

*

*

*

eom 1

1

d

Measurement Data Type

Derived Metric

Metric
*1

Mid : Text

Measurement Type

1

10..1
specifies

*

Accepted Types 
Set

0..1

Figure 2.6.: Overview of the central parts to our formal foundations to metric system
dynamics

not. For simplicity, we only consider special guards for derived metrics which are defined
by a set of accepted measurement types as described in subsection 2.3.6 in the context of
satisfiability.

We recommend to use figure 2.6 as a guide to remember the overall interactions between
the parts while working through the details. Additionally, in the appendix in section A
we provide a list of all the symbols used in the formalism to assist the reading of the
formal notations.

We like to use our approach to prove calculation termination of a given metric system on
a conceptual level. Therefore, we choose a combination of an algebraic and a functional
measurement approach (see [DSZ06]). On the one hand, we use a set of algebraic
definitions between measurements, measurement producers and measurement consumers
together with formalized type requirements for measurement consumers to provide a tool
to prove calculation termination. On the other hand, the calculation of the measurements
use a functional approach by the means of calculation functions. The next section defines
the basis for our formal approach: measurements and measurement data.

2.3.3. Preface
Throughout the formalism we often need to express that a formula is valid for all indexes
in a certain range or that there exists a certain index in a given range. Consequently, we
need to always define a set for this range in order to use the for-all or existence quantifier.

48



2.3. Formal Foundation to Metric System Dynamics

For example: ∀ i ∈ {1, . . . , n}. This wasts a lot of space and time to read. Therefore we
define the following notation for the set:

{1, . . . , n} = n

Using this we can shorten the example from above to: ∀ i ∈ n.

2.3.4. Measurement Data and Measurements
Our approach to measures and metrics should not be limited to functions interpreting
and resulting numerical values. Hence, we need a more flexible mechanism to express
measurement data. Like most databases and programming languages we embrace the
benefits of types. Hence, we also like our measurement data to be typed. We therefore
first define the measurement data type before defining measurement data.

Measurement Data

Measurement data should store information that is important to or analyzed by calculation
functions. However, we do not know before hand how the information is organized. This
requires a very flexible approach to represent measurement data. In this thesis we,
therefore, represent measurement data as sets of key-value-tuples. Additionally, we allow
nesting of these records. Measurement data nesting simply allows for a value to again
represent a set of key-value-tuples. Through data nesting we gain the flexibility and
expressiveness necessary to represent arbitrary measurements.
Following our argumentation, we define a measurement data type T as a set of type

components t1, . . . , tm. Each of these type components t can either be a key for primitive
values (represented as a string: key) or a tuple of a key and a nested type (key, Tnested)
for nested data. In this case the keys can be interpreted as the measured attribute and
the nested type as the type of the attribute if it is not primitive.

Consequently, measurement data d in this thesis is represented as a set of key-value pairs
d = {(key1, value1), . . . , (keyn, valuen)} = {kv1, . . . , kvn}. According to our introduction,
every value can either be a (nested) set of key-value-tuples again or just a primitive value.
However, we like to check and access the type of measurement data. Hence, we require
a function type() returning the type of measurement data d. To simplify the definition
we first define a type function type′() for the building blocks of measurement data: the
key-value-tuples. Let kv = (key, value) be a key-value-tuple of some measurement data.
We define the function type′() for a key-value pair as:

type : key × d→ t

type′(kv) =
{
key if value is primitive
(key, T (value)) otherwise

49



2. Conceptual Foundations

Using this function we can now define the type function type(d) for measurement data
d as:

type : d→ T

type(d) = {type′(kv1), . . . , type′(kvn)}

This data representation is more powerful yet similar to an EAV (entity, attribute,
value) data schema. Dinu and Nadkari investigated benefits and challenges for EAV data
models in production systems [DN06]. They emphasize the flexibility and versatility of
such data schemas and believe they are beneficial in situations where “Data are sparse,
heterogeneous, have numerous attributes and new attributes are often needed.” which is
exactly the situation for data transported between metrics in a flexible metric system.
The data representation is also similar to the popular JSON data format and its

superset YAML [EdNBK01, Bra14, Int13]. Our approach, however, does not differentiate
between array and object data types for listed attributes. This differentiation is important
for using JSON inside of javascript programs but the additional expressiveness is not
required in our application of flexible data interchange between metrics. Hence, we only
consider sets of records similar to JSON objects in which every data exists only once and
do not consider a data structure that can contain duplicated entries similar to JSON
arrays.

Measurements

The formalization of pure measurement data is not sufficient to formalize measurements.
Measurements also require an identification of the object that was measured as
well as a way to differentiate semantically different yet syntactical identical (type
compatible) measurements2. Hence, a measurement in this thesis is defines as a tuple
M = (d,Mid, eom) of the three properties: measurement data d, identification of
the measurement Mid, and entity of measurement identification eom. The entity of
measurement identifies the object that is the source of the data associated with the
measurement. For example this could be the name or identifier of a project for an earned
value measurements. Consequently, we define a measurement type as a tuple T = (T,Mid)
of a measurement data type T and a measurement identification Mid.
The measurement identification acts as additional key to the data to separate type

compatible but semantically different measurement data from another. A simple example
is a measurement of earned value (EV) and plan value (PV) of a project. Both are
numerical typically represented by the following measurement data: dEV = {(value, 123)}
and dP V = {(value, 345)}. Unfortunately, these two measurement data have the same
type: T (dEV ) = {value} = T (dP V ).

2As an alternative, the design of the formalism could simply define (force) that semantically different
measurement data is also always syntactically different. Semantically different attributes, for example,
would require different keys; making them syntactically different. However, for flexibility and reuse
purposes later we like to be able to express (slightly) semantically different measurements with the
same syntax.

50



2.3. Formal Foundation to Metric System Dynamics

Thus, the guard of a derived metric that calculates the schedule performance index
(SPI) could not distinguish between the two. A possible solution would be to use different
value keys. For example ev.value and pv.value. However, this would blow up the key
structure for more complex measurement data. A better solution to overcome the problem
is to introduce specific measurement identifiers and mark these two semantically different
measurements with two different measurement identifiers. For example: MidEV

= EV
and MidP V

= PV. The guard can simply check the measurement identifier to distinguish
between the different measurement data.

Similar to measurement data we can define a type function type(M) for measurements
that returns the type of the measurement. The type function returns a measurement
type tuple that contains the type of the measurement data contained in the measurement
and its measurement identifier. Let M = (d,Mid, eom) be a measurement. The type
function type(M) for measurements is defined as:

type :M→ T : type(M) = (type(d),Mid)

2.3.5. Compatibility
The initial sections of this chapter stated the importance of being able to reuse metrics.
Systematic reuse of metrics, however, requires that metrics provide a clear definition of
the measurement data that they produce and, in the case of derived metrics, which they
require to consume. Systematic reuse also implies that we are able to provide generic
solutions to typical questions. However, the measurements in a concrete metric system
are typically very specific. Therefore, we need to be able to express compatibility and
type compliance between generic and specific measurements and their types.

Typed data involves three different types of compatibility: compatibility between data
types, compatibility between data records, and compatibility between a data record and
a type3. For simplicity reasons, however, we only use one symbol and similar definitions
for all three types of compatibility because the actual similarity type can be deduced out
of the context.
On an abstract level compatibility is a directed relation comp between two entities a

and b. The relation should be defined in a way that the tuple (a, b) is in the relation if a
is semantical compatible to b. A simple example for a compatibility relation between
measurement data and measurement data types is a type check relation typeCheck
between a measurement data d and a measurement data type T . It contains the tuple
(d, T ) iff type(d) = T . Or short:

typeCheck = { (d, T ) | type(d) = T }

3Compatibility between a data record and a data type is also called type conformance. That is: data a
conforms to type T .

51



2. Conceptual Foundations

Measurement Data Compatibility

Agrawal and Wimmers propose an approach for record similarity related to inheritance
relations [AW00]. Their approach to compatibility uses a preference function which forms
a reflexive and transitive similarity relation on records (see definition 2.2 in [AW00]). A
type test for such records was analyzed by Cohen and Watson already in 1990 and uses a
similar abstraction [CHNP90].

We simplify their ideas and define compatibility between measurement data types based
on the components of the measurement data types. Measurement data type compatibility
is a directed relation ≺, as required above. Two types are compatible if for all keys in
the right type there exist a compatible key on the left type. However, just checking the
keys is insufficient because we also need to consider the nesting hierarchy in the types.
Therefore, our definition will recursively check the nested types and stick to just checking
the keys for primitives.

Before we look at complete types we define a help function existsComp(t, T ), between a
type component t and a type T , which checks if there exists a compatible type component
in T for t:

existsComp : t× T → Boolean

existsComp(t, T ) =
{

if t = key: ∃ key′ ∈ T : key = key′

if t = (key, T ′): ∃ (key′, T ′′) ∈ T : key = key′ ∧ T ′′ ≺ T ′

Using the existsComp help function from above we can now define compatibility
between two types. Let T1 = {t1,1, . . . , t1,n)} and T2 = {t2,1, . . . , t2,k} be measurement
data types with their type components t1,1, . . . , t2,k. We need to consider two different
cases for the definition of type compatibility based on the number of type components
for each type:

Case n < k: T1 contains less type components than T2. Therefore, T2 represents a more
complex type that T1. Hence, T1 can not be compatible to T2 because not every key
in each type component in T2 can have a corresponding key in a type component
in T1. Therefore, T1 6≺ T2.

Case n >= k: To check compatibility, we need to check if for each type component in
T2 there exists a compatible type component in T1 using the help function from
above:

T1 ≺ T2 ⇔ ∀ t2 ∈ T2 : existsComp(t2, T1) = true

Using compatibility between types we define compatibility between the measurement
data. Let d1 and d2 be measurement data. d1 is compatible to d2 (d1 ≺ d2) if their types
are compatible:

d1 ≺ d2 ⇔ type(d1) ≺ type(d2)

Additionally, as stated in the introduction of this section we can also define compatibility
between measurement data and measurement data types. Let d1 be measurement data

52



2.3. Formal Foundation to Metric System Dynamics

with types T1 = type(d1) and T2 another measurement data type which T1 is compatible
to (T1 ≺ T2). Then d1 is compatible to all measurement data d2 of type T2:

d1 ≺ T2 ⇔ d1 ≺ d2 ∀ d2 with type(d2) = T2

Measurement Data Compatibility Example

We like to model measurement data from a ticket management system. The ticket system
assigns priorities and severities to each ticket and it also allows to define custom properties.
In this example we assume the custom properties “department” and “component". A
suitable measurement data type to model such data would could be:

T =
{
ticketId, severity,priority,
(custom properties, {department, component})}

An example for measurement data d according to T would be:

d = {
(ticketId, 4711),
(severity,medium),
(priority,medium),
(custom properties, {

(department, development),
(component, frontend controller)
})
}

Lets assume another ticket management system only contains ticketId, severity, and
priority. A suitable type to model such data T ′ could be:

T ′ = {ticketId, severity,priority}

An example for such measurement data d′ according to T ′ is:

d′ = {
(ticketId, 0815),
(severity, low)
(priority, high),
}

53



2. Conceptual Foundations

According to the different definitions for compatibility it follows that:

d ≺ T ′ d ≺ d′

d′ 6≺ T d′ 6≺ d

Measurement Compatibility

We could simply extend the definition for measurement data to measurements with
the compatibility definition from above for the measurement data of a measurement.
Measurements, however, not only contain measurement data but also a measurement
identifier. As a reminder: The identifier is used to distinguish between semantically
different yet syntactical equivalent measurements. This semantical perspective needs
to be considered by the compatibility relation between two measurements. Thus, the
relation needs to take the identifier into account.

With this requirement we define measurement compatibility on a generic level as: Let
Ta = (Ta,Mida) and Tb = (Tb,Midb

) be two measurement types. Then Ta is compatible
to Tb if its measurement data type Ta is compatible to Tb and its measurement identifier
Mida is compatible to the measurement identifier Midb

. Note that this definition requires
a compatibility relation between the measurement identifiers. For an actual application
of the formalism in this thesis, we need to define one.

Ta ≺ Tb ⇔ Ta ≺ Tb ∧ Mida ≺Midb

There are different ways to define a compatibility relation between measurement
identifiers. Most of them require constraints on the measurement identifiers. For
simplicity reasons, in this thesis we choose to use a namespace namespace concept on
the measurement identifiers using “.” as a separator between the namespace namespaces.
Compatibility for measurement identifiers can now easily be defined using a prefix check.
Hence, we define compatibility for measures as follows:
Let Mida = a1.a2 . . . an−1.an and Midb

= b1.b2 . . . bm−1.bm be two measurement
identifiers:

m < n ⇒ Mida 6≺Midb

m >= n ⇒ Mida ≺Midb
⇔ ∀ i ∈ n : ai = bi

For the example from above using EV and PV more suitable identifiers could be
“projectmanagement.earnedvalue.ev” and “projectmanagement.earnedvalue.pv".
The compatibility relation between the measurement identifiers Mida and
Midb

simply checks whether the string representation of Mida prefixes Midb
.

For example “projectmanagement.earnedvalue” would be compatible to
“projectmanagement.earnedvalue.ev". This also makes sense semantically because a
metric that is defined on all the different earned value data (pv, ac, ev, cpi, spi, cv, sv,
. . . ) can certainly be calculated on ev data.
Again, the compatibility between measurement types can be extended to define

54



2.3. Formal Foundation to Metric System Dynamics

compatibility between two measurements. Let Ma and Mb be two measurements. Similar
to measurement data, the measurements are compatible if their types are compatible:

Ma ≺Mb ⇔ type(Ma) ≺ type(Mb)

2.3.6. Satisfiability
Our metric system dynamics use measurement sources and sinks as described above.
The relations between the two, however, is not fixed. A measurement data consumer
can specify what measurement (data) it is able to consume. We discussed the idea of
guards above in section 2.1.2. In general a guard can be realized as a boolean function on
measurements. If the function returns true the measurement is accepted by the guard.
LetM be a measurement. We define a guard function as:

guard :M→ Boolean

We like to simplify this mechanic in a way that it closer reflects our ideas of measurement
types and compatibility between measurements. We can use compatibility between
measurements and measurement types to define a second order function that generates
guard functions based on a measurement type:
Let M be a measurement, T a data type, Midg a measurement identifier and T a

measurement type. We define a higher order function guardGen that generates guard
functions for a given measurement type. This function can then be evaluated for a given
measurement.

guardGen : T →M→ Boolean : guardGen(T )(M) = type(M) ≺ T

Measurement Satisfiability

From our experience, measurement consumers, defined by derived metrics, need to be
able to accept multiple (different) types. Additionally, our later investigations require
that we are able to express whether a given set of measurements is accepted by a guard
function. Hence, we need to define a new concept that can be utilized by the guard
functions. Contrasting satisfiability, however, this new concepts needs to work with sets
of measurement types and set of measurements.

We call this concept “satisfiability” because the measurement set satisfies the criteria
of the (implicit) guard function specified by the measurement type set.
Let M = {M1, . . . ,Mn} be a set of measurements and T = {T1, . . . , Tm} be a set of

measurement types like above. The measurement set M satisfies the measurement type
set T iff the generated guard function for every measurement type from the measurement
type set evaluates to true for a measurement of the measurement set:

M |= T ⇔ ∀T ∈ T ∃M ∈M : guardGen(T )(M) = true (2.1)

55



2. Conceptual Foundations

Metric Reuse Implication

Let C be a measurement consumer defined by a derived metric that accepts the
measurement type set T. It consumes a measurement sets M that satisfies T (M |= T) in a
certain metric system MSA. Furthermore, let M′ be another measurement set in another
metric system MSB . If every measurementM′ in M′ is compatible to a measurementM
in M (M′ ≺M) then M′ also satisfies T (M′ |= T). Hence, the measurement consumer
C from metric system MSA is reusable in the metric system MSB consuming M′. Thus,
the set of accepted measurement types T can be interpreted as the required interface for
its corresponding measurement consumer.

This drastically eases the design of reusable derived metric because they can be designed
in a way to only specify the minimal data type required for their operation in their
accepted types set. This derived metric can then be reused in a specific metric system
that provides compatible measurements that satisfies the accepted types set. Additionally,
using a similar argument it is also easy to design reusable base metrics. They only need
to produce generic (minimal data) measurements which are easily consumed by different
derived metrics which require more specific measurements in a broad variety of actual
metric systems.

2.3.7. Measurement Producer

Metric

Measurement

Mid : Text
E(eomin) : Text

Measurement Producer
Variability 

Configuration

Variability 
Model

*

1

produces

1..*

1

defines

0..10..1

*
1

0..1
0..1

Figure 2.7.: Measurement producer connecting metric, measurement, and the variability
model

Every metric defines the production of measurements. This measurement production
connects our static view on metrics from section 2.1.1 with our formalism of measurements

56



2.3. Formal Foundation to Metric System Dynamics

presented in this section. Hence, we like to address the creation of measurements
uniformly and specifically. We therefore include the measurement producers in the
formalism. Figure 2.3.7 provides an overview over the important aspects associated
with measurement producers. Metric on the top connect the static concepts from
our terminology. Measurement on the bottom represents our dynamic formalism.
Measurements are produced by the Measurement Producers in the middle, which glue
metrics and their variability model together. Hence, this enables the specification of
measurements produced by metrics with variability.
On the one hand, the mechanics of measurement producers without variability

configuration for metrics without variability models is simple. They just execute the
measurement or calculation function of the associated measurement approach of the
metric. On the other hand, measurement producers for variable metrics, with associated
variability model, need to be treated specially. The aim of the variability model was
to reduce the number of metrics in the metric system. Our goal was not to specify
each small variation of a metric. However, at this point a clear specification is required
for the measurement production. The clear specification comes in the form of the
variability configurations. Each variability configuration specifies the production of a
specific measurement for a variable metric.
Variable base metrics are uncommon and very specific to the actual measurement

approach. Hence, the remaining sections focuses on specific details of measurement
sources for derived metrics with variability models.

Metric Product

Let a variable derived metric be associated with variability configurations conf1, . . . confh

that suite the variability model of the metric. This derived metric, therefore, spawns the
measurement producers P1, . . . , Ph. Each measurement producer is associated with its
specific variability configuration according to the index.
Measurement producers, as the name suggests, produce measurements. Let M =
{M1,M2, . . . } be a set of measurements that is accepted by the guard function of the
metric consumer withMi = (di,Midi

, eomi) and EOM = {eom1, eom2, . . . } the set of
all entities of measurement from the measurements. The consumer then calculates the
measurement data output by executing the calculation function f of the derived metric
with the specific variability configuration confi on the input data d. This calculation
produces new measurement data. The measurement data outputs are then embedded in
new measurements. The new measurements, however, each require a metric identifiers and
an entity of measurements. The new metric identifierMidi

is defined by each measurement
producer Pi. They also define a function EPi : EOM → eom that calculates the new
entity of measurements from the entities of measurement from the input measurements.
Hence, the output of the measurement producer Pi is calculated as:

producePi : M→M

producePi(M) =
(
f(d, confi), Midi

, EPi(EOM)
)

57



2. Conceptual Foundations

The calculation of the entity of measurement provides important flexibility. Sometimes
the measurement producer should return the same entity of measurement as the input
measurement. For example the entity of measurement of the CPI is equal to the entity of
measurement of the PV and EV in the measurement input. Sometimes the measurement
producer needs to produce measurements with a different entity of measurement. For
example if it calculates the spread between the maximum and minimum CPI of all the
projects of the organization. This consumes the CPI values of the projects with their
corresponding entity of measurement (project identifier). However, it needs to output
the spread value with the entity of measurement of the organization because this metric
is defined on the level of the organization.
We call the function that produces a set of all produced measurements for a specific

measurement input M the production function of the derived metric M:

produceM : M→M (2.2)

produceM(M) =
{
produceP1(M), . . . , producePh

(M)
}

(2.3)

The output of produceM(M) (for a given set of input measurements) is called the product
of the derived metric M.

Calculation Termination of a Single Derived Metric

The calculation functions and calculation results should be designed in a way that a
calculation function for derived metrics does not process its own outputs (feedback) to
avoid non terminating calculations. Cases in which the calculation terminates even if it
does process its own output can easily be constructed4. However, if it does not process its
own output then there is no feedback and the calculation undoubtedly terminates. Hence,
it is sufficient to show that it does not process its own output to prove the termination
of the calculation.

Let f be the calculation function of a (variable) derived metricM, M suitable input data,
P1, . . . , Ph the measurement producers for the derived metrics variability configurations
conf1, . . . confh, and T the accepted types set that generates the guard function of the
measurement consumer of the derived metric. Feedback in the derived metric is avoided
iff no sub set from the output of the production function satisfies the accepted types set
of the guard of the measurement consumer of the derived metric5:

∀M′ ∈ P(produceM(M)) : M′ 6|= T

The power set in equation 2.4 is calculation intensive. Hence, we like to further simplify
it. We will prove, that transitive feedback is also avoided if only the product (without

4The derived metric requires a measurement A, produces a measurement B that is again consumed by
it and produces measurement C. C, however, is not consumed. Hence, the calculation terminates
even though it processes one of its own outputs.

5P(X) is the power set, the set of all sub sets, of X.

58



2.3. Formal Foundation to Metric System Dynamics

the power set) does not satisfy T:

produceM(M) 6|= T (2.4)

The proof requires, that we show the following equivalence:

∀M′ ∈ P(produceM(M)) : M′ 6|= T ⇔ produceM(M) 6|= T

Proof of the equivalence

We prove the equivalence by contraposition. We also invert the equivalence so the
contradiction is more obvious. Hence, we need to prove the following two equations:

6 ∃M′ ∈ P(produceM(M)) : M |= T ⇐ produceM(M) 6|= T
6 ∃M′ ∈ P(produceM(M)) : M |= T ⇒ produceM(M) 6|= T

We start with the first equation and prove the direction from right to left. Hence, we
know that produceM(M) 6|= T. Lets assume there exists a M′ ∈ P(produceM(M)) that
satisfies T. From the definition of satisfiability in equation 2.1 follows:

∀ T ∈ T ∃M ∈M′ : M≺ T

The M on the right hand side is contained in M′ which is a set from the power set
P(produceM(M)). IfM is in M′ which is contained in P(produceM(M)) then, following
the power set definition,M must also be contained in produceM(M). Hence, for every T ∈
T there exits anM ∈ produceM(M) that is compatible to T . Therefore, produceM(M)
also satisfies T, which contradicts our initial criteria and we proved:

∀M′ ∈ P(produceM(M)) : M 6|= T ⇐ produceM(M) 6|= T

Now we need to prove the other direction to prove the equivalence. Hence, we know
that 6 ∃M′ ∈ P(produceM(M)) : M |= T. Lets assume produceM(M) satisfies T then for
each T ∈ T there exists a compatibleM∈ produceM(M). Again from the definition of
the power set there exists at least one M′ ∈ P(produceM(M)) that contain all theseM for
each T . Hence, there exist a M′ ∈ P(produceM(M)) that satisfies T, which contradicts
our initial criteria and we proved:

∀M′ ∈ P(produceM(M)) : M 6|= T ⇒ produceM(M) 6|= T

59



2. Conceptual Foundations

2.3.8. Calculation Termination
This section provides the formal basis to prove termination of calculation chains in a
metric system on a conceptual level. Proving the termination of the calculations is
important because infinite calculation inside an actual measurement infrastructure would
massively drain resources and should, hence, be avoided. It is well known in computer
science that proving termination in general is impossible. Our approach, however, is
limited to the interaction between metrics and the investigations on the corresponding
calculation chains. For these, as we show here, we can prove termination at least on a
conceptual level.

Calculation Dependency

Using the definition for the product of a derived metric from above we define a calculation
dependency between two derived metrics Ma and Mb. Let Ta and Tb be the accepted
type sets that generate the guard function for the measurement consumers of Ma and
Mb respectively and produceMa(M) the production function of the derived metric Ma

as defined above. We define the calculation dependency relation between Ma and Mb

(Ma
−→∼Mb – read as: Ma feeds Mb) iff one of the products of Ma is consumed in the

calculation of Mb.

Ma
−→∼Mb ⇔ ∃M : M |= Ta ∧ M 6|= Tb ∧ M ∪ produceMa(M) |= Tb

Note that the input measurements M are required for the definition but the relation
between Ma and Mb exists regardless of the input because the satisfaction relation only
considers measurement types and not the actual data.

Calculation Chains

The derived metrics in a metric portfolio can form calculation chains6 based on the
calculation dependency between each other. A calculation chain has the form:

Ma
−→∼Mb

−→∼ . . .

For our further investigations it is important to identify specific metrics in a calculation
chain. Hence, we formalize calculation chains using a vector notation. LetMa

−→∼Mb
−→∼ . . .

be a calculation chain. We formalize this chain C as the vector of the elements of the
chain as follows:

C = (Ma,Mb, . . . )

A derived metric in the chain can be accessed using the “.” operator. For the example
above C.1 = Ma, C.2 = Mb and so forth. The length of the chain is calculated using the
modulus operator |C| by counting the number of derived metrics in the chain.

6More specifically they form calculation trees but we only consider the chains in these trees from the
root to each leaf.

60



2.3. Formal Foundation to Metric System Dynamics

Termination

Following our arguments from above it is sufficient to show that each derived metric
is only contained once in every chain (no transitive feedback) to show that all these
calculation chains terminate7. To show that every derived metric is only contained once
in every chain we need to show that for all chains all elements in the chain are distinct:

∀C : ∀ i ∈ |C|, ∀ j ∈ |C| : i 6= j ⇒ C.i 6= C.j (2.5)

Obviously, if equation 2.5 is satisfied in a metric portfolio equation 2.4 is also satisfied
for all derived metrics in that metric portfolio. However, equation 2.4 is easier to check
in the development process because it only requires to investigate one derived metric.

7Again, we could construct a similar example to above for a calculation chain that contains a derived
metric multiple times and still terminates. However, proving and assuming that each derived metric
is only contained once in every chain is very easy and simplifies the termination investigation.

61



2. Conceptual Foundations

2.4. Summary
This chapter presented the foundations to our metric systems engineering approach
MeDIC. We presented our metric terminology based on existing approaches for metric
documentation, metric meta models, and metric taxonomies. The terminology addresses
the two parts measurement and calculation and visualization and interpretation. Our
model for metric system dynamics on top of the taxonomy uses a flexible system of
measurement sources and measurement sinks for the exchange of measurements. This
obviously supports flexibility of our engineering approach. Additionally, the inclusion of
the metric customer in the taxonomy supports the information need driven and usability
aspects.

Our variability-based approach to metric reuse avoids an explosion of metric definitions.
The approach adds a variability model to the metrics. This variability model enables the
definition of variation points in the definition of metrics. This approach was supported by
an elaborated analysis of related work in the area of metric reuse and a formal definition
of the variability model.

The second half of the chapter was dedicated to our formal approach to metric system
dynamics. This utilizes a combination of a functional and algebraic approach to formalize
measurements in metric systems. The approach provides additional requirements to the
design of derived metrics and solidifies our ideas for reuse of metrics. The approach
also provides a framework to prove the termination of the calculation of a given metric
portfolio under specific circumstances.
The following part utilizes these foundations to define our reference architecture for

measurement infrastructures. After an overview to the static and dynamic aspects to
the reference architecture, which instantiate the ideas from this chapter, we continue the
formal approach from this chapter. The resulting formalism on the specific reference
architecture items enables termination proofs and the calculation of an outer calculation
hull on real architectures for measurement infrastructures.

62



Part II.

Reference Architecture

for Enterprise Measurement Infrastructures

63





3
Introduction, Requirements and Foundations

In the last two chapters we discussed the main challenges to metric systems engineering,
provided a broad overview of our approach MeDIC, and presented the foundations to
MeDIC. This part presents one of our main contributions to metric systems engineering:
our reference architecture for measurement infrastructures.
A solid and sound architecture is key to the long time success of a software system

[Per00, DdOdlP98]. However, its design is difficult and requires a lot of experience.
Reference architectures address these issues by providing a framework for the design of
a concrete architecture. Our reference architecture is a model for the architecture of
measurement infrastructures. It contains elements that provide a suitable abstraction
for the elements required in the architectures for actual measurement infrastructures.
Additionally, we also provide micro reference architectures for each of these elements,
which guide designing the actual services for an actual measurement infrastructure. With
our reference architecture we address the following architectural views (see the 4+1
architectural view model from Philippe Kruchten for further details [Kru95]):

Logical Architecture Provides a higher level abstraction based on the logical concepts.
In our case the logical reference architecture provides a framework for the
different logical components of a measurement infrastructure. The logical reference
architecture also assist the decomposition of a measurement infrastructure by the
means of (logical) metric applications.

Physical System View The physical system view provides a view on the systems in
their deployment state on physical nodes in a network. In our reference architecture
we use the physical system view to classify the systems in the core of the measurement
infrastructure.

Technical Architecture The technical architecture refers to the design and
organization of the technical concepts. It contains services and layers which tackle
different measurement challenges with specific solutions. Therefore, the technical
reference architecture supports the design activities of our process model. In the
4+1 model this is called the “development view”. We believe, however, this name is
for this case to closely related to the development activity of the process view

In the reference architecture we do not provide the process view of the 4+1 model. This
is addressed by our metric systems engineering process model in part III of this thesis.

65



3. Introduction, Requirements and Foundations

We call measurement infrastructures based on the MeDIC reference architecture
Enterprise Measurement Infrastructures (EMIs) to differentiate them from ad-hoc
measurement infrastructures. An enterprise measurement infrastructure therefore is
an instance of our reference architecture.

We first investigate the low level requirements for the reference architecture in section 3.1
based on the top level requirements from section 1.2. After this we briefly investigate
alternatives and related work in section 3.3. The reference architecture definition then
starts with our logical reference architecture and the physical system view in chapter 4. In
there we provide our view on the logical architecture for metric systems. This guides the
decomposition of a metric system and provides a high level overview of the different parts
of a metric system. Furthermore, we provide a classification for the physical systems in an
EMI. Chapter 5 is the core of this part. It provides a detailed overview over the technical
reference architecture. After an overview over the layers and dedicated services we zoom
into each layer and provide dedicated discussions and micro reference architectures for
the specific services. The following chapter 6 provides overviews of the requirements,
logical, and technical reference architecture for the most crucial operation systems; the
most important once being the monitoring system and the logging system. These two
drastically ease the development and operation of a measurement infrastructure. We
close the part with a formal-basis to our reference architecture in chapter 7. This contains
a formalism for the service operation states and, more importantly, a full formalism
for our technical reference architecture. This extends our formalism from section 2.3
with formalisms for our technical concepts e.g. measurement messages, data adapters,
and metric kernels. This provides the basis for investigating the technical adaption
(implementation) of the metric concepts and provides a means to calculate the “reach” of
an EMI based on the raw data provided by the data provider.

66



3.1. Design Foundations and Reference Architecture Requirements

3.1. Design Foundations and Reference Architecture
Requirements

Before we introduce our reference architecture we refine our top level requirements from
section 1.2. This refinement also includes a lot of important design decisions for our
reference architecture. However, this section does not cover specific requirements for the
tools that are accessed by the metric customers of an actual measurement infrastructure!
The reason for this is that a lot of different goals need to be considered when defining the
tool requirements and a valid selection of important goals is only possible when dealing
with an actual metric system with actual stakeholders. The stakeholders (specifically
metric customers and metric experts) need to decide which goals need to be addressed
and which are not. Therefore, they need to be addressed when designing the specific
architecture for a measurement infrastructure for an actual metric system.

3.1.1. Polylithic Micro Service-based Measurement Infrastructures
Most importantly our reference architecture should address challenge C1 from section 1.1.3;
it need to support flexible measurement infrastructures! Consequently the reference
architecture needs to address the top level requirements ReT-I1, ReT-I3, ReT-I6, and
ReT-I7. Our investigation in the beginning showed that a lot of the problems are due
to monolithic infrastructures and large monolithic tools. Hence, our solution for this
is to enforce a polylithic over a monolithic design of the infrastructure. Following the
Unix philosophy we like our reference architecture to follow the rule of modularity, rule
of clarity, rule of composition, rule of separation, rule of simplicity ([HT99], p. 76). We
believe this leads to a flexible and expandable measurement infrastructure and helps
to flexibly evolve the different parts of the measurement infrastructure as required. An
additional benefit is that this does not force a specific technology on all the different
services of the measurement infrastructure and the architect does not need to worry
about unifying the technology of the different services.
Recently this design principle got known as microservice architectural style. The core

idea of microservices is to build a large system based on small cohesive and independent
services. James Hughes defines microservices as [Hug13]:

Micro Service Architecture is an architectural concept that aims to decouple
a solution by decomposing functionality into discrete services. Think of it as
applying many of the principles of SOLID at an architectural level, instead of
classes you’ve got services.

SOLID is an acronym for the principles of: Single responsibility, Open-closed, Liskov
substitution, Interface segregation, and Dependency inversion [Met09]. We believe that
adhering to these core principles, while designing services, leads to solutions that are
easier and cheaper to maintain and hence evolve more easily. Martin Fowler advertises
microservices over the past years. He and James Lewis define microservices as [FL14]:

67



3. Introduction, Requirements and Foundations

In short, the microservice architectural style [1] is an approach to developing
a single application as a suite of small services, each running in its own
process and communicating with lightweight mechanisms, often an HTTP
resource API. These services are built around business capabilities and
independently deployable by fully automated deployment machinery. There
is a bare minimum of centralized management of these services, which may
be written in different programming languages and use different data storage
technologies.

Especially the last part fits nicely to our requirement ReT-I6 for no central data schema
and individual data base choice per service. A microservice oriented architecture, however,
goes beyond free (and therefore optimal) choice of databases per service. The architect is
also free to choose the optimal implementation technology for each service. If for example
the solution requires transactions and fast responses with high integrity constraints on
the data then for example a Java enterprise solution using a relation database is a good
choice. On the contrary if the data is graph oriented with a lot of complexity in the
interconnection of the data and the solution should be very light weight and easy to
deploy then a javascript based node.js backend using a graph database forms a feasible
solution. In a microservice oriented architecture these two services could happily coexist
in the same system to serve a bigger purpose. These examples, however, also show that
it is crucial to stick to the single responsibility principle and aim for very cohesive and
small services.

3.1.2. Specific Requirements
The single responsibility principle is directly related to the design principle of separation
of concerns. Our top level requirement ReT-I3 already forces a clear separation of the
core tasks of a metric system: Measurement, Calculation, and Visualization. Because we
chose microservices as the design metaphor we also need to consider a fourth task: service
integration. This section drills down into the fine detailed requirements for each task. In
the following section we choose the word part for the high level items in the reference
architecture because we do not want to emphasize a specific solution in this requirements
section. Layer, component, or service would already suggest a specific solution. The
smaller things inside the parts are, thus, called items.

Requirements for Measurement

The measurement part of a measurement infrastructure of a metric system connects the
measurement infrastructure to the data providers (see system overview in section 4.2).
Hence, the measurement part is the first one that needs to deal with the heterogeneity of
the measurement data and needs to provide a solution that fits requirement ReT-I2 (fast
and up-to-date data recognition). We also need to make sure to obey to requirement
ReT-I5 to isolate the measurement part from the data provider.

68



3.1. Design Foundations and Reference Architecture Requirements

ReD-IM1: Deal with heterogeneous data access The measurement data from the
data providers can not be accessed uniformly. Hence, the measurement part of the
reference architecture needs to deal with this heterogeneous data access in a way
that it provides multiple solutions for different (typical) measurement scenarios.
Most importantly, the different solutions in the measurement part of the reference
architecture need to define and document the different heterogeneity scenarios.

ReD-IM2: Enable real-time data The measurement part of the reference
architecture needs to provide a solution that allows real-time data access.
We realized, however, that this is not always possible and is closely related to
the first requirement for heterogeneous data access. Therefore, again, multiple
solutions are required to deal with different measurement scenarios.

ReD-IM3: Isolate the data providers The measurement solution needs to be
isolated from the data provider in a way that a failure in the measurement
part does not result in failures or problems in the data provider. Furthermore, the
measurement part of the reference architecture needs to define mechanisms to deal
with failures and faults of the measurement and of the measurement infrastructure.

Requirements for Integration

The integration part of the measurement infrastructure integrates the measurement and
the calculation part. This part is specifically important to our solution because we
choose the microservice architecture style as a basis for our reference architecture for
polylithical solutions. This leads to a lot of different services that need to be integrated.
A monolithical solution also requires the integration between the different parts but, due
to higher coupling between the parts, it is not as important. Furthermore, the integration
part needs to support the top level requirement ReT-I4 that requires a robust solution.

ReD-II1: Deal with heterogeneous data types We already discussed the different
types of heterogeneity in the measurement part (also, see [Ste13]). The measurement
part deals with the heterogeneity of the measurement data access. The measurement
data itself, however, is also heterogeneous. Hence, the integration part of
the reference architecture needs to provide a solution to unify heterogeneous
measurement data. Additionally, it needs to support the implementation
of the satisfiability and compatibility relations defined in the formalism in
sections 2.3.6 and 2.3.5.

ReD-II2: Transport measurement data The core requirement of the integration
part is, as mentioned above, the transport of measurements from the measurement
part to the calculation part and inside the calculation part. Also as mentioned in
the last requirement this needs to obey the requirements from our formalism in
section 2.3.

ReD-II3: Obey the criteria of Hohpe and Wolf Hohpe and Wolf define a set of
criteria that an integration solution should obey [HW03a].

69



3. Introduction, Requirements and Foundations

ReD-II4: Isolate the different parts Following the top level requirement ReT-I4 the
integration part of the reference architecture needs to enable the isolation of different
parts and services from each other. Failures or faults in one part or service must
not result in an overall failure or fault of the whole measurement infrastructure.

Requirements for Calculation

The calculation part is the core of a measurement infrastructure. This is where all the
metrics are calculated. The visualization part, therefore, connects to it to get its data
to satisfy the information needs of the metric customers. The most important top level
requirements to this part are ReT-I2, ReT-I6, and ReT-I7.

ReD-IC1: Calculation is independent from measurement Following our
discussion in the formalism (specifically sections 2.3.6 and 2.3.5 about satisfiability
and compatibility) the measurement part and the calculation part are only coupled
via the measurement types. From the perspective of the calculation part the
accepted measurement types of derived metrics act as required interfaces. These
are satisfied by measurements produced either by other calculations or by the
measurement part. This loose coupling between measurement and calculation and
inside the calculation part supports reuse of calculation and measurement parts,
which we already discussed in section 2.3.6.

ReD-IC2: Be flexible The most important challenge that our reference architecture
must face is flexibility (challenge C1 from section 1.1.3). This is also emphasized in
the top level requirement ReT-I7. Additionally, section 2.2.3 introduced our idea
for metric variability. The aim of this is to add flexibility and reduce the number
of metrics in a metric portfolio. The calculation part of the reference architecture,
however, needs to reflect these concepts. As discussed before, the implications of
our measurement data flow especially the implications from the satisfiability and
compatibility relations defined in the formalism in sections 2.3.6 and 2.3.5 need to be
reflected as well. In essence, the calculation part of the reference architecture needs
to contain mechanisms to manage different variants of calculations and flexible
connection between the calculation and measurement part.

ReD-IC3: Enable (near) real-time calculation Metric customer just interacts with
the visualization of the measurement infrastructure. They can not distinguish
which part is responsible for high latency between an update in a data provider
and respective change of the visualization. Hence, performance and speed of
the calculation is a concern when designing a calculation item and needs to be
supported by specific mechanism in the calculation part of the reference architecture.
As discussed with the measurement part above the requirement ReT-I2 requires
mechanism to support “fast and up-to-date recognition and update of the metrics
on a change in a data source”. The calculation part needs to include mechanisms
to support this (if possible).

70



3.1. Design Foundations and Reference Architecture Requirements

ReD-IC4: Respond to and report indication of data quality The items in the
measurement part are able to indicate the data quality of specific measurements.
The reference architecture for the calculation part needs to include mechanisms
that allow calculation items to deal and react to the data quality. Additionally,
they need to be able to report the data quality further up to the visualization part.

Requirements for Visualization

The visualization part contains all the tools that the metric customers interacts with.
The items in the part visualize indicators from the calculation part and are specified by
monitors (see terminology in section 2.1.1). The requirements listed below, however, just
reflect the requirements to the visualization part of the reference architecture that are
either intrinsic or originate from the interconnection with the other parts. As mentioned
above, these requirements do not reflect the specific requirements for the tools that a
metric customer interacts with!

ReD-IV1: Access data from different calculation sources The items in the
visualization part need to be able to consume data (indicators) from a brought
variety of sources in the calculation part. Hence, the visualization part of the
technical reference architecture needs to provide a mechanism to uniformly access
the different calculation items. Uniform access, however, does not require uniform
data!

ReD-IV2: Be flexible Similar to the items in the calculation part, the items in the
visualization part need to support different variants i.e. slightly tailored versions of
the same visualization according to a variability model. Also, the technical part of
the reference architecture needs to support mechanisms to reflect small changes
in the information needs of the metric customers. Therefore, it needs to contain
mechanisms to change the data sources (the indicators) of a visualization as well as
the exchange of a visualization for fixed indicators.

ReD-IV3: Support dashboards and analysis tools The reference architecture
needs to include mechanisms that allow to build dashboards as well as specific
analysis tools based on the data in the calculation part. A dashboard provides
a quick static status overview, typically for monitoring purposes, over a brought
variety of very detailed and specific information needs. Consequently, monitors
from dashboards are included in different status reports of the company as well. On
the contrary, an analysis tool is only bound to very rough information needs. The
focus of analysis tools is to investigate a specific situation and find (and answer)
more specific information needs. Therefore, they typically provide a number of
controls that allow to dig into the data and analyze a specific situation from different
perspectives.

71



3. Introduction, Requirements and Foundations

Requirements for the Infrastructure

A polylythical system based on the microservice architecture style requires additional
tooling for the operation and management of the infrastructure. Operation support was
also one of our top level requirements (ReT-I8). The following list of requirements again
provide only top level requirements to operation tools and integration of those. The
later sections 6.1 and section 6.2 provide more fine grained requirements in their initial
sections.

ReD-I1: Separation of concerns The microservice architecture style, described
above, requires small coherent services. Hence, the technical reference architecture
needs to reflect this with mechanisms that enable the management and operation
of multiple calculation items. The logical reference architecture needs to enable an
information need driven design and separation of the different items in the parts.

ReD-I2: Report status of all items All items in all parts need to be manageable.
An operator needs to determine whether a given item works within its defined
operational boundaries. Operators also need an overview over all items in the
infrastructure and their status. Hence, the reference architecture needs to include
a monitoring tool and specific integration of monitoring in all items. More detailed
requirements for the monitoring system are addressed in sections 6.1.

ReD-I3: Report operation information During development the developers need
feedback from the operation of the items in their local measurement infrastructure.
The items in the production version of the measurement infrastructure need to
provide technical information to the operators and business information to the
metric experts and metric customers. The reference architecture needs to address
this with a specific logging solution for the measurement infrastructure. Again,
section 6.2 provides finer requirements for the logging system.

ReD-I4: Robustness and evolution support The technical reference architecture
needs to include mechanism to ensure the robustness of the resulting measurement
infrastructure. It needs to include something to reintegrate (specifically calculation)
items that stopped due to a failure or fault. Additionally it needs to support the
evolution of the measurement infrastructure in a sense that it provides mechanisms
to integrate new (calculation) items. Integration does not only require to connect
them with other items but also ensures that the items have all the data that they
need to ensure correct calculation of current and past measurements.

ReD-I5: Tool for metric documentation and interpretation aids management
The literature lists metric documentation as an important success factor for metric
systems. Additionally, in the terminology in section 2.1.1 we defined the need for
dedicated interpretation aids for each monitor and information needs that they
address to increase the usability of the metric system by guiding the interpretation
by metric customers. Therefore, the reference architecture needs to include
specific systems that provide metric documentation and aid the management of

72



3.1. Design Foundations and Reference Architecture Requirements

interpretation aids. It also needs to enable easy integration between these systems
and the items in the different parts (specifically the visualization part) of the
measurement infrastructure.

3.1.3. Reference Architecture Requirements Summary
The section above added more specific details to our top level requirements from
section 1.2. We started by introducing our main design decision for a polylythical
measurement infrastructure based on the microservice architecture style rather than
a monolythical solution. The main reasons for this are flexibility (challenge C1) and
evolution support (ReT-I7) as well as separation of concerns (ReT-I3) on a high level.
We then continued to list specific requirements for the core parts of the measurement
infrastructure: measurement, integration, calculation, visualization, and infrastructure.
The infrastructure part is a result from our main design decision. The most important
requirements are again flexibility, real-time data, indication of data quality, and robustness.
After listing these requirements, the following section will describe our API specification
language that we use to define service APIs in the technical reference architecture.

73



3. Introduction, Requirements and Foundations

3.2. The API Specification Language

For several services and their application programming interfaces (APIs) in the technical
reference architecture we need to be able to specify the interfaces of these APIs on a
formal basis. We need to be able to specify whether a given method or parameter is
mandatory or optional. We also need to be able to parameterize a type with the interface
for the definition of the indicator access APIs in section 5.3.2.
Several approaches exist to define interfaces using interface description languages

(IDLs). For example the very formal approach from Arbab et al. [ABB00]. They use
their formalism for component based systems as a basis. The idea behind their interface
description language is to “introduce a formal assertion language for specifying the
observable behavior of a component [. . . ] via an interface”. However, for our application
this language and the underlying formalism is too complex to use. The web service
description language (WSDL) is also used to describe interfaces and web APIs [CMRW07].
Unfortunately, the WSDL is specific and does not allow to distinguish between mandatory
and optional methods and parameters. The common object request broker architecture
(CORBA) includes the interface description language of the object management group
(OMG IDL) [Vin97]. This IDL is used to define the types of operations on remote objects,
similar to WSDL. Hence, like WSDL, it does not contain a mechanisms for genericity
or conditionals for methods and parameters. Popular description languages for REST
services like REST IDL also lack these options [MSW].
We, therefore, define a specific API specification language to define the requirements

for specific API methods in our reference architecture. We designed the language to
be easily readable and very narrowly focused towards our requirements. The following
Backus-Naur form (BNF) defines the language:

〈interface〉 ::= ‘interface’ 〈name〉 [〈typeParameter〉]
〈methodList〉

〈typeParameter〉 ::= ‘generic type parameter’ 〈name〉

〈methodList〉 ::= 〈method〉*

〈method〉 ::= 〈conditional〉 ‘method’ 〈name〉
〈parameterList〉
‘returns’ 〈type〉

〈parameterList〉 ::= 〈parameter〉*

〈parameter〉 ::= 〈conditional〉 ‘parameter’ 〈name〉 ‘:’ 〈type〉

〈conditional〉 ::= ‘mandatory’ | ‘optional’

〈type〉 ::= 〈name〉 | ‘List of’ 〈type〉

74



3.2. The API Specification Language

〈name〉 ::= ? any character ?

An API specification starts with the keyword interface followed by the name of
the interface specification. After that we can specify an optional type parameter. This
could be extended to a list of type parameters but we never needed more than one and
we wanted to keep the language as specific as possible. If used the name for the type
can be specified after the keyword generic type parameter. When the interface
specification is instantiated this type parameter needs to be specified and every occurrence
of the name needs to be replace by the specified type. After this we can specify the
methods of the interface. The definition of a method starts with a conditional. This
conditional indicates whether the method needs to be present in the API (mandatory)
or if it does not need to be present (optional). The name of the method is specified
after the keyword method followed by a list of parameters for the method and the return
type after the keyword returns. The void keyword can be used as return value to
specify procedures. A parameter, again, starts with a conditional followed by the keyword
parameter and the name of the parameter. The type of the parameter is specified after
a colon. Types are simply specified by their name. Lists are natively supported in the
language with the keyword List of before the type name because they occur regularly.
The following example specifies a comparator API. The comparator requires a type

parameter because we like to define the API regardless of the type of the elements that are
compared. The comparator API requires a method areEqual to check if two elements
are equal and a method isGreater to check if an element is greater than another one.
Additionally the method isSmaller can be defined to check if an element is smaller
than another one. This method is optional because it can be calculated from the result
of the other methods (if not equal and not greater than it is smaller).

Source Code 3.1 API specification for a comparator API
interface Comparator

generic type parameter DataType

mandatory method areEqual
mandatory parameter element1 : DataType
mandatory parameter element2 : DataType
returns Boolean

mandatory method isGreater
mandatory parameter element1 : DataType
mandatory parameter element2 : DataType
returns Boolean

optional method isSmaller
mandatory parameter element1 : DataType
mandatory parameter element2 : DataType
returns Boolean

75



3. Introduction, Requirements and Foundations

The following Java-based JAX-RS service is a valid REST service implementation of
the API specification from above.

Source Code 3.2 Java-based comparator REST service
@Path{"/compare.json"}
@Produces(MediaType.APPLICATION_JSON)
public class Comparator {

@GET
@path{"/areEqual/{element1}/{element2}"}
public Response areEqual (

@PathParam("element1") String element1,
@PathParam("element2") String element2

) {
boolean result = element1.equals(element2);
return Response.ok(result).build();

}

@GET
@path{"/isGreater/{element1}/{element2}"}
public Response isGreater (

@PathParam("element1") String element1,
@PathParam("element2") String element2

) {
boolean result = element1.length() > element2.length()
return Response.ok(result).build();

}
}

In this instantiation the type parameter is instantiated to String. Also note that the
method isSmaller is not provided by the API. The two REST endpoints implement
the mandatory methods. The isGreater method is implemented using the lengths of
the strings. Also note that the language does provide a way to specify how the parameters
are passed to the method and that the HTTP method type can not be defined1. The
language also does not allow to specify the service technology (REST, SOAP, RMI, . . . ).
These aspects are chosen when instantiating the API from our reference based on the
requirements of the specific scenario.
The example shows the simplicity and readability of the API specification language

compared to Java-based implementation of the Service. We use the language in our
technical reference architecture when we need to specify specific APIs on the services.

1The example uses GET over POST because the methods are idempotent. In this specific case they
are even nullipotent. Idempotent methods produce the same output whenever they are called. A
nullipotent method is an idempotent method that does not change anything on the system.

76



3.3. Integration Architecture Alternatives

3.3. Integration Architecture Alternatives
The integration of heterogeneous data sources is the main requirement of an enterprise
measurement infrastructure (ReT-I1). Throughout the last decade several approaches
have been proposed to deal with the emerging integration problems faced by developers
and architects when dealing with heterogeneous systems and software landscapes. This
research topic is known as: Enterprise Application Integration (EAI). In this section we
present and analyze four existing types of enterprise application integration approaches
and distributed measurement infrastructures based on our top level requirements from
section 1.2.

File-based Integration

The simplest integration approach uses files to exchange data between applications.
One application exports the data needed by another as a dedicated file. This file is
imported by the other application and processed. This form of integration has certain
disadvantages. Most importantly there is no real communications between the applications.
Additionally, the export and import of data has to be synchronized. This directly violated
the requirements ReT-I1, ReT-I7, ReT-I8, and most importantly ReT-I2.

Common Database

This integration approach uses a common database for all integrated systems. This
provides a low latency to recognize and process relevant events. The main drawback is
the necessity of an additional database management system. Successful implementations
of this integration type are data warehouse systems. They provide an integrated database
organized in a star schema [CD97], which includes multidimensional aggregated data
cubes.
Integration via a common database or a data warehouse is the most common used

integration approach chosen by recent measurement systems like Rational Insight.
Sonarqube (http://www.sonarqube.org/) is another popular examples for a
measurement tool that use a common database to integrate measurement data. However,
as these systems are based on centralized data bases they directly violate requirement
ReT-I3. Additionally, they are not able to guarantee requirement ReT-I2 and ReT-I7.

Service Oriented Architectures

Service-Oriented-Architecture (SOA) is also commonly used as the basis for integration
solutions. The central idea of SOAs are systems following the service-paradigm [PTDL08,
GDPG03]. They provide a stable self-describing interface for accessing internal data and
functionalities. Web services are a prominent example for service-based software systems,
which uses XML or JSON over HTTP for their communications. A popular example

77

http://www.sonarqube.org/


3. Introduction, Requirements and Foundations

for a SOA based measurement system is Hackystat (https://code.google.com/p/
hackystat/).

Even thought SOA based integration is quiet common a pure SOA solution typically does
not provide the required set of operation tools. Hence, this violates requirement ReT-I8.
Additionally most of the integration solutions use SOA only for the communication
between the visualization clients and a central data base server which violates requirement
ReT-I6.
Enterprise Information Integration (EII) is a special case of SOA based enterprise

application integration. The main goal of EII is to avoid a central database [HAB05].
EII adds a central query processor to an infrastructure of loosely coupled services. This
central processor divides a query into sub queries to the services and aggregates their
results. Even though this is an elegant solution to avoid a central database it violates
requirement ReT-I4 and since the central processor needs to wait for all the sub queries
to finish before returning an aggregated result it can take a while before the system
answers which violates ReT-I2. Additionally, this still requires a central data schema in
the query processor which violates requirement ReT-I6.

Agend-based Integration

Some modern integration approaches use agents to communicate between different
applications [Woo01, KZR06]. Agents were first used in artificial intelligence systems
[RNC+10]. An agent acts in a certain environment, uses sensors to get information about
it, and can use this information for its decisions. Wille, Dumke et al. propose agent
based measurement tools [DKW00, Dum12]. Even though agent based systems satisfy
a large subset of the requirements they violate some of them. They typically do not
provide central monitoring functionalities on their own. Furthermore, they are often hard
to integrate into existing or new systems because of their very loose coupling. Hence,
agent based systems violate requirements ReT-I7 and ReT-I8.

78

https://code.google.com/p/hackystat/
https://code.google.com/p/hackystat/


4
Logical Reference Architecture

and Physical System View

Our reference architecture is divided into different parts: the technical reference
architecture, the logical reference architecture, and the physical system view. Before
defining the technical reference architecture in section 5 this section will introduce the
logical reference architecture in section 4.1 and provide insides into the physical system
view in section 4.2. The focus of the logical reference architecture is to guide the design
of specific logical architectures for measurement infrastructures in a metric system. The
physical system view will introduce the different systems in the context of an enterprise
measurement infrastructure. It also presents a classification of the systems in the EMI
core.

4.1. Logical Reference Architecture
Figure 4.1 provides a model for the logical architecture of a measurement infrastructure.
The core of the logical view on an enterprise measurement infrastructure are different
Metric Components. These metric components provide their required functions using a
platform that contains specific frameworks, libraries, tools, and other reusable assets.
We differentiate four types of metric components: Visualization Frontend Components,
Visualization Components, Calculation Components, and Measurement Components.
The later three originate from the core functionality of a measurement infrastructure
(visualization, calculation, and measurement). Contrasting our definitions from before, the
Visualization Frontend Component is added in the logical architecture as an abstraction
for the applications that the metric customers interact with to look at the visualizations.
In the architecture requirements we treated these as part of the “visualization”. We
separated them in the logical architecture because actual visualization components and
concepts can be shared between different frontend components. As mentioned earlier, we
differentiate between two types of frontend components: Dashboard Tools and Analysis
Tools (requirement ReD-IV3). The relations between the metric components in the model
reflect the data and control flow between them. Visualization frontend components utilize
a number of visualizations. Visualizations get their data as indicators from calculations.
They, as usual, receive their data from the measurements. We did not include the
integration part in the logical architecture because it is a single technical part that is fix
for all components and hence would only blow up this logical model without providing
additional benefits.

79



4. Logical Reference Architecture and Physical System View

«Logical View» 
Enterprise Measurement 

Infrastructure

Metric 
Application

Metric 
Component

Frontend Visualization Calculation Measurement

Development
Platform

3..*0..*
contains uses

Frontend + 
Visualization + 
Measurement

Dashboard
Tool

Analysis
Tool

accesses consumesutilize

Figure 4.1.: Model for the logical reference architecture as UML class diagram

Examples for (logical) visualization components are bar chart, line chart, a risk matrix,
or a table. Logical calculation components examples include components for counting,
statistical analysis, or sorting. Generic examples for measurement components include
generic data gateways and event triggers. However, in general measurement components
are closely entangled with specific (types of) data providers and hence less generic.
During our field studies and the application of our reference architecture we realized

that these logical architectures can become big and we need another item to structure
the metric components. To do this we added Metric Applications to the model. They
allow to decompose the logical architecture of a measurement infrastructure into smaller
and easier manageable units. One metric application, however, always needs to include
at least one frontend, one visualization, and one measurement component. A calculation
component is not necessary required if the data from the measurements is sufficient for
the visualization. The metric application associates its components with a (coherent) set
of information needs of metric customers. This abstraction helps to manage component
and information need traces which provide information to ensure separation of concerns
(requirement ReD-I1). Therefore, metric applications are good guides and abstractions
for a development increment in our process model.
Similar concepts are sometimes used to decompose large architectures into smaller

parts. These parts are then called architecture slice. A slice, however, is a container
that exclusively refer to their components. A metric application, on the other side, just
references a number of metric components to provide a higher level of abstraction to

80



4.1. Logical Reference Architecture

Enterprise Measurement Infrastructure

Frontend

Visualization

Calculation

Measurement

Metric Application 1 Metric Application 2

Dashboard

Analysis

Vis1

Vis2

Vis3

Calc1

Calc2

Calc4

Measure1 Measure2

Calc3

Platform (Frameworks, Libraries, Tools, )

...

...

...

...

Figure 4.2.: Example for the logical architecture and logical decomposition of an enterprise
measurement infrastructure

these components and this reference is not exclusive. Hence, the concept is more closely
related to the composition of products in software product line engineering [Rom05]. One
of the drivers of software product line engineering is reuse. In section 2.2.3 we already
emphasized the importance of (metric) reuse. These ideas are also reflected here by the
fact that metric components are not exclusively associated to a metric application but
shared among them. Hence, when required to build a new metric application to answer
a new set of information needs the architects can simply select fitting existing metric
components and only add the minimal offset of new metric components required. This
improves the quality of the application and saves development and operation resources.
This design also adds a lot of flexibility to the composition of the metric system which
supports a lot of our initial requirements (requirements ReD-IV2, ReD-IC2, ReD-I4, and
ReT-I7) and tackles the most important challenge C1. Section 10.3 and section 11 in
part III provide additional details on increment planing and the design part of the process
model.

Figure 4.2 provides an example for a logical architecture and the logical decomposition
of an enterprise measurement infrastructure. The component types from the meta model

81



4. Logical Reference Architecture and Physical System View

result in corresponding layers with their respective components. The figure shows two
metric applications that are both based on the common development platform in the
bottom. Starting from the bottom both metric applications contain a single specific
measurement component. Contrasting this, the bottom calculation component is shared
between the two metric applications. Additionally, metric application 1 contains two
specific calculation components. Metric application 2 contains one other calculation
component that is shared with other metric applications. The two metric applications
also share the top two visualizations. Again, metric application 1 requires one additional
specific visualization. Both metric applications also share a dashboard tool as a frontend
component. Metric application 2, however, also contains an additional analysis tool.

82



4.2. Physical System View

4.2. Physical System View

Data
Provider

Data
Provider

Monitoring
System

Logging
System

Data API

Push API

...

...

Support
Systems

Visualization

Calculation

Integration

Measurement

Visualization 
System

Full 
Stack

System
Data/Business

Intelligence 
System

Core Systems

Calculation 
System

Measurement 
System

Integration 
System

Data Provider Systems

Figure 4.3.: System View

Figure 4.3 shows an overview and example of the physical system view on an enterprise
measurement infrastructure. The data provider (systems) in the bottom provide the data
required for the calculation and visualization in the measurement infrastructure. The
right support layer houses all the support systems for the operation and development
of the measurement infrastructure. The two most important ones are the monitoring
system and the logging system. The measurement infrastructure reflects the different
parts of the requirements: Visualization, Calculation, Integration, and Measurement.
Contrasting the logical reference architecture, we did not differentiate the visualization
layer further because the (logical) visualizations and frontend are typically provided as
one physical system. Throughout this section we use the term system as a synonym for
physical system to increase readability. The following sections provide additional details
to the different systems.

4.2.1. Data Provider Systems
As the name suggests the data provider systems provide the base data to the measurement
infrastructure. Data provider systems assist the business of the company and hence
are used by different kinds of users. These users are typically not the metric customers
that use the measurement infrastructure. Hence, it is important to ensure that the

83



4. Logical Reference Architecture and Physical System View

measurements do not hinder the other users from using the data provider systems as
intended (requirements ReD-IM3, ReD-I4, and ReT-I4). Consequently, the measurement
should be as invisible as possible and provide the data automatically [Joh01].

In the technical reference architecture we differentiate different data adaption patterns
to adapt the data from the data provider systems (section 5.4). However, we only need
to differentiate between two different types of data access in the physical system view.
The measurement infrastructure can either access the data from the data provider or
the data provider provides the data to the measurement infrastructure on its own. The
data access from the measurement infrastructure requires a data access API on the data
provider. The measurement system (part) in the measurement infrastructure then uses
this API to get the required data. If the data provider provides the data directly to the
measurement infrastructure then this requires an API on the measurement system (part)
of the measurement infrastructure. The data is then transfered (pushed) from the data
provider using this API.

4.2.2. Support Systems
Operation support was one of our top level requirements (ReT-I8) and something that
was and mostly is missing with other solutions. Therefore, we specifically included
operation (and development) support systems in our reference architecture. Many of
these systems also require a centralized element to provide their services. These then
manifest in dedicated physical systems in this view. The two requirements ReD-I2 and
ReD-I3 already imply two core support systems: The monitoring system and the logging
system.

Monitoring System

The goal of the monitoring system is to provide status information about the other systems
in the measurement infrastructure (see requirement ReD-I2). The most important status
are:
Operation State The operation state of a service provides a high level aggregated view

on the performance indicators of the service. The set possible operation states
needs to be individually defined per system. However, all systems inherit at least
an online, an offline, and an unknown state to indicate their core operation status.
We investigate other important states (maintenance, data provider sync) further
down in section 7.1.

Performance Data The systems in the measurement infrastructure need to operate
within their defined operation parameters. Therefore, the operator requires the
indication of performance data to check this against the operation parameters.
Section 6.1 provides additional information about the most important performance
data for measurement infrastructures based on our reference architecture.

Core Errors and Failures Errors and failures that lead to an operation state change
should be directly indicated in the monitoring system to guide the immediate

84



4.2. Physical System View

actions of the operators. This may require to couple the monitoring and logging
systems or to provide an additional communication mechanism for these details
between the systems in the measurement infrastructure and the monitoring system.

Additional requirements and details on the design of the monitoring system are provided
in section 6.1.

Logging System

The logging system is responsible for providing logging information from the services in the
measurement infrastructure to a centralized service with uniform access. This drastically
eases the development and operation of the different systems in the measurement
infrastructure. The information provided to the logging system needs to be explicitly
defined which is addressed in our process model in section 11. The two most important
informations provided by the logging system are:

Technical Log The technical log provides technical information to the developer and the
operator of a measurement infrastructure. Technical logging information supports
debugging and root cause analysis. This can become difficult in distributed systems
with only loosely coupled services.

Business Log The metric customers also require specific insides into the details of the
data processing of their data. They may change data in a data provider and like to
see corresponding visualization changes in a dashboard. If the data is mis-formated
or contains inconsistent data, however, the calculation or measurement parts will
reject the data. The metric customer then needs to be able to investigate the details
of the rejection to correct the errors in the data in the data provider.

Additional requirements and details on the design of the logging system are provided in
section 6.2.

4.2.3. Core Systems
We refer to the systems in the measurement infrastructure that perform metric related
tasks (visualization, calculation, integration, and measurement) as core systems. The
core systems can be classified according to their tasks as depicted in figure 4.3. We
differentiate between the following classes of systems:

Measurement Systems provide abstraction and access to data from data providers.
Examples for measurement systems are LOC counter or larger measurement systems
like the Sonar Runner from Sonar Qube or ETL-engines like Kettle.

Calculation Systems calculate new measurements based on provided measurements.
A very common example for calculation systems are Excel spreadsheets. Another
example for a calculation system is the weka data mining toolkit and the OLAP
system Mondrian.

85



4. Logical Reference Architecture and Physical System View

Integration Systems integrate different data formats and sources between calculation
and measurement systems. Popular examples for integration systems are Enterprise
Services Busses like Apache ServiceMix.

Visualization Systems provide visualizations of calculated values from other systems.
Again popular examples for visualization systems are spreadsheet and presentation
tools, like Microsoft Excel and Power Point. However, there exist a large
variety of dedicated visualization systems for measurements like GGobi and
Data-Driven-Documents: D3.

Data/Business Intelligence Systems abstract and access data and perform measures
on these data. Data Warehouses systems like apache hive are a typical examples
for these kind of systems.

Full Stack Systems implement all tasks. Popular examples are Pentaho and
Cognos/Rational Insight.

The reference architecture is applicable for all of the above types of systems. It also
assists the integration between the different parts and helps to include the support
systems. Heterogeneous infrastructures with different types and varieties of core systems
are also supported. Obviously, we assume our foundations (see section 2) as a basis for
the reference architecture. Hence, it is more difficult to include a full stack BI-system
and gain all the benefits from our design then to include an enterprise service bus for the
integration part which already fits well to our design.

The last two sections defined our logical reference architecture and physical system view
on measurement infrastructures the next section presents the core of this part: our
technical reference architecture.

86



5
Technical Reference Architecture

This part started with the definition of the detailed requirements and core design decisions
for our reference architecture for enterprise measurement infrastructures in section 3.1.
Section 4 then defined our logical reference architecture as well as an overview over the
physical system view and a classification of the core systems of an enterprise measurement
infrastructure. This section defines the technical reference architecture on top of these
important foundations.
The section starts with a broad overview over the different parts in the technical

reference architecture in section 5.1. We define the layers and provide a brief introduction
to the core components. After that we start with the first integration layer of the
technical reference architecture between calculation and measurements in section 5.2
because this glues these two core parts together. After that we provide insides into
the reference architecture for the second integration layer between the calculation and
visualization layer in section 5.3. We continue with the reference architecture for the
components in the measurement layer in section 5.4. With this we also define different
data adaption patterns for a brought variety of measurement scenarios. Section 5.5 defines
the reference architecture for the components in the calculation layer. The core layers
are finished in section 5.6, which provides the reference architecture for the components
in the visualization layer of the enterprise measurement infrastructure. After we closed
all these core layers, section 5.7 will define a reference architecture for the integration of
the operation system which is used by the monitoring system (section 6.1), the logging
system (section 6.2), and the lookup service (section 6.3). We close the chapter with a
summary in section 5.8.

87



5. Technical Reference Architecture

5.1. Overview

Data
Adapter

Data
AdpaterMeasurement

Calculation
and Storage

Visualization

...

Enterprise Measurement Data Bus (EMDB)

Metric
Kernel

Metric
Kernel

Message Cache

Dashboard ToolAnalysis Tool

...

Data
Adpater

Monitoring
Service

Directory
Service

... ... Operation

...

Data Flow Control FLow
Support Utilization 
(monitoring, logging, )

...

Message Gateway

Logging
Service

Enterprise UnifoRm mEtric Kernel Access (EUrEKA)

Integration Layer Domain LayerNon EMI Layer

«Domain Layer» 

«Domain Layer» 

«Domain Layer» 

Calculation Access
«Integration Layer» 

Data Transport
and Integration

«Integration Layer» 

Data Provider

Figure 5.1.: Technical layers and services in an enterprise measurement infrastructure

Figure 5.1 provides an overview over the layers and components in our technical
reference architecture. This figure mirrors the overview of the physical system view in
figure 4.3. The bottom layer (data provider) and the right layer (support) are identical.
The core, however, is enlarged and filled with additional components. We differentiate
between two different types of layers: Integration Layers and Domain Layers. The
integration layers, as the name suggests, glue their adjacent layers together. Therefore,
these layers mostly contain architectures for concrete services and solutions to solve
typical concrete (integration and maintenance) problems. The domain layers, on the
other side, contain the actual functional components of the EMI. Therefore, we often
just provide patterns and best practices as reference architectures for the components
in these layers. They guide the design of the actual components when instantiating the
reference architecture.

Before we go into further detail we first provide a quick overview over the components
and their interactions in the following description of the layers from bottom to top:

88



5.1. Overview

Measurement The measurement layer houses the data adapters which implement the
measurements from the metric portfolio. They specifically ensure requirement
ReD-IM3 to isolate the data providers from the measurement infrastructure. The
goal of the data adapters is to provide (access) data from heterogeneous data
sources into the measurement infrastructure. This provisioning requires accessing
data from a broad variety of data providers (requirement ReD-IM1) as well as a
data transformation (data integration) from the data format of the data provider
into a data format suitable for the integration in the measurement infrastructure
(requirement ReD-II1). The design of the data adapters need to keep latency (time
between data change and measurement) as low as possible to ensure requirement
ReD-IM2. Section 5.4 provides a micro reference architecture for data adapters as
well as several data adaption patterns.

Data Transport and Integration This layer contains the Enterprise Measurement
Data Bus (EMDB). As the name of the layer suggests the EMDB transport
measurement messages as data from data adapters to and between metric kernel
(requirement ReD-II2 and ReD-II4). The EMDB also needs to support the
integration of heterogeneous data formats from the different measurement producers
(requirement ReD-II1). Steffens already discussed the EMDB design based on the
criteria for integration from Hohpe and Wolf in his thesis [Ste13] (requirement
ReD-II3). Further details on the EMDB and the data integration are presented in
section 5.2.

Calculation and Storage The metric kernels contained in this layer are the core of the
measurement infrastructure. They implement the calculations, consume the data
from the EMDB, persist important data, and provide indicator to the visualization
layer. Hence, this fulfills requirement ReD-IC1 (separation between measurement
and calculation).
The metric kernels, like all other components, are realized as microservices. This
is particular important for the metric kernels as this enables free choice of the
persistence technology (database), which drastically increases the flexibility in
the design of the metric kernels (requirement ReD-IC2). Furthermore, this can
help to optimize the performance of the metric kernel to allow very fast, near real
time, calculation of the metrics (requirement ReD-IC3). The calculation of metrics
in the metric kernel is typically performed on request from a visualization. The
calculations are accessed through indicator access APIs provided by the metric
kernel. These APIs also provide data quality indicators (requirement ReD-IC4).
Section 5.5 provides a dedicated micro reference architecture for metric kernels.

89



5. Technical Reference Architecture

Calculation Access This layer integrates the visualization and calculation layer by
orchestrating the loosely coupled indicator services from the metric kernels. By
implementing the requirements of our Enterprise Uniform Metric Kernel Access
(EUrEKA) concept the indicators provided by the metric kernels can be easily
accessed by the visualizations (satisfying requirement ReD-IV1). The main idea of
the design is a specification for indicator access APIs as well as a description model
for them on the metric kernels together with a registry service for their orchestration.
This design provides more flexibility and coherence than a fixed uniform data
format, which is typically used for the communication between calculations and
visualizations. Section 5.3 provides additional details on the required services and
on the indicator API design for metric kernels.

Visualization The top layer houses the visualization frontends similar to typical 3-tier
designs [Eck95b]. As discussed in the logical reference architecture (section 4.1)
this contains the two different types of frontends: Analysis tools and dashboards
tools (requirement ReD-IV3). It also houses the implementation of the logical
visualizations components. The goal of the visualization frontends is to provide
monitors of the calculated or measured values. The frontends, on the other side,
provide management functionality for and interconnection between the monitors.
Section 5.6 provides a micro reference architecture for the frontends.

Operation Similar to the physical system view, the operation layer houses operation
support services to the core measurement infrastructure. Besides the already
introduced monitoring service and logging service it may include additional services
like the Lookup Service. We provide a specific architectural style in section 5.7
for the integration between the EMI services and the operation services in this
layer. The actual definition of the reference architecture for the operation services is
provided in chapter 6 after this technical reference architecture for the core services.

The data provider in the bottom are not part of the measurement infrastructure (see
physical system view). However, we included them in the overview because some data
adaption patterns require do add a specific plugin to the data provider. The inclusion
also increases the readability of the data flow. The technical reference architecture for
the data adapter uses a fill-pattern to visually indicate the parts of the data provider
that do not belong to the reference architecture.

5.1.1. Measurement Data Flow
The EMI data flow depicted in 5.2 is an extension of our conceptual data flow presented in
figure 2.4 in section 2.1.2. This already extended the ISO 15939 measurement data flow by
the means of circular data flow between derived metrics. The technical systems message
cache and message gateway further extend the data flow. Similar to our conceptual data
flow the data enters the measurement infrastructure in the bottom through measurement
by the means of the data adapters. Hence, they provide base measures to the measurement
infrastructure. Additionally, we added a message gateway in the bottom which allows

90



5.1. Overview

Provide Base 
Measure

Store Necessary 
Data

Calculate Derived
Measure

Metric Kernel

Message Cache

Data Adapter

Derived 
Measures

Store 
Message

EMDB

Visualization

Indicators

Base 
Measures

Send Message

Message Gateway

Resend 
Message

Visualize Measure

Data Flow Control FLow

Figure 5.2.: Simplified data and control flow in an EMI

to send arbitrary measurement messages to the EMDB. This dramatically eases the
integration test of metric kernels. On top of the EMDB the measurement messages are
consumed by the metric kernels of the measurement infrastructure. They store some
data which they require to calculate their metrics. Additionally, they produce new
measurement messages which are resend to the EMDB. The metric kernels also provide
indicators for the visualizations. This is again similar to our conceptual data flow from
before. Additionally to this technical data flow, the measurement messages are also
stored in a message cache. This is again useful for testing (measurement producers) and
for operation tasks like setup of new or faulty metric kernels. Therefore, the cache is able
to resend specific measurement messages to the EMDB.

91



5. Technical Reference Architecture

Discussion on the Data Flow

Due to the design of the data flow metric kernels are not able to communicate with
each other. They only receive data from the EMDB and can not exchange variability
configurations. A request-reply based metric calculation would allow metric kernels to
exchange variability configurations in order to calculate explicit derived metrics. However,
the metric kernels would then need to formally define these in addition to the accepted
types. This would complicate metric kernel reuse, metric kernel specification, and metric
kernel design. Furthermore, it would increase the load on the EMDB. It would also
contradict our push-based design in the integration and transport layer. Therefore, we
decided to not allow request-reply-based metric calculation in the reference architecture.
In a pragmatic, specific scenario, however, a metric kernel that (desperately) requires
specific calculation results from another metric kernel could simply access the metric
value access API of the other metric kernel in order to get the calculation result according
to a specific variability configuration. This would, however, violate the communication
principles from the reference architecture. Hence, a better solution for this would be to
alter the requirements for the dependent metric kernel to include the derived metrics
required by the original metric kernel and include this in the next development iteration.

5.1.2. Concept to Implementation Mapping
Figure 5.3 provides the mapping between the metric concepts presented in section 2.1.1
and their corresponding implementations in an enterprise measurement infrastructure. As
defined earlier, metrics identified by a unique metric reference consists of a measurement
approach. These approaches are specialized by measurement definition and calculation
definition. The later consists of a measurement function and refers to other metrics which
provide the inputs to the function. Visualizations contain a number of interpretation
aids which describe how to read and interpret the visualization. They are also connected
to the information needs of the metric customer.
In the enterprise measurement infrastructure the metric customers derive answers to

their information needs from monitors. These are defined by the visualizations and hence
connected to the interpretation aids. Monitors utilize a renderer to visualize the data
provided by metric kernels. These provide the data by the means of a EUrEKA conform
data access API. Metric Kernels implement a number of calculation functions whereas the
data adapters implement measurement functions. Metric kernels and data adapters both
utilize message senders which implement measurement producers defined in section 2.3.7.
Consequently, the measurements are implemented by measurement messages which can
be received by metric kernels.

5.1.3. Discussion and Design Alternatives
In this sub section we like to discuss alternatives to the layers and general layout of the
technical reference architecture presented above. We mainly distinguish between two
mayor alternatives: ad-hoc (unstructured) loosely coupled distributed systems and single

92



5.1. Overview

Metric

- Measurement Function

Measurement Definition

- Calculation Function

Calculation Definiton

Measurement Approach

Visualization

1..*

*

*

*

Concept Implementation

Measurement

Measurement Producer

produces

Measurement Message

Message Sender

Data Adapter

Metric Kernel

Monitor

produces

*

*

*

*

*

Access 
Data from

Renderer

uses

receives

Figure 5.3.: Metric concepts and their corresponding implementations in an enterprise
measurement infrastructure

database systems (e.g. data warehouses). The following sub sections provide additional
details to the alternatives and additional discussions on their strengths and weaknesses.

Loosely Coupled Distributed Systems

We choose this as an alternative because it is a popular approach in our related work
(see section 1.4). Also it is a common approach in the field of enterprise application
integration which is supported by a lot of experiences and several well proven pattern
[HW03a, Kai02, Hor14, Cha04, Fow02, Tho05]. It is also the approach chosen by the
popular measurement tool Hackystat that we already mentioned above. Furthermore,

93



5. Technical Reference Architecture

the concepts of Kunz et al. and Heidrich et al. that we discussed in section 1.4 both
propose a SOA-based measurement infrastructure [KSDW06, Kun09, HM08a, Hei08].
The idea in both approaches is to provide a set of measurement services that support
the main measurement use-cases: measurement of base metrics, calculation of derived
metrics, and visualization. All these services are (relatively) loosely coupled to provide
flexibility. Besides the design and definition of the services and their alignment in the
overall improvement model the work from Kunz et al. does not provide any additional
structure like layers or pattern.
The work from Heidrich et al. proposes a layered architecture [HM08a]. The layers

for the the high level architecture of their reference implementation Specula are: Data
Collection, Data Processing, and Data Exploration (Data Visualization). This closely
reflects the layers in our reference architecture. However, their design lacks the two, as
we believe very important, integration layers. The services in the layers are very generic.
The core of the data collection layer is a repository manager service that monolithically
orchestrates and performs the measurement. The data processing layer contains “Core
Services” that implement the derived metrics. The data exploration layer contains the
different dashboards. All these services are designed monolithically using a single database
as the integration tool. Therefore this approach also falls into the alternative that we
discuss in the following sub section.
The idea of these designs, however, can be extended in order to further support

flexibility with multiple databases in the services (following the microservice concept).
Therefore, a set of loosely coupled (unstructured) SOA services is a potential alternative
to our reference architecture. The services are extended and connected on-the-fly when
the measurement system needs to be changed based on changes in the metric portfolio
or new tooling requirements. Instead of SOA-oriented services the different services,
especially the measurement part, could also be implemented using distributed loosely
coupled agents. The idea is similar; only the integration between the services is different.

The most important benefit of this design would be its flexibility. The lack of structure
especially the lack of fixed layers, boundaries, and integration concepts allows to solve all
requirements with ad-hoc solutions. Therefore, the implementation of such a measurement
infrastructure will be faster than an infrastructure based on our reference architecture
(an EMI).

The most obvious weakness follows directly from this argument: The lack of structure
can lead to a messy architectures which generate higher maintenance costs. The longer
such a system is maintained the higher the refactoring and restructuring effort required
to integrate new requirements will be. Therefore, in the long shot the implementation in
such a measurement infrastructure will slow down significantly over an implementation in
an EMI. Furthermore, our reference architecture already provides a good documentation
of the concepts of the different layers and their services. This contrasts the increasing
high effort to keep the (individual) documentation of a SOA up-to-date. Therefore,
the documentation effort in an EMI is lower and new staff will faster be able to work
productively. Additionally, our reuse oriented metric management approach is reflected
in a lot of concepts in our reference architecture. Therefore, multiple EMIs are able to

94



5.1. Overview

easily exchange and share services with very little additional effort; contrasting reuse of
services in a SOA. Reuse of services will lead to higher quality of the services and, yet
again, lower maintenance costs.

Single Database Systems

Single common databases and data warehouses are the most common used basis of
large industrial measurement infrastructures. A single measurement database is also the
recommended design by measurement best practices and listed as a measurement success
factor [NV01, Pau06, HMO08]. However, we already discussed a lot of weaknesses with
this design in section 1.2.1, section 1.4, and section 3.1.

The most important benefit of an architecture based on a single measurement database
and more particularly using a data warehouse are their wide adoption in industry and
academia. The architectural-basis for data warehouses and the database design is covered
in education and is generally considered common knowledge. Therefore, the development
of data warehouses is supported by a large variety of processes and supporting tools.
The measurement mechanism into a warehouse using the extract-transform-load (ETL)
mechanism is also known and heavily supported by tools. For example by the means of
graphical notations to specify the ETL. Furthermore, data warehouses by the means
of business information systems are successfully used in most companies. Most of the
benefits, however, result from their focus on homogeneous financial data.
We already discussed a lot of weaknesses of measurement systems based on a single

database (schema). Most importantly, they are very inflexible once they become large.
The reason for this is that almost every new requirement needs to add or modify some
part of the data schema. Schema transformation on large databases, however, is far from
easy and generally requires a lot of effort for development, data migration, testing, and
release.
Furthermore, a single database is obviously not robust against failure. If the one

database is offline, for example for maintenance or because of a failure, then the complete
measurement infrastructure will not be operational. Therefore, operators need to take
additional precautions to guarantee robustness. For example mirroring the database and
abstracting the extra database using a reverse proxy or load balancer. However, this
also drastically increase maintenance effort (updates on multiple system, synchronization,
testing, . . . ).

Managing and working with ETLs can get difficult as well. Our experience on ETLs in
practice is that they will become large and complex. Especially metrics to monitor the
software development process will get complicated. Like all large and complex software
development artifacts: Large ETLs produce high maintenance effort and potential errors.
Another issue with an ETL-based measurement mechanism is its timing. ELT is, almost
always, triggered periodically. Therefore, the time difference between changing some data
and seeing the result of the update in the measurement system (latency) is high.

95



5. Technical Reference Architecture

Discussion on the MeDIC Reference Architecture

This subsection will discuss the benefits and weaknesses of EMIs based on our reference
architecture. We derived these from the application of the reference architecture and
numerous discussions on the topics with architects and users of the reference architecture.

The strongest weakness of our reference architecture is a high initial effort that needs
to be invested before the first EMI is operational. A lot of the services from the reference
architecture as well as a development platform needs to be build and established before
development on the actual EMI services may start. If they are established, however, they
all help to reduce the further development and maintenance effort significantly. Most
studies see the relation at around 20% initial effort versus 80% maintenance effort over
the complete life cycle of the software system [Sta03, BR00, Jon06, BDKZ93]. Therefore,
we believe it is better to support effective and efficient maintenance over fast initial
development. Furthermore, once the development platform is established and the services
exist they can be shared and distributed. They can then be reused by other branches or
even other companies to speed up the initial development of their EMIs.

EMIs based on our MeDIC reference architecture combine the two strengths from both
approaches: They are very flexible and their development and application is supported
by a wide variety of tools because we use well known and established techniques.
Furthermore, our reference architecture proposes a large set of additional services that
support the development, testing, and operation of an EMI. Furthermore, our reference
architecture also helps to avoid most of the problems with the alternatives from above.
The reference architecture provides enough structure and a good harness to avoid messy
architectures and reduce maintenance costs. Furthermore, an EMI based on many
microservices with independent databases and free choice of technology avoids the
problems with single database measurement infrastructures. Contrasting graphically or
DSL configured ETLs, our data adaption is programmed in data adapters. Therefore,
developers, QA, and operators are able to choose among a large variety of processes
and tools, which they are already familiar with, to identify and deal with potential
maintenance problems.

This concludes our discussion and initial overview over the technical reference
architecture. The next section will introduce the backbone of our reference architecture:
the data integration and transport layer with its key part the enterprise measurement
data bus (EMDB).

96



5.2. Data Transport and Integration

5.2. Data Transport and Integration

Data
Adapter

Data
AdpaterMeasurement

Data Transport
and Integration

Calculation
and Storage

...

Enterprise Measurement Data Bus (EMDB)

Metric
Kernel

Metric
Kernel

Message Cache

...

Data
Adpater

Message Gateway

Topics

EMDB Message

Event Measurement

Figure 5.4.: Zoom into the data transport and integration layer of the MeDIC reference
architecture

The last sections gave an initial overview over our technical reference architecture for
enterprise measurement infrastructures. This section provides additional insides into one
of the two integration layers of an EMI: the transport and integration layer. Figure 5.4
shows an overview over the components in the layer. The main concept is the enterprise
measurement data bus (EMDB) in the middle. It contains several topics for the different
integration and communication tasks between the measurement and the calculation
layer. These topics exchange EMDB Messages which get specialized for different types of
messages. Furthermore, the layer contains two support services on the right hand side of
the EMDB: The Message Cache and the Message Gateway.
In this section we first describe the enterprise measurement data bus (EMDB) in the

following subsection 5.2.1. After that we provide a detailed definition of measurement
messages and their implementation in subsection 5.2.2. The reference architecture should
support our engineering approach and accordingly we also need to support tasks like
testing and development. Therefore, we added additional services to the integration
and transport layer to support these tasks. Subsection 5.2.4 provides additional details
on these services and how they support the tasks. The last subsection 5.2.5 introduces
additional topics that are not directly involved in the measurement process but provide
a communication infrastructure for additional services and functionality. We close the
section with a short summary in subsection 5.2.6.

97



5. Technical Reference Architecture

5.2.1. Enterprise Measurement Data Bus (EMDB)
The primary goal of the enterprise measurement data bus is to transport different types
of measurement data from the measurement producers to the measurement consumers
(requirement ReD-II2). Hence, it needs to accept measurement messages from data
adapter and metric kernels and transport it to the metric kernels that consume the data.
The bus, therefore, provides the integration between data providers, via data adapters,
and metric kernels.

Topics

EMI.base

EMI.measures

EMI.events

EMI.monitor

EMI.log

Measurement Services
...

Figure 5.5.: Publish/subscribe topics inside the EMDB

Figure 5.5 shows the internal publish/subscribe topics (see Hohpe and Wolf for
details [HW03a]) which implement the EMDB. This design follows the principle of
separation-of-concerns with specific topics for the different types of data.
On the top level we differentiate between measurement topics and service topics.

The measurement topics transport the measurement related data of the EMI whereas
the service topics transport other data for services that are not directly related to
measurements (like logging and monitoring). The following list provides a quick overview
over the standard measurement topics:

EMI.base Transports the raw, and typically unprocessed, atomic data from the data
adapter to the metric kernels. However, this can also transport processed data from
a metric kernel to other metric kernels if this data is not a pure measurement or an
event.

EMI.measures This topic transport the measurement data. Measurement data always
contains one measurement value as a number! We recommend a specific topic for
these types of data because they are very common in a measurement infrastructure
and can be consumed by a lot of standard metric kernels.

98



5.2. Data Transport and Integration

EMI.events This topic transport event-based data. Event data indicates an action
on data in a data provider, whereas base data typically is the result of such an
action. Hence, contrasting base data which can represent anything, an event has a
defined semantic. Therefore, we recommend using a specific topic for this type of
measurement data. Also, like measurement data, event data can be consumed by
standard metric kernels to calculate typical metrics like statistical event counting
or statistical analysis of the event occurrences.

This design allows the metric services to just connect to the specific topics for the data
that they require. Also, this isolates the different parts even further than just one topic
(requirement ReD-II4). Obviously, these topics can be extended when instantiating the
reference architecture. The following section provides details to the messages exchanged
over these topics.

5.2.2. EMDB Messages
EMDB messages are the objects which are exchanged over the measurement topics on
the EMDB. The service topics also require messages but due to their specific nature they
are not bound to the requirements for measurement messages.

Following our formalism in section 2.3, which is extended by the reference architecture
concepts in section 7.2, the messages on the topics of the EMDB are typed. However,
as stated in requirement ReD-II1 the EMDB needs to deal with heterogeneous data
types. Hence, the architect of the EMI needs to be able to model different types of data
included in EMDB messages and integrate those with each other. We recommend to
utilize generalization and specialization on these types to easily implement the concepts
behind the compatibility and satisfiability relation from the formalism. This also helps
to model and integrate complex data1.
Figure 5.6 shows a possible specialization hierarchy for EMDB messages. The Base

Message on the top is most general message type in this example. It contains fields
for the data change timestamp and the entity of measurement. In this example it also
contains a method to get the measurement identification (MId from the formalism). This
base messages are exchanged over the EMI.base topic. Additionally, we recommend to
define base messages for the two other measurement topics: measures and events. In this
example the Base Measurement Message and the Base Event Message.

In this example we extended the Base Message with two specific base messages for data
from a ticket management system (Ticket Message) and a version control system
(VCS Message). These specific base messages add additional fields to the message for
the data that they represent. In a real application these would then be extended by
messages specific to the the data provider. For example a JIRA Message as a sub
type of Ticket Message to represent tickets from a jira system. The following section
provides further details into message sub typing and how it can be used to reuse metric
kernels.

1See the diploma thesis of Steffens for additional details [Ste13]

99



5. Technical Reference Architecture

value : Double
body : String

BaseMeasurementMessage

ticketId : String
status : Status

Ticket Message

filename : String
revision : String
repository : String

VCS Message

... ...

...
getMId() : String

dataChangeTimeStamp : Date
eom : String

BaseMessage

...

body : String

BaseEventMessage

...
EMI.base

EMI.measures EMI.events

Figure 5.6.: Example for a EMDB message specialization hierarchy and relation to EMDB
topics

5.2.3. Integration and Reuse

Data Adapter

EMDB Base 
Message

EMDB Event 
Message

EMDB 
Measurement

Metric Kernel Metric Kernel Metric Kernel

EMDB ...

Figure 5.7.: Integration between Data Adapter and Metric Kernel via EMDB Messages

Figure 5.7 shows the conceptual integration of one data adapter and two metric kernels.
The data adapter provides two measurement messages: a base message and an event
message. Both are required for a calculation in the first metric kernel. The second metric
kernel just consumes the event message and provides another measurement message,
which is consumed by the third metric kernel. As visualized in the figure, the EMDB
messages connect the provided data from the measurement producer to the required data
from the measurement consumer and therefore integrate the two with each other.
In our formalism in section 2.3 we already mentioned different abstraction levels for

metrics and potential reuse scenarios for derived metrics in section 2.3.6. We support
this in the technical reference architecture by specialization hierarchies as described in
the section above. Figure 5.8 shows an example for the reuse of a general metric kernel

100



5.2. Data Transport and Integration

General
Metric Kernel

Specific
Metric Kernel

General
Message

Specific
Message

compatible to

compatible to

compatible to

requires

requires

General
Data

Specific
Data

Figure 5.8.: Reusing a general metric kernel with specific EMDB messages

can be reused in a specific context. The calculation in the General Metric Kernel
requires General Data. This general data is embedded in General Messages. The
General Message is therefore compatible to the guard of the measurement consumer
of the metric kernel. Additionally, the EMI in the example also requires a Specific
Metric Kernel for other calculations. This metric kernel requires Specific Data
which is included in Specific Messages. These specific messages, however, are
specializations from the general messages. Therefore, they also include general data.
Hence, specific messages are also compatible to the guard of the measurement consumer
of the general metric kernel. Thus, the general metric kernel can be reused in this specific
scenario and consumes specific messages.

5.2.4. Important EMDB Services
The following two services are also included in the data transport and integration layer.
They drastically reduce (or even enable) maintenance and test effort in an EMI. Without
these services the correct operation of the EMI is very hard to check. Consequently,
without them the EMI will suffer from maintenance and quality problems. We first
describe the reference architecture for a Message Gateway which provides an API to
directly send EMDB messages over the topics without using a data adapter. This is
particular useful for testing. After this we provide a reference architecture for the message
cache. This cache, as the name suggests, caches all messages on the EMDB. Hence, it
provides important internal details on the data flow of the EMI. Additionally, it provides
mechanisms to resend particular messages or chunks of messages which is a mandatory
feature for several maintenance tasks.

101



5. Technical Reference Architecture

Message Gateway

When (integration- and system-) testing a metric kernel we require a mechanism to
test the metric kernel in “isolation” without a data adapter or other metric kernel that
provides the required data for the metric kernel under test. Thus, we require a mechanism
in an EMI to send measurement messages directly to the EMDB without using a data
adapter or changing data in a data provider. The Message Gateway Service provides
this mechanism. An automated (or manual) test can then use the API of the Message
Gateway to send test data to the metric kernel and check the calculation results using the
EUrEKA API of the metric kernel (see section 5.3 and section 5.5). The Message Gateway
can also be used when prototyping an EMI to simulate a data adapter or simulate the
calculation of a metric kernel.

EMI.base

EMI.measures

EMI.events

Message Gateway

Controller

BaseSender

MeasurementSender

EventSender

Send
EMDB
Message

SendAPI

Figure 5.9.: Message Gateway internal component view

Figure 5.9 provides an overview over the internal components required to build a
Message Gateway. The Message Gateway provides a send EMDB Message API to the
outside world. The API is typically implemented as a SOAP or REST web service.
Inside the Message Gateway it is realized by the SendAPI component. This component
implements and exposes the web service. It then delegates the sending to one of the
dedicated message senders. Typically each topic requires a unique sender. However,
the message senders are most likely provided by the platform developed underneath the
specific EMI because they are require by many services. The send API only needs to
provide one send method but can optionally provide more specific methods as described
by the following listing using our API description language:

102



5.2. Data Transport and Integration

Source Code 5.1 Send API of the Message Gateway
interface SendAPI

mandatory method send
mandatory busIdentifier : String
mandatory message : String
returns Void

optional method sendMeasurement
mandatory metricId : String
mandatory value : Double
optional body : String
returns Void

optional method sendEvent
mandatory eventId : String
optional body : String
returns Void

The optional methods that we included in listing 5.1 are specific messages to directly
send messages to the base, the measurement, and the event bus. They assume a message
hierarchy as provided in figure 5.6 including their specific attributes. Therefore, the
sendMeasurement method for example takes in a metric identifier and a value as the
specific attributes of a measurement message as well as an optional message body.

Message Cache

The metric developer and metric operator need to be able to “see inside” an EMI. The
monitoring and logging service of the EMI already provide a good view of the operation
status of the EMI and dedicated logging information. However, sometimes they just need
to see whether a certain message was send without digging through log data. Additionally,
they require a mechanism to resend chunks of measurement messages in maintenance
tasks such as setup of a new metric kernel or resetup of a maintained metric kernel. The
Message Cache acts as a data sink on the EMDB and stores all measurement messages.
It should also provide ways to see these messages and to resend chunks of them based on
certain criteria. Again, checking for dedicated messages is also important for testing. A
test needs to verify whether a message was send by a measurement producer from a data
adapter or metric kernel.
Figure 5.10 provides an overview over the recommended internal components of a

message cache. In this reference the messages from the topics are received using several
dedicated message receivers. Depending on the technology, however, this can also be
realized using just one receiver. The receiver(s) then delegates the storage of the data
to the ReceiveController component. This controller transforms the data into a
format that is accepted by the Database of the Message Cache. We recommend a
document store type database technology because the data is very simple without the

103



5. Technical Reference Architecture

EMI.base

EMI.measures

EMI.events

Message Cache

SendController

BaseSender

MeasurementSender

EventSender

Receive

Send

BaseReceiver

MeasurementReceiver

EventReceiver

ReceiveController

Database

ResendAPI

Store
Message

Statistic
Data
Access

Resend

ResendAPI

StatisticsAPI

StatisticsAPI

Web
Interface

Statistics
Controller

MessageAccessAPI

MessageAccessAPI

Statistics
Update

Message
Access

Figure 5.10.: Message Cache internal component view

need to ensure referential integrity. Therefore, storing does not require transactions and
the database does not need to support foreign keys. The Message Cache provides several
APIs to access it from a web user interface for example. We describe the APIs in further
detail in the next paragraphs including their methods using our API description language.

ResendAPI

The core API required for maintenance. It contains several methods to resend single
messages or chunks of messages. The chunks can be specified by providing a list of
message identifiers or by specifying a time frame. Using this method the operator can
resend all messages from a given time frame (for example the last day or week). Details
on the procedures on how to use it in concrete situations are included in the operation
section of our process model in section 12.2.
The ResendAPI delegates the implementation of the actual resending to the

SendController. This controller queries the required messages from the database and
transforms the data into messages that can be send again. The sending itself is again
delegated to dedicated message sender components similar to the message gateway above.

104



5.2. Data Transport and Integration

Source Code 5.2 Resend API of the Message Cache
interface ResendAPI

mandatory method resendSpecific
mandatory messageIdentifier : String
returns Void

mandatory method resendTimeFrame
mandatory from : DateTime
mandatory until : DateTime
returns Void

The method resendSpecific resends a specific method whereas
resendTimeFrame resends all messages in the provided time frame.

MessageAccessAPI

Developers and operators need to quickly check if anticipated messages have been sent
over the EMDB; for example when setting up an EMI or when executing integration
and system tests. These tests also require access to the details of a given message to
check if anticipated data is really contained in the message. Therefore the API provides
a method to list the last n messages received by the message cache (for example the last
100 messages) as well as a method to access the details of a given message identifier. The
following listing 5.3 provides an overview over the methods of the API using our API
description language. Further details on testing are included in the design phase of our
process model in section 11.2.2.

Source Code 5.3 Message Access API of the Message Cache
interface MessageAccessAPI

mandatory method listAll
optional topicIdentifier : String
returns List of Messages

mandatory method listLimited
mandatory limit : Integer
optional start : Integer
optional topicIdentifier : String
returns List of Messages

optional method listTimeFrame
mandatory from : DateTime
mandatory until : DateTime
optional topicIdentifier : String
returns List of Messages

105



5. Technical Reference Architecture

optional method listAllTopicIdentifier
returns List of String

The method listAll, as the name suggests, returns a list of all messages in the
cache. listLimited returns only a limited number of messages for a given limit and
an optional start parameter. The optional method listTimeFrame can be used to
show all messages in a given time frame; for example in a confirm dialog before resending
them. Optionally, the message list of all methods can be filtered to only messages on
a given topic using the optional topicIdentifier parameter. The optional method
listAllTopicIdentifiers returns a list of all these identifiers because the topics
are specific to the EMI instance and can change over time.

StatisticsAPI

This API provides access to statistics on the database required for operators. They
need to be able to quickly check the amount of messages stored in the database for
example to add additional storage space to the server. Additionally, because the Message
Cache receives all messages on the topics the statistics provide important information on
the load of the topics. This information should also be accessible from the monitoring
system.
Important information includes the number of messages sent on the topic in a given

time frame (for example the last hour or minute) as well as statistics like average and peak
number of messages per time frame (for example average and peak number of messages
per minute in the last hour).
The StatisticsAPI again delegates the implementation of the calculation of the

statistics to the StatisticsController. This controller typically uses some statistics
functions on the database to calculate the metrics. Additionally, it is called whenever a
message is received so it may store additional data for example to calculate average and
peak statistics.
This API is very specific to the needs of the operators and developers of the EMI

instance. Also the access to the statistics is very specific. For example the API could just
offer a single method getStatistics that returns a statics data transport object with
all statistics. Another option would be to offer a method to access statistics specifically
similar to the indicator access APIs (see section 5.3.2) using a getStatisticValue
method that requires an identifier for the statistical value. A third option would be
to offer specific methods for each statistic like getNumberOfMessagesForTopic or
getAverageMessagesPerMinute. Because the options are so diverse we do not
provide a specific API description for this API.

This section described the two important services in the data transport and integration
layer the next section will continue with the introduction of additional, not measurement
related, topics.

106



5.2. Data Transport and Integration

5.2.5. Additional Service Topics
The sections above described messages and services for the core, measurement related,
topics of the EMDB. However, as introduced in section 5.2.1 the EMDB also contains
additional service topics. The two most important are the monitoring topic and the
logging topic.

Monitoring and Logging

The goal of the monitoring topic is to transport status informations and performance
data from metric services to the monitoring service. The topic therefore integrates the
(different) metric services in an EMI with the centralized monitoring system. Section 6.1
provides additional information on this integration and the information exchanged over
the topic.
Similar to the monitoring topic the goal of the logging topic is to transport log data

from the metric services to the central logging system. The logging topic and integration
works similar to the monitoring integration. Further details on the logging system are
included in section 6.2.

Command Topic

Some services in an EMI require an infrastructure to exchange asynchronous commands
between each other. These commands may be required for maintenance tasks such as
shutting down or halting a metric service. Commands can also be used to trigger a data
adapter that implements the Invoke-Dump pattern (see section 5.4.1). As an extreme,
such a command can also carry the data that should be adapted by the data adapter
for example from an uploaded file (see the data adaption for CSV-files in the RiVER
EMI in section 13.3 for example). The command topic provides the backbone for a
loosely coupled command sender and receiver infrastructure similar to the measurement
integration of the EMI.

Directory Topic

Section 6.3 describes the Directory Service. This is an optional service in an EMI that
provides a number of directories to translate terms for synonyms. The section provides
detailed information on the benefits of such a central directory service. This service
should be easily integrateable in the metric services. Following our other designs the
easiest way to integrate it is to use a dedicated topic: the directory topic.

5.2.6. Summary
This section provided details for the services and components in the data integration
and transport layer of our reference architecture. The core and backbone of the
layer are several topics on the EMDB following the publish/subscribe pattern. We
distinguished between measurement topics to integrate metric services and service topics

107



5. Technical Reference Architecture

for other services. The measurement topics on the EMDB exchanges EMDB Messages to
integrate the data adapters and metric kernels with each other. EMDB Messages utilize
generalization-specialization hierarchies to ease reuse of generic metric kernels and ease
integration. This layer also contains the Generic Message Gateway and Message Cache
Services. These ease development, testing, and operation of an EMI.

The message senders and receivers for the measurement topics implement the technical
part of the measurement producer and measurement consumer from our formalism.
Hence, the data integration and transport layer only integrates the measurement related
metric services with each other (metric kernels and data adapters). However, the metric
kernel also need to be integrated with the visualizations and frontend applications. This
integration is realized using the calculation access layer which is described in the next
section.

108



5.3. Calculation Access

5.3. Calculation Access
The last section described the details of the data integration and transport layer. The
enterprise measurement data bus (EMDB) in the layer implements the technical part of
the measurement producers and consumers required in our formalism. This section will
focus on the integration between the calculation layer and the visualization layer. The
calculation layer houses a number of metric kernels which need to be accessed by the
visualization frontends in the visualization layer.

On the one hand, the connection between metric kernel and visualization can be fixed.
The configuration on how to access the data on the metric kernel can, thus, be hard
coded into the visualization. On the other hand, if the visualizations and metric kernels
should be loosely coupled then we require a mechanism to flexibly connect them with
each other. The problem here, however, is that the visualizations require specific data
for their visualizations. Furthermore, they need to know the metric kernels which are
able to provide such data.
The idea behind our design is that the metric kernels specify the data provided by

their indicators in a specific model. The visualizations can then check these models
and find suitable indicators. We call this design enterprise uniform metric kernel access
(EUrEKA). Even though sticking to the EUrEKA specifications is a good idea when
building an EMI it is most beneficial if the metric applications require flexible association
between metric kernels and visualizations or very flexible reuse and exchange of metric
kernels.

Calculation
and Storage

Visualization Dashboard ToolAnalysis Tool

...

... ...

Calculation 
Access

API Description

EUrEKA 
Registry

EUrEKA
Indicator Wrapper

Metric Kernel

API

API 
Description 
Model

Indicator Access
API Specification

Figure 5.11.: Zoom into the calculation access layer of the MeDIC reference architecture

Figure 5.12 provides an overview over the central parts in the calculation access layer.
Each metric kernel provides indicator access APIs as well as an indicator access API
description. The description follows our API Description Model and the indicator access
APIs implement the Indicator Access API Specification. The center shows the two

109



5. Technical Reference Architecture

EUrEKA Services: EUrEKA Indicator Wrapper and EUrEKA Registry.

Consumer Consumer

Registry

Metric Kernel

Indicator
API 1

Indicator
API 2

Kernel
Description

Metric Kernel

Indicator
API 3

Visualization 1 Visualization 2

Kernel
Description

Guides

Orchestration

Consumer

Producer

Figure 5.12.: Overview and layers of the enterprise uniform metric kernel access
(EUrEKA) design

Contrasting the overview in figure 5.11, figure 5.12 shows a conceptual overview over
the EUrEKA design. In EUrEKA we differentiate between three layers: the EUrEKA
consumers on the top (in the EMI the visualization layer), the EUrEKA orchestration
layer in the middle, and the EUrEKA providers on the bottom. The core of EUrEKA
is the definition for the indicator access APIs on the EUrEKA providers (the metric
kernels) as well as an API and a model to describe these APIs to the EUrEKA registry
in the orchestration layer. The indicator access APIs, as the name suggests, allow access
to the indicator values of the metric kernel following the REST principle. The figure
shows three different indicator access APIs on the two metric kernels. These APIs are
registered in the EUrEKA registry. EUrEKA consumers (visualizations) can query the
EUrEKA registry to get a list of suitable indicators on metric kernels that fit their data
needs. For example the left consumer in the figure requires specific data for visualization
1 which is provided by Indicator Access API 1. The two consumers share a visualization
(Visualization 2) which can visualize data either from Indicator API 2 or Indicator API 3
(these two APIs both provide compatible data for visualization 2).

The following subsection 5.3.1 will briefly discuss our design decisions for EUrEKA
and provide a quick discussion on related work such as UDDI and OData. We will then
introduce the EUrEKA indicator access API description model in subsection 5.3.3.
Instances of this model describe the indicator access APIs on the metric kernels.
Subsection 5.3.2 will describe these indicator access APIs using our API description
language. From there we will introduce the reference architectures for the two services in
this layer. We start in subsection 5.3.4 with the reference architecture for the EUrEKA
Registry Service. Subsection 5.3.5 will provide details about the optional EUrEKA

110



5.3. Calculation Access

Producer Gateway. The next subsection 5.18 provides additional information about the
EUrEKA Consumer Component which is used in the visualization frontends. After that
we introduce the reference architecture for the optional EUrEKA Indicator Wrapper
Service in subsection 5.3.7. We close the section with a short summary in subsection 5.3.8.

5.3.1. Design Decisions and Related Work
Contrasting the data transport and integration layer, the communication in the calculation
access layer is purely based on interactions between REST service. We decided to use this
type of integration infrastructure in this layer because the control flow in this upper part of
an EMI is triggered by interactions on the frontend applications in the visualization layer.
Thus, inversion of control resulting from the push-based mechanisms in the EMDB using
topics is not suitable here. Therefore, it does not require a bus-based publish/subscribe
infrastructure. However, depending on the requirements of the EMI that should be build
parts of it can be implemented using an enterprise service bus product.
Integrating and discovering the different metric kernels in an EMI is challenging.

Service oriented architectures (SOA) struggle with a similar yet more general problem2,
for some time. The solution for this problem in generic SOAs is Universal Discovery,
Description and Integration (UDDI). UDDI includes a directory of all services in a SOA
as an XML-based registry. The registry contains descriptions of the services using their
WSDL descriptions. Event though UDDI was quiet broadly adopted in the early 2000
years it failed in the long run. Starting in 2006 Microsoft, SAP, and IBM discontinue
their UDDI service support [RMGW05]. In 2010 Microsoft removed UDDI services from
Windows Server 2008 [Net10]. We believe the reason why the UDDI initiatives failed
are because they tried to solve the integration and discovery problem on a too general
level. Arbitrary SOA services are to different to just use a uniform registry and generic
integration mechanism for all of them.

Consequently, alternative solutions and services started to take over the role and idea
of UDDI. One of these alternatives is the open data protocol (OData - see http://www.
odata.org/). OData enables services, similar to UDDI, to define their services and their
data models. Contrasting UDDI, OData uses REST services and specific URIs for the
location of the metadata information and service integration. However, the goal of OData,
like UDDI, is to integrate arbitrary services with each other. Another alternative that
is focused on load balancing is Netflix Eureka (see https://github.com/netflix/
eureka for further details). The backbone of Netflix Eureka also provides a service
registry. Its main porposes are middle tier load balancing and service location. The
concept of Eureka is that the service registry provides the load balancer with services
suitable for a specific task, which eases and automates its configuration. Consumers
simply request resources from the load balancers who delegates the calls to the actual
resources (in the cloud). Compared to traditional load balancers this does not require to
hard-code the service URIs into the load balancer, which is particularly important for

2In an arbitrary SOA the services are arbitrary. However, in our case we know that all the APIs are
indicator access APIs. This is a fixed semantic and we also ensure technical compatibility

111

http://www.odata.org/
http://www.odata.org/
https://github.com/netflix/eureka
https://github.com/netflix/eureka


5. Technical Reference Architecture

cloud services whose URIs change frequently.

5.3.2. EUrEKA Indicator Access APIs
The primary goal of the indicator access APIs is to access the result of metric calculations as
indicators. Indicators are calculation results processed for visualizations (see section 5.1.1).
Consequently every calculation result that should be visualized needs to be accessible via
one of the indicator access APIs of the metric kernel. A metric kernel can provide as
many indicator access APIs as the design requires. It can also provide several slightly
different indicator access APIs for the same calculation result if it needs to be visualized in
different ways and the visualizations require other types of data. Following our formalism,
the calculation of the metrics can be tailored by providing a variability configuration
that fits the variability model of that metric. Therefore, the configuration needs to be
passed as parameter3.
The indicator access APIs can also contain methods to increase the usability of the

interactions in the visualizations. They can providing information about metrics and
about calculation data insight the metric kernel; like a list of all metric identifiers that are
implemented in the metric kernel. Furthermore, the API contains a method to indicate
the data quality of a specific indicator request. This information can be visualized
alongside the visualization to provide information about data quality problems. An
alternative to this design would be to always include the data quality in a special wrapper
object with each calculation result. However, this would produce additional data overhead
if the data is not used in the visualization. Also, if the indicator data is included in a
wrapper alongside the data quality then the data type of the method would differ from
the type provided in the API description model.

The following section contains additional information and a detailed description of the
required API (EUrEKA indicator access API).

Indicator Access APIs

Indicator access APIs most importantly require methods to access data (the indicators).
We differentiate between a method to access the current data (latest value of a calculation)
and a method to access a list of data (for example a time series of calculations). These two
types could also be differentiated via different metric identifiers but this would lead too
unnecessary many metric identifiers. Another mandatory method on the APIs is a method
to access the data quality for a given metric and a given entity of measurement. All other
methods that can be used to increase the usability of the specification of monitors are
optional.

The following listing 5.4 specifies the indicator access APIs using our API specification
language (see section 3.2 for details on the language). We describe each method in detail
after the listing.

3See thesis of Martin Mädler for further details [Mäd12].

112



5.3. Calculation Access

Source Code 5.4 Metric Value Access API specification
interface MetricKernelCalculationDataAPI

generic type parameter DataType

mandatory method getCurrentDataValue
mandatory parameter entityOfMeasurement : String
mandatory parameter metricId : String
optional parameter variabilityConfig : VariabilityConfiguration
returns DataType

mandatory method getDataSeries
mandatory parameter entityOfMeasurement : String
mandatory parameter metricId : String
optional parameter variabilityConfig : VariabilityConfiguration
returns List of DataType

mandatory method getDataQuality
mandatory parameter entityOfMeasurement : String
mandatory parameter metricId : String
returns DataQuality

optional method getVariabilityModelForMetricId
mandatory parameter metricId : String
returns VariabilityModel

optional method getAllMetricIds
returns List of String

optional method getAllEOMsForMetricId
mandatory parameter metricId : String
returns List of String

getCurrentDataValue Returns the current value for a given entity of measurement
and metric reference. For example this method can be used to access the current
calculation result of a metric in a list or on a bullet graph. It is important to
differentiate between current and latest value of the metric. The latest value
is simply the calculation result for the data with the highest time stamp. This
can be in the future and is typically not the value required in a dashboard. The
current value is the value suitable for the time of the access which depends on the
specification of the metric.

getDataSeries Returns a list of data values for a given metric reference and entity of
measurement. For example this method can be used to access a time series of the
calculation results of a metric.

113



5. Technical Reference Architecture

getDataQuality Returns the current data quality for a given entity of measurement and
metric reference. The resulting data quality type needs to be specified during the
design metric services and integration activity in the specification phase (see 11.2.1).
Obviously, the visualization needs to be able to visualize the data quality if required.

getVariabilityModelForMetricReference Returns an instance of a variability model
for the given metric reference. This variability model can then be used to create
specific editors to configure variability configurations when specifying data sources
for monitors.

getAllMetricIds Returns a list of all metric references provided by this kernel for this
specific data type. This is a convenience method to increase the usability of the
visualization frontends. The list can be used to provide a selection of metric ids in
a user interface when specifying data sources for monitors.

getAllEOMsForMetricReference Returns a list of all eoms that are stored for a
specific metric reference. This also is a convenience method for the configuration of
the visualization because it allows to reduce the eom selections to only those that
provide calculation results for the given metric reference.

5.3.3. EUrEKA Kernel Description Meta Model
As stated above, the metric kernels need to describe the indicator access APIs and the
data on these APIs to allow a visualization to check this data against its requirements.
The EUrEKA Kernel Description Meta Model defines the models that describe the
indicator access APIs of a metric kernel and their data. These descriptions, the models,
can be stored in the EUrEKA registry and can be checked by the visualizations. The meta
model itself is very similar to the web service description language (WSDL). Our meta
model, however, is more specific and less universal then WSDL. Therefore it contains
less overhead and models are easier to specify, to read, and to store.

In the meta model, we choose to reference the types in the models only implicitly using
strings and not explicit using object references because this makes the model more flexible
and the resulting models do not need to specify the simple types again (they are used
implicitly). This makes the models more compact and thus easier to read. Furthermore,
we can include keywords in the string such as list of and set of to indicate lists
and sets of data without the need to model these explicitly in the meta model. This
again makes the meta model easier to understand and the models easier to read because
they are more compact.
Figure 5.13 provides a UML class diagram for the EUrEKA metric kernel description

meta model. The root of the model is the Metric Kernel itself. The metric kernels
are identified by their name and can provide an additional description. The metric kernel
contains a number of indicator APIs. Each Indicator API contains the (absolute)
URL to the API as well as the data type that is used as value for the generic type
parameter for the API (see section 5.3.2). The metric kernel also needs to define the data
types used in the description. Each Data Type contains of a name and a type. We

114



5.3. Calculation Access

Name : String
Description : String

Metric Kernel

Url : String
DataType : String

Indicator Access API

Name : String

Data Type

Values : String []

Enum Data Type
Complex Data Type

Name : String
DataType : String

Property

*IndicatorDataTypes
1..*IndicatorAccessAPIs

*properties

Figure 5.13.: EUrEKA metric kernel description meta model as UML class diagram

differentiate between three different types: simple, complex and enum. Simple data
types are implicit and don’t need to be formally specified. We differentiate between the
primitive data types: string, double, integer, boolean, and date. These data
types can be extended if required in the specific EMI. A Complex Data Type includes
a list of properties. Each Property contains of name and a type. The type needs to
refer to another data type specified with the metric kernel or a primitive type. The Enum
Data Type contains a list of enumeration values.

EUrEKA Kernel Description Model Example

The following listing 5.5 provides an example for a metric kernel description using the
JSON data format. Contrasting the meta model, this JSON description also requires
a type attribute for each meta model data type to differentiate between the different
types when demarshalling the models. The kernel described in the listing provides two
indicator access APIs to access different indicators for risk metrics.

115



5. Technical Reference Architecture

Source Code 5.5 Example of a metric kernel description using JSON
{ name: "Risk Metric Kernel",

description: "The risk metric kernel provides a number of
indicators to analyse project risks. The indicators include
statistical indicators for metrics like number-of-open-risks
as well as an indicator for the current risks of a project."

indicatorAccessAPIs : [
{ url: "http://localEMI:8080/emi.risks/rest/categMeasures.json",

dataType: "categorizedMeasures"
},
{ url: "http://localEMI:8080/emi.risks/rest/risks.json",

dataType: "set of risk"
}

],
indicatorDataTypes : [

{ type: "complex",
name: "categorizedMeasure",
properties: [

{name: "category", type: "string"},
{name: "value", type: "double"}

]
},
{ type: "complex",

name: "risk",
properties: [

{name: "identifier", type: "string"},
{name: "probability", type: "string"},
{name: "impact", type: "string"},
{name: "status", type: "string"},
{name: "development", type: "riskDevelopment"}

]
},
{ type: "enum",

name: "riskDevelopment",
values: [

"increase",
"noChange",
"decrease"

]
}

]
}

The first indicator access API of the metric kernel is located at the URL
http://localEMI:8080/emi.risks/rest/categorizedMeasures.json.
The generic data type parameter of this API is set to the data type
categoriezedMeasures. The data type description defines this data type as
a complex data type which contains of the two properties category and value. The type

116



5.3. Calculation Access

of category is string and the type of value is double. This is a typical data type that
can be visualized using a bar or line chart.
The second indicator access API of the metric kernel is located at the URL

http://localEMI:8080/emi.risks/rest/risks.json. The generic data type
parameter for this API is set to the data type set of risk. Therefore the API will
return sets of the risk data type. The data type description defines the risk data
type as a complex type with the properties: identifier, probability, impact, status, and
development. Except the development property all other properties are of type string.
The development property is of type riskDevelopment that is defined below as and
enum with the values: increase, noChange, and decrease. The values from this API can
be used to feed a risk matrix that provides a quick overview over all the risks of a project.

Occurred

High

HighMediumLow

Low

Medium

Closed

Medium Risk
Another Risk

High Risk

Occurred Risk

Closed Risk 

Impact

P
ro

ba
b

ili
ty

Figure 5.14.: Example for a risk matrix that can be feed by the risk data type from the
previous example

The development property allows to also visualize the change of a specific risk in this
matrix as shown in figure 5.14. The Matrix shows the impact of the risk on the x-axis
and the probability of the risk on the y-axis. Contrasting traditional the traditional risk
matrix designs we added Occurred as well as Closed to the probability to get a better
picture of the project risks. Each compartment contains the risks with this specific set of
impact and probability values. The arrows next to each risk indicate the development of
that specific risk. The risks Another Risk and Occurred Risk remained stable (did not
change) whereas the High Risk and Medium Risk increased. The Closed Risk decreased
down to the closed container.

117



5. Technical Reference Architecture

5.3.4. EUrEKA Registry
The EUrEKA Registry Service provides the orchestration backbone of the EUrEKA
reference architecture. It provides visualizations with a way to find suitable indicators to
feed them data without the need for the visualization to know each metric kernel in an
EMI. Therefore, this service helps to decouple the visualizations and the metric kernels
from each other. This simplifies their design, increases their reuseability, and eases the
operation of the EMI, which all reduces maintenance effort.

The EUrEKA registry service is not mandatory for an EMI but the alternative is to hard
code metric kernel to visualization mappings and indicator access APIs. Alternatively,
the routing and access between visualizations and metric kernels can be realized using an
of-the-shelf enterprise service bus (ESB) product to put the configuration in one place
and don’t hardcode it into the visualization. However, this increases the structural and
the configuration complexity of the EMI. Furthermore, it requires additional knowledge
for the configuration of the ESB and its components.

EUrEKA Registry

Registration API

Discover API Discovery Controller

Registration 
Controller

Kernel Description Meta Model

Persistence
Kernel
C & D

Read
API Spec

Compatibility
Engine

Discover
API

Registration
API

Figure 5.15.: EUrEKA registry service internal component view

Figure 5.15 provides an overview over the recommended internal components of the
EUrEKA Registry Service. The service is, as always in the reference architecture, designed
as a microservice. Hence, the service only provides very limited functionality. The internal
structure is, therefore, very simple as well. The foundation of all the components is
an implementation of the Metric Kernel Description Meta Model described
above. Kernel description models are used for the discovery mechanism and hence
stored in the database of the service. The Registration Controller allows to
store and delete metric kernel description models using the Registration API. These
models are then accessed by the Discovery Controller. This controller uses its
Compatibility Engine to discover indicator access APIs in metric kernel description

118



5.3. Calculation Access

models that are compatible to the data type required by a visualization. This functionality
can be accessed via the Discover API. The following two subsections use our API
specification language (see section 3.2) to specify the APIs in greater detail.

Registration API

The goal of this API is to register and unregister metric kernels with the EUrEKA
Registry Service. The API can either be accessed directly by the metric kernels so they
can register themselves once they startup or they are used with a small web UI so the
registration and unregistration can be done by an operator. Obviously, only registered
metric kernels are discovered. We believe the method names are intuitive and we do not
need to provide further descriptions.

Source Code 5.6 Metric Kernels Registration API specification on EUrEKA Registry
interface RegisterKernelAPI

mandatory method registerMetricKernel
mandatory parameter metricKernelDescriptionURL : String

mandatory method unregisterMetricKernel
mandatory parameter metricKernelDescriptionURL : String

Discover API

The goal of this API is to allow a EUrEKA consumer (visualization) to receive a list
of Indicator Access APIs which provide data that is compatible with a given data type.
The compatibility definition follows our definition for compatibility in our formalism in
section 2.3.5. In short: An indicator access API is compatible to a given data type if
for each property in the given type there exists a compatible property in the data type
returned by the API. However, we need to extend this definition for the enumeration data
types. An enumeration d1 is compatible to another enumeration d2 if d2 is embedded in
d1. An enumeration d2 is embedded in d1 iff for all enumeration values of d2 there exists
an equal enumeration value in d1.

Source Code 5.7 Metric Kernel Discover API specification on EUrEKA Registry
interface DiscoverAPI

mandatory method discoverCompatibleAPIs
mandatory requestedDataType : DataType
returns List of String // List of Indicator Access API URLs

mandatory method getKernelNameForIndicatorURL
mandatory indicatorAccessAPIURL : String
return String // Name of metric kernel that provides the API

119



5. Technical Reference Architecture

The discoverKernel method searches trough the list of all registered metric kernels
and checks if they provide a data type that matches the required data type. If they
do then the URL of the Metric Value Access API is added to the result list. The
registry services utilizes the compatibility engine component to implement the check.
The engine can either be implemented using a recursive algorithm or it can use a number
of compatibility-check objects that are instantiated based on the structure of the required
data.

The getKernelNameForIndicatorURL method, as the name suggests, return the
name of the metric kernel that provides the indicator access API at the given URL. This
method performs a reverse search in the persistence of the registry service to retrieve the
kernel name. This method is, for example, used by the EUrEKA consumer component to
check the operation state of a metric kernel4 before accessing the indicator access API.

5.3.5. EUrEKA Producer Gateway (optional)

Consumer Consumer

Registry

Metric Kernel

Indicator
API 1

Indicator
API 2

Metric Kernel

Indicator
API 3

Visualization 1 Visualization 2

Kernel
Description

Orchestration

Consumer

Producer

Producer Gateway

Figure 5.16.: EUrEKA overview using the EUrEKA producer gateway service

Without the EUrEKA Producer Gateway Service each EUrEKA consumer
(visualization) needs to store the actual URLs from the indicator access APIs in their
configurations to access their data. This is a hard coupling between the EUrEKA
producers and EUrEKA consumers, at least to a certain degree. This coupling can
become problematic if, for example due to performance problems, a metric kernel needs

4The operation state can be retrieved from the monitoring service using the name of the EMI service.
The EUrEKA consumer component, however, provides access to indicator access APIs. Hence, before
accessing the API it needs to lookup the actual kernel name that implements the provided indicator
access API.

120



5.3. Calculation Access

to be relocated to another server, which changes the URLs because of a new physical
location. Then all the configurations in the EUrEKA consumers that require data from
one of the indicator access APIs of this kernel need to be updated which is time consuming
and can lead to errors.
The EUrEKA Producer Gateway provides a central component that decouples the

EUrEKA consumers and EUrEKA producers from one another. Figure 5.16 shows an
overview over EUrEKA including a EUrEKA Producer Gateway Service. Compared to
the version without the gateway in figure 5.12 all calls from the consumer layer now pass
through the gateway and do not connect directly to the producers anymore.

EUrEKA Producer Gateway

Indicator Access

Indicator
Access

EUrEKA
Registry

Discover
API

Gateway
Controller

Decoupled
Indicator Access API

Decoupled
Indicator
Access API

Cache

Figure 5.17.: EUrEKA producer gateway service internal component view

Figure 5.17 provides an overview over the recommended internal components of
the EUrEKA Producer Gateway service. The EUrEKA producer gateway provides
a decoupled indicator access API that delegates calls to the actual indicator access APIs
of the EUrEKA producers. The gateway just delegates the indicator requests. Hence it
does not use a EUrEKA consumer component and does not perform maintenance status
checks. The maintenance status check needs to be performed before calling the EUrEKA
producer gateway by the consumers on top. The identification of the EUrEKA producers
uses the name of the producer (metric kernel) and the data type. Using this the EUrEKA
producer gateway can use the EUrEKA registry to get the URL of the actual indicator
access API, which can be locally cached to increase performance5.

5The local caching will, however, require to constantly synchronize the cache with the registry. This
adds additional communication overhead and complexity to the registry. Yet, the registry is rarely
updates. Hence, the overhead is not to high.

121



5. Technical Reference Architecture

We believe, the design of the gateway is easy to understand . Hence, we do not provide
additional specifications for the APIs or the dynamic behavior of the service.
Every access from the visualization layer to data in the calculation layer needs to

go through it. Therefore the gateway can become a bottle neck for the data flow from
the EUrEKA producers to the EUrEKA consumers. However, this can be addressed
by providing sufficient resources to the service and potentially using multiple producer
gateways in parallel with a central load balancer on top6. However, a nice side effect of
using the gateway is that it can easily provide statistical information on the usage and
load of communication in the calculation access layer of the EMI, which is an important
performance indicator for monitoring.
When instantiating an EMI from this reference architecture the architects need to

decide if they want to include this service or not based on the needs and scaling of the
actual EMI.

5.3.6. EUrEKA Consumer

Monitoring
Service

EUrEKA Consumer

Service
Status Access

Service Status
Access API

Indicator
Access

Consumer Facade

Indicator 
Access

Registry
Access

EUrEKA
Registry

Discover
API

Figure 5.18.: EUrEKA consumer internal component view

The EUrEKA consumer component provides the consumers of indicators with a ready
to use component to access the indicator access APIs as well as access to the EUrEKA
registry. For example this component is used by all the visualization frontends of an EMI.
Hence, this component is typically provided by the EMI development platform.
The EUrEKA consumer houses components to access the EUrEKA indicator access

APIs from the EUrEKA producers and performs additional checks before accessing the
APIs. Therefore, each EUrEKA consumer also connects to the service status access
API of the monitoring service and the EUrEKA registry service. The service status

6This could easily be implemented using Netflix Eureka

122



5.3. Calculation Access

API of the monitoring service provides status information about all services in an EMI.
It is important to check the service status of the metric kernel before accessing the
indicator access API of the metric kernel because the metric kernel may be in a non
functional operation state like offline or maintenance. If it is being maintained then
the call to the indicator access API will most likely fail or produces wrong or outdated
results. Furthermore, the service status API can provide additional information about
the operation state. This information can be presented to the metric customers; for
example the anticipated maintenance time. See section 6.1 for further details on the
service status API.

5.3.7. EUrEKA Indicator Wrapper (optional)
Typically visualizations can and need to visualize multiple indicators (like Cartesian
charts which can visualize multiple bar or line series). Instead of configuring the indicator
access in the visualization or monitor configuration we find it more useful to delegate
this configuration to a separate service. Therefore, the EUrEKA Indicator Wrapper
Service provides a single point of access to wrapped data from multiple indicator access
APIs from multiple metric kernels. This service is optionally and the architect of an
EMI instance can choose not to include it and configure this somewhere else. However,
as EMIs get larger with more metric kernels, more visualizations, and more complex
configurations the need and usefulness for this service will raise.

WrapperIdentifier : String

Wrapper Configuration

IndicatorUrl : String
Payload : String

Indicator Configuration

*

Wrapper

data : <DataType>
Payload : String

Wrapper Slot

*

data : <DataType>

Indicator

Specifies

Figure 5.19.: Wrapper Configuration Model and Wrapper production

Figure 5.19 provides a UML class diagram of the model for wrapper configurations and
an overview over the production of the wrappers from the indicator data. A Wrapper
Configuration is identified by its Wrapper Configuration Identifier. The configuration
itself is just a container for Indicator Configurations.

123



5. Technical Reference Architecture

Each indicator configuration contains the URL for the actual indicator or when using
a EUrEKA producer gateway (see section 5.3.5 above) the name of the metric kernel and
the data type. Additionally, indicator configurations provide an additional payload that
is added to the wrapper slot when wrapping the data from the indicator. This payload
can be used to store specific configuration from the visualizations for the data of this
particular indicator. The visualization can then use this payload to change the rendering
of this data. For example this provides an easy way to specify the visualization type (bar
or line) of a Cartesian chart.

EUrEKA Wrapper

Wrapping
Controller

Wrapper
Persistence

Wrapped Indicator
Access API

Wrapper
CRUD

Controller

Wrapper Definition API

Wrapped
Indicator
Access API

Wrapper
Definition
API

Wrapper Configuration Model

EUrEKA
Consumer

Indicator 
Access

Figure 5.20.: EUrEKA indicator wrapper service internal component view

Figure 5.20 provides an overview over the recommended internal components of the
EUrEKA Indicator Wrapper Service. The wrapper service uses a EUrEKA Consumer
component to access indicator access the data from the indicator access APIs configured
in a wrapper configurations. The actual wrapping and access to the indicators is
orchestrated and controlled by the Wrapper Controller component which accesses
the wrapper configurations from the Wrapper Persistence component. The wrapper
service provides two APIs for the communication from the visualization layer. The
Wrapper Definition API for the definition, manipulation, and deletion of wrapper
configurations as well as the Wrapper Indicator Access API to access the wrapped
data. The following two subsections use our API specification language (see section 3.2)
to specify the APIs in greater detail.

Wrapper Definition API

This API provides methods to create, update, and delete wrapper configurations.
Optionally it can provide methods to clone wrapper configurations to ease their definition.

124



5.3. Calculation Access

Source Code 5.8 Wrapper Definition API specification on the EUrEKA Indicator Wrapper
interface WrapperDefinitionAPI

mandatory method createWrapperConfiguration
mandatory wrapper : WrapperConfiguration
returns Void

mandatory method updateWrapperConfiguration
mandatory wrapperIdentification : String
mandatory wrapper : WrapperConfiguration
returns Void

mandatory method deleteWrapperConfiguration
mandatory wrapperIdentification : String
returns Void

optional method cloneWrapperConfiguration
mandatory wrapperIdentificationFrom : String
mandatory wrapperIdentificationClone : String
returns Void

We believe the method names are intuitive and we do not need a further description
for them.

Wrapper Indicator Access API

This is simply an instance of our indicator access API specified above in section 5.3.2.
The data type of this API, however, is Indicator Wrapper and not a specific data
type from the calculation layer. More specifically, the data type of a concrete call is
Wrapper of <DataType> for the actual data types returned by the indicator access
APIs configured in the concrete wrapper configuration. Therefore, the indicator access
API of the wrapper service is a generic indicator access API because it provides multiple
(generic) data types.

5.3.8. Summary
The last section introduced the internal details and components in the calculation access
layer of our technical reference architecture. The core is the specification of the indicator
access APIs on the metric kernels together with a metric kernel description meta model
and a registry service. The registry service provides mechanisms to discover indicator
access APIs based on a data type required for a visualization. The information about the
APIs as well as their data types is provided by metric kernel description models. Because
the API follow the specification for indicator access APIs the visualization are able to
uniformly access them regardless of their actual data types. Furthermore we specified
optional additional services that ease the interaction and solve specific problems with the
indicator access APIs on the metric kernels.

125



5. Technical Reference Architecture

Contrasting the Enterprise Measurement Data Bus (EMDB) the design for the
Enterprise Uniform Metric Kernel Access (EUrEKA) does not utilize a messaging
infrastructure. The main reason for this is the opposite control flow in EUrEKA as
well as performance optimization to provide fast access to the calculation results. A
EUrEKA infrastructure is easily set up using existing tools such as Netflix Eureka (which
even shares the name but is aimed at something else), OData with Apache Olingo, or
Spring Cloud or the services can be build from scratch. All services are again designed as
microservices multiple different technologies and existing services and tools can be used
to build the EUrEKA infrastructure for an EMI instance. Furthermore, the last section
also included reference architectures for each of the services if they should be build from
scratch.
This wraps up the description of the two integration and communication layers of

our technical reference architecture. The following sections will address the reference
architectures for the EMI specific components in the three domain layers. We start
with the reference architecture for data adapters in the bottom layer of the reference
architecture.

126



5.4. Data Adapter Reference Architecture

5.4. Data Adapter Reference Architecture

Data
Adapter

Data
AdpaterMeasurement

Data Transport
and Integration

...

Enterprise Measurement Data Bus (EMDB)

Data
Adpater

Data Provider ...

Data Adapter
Pattern

Static Reference 
Architectures

Figure 5.21.: Zoom into the data adapter layer of the MeDIC reference architecture

The last two sections focused on the two communication layers: Data Transport and
Calculation Access. This section will now focus on the first functional layer of our reference
architecture. Figure 5.21 shows an overview over the data adapter layer. Contrasting the
last sections, the reference architecture for this layer does not contain any fixed services.
The reference architecture provides a variety of patterns for the adaption of the data
from the data adapters together with specific reference architectures for each of these
patterns. These pattern guide the design of the actual data adapters when designing an
EMI and specifying the data adapter.
The following subsection 5.4.1 provides the details on the four adapter patterns that

we identified when building the EMIs for our field studies. After that, subsection 5.4.2
will provide the static reference architectures that guide the implementation of a data
adapter based on the adapter patterns.

5.4.1. Adaption Patterns and Dynamic View

Push-Forward

Pull-Forward

Invoke-Pull

Invoke-Dump

Figure 5.22.: Icons for the different data adapter pattern

The heterogeneity of the systems that need to be integrated in an enterprise
measurement infrastructure calls for flexible data adaption mechanisms (requirement
ReD-IM1). Hence, the reference architecture provides four different adaption patterns:
Push-Forward, Pull-Forward, Invoke-Pull, and Invoke-Dump. Figure 5.22 shows the

127



5. Technical Reference Architecture

different icons that we use to indicate the type of data adapter pattern in component or
overview diagrams. We describe the concepts and application scenarios of each of these
adapter pattern in the following subsections.

Push-Forward

Data Provider Plugin API Controller
Message 
Sender

Data Change

OnDataChange Push
Data

SendData
SendMessage

EMDB 
Message

Send

Data Provider Data Adapter (Gateway)

Figure 5.23.: UML sequence diagram for the concept of the push-forward adapter pattern

The idea of the pattern is that changed data in the data provider is pushed to the EMI
immediately after the change. Hence, the Push-Forward data adapter pattern guarantees
the best latency between change event in the adapted system and the visualization, which
satisfies requirement ReD-IM2. The sequence diagram in figure 5.23 shows the interaction
of the different parts of the push-forward adapter pattern as UML sequence diagram. The
adaption is triggered by a data change in the data provider. This change then triggers a
plugin in the data adapter that is registered to be called on data change. This plugin just
calls an API on the data adapter in the EMI with the specific data that was changed.
Because the plugin is not located in the EMI this satisfies requirement ReD-IM3. This
data adapter then creates a specific EMDB message for the data and sends the message
to the EMDB. The data is then transported to the metric kernels and the measurement
cache. Hence, the visualization components could immediately update the visualizations
to reflect the new data.
The data adapter in the EMI that provides the API, which the plugin calls, only

transforms the data and generates an EMDB message. Therefore, these data adapter are
called Data Gateways.

128



5.4. Data Adapter Reference Architecture

Pull-Forward

Standard BI (Business Intelligence) systems use scheduled jobs7 to adapt the data from
a data provider. The Pull-Forward data adaption pattern is inspired by these ETL jobs.
Figure 5.24 shows the interaction of the different parts of the pull-forward adapter pattern
as UML sequence diagram. The extract task is triggered by a scheduler who is configured
to a certain interval like every minute, hour, or day. The extract task then retrieves the
changed data from the data provider using an API on the data provider. After that, the
data adapter needs to loop over all the changed data in order to pack it into EMDB
Messages and send them to the EMDB.

API Scheduler Controller
Message 
Sender

Access
Data

getData

SendMessage

EMDB 
Message

Data Provider Data Adapter 

On Timer

Extractor

retrieveChangedData

Changed
Data

Changed Data

send

[for each data]Loop

Figure 5.24.: UML sequence diagram for the concept of the pull-forward adapter pattern

Even though this adapter pattern is inspired by the most popular way to get data
from another system it has some strong weaknesses. The most important one is latency;
which can become high (conflicts with requirement ReD-IM2). As a result the data in
the visualization is only as up to date as the latest pull interval. One solution would be
to reduce the pull intervals to a very small value like every second. However, pulling data
from a system typically generates a high load in the system. Therefore, shortening the
intervals will lead to performance degeneration in the data provider which would violate
requirement ReD-IM3.
Another weakness of this solution is the increased effort to implement the data

adapter. Nonetheless, it is somewhat compensated by the fact that no plugin needs to
7In the context of BI systems these scheduled jobs are referred to as ETLs for Extract, Transform, and
Load which are the three main steps of the jobs

129



5. Technical Reference Architecture

be implemented for it. Because of these deficiencies Pull-Forward data adapter in an
EMI should be reduced to a minimum. If no plugin mechanism is provided by the data
provider, however, a Pull-Forward data adapter is sometimes the only possible choice.
Yet, sometimes another system related with the data provider offers a plugin or web-hook
mechanism. In this case an Invoke-Pull data adapter is the better alternative.

Invoke-Pull

Data providers are typically connected with each other. For example a good practice in
software development is to tag a commit into a version control system (VCS) with the
task number of a task in a change request management system (CRM). The number of
changed files per task could be used as a complexity measure for the task. Additionally,
the number of changed lines of code could be used to normalize the effort for a task. Of
course, every commit alters the number of changed files for a task. Hence, after every
commit a special data adapter needs to send a new message to the EMDB containing
additional information to the task. This then allows a special metric kernel to calculate
the two measures.

API
Message 
Receiver

Controller
Message 
Sender

Access
Data

getData

SendMessage

EMDB 
Message

Data Provider Data Adapter 

onMessage

Extractor

retrieveSpecificData

Specific
Data

Specific Data

send

EMDB 
Message

Message 
Sender

getIdentifier

Identifier

send

Figure 5.25.: UML sequence diagram for the concept of the invoke-pull adapter pattern

Additionally, many data providers nowadays provide a so called web-hook mechanism,

130



5.4. Data Adapter Reference Architecture

which can be fired on certain events in the data provider like on data change. The data
provider will call the URL in the web-hook whenever the configured event occurs. Unlike
plugins, these web-hooks typically only allow to transport a data identifier for the changed
data and not its complete data. Therefore, another part of the EMI needs to retrieve the
data from the data provider when the web-hook triggers it. However, we like to decouple
these two functions because the actual change event may be used for other purposes as
well and not only the data retrieve trigger.

Figure 5.25 shows the interaction of the different parts of the invoke-pull adapter
pattern as UML sequence diagram. This pattern enables EMI developers to implement a
data adapter that utilizes an event as a trigger. As described above, the data provider
will trigger an event gateway in the EMI which generates an event on the event topic
of the EMDB. This event is then received by a data adapter which extracts (pulls) the
changed data from the data provider. This data is then included in an EMDB Message
and send to the EMDB. Because this data adapter pattern does not rely on a timer
but uses an event as trigger its latency is also very good (requirement ReD-IM2). It is,
however, slower than a push-forward adapter because of the additional event that needs
to be send and received. Like all other data adapter this one also only uses APIs of the
data provider. It is, hence, also decoupled from the data provider fulfilling requirement
ReD-IM3.

131



5. Technical Reference Architecture

Invoke-Dump

API
Command 
Receiver

Controller
Message 
Sender

Access
Data

dumpAllData

SendMessage

EMDB 
Message

Data Provider Data Adapter 

onCommand

Extractor

retrieveAllData

All
Data

All Data

send

[for each data]Loop

Figure 5.26.: UML sequence diagram for the concept of the invoke-dump adapter pattern

Setting up an EMI or building a dedicated data analysis tool based on our reference
architecture often requires to get all data from a data provider with one action. This one
action will then dump all the data from the data provider to the EMDB. Figure 5.26
shows the interaction of the different parts of the invoke-dump adapter pattern as UML
sequence diagram. The idea behind the pattern is similar to an invoke-pull data adapter.
The trigger for the pull, however, is a dedicated command message that is transported
over the command-topic of the EMDB. Dumping all data will create a high load on
the data provider. Therefore, it is important to ensure that the dump is not triggered
accidentally but only when definitely required. Upon receiving the command the data
adapter will access the APIs of the data provider to get all relevant data from the data
provider. It will then send multiple EMDB messages to the EMDB. One message for each
dedicated chunk of data. Hence, the metric kernel do not need to implement additional
methods to handle complete dumps because the multiple messages look like all the other
data from the other data adapters.

132



5.4. Data Adapter Reference Architecture

This data adapter influences the data provider due to heavy load because of the dump
which violates requirement ReD-IM3. Also the data is far from real time; violating
requirement ReD-IM2. The invoke-dump pattern, however, is only used for special
situations very sparsely.
After these dynamic views on all the data adapter patterns the next section provides

static reference architectures for the internal components of the different types of data
adapters.

133



5. Technical Reference Architecture

5.4.2. Static Reference Architecture
The dynamic views in the last section already provide an inside into the internal
components of the different types of data adapters. This section will elaborate on
this and provide two static reference architectures for the different types of data adapters.
The first subsection provides the static reference architecture for Data Gateways from the
push-forward data adaption pattern. The second subsection provides the static reference
architecture for the pull-based data adapters.

Data Gateway

Data Provider

Plugin
Registry

Data Adapter 
Plugin

OnChange
Event

Data Gateway

Data
API

EMI.base

BaseSender

Controller

API

SendData

Send

Figure 5.27.: Static reference architecture for Data Gateways

The Data Gateway static reference architecture applies for the push-forward adapter
pattern. The sequence diagram from above already indicates some of the core inner
components for the data gateway. However, figure 5.27 provides a complete overview over
all the recommended inner components of the data gateway and the plugin in the data
provider. The push-forward data adapter pattern utilizes the idea of inversion-of-control
in which the data is pushed to the EMI from the data provider (the active component
is the data provider and not the EMI). The data adaption therefore starts in the data
provider itself. The EMI requires a specific plugin in the data provider that hooks into
the plugin mechanism of it. This plugin registers itself to be called on data change
(including creation and deletion) similar to the well known observer pattern [GHJV95].
The plugin then calls the Data API on the Data Gateway which delegates the call to
the Controller. The controller transforms the data so it can be send to the EMDB
using a message sender. We included the base sender in the figure because most of the
data gateways send data to the base topic of the EMDB.

134



5.4. Data Adapter Reference Architecture

Pull-based Data Adapter

Data
Provider

Data Adapter

Data
API

EMI.base

BaseSender

Controller

Extractor

Send

Extract

Trigger

Message 
Receiver

Command 
Receiver

Timer

Figure 5.28.: Static reference architecture for pull-based data adapter

All other types of data adapter share a similar static design. They only differ in
one small component: the trigger. Figure 5.28 provides an overview over all the inner
components of the pull-based data adapters. As indicated by the sequence diagrams
from above. They all require an extraction component (Extractor) that gets the data
from the data provider. Therefore, the data provider needs to grant access to the data
for example via a REST API, SOAP Web Service, or, more dirty, its database. The
extract component provides the central Controller component of the data adapter
with all the functions required to get the data (single or multiple data entries). Similar
to the Data Gateway above the controller then transforms the data and hands it to the
Message Sender for sending to the EMDB. Contrasting the Data Gateway from above,
the controller provides a trigger interface that can be used by the various triggers required
to implement the various adapter pattern.

The Pull-Forward adapter pattern utilizes a time component to trigger the extraction
of the changed data as described in the sequence diagram above. The Invoke-Pull adapter
pattern requires a message receiver that listens on the EMDB (most of the time it will
connect to the event topic). Following the sequence diagram from above the message
receiver will then extract the data identifier from the message (event) and specifically
triggers the controller. The last adapter pattern invoke-dump also requires a message
receiver for the EMDB. Contrasting an invoke-pull adapter, however, the invoke-dump
pattern requires a command receiver. The receiver will trigger to full data extraction
of the data provider in the controller upon receiving a valid command message. The
command message can also include additional configuration information for example to
only trigger partial dumps or specific dumps. Event though figure 5.28 shows all the

135



5. Technical Reference Architecture

different trigger in one data adapter. In an EMI instance typically only one of the trigger
options is implemented.

5.4.3. Summary
This section introduced different adapter patterns to implement data adapter in an
enterprise measurement infrastructure. We first introduced the different integration
problems that need to be faces by the data adapters. After this, we then introduced
the dynamic behavior of the different adapter pattern. After that we also provided two
reference architectures for the internal components of the data adapters. Similar to the
services in the previous sections these reference architectures provide blueprints for the
actual architecture of the data adapters in an EMI instance. Unlike the services in the
previous sections, however, multiple data adapters can be instantiated for the adaption
of different data providers. Also the pattern only provide guidance for the design. An
actual data adapter can implement multiple patterns if this is required in the actual EMI
instance. The next section will introduce the reference architecture for the heart of the
EMI: the metric kernels.

136



5.5. Metric Kernel Reference Architecture

5.5. Metric Kernel Reference Architecture

Data Transport
and Integration

Calculation
and Storage

Enterprise Measurement Data Bus (EMDB)

...

Calculation 
Access

Enterprise UnifoRm mEtric Kernel Access (EUrEKA)

API API

Calculation

EMDB
Connection

API API

Calculation

EMDB
Connection

Figure 5.29.: Zoom into the metric kernel related layers of the MeDIC reference
architecture

Metric kernels provide the core functionality of the measurement infrastructure: the
actual calculation of metrics. Furthermore, the metric kernels also implement all the
associated concepts of (derived) metrics like the variability model and the measurement
producers. Hence, metric kernels are the most important part in an EMI. Figure 5.29
shows an overview over the calculation and storage layer of the reference architecture.
From a logical point of view the indicator access APIs of the metric kernel belong to the
calculation access layer even though they are provided by the metric kernel and often
physically deployed with them in one component. The core of the metric kernels are the
metric calculation components, the data storage, and the connection to the EMDB in
the bottom.
Our discussion about microservices in the introduction of this part focused on the

benefits of being able to choose technologies for each microservice independent from each
other. Metric kernels benefit hugely from being microservices and this fact.

In this section we will first introduce the static reference architecture for metric kernels
in the following subsection 5.5.1. In this we present two different options for the layout of
a metric kernel. After that we will introduce the dynamic aspects of the metric calculation
and the indicator access in more details in subsection 5.5.2. As usual we close the section
with a summary in subsection 5.5.3.

137



5. Technical Reference Architecture

5.5.1. Design Alternatives
This subsection presents two different alternatives for the reference architecture for metric
kernels. Both alternatives provide similar dynamic behavior and use similar components.
However, the first one is a monolithic design with just one high level component for the
whole metric kernel. The second one is a design with two separate components for the two
main tasks of the metric kernel: data reception & pre-processing and metric calculation.
Hence, these differences are mostly visible in the static view. Most of the time we found
the monolithic design sufficient and the kernel was not too large to maintain. However,
we also used the other design in some of our field studies when the kernels provided a lot
of different metrics. We start the description with the monolithic design in the following
sub section.

Monolithic Metric Kernel

Metric Kernel

Indicator Access
APIs

Kernel
Controller

Persistence

Metric
Calculation

Pre-storage
Calculation

Post-storage
Calculation

Message Receiver Message Sender

EMI. *

Calculation Result Access 

Calculate
Store &
Retrieve

Indicator
Access API

Kernel Description

Kernel
Description
Model

EMDB
Connection

Core

EUrEKA
Producer

Figure 5.30.: Static monolithic metric kernel reference architecture.

Figure 5.30 shows a detailed view on the recommended internal components of our
monolithic metric kernel design. The design features three layers that reflect the

138



5.5. Metric Kernel Reference Architecture

surrounding layers in the MeDIC reference architecture. The metric kernel connects
to the EMDB in the bottom layer using Message Receiver and Message Sender
components. As discussed with the message cache in section 5.2.4 these components are
most likely offered by the development platform of the EMI instance.
The central core layer implements the storage and calculation aspect. The central

Kernel Controller component orchestrates all calls from the EMDB and the indicator
access API. The controller also triggers the different calculation tasks and communicates
with the persistence component. The Metric Calculation component realizes
the actual calculation of the metrics.

The calculation component has two parts: a pre-storage calculation and a post-storage
calculation. The idea is that it is often wise to transform the incoming data from the
EMDB into a different format and perform additional calculations on them before they
are persisted. This can speed up and ease the calculation of the actual metric values
upon request by the indicator access API significantly.

The Indicator Access APIs and the Kernel Description are located in the
EUrEKA producer layer of the metric kernel. Section 5.3 provides additional details
on the design of the APIs and the kernel description meta model. The post-storage
calculation component is also utilized to calculate the data that is produced following
the measurement producer specification (see section 2.3.7 for more details) of the metric
kernel and send to the EMDB.

Separated Components

Figure 5.31 provides an alternative design for the static component architecture of the
metric kernel. This design splits the two logical parts of the metric kernel into the Metric
Kernel Receiver component and the Metric Kernel Access component. The
metric kernel receiver component houses the Message Receivers to connect the kernel
to the EMDB as well as the pre-storage calculation component. The Kernel Receiver
Controller orchestrates the control flow and triggers the calculation and storage in
an external storage component (Persistence). After the pre-storage calculations are
performed and the data is stored the controller will call the Production Trigger on
the metric kernel access component. This will trigger the production and sending of all
measurements defined in the measurement producers (see section 2.3.7 for more details).
Furthermore, the metric kernel access component houses the EUrEKA producer layer
similar to the monolithic design from above as well as the post-calculation component
and the Kernel Access Controller for orchestration.

A benefit of the separate components design for metric kernels is that the technologies
to implement the two components not necessarily need to be the same. Although this
may require to extract the message senders into their own component if the messaging
technology is hard to access from the technology chosen for the metric kernel access
component (e.g. JMS from Javascript).

A weakness of the design, however, is the integration between the two components via
the storage component in the middle. This strongly couples the two components and a
change in one of the components that require persistence changes will inevitably also

139



5. Technical Reference Architecture

Metric Kernel Receiver

Metric Kernel Access

Indicator Access
APIs

Kernel
Access

Controller

Persistence

Pre-storage
Calculation

Post-storage
Calculation

Message Receiver

Message Sender

EMI. *

Calculation Result Access 

Calculate

Indicator
Access API

Kernel Description

Kernel
Description
Model

Kernel
Receiver

Controller Calculate

Store

Retrieve

Production
Trigger

Figure 5.31.: Static metric kernel reference architecture with separated components.

require changes in the other component. This is a potential source of errors which need
to be addressed in the actual maintenance procedures of the EMI instance that utilizes
this design for one of its metric kernels.
When instantiating our reference architecture to an EMI instance it is important to

choose the specific metric kernel design (monolith or separated) for each metric kernel
separately. Also note that a monolithic metric kernel can be refactored to a separated
metric kernel if the kernel becomes to large. Alternatively, sometimes a metric kernel
needs to be separated into two individual kernels if it is required to perform diverse
calculations.

140



5.5. Metric Kernel Reference Architecture

This concludes the rough description of the two different design alternatives for the
metric kernels. The next section will provide additional details on the dynamic processing
of measurement messages and metric calculation inside a metric kernel.

5.5.2. Dynamic View
The previous section already discussed some dynamic aspects of the metric kernel when
presenting their static reference architectures. This section will provide additional details
to the behavior of the metric kernel. The first subsection will present the message
processing behavior. This presents the activities that are executed when a metric kernel
receives data from the EMDB. The second subsection provides additional details to the
calculation of the metrics on request by one of the indicator access APIs.

Message Processing

Receive Data
from EMDB

« optional » 
Lookup EOM

Check Data
Consistency

Consistent?

Reject Data
and Log result

Remove
Inconsistency

« optional » 
Pre-storage
Calculations

Store
Data

« optional » 
Post-storage
Calculations

Send Measurement
Products to EMDB

No, but
removable

Yes
« Loop » 

[For all measurement products]

Figure 5.32.: EMDB Message Processing

Figure 5.32 shows a UML activity diagram for the prototypical activities in the message
processing of a metric kernel. Some of the activities are marked by the «optional»
stereotype. These activities, as the name suggests, are optional for the processing of
EMDB messages in the metric kernel. Additional steps can be inserted everywhere in
the flow when instantiating the reference architecture in an actual EMI if it is required.

141



5. Technical Reference Architecture

The flow starts with the data reception in the metric kernel. The data is received by
an EMDB message receiver. This receiver can either receive pure measurement data,
base data, events, or other data on specific topics of the particular EMI. After the
data is received the metric kernel can use the directory service to translate synonyms;
for example the identifier for the entity of measurement or status identifiers. Due to
our operation activities related to failures in an EMI described in section 12.2.2 it is
important that the metric kernels resolve the synonyms and not the data adapters
(which would then send the measurement message with the specified term). Another
alternative would be to resolve the synonym upon request via a indicator access API.
This would ensure that a synonym is always correctly resolved event after updating
synonym-term relations without any additional actions. However, this would slow down
the answers to the requests of the indicator access APIs when resolving the synonym
requires communication via the messaging system. Nevertheless, if these are cached
as proposed in the reference architecture for the lookup system (see section 6.3) then
the performance loss is neglectable and synonym resolving should be performed in the
indicator access API and not in message processing if possible8.

Most importantly the kernel then needs to check the data consistency before processing
and storing the data. We differentiate between three different outcomes for the consistency
check:

Inconsistency not removable If an inconsistency is detected which is not removable
then the metric kernel needs to aboard the data processing and reject the data. This
needs to be logged; including the inconsistency findings and the message details
because it may require additional actions from the operator or other stakeholders.
Furthermore, this may put the kernel in out-of-sync state if the data in the kernel
persistence does not reflect all data in the data provider.

Inconsistency removable Removable inconsistencies need to be removed before
continuing with the data processing and storage. Missing data that can be restored
from the metric kernel storage is an example for a removable inconsistency. This
still needs to be logged to indicate potential data-quality problems because removal
is only based on heuristics!

No inconsistency If the data is consistent the metric kernel can proceed the processing
and storage.

After the consistency check the metric kernel may perform optional pre-storage calculation
actions. These actions can include data transformations or actual (pre-) calculations
on the data before storage. The aim of this step is to store the data in a way that
the calculation of the metrics based on this data is as simple and efficient as possible
when the metrics are accessed from the indicator access APIs. The data is stored in the
persistence component of the metric kernel.

8Resolving the synonyms at this point may require to change database queries and calculation logic
because it does not only need to consider a single eom but a collection of eom synonyms. This may
be impractical and complex and resolving the synonyms should be performed on message reception.

142



5.5. Metric Kernel Reference Architecture

After this the metric kernel needs to produce all the measurements required in the
measurement producers for the metrics of the metric kernel. For each of these producers
the metric kernel may perform additional calculation actions before sending the calculation
results (the measurement products - see section 2.3.7) to the EMDB.

Indicator Access

Indicator
Access API

Controller Persistence
«optional» 

Post-Storage
Calculation

EUrEKA
Consumer

Request
Indicator Data

getMetricValue(id)
getData()

(raw)data

calculateMetric(id, rawData)

data
data

Transform(data)

indicatorData
indicatorData

Figure 5.33.: UML sequence diagram for the behavior of the metric kernel components
when data is requested via an indicator access API

Figure 5.33 provides an UML sequence diagram for the prototypical activities performed
when an EUrEKA consumer accesses an indicator access API of the metric kernel. A
EUrEKA consumer requests the calculation results via a specific metric data API of
the metric kernel. The API then delegates the call to the controller which retrieves the
necessary data from the data storage. Optionally, the retrieved data is then feed to the
post-storage calculations component. After the calculation the controller returns the
result to the indicator access API component. The API then transforms the data into the
required data type. This may require to wrap it or transform it into new data transport
objects. The indicators are then returned to the EUrEKA consumer which visualizes
them.

5.5.3. Summary
This section presented the reference architecture for metric kernel. This included static
and dynamic aspects. For the static aspect we presented two different designs for the
component composition inside the metric kernel. The monolithic design is suitable for
typical small to medium sized metric kernels that only calculate a small number of metrics.

143



5. Technical Reference Architecture

The separated design is suitable for larger metric kernels. The separated design follows
the microservice more closely with dedicated components for the two main tasks of the
metric kernels: data reception & storage and indicator calculation. However, the design
also increases the structural complexity of the metric kernel and raises the maintenance
effort due to close coupling of the two components via the persistence component.
After this we presented prototypical behavior fragments of metric kernels. Thereby

we investigated the most crucial activity when receiving EMDB messages in a metric
kernel: the consistency check. We differentiated between not removable and removable
inconsistencies and provided examples for these. We also provided further insides into
the production of measurements based on the measurement producer definition from the
metrics which the kernel implements.

The following section will introduce our reference architecture for the consumers of the
indicators provided by the metric kernels: the frontend components in the visualization
layer of the EMI.

144



5.6. Visualization Reference Architecture

5.6. Visualization Reference Architecture
The previous section introduced the reference architecture for metric kernels; the
implementation of the metrics in an EMI. Following our formalism and terminology
in section 2.1.1 and section 2.3 respectively, the metrics produce indicators which are
consumed by visualizations. This section will provide the reference architecture for the
visualization frontends that provide the monitors that implement the visualizations (see
section 5.1.2).

Calculation
and Storage

Visualization

Metric
Kernel

Metric
Kernel

Dashboard ToolAnalysis Tool

...

Calculation 
Access

Enterprise UnifoRm mEtric Kernel Access 
(EUrEKA)

RendererRendererGUI GUI

EUrEKA
Connector

EUrEKA
Connector

Figure 5.34.: Zoom into the visualization layer of the MeDIC reference architecture

Figure 5.34 provides an overview over the core components of the visualization frontends
in the visualization layer as well as the related layers underneath. The most important
components in the visualization frontends are the graphical user interfaces (GUIs). These
utilize the renderers to visualize the monitors that answer the information needs of the
metric customers. The data for the monitors is provided by the EUrEKA consumer
component. This connects to the indicator access APIs as well as the EUrEKA registry
service (see section 5.18).
Requirement ReD-IV3 requires specific support for dashboards and analysis tools.

The following subsection 5.6.1, therefore, first discusses the term dashboard and
provides the basis for our term metric-based monitoring dashboard. Following this,
subsection 5.6.2 provides further details on the classification of the visualization frontends
into M2 dashboards and analysis tools. After the classification we provide the static
reference architecture for visualization frontends in subsection 5.6.3 and provider further
insides into the dynamic aspects of the monitor creation in subsection 5.6.4. As usual we
close the section with a short summary in subsection 5.6.5.

145



5. Technical Reference Architecture

5.6.1. Metric-based Monitoring Dashboards
Today the terms dashboard is used inflationary throughout several applications. According
to Few a dashboard is “a visual display of the most important information needed to achieve
one or more objectives; consolidated and arranged on a single screen so the information can
be monitored at a glance.” [Few06]. This definition shows the importance of the monitoring
aspect within dashboards. Analogous, Fitch defines dashboards as “a way to collect,
summarize, display and manage by a highly tuned set of business performance metrics
across a complex enterprise.” [Fit]. This definition shows the importance to collect the
correct metrics because they are the basis for decisions and management. The definitions
also aligns well with the general ideas of performance measurement systems [The97].
Similar to and sometimes synonymously used with dashboards: balanced scorecards
also provide a monitoring concept for an organization [KN92]. However, according to
Horvath and Kaufmann they focus more on the implementation of business strategies
and influences between the metrics [Eck06]. Additionally, cockpits and software project
control centers include “support for systematically deriving the right control mechanisms
for a project and organization based on context information and organizational goals”
[HM08a].
Shelby noted an overwhelming amount of dashboard definitions and usages [Sel05].

Therefore, in his work he called them measurement-driven dashboards. This includes the
metric aspect and also underlines measurements as a basis and driving factor behind the
development of the dashboards. However, we like to root the dashboard on the information
needs (the monitoring-needs) of the stakeholders. Thus, we chose the prefix metric-based
monitoring in contrast to measurement-driven. This emphasizes the monitoring aspect
from Few as well as our metric emphasize as driver for the monitors like supported by
Fitch. Therefore, to avoid confusion, we call the dashboards addressed in this thesis:
metric-base monitoring dashboards (or M2 dashboard for short).

5.6.2. Visualization Frontend Classification
Stephen Few classifies different types of dashboards in his book Information Dashboard
Design [Few06]. He differentiates between analytical, strategic, and operational dashboards.
The difference between these different types of dashboard is the focus of the information
needs that is answered in the dashboards. As we described above (requirement ReD-IV3),
we like to classify the visualization frontends on a more coarse grained scale. We like to
differentiate between metric-based monitoring dashboard (M2 Dashboard) and Analysis
Tools.

Metric-based monitoring dashboard The goal of M2 dashboards is to provide
dashboards that allow metric customers to quickly get an overview over many
information needs. Mostly these information needs focus on just on entity of
measurement. For example a dashboard to get an overview over a specific project
of the company. The M2 dashboards are accessed by multiple metric customers.
Hence, they often use visualizations that are easy to understand by the different

146



5.6. Visualization Reference Architecture

metric customers. A M2 dashboard tool should support the management of the
dashboards including a way to easily configure dashboards based on information
needs.

Analysis Tool The goal of analysis tools is to get deeper insights into a specific detail.
Hence, they only answer a very narrow and limited set of information needs. The
analysis tools are typically only used by specially trained metric customers. Thus,
they often use very specific and specialized visualizations to allow experts better and
quicker analyses. The analysis tools do not need dedicated dashboard management
because they typically show a fixed set of visualizations. They do, however, need a
means to provide control over certain aspects of the data feeding the visualizations
like filters and selection mechanisms to enable exploration.

Even though the two types of visualization frontends differ quiet a lot they also have a
lot of aspects in common. The core of both tools is satisfying information needs of metric
customers based on monitors that visualize indicators from metrics. Both tools also
need to be flexible and extendable to reflect changes in information needs or new needs
(requirement ReD-IV2). From the technical view of the EMI both types of visualization
frontends need to consume indicator data from the calculation access layer (requirement
ReD-IV1). Therefore, the following reference architecture is applicable to both types of
visualization frontends.

5.6.3. Component View
Figure 5.35 provides an overview over the recommended internal components of a
visualization frontend. The metric customer interacts with the Graphical User
Interface on the top. This visualizes the dashboards and the analysis frontend. They
both contain monitors that visualize indicator data. The GUI utilizes several Renderer
to create the monitors. Renderer visualize certain data typically using dedicated rendering
libraries like Data Driven Documents (http://www.d3js.org) or JFreeChart (http:
//www.jfree.org/jfreechart). Furthermore, the GUI can check certain access
rights of users via the optional Authorization and Authentication (A&A)
component. Besides from the direct connection to the renderer and the utilization of
the A&A component the GUI delegates all calls to the Visualization Controller
which orchestrates the component interaction. In a M2 dashboard the controller delegates
the dashboard management tasks (create, update, delete, share, clone) to the optional
Dashboard Management component. The controller uses the EUrEKA Connector
for the integration with the indicator access APIs and utilization of the EUrEKA registry.
Furthermore, the controller and the dashboard management component may use the
A&A component to check authorization of certain activities.

147

http://www.d3js.org
http://www.jfree.org/jfreechart
http://www.jfree.org/jfreechart


5. Technical Reference Architecture

Visualization Frontend

Visualization
Controller

EUrEKA
Consumer

Renderer

Render

EUrEKA
Integration

«optional»

Authorization and 
Authentication

«optional» 
Dashboard

Management

Graphical User Interface (GUI)

Indicator
Access

Metric
Documentation

Figure 5.35.: Dashboard Application - Component View

An analysis tool will most likely not implement the optional components (dashboard
management and A&A). It requires a more complex interaction in the GUI to filter
and select the data for the visualization as well as navigation between different views on
the same data. The filtering and selection will typically use the variability model of the
metrics as a source for the different filters. The visualization frontend can then include
specific variability configurations when the data is requested to apply the filters.

Another important outside connection for the visualization frontends is the connection
to the metric documentation system. This enables the GUI to show interpretation aids
right next to the monitor. The documentation can also act as a source for monitor
definitions if the source of the documentation is a formal metric model that includes the
specification of monitors.

5.6.4. Dynamic View
The previous section already discussed some dynamic aspects of the visualization frontends
when presenting their static reference architectures. This section will provide additional
details to the behavior of the M2 dashboards and analysis tools. We already described
the differences between the two types of visualization frontends. Regarding the static
reference architecture the M2 dashboards will most likely use the optional components
whereas the analysis tools will not. The analysis tools, however, require a more complex
interaction regarding the variability model and variability configuration of the metrics.
M2 dashboards may also offer the definition of variability configurations for certain

148



5.6. Visualization Reference Architecture

monitors. However, the mechanism is typically used less than in analysis tools. Thus, we
need to focus on different aspects when defining the behavior of the two different types
of visualization frontends. Therefore, in this subsection we first discuss the behavior of
the M2 dashboards including the optional components and then focus on the analysis
tools which use variability configurations.

M2 Dashboard Dynamics

Figure 5.36 presents the prototypical behavior of a M2 dashboard when preparing monitors
as UML sequence diagram. The sequence starts with the metric customer who wants to
satisfy some of her information needs. Hence, she requests one of her M2 dashboards.
First the visualization controller needs to lookup the user and check if she is authorized
to look at the requested dashboard. If the access is not granted the controller generates
an error message and returns this back to the visualization. This security steps are
optional and only required for organizations that want to restrict the access to certain
data. After this the M2 dashboard configuration needs to be retrieved from the dashboard
management component if it is not a fixed M2 dashboard. The controller then needs
to retrieve the indicators for each monitor on the M2 dashboard. The data retrieval
is delegated to the EUrEKA consumer component. This returns the data back to the
controller which then returns all the indicator data back to the GUI. The GUI then
utilizes the renderer to render all the monitors on the M2 dashboard and then presents it
to the metric customer.

Analysis Tool Dynamics

Figure 5.37 presents the prototypical behavior of an analysis tool when preparing monitors
as UML sequence diagram. Similar to a M2 dashboard the visualization in an analysis
tool is triggered by an information need of a metric customer. Contrasting the need from
above, however, the needs are analysis focused and typically vague. For example “Is
there something wrong with our change request management process and if yes: what
is wrong?”. To satisfy these needs the metric customer needs to look at multiple data
from different perspectives. Therefore, she needs to change the variability configurations
of the indicators feeding the monitors. The first action of the controller is therefore to
check the validity of the variability configuration argument. It delegates the check to the
EUrEKA connector which asks for an instance of the particular variability model and
delegates the check of the configuration to the model. If the configuration is valid the
sequence continuous similar to the sequence above. The controller requests the indicator
data (with the specific variability configuration) and the GUI then utilizes the renderer
to create the monitors in the view.

149



5. Technical Reference Architecture
M

e
tric Custo

m
er

G
U

I
C

o
n

tro
ller

«op
tional»

 
A

u
th

orization
 &

 
A

uth
en

ticatio
n

«op
tional»

 
D

ashbo
ard 

M
an

agem
en

t

EU
rEKA

C
o

n
n

e
cto

r
R

en
d

erer

R
eq

uest
V

isu
alization

getD
ash

board
()

getU
ser()

user

checkA
ccessR

igh
ts

[can A
ccess]

[ca
n

 n
o

t a
cce

ss]

alt
G

enerate
Erro

r M
essage

getD
ash

b
oard

d
ash

bo
ard

[for each m
o

nitor in dash
board

]
lo

o
p

getInd
icatorD

ata

d
ata

D
ashbo

ard w
ith data

[for ea
ch m

o
nitor in d

ash
board

]
loo

p

Figure
5.36.:

T
ypicalM

2
dashboard

visualization
dynam

ic
as

U
M
L
sequence

diagram

150



5.6. Visualization Reference Architecture

Metric
Customer GUI Controller

EUrEKA
Connector

Renderer

Analyse

getView(conf)

[for each monitor in the view]loop

getIndicatorData(conf)

data

view with data

[for each monitor in the view]loop
renderMonitor(data)

Variability Model

checkConf(conf)

checkConf(conf)

Figure 5.37.: Typical analysis tool visualization dynamic as UML sequence diagram

5.6.5. Summary
This section defined our reference architecture for visualization frontends. We started the
section with a discussion on the arbitrary use of the term dashboard. We also motivated
our term Metric-based Monitoring Dashboard (M2 Dashboard) for the dashboards
considered in this thesis. Our classification also described the idea behind the analysis
tools. Contrasting the M2 dashboards, the focus of an analysis tool is to gather additional
insides into existing information needs or investigating an entity of measurement looking
for new specific information needs (and optimization potential or problem sources).
From there we started with the definition of the static component-based reference

architecture for visualization frontends. In the reference architecture we did not
differentiate between the different types of dashboards. We rather placed optional
components in the reference architecture that are more likely be used by M2 dashboards
then analysis tools. However, M2 dashboards do not need to use them and analysis tools
may want to use some of them; for example the A&A component to restrict the access
to certain data. The reference architecture uses renderers to visualize the monitors and
utilizes a EUrEKA connector component to access the indicator data for the monitors.
Following the static reference architecture we presented two behavior sequences. One

focused more on the interaction in M2 dashboards including dashboard management and
A&A whereas the second one included variability configurations which are more likely to
be used in an analysis tool.

151



5. Technical Reference Architecture

5.7. Technical Integration of Operation Services
This section introduces our prototypical solution for the integration of operation services
and EMI services. The ideas presented here are used in the definition of the actual reference
architectures for the monitoring system (section 6.1), the logging system (section 6.2),
and the directory system (section 6.3). Hence, we refer to this solution as style rather
then reference architecture. It will focus on the static architecture and the integration
aspects. The concrete reference architecture of the operation services will then further
specify all the components and their details as well as the behavior of the components.

EMI Service

Client
Agent

Operation Service

Topic

Client
Agent

Master
Agent

Figure 5.38.: Integration in an Operation System between the Operation Service and
EMI Services

We discussed different integration architectures in section 3.3. In our technical
reference architecture we choose to integrate the different layers using our enterprise
measurement data bus for the integration between the measurement and calculation layer
and the EUrEKA design for the integration between visualization and calculation. These
integration architectures nicely fulfill all our requirements. The integration between the
operation services and the EMI services, however, requires a different type of integration
architecture because of different control and data flows between the services. Additionally,
EMI services should be easily integrated with the operation services using common
modules and components provided by the specific EMI development platform.

We therefore choose an agent-based integration architecture for the integration between
EMI services and operation services. Figure 5.38 provides an overview over the core
components for this design. Each operation service defines a specific topic to integrate
the agents with each other. Each operation service consumer utilizes a specific Client
Agent to connect to the topic and integrate with the operation service. The integration
service provides a Master Agent which orchestrates all other agents and provides the
integration for the operation service. The communication between the agents and the
topic is bi-directional contrasting the EMDB and the EUrEKA design which are both
uni-directional. This enables a uniform communication between all types of agents. Yet,
it increases the complexity of the actual agents and requires additional infrastructure
services (the additional topic). However, a thoughtful design of agent-frameworks provided
by the platform eases their design and decreases the complexity from our experience.

152



5.7. Technical Integration of Operation Services

The additional topics are also easy to handle because the EMDB already uses at least
three topics for the core communication inside the EMI.

Service

Graphical User Interface

Storage, Filtering &
Aggregation (Calculation)

Control

Agent

Agent
Transport &
Integration

Agent

Figure 5.39.: Operation System Component View

Figure 5.39 provides additional details to the description from above. Each operation
service provides specific agent components that are deployed with each integrated service.
The actual integration of the agents is performed by the transport and integration
component which utilizes a specific topic for each operation service. Furthermore, this
component provides the agents with the necessary message senders, message receivers, and
message types that are exchanged via the topic. Therefore, this component is provided
by the EMI development platform.

The actual operation service provides a graphical user interface (GUI) to interact with
its stakeholders. The GUI accesses a data component that provides storage, filtering,
and aggregation of the data required for the operation service. This data can be metric
data for the monitoring system, logging data for the logging system, or terms and their
synonyms for the directory service. Additionally, the GUI utilizes a control component
to send control commands to the EMI services. An example for such control commands
is entering or exiting a maintenance mode, alive-checks, or reconfiguration of loggers.

153



5. Technical Reference Architecture

5.8. Summary of the Technical Reference Architecture
This section presented our technical reference architecture for the core of an enterprise
measurement infrastructure. We first presented an overview over all the layers and core
services in an enterprise measurement infrastructure. Following the idea of microservices
we split up the layers and services following separation of concerns. We then provided
additional information and dedicated reference architectures to each of the layers and
their services.
We started with the two integration layers. The most important one being the data

integration and transport layer that houses the enterprise measurement data bus (EMDB).
This bus provides the backbone for the data exchange in the data adaption and the
calculation layer. The integration concept of the bus are puplish/subscribe topics to
exchange EMDB messages between the data adapters and metric kernels. These messages
use a generalization hierarchy to implement the satisfiability relation from our formalism.
We then moved to the calculation access layer. This integrates the visualization and

the calculation layer using our enterprise uniform metric kernel access (EUrEKA) design.
The core idea of EUrEKA is the specification for indicator access APIs that provide a
uniform access to the indicators provided by the metric kernels. Additional services like
the EUrEKA registry and the kernel description model ease working with EUrEKA.

After the integration layers we presented the reference architectures for the three core
domain layers of our reference architecture. Following the data flow in an EMI we started
with the reference architecture for data adapters. We presented our four data adaption
patterns: push-forward, pull-forward, invoke-pull, and invoke-dump. Each pattern solves
specific problems when integrating heterogeneous data providers in an EMI. For each
pattern we presented the interactions between the data adapter and the data provider.
Furthermore, we presented static reference architectures for the internal components of
each type of data adapter.
The next section then presented the reference architecture for the heart of the EMIs:

the metric kernels. We presented two different static reference architectures for different
sizes of metric kernels: a monolithic design and a design with multiple components.
Furthermore, we presented behavioral details for the two important functions of a metric
kernels: processing messages from the EMDB and providing data via one of its indicator
access APIs.
The following section completed the reference architecture for the EMI core layers

with the reference architecture for visualization frontends in the visualization layer. We
started with a classification and definition for the different types of visualization frontends.
Similar to the metric kernels we then presented the static reference architecture for the
visualization frontends as well as a discussion on the dynamic aspects including some of
the optional components.

The last section then presented an architectural style to integrate the operation services
and the EMI services with each other. The style proposes an agent-based integration
between the different services. The following chapter will use this style to define the
reference architectures for the different operation services.

154



6
Operation Systems and Services

An enterprise measurement infrastructure, as described in the technical reference
architecture above, represents a large distributed system with a broad variety of different
loosely coupled services. A key success factor to successful developing, operating, and
managing such systems is solid monitoring and logging support. Similar to an EMI
itself, these two systems represent small measurement systems with additional controls.
Therefore, we start the description of each of the two systems with a list of information
needs from the particular stakeholders (measurement customers). The stakeholders are
mostly developers, metric experts, and operators. The reference architectures for the
systems follow the architectural style defined in section 5.7 above.

Integrating heterogeneous data provider into one measurement infrastructure requires
technical integration aspects as well as functional integration aspects. One of the functional
integration aspects that is most frequently required is the integration of different terms
for the same concepts in different data providers. To ease this task we propose the use
of a Directory System that provides EMI services with different directories to lookup
terms for given synonyms. Including this system in an actual EMI is optional but we
found it to be very useful to lookup unique entity of measurement names or to reduce
unnecessary complex status models.
As described above each of the following sections start with the requirements for the

presented system. We then present the reference architectures for each of the systems.
We start with the description of the monitoring system in section 6.1. Section 6.2 will
afterwards provide the requirements and the reference architecture for an EMI specific
logging system. After these two mandatory services we will introduce the optional
directory system in section 6.3. We do not provide an overall summary at the end of
the chapter as usual because the systems are too different and each section already
summarizes the important points for each system.

155



6. Operation Systems and Services

6.1. Monitoring System
Monitoring and centralized control of the services is essential for successful operation
of a measurement infrastructure. This is particularly true for a distributed system that
contains a large number of loosely coupled services like EMIs based on our reference
architecture. The job of the operator is to ensure that the measurement infrastructure
and all of its services operate within their operational boundaries. Therefore, she needs a
consolidated view on the status of all services in the measurement infrastructure. This
status includes a lot of performance metrics on the services. Thus, the monitoring system
is also a metric-based measurement system. The infrastructure operators act as the
metric customers of this system. The development of the monitoring system therefore
follows our metric systems development process model presented in part III. Following
this process model the following section presents a list of information needs that guide
the design of the monitoring system.

6.1.1. Information Needs Satisfied by the Monitoring System
The following list of monitoring information needs from measurement infrastructure
operators further specifies the rough needs for the operators provided in section 9.3.5.
These information needs are condensed experiences from our field studies. Most of
them are also backed-up by existing literature for metric on service oriented architecture.
For example Rud et al. who investigated different resource metrics for service oriented
architectures [RSD07].
We differentiate between live and statistical information needs. The live information

need reflect the current status of a service and is the basis for immediate actions. On
the contrary, statistical information needs are based on statistical calculations on certain
aspects of the services. Therefore, most of the time they do not require immediate actions
from the operators or developers but stear the long time development of the EMI. The
live information needs apply to all types of services. For the statistical information needs
we provide dedicated subsections for the different types of services as well as universal
needs.

Live Information Needs

As described above, these information needs trigger immediate actions from the operators.
Therefore they need to be easily accessible by the operator and presented all the time.

What is the operational state of a metric service? This is the most crucial
information for an operator. If a metric kernel goes into unplanned maintenance
state or offline then the operator needs to do everything she can to get the service
back online. We recommend to at least differentiate between the operation states:
online, maintenance, offline or unknown.
In our field studies we also discussed the following operation states:

156



6.1. Monitoring System

out-of-sync The data at the metric service is not the current (last) data from the
data provider. This may happen if a service went offline during data updates
from the data provider or when the updated data did not make it over to the
EMI.

calculating This is a state specific to metric kernels when the calculation of a
metric takes a considerable amount of time. Typically the arrival of new data
triggers a new calculation. Until the calculation is finished the metric kernel
is not able to show the current data.

heavy load The metric service receives a lot of messages or produces a lot of
messages near the limit of the specified behavior. This is an indicator for
metric operators to maybe move the metric service to a dedicated server or to
initiate an improvement to the message handling of this service.

partially offline The metric service is still responding but some of its parts
(most likely databases) are not responding. This will most likely lead to an
“out-of-sync” state if not handled immediately.

It is also important to visualize “out-of-sync” and “calculating” to the metric
customer and not just in the monitoring service. This helps the metric customer to
judge the data and she is not fooled into wrong conclusions due to old data.
Furthermore, the architects, operators, and metric experts need to discuss and
specify further states during the design of each service when instantiating (parts of)
the references architecture. Operation states are, therefore, included in our template
for the design document which defines the design for a development increment (see
section 11 and section B.3 for further details).

Since when is a metric service not online? If a metric kernel leaves the online state
(goes offline or in unplanned maintenance) then the most important information
for the operator is the time at which the metric kernel left the online state. Using
this the operator can filter the log or other information sources to find the cause of
the problem.

What is the current value of important performance indicators? Each service
needs to define its own performance indicators and their boundaries. The boundaries,
however, can also depend on the actual measurement infrastructure and need to
be defined for each service before staging it to the production environment. For
example the upper boundaries for the message load of a service (number of incoming
+ outgoing messages to the EMDB) or the indicator load (number of requests via
the indicator access APIs) depends on the node that hosts the service and its
capabilities. Smaller hosts obviously reach their performance maximum earlier than
larger hosts.

157



6. Operation Systems and Services

These information needs also need to be satisfied for sub-services an related services of
an EMI or operation service. For example most services use a database or persistence
service of some kind. Most of the time if the database is offline then the service is not
able to perform its tasks. Important performance indicators for databases include the
current number of database transactions of that service and the fill status of the database
(number of items and/or disk space) with their specific current change rates for a given
time frame.
An additional important information need for metric experts on all metric services is:

“How is the sync state of the metric service?” The monitoring GUI can for example provide
a list with all the entities of measurement for which the metric service is out-of-sync as
an answer to this question. If the metric service is in-sync for all entities of measurements
then the GUI should provide a corresponding information1 to ensure the metric expert
that the sync-tracing mechanism are operational.

Statistical Information Needs for all services

Most of the services in an EMI connect to the EMDB. Therefore most of the statistical
information need is related to the reception and sending of messages. All the information
needs should be available for different time scales and different time frames. For most of
these we advice to provide: this hour, last hour, this hour yesterday, today, yesterday, this
day last week, this week, last week, this month, last month, and all. If they are configured
for today or shorter then these information needs almost become live information needs.
Therefore, the time scales and time frames need to be added to the variability model
of the respective metrics. The monitoring GUI can either provide a selection for them
or provide a dedicated view for each of the scales and typical frames. The GUI can
also offer combined views to provide better overviews; for example: this hour, last hour,
and this hour yesterday combined on one GUI. Furthermore, we can provide additional
statistical operations on these to determine the mean, median, or any other percentile
distribution of the values2. These investigations can provide additional insides into causes
for performance problems or optimization potential.
To judge the overall performance of a service the operator requires the consolidated

message counts. The two most important information needs are therefore: “How many
messages overall did it send?” and “How many messages overall did the service receive?”.
To find the cause of performance problems the monitoring system should also provide
more detailed information. The two information needs for this are: “How many messages
of what message type did it receive?” and “How many messages of what message type
did it send?”.

Statistical Information Needs for Data Adapter

The data adapter connect the measurement infrastructure with the data provider.
They are crucial for up-to-date information in the visualization frontends. The

1For example: “The metric kernel is in-sync for all entities of measurements and has all current data.”
2Always investigate whether the required statistical operation is allowed for the scale of the given metric!

158



6.1. Monitoring System

push-forward data adapter pattern particularly requires constant load monitoring. The
inversion-of-control like interaction between the data provider and the data gateway
requires that the data gateway is always available. Otherwise, data loss is inevitable and
the data adapter will get out-of-sync. To ensure the availability of the data gateways
the operator needs to carefully watch and analyze the key performance indicators. The
following information needs describe the foundation for the most important performance
indicators.

How much data was adapted by an adapter in a specified time frame? This
provides important information on the load of a data adapter. The data can either
be represented by counting logical units (e.g. number of tickets) or data size (e.g.
megabyte).

How much data adaption was rejected in a specified time frame? The data
rejection of a data adapter can be a good indicator for the data quality problems
in a data provider or the quality of the connection between the data provider and
the data adapter. If the rate or the absolute number is to high then the operator
needs to utilize the logging system to investigate the reason for the rejection.

How much data was provided by each data provider of the adapter? A data
adapter can be responsible for the integration of multiple data provider as we
discussed in section 5.4. Therefore, a data provider that spams a data adapter
with information can block calls from other data providers resulting in data loss,
similar to a DOS attack. An important indicator for this is the number of calls for
a specific data provider. If this number gets too large for certain providers then
the operator may provide several physical deployments of the same data adapter
and reroute the calls from the data providers.

Statistical Information Needs for Metric Kernels

The metric kernels are heart of an EMI. Therefore it is important to ensure that
these are operational. The message related information needs described above and the
service state of the databases of the metric kernels are the most important information
needs. Additionally, operators are interested to know: “How many EUrEKA requests
are performed through what indicator access API?”. If they notice a high load on a
specific indicator access API this maybe need to be located to an additional metric kernel.
Alternatively, the metric kernel needs to be deployed multiple times and the API needs
to be accessed via a load balancer.
Contrasting the information needs of the operator, the metric expert is interested

in functional questions related to the definition and design of the metrics. Answers to
the following information needs can help to optimize a metric portfolio. Each of these
information needs need to be configured with a given time frame.

159



6. Operation Systems and Services

What metric ids where requested how many times? An answer to this question
is to use a counter for the number of calls to each metric identifier. If a metric
kernel implements a large number of metrics then a good answer is to just show
the top-5 and bottom-5 metric ids. The metrics that are not accessed are potential
candidates for removal from the metric portfolio in one of the next development
increments. This reduces the complexity of the metric portfolio and the metric
kernel. If the load of the metric kernel is to high then it is a good idea to move
the most used metrics to their own metric kernel in one of the next development
increments.

How often is what variability point configured? Similar to the question above
this just requires counting the usage and the configuration of each variability
point. If the variability model defines to many variability points then, similar to
above, the top-5 and bottom-5 variability points are sufficient. If a variability point
is never used it can potentially be removed similar to unused metrics. This again
reduces the complexity of the metric portfolio and the metric kernel. If one of the
variability point is always configured with a similar variability configuration then
maybe this requires to split the metric and define individual metrics for the top
most used variability points to eases the configuration of the metrics.

How many requests did result in no data? A sudden raise in the number of
requests that result in no data is an indicator for a problem in the integration of a
data provider or configuration errors in the visualization frontends.

Statistical Information Needs for Visualization Frontends

Similar to the metric kernels the operators are only interested in one additional information
need related to the load of the frontend: “How many users are interacting with the
visualization?”. Optimally, this information need is satisfied using a chart or list for the
usage. These should be configurable to: hourly, daily, weekly, and monthly. For example:
hourly would produce a table or chart for the last values of the last 24 hours. Because
this is an aggregated value the GUI should also provide the selection for the aggregation
operator: max, min, avg, and abs.
Most of the information needs related to the visualization frontends come from the

metric experts. They like to optimize the metric portfolio and assist the metric customers.
All the following information needs focus on M2 dashboards. Analysis tools are typically
used by the metric expert or other experts in the company. Consequently, they should
know what they are doing and the metric expert does not need to assist them as much.
Hence, she does not require according performance indicators. If an analysis tool indicates
a certain problem then typically this triggers the development process to define specific
metrics and monitors to analyze the problem constantly in one of the dashboards. See
section 12.2.3 in the operation phase of our process model for further details. To get
an overview over the utilization of the visualization frontends they stated the following
needs: (Similar to above, all these need to be configured for a given time frame)

160



6.1. Monitoring System

How many M2 dashboards are configured? The number of M2 dashboards that
are configured in an M2 dashboard tool is often used as a normalization. For
example to calculate the average number of monitors per M2 dashboard or the
relative amount of custom configured M2 dashboards.

How many monitors are placed in the M2 dashboards? This value also provides
a basic indicator for the customization of a dashboard. The monitoring should
provide the basic aggregation levels: min, max, avg, and abs to completely satisfy
the need.

How different are the M2 dashboards configured? The metric expert can provide
M2 dashboard best practices to provide the metric customers with ready to use
M2 dashboards. This need helps the metric expert to find new best practices
in the currently configured M2 dashboards. The configuration differences should
be provided on the basis of monitor clusters and on similarity metrics on the
M2 dashboards. A monitor cluster is a set of similar monitors. A good similarity
metric between two M2 dashboards for example is the number of actions (add,
modify, and delete monitors as well as M2 dashboard grid resizing) required to
transform the one M2 dashboard into the other one.

Some M2 dashboard tools provides an explicit templating mechanism for dashboards
and monitors. The metric expert then also requires information about their usage to
optimize the template basis.

How many custom dashboards are configured? If too many custom dashboards
are configured then this is an indicator for missing templates. The metric expert
should analyze the custom dashboards for example via the configuration difference
indicator from above and try to extract new templates.

How many custom monitors are configured? Similar to the need above, this is a
means to indicate missing monitor templates.

What is the template usage top-5 and bottom-5? The bottom-5 provides
templates that can potentially be deleted if they are not used frequently. The top-5
provides a list of best practices that can be presented to new employees.

This concludes our list of monitoring information needs from measurement infrastructure
operators and metric experts. Similar to other measurement systems this list needs to be
continuously evaluated on the actual EMI and extended if necessary. The following sub
section will provide a reference architecture for the monitoring system that implements
the style presented above in section 5.7.

161



6. Operation Systems and Services

6.1.2. Monitoring System Reference Architecture
The reference architecture for the monitoring system implements the agent-based
integration style presented above in section 5.7. This section will present the instantiation
of the style in a static reference architecture. Furthermore, we provide additional
information on the alive check and service discovery dynamics as well as the dynamics of
the performance indicator calculation and transformation3. The communication between
the monitoring client and the monitoring service are based on the request-reply enterprise
integration pattern [HW03a]. The section starts, however, with the static reference
architecture for the monitoring system.

Static Monitoring System Reference Architecture

As described in section 5.2.1, the monitoring system uses the EMI.monitoring topic
to exchange information between the agents. We do not provide an additional overview
diagram4 for the complete monitoring system but focus on the detailed reference
architectures for the monitoring client agent and additional details for the monitoring
service.

Figure 6.1 provides an overview over the static reference architecture for the monitoring
client agent. The client agent connects to the monitoring topic (EMI.monitoring) using
dedicated Monitoring Message Sender and Monitoring Message Receiver
components which exchange Monitoring Messages. These messages can be extended
depending on the specific communication required in an EMI instance. Default messages
include: Alive Check Request, Service Details, Service Shutdown Info,
Performance Indicator Request, Performance Indicator Response, and
Monitoring Event. We describe additional details on the semantic and behavior that
are associated with these messages in the sub sections below.
The central Monitoring Client Agent Controller orchestrates all the

interactions in the agent. Most importantly, this controller uses the Performance
Indicator Source Registry to produce performance indicators when answering
performance indicator requests. The registry holds a number of Performance
Indicator Sources. These sources implement the performance indicators required to
answers the information needs from above. The result of a calculation of a performance
indicator is then wrapped in a specific Performance Indicator Representation.
These representations are stored in the response and transported to the central monitoring
service which visualizes them accordingly. The representations and indicator sources can
be further specialized to implement specific representations for an EMI instance.
The monitoring client agent also provides an interface for Monitoring Service

Access. This interface can trigger specific actions in the client agent. For example
the sending of a monitoring event or reporting the startup or shutdown of a service.

3Additional details to the concepts presented in this section can be found in the thesis of Ahmet
Yüksektepe [Yük13].

4See section 5.7 and figure 5.38 and figure 5.39 for an overview on the integration between the monitoring
service and the EMI services.

162



6.1. Monitoring System

Monitoring Client Agent

Performance
Indicator Sources
Registry

Monitoring
Client Agent 

Controller

Monitoring
Message Sender

Monitoring
Message Receiver

EMI.monitoring

Performance
Indicator Source

Monitoring
Messages

Performance Indicator
Representation

Produce
Performance
Indicators

Produces

Monitoring 
Service Facade

Monitoring
Service
Access

...

...

...

Figure 6.1.: Static reference architecture for the monitoring client agent

This interface also provides access to some of the indicator sources. For example we
recommend to provide methods to calculate the message-based performance indicators:
onMessageReceive(message) and onMessageSend(message). The controller
can then delegate the calls to the registry which delegates them to the message-based
performance indicator sources. These then increase their counters or extract size
information from the messages.
The static reference architecture for the monitoring service is very similar to the

architecture provided in the style. Therefore we do not provide an additional component
overview. In accordance with the architectural style, the monitoring service also includes
a monitoring client agent. Hence, the performance indicators for the monitoring service
itself use the standard mechanisms to provide performance indicators about itself rather
then a shortcut. This produces additional communication overhead but reduces the
overall complexity of the monitoring service because it only needs to implement the
standard way.

163



6. Operation Systems and Services

The monitoring system also provides operation state information to other services.
This is particular important for the EUrEKA consumers (see section 5.18). These need
to check if their requests can be answered before actually querying an API and running
into a timeout for offline or maintained services. The following listing 6.1 provides the
methods of the service operation status API using our API specification language (see
section 3.2 for additional details):

Source Code 6.1 API specification for the service operation status API
interface ServiceOperationStatus

mandatory method getOperationStatusFor
mandatory parameter serviceName : String
returns OperationStatus

optional method isServiceAvailible
mandatory parameter serviceName : String
returns Boolean

The method getServiceStatusFor returns the actual operation status of the
service. The optional method isServiceAvailible is more convenient for the check.
However, it returns true if the operation state of the given service is not offline,
unknown, or maintenance.
The following two sub sections provide additional information on the dynamics

between the monitoring service and the monitoring client agents as well as details
on the performance indicator provisioning.

Dynamic Aspect: Alive Check and Service Discovery

The most central goal of the monitoring system is to provide information on the
operational state of the services. To report this, the monitoring service periodically
triggers alive-checks. In our EMIs we choose to fire it every 10 seconds. An exception
to the alive-check are services that are currently in planned maintenance operation
state. This state indicates that someone is working on the service. Hence, the monitoring
system can ignore it.
One alternative for the implementation of the alive-checks would be to check the

aliveness of all services from the monitoring service. The service would iterate over the
list of all of its services and tries to get an answer from each service. The problem with
this, however, is that the iteration is synchronized. Hence, if a service failed and does not
answer the request the monitoring service needs to wait for a timeout the identify that a
service is not alive. This would slow the alive-check significantly and hence the trigger
interval needs to be increased accordingly. The alive information, however, is critical and
the interval should be capt as low as possible.
Therefore, we recommend an asynchronous alive-check. Figure 6.2 provides a UML

activity diagram for this asynchronous behavior of the monitoring service and monitoring
client agent during an alive-check. After the alive-check is triggered the monitoring

164



6.1. Monitoring System

Trigger
Alive Check

Send Alive-Check-Message 
to monitoring topic

Receive
Alive-Check-Message

Gather
Service Details

Send Service-Details-Message 
to monitoring topic

Receive
Service-Details-Message

Does Service
sxist in Database?

Create Service
in Database

Update Service
Details

Set operation-state
of service to online

Is Service current
operation-state = maintenance?

Do not change
operation-state

No

yes

yes No

Monitoring Service

Monitoring Client Agent [For all agents]

Monitoring Service

[For all services that are not in maintenance]

Loop

Set operation-state
to unknown

Figure 6.2.: UML activity diagram for the behavior of the monitoring service and
monitoring client agent during an alive-check.

service first sets the current operation state of all services to unknown. After that the
service sends out an Alive-Check-Message to the monitoring topic that forces all
monitoring client agents to answer with their service details. Therefore, a Service that
does not answer will remain in unknown state. We choose to set it to unknown state
rather than offline because we do not know for certain that the service is offline. It
may just perform a calculation heavy operation that delays the answer to the alive-check.

165



6. Operation Systems and Services

The service only enters offline-state after the monitoring service receives a
Service-Shutdown-Info-Message from the service. This message needs to be
send during the shutdown of the service. This can be included in the destructor for the
monitoring client agent component for example or in an explicit shutdown hook provided
by the component infrastructure.

After sending the alive-check-message, the monitoring service asynchronously receives
Service-Detail-Messages from the monitoring client agents. This message is not
only send as an answer to alive-checks but also send during service startup. Therefore, the
monitoring service first needs to check if the service already exists in its data base. If not it
creates it with the provided service details. Thus, this behavior conveniently implements
the service discovery function. If the service is already known to the monitoring service
then it updates the details of the service with the provided information in the message
for example to update the description of the service or its detailed operation state. If the
service is currently being maintained then the monitoring service does not change the
operation state. Otherwise, it sets the operation state to online.

This concludes the specification of the alive-check behavior and service discovery. The
next section will provide details on the performance indicator provisioning.

Dynamic Aspect: Performance Indicator Provisioning

Performance indicators answer the information needs from above. Hence, the performance
indicators need to be implemented in the monitoring client agents because stakeholders
have different questions for different types of services. The actual list of performance
indicators provided by a service is defined in the design phase of our process model (see
section 11.2.1 for additional details).
The performance indicator provisioning starts with an interaction of a stakeholder

in the GUI of the monitoring service. The stakeholder likes to answer her information
needs regarding a specific service. The monitoring service then, similar to the alive-check
described above, sends out a Performance-Indicator-Request-Message for the
specific service. The message receiver in the monitoring client agents catch the message
and check if it needs to provide performance indicators. If so then the message receiver
triggers the calculation in the controller. This delegates the production of the indicators
to the Performance Indicator Source Registry.
Figure 6.3 provides a UML sequence diagram for the production of the performance

indicators by the performance indicator source registry. The registry loops over all
its performance indicator sources and triggers the buildIndicator method on each
source. In an implementation this method would be a template method on a performance
indicator base class. The method first calculates the actual indicator values based on
its internal storage. Then it instantiates an appropriate Performance Indicator
Representation and provides this with the calculated value. The indicator is then
returned and added to the result list of the registry. When all the indicators are build
then the registry returns the result list with all the indicator (representations).
The list is then wrapped in a Performance-Indicator-Response-Message by

the controller of the monitoring client agent which is send using the monitoring message

166



6.1. Monitoring System

Performance 
Indicator Sources 

Registry

Performance 
Indicator Source

indicator : Performance 
Indicator Representation

[for all sources]Loop

buildIndicator()

calcIndicator()

value

setValue(value)
indicator

addInidicatorToResult(indicator)

producePerformanceIndicators()

indicatorList

Figure 6.3.: UML sequence diagram for the production of the performance indicators in
a monitoring client agent.

sender. The monitoring service catches the message using the master agent and updates
the GUI with the visualizations for the indicator representations in the list.
Depending on the implementation technology of the monitoring client agent the key

behavior using the indicator sources can be delegated to existing libraries. The Metric
library for example (https://dropwizard.github.io/metrics/) provides the
required mechanisms related to indicator sources and indicator calculation for java-based
implementations. However, we recommend to implement different performance indicator
representations based on the actual representation needs; for example: tables, charts, or
plain text. Furthermore, we also encourage the custom implementation of the registry
and indicator sources and just hooking in existing libraries. Thereby, the indicators
sources can easily be extended with special sources for specific services (if needed).

6.1.3. Monitoring System Summary
This section provided a brief introduction of the the monitoring system. We started with
a large list of information needs from various stakeholders to the monitoring system. We
differentiated live information needs and statistical information needs. They describe
important information for the operator and the metric expert. The most important one
for the operator is the operation state of each service.

167

https://dropwizard.github.io/metrics/


6. Operation Systems and Services

Statistical information needs are only answered on request. They include performance
indicators for each service. We provided different performance indicators for each type of
EMI service as a guideline for the actual definition of all monitoring information needs
related to each service when instantiating the reference architecture.

We then provided key aspects of the reference architecture for the monitoring system.
The statical reference architecture focused on the monitoring client agent and its
components. Furthermore, we also provided the API specification for the operation
state API of the monitoring service. This API is crucial for the smooth operation of the
EUrEKA consumers; hence, the visualization frontends.
We also provided additional details on the request-response based dynamics in the

monitoring system. First we presented the alive-check and service discovery behavior.
This uses asynchronous mechanics based on service-detail messages to discover services
and reset their online state. We also provided additional details to the calculation of
performance indicators inside the monitoring client agent.
The goal of the monitoring system is to provide operators and metric experts with

quick answers and overviews over their information needs. However, if a performance
indicator hints a problem or a specific aspect needs to be investigated then they need
more insides into the services. This inside is provided by the logging system which will
be introduced in the following section.

168



6.2. Logging System

6.2. Logging System
This section provides central information needs and key aspects of the reference
architecture for the logging system. Following the definition from Chuvakin et al. we
define a Log as [CSP13]:

At the heart of log data are, simply, log messages, or logs. A log message is
what a computer system, device, software, etc. generates in response to some
sort of stimuli. [...] First off, the typical basic contents for a log message are
the following: Timestamp, Source, [and] Data.

A large distributed system that contains a high number of loosely coupled services
like EMIs based on our reference architecture requires a central logging mechanism and
a logging infrastructure [KS06]. Logs provide inside information required for a variety
of different tasks related to the development and operation of an EMI. The following
section provides a brief overview over the central information needs from the developers,
operators, metric experts, and metric customers. After that we present key aspects of
the reference architecture for the logging system5.

6.2.1. Information Needs Satisfied by the Logging System
This sub section provides information needs that are answered by the logging system.
However, the logging system addresses a large variate of stakeholders (developers,
operators, metric experts, and metric customers). Therefore, we differentiate between
technical logging and functional logging. Consequently, the GUI of the logging service
needs to provide different interfaces (or sub-interfaces) for the different types of logs.
Furthermore, the logging service can also provide functional logs via an API, which can
be queried by the visualization frontends to retrieve (functional) logging information
relevant for a particular M2 dashboard.
The most important requirement for the logging system is to provide a centralized

logging service for all the distributed services in an EMI. This logging service can help to
increase development speed and development quality because developers can easily access
the log of the complete EMI. Also, this greatly eases the root cause analysis for problems
in the production environment by operators and developers. However, the strength of
the microservice architectural style is that each service can freely chose its technologies.
This leads to a lot of difficulties when realizing a centralized logging system because the
logging client agents need to be compatible with all the different technologies.
This section can only provide very few actual information needs because logging is

very closely related to the actual design of the services. Consequently, the actual logging
information needs need to be defined when designing the behavioral details of a service
(see section 11.2.1). These needs then need to be evaluated by the stakeholders when
evaluating the design of the service (see section 11.2.3).

5Additional details to the concepts presented in this section as well as valuable information on the actual
implementation of the reference architecture in a Java environment can be found in the thesis of Jan
Döring [Dör14].

169



6. Operation Systems and Services

Hence, this section only provides very basic and generic information needs. We start the
overview of the information needs with the technical information needs from developers
and operators.

Technical Information Needs

The technical roles (developers and operators) are mainly interested in technical
information provided by the services. This information provides feedback from the
service to the developers during the construction phase when the service is not integrated
into a complete EMI. Technical information is also important for operators. They are
responsible for successful operation of the measurement infrastructure. If the monitoring
system shows a failure of a service or a strange behavior then the operators can check
the technical log of the service to find the root cause of the problem.

Functional Information Needs

The main difference between functional logging and technical logging in an EMI is that
functional logging information is always specific to a given entity of measurement. Thereby
the information can easily be filtered to the relevant eoms for a specific user. This is
particular important for metric customers who need to get additional inside information
from the EMI upon specific actions. Typically they only require information from a
very narrow set of entities of measurements. Hence, it would be hard for them to focus
on the relevant information when they would see all log information for all entities of
measurement.
The metric expert or even metric customers need to be able to investigate details of

data rejection by the data adapter. Data rejection will typically lead to a data adapter,
and consequently all related metric kernels, to enter out-of-sync state. Therefore, the
problems related to the rejection need to be fixed as fast as possible. Hence, a specific
functional logging information need related to the data adapters is “Why was certain
data rejected?”. To answer this need the data adapter needs to log the rejected data and
rejection reason.

Another specific functional logging information need from metric experts is related to
the data requested by EUrEKA consumer. The monitoring system provides information
about how many requests return no data. If this indicator suddenly changes or the
number is high then the metric experts needs to investigate further details. Therefore
the EUrEKA consumer or the metric kernel need to answer the need: “What EUrEKA
requests resulted in no data?”. To answer this they need to log the URL or identifier of
the API, the metric identifier, and the entity of measurement as log data.

As stated above the actual logging information needs heavily depend on the design of
the specific service. Therefore we do not provide further information needs to encourage
the specific definition. The next section will provide an overview over the key aspects of
the reference architecture for the logging system.

170



6.2. Logging System

6.2.2. Logging System Reference Architecture
The reference architecture for the logging system implements the agent-based integration
style presented above in section 5.7. This section will present the instantiation of the
style as well as additional information on the static reference architecture and information
about the behavior when reconfiguring and discovering a logger.
As described in section 5.2.1, the logging system uses the EMI.logging topic to

exchange information between the agents. We do not provide an additional overview
diagram6 for the complete logging system but focus on the detailed reference architectures
for the logging client agent. Most technologies already offer dedicated logging support.
Therefore, the goal of this reference architecture is to integrate the existing loggers with
our centralized logging service.

Logging Client Agent

Logging Adapter
Registry

Logging
Client Agent 

Controller

Log Sender

Logging 
Configuration Receiver

EMI.logging

Logging
Messages

Logger
Configuration

...

Logger
Discovery

Logging
Adapter

...

Specific
Log-Appender

Logger
Information Sender

...

Figure 6.4.: Static reference architecture for the logging client agent

Figure 6.4 provides an overview over the static reference architecture for the logging
client agent. The client agent connects to the logging topic (EMI.logging) using
the Log Sender, Logger Information Sender and Logging Configuration
Receiver components which exchange Logging Messages. These messages can be
extended depending on the specific communication required in an EMI instance.

6See section 5.7 and figure 5.38 and figure 5.39 for an overview on the integration between the logging
service and the EMI services.

171



6. Operation Systems and Services

Contrasting the static reference architecture of the monitoring system, the log sender
does not connect to the central Logging Client Agent Controller but directly
to the Log Appender. Log appender can be configured to listen to specific log messages
produces by the service. Different technologies require different appenders. Therefore,
the logging client agent may require to provide different log appender to fit the specific
technologies.

The Logging Client Agent Controller orchestrates all other (non log related)
interactions in the logging client agent. It utilizes the Logging Adapter Registry to
configure and discover loggers provided by different technologies. Each technology requires
its own Logging Adapter which is then registered with the registry. The result of the
logger discovery, all loggers of the service, is send to the logging service using the Logger
Information Sender. The Logging Configuration Receiver listens for new
logging configurations. Fitting configurations are delegated to the controller which passes
them to the registry. The registry then finds the suitable adapter which applies the
configuration on the logger.

The actual implementation of this reference architecture can become quiet complicated;
depending on the technologies used. However, we believe that the static reference
architecture provided above and the rough description of the behavior is enough to
understand the basic ideas of the design. Therefore, we do not provide additional
information on the dynamic aspects of the logging system. Please refer to the additional
sources provided in the introduction for further details.

6.2.3. Logging System Summary
This section provided a brief introduction of the reference architecture for a centralized
logging system for EMIs. We started with a brief overview of the logging information
needs. In there we distinguished between functional and technical logging. Each of which
addresses different stakeholders. Most importantly, we emphasized the importance of
defining the specific logging information during the design of the actual services.
We then provided key aspects of the reference architecture for the logging system.

We focused on the statical reference architecture for the logging client agent. With this
we also briefly discussed the responsibilities of specific log appender. Additionally, we
provided short descriptions of the logging configuration and logger discovery mechanism.

This concludes our discussion of the two most important operation services: Monitoring
and Logging. The next section will introduce the optional directory services which eases
the integration of heterogeneous data in an EMI.

172



6.3. Lookup System (optional)

6.3. Lookup System (optional)
The Lookup System implements a generic service to lookup terms for synonyms. Even
though it is optional, we recommend to include it because it drastically reduces the setup
and maintenance effort of an EMI. The centralized directory service of the directory
system provides a single place in the EMI where operators or metric experts are able to
specify all the synonyms for actual terms. The following sub section introduces the goals
and requirements for the directory system more thoroughly using user story oriented use
cases. After that we provide key aspects of the reference architecture for the directory
system7.

6.3.1. Use Cases and Requirements for the Lookup System
The two most important use cases8 are the lookup of unique entities of measurements
and the reduction of enumerations. The following sub sections provide additional details
for the two use cases.

EOM Unification

The (functional and technical) integration of heterogeneous data providers in an EMI
raises a huge amount of challenges. One of the functional challenges is different naming of
important properties; most importantly the entities of measurements. In our field studies
we observed that the names for the same entity of measurement in different systems are
often different. For example in an issue tracking system a project may be called “Project
0815”, in the version control system it is known as “/cvsroot/projects/0815”, and the
accounting system only know it as “P0815”. However, a project manager would like to
satisfy issue related, configuration related, and accounting related information needs
in a single M2 dashboard without looking up all the different identifiers. Even more
important metrics that require the input from different data provider need to be able to
actually calculate the metrics without too much configuration on them. For example the
metric “Average costs per bug” requires information from the accounting system and the
issue tracker. Hence, all the different identifiers (synonyms) for one project need to be
identified as the same project (term) inside the EMI. Our solution is therefore to use the
directory service to define one unique identifier for the eom and register all it’s synonyms
with this identifier.

Enumeration Reduction

Another huge functional challenge when integrating heterogeneous data providers in
an EMI is the reduction of enumeration values for example issue states. Issue tracking
systems are required to reflect the underlying supported processes.

7Additional details to the concepts presented in this section can be found in the thesis of Nick Russler
[Rus13].

8These are not use cases as described in the UML. We provide a more informal description of the cases
of using our system. Hence, these uses cases resemble user stories rather than formal UML use cases.

173



6. Operation Systems and Services

This typically results in a large variety of issue states (e.g. “issued”, “in check from
customer”, “requires customer feedback”, “requires feedback from customer management”,
and so on . . . ). All these states are important to track the actual issues in the real
process. However, they are not necessarily important to someone who is just interested
in a course grained analysis.

On a very basic level a project manager, for example, is just interested in the number
of “Open” and maybe “Closed” issues. Hence, for this counting metric most of the fine
grained states are just synonyms to “Open”. However, these states should not be hard
coded into the metric because the actual EMI may integrate multiple issue trackers and
the states change over time. Therefore, a metric expert can use the directory service
to define all the synonyms for the function states “open issue” and “closed issue”. The
metric then uses the directory system to translate the actual status into the functional
status.

Requirements

The obvious requirement for the directory system is to store terms for given synonyms.
In order to support the different use cases the directory system should provide different
directories in which to store the terms and their synonyms. Hence, a service can use the
“EOM Directory” to lookup the actual term for an eom synonym and then use the “Issue
Status Directory” to lookup the function issue status for the actual status of a given
issue.

Following our style from section 5.7 the directory system should also provide a central
directory service for the definition of terms and their synonyms. The directory system can
also provide synonyms to the service automatically for example when a EMDB message
contains a new/unknown eom. Hence, the metric expert or operator just needs to perform
the term definition and assign the appropriate synonyms to the terms. However, the
service should also support to manually add a (bunch of) synonym(s) in order to setup
the directory system with all term-synonym relations before a message is send.

This concludes the use cases and requirements to the directory system. The following
section will introduce key aspects of the reference architecture for the directory system.

6.3.2. Directory System Reference Architecture
Similar to the monitoring system and the logging system, the reference architecture
for the directory system implements the agent-based integration style from section 5.7.
This section will present the instantiation of the style as well as additional information
on the static reference architecture and information about the behavior when actually
performing a lookup of a synonym in the directory.

Contrasting the Monitoring System and the Logging System we provide an overview of
the complete Directory System in figure 6.5 because it differs slightly from the integration
style. Most importantly, the Directory Service does not contain a Directory Client
Agent and we do not require a control component. The directory service therefore only
contains the Directory Service Master Agent which integrates the directory service with

174



6.3. Lookup System (optional)

Directory Service

EMI Service

Directory Service 
Client Agent

Directory Service
Master Agent

Local Cache

Directory
Database

Graphical User Interface

Directory Service 
Controller

EMI.directory

...

Figure 6.5.: Static reference architecture for the directory system

the EMI services. The master agent is closely coupled to the Directory Service Controller
which orchestrates the control flow inside the directory service. Most importantly, the
controller connects the agent and the GUI to the Synonym Database which stores the
terms, synonyms, and their relations. The Graphical User Interface (GUI) of the directory
service provides the web frontend to the metric experts and operators.

As usual the directory client agent connects to the topic using dedicated Directory
Message Senders and Directory Message Receivers to exchange Lookup
Messages (all three not shown in figure). Similar to the monitoring system, the
directory system also utilizes the request-reply-pattern to implement the communication
between the client agent and the master agent [HW03a]. Hence, the two most important
lookup messages are: Lookup-Request and Lookup-Response which transport the
request and the reply respectively.
We recommend to add a local cache to the directory client agent to speed up the

lookup of known synonyms. Caching of previous lookup results prevents multiple costly
request-reply-based lookups in the central directory service. However, this caching also
increases the complexity of the management of synonyms and terms in the central directory
service because all actions need to be published over the topic to update the local caches.
The additional messages required for this are: UpdateSynonymTermRelation and
DeleteSynonymTermRelation. However, actual lookups are fare more frequent than
the (re)-specification of terms and their synonyms. Hence, it is justified to add complexity
to speed up the more frequent action. Using the local cache also speeds up the message
reception and calculation in metric kernels significantly because they need to perform a
lookup of the eom every time they receive a new message.

175



6. Operation Systems and Services

Most importantly, the Directory Client Agents provides an interface to the EMI services
to utilize the functions of the directory service. The following listing 6.2 provides the
methods of this lookup interface using our API specification language (see section 3.2 for
additional details). We will, as usual, provide additional details to the methods after the
listing.

Source Code 6.2 Specification for the directory lookup interface of the directory client agent
interface DirectoryLookup

mandatory method lookupSynonym
mandatory parameter directory : String
mandatory parameter synonym : String
optional parameter timeoutInMiliSecounds : Integer
returns String

optional method lookupSynonym
mandatory parameter directory : String
mandatory parameter synonym : String
optional parameter timeoutInMiliSecounds : Integer
returnsLookupResult

optional method getSynonyms
mandatory parameter directory : String
mandatory parameter term : String
returns List of String

optional method getTermsInDirectory
mandatory parameter directory : String
returns List of String

optional method registerSynonyms
mandatory parameter directory : String
mandatory parameter synonyms : List of String
returns Void

The lookupSynonym method resolves the provided synonym to it’s term in the
given directory. Optionally, the method can contain a timeout parameter. If the
request-reply-based lookup via the lookup topic exceeds the given timeout then the
method will simply return the synonym. In our implementations we use a default timeout
of 2000 milliseconds if no timeout is specified. The method can either return a String for
the resolved synonym or a more complex LookupResult. This can provide additional
information about the lookup together with the term that resolves for the synonym.
The additional information can be used for logging or to visualize lookup results to
stakeholders when configuring certain EMI services.

176



6.3. Lookup System (optional)

Optionally, the interface can provide a method to access all synonyms for a given term
with the getSynonyms method. The list can, for example, be shown when configuring
the eom of a monitor in a dashboard in order to provide information about all actual
eoms that feed the monitor. Similarly, the optional getTermsInDirectory method
can be used to, for example, show all registered eoms.
The optional registerSynonyms method allows EMI services to register new

synonyms in a given directory. Thus, the manual specifications of synonyms by the metric
experts or operators can be avoided, which saves time and prevents spelling errors.
We believe that the static reference architecture provided above and the rough

description of the behavior is enough to understand the basic ideas of the design of
a Directory System. Therefore, we do not provide additional information on the dynamic
aspects of it. Please refer to the additional sources provided in the introduction for
further details.

Directory System Summary

This section provided a brief introduction of the directory system. We started with a
brief introduction to the two most important use cases of the directory system: Unifying
entities of measurement and simplifying enumerations. From these we distilled high level
requirements to the lockup system. Most importantly the need for different directories of
terms and synonyms.
We then provided key aspects of the reference architecture for the directory system.

We focused on the static reference architecture of the system. With this we provided a
specification for the lookup interface that is used by the EMI services to interact with
the directory system. Furthermore, we provided short descriptions of the behavior of the
methods as well as a brief discussion on the benefits and weaknesses of using a local
cache for the synonym-term-relations.

This concludes our discussion of the operation systems. The next section will
extend our formalism from the foundations to the concepts used in the reference
architecture.

177





7
MeDIC Reference Architecture Formalisms

As the psychologist Kurt Lewin once stated:

There is nothing more practical than a good theory.

We embrace this by providing a formal basis to our, practically oriented, reference
architecture for enterprise measurement infrastructures in this chapter.
We first provide a formalism for the service states of the services in an EMI. The

state of the service is the most basic information that an operator requires of a service.
The service states are therefore prominently placed in the GUI of the monitoring service.
However, we require a solid formalism to define the semantics and behavior associated
with a certain state. Therefore, we present a set-based formalism for the service states in
the following section 7.1.

We already provided a formalism for our measurement data flow in section 2.3. However,
the actual concepts of the MeDIC reference architecture are not addressed by the formalism.
Therefore, we need to extend it to be able to formally describe and analyze an actual
EMI. This enables us to investigate the termination of calculations inside an actual EMI.
Additionally, we are able to investigate all possible measurements available in an EMI
based on the data in the data providers. We call this the reach of the data in the EMI;
technically we calculate the outer calculation hull. This extended formalism is provided
in section 7.2.
The application of a formalism is often difficult due to its abstract nature. Therefore,

is is very useful to provide examples of the application of the different concepts. We
already provide some small examples with the definition of the formalism. However, a
large example that uses all the different concepts and shows their application is very
useful. Therefore we provide a very detailed example of the application of the formalism
in section 7.3.

179



7. MeDIC Reference Architecture Formalisms

7.1. Formalism for Service States
Service states are a rough means to communicate run time information about the services.
This information is a crucial indicator to metric operators and metric experts when
they inspect whether the measurement infrastructure runs within sound parameters and
acts as required. First of all, they should be accessible through the monitoring system.
Additionally, visualization frontends should also be able to access the states to indicate
them next to its monitor. The following two sub sections define the two most important
states: “Maintenance” and “In-Sync with data provider”. The actual EMI instance,
however, can extend these states if required.

Some states can ripple through the different layers of the EMI. If, for example, a data
adapter is out of sync then all the metric kernels that require measurements from this
data adapter will also be out of sync and so forth. Hence, when reporting service states
then the root cause (service) should be reported as well. This root can be used to filter
specific information. For example if the metric application is not in sync with a specific
data provider this information is only required for metric customers who require data
from this specific provider.

Each service state Statei is defined as a set of tuples of EMI services S and identification
depending on the needs of the operators or the detection potential for that state. For
example:

StateExample =
{

(S, {ident1, ident2, . . . })
∣∣∣S ∈ S ∧ S is in this specific state

}
The additional identifiers ident1, ident2, . . . can be used to specify the state on a more
detailed level per service (see sync example later in this section).

7.1.1. Maintenance
Maintenance tasks include updates of the service to reflect changed or new information
needs as well as database optimizations or relocating the metric service to a new host.
When maintaining a metric service, the access to it should be prohibited until the service
is in normal operational parameters again. For example metric customers who access
informations from a maintained metric kernel could see wrong our outdated data.

Let S be the set of all metric services in an EMI. In general we define the maintenance
state as:

StateMaintenance =
{

(S, {})
∣∣∣S ∈ S ∧ S is beeing maintained

}
Maintenance can be subdivided into planned and unplanned maintenance. The

tasks mentioned before are considered planed maintenance. Planed maintenance is
typically performed at a time with little access to the system for example the weekend.
Unplanned maintenance, however, is required if a (crucial) error is found in the services
and maintenance needs to be performed immediately.

180



7.1. Formalism for Service States

7.1.2. Sync with Data Provider
The out-of-sync state represents a specific metric service scenario in which the data that
entered the metric service is not the complete current data of all of its data providers.
This typically happens if a data provider contains inconsistent data which is not adapted
(rejected) from a data adapter or if a data adapter is offline or defective. In such a case
the data adapter and all metric kernel that require this particular data are out-of-sync. A
metric kernel will typically also be out-of-sync if it needs to be (re) set up in a particular
EMI.

In general the sync-state is defined for every entity of measurement of the data provider
to provide the stakeholders with a finer error indicator. A metric service can, hence,
be in-sync for an entity of measurement eom1 and out-of-sync for another entity of
measurement eom2. We formally include this in the sync state by adding an entity
of measurement dimension to the states. Hence, entity of measurement specific states
contain tuples of metric services and entities of measurement.

Let S be a metric service and eom1 and eom2 two entities of measurement like above.
The in sync state hence only contains the tuple of the metric service and eom1 because
the service is out-of-sync for eom2.

StateIn−Sync =
{

(S, {eom1})
}

Let S be the set of all metric services in an EMI and EOM the set of all entities of
measurement in all data providers adapted by the EMI. We then define the sync state as:

StateIn−Sync =
{

(S, {eom})
∣∣∣S ∈ S ∧ eom ∈ EOM ∧ S is in-sync for eom

}
We formally define the ripple effect of the sync state via the feed relation between the

metrics. Let M1 and M2 be two metrics with M1
−→∼M2 (see section 2.3.8), S1 and S2

be two EMI services that implement these metrics, and EOM be the set of all entities of
measurements. Sync-rippling is then defined as:

∀ eom ∈ EOM : (S1, {eom}) 6∈ StateIn−Sync ⇒ (S2, {eom}) 6∈ StateIn−Sync

This already concludes our brief discussion on a formalism for service states. The
following section extends our formalism from the foundations to a formal basis for our
MeDIC reference architecture.

181



7. MeDIC Reference Architecture Formalisms

7.2. Formal Basis of the Technical Reference Architecture
This sections extends our formalism for the conceptual measurement data flow in our
metric systems from section 2.3 according to the mapping presented in section 5.1.2.
It provides a solid formal approach for the data flow and data processing in an EMI.
Using this formal approach we are able to investigate and prove calculation termination
of an EMI and correctness of the implementation of the metric kernels. From these
investigations we motivate some of the (technical) requirements for Metric Kernels and
Data Adapters. Furthermore, the formalism indicates further problem scenarios inside
an EMI that an operator or a metric expert should be aware of. Therefore some of the
sub sections define additional performance indicators for the monitoring system as well
as additional logging information that should be feed to the logging system.
The following sections extend our concepts from section 2.3.4 and section 2.2.3 by

implementing the concepts with dedicated parts from the reference architecture. The
core responsibility of an EMI is the transport and processing of different types of
data for the sake of calculating and presenting metric values. For this we choose a
message-based data integration on the EMDB by the means of measurement messages (see
section 5.2). Therefore, we first need to extend the formal approaches for measurements
from section 2.3.4 in order to reflect measurement messages. We then describe the
formal approach to Data Adapters in section 7.2.3 before addressing the Metric Kernels
in section 7.2.4. The metric kernel section also describes the Data Storage, Indicator
Access APIs and Measurement Result depicted in figure 5.3. We then use the concepts
of measurement data compatibility and measurement data matching as a basis for the
investigations on the overall data processing in an EMI in section 7.2.5. We close the
section with a short summary in section 7.2.6.
We do not include visualization aspects (Monitors) in our formal approach because

they are quit hard to grasp formally. We also do not see any benefit in adding this since
Monitors just visualize the data provided by the indicator access APIs of the metric
kernels. They do not (should not) include any calculation. Hence, they can be ignored
when investigating termination and reach of an EMI.

7.2.1. Preface
The messages on the EMDB and their reception and sending has a timing aspect.
Therefore, we need to be able to formalize timing as well. In particular we need to
formalize that a function f1 is executed before another function f2 without f1 providing
an input to f2

1.
For this formalization we define the ||-operator between two function f1 and f2. Like

required f1 || f2 formalizes that f1 is executed before f2. The result of the execution is
the result from f2.

1This would simply be f2(f1())

182



7.2. Formal Basis of the Technical Reference Architecture

7.2.2. Measurement Messages
The formalism from section 2.3 is based on measurement data and measurements. In an
EMI, however, the core services exchange Measurement Messages. Therefore we need to
extend our definitions from section 2.3.4. We formalize measurements in the reference
architecture by encapsulating them in measurement messages m. These measurement
messages are exchanged over the enterprise measurement data bus (EMDB). In addition
to measurements these contain a time stamp ts which indicates the data change time
that lead to the measurement. Measurement messages are, hence, defined as:

m = (d, ts,Mid, eom) (7.1)

Measurement Message Equivalence

Measurement messages are considered equivalent (≡) if they identify the same
measurement, the same entity of measurement, and the same time stamp even
if the measurement data is different. Let m1 = (d1, ts1,Mid1 , eom1) and m2 =
(d2, ts2,Mid2 , eom2) be two measurement messages:

ts1 = ts2 ∧Mid1 = Mid2 ∧ eom1 = eom2 ⇔ m1 ≡ m2 (7.2)

Latency

It is important to differentiate between the data change time and the measurement time
because these two will be different! The data change time is the time when the change
occurred in the data provider that lead to data d. The measurement time, however, is
the time the data was adapted by a data adapter. The difference between the two times
is called the latency of the measurement message. From this the average latency of a
data adapter can be calculated.

Let m = (d, ts,Mid, eom) be a measurement message and let t be the time of the sending
of the measurement message by the data adapter. As defined above, the time stamp
in the measurement message ts corresponds to the time of the data change in the data
provider. The latency L of this measurement message is therefore calculated as the time
difference between the data change and the sending of the measurement message:

L = t− ts

The average latency for a data adapter Lavg can be calculated by using the latencies of
its produced measurement messages. Let L1, . . . , Ln be the latencies for all n measurement
messages produced by the data adapter. The average latency (mean latency) of the data
adapter can be calculated as:

Lavg = 1
n

n∑
i=1

Li

183



7. MeDIC Reference Architecture Formalisms

The average latency together with the minimum and maximum latency as well as
their distribution provides valuable information about the performance of a data adapter
for operators. A good indicator for a problem in a data adapter or the communication
between a data adapter and a data provider is a sudden increase of the latency. Taken
to the extreme: the latencies can be the basis for a service level agreement for the data
adaption of an EMI.

Updates

Let m1 and m2 be two measurement messages like above. If eom1 = eom2, Mid1 = Mid2 ,
ts2 ≥ ts1 (m1 is older then m2) and d1 6= d2 then m2 is called an update of m1. This can
occur if inconsistent data is corrected in the data provider. For example a spreadsheet
with missing data in a row or wrong type of data.

Furthermore, even if m1 ≡ m2 (only the data is different) and m2 is received after m1 then
m2 is called a hard update of m1. Hard updates can happen during certain maintenance
tasks or during the correction of inconsistent data similar to above. However, they should
not occur often or unanticipated. Therefore, the number of hard updates should be
monitored and the message that triggers the hard update and the old data should be
logged.

Reduction to Measurement

In later sections we need to be able to access the measurement in a measurement message
(get rid of the time stamp). Therefore, we define a reduction function that is applicable
on a measurement message as follows:

m|M : m→ M
(d, ts,Mid, eom)|M = (d,Mid, eom)

Using this reduction function we define the reduction function for sets of measurement
messages as follows:

M|M : M→ M
{m1, . . . , m2}|M = {m1|M , . . . , m2|M}

7.2.3. Data Adapter
A data adapter A is responsible for adapting the data from a set2 of data providers.
As defined above in our concept to implementation mapping in section 5.1.2, the data
adaption of the data adapter implements a number of measurement functions f1, . . . , fm.

2Typically each data adapter is just responsible for adapting the data from one data provider. In some
cases, however, a data adapter is used for the adaption of several data providers. For example similar
data providers on different servers or different data providers with similar data.

184



7.2. Formal Basis of the Technical Reference Architecture

The measurement messages produced by the data adapter are based on the adaption of
the raw data in a data provider. Therefore, we first need to define the raw data and the
corresponding calculation of measurement data from it using the measurement functions.
Let Raw = {raw1, . . . , rawt} be the raw data from the data providers feeding

the data adapter and f1, . . . , fm be the measurement functions implemented by the
data adapter. Each measurement function fi is able to process specific raw data
Rawi = {rawk1 , . . . , rawkh

} for k1, . . . , kh ∈ t. For simplicity reasons, we define that a
measurement function is only able to operate on one raw data entry at a time3. The
output of the calculation of the measurement function on the raw data is therefore the
measurement data d = fi(raw) for all raw ∈ Rawi.
The measurement messages produced by the data adapter also requires a time stamp

and an entity of measurement besides the measurement data. The time stamp and the
entity of measurement for a raw data are calculated using specific time calculation and
eom calculation functions in the data adapter:

timeA : raw → Timestamp

eomA : raw → eom

We can therefore define the production function of the data adapter as follows:

produceA : raw → m

produceA(raw) = ( fi(raw), timeA(raw), Midi
, eomA(raw) )

Hence, the product of the data adapter is the set of all measurement messages M resulting
from the adaption of the raw data from the data provider. Using the production function
we can calculate the product of the data adapter as:

MA =
{
produceA(raw)

∣∣∣ ∀ raw ∈ Rawi ∧ ∀ i ∈ m
}

7.2.4. Metric Kernel
A metric kernel K implements a number of calculation function f1, . . . , fn. Hence, they
consume measurement messages, provide indicators, and produce new measurement
messages based on our formalism in section 2.3.7. In the following sub section we will,
therefore, adapt these concepts to measurement messages and the idea behind metric
kernels.

3This does also makes sense from a conceptual point of view because a measurement function that
would require multiple raw data would already perform calculations. Calculation, however, should be
performed in metric kernels.

185



7. MeDIC Reference Architecture Formalisms

Measurement Message Consumer

In section 2.3.6 we provided a higher order function for the type-based generation of
guard functions of measurement consumers. However, as described above, a metric kernel
implements a number of calculation functions. Hence, the guard function of the metric
kernel must be specified in a way that it accepts all measurement messages that are
accepted by one of the guards of the measurement consumers of the derived metrics of
the calculation functions (see figure 2.6 for clarification). From now on, for simplicity
reasons, we simply abbreviate this by using the concepts of the measurement consumer
on the calculation function because their relation is one-to-one anyways.

Let Ti be the set of accepted types that generate the guard functions for the calculation
function fi. Then, the accepted type set TK that generates the guard function of a metric
kernel K is calculated as:

TK =
n⋃

i=1
Ti (7.3)

Note that some of these types may be compatible or equal.
In an actual EMI there needs to be a provider for each of these types. Therefore, a

good consistency check for the design of an EMI is to verify that every type set TK for all
metric kernels K of an EMI can be satisfied by the products of a data adapter or metric
kernel.

Handling Measurement Messages

The metric kernel receives the data asynchronously by the means of measurement messages.
It, hence, needs to store the data from the measurement messages to enable access to the
calculation results (synchronously) at any time. Typically the storage function and the
data stored in the metric kernel are defined in a way which eases the calculation of the
calculation function. We define the data stored in the metric kernel as store = {d′1, . . . , d′l}.
The data entries in the store are transformed measurement data from the measurement
messages.
The data storage of the metric kernel is filled by the storage function persist of the

metric kernel. This function is defined as:

persist : store× m→ store

It takes a (compatible) measurement message m and the current data storage as input,
extracts the data d from the measurement message, and transforms and stores it for the
metric kernel as new store. For simplicity reasons we typically omit the store parameter
from the storage function and treat the changing of the data store as a side effect of
the storage function. This simplifies the following definitions. To revoke this, the data
storage parameter and output can be added to all the function that require the storage
function if so desired.
Furthermore, we define the extended version of the storage function that works on a

set of measurement messages. Let M = {m1, . . . , mn} be a set of measurement messages.

186



7.2. Formal Basis of the Technical Reference Architecture

We then define the extended storage function as:

persist : store× M→ store

persist(M) = persist(m1) || . . . || persist(mn)

Due to (possible) changes and alterations to the format of the data the calculation
functions are also altered to f ′k. These functions need to provide equivalent results to the
original calculation functions. The following paragraph provides the tools to prove this.
To prove the equivalence we need to prove that the calculation result of the tailored

calculation function on the data storage is equal to the result of the calculations on
unaltered data. Therefore, let f1, . . . , fn be the calculation functions implemented by
the metric kernel, M be a set of measurement messages that is accepted by the guard
function of the metric kernel, store be the data stored in the metric kernel and confi

be variability configurations that are compatible with the variability of their function
fi. The metric kernel provides correct indicators and derived measurements (is correctly
implemented) iff:

∀ m ∈ M, ∀ i ∈ n : persist(m) || f ′i(store, confi) = fi(m|M , confi) (7.4)

Stability of the Metric Kernel

If the metric kernel breaks down it needs to be set up again. During this setup,
due to possible missed measurement messages, it may happen that the metric kernel
receives measurements messages that it already processed before4. Receiving the same
measurement message multiple times, however, must not effect the result of the calculation
because it does not contain new data. If the output of the metric kernel does not change
when it receives a measurement message multiple times then we call it stable.

Formally defined: a metric kernel is stable iff for all measurement messages m, all
possible variability configurations conf , and all its functions f ′ the following equation
holds:

persist(m) || persist(m) || f ′(store, conf) = persist(m) || f ′(store, conf) (7.5)

Indicator Access

A metric kernel provides a number of indicators for the visualizations, as described in our
technical reference architecture above. The indicators are accessed via specific indicator
access APIs. Each indicator access API provides a specific data type dataType to the
visualizations. The indicator access APIs do not calculate any metric but only provide a
view or transformation on the results of the calculations from the calculation functions.

4Receiving a message multiple times may also happen during regular operation of an EMI based on the
messaging infrastructure used to implement the EMDB.

187



7. MeDIC Reference Architecture Formalisms

For an indicator access API I we define the view as a function viewI that consumes
the output of a calculation function and provides an indicator according to the data type
of the API:

viewI : d→ dataType

Using the previews sections we can define the output of an indicator access API on
the transformed calculation function f ′ using the variability configuration conf as:

viewI(f ′(store, conf)) (7.6)

In the technical reference architecture we fully define the access on the indicator access
APIs. These require a metric identifier to specify the calculation function. Furthermore,
they also require an entity of measurement to filter the output accordingly. However, for
our remaining formalism these details are not important5. Hence, we only provide the
definition from above and leaf the full definition to future work.

Measurement Production

The calculation of derived measurement in a metric kernel follows our formalism for
measurement producer in section 2.3.7. The metric kernels provide derived measurements
for a fixed set of variability configurations on the calculation functions. However,
the metric kernels use altered calculation functions because of their internal storage.
Furthermore, the input of the producer needs to be changed from measurements to the
data store and its output to measurement messages. Hence, we need to alter the definition
for the derived producer.

Let P be a measurement producer of a derived metric implemented in the metric kernel
K, EP be the calculation function for the entities of measurement, Mid be the metric
identifier for this product, EOM be the set of entities of measurement in the data store
store of the metric kernel, now() be the function that returns the current time (for the
time stamp of the measurement message), f ′ be the altered calculation function of the
calculation function f of the derived metric of the measurement producer, and conf be
the variability configuration associated with the measurement producer. The production
function of a measurement producer of the metric kernel is then defined as:

produceP : store→ m

produceP (store) =
(
f ′(store, conf), now(), Mid, EP (EOM)

)
(7.7)

The production function of the metric kernel K (similar to section 2.3.7) simply combines
the output of the production function for all measurement producers of all derived metrics
implemented in the metric kernel:

produceK : store→ M :
produceK(store) =

{
produceP1(store), . . . , producePh

(store)
}

5Mostly due to the fact that we do not provide a formalism for the visualization frontends.

188



7.2. Formal Basis of the Technical Reference Architecture

Calculation Termination for a Metric Kernel

The output of derived metrics for a metric kernel follows our concept for measurement
producers from section 2.3.7. Therefore, it is sufficient to show that the metric kernel
does not consume its products in a tailored version of equation 2.4 to show termination.
Let TK be the set of accepted types of the metric kernel K, store be the data store of
the metric kernel, and produceK be the production function of the metric kernel. If the
following equation holds then the calculation of an EMI with just this metric kernel will
terminate.

produceK(store)|M 6|= TK (7.8)

7.2.5. Data Processing in an EMI
We can use the definitions above to define the outer data processing hull of a complete
EMI; its reach. This hull represents the calculation output of a combination of several
metric kernels and data adapters feed by multiple data providers. Before defining the
outer data processing hull, however, we require some additional abstractions to ease its
definition.

Robust Metric Kernel Production Function

The calculation functions, and hence the production functions above, are only defined
on suitable data input that passes the guard function. To ease the definition of the
processing hull we require production functions that are also well defined on non-suitable
data. The idea is to extend the definition of the functions. We call this extension the
robust version of the function because they tolerate “wrong” input.

Let produceP be the production function for a measurement producer P of a metric
kernel, T the set of types that generate the guard function of the calculation function
f from the measurement producer, and persist be the extended storage function of the
metric kernel. We then define the robust production function ̂produceP as:

̂produceP : M→ M

̂produceP (store) =
{
{persist(M) || produceP (store)} if M|M |= T
{} otherwise

Note that, contrasting the definition from before, the output of the robust production
function is a set of measurements rather than a single measurement. This eases the
following definitions.
Using this we can define the robust production function of a metric kernel K. Let

P1, . . . , Ph be all measurement producer of derived metrics implemented by the metric
kernel, and ̂producePi be their robust production function.

189



7. MeDIC Reference Architecture Formalisms

We then define the robust production function of the metric kernel ̂produceK as:

̂produceK : M→ M :

̂produceK(M) =
h⋃

i=1

̂producePi(store)

Note that only the calculation results for suitable measurement messages are calculated
because of the way the robust versions of the measurement producers are constructed.
However, the calculation is always well defined and can therefore be applied on arbitrary
sets of measurement messages without checking their types. Using these robust production
functions for metric kernels we are now able to define the outer data processing hull of
an EMI in the following section.

Outer Data Processing Hull

Using our definitions from above and with the definition for the product of a data adapter
from section 7.2.3 we are now able to calculate the outer data processing hull of an EMI
as the set of all measurement messages produces in the EMI from a set of raw data in
the data provider.
Let A1, . . . ,An be all data adapter in an EMI and MAi be the product of the data

adapter (the measurement messages resulting from the adaption of the raw data from
the data provider). We can then define the first data processing step in an EMI M0 as:

M0 =
n⋃

i=1
MAi

Let K1, . . . ,Km be all metric kernel in an EMI and ̂produceKj their robust production
functions. We can then recursively define a processing step in an EMI as:

Mi+1 =
m⋃

j=1

̂produceKj (Mi) i ≥ 0

Using this recursive definition we can now define the outer data processing hull of an
EMI. Let m ∈ N be the point at which Mm = Mm+1 another processing step does not
produce any new messages. We can then define the outer data processing hull of an EMI
M∗ as:

M∗ =
m⋃

i=1
Mi

The outer data processing hull only surely exists if the calculation in the EMI terminates;
otherwise m does not necessarily exist6. Following equation 7.4 the metric kernel correctly
implements the calculation functions in the metric portfolio. Therefore, the calculation

6m can also exist in a non terminating EMI. For example if there exists an infinite calculation of the
same measurement then the output will always be identical and m exists.

190



7.2. Formal Basis of the Technical Reference Architecture

in the EMI terminates if the calculations in the metric portfolio terminate. Thus, it is
sufficient to show that equation 2.5 holds for the metric portfolio implemented in the
EMI.

The outer data processing hull contains all measurement messages that result from the
adaption of the raw data by the data adapter (M0). Therefore, we refer to M∗ as the reach
of the raw data in the EMI. Furthermore, we also refer to the first set of measurement
messages from the data adapter M0 as the seed of the raw data in the EMI.

7.2.6. Formalism Summary
This concludes our formalism for the MeDIC reference architecture. We started with a
formal extension of measurements to measurement messages. These correspond to the
EMDB messages in our technical reference architecture. From there we then provided
a formalism for the adaption of raw data from data providers by data adapters. The
data adaption, application of the measurement function, and production of measurement
messages by data adapters is straight forward and we believe the formalism is easy to
use.
We then moved to the more complex formalism for metric kernels. These implement

the derived metrics and their calculation functions. We showed how to tailer the
existing formalism to suite the metric kernel, for example for measurement consumer
and measurement producers. Furthermore, we also provided additional foundations for
important properties of the metric kernel like stability and correctness.
Our discussion on the data processing inside an EMI then provided us with a

specification of the reach of an EMI (its outer data processing hull). This includes
all measurement messages that are generated in an EMI based on the raw data in the
data provider. This provides a powerful tool to investigate all generated measurements
which helps to direct the increments in our process model in the next part.

This very detailed and formal specification of the concepts in an EMI are typically
not required. However, the formal specification of an actual EMI may indicate design
problems on an EMI before implementation. Especially proving the correctness of the
metric kernel and proving the termination of an EMI are valuable tools to find design
problems.

With this formalism we have all tools at hand to formally define all the elements in an
EMI based on our MeDIC reference architecture. The ticket statistics example in the
next sections shows the application of the formalism and its strengths.

191



7. MeDIC Reference Architecture Formalisms

7.3. Formalism Example: Ticket Statistics
This section provides an example for the formal definition of a metric kernel and the data
processing inside an EMI. It also shows how we can use the requirements from above to
prove termination of the EMI and correctness of the transformation of the calculation
functions in the metric kernel.

7.3.1. Introduction and Definition of the EMI
Let K be a metric kernel that calculates metrics for simple statistics on ticket management
systems. The metric kernel receives its data from the adaption of a ticket management
system the Example Issue Tracker. The system stores the tickets t1, . . . , tn as its
raw data. Each ticket contains a number of dedicated attributes with specific values
(t.attribute = value). For example a ticket t with high priority and low severity would
contain: t.priority = high, t.severity = low. The data from the data provider is adapted
via a data adapter A. This generates measurement messages containing measurement
data similar to the example in section 2.3.5. In this example we focus on the metric
kernel because all interesting concepts and proofs are defined for them. Before we start
with the kernel, however, we first define the conceptual basis, the metrics, in the following
sub section.

7.3.2. Metric Definition
Before we can provide an example for the metric kernel and its formal definition we need
to define the actual metrics that are implemented by the metric kernel. We like to use
two in this example. Each metric simply counts the number of tickets with different
attributes. The first metric MHighP rioCount simply counts the number of tickets with
high priority without any variability. The second metric MV arSevCount counts the number
of tickets for a given severity class provided in the variability configuration.
We now need to formally define the calculation functions of the metrics. Because

the metrics count the tickets we can simply define the calculation functions using sums.
However, to ease the definition we first define the following helper function to check
matching attribute values. The matches function checks if the given attribute on the
given ticket is equal to the given value. If so the function returns 1. Otherwise it returns
0. Let t be a ticket, attribute the name of an attribute of the ticket, and value be a value
that the attribute can hold. The matches function is then defined as:

matches(t, attribute, value) =
{

1 if t.attribute = value
0 otherwise

Using this function we are now able to easily define the two calculation functions. Let
T = {t1, . . . , tn} be an arbitrary set of tickets. The two calculation functions for the two

192



7.3. Formalism Example: Ticket Statistics

corresponding metrics are then defined as:

fHighP rioCount(T, conf) =
n∑

i=1
matches(ti, priority, high)

fV arSevCount(T, conf) =
n∑

i=1
matches(ti, severity, conf.vpseverity)

In order to provide a solid formal definition of these two metrics we also need to
formally define their variability models and variation points (see section 2.2.4). The first
metric does not provide any variability. Therefore its variability model is empty:

VMHighP rioCount = {}

Contrasting the first one, the second metric should be variable. We already saw
the application of the variability configuration in the function definition above. The
variability model of the second metric provides a closed variability point for the severity.
The variability point contains the values: high, medium, and low, which mirrors the
different severity states in the ticket management system. Hence, the variability model
and variability point for the metric are defined as:

VMV arSevCount = {vpseverity}
vpseverity = {high,medium, low}

The calculation functions, obviously, require a specific type of data (tickets). Therefore
we also need to define the set of accepted types that define the guard function for each
of the metrics (and their calculation functions). Both metrics require tickets which, we
assume, are identified using a ticketId attribute. Furthermore, the metric MHighP rioCount

requires a data field for priority and the metric MV arSevCount requires a data field for
severity. Using our definition for data types from section 2.3.4 we define the following
measurement data types:

TT icketW ithP riority = {ticketId, priority}
TT icketW ithSeverity = {ticketId, severity}

The metrics, however, are defined on measurements not on measurement data. We
therefore extend the measurement data types from above to measurement types. These
measurement types are then used to generate the guard functions for the metrics. Following
our namespace concept, we define ticket.data as the root metric identifier for the
measurements. We can distinguish between the two types using the specific name spaces
ticket.data.withPriority and ticket.data.withSeverity.

TT icketW ithP riority = ( {ticketId, priority}, ticket.data.withPriority )
TT icketW ithSeverity = ( {ticketId, severity}, ticket.data.withSeverity )

193



7. MeDIC Reference Architecture Formalisms

Most of the definitions on these types require type sets. We therefore wrap the two
types in sets and get:

TT icketW ithP riority = { TT icketW ithP riority }
TT icketW ithSeverity = { TT icketW ithSeverity }

Furthermore, the metrics should each provide one measurement producer. These provide
measurements for other metrics in the metric portfolio. The first metric MHighP rioCount,
without variability, should simply provide its calculation results as new measurement. We
follow the definition of the measurement producer from section 2.3.7. Therefore, for our
first measurement producer PHighP rioCount we need to define a new metric identifier for
the measurement, a method EHighP rioCount(EOM) to extract the entity of measurement,
and a variability configuration confHighP rioCount. We define the metric identifier for
the measurement as: ticket.count.HighPriority according to our namespace concept.
The entity of measurement function ignores the given EOM set and simply returns the
name of the ticket management system because the high priority count is defined on
all tickets of the system: EHighP rioCount(EOM) = ExampleIssueTracker. The metric
has an empty variability model. Therefore the variability configuration must be empty
as well: confHighP rioCount = {}. Following equation 2.2 we can define the measurement
producer for the first metric as:

produceHighP rioCount(M) =
(
fHighP rioCount(M, {}), (7.9)

ticket.count.HighPriority,

ExampleIssueTracker,)
The second metric MV arSevCount should similarly provide the count of the high severity

tickets. The definition for the measurement producer PHighSevCount of the metric follows
the definition from above. However, we must provide a suitable variability configuration
to the calculation function to get the count of the high severity tickets. Therefore, let
confHighSeverity be a variability configuration with confHighSeverity.vpseverity = high
a variability configuration for the variability model VMV arSevCount of the metric
MV arSevCount. Using the arguments and definition from above we define the measurement
producer for the second metric as:

produceHighSevCount(M) =
(
fV arSevCount(M, confHighSeverity), (7.10)

ticket.count.HighSeverity,

ExampleIssueTracker,)
The definition of the metrics is, therefore, complete and we can define the metric kernel

194



7.3. Formalism Example: Ticket Statistics

and all its details starting with its measurement consumer in the following sub section.

7.3.3. Metric Kernel: Measurement Consumer
We like to define a metric kernel K that implements the two metrics MHighP rioCount

and MV arSevCount defined in the previous sections. Following our formalism for metric
kernels we first need to define the measurement consumer. Therefore, we need to define
the accepted type set of the metric kernel. Following equation 7.3 the types accepted by
the metric kernel are simply the union of the accepted types of the metrics implemented
by the metric kernel. Therefore we can define the accepted type set of the metric kernel
TM as:

TK = TT icketW ithP riority ∪ TT icketW ithSeverity

=
{

( {ticketId, priority}, ticket.data.withPriority ),

( {ticketId, severity}, ticket.data.withSeverity )
}

Using our concepts for compatibility on measurements (see section 2.3.5) we can define
an overall measurement type for ticket data as:

TT icket = ( {ticketId, priority, severity}, ticket.data )

Following our compatibility definition this type is compatible to the two other types:

TT icket ≺ TT icketW ithP riority TT icket ≺ TT icketW ithSeverity

We can therefore simplify the accepted type set of the metric kernel to the wrapped
type TT icket which provides all required attributes:

TK =
{

( {ticketId, priority, severity}, ticket.data )
}

After this definition of the measurement consumer of the metric kernel we define the
internal data storage of the metric kernel in the next section.

7.3.4. Metric Kernel: Data Storage
In section 7.2.4 we already mentioned that the data storage in the metric kernel will
typically differ from the data in the measurement messages to ease the calculation. The
easiest naive way for the calculation in this example would be to pre-calculate and store
the calculation results (increase or decrease the values on message receive). Sadly, such a
metric kernel would not be stable. If the kernel would receive the same ticket twice then
it would also increase the count twice. Hence, equation 7.5 would not hold. Therefore,
we will build the storage based on the ticket ids to allow the detection of messages that
were already received.

195



7. MeDIC Reference Architecture Formalisms

Our goal with the store, however, should be to optimize the calculation. Therefore, the
metric kernel stores not one but four sets of ticket ids in its data store. One set for the
ticket ids from the tickets with high priority and one for the tickets ids for each severity
type (see variability point). The data store is therefore defined as:

store = (SHighP rio, SHighSev, SMedSev, SLowSev)

The storage function of the metric kernel persist needs to fill these sets for each
measurement message accordingly. For this example we again define a helper store
function to ease the definition of the actual storage function. The idea of this helper
function is to perform the storage for one data set that is provided as a parameter. The
helper function then returns the altered data set. The helper function checks if a given
ticket has a given value for a given attribute. If it has then the helper function adds
the id of the ticket to the data set. If it does not have the given value then the helper
function performs a set minus operation with the ticket id. If the id is in the set this will
take it out. If the id is not in the set this does nothing. With this we reflect the fact that
the ticket will change some values throughout its live. Hence, if through an update the
ticket does not belong to the set anymore it needs to be taken out.
Let t be a ticket, dataSet a data set of the internal store, attribute the name of an

attribute of the ticket, and value a value that fits the attribute of the ticket. We then
define the helper function persist′(t, dataSet, attribute, value) for a single internal data
set as:

persist′(t, dataSet, attribute, value)

=
{
dataSet = dataSet ∪ {t.ticketId} if t.attribute = value
dataSet = dataSet \ {t.ticketId} otherwise

Using this helper function we are now able to define the actual storage function of the
metric kernel persist(m). Let m = (d, ts, ticket.data, eom) be a measurement message.
We then define the storage function as:

persist(m) =


SHighP rio = persist′(m.d, SHighP rio, priority, high)
SHighSev = persist′(m.d, SHighSev, severity, high)
SMedSev = persist′(m.d, SMedSev, severity,medium)
SLowSev = persist′(m.d, SLowSev, severity, low)

The format of the stored data differs from the data in the data provider. Hence, the
calculation functions need to be changed, as mentioned above. The sets already store
the correct ticket ids. Hence, the function simply needs to count these ids to return the

196



7.3. Formalism Example: Ticket Statistics

number of tickets with the corresponding condition.

f ′HighP rioCount(store, conf) = |SHighP rio|

f ′V arSevCount(store, conf) =


|SHighSev| if conf.vpseverity = high
|SMedSev| if conf.vpseverity = medium
|SLowSev| if conf.vpseverity = low
−1 otherwise

We now defined the storage function but we still need to prove that the altered
calculation function and the storage function actually implement the requested calculation
function. We perform this proof in the next subsection.

7.3.5. Correctness Proof of the Storage Function
To prove the correctness of the storage function we need to prove equation 7.4 for
all calculation functions and all measurement data. To save space and because these
proves are not too complicated the following section only contains a prove for the first
calculation function fHighP rioCount and its transformed function in the metric kernel
f ′HighP rioCount. As a reminder, to prove the correctness we need to prove that the output
of the transformed function after the storage function is the same as the output of the
unaltered calculation function. However, the basis of the calculation function are tickets
but the basis for the storage function are measurement messages. We therefore define a
extraction function for the measurement data from a measurement message:

extract : m→ ticket

extract(m) = m.d

However, the calculation functions are defined on sets of tickets. Using the extraction
function from above we define another helper function strip that “strips” a set of
measurement messages and reduces it to a set of ticket data.
Let T = {t1, . . . , tn} be a set of tickets and M = {m1, . . . , mm} be a set of measurement

messages. We then define the strip function as:

strip : M→ T

strip(M) =
m⋃

i=1
extract(mi)

For a compact definition of equation 7.4 we also define an extension to the storage
function that works on a set of measurement messages. This helps us to get rid of the
all-quantifier in equation 7.4. The extended storage function simply applies the storage
function for each measurement message in the set.

197



7. MeDIC Reference Architecture Formalisms

Let M be a set of measurement messages like above. We then define the extended
storage function as:

PERSIST : M→ store

PERSIST (M) = persist(m1) || . . . || persist(mm)

Using the strip function and the extended storage function we are now able to fill
equation 7.4 with our actual functions. The variability configuration conf in the equation
can be set to the empty set because the function has an empty variability model (has no
variability). Let M be a set of measurement messages like above. The implementation of
the calculation function in the metric kernel is correct if we prove the following equation:

PERSIST (M) || f ′HighP rioCount(store, {})
!= fHighP rioCount(strip(M), {}) (7.11)

First we fill in the actual definition of the functions from above. Let M be a set of
measurement messages like above and strip(M) = {t1, . . . , tn} be the set of tickets that
we get when stripping M. The metric kernel implementation is correct iff:

PERSIST (M) || |SHighP rio|
!=

n∑
i=1

matches(ti, priority, high) (7.12)

We now define a view on the ticket set that just contains the high priority tickets. Let
M be a set of measurement messages like above and strip(M) = {t1, . . . , tn} = T be the set
of tickets that we get when stripping M. We then define the high priority view on these
tickets as:

T |High = {t | t ∈ T ∧ t.priority = high}

The matches function of the calculation function on the right hand site in equation 7.12
is parameterized in a way that it only returns 1 if the priority of the ticket is high. Let
T = {t1, . . . , tn} be a set of tickets like above and T |High = {t′1, . . . , t′m} be the high
priority view on this set. From the definition of the matches function follows that:

n∑
i=1

matches(ti, priority, high) =
m∑

i=1
matches(t′i, priority, high)

Using the calculation functions (using the same definitions as above) we therefore know
that:

fHighP rioCount(T, {}) = fHighP rioCount(T |High , {}) (7.13)

The construction of the storage function uses the storage helper function from above. In
the actual storage function the helper function for the high priority tickets is parameterized
as: persist′(m.d, SHighP rio, priority, high). If we fill these parameters directly into the

198



7.3. Formalism Example: Ticket Statistics

definition of the helper function we get:

· · · =
{
SHighP rio = SHighP rio ∪ {t.ticketId} if t.priority = high
SHighP rio = SHighP rio \ {t.ticketId} otherwise

This storage helper function only fills in the high priority tickets from the ticket set.
Each ticketId is only contained once in the tickets set because it represents a snapshot of
a ticket management system. Therefore, we can also define the high priority data store
set using the high priority view on the ticket set from above. Let T be a set of tickets
and T |High be the high priority view on this set. We then know that after PERSIST (M)
the high priority data set just contains the ticket ids from the the high priority view on
the tickets:

SHighP rio =
{
t.id

∣∣ t ∈ T |High

}
Using this we can get rid of the storage function in equation 7.12. Let T |High =
{t′1, . . . , t′m} be the high priority view on the ticket set that resulted from stripping
the set of measurement messages like above. Following our discussion from before, the
implementation of the calculation function in the metric kernel is correct if the following
equation is true: ∣∣∣ {t.id | t ∈ T |High}

∣∣∣ != fHighP rioCount(T, {})

Using equation 7.13 we can further simplify the equation to:∣∣∣ {t.id | t ∈ T |High}
∣∣∣ != fHighP rioCount(T |High , {})

This can be further simplified by reformatting the sum on the left hand side and filling
in the definition for the calculation function on the right hand side:

∣∣ { t′1.id, . . . , t′m.id } ∣∣ !=
m∑

i=1
matches(t′i, priority, high)

The set T |High only contains high priority tickets. We can therefore get rid of the matches
function on the right hand side, because it returns 1 for every ticket in the set, and end
up with:

∣∣ { t′1.id, . . . , t′m.id } ∣∣ !=
m∑

i=1
1

Both left and right hand side of the equation will result in m. We therefore proved the
equivalence in equation 7.11! Hence we proved equation 7.4 for this calculation function
of the metric kernel. From this follows the correctness of the implementation of this
calculation function in the metric kernel!

199



7. MeDIC Reference Architecture Formalisms

7.3.6. Metric Kernel: Measurement Producer
According to the metric definition from above the metric kernel should provide two
measurement producers produceHighP rioCount and produceHighSevCount. These producers
should send measurement messages for the number of high priority tickets and the
number of high severity tickets. According to equation 7.7 and using the definitions
for the measurement producers in equation 7.9 and equation 7.10 directly follows the
definition for the measurement producers of the metric kernel.

The first measurement producer for the high priority ticket count from equation 7.9 is
implemented by the following producer from the metric kernel:

produceHighP rioCount(store) =
(
f ′HighP rioCount(store, {}),

now(),
ticket.count.HighPriority,

ExampleIssueTracker,)
The second measurement producer for the high priority ticket count from equation 7.10

is implemented similarly. Using our definitions for the variability configuration
confHighSeverity to count high severity tickets from above the following producer from
the metric kernel implements the high severity producer:

produceHighSevCount(store) =
(
f ′V arSevCount(store, confHighSeverity),

now(),
ticket.count.HighSeverity,

ExampleIssueTracker,)
Therefore the production function of the metric kernel is defined as:

produceK(store) =
{
produceHighP rioCount(store), produceHighSevCount(store)

}
Using this production function we can now (conceptually) prove the termination of

the calculation of the metric kernel inside the EMI.

7.3.7. Termination Proof of the Kernel and the EMI
To prove termination of this example we need to prove the requirements from equation 2.5
for all calculation functions. The metric kernel described above is the only metric kernel
in this EMI. Hence, satisfying equation 7.8 will also satisfy equation 2.5.

200



7.3. Formalism Example: Ticket Statistics

To prove equation 7.8 we just need to consider the metric identifiers of the
produced measurement messages and the required data type. The two metric
identifiers for the produced measurement messages are: ticket.count.HighPriority
and ticket.count.HighSeverity. The only type in the required type set of the metric
kernel TK is the type TT icket. The type identifier of this type is ticket.data.
From our definitions for measurement compatibility in section 2.3.5 follows that:

ticket.count.HighPriority 6≺ ticket.data

ticket.count.HighSeverity 6≺ ticket.data

They are not compatible because they are longer and they are not prefixes of ticket.data.
This also makes sense because their measurement messages obviously provide different
data.
Following our definition for satisfiability from section 2.3.6 it directly follows that no

production functions from the metric kernel satisfies the accepted type set of the kernel:

produceHighP rioCount(store)|M 6|= TK

produceHighSevCount(store)|M 6|= TK

Hence, the overall production function also does not satisfy the accepted type set of
the metric kernel:

produceK(store)|M 6|= TK

Thus, the guard function of the metric kernel will not accept any of the produced
measurement messages. This proves that there is no feedback in the metric kernel and
equation 7.8 is shown. As stated above, from this also follows equation 2.5. Therefore,
there are not infinite calculation chains in the EMI and the calculation terminates.

7.3.8. Example Summary
This section provided a detailed example of the application of our formalism for our
MeDIC reference architecture. We showed how to specify metrics, their variability,
and measurement producers. From there we implemented these metrics in a metric
kernel using our concepts from the formalism. Furthermore, we showed how to utilize
these formalism concepts to prove the correctness of the implementation in the metric
kernel and the termination of the EMI of the example. Thus, the example provides
a valuable source for the formal description of an actual EMI and proofs associated with it.

This concludes the definition of our reference architecture for enterprise measurement
infrastructures in our metric systems engineering approach MeDIC. The following
part III will define the second key part of MeDIC: our metric systems engineering
process model.

201





Part III.

Metric Systems Engineering

Process Model

203





8
Process Model Foundations

The previous section provided a thorough and specific discussion of our reference
architecture for enterprise measurement infrastructures (EMIs). In there our logical
reference architecture already provided some insides into our engineering approach.
Continuing this discussion, this part provides additional details to the design of our
process model. We include overviews of the phases and detailed information to selected
activities. Further information, checklists, and document definitions are included in
appendix B.

Metric
Portfolio

Measurement Infrastructure

Development

Operation

Architecture

Reference Architecture

Development 
Process Model

Operation
Process Model

MeDIC Process Model

Concrete Artifact

Legend:

Concrete Process

Process Model Artifact Model Input to

Changes

InstantiatesAddressed Process

MeDIC Process 
Model Part

Metric Management 
Process Model

Metric
Management

Figure 8.1.: Scope of the metric systems engineering process model

205



8. Process Model Foundations

Figure 8.1 provides an overview over the scope of our metric systems engineering process
model. We mainly provide process models to define development and operation processes.
However, some of the activities in our process model address metric management aspects
as well. The main metric management aspect that we address with our process model
is finding, evaluating, and modeling metrics in the metric portfolio. We see this also as
part of the development because the information needs and metric form the requirements
for the actual services in an EMI. In our process model we refer to this part as the
conception-phase because it focuses on the concepts (requirements) for the measurement
infrastructure.
The core process, that we support with our process model, is the development

process. The focus of the process is to take information needs and provide an according
measurement infrastructure. Therefore, the process is a classic software development
process that was tailored to the specifics of developing an EMI based on our reference
architecture. Our iterative and incremental development process model provides activity
and artifact blueprints which assist the design, construction, test, and deploy activities.
Our description of this part of the process model focuses on the design activities because
large parts of the construction, test, and deployment activities are technology specific.
Contrasting a lot of other measurement process models, our process model explicitly

addresses the operation of the measurement infrastructure. However, similar to the
later development activities, specific activities in the operation phase are also heavily
dependent on the implementation technology of the particular EMI. Thus, we will provide
details and solutions to typical (technology independent) problems, mainly focusing on
service failure, that operations need to face.
The design and elements of the reference architecture obviously influence the design

of the process model and vice versa. Hence, a lot of activities in the process model use
the technical concepts proposed in the reference architecture. We also use the concepts
from our logical reference architecture, for example our concept of metric applications, to
specify and focus the development increments. Nevertheless, the activities that we define
in this process model also influence the services and design of the reference architecture.
For example, the message gateway service and message cache service (see section 5.2.4)
are required for the test and operation activities defined in the process model.

206



8.1. Process Environment Assumptions

8.1. Process Environment Assumptions
Similar to other models, our engineering process model is not designed to work in an
arbitrary environment. Therefore, we like to discuss a suitable environment for our
process model before we start to introduce our process model in the following chapter.
Most importantly, our process model is, in its core, a software engineering process

model for metric systems. Therefore, the company applying this process model should
have solid software engineering knowledge. This applies to existing processes as well as
staff training. Our process model is influenced by modern software development process
models. Therefore, experience with iterative and incremental software development should
exist to the organization. Furthermore, our process model also covers operation activities.
Therefore, the company should already be familiar with operating infrastructures based
on loosely coupled services. Particularly, the company should already employ specialized
operation staff.

We also assume that at least one trained metric expert is working in the company. The
metric expert(s) should be familiar with the internal processes at the company because
the needs of metric customers often raise from these. Furthermore, they should be familiar
with measurement processes and measurement-based improvement methods like CMMI
M&A or the ISO 15939 [Tea10, ISO07]1. We further describe the responsibilities of all
the roles further down in section 9.3.
The microservice-based reference architecture enables to freely choose among a large

variety of technologies for the different types of services in an EMI. We assume that the
architects are able to use this strength accordingly and select suitable technologies based
on the actual requirements for a specific service. We also assume that the developers
are trained on the technologies and able to implement the designs from the architects.
Furthermore, we assume the company provides a specialized EMI development platform
to ease development. This platform should contain the adaption for the messaging
infrastructure of the EMDB (message base-types, base message senders, and base message
receivers) as well as easy to use frameworks for different situations; like adding specific
indicators to the monitoring client agent, using the directory client agent, or providing
an indicator access API. This development platform can also contain specialized tools
and generators to ease certain development tasks.

We further assume the company is mature and can handle its infrastructure accordingly.
With this we assume they are familiar with staging and releasing software that contains
several services, topic configurations, and databases. All these things may change in one
development increment and hence need to be deployed and tested in the different staging
environments accordingly. We also assume a pre-production staging environment that
can either simulate or provide all data providers for the EMI to run complete system
tests. We will briefly go through the stages in section 12.1 and discuss different test
phases in the appendix in section B.2.3.

1A good start as well as source for guidance and expertise is available at the special measurement and
analysis web page from the SEI: https://www.sei.cmu.edu/measurement/index.cfm.

207

https://www.sei.cmu.edu/measurement/index.cfm




9
The Metric System Engineering Process Model

This chapter will provide an overview about our process model. We will describe the
different stakeholders, phases, and initial activities before using the model. The description
of the detailed activities and artifacts are contained in the next chapters each focusing on
a particular phase. In general we try to provide an overview over the activities and design
alternatives and reasoning in the the main part of the thesis. The appendix will contain
additional information for the actual application of the process model; like checklists,
guidelines, and detailed artifact descriptions. We can further provide detailed artifact
templates and examples upon request.
The introduction already presented a very generic overview of our view on metric

systems engineering in figure 8.1. The very basic idea of our process model are the
following steps:

Step 1 Gather (and validate) changed and new information needs from metric customers.

Step 2 Design changes in metric portfolio based on the information needs and use
monitor prototypes for validation.

Step 3 Design (and validate) an EMI based on our reference architecture.

Step 4 Develop, test, and stage infrastructure elements based on the design.

Step 5 Deploy elements and operate the EMI.

These steps should be performed in an iterative manner based on increments defined
by clusters of information needs. Based on these steps we will present the core of our
process model in the following section 9.1. The core will define the process phases. It will
also present details on the iterative and incremental approach of the process model. The
next section 9.2 will provide a first overview over the core activities in each process phase.
Section 9.3 gives detailed descriptions of the needs and responsibilities of the different
roles involved in the process model. We will also present their involvement in the process
phases similar to the overview picture of the unified process. Section 9.4 will finish this
chapter with a description of the activities that should be carried out before going into
the first iteration of the process (sometimes referred to as phase 0 or phase -1).
In our discussions and descriptions in the following section we use a bold mono

spaced font to indicate activities of the process model. Furthermore, we use a
normal weight mono spaced font to indicate artifacts which are produced or
consumed in the activities. We do not use a specific font to indicate roles because we
just use five roles that are easily identified.

209



9. The Metric System Engineering Process Model

9.1. Process Model Core
We already discussed some important aspects and the foundations for our process model:
iterative and incremental development process models, classic measurement processes and
best-practices/success factors, and modern software engineering best practices including
prototyping, microservice-based designs, and staging/release processes. This section
provides an overview over the core of our process model. We first provide a description
for the process phases, increments, and iterations. From there we will then present the
first (very rough) overview of the process model.
Our process model should aligns well with the ISO 12207 standard for systems and

software engineering [ISO08]. From our discussion above we should also include important
related success factors; for example success factors for portal applications from Ulrich
Remus [Rem07]. Therefore, our process model is rooted in a standard PDCA-cycle,
which is often seen as the foundation for innovative engineering based on critical thinking
[Lik04]. It is also the basis for many metric-management process model as well as software
engineering process models.

Design ConstructionConception Operation

Incremental

δ δ δ δ δ δ δ δ δ δ δ δ

Figure 9.1.: Metric Systems Engineering Process: phases, increments, and iterations

Figure 9.1 provides an overview over the phases of our concept model as well as the
iterative and incremental aspects of the process model as Chevron process diagram. The
center shows the four phases of our process model: Conception, Design, Construction,
and Operation. They implement the PDCA cycle in the following roles:

210



9.1. Process Model Core

Conception (Plan) The goal of the conception phase is to identify, classify, and
weight all information needs of relevant metric customers. These needs form
the requirements of the metric system. They are the justification for the metrics
in the metric portfolio and consequently the basis for all services and elements in
the measurement infrastructure. Our process model assists the identification of
information needs with recommendations and discussions on different methods for
requirements elicitation. Furthermore, we emphasize the importance of requirements
validation after the elicitation. Specifically, we recommend the use of prototypes
to validate the solutions to the information needs with metric customers. The
conception phase also defines the development increments based on different criteria.

Design (Act) The design phase takes the information needs for this development
increment and designs all necessary services and associated tests based on our
reference architecture. With designing we not only refer to the design of new
services but it also includes designing service changes and designing service removal
and transition. The result of the design phase is the design document for the specific
development increment, which guides the construction.

Construction (Do) The services designed before are implemented, tested, and released
in the construction phase. The implementation uses whatever technology may be
suitable for the given service (specified in the design document). Testing and release
are then executed in typical staging steps with their respective environments. In
the later stages (system- and integration-test) we heavily rely on services defined
in the reference architecture like the measurement cache, the message gateway, the
monitoring service, and the EUrEKA registry to either drive the test, check results,
or mock other services.

Operation (Check) This phase, as the name suggests, contains operation activities.
These activities define behavior fragments for critical operation tasks like setup of a
new service, actions on service failure, or planed service maintenance. Furthermore,
this phase contains actions to constantly evaluate the usage of the measurement
infrastructure and needs from metric customers to initiate succeeding iterations.
Thereby, the metric portfolio and measurement infrastructure will constantly evolve
reflecting the current needs of the metric customer without to much overhead of
irrelevant metrics.

Pin-pointing a “correct” solution that will satisfy the information needs of the metric
customers is hard. Hence, especially when starting the development of a metric system
and in the conception phase “errors” are very likely to occur. The process should address
this fact in a proactive manner (rather then neglecting it) by planning to do a task several
times including appropriate feedbacks in between. Therefore, each of these phases can
(and should) be executed in multiple iterations indicated by the δ in figure 9.1.

Multiple iterations in the conception phase, for example, can be used to pin-point
the information needs of the metric customers or to include and aggregate information
needs from multiple metric customers. In the design phase the architects can use the

211



9. The Metric System Engineering Process Model

iterations to design one service or one information need at a time. Similarly, the developers
can work on the implementation of one service at a time. Therefore, they localize the
changes which reduces errors. Operations focuses on the evaluation of the satisfaction of
information needs of metric customers per iteration as well as continuous operation of the
measurement infrastructure which could also be seen as small iterations. Also the overall
process should be iterated (see life cycle) because the information needs will change over
time. Furthermore, even assuming prototyping and metric customer involvement would
be perfect, which it typically is not, it is still hard to get the metric system “right".

As stated in the introduction metric systems may become large (large metric portfolios
and complex measurement infrastructures). However, as stated in section 1.5.1 and
section 1.5.2 the metric system should not be introduced in a Big-Bang. Therefore,
it should be planed, specified, developed, tested, and deployed in multiple (smaller)
increments. These increments should be small enough to still be able to manage the
given task without too much complexity. Therefore, they should be defined on a coherent
set of requirements. We focused our increments either on a coherent set of needs of
metric customers or on a set of coherent (technical) services; for example event counting
metrics (ticket count, change count, login count, and so on) or metric to support earned
value analysis from project management. An increment is then, typically, reflected by a
logical metric application (see our logic reference architecture in section 4) throughout
the process.

212



9.2. Process Overview

9.2. Process Overview

Conception [ For each Increment ]

Design

Construction

Operation

[For Each Service]

[For Each Service]

Identify 
Information 

Needs

(Re-)define 
Increment

Requirements
Analysis and 
Prototyping

Removal

Identify
Services

Design Service

Evaluate 
Design

Implement 
Changes Test

Stage and 
Release

System and
Int. Test

Monitor 
Information 

Needs

Operate 
Measurement 
Infrastructure

P

P

P

P

Initialization

Figure 9.2.: MeDIC engineering process model: phase details and core activities

Figure 9.2 provides an overview of the main activities for each phase in the metric
systems development process model as BPMN diagram1. Similar to agile software
development approaches the most phases are not strictly separated from one another.
Most importantly, the operation activities need to be performed contentiously once an
increment reaches production. Traditional process phases imply certain semantics. For
example they need to define quality gates that need to be satisfied before exiting the phase.
In our process model the phases just act as containers for their underlying activities.
However, especially the conception phase contains a number of evaluation activities which
act similar to quality gates.
After an initial identification of information needs the process enters the conception

phase. The main focus of this phase is to find the requirements for and design the
1We extended the notation by adding a P to the activities that represent our process phases.

213



9. The Metric System Engineering Process Model

increments in which the metric system will be developed or enhanced. We included (and
heavy focus on) prototyping in this phase to validate the requirements because it supports
the development of uncertain and hard to handle requirements, like it is the case with
metric systems. The transition from conception to design may only occur if the evaluation
of the prototype is positive and only small issues are found. If the evaluation results in
a large number of changes and issues then the conception phase needs to be reiterated
including another evaluation step at the end. The detailed activities and artifacts for
this phase are described in chapter 10.
The design phase focuses on transforming the concepts specified in the conception

phase into changes or additions to the measurement infrastructure. In the design phase
the first important step is to identify the services that need to be (re) designed in this
increment. The design of the service itself is performed iteratively. The metric customers
as well as the metric experts should then validate the design before the start of the
construction phase. This phase may also include the construction of additional (vertical)
prototypes to test certain functionality before the start of the actual construction of the
metric services.

The focus of the following construction phase is the development of new metric services
or the change of existing services to satisfy the design and concepts from the last phase.
Again, we recommend to implement the changes per service (or per aspect) in a separate
iterations. Another important aspect in the phase is testing. The phase may only be
completed if the tests (system tests and integration tests) are positive after staging the
metric services. Furthermore, the finished services need to be evaluated with metric
experts and metric customers in a pre-production stage. If major changes are found they
need to be addressed in another iteration between design and construction or they may
even force a reiteration of the conception phase if several major issues are found. If the
evaluation turns out positive, however, the corresponding services of the EMI can be
staged to production.

After construction, the process enters the operation phase. The most important activity
here is to ensure that the services in the EMI perform within given parameters; to operate
the EMI. However, after some time, the information needs of the metric customers may
have changed (see chapter 1.1.3). It is important to be aware of this fact and constantly
evaluate the metric usage as well as gather random samples of information needs of metric
customers. This monitoring activity can then spawn a new iteration of the process.

Inevitably, at some point of time a metric system (or parts of it) needs to be removed.
Typically, the removal of a metric system and/or its EMI (part) includes the transition
to a follow-up metric system and/or different measurement infrastructure.

214



9.3. Roles

9.3. Roles
This section will provide an overview of the central roles in our development process
model as well as their essential needs. Furthermore, similar to other process models like
the open unified process2, we will also define the central responsibilities for each role.
Contrasting popular process models, however, we will not provide detailed lists of all
activities, artifact responsibilities, and work products in this thesis because these are
hard to read and better accessible via an interactive process documentation3.
Together with the needs (thinks people in the role want) we also provide a set of

dislikes (thinks people in the role do not want) because these are similarly (if not even
more) important. The needs and dislikes in the role descriptions are derived from our
experience from our field studies.

9.3.1. Metric Customer
Metric customers are, as the name suggests, the customer of the metric system. They
want to use the metric system to get answers to their information needs. Unfortunately,
the answers to the different information needs are typically stored in many different tools.
Furthermore, our experience with many industry partners shows that the information
needs of measurement customers often change over time. For example, development
tools are replaced by other tools or processes and organization schema are changed.
Especially reorganizations lead to new and changed responsibilities of individual
measurement customers and roles which inevitably lead to changes in information needs
(also see section 1.1 as well as our literature for further discussions and experiences
[VLJ13, VL14]). A project manager is a typical example of a measurement customer.

A metric customer. . .

. . . wants information needs answered. As described above, the main need of a
metric customer is to answer her informations needs using monitors that show
indicator data from metrics.

. . . wants up-to date and correct data. Measurement customers demand correct
and up-to-date data because old or incorrect data leads to wrong conclusions
and wrong decisions. Hence, an EMI should provide mechanisms that guarantee a
fast recognition and processing of relevant events. Additionally, up-to-date data
requires robustness and high availability of the EMI.

2See http://epf.eclipse.org/wikis/openup/publish.openup.base/customcategories/
role_set_list_199A969B.html?nodeId=e3ed2eb4 for the role descriptions of the open UP.

3For example like the typical UP documentations created by the Rational Method Composer. See for
example the open unified process documentation at http://epf.eclipse.org/wikis/openup

215

http://epf.eclipse.org/wikis/openup/publish.openup.base/customcategories/role_set_list_199A969B.html?nodeId=e3ed2eb4
http://epf.eclipse.org/wikis/openup/publish.openup.base/customcategories/role_set_list_199A969B.html?nodeId=e3ed2eb4
http://epf.eclipse.org/wikis/openup


9. The Metric System Engineering Process Model

. . . wants to tailor metrics and visualizations. Not all metric customers and not
all situations they are in are similar. Hence, they need to tailor the monitors to,
more specifically, answer their needs. For example they need to tailor the time
frame for a specific monitor from monthly to weekly or daily if they require a higher
resolution of the metric.

. . . wants low latency. The time difference between data-change and measurement
update should be as low as possible because solving problems should be immediately
visible in the visualizations.

. . . does not want technical details. The metric customer does not (and should not!)
care about implementation and technical details of the measurement infrastructure.
Technical aspects should be hidden as best as possible from the metric customers.

. . . does not want to spend too much time with set-up and specification.
Metric customers have important roles in the company and want quick answers
from the metric system. Their job is not just to be a metric customer. Therefore
the time to set-up and use the metric system and tools in the EMI should be as
little as possible.

Responsibilities

The central responsibilities of metric customers in our process model are to . . .
. . . use the EMI to satisfy some of her information needs.

. . . provide requirements for the metric system.

. . . provide feedback concerning the metric system (metrics, tool usability, process
integration, . . . ).

. . . evaluate requirements, design, and construction increments.

. . . help to specify (realistic) system test cases for the services in the measurement
infrastructure.

In the actual process model, these responsibilities expand to dedicated activities.

9.3.2. Metric Expert
The metric expert is the central functional roles in our metric systems engineering process
model. Metric Experts not only guide metric customers and provide assistance they are
also responsible for the maintenance of the metric portfolio and the definition and focus of
the development increments. Therefore, metric experts need to be in a manager position
at the company. Metric experts, as the name suggests, also need extended knowledge of
metrics and visualization theory. Using this knowledge they know what operations are
allowed (make sense) on what types of metrics as well as selecting suitable visualizations
for the monitors. This knowledge should also be used to optimize the metric portfolio
and to design the most suitable monitor to answer a certain need from a metric customer.

216



9.3. Roles

The metric expert. . .

. . . wants to help the metric customers. Most importantly, metric experts want to
help the metric customers. The metric customers typically have a large number of
information needs that they need answered in their daily work. However, they not
necessarily know how to answer the questions. Therefore, the experts want to find
and/or develop new metrics for these unanswered or difficult information needs.
Hence, the metric experts can use workshops and interviews to investigate the needs
together with the customers and specify according indicators and visualizations to
be developed in the EMI.
Furthermore, the experts can provide templates and best-practices for metrics
and dashboards. These can then be used by metric customers to answer typical
questions. They can also be used for mandatory monitors often used in company
reports. The templates and best-practices are also part of the metric portfolio.

. . . wants to optimize the metric portfolio. The metric experts are responsible for
managing the metric portfolio. Therefore, they typically want to optimize it.
Optimizing, in this situation, means removing unused metrics, finding improvement
potentials for used metrics, and finding blind-spots. Improving existing metrics
can refer to optimizing a calculation or optimizing the variability model to ease
or enhance configuration of the metric. Optimizing the portfolio requires that the
metric experts get usage data from the EMI to monitor metrics and visualization
usage. We already discuss most of the optimization needs from the metric experts
in our discussion on the monitoring system (see section 6.1).

. . . wants to know and evaluate some technical details of the EMI. From our
experience, most of the metric experts also have a technical background. Therefore,
they want to be involved in some of the technical design of the EMI services. For
example we evaluated and discussed database schema design and storage procedures
of the metric kernels as well as data adapter design with metric experts because
these implement the metrics.

. . . does not want to dig to deep into technical details of EMI services. Even
though metric experts want to know some technical insides they do not want to be
bothered with all technical details. Furthermore, they are typically not interested
and do not have the knowledge and training to designing the actual EMI services.

. . . does not want to be responsible for the operation of the EMI. The metric
experts want to monitor the functional usage and are responsible for the functional
part (the metric portfolio) of the EMI. The technical operation, however, needs to
be taken care of by trained operation personal. Thus, another important aspect that
needs to be considered is to get actual operation personal “on board” to operate
the EMI.

217



9. The Metric System Engineering Process Model

Responsibilities

The central responsibilities of metric experts in our process model are to . . .

. . . manage and optimize the metric portfolio (by monitoring metric usage).

. . . design (monitor) prototypes to check metric system requirements.

. . . overview the implementation and maintenance of the EMI.

. . . define, control, and monitor metric related processes.

. . . aggregate and prioritize metric requirements.

. . . specify test cases for the EMI services.

. . . decide on the removal of metrics, services, and EMIs.

9.3.3. Architect
The responsibilities and needs of architects are covered in most software engineering
process models and software development processes of the companies who use this
engineering approach. Therefore we will only focus our description on some details
regarding our process model and reference architecture. Most importantly in this regard
is that the architects actually knows the reference architecture and are able to apply its
concepts to instantiate the designs for the respective EMI services. Furthermore, the
architects need to be familiar with the concrete architecture of the actual EMI under
development in oder to make and justify design decisions.

The architect. . .

. . . wants to use reference architectures. The benefits of a reference architecture,
such as our reference architecture for EMIs, is that they provide solutions for
common problems and provide a common terminology among the development
team. Using a reference architecture, therefore, speeds up the design process and
eases the job of the architect.

. . . wants to have clear guidelines for architectural decisions. Most
importantly, the architects need to make architecture decisions when instantiating
the reference architecture. For example what data adapter pattern to use or what
specific metric kernel design to choose. Furthermore, they also need to decide
on the actual technologies to build the services. They, hence, need to provide a
high number of decisions when instantiating the reference architecture. Therefore,
they require guidance for these decisions, which our reference architecture already
provides at key points with dedicated discussions.

218



9.3. Roles

. . . does not want to be restricted. Another important aspect is that architects are
and need to be responsible for the design of the actual EMI. Therefore, they do not
want to be restricted either by processes, governance, or the reference architecture.
All these things are just tools to help the architect. In the end, however, the
architects must be free to choose the best fitting solution for a particular problem
in the particular environment!

Responsibilities

Architects are responsible for the actual architecture (metric services and their interaction)
for an actual EMI. Therefore, their central responsibilities in our process model are to
. . .

. . . design specific services based on the requirements from the metric experts.

. . . evaluate the design with metric experts, developers, and operators.

. . . provide assistance when maintaining services.

9.3.4. Developer
The developer role, similar to the architect-role, is covered in existing processes. With
regards to our process model, developers need to be specialized in the area of developing
EMIs. They, hence, need to know the reference architecture, its different parts, and the
actual architecture of the EMI under development. Furthermore, they need to know
specific frameworks, tools, and technologies required for the implementation of the actual
EMI.

A developer. . .

. . . wants (and requires) clear and precise metric requirements and designs.
The design from the architects and the requirements need to be clearly documented
and fully provided to the developers. They guide and focus the construction
of the actual EMI services. Furthermore, the developers need to be able to
discuss certain aspects with metric experts, architects, and maybe even metric
customers. Developers should also be included in the design activities (or at least
the evaluation of the design).

. . . needs to be able to easily implement changes. In particular, the services
should be design in a way that changes have minimal side effects. This is mostly
covered by the microservice oriented design of the reference architecture using
decoupled services.

. . . wants to use up-to-date technologies. The developers need to be able to
implement the given design with whatever technology fits best and provides the least
maintenance effort. Therefore, they need to be able to use up-to-date technologies

219



9. The Metric System Engineering Process Model

because most of them focus on solving particular issues. Furthermore, this also
ensures that the developers like to work on the EMI because it gives them freedom.
Nevertheless, this also increases the heterogeneity of the technologies and tools
used in the actual EMI. However, a design goal of the reference architecture is to
be able to handle this.

. . . does not want to develop additional glue-code. The development of an actual
EMI should be based on a dedicated development platform for this EMI. This
development platform should provide frameworks, templates, and technologies
that help the developers to focus on implementing the actual business functions.
Spending time with implementing glue-code or configuring services can be time
consuming, boring, and the source of nasty errors.

Responsibilities

The central responsibilities of developers in our process model are to . . .

. . . implement and maintain (EMI) services.

. . . implements and maintain automated test cases.

. . . select suitable (sub) technologies for a given service or task.

. . . stage (deploy, test, and release) services in the different staging areas together with
operators.

9.3.5. Operator
Similar to the developer and the architect before, the operator role is typically already
defined in the existing processes in the company. Sadly, operation is vary rarely
(specifically) covered in other process models and the needs of operators are rarely
addressed in reference architectures and frameworks. However, from our experience,
operation specialist who know the enterprise measurement infrastructure and participate
in its design and construction are a necessity for the long time success of the metric
system! Therefore, we included important services for the operators (like monitoring and
logging) directly in our reference architecture. Furthermore, we also like to address the
operation phase in our process model explicitly and provide best practices and solutions
to common operation problems.

An operator. . .

. . . wants to see the status and detailed information of services. The job of the
operator is to control that the services in and surrounding an EMI are working
within their specified boundaries. Therefore, operators need dedicated tools to
monitor the services. We already discussed a lot of important information needs
from operators in the design of the monitoring system in our reference architecture
(see section 6.1).

220



9.3. Roles

. . . wants a robust measurement infrastructure. The measurement infrastructure
should be build in a way that a failure in one of its services does not result in
a complete system failure. Our microservice based and loosely coupled reference
architecture already provides a good framework to ensure the robustness of the
actual EMI.

. . . wants to be included in the design and construction phase. The many
success stories of dev-ops already provide a good justification to include operators
in the design and construction phase alongside architects, metric experts, and
developers [Hüt12]. Furthermore, this is also backed up by the experience in
our field studies. All of the operators were very happy to be included in the
development processes and provided valuable input to it. This also ensures the
long time success of the actual EMI.

. . . does not want too much heterogeneity in the EMI. This contrasts the needs
from developers and architects for including new technologies and building very
heterogenic infrastructures. However, these infrastructures still need to be
operatable and operators need to be able to include new services. Hence, they
also need to be familiar with the new technologies. Nevertheless, new technologies
also have the reputation of being unstable which jeopardizes the stability of the
EMI. Therefore, stability needs to be taken into consideration when selecting the
technologies and, again, operators need to be included in the design and development
activities.

Responsibilities

The central responsibilities of operators in our process model are to . . .

. . . ensure the availability of the EMI and its services.

. . . restore a consistent state of the EMI after a failure.

. . . ensure the EMI runs within specified performance boundaries.

. . . initiate service redesign.

. . . provide requirements for service redesign (split-up, merge, technology update).

. . . provide and configure infrastructure services for an EMI (messaging services,
databases, server nodes, application servers).

. . . assist staging and release activities.

221



9. The Metric System Engineering Process Model

9.3.6. Role Involvement
The previous sections provided information about the needs and responsibilities for each
role that is involved in our process model. In the section before we already provided
rough overviews over the phases and central activities in each phase. This subsection will
now provide the missing mapping between the roles and the phases and their activities.
We experimented with integrating the roles into the process overview in figure 9.3 by the
means of swimlanes. However, the figure significantly increases in size and was barely
readable. Unfortunately, a figure this size does not fit easily into this thesis. Therefore,
we choose to presents a workload overview of the roles in each of the phases similar to
the overview provided for the unified process.

Conception Design Construction Operation

Iteration Iteration Iteration Iteration Iteration Iteration Continuous

Metric 
Customer

Metric 
Expert

Architect

Developer

Operator

Figure 9.3.: Workload of the roles in the different phases of the development process

Figure 9.3 shows the workload of the roles in the different phases of our process model.
The higher above the dashed line the indicators are the higher the workload of the specific
role is in the particular activity at this point. Additionally, the top part also shows two
iterations per phase to emphasize the iterative nature of the phases. The incremental
nature of the process (especially in the design and construction phase) is not shown in
this diagram.
In the conception phase naturally the load for metric experts and metric customer is

222



9.3. Roles

high because they need to gather the requirements for the metric system. The metric
experts also need to prepare the prototypes, which are then evaluated by the metric
customers. The metric experts also need to specify the iterations for the following design
and construction phases.
The architects are constantly and heavily involved in the design phase. They are

supported in the design by the metric experts and the developers. Both providing
additional feedback and evaluation the design on the go. Additional, mostly non functional,
requirements are added by the operators. At the end of each iteration the design needs
to be evaluated by the metric customers and the operators.
The construction phase is of course dominated by the metric developers who are

implementing the new and changed metric services. Once a service is constructed the
implementation is evaluated by the architects against the design specification. After a
successful evaluation the developers and operators stage the service, which can then be
evaluated by the metric customer. If this evaluation is successful the service is released
to the production system.

During the operation phase the metric customers use the metric system. The operators
make sure the system is available and performs within the given parameters. The metric
experts assist the metric customers in the usage of the metric system by providing
training and additional documentation. They also constantly analyze the usage of the
metric system gain a better understanding of the needs of the metric customers and find
improvement potential which may trigger the next development iteration. The developers
also need to occasionally maintain a service or fix a (small) bug in this phase.

This concludes the description of the different roles in our process model. The following
section will provide additional information about the initialization of this process model.

223



9. The Metric System Engineering Process Model

9.4. Process Initialization
The last sections provided an overview over this process model and its central roles. This
section will briefly introduce the initialization of the process model. The initialization
contains additional activities that need to be carried out before starting the first conception
phase. Most of these activities are taken from our experience from the field studies as
well as measurement and metric best practices.

Get Manager Commitment Mangers provide the resources for the metric initiative
including the construction, maintenance, and extension of the measurement
infrastructure. Manager commitment is also listed as an important success factor
for metric initiatives [NV01, HMO08]. Thus, it is important to get their support
as early as possible. A good way, therefore, is to advertise the advantages of a well
design metric system and clearly defined roles and responsibilities in a specific metric
system engineering process as well as a flexible and easily evolveable measurement
infrastructure.

Provide Training Before starting the construction of an EMI and initiating the first
conception phase it is important to train the metric experts, the architects, the
developers, and the operators. The training should include training sessions on
instantiating and using the reference architecture as well as detailed discussions on
the process model.

Infrastructure Setup Metric Operators and Metric Developers need to setup the
required infrastructure to enable development. The following checklist provides
some important aspects of the infrastructure setup:
Setup web-, application-, and messaging-server for the different staging
environments.
Setup development environments on the development machines.
Setup source code repositories for the artifacts.
Setup artifact management systems for the releases.
Setup continuous integration infrastructure for automatic build and test of the
services.

Instantiate the Process Model This process model, as the name suggests, is just a
model. Therefore, it needs to be instantiated to an actual process before using it.
Most importantly, the instantiation needs to ensure that it reflects the existing
development processes in the actual company. Otherwise, people will not be familiar
with the activities and it will be strange and artificial. Furthermore, the templates
for the artifacts required in the process need to be defined in a way to match the
company policies (CI, tracing information, and so on). The appendix of this thesis
provides help for the actual definition of the templates.

224



9.4. Process Initialization

Also the technical processes need to be defined. Most importantly, the development,
the staging, and the deployment processes (for example the staging levels). This
also need to refer to the tools and infrastructure provided at the company.

Initial Construction and Development Before the implementation of actual metric
services all mandatory services for the EMI need to be constructed. Most
importantly, this includes the services in the two integration layers (see section 5.2
and section 5.3). Furthermore, it also includes the operation services like the
monitoring service, the logging service, and the directory service (see section 6).
Another important aspect is to construct the development platform for the EMI.
This needs to include frameworks and libraries to easily connect to the different parts
of the EMI and easily integrate the services with the operation services. Section 5
about the technical reference architecture provides a lot of hints on components
and parts that should be included in the development platform.

After performing all these activities the actual first phase of the process can start. We
provide additional details on the activities in this conception phase in the following
chapter.

225





10
The Conception Phase

The conception phase is a classical requirements engineering phase. The purpose of metric
systems is to satisfy information needs of metric customers. Hence, the most important
activities are to gather these information needs and provide meaningful answers.

Metric projects typically span across the whole organization and include a large variety
of stakeholders. Thus, once the metrics are implemented and rolled out into production
they can not (and should not) be changed easily. Therefore, typical fast agile approaches
with short increments that lack an explicit prototyping phase and only include a short
requirements phase are not applicable.

We provide a lot of details on the activities in this phase. The reason for this is two folded.
First, we realized that it is important to get the information needs, monitor prototypes,
and increment plan right before starting the development increments. Therefore, we
provide this high level of details to ensure that all of the important activities are performed.
Second, a lot of the activities in this phase are independent of the instantiation of the
process model. Contrasting, for example, the construction phase which contain a lot
of hard to grasp parallel activities. Therefore, this chapter is the largest of all of the
chapters describing the process phases.

Requirement Gathering

Prototype and Evaluate

Plan Increments

Restart
Requirements

Gathering

Plan
Increments

Restart
Requirements

Gathering Finish
Conception
Phase

(Raw)
Info
Needs

Increment
Plan

Consolidated
Info Needs
With Prototypes

Figure 10.1.: Conception phase overview

Figure 10.1 provides a BPMN diagram for the rough overview over the three core
activities in the conception phase: Requirements Gathering, Prototype and
Evaluate, and Plan Increments. The activities are inspired by the GQM method.
However, we extend it with some, in our view, key aspects like prototyping and evaluation.

227



10. The Conception Phase

The general idea behind the activities is to first get the information needs from the metric
customers as questions based on their goals. Then metric experts will develop monitors
and metrics that will answer these needs. The monitors are then included in prototypes
which are evaluted with the metric customers. If they are not satisfied, these steps are
reiterated. Otherwise, the monitors and metrics are integrated into the Increment
Plan, which organizes the incremental design and construction after this phase.

The requirements analysis starts with the organization and analysis of the information
needs that were gathered before (either as new information needs or as changed information
need). We strongly recommend organizing them in a quality model starting at the top level
information needs (or goals) and breaking them down into lower level information needs.
Furthermore, each monitor also requires a definition for the visualization. According
to Few [Few12, Few06] the metric expert should keep the visualizations as clear and
simple as possible to increase their readability. However, some (visualization) designs are
sometimes hard to grasp. Hence, these need to be evaluated with the metric customers.
The evaluation can of course include training the metric customers to read certain new,
unfamiliar, or unpopular visualizations.

One of the main goals of this phase is to develop a (horizontal) prototype which shows
the complete visualization and can be evaluated with the metric customers. We already
discussed the reasons to integrate prototyping in the development process. However, we
would go one step further and argue that not including prototyping during the development
of a metric system is careless and will inevitably lead to problems. Prototyping will help
to identify these problems as early as possible; hopefully before spending a lot of money
and time with the construction of the metric system.
Paper prototypes or special dashboard prototyping tools should be used to construct

the prototypes because the prototypes will be changed often and the metric experts need
to be able to quickly apply changes. Additionally, these tools help to provide prototypes
that look like prototypes with sketchy lines and an unfinished look. This is important in
order to avoid misunderstandings of the construction state of the metric system.

If the data provision mechanisms for certain metrics are complex then the calculation
algorithms and signal chains should be prototyped in a vertical prototype as well. These
prototypes can later be used as the basis for the incremental construction of the specific
services in the EMI.
The following sections provide additional details on the three main activities. The

following section 10.1 will discuss the two requirements gathering techniques: workshops
and interviews in greater details including their strengths and weaknesses. Section 10.2
will then give additional details to the construction of the prototypes and the general
evaluation of the information needs with metric customers. In the end, section 10.3
provides additional details on the Plan Increment activity. We finish the description
of the construction phase with a short summary in section 10.4.

228



10.1. Requirements Gathering

10.1. Requirements Gathering

The goal of this activity is to get a (weighted) tree of information needs for a group of
(or individual) metric customer(s). The weight of the information need should reflect the
importance of the information need to the metric customer(s). It is later used for planing
the iterations and increments.

Including metric customers in the process and making them the source for the metrics
is one of the most crucial aspects of our process model. Umarji and Seaman developed a
metric program at a large international organization [US08, USE]. They list the inclusion
of the developers (their metric customers) as a crucial success factor. Furthermore, Fenton
and Hall also identified this as an important factor [HF97]. It is also important that the
analysis and interpretation of the metrics is publicly availible and based on documented
interpretation aids as identified by Dekkers [Dek99], Seibert [Sei03], and Pfleeger [Pfl93].
Also see our discussion on related literature in the introduction in section 1.2.1.

Different methods can be used in order to gather the information needs from the
stakeholders. The two main methods we recommend are interviews and workshops.
Both have their strengths and weaknesses. On the one hand, interviews provide a more
personal set of information needs for a particular stakeholder but require an intensive
treatment of the combined information needs lists from different interviews. On the other
hand, workshops by their nature provide a more unified list of information need but
some important (individual) information need may get lost. Regardless of the method
other useful requirements gathering and structuring techniques should be applied in the
interviews and workshops. The actual process, that is instantiated from our process
model, needs to state what combination and in what order the different techniques should
be combined (see advantages and weaknesses of the two in the following subsections).

10.1.1. Activity Overview
Figure 10.2 provides an overview over all the subactivities in the Requirements Gathering
activity as BPMN diagram. The activity starts on the top left and from there enters
the Plan RE (Need Identification) activity. This includes analysis activities
which provide a first list of opaque information needs which are defined later on. It
also (re)defines the RE Plan which guides the requirements engineering activities and
steps in the next activity. This next activity is therefore, called Execute RE Plan.
It contains a lot of subactivities itself. Most importantly we distinguished between
two requirements gathering techniques: workshops and interviews. Both have their
specific preparation activities and specific preparation artifacts (Questionnaires and
Workshop Slides). The output of both techniques is a set of (Raw) Information
Needs. These are sorted, enriched, and clearified in the following Process Result
activity. From there the metric expert can start another iteration of the processes if the
RE Plan defined multiple iterations or additional information needs from additional
metric customers need to be found. The reiteration either starts directly or can optionally
redefine the RE Plan in order to reflect the new information. The following subsection
will provide additional details on the first activity: Plan RE.

229



10. The Conception Phase

Execute Plan
Plan RE

(Need Identification)

Replan?

yes
Check Plan

Gathering
Method?

Prepare 
Workshop

Perform
Workshop

Prepare 
Questionnaire

Perform 
Interviews

Process 
Results

Worksho
p

Interviews

Workshop
Slides

Questionair

(Raw)
Info

Needs

Reiterate?

Data 
Providers

yes

no

no

Opaque
Needs

RE
Plan

Figure 10.2.: Requirements Gathering activity as BPMN diagram

10.1.2. Plan Requirements Gathering and Information Need identification
The goal of this activity is to plan the requirements gathering activity based on the initial
information from the metric customers. Therefore, the output of this activity is a plan
for the requirements gathering (the RE Plan) as well as a list of first opaque information
needs. Most importantly, this activity includes the analysis of the existing processes that
the metric customers are using as well as the tools that are used by them. The result of
the analysis will then drive the plan and the gathering techniques used.

The RE Plan also includes iterations and goals for each iteration. An example could
be to first perform a workshop to identify goals and coarse grained needs from the
metric customers. These needs can be refined in a second workshop. To get a better
understanding of specific needs a third iteration can perform selective interviews with
specific metric customers.
The first important step is to analyze the processes that the specific (set of) metric

customer is involved before starting the interviews or workshops. This helps to understand
specific terms the metric customers might be using during the interviews or workshop
sessions, which avoids misunderstandings. Furthermore, the metric experts can analyze
potential data sources (artifacts that are used in the process) before starting the interviews

230



10.1. Requirements Gathering

or workshops. This analysis may point the metric experts to obvious information needs
or optimizations in the process, which they can present in the interviews or workshop
sessions.

Typically information needs originate at specific points in the process which are easily
found if the process is being visualized. We recommend to visualize the process during this
analysis phase if no visualization of the process exists or use the existing visualizations.
An additional side-effect is that the result of this analysis (process diagrams) can be
used in the interviews and workshops as additional sources for information needs if the
processes are not (well) documented.
The other important analysis step is to analyze the tools that are used by the metric

customer because these tool are very likely to become data providers in the measurement
infrastructure. Furthermore, the the data models insight the tools provides additional
insights into the processes. They may also indicate certain visualization opportunities
which can later be included in the prototypes.

After the RE Plan is defined in this section the process enters the main big part of
this activity: the Execute Plan activity, which we will further discuss in the following
section.

10.1.3. Execute RE Plan
The overview diagram in figure 10.2 already indicated the importance of this subactivity. It
is the core of the Requirement Gathering activity. The goal is to gather information
needs from metric customers by executing the steps defined in the RE Plan in the
last subactivity. We differentiate two requirements gathering techniques for gathering
information needs from the metric customers: Interviews and Workshops. The following
subsection provide additional discussions on the advantages and weaknesses of each of
these techniques in our context.

Workshops

The general idea of a workshop is that a group of metric customers identifies their
information needs together. Workshops can therefore be used to gather a lot of different
information needs for a specific group of metric customers. The following two lists provide
the key advantages and weaknesses of workshops for gathering information needs from
our experience in the field.

Advantages

3 Workshops provide on-the-spot discussion about the needs and their origin the
goals and subgoals with different people within the same group of metric customers.

3 The metric customers influence each other which provides additional input and
different perspectives to the different needs.

231



10. The Conception Phase

3 A broad discussion in the first workshop can open-up new fields which then guide
follow-up iterations.

Weaknesses

7 It is hard to cover individual needs of single metric customers which could be
important.

7 Workshops need to be moderated to avoid too much discussions off-topic,

7 Metric customers influence each other which may cloud certain needs from particular
customers.

7 A lot of information needs and goals are discovered in all workshops and it can be
hard to satisfy them all. This requires clear communication all the time about what
is going to be addressed and what is postponed to later iterations or increments in
order to avoid dissatisfaction later on.

7 Preparation of the workshop with specific slides is time consuming for the first
workshop session. However, the material can later be reused for other workshop
sessions.

7 Scheduling appointments with multiple metric customers may be difficult. This
gets harder the higher up in the organization structure the metric customers are
located (managers are harder to schedule than developers).

Interviews

In interviews single metric customers are interviewed to get their individual information
needs. The result of multiple interviews with similar metric customers can then be
integrated to form a rough idea about the information needs of a group of metric
customers. However, these integrated information needs need to be discussed with the
metric customers to check if the selection and the importance of the needs are correct.
The following two lists provide the key advantages and weaknesses of interviews for
gathering information needs from our experience in the field.

Advantages

3 Interviews provide clear and in depth insight into the information needs of single
metric customers.

3 Metric customers tend to provide more insights if they are not in a group of people
and may also provide “of the record” information which may come in handy later
on.

3 Scheduling the appointments with single metric customers is typically not as hard
as trying to schedule multiple metric customers.

232



10.1. Requirements Gathering

Weaknesses

7 The information needs of the different interviews need to be integrated and discussed
with the metric customers after the interviews. This is a lot of additional effort!

7 The preparation with specific questionnaires is time consuming and requires
additional discussions between the metric experts before performing the interviews
but it increases the quality of the interview and the discussion significantly!

7 Interviews provide no on-the-spot discussion between different points of views in a
group of metric customers.

Most of the time we started the requirements gathering in our case studies with one
to four workshops to get a broad set of information needs and let the metric customers
influence each other (for good). We then utilized interviews in later stages or to get specific
sets of information needs. We provide additional guidelines for the actual execution of
the two techniques, based on our experience from our field studies, in the appendix in
section B.1.1.

10.1.4. Process Results
After these information need gathering activities the results, huge trees or lists of
information needs, of the interviews and/or workshops need to be integrated, sorted,
and cleaned, which is performed in the Process Results activity. The information
needs are integrated into the Raw Information Need list and potential data providers
(tools) are registered in the Data Provider repository. However, it is not the focus of
this activity to integrate these new information needs.

233



10. The Conception Phase

10.2. Prototype and Evaluate

Plan Increments

Consolidate
Info Needs

Ok?

(Raw)
Info
Needs

yes

no

Data 
Providers

Design Monitors
and Metrics

Prepare Prototypes

Evaluate with Metric 
Customers

Metric
Customers

How Bad?

Restart Requirements Gathering

Redo RE

Redesign

Consolidated
Info Needs

With Prototypes

Design
Guide(s)

Prototyping
Tool

Figure 10.3.: Prototype and evaluate activity as BPMN diagram

As the name suggests the focus of this phase is to evaluate the requirements with the
metric customers. Like in every other software development project this activity is very
important to avoid misinterpretations between (metric) customer and development team.
The activity itself contains four mayor subactivities which are performed sequentially.
Figure 10.3 contains an overview over these subactivities and the artifacts as BPMN
diagram. First, all the raw information needs gathered in the previous activity are
consolidated. Second, the monitors and metrics are designed by the metric expert
and most importantly, prototypes of the monitors and maybe of the calculations are
constructed. Third and finally, these prototypes are evaluated with the metric customers.
The following subsections provide additional details on these subactivities.

10.2.1. Consolidate Info Needs
The output of the previous activity is a raw list (or tree, or mind-map) of information
needs from different metric customers. This activity needs to consolidate these raw
needs from the different metric customers to one or several focused sets of information
needs. Building these sets and consolidating the information needs is important to get a
consolidated overview over all the information needs of the metric customers.

234



10.2. Prototype and Evaluate

In order to consolidate the information needs, metric customers may need to:

• Combine several slightly different information needs to one information need.

• Extract several (more focused) information needs from a raw information need.

• Reorganize and maybe reformulate information needs to fit a group of metric
customers rather then specific information needs for one particular metric customer.
This may also include introducing additional information need categories or root
questions.

Additionally, the metric experts should check, create and update trace links between
information needs and potential data sources in the data provider repository during this
activity.

10.2.2. Design Monitors, Design Metrics and Prepare Prototypes
A depiction of the planed monitors and/or dashboards is more easy to grasp for metric
customers then plain text descriptions. Hence, they are more likely to provide important
feedback before the construction. Therefore, it is important to create horizontal prototypes
of the dashboards and monitors after an initial gathering of information needs. These
prototypes are used to evaluate the proposed monitors (solutions) with the metric
customers. In order to focus the metric customers on the evaluation of the monitors
and dashboards it is important to keep them sketchy. Furthermore, this will avoid
confusion between the real implementation and the prototypes. Thus, we recommend to
use specialized tools to build these prototypes1.

We also recommend to base the prototypes on typical data and not just random values
to show the metric customers what an actual monitor for their entity of measurement may
look like. Optionally, the metric experts can prepare different prototypes for different
situations; for example: a good project, a typical project, and a bad project. Often, the
theme of the information needs is to know if everything works as planed or if something
is strange. The different prototypes for the different situations help the metric customer
to evaluate whether they are able to identify these strange situations. Furthermore, the
different prototypes can later be used as part of the interpretation aids for the monitors.
The design of the monitors and metrics should be based on design guides which are

established in the company. As a good starter for the design of monitors we recommend
“Show me the Numbers” by Stephan Few [Few12]; for the design of dashboards we
recommend “Information Dashboard Design” also by Few [Few06]. As a general role of
thumb: The monitors should be as simple as possible and information should not be
encoded in arcs. Therefore, stacked-bar-charts and pi-charts should be avoided if possible.
Also colors should only be used very sparsely to indicate certain important aspects (for
example warnings or odd data).

1A discussion on the development of a specialized dashboard prototyping tool is provided in the bachelor
thesis of Matthias Gora [Gor13].

235



10. The Conception Phase

10.2.3. Evaluate With Metric Customers
This is one of the key activities in the conception phase. As the name suggests the
goal of this activity is to evaluate the prototypes with the metric customers from the
Requirements Gathering activity. It is important to get as much feedback to the
suggested monitors and dashboards as possible. Because in this phase it is still relatively
cheap to change all aspects of the monitors. The metric customers can choose among a
large variety of methods and tools to gather the feedback. We used: workshops, interviews,
mail + response, or web collaboration systems like forums or wikis in our field studies.
The following list contains a quick discussion on the benefits (3) and weaknesses (7) of
each of these approaches.

Workshops and Interviews

3 Explanations for the monitors and dashboards can be given face-to-face, all other
forms require additional documentation and explanation, and documentation may
be ignored leading to unproductive feedback.

7 The face-to-face explanation can influence the metric customers leading to little
feedback. Therefore, problems with the proposed solutions may be overlooked.

Mails

3 Quick, easy to distribute, and metric customers are used to this form of
communication.

7 No (direct) way of personal communication, metric customers may ignore the mail,
and additional effort for integrating the feedback from all metric customers.

Web Collaboration Systems

3 Some form of (indirect) personal communication possible, relatively quick and easy,
and feedback is located in one place easing the integration.

7 Metric customers may not be familiar with these system and answers typically
visible to everyone which may lead to less feedback.

The actual activities and steps that are performed in this subactivity need to be defined
when instantiating the process model based on the processes in the company and company
policies. This leafs less room for interpretation and eases the execution of the process for
all the stakeholders.

From our experience, the optimal evaluation of the proposed monitors and dashboards
with the metric customers combines a workshop or interviews with mails and a web
collaboration system. The metric expert starts by sending a mail with the prototypes
of dashboards and monitors plus additional documentation to the metric customers.

236



10.2. Prototype and Evaluate

In parallel the metric expert prepares a discussion platform in the web collaboration
system containing the same information. The link to this platform should also be
included in the mail. Additionally the metric expert should prepare a workshop with
the metric customers or prepare interviews with selected metric customers. Because
there is typically some time between the mail and the workshop or interviews the
metric expert can start integrating some feedback from the metric customers from
the web collaboration system into the prototypes of the monitors and dashboards.
Therefore, the workshops and interviews are a second iteration which helps to faster
reach a feasible solution. Because the workshop or interviews are direct interactions
between metric customers and metric experts this also helps to get informations from
metric customers who did not participate in the discussion in the web collaboration system.

After the evaluation the metric expert needs to gather all the changes and decides how
to proceed. Small changes can be performed directly. Minor problems are solved by
redesigning some monitors, metrics or parts of the dashboard. After the redesign the
prototypes need to be evaluated again to check the changes with all metric customers.
If the evaluation shows major misunderstandings between metric expert and metric
customers, however, the Requirements Gathering activity should be restarted.

237



10. The Conception Phase

10.3. Plan Increment

Finish
Conception

Phase

Integrate Needs
in Increment Plan

Review ok?

Increment
Plan

no

Review and Prioritize
Increment PlanDesign Logical 

Architecture

Finish
Increment Plan

Impact?

Restart
Requirements

Gathering

Consolidated
Info Needs

with Prototypes

Major

Minor

Logical
Architecture

yes

Figure 10.4.: Plan Increment activity as BPMN diagram

One of the core concepts of the metric management process model is its incremental
development core. However, these increments should not be build add-hoc but
systematically planed. Thus, the goal of the Plan Increment activity is to provide
an Increment Plan for the following phases. This plan can, of course, be changed
after every iteration; for example when the environment changes or the priority on
the information needs are reassessed and changed. Figure 10.4 provides an overview
over the subactivities in this activity. Similar to the Prototype and Evaluate
activity, the Plan Increment activity contains four subactivities which are executed
sequentially. First, the Integrate Needs in Increment Plan subactivity, as the
name suggests integrates the information needs gathered and evaluated before into the
Increment Plan. Second, from this the architect and the metric experts develop
the Logical Architecture for the EMI, which contains the metric applications
that typically make up one increment (see section 4). Third, the Increment Plan is
reviewed and prioritized. Forth, if the review is successful then the Finish Increment
Plan subactivity finalizes the plan, finishes the conception phase and starts the first
development increment and the first design phase. The following subsections provide
additional details to each of the core subactivities.

10.3.1. Integrate Information Needs and Design Logical Architecture
In this subactivity the consolidated and evaluated information needs together with their
respective prototypes need to be integrated into the increment plan. As the name suggests

238



10.3. Plan Increment

the Increment Plan lays out the road map for the incremental design and construction
of the EMI based on the given information needs. An increment, in general, should
provide a benefit for some metric customers (i.e. answer some of their information needs)!
Furthermore, the increment should be coherent (see section B.1.2 in the appendix for a
guide on coherent increment plans). The integration of the new information needs may
also change existing increments that are already planned.
After the increments are planned the metric experts and architects should define

the Logical Architecture of the EMI. The logical architecture defines the logical
components that are required in an EMI to satisfy the given information needs. The logical
components are organized in metric applications (see section 4.1). Metric applications are
coherent sets of logical components that solve a specific purpose. Therefore, this is closely
related to the increment plan and often the metric applications reflect the development
increments.

10.3.2. Review and Prioritize Increment Plan
After the increments are planed and the logical architecture is defined the metric experts
need to (re)prioritize the increments. The order (their priorities) of the increments may
depend on several aspects which are often company specific. Hence are not listed here.
After the prioritization, the increment plan needs to be reviewed by the architects

and the operators to avoid complications during design, construction, and operation.
Selected metric customers should also be included in the review to integrate them in
the planning process once more. The plan can also be send out to all metric customers
or made available via an web collaboration system to allow for more feedback. One
possible outcome of the reviews of the increment plan might be that the plan is rejected.
Maybe these problems can be solved by small changes and reiterating the evaluation.
And maybe the whole requirements gathering process needs to be restarted because some
metric customers or needs were completely overlooked.

10.3.3. Finish Increment Planing
When the review of the Increment Plan turned out positive (or with minor changes)
and all stakeholders accepted the plan it can become final. Consequently, it should be
send to all stakeholders or made publicly available inside the organization. This also
marks the end of the conception phase and the process can enter the incremental design
and construction phases which follow the Increment Plan.
We just provided very brief descriptions and discussions on these subactivities.

However, figure 10.4 already suggests that the two activities Review and Prioritize
Increment Plan and Finish Increment Plan need to be further defined when
instantiating the process model. For example all the actual review activities and their
flow as well as all the detailed activities when finishing the conception phase need to be
defined. These activities can become large but we recommend to model them explicitly
when instantiating the process model, because this makes the process more specific which
eases the execution of the process for all the stakeholders.

239



10. The Conception Phase

10.4. Conception Summary
This chapter presented details on the conception phase of our metric systems engineering
process model. We first provided an overview over the activities in this phase and discussed
related work. We then provided additional details on the activities and the core artifacts.
The Requirements Gathering activity contains the core requirements elicitation
activities. We discussed the differences and benefits of the two main techniques: workshops
and interviews. The results from the gathering activity is a raw list of information needs
which are consolidated in the next activity: Prototype and Evaluate. As the name
suggests, this activity also contains the prototyping subactivities. Constructing and using
prototyping in this metric related context separates our process model from existing
approaches. Additionally, from our experience, providing and discussing prototypes with
metric customers provides a lot of important feedback early on in the process. At this
point metric experts are still able to easily (and cheaply) change some of the monitors
and metric if they see that the expectations from metric customers are not meet. Finally,
the Plan Increment activity produces and evaluates the Increment Plan, which
guides the following design and construction phases. The following chapter will provide
additional details on the activities in the design phase.

240



11
The Design Phase

As the name suggests, the goal of the design phase is to design and specify the services
and the tests for the EMI required for the specific increment (for the specific metric
application). During the design phase the Design artifact is created and evaluated. This
provides the guideline for the following construction phase and contains all the results
from this design phase. Most importantly, the design contains the actual architecture of
the EMI which instantiates our reference architecture.

Identify Services and 
Plan Design Process

Ok?

yes

no
Evaluate Design

Increment
Plan

Design Services
and Integration

Design Tests
Design

Design
Plan

Figure 11.1.: Design phase overview as BPMN diagram

241



11. The Design Phase

Figure 11.1 provides an overview over the core activities in the design phase. The
phase starts with the Identify Services and Plan Design Process activity.
The activity takes in the plan for the current increment. Based on the information
needs and prototypes in the Increment Plan the metric expert and architect define
the Design Plan. This contains the detailed activities that should be performed in
the following activities. We differentiate two core design activities: Design Services
and Integration and Design Tests. This emphasizes the importance of the test
design because it is separated into its own activity. Both activities are executed iteratively
and incrementally in parallel to each other mainly by the architects following the Design
Plan. They both produce the Design for this increment which can contain new services,
service migrations, service replacements, and service removals. The Design is evaluated
by metric experts, architects, operators, and maybe metric customers in the last activity
of this phase. The following sections provide additional details on these activities and
the design itself.

11.1. Identify Metric Services
The first most important activity in the design phase is to identify the metric services
which need to be changed or created in this increment. The requirements (information
needs, metric customers, and monitor prototypes as well as metric definitions) for the
metric services are specified in the Increment Plan for the current increment. This
activity is performed by metric architects assisted by metric experts

Check if Service 
Exists for Info Need

Done?

yesno

Service
Documentation

Put existing Service
into Design

Put existing Service
into Design and add

Changes to Plan

Design

Design
PlanPut new Service

Development into 
Design Plan

Service 
does

not exist

Service exists
but needs
changes

Service exists
and can be reused
without changes

This
Increment

Plan

Figure 11.2.: Metric Service identification activity as BPMN diagram

Figure 11.2 provides an overview over the subactivities and artifacts in this activity.
The first step of the identification is to identify which metric services (data adapters,
metric kernels, visualizations, visualization frontend, and operation services) are required

242



11.1. Identify Metric Services

for this increment and whether they already exist or not. Similar to other development
processes and following the spirit of our reference architecture, the general intention should
be to reuse as many existing services as possible. This may require some refactoring in
the actual service to add the new functionality. Based on the reuse decision the following
activities design the service and fill the Design Plan and Design. If an existing service
can be reused without changes then the service can be put into the Design without
adding additional steps to the Design Plan. If the service can be reused but requires
changes then the service can be put into the Design and redesign activities need to be
added to the Design Plan. If no existing service can be reused then only this new
design activity needs to be added to the Design Plan.
We already discussed reuse of (EMI) services in our reference architecture (see

section 4.1) and the foundations (see section 2.2). However, we would also like to
provide some remarks here to assist the actual decision process for deciding to reuse an
existing service or not. On the one hand, avoiding new metric services helps to deal with
increasing structural complexity. On the other hand, it increases documentation effort for
the reused metric services. This additional effort could also be used to created additional
documents and overviews to deal with increased structural complexity. Furthermore,
reusing existing services may reduce robustness of the whole EMI because few services
become more important rather then distributing the responsibilities across different
services in the infrastructure. Additionally, reusing the existing services is not necessarily
cheap because typically some things need to be tailored to fit the new need of the service.
As we already discussed, reuse is only feasible if less than 20% of the existing service
needs to be changed. However, existing metric services are likely to have a better overall
quality than new metric services because they are already tested and running in the field.
The appendix contains a very thorough checklist in section B.2.1 to aid the reuse decision
process, which we compiled from our experiences in the field.

If required this activity can also contain additional requirements gathering activities if
specific parts in the increment plan require clarification. We did not model this explicitly
in the overview figure because it would require to many decision nodes and transitions.
However, the actual process should contain at least explicit jump marks and aboard
criteria for this activity which may result in an aboard of the design phase and lead back
to the conception phase depending on the severity of the problem.

11.1.1. Setup the Design Plan and Design Document
During this activity the Design Plan and Design document need to be setup. This
subsection contains some additional remarks on the setup of the two artifacts.
Like the name suggests the design plan is a plan for the design phase. It hence

should contain the metric services that need to be (re)designed in order to satisfy the
requirements in the increment plan. It should also contain the test plan for the new or
changed services (test objective, test identification procedures, and test end criteria).
The design of the test is also included in the design document for this increment. Last
but not least the design plan should include a plan for the evaluation of the design (who
evaluates, what, and when under which objective).

243



11. The Design Phase

In this activity the architect and metric expert should add emerging changes and
pre-designs to the Design document. Typically the first rough overview diagram for
the actual architecture is created in this activity as well. We provide a lot of additional
details on the actual sections of the Design document and their setup and content in
the appendix in section B.3. The following two sections provide additional details on the
actual design activities which fill the Design document.

11.2. Design and Evaluate
The following subsections provide additional details to the core subactivities of the design
phase. We kept the information as simple and as sparse as possible in here and moved a
lot of the actual guides, best practices, and artifact descriptions to the appendix.

11.2.1. Design Services and Integration
Designing the services and the integration between them goes hand-in-hand and is the
core activity in the design phase. This section contains a very brief discussion on the
actual subactivities. The details are found in the description of the Design document in
the appendix in section B.3. Furthermore, we also provide finer detailed design guidelines
for the different types of services in the appendix in section B.2.2.
Most importantly, the design of the services and the integration should obviously

instantiate our reference architecture from part II; more specifically our technical
reference architecture in section 5. Therefore, the design of the services should follow the
microservice architectural style. Therefore, the technologies used in each service can be
specifically tailored towards the needs of the particular service. Most importantly, this
includes the database and persistence technology for the metric kernels (see section 5.5).

The integration between data adapter and metric kernels should follow the concepts of
the enterprise measurement data bus (EMDB – see section 5.2). The integration between
metric kernels and visualization frontends should follow the enterprise uniform metric
kernel access design (EUrEKA – see section 5.3). In general, the integration between
the different parts should follow the idea of contracts between the different parts. These
contracts should be the driving force for the design of the service. The services and its
integration should be design in a way that they fulfill the contracts in all situations1.

The architecture overview diagrams used in the Design document (and our reference
architecture) use a combination of UML component diagrams and EIA pattern notation,
see Enterprise Integration Patterns by Hohpe and Wolf for further details [HW03a]. The
EIA pattern notation is added to the UML component diagrams in order to design topics,
messages, and enterprise service bus items.

1For example a valid and consistent message send over the bus needs to be accepted by the corresponding
metric kernels (always!). Even if from the view point of the metric kernel the data is not consistent
(for example if the data is too old). In such a situation the metric kernel can always avoid processing
the data in the message and enter the out-of-sync state. However, it must accept the message!

244



11.2. Design and Evaluate

Another important step in the service design is to define the performance indicators and
their boundaries for each service. These indicators need to be integrated and controlled
via the monitoring system of the EMI. Hence, it is important to include operators in the
design as well. They may also add other important information that may improve the
design of the actual service.

11.2.2. Design Metric Service Tests
The design metric services and integration and the design metric service tests activity
are often performed in parallel. The metric architects may (and will) fluently switch
between the two activities. Especially the design (and test) for exception behavior calls
for this switch because every exception needs to be thoroughly tested.
Regression tests by the means of unit and integration tests ensure less stress during

construction of the EMI. Furthermore, system tests provide a formal specification of
the core functionality of the services. They also act as large scope regression tests that
ensure the overall performance of a defined scenario in a metric system.
Further details on testing2 are provided in the design guidelines in the appendix in

section B.2.3

11.2.3. Evaluate design
The Design document created in the previous activities is the basis for the construction
of the system. Therefore, we need to make sure that it meets expectations and contains all
important aspects. The previous sections already mentioned some of our statical quality
assurance tools (guidelines, checklists, and best practices). However, we also recommend
analytical quality assurance measurements to ensure that the Design document is
checked one last time before entering the construction phase.

We recommend to perform a formal review (inspection) on the Design document on
this subactivity. The guides and checklists mentioned above can act as guides for the
review. Furthermore, we recommend to include developers, metric experts, and operators
in this review as well because they have different expectations from the design. Also,
metric customers may join the review in order to check whether the services proposed
are able to answer their information needs.

This already concludes our very brief discussion on the design phase of our engineering
process model. The following section will provide additional details on the construction
and the operation phase.

2Additional details on actual test pattern and test templates for EMI services are provided in the
bachelor thesis of Marco Moscher [Mos14].

245





12
The Construction and the Operation Phase

This section provides additional details to the construction phase and the operation
phase of our process model. We combined the two phases into one chapter because we
do only provide very little details to the construction phase. The reason for this is the
strong influence of the actual technologies and company processes on the activities in the
construction phase and its dependence on the design and increment plan defined before.
Most importantly, the construction phase contains all the staging activities. Hence, we
will discuss the minimal stages to support the different test levels for services in an EMI.
The following section 12.1 provides additional details to the activities in this phase. After
that we provide a lot of additional details on the activities of the operation phase in
section 12.2.

12.1. The Construction Phase
The construction phase realizes an increment of a metric system according to the Design
document created in the design phase. The construction activities will, thus, alter an
EMI which provides the data for the visualization frontends and includes the calculation
of the metrics in metric kernels as well as the data adaption.
The actual implementation activities may include coding as well as configuration;

depending on the service and its actual technology. Additionally to the implementation
this phase also contains testing and staging activities. The tests should also be defined
in the Design document (or referenced by it). The staging activities and environments
need to be defined upon initialization of this process model. Furthermore, the release of
the services and their components need to be defined in the initialization as well. The
company should setup a release model and monitoring system in order to identify release
problems and to avoid release ripple effects1.

1See thesis from Bastian Schwartz for further details [Sch12].

247



12. The Construction and the Operation Phase

We recommend to include at least the following stages (see section B.2.3 in the appendix
for more details on the test levels):

Development Stage The development stage contains the development environments
of the developers. Therefore, it typically does not contain all the data providers
that provide data to the actual EMI. Hence, tests on this stage can only cover
module tests, component integration tests, and service integration tests. If these
tests are passed successfully then the service can be staged to the test stage.

Test Stage The test stage contains dedicated servers for the EMI services. However,
it only needs to provide a similar infrastructure to the actual production stage.
The technologies on this stage may differ (for example database technologies or
messaging infrastructures). Furthermore, the stage may only contain stubs for
the actual data providers of the EMI. However, this enables to run application
integration tests on this stage. If they are passed successfully then the service(s)
can be staged to the pre-production stage.

Pre-Production Stage The pre-production stage should contain a similar environment
to the actual production stage. This requires to setup all technologies similar to
those on the production stage and also requires to setup all the data providers
similar to the actual production stage. These data providers, however, need to be
controlled in order to setup test data. Thus, the pre-production stage allows to
run EMI system tests which test the complete interaction between all services over
the complete EMI. If these tests are passed successfully then the services may be
released and staged to production.

Production Stage This provides the actual EMI that the metric customers use to
satisfy their information needs.

The activities in the phase can be executed several times (iteratively) to create dedicated
increments (typically one service); they may also be executed in parallel. Parallel execution
can be more risky. Thus, the risks should be accessed before starting parallel construction
activities. The Design document, however, should guide each of the parallel construction
activities without adding too much additional risks.
The construction phase will still raise some issues even though the requirements

analysis and prototyping phase before was performed thorough enough! However, these
issues should just be minor changes thanks to the thorough inspections and evaluations
performed before. These minor issues should, hence, be fixable during the construction
phase and should not require to aboard the phase. Nevertheless, if mayor design flaws
are found or large problems raise during the evaluation of the services with the metric
customers in the later release stages then the construction phase needs to be aboarded.
This will either spawn a redesign or will require a complete re-conception of the actual
metric system. However, this is very unlikely to happen!

This already concludes our discussion on the construction phase of our process model.
The following section will provide additional details to the most crucial phase for the
long time success of the just constructed EMI: the operation phase.

248



12.2. The Operation Phase

12.2. The Operation Phase
The previous section briefly discussed the core activities in the construction phase. This
section will provide additional information to the most central activities in the operation
phase. The following section 12.2.1 will provide additional information on how to deploy
and setup a new metric kernel. Deploying and setting up data adapters and visualization
frontends is rather simple and does not require further documentation. Most importantly
in this chapter we provide a list of best practices to handle common errors and exceptions
in an EMI in section 12.2.2. We also provide some additional information about triggering
a new iteration from the operation phase in the last section 12.2.3 of this chapter.

12.2.1. Deploy and Setup a new Metric Kernel
This section describes the setup of a metric kernel that is either new or was updated.
The procedure is the same in both cases, hence, we only address the case “new metric
kernel” in this section.
The database of a new metric kernel will be empty. Thus, it will not provide the

indicators that the metric customer needs to answer her questions. Therefore, the new
metric kernel will be in out-of-sync state after deployment. In order to resolve this, the
metric kernel needs to receive all its relevant measurement messages to fill the database.
The data could be resent from the data provider via the data adapter but this would
create a large load in the data provider. Besides, the resulting measurement messages
are already stored in the message cache. Thus, the operator simply needs to utilize
the Resend API in the message cache to resend all relevant measurement messages.
The new metric kernel will receive all these messages and setup its database accordingly.
Therefore, after the messages are resent the metric kernel is in-sync with its data sources.

The additional messages will also be received by all other metric kernels in the EMI
which would potentially create a large server load on the nodes of the metric kernels and
their databases. However, the metric kernels should be robust against receiving the same
message multiple times (see section 7.2.4). Therefore, most existing metric kernels will
simply ignore the messages. Hence, this will not create a large load on the servers.

12.2.2. Best Practices for Handling Common Errors and Exceptions
The following subsections contain typical errors and exceptions that can occur when
operating an EMI. Most of these errors and exceptions discussed are due to the breakdown
of one of the components of the EMI. Therefore, for each of these problems we provide a
way to identify the problem and steps to follow in order to resolve the problem and repair
potential damage. We start each subsection with a short description of the problem and
its implications.

249



12. The Construction and the Operation Phase

Failure of a Data Adapter

The failure of a data adapter will potentially result in data loss in the EMI. Data adapters
following the Push-Forward adapter pattern (see section 5.4) are most likely to miss some
data that is pushed towards them while they are offline. The recovery steps depend on
the adapter pattern of the data adapter. Therefore we will differentiate the recovery
steps for each of the adapter pattern.

Detection The failure of a data adapter can be detected via the monitoring system.
The data adapter will be in offline or unknown operation state. Furthermore, the
metric customers may complain due to missing data in the EMI.

Recovery Steps – Pull-Forward Adapter Pull forward type data adapters are
triggered by an internal timer which triggers the data adaption periodically. When
the data adapter breaks down this timer needs to be bypassed to get all the data
for the timeframe in which the adapter was not available.
1. Fix problem in data adapter.
2. Redeploy the data adapter in maintenance state (no periodical triggering).
3. Trigger the pull method to get all the data from the data provider from the

missing time frame.
4. Reinitiate the periodical trigger and set operation state to online.

Recovery Steps – Invoke-Pull Adapter Similar to the pull forward type data
adapters the data adaption from invoke pull type data adapters is also triggered.
However, the trigger is not periodical but other messages on the EMDB. These
messages are cached in the message cache. Therefore, when an invoke pull typed
data adapter breaks down it is sufficient to simply resend all the messages that
where send during the down time of the data adapter. These messages will then
retrigger the data adaption without any additional changes to the data adapter.
1. Fix problem in data adapter
2. Redeploy the data adapter in online state
3. Resend all messages for the downtime of the data adapter (maybe filtered to

the triggering messages of the data adapter) via the resend-API of the message
cache.

Recovery Steps – Invoke-Dump Adapter Invoke dump type data adapters, by their
nature, always adapt the full data from the data adapter. Therefore, when such a
data adapter breaks down it is sufficient to simply retrigger the dump because it
will adapt all (missing) data from the data adapter. The recovery steps are similar
to the invoke-pull adapter pattern above but step 3 is replaced by:
3. Retrigger dump on the data adapter (for example via a dedicated command

message)

250



12.2. The Operation Phase

Data Loss Prevention – Push-Forward Adapter The main problem with push
forward style data adapters is their inversion-of-control style design. They receive
data from the data provider whenever the data in the data provider changes and
they only receive the changed data! Thus, if such a data adapter breaks down then
the call from the data provider and its containing data is lost. Therefore, we focus
on methods to prevent the data loss situation rather then providing recovery steps.
Multiple alternatives exist to prevent the data loss. The two most popular once
that we used in our field studies are:
Multiple deployed data adapters + Load Balancer The most trivial way to

prevent data loss for push forward styled data adapters is to deploy multiple
instances of the data adapter on different nodes in the EMI. All the data
adapters connect to the same EMDB. Located in front of these multiple data
adapters (from a data flow perspective) a load balancer simply delegates the
call from the data provider to a working version of one of the data adapters.
The load balancer should, thus, be coupled with the monitoring system. If
one of the data adapters fails then one of the other running data adapters
will immediately take over and data loss is prevented. However, the load
balancer then becomes a single point of failure and data is potentially lost if
the load balancer fails. However, load balancers are build to be very robust
and almost never fail. Additionally, there exist additional methods to increase
the robustness of load balancers to ensure 24/7 operation. However, this
design increases the maintenance effort when updating the data adapters and
the complexity of the EMI and the staging environments.

(Caching) Proxy between data provider and data adapter Another
alternative to prevent data loss to push forward style data adapters is to use
one (or several) proxies2 in front of the data adapter that are able to cache
the requests. The proxy will echo the actual APIs of the data adapter and be
used by the plugins in the data provider. The data from the data provider is
then transfered to the proxy which checks the monitoring service to get the
availability of the data adapter. If the data adapter is not online the proxy
will cache the data. When the data adapter gets back online again all the
missing data can be retrieved from the cache and be played back to the data
adapter. This is a similar behavior to the recovery of invoke-pull adapter and
failures in metric kernels. However, this creates a single point of failure at
the proxy and potential performance problems when all requests need to
be transfered through one proxy. This can be solved by deploying multiple
proxies that are located behind a load balancer which distributes the calls;
similar to above. Furthermore, this will also increase the complexity of the
EMI and the staging environment. However, it will most likely not increase
maintenance effort because the data adapter is only deployed once.

2Additional information on such a proxy, technical details, and test cases for the proxy can be found in
the bachelor thesis of Gordon Lawrenz [Law14].

251



12. The Construction and the Operation Phase

Failure of a Metric Kernel

The failure of a metric kernel will result in missing indicators for monitors in visualization
frontends. Thus, metric customers are unable to answer questions related to these
indicators. Furthermore, the metric kernel will miss measurement messages on the
EMDB during its down-time. Hence, when redeploying the metric kernel it will most
likely be in out-of-sync state. Therefore the operator needs to perform similar actions as
to deploying a new metric kernel to get it back in-sync again.

Detection The failure of a data adapter can be detected via the monitoring system.
The metric kernel will be in offline or unknown operation state. Furthermore, the
metric customers may complain due to missing data in certain monitors that are
feed by the particular metric kernel.

Recovery Steps Similar to above the operator needs to resend the missing messages
that occurred during the down-time of the metric kernel via the message cache.

1. Fix problem in the metric kernel
2. Redeploy the metric kernel in maintenance state
3. Resend all (or filtered) messages using the Resend API from the message

cache
4. Set the metric kernel to online state when it processed all messages and gets

back in-sync

Failure of a Visualization Frontend

The failure of a visualization frontend does not result in any problems with the reception
and processing of measurement messages in the core components. Therefore, a failure in
a visualization frontend or another service in the visualization layer does not require any
additional steps other then fixing and redeploying the defective service. This, isolation of
failures which only temporarily disable certain components, again, shows the advantages
of the design of the reference architecture.

Failure of the EMDB Messaging System

The enterprise measurement data bus (EMDB) and the underlying messaging system
provide the backbone of an EMI by transporting its measurement messages. Thus, a
failure in this part can potentially result in data loss because the message cache also does
not receive any messages. Several solutions exist to prevent or recover from this failure.
We will discuss the two most prominent solutions in the following steps.

Detection The detection of failure of the EMDB is not trivial because all operation
system are not working either. Maybe the failure will produce according log
messages in the services. However, because the messaging system is not working
these messages do not get delivered to the central logging service. Therefore, a good

252



12.2. The Operation Phase

indicator for a failure of the messaging system is the monitoring service reporting
unknown service state for all services in the EMI (including itself).

Variant 1 – Multiple Messaging Systems (Prevention) Failures in the messaging
system can be reduced if multiple systems plus automatic failover is provided. If
one of the systems fail then another one will automatically take over. However
this is hard to configure, operate, and maintain because automatic failover is not
provided out-of-the box for most messaging systems. Also these multiple systems
need to be setup in the pre-production stage to simulate and test the failover and
failure prevention.

Variant 2 – Local Message Caching (Recovery) In order to avoid multiple
messaging system the EMI development platform, which provides the message
senders, can also include local message caches. These local caches are then able
to cache all messages that could not be send, due to a failure of the messaging
system, in the service. When the messaging system comes back online a centralized
message over the command topic can force the local caches to flush their messages
to the EMDB. This mechanism prevents data loss as long as none of the services
breakdown and the local caching is working. However, this solution requires
additional construction and maintenance effort for the EMI development platform
and a service to trigger the flush of the local caches. Nevertheless, the local caches
can also be used to check messages in a test without actually sending the messages
to the EMDB.

1. Fix problem in the messaging system
2. Restart the messaging system
3. Force flushing of the local message caches of the services

Failure of the EMDB Message Cache

The message cache is the most important system to recover in case of service failure.
Therefore, the message cache needs to be operational in order to prevent data loss in case
of a service failure. Again, similar to a failure of the EMDB messaging system we present
two different variants to prevent or recover from a (complete) message cache failure.

Detection The failure of the message cache can be detected via the monitoring system.

Variant 1 – Multiple Message Caches (Prevention) Similar to preventing a
failure of the messaging system of the EMDB, multiple instances of the message
cache can be deployed each running on different nodes using different databases. If
one of the caches fails then another cache will still get all messages on the EMDB
and the failed cache can be resetup with the data from the running caches. Similar
to above, this variant produces a lot of configuration, operation, and maintenance
effort. Furthermore, it also requires additional server resources to ensure that the
messages caches are running on independent server nodes.

253



12. The Construction and the Operation Phase

Variant 2 – Local Message Caching (Recovery) Similar to above, a local cache in
each service could detect the failure of the message cache and cache each message
until the message cache comes back online. When the message cache becomes
operational again then all local caches can be dumped and the resulting messages
will be cached in the central message cache. Similar to above this required additional
effort for the construction and maintenance of the EMI development platform.

Failure in the Monitoring System

A failure in the monitoring system will prevent the operator from detecting failures
in other services in the EMI. Therefore, the monitoring system needs to be fixed and
redeployed as fast as possible. Furthermore, the EUrEKA consumers can no longer check
the service state of the metric kernels. Hence, they will assume that the metric kernel is
online which may result in wrong data or timeout errors if the kernel is currently being
maintained or offline. All other operations in the EMI will work normally.

Failure in the Logging System

The central logging system provides the metric experts, the operators, and the developers
with aggregated log information from all services in an EMI. A failure in this system
will prevent this and will potentially result in missing log data in the logging service.
However, typically the services will also write log data into local logs on their servers.
Hence, no data is lost. Nevertheless, the failure in the logging system should be fixed
and the system should be redeployed as fast as possible.

Failure in the Directory System

The directory service provides services in an EMI with a mechanism to resolve synonyms
in various directories. Hence, the synonyms will not be resolved if the directory system
fails. This may lead to wrong indicators because data is not assigned correctly in the
metric kernels. The recovery steps depend on the location at which the synonym resolving
is implemented in the metric kernels (see section 5.5.2). Hence, we will address different
recovery variates in the following brief description.

Detection A failure of the directory system can be detected via the monitoring system.
Furthermore, the metric customers may complain about wrong or missing values.
Additionally, the services may log information regarding timeouts when trying to
connect to the directory service.

Variant 1 – Synonym Resolving at Indicator Access When the synonyms can be
resolved only at the indicator access then the data storage mechanisms are not
influenced by a failure of the directory system. Hence, it is sufficient to redeploy
or restart the directory system and ensure that everything is working again. No
further steps are required.

254



12.2. The Operation Phase

Variant 2 – Synonym Resolving on Message Reception Synonym resolving at
indicator access can complicate the database queries and the calculation mechanism.
Hence, resolving the synonyms on message reception before storing the data in the
database of the kernel was the more common option in our field studies. However,
this requires additional effort when the directory system fails because a failure will
result in wrong data in the database of the metric kernel. Therefore, when the
directory system is online again the operator needs to resend all messages that
occurred during the downtime of the directory system. This will result in correct
data in the database of the metric kernel. However, the database may still store
relics of calculations for the synonyms. If these disturb the calculation or bother
the metric experts or customers then the operator needs to manually remove them
from the database.
1. Fix problem in the directory system
2. Restart the directory system
3. Resend all messages for the downtime of the directory system via the

resend-API of the message cache
4. Optionally: tidy up the database from the calculation relics caused by not

resolving synonyms

12.2.3. Triggering a new Iteration
We already discussed the monitoring information needs of metric experts in the discussion
of the monitoring system in section 6.1. Most importantly the metric experts require
analytical data for key performance indicators from the usage of the different services in
an EMI. They can then use this information to assess the quality of the metric portfolio
which can lead to the identification of “holes” (uncovered information needs from metric
customers) and unused metrics and visualizations. With this information the metric
expert can initiate a new iteration of the process. The information will then guide the
activities in the conception phase; most importantly the Plan RE subactivity in the
Requirements Gathering activity.

255



12. The Construction and the Operation Phase

12.3. Summary
This chapter briefly discussed the construction and the operation phase of our engineering
process model. Most importantly for the construction phase we discussed the minimal
release stages: development, test, pre-production, and production. These stages support
the different levels of tests for EMI services and the integration between these services
presented in the appendix in section B.2.3. Additional activities and specific artifacts for
the construction phase heavily depend on the existing tools, technologies, and processes
of the company. Therefore, they need to be defined when instantiating the process model.
The discussion on the operation phase, most importantly, presented various best

practices on how to handle various failures in an EMI. Most importantly, this showed
the importance of certain services in an EMI like the message cache in the EMDB and
the monitoring system. They both play a crucial role in the detection of failures and
recovery from them. We also discussed data loss prevention for push-forward style data
adapter and message cache failure. Data loss should, obviously, be avoided in an EMI
because it will inevitably lead to wrong calculation results. Therefore, it is crucial to also
consider these failure scenarios when designing EMI services, which is the reason why we
specifically included a failure section in the Design document (see section B.3 in the
appendix).

This concludes the definition and discussion of our engineering process model in
our metric systems engineering approach MeDIC. The following part IV will present the
evaluation of our process model and our reference architecture by selected field studies.
Furthermore, we will also provide a brief introduction to the tools and framework, which
we build to support the field studies.

256



Part IV.

Evaluation, Tool Support, and Lessons Learned

257





13
Evaluation by Selected Field Studies

Evaluating an engineering approach is a hard task! The benefits and weaknesses are not
easily found in experiments and case studies due to their complexity and interconnections
between the different activities, artifacts, and technical solutions [Woh12]. Furthermore,
our approach aims to support the engineering of metric systems in industrial environments.
Thus, an evaluation needs to be performed in this environment in order to provide feasible
results. However, an evaluation in an industrial environment can only be performed as a
dedicated project. Like all other projects, these projects always face a lot of constraints.
Most importantly an evaluation in an industrial environment needs to provide some (short
term) benefit for the cooperation partners. Otherwise, they will most likely not provide
the necessary (expensive and rare) resources to perform the evaluation1. This makes it
very hard to perform case studies and controlled experiments in industrial environments.

Our evaluation is centered around a number of field studies, which aim on answering
research question Q5 (see section 1.3). Furthermore, by our evaluation approach we
provide examples for the application of the reference architecture as well as the utilization
of the process model. These field studies where performed as projects which provide a
usable metric system with a production-ready metric infrastructure for our cooperation
partners. Therefore, the field studies always utilized our process model and instantiated
(parts of) our reference architecture. However, we tried to keep the focus of the field
studies as narrow as possible. Thus, some of the studies emphasized the process evaluation
whereas some others emphasized the evaluation of the architecture and technical aspects.
Each field study description in the following sections starts with the detailed research
question of the field study. The specific research questions are sub-question to our initial
research question Q5 (see section 1.3). We also provide a header with additional details
to the field study. It again lists the focus and the environment of the field study as well
as some key metrics for their size.

Each work and thesis performed within the context of this research project was evaluated
individually using different approaches. Hence, we have over 40 individual evaluation
for various parts of our engineering approach at hand. However, they only evaluate very
small parts of the approach, which we do not want to discuss out of context2. Thus, we
will not rediscuss all these different very detailed evaluations and focus on three core field
studies in this thesis.

1We also faced this problem in our cooperation projects. In one case it resulted in aborting a project!
2Chapter C in the appendix lists all the theses for further studies on the detailed evaluations

259



13. Evaluation by Selected Field Studies

We used various methods to evaluate all the individual aspects of our approach.
For example, most of the GUIs and user focused tool projects were evaluated using a
combination of field studies and additional questionnaire supported interviews. The
questionnaires often implemented the ISO 9241 standard in order to provide a common
evaluation basis. We also used constructive interaction [ODR84] in order to evaluate
some of the user interfaces. Most of the work used the ISO 9126 / ISO 25000 quality
models in order to perform qualitative evaluations based on the different quality criteria
of the models.
Our evaluation in this thesis is based on three selected field studies. We start with a

long time field study that we conducted with a large IT service provider for an insurance
company in section 13.1. Contrasting this study, section 13.2 presents a field study in
an academic environment which should provide a very generic metric system for the
sse lab infrastructure. We already published some of the aspects mentioned in these
two field studies in two articles [VL14, VLS14]. However, we added additional details
to the processes and the architecture. The last field study in section 13.3 presents our
experience with using our reference architecture and process model to build a tool to
analyze ticket flows. The corresponding metric system was also evaluated with two large
IT service providers.

Each section provides a short introduction of the environment and the main requirements
for the specific metric system. For each field study we then present additional details to
the specific engineering process utilized in the specific field study which was instantiated
from our process model. Afterwards we provide some details on the design of the EMI
that implemented the required metric portfolio. We conclude each field study with a
condensed list of experiences and a small summary.

13.1. Project Risk Metric System for a Large IT Service
Provider

Research Question (Q5.1):
Are the MeDIC process model and MeDIC reference architecture applicable
in a large industrial environment?

Focus: Process model (especially requirements analysis and design)
Environment: Large IT service provider
Code size:
Project specific

< 10k LOC

Code size:
Overall incl. EMI Framework

< 40k LOC

Overall Effort: ≈ 64 PD (+ one partial diploma thesis)

This field study was conducted in cooperation with a large IT service provider for an
insurance company. Thus they need to deal with the legacy of very old systems as well

260



13.1. Project Risk Metric System for a Large IT Service Provider

as the challenges from modern service-based infrastructures. Hence, the project sizes
vary across a large scale; some development projects can be small (about 100 person
days) others are very large (up to 35,000 person days). This IT provider is CMMI Level
3 certified. Therefore, all development projects need to apply the organization’s standard
development process.
The goal of this field study was to engineer a flexible metric system for the project

managers. We worked together with the engineering process group and were supported
by two metric experts from within the company. In the later stages of the field study
the company started a dedicated project to support the development and pre-production
stages of the metric infrastructure including development and operation teams.
This field study was initiated because of problems3 in the usage of metric based

monitoring dashboards for project managers. We noticed that the information needs of
the project managers were no longer aligned with the needs answered in the dashboard
template provided by the company wide process. Hence, we initiated our engineering
process in order to systematically address the issues. The following subsection provides
additional details to the instantiation of the process model.

13.1.1. Process
Figure 13.1 depicts the main steps of the requirements phase and the two construction
increments of the metric system. The three main requirements sub-processes are located
on the left. They were executed iteratively (indicated by the loop-icon). The whole
requirements process could be executed iteratively as well if excessive flaws are detected
during the Prototype and Evaluate or the Plan Increments subprocess.

The requirements gathering subprocesses started with an assessment of existing
metric systems used by the IT service provider. This analysis revealed that the information
needs of the project managers were changing. Thus, we conducted interviews to
systematically gather these changes [VLJ13]. We then analyzed the changed information
needs and developed a prototype for a new metric-based monitoring dashboard which was
evaluated by the project managers. Furthermore, we developed monitor prototypes for
the monitors on the dashboard. It took some iterations to pin-point the core interactions
and needs. Then we analyzed all gathered requirements and specified the realization
increments. The first one focused on metrics to analyze project risks, the second focused
on metrics based on error and enhancement tickets.

Risk Metrics Increment

We further enhanced and specialized the monitor prototypes focusing on the visualizations
and diagrams that we wanted to address. After just a few iterations we were able to
provide the central visualizations and diagrams required for the project managers. Two
of these final diagrams are shown in figure 13.2. The first is a classic Cartesian chart
with four bar and one line chart showing the number of risks in specific states and the

3See [VLJ13] for additional details.

261



13. Evaluation by Selected Field Studies

R
iskxM

etricsxIn
crem

en
t

TicketxM
etricsxIn

crem
ent

Sp
e

cificatio
n

R
eq

uire
m

e
ntsx

G
ath

erin
g

P
ro

to
typ

exand
xEvalu

ate

P
lan

xIncrem
e

nts

Ide
ntifyxM

etricx
Servicesxand

xP
lan

x
D

esig
n

D
esig

nxM
etricx

Services

D
esig

nxTests
an

dxExcep
tio

ns

Evalutate
xD

esign
C

on
stru

ctxM
etricx

Services

D
eplo

yxand
xTestxinx

Lo
calxEnviro

n
m

en
t

D
eplo

yxand
xTestxinxPre-

P
ro

du
ction

xEn
viro

nm
en

t

R
eleasexan

dxStartx
O

p
eration

Ide
ntifyxM

etricx
Services

C
on

stru
ctxM

etricx
Services

D
eplo

yxand
xTestxinx

Lo
calxEnviro

n
m

en
t

D
eplo

yxand
xTestxinxPre-

P
ro

du
ction

xEn
viro

nm
en

t

R
eleasexan

dxStartx
O

p
eration

Figure
13.1.:

B
PM

N
diagram

ofthe
m
ain

process
steps

used
to

develop
the

m
etric

system
at

the
IT

service
provider

262



13.1. Project Risk Metric System for a Large IT Service Provider

Occurred

High

HighMediumLow

Low

Medium

Closed

Medium Risk
Another Risk

High Risk

Occurred Risk

Closed Risk 

Impact

Pr
ob

ab
ili
ty

Apr. 13 May 13 June 13

2

4

6

8

10

# Risks per 
Risk Group

# Open Risks

4

8

12

16

20

12
14

10
4

2
3

6

4 4 4
5

3 3
4

8

Risk Matrix Prototype

Open Risk Control Prototype

critical open risk

significant open risk

non significant open risk

clossed / occurred risk

number of open risks

Figure 13.2.: Prototypes for metric-based risk monitors: Risk Matrix and Open Risk
Control

263



13. Evaluation by Selected Field Studies

overall number of open risks each on a monthly basis. The second one is an enhancement
of a traditional risk matrix. It shows the impact on the bottom and the probability on
the left, each on a three item scale from low to high. The top row contains the risks
which did occur and the lower left square contains closed risks. In addition to this we
added an icon after each risk to indicate how it changed4. These changes are tracked on
a monthly timing as well.
Project risks were documented using dedicated Excel sheets. These sheets are based

on a template which is part of the standard development process of the company and
mandatory for the projects. During risk workshops these risk sheets are filled with new
risks and existing risks get updated. Additionally, project managers update the risks if
something that influences the risk changes (for example a counter measure for the risk is
showing to be effective). The risk Excel sheets are stored in CVS repositories.

Handling risks in an Excel sheet is a risk on its own due to lack of consistence checks,
constraints, and solid work-flow modeling. Hence, it was planned to use Atlassian Jira to
model and store risks in the future. Unfortunately, Jira does not understand the semantic
of a risk and hence is not able to provide the risk matrix or bar charts mentioned above.
This additionally enforced the need for an independent visualization of risks.

We started the increment by identifying and planning the design of the required metric
services (data adapters, metric kernels, visualizations, and dashboards). The design was
again performed iteratively. We first created a rough version of the EMI and specifically
focused on the integration part. Then, we started the detailed design of the required
data adapters and metric kernels. In parallel we conducted several workshops to discuss
possible failures and exception behavior in order to define meaningful test scenarios and
test cases. We evaluated the design and did some minor changes after the first iteration.
We then started the construction of the metric services. The integration of the newly

constructed services worked flawless. We believe a reason for the success was the good
and thorough design before we started construction. Every service could be tested in a
local EMI environment. We also continuously deployed the current versions of the metric
services to a pre-production environment. This enabled continuous testing by the metric
experts and provided important feedback to the developers. This construction of the
metric services was finished after roughly 1.5 months and we were able to release a first
version and start pre-production tests with metric customers.

Ticket Metrics Increment

The focus of the second increment was to implement a dashboard for monitoring
ticket-based metrics. It was also started by identifying the required metric services.
It was planned that the company performed this increment by themselves. Unfortunately,
due to resource constraints (missing architects) and project management decisions the
design activities were skipped. Hence, the developer had to perform the design "on
the fly". The local development of the metric services again worked smoothly due to

4Also see the example in section 5.3.3, which provides an example for a metric kernel description that
could feed such a risk matrix.

264



13.1. Project Risk Metric System for a Large IT Service Provider

the well designed reference architecture and development and operation tool support.
The deployment and test in the pre-production environment, however, did not work as
flawlessly as anticipated. The reasons were problems with the deployment configuration
and incompatible interfaces as well as configuration issues within the dashboard services.
The development also took longer than anticipated. A lot of these problems, we believe,
are due to the missing design phase, lack of design experience, and lacking design and
integration support as well as arguable decisions in the management of the project.
Hence, this also mirrors the outcome and experience with traditional construction of
measurement infrastructures that lack the support of our engineering process model. Due
to these problems we will focus on the risk increment in the following architecture section.

13.1.2. Risk Metrics Architecture
This section presents a brief summary of the design of the EMI for the risk metrics.
Figure 13.3 depicts an overview of the static architecture of the developed EMI for the
risk metrics. Contrasting our view on the technical reference architecture in section 5
the view is turned 90° starting with the data providers at the left hand side. From
there we show the measurement layer with three data adapters (two push-forward, one
invoke-push), the data transport layer with the typical three EMI topics (see section 5.2),
and the calculation and storage layer with the the risk metric kernel on the right. The
following paragraphs provide additional details to the data adaption and calculation.
Figure 13.4 provides a UML activity diagram with additional details to the adaption

of the risks and the interaction between the different elements: CVS server, commit
event REST gateway, and Excel-list adapter. As described above, the risk Excel sheets
are stored in a central CVS repository. We used a small script in a commit hook of the
version control system that calls the commit event gateway in the EMI on a change of a
file in order to notify the EMI of a file change. The Excel list data adapter implements
the invoke-push adapter pattern using this commit.cvs event. The event just contains
information about the file that was changed but not the file itself. Thus, the Excel-list
adapter accesses a viewvc server via http to get the specific revision of the Excel file. The
data adapter then feeds the Excel file to each strategy that is configured to accept the
specific sheet. The risk list adapter strategy analyses the risk list and sends the result, a
risk list message, via the base bus of the EMI. An alternative would be an exclusive data
adapter just for the risk list. We decided to implement a generic adapter with specific
strategies because we anticipated to adapt more Excel sheets in the near future using the
same mechanism.

For Jira we again created a small plugin that is executed whenever a risk ticket changes.
This plugin then calls the REST API of the risk gateway in the EMI which again creates
a risk message on the base bus. This is just a textbook instantiation of a push-forward
style data adapter that generates risk messages based on the input of its REST API.
Thus, we do not provide additional information to this (see section 5.4 for further details).

The risk messages on the base bus are received by the risk metric kernel. Figure 13.5
provides a UML activity diagram of all the steps performed in the risk kernel between
reception and storage. The kernel first checks consistency constrains of the incoming risks

265



13. Evaluation by Selected Field Studies

C
o

m
m

it Eve
nt

R
E

ST
 G

a
te

w
a

y

CV
S -

Server

Co
m

m
it

H
o

ok

http
get request 

Excel-List A
dap

ter

EM
I.even

ts
E

com
m

it.cvs
E

ve
n

t

EM
I.base

D

R
iskList

R
isk

M
e

tric Kernel

EM
I Server

Http access

C
ate

gorized
M

ea
sures

R
isks

K
ernel

D
escriptio

n

M
e

asu
re

m
ent

D
ata Transpo

rt
Calcu

lation
 &

 Sto
rage

JIRA
 Server

E
M

I R
isk

 
R

EST G
a

te
w

a
y

EM
I R

isk
on

 Ticket C
hange

http
push request 

R
isk

R
isk A

d
apter 

Strategy

D
ata P

ro
vid

e
r

P
e

rsiste
n

ce

Figure
13.3.:

Static
architecture

overview
ofthe

data
adapterand

m
etric

kernelofthe
EM

Iforrisk
m
etrics

atourcooperation
partner.

266



13.1. Project Risk Metric System for a Large IT Service Provider

Commit Risklist into cvs

Call cvs hook for every fi le

Specify reg.expression
for import file

Regulary expression
for import files

Send cvs.commit event Receive cvs.commit event

Call commit event
REST service

REST get service for
commit event sendig

Commit event REST gateway Excel-List Adapter

Check if file matches reg. Exp.

Read file via http

No match

match

Excel-Risk List

Import Risks in List
Send Risk

Message to Bus

U
se

r
C

V
S 

S
er

ve
r

Risk Adapter Strategy

Figure 13.4.: UML activity diagram for the data adaption for risk metrics.

against the stored risks due to possible data corruption in the Excel sheets (duplicated
ids, deleted risks, etc.). Some of these errors can be corrected by the kernel; some of them
result in a rejection of the in-coming message and error messages to the central logging
service as well as indications in the monitoring system. If the risk message passes the
check the risk is stored in the data base of the metric kernel. The metrics are calculated
on request via the REST APIs of the risk metric kernel.

The data model of the risk kernel as UML class diagram is provided in figure 13.6. This
data model does not reflect the structure of the messages but is tuned to provide fast and
easy calculation of the required metrics. We used this data model to feed our Gargoyle
code generator5 to generate the data abstraction layer and data abstraction objects, which
abstract the database. All these metrics are defined on a monthly timescale. Therefore,
all the important (dynamic) information about a risk is stored in the RiskHistory
table. The primary key of the data is a combination from the risk, the eom, and the
report month. Therefore, most of the metrics are simply calculated by counting the
number of specifically filtered history entries.

5See the thesis of Tobias Löwenthal, Steffen Conrad, Tristan Langer, Claude Mangen, and Michael
Krain for additional details on the Gargoyle code generator [Löw11, Con12, Man12, Kre12, Lan12].

267



13. Evaluation by Selected Field Studies

Receive Risk Message

Risk Metric Kernel

Create EOM

Create new Risk and
new Risk State

Create new state
for new Month

Update state
for existing Month

EOM already
stored?

no

Yes

Risk already
stored in EOM?

no yes
Risk already
has a state
for the given
Month?

no

yes

Receive Risk List Message

Extract Risk from List

Get all Risks for EOM in List
for given date of List

from Database

Add additional closed
Risks for thouse that are 
not in the received List

Work through the new
Liste including

the new closed Risks
Risk by Risk

List?

No
Yes

Figure 13.5.: UML activity diagram for the data storage and pre-calculation of the risk
metric kernel.

- name : String

Eom

- identifier : String

Risk
- reportMonth : Date
- propability : RiskProbability
- impact : RiskImpact
- status : RiskStatus

RiskHistory

risks history

Open
Closed
Occured

«Enumeration»
RiskStatus

Low
Medium
High

«Enumeration»
RiskProbability

Low
Medium
High

«Enumeration»
RiskImpact

Figure 13.6.: UML class diagram for the data model of the risk metric kernel.

13.1.3. Experience and Best Practices
We gained a lot of experience on using the reference architecture and our engineering
process model in this field study. Most importantly, we used our engineering process model
to find and evaluate the information needs of the metric customers using prototypes. We
also instantiated the design and construction phases from our process model for the risk

268



13.1. Project Risk Metric System for a Large IT Service Provider

metric increment. The resulting EMI was an instantiation of our reference architecture.
It contained different types of data adapters and a metric kernel that followed our design
guides. The core experiences from this field study are:

The reference architecture proved to be successful! The CMMI level 3 certified
organization required an audit of the reference architecture before we used it inside
the organization. The core goal of this is to check the compliance against existing
architecture rules and guidelines. The EMI reference architecture was reviewed by
several architects and then feed to the architecture management board. It was very
well received by all the reviewers as well as the board which lead to the reference
architecture passing the audit.

Push-Invoke pattern successfully adapts Excel sheets! Initially we were
struggling with the decision on how to adapt the Excel-based risk lists. We thought
about developing dedicated Excel plugins to synchronize the lists via the click of a
button. This would require additional clicks when working with risk lists though
and we believe that this would lead to some troubles later on[Joh01]. We looked
for an alternative and ended up using our invoke push adaption mechanism on the
risk lists stored in the CVS version control system as described. This does not
require additional attention from anyone working with the risk list and due to a
very open and flexible design of the Excel list adapter it can easily be extended to
adapt other types of Excel sheets.

Unstructured data requires additional attention! Adapting data from a database
or other systems like Jira requires very little consistency checks because it is very
hard to corrupt the data. Unstructured data like Excel sheets or CSV files, however,
require a lot of attention in the metric kernel (and maybe the data adapters) because
a lot can (and will!) go wrong. We did an extensive workshop session to discuss
possible data corruption scenarios. For some of them we also defined recovery
mechanisms (for example a missing row in an excel sheet which can be detected by
the metric kernel).

Developing, designing and operating an EMI requires training and time!
The EMI reference architecture provides a very good and structured overview
of the different parts of an actual EMI. Using the reference architecture and
developing and operating the specific metric services, however, requires time and
training. During this project we trained two metric experts and a few developers
and architects.

Involve metric experts from the beginning! We recommend that at least one
metric expert participates in the interviews or workshops because metric experts
become particularly useful if the discussion is to one-sided or stuck.

269



13. Evaluation by Selected Field Studies

Apply best practices to identify metrics! We typically use GQM to analyze the
information needs. However, we very rarely use the formalized goal definition
because we experienced that it leads to unnecessary and narrow discussions.
Furthermore, we try to align the metrics with the measurement information model
of ISO 15939. We recommend to keep your set of metrics as simple and small as
possible without sacrificing metrics for a dedicated information need.

Develop prototypes iteratively and incrementally! We recommend developing
the monitors incrementally one after the other. Each monitor itself should be
developed iteratively. After a new monitor is added the dashboard has to be
evaluated to ensure that all monitors together cover the information needs addressed
so far.

Always perform a design phase! All software engineering text books and guidelines
emphasize on the importance of the design activities. Additionally, agile process
models like scrum include design activities in the “backlog refinement”. However,
if the development team does not have a solid understanding of the reference
architecture it is important to include the design phase before handing it to
development and to evaluate the designs.

Provide tool support and frameworks! Using a dedicated development platform
according to a reference architecture can drastically reduce the development effort
and increase reference architecture compliance. It supports the development with
dedicated hot-spots and pre-fabricated solutions for typical problems and can
provide ready-to-use services as well.

270



13.2. Software Project Metrics System for SSE Lab

13.2. Software Project Metrics System for SSE Lab

Research Question (Q5.2):

Are the MeDIC process model and MeDIC reference architecture applicable
in a university/small industrial environment?

Focus: Process model and reference architecture
Environment: University (research projects)
Code size:
Project specific

< 10k LOC

Code size:
Overall incl. EMI Framework

< 20k LOC

Overall Effort: ≈ 23 PD (+ one bachelor thesis and a partial diploma thesis)

SSELab is a management infrastructure mainly supporting software development projects
at RWTH Aachen University [HKR12]. It integrates key services like version control
systems (git and SVN), wikis, and change request management systems (TRAC) into
one coherent platform. Currently SSELab hosts over 700 projects. Our analysis showed
a very heterogeneous project environment which is dominated by software development
projects. However, SSELab is also used for the administration of organizational projects
and scientific projects such as paper or thesis projects as well as teaching projects like
lab courses. Even though SSELab offers a lot of features and functionality it lacks
the support for measurements. Hence, the goal of this field study was to investigate
what metrics are required for the project managers of SSELab projects and to develop a
maintainable, robust, and flexible measurement infrastructure that enables the calculation
and measurement of the metrics in SSELab.

13.2.1. Process
The main goal was to engineer a metric-based monitoring dashboard template for project
managers. We conducted interviews as requirements gathering technique to get a broad
feedback on the information needs of different project managers. Following our process
model, we used a questionnaire to keep the project managers focused on the important
aspects. However, some of the most interesting information needs were not directly
related to our questions.

Afterwards, the results of the interviews were integrated into a large mind map following
the GQM principle. From this we derived key information needs and their corresponding
metric-based monitors to be included in the dashboard prototype depicted in figure 13.7.
This prototype was designed following the dashboard design principles proposed by Few
with the most important visualizations (Bullet Graphs) on the top left [Few06, Few12].
The dashboard features visualization of source code metrics and statistical metrics on
version control activities (e.g. number of commits per week) and issue tracking (e.g.

271



13. Evaluation by Selected Field Studies

Figure 13.7.: Prototype for the specific SSE Lab metric-based monitoring dashboard.

number of open and closed issues per week). This dashboard prototype was then sent
to the project managers via mail for evaluation. We received some feedback and then
conducted additional interviews with selected project managers.

Based on the feedback we changed the interaction and updated some of the metrics and
visualizations. The modified prototypes were again evaluated by the project managers
without any major findings. We then started the design phase. The design phase, again,
followed our process model very closely and we defined the various aspects required in
the Design document. Most importantly we defined the architecture of the EMI for the
SSE Lab dashboard. We performed these activities iteratively and evaluated the design
and architecture several times with experts and SSE Lab technicians.
During the design phase we noticed missing information (specification) for some

important details of the metric that calculates statistical information on the time that a
ticket is open. Most importantly for these metrics, it was not defined at what point this
information is evaluated and to which interval the information belongs. As an example,
lets assume ticket t1 is opened in week w1 and stays open for two weeks. Hence it is closed
in week w1 + 2. The opening duration of the ticket is two weeks and because there is no
other ticket this is also the average, maximum, and minimum opening duration of tickets
in this time frame. When a metric customer requests a chart (for example containing
boxplots) over this information for the weeks w1, w1 + 1, and w1 + 2 at which point does
the system show what data? Throughout our discussion we identified three different
scenarios6 for this. All of the scenarios have strengths and weaknesses related to the

6See the thesis from Arthur Otto for additional details on this subject and the design of the EMI [Ott13]

272



13.2. Software Project Metrics System for SSE Lab

specific environments and the specific questions of the metric customers. Therefore, we
decided to implement all three variants as separate metrics. Thus, the metric customer
can select the method that best fits her specific need (at that time).

Based on these results we iteratively and incrementally constructed the data adapters,
the integration layer (messages) and the metric kernels. We started with the integration
and data adaption on the version control systems and then moved to the issue tracker
(TRAC). We also implemented a special dashboard application which can be integrated
seamlessly into the SSE Lab frontends. After each increment we did a quick evaluation
of the metrics and dashboard in a test environment.

13.2.2. Architecture
The EMI for SSE Lab is depicted in figure 13.8. Contrasting the layout of the reference
architecture the data flow in this figure is turned 90° going from left to right. This
layout also reflect the pipes-and-filter like nature of the metric calculation inside an EMI
[HW03b].
The three central data providers: git version control system, TRAC issue tracking,

and sonar qube for source code metrics are located on the left. The data adapters for
these systems implement the push-forward adapter pattern (see section 5.4.1). We build
specific plugins for TRAC and sonar which hook into existing extension points in the
two systems to call the respective REST-API in the data adapter on data change in the
data provider. For git we used a bash script that is called in a commit hook to call the
REST-API of the commit gateway.

The SSELab EMI utilizes three busses from the EMDB. The event topic (EMI.events)
to transport event data, the base topic (EMI.base) to transport almost raw data (base
measures) from the data providers, and the measures topic (EMI.measures) to
transport measurements (derived measures).
The commit event gateway on the top left emits commit event messages to the event

topic of the EMI. These messages are transported to two metric kernels: Commit
Reference Kernel and Event Counter. The latter is a generic component that calculates
a number of count metrics (number of event Y per X) on events on the event topic.
The Commit Reference Kernel simply checks the commit message for references to

issues and does not store any data (just static checking, no semantic check!) and then
again utilizes the event counter with a different event to count the commit messages
without references. This shows the flexibility and reuse potential of the EMI microservices.

The TRAC ticket data rest gateway produces ticket messages on the base topic of
the EMI. These tickets are analyzed by the TRAC Kernel. This kernel stores the tickets
and implements the count metrics (e.g. open tickets per week) as well as the statistical
analysis that feeds the box plots with all three variants as discussed above. The metric
calculation results as well as the calculations from sonar are feed to the measures topic
of the EMI and stored in the measurement cache.

As mentioned before, we built a special metric-based monitoring dashboard to visualize
the metrics in SSELab. The dashboard accesses the metrics from the metric kernels using
their indicator access APIs and feeds the calculation results to the visualizations.

273



13. Evaluation by Selected Field Studies

Co
m

m
it Event

R
EST G

atew
ay

G
it Server

C
o

m
m

it
H

o
o

k

http
get request 

EM
I.even

ts
E

com
m

it.g
it 

Even
t

EM
I.b

ase

C
o

m
m

it R
ef K

ern
el

EM
IServer

D
ata A

dap
ter

D
ata Tran

spo
rt

C
alcu

lation
 &

 Sto
rage

Son
ar Server

M
e

asu
rem

ent
R

EST G
ate

w
ay

E
M

I S
o

n
a

r
P

lu
gin

http
push request 

EM
I.m

easu
res

Trac Ticket D
ata

R
EST G

atew
ay

Trac Server

EM
I Trac

P
lu

gin

http
push request 

D
Ticket

Ticket Kern
el

M
e

asu
rem

ent
C

ach
e

Event Co
un

ter

SSE Lab Dashboard

V
isualizatio

n

E

com
m

it.w
ith

out.ref
Even

t

D
ata P

ro
vid

er

D
M

easure

Figure
13.8.:

Static
architecture

overview
ofthe

EM
I
core

for
the

softw
are

project
m
etrics

in
sse

lab.

274



13.2. Software Project Metrics System for SSE Lab

The pre-production version of this EMI was operated on a JavaEE server in our test
environment which also hosted the local databases for the metric kernels. This server was
operated in a secure environment to ensure data privacy. Thanks to the EMI Monitoring
Service it was always very easy to check the current status of the EMI.

13.2.3. Experience

Figure 13.9.: Screenshot of the realization of the SSE Lab metric-based monitoring
dashboard

This field study provided a lot of experience on using our engineering approach on the
engineering of a metric system for an academic and software development environment
with small teams. The core expiries were:

Finding the right metrics is hard! Even though we did extensive prototyping and
conducted several interviews with the metric customers (SSELab project managers)
we found some problems with the metric specifications when we started designing
the metric kernels. Particularly the statistical ticket analysis in the Ticket Metric
Kernel was not well defined and we were struggling with what alternative to use.
In the end the flexibility of the reference architecture allowed us to implemented
all the different options in the metric kernel side-by-side and allow the user to
select the calculation mechanism. However, this shows the importance of all the
evaluation gates in our process model.

275



13. Evaluation by Selected Field Studies

Microservices in an EMI are very easy to reuse! We developed the Event
Counter and the Commit Event Gateway before we started the development on
the SSELab EMI. During the specification of the EMI for SSELab we realized
that we can reuse these services and it worked fluently without any major issue!
It was also very easy to add additional functionality (counting commits without
references) by simply adding another service.

An EMI is easy to maintain and to operate! During the iterative and incremental
development of the EMI for SSELab it was very easy to extend and maintain the
services. Thanks to the EMI monitoring service it was always very easy to check
the status of each service and to investigate performance of the services and the
EMI.

No major performance problems! We never experienced any problem with
performance whatsoever because we also never experienced a lot of messages on
any of the EMI-topics.

276



13.3. Flow-based Visual Ticket Analysis

13.3. Flow-based Visual Ticket Analysis

Research Question (Q5.1):

Are the MeDIC process model and MeDIC reference architecture suitable to
engineer analysis systems?

Focus: Reference architecture
Environment: Two large IT service providers
Code size:
Project specific

< 20k LOC (v1.3) and < 10k LOC (v2.0)

Code size:
Overall incl. EMI Framework

< 40k LOC (v1.3) and < 30k LOC (v2.0)

Overall Effort: ≈ 15 PD (+ one bachelor and two master/diploma theses)

During our work with two large IT service providers for insurance companies we noticed
that a lot of the information needs of the process managers can be answered with metrics
and visualizations based on ticket data. The process started as usual and we gathered
some information needs from the process managers. Just providing the different metrics,
however, is too much information and too complex; the analysis needs to be guided.
Hence, we had the idea to build an analysis tool that shows metric-based monitors for
the ticket flow through the edges of the process next to the graphical representation of
the process similar to the control center of a chemical plant. Sadly, the first prototypes
already showed that this becomes very complex very fast. We only experimented with
small ticket status graphs and even with these it was hard to get monitors next to the
edges. Hence, we realized we require another graphical representation that shows the
amount of flow through the edges more intuitively.
We then decided to use Senkey diagrams. A Senkey diagram is a representation of a

weighted acyclic directed graph. A node in the Senkey diagram represents a ticket state,
for example open or closed, the size of the node is proportional to the amount of tickets
in the state at that position. The size of the arrows between the nodes is proportional to
the number of tickets that flow from one state to the other. Because the Senkey diagram
visualizes the flow of the tickets we called the analysis tool RiVER7.

13.3.1. Key Concepts
Figure 13.10 shows the Senkey diagram for a data set from one of our cooperation
partners. Following the typical process in a ticket management system, the majority of
the tickets start in the New-state. Approximately 1

3 of all the tickets then do not have

7The first version of the RiVER analysis tool was build in the diploma thesis of Christian Charles
[Cha12]. After that Endri Gjino extended the tool with additional visualizations and a data mining
component [Gji13]. Finally, Sebastian Rabenhorst significantly improved the performance with the
second version of the tool [Rab15].

277



13. Evaluation by Selected Field Studies

Figure 13.10.: Ticket flow visualized as Senkey diagram in the RiVER analysis tool (taken
from [Cha12] p.75).

any intermediate states; their next state is the Clossed-state (top arrow). This already
indicates a problem because these tickets provide very little details to the actual work
performed and do not follow the defined process. Half of the remaining tickets directly
flow from the New-state to the Resolved-state. In the underlying process the tickets
should enter the Resolved-state when the development is finished and the bug, fix, or
feature needs to be evaluated by the customer. The customer may then close the ticket
if the evaluation is positive, which half of the tickets actually do. However, 1

4 flows back
into the In Process-state or the Feedback-state, which indicates that there was a problem
with the corresponding work item. Additionally, the remaining 1

4 of the tickets remain in
the Resolved-state and are not closed.
This short analysis of the diagram in figure 13.10 already shows the strengths of this

diagram: It provides a lot information on a very small space. However, it requires training
to read the diagram and it obviously only provides indicators for problems which require
a more thorough analysis to find the cause.

After our first evaluation with the metric customers (the process managers) we noticed
that the RiVER tool lacked an overview over core problems with the ticket process. The
Senkey diagrams were able to show some of them. However, the metric customers needed
to select the appropriate filters and data to see specific problems. Therefore, we added

278



13.3. Flow-based Visual Ticket Analysis

Figure 13.11.: Indication of the smell “loosing the battle of the inbox” using a radiogram
visualization for the overview page of the RiVER analysis tool (taken from
[Gji13] p.76).

a data mining component to the tool that is able to use classifier to show an overview
over core problems in the ticket process. We identified four major problems in ticket
management systems [Gji13]:

Zombies Zombie tickets are tickets which remain in an open state and are never closed
(like the resolved tickets from above).

Hot Potatoes Hot Potato tickets are tossed around between different components or
assignees because no one takes responsibility.

Close-Reopen Cycles Reopening tickets is not necessarily a bad thing but it should
not happen more than once.

Loosing the battle of the inbox The assignees are loosing the battle of their inbox
when more new tickets are opened than existing tickets are closed.

The classifiers assign a value between 0% and 100% for each smell to each ticket. These
values are then aggregated, for example based on the priorities, and visualized using
Radiograms, which provide a good overview over potential problems and their development.
Figure 13.11 shows one of these Radiograms, which indicates a “loosing the battle of the
inboxes”-problem for low priority tickets between December 2005 and July 2006. The
metric customers are then able to select a particular region of one of the radiograms and
use this region as a filter for the tickets visualized in the Senkey diagram.
The evaluation also showed that the metric customers like to dig a little bit deeper

into the actual ticket data when selecting an edge or node in the Senkey diagram.
Therefore, we added a work-item-history visualization for all the tickets in the current
selection. Figure 13.12 shows an example for this. Contrasting the Senkey diagram, the
work-item-history uses time as the x-axis, which allows to evaluate the time between
the status changes. Furthermore, we reduced the ticket states to just open, resolved,

279



13. Evaluation by Selected Field Studies

Figure 13.12.: Specific ticket status changes visualized as work-item-history in the detail
view of the RiVER analysis tool (taken from [Gji13] p.77).

and closed. This helps the process managers to focus on the important parts of the
underlaying ticket process and avoids visual clutter with too many colors.

13.3.2. Architecture - First Version
The engineering of the RiVER analysis tool (and the underlying metric system) followed
our metric systems engineering process model. Therefore, the architecture of the tool
is also based on our reference architecture. Throughout this field study, we built two
versions of the tool. The first version was built in two development increments. After
each we evaluated the tool with multiple process managers from multiple companies.
Yet, we noticed major performance issues and usability problems with the tool after
the second evaluation. Therefore, we rebuilt the tool in a second version. This section
discusses the first version.
Figure 13.13 depicts the EMI for the first version of the RiVER analysis tool. This

version used three different invoke-dump type data adapters (see section 5.4.1) to adapt
Redmine and Trac ticketing system as well as an universal CSV adapter that we mainly
used to adapt data from Rational Clear Quest. The adaption is triggered by the RiVER
Config component in the visualization layer. This component allows the configuration
of the data sources and the upload of the cvs files. From this a data adaption is
triggered via messages on the EMI.command topic. The Dump Commands contains
the configuration for the Redmine Adapter and the Trac Ticket Adapter. The
Adapt CSV Command contains the configuration as well as the actual CSV-file for the
adaption via the CSV Ticket Data Adapter. All of these data adapter send Ticket
Base Data and Ticket Status messages via the EMI.base topic.

280



13.3. Flow-based Visual Ticket Analysis

Re
d
m

in
e 

Se
rv

er

A
P
I

http
get request 

EM
I.b

as
e

Ri
VE

R 
Se

rv
er

D
at

a 
A
da

pt
er

D
at

a 
Tr

an
sp

or
t

Ca
lc
ul

at
io

n 
&

St
or

ag
e

EM
I.c

om
m

an
d

Tr
ac

 S
er

ve
r

A
P
I

http
get request 

D

Ti
ck

et
Ba

se
 D

at
a

Ti
ck

et
 D

at
a-

m
in

in
g 
Ke

rn
el

Ri
ff
le

 K
er

ne
l

RiVER Analysis

Vi
su

al
iz
at

io
n

tr
ac

A
d

ap
te

r

C
S

V
 T

ic
ke

tD
a

ta
A

d
ap

te
r

R
E

D
M

IN
E

A
d

ap
te

r

D
at

a 
Pr

ov
id

er

D

RiVER
Config

D

Ti
ck

et
St

at
us

D

D
um

p
Co

m
m

an
d

A
d

ap
t 

C
S

V
 C

o
m

m
an

d
+

 C
S

V
 D

at
a

Fi
gu

re
13

.1
3.
:
St
at
ic

ar
ch
ite

ct
ur
e
ov
er
vi
ew

of
th
e
fir
st

ve
rs
io
n
of

th
e
R
iV

ER
an

al
ys
is

to
ol
.

281



13. Evaluation by Selected Field Studies

The base data messages contain all (initial) values of a ticket whereas the status
messages only contain the changed values. This reduces the size of the messages because
not each status message needs to contain all fields. The two metric kernels realized for
this version are: first the Riffle Kernel which provides the indicators for the Senkey
diagrams and ticket details, second the Ticket Datamining Kernel which provides
the Radiograms and two prognostic indicators. The indicators from these two kernels
are then consumed by the RiVER analysis tool, which provides the fixed visualization
frontend of the tool.

Both metric kernels use a relational database as persistent storage for their data. Both
kernels store the raw ticket data and status history for each. Hence, the calculations (and
transformations) to provide the indicators for the Radiograms and the Senkey diagram
are performed upon request by the visualization frontend. The rational behind this design
decision was the implementation of a very flexible filter mechanism for the data of the
indicators used to focus the data in the diagrams.
The tool performed well in our initial evaluations with small and medium sized data

sets (up to 10.000 status changes) from different companies. However, we then started to
analyze larger data sets from two other cooperation partners that contained up to 1.5
million status changes. We started with smaller chunks of up to 100,000 status changes
which the tool was able to consume and analyze. Yet, the visualization was only able to
show a filtered subset of these large data sets due to long calculations and transformations
of the data in the metric kernels. Therefore, we started the development of a second
version of the tool to overcome these issues.

13.3.3. Architecture - Second Version
The engineering of the second version started with a thorough analysis on the performance
problems of the first version. We identified the key problem to be the database and
persistence technology used as well as the calculation and transformation algorithms
which provided the data for the Senkey diagrams. The algorithms provided a graph data
structure that was feed to the visualization in the visualization frontend. Therefore, we
decided to use a graph database which could easily store multiple and aggregated graphs
which could be directly feed to the visualization frontend. With this we then decided to
rework the whole analysis tool to also address other usability issues with the first version
(navigation, filtering, and additional data analysis tools).

Figure 13.14 shows the Senkey diagram component from the second version. This
picture is based on approximately 1.5 million ticket status changes from the Rational
Clear Quest system of one of our cooperation partners. We decided to remove the name
of the nodes from the diagram to allow a more compact representation. The names are
now provided via a legend on the right hand side of the diagram. The legend highlights
all particular nodes of the specific status on mouse hovering in order to allow a focused
analysis on a specific status. The data filters are now provided as fixed filters for a date
range, a specific status that should be included, and a filter on the ticket priority. These
filters are located directly above the diagram (not shown in the figure).

282



13.3. Flow-based Visual Ticket Analysis

Figure 13.14.: Senkey diagram from the second version of the RiVER analysis tool showing
approximately 1.5 million ticket status changes (taken from [Rab15] p.26).
We drastically simplified the visualization (e.g. removed the names of the
nodes) to make it more compact.

Right next to the main Senkey diagram we placed another Senkey diagram that shows
the in- and outgoing flows for the currently selected status node (also not shown in the
figure). This acts as a zoom into the main Senkey diagram and eases the analysis of a
specific status node. Furthermore, the visualization frontend also provides a list of all
the tickets in the currently selected node or flow to enable a more detailed analysis on
potential problems similar to the first version of the tool.
The architecture for the second version is provided in figure 13.15. Contrasting the

first version, this one only provides a data adapter for the adaption of CSV files because
the large dumps from the Rational Clear Quest systems from the two cooperation
partners were provided as CSV files. We again triggered the adaption via the RiVER
Config tool. However, contrasting the first version we did not include the CSV data
in the command because it was too large. Thus, the CSV Ticket Data Adapter
accessed the CSV file from the local file system on the river server. Similar to the
first version, this then sends Ticket Base Data and Ticket Status messages on
the EMI.base topic. Contrasting the first version, however, the Ticket Status
messages first entered the Ticket Normalization metric kernel which unifies the
different states from the different ticketing systems using the directory service. The kernel
then sends Normalized Ticket Status messages back to the base topic. These
messages are then received by the new Graph-based Riffle Kernel which sorts
the status data into the graphs and prepares the basis for the Senkey graphs. The RiVER
Analysis visualization frontend, as usual, then accesses the graphs via the indicator
access API of the kernel.

283



13. Evaluation by Selected Field Studies

Local File Storage

EM
I.base

RiVER Server

D
ata A

dapter
D
ata Transport

Calculation &
Storage

EM
I.com

m
and D

Ticket
Base D

ata

G
raph-based

Riffle Kernel

Ticket
N
orm

alization

RiVER Analysis

Visualization
D
ata Provider

RiVER
Config

D

Ticket
Status

D

D

N
orm

alized
TicketStatus

C
S

V
 Ticke

t
S

ta
tu

s D
u
m

p
(C

le
a
r Q

u
e
st)

C
S

V
 T

ic
k
e
t

D
a
ta

A
d

a
p

te
r

A
d

a
p

t C
S

V
C

o
m

m
a
n

d

Figure
13.15.:

Static
architecture

overview
ofthe

second
version

ofthe
R
iV

ER
analysis

tool.

284



13.3. Flow-based Visual Ticket Analysis

5K

10K

20K

1.5M

0 10 20 30 40

3.85

0.39

0.24

0.25

39.81

12.35

7.83

River - Version 1 River - Version 2

ERROR 

all measures in seconds

Figure 13.16.: Comparison of the Senkey diagram provision speed of the two versions of
the RiVER analysis tool based on the number of status changes in the
databases (smaller is better).

Figure 13.16 provides a comparison of the speed to provide the indicators for the
Senkey diagrams in the two versions of the RiVER analysis tool. The left hand side
shows the number of ticket status in the respective data storage of the Riffle kernels. The
speed to provide the indicators is measured in seconds and provided as bar charts next
to the status number; the first version is shown as dark gray, the second version is shown
as light gray.
The first version is able to handle 5,000 and 10,000 ticket states quiet well with

calculation speeds of 7.83 seconds and 12.35 seconds respectively. However, the calculation
for the indicator for the Senkey diagram based on 50.000 ticket states lasts 39.81 seconds
which already is quiet uncomfortable to work with. The calculation of the indicator
for a Senkey diagram based on 1.5 million states is not possible due to the exponential
development of the calculation time.
The second version, on the other hand, provides the indicators for the first three

state sets (5.000, 10.000, 20.000) almost instantly with 0.25, 0.24 and 0.39 seconds
calculation time. The second version also provides the indicators for the large data set of
approximately 1.5 million states very fast with 3.85 seconds calculation time. This is
faster then the calculation of the indicator for the 5.000 states in the first version.

The increase in calculation speed is manly caused by the optimization of the database
technology and the according optimization of the storage mechanism. However, this
mechanism pre-calculates some of the graph data on the reception of the status messages
in the Riffle kernel which could potentially slow down the reception significantly. Yet,

285



13. Evaluation by Selected Field Studies

our analysis shows that the reception and storage speed is almost identical in the two
versions with only a little overhead in the second version8.

13.3.4. Experience
Again, we gained a lot of experience on using the reference architecture for the two
versions of the RiVER analysis tool. Furthermore, we gained experience on using MeDIC
for the engineering of an analysis tool rather than a metric-based monitoring dashboard.
The core experiences were:

Technological flexibility is a key success factor! The performance improvements
between the first and the second version of the analysis tool are mainly due to the
change in the persistence and database technologies used in the Riffle metric kernel.
This again shows the important of flexible selection of technologies for the different
components of the architecture which is one of the key aspects of our reference
architecture.

8See the bachelor thesis from Sebastian Rabenhorst for additional details [Rab15].

286



13.3. Flow-based Visual Ticket Analysis

Engineering an analysis tool requires multiple iterations! Contrasting the
engineering of a metric-based monitoring dashboard, when engineering an analysis
tool, the metric customers need to use the actual tool on their data in order to
provide feedback. Yet, prototyping is still important. The first prototypes provided
a good idea of what not to do (monitors next to the process model). However, the
actual evaluation of the analysis tool requires that the metric customers are able to
use the real tool with their real data. We believe the reason for this are vague
information needs of the metric customer regarding the actual context9. Hence,
from our experience the engineering of an analysis tool requires multiple iterations,
which include try-and-error to a certain degree.

Addressing and improving performance and usability issues is important!
Challenge C3 already underlined the importance of usefulness and usability of the
metric system. We noticed that the usability improvements in the second version
were very much appreciated by the metric customers. Even though the second
version provided less functionality than the first version. Most importantly, the
performance improvements were a direct necessity for the analysis of big data sets.

Non-standard visualizations are very suitable for an analysis tool! We saw
that the Senkey diagrams, as soon as they are understood, are far superior over
conventional charts at indicating problems and for the communication of certain
issues. For example we visualized the changes (flow) for a bug reason using the
diagrams. The same information can very easily be visualized as a bar chart.
However, we noticed that people grasped the problems more easily from the Senkey
diagram because the flow visualized the data change and not a fixed snapshot. This
aligns well with popular best practices to always use the most fitting visualization
for the story that needs to be communicated [Few12].
However, non-standard visualization require additional training for the metric
customers. We provided a workshop to explain the Senkey Diagrams, Radiograms,
and Work-Item-History. After this the metric customers could use the tool and the
visualizations without problems.

9They have the feeling that some things in the process can be improved but they do not know for sure
what the problems are.

287





14
Tooling

Some of the most crucial activities in our process model need to be supported by
appropriate tools. Additionally, our field studies required that we built a lot of the
services and tools described in our reference architecture. This chapter will briefly present
and discuss the tools that we build and used in our field studies.
The chapter starts with the description of two process support tools. Section 14.1

presents a model driven tooling approach for metric documentation. Section 14.2 presents
a web-based tool which enables project managers to define and document the metrics
used in their project following the requirements of CMMI level 3. In our field studies we
used the two tools to document some of the results of the development process and to
gather input from the project managers. We then discuss the two different dashboard
applications, MeDIC Dashboard and SCREEN, in section 14.3. The last two sections
focus on development support for actual EMIs. Section 14.4 will provide an overview
over the different EMI support services that we built to implement the different services
required in our reference architecture. Finally, section 14.5 presents a brief overview over
the EMI-Framework which we used to build the different services for all EMI-related field
studies.

289



14. Tooling

14.1. MeDIC Metric Documentation Tools
One of our cooperation partners started an initiative to reach CMMI level 3. During
initial appraisals they noticed problems related to metric documentation and metric
utilization in the projects. Furthermore, they realized that defining company wide metrics
that should be used by the projects is a challenging task. Initially, the company wide
metrics have been documented in a single large document. This document was hard to
read, hard to navigate, and the single metric descriptions differed in granularity and
amount of information. Therefore, we started to develop a model-based approach for
metric documentation, which generates an easy to navigate html-based documentation.
The tool used a very rich and expressive meta model as the basis for the approach that was
inspired by similar approaches in the literature [MGRP09, OLP02, OMF+03, MJCH08].

Metric 
Model Editor

Metric 
Meta Model

Metric Model

Metric 
Documentation

Generator

Metric
Documentation

Figure 14.1.: Overview of the modeling workflow of the tool.

Figure 14.1 provides an overview over the modeling workflow implemented by the
modeling tool. The metric meta model is an extension of the terminology model for our
metric portfolio in section 2.1. The two core components are the metric model editor and
the metric documentation generator. The model editor allows the definition of metric
models which are instances of the meta model. These metric models are then feed to the
metric documentation generator which utilizes a number of model-to-text transformations
in order to generate the html-based metric documentation.

Figure 14.2 provides a screenshot of the model visualization in the documentation tool
showing an excerpt of an actual metric documentation model. The metrics are defined for
their entity of measurement class. In the screenshot this is the class “Großes SE-Projekt”
(German for “large software engineering project”). The metrics features three earned
value metrics for project management (EV, AC and CPI) [Anb04]. Most importantly, the
metric expert is able to document assumptions for the metrics (yellow warning symbols),
the model behind the metric, and indicator assessments for automatic warnings if the
values of a metric are outside a reasonable range. The tool was built using Eclipse EMF
technologies. The generators for the html-based metric documentation used Eclipse Xtent
and Xpand technologies for the model-to-model and model-to-text transformations.

290



14.1. MeDIC Metric Documentation Tools

Figure 14.2.: Screenshot of the metric documentation model in the documentation tool.

Figure 14.3 provides a screenshot of a catalog web page of the generated metric
documentation. Most importantly, metric customers can browse this documentation
based on their actual information needs (questions). These questions are organized
in different categories and associated with different roles of metric customers. Hence,
metric customers are able to quickly find suitable monitors to answer their needs. The
give screenshot, for example, provides a monitor which visualizes the execution and
definition of test cases in order to address the information need “How is the product
quality developing based on test cases?”.

291



14. Tooling

Figure 14.3.: Screenshot of a web page of the generated metric documentation.

One major problem with the tool in an industrial environment, however, was the
complexity of the underlying metric model. Based on the related work and our other
experiences we added numerous attributes and entities to the model which need to be
specified. Therefore, modeling all these different properties was a laborious task and very
tedious. Our interviews with project managers and other metric customers also indicated
that all these additional informations provided no additional benefits for them. Thus, all
our other tools drastically reduced the complexity of the metric model to the entities in
our metric portfolio (see section 2.1).

The metric customers very much liked the idea of the information need driven monitor
catalog which helped them to quickly find suitable metrics. We also linked the monitor
description pages from the initial dashboards. Therefore, the metric customers were able
to quickly look at additional information regarding a specific monitor if they are unsure
about the interpretation or require additional information about the visualized metrics.
The metric experts very much liked the ability to add assumptions to the metrics in order
to provide additional information about appropriate usage of the metrics.
Most importantly, however, the tool lacked the ability to support the interaction

between the metric customers and the metric experts because it provided only static
documentation pages. We addressed this issue with a dynamic web-based information
system which is described in the following section.

292



14.2. MeDIC Metric Management Support Tool

14.2. MeDIC Metric Management Support Tool
While working with our cooperation partners we notices the lack of suitable support for
project specific metric definition in a CMMI level 3 environment. CMMI level 3 requires
the project managers to define the metrics from the company wide standard they use.
Additionally, they need to fully specify project specific metrics. For each of these they
need to provide a number of properties in order to fulfill the requirements of CMMI level
3. Therefore, we extended the ideas of our meta model based metric documentation
presented in the previous section in order to provide suitable tooling for this.

Figure 14.4.: Screenshot of the overview page for a project in the metric management
support tool.

Figure 14.4 shows a screenshot of the overview page for a project in our metric
management support tool. This page shows all the monitors which the project is currently
using as well as their status. In this particular case, the project utilizes four different
monitors (“Projektgeschwindigkeit”, “Scopeindex”, “Number of use case steps”, and
“Testdurchführung”) each in their own category. The definition for all of these monitors
is not complete as indicated by the warning icon in the “Def” column.

293



14. Tooling

However, this is intended, because all monitors are still being defined and not used as
indicated by the document icon in the “status” column. Additionally, the source of the
monitors is shown in the “Type” column. The first metric “Projektgeschwindigkeit” is a
project specific metric (indicated by the “P” icon) whereas the other three are instances
of standard monitors (indicated by the “S” icon). Users with sufficient rights can use the
link on the bottom of the page (“Weitere Metriken verwenden”). This will bring up a tree
of company wide defined monitors with the status “Best-Practice” or “Mandatory” in
respective categories. The user can then select additional monitors for this project and use
them. Most of the company wide defined monitors, however, need to be further specified.
For example the reporting and measurement interval needs to be defined because this
varies drastically between different projects and project phases. Additionally, complete
new project specific monitors can be defined.

Figure 14.5.: Screenshot of the edit page for a monitor and its metrics in the metric
management support tool.

294



14.2. MeDIC Metric Management Support Tool

Figure 14.5 shows the editing page for a monitor and its metrics. Each monitor is
described via a set of 18 properties; the screenshot shows the first 7. The properties are
directly taken from the CMMI level 3 requirements for the process area “Measurement and
Analysis”. Most of these properties are text; except the description of the visualizations
which requires a picture from a mockup or an actual screenshot of the monitor.

The monitor in the screenshot is an instantiation for a company wide standard monitor.
Hence, changes and adoptions need to be indicated. The fourth property “Messziel”
(goal of the measurement) is highlighted with a different color because the value of this
property is changed with regards to the company wide standard. In order to justify the
change the user can add a justification description in an additional text field which can
be opened on demand. On the top right hand corner of the gray area for the properties
versioning information for this monitor is shown1.

The tool supports the metric expert with a lot of valuable inside into the metric
and monitor usage of the different projects. They are also easily able to extend the
company wide catalog of standard monitors and to enhance existing monitor definitions.
Furthermore, the tool supports the monitor seniority process in which monitors go through
different status. They start as an “idea” in a project with an initial description. When
the monitor is utilized and developed it is marked as “individual” or project specific
monitor. From there it can enter the company wide standard as optional “best-practice”.
When it turns out that the monitor is working exceptionally well it can also be marked
as “mandatory”. When the monitor is no longer needed it can be marked as “deprecated”
and projects who use the monitor get a warning for that particular monitor. If no project
uses the monitor anymore it can then be “archived” in order to keep a record of the
monitor. From there it can be revived into “best-practice” state again if it turns out that
the monitor is again useful.
The tool was developed as a java enterprise edition information system in close

coordination with one of our cooperation partners. The first version of the tool was
developed as part of the bachelor thesis of Frederic Evers [Eve10]. We then further
enhanced it in a scrum like process with customer involvement every three to four weeks.
The tool then entered a pilot phase at the customers in which it was further evaluated at
the company. However, it was not used in production after this because of missing budget,
personal, and responsibilities for the operation of the tool, even though our evaluation
should overwhelming satisfaction and need for the tool at the stakeholders.

1In this case, the version of the project specific instance of the monitor is version 1. The monitor is
based on the version number 7 from the company wide standard monitor.

295



14. Tooling

14.3. MeDIC Dashboard and SCREEN

Figure 14.6.: Screenshot of the dashboard frontend from MeDIC Dashboard.

The first two tools focused on metric and monitor documentation and general support
for the metric management process. With these and our growing industry cooperation
projects we did realize the need to support the measurement infrastructures as discussed
in this thesis. Our work on this started with the MeDIC Dashboard (see screenshot in
figure 14.6) and continued with our second dashboard application SCREEN. The goal
of those two applications was to provide flexible dashboard tooling which embodies the
ideas for modern dashboard design [Few06]. The dashboards are fixed to one screen
with automatic resizing and stretching of the dashboard and its monitors. Also the color
pallet of the widgets is drastically reduced in order to help the user to focus on important
warnings which are indicated using red.

The dashboard could be edited using drag&drop for the monitors. In MeDIC Dashboard
the monitor editing and placement, however, required some detailed editing in the backend
of the dashboard which was more focused towards metric experts. SCREEN used more
user friendly dialogs and advanced templating mechanisms. These were partially placed
in other services, following the micro-service ideas, to allow SCREEN to focus only on
the dashboard management and interaction. Most importantly, the monitor selection for
a particular dashboard spot in SCREEN used a tree of questions similar to our metric
documentation tooling from above. This is particular useful for unexperienced users who
do not necessarily know what monitor to use to answer specific questions in their context.
The two most important aspects of MeDIC dashboard were the always visible

information need sidebar and an advance collaboration mechanism for the interpretation

296



14.3. MeDIC Dashboard and SCREEN

Figure 14.7.: Screenshot of the dashboard frontend from SCREEN.

of monitors. The information need sidebar showed all the information needs which are
answered in the dashboard (see screenshot). Hence, the user could quickly glance at this
sidebar to get an idea about the questions which are answered in the particular dashboard.
Our field studies, however, showed that more advanced users do not really use and need
this sidebar. They rather use the space for the sidebar to place additional monitors or
enlarge existing once. Consequently, we kept the sidebar in SCREEN but it is hidden as
a default. The user can expand the information need sidebar in SCREEN by clicking a
blue info banner on the left hand side (see screenshot in figure 14.7). Furthermore, we
enhanced the interaction with the questions in the sidebar. When users hovered their
mouse over a question SCREEN highlighted the particular monitor(s) which answer the
specific question. Both tools allowed to enlarge a particular monitor in an overlay by
clicking its headline or the particular question.

As mentioned above, in MeDIC Dashboard we also included an advanced collaboration
mechanism to annotate monitors with highlights, arrows, and text and to share these
interpretations with other users. Our idea was to use this as a collaborative approach to
interpret metric data and to share project knowledge. However, we experienced little use
and excitement for this feature with our cooperation partners. Therefore, we dropped it
in SCREEN. Additionally, SCREEN offered advanced dashboard management features.
Dashboards can belong to groups in order to share them among metric customers for
project reporting and communication. These group dashboards can be used as the basis
for individual metric customer dashboards. Additionally, Metric Experts are able to
provide dashboard templates to ease the setup of dashboards by metric customers.

297



14. Tooling

14.3.1. Architecture - MeDIC Dashboard

Dashboard

Core

Backend

Data
Store

Data Access

Data Services

Dashboard and
Data Access

Manipulation

Figure 14.8.: High level architecture overview of MeDIC Dashboard.

Figure 14.8 provides an overview over the architecture of MeDIC Dashboard. The
architecture was rather monolithic and does not follow our reference architecture2. The
dashboard frontend itself is build as a single JSF application which includes all the
different renderer and visualizations. This applications connects to a EJB-based core,
which provides dashboard management functionality. The manipulation of the dashboards
(except the monitor placement) was realized using a dedicated JSF backend-application
which also connects to the core.

The core was flanked by a data store component. This provided the data store of the
measurement data that was displayed on the dashboard. The measurement data was feed
to the data store using two web-services. The first web-service accepted timeseries values
(a measurement + a timestamp). The second web-service accepted arbitrary key-value
pairs. All the data was then stored in the database connected to the MeDIC Dashboard
application. The monitors on the frontend accessed the data from the database via the
core.

The design is rather simplistic and resulted in a lot of maintenance and usability issues.
However, we were able to use this application in our first field studies and the tool was
used in industrial contexts3. These field studies provided valuable inside into the usage
of the dashboards and further focused our design goals. They also proved our critics
concerning the quality problems with the application, which were the reasons why we
rebuilt the dashboard application and started to design our reference architecture.

2We developed our reference architecture after we build MeDIC dashboard as a result of our experience
with it.

3For example see bachelor thesis from Christian Hans [Han12]

298



14.3. MeDIC Dashboard and SCREEN

14.3.2. Architecture - SCREEN

Render ServiceSCREEN

Visualization
Controller

EUrEKA
Consumer

Renderer

EUrEKA
Integration

Authorization 
and 

Authentication

Dashboard
Management

Graphical User Interface (GUI)

Indicator
Access

Monitor
Management

Render

Window Service

Figure 14.9.: Architecture overview of SCREEN and its connection to the Render-Service
and the Window-Service.

Figure 14.9 provides an overview over the architecture of SCREEN and its connections
to the Render-Service and the Window-Service. SCREEN follows a micro-service based
architecture style that also provides the basis for the EMI reference architecture. SCREEN
itself provides the dashboard management functions as described in our visualization
reference architecture in section 5.6.3. The measurement data for SCREEN is provided by
a EUrEKA Consumer which accesses metric kernels in an EMI as described in section 5.18.
It is flanked by the Render-Service on the right hand side which provides the renderer
for the different monitors on the dashboard. This enables a very flexible, iterative, and
incremental extension and enhancement of the rendering possibilities of SCREEN. Also
on the right hand side, SCREEN is flanked by the Window-Service which provides the
monitor management and monitor templates. SCREEN uses this service to store the
monitor configurations of each dashboard. Furthermore, the service provides the monitor
templates and links them to the questions which are featured in the sidebar and the
monitor instantiation dialog. Hence, the most benefits for metric customers are provided
by the window service and dashboard templates in SCREEN which are maintained by
the metric experts.
The SCREEN architecture was designed for extensibility and flexibility. Hence, we

were able to easily extend the functionality of SCREEN and add additional features.
For example we added a mechanism for the generation of multi-project dashboards to
SCREEN which automatically generates multi-project dashboards on-the-fly based on
the definition of the multi-projects and some additional monitor configuration. Thus, the
dashboards always reflect the current setup of the multi-projects without any additional

299



14. Tooling

configuration. This extension simply hooked into the Dashboard Management component
in order to automatically provide the dashboards. Additionally, we only needed to add
the links to these dashboards in the GUI component of SCREEN.

All this flexibility allowed us to specifically tailor SCREEN to the needs in the particular
field study and easily adapt to new requirements. However, the price to pay is the
increased structural complexity, orchestration, and configuration of all the different
services. Furthermore, SCREEN utilizes a EuREKA Consumer to access the data for
the dashboard. Therefore, SCREEN should be embedded in an EMI in order to use its
full potential.

300



14.4. EMI Services

14.4. EMI Services
Our technical reference architecture from part II provides reference architectures for two
different types of services in an EMI. The first focuses on services which implement the
different measurement functions in the EMI. These are: Data Adapters, Metric Kernels,
and Visualization Frontends. The second focuses on services which are only required
once per EMI. These services are for example the operation services (monitoring, logging,
and directory – see chapter 6), and the Render Service for SCREEN. We will focus the
following discussion on these four because they where used most frequently in all the
EMIs that be built. Furthermore, they provide interesting discussions on their GUI.
Other services, specifically the EUrEKA Services (Registry, Producer Gateway, Indicator
Wrapper, and Consumer), are very technical. Hence, their description would, in most
parts, echo the description of the services in the reference architecture.

14.4.1. EMS - EMI Monitoring Service

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Messages Send

Messages Received

Figure 14.10.: Screenshot of the EMI Monitoring Service graphical user interface.

Figure 14.10 provides a screenshot of the graphical user interface of the EMI Monitoring
Service. All the services in the EMI, on which the EMS operates, are shown in the list
on the left hand side. The list is sorted by the different types of services (Data Adapter,
Metric Kernels, and Others). The service provides a status indicator next to each service
in order to quickly monitor the status of each service. On click on a service name, the
GUI shows additional details to the particular service on the right hand side. Each
service provides a name and a description as well as a status. Furthermore, it lists all the
indicators which the particular service provides. In the screenshot the service provides
indicators for send and received messages as a combined line chart.

301



14. Tooling

14.4.2. ELS - EMI Logging Service

Figure 14.11.: Screenshot of the technical log view in the GUI of the EMI Logging Service
(taken from [Dör14] p. 71)

Figure 14.11 provides a screenshot of the view on technical log information in the GUI
of the EMI Logging Service. The top and left of the screen shows the navigation on
which the three main areas of the ELS can be accessed: technical log view, functional log
view, and logger configuration. The area in the center shows a tree-based filter for the
services and their logger on the left hand side and the actual log information on the right
hand side. The tree-based filter can be used to reduce the log information. On click on a
log information the log messages is shown underneath the header information. The clear
log button on the top right hand side can be used to delete log information which is no
longer needed.

Figure 14.12.: Screenshot of the logger configuration in the GUI of the EMI Logging
Service (adapted from [Dör14] p. 68).

Figure 14.12 shows the logger configuration in the GUI of the ELS. The left hand
side of the center area again shows a list of all services with a tree of all loggers inside
them. The right hand side of the center area shows the configuration of a particular

302



14.4. EMI Services

logger. Each logger can provide configuration parameters. Hence, this view can change
from logger to logger. However, most loggers provide the configuration of the log level as
shown in the selected tab. On a click on the save configuration button the configuration
is sent back to the service and is applied by the specific logger.

14.4.3. EDS - EMI Directory Service

Figure 14.13.: Screenshot of the EMI Directory Service graphical user interface.

Figure 14.13 provides a screenshot of the graphical user interface of the EMI Directory
Service. Most importantly, the service supports different directories, which can be selected
on the top left. The most common directory is the eom-directory, which holds terms and
synonyms for entities of measurements. Below the selection on the left hand side the
GUI shows all the terms in the given directory. A new term can be created using the new
term button. The right hand side shows all the synonyms for the selected term on the
left hand side. Additional synonyms can be added to the term using the add synonym
button. This will open a dialog which shows synonyms which are not yet assigned to a
term. These can be added to the current term. Additionally, the user can add synonyms
via a text field in the dialog in order to add synonyms which are not yet known in the
EMI.

14.4.4. ERS - EMI Render Service
The goal of the EMI Render Service is to manage and extend the renderer of a dashboard
or analysis tool without the need to redeploy the particular application in a production
environment. Therefore, the visualization capabilities of the visualization frontends can
easily be extended to satisfy emerging needs. This, again, provides a lot of flexibility to
the measurement infrastructure.
Figure 14.14 shows a screenshot of the configuration of a cartesian-chart-renderer

in the GUI of the EMI Render Service. Most importantly, the renderer can define its
required data structure on the top. This data structure acts as the requested data type
for discovering suitable metric kernels via the DiscoverAPI from a EUrEKA Registry
(see section 5.3.4 for further details). It can also be used in reverse in order to find
suitable visualizations (renderer) for a given data type from a metric kernel. Next, the
developer of the renderer can provide a list of data representation types. These types can
act as additional specific configuration for each data row from a metric kernel in a larger

303



14. Tooling

Figure 14.14.: Screenshot of the configuration of a specific renderer in the GUI of the
EMI Render Service (adapted from [Röl13] p. 61).

data set. We used a EUrEKA Indicator Wrapper (see section 5.3.7 for further details) to
associate the data type as additional payload to each metric kernel configuration and
feed it back to the renderer.

304



14.4. EMI Services

The render function in the next field is the actual javascript function which implements
the renderer. The function needs to fit to a given signature. Hence, only the function body
of the render function can be defined. Furthermore, the developer can add additional
helper functions to the renderer configuration which can be use to modularize a large
render function.
Typically, renderer use or extend existing rendering and visualization libraries.

Therefore, the ERS provides mechanisms to manage and use these libraries. The libraries
can be associated with the renderer via the required libraries mechanism shown in the
screenshot. The ERS then provides all required libraries for a given set of renderer as a
uniform resource which eases the usage of the renderer.

The developer can use the last form field to provide a number of styles for each renderer.
These styles define the visual appearance of the rendered graph. The styles can also be
accessed uniformly for a given set of renderer.

305



14. Tooling

14.5. EMI Framework
The EMI Framework is a library of enterprise java beans based components which
we used to build the EMIs and their services for our field studies. The framework
contains components for easy integration of the monitoring client agent, the logging client
agent, and the directory service client agent. It also provides the common basis for the
communication over the EMDB as well as additional utility classes.

base

framework.dto

jms

base

messages

«Stateless»
LocalServiceProperties

«Enumeration»
BusTypes

«Interface»
MessageReceiver

AbstractEMIParticipant

AbstractJMSSenderAbstractJMSReceiver

«Final»
JMSConfig

components

«Stateless»
EventSender

«Stateless»
MeasurementSender

«Local, Interface»
EMDBFacade

«Stateless»
EMDBFacadeBean

Enterprise Java BeanLocal Interface

javax.jms.MessageListener

TopicWrapper

Figure 14.15.: UML package diagram of parts of the common core of the EMI Framework.

Figure 14.15 provides a UML package diagram of the common core of the EMI
Framework. The base package contains the LocalServiceProperties-class, which
provides access to the emi.properties-file from each service, as well as the basis for
the communication over the EMDB. Most importantly, it contains the EMDBFacade
local interface, which provides a facade for the message sending on the EMDB.

The EMI Framework uses the java messaging service (JMS) as a basis for the EMDB.
Therefore, the EMDBFacade local interface is implemented by a stateless enterprise java
bean in the jms package. This bean uses a number of TopicWrapper instances in order
to send messages to the different topics defined in the BusType-Enumeration in the base
package. Furthermore, the jms package provides additional classes and beans in order to
ease the implementation of EMDB-Senders and EMDB-Receivers.

306



14.5. EMI Framework

The AbstractJMSReceiver-class provides a basis for all EMDB message receivers.
It connects the jms interface javax.jms.MessageListener with our abstraction
in the MessageReceiver interface. In order to ease the sending of messages on the
EMDB the AbstractJMSSender-class provides a common base for dedicated sender
components. The EMI Framework already ships with two sender components for sending
event messages and measurement messages to the EMDB via the EventSender and
MeasurementSender EJBs. These can easily be injected into the core implementation
of data adapter or metric kernel in order to send (standard) measurements and events to
the EMDB.

Measurement.Cache

DAOs

getMeasurementValues(eom : String,
reference : String) : List

getLatestMeasurementValue(eom : String,
reference : String) : double

saveMeasure(eom : String,
reference : String,
value : double,
body : String)

...

« Stateless »
MeasurementCacheController

receiveNewMeasurement(
message : BaseMeasurementMessage)

« Stateless »
MeasurementCacheReceiverBean

« Startup, Singleton »
MeasurementCacheMonitoringModuleBean

Measurement.Kernel.Base

Monitoring.Client.Agent.Base

« Local, Interface »
MonitoringModule

SimpleMonitoringModule

...

Enterprise Java BeanLocal Interface

EMI.measures

EMI.monitor
« Local, Interface » 

MeasurementReceiverLocal

« MessageDriven »
GenericMeasurementReceiver

Figure 14.16.: Example for the implementation of a measurement cache using EMI
Framework components.

Figure 14.16 provides an example for application of the framework. This example
provides a quick glance at the implementation of a measurement cache, which specifically
caches measurement messages. The two components from the EMI Framework on the right
hand side Measurement.Kernel.Base and Monitoring.Client.Agent.Base
further abstract the components and classes in the common core shown before in order
to further ease the implementation of standard EMI functionality.
The Measurement.Kernel.Base component implements a message receiver for

measurement messages on the EMDB, using the AbstractJMSReceiver class from
above (not shown in figure). It then delegates the processing of the message to the
MeasurementReceiverLocal interface which is not implemented in the component
itself. The Measurement.Cache component on the left hand side implements the
interface with the stateless enterprise java bean MeasurementCacheReceiverBean
and delegates the processing of the received measurement message to the saveMeasure
method of the MeasurementCacheController EJB.
Obviously, the new measurement cache should also be integrated into the EMI

307



14. Tooling

monitoring system. The Monitoring.Client.Agent.Base component again
provides a local interface, the MonitoringModule interface, in order to easily integrate
into the EMS. To further ease the implementation the component also supplies a
default implementation, the abstract class SimpleMonitoringModule, for the interface
which is suitable for most cases. The MeasurementCacheMonitoringModuleBean
simply connects these two. The SimpleMonitoringModule then utilizes the
LocalServiceProperties EJB to get the name, description, and type (not shown
in figure).

In order to further ease the usage of the framework we provided additional development
support by the means of maven archetypes and test-pattern. Archetypes are a mechanism
integrated into the maven build and dependency management system. They can be
used to reuse maven projects setups. We provided archetypes4 for the different types
of data adapters and metric kernels. Besides the general project layout our archetypes
also included all the dependencies to the required components of the EMI Framework
and provided stubs for the core classes. They also included stubs for the different tests
defined in the EMI test pattern5.

4See master thesis from Martin Lang [Lan14] for further details.
5See bachelor thesis from Marco Moscher [Mos14] for further details.

308



15
Lessons Learned and Discussion

The previous two chapters provided selected field studies as well as descriptions on some
of our EMI specific tooling which we used in the field studies. Each of the three field
studies already provided discussion sections. However, we like to condense the lessons
learned from all our field studies and provide some additional discussion on our concepts
in this section.
We did not perform specific case studies or experiments in order to evaluate certain

aspects of our approach. Our resources in the university are limited. Case studies and
experiments can only be performed with (master and bachelor) students. Our approach,
however, should not just provide benefits in situations in which students (with very few
industrial experience) are first faced with our approach. It should provide benefits in an
industrial environment with experienced developers, architects, and requirements experts.
Thus, we would have needed to conduct the case studies with them. These resources are
very valuable and their time is very costly. Furthermore, it is near impossible to control all
important variables in these experiments. Thus, the outcome would be very questionable
and most likely not applicable in other environments and scenarios. Therefore, this
evaluation section is based on our experience of the application of our approach in the
field. Even though our experiences are very specific we belief they provide a good basis
for the evaluation because they are based on real world environments.
We separate this chapter into five sections. Each of these sections will address one

important aspect for our lessons learned and further discuss our approach. The first
section 15.1 will discuss the most requested aspects from our cooperation partners:
security. After that we will reflect on the core aspect for the design of our approach:
Flexibility in section 15.2. Another goal of our engineering approach was to build “usable
metric systems”. Hence, the following two sections section 15.3 and section 15.4 will
discuss two important aspects of usability: Ease-of-use and effectiveness (of the process).
Last, section 15.5 will discuss the efficiency of our engineering approach because monetary
and time aspects should obviously be considered when engineering a metric system.

15.1. Security
Security was the most requested feature from most of our cooperation partners. They
particularly wanted to secure the communication on the EMDB in order to avoid that
unauthorized persons read confidential data. However, we did intentionally not include
a mechanism into our reference architecture to secure the communication. It would, of

309



15. Lessons Learned and Discussion

course, be possible to secure the internal communication inside the EMI. But securing the
communication requires a lot of additional effort. For example encrypting and decrypting
messages on message send and receive could be used to further secure the communication
in an EMI. However, this would raise the complexity of the whole EMI and would
have huge impacts on some of the important operation services like the message cache.
Additionally, this mechanism can be hacked for example by man-in-the-middle attacks.
Hence, the mechanism needs to be even more sophisticated like two way encryption which
increases complexity and reduces performance even further. Furthermore, there are easier
ways to (partially) secure an EMI, which is sufficient for most of the attack scenarios.

We utilized a number of simple means to partially secure the EMIs by using external
mechanisms and some restrictions on the architecture. We emphasize that this approach
is only able to partially secure the EMI because the internal communication, inside the
EMDB for example, is left untouched. Therefore, an intruder that breaks into the system
is able to read all the communication in the EMI by connecting to the message buses.
However, we will argue that an intruder who is able to break into the system like that
would also be able to easily break other security mechanisms. Therefore, we decided to
make intrusion as hard as possible using standard mechanisms, which should hold back
the vast majority of possible intruders.
Our security concept for sensitive data, for example in our SSE Lab field study (see

section 13.2), was three folded. First, we made sure that read and write operations on
all endpoints in the EMI are exclusive. Therefore, intruders can not simply use a data
write endpoint for read and vice versa. Secondly, we located the core of the EMI in a
secured network environment with a firewall between the two networks. We only grated
dedicated services (data adapters and dashboard frontends) access to the EMDB and
the indicator access APIs of the metric kernels. For the SSE Lab field study we also
wrapped the access to the dashboard frontend to secure it even further. Thirdly, we
used the security mechanisms from our Java Enterprise Edition application servers to
secure the services which face the users. Breaking even one of these security barriers is
very hard! Thus, someone who is able to break these would also be able to break the
possible security mechanisms inside an EMI. For example by injecting false signatures
in a signing mechanisms for messages on the EMDB via a man-in-the-middle-attack or
replacement of the signing mechanism. Therefore we did not integrate dedicated security
support into the EMI reference architecture. This security concept was sufficient for all
our cooperation partners and all our field studies.

One of the lessons learned, however, is to address security very early in the process and
have dedicated scenarios and designs available. For example by using some or all of the
concepts presented above. Some of these will have impact on the server infrastructure
or network and firewall settings. The operation department will need to know this
information in advance in order to setup the correct production environment. Addressing
security aspects early in the requirements phase of a software development project,
however, is a common best practice and should always be applied!

310



15.2. Flexibility

15.2. Flexibility
In our field studies technical flexibility and decoupling of all the different services in our
reference architecture allowed us to choose the optimal technology for metric kernels
and data adapters on a very fine scale. We could choose the implementation technology
for each metric kernel independently and most importantly we were able to freely select
the most suitable database technology for each kernel. For our field studies this was
particularly important because we needed to deal with very heterogeneous data. Hence,
we selected among a brought variety of data bases; ranging from relational databases for
some metric kernels over graph databases to document stores and noSQL databases for
others. The third field study on the RiVER tool in section 13.3 shows the tremendous
impact this can have. Our process model supported flexibility by dedicated designs for
each metric kernel, data adapter, and visualization frontend. In our field studies the
iterative and incremental nature of the process was very suitable to address the given
challenges.

We also reflected flexibility in our tools. Most of the tools were developed in isolation
from the rest and then seamlessly integrated to address the requirements of a given metric
system and field study. The EMI Framework allowed us to easily implement new metric
kernels and data adapters and supported the development of our visualization frontends
(like MeDIC Dashboard, SCREEN, and the RiVER frontend). The ready-to-use EMI
services (EMS, EDS, ERS, ELS, and EMC) together with the EUrEKA services provided
a solid base for each EMI that we built, which again shows the flexibility of the solutions
and our engineering approach.

15.3. Ease-of-Use
The discussion on ease-of-use is two folded because we need to discuss it separately for
the process model and the reference architecture. Therefore, we further separate this
section into dedicated subsections.

15.3.1. Ease-of-Use of the Reference Architecture
The ease-of-use of the reference architecture can be evaluated by our effort that we need
to spend on training of new developers. Most of the students who worked on tools and
field studies needed to learn the reference architecture in order to apply the concepts. We
supplied our papers, specific documentation, and our projects as training material. Most
of the developers grasped the concepts of the reference architecture within a few days
and were able to use its concepts within a week. Furthermore, they all mentioned the
soundness of the concepts. They reported that, especially the concepts of data adapters,
metric kernels, and the EMDB were very easy to understand. The concepts on top
of the metric kernels and interconnection between the metric kernels and visualization
frontends using the EUrEKA concepts were harder to grasp. We believe one of the
reasons for this is the lower structural complexity of the bottom concepts surrounding

311



15. Lessons Learned and Discussion

the EMDB; they are all simply connected via the EMDB. The services in the top part of
the reference architecture do not utilize a single publish-subscribe infrastructure but are
based on a classical service oriented architecture. Hence, the structural complexity is
higher and especially the implicit coupling mechanism is harder to apply in real world
scenarios. However, we already discussed the pros and cons of this type of infrastructure
in section 5.1.3 and still believe it was the right choice. Also, once the concepts were
understood, the students and other developers could easily use all the concepts without
any problems, which again shows the ease-of-use of our reference architecture.

15.3.2. Ease-of-Use of the Process Model
We developed the process model together with the field studies and refined it with each
one. Therefore, each field study benefited from the previous one. Especially the artifacts
and templates were very useful for the later projects. The design documents and all the
surrounding design activities proved to be very easy to use. Furthermore, everybody
who needed to adhere to the process and use the artifacts immediately saw their benefits.
We had some discussions, especially with developers, over the perceived document heavy
and design focused process. But they also quickly saw the benefits in the solid design
foundations once they started implementing dedicated solutions. Thus, we believe this
indicates the very easy use of the activities and artifacts of our process model.

15.4. Effectiveness
In this section we like to discuss the effectiveness of our engineering approach. Again
we like to separate the discussion for our process model and our reference architecture
because they address different aspects which a discussion on effectiveness needs to reflect.

15.4.1. Effectiveness of the Reference Architecture
All the tools and services that we built in our field studies show the effectiveness of our
reference architecture. All of them are able to provide the measurement infrastructures
needed for the particular metric system. Furthermore, the field studies also show the
flexibility and reusability of the services. We were easily able to reuse metric kernels and
data adapters. We could also easily tailor some of them to include additional functionality
or extend them with additional services. Maintenance of the services also proved to be
very easy due to their micro service nature. They could be tested and bugs reproduced in
isolation, which eased bug fixing tremendously. Additionally, the reference architecture
proved to be understandable as developers and architects could easily use it.
The reference architecture also needed to pass a formal appraisal by the architecture

management board at one of our cooperation partners. We provided our training material
and additional insides into the reference architecture before the actual hearing which
feed some initial discussions. During the hearing we presented the core principles and
concepts to the board. After that we answered some additional questions on technical
details. The reference architecture passed the appraisal with flying colors and the board

312



15.5. Efficiency

emphasized the sound concepts and design of the reference architecture. This again
underlines the effectiveness and soundness of the reference architecture.

15.4.2. Effectiveness of the Process Model
Our field studies, especially those with large cooperation partners, showed the effectiveness
of our process model. The heavy focus on requirements and design in the early phases
of the process model helped to understand and pin-point the needs from the metric
customers. Especially the prototyping activities and related evaluation with metric
customers proved to be very useful. They typically resulted in detailed discussions and
showed additional needs of the metric customers which would otherwise be lost. We also
experienced complete changes of proposed monitors which did not suite the needs of the
metric customers. Fortunately, we noticed these in the prototyping phase and not after
implementation or staging.

Again, the templates and artifacts proved to be a very good means for communication
and we were quickly able to design suitable solutions for the needs of the metric customers.
Especially the design document proved to effectively communicate the design among
the different stakeholders and provided solid foundations for the implementation by the
developers.

15.5. Efficiency
Efficiency discussions, especially for an engineering approach, are always hard because no
two projects are identical. Additionally, we can only discuss the efficiency for complete
projects and not separately for the process model and the reference architecture. Luckily,
one of our cooperation partners did develop an excel-based project management dashboard
prior to our EMI field study. Therefore, we can roughly compare the effort of the two
projects (also see [VLJ13]). The numbers are taken from time sheds and discussions
with our external colleagues. Unfortunately not all activities are documented as desired.
Hence, we needed to approximate some the numbers.
The development and adaption of the excel-based dashboard required approximately

78 person days in three months. From this effort 30 person days were required by an
external consultant, 40 person days were required for two metric experts and 8 person
days were required for a developer. The maintenance of this solutions over the next
3/4 of a year required approximately 97.5 person days. 52.5 person days from this were
again required by two metric experts. The remaining 45 person days were required for a
dedicated developer who was working part-time on the project.
The effort for our first EMI increment in the same environment was approximately

64 person days which were also spend in three months. Two metric experts required
approximately 19 person days. A dedicated architect required 15 person days and the
remaining 30 person days were spent on developers. Over the next 6 months we only
spent 8 person days on maintenance tasks for the services from this increment. Before
the initial development we approximately spent additional 20 person days on initial

313



15. Lessons Learned and Discussion

requirements gathering, interviews, and pre-project tasks.
The effort spent on the EMI solution, especially the maintenance effort, is much

lower then the effort for the initial excel-based solution, which was developed without a
dedicated development process. Additionally, most of the effort was spent on lower cost
resources (developers instead of metric experts and external consultants).

However, the EMI was not used in a production environment with all projects accessing
and working with the system and the scope was much smaller. Hence, as expected in
a field study, the results are rather hard to compare. However, especially the initial
effort spent on the requirements and the design seams to pay of in the long run. Also,
the initial effort for the EMI solution following our development process was lower
than expected and resources were far better utilized, which shows the efficiency of our
engineering approach.

This concludes the evaluation, tooling support, and lessons learned of our metric systems
engineering approach MeDIC. The next part will briefly discuss future work and conclude
this thesis.

314



Part V.

Conclusion and Future Work

315





16
Conclusion and Future Work

We finish this thesis with three important further fields of studies in the following
future work section. The first aspect discusses data quality as an important aspect for
measurement messages in the reference architecture. The second one discusses missing
explicit tool support for the process model. The third one then discusses further evaluation
required for the approach. The conclusion in the final section then summarizes and
concludes the thesis.

16.1. Future Work
The most important future work is to include data quality explicitly in the measurement
messages and different services in the reference architecture. During the discussion
about success factors for metric programs in section 1.2.1 we already discussed the
importance of data quality. In the current design of our reference architecture data
quality for measurement messages can only be handled implicitly. However, in line
with the related work our field studies also showed the importance of communicating
data quality. It provides a lot of transparency to the measurement customer who
analyses specific measurements in a visualization. It needs to be taken into consideration
when interpreting visualizations on a dashboard. Hence, the measurement part of the
reference architecture should provide a mechanism to communicate the data quality of
the measurement explicitly. Furthermore, the metric kernels need to provide the data
quality for their metrics in order to show it in the dashboards and analysis tools. Data
quality problems due to errors in some component in the EMI also need to be reported
to the monitoring and logging system.
Another future work is a more refined tool support for the different steps in the

development process model. We used rich text editors to write the artifacts and drawing
tools for our diagrams. However, this can be supported by specialized tools. These
tools could also support the different steps in the process model with notifications and
artifact handling as well as discussions and decision support. Furthermore, explicit
models of the development artifacts could be used to support model-driven engineering
of some of the components. For example the measurement senders and receivers as well
as measurement messages are optimal candidates for such an approach. They are easy to
model, the interfaces are always identical and heterogeneous technology environments
require different technical implementations for the same measurement message.

317



16. Conclusion and Future Work

Finally, our approach requires further evaluation. We performed a lot of field studies in
order to evaluate our metric systems engineering approach; we just selected three of them
for this thesis. However, the approach still requires further evaluation. Most importantly
long term field studies are missing. Like in many other engineering approaches that
originate from university research. Without these long term field studies our discussion
on the success of the approach can only be based on indicators from our (short term)
field studies. Furthermore, dedicated experiments or case studies could be performed to
evaluate specific parts of our approach. However, as discussed in section 13 these need
to be performed in an industrial context in order to provide reasonable results for our
approach1. This will make them very expensive and hard to perform.

16.2. Conclusion
This thesis presented our metric systems engineering approach MeDIC. The goal of MeDIC
was to support the engineering of flexible, information need driven, and usable metric
systems. We identified these aspects as the main challenges, which metric systems need to
face in industrial environments. Furthermore, our goal was to fill the “development-gap”
between the metric portfolio and its associated metric management activities on the one
hand and the measurement infrastructure on the other hand.
We first thoroughly investigated the challenges and requirements for metric systems

engineering based on our experience and related work in the literature. From this we
further investigated and discussed two related approaches. The requirements from this
first section guided the definition and development on our two main contributions: our
metric systems engineering process model and our reference architecture for enterprise
measurement infrastructures (EMIs).

We then formalized certain aspects which are only briefly described in the first chapter.
Most importantly we defined and decomposed metric systems into their two parts: metric
portfolio and measurement infrastructure. We then provided a more formal introduction
to our ideas for metric reuse and metric variability. Last but not least we defined a
formalism for metric system dynamics, which provides further requirements for the
reference architecture and certain activities in the metric systems engineering process
model. The formalism provides a valuable framework for the formal discussion of metrics
on the conceptual level in the metric portfolio before the actual (technical) solutions
are designed. Using this framework we can discuss termination of the calculation of the
metrics before integrating the different parts in the measurement infrastructure.
The reference architecture part of this thesis first refined the requirements from the

challenges and top level requirements. From these we motivated our polylithic micro
service-based design foundations for the reference architecture. The first part of the
actual reference architecture provided a reference architecture for the logical view on
measurement infrastructures. This already reflected the four important layers and
provided the concept of metric applications in order to further structure large sets of

1The typical experiments with students will not provide meaningful information about the application
of the approach in an industrial setting with experienced developers.

318



16.2. Conclusion

components in these layers. These metric applications also guided the development
increments proposed in our process model later in the thesis. Additionally, we further
classified the different systems in a physical system view which provided the foundations
for the technical reference architecture.
We then presented the technical core of our reference architecture. We proposed

to design the central metric related services in three domain layers: Measurement,
Calculation and Storage, and Visualization and integrate the services by two dedicated
integration layers: Data Transport and Integration as well as Calculation Access. This
layered architecture of the measurement system core is then flanked by the operation
layer which contains services that aid and enable typical operation tasks of an EMI.
The two integration layers provide the basis for the flexibility and reuse potential of the
measurement infrastructure and its services. The technical reference architecture also
supports the design of the core services in the domain layers with dedicated pattern
and ready to use designs. Our field studies in the evaluation section our very positive
experience with using the reference architecture in industrial environments and on real
world projects. We belief the reference architecture is very useful and easy to use. It has
a high understandability and helps to effectively and efficiently design and build metric
systems in industrial contexts.
Additionally, we extended our formalism from the initial part in order to reflect the

concepts proposed in the reference architecture. This provided the basis for some design
restrictions on the services in the reference architecture; like the “stability” requirement
for metric kernels. Furthermore, the formalism contributes the basis for proving the
correctness of the message-based implementation of a given metric as well as the basis for
investigating the termination of a given EMI. We also provided a very detailed example
for the application of the formalism in order to better understand the concepts. The
example also showed the practical relevance and applicability of the formalism.
The next part then discussed our metric systems engineering process model. The

process model further bridges the development gap between the metric portfolio and
the measurement infrastructure. We also included activities to support the operation of
the measurement infrastructure which is often neglected. We designed the core of the
process model to follow the typical software developments tasks in a PDCA-oriented,
circular, and incremental manner. Thus, our process model is based on four dedicated
phases: Conception, Design, Construction, and Operation. We performed a very thorough
analysis of the roles involved in the metric development process and listed their needs
and responsibilities as well as their involvement in the different phases of our process
model. From there we started to define the activities in each of the phases.
We provided very fine grained activities in the conception phase with a lot of details

because we believe it is important to get the requirements right before starting the
construction of the software solution. We further included dedicated prototyping activities
in this phase in order to reiterate on the solution with the metric customer before starting
with the actual software design and implementation. This is particularly important in
large organizations because the larger the organization the harder it is to change the
metric system. We also included the increment planning into the conception phase. Each

319



16. Conclusion and Future Work

development increment can then be addressed separately in the following phases.
The definition of the design phase is more open then the definition of the construction

phase. We only included the obvious activities and left the actual activities open for
the instantiation of the process model because the metric experts and architects need to
be able to flexibly adapt the process model to their situation. The main artifact that
is defined in this phase is the design document which provides the basis for the further
construction activities (implementation and staging including test). The evaluations
in chapter IV show the strengths and benefits of the design document as well as the
interconnection between process model and reference architecture in this phase.

The construction and operation phase are even more specific to the actual development
environment. Therefore we only included best practices for the staging environments
for measurement infrastructures in the description of the construction phase. For the
operation phase we provided best practices for handling typical errors and exceptions.
For each of these we provided ways to identify the error or failure as well as (multiple)
resolutions for recovering or avoiding it. This part further interconnects the process model
and the reference architecture because some of the solutions and detection mechanisms
require dedicated services in the infrastructure which are proposed in our reference
architecture. Again, the field studies and tools show the strengths and applicability of
our concepts in industrial and research environments.
The different facets of our engineering approach, especially the reference architecture,

were well received by the research community. Our publications served as a valuable
base for discussions together with the community on different aspects which helped
to enhance and further streamline our approach. Furthermore, we were able to spark
various research projects based on our work.

We conclude that our metric systems engineering approach MeDIC is able to
successfully bridge the development gap between the metric portfolios and measurement
infrastructures with a dedicated metric systems engineering process model and reference
architecture for enterprise measurement infrastructures in industrial environments.
MeDIC leads to more flexible and usable metric systems, which are easily able to adapt
to inevitable changes in their environment. Thus, MeDIC provides the basis for the long
term success of metric programs.

320



Part VI.

Appendix

321





A
Symbol Lists

In section 2.3 we presented a formalism for metric system dynamics. This formalism uses
a broad variety of symbols for the different parts of the formalism.

A.1. Symbols used in the Foundation Formalism
The following list provides a description for most of the symbols used in our formalism
for metric system dynamics in section 2.3. This can be used as a guide when reading the
section.

n — Abbreviation for the set {1, . . . , n}.

T — The type for a measurement data set.

t — A measurement data type component.

d — A measurement data set. We also refer to this simply as the measurement
data.

D — A set of measurement data.

kv — A key-value pair. These make up the measurement data sets d =
{kv1, . . . , kvn}.

type(d) — The type function for measurement data. Returns the type of the
measurement data d.

type′(kv) — The type function for a key-value pair.

T — The type for a measurement.

M — A measurement. A measurement is represented by a tuple: (d,Mid, eom)

type(M) — Type function for a measurement. Returns the type of the measurement
as a tuple: (T (d),Mid).

Mid — A measurement identification. Our formalism assumes a name-space
concept on these using “.” as a delimiter.

eom — An identifier for an entity of measurement.

323



A. Symbol Lists

≺ — The compatibility relation between a measurement (data) and a
measurement (data) type.

guard(M) — The guard function of a measurement consumer.

guardGen(T ) — The generator function for type specific guard functions. This returns
a guard function that accepts measurements that are compatible to the
given measurement type.

T — A set of measurement types. This is typically used to represent the set of
types used to generate the guard function for a measurement consumer
that accepts all measurements that satisfy one of the types in the type
set. This is, hence, sometimes called the accepted type set.

M — A set of measurement.

|= — The satisfies relation between a measurement set and a measurement
type set.

MS — A metric system.

M — A metric. This is typically used for derived metrics.

C — A measurement consumer.

P — A measurement producer.

EP (EOM) — The calculation function for the output entity of measurement of a
measurement producer P .

produceP (M) — The production function for the measurement producer P .

produceM(M) — The production function of the derived metric M.
−→∼ — The feed relation between two metrics.

C — A calculation chain of derived metrics.

324



A.2. Symbols used in the Reference Architecture Formalism

A.2. Symbols used in the Reference Architecture Formalism
The following list provides descriptions for most of the symbols used in the formalism for
our MeDIC reference Architecture in section 7.2.

f1||f2 — ||-Operator to formalize that a function f1 is executed before a function
f2.

m — A measurement message.

M — A set of measurement messages.

ts — A timestamp in a measurement message.

L — The latency of a measurement message.

Lavg — The average latency of a data adapter

Raw — Set of raw data in a data provider.

S — A arbitrary service in an EMI.

A — A data adapter in an EMI.

MA — The set of measurement messages produced by the data adapter A.

K — A metric kernel in an EMI.

TK — The accepted types set of the metric kernel K.

store — The internal data store of a metric kernel.

persist — The storage function of a metric kernel.

I — An indicator access API on a metric kernel.

viewI — A view transformation function for an indicator access API I.

produceK — The production function of the metric kernel K.

̂produceP — The robust production function of the measurement producer P .

̂produceM — The robust production function of the metric kernel M.

M0 — The initial data processing step of an EMI after adapting the data from
the data provider.

M∗ — The outer data processing hull of an EMI.

325





B
Process Guides, Checklists, and Document

Descriptions for the Process Model

This chapter contains accumulated guidelines, checklists, and document descriptions from
our experience of using the process model in our field studies.

B.1. Conception Phase
This section provides additional information and best practices for the conception phase
of our process model discussed in section 10.

B.1.1. Information Need Gathering – Guidelines for the Execution
The following two subsections contain some accumulated guidelines for the execution of
the two information need gathering techniques discussed in section 10.1.

Best Practices

It is often a good idea to start with a question like: “What lack of metrics/monitoring
annoyes you the most in your everyday work?” Because this gives a good insight into the
metric customers daily routine and usually provides a good basis of important information
needs. It also helps to get the discussion going because everybody can easily answer this
question. It may also provide a good insight into the processes this metric customer is
working in if this questions reveals different areas of annoyances.

Also include a question like: “What metrics/monitoring tools works great in your
everyday work?” The metric experts need to make sure to also focus on keeping these in
tact while introducing new monitoring tools and metrics.
During an interview or an initial workshop session the metric experts can point the

metric customers to the four important areas of project management: costs, scope, quality,
and time. This is of course important when interviewing (project) managers but these
areas are also important for other roles - especially cross-cutting roles like configuration
mangers, test managers, or quality assurance specialists.
Document information needs as questions. This maybe obvious, but sometimes it is

quiet hard in a specific situation to pin point the exact question that should be answered.
Still it is important to do this to avoids vague information need design. However, we
realized, that it is not important to specify goals exactly like specified in GQM (5

327



B. Process Guides, Checklists, and Document Descriptions for the Process Model

characteristics). Event though all the characteristics are important, specifying goals in
this exact manner in a workshop or interview puts too much focus on details.

Workshops

3 At least two metric experts need to participate in each workshop. They act as
moderators and try to keep track of all the goals and questions that the participants
mention.

3 The group of metric customers should be homogeneous (same role in the company,
same expertise, or same problems) this is to avoid to many “basic” discussions in
the workshop.

3 The workshops should be organized as group sessions which not exceed 1.5 hours!

3 The focus of the workshop and each session needs to be stated before starting each
workshop session.

3 The first workshop session should include a small introduction into GQM, the goal
of the workshop, and the approach.

3 In general the approach should be to first try to get a broad set of goals and then
focus on the important ones and get deep.

3 First start with letting the metric customers identifying their rough goals, then
refine them towards simple questions which can be answered by metrics (GQM
approach)

3 The metric experts (moderators) need to keep the metric customers focused
(depending on the focus of the workshop at hand!).

3 The metric experts should also summarize the results every 15 too 20 minutes to
give the metric customers a break and point them to important areas that are not
covered yet.

3 On the start of every workshop in a series the metric experts should present distilled
results from the previous workshop to get the group going.

Interviews

3 The metric experts should prepare a questionnaire for each interview to organize
the interview. The questionnaire should contain:
– Questions on the role of the metric customer. This is used for the later

integration of the interview results.
– Specific questions on the information need of the customer.

328



B.1. Conception Phase

3 The interview should (like the workshop) start with a small introduction of GQM
and the goals of the interview.

3 If the goal of the interview is to evaluate the current metric-system the metric
experts should include a question asking about the metric/monitors that are never
used. This will provide the metric experts with a set of metrics/monitors that can
either be removed or require more advertisement.

B.1.2. Plan Increment – Guidelines for Coherent Increments
These guidelines are derived from the components that need to be altered during the
design and construction phases. Roughly speaking an increment should either change
only small parts in many different components on different layers or change large parts
which should be limited to only a few components.

3 Information needs for the increment are related to one group of metric customers

3 Information needs for the increment belong to the same category (e.g. risk
management, error analysis, or process compliance)

3 Prototypes for the information needs for the increment use the same visualization

3 Information needs can be answered by a similar type of metrics (e.g. counting
metric)

3 The information to provide answers for the information needs is derived from the
same data provider(s).

329



B. Process Guides, Checklists, and Document Descriptions for the Process Model

B.2. Design Phase
This section provides additional information, guidelines, checklists, and document
descriptions for the design phase of our metric systems engineering process model.

B.2.1. Services Reuse Decision Aid – Checklist
This checklist helps to determine if the requirements in the increment plan can be realized
by reusing existing metric services. It also helps to identify potential changes if existing
metric services are reused. This of course requires a precise and up-to-date documentation
of the existing metric services.

Dashboard Application

3 Check for new or changed interactions among the different monitors on the dashboard

3 Check for new or changed management functions for the monitors like move, resize,
reuse, and most importantly (because difficult and maybe not addressed) access
rights

3 Check for new or changed requirements on dashboard management (reuse, sharing,
and again: access rights)

3 Check if the dashboard application can be used in the environment (web vs. desktop
vs. mobile app) of this increment

Visualization

3 Check for new or changed diagram types

3 Check for additional or changed data in existing diagrams

3 Check for new or changed interactions (select, move over, zoom)

3 Is the existing visualization infrastructure technically capable of delivering the
required functionality (ex. environment change)

Metric Kernel

3 Check for new or changed calculation functions (this also includes new aggregation
levels or aggregation functions)

3 Check for new or changed message types (this requires a design of the integration)

3 Check for new or changed data access APIs (i.e. new or changed data for
visualizations)

330



B.2. Design Phase

Data Adapter

All types of data adapters
3 Check for new or changed data required for a metric kernel
3 Check for new or changed data in the data provider
3 Check for new or changed configuration requirements to the data provider

Push-Forward
3 Check for new or changed plug-in API at the data provider
3 Check for new or changed data required at the data gateway
3 Check if new adapted data provider can reuse an existing data gateway. If so

does the existing gateway needs to be changed (additional or fewer data fields
from the new data provider)?

Pull-Forward
3 Check for new or changed timing required for the data
3 Check for new or changed API access of the data provider

Invoke-Push and Forced-Dump
3 Check for new or changed API access of the data provider
3 Check for new or updated event data / data in the dump command

Operation Service

3 Check for new or changed logging and monitoring requirements

3 Check for new or changed common services required in the concrete EMI

331



B. Process Guides, Checklists, and Document Descriptions for the Process Model

B.2.2. Design Guides for EMI Services
The following subsections contain design guides for the key EMI services: Data Adapters,
Metric Kernels, and Visualizations.

Design Guide for Data Adapters

A data adapters connect the EMI to the data providers. Inevitably, the data providers
and adapted data will change over time! Therefore the design of the data adapter should
adhere to the following best practices:

3 The adapter should be flexible to a certain degree to address these changes

3 Transformation of data should follow the strategy pattern with dedicated strategy
for each transformation

3 Data adapters should avoid overly complex transformations and calculations. This
is the job of metric kernels.

Design Guides for Metric Kernels

The metric kernels are the heart of a metric application. Of course the metric kernel
needs to be able to provide the metrics required to visualize the monitors that answer
the questions of the metric customers included in this iteration. The design of the metric
kernel needs to stick to the reference architecture, however, the specific parts provided
in the reference architecture need to be specified in more detail; including a database
schema for the data storage. This turned out to be quiet useful because metric experts
typically can understand database schema.
Due to the design of the reference architecture (specifically the loose coupling via the

EMDB) additional non functional requirements for the design of the metric kernel arise
(see section 7.2.4 for justification):

3 The calculation and data storage need to be robust against receiving a single
message multiple times (the result must not change!)

3 The calculation and data storage must also allow updates (corrections) of old data.

3 The design should generally try to avoid to store aggregated values because it
drastically increases the complexity of the controller of the metric kernel (decide
when and how to update what data).

Design Guide for Visualizations

The visualizations provide the monitors for the metric customers based on the indicators
provided by the metric kernels. The design of the visualization frontends should adhere
to the following best practices:

332



B.2. Design Phase

3 Like data adapters visualizations should avoid complex transformations and
calculations. This is the job of the metric kernel.

3 Design visualizations to be reusable for different types of (compatible) data

3 Build visualizations in a way that they provide additional information on-mouse-over
(if possible)

3 How to handle inconsistent data and how to act on the exceptions listed above.

333



B. Process Guides, Checklists, and Document Descriptions for the Process Model

B.2.3. Design Guide for Test Selection and Test Stage Description
Like all the other parts of a metric system tests need to be well defined. Test
selection criterion helps to systematically define test cases. From our experience
equivalence-class-based test selection provides good results. An EMI is a collection of
loosely coupled services. Therefore, the architect can choose among different integration
test strategies. We recommend to test from inner to outer components and integrate
from the small components to the big once. This is also strongly coupled with the staging
strategy (see section 12.1).

The test section should contain tests for all exceptions defined in the design document
(see section B.3.2). Furthermore, for each service it should contain test for the different
test (and staging) levels. The following subsections provide additional guides on the
design of the tests for the specific levels1. Each subsection starts with the description of
the test goal for the specific level and then lists the best practices for the test design.

Design Guide for Unit and Module Tests

Goal: Test a single unit (component) in a service

• Units are typically single classes or small modules

• Use standard xUnit Frameworks for this + Mocking Frameworks to isolate the unit
from the rest

Design Guide for Component Integration Tests

Goal: Test the integration between components inside a single service

• Integration strategy: Single component at a time then integrate: from inside to
outside

• Solid testing requires well cut components which are designed for test

• Requires the components to run in their native environment.

• May require additional effort to mock other services

• Component integration tests show configuration errors very early

1We also recommend the bachelor thesis from Marco Moscher who defined test pattern and test templates
for these different levels [Mos14].

334



B.2. Design Phase

Design Guide for Service Integration Tests

Goal: Test the integration between services of an EMI

• Integration strategy: Single service at a time then integrate: first adapter, then
metric kernels, then visualization

• Requires the metric services to run in their native environment

• May require additional effort to mock other services

• Requires additional effort for test drivers and mocks of data providers

• Check data adapters via message cache

• Drive metric kernel tests via message gateway

Design Guide for Application Integration Tests

Goal: Test the integration between the EMI and the data provider

• Integration strategy: A application and scenario a time

• May require mocks and additional test drivers for isolated test of invoke-push
adapter pattern

• Check via message cache

Design Guide for EMI System Tests

Goal: Test the complete EMI with all data providers in an environment similar to
production

• End-user test of the complete metric system

• Test is driven from the front-ends and the data provider

• Result check only accesses the front-ends

335



B. Process Guides, Checklists, and Document Descriptions for the Process Model

B.3. The Design Document
This is the core artifact that is created in the design services and integration and
design test activity. The fine design of the services provides a very good basis for the
service documentation. Even though we describe it as one document it can be cut into
several documents. The one document can get large but several documents can become
inconsistent more easily. After evaluation the document is handed over to the developers
in the construction phase. The following subsections describe the content and goal of the
sections in the design document. Each of the following subsections mirrors a subsection
of the Design Document

B.3.1. Rough Design of the Complete Metric Application
This rough design should contain all services identified as well as a rough overview of
the integration. Typically this section starts with an overview diagram of the metric
application. We used slightly augmented UML deployment diagram for this (add EAI
notations for buses and messages and add metric application layers) It should also contain
all data providers and rough description of plugins required in the data provider for
push-forward data adapters. The integration overview should contain the EMDB buses
required for this metric application as well as messages (names) that are transmitted
over the buses in this metric application. The service overview should contain a rough
description (goal) of each service. The section should also contain a description (maybe
including a diagram) of the standard (dynamic) behavior of the metric application. The
section should also provide a rough overview over all the external systems to this:

3 What data providers are integrated.

3 How are they integrated.

3 What operation services are integrated (Monitoring, Logging, Directory Service,
. . . )

Furthermore, the section should contain the design decisions! (and alternatives!)
Therefore it should at least provide information about:

3 Discuss why certain adapter pattern are used.

3 Discuss why certain metric kernel designs are used.

3 Discuss possible extensions to the system at later stages.

3 Discuss the rationals behind the decisions for specific services (the “service cut”)

B.3.2. Exception Behavior
It is very likely that in a real world scenario somethings may not always work as desired.
Hence, it is important to discuss exceptions and errors in the design phase to increase

336



B.3. The Design Document

the robustness of each service and the whole metric application. This information is very
closely related with quality problems and service status in the fine design section. Make
sure to avoid duplications and prefer references!

This section in the design document should list all the exceptions including:

3 Preconditions and environment for the exception.

3 Steps that lead to the exception.

3 Implications for the services and the whole metric application.

3 Scenario identification for the users. That is: How does the metric customer, metric
expert, or operator become aware of the exception.

3 Definition of the logging behavior

3 Definition of status changes for services (eg. out-of-sync status)

3 Recovery steps (automatic recovery?)

B.3.3. Fine Design of the Integration
This section defines all the details for the integration of all the services required in this
metric application. It should at least contain:

3 Topics required for the integration (if more than the standard EMDB topics are
required)

3 Message hierarchy

3 Message details including the fields and field properties (type, mandatory, and
relations to other fields)

B.3.4. Fine Design of each Services
The design document should contain fine designs for all services to avoid coping with
design problems and needing to make design decisions in the construction phase.

All services

3 The static and dynamic architecture of the service.

3 The design of the services should instantiate the reference architecture.

337



B. Process Guides, Checklists, and Document Descriptions for the Process Model

Service specific details

Additionally to the static and dynamic architecture the following data should be
provided for the specific services

Visualization
3 Data type / data structure required for the visualization.
3 Sketch of visualization algorithm (eg. in pseudo code).
3 Which visualization library to use.

Metric Kernel
3 Iteratively design the static and dynamic architecture together.
3 Design of the EUrEKA data API of the metric kernel (what data does the

kernel need to provide to the visualization?, what parts of the calculation are
variable).

3 Design of message receivers: what messages does the kernel receive?
3 Design of the controller and database: What data need to be stored, how to

provide the metric values required, what transformations are required in the
controller?

Data Adapter
3 Type of the data adapter
3 If push-forward: API design of the data adapter gateway.
3 If invoke-push: Definition and details of the message that triggers the adapter.
3 If pull-forward or invoke-push: Definition of the data access API in the data

provider.

Data Quality

Metric Kernels and Data Adapters need to specify how data quality problems are
handled and escalated.

3 What data quality can be processed?

3 Which quality problems can be identified by the metric kernel or data adapter?

3 How (and what) quality problems are escalated over the EMDB)?

Data quality problems and exception behavior are very closely related. Typically every
exception needs some investigation on potential data quality issues.

338



B.3. The Design Document

Monitoring and Service State

The service state is a rough means to communicate an overview of the current operation
state to the metric operators. The service states need to be specified for each service,
which typically includes a state automaton defining state transitions.

Furthermore, the performance indicators and their boundaries need to be defined for
each service.

Logging

Define what important informations need to be visible in the log at which log level.
The section in the document should differentiate between technical and functional

logging!

B.3.5. Tests
3 Define all (actual) tests for this increment based on the design above.

3 Group the tests by service and test stage.

3 Use the test pattern and test templates developed in the bachelor thesis of Marco
Moscher [Mos14] as well as the guides provided in section B.2.3.

3 It is important to specify real tests by instantiating the test pattern rather then
just to reference them.

339





C
Student Theses in the Context of this Thesis

The work on our metric system engineering approach is influenced by the hard work from
numerous students who supported our goal with comprehensive research during their
final thesis. A lot of additional details, evaluations, and discussions can be found in their
theses. Thus, we heavily recommend reading their theses for further studies on these
subjects.

C.1. Diploma Theses

Paul Tokarev (2012) Entwicklung einer Komponente zum Export von
Analyseergebnissen aus MeDIC Dashboard

Driss El Majdoubi (2012) Entwicklung einer Erklärungskomponente für MeDIC
Dashboard

Christian Charles (2012) Entwurf eines generischen Prozessleitstandes für Change
Request Systeme

Martin Mädler (2012) Variabilität von Metriken und Dashboard-Items im Umfeld
von MeDIC

Andrea Hutter (2012) Fachliche Integration von Metrik-Dashboards und
Dashboard-Vorlagen in bestehende Software-Projekte

Andreas Steffens (2012) Entwurf eines Architekturmodells zur Integration
heterogener Systeme in MeDIC

Steffen Conrad (2012) Ein Ansatz zum modellgetriebenen Test von EJB-basierten
Informationssystemen

Tobias Löwenthal (2011) Generierung von web-basierten Prototypen für
Geschäftsanwendungen

C.2. Master Theses

Elena Emelyanova (2014) Tool-Supported Project Prediction

341



C. Student Theses in the Context of this Thesis

Martin Lang (2014) Entwicklung einer Konstruktionsunterstützung für
Messinfrastrukturen auf Basis des EMI-Frameworks

Thanh Vi Bach (2013) Entwurf prognostischer Softwareprozessmetriken auf Basis
iterativen Clusterings

Endri Gjino (2013) Visually Assisted Mining for Smells in Change Request Systems

Thomas Röllig (2013) Konfigurationsunterstützung und Infrastrukturansatz für
flexible Metrik-basierte Monitoring-Dashboards

Frederic Evers (2012) Konzeptionelle Erweiterung von Projektdashboards für
unerfahrene Anwender

Meiliana (2011) Enhancing the MeDIC Meta-Models by EJB Conformant Variability
Concepts

Ohm Samkoses (2011) Evaluating Presentation Layer Development Frameworks for
EJB Applications in J2EE Architecture

Elena Soldatova (2011) Investigating the Impact of Refactoring and Reuse in Function
Points

Stefan Cholakov (2011) Conception of Collaborative Project Cockpits with Integrated
Interpretation Aids

Ricardo Tavizon (2011) Systematic Tool Supported Tailoring of Metrics

C.3. Bachelor Theses

Sebastian Rabenhorst (2014) Implementierung und Evaluierung von
Performanceoptimierungen am Ticketanalyse Werkzeug RiVER

Bastian Greber (2014) Development of Multi-Project Metric Dashboards for
Heterogeneous Tool Environments

Gordon Lawrenz (2014) Development of a Data Loss Prevention and Simulation
Environment for RESTful Services

Marco Moscher (2014) Testpattern für EMI Metric Services am Beispiel von
Wiki-Metriken

Jan Döring (2014) Entwicklung einer generischen Logging Infrastruktur für
EMI-basierte Messsysteme

Arthur Otto (2013) Integration einer Metrik-Infrastruktur in die Projektverwaltung
SSE-Lab

342



C.3. Bachelor Theses

Ahmet Yüksektepe (2013) Entwicklung einer Service-Monitoring-Infrastrukur für
MeDIC

Nick Russler (2013) Entwicklung einer Infrastruktur zur Fachlichen Integration von
heterogenen Datenquellen in MeDIC

Matthias Gora (2012) Entwicklung eines Dashboard Prototyping-Werkzeugs

Elena Emelyanova (2012) Regelbasierte Initialisierung von Projektdashboards

Stefan Guha (2012) Entwicklung einer rollenspezifischen Benutzerschnittstelle zur
Konfiguration von Metrik-Dashboards

Christian Hans (2012) Einsatz von Metrik-Dashboards im industriellen Umfeld

Michael Schlimnat (2012) Konzeption einer Internetplattform zur Dokumentation
von Metriken

Michael Krein (2012) Generierung von Systemtests für Web-basierte
Informationssysteme

Tristan Langer (2012) Erweiterung des Gargoyle Codegenerators um Semantische
Beziehungen

Claude Mangen (2012) Generation of JSF-based Graphical User Interfaces for
Web-based Information Systems

Christoph Greven (2011) Realisierung eines Werkzeugs zum Management von
messpezifischen Projektaktivitäten

Frederic Evers (2010) Realisierung eines web-gestützten service-basierten
Ideenmanagement-Systems für Metriken

343





Bibliography

[ABB00] F Arbab, Fs De Boer, and Mm Bonsangue. A logical interface description
language for components. In 4th International Conference on Coordination
Languages and Models, COORDINATION 2000 Limassol, Cyprus, pages
249–266, Limassol, Cyprus, 2000. Springer Berlin Heidelberg.

[ABT00] Klaus-Dieter Althoff, Frank Bomarius, and Carsten Tautz. Knowledge
Management for Building Learning Software Organizations. Information
Systems Frontiers, 2(3-4):349–367, 2000.

[AKCK05] H Al-Kilidar, K Cox, and B Kitchenham. The use and usefulness of the
ISO/IEC 9126 quality standard. In Empirical Software Engineering, 2005.
2005 International Symposium on, pages 7 pp.+, 2005.

[Anb04] F.T. Anbari. Earned value project management method and extensions.
IEEE Engineering Management Review, 32(3):97–97, 2004.

[AS07] Scott W Ambler and Pramod J Sadalage. Refactoring Databases,
Evolutionary Database Design. The Addison-Wesley Signature Series.
Addison-Wesley, 4 edition, aug 2007.

[AW00] Rakesh Agrawal and Edward L. Wimmers. A Framework for Expressing
and Combining Preferences. In SIGMOD ’00 Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, pages 297–306,
2000.

[Bah09] A. Terry Bahill. What Is Systems Engineering?, 2009.

[Bas92] Victor R Basili. Software modeling and measurement: the
Goal/Question/Metric paradigm, 1992.

[BBHM95] J. Bacon, J. Bates, R. Hayton, and K. Moody. Using events to build
distributed applications. In Second International Workshop on Services in
Distributed and Networked Environments, pages 148–155. IEEE Comput.
Soc. Press, 1995.

[BDKZ93] Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig.
Software complexity and maintenance costs. Communications of the ACM,
36(11):81–94, nov 1993.

[BEM96] L Briand, K El Emam, and S Morasca. On the application of measurement
theory in software engineering. Empirical Software Engineering, 1:61–88,
1996.

[Ber11] PA Bernstein. Generic schema matching, ten years later. Techniques,
4(11):695–701, 2011.

345



Bibliography

[Bey07] Mark A Beyer. Architecture Issues for Real-Time Data Warehousing.
Reproduction, (July), 2007.

[BGR05] Rainer Berbner, Tobias Grollius, and Nicolas Repp. An approach for
the Management of Service-oriented Architecture (SoA) based Application
Systems. In Enterprise Modelling and Information Systems Architectures
(EMISA), pages 208–221, 2005.

[BR88] V.R. Basili and H.D. Rombach. The TAME project: towards
improvement-oriented software environments. IEEE Transactions on
Software Engineering, 14(6):758–773, jun 1988.

[BR91] V.R. Basili and H.D. Rombach. Support for comprehensive reuse. Software
Engineering Journal, 6(5):303–316, jul 1991.

[BR00] Keith H. Bennett and Václav T. Rajlich. Software maintenance and
evolution. In Proceedings of the conference on The future of Software
engineering - ICSE ’00, pages 73–87, New York, New York, USA, may 2000.
ACM Press.

[BR01] Philip a. Bernstein and Erhard Rahm. A survey of approaches to automatic
schema matching. The VLDB Journal, 10(4):334–350, dec 2001.

[Bra14] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format,
RFC 7159. Technical report, Internet Engineering Task Force (IETF), 2014.

[CCP07] Cristina Cachero, Coral Calero, and Geert Poels. Metamodeling the Quality
of the Web Development Process Intermediate Artifacts. InWeb Engineering,
pages 74–89, Berlin, Heidelberg, 2007. Springer-Verlag.

[CD97] Surajit Chaudhuri and U Dayal. An overview of data warehousing and
OLAP technology. ACM Sigmod record, (March 1997), 1997.

[CET07] Manuel Clavel, Marina Egea, and Viviane Torres. Model Metrication
in MOVA: A Metamodel-Based Approach using OCL. Technical report,
Information Security Group, ETH Zürich, 2007.

[Cha04] D A Chappell. Enterprise Service Bus: Theory in Practice. Theory in
practice. O’Reilly Media, 2004.

[Cha12] Christian Charles. Entwurf eines generischen Prozessleitstandes für Change
Request Systeme, 2012.

[CHM+07] M. Ciolkowski, J. Heidrich, J. Munch, F. Simon, and M. Radicke.
Evaluating Software Project Control Centers in Industrial Environments.
In First International Symposium on Empirical Software Engineering and
Measurement (ESEM 2007), pages 314–323. Ieee, 2007.

346



Bibliography

[CHM08] Marcus Ciolkowski, Jens Heidrich, and Jürgen Münch. Practical Guidelines
for Introducing Software Cockpits in Industry. In 4th Software Measurement
European Forum (SMEF 2008), may 2008.

[CHNP90] Sholom G Cohen, James A Hess, William E Novak, and A Spencer Peterson.
Feasibility Study Feature-Oriented Domain Analysis ( FODA ) Kyo C .
Kang. Distribution, (November), 1990.

[Cho11] Stefan Cholakov. Conception of Collaborative Project Cockpits with
Integrated Interpretation Aids. Master, RWTH Aachen University, 2011.

[CHSR08] M. Ciolkowski, J. Heidrich, F. Simon, and M. Radicke. Empirical results
from using custom-made software project control centers in industrial
environments. In Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement, pages
243–252. ACM, 2008.

[CK94] S R Chidamber and C F Kemerer. A Metrics Suite for Object Oriented
Design. IEEE Trans. Softw. Eng., 20(6):476–493, 1994.

[CMRW07] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva
Weerawarana. Web Services Description Language (WSDL) Version 2.0
Part 1: Core language. W3C recommendation, 26(May):1–85, 2007.

[Con12] Steffen Conrad. Ein Ansatz zum modellgetriebenen Testen von
EJB-basierten Informationssystemen. PhD thesis, 2012.

[CSP13] Anton Chuvakin, Kevin Schmidt, and Chris Phillips. Logging and Log
Management: The Authoritative Guide to Understanding the Concepts
Surrounding Logging and Log Management. Syngress Publishing, 2013.

[CSS09] Irina Diana Coman, Alberto Sillitti, and Giancarlo Succi. A Case-study
on Using an Automated In-process Software Engineering Measurement
and Analysis System in an Industrial Environment. In 31st International
Conference on Software Engineering (ICSE 2009), pages 89–99, Vancouver,
BC, 2009. IEEE Computer Society.

[DBK+06] Reiner R Dumke, René Braungarten, Martin Kunz, Andreas Schmietendorf,
and Cornelius Wille. Strategies and Appropriateness of Software
Measurement Frameworks. In Proceedings of the International Conference
on Software Process and Product Measurement (MENSURA 2006), pages
150–170, 2006.

[DdOdlP98] Juan C. Dueñas, William L. de Oliveira, and Juan A. de la Puente.
A Software Architecture Evaluation Model. In Proceedings of the Second
International ESPRIT ARES Workshop Las Palmas de Gran Canaria, Spain
February 26–27, pages 148–157. Springer Berlin Heidelberg, 1998.

347



Bibliography

[Dek99] Carol a. Dekkers. The Secrets of Highly Successful Measurement Programs.
Cutter IT Journal, 12(4):29–35, 1999.

[DK01] Reiner Dumke and Reinhard Koeppe. Conception of a Web-Based SPE
Development Infrastructure. In Performance Engineering, State of the Art
and Current Trends, pages 1–19. Springer, 2001.

[DKW00] Reiner R Dumke, Reinhard Koeppe, and Cornelius Wille. Software Agent
Measurement and Self-Measuring Agent-Based Systems. 2000.

[DLGP08a] M. Diaz-Ley, F. Garcia, and M. Piattini. Implementing Software
Measurement Programs in Non Mature Small Settings. Software Process
and Product Measurement, pages 154–167, 2008.

[DLGP08b] María Diaz-Ley, Félix García, and Mario Piattini. MIS-PyME Software
Measurement Maturity Model: Supporting the Definition of Software
Measurement Programs. In A. Jedlitschka and O. Salo, editors, PROFES
’08: Proceedings of the 9th international conference on Product-Focused
Software Process Improvement, pages 19–33, Berlin, Heidelberg, 2008.
Springer-Verlag.

[DLGP10] María Díaz-Ley, Félix García, and Mario Piattini. MIS-PyME software
measurement capability maturity model - Supporting the definition of
software measurement programs and capability determination. Advances in
Engineering Software, 41(10-11):1223–1237, oct 2010.

[DN06] Valentin Dinu and Prakash Nadkarni. Guidelines for the effective use of
entity-attribute-value modeling for biomedical databases. International
journal of medical informatics, 76(11-12):769–79, 2006.

[dO03] M. de Los Angeles Martin and Luis Olsina. Towards an Ontology for
Software Metrics and Indicators as the Foundation for a Cataloging Web
System. In Web Congress, pages 103–113. IEEE Computer Society Press,
2003.

[Dör14] Jan Simon Döring. Development of a generic Logging Infrastructure for
EMI-based measurement systems. Bachelor thesis, RWTH Aachen University,
2014.

[DSZ06] R Dumke, Andreas Schmietendorf, and Horst Zuse. Formal Description of
Software Measurement and Evaluation - A Short Overview and Evaluation.
Technical report, 2006.

[Dum12] Reiner R Dumke. Software-Messung und -Bewertung - Eine Bilanz, 2012.

[DYAG09] Reiner Dumke, Hashem Yazbek, Evan Asfoura, and Konstantina Georgieva.
A General Model for Measurement Improvement. In Lecture notes in
computer science, IWSM/Mensura 2009, number 2, pages 48–61, 2009.

348



Bibliography

[Dyb05] T. Dyba. An empirical investigation of the key factors for success in
software process improvement. IEEE Transactions on Software Engineering,
31(5):410–424, may 2005.

[Eck95a] Wayne Eckerson. Three Tier Client/Server Architecture: Achieving
Scalability, Performance, and Efficiency in Client Server Applications. Open
Information Systems, 10(1), 1995.

[Eck95b] Wayne W. Eckerson. Three Tier Client/Server Architecture: Achieving
Scalability, Performance, and Efficiency in Client Server Applications. Open
Information Systems, 3(20):46–50, 1995.

[Eck06] Wayne W Eckerson. Performance Dashboards: Measuring, Monitoring, and
Managing Your Business. John Wiley & Sons, 2006.

[EDBS04] Christof Ebert, Reiner Dumke, Manfred Bundschuh, and Andreas
Schmietendorf. Best Practices in Software Measurement. 2004.

[EdNBK01] Clark Evans, Ingy döt Net, and Oren Ben-Kiki. xmlhack: Evans moves
against angle brackets in MinML, 2001.

[Ele90] Inc Electronics Engingeers. IEEE Standard Glossary of Software Engineering
Terminology. Office, 121990:84, 1990.

[Eve10] Frederic Evers. Realization of a web supported service based
idea-management-system for metrics. Bachelor thesis, RWTH Aachen
University, 2010.

[Fen94] N. Fenton. Software measurement: a necessary scientific basis. IEEE
Transactions on Software Engineering, 20(3):199–206, mar 1994.

[Few06] Stephen Few. Information Dashboard Design: The Effective Visual
Communication of Data. O’Reilly Media, Inc., 2006.

[Few12] Stephen Few. Show Me the Numbers. 2012.

[Fie00] RT Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, 2000.

[Fit] John Fitch. Turn your business dashboard into a cockpit.

[FL14] Martin Fowler and James Lewis. Microservices, 2014.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, nov 2002.

[FP98] Norman E. Fenton and Shari L. Pfleeger. Software Metrics: A Rigorous
and Practical Approach. PWS Publishing Co., Boston, MA, USA, 1998.

349



Bibliography

[FT02] Roy T. Fielding and Richard N. Taylor. Principled design of the modern
Web architecture. ACM Transactions on Internet Technology, 2(2):115–150,
may 2002.

[GDPG03] M.P. Papazoglou Georgakopoulos, D., M P Papazoglou, and
D Georgakopoulos. Service-Oriented Computing. Communications
of the ACM, 46(10):24–28, 2003.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley Professional, 1995.

[Gji13] Endri Gjino. Visually Assisted Mining for Smells in Change Request Systems.
Master thesis, RWTH Aachen University, 2013.

[Gor13] Matthias Gora. Bachelorarbeit Entwicklung eines Dashboard
Prototyping-Werkzeugs Construction of a dashboard prototyping-tool.
Bachelor thesis, RWTH Aachen University, 2013.

[Gre11] Christoph Greven. Realisierung eines Werkzeugs zum Management
von messpezifischen Projektaktivitäten. Bachelor thesis, RWTH Aachen
University, 2011.

[GSC+07] F Garcia, M Serrano, J Cruzlemus, F Ruiz, and M Piattini. Managing
software process measurement: A metamodel-based approach. Information
Sciences, 177(12):2570–2586, 2007.

[HAB05] AY Halevy, Naveen Ashish, and Dina Bitton. Enterprise information
integration: successes, challenges and controversies. In Proceedings of the
2005 ACM SIGMOD international conference on Management of data, pages
778–787. ACM, 2005.

[Han12] Christian Hans. Einsatz von Metrik-Dashboards im industriellen Umfeld.
Bachelor thesis, RWTH Aachen University, 2012.

[Hei08] Jens Heidrich. PhD Theses in Experimental Software Engineering. Phd
thesis, Technische Universität Kaiserslautern, 2008.

[HF97] T. Hall and N. Fenton. Implementing effective software metrics programs.
IEEE Software, 14(2):55–65, 1997.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab:
A plug-in-based framework for web-based project portals. In TOPI 2012,
pages 61–66. IEEE, 2012.

[HL11] Jairus Hihn and Scott Lewicki. Bootstrapping Process Improvement Metrics:
CMMI Level 4 Process Improvement Metrics in a Level 3 World. In
Proceedings of the 44th Hawaii International Conference on System Sciences,
pages 1–10, 2011.

350



Bibliography

[HM04] Jens Heidrich and Jürgen Münch. Software project control centers: concepts
and approaches. Journal of Systems and Software, 70(1-2):3–19, 2004.

[HM07] Jens Heidrich and Jürgen Münch. Cost-Efficient Customisation of Software
Cockpits by Reusing Configurable Control Components. In 4th Software
Measurement European Forum (SMEF 2007), may 2007.

[HM08a] J. Heidrich and J. Münch. Goal-oriented setup and usage of custom-tailored
software cockpits. In PROFES ’08: Proceedings of the 9th international
conference on Product-Focused Software Process Improvement, pages 4–18.
Springer-Verlag, 2008.

[HM08b] Jens Heidrich and Jürgen Münch. Goal-oriented setup and usage of
custom-tailored software cockpits. In PROFES ’08: Proceedings of the 9th
international conference on Product-Focused Software Process Improvement,
pages 4–18. Springer-Verlag, 2008.

[HMO08] Lasse Harjumaa, Jouni Markkula, and Markku Oivo. How Does a
Measurement Programme Evolve in Software Organizations? In PROFES
’08: Proceedings of the 9th international conference on Product-Focused
Software Process Improvement, pages 230–243, Berlin, Heidelberg, 2008.
Springer-Verlag.

[HMW06a] Jens Heidrich, J. Münch, and Axel Wickenkamp. Usage Scenarios for
Measurement-based Project Control. In Proceedings of the 3rd Software
Measurement European Forum (SMEF 2006),(Ton Dekkers, Ed.), pages
47–60, 2006.

[HMW06b] Jens Heidrich, J. Münch, and Axel Wickenkamp. Usage Scenarios for
Measurement-based Project Control. In Proceedings of the 3rd Software
Measurement European Forum (SMEF 2006),(Ton Dekkers, Ed.), pages
47–60, 2006.

[Hor14] Thorsten Horn. EAI Enterprise Application Integration.
\url{http://www.torsten-horn.de/techdocs/eai.htm#Integrationstopologien},
nov 2014.

[HT99] Andrew Hunt and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Professional, 1st editio edition,
1999.

[Hug13] James Hughes. Micro Service Architecture, 2013.

[Hüt12] Michael Hüttermann. DevOps for Developers. Apress, Berkeley, CA, 2012.

[Hut13] Andrea Hutter. Business Integration of Metric-Dashboards and
Dashboard-Templates for existing Software-Projects. Diploma thesis, RWTH
Aachen University, 2013.

351



Bibliography

[HW03a] Gregor Hohpe and BobbyWoolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[HW03b] Gregor Hohpe and BobbyWoolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2003.

[Int13] ECMA International. ECMA-404: The JSON Data Interchange Format.
Technical report, Geneva, Switzerland, 2013.

[ISO03] ISO/IEC 9126:2003. Product Quality Series, 2003.

[ISO05] ISO/IEC. ISO/IEC 25000 - Software engineering - Software product Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE. Technical
report, 2005.

[ISO07] ISO/IEC 15939:2007. Software Engineering - Software Measurement Process,
2007.

[ISO08] ISO/IEC 12207:2008. Standard for Systems and Software Engineering -
Software Life Cycle Processes, 2008.

[ISO14] ISO/IEC 25000:2014. Systems and software Quality Requirements and
Evaluation, 2014.

[Joh01] Philip Johnson. You can’t even ask them to push a button: Toward
ubiquitous, developer-centric, empirical software engineering. In Visions
for Software Design and Productivity: Research and Applications, 2001.

[Jon06] Capers Jones. The Economics of Software Maintenance in the Twenty First
Century, 2006. Performance Engineering to Enhance the Maintenance,
2006.

[Jos07] Nicolai M. Josuttis. SOA in Practice: The Art of Distributed System
Design. "O’Reilly Media, Inc.", 2007.

[Kai02] Michael Kaib. Enterprise Application Integration, volume 45. Deutscher
Universitäts-Verlag, 2002.

[Kir01] Colin Kirsopp. Measurement and the software development process. In
12th European Software Control and Metrics Conference, page 165. Citeseer,
2001.

[KMZB08] Martin Kunz, Steffen Mencke, Niko Zenker, and René Braungarten.
Quality-Driven Orchestration of Services. In Reiner R. Dumke, René
Braungarten, Günter Büren, Alain Abran, and Juan J. Cuadrado-Gallego,
editors, Software Process and Product Measurement, Proceedings of the

352



Bibliography

International Conferences on Software Metrics IWSM 2008, Metrikon 2008,
and Mensura 2008, pages 26–35, München, 2008. Springer.

[KN92] R S Kaplan and D P Norton. The balanced scorecard–measures that drive
performance. Harvard Business Review, 70(1):71–9, 1992.

[Kre12] Michael Krein. Generierung von Systemtests für Web-basierte
Informationssysteme. PhD thesis, 2012.

[Kru95] P.B. Kruchten. The 4+1 View Model of architecture. IEEE Software,
12(6):42–50, 1995.

[Kru02] C. Krueger. Variation management for software production lines. Software
Product Lines, pages 107–108, 2002.

[KS06] Karen Kent and Murugiah P Souppaya. SP 800-92. Guide to Computer
Security Log Management. Technical report, Gaithersburg, MD, United
States, 2006.

[KSDW06] Martin Kunz, Andreas Schmietendorf, R Dumke, and Cornelius Wille.
Towards a service-oriented measurement infrastructure. In Proceedings of
the 3rd Software Measurement European Forum (SMEF), pages 197–207,
2006.

[Kun09] Martin Kunz. Framework for a Service-oriented Measurement Infrastructure.
Dissertation, Otto-von-Guericke-Universität Magdeburg, 2009.

[KWS+11] J.L. Krein, Patrick Wagstrom, S.M. Sutton Jr, Clay Williams, and C.D.
Knutson. The problem of private information in large software organizations.
In Proceeding of the 2nd workshop on Software engineering for sensor network
applications, pages 218–222. ACM, 2011.

[KZR06] Rajiv Kishore, Hong Zhang, and R. Ramesh. Enterprise integration using
the agent paradigm: foundations of multi-agent-based integrative business
information systems. Decision Support Systems, 42(1):48–78, oct 2006.

[Lan12] Tristan Langer. Erweiterung des Gargoyle Codegenerators um Semantische
Beziehungen. Bachelor thesis, RWTH Aachen University, 2012.

[Lan14] Martin Lang. Entwicklung einer Konstruktionsunterstützung für
Messinfrastrukturen auf Basis des EMI-Frameworks. Master thesis, RWTH
Aachen University, 2014.

[Lav00] L. Lavazza. Providing automated support for the GQM measurement
process. IEEE Software, 17(3):56–62, 2000.

[Lav05] L. Lavazza. Automated support for process-aware definition and execution
of measurement plans. Proceedings. 27th International Conference on
Software Engineering, 2005. ICSE 2005., pages 234–243, 2005.

353



Bibliography

[Law14] Gordon Lawrenz. Development of a Data Loss Prevention and Simulation
Environment for RESTful Services. Bachelor thesis, RWTH Aachen
University, 2014.

[LdBG08] Luigi A Lavazza, Vieri del Bianco, and Carla Garavaglia. Model-based
functional size measurement. Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and measurement
- ESEM ’08, page 100, 2008.

[LDBK05] Mathias Lother, Reiner Dumke, René Braungarten, and Martin Kunz.
Ein Portal zur Funktionalen Größenmessung von Software Anfänge eines
Software eMeasurement. Softwaretechnik Trends, 25(1), 2005.

[LHM+09] Peter Liggesmeyer, Jens Heidrich, Jürgen Münch, Robert Kalcklösch,
Henning Barthel, and Dirk Zeckzer. Visualization of Software and
Systems as Support Mechanism for Integrated Software Project Control.
Human-Computer Interaction. New Trends, 13th International Conference,
HCI International 2009, San Diego, CA, USA, July 19-24, 2009, Proceedings,
Part I, 5610:846–855, jan 2009.

[Lik04] Jeffrey K Liker. The Toyota way: 14 management principles from the
world’s greatest manufacturer. McGraw-Hill New York, 2004.

[Lim] The International Software Benchmarking Standards Group Limited. ISBSG
Web Site.

[LL13] Jochen Ludewig and Horst Lichter. Software engineering: Grundlagen,
Menschen, Prozesse, Techniken. dpunkt.verlag, Heidelberg, 3., korrigierte
auflage edition, 2013.

[Löw11] Tobias Löwenthal. Generierung von web-basierten Prototypen für
Geschäftsanwendungen. Diploma thesis, RWTH Aachen University, 2011.

[LWHS01] C. Lokan, T. Wright, P. Hill, and M. Stringer. Organizational benchmarking
using the ISBSG Data Repository. IEEE Software, 18(5):26–32, 2001.

[Mäd12] Martin Mädler. Variabilität von Metriken und Dashboard-Items im Umfeld
von MeDIC. Diploma thesis, RWTH Aachen University, 2012.

[Man12] Claude Mangen. Generation of JSF-based Graphical User Interfaces for
Web-based Information Systems. Bachelorarbeit, RWTH Aachen, 2012.

[MB97] Sandro Morasca and LC Briand. Towards a theoretical framework for
measuring software attributes. In Software Metrics Symposium, pages
119–126. IEEE Computer Society, 1997.

[MB00] M.G. Mendonsa and V.R. Basili. Validation of an approach for
improving existing measurement frameworks. IEEE Transactions on
Software Engineering, 26(6):484–499, jun 2000.

354



Bibliography

[Mei11] Meiliana. Enhancing the MeDIC Meta-Models by EJB Conformant
Variability Concepts. Master thesis, RWTH Aachen University, 2011.

[Mel04] S Melnyk. Metrics and performance measurement in operations management:
dealing with the metrics maze. Journal of Operations Management,
22(3):209–218, jun 2004.

[Met09] Sandi Metz. SOLID Object-Oriented Design, 2009.

[MGRP09] Beatriz Mora, Felix Garcia, Francisco Ruiz, and Mario Piattini.
Model-Driven Software Measurement Framework: A Case Study. In 2009
Ninth International Conference on Quality Software, pages 239–248. Ieee,
aug 2009.

[Mic12] Sun Microsystems. Java Programming Language (1.5), 2012.

[MJCH08] M. Monperrus, J.M. Jézéquel, J. Champeau, and B. Hoeltzener. A
model-driven measurement approach. In Proceedings of the ACM/IEEE
11th International Conference on Model Driven Engineering Languages and
Systems (MODELS 2008), pages 505–519. Springer, 2008.

[MO07] Hernan Molina and Luis Olsina. Towards the Support of Contextual
Information to a Measurement and Evaluation Framework. In 6th
International Conference on the Quality of Information and Communications
Technology (QUATIC 2007), pages 154–166. Ieee, sep 2007.

[Mos14] Marco Moscher. Testpattern für EMI Metric Services am Beispiel von
Wiki-Metriken. Bachelor thesis, RWTH Aachen University, 2014.

[MP06] Jacquelin A McQuillan and James F Power. Towards re-usable metric
definitions at the meta-level. In PhD Workshop of the 20th European
Conference on Object-Oriented Programming (ECOOP 2006), 2006.

[MSW] J. Mangler, E. Schikuta, and C. Witzany. Quo vadis interface definition
languages? towards a interface definition language for restful services. In
2009 IEEE International Conference on Service-Oriented Computing and
Applications (SOCA), pages 1–4.

[Mul13] Rita Mulcahy. PMP Exam Prep: Rita’s Course in a Book for Passing the
PMP Exam. McGraw-Hill Professional, 8th edition, 2013.

[Net10] Microsoft Developer Network. Removal of UDDI Services from Server
Operating System (Windows), 2010.

[Net14] Microsoft Developer Network. Using a Three-Tier Architecture Model
(COM+), 2014.

[NV01] Frank Niessink and Hans Van Vliet. Measurement program success factors
revisited. Information and Software Technology, pages 1–25, 2001.

355



Bibliography

[ODR84] Ce. O’Meley, Sw. Draper, and Ms. Riley. Constructive Interaction: A
Method for Studying Human-Computer-Human Interaction. In Proceedings
of IFIP Interact, pages 269–274, 1984.

[OLP02] Luis Olsina, Guillermo Lafuente, and Oscar Pastor. Towards a reusable
repository for web metrics. Quality, 1(1):061–073, 2002.

[OM04] Luis Olsina and María De Los Angeles Martín. Ontology for Software
Metrics and Indicators: Building Process and Decisions Taken. In Web
Engineering, page 778, 2004.

[OMF+03] L Olsina, M AMartin, J Fons, S Abrahao, and O Pastor. Towards the Design
of a Metrics Cataloging System by Exploiting Conceptual and Semantic
Web Approaches. In Web Engineering, pages 324–333, Heidelberg, 2003.
Springer-Verlag.

[Ott13] Arthur Otto. Integration einer Metrik-Infrastruktur in die Projektverwaltung
SSE-Lab. PhD thesis, 2013.

[PAFM04] Edgardo Palza, Alain Abran, Christopher Fuhrman, and Eduardo Miranda.
V & V Measurement Management Tool for Safety-Critical Software. In
Proceedings of IWSM/MetriKon 2004, 2004.

[Pau06] F. Paulisch. Establishing a Common Measurement System. In Proceedings
of the International Workshop on Software Metrics and DASMA Software
Metrik Kongress, pages 1–3, 2006.

[PCN+08] S.T. Parkinson, S. Counsell, M. Norman, R. M. Hierons, and M. Lycett.
The precursor to an industrial software metrics program. In ITI 2008 -
30th International Conference on Information Technology Interfaces, pages
221–226. Ieee, jun 2008.

[Per00] Alan Perkins. Critical Success Factors for Enterprise Architecture
Engineering. Technical report, 2000.

[Pfl93] S.L. Pfleeger. Lessons learned in building a corporate metrics program.
IEEE Software, 10(3):67–74, may 1993.

[Pia07] Mario Piattini. Software Measurement Programs in SMEs - Defining
Software Indicators: A Methodological Framework. In J. Münch
and P. Abrahamsson, editors, PROFES ’07: Proceedings of the 8th
international conference on Product-Focused Software Process Improvement,
pages 247–261, Berlin, Heidelberg, 2007. Springer-Verlag.

[PTDL08] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and
Frank Leymann. Service-Oriented Computing: a Research Roadmap.
International Journal of Cooperative Information Systems, 17(02):223–255,
jun 2008.

356



Bibliography

[Rab15] Sebastian Rabenhorst. Implementation and Evaluation of Performance
Optimizations in the Ticket Analysis Tool RiVER. Bachelor thesis, RWTH
Aachen University, 2015.

[Rem07] Ulrich Remus. Critical success factors for implementing enterprise portals:
A comparison with ERP implementations. Business Process Management
Journal, 13(4):538—-552, 2007.

[RMGW05] Roger Strukhoff, Lori MacVittie, Carmen Gonzalez, and Elizabeth White.
Microsoft, IBM, SAP To Discontinue UDDI Web Services Registry Effort,
2005.

[RNC+10] S Russell, P Norvig, J.F. Candy, J.M. Malik, and D.D. Edwards.
Artificial Intelligence: A modern approach. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., third edit edition, 2010.

[Röl13] Thomas Röllig. Konfigurationsunterstützung und Infrastrukturansatz für
flexible Metrik-basierte Monitoring-Dashboards. Master thesis, RWTH
Aachen University, 2013.

[Rom91] H.D. Rombach. Practical benefits of goal-oriented measurement. Software
Reliability and Metrics, pages 217–235, 1991.

[Rom05] Dieter Rombach. Integrated software process and product lines. In
International Software Process Workshop (SPW) 2005, Beijing, pages 83–90.
Springer, 2005.

[RSD07] D Rud, A Schmietendorf, and R Dumke. Resource metrics for
service-oriented infrastructures. In Proc. SEMSOA 2007, pages 90–98,
2007.

[Rus13] Nick Russler. Development of an Infrastructure for the Business Integration
of Heterogeneous Data Sources in the EMI. Bachelor thesis, RWTH Aachen
University, 2013.

[Sch12] Bastian Schwartz. Konzeption einer Komponenten-Kompo[1] B. Schwartz,
“Konzeption einer Komponenten-Kompositionsinfrastruktur,” RWTH Aachen
University, 2012.sitionsinfrastruktur. Diploma thesis, RWTH Aachen
University, 2012.

[Sei03] Siegfried Seibert. Softwaremessung, quantitative Projektsteuerung und
Benchmarking. Projektmanagement, Jg, 14:26–34, 2003.

[Sel05] Richard W Selby. Measurement-Driven Dashboards Enable Leading
Indicators for Requirements and Design of Large-Scale Systems. In IEEE
METRICS, page 22, 2005.

357



Bibliography

[SGN08] Ulrik Schroeder, Eva Giani, and Michael Nelles. Script und Folien der
Vorlesung Web Engineering. 2008.

[SM07] Miroslaw Staron and Wilhelm Meding. A Modeling Language for Specifying
and Visualizing Measurement Systems for Software Metrics. pages 300–307,
2007.

[SMN09] Miroslaw Staron, Wilhelm Meding, and Christer Nilsson. A framework for
developing measurement systems and its industrial evaluation. Inf. Softw.
Technol., 51(4):721–737, 2009.

[Som11] Ian Sommerville. Software Engineering. 9th editio edition, 2011.

[Son14] Sonar Qube, 2014.

[ST] Klaus-Dieter Schewe and Bernhard Thalheim. Component-Driven
Engineering of Database Applications.

[Sta03] Prof Stafford. Software Maintenance As Part of the Software Life Cycle.
Time, 2003.

[Ste13] Andreas Steffens. Entwurf eines Architekturmodells zur Integration
heterogener Systeme in MeDIC. Diploma thesis, RWTH Aachen University,
2013.

[Tav11] Ricardo Tavizon. Systematic Tool Supported Tailoring of Metrics. Master
thesis, RWTH Aachen University, 2011.

[Tea10] CMMI Product Team. CMMI® for Development, Version 1.3 CMMI-DEV,
V1.3. Technical Report November, 2010.

[The97] The National Performance Review (now the National Partnership for
Reinventing Government). Serving the American Public: Best Practices
in Performance Measurement: Benchmarking Study Report. Government
Printing Office, Washington, D.C., 1997.

[Tho05] G Thomas. Mediation and enterprise service bus: A position paper. on
Mediation in, pages 67–80, 2005.

[US08] Medha Umarji and Carolyn Seaman. Why Do Programmers Avoid Metrics?
In ESEM 08, pages 129–138, Kaiserslautern, 2008. ACM.

[USE] Medha Umarji, Carolyn Seaman, and Henry H Emurian. Acceptance Issues
in Metrics Program Implementation. Information Systems.

[VBR09] Matthias Vianden, Frank Berretz, and Tobias Rötschke.
Werkzeugunterstützung für iterative Modernisierungsprozesse. In
WSR ’09: Proceedings of the Workshop on Software Reegineering, 2009.

358



Bibliography

[Via08] Matthias Vianden. Entwurf und Realisierung eines Ansatzes zur
Modernisierung der Architektur eines formularbasierten Informationssystems.
Diploma thesis, RWTH Aachen University, 2008.

[Vin97] S. Vinoski. CORBA: integrating diverse applications within distributed
heterogeneous environments. IEEE Communications Magazine, 35(2):46–55,
1997.

[VL14] Matthias Vianden and Horst Lichter. Lessons Learned on Systematic Metric
System Development at a large IT Service Provider. In Proceeding of the
2nd International Workshop on Quantitative Approaches to Software Quality
(QuASoC), in conjunction with 21th Asia-Pacific Software Engineering
Conference (APSEC 2014), Jeju, South Korea, 2014. IEEE Computer
Society.

[VLHH13] Matthias Vianden, Horst Lichter, Andrea Hutter, and Christian Hans.
Engineering Metric-based Monitoring Dashboards - Development Process
and Best Practices. In Proceedings of the 20th Asia-Pacific Software
Engineering Conference, Bangkok, Thailand, 2013.

[VLJ13] Matthias Vianden, Horst Lichter, and Simona Jeners. History and Lessons
Learnt from a Metrics Program at a CMMI Level 3 Company. In Proceedings
of 20th Asia-Pacific Software Engineering Conference, APSEC 2013, Vol.
2, number CMMI, 2013.

[VLN12] Matthias Vianden, Horst Lichter, and Karl-Joachim Neumann. Towards
Systematic Reuse of Metric Specifications. International Journal of Digital
Content Technology and its Applications, 6(21):43–49, nov 2012.

[VLR09] Matthias Vianden, Horst Lichter, and Tobias Rötschke. Applying Test Case
Metrics in a Tool Supported Iterative Architecture and Code Improvement
Process. In IWSM ’09: Proceedings of the international Conference on
Software Metrics, Berlin, Heidelberg, 2009. Springer-Verlag.

[VLS13] Matthias Vianden, Horst Lichter, and Andreas Steffens. Towards a
Maintainable Federalist Enterprise Measurement Infrastructure. In Joint
Conference of the 23nd International Workshop on Software Measurement
(IWSM) and the 8th International Conference on Software Process and
Product Measurement (Mensura), Ankara, Turkey, 2013.

[VLS14] Matthias Vianden, Horst Lichter, and Andreas Steffens. Experience on a
Microservice-Based Reference Architecture for Measurement Systems. In
2014 21st Asia-Pacific Software Engineering Conference, volume 1, pages
183–190. IEEE, dec 2014.

[WBD+10] Stefan Wagner, Manfred Broy, Florian Deißenböck, Michael Kläs, Peter
Liggesmeyer, Jürgen Münch, and Jonathan Streit. Softwarequalitätsmodelle,
2010.

359



Bibliography

[Wes05] Linda Westfall. 12 Steps to Useful Software Metrics, 2005.

[WGH+15] Stefan Wagner, Andreas Goeb, Lars Heinemann, Michael Kläs, Constanza
Lampasona, Klaus Lochmann, Alois Mayr, Reinhold Plösch, Andreas Seidl,
Jonathan Streit, and Adam Trendowicz. Operationalised product quality
models and assessment: The Quamoco approach. Information and Software
Technology, 62(June 2015):101–123, 2015.

[WGT07] Thomas Wuttke, Peggy Gartner, and Steffi Triest. Das PMP-Examen: fur
die gezielte Prufungsvorbereitung. Mitp-Verlag, Heidelberg, 2007.

[WLH+12] Stefan Wagner, Klaus Lochmann, Lars Heinemann, Michael Klas, Adam
Trendowicz, Reinhold Plosch, Andreas Seidi, Andreas Goeb, and Jonathan
Streit. The Quamoco product quality modelling and assessment approach.
In 2012 34th International Conference on Software Engineering (ICSE),
pages 1133–1142. IEEE, jun 2012.

[Woh12] C. Wohlin. Experimentation in Software Engineering. 2012.

[Woo01] Michael Wooldridge. Intelligent Agents: The Key Concepts. In Multi-Agent
Systems and Applications II, volume 2322, pages 3–43. 2001.

[YDSN10] H. Yazbek, R. Dumke, A. Schmietendorf, and R. Neumann. Service-Oriented
Measurement Infrastructure. In 2010 Eighth ACIS International Conference
on Software Engineering Research, Management and Applications, pages
303–308. IEEE, may 2010.

[Yük13] Ahmet Yüksektepe. Entwicklung einer Service-Monitoring-Infrastruktur für
die EMI. Bachelor thesis, RWTH Aachen University, 2013.

[Zus91] Horst Zuse. Complexity Measure: Measures and Methods. de Gruyter,
1991.

360



Bibliography

361




	Introduction and Foundations
	Introduction
	Metric Systems Engineering Challenges
	Large Software Development Companies
	Small and Medium Software Development Companies
	Main Challenges
	Summary

	Top-Level Requirements
	Literature Analysis
	Summary

	Research Questions and Contribution
	Contribution

	Research Field and Central Related Work
	Service-Oriented Measurement Infrastructures
	Software Project Control Centers
	Summary and Conclusion

	MeDIC - A Metric Systems Engineering Approach
	Flexibility
	Information Need Driven
	Usable Metric Systems

	Summary

	Conceptual Foundations
	Metric Portfolio
	Metric Terminology
	Metrics System Dynamics and Measurement Data Flow
	Summary

	Metric Reuse
	Metric Reuse Dimensions
	Metric Reuse in the Literature
	Metric Reuse by Metric Variability
	Formal Foundation to Metric Variability
	Summary

	Formal Foundation to Metric System Dynamics
	Related Work
	Overview
	Preface
	Measurement Data and Measurements
	Compatibility
	Satisfiability
	Measurement Producer
	Calculation Termination

	Summary


	MeDIC Reference Architecture
	Introduction, Requirements and Foundations
	Design Foundations and Reference Architecture Requirements
	Polylithic Micro Service-based Measurement Infrastructures
	Specific Requirements
	Reference Architecture Requirements Summary

	The API Specification Language
	Integration Architecture Alternatives

	Logical Reference Architecture and Physical System View
	Logical Reference Architecture
	Physical System View
	Data Provider Systems
	Support Systems
	Core Systems


	Technical Reference Architecture
	Overview
	Measurement Data Flow
	Concept to Implementation Mapping
	Discussion and Design Alternatives

	Data Transport and Integration
	Enterprise Measurement Data Bus (EMDB)
	EMDB Messages
	Integration and Reuse
	Important EMDB Services
	Additional Service Topics
	Summary

	Calculation Access
	Design Decisions and Related Work
	EUrEKA Indicator Access APIs
	EUrEKA Kernel Description Meta Model
	EUrEKA Registry
	EUrEKA Producer Gateway (optional)
	EUrEKA Consumer
	EUrEKA Indicator Wrapper (optional)
	Summary

	Data Adapter Reference Architecture
	Adaption Patterns and Dynamic View
	Static Reference Architecture
	Summary

	Metric Kernel Reference Architecture
	Design Alternatives
	Dynamic View
	Summary

	Visualization Reference Architecture
	Metric-based Monitoring Dashboards
	Visualization Frontend Classification
	Component View
	Dynamic View
	Summary

	Technical Integration of Operation Services
	Summary of the Technical Reference Architecture

	Operation Systems and Services
	Monitoring System
	Information Needs Satisfied by the Monitoring System
	Monitoring System Reference Architecture
	Monitoring System Summary

	Logging System
	Information Needs Satisfied by the Logging System
	Logging System Reference Architecture
	Logging System Summary

	Lookup System (optional)
	Use Cases and Requirements for the Lookup System
	Directory System Reference Architecture


	MeDIC Reference Architecture Formalisms
	Formalism for Service States
	Maintenance
	Sync with Data Provider

	Formal Basis of the Technical Reference Architecture
	Preface
	Measurement Messages
	Data Adapter
	Metric Kernel
	Data Processing in an EMI
	Formalism Summary

	Formalism Example: Ticket Statistics
	Introduction and Definition of the EMI
	Metric Definition
	Metric Kernel: Measurement Consumer
	Metric Kernel: Data Storage
	Correctness Proof of the Storage Function
	Metric Kernel: Measurement Producer
	Termination Proof of the Kernel and the EMI
	Example Summary



	MeDIC Process Model
	Process Model Foundations
	Process Environment Assumptions

	The Metric System Engineering Process Model
	Process Model Core
	Process Overview
	Roles
	Metric Customer
	Metric Expert
	Architect
	Developer
	Operator
	Role Involvement

	Process Initialization

	The Conception Phase
	Requirements Gathering
	Activity Overview
	Plan Requirements Gathering and Information Need identification
	Execute RE Plan
	Process Results

	Prototype and Evaluate
	Consolidate Info Needs
	Design Monitors, Design Metrics and Prepare Prototypes
	Evaluate With Metric Customers

	Plan Increment
	Integrate Information Needs and Design Logical Architecture
	Review and Prioritize Increment Plan
	Finish Increment Planing

	Conception Summary

	The Design Phase
	Identify Metric Services
	Setup the Design Plan and Design Document

	Design and Evaluate
	Design Services and Integration
	Design Metric Service Tests
	Evaluate design


	The Construction and the Operation Phase
	The Construction Phase
	The Operation Phase
	Deploy and Setup a new Metric Kernel
	Best Practices for Handling Common Errors and Exceptions
	Triggering a new Iteration

	Summary


	Evaluation, Tool Support, and Lessons Learned
	Evaluation by Selected Field Studies
	Project Risk Metric System for a Large IT Service Provider
	Process
	Risk Metrics Architecture
	Experience and Best Practices

	Software Project Metrics System for SSE Lab
	Process
	Architecture
	Experience

	Flow-based Visual Ticket Analysis
	Key Concepts
	Architecture - First Version
	Architecture - Second Version
	Experience


	Tooling
	MeDIC Metric Documentation Tools
	MeDIC Metric Management Support Tool
	MeDIC Dashboard and SCREEN
	Architecture - MeDIC Dashboard
	Architecture - SCREEN

	EMI Services
	EMS - EMI Monitoring Service
	ELS - EMI Logging Service
	EDS - EMI Directory Service
	ERS - EMI Render Service

	EMI Framework

	Lessons Learned and Discussion
	Security
	Flexibility
	Ease-of-Use
	Ease-of-Use of the Reference Architecture
	Ease-of-Use of the Process Model

	Effectiveness
	Effectiveness of the Reference Architecture
	Effectiveness of the Process Model

	Efficiency


	Conclusion and Future Work
	Conclusion and Future Work
	Future Work
	Conclusion


	Appendix
	Symbol Lists
	Symbols used in the Foundation Formalism
	Symbols used in the Reference Architecture Formalism

	Process Guides, Checklists, and Document Descriptions for the Process Model
	Conception Phase
	Information Need Gathering – Guidelines for the Execution
	Plan Increment – Guidelines for Coherent Increments

	Design Phase
	Services Reuse Decision Aid – Checklist
	Design Guides for EMI Services
	Design Guide for Test Selection and Test Stage Description

	The Design Document
	Rough Design of the Complete Metric Application
	Exception Behavior
	Fine Design of the Integration
	Fine Design of each Services
	Tests


	Student Theses in the Context of this Thesis
	Diploma Theses
	Master Theses
	Bachelor Theses

	Bibliography


