
Alexander Roth

Adaptable Code Generation of
Consistent and Customizable Data-
Centric Applications with MontiDEx

«GEN»

«HC»«HC»

:

: :

«RT-IF»

MontiDEx

Aachener Informatik-Berichte,
Software Engineering Band 31

Hrsg: Prof. Dr. rer. nat. Bernhard Rumpe

[Rot18] A. Roth:
Adaptable Code Generation of Consistent and Customizable Data Centric Applications with MontiDex.
Shaker Verlag, ISBN 978-3-8440-5688-4. Aachener Informatik-Berichte, Software Engineering, Band 31. December 2017.
www.se-rwth.de/publications/

Adaptable Code Generation of Consistent and
Customizable Data-Centric Applications

with MontiDEx

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

M.Sc. RWTH
Alexander Roth
aus Ujar, Russland

Berichter: Universitätsprofessor Dr. rer. nat. Bernhard Rumpe
Universitätsprofessor Dr. rer. nat. Albert Zündorf

Tag der mündlichen Prüfung: 15. November 2017

Abstract

Information systems are software systems that address current demands for harvesting,
storing, and manipulating structured information [Kaj12]. A part of information systems
are client applications (subsequently called data-centric applications) with a graphical
user interface (GUI) to execute predefined CRUD (Create, Read, Update, and Delete)
operations and display the managed data. The development and prototyping of such
software systems contain common repetitive and error-prone development tasks such as
implementing a data structure, which is a source-code-representation of the managed
information, realizing a GUI, and providing access to a persistence infrastructure.

Model-driven development (MDD) aims to reduce the development effort of data-
centric applications, improve software quality, and reduce development costs [BCW12]
by exploiting platform-independent models as primary development artifacts [SVC06].
Each model is an instance of a domain-specific language (DSL), which enables a high-
level and abstract description of (parts of) a software system using domain terminology.
MDD tools systematically transform a model into executable source code.

Nevertheless, effective MDD of data-centric prototypes has to address several chal-
lenges. In particular, fully executable prototypes have to be generated including the
data structure and GUI, which is necessary to support information gathering from end
users [MFM+13]. Moreover, adequate DSLs have to be provided to describe struc-
tured information and facilitate underspecification that enables prototyping in early
stages of the development. These concerns are additionally influenced by orthogonal
customization concerns of the generated source code to support agile software develop-
ment (cf. [BPRFF15]).

Similar holds for MDD of data-centric development, where the same challenges have
to be addressed. In addition, an MDD approach has to avoid additional overhead intro-
duced by maintaining DSLs and MDD tools (cf. [MK09]) to improve developer accep-
tance (cf. [KBR11]). Furthermore, such an approach has to provide adaptation mech-
anisms for MDD tools to facilitate MDD tool reuse by enabling framework-like and
standalone use.

To address the aforementioned challenges, this thesis contributes methods and con-
cepts to a lightweight and agile MDD approach for data-centric application development
and its data structure prototyping. The goal is to improve development efficiency by re-
ducing the necessary manual implementation effort for repetitive implementation tasks.
In particular, implementing a GUI, a data structure that ensures data consistency, a
connection to a persistence infrastructure, and support for process automation, which
is considered as the automated execution of CRUD operations. This is achieved by a
language family for structural and behavioral modeling, code generators, and lightweight
methods. Since such an approach is always accompanied by customization, adaptation,
and extension concerns (cf. [SVC06]), mechanisms for manually-written customizations

of generated source code, as well as a modular and adaptable code generator design
to facilitate code generator reuse are addressed (cf. [ZR11]). Furthermore, a method
and technical realization for all proposed concepts is provided by the MontiCore Data
Explorer (MontiDEx) code generator.

Employing the methods proposed in this thesis improves development and prototyp-
ing of data-centric applications by providing a unified set of languages and lightweight
methods abstracting from implementation details and supporting customization and
adaptation concerns of generated source code and MDD tools.

Kurzfassung

Informationssysteme sind Softwaresysteme, die das Verwalten von strukturierten Daten
unterstützen und fördern (vgl. [Kaj12]). Ein Teil solcher Informationssysteme sind
Client-Anwendungen (im weiteren Verlauf datenzentrische Anwendungen genannt). Diese
besitzen eine graphische Benutzeroberfläche und erlauben das Ausführen von CRUD
(Create, Read, Update und Delete) Operationen auf den verwalteten Daten, sowie
das Anzeigen der Resultate. Jedoch beinhaltet die Entwicklung und das Prototyping
solcher datenzentrischen Anwendungen viele gemeinsame und sich wiederholende En-
twicklungsaufgaben, wie z.B. das Implementieren einer Datenstruktur, die die Quellcode-
Repräsentation der verwalteten Information darstellt, das Realisieren einer graphischen
Benutzeroberfläche und das Anbieten einer Schnittstelle zu einer Persistenzinfrastruktur
für die Datenspeicherung.

Ein Ansatz zur Reduzierung dieser sich wiederholenden Entwicklungsaufgaben zur
Steigerung der Softwarequalität und zur Senkung der Entwicklungskosten bietet die
Modellgetriebene Softwareentwicklung (MDD) (vgl. [BCW12]). Dies geschieht dadurch,
dass plattformunabhängige Modelle als primäres Entwicklungsartefakt genutzt werden
(vgl. [SVC06]). Jedes Modell ist dabei eine Instanz einer domänenspezifischen Sprache
(DSL), welche ein hohes Abstraktionsniveau bietet um Teile oder ganze Softwaresys-
teme zu beschreiben und gleichzeitig Domänenterminologie zu verwenden. Werkzeuge
transformieren systematisch ein Modell in ausführbaren Quellcode.

Dennoch muss ein effektiver Ansatz zur modellgetriebenen Softwareentwicklung von
datenzentrischen Prototypen mehrere Herausforderungen bewältigen. Eine Herausforde-
rung ist die Generierung von vollständig ausführbaren Prototypen. Dies ist Notwendig
um die Informationsgewinnung von Endbenutzern zu unterstützen (vgl. [MFM+13]).
Diese ausführbaren Prototypen müssen die Datenstruktur beinhalten und eine graphis-
che Benutzeroberfläche anbieten. Bei der modellgetriebenen Softwareentwicklung setzt
dies jedoch voraus, dass geeignete DSLs zur Verfügung gestellt werden, die es ermöglichen
strukturierte Informationen abstrakt zu beschreiben und auch während der frühen Phase
des Prototypings, welche auch Unterspezifikation beinhaltet, genutzt werden können.
Eine weitere Herausforderung ist die Bereitstellung von Möglichkeiten zur Anpassung
der generierten datenzentrischen Anwendung, die vor allem in einer agilen Entwicklung-
sumgebung erforderlich sind (vgl. [BPRFF15]).

Gleiche Herausforderungen existieren auch in der modellgetriebene Softwareentwick-
lung von datenzentrischen Anwendungen. Jedoch sollte zusätzlich der gewählte MDD
Ansatz Overhead vermeiden, der durch die Wartung und die Entwicklung von DSLs und
geeigneten Werkzeugen eingeführt wird (vgl. [MK09]). Die Vermeidung dieses Over-
heads steigert die Akzeptanz der Entwickler (vgl. [KBR11]). Darüber hinaus muss ein
derartiger Ansatz Anpassungsmechanismen für die genutzten Werkzeuge bereitstellen,
um deren Wiederverwendung zu fördern.

Um diese Herausforderungen zu adressieren, werden in dieser Arbeit leichtgewichtige
Methoden und Konzepte für ein modellgetriebenes Datenstruktur-Prototyping und die
modellgetriebene Softwareentwicklung von datenzentrischen Anwendungen vorgestellt.
Ziel ist es, die Effizienz in der Entwicklung zu verbessern, indem der notwendige manuelle
Implementierungsaufwand für sich wiederholende Implementierungsaufgaben reduziert
wird. Dabei steht insbesondere der Implementierungsaufwand bei der Entwicklung einer
graphischen Benutzeroberfläche, einer Datenstruktur und einer Anbindung an eine Per-
sistenzinfrastruktur im Fokus dieser Arbeit. Dies wird durch eine geeignete Sprachfamilie
für die Struktur und Prozessbeschreibung von datenzentrischen Anwendungen, geeignete
Code-Generatoren und leichtgewichtige Entwicklungsmethoden erreicht. Um Anpassun-
gen im generierten Produkt als auch im Generator zu ermöglichen, werden Methoden zur
handgeschriebenen Erweiterung und Konzepte zur Realisierung eines modularen Code-
Generators vorgestellt, welche die Wiederverwendung fördern (vgl. [ZR11]). Die en-
twickelten Konzepte wurden im MontiCore Data Explorer (MontiDEx) Code Generator,
sowie dem MontiDEx Produkt realisiert.

Danksagung

In der Entstehungszeit meiner Promotion wurde ich von vielen lieben Menschen un-
terstützt und begleitet, die durch hilfreiche Diskussionen, tatkräftige Unterstützung und
notwendige Ablenkung zum Erfolg dieser Promotion beigetragen haben. Deshalb möchte
ich an dieser Stelle diesen Menschen meinen tiefsten Dank aussprechen.

Mein besonderer Dank gilt meinem Doktorvater Prof. Dr. Bernhard Rumpe für
die Betreuung dieser Promotion und die spannende und abwechslungsreiche Zeit am
Lehrstuhl. Die vielen konstruktiven und lebhaften Diskussionen sowie die vielen Ratschläge
haben den Erfolg dieser Promotion entscheidend bewirkt. Auch danke ich dir sehr,
Bernhard, dass du mir die Möglichkeit gegeben hast frühzeitig die Leitung verschiedener
Forschungs- und Industrieprojekte zu übernehmen und mich so in meiner persönlichen
Entwicklung unterstützt hast. Weiterhin bedanke ich mich bei dir für dein Vertrauen
mir die Gruppenleitung der Digitalisierungsgruppe zu übergeben.

Weiterer Dank gilt Prof. Dr. Albert Zündorf für das Interesse an meiner Arbeit, das
sehr gute Feedback und die Übernahme meines Zweitgutachtens. Ebenfalls möchte ich
mich bei Prof. Dr. Ulrik Schröder für die Leitung meines Promotionskomitees und die
Abnahme der Prüfung in der praktischen Informatik bedanken. Herrn apl. Prof. Dr.
Thomas Noll danke ich für die Abnahme der Prüfung in der theoretischen Informatik.

Herzlich bedanke ich mich auch bei allen Kollegen, die mich während meiner Zeit
am Lehrstuhl (oftmals auch außerhalb) begleitet haben. Insbesondere möchte ich Dr.
Martin Schindler für sein Mentoring am Anfang meiner Promotionszeit danken. Eben-
falls danke ich Antonio Navarro Pérez für die viele Ideen und den großartigen Einfluss
auf meine Promotion. Mein besonderer Dank gilt meinem ehemaligen Gruppenleiter
Dr. Pedram Mir Seyed Nazari. Wir haben zusammen den Weihnachtsmann überlebt
und konnten immer über jegliche Themen lebhaft und lange diskutieren. Danke für die
gemeinsame Zeit, die Zusammenarbeit in der Forschung und Lehre und die Motivation
während meiner Promotion! Dr. Klaus Müller danke ich für die sehr gute Zusammenar-
beit an verschiedenen Publikationen und die vielen gemeinsamen Forschungsworkshops.
Auch wenn du als externer selten anwesend warst, war die Zusammenarbeit mit dir sehr
fruchtbar und erfolgreich. Herrn “von Wenckstern” danke ich für seine offene, lustige
und immer unterhaltsame Art mit der er das Leben am Lehrstuhl aufgeheitert hat. Gle-
ichzeitig danke ihm auch für die sehr intensiven und hilfreichen Diskussionen. Evgeny
Kusmenko möchte ich für seine Motivation zur sportlichen Betätigung danken, aber
auch für die gute Zusammenarbeit. Ich bedanke mich auch sehr bei Kai Adam, der mich
stark in der letzten Phase meiner Promotion und in unterschiedlichen Forschungs- und
Industrieprojekten tatkräftig unterstütz hat.

Darüber hinaus danke ich Sylvia Gunder und Gabriele Heuschen, die mich bei allen
organisatorischen Aufgaben unterstützt haben und mein Anlaufpunkt bei Unklarheiten
waren. Ebenfalls bedanke ich mich bei Galina Volkova und Marita Breuer, die im Rah-

men des MontiCore Projektes ihr Wissen gerne geteilt haben und mich auch während
vieler Demonstrationen und Implementierungsarbeiten unterstütz haben. Außerdem
danke ich allen Wissenschaftlichen Mitarbeitern des Lehrstuhls: Vincent Bertram, Arvid
Butting, Robert Eikermann, Timo Greifenberg, Dr. Arne Haber, Robert Heim, Stef-
fen Hillemacher, Lars Hermerschmidt, Andreas Horst, Katrin Hölldobler, Oliver Kautz,
Carsten Kolassa, Thomas Kurpick, Achim Lindt, Matthias Markthaler, Dimitri Plot-
nikov, Deni Raco, Dr. Jan Oliver Ringert, Steffi Schrader, Christoph Schulze und
Dr. Andreas Wortmann. Für die tatkräftige Unterstützung bedanke ich mich auch
bei allen Auszubildenden: Lennart Bucher, Manuel Pütz, Jerome Pfeifer, Ben Mainz,
Brian Sinkovec und Max Voss. Vielen Dank auch an all diejenigen, die meine Arbeit Ko-
rrektur gelesen haben: Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Matthias
Markthaler, Dr. Klaus Müller, Dr. Pedram Mir Seyed Nazari, Max Voß und Michael
von Wenckstern.

Natürlich gilt mein Dank auch allen Studenten und Studentinnen, die an der Promo-
tion in Form von studentischen Abschlussarbeiten tatkräftig mitgewirkt haben: Aydin
Alatas, Denis Domm, Ralph Geerkens, Thomas Maiwald, Patrick Jan Schlesiona, Do-
minik Studer, Philip Uhl und Enis Zejnilovic. Insbesondere danke ich Junior Lekane
Nimpa für die lange Zusammenarbeit an MontiDEx und die sehr guten Implementierungs-
und Gestaltungsmitarbeiten.

Abschließend gilt mein unendlicher Dank meinen Eltern und meinen Freunden, die
mich auf meinem bisherigen Lebensweg begleitet und unterstützt haben. Liebe Eltern,
Peter und Katharina Roth, ich danke euch von ganzem Herzen. Ihr habt mir die Mo-
tivation und das nötige Durchhaltevermögen gegeben und als Vorbilder gezeigt, wie
man seine Ziele erreichen kann. Diese Promotion wäre ohne eure Aufopferung, Liebe
und Unterstützung nicht möglich gewesen. Ebenfalls bedanke ich mich auch bei meiner
Schwester, Olga Knabe, die mir auch während schwieriger Zeiten immer mit Rat und Tat
zur Seite stand, mich immer unterstütz und mit kleinen Geschenken motiviert hat. Auch
möchte ich Dr. Bastian Knabe und Melissa Anastasia Knabe danken für die Aufheiterung
und das Interesse an meiner Promotion. Ich danke auch Michelle Egge für die grenzenlose
Unterstützung und unglaubliche Geduld. Für die notwendige Ablenkung und Erholung
möchte ich euch, Hauke und Lisa Schaper, ganz herzlich danken. Schließlich danke ich
auch Florian Kerber, Michael Lutz und Dr. Andreas Ganser für die Begleitung auf
meinem bisherigen Lebensweg und die schöne Zeit mit euch.

Aachen, November 2017
Alexander Roth

Contents

1 Introduction 1
1.1 Context of the Thesis . 4
1.2 Objectives and Contribution . 4
1.3 Organization of the Thesis . 6
1.4 Related Own Publications . 8

2 Foundations: Model-Driven Development and Data-Centric Application 9
2.1 Model-Driven Development . 9

2.1.1 Domain-Specific (Modeling) Language 10
2.2 MontiCore Language Workbench and Code Generation Framework 11

2.2.1 MontiCore Grammar . 11
2.2.2 AST Generation from MontiCore Grammars 13
2.2.3 Symbol Table . 14
2.2.4 Code Generation . 15

2.3 Data-Centric Applications . 18
2.3.1 Layered Architecture . 19

2.4 Related MDP and MDD Approaches . 19
2.4.1 Related MDP Approaches for Data-Centric Applications 19
2.4.2 Related MDD Approaches for Data-Centric Applications 21

3 Requirements for the Envisioned Methodology 27
3.1 Typical Scenario for Generative Development of a Data-Centric Application 27

3.1.1 Model-Driven Prototyping of Data Structures 28
3.1.2 Model-Driven Development of Data-Centric Applications 30
3.1.3 Roles in the Development and Prototyping Process 32

3.2 Primary High-Level Requirements . 33
3.2.1 General Requirements . 34
3.2.2 Modeling Requirements . 36
3.2.3 Code Generator Requirements . 37
3.2.4 Generated Product Requirements 38

3.3 Envisioned Methods for MDP and MDD of Data-Centric Applications . . 38
3.3.1 MDP of Data Structures with MontiDEx 40
3.3.2 MDD of Data-Centric Applications with MontiDEx 41

xi

4 UML Class Diagrams in Analysis, Design and Implementation 45
4.1 Analysis, Design, and Implementation Model 45

4.1.1 Language Concepts in Analysis Models 47
4.2 CD4A: Modeling Language for Analysis Models 47

4.2.1 Model Definition . 48
4.2.2 Interfaces, Classes, and Enumerations 49
4.2.3 Attributes and Predefined Data Types 50
4.2.4 Associations . 51
4.2.5 Context Conditions . 55

4.3 CD4Code: Modeling Language for Implementation Models 62
4.3.1 Modifiers . 63
4.3.2 Constructor-Signatures . 63
4.3.3 Method-Signatures . 64
4.3.4 CD4Code Interface . 64
4.3.5 CD4Code Enumeration . 65

5 Systematic CD4A ML to a Java Mapping 67
5.1 General Considerations and Mapping Guidelines 67
5.2 Mapping of CD4A Concepts to Java Source Code 69

5.2.1 Mapping CD4A Model Definition 69
5.2.2 Mapping CD4A Interfaces . 70
5.2.3 Mapping CD4A Classes . 71
5.2.4 Mapping CD4A Enumerations . 73
5.2.5 Mapping CD4A Attributes . 74
5.2.6 Mapping CD4A Unidirectional Associations 77
5.2.7 Mapping CD4A Bidirectional Associations 81
5.2.8 Mapping CD4A Ordered Associations 84
5.2.9 Mapping CD4A Qualified Associations 85
5.2.10 Mapping CD4A Derived Associations 88
5.2.11 Mapping CD4A Compositions . 90

5.3 Method for Handling Mandatory-to-Mandatory Associations 91

6 Generated Code Customization via Handcoded Extensions and Hot Spots 95
6.1 General Considerations of Handcoded Extensions 96

6.1.1 Separation of Generated and Non-Generated Artifacts 96
6.1.2 Override-Static-Pattern . 97

6.2 Integration of Generated and Non-Generated Code 99
6.2.1 Implementation of Interface Extensions using Java-Default Interfaces101
6.2.2 CD4A Hierarchy and Handcoded Extensions 102

6.3 Customization via Hot Spots in Generated Source Code 103

6.4 Methods for using Handcoded Extensions 104
6.4.1 Extending and Associating External Data Types in CD4A Models 106

7 A Customizable Data-Centric Infrastructure 109
7.1 General Considerations and Architectural Design Drivers 110

7.1.1 Architectural Impact of Infrastructure Customization 112
7.1.2 Type-specific Method Invocation via Double Dispatching 112
7.1.3 Run-time Environment and Modularity 113

7.2 Mapping CD4A Models to an Application Layer 114
7.2.1 Object Instantiation and Manipulation 114
7.2.2 Data Structure Management . 117

7.3 Mapping CD4A Models to a Presentation Layer 120
7.3.1 Mapping Model Definition, Interfaces, Classes, and Enumerations . 121
7.3.2 Technical Realization of GUI Architecture 126
7.3.3 Manipulating Objects via Model-Specific Commands 129
7.3.4 Managing Execution of Model-Specific Commands 130

7.4 Generic Persistence Infrastructure . 133
7.4.1 Generic CD4A Meta-Model . 133
7.4.2 Multi-Tenancy and Role-Base Access Control 135
7.4.3 Technical Realization of Accessing the WebService 137

7.5 Mapping CD4A Models to a Persistence Layer 140
7.5.1 Lazy Loading of Objects from the Persistence Infrastructure . . . 140

7.6 Method for Consistent Data Migration . 141

8 Synergetic Transformation- and Template-based Code Generation 145
8.1 General Requirements . 146
8.2 Integration of Transformation- and Template-based Code Generation . . . 147

8.2.1 Case Example: Statecharts-to-Java Source Code 149
8.2.2 An Object-Oriented Intermediate Representation using CD4Code . 150
8.2.3 Model-to-Model Transformations 151
8.2.4 Adding Implementation Details via Template Attachments 154
8.2.5 Model-To-Text Transformation . 155

8.3 Template Adaptation via Template Hook Points and Template Extensions 157
8.3.1 Adaptation via Template Hook Points 157
8.3.2 Adaptation via Template Extensions 158
8.3.3 Technical Realization in MontiCore 160

8.4 Methods for Transformation Design and Management 162
8.4.1 Method for Transformation and Template Development 162

9 MontiDEx: MontiCore Data Explorer Code Generator 165
9.1 Technique to Handle Underspecification in MontiDEx 166

9.1.1 CD4A Underspecification and Defaults 167
9.2 MontiDEx Architecture and Technical Realization 168

9.2.1 Technical Realization of the Common Infrastructure 168
9.3 Methods for Code Generator Configuration 173

9.3.1 Technical Realization of MontiDEx Configurations 174
9.4 MontiDEx Reporting Facility . 177

9.4.1 Textual Reports . 177
9.4.2 Graphical Report . 179

9.5 Method for Adapting and Deploying MontiDEx 180
9.5.1 Method for Adapting the MontiDEx Code Generator 181
9.5.2 MontiDEx Project Types and Deployment 181

10 Case Example: Extended Infrastructure for Process Automation 183
10.1 General Considerations and Requirements 184
10.2 ADJava: Activity Diagram Modeling Language 185

10.2.1 Activity Definition . 186
10.2.2 Actions . 188
10.2.3 Object Nodes . 189
10.2.4 Control And Object Flow . 190
10.2.5 Roles . 193
10.2.6 Pin and Type Auto-Connect . 193

10.3 Execution of ADJava Models . 196
10.3.1 Method for Interpretation of ADJava Models 198
10.3.2 Code Generation from ADJava Models 200
10.3.3 Technical Realization of the Extended Data-Centric Infrastructure 204
10.3.4 Technical Realization of the MontiDEx Code Generator Extension 205

10.4 Method for Developing Processes with ADJava 207
10.5 Evaluation and Limitation . 208

10.5.1 Evaluation of MontiDEx Customization and Adaptation Approaches208
10.5.2 Limitations . 209

11 Case Example: MDP and MDD with MontiDEx 211
11.1 Points-of-Interest Management System . 211

11.1.1 Technical Realization . 212
11.1.2 Discussion . 215

11.2 Audio and Video Streaming Platform . 215
11.2.1 Technical Realization . 217
11.2.2 Discussion . 220

11.3 Examination Regulation System . 223
11.3.1 Technical Realization . 224
11.3.2 Discussion . 225

12 Conclusion 227
12.1 Summary . 227
12.2 Potential Future Work . 229

Bibliography 231

A Index of Abbreviations 255

B Diagram and Listing Tags 257

C Grammars 259
C.1 CD4Code Grammar . 259
C.2 Activity Diagram Language Grammar . 261
C.3 Activity Diagram Language Grammar with Embedded Java 264

D Examples 265
D.1 CD4A Model for Banking System . 265
D.2 CD4A Model for the POI Management System 267
D.3 CD4A Model for the Audio and Video Streaming 268
D.4 CD4A Model for the Examination Regulation System 270
D.5 Activity Diagram for Transaction Submission 275

E Context Conditions 277
E.1 CD4A Context Conditions . 277
E.2 CD4Code Context Conditions . 283
E.3 Activity Context Conditions . 284

F MontiDEx Hot Spots 295
F.1 Graphical User Interface . 295
F.2 Application Core . 307
F.3 Persistence . 307

G MontiDEx Package Structure 309

H MontiDEx Hook Points 311

I Curriculum Vitae 313

List of Figures 315

Listings 321

List of Tables 325

Chapter 1

Introduction

Due to current trends such as Industry 4.0 [Gil16], Internet of Things (IoT) [AIM10],
and Big Data [CML14], harvesting, storing, and manipulating structured information
has become an essential concern in software development. The term “structured” em-
phasizes the property of information to be decomposed into interconnected conceptual
units. The manipulation by predefined CRUD (Create, Read, Update, and Delete oper-
ations) operations and persistent storage of structured information is the main concern
of an information system (InfoSys) [Kaj12]. A part of an InfoSys are lightweight client
applications with a graphical user interface (GUI) to execute the predefined CRUD oper-
ations and display the stored information; provide access to a persistence infrastructure,
which stores managed data; and support process automation, which, in this thesis, is
considered as the automated execution of CRUD operations on the managed data. In this
thesis, such lightweight client applications are considered as data-centric applications.

Among others, an important task of data-centric application development - that is
part of most software projects [HL01] - is prototyping, which is the development of a
first version (i.e., prototype) of the product for demonstration purposes [Som10]. For
example, such a prototype can be used to consolidate the requirements with the end
user (cf. Section 3.1.3) regarding the information to be managed. The development
of a data-centric application prototype involves, among others, the implementation of a
GUI and a source-code-representation of the structured information (subsequently called
data structure), which is the mapping of the structured information to classes, attributes,
and methods in a general purpose programming language (GPL). A working prototype
is necessary, because “information gathering is most effective if it is based on something
that works” [MFM+13]. Manually implementing a data-centric application prototype is
a repetitive, time-consuming, and error-prone task, which has to be repeated multiple
times, because the prototype is iteratively improved and evaluated with end users of the
final product [Som10]. An additional drawback of manually implementing prototypes is
that the structured information being prototyped is not used as a primary development
artifact such as, e.g., source code.

A data-centric application product (short: data-centric application) is developed,
based on the requirements identified during prototyping. The development of a data-
centric application involves, among others, implementing a GUI, a data structure, and

1

Chapter 1 Introduction

provide access to a persistence infrastructure, which facilitates management of multiple
users, and implementation of support for process automation. In addition, the data struc-
ture has to ensure data consistency, i.e., the constraints in the structured information are
not violated. This is necessary to reduce the gap between the structured information’s
description and its implementation. These development tasks are a superset of the devel-
opment tasks needed for data-centric application prototype development. Hence, manual
development of data-centric applications yields at least the same drawbacks as data-
centric application prototyping. To reduce these drawbacks, a data-centric application
prototype can be used to support implementation tasks [BPRFF15]. In particular, reuse
of artifacts, which are developed during prototyping, saves time and effort [MFM+13]
and may even yield a productivity improvement in the order-of-magnitude [vL00].

Model-driven development (MDD) aims to reduce manual development effort, im-
prove software quality, and reduce development costs [BCW12] by employing abstract
and platform-independent models as means to describe (parts of) the software systems.
For example, the structured information managed by a data-centric application can be
described by UML class diagram (UML CD) models [www15b] and processes can be de-
scribed by UML activity diagram (UML AD) models [www15b]. Each abstract model,
which is an instance of a domain-specific language (DSL)1, is systematically transformed
into platform-dependent source code (subsequently called generated source code), i.e., the
input language’s concepts are mapped to target language source code using a mapping,
by corresponding MDD tools (MDSD-Tools in [SVC06]). The generated source code
represents either a part of a software system, e.g., the data structure of a data-centric
application, or the whole software system, e.g., data-centric application.

Existing approaches for prototyping of data-centric applications (subsequently called
model-driven prototyping (MDP)) mainly address prototyping of GUIs [MP03, MP04,
MFM+13] or prototyping of use cases [LLHL05, LL08] without generating fully functional
prototypes for data structure prototyping. However, not fully functional prototypes ham-
per requirement elucidation of the data structure. Other approaches are restricted in
means to describe data structures to 1-to-many and 1-to-1 relations [MSHL06], which is
a rather hard restriction that omits the most commonly used relations (i.e., all combina-
tions of [1], [0..1], [1..*], and [*] [BFL13]). Finally, other approaches omit un-
derspecification in data structure description [FBLS12, Let14a, Let14b, GAL15], which
hampers prototyping in early stages of development, where requirements are vague but
a prototype has to be developed.

Similar issues hold for MDD of data-centric applications: large scale MDD approaches
(i.e., development of information systems) [BHKN96, KVR02, Dog08, Sub15] introduce

1A DSL is a“language that is specifically dedicated to a domain of interest” [CCF+15], where a language
is a means for communication between stakeholders and machines. It restricts the amount of sentences
that can be communicated [CCF+15]. In the remainder of this thesis, we use DSL and domain-specific
modeling language (DSML) (short modeling language (ML)) interchangeably, because they cannot be
separated [Loo17]. A more detailed explanation is given in Section 2.1.1.

2

an overhead of maintaining DSLs and MDD tools (cf. [MK09]) to describe and develop
the overall software system, which has led to reduced acceptance (cf. [KBR11]); address
teaching purposes [PBCN15] or MDD of GUIs only [Van05, Aki13, JC15] generating a
code frame that has to be manually extended; are limited in configuration and adaptation
mechanisms of MDD tools to building blocks [KR08] and modular templates [Sol10] and,
hence, do not facilitate black-box extension and adaptation of MDD tool to improve
artifact reuse from MDP; and only facilitate framework-like use with a minimal GUI
and minimal configuration and adaptation capabilities [Lan16].

Hence, the goal of this thesis is to contribute methods and concepts to a lightweight
and agile MDP and MDD approach for data-centric applications that differ from existing
lightweight approaches in terms of:

• Applicability to MDP and MDD of data-centric applications.

• Support for underspecification in data structure descriptions.

• Mechanisms for configuration, customization, and adaptation of the generated
source code and MDD tools.

In particular, this thesis presents:

• A language family2 to model structured information (i.e, analysis model in MDP
and domain model in MDD of data-centric applications3); and to specify processes.

• A mapping from analysis models to Java source code (i.e., the data structure). It
extends existing mappings [Rum12, BFL13] to ensure data consistency.

• A data-centric infrastructure extending the data structure to a data-centric appli-
cation or prototype and enables modular and framework-like use and extension.

• Explicit mechanisms to customize the generated source code as well as the data-
centric infrastructure.

• Adaptation and extension mechanisms for MDD tools.

• An extended data-centric infrastructure supporting process automation.

2A language family is a collection of languages, each of which models a different system aspect, that
can be interpreted together [Wor16].

3In this thesis, analysis and domain models are lightweight UML CD models, which describe the struc-
tured information of a data-centric application (cf. Section 4.1). In this thesis, they are considered
to use the same UML CD language concepts but are distinguished by name because analysis models
are used for MDP, whereas domain models are used for MDD of data-centric applications. Hence,
we use the terms interchangeably.

3

Chapter 1 Introduction

This first chapter introduces the context of this thesis in Section 1.1. Afterwards, the
thesis’ objectives and contributions are described in Section 1.2 and the thesis’ structure
is explained in Section 1.3. Finally, an overview of related publications created in the
course of this thesis are presented in Section 1.4.

1.1 Context of the Thesis

The foundation for the developed concepts and tools is formed by previous research of
the chair of Software Engineering at the RWTH Aachen University. In more detail,
the DSL for describing structured information is founded on the UML/P class dia-
gram (UML/P CD) ML [Sch12, Rum16] but with language concept restrictions such
as omitting methods, constructors, and visibility. A restriction of language concepts is
necessary to support the language’s successful use (cf. [KKP+09]) as means to describe
analysis models. The language for process description is an extended variant of an al-
ready proposed DSL [Rei15] with additional concepts to simplify control/object flows,
explicit function-like notion for input and output pins, and an auto-connect approach
to automatically connect input and output pins based on their type and name, which is
founded on the auto-connect capabilities of MontiArc [Hab15]. The modular design of
the generated data-centric infrastructure is based on approaches for modular infrastruc-
tures [Her13, Loo17]. Finally, the persistence infrastructure is founded on concepts for
enterprise application development [Loo17].

The technical realization of this thesis is based on the MontiCore (MC) language
workbench and code generation framework (cf. Section 2.2). In particular, it has been
used for the development of:

• The UML class diagram for analysis (CD4A) ML, which is a DSL for analysis
models developed in this thesis.

• The UML class diagram for code (CD4Code) ML, which is a DSL used in the code
generation approach as an intermediate representation developed in this thesis.

• The UML activity diagram with embedded JavaDSL (ADJava) ML, which is a DSL
for process description developed in this thesis.

• The MontiCore Data Explorer (MontiDEx) code generator, which is the developed
MDD tool support.

1.2 Objectives and Contribution

The goal of this thesis can be summarized in the following research question:

4

1.2 Objectives and Contribution

How can a generative approach support effective and agile data structure pro-
totyping and development of customizable data-centric applications by adequate
languages, extensible and adaptable tools, and methods?

This thesis aims to improve efficiency in the development and data structure proto-
typing of data-centric applications by reducing the necessary manual implementation
effort for repetitive implementation tasks. In particular, implementing a GUI, a data
structure that ensures data consistency, a connection to a persistence infrastructure, and
support for process automation. By providing suitable languages, code generators, and
methods, the goal is to achieve effectiveness of data-centric application development in
an agile development environment.

In addition, because such an approach is always accompanied by customization, adap-
tation, and extension concerns (cf. [SVC06]), we aim for mechanisms that allow manually-
written customizations of the generated source code to improve application developer’s
(cf. Section 3.1.3) acceptance (cf. [KBR11]); and a modular and adaptable code generator
to enable code generator reuse (cf. [ZR11b]).

The main contributions of this thesis can be summarized as follows:

• Provide a language family that consists of the CD4A ML to describe the structural
properties of analysis models omitting technical details, and the ADJava ML for
process modeling.

• A systematic CD4A-to-Java mapping that maps each CD4A language concept to
Java source code, which represents a data structure that ensures data consistency.
This mapping explicitly resolves semantic variation points4 in CD4A models by
suitable defaults.

The mapping also aims to avoid inspection of the generated implementation code,
when customizing it. Instead, only the knowledge of the mapping and the generated
interfaces is required to customize generated source code.

• A method to implement a modular and customizable data-centric infrastructure
that is extended by a CD4A-specific part to use the data structure and implement
a data-centric application or data-centric application prototype. The data-centric
infrastructure uses a three-layer architectural style [BHS07] (a presentation, ap-
plication, and persistence layer), which is divided into a model-dependent and
model-independent part (cf. [SVC06]). For each model-dependent part of a layer,
we present a mapping of CD4A language concepts to Java source code.

• The Extended Generation Gap-Pattern, which is a design pattern based on the
Generation Gap-Pattern [Vli98, Fow10], to support customization of generated

4A semantic variation point is“a point of variation in the semantics of the UML metamodel and provides
an intentional degree of freedom” [CCS13].

5

Chapter 1 Introduction

source code. However, the Extended Generation Gap-Pattern only requires the
knowledge of the generated interface rather than the implementation and omits
processing the generated source code. Furthermore, because it separates generated
and non-generated artifacts, application developers (cf. Section 3.1.3) only need to
version and manage non-generated source code.

• An extensible and adaptable code generation approach that is an integration of
transformation- and template-based code generation. The approach maps a CD4A
model to a CD4Code model, which is a DSL developed in this thesis to repre-
sent the object-oriented structure of the generated Java source code (subsequently
called: intermediate representation (IR)); uses transformations on the IR; and al-
lows to attach templates defining target language specific implementation details.
This code generation approach supports generator developers (cf. Section 3.1.3) in
designing modular and reusable code generators (i.e., MDD tools), and facilitate
adaptation by supporting manually-written transformations and templates.

• A method to implement an extension of the data-centric infrastructure for model-
ing and execution of processes. This extended data-centric infrastructure enables
modelers (cf. Section 3.1.3) to create ADJava models to specify processes with-
out knowing the technical details. Each created ADJava model is executed by
an interpreter. Action implementations can be added via handcoded extensions
by application developers. Alternatively, senior application developers (cf. Sec-
tion 3.1.3) can enrich ADJava models with Java source code. In this case, we
provide a code generator that generates executable Java source code to reduce the
manual implementation effort of application developers.

• A method to implement a code generator that realizes the proposed mappings and
integrated code generation approach but additionally facilitates configurability and
adaptability to enable code generator reuse. The proposed method aims to guide
generator developers in developing configurable and modular code generators.

• To efficiently apply the proposed concepts and tools, lightweight methods for MDP
and MDD of data-centric applications as well as guidelines for customization, adap-
tation, and extension of the technical realization are presented.

1.3 Organization of the Thesis

In order to answer the research question and present the developed concepts and meth-
ods, this thesis is structured as follows:

Chapter 2 introduces the foundations of data-centric applications. Moreover, the main
elements of MDD are explained and the MC language workbench and code gener-

6

1.3 Organization of the Thesis

ation framework, which offers tool support for language engineering and code gen-
erator development, is described. This chapter also points out related approaches
for MDP and MDD of data-centric applications.

Chapter 3 presents the envisioned methods for MDP and MDD of data-centric applica-
tions. These methods show how to use the proposed approach and points out the
different roles and their concerns. In addition, the main requirements for this thesis
are emphasized and structured according to the following dimensions: general con-
siderations, modeling requirements, code generator requirements, and generated
product requirements.

Chapter 4 introduces the CD4A ML to specify the structured information managed by
data-centric applications. Furthermore, this chapter presents the CD4Code ML as
an extension of CD4A ML. The focus of this chapter are modelers of data-centric
applications and data-centric application prototypes as well as code generator de-
velopers using the proposed code generation approach.

Chapter 5 addresses generator developers and describes the mapping of the CD4A ML
to Java source code, which represents the data structure. This chapter also high-
lights how data consistency is regarded by the mapping.

Chapter 6 presents the Extended Generation Gap-Pattern to customize the generated
source code. This chapter, additionally, points out hot spots as an essential element
for customization of generated source code.

Chapter 7 introduces the mapping of the CD4A ML to a data-centric infrastructure
including a presentation, an application, and a persistence layer. In addition, a
method to realize a generic persistence infrastructure for data-centric applications
is described.

Chapter 8 describes the integration of transformation- and template-based code gen-
eration to provide a flexible and adaptable code generation approach. This code
generation approach facilitates manually-written adaptations and extensions and
is essential to support code generator reuse.

Chapter 9 presents the MontiDEx code generator that implements the proposed code
generation approach and the mapping to generate data-centric applications.

Chapter 10 presents the extended data-centric application infrastructure to specify and
execute ADJava models. This chapter shows a case example of extending the Mon-
tiDEx code generator via the provided customization and adaptation approaches.

Chapter 11 presents case examples in which the MontiDEx framework has been evalu-
ated in the MDP and MDD of data-centric applications.

7

Chapter 1 Introduction

Chapter 12 concludes this thesis and presents the thesis’ results. In addition, short-
comings and potential future research challenges are highlighted.

1.4 Related Own Publications

In the context of this thesis, different research publications have been contributed. They
cover varying aspects of this thesis as pointed out subsequently.

• Model Evolution: Since the proposed approach highly relies on models, it is essen-
tial to address upcoming concerns such as model evolution, which focuses on the
continuous change of models over time. A conceptual model for model evolution
has been created [GLRR13, RGLR13, GLRR15].

• Code Generator Product Lines: The methods and concepts of extensibility and
adaptability of code generators enable product line engineering. Code generator
product lines essentially differ from common software product lines and as such
are currently a research topic. Essential requirements for a code generator to
support code generator product lines are pointed out [RR15]. The configuration
and adaptation approaches developed in the course of this thesis (cf. Chapter 9)
have been applied to different code generators [GMR+16, Mül17].

• Code Generator Development and Testing : Methods for developing and testing
code generators are essential assets to enable their reusability and maintainability.
An approach to develop composable code generators, which is based on explicit
interface definitions, has been proposed [RRRW15]. This approach has been ap-
plied to the MontiDEx code generator to enable a modular code generator de-
sign [MSNRR15a]. Finally, an approach to support testing of such modular code
generators in early stages of development has been presented [KLM+16].

• Generation of Data-Centric Applications: The MontiDEx code generator and the
manual extension for developing data-centric applications have been demonstrated
in [MSNRR15c].

• Handcoded Extensions: With the chosen MDD approach that is based on defaults
and assumptions about the generated product, methods to mix generated and non-
generated source code have been exploited to enable manually-written extensions
of the generated products. An overview of existing approaches has been given and
a new approach for handcoded extensions, which is used throughout this thesis,
has been proposed [MSNRR15b, GHK+15a, GHK+15b].

8

Chapter 2

Foundations: Model-Driven Development
and Data-Centric Application

While in Chapter 1 the need to reduce the manual implementation effort in the devel-
opment and prototyping of data-centric applications is motivated, this chapter explains
the concepts, methods, and tools on which this thesis is founded. In particular, MDD
is introduced in Section 2.1. The MC framework for DSL and code generator develop-
ment, which provides tool support for MDD, is described in Section 2.2. Afterwards,
a definition of data-centric applications, which is used throughout this thesis, is given
in Section 2.3. Finally, related approaches for MDP and MDD of data-centric applica-
tions are discussed in Section 2.4.

2.1 Model-Driven Development

Model-driven development (MDD) is a software development process that naturally re-
sulted from the trend of abstraction and automation in software development such as
computer aided software engineering (CASE) [Cas85]. Abstraction provides an approach
to tackle the increasing complexity of software systems [BCW12], which is mainly caused
by the high-level abstraction used by domain experts and the required low-level abstrac-
tion provided by GPLs (cf. [FR07]). This gap between high-level and low-level abstrac-
tion is bridged by automation [CCF+15], which systematically transforms the high-level
abstraction to low-level abstraction (executable source code).

The high-level abstraction written down in textual or graphical notion is called model.
Its meaning is not clearly defined (cf. [MFBC12]) but it is commonly accepted that a
model is characterized by three characteristics [CCF+15]: there is an original that is
modeled; the model is an abstraction of the original; and with respect to the original the
model has a purpose. In this thesis, the following definition of a model is used:

Definition 1 (Model). “A model is an abstraction of a (real or language based) [software]
system allowing predictions or inferences to be made.” [Küh06].

From this definition, we can conclude that a model describes a software system or a
part of it. In general, two types of models are distinguished (cf. [FHR08]). Descriptive

9

Chapter 2 Foundations: Model-Driven Development and Data-Centric
Application

models describe an original, e.g., existing software system, to better understand the
original. Prescriptive models describe an original that is created from the model.

From this understanding of a model, MDD describes “the notion that we can con-
struct a model of a system that we can then transform into the real thing.” [MCF03].
MDD’s defining characteristic is that models are lifted from documentary purpose and
become the fundamental artifacts in the development process [AK03, MCF03]. They
raise the level of abstraction to a description of relevant properties only. Hence, models
“are considered equal to code” [SVC06]. Among others, this use of models separates
MDD from model-based engineering and model-driven engineering (cf. [BCW12]). Nev-
ertheless, the mentality that “everything is a model” [Béz05] is common to all processes
(cf. [RdS15]). However, MDD does not describe when to use which model, because MDD
is process-agnostic [BCW12].

MDD’s main benefits are summarized as follows:

• MDD reduces the time needed to develop software, increases quality of software,
and is platform independent [SVC06, Kul16].

• The communication between stakeholders is more effective and productivity is
increased due to automation [BCW12, MGS+13].

Multiple domains including automotive [HRR12], cloud-based applications [NPR13],
and robotics [RRW14, Wor16] have applied MDD. However, several challenges have been
identified when introducing MDD in a software project. First, agile software development
and MDD cannot easily be combined and require a combination of agile and plan-driven
methodologies [KBR11]. Second, with the crucial role of models their quality, tooling for
creating, managing, and refactoring models are of high importance (cf. [Ken02, CHN12]).

2.1.1 Domain-Specific (Modeling) Language

A model is not usable without means of writing it down. This can be done using a general
purpose modeling language (GPML), which is not tailored to a particular domain; or a
domain-specific language (DSL), which is a language that uses concepts from a domain.
A DSL is defined as follows:

Definition 2 (Domain-Specific Language (DSL)). A DSL is a “language that is specifi-
cally dedicated to a domain of interest” [CCF+15].

This definition leaves out the clarification of the understanding of a language, which
is a means for communication between stakeholders using a restricted amount of sen-
tences [CCF+15]. Moreover, the terms DSML (short ML) and DSL as well as GPML
and GPL are used interchangeably, because they cannot be separated [Loo17].

10

2.2 MontiCore Language Workbench and Code Generation Framework

A DSL targets to bridge the gap between problem and solution space [CCF+15]. In
contrast to GPLs, developers of DSLs favor restrictive design or even drop Turing-
completeness. The border between DSL and GPL is vague but DSLs are typically
smaller, usually declarative languages (cf. [VBD+13]).

2.2 MontiCore Language Workbench and Code Generation
Framework

A DSL is defined by a concrete syntax, an abstract syntax, a set of context conditions,
and semantics [HR00, HR04, MSN17]. The concrete syntax defines the language’s repre-
sentation using a textual or graphical notion [KRV07, GKR+07, MSN17]. The abstract
syntax describes the syntactic structure of a model neglecting semantically irrelevant
elements, i.e., syntactic sugar. In MC, the abstract syntax consists of a tree-like rep-
resentation of the model, namely abstract syntax tree (AST), and a symbol table (ST),
which stores additional information for model elements [MSN17]. In addition, context
conditions are predicates defined with respect to the abstract syntax to determine the
language’s consistency [Sch12, MSN17]. Finally, the semantics define the language’s
meaning and can be specified in different ways as described in [MSN17].

A language workbench is a tool that enables agile language engineering of DSLs and
provides tools to analyze, manipulate, and transform them. In contrast to existing
language workbenches existing (many of them are listed in the Language Workbench
Challenge [EvdSV+13]), the MC language workbench and code generation framework
is lightweight and highly customizable [GKR+08, KRV08, Kra10, KRV10, Vö11, Sch12,
Rei15, Hab15, Loo17, MSN17].

The MC language workbench operates as a generator generator, which uses a grammar
definition to generate a generator for models defined by the grammar, or as a code
generator that consumes models conforming to a grammar and produces source code.

MC’s core architecture is shown in Figure 2.1. The input are models are processed by a
Parser to create an AST (AST). Control Scripts using the Workflow Execution
allow to choose and configure multiple workflows to be executed on the model, e.g., pars-
ing, context conditions checks, or code generation. The Template Engine produces
artifacts such as concrete source code or reports by using multiple Templates and
the created AST. Technically, MC uses the FreeMarker template engine [www15a]. Fi-
nally, the Workflow Execution, the Tempate Engine, and the AST have access to
common functionality, which is shared via the Functional Library.

2.2.1 MontiCore Grammar

MC uses its own EBNF-based DSL to define a grammar for a DSL. This grammar
definition specifies the concrete and the abstract syntax of a DSL [KRV07, MSN17]. From

11

Chapter 2 Foundations: Model-Driven Development and Data-Centric
Application

Control Script
Workflow

Execution

Model Parser

Functional

Library

AST Template

Engine

Template

Code,

Reports, etc.
Code,

Reports, etc.
Code,

Reports, etc.

Key: uses/accesses input/output

CpD

Figure 2.1: MC’s code generation architecture for model processing and code generation
based on [MSN17].

this grammar, MC generates an AST, a parser, visitors, and an infrastructure for context
conditions for processing models conforming to the grammar. Subsequently, we briefly
introduce the MC grammar DSL. Interested readers are advised to consider [MSN17] for
a detailed description.

A MC grammar consists of terminals, nonterminals, and productions. Terminals are
the atomic elements of a grammar and describe the concrete syntax of a language. Non-
terminals are symbols that are defined by a production and can be replaced accordingly.
Each production consists of a left-hand-side (LHS) and a right-hand-side (RHS), where
the LHS defines a nonterminal and the RHS consists of lexicals, terminals, and nontermi-
nals connected by predefined operators such as "|" (alternative), "?" (optional), "*"
(arbitrary many), and "+" (at least one). Note that the RHS of productions can also be
empty. In addition, MC supports inheritance, extension, and overwriting of productions.

For example, a MC grammar is shown in Listing 2.1. It describes the grammar for a
lightweight UML CD DSL. Each grammar starts with the grammar keyword followed by
a name (l.1). Terminals are defined between quotation marks, e.g., "classdiagram"
in l.2. Terminals can also be marked as optional terminals, e.g., ["abstract"]? in
l.8. Nonterminals are defined on the LHS of a production, e.g., CDDefinition in l.2,
and can also inherit from other productions by using the implements keyword. For
example, in l.6 and l.8 the interface production in l.4 is implemented. An interface pro-
duction introduce an interface in the AST and is defined with the interface keyword
and a name. In addition, lexical productions can be defined by the token keyword
and a name to define lexicals, e.g., token Name = (’a’..’z’)+. MC has a set of
predefined lexical productions (cf. [MSN17]).

MC supports additional advanced features such as component grammars to define
incomplete grammars intended for extensions. Such grammars can be composed by

12

2.2 MontiCore Language Workbench and Code Generation Framework

MCG1 grammar SimpleCD {
2 CDDefinition = "classdiagram" Name "{" CDType* "}";
3

4 interface CDType;
5

6 CDInterface implements CDType = "interface" Name;
7

8 CDClass implements CDType = ["abstract"]? "class" Name
9 ("extends" superclass:Name)?

10 }

Listing 2.1: An example of a MC grammar for a lightweight UML CD DSL.

inheritance or embedding and are essential to realize language inheritance and language
embedding [LNPR+13, HLMSN+15a, HLMSN+15b, Wor16, Loo17, MSN17].

2.2.2 AST Generation from MontiCore Grammars

MC systematically synthesizes an AST from a MC grammar definition. In the remainder
of this section, the systematic mapping of the MC grammar to an AST is described.

In general, terminals are not part of the generated AST. However, if a terminal is
assigned with a name, e.g., (type:"class" | type:"interface"), then this ter-
minal is mapped to a String AST attribute. Moreover, if a terminal is optional, e.g.,
["abstract"]?, the terminal is mapped to a boolean AST attribute.

Each nonterminal is mapped to an AST-class having the same name and a AST prefix,
if it is on the LHS of a production. If the nonterminal is on the RHS, then it is mapped
to a composition between the AST of the nonterminal on the LHS and the AST of
the nonterminal on the RHS. Each lexical production is mapped to a String in the
AST-class where it is used.

For example, Figure 2.2 illustrates the generated AST from the grammar specified
in Listing 2.1. In this example, the CDDefinition nonterminal is mapped to the
ASTCDDefinition AST-class having a String attribute for the Name lexical produc-
tion. The same approach is used for the CDClass and CDInterface nonterminals,
which are mapped to ASTCDClass and ASTCDInterface respectively. Moreover, the
["abstract"]? terminal is mapped to the boolean value isAbstract. The in-
terface production (l.4 in Listing 2.1) is mapped to the interface ASTCDTypes, which
is implemented by the AST classes representing the implementing nonterminals, i.e.,
ASTCDInterface and ASTCDClass.

This example also shows how operators are mapped. The optional ("?") operator is
mapped to an optional variable as shown for ("extends" superclass:Name)? (l.9
in Listing 2.1), which is mapped to an Optional<String> superclass variable.

13

Chapter 2 Foundations: Model-Driven Development and Data-Centric
Application

ASTCDDefinition

String name

ASTCDInterface

String name

* «interface»

ASTCDTypes «GEN»

ASTCDClass

boolean isAbstract

String name

Optional<String> superclass

AST-CD

Figure 2.2: The generated AST from the MC grammar defined in Listing 2.1.

Note that the name given ("superclass") is used for the AST variable name rather
then the name of the lexical. Moreover, the arbitrary many ("*") and the at least one
("+") operators are mapped to a composition with "*" cardinality, e.g., the composition
between ASTCDDefinition and ASTCDTypes.

2.2.3 Symbol Table

Besides the AST, MC provides an additional data structure, which allows to add ad-
ditional model element information. Such an infrastructure is in particular necessary
when dealing with names to enable efficient navigation between a name’s definition and
its use. Hence, names are the primary concept used in a symbol table (ST), which is
defined as follows:

Definition 3 (Symbol Table (ST)). A ST is a data structure that maps names to es-
sential information about a concept denoted by the name. [MSN17]

In MC, STs are derived from grammar definitions in a systematic way. Hence, MC
provides a code generator to generate a ST infrastructure. For a detailed description,
interested readers are advised to consider [MSN17].

An element of a ST containing all essential information about a named model element
is called a symbol and is defined as follows:

Definition 4 (Symbol). “A symbol definition (or short symbol) contains all essential
information about a named model element. It has a specific kind depending on the model
element it denotes. A symbol is defined exactly once.” [MSN17]

Each symbol has a kind that denotes the kind of the model element it refers to, e.g.,
class or enumeration. Depending on the symbol’s kind, the additional information to be
stored may vary. Each symbol has a visibility, which is the “region where the symbol is
accessible through its name” [MSN17]. This visibility is controlled by access modifiers
depending on the symbol’s context, e.g., private and protected in Java. Moreover, a

14

2.2 MontiCore Language Workbench and Code Generation Framework

symbol can be shadowed by other symbols, e.g., a local variable shadows a global variable
in Java. Shadowing is within a model, whereas access modifiers determine access from
other models.

Each symbol is associated with one scope to help defining language-specific STs:

Definition 5 (Scope). “A scope holds a collection of symbol definitions and impacts
their visibility.” [MSN17]

In MC, scopes are tree-like structures attached to named elements in the ST. An
example are local variables in Java, which are grouped together by the method in which
they are defined. Scopes are distinguished into shadowing scopes, which may shadow
names from their enclosing scope(s), and visibility scopes, which are all other scopes. By
default, MC provides an artifact scope, which represents the scope of an artifact. It is
the top scope of a model and represents a shadowing scope. Multiple artifact scopes are
grouped by the global scope, which also forms the root of a scope tree.

2.2.4 Code Generation

The MC architecture (Figure 2.1 on page 12) can be separated into a front-end, which
is concerned with language processing such as parsing, checking context conditions, and
ST creation; and a back-end, which performs a model-to-text transformation of the AST
to concrete source code.

Although no common understanding of a generator exists, the following definition
combines its main elements (based on [Kra10, Sch12, RR15]):

Definition 6 (Generator). A generator is a software system that produces an imple-
mentation from a higher-level description of a (part of a) software system.

A generator’s defining characteristic is that it reduces the level of abstraction of the
input by producing an implementation. Thereby, neither the input nor the target lan-
guages or how this model-to-text transformation is performed are predefined.

A special kind of a generator restricting the input to models (Section 2.1) and the
target language to GPLs is the code generator (cf. [Jör13]), which is defined as follows:

Definition 7 (Code Generator). A code generator is a generator that produces an im-
plementation using a GPL from a set of input models.

This definition still contains code generators that hamper effective use in MDD. Hence,
we define the following characteristics of a code generator: (i) a code generator always
terminates, (ii) is deterministic, (iii) is not an interactive system, and (iv) generates at
least one output artifact.

To perform the transformation from input to output, each abstract concept of the input
language is mapped to concrete concepts of the target language (cf. [CE00, VBD+13]).

15

Chapter 2 Foundations: Model-Driven Development and Data-Centric
Application

An overview of existing approaches for this transformation is shown in [Jör13, VBD+13].
Among them, template-based [Wac09, Kra10, Sch12, CT13] and transformation-based
approaches [CE00, HKGV10, EBBG12, DREP12] are the most common ones used by
modern code generation frameworks such as Xtext [Bet13], MPS [Cam14], Acceleo
[www16a], and Spoofax [www16g].

Subsequently, template- and transformation-based code generation are described, be-
cause they form the foundation for the integrated code generation approach, which is
proposed in this thesis and explained in Chapter 8.

Template-based Code Generation

Template-based code generation is based on templates as the primary development ar-
tifact. Each template consists of plain target language code and additional template
language instructions. Such templates are processed by a template engine to generate
source code conforming to the target language. In addition, a template may require
input arguments. For example, in MC the AST of the input model is passed to each
template such that it can be used by template language instructions.

An overview of template-based code generation based on [Kra10, Sch12] is shown
in Figure 2.3. Assuming that an AST has been successfully created by a Parser, a
Template Engine executes a template for each AST node type, which has previ-
ously been developed for this particular type of AST node. Such templates may call
sub-templates or Embedment Helpers, which are plain Java objects aimed to reduce
complexity of templates by outsourcing dedicated functionality from templates. When
the template engine evaluates a template, it accesses the AST element to compute the
result for template instructions. Afterwards, the result, which is target language-specific
source code, is written into a file.

Model Parser AST
Template

Engine

Code,

Reports, etc.
Code,

Reports, etc.

Embedment

Helper
Template

Java

CpD

Key: uses/accesses input/output

Figure 2.3: An overview of template-based code generation based on [Kra10, Sch12].

A benefit of template-based code generation is that target language code can directly
be written into templates. This is especially necessary when generating GUIs, as identi-
fied in [MK09]. However, template-based code generation may result in unmaintainable

16

2.2 MontiCore Language Workbench and Code Generation Framework

templates because target language source code is mixed with template instructions. This
challenge is only partially addressed by research (e.g., [CT13]). Another drawback is that
ensuring static correctness requires parsing the generated source code [HKGV10].

Transformation-based Code Generation

Transformation-based code generation is another type of code generation. Its primary
development artifact are transformations, each of which manipulates either the AST of
one particular language (endogenous transformation) [CH03, MCvG05]; or performs ma-
nipulations between ASTs of different languages (exogenous transformation) [MCvG05,
MvG06, HKGV10]. Due to the varying understanding and classification of transforma-
tions (e.g., [CH06, Ste08, JBW+14]), we define a transformation as follows:

Definition 8 (Transformation). “A transformation is the automatic generation of a
target model from a source model, according to a transformation definition. A transfor-
mation definition is a set of transformation rules that together describe how a model in
the source language can be transformed into a model in the target language. A transfor-
mation rule is a description of how one or more constructs in the source language can
be transformed into one or more constructs in the target language.” [KWB03]

The overview in Figure 2.4 shows the use of the exogenous transformations for code
generation. After processing a model, the AST of the input model can be used to execute
endogenous transformations. Such transformations can, e.g., be employed to reduce
language concepts (normalization in [HKGV10]). To generate concrete source code,
exogenous transformations are used to create an AST of the target language, e.g., Java
source code. This is typically done by a Transformation Engine, e.g., [Wei12].
Finally, the textual output is produced by systematically printing the transformed AST
of the target language, e.g., by using a pretty printer (unparsing in [Kla06]).

Model Parser

Transformation

JavaAST AST'

Transformation

Engine

Pretty

Printer

input model AST

exogenous
transformation

CpD

Key: uses/accesses input/output transforms to

Figure 2.4: An overview of transformation-based code generation using exogenous trans-
formations to create the target language’s AST.

A benefit of transformation-based approaches is the replacement of calculations on
and traversals of the input model by pattern matching, i.e., search for the input lan-
guage constructs for which a rule is defined (cf. Def. 8). In cases where domain-specific

17

Chapter 2 Foundations: Model-Driven Development and Data-Centric
Application

transformations are employed, e.g., [Vis02, BW07, RW11, Wei12], the concrete target
language syntax can be used to describe the transformation [HKGV10, HRW15]. In
addition, because transformations produce a manipulated AST, well-formedness checks
can be applied to the input and output AST.

Nevertheless, transformation-based approaches require an abstract representation of
the input and output model [HKGV10], and a corresponding transformation language.
Moreover, the output AST contains every detail of the source code to be generated,
which may not always be wanted, e.g., method implementations.

2.3 Data-Centric Applications

Data-centric application consider management of structured and consistent information
as their primary focus. In data-centric applications, the managed structured information
and the application’s behavior are separated in the application’s design. In particular,
the managed structured information represents the application’s state and encapsulates
the application behavior. In this thesis, a data-centric application is defined as:

Definition 9 (Data-Centric Application). A data-centric application is a software sys-
tem that is build around structured and consistent information to provide means to dis-
play, manage, and manipulate such information persistently.

This definition encloses a variety of software systems. In this thesis, a data-centric
application is restricted to a lightweight client application providing a GUI, a client-side
representation of the managed data, a connection to a persistence infrastructure, and
means to support process automation. A data-centric applications can be used as a
front-end for InfoSyss or enterprise applications [Loo17].

Unlike software systems that are built around unstructured data, e.g., plain text doc-
uments, a data-centric application understands the managed structured information to
access and manipulate it. Hence, the strengths of a data-centric approach is that infor-
mation is structurally broken down into essential parts of the application. Each part is
identifiable in the software system’s architecture. In addition, because all relevant data
is persisted, data-centric applications can be stopped and restarted from the stored data.

Technically, a data-centric application is realized by a data-centric infrastructure:

Definition 10 (Data-Centric Infrastructure). A data-centric infrastructure is a technical
realization of a data-centric application that extends a data structure with management
capabilities accessible via a GUI.

In this thesis, management capabilities refer to the (S)CRUD-operations on the man-
aged data and a connection to a persistence infrastructure. Such a data-centric in-
frastructure is independent of any programming language or architecture. However, an
architecture that has proven to be beneficial for such kind of software systems is the
layered architecture, which is explained subsequently.

18

2.4 Related MDP and MDD Approaches

2.3.1 Layered Architecture

The layered architecture is an architectural pattern that decomposes the overall complex-
ity of a software system into multiple stacked interacting layers, each of which represents
an aspect of the overall software system [BHS07]. Layers represent a unidirectional
“allowed-to-use relation” [BCK12] meaning that an upper layer is allowed to use func-
tionality of lower layers. It is, however, possible to break this unidirectional relation in
some cases [Sta09, BCK12], e.g., performance reasons.

A common layering for data-centric application consists of a presentation layer, an
application layer, and a persistence layer (cf. [Sta09, BCK12]), each of which serves a
designated purpose:

Presentation layer (top layer) is concerned with presenting the data and providing func-
tionality to the end user to manage, search, and filter the data.

Application layer (middle layer) is responsible for providing business logic that is defined
relative to the managed data. It represents the domain elements of interest.

Persistence layer (bottom layer) is responsible to store data in a consistent and perma-
nent way. In this thesis, it is assumed that a persistence infrastructure is provided,
as further explained in Section 7.4.

2.4 Related MDP and MDD Approaches

In this thesis, related work is discussed in each chapter whenever appropriate. In this
section, approaches for MDP and MDD that are similar to the approach proposed in this
thesis are presented. In this regard, similarities and differences are explained. However,
the majority of existing approaches for MDP of data-centric applications focuses on GUI
prototyping (an overview of existing approaches is given in [ABY14]). Hence, from such
approaches only those are described that provide management of data structures on the
client. Similar holds for rich internet applications that are omitted, because focus of
this thesis is on client-side applications. For the same reason, only the most common
approaches for MDD of InfoSyss that address similar concerns are regarded. Existing
approaches for enterprise information system and web information system development
are listed in [Loo17] and [Rei15] respectively. Furthermore, a general overview of existing
agile methods to develop different types of software systems is shown in [Alf16].

2.4.1 Related MDP Approaches for Data-Centric Applications

An approach targeting rapid prototype generation of fully functional data-centric ap-
plications has been proposed in [MP03, MP04]. The approach uses a UML profile for
business applications to describe the data structure [PMDM11]. Models conforming to

19

Chapter 2 Foundations: Model-Driven Development and Data-Centric
Application

this UML profile are used to generate source code that extends a generic application, and
generate a database schema. The generic application is an application that comprises
an union of coarse-grained components (subsystems are build by creating sets of asso-
ciated components). In addition, the generic application provides generic forms, which
are extended to build model-specific forms. Each generic form is dynamically adapted
at run-time. Moreover, the generated application provides CRUD operations and more
complex manipulations for the modeled data structure. A code generator used in this
approach consists of a model analyzer, which imports models from a repository and
generates a specification for a HCI; a forms generator, which implements a GUI for pre-
viewing and editing the application specification produced by the model analyzer; a DMP
generator, which supports CRUD operations and more complex operations modeled via
a modeling tool, for complex data manipulation procedures; and a documentation gen-
erator, which generates HTML and RTF documentation. Adaptations of the generated
application are realized within the forms generator, which parses the generated code
and detects changes. In contrast, the approach proposed in this thesis uses a lightweight
data-centric infrastructure that has to be extended by generated source code rather than
a generic application. Moreover, in our approach complex CRUD have to be manually
added to the generated source code. The approach proposes a method for MDP, which
servers as the foundation for the developed method in this thesis. The proposed MDP
method consists of: requirements elicitation, prototype design, prototype construction,
prototype evaluation, and exploitation.

A different approach targets to introduce object-oriented analysis (OOA) techniques
in an educational context [MSHL06]. It addresses the development of a modeling and
implementation approach that is scalable to real life systems. Hence, from a conceptual
domain model, which is a variant of a UML CD model; a proprietary object-event table,
which is a mapping between events and class in the UML CD; and a group of finite state
machines, prototype applications are generated. Each prototype application consists of
a J2EE application with a Java Swing GUI using a three layered application with a GUI,
event handling, and a persistence layer. The mapping from the abstract models to the
prototype is done by a platform-independent-model (PIM) to platform-specific-model
(PSM) transformation. This approach shares a similar architecture as the approach
proposed in this thesis. However, it has the following limitations:

• Lacking a mapping of hierarchies in the conceptual domain model to source code.

• The conceptual domain model is restricted to associations with cardinality 1-to-1
and 1-to-many.

• The generated source code does not ensure data consistency.

Another approach for generating prototypes from unified modeling language (UML)
models of system requirements has been proposed [LLHL05, LL08]. A UML model of

20

2.4 Related MDP and MDD Approaches

system requirements is considered as a UML use case diagram and a conceptual class
model. A UML use case diagram is specified by pairs of pre- and postconditions. A
conceptual model consists of classes with attributes and associations. Both are textually
described using XML. From these models, this approach targets iterative and incremental
development of evolutionary and throw-away prototypes to validate requirements. From
such models a system entity object database (SEOD) with CRUD functionality for each
class and association is generated. In addition, a Use-Case Handler is generated, which
transforms the pre- and postconditions into executable CRUD operations on the SEOD
and handles UML use case diagram execution. Finally, a basic GUI prototype containing
buttons for each use case is generated. In contrast to the approach proposed in this thesis,
this approach targets prototyping based on use cases and is limited in the generated GUI
to perform all CRUD operations independent of use cases. Furthermore, customizability
and adaptability are not explicitly addressed.

An approach to generate a functional prototype from a UML CD and a Statechart
(SC) has been presented in [FBLS12, Let14a, Let14b, GAL15]. It is based on the Umple
modeling tool and programming language family, which consists of a DSL for UML CD
and a DSL for SC. The language family supports integration of target language source
code such as Java, PHP, C++, or Ruby. Hence, handwritten extensions of the gener-
ated source code are located in the same artifact as the model itself. A goal of Umple
is to support reuse at various levels of abstraction [FBL10]. Therefore, Umple supports
mixin because they are “useful for prototype development because different features can
be independently described in Umple and added one-by-one to a base model to explore
their ramifications” [FBLS12]. For example, such mixins allow to define a class in the
UML CD DSL twice describing different aspects such as method implementations. A
code generator is used to generate a prototype from the Umple class diagram and Umple
SC. The generated prototype respects semantic rules, i.e., referential integrity and mul-
tiplicity constraints at run-time. Moreover, the generated prototype is web-based and
supports CRUD operations, shows all attributes, and allows to follow associations. The
mapping proposed in this approach to ensure data consistency is used as the foundation
for the mapping proposed in this thesis. However, the mapping proposed in this the-
sis additionally ensures that all Java variables generated for CD4A attributes are not
assigned a null-value. Moreover, the mapping developed in this thesis ensures that
underspecification in CD4A models, e.g., association’s navigation direction and associ-
ation’s cardinality, are resolved by defaults to enable use in early development stages.
Another distinction to this approach is the support for methods in the DSL for UML CD.
Methods are not supported in CD4A due to the focus on analysis models (cf. Section 4.1).

2.4.2 Related MDD Approaches for Data-Centric Applications

The JANUS application development environment [BHKN96] proposes a MDD approach
for client-side data-centric applications with a client-server architecture. Such a data-

21

Chapter 2 Foundations: Model-Driven Development and Data-Centric
Application

centric application is generated from one OOA model, which is a language family con-
sisting of three languages described via the Janus Definition Language. In particular,
a UML CD model is used to represent the application’s object model of the problem
domain. A GUI knowledge model is employed to describe different aspects of the GUI
such as layout strategies. It also maps the OOA model to user interface (UI) elements.
Finally, a meta-model model, which is primarily used for code generation, to merge all
other models has to be created. A code generator - which does not explicitly address
extensibility and adaptability, in contrast to the approach proposed in this thesis - gen-
erates a software system from these models that consists of a GUI, an application layer,
a persistence layer, a database schema, and further services such as printing, sorting,
and deleting. However, the generated software system represents a code frame that has
to be completed by the developer. For example, methods defined in the OOA model
have to be implemented. This contrasts to the purpose of analysis models used in this
thesis, which do not contain methods. The generated application layer connects GUI
and persistence layer, which provides read and write operations for attributes of the
OOA model. The GUI layer offers default values that can be overridden and uses the
following mapping from OOA models:

• Map attributes to editable UI fields with label. Supported fields are: edit field,
text field, combo boxes, drop-down combo boxes, list box, drop-down list box,
check boxes, radio buttons and tables.

• Map associations and aggregations to editable lists.

With this mapping a list and edit view is provided for each OOA model type. Each
edit view provides input validation. However, the GUI is not completely generated but
uses a JANUS Application Framework, which is similar to the run-time environment
(RTE) used by the data-centric infrastructure (cf. Section 7.1.3). The mapping from
OOA models to a GUI proposed in this approach forms the foundation for the mapping
developed in this thesis.

A MDD approach for large scale enterprise applications development has been pro-
posed in [KVR02, Kul16]. It employs multiple DSLs to describe every aspect of the
generated software system independent of the target language and platform. To cap-
ture business entities and their relations, an extended DSL for UML CDs is used. It is
extended to capture additional architectural design decisions, which are regarded dur-
ing code generation. For example, classes to be displayed in the generated GUI can be
marked, or classes to be persisted can be denoted as well. Such a design decision for
the DSL is contrary to the CD4A ML, which is intentionally kept simple to avoid mix
of design decisions and analysis models. In addition to a DSL for UML CDs, DSLs for
UML use case diagrams and UML ADs are used to describe process flows. Finally, to
describe business logic independent of target languages, a the Q++ DSL is provided.
In the approach proposed in this thesis, business logic has to be manually added via

22

2.4 Related MDP and MDD Approaches

customizations of the generated source code (cf. Chapter 6). The variety of models used
in this approach is kept consistent via interconnections between the different DSLs. A
code generator processes all models and generates a business application using a layered
architecture consisting of an application layer, GUI layer, and database layer. How-
ever, the variety of the used DSLs and the developed software systems have shown the
following major challenges:

• The approach has a steep learning curve. In this thesis, this is addressed introduc-
ing customization of the generated source code on generated-source-code-level to
keep familiarity of application developers.

• New requirements may result in implementation of new code generators. In this
thesis, this challenge is addressed by providing extension and adaptation mecha-
nisms for code generators.

• Maintenance of the languages and code generators. This challenge is addressed in
this thesis by reducing the number of languages and only one code generator.

To achieve scalability, components (building blocks) that specify classes, operations,
and queries have been proposed [KR08, BK10]. Each building block defines variation
points and can be composed with multiple others to create an enterprise application. In
contrast, this thesis does not address large scale enterprise application development but
uses modularity on the code generator level (MontiDEx modules described in Section 9.2)
and data-centric application layer (cf. Section 7.1.3).

Another approach for MDD of data-centric applications is a generative framework for
the development of CRUD-based Linux desktop applications [JC15]. The main goal of
this approach is the contribution of a design and an implementation of a framework
prototype for simplifying the development of desktop applications. To achieve this goal,
this approach proposes the use of three models. First, a domain model describes the
structure of the managed data. It is represented as a list of entity types, where every
entity type has either a value type or a relationship, which is restricted in cardinality to
1:1 and 1:n cardinality. In contrast, the CD4A model does not have such a restriction
and supports all associations with arbitrary combinations of [1], [0..1], [1..*],
and [*] cardinality. Second, a wrapper model that wraps entities to be displayed in
the GUI by “flattening” each entity, i.e., resolve associations. In addition, the wrapper
model allows to adapt data types and assign names to elements to be displayed in the
GUI. Third, a UI model to describe the UI in a YAML-like way. Whereas UI models
conform to a DSL, the domain model and the wrapper model are embedded in the Vala
DSLs. From these models, a code generator generates a database schema script and
a Model-View-ViewModel pattern-based for the GUI. A similar variant of the Model-
View-Presenter-Pattern is generate in the approach used in this thesis (cf. Section 7.3).
Moreover, the generated application uses data access objects (DAOs) and Builders to

23

Chapter 2 Foundations: Model-Driven Development and Data-Centric
Application

manage instances. In our approach, a DAO and a Builder is generated for each CD4A
class. Additionally, loading strategies in the generated application can be influences by
bindings of the domain elements and UI elements. In our approach, a default loading
strategy is generated (cf. Section 7.5.1) but can be adapted via handcoded extensions. In
addition, the code generation process can be configured by configuration options, addi-
tional stereotypes in the domain model, and manually-written extensions of the generated
source code. The generated source code is compiled using an adapted Vala compiler,
which reportedly was the cause for many challenges in this approach. In contrast, in
the approach proposed in this thesis configuration options are script-based facilitating
to configure every aspect of language processing and code generation (cf. Section 9.3).
Furthermore, additional black-box adaptation mechanisms to extend and adapt the code
generator are provided (cf. Chapter 8).

In [Sol10] an approach to generate CRUD-based JavaFX GUIs from UML CDs models
is described. To achieve modularization and customization of the code generator the ap-
proach proposed a template-based code generation approach based on semantic graphs,
which can be seen as a IR (cf. Section 8.2.2). In contrast to our approach, black-box
adaptation is not addressed. The generated data-centric application has a layered ar-
chitecture, which uses separation of source code and different design patterns to achieve
modularization of the generated source code. A similar goal is targeted in this thesis
(cf. Section 7.1.3). However, the generated data-centric application only generates a
fully functional GUI and provides means to manually implement CRUD operations. In
contrast, in our approach a completely working data-centric application is generated.
Moreover, underspecification in the input model is not resolved hampering generation of
fully executable applications. In our approach, underspecification is explicitly addressed
and resolved (cf. Section 9.1).

An extension of the MDP approach for data-centric applications [MP03] has been pro-
posed to support development of business applications [MFM+13]. The approach aims
to close the mental gap between mapping user requirements to UML models. Therefore,
the application model is integrated in the overall development process. The application
model is extended with additional design guidelines and a DSL to design and describe
complex UIs form designs. On contrary, our proposed approach uses a default mapping
that has to be manually extended. A code generator generates a GUI, business logic,
and a database schema. However, manual interventions may be required to transform
the persistence model to the database schema. In our approach, this is not required,
because the persistence infrastructure is assumed to be generic and model-independent.
In addition, the same authors have also explored design of a DSL for generation of
database applications (can be understood as data-centric applications by the definition
in Section 2.3) with CRUD operations [DMPT10]. The generated application, provides
validation support but omits data consistency. For customization concerns a protected
regions approach is used in the generated source code.

24

2.4 Related MDP and MDD Approaches

To teach students MDD, a lightweight approach to generate CRUD-based applications
has been presented [PBCN14, PBCN15]. It aims to address the following concerns: data
entry, data validation, data persistence, and data presentation in each CRUD applica-
tion. This is achieved with four DSLs. First, an entity DSL to describe the data structure
of the data to be managed. Second, a constraint DSL is introduced to describe different
constraints on the entity model. Third, an entity DSL with references, which extends
the entity DSL with additional references between entities. Finally, a UI specification is
added to define the GUI. From these models a DAO implementation, a service interface,
and a console-based desktop UI is generated. The generated source code depends on a
RTE, which contains non-generated source code. In addition, the generated application
can be extended with additional handwritten source code. Our approach shares similar-
ities. In particular, a RTE is used, DAO implementations are generated, and support
for handcoded extensions is provided. However, this approach uses a service-oriented
architecture and provides a limited console-based UI. Furthermore, it does not explicitly
address data consistency as well as extensions and adaptations of the code generator.

A further MDD approach is presented in [REM15]. The authors propose a lightweight
approach and methodology for the generative development of JavaFX GUIs using the
Model-View-Presenter (MVP)-Pattern. Rather than describing a domain model, the
authors aim for the design of a GUI via a meta-model. Each instance of this meta-
model is transformed to an instance of a second meta-model for the targeted application.
Transformations are used to generated source code. Similar to the approach proposed in
this thesis, the authors use an IR for code generation. However, neither customization
concerns of the generated source code nor MDD tool reuse is addressed.

In [SPHV10], the authors present a rapid MDD approach for UI development in large
enterprise projects. The approach proposes a lightweight method consisting of (i) cre-
ating annotations, (ii) defining layout and reference domain model, (iii) running the
application, and (iv) customizing the generated application. The input is a UI container
model, which holds information about the UI container structure and the reference to a
domain model. Hence, the second input is a domain model, which is assumed to be non
changing for a particular domain, which is in contrast to our approach. The authors pro-
pose tooling to rapidly create the UI container model. Rather then generating executable
source code from these models, the authors propose an interpretation-based approach.
To customize and influence the interpretation, model elements can be annotated using
a predefined set of annotations. This annotation-based customization is extended to
per-user annotations to support individual annotations for different users. In contrast
to the approach proposed in this thesis, this approach aims to UI development only,
addresses different customization mechanisms, and does not represent the managed data
sufficiently to support client-side data-centric applications.

The approach presented in [Sub15] addresses end users rather than developers for
the development of InfoSys. It introduces a novel model-driven engineering (MDE)
approach, called BUILD, that is based on transformations that allow to predict and

25

Chapter 2 Foundations: Model-Driven Development and Data-Centric
Application

provide new knowledge at each transformation step. Hence, from a lightweight modeling
language (µML), which is used by end users to specify the targeted InfoSyss, a four-
phased process is started. It starts with a requirements sketching phase, followed by
an analysis phase. Then, a design phase and a code generation phase. In this process
different models are used to specify the overall software system. From these models a
GUI, the data structure, and a database is generated. The approach presented in this
thesis, primarily targets application developers rather than end users. Moreover, only
one model to describe the data structure is used and defaults are assumed to generate
the overall software system. In contrast to this approach, the approach proposed in this
thesis addresses customization and adaptation concerns.

Finally, a lightweight and agile model-based development (MBD) approach that is ap-
plicable for many areas of applications is explained in [Lan16]. The approach proposed
in this thesis uses a similar lightweight and agile method. Similarities of our proposed
approach and this approach are the framework-like use, lightweight and agile methods,
and common mappings. Hence, in the remainder of this thesis, this work is compared
whenever appropriate. However, this approach uses dedicated DSLs for class diagram,
use case diagram, and UML object constraint language (UML OCL) definition. The pri-
mary goal is to completely specify the targeted software system and use transformations
to generate executable source code. Rapid changes are addressed through propagation
via code generation rather then handcoded extensions as introduced by this thesis.

26

Chapter 3

Requirements for the Envisioned
Methodology

After Chapter 1 outlined that MDD improves prototyping and development of data-
centric applications, and the foundations of this thesis have been explained in Chapter 2,
this chapter gives an overview of the envisioned methods by example. The goal of this
chapter is to demonstrate how MDD can successfully support prototyping and develop-
ment of data-centric applications, and reveal requirements, roles, and tasks that have
to be addressed by tools and methods. This chapter also provides the methodological
guidance for this thesis.

This chapter is structured as follows. First, a typical scenario of a software company
developing a new data-centric system is presented in Section 3.1. Afterwards, the primary
high-level requirements for this thesis are described in Section 3.2. Finally, the envisioned
methods for MDP and MDD of data-centric applications are explained in Section 3.3.

3.1 Typical Scenario for Generative Development of a
Data-Centric Application

In our scenario, a software company aims to replace their current applicant management
system due to unsatisfied needs in the managed information referring the application
process. However, the diversity and depth of all requirements is vague and mostly
unknown. Hence, before developing a new software system, the company aims to use a
prototyping approach to elucidate all requirements.

In general, prototyping is the idea to develop a first version of the software system that
is used to test certain aspects of the targeted software system [LL13]. The main goal of
prototyping is “to get a feel of how the full system will behave” [FBLS12]. In contrast to
classical prototyping (e.g., [Som10, LL13]), where prototypes are developed manually, the
company decides on a MDP approach to automatically generate prototypes from abstract
descriptions (e.g., [FBY08, MBR08, BDLD11, FBLS12]). Rather than prototyping the
GUI, their goal is to identify the data structure, which represents the data to be managed
by the new applicant management system. Nevertheless, a GUI providing management

27

Chapter 3 Requirements for the Envisioned Methodology

functionality for the data structure is needed to enable a hands-on prototype that can
be experienced by end users.

3.1.1 Model-Driven Prototyping of Data Structures

From the currently used applicant management system, a preliminary understanding of
the data to be managed is developed by a modeler. The UML CD shown in Figure 3.1
represents the data currently managed. It contains a Person having a first name, a
surname, an email address, and an age. Each Person has a gender. In addition, at
least one Address, which has a street, a number, and is located in a city, is associated
with a person. To manage applications, each Person can apply for a JobPosition
by creating an Application, which contains the date of receipt. Each JobPosition
has a description, a begin date, and is associated with a Company. Each Company has
a name, a number of employees, and may have multiple open job positions.

«enum»

Gender

MALE

FEMALE

Person

String firstname

String surname

String email

int age

1

Address

String street

String number

String city

1..*

Application

Date received

Company

String name

int employees

1..*

JobPosition

String description

Date begin

1..*

1

*
/skilled

CD ApplicantManagement

Figure 3.1: A UML CD for a lightweight applicant management system.

From this initial task in the development of a prototype, a GUI has to be developed
and the UML CD model has be mapped to executable source code. In MDP, these
tasks are performed by a code generator. Hence, the application developer executes the
code generator using a CD4A model, which realizes the UML CD model in Figure 3.1,
as input. However, before executing the code generator, he has to choose the parts
of the data-centric applications that are generated by either selecting an existing code
generator configuration or create a new one. In this scenario, the application developer
chooses the configuration to generate all three layers of a data-centric application.

The functionality of the prototype can be realized either horizontally (all function-
ality is provided but not realized in great detail) or vertically (only few functionality
is provided but realized in great detail) [LL13]. The goal of this thesis is to generate

28

3.1 Typical Scenario for Generative Development of a Data-Centric
Application

a fully functional prototype that is horizontally and vertically complete for this kind
of software systems, i.e., a GUI offering (S)CRUD (Search, Create, Read, Update, and
Delete) functionality for the managed data structure is provided. As a result, these rich
prototypes can be used for every type of prototypes including throwaway, evolutionary,
and even incremental prototype [Som10].

The prototype generated from the UML CD model in Figure 3.1 is shown in Figure 3.2.
It shows all elements of the data structure and provides means to manage them via a GUI.
For certain inputs, validation support is provided to ensure that the user enters valid
values. Moreover, Figure 3.2 also shows feedback on mandatory associations (Address
list marked red) to show the constraints (i.e, mandatory associations) modeled in the
UML CD model.

Figure 3.2: Generated prototype from the UML CD shown in Figure 3.1.

However, the generated prototype does not realize all requirements identified by the
modeler. In particular, the derived association from JobPosition to Application
in Figure 3.1, which links all skilled applicants to the job position. Therefore, the appli-
cation developer customizes the generated source code using target language source code
and adds the required implementation. This approach is necessary for all requirements
that cannot be described in the abstract model.

29

Chapter 3 Requirements for the Envisioned Methodology

The manually customized prototype is used by the modeler for testing purposes with
the end user to identify further requirements. For example, the type of the company or if
the job position requires the applicant to manage personnel. For each new requirement
the model is adapted and the code generation is repeated. During this iterative and
incremental development process, the manually-written customizations are preserved.

3.1.2 Model-Driven Development of Data-Centric Applications

After multiple prototyping iterations, the data structure has been identified. Using the
elucidated requirements, the company aims to develop the new applicant management
system. To reduce the development time and costs, the company’s plan is to gradually
replace their current system using an agile MDD approach. Hence, they aim to reuse both
models and the code generator for their new software system. However, the developed
software system should (i) provide different roles for users with varying rights, (ii) support
local file storage, and (iii) provide a JavaFX GUI rather than a Java Swing GUI.

Therefore, the application developer sets up a new configuration for the code generator
by only choosing the application and persistence layer of the data-centric application.
The generated source code should serve as a framework-like part of the software sys-
tem. Afterwards, he executes code generation and the Java source code is generated.
Next, the application developer implements the GUI by extending the generated source
code. While the GUI can be built on top of the generated framework, the serialization
support requires adaptation of it. However, manually-adapting the generated source
code is not practical, because multiple generated artifacts are involved and the company
plans to reuse this functionality. Hence, a generator developer extends the code gener-
ator with this functionality by using the code generator’s predefined extension points
and adaptation mechanisms. Therefore, he provides a manually-written template and
transformation that is added to the code generator configuration.

During the development of the software system, the infrastructure provider sets up an
infrastructure such that managed data can be stored persistently. Therefore, he sets up
an application server providing storage capabilities and role-based access control. This
functionality is accessible via a service that realizes the methods required by the data-
centric application’s persistence layer. Afterwards, the application developer adapts the
persistence layer to use the provided application server by setting the IP-address.

A further requirement of the company is automation of business processes in applicant
management. Due to the changing regulations, their business processes are regularly
adapted and are also different for each end user. Hence, business processes have to be
adapted even after deploying the data-centric application.

In our scenario, the business process shown in the UML AD in Figure 3.3, which
illustrates the process to handle new applications, should be automated. Each new
application is checked whether the applicant is skilled for the job position or not. Only
if the applicant is skilled, the manager invites the applicant to a meeting.

30

3.1 Typical Scenario for Generative Development of a Data-Centric
Application

ad Process of handling applications

S
y
s
te

m

check for new

application

[else]

M
a
n
a
g
e
r

check

applicants

qualification

invite for

interview

send

rejection
[isQualified]

AD

[no new application exists]

[else]

Figure 3.3: A UML AD of a process to manage new applicants.

For this process an ADJava model is created by a modeler, who is unaware of im-
plementation details. A senior application developer enriches the ADJava model with
Java source code implementing the technical details such as sending a rejection or check-
ing if the applicant is qualified. Afterwards, code generation is started by the senior
application developer to generate executable source code.

A modeled process is executed by end users via the GUI shown in Figure 3.4, which pro-
vides actions (buttons at bottom left in Figure 3.4) to: execute a process (Run button),
pause a process (Pause button), save a currently paused process (Save button), stop the
currently executed process (Stop button), clear the log information (Clear button), and
access to settings to set the debugging level and path to the ADJava model (Settings
button). If adaptation of the process is needed, application developers can manually
extend the product even after deployment, where a code generator is unavailable.

Figure 3.4: Integration of a GUI for process automation in a data-centric application.

31

Chapter 3 Requirements for the Envisioned Methodology

3.1.3 Roles in the Development and Prototyping Process

Each software development project consists of a team that incorporates different roles,
each of which describes the responsibilities of team members in the particular pro-
cess [Som10]. The different roles have distinct but sometimes overlapping concerns,
interests, and goals. Nevertheless, each of the role’s needs have to be fulfilled in a
successful software project.

In this thesis, it is assumed that the team is small as the project size is assumed to be
small to medium sized projects. Subsequently, the varying roles and their characteristics
based on the ideas of [Her13, LL13, Wor16] are identified.

Modeler. The modeler is one of the most important stakeholder in the proposed usage
scenarios described in Section 3.1. The modeler is focused on identifying the end
user’s requirements and the domain itself [MP03]. This requires to deeply un-
derstand the end users’ interests, concerns, and their daily work routine. Hence,
knowledge in requirements engineering [BPKR09] or domain engineering [CE00] is
a necessity. His main concern is to create models from the identified requirement
(cf. [Kul16]). However, as the modeler is only concerned with the structural and
behavioral modeling of the system, he is unaware of the technical realization.

This role can be further broken down into roles focusing on particular concerns,
e.g., system designer, concern designer, object designer, behavior designer, and
representation implementer [HBR00].

Generator Developer. The generator developer is responsible to define the mapping
from input model concepts to target language concepts [KT08] by choosing a suit-
able model-to-text transformation approach. He is also responsible to choose an
appropriate generator architecture and implement the code generator. For exam-
ple, in our scenario the goal is a modular architecture to support reuse.

In addition, the generator developer is also responsible to provide extension and
adaptation points. Because of his knowledge about the code generator, he is also
responsible to extend the code generator whenever required by the application
developer.

A further concern of this role is the development of a RTE, which is required by
the generated product to be fully functional.

Application Developer. The application developer is responsible for using the models
provided by the modeler and the generator provided by the generator developer to
develop a running application that fulfills the analyzed requirements by the mod-
eler. This is achieved by generating the product and systematically and iteratively
customizing the generated application. Similar roles have been identified in [MP03]
(application designer) and in [Kul16] (programmer).

32

3.2 Primary High-Level Requirements

Since this role is only familiar with the generated product and its architecture,
adaptations of the model and customizations of the code generator have to be
handled by the modeler and the generator developer.

Besides customizing the generated product, the application developer is also re-
sponsible for realizing implementation concerns of the modeled business processes.

Senior Application Developer. The senior application developer is an advanced role of
the application developer, who is able to adapt and extend the code generator but
not forced to develop a new code generator. In addition, this role is familiar with
the MLs used by the modeler and, hence, can adapt the models.

In general, a senior application developer is essential to reduce the learning curve
of an MDE approach (cf. [BPRFF15]).

Infrastructure Provider. Each data-centric application requires a persistence infrastruc-
ture to persist the managed data. The persistence infrastructure is set up for each
concrete product and is described in Section 7.5 in more detail. The essential
tasks of this role involve setting up the infrastructure and performing data migra-
tion tasks, if required.

A similar role has been identified in [Wor16] (run-time environment developer)
and [Kul16] (administration role).

In the proposed usage scenarios (cf. Section 3.1.1 and Section 3.1.2), no role for
explicitly adapting the persistence infrastructure is considered, because it is as-
sumed that the persistence is generic and does not contain any business logic but
data persistence.

End User. The end user is familiar with the requirements and the required application.
This role is concerned with receiving a product that helps to perform the desired
tasks in his most comfortable way. A particular sub-role of the end user is the
customer, who is not familiar with the needed application but in charge of financing
the development. We do not explicitly consider this role, because the only concern
of this role is the development time and costs.

As the proposed method is based on agile software development methods, the
end user is constantly involved in the development process of the application for
evaluation purposes.

3.2 Primary High-Level Requirements

From the envisioned usage scenario and the involved roles with their different needs,
primary high-level requirements for a potential solution are derived in the following.
They are grouped into four dimensions: general, modeling, generation, and generated

33

Chapter 3 Requirements for the Envisioned Methodology

product requirements. Each of this high-level requirement is discussed and broken down
into multiple fine grained requirements, general considerations, and architectural design
decisions in the remainder of this thesis.

3.2.1 General Requirements

General requirements address considerations and issues that have to be regarded by
the developed concepts, methods, and tools to realize the envisioned usage scenario.
Subsequently, they are summarized.

RE-1 Effective MDD of data-centric applications. To improve efficiency of the
data-centric application development, an effective MDD approach is targeted,
i.e., generation of fully executable data-centric applications from CD4A models.
However, not everything is generated but kept as a model-independent infras-
tructure, which “keeps the generator simpler” [KT08].

RE-1-1 Restricted type of target applications. A necessity for effective MDD
is the restriction of the type of target software system. Hence, it is re-
stricted to data-centric applications with a three layered architecture on
the client-tier (Section 2.3).

RE-1-2 Customization of generated source code. To overcome limitations
set by a restriction of the targeted software system (cf. RE-1-1) and, like-
wise, improve reusability, mechanisms to optimize and extend the gener-
ated source code are required [Sel03]. Hence, every generated source code
artifact is individually customizable.

RE-2 Generic persistence infrastructure. To persistently store the managed data
structure, a persistence infrastructure is provided. Rather than generating it from
the input model, as proposed in [Loo17], a generic persistence infrastructure is
used to enable rapid prototyping. It is set up by an infrastructure provider and
can be reused in different generated products.

RE-2-1 Multi-tenancy and role-based access control. The generic persis-
tence infrastructure offers support multiple tenants and role-based access
control [FKC07] for multiple collaborating users.

RE-2-2 Generic database schema. To support different data structures, the
persistence infrastructure has to provide a generic database schema.

RE-2-3 Consistent data migration. Each generated data-centric application is
considered as a single tenant storing its own data. To support migration of
data between different generated versions of the same data-centric applica-
tion, a consistent and model-specific data migration approach is provided.

34

3.2 Primary High-Level Requirements

RE-3 Support for iterative and incremental development: The MDD tools
and methods to support the envisioned usage scenario explicitly facilitate iter-
ative and incremental development. For tool support this implies that the cus-
tomization, adaptation, and extension mechanisms have to ensure that manually-
written source code is not manipulated during code generation. For development
methods this means that generated code is not to be adapted by hand.

RE-4 Facilitate MDD tool reuse: MDD tools should be reusable for prototyping
as well as for development of real-world data-centric applications. Hence, such
tool reuse demands for inherent and high configurability, adaptability, and ex-
tensibility of the involved tools.

RE-5 Systematic and concise mapping. MDD’s main assumption is that gener-
ated source code is never inspected [KT08]. Hence, the model is considered as the
primary development artifact [BCW12]. Nevertheless, the generated source code
has to be partially inspected, when customizations are necessary. Therefore, by
providing a systematic and clear mapping from input models, the required knowl-
edge about the generated source code is reduced to knowledge of the generated
interface only.

RE-5-1 Provide mapping guidelines. Mapping guidelines are an essential ele-
ment of mappings (cf. [HR00]), because whenever ambiguity appears, the
chosen solution is always taken relative to the guidelines.

RE-5-2 Use defaults for semantic variation points in CD4A models. Al-
though analysis models are considered to have a formal foundation because
they are rooted on UML CD [SVC06], they contain semantic variation
points [Grö10]. Such ambiguity demands for resolution to generate ex-
ecutable source code. Therefore, suitable defaults are provided that are
made relative to the targeted data-centric applications (cf. RE-1-1) and
mapping guidelines (cf. RE-5-1).

RE-6 Ensure data consistency. The data structure, which is implemented in Java,
ensures consistency of its contained data. In general, data consistency (also
considered as ensuring “semantic rules” [FBLS12]) refers to the property of the
data structure, i.e., generated Java source code, to only allow objects that respect
the defined CD4A constraints, i.e.,

1. the Java source code generated for a CD4A association ensures that the
cardinality of mandatory associations is not violated, i.e., there is at least
one association link for [1..*] and [1]; and at most one for [1] and
[0..1]. (cf. ensuring multiplicity constraints [BFL13])

2. the Java variable implementing a CD4A attribute is assigned with a valid
value, i.e., never null-values are assigned.

35

Chapter 3 Requirements for the Envisioned Methodology

The formal definition is rooted on CD/OD consistency as described in [MRR11].
In more detail, the Java source code generated from a CD4A model cd ensures
that every UML object diagram (UML OD) that can be instantiated from the
generated Java source code is consistent to cd. To restrict semantic variability,
we define that the empty UML OD is not considered and both the CD4A and the
UML OD are complete. This understanding also assumes a well-formed CD4A
model, which can be checked during language processing.

Due to missing CD4A language constructs to describe the quantity of qualifier
keys (the cardinality of qualified associations defines the number of elements per
key), it is assumed that the number of keys is not restricted. In consequence, the
cardinality of a mandatory qualified association has to be ensured only if and
only if keys exist.

Whenever data consistency is to be violated, we follow the fail-fast approach to
prevent the data structure to become inconsistent, i.e., an exception is thrown
and the data remains consistent. This design decision prevents instantiating
objects of data structures that require temporary inconsistency, e.g., bidirectional
association having a cardinality with a minimum of 1 on both ends. An approach
to overcome this restriction is proposed in Section 5.3.

RE-7 Technical realization with MontiCore The developed DSL and tools are
realized with the MC language workbench and code generation framework.

3.2.2 Modeling Requirements

Besides general requirements, which regard the overall usage scenario, modeling require-
ments for the developed MLs to describe the structural and behavioral aspects of data-
centric applications are listed in the remainder of this section.

MR-1 Modeling language for analysis models: The envisioned usage scenario
builds on analysis models for structural description of the managed data struc-
ture. To model such descriptions, a suitable ML that provides support for all
required concerns but leaves out unnecessary ones is required (cf. [KKP+09]).

MR-2 Modeling language for business processes: To model processes on the
managed data structure, an additional ML should be provided.

MR-3 Modeling language for an intermediate representation: To address the
needs of generator developers to adapt code generators, this thesis proposes a
transformation- and template-based code generation approach (cf. Chapter 8).
This approach is based on an intermediate representation of the object-oriented
structure of the generated source code. Hence, to represent the intermediate
representation, a suitable ML is required.

36

3.2 Primary High-Level Requirements

3.2.3 Code Generator Requirements

When designing a code generator, the generator developer needs to decide on a model-
to-text approach to generate concrete source code from the input model. Due to the
different usage scenarios of the code generator, it has to facilitate the requirements set
by modularity and customizability concerns. In the remainder of this section, the high-
level requirements for such a code generator are summarized.

GR-1 Modular code generator architecture: The code generator is designed in a
modular1 way such that it is usable for prototyping, where the complete generated
software system is used, and framework-like use, where only parts of the generated
software system is used.

GR-1-1 Script-based configuration: Modularity alone is useless, when there are
no means to configure and use parts of the code generator. Hence, the code
generator offers a script-based configuration approach to define its behavior
including language processing and code generation.

GR-2 Code generator adaptation and extensibility: Design decisions (cf. RE-1-
1) or defaults (cf. RE-5-2) of the code generator are not generally suited and,
hence, demand for adaptation to address reuse (cf. RE-4). Therefore, the code
generator uses an adaptable model-to-text transformation approach based on
transformation- and template-based code generation.

GR-2-1 Extension via predefined hook points: Extensions of the code gen-
erator can be realized via hook point-based adaptation, each of which is
explicitly designed for predefined extension and is based on the idea of
variation points [CN01, PBvdL05] and hook methods [Pre95].

GR-2-2 Extension via manually-written templates: The code generator offers
support to adapt and extend the code generation process by manually-
written templates.

GR-3 Tracing capabilities: To improve code generator development, textual and
graphical tracing information of the code generation process is provided in the
form of generated reports.

GR-4 Execution of process models: Process models are executed by either gener-
ating source code or by interpreting it. To support the process modeling after
deployment of a data-centric application, an integrated code generation and inter-
pretation approach is developed that is based on previous research [Sar06, Ges10].

1Modularity is understood as the decomposition of the overall architecture into loosely coupled mod-
ules [RR15]. An understanding of the term module is given in Section 9.2.

37

Chapter 3 Requirements for the Envisioned Methodology

3.2.4 Generated Product Requirements

Besides high-level requirements for the ML and the code generator, additional require-
ments for the generated applications are listed in the remainder of this section.

PR-1 Separation of concerns of generated source code: Separation of concerns
is the approach to tackle complexity by decomposing it [Dij82]. Hence, the gen-
erated source code is structured according to its purpose (cf. RE-1-1). This
approach also promotes modular use of the generated source code (cf. GR-1).

PR-2 Graphical management of data: The generated data-centric application pro-
vides a fully functional GUI to manage the data. Furthermore, it supports user
login, user management, and execution of processes.

PR-2-1 Support for undo/redo. The generated GUI supports undo and redo
functionality by default using the model-specific Command-Pattern [GHJV95].

PR-2-2 GUI thread management. To support responsiveness of the GUI, the
generated application supports GUI threads that manage communication
with the persistence infrastructure.

PR-2-3 GUI actions cannot violate data. The GUI supports management
functionality for the data structure but does not allow to store invalid data.

PR-3 Scalable object management: A management facility that manages all objects
in a centralized way has to address scalablility, which demands for approaches to
lazily request chunks of data from the persistence infrastructure. At the same,
this additional complexity needs to be hidden from application developers.

PR-4 Predefined customization via hot spots: The generated software system
provides a set of hot spots, which represent predefined spots in the generated
software system intended for customization [Pre95].

PR-5 Persistent and non-persistent mode: While a data-centric application has
to provide means for persistent storage (cf. RE-2), data-centric application pro-
totype does not require such support, because only the functionality is demon-
strated. As a consequence, the data-centric infrastructure has to provide a mode
for persistent storage and one mode for a non-persistence storage.

3.3 Envisioned Methods for MDP and MDD of Data-Centric
Applications

The envisioned development and prototyping methods are realized by the MontiDEx
code generator and the MontiDEx product, as shown in Figure 3.5. In the remainder of
this section, an overview of the developed tooling and methods is given.

38

3.3 Envisioned Methods for MDP and MDD of Data-Centric Applications

Configuration

Behavior

Structure

Workflow Execution &

Functional Library
Model

ADJava

Model

Groovy

Synergetic Transformation-

& Template-based Code

Generation

Key:

uses/accesses

input/output

conforms

CD4A

Run-time

Environment

Infrastructure

Provider

End User

Modeler Generator

Developer

Senior

Application

Developer

Application

Developer
MontiDEx Code Generator

Database

Application Server

Role-Based-

Access-Control

Business

Layer

WebService

ExtensionExtension

Java Template

Extension

Java

Extension

Control Script

Language

Processing

ADJava

Interpreter

Presentation Layer

Application Layer

Persistence Layer

MontiDEx Product

CpD

Figure 3.5: Overview of the MontiDEx code generator and the MontiDEx product.

The input of the MontiDEx code generator are CD4A models, ADJava models, and
Groovy scripts [KGK+07]. Each CD4A describes the structural properties of the man-
aged data. An ADJava model describes the processes of data-centric applications and
is an instance of a DSL for UML ADs with embedded Java. Each CD4A and ADJava
model is processed by the Language Processing component, which is responsible
to create the corresponding ASTs. Finally, the Groovy configuration script defines the
pipeline of language processing and code generation steps by using workflows and prede-
fined functionality defined in the Workflow Execution & Functional Library
component, which is explained in Section 2.2

The code generation in the MontiDEx code generator is realized in the Synergetic
Transformation- and Template-based Code Generation component. It uses
an integrated approach of transformation- and template-based code generation as ex-
plained in Chapter 8. This model-to-text transformation approach supports black-
box extensions and adaptations of the overall code generation process by facilitating
manually-written transformations and templates.

39

Chapter 3 Requirements for the Envisioned Methodology

The MontiDEx code generator generates a fully executable data-centric application
from the input models. Each generated MontiDEx product is realized as a three-layered
architecture providing a GUI to manage the modeled data structure (cf. Chapter 7). To
persistently store the created objects, a generic persistence infrastructure is used (cf. Sec-
tion 7.4). This infrastructure (Application Server component) allows to efficiently
create multiple instances and also supports multiple roles and rights for users. Further-
more, it is able to manage multiple tenants. In addition, the generate application uses
a RTE (Run-time Environment component), which contains non-generated code to
make the generated code functional, and an interpreter for the ADJava ML (ADJava
Interpreter component) to support process automation.

3.3.1 MDP of Data Structures with MontiDEx

A method to use the developed concepts and tools to support MDP is shown in Figure 3.6.
It is based on already established approaches [MP03, BDLD11] and illustrates the essen-
tial activities and roles. This method is a lightweight approach and, hence, may be extend
with additional activities in requirements engineering, e.g., [Som10]. Furthermore, it is
assumed that the domain is unknown, no CD4A model or prototype implementation is
present, and GUI prototyping is not addressed in contrast to, e.g., [SS16, BPRFF15].
Moreover, we assume that application developers implement and test added functional-
ity and, hence, omit an additional testing activity. As a result, possible limitations may
occur if the involved personnel is not skilled or motivated (cf. [MP03]).

ad MDP with MontiDEx

M
o
d
e
le

r
A

p
p
lic

a
ti
o
n

D
e
v
e
lo

p
e
r

E
n
d

U
s
e
r

AD

analyze

domain

create

CD4A model

[vague

require

-ments]

[else]

use existing

configuration

[generator

configured]

create

configuration

[exists

configuration]
[else]

[else] generate

prototype

customize

source code

[else]
[customization

need]

test

prototype

[evaluation

need]

redesign

CD4A model

evaluate

results

[redesign

need]

[else]

[else]

Figure 3.6: A Method to use the developed concepts and tools for MDP.

40

3.3 Envisioned Methods for MDP and MDD of Data-Centric Applications

Each prototype development starts with an analysis of the domain and the require-
ments (Agile Analysis phase in [BPRFF15]), which is performed by the modeler. The
goal of this activity is to understand the software system under development and re-
trieve the required information to allow the modeler to create a structural model of the
managed data structure using the CD4A ML. Vagueness during CD4A model creation
can be resolved via underspecification in the model or by questioning the modeler. In
this step, it may be required to decompose the overall systems into smaller sub-systems
as proposed in [MP03], each of which can be prototyped separately by applying the
subsequent activities.

Analysis and modeling is required to generate a prototype from the CD4A model. For
this purpose, the MontiDEx code generator has to be set up by either using one of the
provided code generator configurations or create a custom configuration as described
in Section 9.3. Afterwards, the application developer generates a prototype, i.e., Mon-
tiDEx product, by executing the MontiDEx code generator. If needed the functionality
of the MontiDEx product can be customized using the predefined approaches to add
manually-written code, as described in Chapter 6. For prototyping, it is sufficient to
adapt generated source code only, because the prototype is intended to be thrown away
and reuse is not addressed. Therefore, extension and adaptation of the code generator
are not required during prototyping.

An essential element of this proposed method is that customizations are added in
separate artifacts using the target language, as explained in Chapter 6. As a result the
generated source code is regarded as a disposable product (cf. [SVC06]), because it can
always be reproduced by the MontiDEx code generator and the CD4A model.

The synthesized and customized prototype is tested by the end user. The focus of this
activity is on elucidating requirements of the data structure. All results gained during
prototype testing are evaluated by the modeler and may yield a redesign of the CD4A
model and additional customizations of the generated source code. However, a redesign
of the CD4A model may influence manually-written customizations, e.g., deletion or
renaming of CD4A classes. Hence, already manually-written source code may have to
be adapted to the redesign.

Eventually, this prototyping process is ended if further prototype evaluation is not
needed and the data structure is identified. The resulting CD4A model developed dur-
ing MDP can be used for MDD of data-centric applications as it is described in the
subsequent section.

3.3.2 MDD of Data-Centric Applications with MontiDEx

A method to support agile MDD of data-centric applications using the developed con-
cepts and tools is illustrated in Figure 3.7. It is assumed that the domain, the require-
ments, as well as the structured information to be managed are known. Both can be
identified using the prototyping approach presented in Section 3.3.1.

41

Chapter 3 Requirements for the Envisioned Methodology

M
o
d
e
le

r
A

p
p
lic

a
ti
o
n

D
e
v
e
lo

p
e
r

G
e
n
e
ra

to
r

D
e
v
e
lo

p
e
r

In
fr

a
s
tr

u
c
tu

re

P
ro

v
id

e
r

AD

create

CD4A model

ad MDD with MontiDEx

use existing

configuration

create

configuration

[exists

configuration]
[else]

generate

application

set up and deploy

infrastructure

customize

source code

customize

generator

extend

generator

adapt

generator

deploy

application

[no customization]

[else]

[exists module]

[else]

[source code

customization]

[else] [generator

adaptation]

[else]

1

1
redesign

CD4A model

[redesign]
2

2
[else]

2

Figure 3.7: Method to use the MontiDEx generator and the MontiDEx product for MDD.

The development method is started by the modeler creating a CD4A model. As the
basis for creating a model, the model for prototyping (cf. Section 3.3.1) can be used.
At the same time, the code generator has to be set up by the application developer
by creating either a new configuration or designing a custom one. In addition, the
infrastructure provider has to set up the persistence infrastructure for the development
team and also a persistence infrastructure for productive use, which is deployed to the end
user. In contrast, the method for MDP of data-centric application prototypes does not
require such an infrastructure, because each MontiDEx product provides a non-persistent
mode that is fully functional but only used for demonstration purposes Section 7.5.

In addition to creating a CD4A model, it may be required to develop a model for
business processes. Such models can be created by a modeler using the provided AD-
Java ML presented in Chapter 10. A method to extend data-centric applications with
processes is illustrated in Section 10.4.

The actual development of the software system starts after the first code generation
has been performed by the application developer. Since the generated application only
provides basic management functionality, it has to be customized. This includes cus-

42

3.3 Envisioned Methods for MDP and MDD of Data-Centric Applications

tomizations of the generated source code as well as customizations of the code generator
itself. However, while source code can directly be adapted by the application developer,
only the generator developer or the senior application developer role can adapt or extend
the code generator. Code generator adaptation is required when defaults or architectural
design decisions have to be adapted; manually-written customization of the source code
is not practical; or reuse of the provided functionality is intended. Such adaptations and
extensions include adapting the code generation process, as described in Section 8.2.4, as
well as adapting the configuration script, as shown in Section 9.3. It is essential to notice,
that during the cycle to add functionality, the CD4A model can always be redesigned.

The customizations, adaptations, and extensions may have to be performed multiple
times to meet the end user’s requirements. This cycle ends when all requirements are
fulfilled. Then, the application is deployed by the application developer. Deployment
involves packaging on of the different MontiDEx projects, as described in Section 9.5.2,
and deploying the infrastructure to the end user’s target environment.

43

Chapter 4

UML Class Diagrams in Analysis, Design
and Implementation

MDP and MDD of data-centric applications, as proposed in Chapter 3, is based on a
notion to describe the structure and interconnections of the managed data. The UML/P
CD ML provides a suitable notion for creation of descriptive and prescriptive structural
models [Sch12, Rum16]. It also removes semantically underspecified language concepts
to enable the use of such models as a primary development artifact. However, due
to UML/P CD’s focus to support all UML CD language concepts, it is not suitable
for specifying analysis models. Hence, the language concepts have to be restricted.
This is necessary, because unnecessary generality hampers its successful use of DSLs
(cf. [KKP+09]). Likewise, the same holds for DSLs supporting too few language concepts
(cf. [KKP+09]). Hence, in this thesis the CD4A language, which is based on UML/P
CD and suits the needs of analysis and domain models has been developed (cf. MR-1).
In addition, to support implementation models, which are UML CD models using all
language concepts and are essential for the targeted code generation approach (cf. MR-
3), the CD4Code ML is has been developed as an extension of the CD4A ML.

This chapter aims to introduce the CD4A ML to modelers (cf. Section 3.1.3), whereas
the description of the CD4Code ML primarily addresses generator developers (cf. Sec-
tion 3.1.3). Hence, in this chapter, a clear understanding and definition of analysis,
design, and implementation models is presented and the supported language concepts
of analysis models are explained in Section 4.1. Afterwards, the CD4A language for
analysis models is introduced in Section 4.2. Finally, the CD4Code ML, which is an
extension of the CD4A ML, is presented in Section 4.3.

4.1 Analysis, Design, and Implementation Model

Models in software engineering can be divided into analysis models and design mod-
els [RBP+91], because of the common separation of the software life-cycle into an anal-
ysis and a design phase [HS93]. While analysis models describe an understanding of a
problem, design models target creation of a solution for the analyzed problem [GVM09].
For example, UML CD in the analysis phase are used to structure concepts of the real

45

Chapter 4 UML Class Diagrams in Analysis, Design and Implementation

world, whereas UML CD in the design phase are used to represent the structural view
of a system [Rum16]. Hence, in the analysis phase “models are usually general and with
no information that can lead to a technical solution” [BPRFF15].

This separation of models with respect to their purpose is applied in model-driven
architecture (MDA), which is an Object Management Group (OMG) standardization of
MDD [BCW12]. In this context, an analysis model can be regarded as a PIM, whereas
a design model represents a PSM (cf. [Mel04]).

Following this understanding and separation of models in software engineering, an
analysis model is defined in this thesis as:

Definition 11 (Analysis Model). An analysis model is a model that describes an under-
standing of the problem in a domain using a descriptive and highly abstract description.

This definition of an analysis model is too broad such that a variety of models suit this
understanding. A similar definition has already been proposed in [KGBE06] with the
same effect. In consequence, in this thesis the set of analysis models is restricted to UML
CD models, because the aim of this thesis is a structural description of managed data.
Furthermore, such UML CDs have to be regarded as analysis models by the proposed
classification approach in [GVM09], which proposes three orthogonal dimensions (reality,
purpose, and abstraction) for the separation of analysis and design models. Note that
for such analysis models the term conceptual class model or domain model is also used.
In this thesis, these terms are considered as equal. However, to separate prototyping
and development, we use the term analysis models for prototyping and domain model
for development of data-centric applications.

While classes in analysis models represent real world concepts, classes in design models
describe code fragments [HS93, Kai99, Fow03b]. This characteristic of a design model is
manifested in the following definition, which is used throughout this thesis:

Definition 12 (Design Model). A design model is a model specifying a solution (usually
a software system) for the analyzed problem.

Just as for analysis models, the set of design models is reduced to UML CDs that
are regarded as design models according to the understanding in [GVM09]. Note that
although an analysis and a design model describe two different realities, it is possible to
transform an analysis model into a design model (cf. [GVM09]).

A design model is by definition not complete in terms of describing every aspect of the
implementation. It only represents a part of it. For example, it does not necessary have
to contain accessor and mutator methods. Hence, we define the implementation model
as follows:

Definition 13 (Implementation Model). An implementation model is a design model
that fully represents a software system’s detailed (usually object-oriented) structure.

46

4.2 CD4A: Modeling Language for Analysis Models

Since an implementation model is a design model, implementation models are also
regarded as UML CD models in this thesis. Therefore, implementation models describe
only the object-oriented structure of the technical realization but omit implementation
details such as method bodies. In general, implementation models support the same
language concepts as design models, which are a superset of the ones supported by
analysis models.

4.1.1 Language Concepts in Analysis Models

While design models require all UML CD language concepts (cf. [Sco04]), because they
serve a particularizing purpose to describe a concrete system in a specifying way, analysis
models only require a subset of the available UML CD language concepts to describe a
data structure. Hence, in the remainder of this section, the required UML CD language
concepts that have to be supported by a DSL for analysis models are presented. Note
that for presentational reasons a detailed description of each UML CD language concept
is neglected. Instead, interested readers are advised to refer to [Rum12, Sch12, Rum16].

To structure concepts of the real world, analysis models use classes, interfaces, and
enumerations (cf. [RBP+91, EKW92, MS92, Sco04, Jac04]). While classes represent real
or abstract concepts of the problem domain, the main purpose of interfaces in the analysis
phase is to represent markers denoting properties or structure concepts (cf. [Fow97]).
Enumerations represent a group of values. As a result, inheritance makes semantically
sense for classes and interfaces only (cf. [WN94]).

Based on this use of interfaces, classes, and enumerations, only classes comprise at-
tributes. An attribute’s type can be primitive [RBP+91, CAB+94, Jac04], or a complex
type such as other classes, interfaces, or enumerations. Moreover, attributes can also be
derived to denote that the attribute’s value can be calculated (“derived”) from other at-
tributes, objects, or associations [Rum16]. Likewise, values can be assigned to attributes
to denote initial values.

To represent relationships between interfaces, classes, and enumerations, analysis mod-
els support associations and composition [CY91]. In addition, each relationship may have
a particular navigation direction.

For all UML CD language concepts in an analysis model, visibility is not needed,
because in an analysis model nothing is hidden (cf. [EKW92]). Likewise, modifiers such
as final and static are not required, because they regard solution concerns.

4.2 CD4A: Modeling Language for Analysis Models

The UML class diagram for analysis (CD4A) ML has been developed in this thesis to
address the requirements of analysis models (cf. Section 4.1.1). Conceptually, it can be
seen as a language extension of the UML/P CD language by means of restrictive context
conditions (cf. Section 2.2.1). However, technically it is realized as a new DSL using the

47

Chapter 4 UML Class Diagrams in Analysis, Design and Implementation

current version of MontiCore (cf. Section 2.2), which is not compatible with the version
used in UML/P CD. The full grammar is shown in Listing C.1. Note that an overview
of alternative existing DSLs for UML CDs is given in [SG16].

To explain the CD4A language, the UML CD shown in Figure 4.1 is used. It describes
a simplified banking system. In this example, the modeled banking system contains
different customers (Customer), their transactions (Transaction), and different kinds
of accounts (CheckingAccount and SavingsAccount). A bank may additionally
provide deposits (Deposit) to allow customers to trade with shares (Share). Note
that monetary amount is modeled as an integer in cent to avoid rounding differences.

Customer

String firstName

String lastName

Date birthdate

String city

String street

String country

Account

long number

int balance = 5

int overdraft

CheckingAccount

int fixedInterestRate

SavingsAccount

int effectiveInterestRate

Deposit

int balance

Share

String name

int value

1

*

incoming

from

outgoing

to

* *

1 1

1

*

0..1

1

*

1

«enum»

TransactionType

PERIODIC,

ONE_TIME;1

«interface»

Employee

{ordered}

* */

derived

association

type

Consultant

/ String personelId

number

Transaction

String reference

Optional<Date> executionDate

int value

/ boolean completed

CD BankingSystem

current balance

in cent

Figure 4.1: A UML CD for a simplified banking system.

Subsequently, the CD4A model for the example in Figure 4.1 is gradually created and
explained. For presentational purpose, the relevant parts of the full CD4A model are
shown as excerpts marked by the model’s name. To explain further language concepts,
which are not part of the example, the model name is omitted. The complete listing of
the final CD4A model is shown in Listing D.1.

4.2.1 Model Definition

A CD4A model is defined in one single file, which has to have the same name as the
model. This design decision corresponds to proposed approach in [Sch12] to improve the
tracing of models to its containing artifacts.

48

4.2 CD4A: Modeling Language for Analysis Models

Each CD4A model may start with a package keyword followed by a qualified name
to define the package of the model but not necessarily of the contained classes, as shown
in the example in l.1 in Listing 4.1. It helps to structure multiple models into logical
units and group all later used names in the artifact to avoid conflicts (cf. [Sch12]).

Besides the package, external artifacts that contain data types, i.e., types not defined in
the model (subsequently called external data types), can be imported using the import
keyword followed by a qualified name, e.g., Java classes such as java.util.Date in l.3.
Each external data type has to be imported to respect referential integrity (cf. [Sch12]).

CD4A BankingSystem
�

1 package dex;
2

3 import java.util.Date;
4

5 classdiagram BankingSystem {
6 //...
7 }

Listing 4.1: A model definition for the banking system example in Figure 4.1.

The main part of a CD4A model is introduced by the classdiagram keyword fol-
lowed by the diagram’s name, e.g., in Listing 4.1 the model named BankingSystem
is defined in l.5. The subsequent brackets enclose interfaces, classes, enumerations, and
associations that belong to this model.

4.2.2 Interfaces, Classes, and Enumerations

An interface is defined by the interface keyword followed by a name, as shown in List-
ing 4.2. Interfaces in the CD4A language have no modifiers such as public or protected,
no attributes, and no methods. The reason for this design decision is rooted in the
purpose of CD4A to represent analysis models (cf. Section 4.1).

CD4A BankingSystem
�

1 interface Employee;
2

Listing 4.2: A CD4A model showing the definition of an Employee interface.

Each interface may extend one or multiple other interfaces using the extends key-
word, as shown in Listing 4.3.

CD4A1 interface A;
2 interface B extends A;
3 interface C;
4 interface D extends B, C;

Listing 4.3: CD4A supports interface hierarchies using the extend keyword.

49

Chapter 4 UML Class Diagrams in Analysis, Design and Implementation

Besides interfaces, CD4A allows the definition of multiple classes. Each class is defined
by the class keyword and a name, as depicted in l.1, l.3, and l.5 in Listing 4.4. An
optional abstract keyword preceding the class definition denotes that the class is
abstract, as shown in l.1. In addition, each class can extend one other class, which is
denoted by the extends keyword (l.3), or can implement multiple interfaces listed after
the implements keyword (l.5). Note that multi-inheritance is explicitly forbidden.

Just like interfaces, classes in CD4A do not support visibility. A CD4A class does also
not allow for any other modifier than abstract. In addition, methods and constructors
are explicitly forbidden.

CD4A BankingSystem
�

1 abstract class Account { ... }
2

3 class CheckingAccount extends Account { ... }
4

5 class Consultant implements Employee { ... }

Listing 4.4: CD4A classes can be abstract (l.1), can extend other classes (l.3), or
implement interface (l.5).

In addition to interfaces and classes, an enumeration can be defined with the enum
keyword and a name (l.1 in Listing 4.5). Each enumeration groups a set of values.
Hence, CD4A enumerations cannot have any constructor, method, or even an attribute.
Moreover, they cannot inherit from interfaces, classes, or enumerations and cannot have
any modifier (cf. Section 4.1.1).

CD4A BankingSystem
�

1 enum TransactionType {
2 PERIODIC, ONE_TIME;
3 }

Listing 4.5: A CD4A definition of the TransactionType enumeration.

4.2.3 Attributes and Predefined Data Types

Each CD4A class may bundle a set of attributes, each of which has a type and a name
as shown in Listing 4.6 in ll.2-4 and l.8. Derived attributes are defined using a leading
derived keyword or the /-symbol, as shown in l.8. Note that this is the only modifier
supported. In addition, an attribute can be initialized with a default value of its type,
e.g., l.3. Only primitive and String values are allowed but no expressions. Semantically,
this means that the value is assigned when creating an object but can later be changed.

50

4.2 CD4A: Modeling Language for Analysis Models

CD4A BankingSystem
�

1 abstract class Account {
2 long number;
3 int balance = 5;
4 int overdraft;
5 }
6

7 class Consultant implements Employee {
8 / String personelId;
9 }

Listing 4.6: A CD4A definition of attributes within classes.

The attribute’s type can be an arbitrary type defined in the model or an imported ex-
ternal data type. In addition, type constructors such as List<.>, Set<.>, Optional
<.>, and the primitive Java data types as well as their wrapper types are predefined,
i.e., do not have to be imported explicitly. For example, l.7 in Listing 4.7 shows the
use of the A class as a generic type parameter for Optional. Besides wrapper and
complex types for generic collection types and optional data types, CD4A allows to use
an arbitrary primitive data type as a generic type parameter, e.g., List<int> in l.2.

CD4A1 class A {
2 List<int> intValues;
3 Set<String> stringValues;
4 }
5

6 class B {
7 Optional<A> optValue;
8 }

Listing 4.7: CD4A supports the predefined data types List<.>, Set<.>, and
Optional<.>.

4.2.4 Associations

Relationships between interfaces, classes, and enumerations are represented by associa-
tions, each of which is defined by the association keyword, a left association end, a
navigation direction, and a right association end. Due to the focus of this thesis and the
requirements set by analysis models, associations are limited to binary associations with
navigability, ordering, and qualification.

Each association can have a cardinality defined on both association ends, as shown
in Listing 4.8. CD4A supports four different types of cardinalities: [1], [0..1], [*],
and [1..*], which are the most commonly used cardinalities in practice (cf. [BFL13]).
If further restrictions on the cardinality are needed, they can either be realized in the

51

Chapter 4 UML Class Diagrams in Analysis, Design and Implementation

design phase or by using the UML/P object constraint language (UML/P OCL) con-
straints [Rum12].

CD4A BankingSystem
�

1 association [1] Customer <-> Deposit [0..1];
2 association [1] Account (to) <->
3 (outgoing) Transaction [*];
4 association type Transaction -> TransactionType [1];

Listing 4.8: An association is defined by an association keyword, a cardinality, a
navigation direction, an association name (l.4) and role names (ll.2-3).

In general, cardinalities are optional and, hence, can be omitted. Semantically, this
represents an underspecification, which has to be handled by a default understanding.
Note that cardinalities on non-navigable association ends (left association end in l.4) can
be omitted, as they are hard to realize.

Each association can have an association name and a role name on both ends. The
primer is defined after the association keyword as shown in l.4 in Listing 4.8, whereas
role names are defined in round brackets on the left or the right hand side of the nav-
igation direction, as shown in ll.2-3. Explicit role names and association names are
necessary whenever ambiguity regarding the derivation of the association’s name oc-
curs. For example, when dealing with reflexive associations. Association names can be
omitted, because they can be derived by using the opposite reference name.

Besides, both association ends have a particular reference type, which can be an ar-
bitrary model type, i.e., an interface, a class, or an enumeration, defined in the current
CD4A model or in another model but imported via the import statement. For ex-
ample, all associations in Listing 4.8 show reference types defined in the current model
only. In addition, it is possible to use external data types as reference types, as shown
in Listing 4.9. However, primitive data types are not supported but only their wrapper
types, e.g. l.2. Likewise, type expressions using collection types or generic types such as
Optional<.> cannot be used in a reference type of association ends.

CD4A1 association birthday A -> Date;
2 association name A -> Integer [1];

Listing 4.9: Associations to external data type Date (l.1) and Integer (l.2).

To denote the navigation direction, which describes that only properties of the ele-
ment in the direction of the navigation can be accessed (cf. [Gén01, Rum12, Rum16]),
one of the following navigation directions can be used: <->, <-, ->, or −−. Each sym-
bol represents the navigation direction in the direction of the formed arrow. The latter
navigation direction (−−) represents an underspecification.

52

4.2 CD4A: Modeling Language for Analysis Models

Navigation directions are restricted when used for enumerations and external data
types such that it is not possible to navigate from an external data type, as subsequently
described in more detail in Section 4.2.5.

Derived Association

As well as attributes, associations can be derived. Semantically, they are used to repre-
sent that the set of association links can be calculated from other elements [Rum16].

Derived associations are denoted with a derived modifier (/-symbol or derived key-
word) after the association keyword, e.g., the association in Listing 4.10.

CD4A BankingSystem
�

1 association / [*] Transaction <->
2 Customer [*];

Listing 4.10: Derived associations are denoted with a /-symbol.

Note that the derived modifier does not depend on the association’s type or navigation
direction as shown in Listing 4.11. Yet, it is the only supported modifier.

CD4A1 association / name A -> B [1];
2 association derived [1] A <-> B [0..1];

Listing 4.11: Every CD4A association can be marked as derived by a /-symbol (l.1)
or a dervied keyword (l.2).

Ordered Association

In general, stereotypes are used to specialize model elements (cf. [Rum16]) but the con-
crete semantics of a stereotype can be defined during implementation. Hence, stereotypes
in analysis models do not represent technical concerns.

CD4A supports the «ordered»-stereotype that can be attached to associations ends
with cardinality [*] or [1..*] to preserve the order in which items are added. For
example, the association shown in Listing 4.12 is ordered in the direction from Deposit
to Share.

CD4A BankingSystem
�

1 association [1] Deposit <->
2 Share [*] <<ordered>>;

Listing 4.12: Associations can be marked to preserve the order of association links
with the «ordered»-stereotype.

53

Chapter 4 UML Class Diagrams in Analysis, Design and Implementation

This stereotype can be attached to each association end individually. Yet, semantically
it makes sense for [*] or [1..*] cardinalities only. For associations with cardinality
[1] or [0..1], this stereotype is ignored.

Qualified Association

Another type of associations are qualified associations, which define the access to an
instance from a set of instances by using a particular qualifier, which has been previously
assigned to this instance (cf. [Rum12, Rum16]). In other words, each association link
is added as a tuple consisting of a qualifier and the association link. Since qualified
access is independent of technical considerations, it has to be mapped to equivalent
representations in the implementation phase.

A qualifier is either an attribute’s value of the opposite instance or an arbitrary value
of a certain type. For example, Listing 4.13 shows a qualified association with the
[[number]] qualifier. The two square brackets denote that this qualifier is an attribute
of the reference in the navigation direction, i.e., in this particular example, number has
to be an attribute of the Account class or its super class.

CD4A BankingSystem
�

1 association [1] Account <->
2 [[number]] Consultant;

Listing 4.13: A qualified associations using an attribute value as the qualifier.

An arbitrary value of a certain type for a qualifier is denoted with only one bracket,
e.g., [String] in l.2 and l.3 in Listing 4.14. For this type of qualifier any arbitrary
value of the qualifier’s type is valid, i.e., in this case any String value. Note that the
qualifier is supported on both association ends, as shown in l.3. Furthermore, as qualified
associations are a special kind of association, they may have cardinalities on both ends
and may even be marked as ordered, e.g., l.2, or derived (l.3).

CD4A1 association A [[number]] <-> B [1];
2 association C [String] -> D [*] <<ordered>>;
3 association / E <-> [String] F;

Listing 4.14: An example of supported qualified associations.

Each cardinality refers to the number of association links referenced by the qualifier.
CD4A does not provide means to quantify the amount of qualifiers. As a consequence,
this denotes an underspecification in CD4A. Moreover, bidirectional qualified associa-
tions on both association ends are not allowed, because of the chosen mapping in this
thesis (cf. Section 5.2.9).

54

4.2 CD4A: Modeling Language for Analysis Models

Composition

A special kind of an association is the composition. In a composition the composed
instances are in a strong relation that also involves the life-cycle [Rum12, Rum16].
A composition is defined similar to an association but with the first keyword being
composition rather than association. The left composition end forms the con-
taining class (whole) end right composition end forms the contained class (part). The
cardinality of a composition from the part to the whole is restricted to [1].

An example of a composition is shown in Listing 4.15. In l.1, A class is the containing
class and T is the contained class. This example also shows that compositions can be
derived (l.2) and have qualifiers (l.3).

CD4A1 composition ordinary A -> T [0..1];
2 composition / [1] A <-> T [1];
3 composition qualified A [[attr]] <-> T [1];

Listing 4.15: The composition keyword denotes a composition that can be derived
(l.2) or qualified (l.3).

4.2.5 Context Conditions

The aforementioned CD4A language concepts are intended to demonstrate the concrete
syntax of the language. However, these language concepts allow to create semantically
invalid models, e.g., use of an attribute type that is not imported or defined. Therefore,
in the remainder of this section a set of context conditions (cf. Section 2.2) is presented
that restricts the set of CD4A models to semantically valid ones.

Due to presentational reasons, the following description is limited to the main context
conditions with their error code only. The complete list is shown in Section E.1.

Diagram Name

The set of diagram names is restricted to those that do not start with a lower case or
a numerical character (Error Code: 0xC4A01). Even if this context condition is purely
based on common conventions (cf. [Sch12]), it is regarded as an error (Severity: error).
The example in Listing 4.16 shows a CD4A model with an invalid name, because it starts
with a lower case.

CD4A1 classdiagram bankingSystem{ } //0xC4A01

Listing 4.16: An example of a CD4A model with an invalid diagram name.

55

Chapter 4 UML Class Diagrams in Analysis, Design and Implementation

Another context condition, related to the diagram’s name, requires that each CD4A
model is located in one particular artifact (Error Code: 0xC4A02), as already mentioned
in Section 4.2.1. This convention is rooted on the Java programming language, where
the compiler enforces one type per file due to possible file system conflicts (cf. [Sch12]).
In this context, its main purpose is to improve traceability, i.e., prevention of misunder-
standings when reading and editing models. Hence, the severity of this context condition
is a warning (Severity: warning), because the model can still be processed but further
processing including symbol table creation may result in an error.

Interfaces, Classes, and Enumerations

Equally for all interfaces, classes, and enumerations, their name has to be unique through
the whole model as they represent an identifier for a particular type (Error Code:
0xC4A04). Consequently, to avoid unambiguity this context condition is considered as
an error (Severity: error), if non-unique names are detected, as shown in ll.2-3 in List-
ing 4.17. Moreover, in compliance to the context condition regarding the diagram’s
name, the name used for an interface, a class, or an enumeration has to start with an
upper case (Error Code: 0xC4A05). Violating this context condition is regarded as an
error (Severity: error). For instance, as shown in ll.4-5 in Listing 4.17.

CD4A1 classdiagram NonUniqueName {
2 interface Person;
3 class Person; //0xC4A04
4 interface employee; //0xC4A05
5 abstract class account; //0xC4A05
6 }

Listing 4.17: An example of an invalid CD4A model because of non-unique and lower
case type names.

Another type of restriction regards enumeration constants. Each enumeration constant
has to be unique (Error Code: 0xC4A06) and the name has to be written in capitalized
characters (Error Code: 0xC4A90). As shown l.5 and l.6 respectively in Listing 4.18,
violations of these restrictions are handled as errors (Severity: error).

CD4A1 classdiagram NoUniqueEnumConstant {
2 enum T {
3 PERIODIC,
4 ONE_TIME,
5 PERIODIC, //0xC4A06
6 regular; //0xC4A90
7 }
8 }

Listing 4.18: A CD4A model with an invalid definition of enumeration constants.

56

4.2 CD4A: Modeling Language for Analysis Models

Extends

The extends language concept, which denotes that a model type extends another model
type by inheriting properties of its parent (cf. [Rum12, Sch12, Rum16]), allows to extend
arbitrary types. However, semantically this does not always make sense, as described
in Section 4.1.1. Hence, we restrict the set of valid CD4A models by explicitly forbidding
(Severity: error) circular extends-relations (Error Code: 0xC4A07). An example of an
invalid CD4A model is depicted in Listing 4.19.

CD4A1 classdiagram CircluarExtends {
2 abstract class A extends C;
3 class C extends A; //0xC4A07
4 }

Listing 4.19: An example of a CD4A model with a circular inheritance.

Another restriction is that classes can only extend other classes but no enumerations
and interfaces (Error Code: 0xC4A08), e.g., l.4 and l.9 in Listing 4.20. This kind
of modeling errors (Severity: error) complies to the understanding in object-oriented
programming languages including Java and the understanding in UML/P CD. Moreover,
enumerations are not allowed (Severity: error) to extend or implement any type defined
in the model as well as any external data type (Error Code: 0xC4A10), e.g., l.5. An
invalid model showing these errors is depicted in Listing 4.20.

CD4A1 import java.util.Date;
2 classdiagram InvalidExtends {
3 interface E;
4 class C extends E; //0xC4A08
5 enum T extends E { //0xC4A10
6 PERIODIC,
7 ONE_TIME;
8 }
9 class A extends T; //0xC4A08

10 class MyDate extends Date; //0xC4A92
11 interface B extends MyDate; //0xC4A09
12 }

Listing 4.20: An example of a CD4A model with an invalid extends-relation.

The CD4A grammar (cf. Listing C.1) allows a superclass to be of any type including
external data types such as java.util.Data. This may, however, require processing
the external data type when used for code generation to generate syntactical correct
source code. Hence, to avoid such errors, CD4A forbids (Severity: error) external types as

57

Chapter 4 UML Class Diagrams in Analysis, Design and Implementation

superclasses (Error Code: 0xC4A92) as shown in Listing 4.20 in l.10. These restrictions
can be overcome by using the method presented in Section 6.4.1.

For interfaces, the extends-relation defines that another interface is extended. Hence,
no other class, enumeration, or external data type can be extended (Error Code: 0xC4A09).
Violations are considered as errors (Severity: error), e.g., l.11 in Listing 4.20.

Implements

The implements-relations allows to implement interfaces. Because the grammar does
not allow to specify such a restrictions of the implementing type, a context condition
ensures that the implemented type is an interface (Error Code: 0xC4A10). An example
of a model containing this kind of error (Severity: error) is shown in Listing 4.21 in ll.4-5.

CD4A1 classdiagram InvalidImplements {
2 enum T { PERIODIC, ONE_TIME; }
3 abstract class A;
4 class B implements T; //0xCAA10
5 class C implements A; //0xC4A10
6 }

Listing 4.21: The implements-relation allows to implement interfaces only.

Attributes

Attributes in CD4A are only allowed for CD4A classes (Error Code: 0xC4A66), as
already mentioned in Section 4.2.2. Violations of this context condition are handled as
errors (Severity: error). Moreover, an attribute’s type has to be either an external data
type or a type defined in the model (Error Code: 0xC4A14), the name of an attribute
has to start with a lower case (Error Code: 0xC4A12), and the assigned value must
evaluate to the type of the attribute (Error Code: 0xC4A11). By way of example, these
errors (Severity: error) are shown in Listing 4.22.

Each attribute declaration can also contain an assigned value, which is only allowed
for non-derived attributes (Error Code: 0xC4A34), e.g., l.15 in Listing 4.22. The reason
is that semantically a derived attribute defines that the value has to be specified in the
design phase. Hence, an assignment violates (Severity: error) this meaning as the value
is defined in the analysis phase.

Besides a wrong type, name, or value, attribute declarations can be invalid, in par-
ticular, when used in classes with inheritance. Assuming that an attribute is already
defined in a superclass, the subclass can override the attribute but only if the type and
name are equal (Error Code: 0xC4A13), e.g., l.3 and l.7 in Listing 4.23. In addition,
each defined attribute has to be unique, i.e., the name has to be unique, within a class

58

4.2 CD4A: Modeling Language for Analysis Models

CD4A1 classdiagram InvalidAttributes {
2 enum A {
3 int value; //0xC4A66
4 }
5 interface B {
6 String value; //0xC4A66
7 }
8 abstract class C {
9 MyType attribute; //0xC4A14

10 double Value; //0xC4A12
11 int age = "Hello World"; //0xC4A11
12 int iValue = age + 10; //0xC4A74
13 /boolean initialized = false; //0xC4A34
14 }
15 }

Listing 4.22: Example of restrictions for CD4A attributes’ name, value, and type.

(Error Code: 0xC4A15), and cannot be abstract (Error Code: 0xC4A52). All errors
(Severity: error) are shown in Listing 4.23.

CD4A1 classdiagram InvalidInheritanceAttribute {
2 abstract class T {
3 double value;
4 abstract int age; //0xC4A52
5 }
6 class A extends T {
7 String value; //0xC4A13
8 String name;
9 int name; //0xC4A15

10 }
11 }

Listing 4.23: Attributes have unique names and cannot be defined multiple times.

Associations

For presentational reasons, the notion of an association’s source and target is introduced.
Given a unidirectional association from A to B, where A and B are arbitrary types, we
denote A as the source and B as the target of the association. Note that for checking
context conditions of bidirectional associations, two unidirectional associations are used.

59

Chapter 4 UML Class Diagrams in Analysis, Design and Implementation

For each association it has to be ensured that it is unique (Error Code: 0xC4A26), i.e.,
there are no two associations with the same source and target or name. As associations
may have a name and role names, this restriction implies that the association name and
each role name is unique (Error Code: 0xC4A25 and Error Code: 0xC4A27). Each
association name and role name has to start with a lower case (Error Code: 0xC4A16
and Error Code: 0xC4A17). If no association name or role name is given, a default
name is used, which is the target’s type name in lower case. Such a default name has to
be unique as well (Error Code: 0xC4A28). All these restrictions are handled as errors
(Severity: error) if violated. An example is shown in Listing 4.24.

CD4A1 classdiagram InvalidAssociation {
2 class T{
3 double value;
4 }
5 enum A{
6 PERIODIC,
7 ONE_TIME;
8 }
9 association assoc T -> A;

10 association assoc T -> A; //0xC4A26
11 association MyAssoc T -> A; //0xC4A16
12 association T -> (value) A; //0xC4A27
13 association assoc B -> C; //0xC4A28
14 }

Listing 4.24: A CD4A model showing invalid association definitions, where the names
are not unique or invalid.

CD4A also restricts the set of valid association source types, as already mentioned
in Section 4.2.4. In particular, the source type of an association cannot be an enumeration
(Error Code: 0xC4A21). This error (Severity: error) is shown in Listing 4.25 in l.5. In
addition, the association’s source type cannot be an external data type (Error Code:
0xC4A21) (l.6 in Listing 4.25), because external data types cannot be modified. Hence,
it is also considered as an error (Severity: error).

CD4A1 import java.util.Date;
2 classdiagram InvalidSourceAssociation {
3 enum T { PERIODIC, ONE_TIME; }
4

5 association T -> A; //0xC4A21
6 association Date -> A; //0xC4A21
7 }

Listing 4.25: An example showing that an association’s source cannot be an external
data type or an enumeration.

60

4.2 CD4A: Modeling Language for Analysis Models

Besides restrictions to the associations names and types, the cardinalities are restricted
in some cases. One case is that whenever the «ordered»-stereotype is used, the cardinal-
ity on the same side has to be either [*] or [1..*] (Error Code: 0xC4A24), because
otherwise it does not have any semantic meaning, as shown in Listing 4.26 ll.2-3. How-
ever, violations of this context condition are considered as warnings (Severity: warning),
because the stereotype can be ignored. The other case is the cardinality for compositions,
which is restricted to [1] on the whole composition side (Error Code: 0xC4A18), i.e.,
a part belongs to one whole (cf. [Rum12]), as shown in Listing 4.26 in ll.4-6. Violating
this restriction are handled as errors (Severity: error).

CD4A1 classdiagram InvalidCardinalities {
2 association A -> T [1] <<ordered>>; //0xC4A24
3 association A -> B [0..1] <<ordered>>; //0xC4A24
4 composition [*] C <-> D; //0xC4A18
5 composition [1..*] D <-> C; //0xC4A18
6 composition [0..1] D <-> C; //0xC4A18
7 }

Listing 4.26: The cardinality for ordered associations should be [*] or [1..*] but
the cardinality of composition’s whole has to be [1].

For qualified associations, cardinalities are not restricted but additional restrictions
are added regarding the qualifier. First, all data types used as a qualifier types have
to either be external data types or types defined in the model (Error Code: 0xC4A19).
For any other type, i.e., undefined types, an error is produced (Severity: error), e.g. l.6
in Listing 4.27. Second, if an attribute of the association’s target type is used, it has to
be present in the target type or in one of its super classes (Error Code: 0xC4A20). If
it is not present, qualification is not possible and the model contains an error (Severity:
error) as shown in l.7. Third, a qualified unidirectional association is correctly defined,
if the qualifier type is on the side of the association’s source (Error Code: 0xC4A35).
Otherwise, there is no semantic meaning to the qualified association and it is considered
as an error (Severity: error), e.g., l.8 in Listing 4.27.

CD4A1 classdiagram InvalidQualifiers {
2 abstract class A {
3 long number;
4 }
5

6 association B [MyType] -> A; //0xC4A19
7 association undefined B [[value]] -> A; //0xC4A20
8 association wrongSide B -> [number] A; //0xC4A35
9 }

Listing 4.27: The qualifier of a qualified association has to be either an external data
type or a type defined in the model.

61

Chapter 4 UML Class Diagrams in Analysis, Design and Implementation

Types

In general, every type defined in a model or external types imported can be used within a
model. However, CD4A restricts the use of generic types such as List and Optional.
First, generic types are not allowed to be nested (Error Code: 0xC4A29), as shown
in Listing 4.28 in l.3. This design decision is based on existing equivalent representation of
such data structures by using appropriate classes and associations and, hence, considered
as an error (Severity: error). Moreover, when defining generic parameters, the generic
type parameter has to be explicitly defined either within the model or imported (Error
Code: 0xC4A30), as shown in l.4 in Listing 4.28. Also the number of generic parameters
has to be exactly one (Error Code: 0xC4A31), e.g., l.5 in Listing 4.28. Both of these
context conditions are considered as errors (Severity: error).

CD4A1 classdiagram InvalidGenerics {
2 abstract class A {
3 List<Set<String>> values; //0xC4A29
4 List<MyType> balance; //0xC4A30
5 List<Double,Integer> overdraft; //0xC4A31
6 }
7 }

Listing 4.28: Generics in CD4A are only simple and with only one parameter.

4.3 CD4Code: Modeling Language for Implementation Models

The CD4A ML is designed for analysis models only. It lacks language constructs to be
usable for modeling design and implementation models (cf. Section 4.1). However, a
representation of implementation models is necessary for the adaptable transformation-
and template-based code generation approach developed in this thesis (cf. MR-3), as
described in detail in Chapter 8. Hence, in this thesis the UML class diagram for code
(CD4Code) ML has been developed as a ML for design and implementation models. It
is based on the CD4A ML but extends it with methods, constructors, visibility, and
modifiers. Technically, CD4Code is a language extension of CD4A using MC language
extension mechanism (cf. Section 2.2.1) and additional context conditions.

In summary, CD4Code supports: classes, interfaces, enumerations, attributes, external
data types, constructors, methods, visibility, and abstract modifier. Moreover, CD4Code
explicitly omits method and constructor implementations.

In the remainder of this section, the CD4Code ML is described as the extension of
the CD4A ML. Therefore, only the CD4Code ML’s extensions to the CD4A ML are
introduced. Hence, this section is intended for generator developers using the CD4Code

62

4.3 CD4Code: Modeling Language for Implementation Models

ML’s AST rather then modelers using the concrete syntax. Nevertheless, the full gram-
mar describing CD4Code is shown in Section C.1. In addition, context conditions for
CD4Code are listed in Section E.2.

4.3.1 Modifiers

In general, modifiers are markers for language constructs to change their meaning. The
visibility modifier defines how the concept is viewed from within and from outside of the
enclosing scope (cf. Section 2.2.3). For example, by defining an attribute to be private
it is only visible within the class. CD4Code uses the four common types of visibility:
private, protected, public, and default, as shown in ll.2-4 in Listing 4.29.

MCG1 Modifier = Stereotype?
2 (["private"] | [private:"-"]
3 | ["protected"] | [protected:"#"]
4 | ["public"] | [public:"+"]
5 | ["abstract"] | ["final"] | ["static"]
6 | ["derived"] | [derived:"/"]
7)*;
8

9 Stereotype = "<<" values:(StereoValue || ",")+ ">>";
10 StereoValue = Name ("=" value:String)?;

Listing 4.29: Modifiers allow to define stereotypes and visibilities for classes,
interfaces, enumerations, attributes, methods, and constructors.

Additionally, abstract, final, static, and derived modifiers (ll.5-6) as well as stereotypes
(l.1) can be used with the same meaning as defined in UML/P CD [Sch12]. Note that
each stereotype is a key-value pair enclosed in «», as shown in ll.9-10.

Modifiers can be used for every CD4Code class, attribute, interface, enumeration,
method, constructor, and association end. However, CD4Code classes, interfaces, enu-
merations, methods, and constructors cannot be derived. Moreover, interfaces, enumer-
ations, associations, attributes, and constructors cannot be abstract. Neither interfaces
nor enumerations can have private or protected visibility, or be final or static. Associ-
ation ends can have visibilities and arbitrary stereotypes. However, only one visibility
per modifier is allowed.

4.3.2 Constructor-Signatures

For every class, a constructor allows to create an instance of the enclosing class. In
the implementation of the CD4Code ML, constructors with varying parameters are sup-
ported as shown in l.2 in Listing 4.30. A constructor is only allowed in a class, and an
enumeration. However, no implementation bodies are allowed (cf. Section 4.1).

63

Chapter 4 UML Class Diagrams in Analysis, Design and Implementation

MCG1 CDConstructor = Modifier Name
2 "(" (CDParameter || ",")* ")"
3 ("throws" exception:(QualifiedName || ",")+)?
4 ";";

Listing 4.30: Each CD4Code class and enumeration can define a constructor with a
set of parameters but no implementation body.

Since this thesis assumes the target language to be Java, CD4Code additionally sup-
ports throws declarations to denote exceptions thrown by methods (l.3 in Listing 4.30).

4.3.3 Method-Signatures

Besides constructors, methods are supported in CD4Code as well, each of which has one
return type, a name, and a list of parameters, as shown in Listing 4.31. In compliance to
constructors, no implementation bodies are supported. In addition, a method signature
may be extended with an additional exception declaration that is thrown by this method
(l.3 in Listing 4.31).

MCG1 CDMethod = Modifier ReturnType Name
2 "(" (CDParameter || ",")* ")"
3 ("throws" exception:(QualifiedName || ",")+)?
4 ";";

Listing 4.31: CD4Code supports method-signatures with modifiers, return types,
and parameters but no implementation bodies.

In general, CD4Code supports methods for CD4Code interfaces and enumerations.

4.3.4 CD4Code Interface

In contrast to the CD4A ML, interfaces in the CD4Code ML are not primarily markers.
Interfaces may extend other interfaces, provide method-signatures, and are allowed to
define attributes, as shown in Listing 4.32. Each defined attribute has to be static.

MCG1 CDInterface astimplements ASTCDType =
2 Modifier? "interface" Name
3 ("extends" interfaces:(ReferenceType || ",")+)?
4 ("{" (CDAttribute | CDMethod)* "}" | ";");

Listing 4.32: CD4Code supports methods and static attributes in interfaces.

64

4.3 CD4Code: Modeling Language for Implementation Models

4.3.5 CD4Code Enumeration

Due to the focus of this thesis to generate Java source code, enumerations in the
CD4Code ML are regarded similar to Java enumerations. In particular, enumerations are
allowed to implement interfaces defined in the CD4Code model, as shown in l.2 in List-
ing 4.33. Besides enumeration constants, CD4Code enumerations can have arbitrary
many methods as well as constructors (l.4).

MCG1 CDEnum astimplements ASTCDType = Modifier? "enum" Name
2 ("implements" interfaces:(ReferenceType || ",")+)?
3 ("{"
4 (CDEnumConstant || ",")* ";" (CDConstructor | CDMethod)*
5 "}"
6 | ";");

Listing 4.33: CD4Code supports methods and constructors in enumerations.

65

Chapter 5

Systematic CD4A ML to a Java Mapping

The CD4A ML, which has been introduced in Chapter 4, is the primary development
artifact to specify the structured data managed by a data-centric application. In MDP
and MDD of data-centric applications, as described in Chapter 3, CD4A models are
mapped to a data structure, which is the source-code-representation of CD4A models.

In general, a mapping depends on (i) the source language, (ii) the target language,
(iii) how the generated source code is used by the varying roles (cf. Section 3.1.3), and
(iv) additional mapping guidelines. In this thesis, a systematic mapping of the CD4A
ML to the Java source code has been developed (cf. RE-5). This mapping, which is a
more detailed extension of the mappings introduced in [Rum12, BFL13], ensures data
consistency (cf. RE-6), i.e, all mandatory associations (associations with cardinality
[1] and [1..*]) specified in a CD4A model have at least one association link, and all
attributes are assigned with a valid value.

The goal of this chapter is to introduce the developed CD4A-to-Java mapping to
generator developers. This is done based on the example presented in Chapter 4. Hence,
this chapter is structured as follows. First, the general considerations and the used
mapping guidelines are presented in Section 5.1. Afterwards, the mapping for each
CD4A language concept to Java language concepts is explained in Section 5.2. Because
this mapping ensures consistency, data structures resulting from CD4A models with
mandatory-to-mandatory associations cannot be instantiated. Hence, approaches to
overcome this limitation are discussed in Section 5.3.

5.1 General Considerations and Mapping Guidelines

Each mapping requires guidelines it relies on such that every ambiguity of the mapping is
resolved relative to the guidelines (cf. RE-5-1). For example, how the names of variables
and methods in the Java source code are chosen depends on whether understandability
and usage of the generated source code is a goal. The mapping used in this thesis follows
the subsequently listed guidelines.

• Systematic Derivation: A mapping of CD4A language concepts to Java source
code has to be defined in a systematic and very specific way, i.e., besides defining

67

Chapter 5 Systematic CD4A ML to a Java Mapping

the Java source code resulting from a particular CD4A language concept, it has
to define how this mapping is realized. For example, by describing how the name
and type of a Java variable are chosen. No ambiguity or incompleteness, i.e., an
unspecified mapping of a CD4A language concept, is allowed, because the code
generator requires clear instructions to systematically generate Java source code.

Such a systematic mapping is also essential for the use of the generated Java source
code. If the mapping is understood, inspection of the generated source code is not
required but interfaces are sufficient.

• Unified Use of Wording: A unified use of wording used in a CD4A model and
the wording used in the Java source code is helpful to reduce a potential conceptual
gap between the CD4A model and the generated Java source code. It has to be
removed in order to keep traceability and promote name recognition [HBR00].
Consequently, the name schema used in the Java source code, e.g., class, variable,
and method name, has to be derived from elements of the CD4A model.

• Information Hiding and Encapsulation: Two well-known principles in object-
oriented programming are the information hiding and encapsulation principle [Par71,
Par72]. The primer postulates the idea to restrict access to the implementation
rather than forcing a developer to understand it. In the developed mapping, this
principle is realized by providing mutators and accessors and separating the behav-
ior from its representation using high-level interfaces. Hence, the generated Java
source code can be used by only regarding the generated interfaces (cf. RE-5-1-1).

The encapsulation principle describes the encapsulation of the object’s state and
behavior in the implementation. This is especially relevant when mapping CD4A
associations, because each association influences the state of the linked object(s).
As a result, association links and the association’s behavior, i.e., methods to man-
age associations, are located in the association ends rather than in an association
class as, e.g., proposed in [Ges08, Ges09, GW11].

• Association Consistency: In general, the different purposes of an association in
UML CD converge to “some kind of dependency between two classes” [Ste02]. A
relationship between two classes A and B, where A is dependent on B, refers to the
possible change of an instance of A if an instance of B is changed. This relationship
understanding cannot directly be mapped to Java, because a similar concept does
not exist (cf. [Ges09]).

A Java implementation that realizes the dependency between two UML CD classes
has to ensure associations consistency for bidirectional associations (also called
“referential integrity” [BFL13]), i.e., the correct realization of the mutual update
in the dependency relation. A plethora of approaches to ensure association con-
sistency have been proposed, e.g., [HBR00, Ste02, GDCL03, MZ04, AHMM07,

68

5.2 Mapping of CD4A Concepts to Java Source Code

Ges08, Ges09, GW11, Rum12], each of which varies conceptually and technically.
The developed in this thesis extends already existing non-reflective and lightweight
approaches [Rum12, BFL13] that address association cardinality constraints and
prevents violations through external method calls.

• Static Type-safety: Type-safety can either be ensured dynamically or stati-
cally [Har12]. Dynamically ensuring type-safety requires detection of the object’s
type at run-time and may result in unpredictable application behavior that is not
visible a priori. In contrast, static type-safety detects type inconsistencies at com-
pile time and, hence, omits such runtime errors.

Type-safety is especially relevant for associations. For example, a dynamic typing
such as proposed in [GDCL03, TM05, Ges09] may lead to unwanted run-time
exceptions because reflective access is required to deduce an object’s type. The
proposed mapping aims for static type-safety and explicitly avoids any dynamic
casting at runtime.

• Resolve Semantic Variation Points: CD4A harbors semantic variation points
[Grö10] (cf. Section 1.2). Yet, such a degree of freedom is obstructive for code
generation, because a code generator requires clear rules to systematically map
each concept of the analysis model to concepts of the target language. To resolve
this issue, a default mapping for every semantic variation point has to be designed.

Note that thread-safety is not handled due to the focus on client applications that only
support manipulation of one object at a time. Such concerns can be added by either
Java constructs as proposed in [Rum12] or atomic action concepts [Cac07].

5.2 Mapping of CD4A Concepts to Java Source Code

The CD4A-to-Java mapping used in this thesis is mainly based on [Rum12, BFL13] and
adapts it to the general considerations and mapping guidelines listed in Section 5.1. The
mapping is presented for each CD4A language concept by use of examples. For presen-
tational purposes, we use the example introduced in Section 4.2 (Figure 4.1 on page 48)
and additional examples to discuss relevant details. Moreover, to refer to the Java lan-
guage concepts mapped from a CD4A language concept, we use the wording: e.g., Java
interface of the CD4A class. In addition, whenever appropriate existing mappings are
discussed in detail.

5.2.1 Mapping CD4A Model Definition

A CD4A model definition contains a package name, imports, and a model’s name (Sec-
tion 4.1.1). The package name and the CD4A model name are used for structuring the

69

Chapter 5 Systematic CD4A ML to a Java Mapping

generated Java artifacts. For example, in Listing 4.1 on page 49 the package dex and
the model name BankingSystem are defined. The structuring, i.e., package structure
of the generated Java source code, used in this thesis uses both names in lower case,
e.g., dex.bankingsystem, to ensure that multiple models using the same package are
located in different sub packages. Note that this mapping is sufficient for processing
single CD4A models. Hence, if multiple CD4A models are processed and used for code
generation, an alternative approach may be required. An overview of such alternative
approaches is discussed in [Sch12].

Each CD4A import is mapped to the equivalent Java import concept for each gener-
ated artifact as well, because the imports in the CD4A model are defined globally, i.e., for
all enclosed classes and interfaces. Imports of external CD4A types are not supported.

5.2.2 Mapping CD4A Interfaces

A CD4A interface is mapped to a public Java interface. An example of this mapping is
shown in Figure 5.1. The CD4A interface Employee (at the top) is mapped to a public
Java interface with the same name (at the bottom).

CD4A BankingSystem
�

1 interface Employee;
2

Java

«GEN»
	

1 public interface Employee {
2 }

Figure 5.1: An example of mapping a CD4A interface (at the top) to a Java interface
(at the bottom).

If the CD4A interface has outgoing associations, the mapping adds additional method
declarations in the Java interface. Note that a detailed explanation of the mapping for
CD4A associations is described in the remainder of this chapter. The implementation of
the method declarations is regarded by the mapping of the CD4A classes implementing
the CD4A interface. A Java implementation of the CD4A interface does not exist,
because it leads to situations, where multi-inheritance is required in the Java source code.
For example, the model shown in Listing 5.1 requires multi-inheritance, when mapping
the interface A (l.1), B (l.2), and C (l.3) to Java interfaces and implementations.

CD4A1 interface A;
2 interface B;
3 interface C extends A, B;

Listing 5.1: A CD4A model that requires resolving multi-inheritance when mapping
CD4A interfaces to Java interfaces and implementations.

70

5.2 Mapping of CD4A Concepts to Java Source Code

A CD4A interface extending another CD4A interface is mapped to a Java interface
that uses the Java extends language concept to extend the Java interface mapped
from the extended CD4A interface. For instance, the CD4A interface B extends the
CD4A interface A, as shown in Figure 5.2 (at the top). The Java interface for the CD4A
interface A is shown at the bottom left. The Java interface of the CD4A interface B,
which is shown at the bottom right, extends the Java interface A. If the CD4A interface
extends multiple other CD4A interfaces, the Java interface uses a comma separated list
of extended Java interfaces.

CD4A1 interface A;
2 interface B extends A;

Java

«GEN»
	

1 public interface A {
2

3 }

Java

«GEN»
	

1 public interface B
2 extends A {
3 }

Figure 5.2: An example of mapping CD4A interface’s extends-concept (at the top) to
Java’s extends-concept (at the bottom).

5.2.3 Mapping CD4A Classes

A CD4A class is mapped to a public Java interface and a public Java class, which
implements the Java interface. The Java interface’s name is the name of the CD4A class.
The Java class’ name is composed of the CD4A class’ name and a Impl-suffix. The Java
interface and class are required to separate the representation from the implementation
(cf. Section 5.1).

The example in Figure 5.3 shows the CD4A class A (at the top) that is mapped to the
public Java interface A (bottom left) and the public Java class AImpl (bottom right)
implementing the A interface.

CD4A1 class A;

Java

«GEN»
	

1 public interface A {
2 int hashCode();
3 boolean equals(Object o);
4 String toString();
5 }

Java

«GEN»
	

1 public class AImpl
2 implements A {
3 public AImpl(){
4 }
5 }

Figure 5.3: An example of a CD4A class (A at the top) that is mapped to a Java interface
(A bottom left) and a Java implementing class (AImpl bottom right) with
additional standard Java methods.

71

Chapter 5 Systematic CD4A ML to a Java Mapping

In addition, the example shows that by default the Java interface contains an equals(),
a hashCode(), and a toString() method for comparing objects and converting an
object to a String value, as proposed in [Rum12]. All methods are implemented in
the Java class, e.g., the AImpl Java class. For further details on their implementation,
interested readers are advised to consider [Blo08].

Alternative approaches to map a UML CD class to an interface and an implemen-
tation have been proposed. Harrison et. al. proposes to make the implementation
abstract and add an additional implementing subclass in order to use the Generation
Gap-Pattern [HBR00]. A similar approach has been proposed in [MSHL06]. The Eclipse
Modeling Framework (EMF) [SBPM09] maps a UML CD interface to a Java interface
and a Java implementation but additionally adds infrastructure related implementations.

Abstract CD4A Classes

An abstract CD4A class is mapped to a Java interface and an abstract Java class. For
example, the abstract CD4A class A (at the top in Figure 5.4) is mapped to the Java
interface A (bottom left) and the abstract Java class AImpl (bottom right).

CD4A1 abstract class A;

Java

«GEN»
	

1 public interface A {
2

3 }

Java

«GEN»
	

1 public abstract
2 class AImpl
3 extends A {
4 }

Figure 5.4: An abstract CD4A class (A at the top) that is mapped to a Java interface
(A bottom left) and a Java implementing class (AImpl bottom right).

An implication of this mapping is that if a CD4A model contains only abstract classes,
the Java source code cannot be instantiated, i.e., no object of a Java class can be created.
However, such a data structure may serve a reuse purpose. Alternatively, the CD4A
model can be restricted to only allow abstract classes with at least one concrete subclass,
as proposed in [Lan16].

CD4A Class Hierarchies

The CD4A ML allows that CD4A classes implement CD4A interfaces or extend other
CD4A classes. Whenever a CD4A class implements a CD4A interface, the Java class
mapped from the CD4A class implements, i.e., using the Java implements concept,
the Java interface mapped from the CD4A interface. If a CD4A class extends another
CD4A classes, the following mapping is used:

72

5.2 Mapping of CD4A Concepts to Java Source Code

• The Java interface of the CD4A subclass extends the Java interface of the CD4A
superclass.

• The Java class of the CD4A subclass implements the Java class of the CD4A
superclass.

• The Java class’ constructor of the CD4A subclass contains the CD4A superclass’
attributes and mandatory associations.

To demonstrate the mapping, an excerpt of the banking system example in Fig-
ure 4.1 is used, which is depicted in Figure 5.5. In this example, the CD4A class
CheckingAccount extends the CD4A class Account (l.1 at the top). The gener-
ated Java interface CheckingAccount extends the Java interface Account, which is
the generated interface for the CD4A class Account (ll.2-3 at the bottom left). The
generated Java class CheckingAccountImpl, implements the Account Java interface
(l.4 at bottom right) by extending the Java implementation AccountImpl to reuse the
implementation of its superclass (l.3 at bottom right).

CD4A BankingSystem
�

1 class CheckingAccount extends Account{
2 //...
3 }

Java

«GEN»
	

1 public
2 interface CheckingAccount
3 extends Account {
4 // ...
5 }
6

Java

«GEN»
	

1 public
2 class CheckingAccountImpl
3 extends AccountImpl
4 implements Account,
5 CheckingAccount {
6 }

Figure 5.5: An example of a CD4A class (CheckingAccount at the top) with an
extends-relation that is regarded in the Java source code (bottom right
and bottom left).

5.2.4 Mapping CD4A Enumerations

A CD4A enumeration is mapped to a public Java enum with the same name as the
CD4A enumeration. The Java enumeration’s values are the CD4A enumeration’s values.
To illustrate the mapping, the example shown in Figure 5.6 depicts the CD4A enum
TransactionType (at the top) that is mapped to a Java enumeration Transaction-
Type (at the bottom).

An alternative mapping approach is to use a Java interface and public static
final variables to represent each constant. However, each constant has to be handled

73

Chapter 5 Systematic CD4A ML to a Java Mapping

CD4A BankingSystem
�

1 enum TransactionType{
2 PERIODIC,
3 ONE_TIME;
4 }

Java

«GEN»
	

1 public enum TransactionType {
2 PERIODIC,
3 ONE_TIME;
4 }

Figure 5.6: A CD4A enumeration (TransactionType at the top) is mapped to a Java
enumeration (TransactionType at the bottom) with the same name.

as an int and, hence, type-safety for different enumeration types is not guaranteed. An-
other approach is by using the Typesafe Enum-Pattern [Blo08], as proposed in [SBPM09].
This mapping has been proposed due to technical limitations of Java 1.5, because it was
the only way to implement a type that can take a finite number of values. Among others,
it’s disadvantage is that its constants cannot be used in switch statements.

5.2.5 Mapping CD4A Attributes

Each CD4A class can contain multiple attributes, each of which is mapped to a private
Java variable within the Java class mapped from the CD4A class. Private visibility is
used to respect the information hiding principle (cf. Section 5.1). Additionally, a CD4A
attribute is mapped to a public accessor and a public mutator. Note that this is a
common mapping, e.g., [HBR00, SBPM09, Rum12].

The Java variable’s type is the CD4A attribute’s type. However, if it is a primitive
generic type (e.g., Optional<int>), it is mapped to a generic wrapper type (e.g.,
Optional<Integer>). The variable’s name is the CD4A attribute’s name. Moreover,
if default values assigned to a CD4A attribute, are kept. For example, some mappings of
CD4A attributes to Java variables are shown in Table 5.1. The CD4A attributes on the
left are mapped to the Java variables on the right, e.g., the List<Double> c CD4A
attribute is mapped to the private List<Double> c Java variable.

CD4A Attribute Java Variable

int a; private int a;
Optional<int> b; private Optional<Integer> b;
List<Double> c; private List<Double> c;
E e; (where E is a CD4A class, interface,
or enumeration; or an external data type)

private E e;

Table 5.1: An example of the mapping of CD4A attributes to Java variables.

74

5.2 Mapping of CD4A Concepts to Java Source Code

CD4A BankingSystem
�

1 class SavingsAccount extends Account {
2 double effectiveInterestRate;
3 }

Java

«GEN»
	

1 public class SavingsAccountImpl
2 extends AccountImpl
3 implements SavingsAccount, Account {
4 private double effectiveInterestRate;
5

6 public double getEffectiveInterestRate() {
7 return this.effectiveInterestRate;
8 }
9

10 public void setEffectiveInterestRate(double o) {
11 this.effectiveInterestRate = o;
12 }
13 }

Figure 5.7: The CD4A attribute (l.2 at the top) is mapped to a private Java variable
(l.4 at the bottom), and an accessors and a mutator (ll.6-12 at the bottom).

The CD4A attribute’s name is also used to derive the names of the accessor and muta-
tor for accessing and manipulating the Java variable. The accessor’s name is composed
of a get-prefix and the capitalized CD4A’s attribute name. For conventional reasons,
the accessor has a is-prefix, if its type is boolean. The mutator’s name is composed of
a set-prefix and the attribute’s name.

For example, Figure 5.7 shows the mapping for the effectiveInterestRate CD4A
attribute (l.2 at the top), which is mapped to the private Java variable effective-
InterestRate (l.4 at the bottom) and two public methods (ll.6-12 at the bottom). The
getEffectiveInterestRate()-method (ll.6-8 at the bottom) is the accessor and
returns the Java variable’s value. The mutator (setEffectiveInterestRate()-
method in ll.10-12 at the bottom) has one parameter with the Java variable’s type and
the name o.

The implementation of the mutator changes, if the CD4A attribute’s type is not
primitive. In this case, the mutator checks whether the value is not null and may
throw an exception to ensure data consistency. For example, the getA()-method in
ll.2-5 in Figure 5.8 does a precondition check (l.3) before assigning the value (l.4).

In general, attributes with the same name and type may occur multiple times in a
hierarchy of CD4A classes. In this case, the child attributes have to be removed to avoid
run-time exceptions when mapping to Java source code. The run-time exception occurs
during instantiation of the subclass, when the duplicate variable values are set. In this
case, only the subclass variable will be set but not the superclass variable because the

75

Chapter 5 Systematic CD4A ML to a Java Mapping

CD4A1 class A;
2

3 class B {
4 A a;
5 }

Java

«GEN»
	

1 public class BImpl implements B {
2 public setA(A o){
3 Preconditions.checkNotNull(o);
4 this.a = o;
5 }
6 }

Figure 5.8: An example of a mutator for non-primitive CD4A attributes.

mutator is overridden. In consequence, calling the super constructor will raise a run-time
exception, because its variable is null (violation of data consistency).

Ensuring Data Consistency in Constructors

A CD4A class without attributes is mapped to a Java class with a default constructor. If
a CD4A class contains attributes, it has to be ensured that when an instance of the Java
class is created, a value is assigned to the Java variable. Hence, no default constructor
exists. Such a mapping has also been proposed in [HBR00, Rum12, BFL13, Lan16].

In particular, each CD4A class with attributes is mapped to a Java class with a
constructor that has a parameter for each CD4A class’ attribute. An example is shown
in Figure 5.9. In this example, the CD4A class Deposit (at the top) is mapped to the
Java class DepositImpl (at the bottom) with a constructor that has one parameter
for the attribute balance (l.2 at the bottom). The constructor assigns the value to the
Java variable balance. If the attribute has a different type other than primitive, the
constructor needs to check if the value is not null.

CD4A BankingSystem
�

1 class Deposit {
2 int balance;
3 }

Java

«GEN»
	

1 public class DepositImpl implements Deposit {
2 public DepositImpl(int balance){
3 this.balance = balance;
4 //...
5 }
6 }

Figure 5.9: An example of mapping a CD4A class (at the top) to a Java class (at the
bottom) that ensures data consistency in the constructor.

76

5.2 Mapping of CD4A Concepts to Java Source Code

Derived CD4A Attributes

Derived CD4A attributes are mapped to a Java accessor only and no Java variable or
mutator, because derived attributes cannot be modified (cf. [Rum12]). Hence, derived
attributes are not considered in constructors of Java classes.

The accessor uses the same naming schema as accessors for non-derived attributes. By
default the accessor throws an exception to denote a missing implementation. Alterna-
tively, it is also possible to return default values instead throwing an exception. However,
default values can only be returned for primitive derived attributes. Moreover, default
values introduces a conceptual gap, because the application developer is not aware of
the missing implementation.

To demonstrate the mapping the example in Figure 5.10 is considered. It shows the
mapping for the derived CD4A attribute completed (l.1 at the top). It is mapped to
the isCompleted() accessor with public visibility that throws a NotImplemented-
Exception (shown in ll.2-4).

CD4A BankingSystem
�

1 class Transaction {
2 /boolean completed;
3 //...
4 }

Java

«GEN»
	

1 public class TransactionImpl implements Transaction {
2 public boolean isCompleted() {
3 throw new NotImplementedException("0xD5078: ...");
4 }
5 }

Figure 5.10: The derived CD4A attribute completed (l.1 at the top) is mapped to the
isCompleted() accessor (ll.2-4 at the bottom).

5.2.6 Mapping CD4A Unidirectional Associations

Associations in CD4A are based from the old and intuitive notion of a relationship
between entities in Entity-Relationship (ER) modeling [Mil07]. They “have to be im-
plemented by an adequate combination of classes, attributes, and methods” [GDCL03],
where adequate depends on general considerations as explained in Section 5.1. Hence,
different approaches of mapping UML CD associations to object-oriented source code
have been discussed, e.g., [Fow97, KNNZ99, Ste02, DD06, Mil07, Øs07, WS07, DED08,
SBPM09, Rum12, Ste13, BFL13, Lan16]. Each mapping addresses a different area of
interest such as visibility of association ends, thread-safety, or understandability. Even
object-oriented programming languages have been proposed to handle associations in
order to improve maintenance [Ste13].

77

Chapter 5 Systematic CD4A ML to a Java Mapping

The focus of this thesis is on static association, i.e., the association’s implementation
in the software system can be identified by inspecting the code [Ste02], because the
“linked objects are conceptually aware of the relationship” [BFL13]. Each association
link represents a structural link between instances that last longer than only during
an interaction between instances [Mil07]. Furthermore, associations are restricted to
bidirectional associations without visibility and ownership. Approaches to handle n-ary
associations with visibility do exist, e.g., [DD06, DED08, Ges09].

The developed mapping for associations is rooted on and extends [Rum12, BFL13]. It
requires (i) a Java variable with an appropriate type to store the association links and
(ii) Java methods to manipulate and manage associations links. In addition, to ensure
data consistency (iii) the constructor and mutators may have to respect mandatory
associations (cf. Section 5.2.3). Moreover, the association’s implementation, i.e., Java
variable and Java methods, is mapped to the Java class of the association’s source
(cf. Section 4.2.4). Hence, each association’s source (cf. Section 4.2.4) is responsible for
managing the association’s links.

The name of the Java variable, which stores association links, is derived using the
following priority list: (1) role name, (2) association name, (3) lower case association
target. Its type depends on the kind of association and the cardinality. For example,
in Table 5.2 the mapping of ordinary associations to Java variables is shown. The Java
variable’s type is the association’s target type for associations with cardinality [1].
The optionality of [0..1] associations is represented by the Optional type to neglect
null-values (this, among others, is a separating criteria to [BFL13]). Furthermore, the
Set type containing the association’s targets is used for associations with cardinality
[1..*] and [*]. Note that the variables are private to respect information hiding
(cf. Section 5.1). For presentational reasons, the association keyword is omitted.

CD4A Association Java Variable

A -> B [1] private B b;
A -> (role) B [0..1] private Optional role;
name A -> B [*] private Set name;
name A -> (role) B [1..*] private Set role;

Table 5.2: An example of how the Java variable to manage association links depends on
the cardinality and the existence of an association name or a role name.

The Java methods to modify the Java variable storing the association link(s) also
depend on the association’s cardinality and the association’s type. For example, associa-
tions with no modifiers and cardinality [1] or [0..1], are mapped to a public mutator
and a public accessor as shown in Figure 5.11. The mutator’s name is composed from
a get-prefix and the capitalized name of the association, e.g., setType() in l.2 at the

78

5.2 Mapping of CD4A Concepts to Java Source Code

bottom. The mutator’s parameter has the association target’s type and the associa-
tion’s name, e.g., TransactionType type in l.2 at the bottom. The accessor’s name
consists of a set-prefix and the name of the association, e.g., getType() in l.3 at the
bottom. Its return type is the type of the association target, e.g., TransactionType
in l.3 at the bottom.

CD4A BankingSystem
�

1 association type Transaction ->
2 TransactionType [1];

Java

«GEN»
	

1 public interface Transaction {
2 void setType(TransactionType type);
3 TransactionType getType();
4 }

Figure 5.11: The CD4A association at the top is mapped to the Java accessor
getType() and the mutator setType().

Another mapping example for association with cardinality [0..1] is shown in Fig-
ure 5.12. While the accessors and mutators in l.2 and l.3 (at the bottom) are the same
as for association with cardinality [1] but with an Optional data type, an additional
mutator in l.3 (at the bottom) is added, which wraps the passed value into an Optional
and calls the mutator in l.2 (at the bottom).

CD4A1 association A -> B (role) [0..1];

Java

«GEN»
	

1 public interface A {
2 void setRole(Optional b);
3 void setRole(B b);
4 Optional getRole();
5 }

Figure 5.12: For CD4A association with cardinality [0..1] an additional mutator hav-
ing the enclosed generic type is added.

Besides accessors and mutators, methods to add association links, remove association
links, retrieve the size of association links, and check for existence of an association
link are present for associations with [*] or [1..*]. In addition, for each mutator,
a second mutator, which have the s-suffix, with a collection of association links as a
parameter exists. Moreover, an iterator to allow traversal of the association links exist.
For example, the association in Figure 5.13 (at the top) is mapped to the Java methods
shown in ll.2-12 (at the bottom). Note that accessors and mutators in this case are the
methods in ll.2-3 and l.11 (at the bottom), which handle a collection of association links.

79

Chapter 5 Systematic CD4A ML to a Java Mapping

This example also shows that the naming schema, as proposed above, is used for all Java
methods. Furthermore, the visibility of all methods is public.

CD4A1 association A -> B [*];

Java

«GEN»
	

1 public interface A {
2 boolean addB(B o);
3 boolean addAllBs(Collection o);
4 boolean containsB(B o);
5 boolean containsAllBs(Collection o);
6 boolean removeB(B o);
7 boolean removeAllBs(Collection o);
8 void retainAllBs(Collection o);
9 void clearBs();

10 int sizeBs();
11 Iterator iteratorBs();
12 boolean isEmptyBs();
13 }

Figure 5.13: CD4A association with cardinality [*] are mapped to methods for manag-
ing sets of association links.

Technically, the returned iterator is realized as an immutable iterator, which provides
a fail-fast solution for modifications. The use of iterators rather than lists has also been
proposed in [SBPM09].

Not all of the Java methods shown in Figure 5.13 are necessary if the cardinality of an
association is [1..*]. In particular, the clearBs()- and isEmptyBs()-methods are
not allowed, because the collection of association links has to have at least one association
link. Moreover, to ensure data consistency, the Java methods to remove and retain
association links may throw a DataStructureViolationException exception. To
avoid such errors, an additional method, which checks if there is at least one association
link present and only then deletes an association link, is provided for such cases. For
example, assuming the cardinality of the example in Figure 5.13 is [1..*], then the
removeBIfNotLast(B o)-method exists.

Ensuring Data Consistency in the Constructor

The constructor of a Java class that is mapped from a CD4A class that has outgoing
mandatory associations, has to ensure data consistency. In this case, one of the following
approaches can be used [GDCL03]:

1. Create an instance and then later set the mandatory association link.

2. Create an instance only with the mandatory association link given.

80

5.2 Mapping of CD4A Concepts to Java Source Code

3. Create an instance and issue creation of an instance to satisfy the mandatory
association link.

Approach (1) leads to a temporary inconsistent data structure, because an instance
is created without the mandatory association link. Approach (3) ensures that a new in-
stance for the association target is created, which correlates to a mapping for a composi-
tion according to [Rum12]. Finally, approach (2), which requires outgoing mandatory as-
sociation links as a parameter in the constructor, conflicts with mandatory-to-mandatory
associations. For example, if class A and class B are connected with a mandatory-to-
mandatory association, neither an instance of class A nor an instance of class B can be
created. In this thesis, approach (2) is used, because it has proven to ensure data consis-
tency (cf. [BFL13]). Its disadvantages are tackled by appropriate methods, as described
in Section 5.3.

For example, the association shown in Figure 5.14 at the top is regarded by the mapped
Java class of association’s source, i.e., AImpl at the bottom. The constructor in l.2 has
one parameter for the mandatory association with the type of the Java interface mapped
for the association target, i.e., B, and the name of the association, i.e, b.

CD4A1 class A;
2 class B;
3

4 association A -> B [1];

Java

«GEN»
	

1 public class AImpl implements A {
2 public AImpl(B b) {
3 setB(b);
4 }
5 }

Figure 5.14: An example mapping a mandatory association (at the top) that is required
to be set in the constructor (at the bottom) to ensure data consistency.

5.2.7 Mapping CD4A Bidirectional Associations

Bidirectional associations are technically implemented like two unidirectional associa-
tions -one for each navigation direction- and, hence, are mapped accordingly (cf. Sec-
tion 5.2.6). In addition, association consistency, as understood in Section 5.1, is ensured
based on the underlying assumption to handle it at modification-time, i.e., when an as-
sociation link is added. An alternative approach would be to allow modifications and,
afterwards, check constraints when the accessor is called, as proposed in [GDCL03].
However, this approach requires temporary data inconsistency.

81

Chapter 5 Systematic CD4A ML to a Java Mapping

In general, to realize association consistency, different approaches have been pro-
posed, e.g., [Rum12] (local()-methods) or [MZ04, TM05] (link() and unlink()-
methods). Or the use of atomic creation and updates methods has been proposed
[GDCL03], which is only applicable for the simplest cases. Even the use of a centralized
association class which ensures association consistency [Lan16]. A similar approach of
using one class to handle associations has been proposed in [Ges09]. It reduces the syn-
chronization challenge but also introduces an additional challenge of keeping multiplicity
constraints (cf. [GDCL03]).

In this thesis, an approach based on an additional method to ensure association con-
sistency is used. Conceptually, it is an extension of the approach proposed in [Rum12].
In particular, associations with cardinality [1] or [0..1] are mapped to additional
methods to locally set the association link and locally remove it. The primer method is re-
quired to locally set the new association without introducing an infinite loop (cf. [Rum12]),
whereas the latter is introduced to locally remove the association link, if no inconsis-
tency of the data structure is the consequence. Both methods have the same return
type and parameters as the association’s accessors and mutators but the primer method
has a rawSet-prefix and the latter a rawUnset-prefix. Note that all methods have to
be public, because they are accessed from the opposite instance. However, they should
never be called manually.

For associations with cardinality [*] and [1..*], the mapping is similar but the
additional methods have a rawAdd- and a rawRemove-prefix. In addition, a method
with a rawAddAll-prefix exists to handle a collection of association links.

For instance, Figure 5.15 shows the additional methods for both association ends of the
association at the top. Accessors and mutators, as described in Section 5.2.6, are omitted
due to presentational reasons. For the navigation direction from A to B with cardinal-
ity [0..1], the additional methods rawSetB(Optional o) and rawUnSetB()
exist, as shown at the bottom left. For the opposite navigation direction with cardi-
nality [1..*], the Java source code contains the additional methods rawAddA(A o),
rawAddA(Collection<A> o), and rawRemoveA(A o), as shown in ll.2-5 at the
bottom right.

CD4A1 association [1..*] A <-> B [0..1];

Java

«GEN»
	

1 public interface A {
2 void rawSetB(
3 Optional o);
4 void rawUnsetB();
5 }
6

Java

«GEN»
	

1 public interface B {
2 boolean rawAddA(A o);
3 boolean rawAddAllAs(
4 Collection<A> o);
5 boolean rawRemoveA(A o);
6 }

Figure 5.15: Methods provided to ensure association consistency for the association with
cardinality [0..1] (bottom left) and cardinality [1..*] (bottom right).

82

5.2 Mapping of CD4A Concepts to Java Source Code

To demonstrate how association consistency and data consistency are handled, the
example in Figure 5.16, which is based on Figure 5.15, is used. In this example, it is
assumed that the setB()-method is called. It checks if the passed value is not null
and if currently another association link exists (b.isPresent()). If it does exist,
then the opposite rawRemoveA()-method is called to remove the current association
link to set a new one. Assuming it is present, the association link is simply removed
by calling the rawRemoveA()-method of the currently linked object b1. Because the
cardinality from B to A is [1..*], the rawRemoveA()-method checks if there is at
least one association link left and may throw an exception if necessary. Otherwise, the
new association link is simply removed. Finally, the new association link is set by calling
the rawAddA()-method, which checks if the association link to be set is not null and
sets it locally.

a:AImpl b1:BImpl b2:BImpl

setB(b2)

[checkNotNull(b2) & b.isPresent()]

rawRemoveA(this)

a.remove(o)

true

[checkNotNull(o)]

a.add(o)

[b2.isPresent()] rawAddA(this)

sd Add Association Link

alt

[else]

[a.size() <=1] :DataConsistency

ViolationException

SD

Figure 5.16: An example of handling data consistency when ensuring association consis-
tency. If data consistency is violated, a run-time exception is raised.

The additional checks in this example, e.g., checking if there is at least one association
link, are only necessary to ensure data consistency. They are not required for unidirec-
tional associations or for bidirectional associations, where the cardinalities on both sides
have a minimum of 0.

The same approach to ensure association consistency and data consistency is used for
the rawSetB()- and rawUnsetB()-methods. However, the rawUnsetB()-method
implementation throws a DataConsistencyViolationException, if the cardinal-
ity of the association is changed from [0..1] to [1]. This is necessary, because if the
rawUnsetB()-method is called, an already existing association link is to be removed.
This will violate data consistency.

83

Chapter 5 Systematic CD4A ML to a Java Mapping

5.2.8 Mapping CD4A Ordered Associations

Ordered associations are mapped to the aforementioned methods for associations, as
explained in Section 5.2.6, but use the Java List type to store the association links
to preserve the order in which association links are added and ensure uniqueness via
mutators. In addition, the Java source code contains methods for index-based access,
adding, and removal as well as iterators for bidirectional link-traversal. These additional
methods use the same naming schema as described in Section 5.2.6. Furthermore, all
returned subsets are immutable. Note that the «ordered»-stereotype for associations
with cardinality [1] and [0..1] has no effect (cf. Section 4.2.4).

An example demonstrating the mapping is shown in Figure 5.17. For presenta-
tional reasons, only the additional methods are shown. The ordered association at
the top is mapped to additional methods include adding association links at a cer-
tain position (ll.2-5 at the bottom) and retrieving a list iterator (ll.7-8 at the bottom),
which allows forward and backward traversal but prevents modification by throwing an
UnsupportedOperationException on modification attempts. Furthermore, posi-
tions of elements can be retrieved (ll.9-10 at the bottom) and a sublist, which as well is
immutable, (l.11 at the bottom) or only one association link (l.6 at the bottom) from
the list of association links can be obtained.

CD4A BankingSystem
�

1 association Deposit -> Share [*] <<ordered>>;

Java

«GEN»
	

1 public interface Deposit {
2 void addShare(Share o, int index);
3 void addAllShares(Collection<Share> o,
4 int index);
5 void setShare(Share o, int index);
6 Share getShare(int index);
7 ListIterator<Share> listIteratorShares();
8 ListIterator<Share> listIteratorShares(int index);
9 int indexOfShare(Share o);

10 int lastIndexOfShare(Share o);
11 List<Share> subListShares(int start, int end);
12 }

Figure 5.17: For ordered associations additional methods for index-based access, adding,
and removal; and iterators for bidirectional link traversal are provided.

Bidirectional ordered associations use the same approach to ensure data consistency
as described in Section 5.2.7. This means that additional methods to locally set and
remove association links exist.

84

5.2 Mapping of CD4A Concepts to Java Source Code

5.2.9 Mapping CD4A Qualified Associations

Qualified associations denote a strong bond between a key (called qualifier), and one or
multiple values, i.e., the association links. Each qualified association is mapped to a Java
variable with the Java Map type, where the qualifier as the key and the association link is
the value, to store the association links and additional methods to manipulate the map.
If the cardinality is [*] and [1..*], then the Java Multimap type, which represents
a Map of a key with a set of values, is used. If the qualified association is ordered,
the Java variable’s type is LinkedListMultimap, which manages lists of association
links. Note that ordering is only supported for qualified associations with cardinality
[*] or [1..*] (cf. Section 4.2.5). Table 5.3 summarizes the data types for the different
qualified associations by example. The qualified association on the left is mapped to the
Java variable on the right. For presentational reasons, the association keyword for
the CD4A associations and the private visibility for the Java variables are omitted.

CD4A Association Java variable

A [String] -> B [1] Map<String, B> b;
A [String] -> B [0..1] Map<String, Optional > b;
A [Long] -> B [*] Multimap<Long, B> b;
A [Long] -> B [1..*] Multimap<Long, B> b;
A [Long] -> B [*] «ordered» LinkedListMultimap<Long, B> b;

Table 5.3: An overview of the Java variables to store qualified association links. The
association keyword and the private visibility have been omitted.

All Java methods to modify association links of qualified associations use the same
naming schema as in Section 5.2.6. These methods depend on the cardinality and exis-
tence of the «ordered»-stereotype. For qualified association with cardinality [0..1],
an example is given in Figure 5.18. The addB()-method (l.2 at the bottom) allows to
add an association link with a qualifier. It has one parameter for the qualifier (String
key) and one for the association link (Optional o). The type of the second pa-
rameter depends on the cardinality of the association, e.g., if the cardinality is [1], the
type will be B. To check if an association link or a qualifier is contained, the methods in
ll.3-4 (at the bottom) exist. Just as for the addB()-method, the type of the parameter of
the containsValueB()-method depends on the cardinality. Furthermore, each stored
association link can be retrieved for a particular qualifier (l.5 at the bottom) and the
set of qualifiers can be iterated (l.6 at the bottom). An association link can be removed
by either removing a qualifier (l.7 at the bottom), in this case all association links of
the qualifier are removed, or by removing all qualifiers (l.8 at the bottom). In contrast
to ordinary associations (Section 5.2.6), the sizeBs()-method returns the number of
keys, and the isEmptyBs()-method checks if at least one key exists.

85

Chapter 5 Systematic CD4A ML to a Java Mapping

CD4A1 association A [String] -> B [0..1];

Java

«GEN»
	

1 public interface A {
2 void addB(String key, Optional o);
3 boolean containsKeyB(String key);
4 boolean containsValueB(B o);
5 Optional getB(String key);
6 Iterator<String> iteratorKeyBs();
7 boolean removeB(String key);
8 void clearBs();
9 int sizeBs();

10 boolean isEmptyBs();
11 }

Figure 5.18: Methods provided for qualified associations with cardinality [0..1].

The mapping shown in the example in Figure 5.18 is also used for qualified associations
with cardinality [1]. But instead of the Optional type, the associations target type
is used for parameters and return types. To ensure data consistency for cardinality [1],
the Java methods to remove one and remove all association links, i.e., the clearBs()-
and removeB()-method in l.8 and l.7 in Figure 5.18, may throw an exception.

For qualified associations using name qualifiers, which denote an attribute name of the
target association end type, the Java method to add an association link, i.e., addB()-
method in l.2 in Figure 5.18, does not have the qualifier as a parameter, because it can
be retrieved from the association link (i.e., the value of the association link’s attribute).
As a result, qualified associations with a name qualifier and a cardinality of [0..1]
do not have a key without an association link. If a name qualifier is used, qualifier
inconsistencies, i.e., the value of the attribute is changed and requires the key to be
updated, may occur when editing existing links. Such inconsistencies are not addressed.

Qualified association with the cardinality [1..*] are mapped to additional Java
methods to manage the set of association links for each key. Moreover, the method
to add an association link has a put-prefix instead of an add-prefix to denote that an
association link is added to the list of association links, as shown in l.2 in Figure 5.19.
In addition, because each key stores a set of association links, an iterator (l.7 at the
bottom), a contain (l.5 at the bottom), a remove (ll.8-9 at the bottom), and a size
(l.10 at the bottom) Java method exist. Note that a method to remove a key does not
exist, because it may violate data consistency. For presentational reasons, the example
in Figure 5.19 only shows the additional and modified Java methods.

If the cardinality is [*] instead of [1..*], there is a Java method to clear and a Java
method to check if the set of association links is empty. The name of both additional
Java methods is composed as shown in Figure 5.18, i.e., a clear- or isEmpty-prefix

86

5.2 Mapping of CD4A Concepts to Java Source Code

CD4A1 association A [String] -> B [1..*];

Java

«GEN»
	

1 public interface A {
2 boolean putB(String key, B o);
3 boolean containsKeyB(String key);
4 boolean containsValueB(B o);
5 boolean containsValueB(String key, B o);
6 Iterator<String> iteratorKeyBs();
7 Iterator iteratorValueBs(String key);
8 boolean removeB(String key, B o);
9 throws DataConsistencyViolationException;

10 int sizeBs(String key);
11 int sizeBs();
12 boolean isEmptyBs();
13 }

Figure 5.19: Methods provided for qualified associations with cardinality [1..*].

concatenated with the association’s name. Note that both Java methods are not shown
in Figure 5.19, because the clear method would violates data consistency and the set of
association links cannot be empty.

Qualified Ordered Associations

A qualified association that is denoted by a «ordered»-stereotype represents a qualified
association, where the set of association links per key is order-preserving. Note that it
does not say anything about the ordering of the keys. In this thesis, it is assumed that
the keys are not order-preserving.

Qualified ordered associations are mapped as ordinary qualified associations but with
additional Java methods to handle index-based access and handle the order of associ-
ation links (cf. Section 5.2.8). For example, the mapping shown in Figure 5.20 only
shows the additional Java methods, which are the Java methods for ordered associations
extended with one additional parameter for index-based access, i.e., int index. For
presentational reasons all other methods have been omitted. The naming schema follows
the naming schema introduced in Section 5.2.6.

Bidirectional Qualified Associations

The difference between bidirectional qualified associations and bidirectional associations
is the assumption that the association with the qualifier is responsible for managing the
association links. Hence, bidirectional associations with qualifiers on both association
ends are not allowed. While this restriction is rather hard, it puts less burden on the

87

Chapter 5 Systematic CD4A ML to a Java Mapping

CD4A1 association A [String] -> B [*] <<ordered>> ;

Java

«GEN»
	

1 public interface A {
2 void putB(String key, B o, int index)
3 B getB(int index, String key)
4 ListIterator listIteratorBs(String key)
5 ListIterator listIteratorBs(int index, String key)
6 int indexOfB(B o, String index)
7 int lastIndexOfB(B o, String key)
8 List subListBs(int start, int end, String key)
9 }

Figure 5.20: Additional methods for handling qualified ordered associations, which ex-
tends the mapping shown in Figure 5.19.

developer than providing methods with qualifiers on both association ends, as presented
in [TM05]. As a consequence, the opposite none qualified association end only provides
accessors and methods for handling association consistency. If both association ends are
qualified, no add or remove methods exist, because the dominating association end, i.e.,
the association end responsible for managing all instances, has to be defined during the
implementation phase by the application developer.

5.2.10 Mapping CD4A Derived Associations

Derived associations can be considered as dynamic, because they do not store any value
(cf. [Ste02]). Similar to the mapping in [SBPM09], they are mapped to accessors only
as introduced in Section 5.2.6. Each accessor throws a NotImplementedException-
exception to denote the missing implementation, as described for derived attributes
in Section 5.2.5. Furthermore, the additional methods to ensure association consistency
do not exist.

For example, the derived unidirectional association as shown in Figure 5.21 at the top
is mapped to only one accessor method (getB()-method in l.2 at the bottom). Note
that the same naming schema is used as described in Section 5.2.6.

CD4A1 association / A -> B [1];

Java

«GEN»
	

1 public interface A {
2 B getB();
3 }

Figure 5.21: Derived association (at the top) is mapped to an accessor throwing an ex-
ception (l.2 at the bottom) only.

88

5.2 Mapping of CD4A Concepts to Java Source Code

If the CD4A association has the cardinality [0..1], the same mapping applies but
with an Optional return type for the accessor.

For derived associations with cardinality [*] and [1..*], the same mapping to
accessors only is used. In addition, Java methods that do not manipulate the associ-
ation links exist, but they also throw an exception. For instance, the association at
the top of Figure 5.22 is mapped to the Java methods at the bottom. Note that the
isEmptyBs()-method does not exist, if the cardinality is [1..*].

CD4A1 association / A -> B [*];

Java

«GEN»
	

1 public interface A {
2 boolean containsB(B o);
3 boolean containsAllBs(Collection o);
4 Iterator iteratorBs();
5 int sizeBs();
6 boolean isEmptyBs();
7 }

Figure 5.22: Mapping derived associations with cardinality [*] to access methods only.

This approach of providing accessors only is also applied to derived ordered associ-
ations. In this case, the methods shown in Figure 5.22 and the additional accessors
for ordered associations (ll.5-10 in Figure 5.17) are provided, each of which throws a
NotImplementedException-exception. Moreover, qualified derived ordered associa-
tions are mapped using the same approach but with additional accessors for qualified
associations as described in Section 5.2.9. An example is given in Figure 5.23.

CD4A1 association / A [Long] <-> B [*] <<ordered>>;

Java

«GEN»
	

1 public interface A {
2 B getB(int index, Long key);
3 boolean containsValueB(Long key, B o);
4 boolean containsValueB(B o);
5 ListIterator listIteratorBs(Long key);
6 ListIterator listIteratorBs(int index, Long key);
7 int indexOfB(B o, Long index);
8 int lastIndexOfB(B o, Long key);
9 List subListBs(int start, int end, Long key);

10 Iterator<Long> iteratorKeyBs();
11 int sizeBs(Long key);
12 int sizeBs();
13 }

Figure 5.23: Qualified derived ordered associations are mapped to accessors only.

89

Chapter 5 Systematic CD4A ML to a Java Mapping

5.2.11 Mapping CD4A Compositions

A composition is mapped in the same way as associations are (cf. Section 5.2.6), i.e.,
a variable to store the link with accessor and mutator methods. This corresponds to
the weak interpretation of composition (cf. [Rum12, Lan16]), which does not ensure
that a new part object of the composition is created. However, this mapping does not
regard the lifetime dependency of the whole and its parts. Such concerns are handled
in Section 7.2.2. Furthermore, this understanding of a composition does not fully cover
the required semantics of composition, as it is discussed in [Ges08].

The example in Figure 5.24 shows the mapping for an unidirectional composition (at
the top). As shown in l.2 (at the bottom), the variable b stores the association link. It
is set in the mutator (ll.10-13 at the bottom). In addition, an accessor exists (ll.15-17
at the bottom). All Java methods use the name schema described in Section 5.2.6.

CD4A1 composition A -> B [1];

Java

«GEN»
	

1 public class AImpl implements A {
2 private B b;
3

4 protected AImpl(String aaaa, B b) {
5 super();
6 checkNotNull(b);
7 setB(b);
8 }
9

10 public void setB(B o) {
11 checkNotNull(o);
12 b = o;
13 }
14

15 public B getB() {
16 return b;
17 }
18 }

Figure 5.24: An example of mapping CD4A composition to Java source code.

An alternative understanding of the composition is presented in [Rum12]. It assumes
the composition to be frozen and have the cardinality [1] (from whole to part). More-
over, [AHMM07, SBPM09] present an understanding of composition, which is based on
additional containers. Each container is a superclass of the whole and the part that
stores composition related information. This understanding still has drawbacks, e.g.,
composition life time (cf. [Ges08]).

90

5.3 Method for Handling Mandatory-to-Mandatory Associations

5.3 Method for Handling Mandatory-to-Mandatory
Associations

A restriction of the CD4A-to-Java mapping is that even if syntactically correct source
code is produced, the resulting Java source code implementing the data structure may
not be instantiated (cf. “chicken-and-egg issue” [BFL13]). For example, consider the
example in Figure 5.25. In this example, the CD4A model at the top is mapped to
the implementing Java source code on the bottom left and bottom right. Because both
association ends define a mandatory association, it is not possible to instantiate any of
the classes. The reason is shown in the constructors of both classes ll.3-6 at bottom left
and bottom right.

CD4A1 association [1] A <-> B [1];

Java

«GEN»
	

1 public class BImpl
2 implements B{
3 protected BImpl(A a) {
4 checkNotNull(a);
5 setA(a);
6 }
7 }

Java

«GEN»
	

1 public class AImpl
2 implements A{
3 protected AImpl(B b) {
4 checkNotNull(b);
5 setB(b);
6 }
7 }

Figure 5.25: The association at the top is regarded in the mapped Java class BImpl
(bottom left) and the Java class AImpl (bottom right).

One possible realization is to extend the mapping of each association source with an
additional constructor with the parameters of the association target’s type such that the
object is created and set within the constructor, as described in [BFL13]. However, this
mapping does not scale for transitive mandatory associations. Another drawback is that
naming conflicts in the resulting constructor’s parameter list may occur. For example,
when there are multiple mandatory associations to the same type.

Another technical realization considers (i) only partial inconsistency of the data struc-
ture, where it is necessary, and (ii) avoids introducing a wrapper for the instance itself.
The primer is necessary to restrict the modifications of the object to avoid further incon-
sistency. The latter is required to avoid cloning instances, which may be time consuming.
Technically, it can be founded on the Prototype-Pattern [GHJV95]. Each object is al-
lowed to have a prototype state, in which partial inconsistency is allowed only, e.g., for
a particular association. In this state, the instance itself is regarded as prototypical and
every change -other than making the instance consistent- leads to an exception.

For instance, the example from Figure 5.25 is realized as shown in Listing 5.2. First,
a private default constructor is added such that it cannot be used in subclasses or

91

Chapter 5 Systematic CD4A ML to a Java Mapping

accessed from outside (ll.10-12). In general, this constructor has to contain all other
attribute and mandatory associations, if any are present. It is called from the static
createPrototype()-method (ll.14-16) to retrieve an instance, which is partially in-
consistent, because the association has not been set yet.

When creating a prototype of the BImpl class, the only method allowed to be called
is the setA()-method, because this method has to be called to make the instance
consistent. All other methods check whether the instance is still a prototype and throw
an exception if this is the case, e.g., l.19, and l.25. Note that the additional methods for
handling association consistency do not require this check.

To leave the prototype stage and create the valid object, the leavePrototype()-
method has to be called (ll.18-22). This method can only be called during the prototyping
stage. It ensures that the instance is consistent, i.e., in this case the association is set
(l.15). If the prototype stage has been left, it cannot be entered again.

Such an approach can be encapsulated in, e.g., a Builder-Pattern (cf. Section 7.2.1).
Moreover, this approach can be realized by either manually-written extensions (as de-
scribed in Chapter 6) or it can be synthesized by default when such situations are
detected in the model.

92

5.3 Method for Handling Mandatory-to-Mandatory Associations

Java1 public class BImpl implements B {
2 private boolean $prototype = false;
3 private A a;
4

5 protected BImpl(A a) {
6 checkNotNull(a);
7 setA(A);
8 }
9

10 private BImpl() {
11 this.$prototype = true;
12 }
13

14 static BImpl createPrototype() {
15 return new BImpl();
16 }
17

18 void leavePrototype() {
19 checkArguments(this.$prototype);
20 checkNotNull(a);
21 this.$prototype = false;
22 }
23

24 public A getA() {
25 checkArguments(!this.$prototype);
26 return this.a;
27 }
28

29 public void setA(A o) {
30 checkNotNull(o);
31 if (this.a != null) {
32 this.a.rawUnsetB();
33 }
34 o.rawSetB(this);
35 this.a = o;
36 }
37 }

Listing 5.2: An implementation example of the CD4A model in Figure 5.25 to
implement CD4A composition.

93

Chapter 6

Generated Code Customization via
Handcoded Extensions and Hot Spots

In Chapter 4, the CD4A ML to describe the structured data managed by data-centric
applications has been introduced. Afterwards, a CD4A-to-Java source code mapping,
which describes how to systematically derive a consistency-ensuring data structure, has
been described in Chapter 5. However, defaults are used by the mapping to resolve
semantic variation points (cf. RE-5-2) and to regard underspecified implementation de-
tails such as derived attributes and derived associations. Therefore, the data structure
has to be manually extended to customize defaults or to provide missing implementation
details (cf. RE-1-2).

In general, extending a ML with implementation concerns has shown reduced ac-
ceptance among application developers (cf. [KBR11]). Hence, mechanisms to directly
customize generated source code have been proposed [GHK+15a, GHK+15b]. In agile
development of data-centric applications, as presented in Section 3.3, a mechanism that
enables manually-written customizations of generated source code has to consider the
following properties:

• Ensure that manually-written source code is used instead of generated source code.

• Support iterative and incremental software development processes by ensuring that
manually-written source code is not overridden by MDD tools.

• Strictly separate generated and manually-written code on artifact-level, because
generated source code artifacts are regarded as disposable products that should
not be versioned, managed, or inspected [SVC06]. However, handcrafted artifacts
should not be modified by a generator. Generated artifacts should also not be
modified manually.

• Data consistency is still ensured (as much as possible), although violations cannot
be prevented by design in all cases.

The goal of this chapter is to introduce the Extended Generation Gap-Pattern, which is
a design pattern that regards the aforementioned considerations and has been developed
in the course of this thesis.

95

Chapter 6 Generated Code Customization via Handcoded Extensions and
Hot Spots

This chapter is structured as follows. First, general considerations of manually cus-
tomizing generated source code are discussed in Section 6.1. Afterwards, the Extended
Generation Gap-Pattern is introduced in Section 6.2. This approach is extended with
the benefits of predefined hot spot customization, as explained in Section 6.3. Finally, a
method for its effective use is described in Section 6.4.

6.1 General Considerations of Handcoded Extensions

Each approach to support customizations of the generated source code has to be ex-
plicitly integrated into the overall generated software system’s architecture, i.e., it is
explicitly designed to regard handcoded extensions (cf. [SVC06]). For example, by as-
signing appropriate visibility to methods, i.e., public or protected, or using design
patterns [GHJV95]. Depending on the handcoded integration approach, a deep level
of understanding of the generated source code might be required. For example, a code-
frame-based approach, i.e., the code generator produces marked code frames in artifacts,
requires detailed knowledge, because manually-written source code is placed directly in
the generated one.

In this thesis, we aim for an approach to integrate handcoded extensions that suits the
targeted architecture (cf. Section 2.3.1) and reduces the required knowledge by relying
on interfaces of the generated source code instead. Handcoded extensions are understood
as follows:

Definition 14 (Handcoded Extension). A handcoded extension is a manually-written
source code artifact created to adapt or extend one generated source code artifact. It is
written in the same GPL as the generated source code.

Handcoded extensions can be seen as an approach to provide a familiar mechanism
for application developers (cf. Section 3.1.3), because existing programming languages
and tool support are reused. However, a separation of generated and non-generated
artifacts, which is implicitly assumed in Def. 14, creates a significant implication for the
generated software system’s architecture and for the handcoded integration approach,
which are presented in the following as general demands for a customizable architecture
of the generated software system.

6.1.1 Separation of Generated and Non-Generated Artifacts

Direct modifications of generated source code hold a plethora of challenges, e.g., con-
sistency between model and generated source code, and build management [SVC06].
Although, round-trip engineering [BGSZ08] attempts to reduce these drawbacks, auto-
mated conversion cannot provide the required level of abstraction (cf. [Sel03]) and is
only applicable for design models (cf. Section 4.1).

96

6.1 General Considerations of Handcoded Extensions

From a technical point of view, current tools and code generators can manage in-
termixed generated and non-generated source code (cf. [SVC06]). Such sophisticated
tools process the intermixed source code to respect any form of evolution of the input
model [RGLR13, GLRR13, GLRR15] and protect manually-written source code. How-
ever, this approach conflicts with the objective of MDD, because generated source code
is handled as a primary development artifact when developing and deploying the over-
all software system. Furthermore, the input model may not reflect all aspects of the
generated software system (cf. [HBR00]).

RE-1-2-1 Separation of Generated and Non-Generated Artifacts: In contrast
to intermixed generated and non-generated code, a clear separation of both has been
proposed [HBR00, SVC06, FBHK+07, GHK+15a, GHK+15b], which is also followed in
approach used in this thesis. Such a separation has the following advantages:

(i) Reduced complexity of code generators that is introduced by processing and pre-
serving non-generated code (cf. [SVC06]).

(ii) It allows to version handcoded extensions independently.

(iii) It enables repeatable generation.

(iv) In the case where object-oriented target languages are used, additional in-depth
knowledge of the implementation is not required, because knowledge of the gener-
ated interfaces is sufficient.

A separation of generated and non-generated source code is essential for repeatable
code generation, as targeted in this thesis (cf. RE-3). It ensures that generated source
code is not regarded by application developers but handwritten code can be injected
through various plug-in, delegation, and inheritance mechanisms [SVC06] even if the
model evolves. In contrast, in a one-shot code generation approach, source code is
generated only once and manipulated by application developers such that handwritten
code and generated source code is intermixed. In a one-shot code generation approach,
the model does not adequately reflect evolution of the generated source code. Which is
not the case in repeatable code generation, where the model is considered as the primary
development artifact.

A generated software system’s architecture supporting such separation of artifacts can
be realized through the use of design patterns [GHJV95] and explicit spots, which allow
for predefined customizations [Pre95]. Note that these guidelines rely on object-oriented
principles and, hence, may not provide a sufficient solution for other target languages.

6.1.2 Override-Static-Pattern

Besides a clear separation of artifacts into generated and handcoded artifacts, a major
concern is to ensure that manually-written code is actually used throughout the entire

97

Chapter 6 Generated Code Customization via Handcoded Extensions and
Hot Spots

generated and non-generated source code (cf. Chapter 6). In other words, if a surrogate,
which is a handcoded extension, of a generated class exists, then only the surrogate is
instantiated but not the generated class.

An implementation pattern to realize such an approach is the Override-Static-Pattern,
which is a static variant of the Delegator-Pattern [GHJV95]. It suits these require-
ments better than patterns for object creation such as the Factory or the Builder -
Pattern [GHJV95], because the object itself defines what instance is created. Note that
in the remainder of this section, the generated and non-generated source code is as-
sumed to be Java. Hence, the pattern is shown for Java, but is applicable for other
object-oriented programming languages as well.

The Override-Static-Pattern’s main elements are two static methods to define the
instance that is to be created. To demonstrate this pattern, we use the example in List-
ing 6.1. An instance of the A class is created by calling the get()-method (ll.5-8). It
delegates the call to the init()-method (ll.10-14), which defines the instance that is
created, and stores the created object in the a static variable (l.12). Afterwards, this
newly created instance is returned (l.7). Since the constructor is protected (ll.16-17)
objects can only be created by calling the get()-method.

Java1 public class A {
2 protected static A a = null;
3

4 // object creation
5 public static A get() {
6 A.init();
7 return a;
8 }
9

10 public static void init() {
11 if(a == null){
12 a = new A();
13 }
14 }
15

16 protected A () {
17 }
18

19 // delegation
20 public static void action() {
21 get().doAction();
22 }
23

24 protected void doAction() { ... }
25 }

Listing 6.1: The Override-Static-Pattern implementation to instantiate objects.

98

6.2 Integration of Generated and Non-Generated Code

To integrate handcoded extensions in the this pattern, the manually-written code
has to be an extension of the generated artifact, i.e., the manually-written code uses the
extends construct for Java classes to extend the generated source code, and implements
a static init()-method, which instantiates the handcoded source code (in this case a
Java object has to be instantiated). An example is shown in Listing 6.2.

Java1 public class AExt extends A {
2 public static A init() {
3 a = new AExt();
4 }
5

6 protected void doAction() {
7 ...
8 }
9 }

Listing 6.2: A handcoded Java class for the generated A class shown in Listing 6.1.

When the Override-Static-Pattern is used in the generated source code, an integra-
tion approach for handcoded extensions has to adapt l.6 in Listing 6.1 to reference the
manually-written init()-method. In this example, l.6 in Listing 6.1 has to be changed
to AExt.init(). Moreover, to ensure that generated source code cannot be instanti-
ated anymore, the generated class has to become abstract and whenever the generated
init()-method (ll.10-14 in Listing 6.1) is called, an exception has to be thrown. The
get()- and init()-method of the Override-Static-Pattern ensure that the interface
for object creation does not change, i.e., the get()-method can still be used, but the
object created is different.

In addition to object creation, the Override-Static-Pattern facilitates overriding static
methods to ensure that the provided interface remains the same but the implementation
changes. For example, the static action()-method in ll.20-22 in Listing 6.1 delegates
each method call to the doAction()-method in l.24 using the get()-method (l.21).
This delegation allows to override the implementation of the doAction()-method in a
subclass (e.g., ll.6-8 in Listing 6.2), which is then called due to the get()-method call.
As a result, the implementation of a static method can be overridden.

6.2 Integration of Generated and Non-Generated Code

An integration approach for generated and non-generated object-oriented source code
has been developed in our previous work [GHK+15a, GHK+15b]. It is based on the Gen-
eration Gap-Pattern, which is an approach to extend the generated code with manually-
written code by reusing object-oriented inheritance [Vli98, SVC06, Fow10]. However,

99

Chapter 6 Generated Code Customization via Handcoded Extensions and
Hot Spots

the Generation Gap-Pattern assumes that for each generated file a manually-written file
exists (even if manually-written code is not necessary). Furthermore, it does not provide
means to extend the generated interface.

Our proposed Extended Generation Gap-Pattern extends the Generation Gap-Pattern
to provide a framework independent approach that relies on general object-oriented
programming concepts and tackles the disadvantages of the approach it is based on. It
has the same prerequisites as the Generation Gap-Pattern (cf. [GHK+15a, GHK+15b])
but rather than demanding in-depth knowledge of the generated source code, it only
requires knowledge of the generated interfaces to add handcoded extensions.

To demonstrate the pattern, we use the example in Figure 6.1. Assuming that the
Transaction interface and the TransactionImpl class in Figure 6.1 are gener-
ated (denoted by the «GEN» tag), a naming convention for the handcoded extensions
(denoted by the «HC» tag) is introduced. Each manually-written implementation ex-
tension, which extends the generated implementation, is specified by the “EIMP” suffix,
e.g., TransactionEIMP implementation.

«interface»

Transaction

TransactionImpl

«interface»

TransactionSIG

CD

«GEN»

TransactionEIMP

CD

«HC»

implementation
extension

interface
extension

CD

«HC»

Figure 6.1: The Extended Generation Gap-Pattern allows for implementation extensions
(TransactionEIMP) and interface extensions (TransactionSIG).

Although implementation extensions enable customization of the generated source
code, customizations such as new methods cannot be accessed from other classes with-
out explicit casting. In addition, because CD4A models do not contain technical classes,
i.e, classes required by external frameworks to make use of particular functionality, in-
terface extensions are provided. A manually-written interface extension, which allows to
add additional methods to the generated interface, is denoted by the “SIG” suffix, e.g.,
TransactionSIG interface in Figure 6.1. Such a naming convention emphasizes the

100

6.2 Integration of Generated and Non-Generated Code

clear separation of generated and non-generated code (cf. RE-1-2-1). Technically, the
generated interface extends the manually-written interface extension, to enable use of
the added methods through the generated interface.

Figure 6.1 also shows the influence of the proposed approach on the generated systems’
architecture, which is introduced in Figure 7.1 on page 110. Namely, interface extensions
require the generated interface to extend the manually-written interface, as shown by
the TransactionSIG interface.

Technically, to realize the implementation extensions, the Override-Static-Pattern
(cf. Section 6.1.2) can be used. For example, for the example in Figure 6.1, the Trans-
actionImpl provides a static get()-method and a static init()-method, which is
implemented in the manually-written TransactionEIMP class. Moreover, a tool re-
alizing this approach, e.g., a code generator, has to automatically detect handcoded
extensions and adapt the generated source code to ensure that manually-written source
code is regarded. As a result, regeneration is required whenever a new handcoded exten-
sion is added, because the generator needs to adapt the generated code. Regeneration
is also required when the input model evolves. However, tool support may conflict with
the absence of the generated code while development of handcoded code, because, e.g.,
the code generator has not been executed yet. Hence, every kind of reporting is crucial
for debugging (cf. GR-3).

In general, manually-written implementation and interface extensions can be created
for each resulting class of the mapping introduced in Chapter 5. However, from a techni-
cal point of view, interface extensions may require an implementation extension. In the
following section, implementation approaches to overcome this restriction are discussed.

6.2.1 Implementation of Interface Extensions using Java-Default Interfaces

A technical realization of the Extended Generation Gap-Pattern requires for each inter-
face extension an implementation extension, as shown in Figure 6.1. In this example,
the TransactionSIG interface extension requires the TransactionEIMP implemen-
tation extension. Otherwise, the generated source code may not be syntactically valid,
because it does not implemented the additional methods introduced in the interface ex-
tension. This approach has been chosen in this thesis, because it only requires basic
object-oriented concepts [Eli94].

To avoid this restriction, additional target language constructs such as default imple-
mentations, which have been introduced by version 8 of the Java programming language,
can be used. Following this, the Extended Generation Gap-Pattern can be realized
as shown in Figure 6.2. In this example, the TransactionSIG interface extension
uses Java’s default implementation to implement added methods. However, in this
case the handwritten signature extension has to inherit from the generated interface
to use the generated accessors and mutators. Moreover, the generated implementation
(TransactionImpl class) has to implement the manually-written interface extension.

101

Chapter 6 Generated Code Customization via Handcoded Extensions and
Hot Spots

«interface»

Transaction

TransactionImpl

«interface»

TransactionSIG

CD

«GEN»

CD

«HC»

interface default
implementation

CD

«GEN»

Figure 6.2: An example of implementing interface extensions using Java default methods.

While this approach avoids the need to provide an implementation extension, it does
not make manually-written interface extensions explicit in the generated interface. In
other words, for the example in Figure 6.2, accessing the methods added by the manually-
written TransactionSIG interface, a cast from the generated Transaction interface
to the handcoded one is required.

6.2.2 CD4A Hierarchy and Handcoded Extensions

For the proposed mapping in Chapter 5, a general guideline is to preserve hierarchy
defined in the CD4A model, as it is proposed in [Rum12]. This principle is also applied
to the Extended Generation Gap-Pattern, when extending the generated source code
with handcoded extensions.

To demonstrate how this principle is applied, the CD4A model shown in Listing 6.3 is
used. It presents the CheckingAccount class, which is a subclass of abstract Account
class. According to the mapping in Chapter 5, for each CD4A class an interface and an
implementation is generated. Note that this listing is a simplified excerpt of the UML
CD shown in Figure 4.1 on p. 48.

CD4A BankingSystem
�

1 abstract class Account { ... }
2

3 class CheckingAccount extends Account { ... }

Listing 6.3: An excerpt of the CD4A model in Figure 4.1 with a hierarchy of classes.

When adding interface and implementation extensions to the generated classes using
the Extended Generation Gap-Pattern, the generated source code respects the hier-
archy of the CheckingAccount class by adding the inheritance relation 1 in Fig-
ure 6.3. However, the implementation extensions AccountEIMP is not available in its
subclass, because the CheckingAccountImpl class has to extend the manually-written

102

6.3 Customization via Hot Spots in Generated Source Code

AccountEIMP class. Hence, this inheritance relation (2 in Figure 6.3) has to be added
automatically by the MDD tool (i.e., generator) (cf. [HBR00]).

CD

«GEN»

CD

«HC»

«interface»

Account

AccountImpl

CheckingAccount

Impl

AccountSIG

AccountEIMP

CheckingAccount

SIG

CheckingAccount

EIMP

«interface»

CheckingAccount

2

1

CD

«HC»

Figure 6.3: An example showing that adding handwritten extensions to subclasses re-
quires adaptation of the generated source code.

A result of such code generator behavior is that adaptations have to be designed a
priori by generator developers to enable full support of the Extended Generation Gap-
Pattern. Nevertheless, this is in general a necessity for adaptations (cf. [ABKS13]).

6.3 Customization via Hot Spots in Generated Source Code

Pree defines hot spots as “those aspects that have to be kept flexible” [Pre95]. A hot spot
introduces certain variability into predefined design solutions and is often realized using
design patterns [SLK06]. This “plugged-in” application specific implementation allows
to create an individual design solution by adding customizations to the generated source
code while regarding it as a black-box [Sch97] (cf. PR-4).

Frameworks and GUIs heavily rely on hot spots to provide a generic solution that can
be adapted to particular needs. Hence, hot spots are understood as follows:

103

Chapter 6 Generated Code Customization via Handcoded Extensions and
Hot Spots

Definition 15 (Hot Spot). A hot spot is a dedicated spot of predefined customization in
the generated source code that is a priori planned for handcoded extensions.

In general, hot spots are independent of external frameworks, because they are re-
alized using target language concepts and, hence, are part of the framework provided
by the generated software system. Technically, hot spots are hook methods, which are
place holder methods called by template methods, which are methods defining abstract
behavior or generic flow of control [SLK06]. Such hook and template methods can be
identified using the hot-spot-driven development process [Pre00].

Typically, hot spots are used in one of the following ways:

• Adaptation: An existing default method (often having an empty method body) is
adapted by means of overriding it to provide a method implementation.

• Delegation: An implementation for an interface is injected.

Using hot spots to adapt generated source code harbors the potential to corrupt the
generated code. Hence, measures need to be taken to avoid such pitfalls. Besides produc-
ing corrupt source code, it has to be ensured that hot spots are used such that application
developers experience a benefit. In the worst case scenario (if hot spots are not docu-
mented), they are useless. Therefore, in this thesis, a documentation specifying the hot
spot’s location and purpose to ensure its use and acceptance by application developers is
proposed. Such a hot spot documentation has to be deployed with the generated source
code and the code generator, if the generated software system is planned to be extended.
In this thesis, the following design guidelines for hot spot documentation are defined:

1. Use a unique name and location for the hot spot.

2. Only document hook methods with their purpose for explicit customiza-
tion, because template methods require in-depth knowledge of the gener-
ated architecture.

3. Document connections between hot spots, e.g., if hot spots influence each
other.

4. Separate hot spots into optional (hot spots that can be used for customiza-
tion) and mandatory (hot spots that have to be used in order to make the
overall software system work).

6.4 Methods for using Handcoded Extensions

An integration approach for generated and non-generated code is always accompanied
by a consistent method to, e.g., name artifacts in a particular way or edit predefined

104

6.4 Methods for using Handcoded Extensions

artifacts. Such a method is not allowed to change, for all handcoded extensions, because
otherwise the preceding handcoded extensions have to de adapted. In addition, such a
methodology requires clear instructions on how to use the proposed integration approach.
Hence, a methodology for the Extended Generation Gap-Pattern to add handcoded
extensions is illustrated in the Figure 6.4.

The method presented provides an abstract overview. The technical realization of hot
spots and the code generator are presented in Chapter 9. For this implementation all
available hot spots are documented in Appendix F.

ad Creating Handcoded Extensions

A
p
p
lic

a
ti
o
n

D
e
v
e
lo

p
e
r,

S
e
n
io

r
A

p
p
lic

a
ti
o
n

D
e
v
e
lo

p
e
r

G
e
n
e
ra

to
r

D
e
v
e
lo

p
e
r

AD

[technical extension

|| global functionality]

[else]

identify classes

to customize

create

interface

extension

[else]

[hot spot existing]

create

implementation

extension

implement

methods

override hot

spot

[add hot spot]

[else]

adapt code

generator

restart code

generator

run code

generator

Figure 6.4: A method for using interface and implementation extensions of the Extended
Generation Gap-Pattern.

Before the source code can be adapted, the (senior) application developer has to
execute the code generator and identify the generated class that has to be manually-
extended. This method implies that if the customization affects multiple classes, it has
to be broken down to one class to consider. Afterwards, if the extension is (i) motivated
by technical demands, i.e., to conform to a particular interface provided by a framework,
or (ii) if the extension has to be globally available, e.g., a method that is accessed from
different classes, then an interface extension has to be created.

105

Chapter 6 Generated Code Customization via Handcoded Extensions and
Hot Spots

In contrast, if customizations (i) require adaptation or extension of the generated
implementation or (ii) an interface extension for the generated artifact has been previ-
ously created, then an implementation extension has to be created by either the (senior)
application developer. Note that if another approach to realize the handwritten code
integration is used, as discussed in Section 6.2.1, the implementation extension might
not be necessary for an interface extension.

When realizing an implementation extension, the available hot spots are checked to
identify if existing hot spots can be reused. If no hot spot is defined, the generator
developer can adapt the code generator in order to provide such a hot spot. This is
helpful when reuse is regarded and the code generator is used in several software projects.

Finally, if the manually-written class has been created after the code generator ex-
ecution, the code generator has to be restarted, because it detects the newly created
handcoded extension and adapts the generated source code, as described in Section 6.2.

6.4.1 Extending and Associating External Data Types in CD4A Models

Handcoded extensions can also be used to remove the limitation of CD4A, when using
external data types, as explained in Section 4.2.5, i.e., (a) inheriting from an external data
type and (b) creating bidirectional associations to external data types is not supported.
Note that the primer, i.e., (a), is only a limitation of the chosen technical realization. It
can be removed by using appropriate parsers to process the external data types.

To demonstrate how these limitations can be removed, the example in Figure 6.5 is
given. Assuming the Customer class is modeled and has to (a) extend the external
class Person and (b) associate the external data type Address. With the previously
mentioned restrictions, this is forbidden by the CD4A ML, because when using this
model in a MDD approach, the generator has to parse the external data type to detect
the correct constructor that has to be implemented or has to adapt an external data type
in order to add the required language constructs to manage the bidirectional association.

CDPerson

String firstName

String lastName

Date birthdate

Customer

int cashPoints

1

0..1

«EXT»

CD

Address

String street

String city

String country

Figure 6.5: A UML CD showing of a Customer referencing externally defined classes.

The first restriction, i.e., (a), can be overcome by employing the Delegation-Pattern
[GHJV95]. In particular, an additional class is modeled, which references the external

106

6.4 Methods for using Handcoded Extensions

class and delegates the method calls of accessors and mutators to the external class. In
the example in Figure 6.6, the delegating class is ExternalPerson. This class serves
as a wrapper for the external class, which is implemented using handcoded extensions.
Nevertheless, a disadvantage of this approach is that protected variables of the external
superclass cannot be accessed.

CDPerson

String firstName

String lastName

Date birthdate

Address

String street

String city

String country

Customer

int cashPoints

«EXT»

CD

1

0..1External

Person

1

External

Address

1

Figure 6.6: A UML CD showing the proposed use of externally defined classes for the
example in Figure 6.5.

The second restriction, i.e., (b), can be resolved similarly by introducing a Delegator-
Pattern as well. For example, the ExternalAddress class on the right-hand-side
in Figure 6.5 is the delegator for the external data type. The introduced delegator
handles the association and delegates calls to the external data type.

107

Chapter 7

A Customizable Data-Centric Infrastructure

A data structure resulting from a CD4A-to-Java source code mapping, which has been
described in Chapter 5, forms only the core of a data-centric application. Such a data
structure has to be extended with a data-centric infrastructure (cf. Section 2.3) to im-
plement a data-centric application, which facilitates persistent management of the data
structure via a GUI (cf. RE-1).

A data-centric infrastructure that efficiently and successfully supports MDP and MDD
of data-centric applications, as described in Section 3.3, and supports MDD tool reuse,
has to address:

• Modularity, which describes the property of the data-centric infrastructure to be
used as a whole or in parts. This way a data-centric application supports stan-
dalone and framework-like use, i.e., parts of a data-centric application are used in
a manually-written software system.

• Customizability, which describes the property of the data-centric application to be
extended and customized. As a result, varying requirements in the development of
data-centric applications and data-centric application prototypes can be realized.

The data-centric infrastructure developed in this thesis uses a layered architectural
style to segregate the overall complexity into dedicated layers (cf. Section 2.3.1). It is
shown in Figure 7.1. Each layer consists of a model-independent part (RTE component)
and a model-dependent part (generated component). The model-independent part is
provided by a RTE, which is deployed with each data-centric application and contains
non-generated source code required to compile and run the generated source code. The
model-dependent part is mapped from a CD4A model describing the managed data.
In addition, each layer may consist of a manually-written component, which rep-
resents handcoded extensions of a layer, as explained in Chapter 6; and a standard
components component, which represent the standard libraries of the GPL or addi-
tional external libraries.

The dashed lines in Figure 7.1 indicate the uses-relation between components and
follow the general guideline for layered architectures (upper layer is allowed to use the

lower layer). However, 1 in Figure 7.1 violates this general rule, because the persistence

109

Chapter 7 A Customizable Data-Centric Infrastructure

Application Layer

Presentation Layer

Persistence Layer

standard

components
RTEgenerated

manually-

written

standard

components
RTEgenerated

manually-

written

standard

components
RTEgenerated

manually-

written

1

2

2

2

CpDKey: uses

Figure 7.1: Overview of the developed layered architecture for data-centric applications.

layer instantiates the data structure objects. Another unintuitive static relation is 2 ,
which results from the Extended Generation Gap-Pattern that uses generated source
code to add manually-written source code (cf. Chapter 6).

This layered architectural style separates data-centric applications from general In-
foSyss, which use a 3-tier architecture [BMR+96], where a tier represents a physically
structuring approach for the overall infrastructure. In contrast, a layer represents a
structuring approach of a software system. However, to persistently manage the data
structure, a model-independent persistence infrastructure is used in this thesis.

The goal of this chapter is to describe a method to realize a data-centric infrastructure
for data-centric applications and explain the main aspects of the technical realization.
Hence, this chapter is structured as follows. First, general considerations and architec-
tural drivers for a data-centric infrastructure are discussed in Section 7.1. Afterwards,
systematic mappings of the CD4A ML to model-dependent parts in the application layer
(cf. Section 7.2) and presentation layer (cf. Section 7.3) are presented. Next, the main
aspects of persistence infrastructure’s technical realization are described in Section 7.4,
and the mapping for the persistence layer (cf. Section 7.5) is explained. Finally, a method
for consistent data migration is presented Section 7.6.

7.1 General Considerations and Architectural Design Drivers

From the definition of a data-centric application (cf. Section 2.3), the functionality of
a data-centric infrastructure to manage a data structure can be partitioned into: (a)
operations allowed on the data structure, (b) a GUI to execute these operations and
display the data structure (cf. PR-2), and (c) a connection to a persistence infrastructure

110

7.1 General Considerations and Architectural Design Drivers

to store created instances of the data structure (cf. RE-2). Each concern is explained in
the remainder of this section.

(S)CRUD Functionality. Each data-centric application provides functionality to manip-
ulate the data structure. Such functionality is separated into Create, Read, Update,
and Delete (CRUD) operations. In addition, this basic functionality is extended
with Search operation (S).

While the CRU operations are provided by the constructors, accessors, and muta-
tors in the proposed mapping (cf. Chapter 5), the D operation has to be handled
by the data-centric infrastructure, because deletion may violate data consistency.
Due to the design and defaults chosen for the CD4A-to-Java mapping, the gen-
erated data structure cannot handle data consistency on its own. For example,
an unidirectional association with a mandatory [1] cardinality will violate data
consistency, if the referenced object is deleted.

Graphical User Interface (GUI). A GUI uses the provided (S)CRUD operations and
offers a structured, consistent, and pleasing view of the data. Consistent in this case
means that for the same managed element different views show the same content.
Pleasing is, however, very subjective and has to be defined in each particular
case. Hence, in this thesis, a default mapping for CD4A to GUI is provided.
Adaptations of the GUI can be made via handcoded extensions of the data-centric
infrastructure.

Commonly, a GUI for data-centric applications provides two types of views (cf. Sec-
tion 2.4). One view for listing all elements of a certain type (ListView) and another
view for editing model elements (EditView).

Persistence Each data-centric application is only complete, if managed data can be
stored in a persistent way. For lightweight client applications, as understood in Sec-
tion 2.3, this implies that a persistence infrastructure is used, where data is stored
in a database. In this thesis, it is assumed that the persistence infrastructure is
unaware of the CD4A model (cf. RE-2-2). As a result, server-side data consistency
concerns are not possible, as further explained in this section.

In addition, when one persistence infrastructure manages multiple data structures
manipulated by multiple data-centric applications, it has to provide role-based
access control to ensure that each data-centric application has only access to its
managed data (cf. RE-2-1).

The technical realization of a data-centric infrastructure fulfilling the aforementioned
considerations is also influenced by customization (cf. RE-1-2), type-safety (cf. Sec-
tion 5.1), and modularity concerns (cf. GR-1), as it is targeted in this thesis. Hence, in
the remainder, the architectural impact to regard these considerations is presented.

111

Chapter 7 A Customizable Data-Centric Infrastructure

7.1.1 Architectural Impact of Infrastructure Customization

There are many notions to describe the property of a software system to allow for
changes to fit particular requirements such as “adaptable”, “customizable”, “tailorable”,
and “malleable”(cf. [SQK06]). We consider infrastructure customizability as follows:

Definition 16 (Infrastructure Customizability). Infrastructure customizability is the
property of the provided infrastructure to be adapted to a particular requirement by means
of handcoded extensions.

Technically, this approach is realized using the Extended Generation Gap-Pattern
(cf. Section 6.2). Its architectural impact on the data-centric infrastructure is visible
by the use of the Override-Static-Pattern (cf. Section 6.1.2), which is applied to every
generated Java class to create objects and facilitate handcoded extensions. Hence, in the
remainder of this section, this pattern is omitted in the description of the data-centric
infrastructure for presentational reasons.

7.1.2 Type-specific Method Invocation via Double Dispatching

A data-centric infrastructure has to enforce static type-safety to avoid unpredictable
application behavior (cf. Section 5.1) because of reflective access to ensure type-safety
of the managed data structure (cf. Section 5.1). A design pattern to ensure static type-
safety while reconstructing type information is the Double Dispatching-Pattern, which
is an approach to dynamically select a method based on the run-time type of its param-
eter [BCV05]. This design pattern prevents use of reflection or casts and thus allows to
enforces static type-safety. This pattern is essential for the developed data-centric in-
frastructure, because the framework-like basic functionality provided by generic methods
has to be individually extended for each type of the CD4A model.

To demonstrate this pattern, the example in Figure 7.2 is used. Assuming that class
C is responsible to display different instances of class A depending on their run-time
type. Therefore, the display(A a)-method is provided. When it is invoked, the call
is dispatched to the a instance passed as an argument, i.e., a.accept(this). At run-
time, a can either be an instance of CA or SA. Hence, the accept(C c)-method of the
corresponding class is executed. This method dispatches the call to the C instance and
passes itself as an argument, i.e., c.doDisplay(this). Depending on the run-time
type of the argument, either the doDisplay(CA o)-method or the doDisplay(SA
o)-method is invoked.

However, the Double Dispatching-Pattern has some restrictions, which are explained
using the example in Figure 7.2. In particular, it requires that a doDisplay()-method
for every subclass of A is provided in the C class. In particular, C needs to know the
complete A-hierarchy and is has to be adapted for each A subclass. Otherwise, double
dispatching will fail. Another pitfall is the parameter’s type of the doDisplay()-

112

7.1 General Considerations and Architectural Design Drivers

C

void display(A a)

void doDisplay(CA o)

void doDisplay(SA o)

a.accept(this);

A

void accept(C c)

CD

CA

void accept(C c)

c.doDisplay(this);

SA

void accept(C c)

Figure 7.2: An example of the Double Dispatch-Pattern used to ensure type-safety.

methods. If the parameter type is to generic, e.g., Object, then double dispatching will
fail, because this generic type always applies.

7.1.3 Run-time Environment and Modularity

In general, not every part of a software system needs to be generated to reduce complexity
of the code generator (cf. Section 3.2). For example, source code that is independent
of the input model but required by the generated source code. This non-generated part
is considered as a model-independent “Platform Layer” [SVC06]. In the data-centric
infrastructure, the model-independent non-generated part is statically defined and placed
in a RTE, which is used by the generated source code. Hence, a RTE is defined as follows:

Definition 17 (Run-time Environment (RTE)). A RTE is a set of predefined artifacts
used by the generated source code to fulfill its requirements and at the run-time of the
product.

A RTE can be seen as an external library required by the generated source code,
e.g. Java library. It is created by a generator developer (cf. Section 3.1.3) during code
generator development and deployed with the generated application. However, it is
crucial that a RTE does not depend on the generated classes, because this will result in
non-compilable RTEs as the dependency can only be resolved after the code generator
has been executed. Hence, a RTE has to be either self-contained or may depend on other
statically available source code, e.g., external Java libraries.

The design of a RTE may influence the use of the generated software system. For ex-
ample, if the RTE is designed such that the generated software system is only functional
as a whole, modularity - “the property of a system that has been decomposed into a
set of cohesive and loosely coupled modules” [BME+07] - of the generate source code is
hampered. Here, we consider each module as a set of artifacts (from the RTE and the
generated source code) to realize a particular functionality that can mostly be used stan-
dalone. To support MDD of data-centric applications (cf. Section 3.3), a data-centric

113

Chapter 7 A Customizable Data-Centric Infrastructure

infrastructure and RTE have to enable standalone use of certain predefined parts. For
instance, the application layer representing the data structure can be used without the
presentation layer representing a framework-like use of a data-centric application.

7.2 Mapping CD4A Models to an Application Layer

The application layer represents the data structure, which is mapped from a CD4A model
described in Chapter 5. Additionally, to respect the general considerations and archi-
tectural design drivers (cf. Section 7.1), the application layer is extended with consistent
object instantiation and efficient management of the instantiated objects.

In the remainder of this section, the systematic mapping of these application layer
extensions from CD4A models are presented.

7.2.1 Object Instantiation and Manipulation

The CD4A-to-Java mapping is adapted to a package visible constructor for each Java
class representing a CD4A class to ensure that no object can be instantiated using
new-statements. Otherwise, such object instantiation would conflict with handwritten
customizations concerns (cf. Chapter 6). In more detail, whenever an object is created
using the new-statement, handcoded extensions can only be realized by adapting each
instantiating statement in the generated source code.

A common approach to handle object instantiation is the Factory-Pattern [GHJV95],
which has been proposed to handle object instantiation (cf. [HBR00, MSHL06, Rum12]).
It, however, may lead to the telescoping anti-pattern [NS16] and does not handle updates
of already created objects. Hence, in this thesis, object instantiation is handled by the
Builder-Pattern [GHJV95]. Such builders exist for each concrete and abstract CD4A
class and provide mutators for each attribute and association as well as a build()- and
an isValid()-method to create instances and validate if the instance to be created
does not violate data consistency. In addition, builders are also used to modify existing
instances. Hence, the builder provides an over()-method that allows to create a builder
for a particular existing object. Each change of the object that does not violate data
consistency is automatically persisted on build()-method invocation.

A builder for abstract classes is primarily intended for handwritten extensions, e.g.,
to instantiate subclasses not present in the CD4A model. Hence, by default it throws
an exception whenever the build()-method is called. Moreover, for CD4A interfaces
and enumerations no builders are needed, because no instance can be created.

In addition, whenever a CD4A class has a superclass, the builder respects this hierarchy
by reusing existing functionality of its superclass builder, i.e., extending the builder of
the superclass.

This systematic mapping of the Builder-Pattern is shown by example in Figure 7.3. For
the attribute String name (l.2 at the top), the mutator setName(String name)

114

7.2 Mapping CD4A Models to an Application Layer

exists. Likewise, the mutator setAccount(Map<Long, Account> o) for the asso-
ciation in l.5 (at the top) is generated. In addition, an addAccount(Account o)-
method is generated for this association to add individual links. Note that the key can
be omitted in the method signature, because a name qualifier is used. The init()- and
get()-method realize the Override-Static-Pattern (cf. Section 6.1.2). Furthermore, the
isValid()-method is protected, because it is only used internally and should not be
accessible when using the builder to avoid data inconsistencies. The additional build()-
method instantiates an object, i.e., the ConsultantImpl instance in Figure 7.3. How-
ever, before an object is instantiated, the isValid()-method is called to ensure that
the object itself and objects affected by the instantiation will be consistent. Otherwise,
the build()-method throws a DataStructureViolationException is thrown.

CD4A BankingSystem
�

1 class Consultant implements Employee {
2 String name;
3 }
4

5 association [1] Account <-> [[number]] Consultant;

«interface»

Consultant

«creates»

«GEN»
ConsultantBuilder

+ void init()

+ ConsultantBuilder get()

+ ConsultantBuilder over(Consultant c)

+ Consultant build()

boolean isValid()

+ ConsultantBuilder setName(String name)

+ ConsultantBuilder setAccount(Map<Long, Account> o)

+ ConsultantBuilder addAccount(Account o)

wrap existing objects
to allow modification

validates if object
is consistent

ConsultantImpl
build
instance

CD

Figure 7.3: An example of mapping a CD4A class (at the top) to a Builder-Pattern
implementation (at the bottom).

The technical realization of the build()-method is shown in Listing 7.1. Before an
object is created, the method checks if data consistency is ensured (l.2). The imple-
mentation of the isValid()-method is explained in the remainder of this section. If
data consistency is ensured, the method checks whether the builder is used to change
an already existing object or to create a new object (l.3). Therefore, each builder con-
tains a variable to associate an already existing object, i.e., the object variable of type
Optional. If the an already instantiated object is associated, the builder updates all
attributes (l.4). Alternatively, if the builder is used to create a new instance it uses the
protected constructor of the class (l.6) and sets all attributes in the constructor. After-
wards, all associations are updated (ll.9-10) and the instance of the object is returned
(l.11). However, if data structure is violated an exception is thrown (l.13).

115

Chapter 7 A Customizable Data-Centric Infrastructure

Java

«GEN»
	

1 public Consultant build() {
2 if (isValid()) {
3 if (object.isPresent()) {
4 object.get().setName(this.name);
5 } else {
6 Consultant newObj = new ConsultantImpl(name);
7 object = Optional.ofNullable(newObj);
8 }
9 account.keySet().stream().forEach(x ->

10 object.get().addAccount(account.get(x)));
11 return object.get();
12 }
13 throw new DataConsistencyViolationException("0xD7260: ... ");
14 }

Listing 7.1: Implementation of the build()-method for Figure 7.3.

To demonstrate how data consistency is ensured by the builder, the implementation
of the isValid()-method for the example in Figure 7.3 is shown in Listing 7.2. The
method checks if all attributes are set (l.2). Furthermore, because in this CD4A model,
the qualified association has cardinality [1], the method checks that for all existing keys
an association link exists (ll.6-9). If none of the checks evaluated to false, the method
returns true (l.10).

Java

«GEN»
	

1 public boolean isValid() {
2 if (this.name == null || this.name.isEmpty()) {
3 return false;
4 }
5

6 for (Long key : this.account.keySet()) {
7 Account col = this.account.get(key);
8 if (col == null) return false;
9 }

10 return true;
11 }

Listing 7.2: Implementation of the isValid()-method for Figure 7.3.

Figure 7.3 also shows that a builder realizes the Override-Static-Pattern to create
instances of the generated builder. To explain the use of the generated builder to create
objects, we consider in Listing 7.3. In this example, an instance of the builder is retrieved
by calling the get()-method (l.1). Afterwards, the attribute is set in l.2. By calling
the build()-method in l.3, a ConsultantImpl instance is created.

116

7.2 Mapping CD4A Models to an Application Layer

Java1 Consultant c = ConsultantBuilder.get()
2 .setName("Alexander")
3 .build();

Listing 7.3: Example of using the generated builder in Figure 7.3 to create
ConsultantImpl objects.

7.2.2 Data Structure Management

To manage the instantiated objects and encapsulate synchronization concerns when stor-
ing objects using a persistence infrastructure (described in more detail in Section 7.5), ad-
ditional management facilities for each CD4A class and interface are provided as already
proposed [BHKN96] (cf. PR-3). Each management facility is systematically mapped
form a CD4A class and interface. However, no management facility for CD4A enumer-
ations exists, because they cannot be instantiated. Moreover, management facilities for
CD4A interfaces delegate the request to the implementing classes.

Such management facilities -subsequently called managers- allow to iterate, update,
search for, and remove objects of the managed data structure. A builder for a particular
type of object (cf. Section 7.2.1) uses the manager’s functionality, when creating or
updating objects. Hence, to ensure that only builders are allowed to add and update
objects, this functionality of the manager is package visible.

The manager supports two operation modes (cf. PR-5). One offline mode that is
primarily intended for demonstration and testing purposes without a persistence infras-
tructure, as explained subsequently. The other mode realizes management functionality
by using a persistence infrastructure to store objects, as further explained in Section 7.5.
Both modes are required to support MDP and MDD of data-centric applications.

Figure 7.4 demonstrates the systematic mapping of a manager. It shows a map-
ping for the CD4A class Share (at the top) to the ShareManager (at the bot-
tom), which is the technical realization of the manager. It is initialized using the
init(Storage<Share> s)-method to set a concrete implementation of the Storage
interface, which realizes the actual functionality of the manager for one of the two op-
eration modes above. In this example, the ShareStorageMock realizes non-persistent
offline mode, whereas the SharePersistenceStorage realizes the online mode. Note
that the Storage interface does not need to be generated but is located in the RTE,
because it is not model-specific. All other methods provided by the ShareManager al-
low to remove an instance (remove()-method); iterate over all instances (iterate()-
method); retrieve the amount of stored instances (size()-method); remove all instances
(clear()-method); and search for instances with a particular value (search(String
s)-method). As shown by example of the remove()-method, each method checks if one
mode is selected and invokes the corresponding method of the concrete implementation
for the chosen mode.

117

Chapter 7 A Customizable Data-Centric Infrastructure

CD4A BankingSystem
�

1 class Share {
2 String name;
3 int value;
4 }

dex.data

«RTE»

manager

«interface»

Storage<T>

void discard(T t)

void add(T t)

void update(T t)

Iterator<T> iterator()

int size()

void clear()

Map<T, List<String>> search(String s)

ShareManager

void init(Storage<Share> s)

~void update(Share c)

~void add(Share c)

void remove(Share c)

Iterator<Share> iterator()

int size()

void clear()

Map<Share, List<String>> search(String s)

1

ShareStorage

Mock

SharePersistence

Storage

non-persistent
offline mode

persistent
online mode

CD

«GEN»

CD

checkManager();

return manager.discard(o);

check if one
mode is selected

package visible method,
because it should only
be used by the builder

Figure 7.4: Example of mapping a concrete management facility (at the bottom) for a
CD4A class (at the top).

Technically, the implementation of the offline mode (e.g., ShareStorageMock in Fig-
ure 7.4) uses a hashmap to manage all instantiated objects. The online mode (e.g.,
SharePersistenceStorage) uses the WebService provided by the persistence in-
frastructure, as explained in more detail in Section 7.4.

Mapping of CD4A Hierarchies

Whenever CD4A classes or interfaces extend other CD4A classes or interfaces, the man-
agers regard this hierarchy to reuse existing implementation. In particular, additional
dispatching interfaces to realize the Double Dispatching-Pattern (cf. Section 7.1.2) are
mapped for each superclass or super interface. Each dispatching interface contains
for each class in the hierarchy the manager’s add(), discard(), update(), and

118

7.2 Mapping CD4A Models to an Application Layer

clear()-methods with a do-prefix and the subclass’ type as a parameter. Moreover,
for all other methods, the implementation is adapted to regard all subclasses. Note that
this interface is necessary to ensure support for online and offline mode, because the
implementation of the Storage interface changes depending on the mode.

The example in Figure 7.5 shows how hierarchies in the offline mode are handled for the
CD4A class Account (at the top). Note that for presentational reasons the online mode
has been neglected, because it is realized similarly. For the CD4A class Account, which
has two subclasses (SavingsAccount and CheckingAccount), the additional dis-
patching interface AccountStorageDispatcher is provided. It contains a doAdd(),
doDiscard(), doUpdate(), and doClear()-method for each particular subclass. In
this example, only the doDelete()-methods are shown for presentational reasons.

CD4A BankingSystem
�

1 abstract class Account{ ... }
2 class CheckingAccount extends Account{ ... }
3 class SavingsAccount extends Account{ ... }

dex.data

«interface»

Storage<T>

dispatching
interface AccountStorageMock

void discard(Account o)

void doDelete(SavingsAccount o)

void doDelete(CheckingAccount o)

void doDelete(Account o)

1

manager

«interface»

AccountStorageDispatcher

void doDelete(SavingsAccount o)

void doDelete(CheckingAccount o)

void doDelete(Account o)

$

$

AccountManager
$

$

dispatches the type using
the doDelete()-method

delegates to the
SavingsAccountStorageMock

void remove(Account o)

delegates to the
discard()-method

«RTE»

CD

«GEN»

CD

Figure 7.5: Hierarchies of CD4A classes and interfaces are respected by an additional
dispatching interface that realizes the Double Dispatch-Pattern.

Whenever the remove()-method of the AccountManager class is called, it is dele-
gated the call to the concrete implementation of one of the two modes. In this case, we as-
sume it is the offline mode. Hence, the discard()-method of the AccountStorage-
Mock is called. This method uses double dispatching to call the appropriate doDelete()-
method, which delegates the call to the remove()-method of the manager responsible
for the type of object. For example, if an instance of CheckingAccount is to be

119

Chapter 7 A Customizable Data-Centric Infrastructure

deleted, the remove()-method of the CheckingAccountManager is called. Note that
a doDelete(Account a) is added, which by default throws a NotImplemented-
Exception. This ensures that manually-written subclasses of the Account class have
to be handled by the developer as well.

Deletion of Instances from the Data Structure

Besides manipulating objects, object deletion may violate data consistency. For example,
if the deleted object is linked to another object, the cardinality is [1] or [1..*], and
the object is the last in the list. Another example is the deletion of linked objects in
unidirectional associations, where the target is unaware of the link. Although the latter
case can be handled by making the association bidirectional (cf. [BFL13]), it contradicts
to the semantics of unidirectional associations (cf. Section 5.2.6).

Hence, object deletion is handled by the data-centric infrastructure rather than by an
object itself. An object can be deleted if

• it is not the target of a mandatory association, which by removing the association
link would violate data consistency,

• it is associated by an optional attribute of some other CD4A class, or

• it is the left-hand side of a composition

In all other cases, deletion is not possible. If these preconditions are satisfied, the
instance is deleted as follows:

1. Remove every association link, where the object to be deleted is the target.

2. Remove the object from every optional attribute.

Note that for CD4A composition, only the left-hand side of a composition (the whole)
can be removed. If it is deleted, then the right-hand side (the parts) is deleted as
well. Technically, this can be ensured via Java weak references (cf. [AHMM07]), which,
however, requires to mark deleted objects as deleted while links still exist (cf. [Ges08]).
In this thesis, the manager of the composition’s part-of type forbids deletion and only
the manager of the whole’s type can delete the parts.

7.3 Mapping CD4A Models to a Presentation Layer

The presentation layer of the data-centric application provides a GUI to manage the
instantiated objects (cf. PR-2). Mappings of UML diagrams to GUIs have already
been proposed, e.g., [MSHL06, GGLVG08, LSHA08, HMZ11, Lan16], and serve as a
foundation for the mapping developed in this thesis.

120

7.3 Mapping CD4A Models to a Presentation Layer

The main model-independent parts of the GUI are shown in Figure 7.6. Note that this
screenshot shows additional model-dependent elements, which are added to the model-
dependent part. The Main Window is the enclosing element of the GUI. It contains a
Command Area, which provides the (S)CRUD operations, a Tree Area, which provides
an overview of all CD4A interfaces and classes, and a List and Edit Area, which hosts
ListViews and EditViews (cf. Section 7.1).

List and

Edit AreaTree Area

Command

Area

Main

Window

Figure 7.6: The model-independent part of the MontiDEx product GUI.

Subsequently, the systematic mapping developed to map CD4A models to model-
dependent GUI elements, which extend the model-independent parts, is presented.

7.3.1 Mapping Model Definition, Interfaces, Classes, and Enumerations

Each model definition is used to structure the generated source code and ensure refer-
ential integrity, as proposed in Section 5.2.1. In addition, the model’s name is used as
the application’s name, as shown in Figure 7.6.

A CD4A interface and class is mapped to an item in the Tree Area allowing direct
access to a ListView of instances of the selected CD4A interface or class, as shown on
the bottom left-hand-side of Figure 7.7. It also shows how the CD4A class Customer
is mapped to a ListView, which displays all instances of the CD4A class and its sub-
classes with the attributes’ values. This also holds true for CD4A interfaces. For CD4A
enumerations, no list and edit capabilities are provided because they only group values
(cf. Section 4.1).

EditViews allow to create new instances or edit existing ones by providing edit capa-
bilities for each non-derived attribute and non-derived association. Depending on the

121

Chapter 7 A Customizable Data-Centric Infrastructure

CD4A BankingSystem
�

1 class Customer {
2 String firstName;
3 String lastName;
4 Date birthdate;
5 String city;
6 String street;
7 String country;
8 }

Figure 7.7: CD4A interfaces and classes are mapped to views showing their instances
(right-hand-side), which can be accessed via a tree view (left-hand-side).

attribute’s or the association’s type, the GUI representation varies and may provide in-
put validation, i.e., only numerical values are used for attributes with a numerical type,
and the value is not empty. An overview of the GUI elements for attributes are summa-
rized in Table 7.1 on page 124. For presentational reasons the additional label to denote
the attribute is omitted and all GUI elements refer to Java Swing GUI elements.

Mapping CD4A Hierarchies to EditViews

The EditView also changes if the corresponding CD4A class has a superclass or imple-
ments an interface. Such hierarchies are represented by displaying all GUI elements of

122

7.3 Mapping CD4A Models to a Presentation Layer

the parents, because whenever an object in the hierarchy is edited, the parent’s attributes
have to be editable as well to allow instantiation of consistent objects.

In addition, the hierarchy is also represented in the Tree Area by showing the parent
and child relation.

For example, Figure 7.8 presents the mapping of the CD4A model at the top to the
GUI at the bottom. As depicted in the bottom-left-hand side, the hierarchy shows that
the CD4A class A has two subclasses, namely B and C. The hierarchy of C is illustrated
by the stack of editing elements for the A, B, and C in the EditView (at the bottom).

CD4A1 class A {
2 double dValue;
3 }
4 class B extends A {
5 String sValue;
6 }
7 class C extends B {
8 int iValue;
9 }

Figure 7.8: Hierarchies in the CD4A model are represented in the Tree Area (left-hand
side) and in the EditView (right-hand side).

Mapping Associations to EditViews

Similar to attributes, associations are mapped to GUI elements in the EditView. In
particular, each association is mapped to a list representation, which contains a set - if
the association is ordered a list - of referenced instances. If the association is qualified,
the list representation is split into a list for keys and a list for the key’s values.

123

Chapter 7 A Customizable Data-Centric Infrastructure

CD4A Attribute Type GUI Element

• CD4A interface or class as a type
(e.g., B b;)

Non-editable text field to select existing in-
stances.

• Primitive or wrapper type
(e.g., String name;)

Editable text field.

• Enumeration type
(e.g., CEnum day;)

A ComboBox storing all values of the enumera-
tion.

• External data type
(e.g., Date date;)

By default a non-editable text field, because it
has to be implemented by hand. However, for
the Date type a Date-Picker is predefined.

• Optional type
(e.g., Optional<Date> date)

A CheckBox and a representation for the generic
parameter type. The CheckBox enables and dis-
ables edit functionality.

• Derived attribute
(e.g., /boolean completed)

The graphical representation of the attribute’s
type is used but is non-editable.

• Collection type
(e.g., List<String>
comments)

A list to represent all added values and capabil-
ities to add and remove values.

Table 7.1: Overview of the mapping of attributes to GUI elements.

124

7.3 Mapping CD4A Models to a Presentation Layer

For each association, representation it is allowed to add, show, or delete an association
link. If an association is derived, only the show action is allowed. Moreover, because a
list representation allows to add multiple elements, the cardinalities [1] and [0..1]
are supported by restricting the set of elements to be added. In case an association is
mandatory and not yet set, the GUI element is colored in red to provide user feedback.
In addition, derived associations are highlighted by a blue color.

Another example, shown in Figure 7.9, illustrates the mapping for associations. The
association in l.4 (at the top) is mapped to a split view, because it is a qualified associ-
ation, which requires a key and a value. Moreover, the association in l.5 (at the top) is
mapped to the GUI element with the blue-colored list to denote a derived association.
Note that the edit buttons are disabled. Finally, the association in l.6 (at the top) is
mapped to the red-colored association to illustrate that it is a mandatory association
and a value is not set.

CD4A1 class A;
2 class B;
3

4 association B [String] -> A [1];
5 association / B -> (blue) A [0..1];
6 association B -> (red) A [1..*] <<ordered>>;

Figure 7.9: Associations are represented as lists of elements, where blue-colored denote
derived associations and red-colored denote mandatory associations.

125

Chapter 7 A Customizable Data-Centric Infrastructure

The chosen coloring denotes input validation for associations only in terms of existing
values, i.e., an association link has to be assigned, because it is mandatory with respect
to the CD4A model. However, by setting an association link, data consistency is not
ensured, because the GUI only represents the values but does not check if, e.g., asso-
ciation links can be set (cf. PR-2-3). This is done by the corresponding builder, when
attempting to save the changes.

7.3.2 Technical Realization of GUI Architecture

The proposed infrastructure is based on common design principles and patterns for
implementing GUIs [Kar08] and separated into a RTE (cf. Section 7.1.3) and into a
model-specific part (GEN), which is generated from CD4A models. The «RTE» and
«GEN»-abbreviation are used in the remainder of this section to separate parts of the
data-centric infrastructure.

To manage the main application and creating particular ListViews and EditViews for
each CD4A class and interface, the Application Controller-Pattern [Fow03a] is used. It
is realized by the AbstractController, which is part of the RTE, as shown in Fig-
ure 7.10. Furthermore, the MainWindowPresenter and MainWindowView realize the
MVP-Pattern [Kar08] for the Main Window and are located in the RTE as well, because
it does not need to be generated (cf. Section 7.3). Likewise, the MainWindowContent,
MainWindowMenuBar, and MainWindowToolbar realize the view of the Main Win-
dow, the Menu Bar, and the Toolbar.

1

«GEN»

CD

«RTE»

CD

BankingSystem

Controller

Abstract

Controller

MainWindow

Presenter

MainWindow

View

MainWindow

Content

MainWindow

ToolBar

1 1

MainWindow

MenuBar

1

1
void start()

void exit()

void startUp()

void tearDown()

...

mainWindow

toolBar

menuBarcontent

starts a thread
to execute GUI

stop GUI thread

hot spot
executed
on start hot spot

executed
on exit

dex.gui

Figure 7.10: Overview of the main architecture of the MontiDEx product GUI.

126

7.3 Mapping CD4A Models to a Presentation Layer

For each CD4A model, a concrete subclass, e.g., BankingSystemController in Fig-
ure 7.10, of the AbstractContoller class is required. It specifies for each CD4A class
and interface the ListViews and EditViews that have to be instantiated at run-time. At
run-time the AbstractController uses double dispatching to open the object type’s
ListView or EditView. The main methods of the AbstractController are:

• start(): Launch a thread to execute the GUI.

• exit(): Immediately terminate the GUI. If the online mode is used, the currently
logged in user is logged out and the connection is terminated.

• startUp(): At start up, this method is called. By default it is empty and
represents a hot sport for handcoded extensions (cf. Section 6.3).

• tearDown: When the exit()-method is called, this hot spot is called to allow
handcoded extensions at shut up. By default this method is empty.

Technical Realization of EditView

Each ListView and EditView is realized using the MVP-Pattern, which is CD4A model-
specific. In contrast to ListViews, EditViews comprise multiple MVP-Patterns to sup-
port CD4A inheritance as described in Section 7.3.1. Therefore, each EditView is a
composition of multiple views.

To demonstrate the mapping of EditViews from CD4A models, the example in Fig-
ure 7.11 is used. It shows the mapping of the CD4A class CA. The CAEditPanelView,
which represents the view, is composed of the CAPanelComponent View and the
APanelComponentView, because the A class is the superclass of the CA class (at the
top of Figure 7.11). The abstract superclasses located in the RTE provide template
methods and hook methods realizing the static functionality (cf. Chapter 6). Note that
the technical realization of the ListView is only one MVP-Pattern per CD4A type (it is
omitted here for presentational reasons) to represent the list overview, where hierarchy
concerns are handled within the presenter.

The AbstractEditPanelPresenter offers the following methods:

• doAttachListeners(): This method is by default empty and serves as a hot
spot to attach listeners to different GUI elements.

• execute(Command c): Changes to the AbstractEditPanelModel are done
via the model-specific commands, as explained in Section 7.3.3. The execute(
Command c)-method executes commands of a concrete generated presenter. This
execution uses the thread management facility explained in Section 7.3.4.

127

Chapter 7 A Customizable Data-Centric Infrastructure

CD4A1 class A {
2 }
3

4 class CA extends A {
5 }

dex.gui

AbstractEdit

PanelModel

«RTE»

CD

CAEditPanel

Model

1

1 «GEN»

CD

CAEditPanel

Presenter

CAEditPanel

View

AbstractPanel

ComponentView

CAPanelComponent

Presenter

APanelComponent

Presenter

1

1

1

1

1

1

1 1

1

CAPanelComponent

View

APanelComponent

View

1

AbstractEdit

PanelPresenter

void doAttachListeners()

void execute(Command c)

boolean isInputValid()

void reloadModel()

void resetPanel()

AbstractEditPanel

void addComponents()

Figure 7.11: The technical realization of the EditView for the CD4A class CA.

• isInputValid(): Each presenter is responsible for validating the GUI, i.e.,
checking if values for attributes and mandatory association links are assigned. This
method is implemented by a generated CD4A-specific subclass. It returns true if
all inputs are valid. Otherwise, it returns false and highlights the GUI elements
that are invalid.

• reloadModel(): This method updates the view by removing all displayed values
and reload them from the model.

• resetPanel(): This method clears all values currently shown in the view.

128

7.3 Mapping CD4A Models to a Presentation Layer

Each view for an EditView implements the AbstractEditPanel, which is respon-
sible to display GUI components. It provides the addComponents()-method, which is
implemented by the generated subclass using the mapping in Table 7.1.

7.3.3 Manipulating Objects via Model-Specific Commands

User interactions are detected by the EditView’s presenter, which executes a model-
specific command for each user action to change the values stored in the model. Such
model-specific commands offer undo and redo functionality (cf. PR-2-1) and are realized
by the Command -Pattern [GHJV95]. Each command encapsulates modifications to a
particular type of objects of the data structure and is CD4A-model-specific. Hence,
such CD4A-model-specific commands are systematically mapped from a CD4A model
as subsequently explained.

For each attribute and association of a CD4A class, the command’s name consists of
an Update-prefix followed by the name of the CD4A class and either the name of the
attribute or the name of the association as a suffix. Note that since derived attributes
cannot be changed, there are no commands for them as well as for derived associations.
If a CD4A class implements a CD4A interface, commands for the implemented CD4A in-
terface exist as well. This approach is used to ensure type-safety, because the commands
manipulate different models in the MVP-Pattern. Hence, multiple commands may exist
for one CD4A class. Each command is executed by the presenter in the MVP-Pattern
to manipulate the model.

Depending on the type of the attribute and the associations, each command stores
different but statically typed values, which include the old value and the new value. It
also respects the order of ordered associations.

Figure 7.12 shows an example for the mapping of model-specific commands for the
A CD4A class depicted at the top. For each attribute and association, a command
is created, which implements the Command interface located in the RTE. For the at-
tribute String name the command UpdateAname is provided. It is executed by the
AEditPanelPresenter to change the corresponding attribute or association value
of the AEditPanelModel. This approach has been chosen, because in a client-server
architecture changes may not directly be persisted after each user action and only the
updates of the object should be transmitted to the server rather than the object itself
(cf. Section 7.5).

When the model has been updated, the ABuilder is called to ensure data consistency
and update the object (cf. Section 7.2.1).

In addition, to support undo and redo functionality a history association links all ex-
ecuted commands. Links are added to this association by the AEditPanelPresenter,
when a command is executed.

129

Chapter 7 A Customizable Data-Centric Infrastructure

CD4A1 class A {
2 String name;
3 }
4

5 association assoc A -> B [1];

dex.gui

«interface»

Command

Response execute()

Response undo()

«RTE»

CD

«GEN»

CD

AEditPanel

Presenter

UpdateAname AEditPanel

Model
UpdateAassoc

ABuilder

1 1

history
*

1model
1«executes»

«executes»

A
0..1

Figure 7.12: Example of mapping model-specific commands (at the bottom) for the A
CD4A class (at the top).

Technical Realization of Commands

To demonstrate the technical realization of commands, an example of the implementation
of the UpdateAname in Figure 7.12 is shown in Listing 7.4. The implementation is
associated with a particular model (AEditPanelModel in l.2). For the String name
attribute, the Java variables in ll.3-4 store the value to be set (String newValue in
l.3) and the value that has been previously set (String oldValue in l.4). Moreover,
the execute()-method sets the new value (ll.11-14) and the undo()-method (ll.16-18)
reset the old value.

7.3.4 Managing Execution of Model-Specific Commands

Model-specific commands are executed in threads, which are managed in a centralized
way by a thread management facility to ensure a responsive GUI (cf. PR-2-2). Such UI
threads are executed in batch processing mode, i.e., for each GUI element only one thread
at a time is allowed. Otherwise, updates of the same GUI element may cause run-time
exceptions. Technically, this is realized as a queue of SwingWorker. A SwingWorker
is a user interface thread provided by the Java Swing framework [LEW+02].

130

7.3 Mapping CD4A Models to a Presentation Layer

Java

«GEN»
	

1 public class UpdateAname implements Command {
2 private AEditPanelModel o;
3 private String newValue;
4 private String oldValue;
5

6 public UpdateAname(AEditPanelModel o, String v) {
7 this.o = o;
8 this.newValue = v;
9 }

10

11 public void execute() {
12 this.oldValue = this.o.getName();
13 return this.o.setName(this.newValue);
14 }
15

16 public void undo() {
17 return this.o.setName(this.oldValue);
18 }
19 }

Listing 7.4: Implementation of the UpdateAname command for Figure 7.12.

Each SwingWorker executes exactly one Job, which provides the implementation of
the action that is executed. A Job is either generic or model-specific. Generic Jobs
are provided by the RTE and only execute the execute() or undo()-method defined
in the Command interface (cf. Section 7.3.3). Model-specific Jobs are mapped for each
CD4A class only. In particular, a Delete-Job, which manages object deletion, and a
Load -Job, which handles the list of currently displayed objects.

For instance, an example of the technical realization of the thread management facility
is shown in Figure 7.13. The RTE consists of the WorkerManager, which is responsi-
ble for managing all DexWorkers and their execution. Each DexWorker, which is a
SwingWorker, is associated with one Job interface, which is implemented by the two
predefined Jobs ExecuteJob and UndoJob. The additional ListPanelDeleteJob
and LoadJob are abstract classes implemented by the model-specific Jobs Transaction-
DeleteJob and TransactionLoadItemJob.

The main methods of the WorkerManager are:

• execute(DexWorker dw): This method executes the dw Job. If a Job is cur-
rently executed, the dw is queued.

• isRunning(String s, String id): To only execute Jobs of the currently
active presenter, jobs are managed individually for each presenter. Hence, each
Job is associated with a particular id and a presenter id. This method checks if a

131

Chapter 7 A Customizable Data-Centric Infrastructure

CD4A BankingSystem
�

1 class Transaction{
2 ...
3 }

dex.gui.worker «RTE»

CD

«GEN»

CD

WorkerManager

void execute(DexWorker dw)

boolean isRunning(String s, String id)

void stop(String s)

void stop(String s, String id)

void stopAll()

isRunning

*

1

1

LoadJob ExecuteJob UndoJob

Transaction

DeleteJob

Transaction

LoadItemJob

«interface»

Job

void after()

void before()

void cancel()

void run()

AbstractJob

DexWorker

ListPanel

DeleteJob

manage object
deletion

handle list of currently
displayed objects

execute a command’s
execute()-method

execute a command’s
undo()-method

queued

Figure 7.13: Example of mapping CD4A classes to model-specific threads.

Job with the id id for the presenter with the id s is running. If the Job with the
id id is queued or not present, this method returns true.

• stop(String s): This method stops all Jobs currently executed and queued
for the presenter with the id s.

• stop(String s, String id): Stop a particular Job with the id id for the
presenter with the id s.

• stopAll(): Terminate all currently running and queued Jobs.

The DexWorker forwards calls to execute or stop a particular Job to the Job im-
plementation, which is realized in the AbstractJob class. The main methods of the
AbstractJob class are:

132

7.4 Generic Persistence Infrastructure

• after(): This method is executed after the Job has been finished. By default
this method is empty and provided as a hot spot.

• before(): This method is executed before a Job is executed and is provided as
a hot spot.

• cancel(): Cancel the currently running or queued Job.

• run(): Execute the Job. This method is called by the DexWorker to immedi-
ately execute the Job, because it is the first in the queue.

7.4 Generic Persistence Infrastructure

To support persistent storage for the managed data structures, a data-centric infrastruc-
ture has to provide access to a persistence infrastructure. Existing approaches for MDD
of data-centric applications (cf. Section 2.4) propose a synthesis of parts of a persistence
infrastructure, i.e., database schema, in addition to a data-centric infrastructure. How-
ever, such an approach hampers rapid MDP of data-centric applications, because the
persistence infrastructure has to be adapted when generating a prototype. Hence, in
this thesis the persistence infrastructure is generic (cf. RE-2).

The persistence infrastructure developed in this thesis is shown in Figure 7.14. The
persistence layer of a data-centric application uses a WebService, which is provided by the
persistence infrastructure, to access functionality of the generic application server. The
application server realizes role-based access control and predefined business logic such
as behavior when creating, updating objects, and deleting, i.e., locking all associated
objects. The managed data as well as rights and roles are stored in one databases with
multiple tables. Technically, a Glassfish Application Server [www16i] with a PostGres
database [www16k] are used.

In the remainder of this section, the generic meta-model of the persistence infrastruc-
ture, a method to realize role-based access control, and the methods required by the
data-centric infrastructure from a WebService are explained.

7.4.1 Generic CD4A Meta-Model

The server’s database meta-model is shown in Figure 7.15. Its main element is an
ObjectValue, which represents an instance of a CD4A class1. Each ObjectValue
has a type to store the CD4A class’ type. Attributes are mapped to instances of the
Attribute class. Associations are excluded in this meta-model, because the mapping
of CD4A models to concrete source code (cf. Chapter 5), maps associations to attributes.

1More precisely, in this context “instance of a CD4A class” means that it is an instance of the Java
class mapped from a CD4A class using the mapping introduced in Chapter 5.

133

Chapter 7 A Customizable Data-Centric Infrastructure

Presentation Layer

Database

Application Server

Role-Based

Access-Control

Business

Layer

WebService

MontiDex Product

Application Layer

Persistence Layer

predefined
business logic

manages multiple users
and instance-based rights

provides an interface for
the Persistence Layer

objects, users, roles, and rights
are managed in one databases

CpD

«GEN»

CpD

«RT-IF»

Figure 7.14: An overview of the generic persistence infrastructure.

Each Attribute stores the name of the attribute and associates a Value. To distin-
guish the different types of values, the meta-model provides ReferenceValues, which
allow to reference a stored ObjectValue by its ID (refId); a PrimitiveValue,
which stores plain text values (value); a ListValue, which represents a list of values;
and a MapValue, which stores maps of key-value pairs. If an attribute is not a reference
to another CD4A model element or a collection type (List or Set), it is mapped a
PrimitiveValue. Furthermore, associations with cardinality [0..1] and [1] are
stored as a ReferenceValue or as a PrimitiveValue depending on the referenced
type. Associations with cardinality [*] or [1..*], are stored as a ListValue. Fi-
nally, a qualified association is stored as a MapValue. An overview of this mapping is
shown in Table 7.2.

ObjectValue

String type

Long revision

* 1

ListValueMapValue

*

* key
Attribute

String name

Long revision

Value

Long id

PrimitiveValue

String value

ReferenceValue

Long refId

CollectionValue

CDdex.server.metamodel

Figure 7.15: Meta-model of the generic server’s database.

134

7.4 Generic Persistence Infrastructure

CD4A Model Elements Meta-Model Element

• Attribute having a CD4A interface or
class as a type (e.g., B b;)
• An association to a CD4A interface or
class and cardinality [1] or [0..1]
(e.g., A -> B [1];)

An Attribute with the name of the
CD4A attribute or association2 and a
ReferenceValue storing the ID of the
associated instance.

• Attribute with an external data type
(e.g., Date s;)
• An association to an external data type
with cardinality [1] or [0..1]
(e.g., A -> E [0..1];)

An Attribute with the name of the
CD4A attribute or association and a
PrimitiveValue.

• Attribute with an enumeration type
(e.g., CEnum enums;)
• An association to an enumeration with
cardinality [1] or [0..1]
(e.g., A -> CEnum;)

An Attribute with the name of the
CD4A attribute or association and a
PrimitiveValue.

• Attribute with a List or Set
(e.g., List<String> a;)
• An association with cardinality [*]
or [1..*].

An Attribute with the name of the
CD4A attribute or association and a
ListValue with elements depending on
the generic parameter type or the tar-
geted association end’s type.

• Qualified association
(e.g., A [String] -> B;)

An Attribute with the name of the
CD4A association and a MapValue with
elements depending on the targeted asso-
ciation end’s type and the keys depending
on the qualifier type.

Table 7.2: Mapping overview of CD4A model elements to the meta-model elements.

The meta-model contains a revision attribute for the ObjectValue and the
Attribute class. It holds the current revision of the stored instance. The revision
of the ObjectValue is increased each time one of its attributes is changed, whereas the
revision of an Attribute is increased if the attribute’s value changes. This information
is exclusively added to enable multi-user management, as described in Section 7.4.2.

7.4.2 Multi-Tenancy and Role-Base Access Control

The backbone of each InfoSys is a persistence infrastructure providing access to the
stored data to different users or other systems (cf. RE-2-1). Its essential task is to

2The name of an association is understood as described in Section 4.2.4

135

Chapter 7 A Customizable Data-Centric Infrastructure

manage different users having different roles and possibly belonging to different tenants,
each of which is a set of users that use the same software application. In such a case, it
has to be ensured that each data-centric application using the persistence infrastructure
has only access to its own data for which it is allowed to define (S)CRUD operations.
Hence, each data-centric application is considered as one tenant.

A variety of approaches for realizing role-based access control exist, e.g. [Ros97, TS98,
LSM+98, EKBM+03, YT05, FKC07, KCW10, Gol11, JSK12, RDJK15], each of which
addresses different requirements such as performance, flexibility, or scalability. In this
thesis, the technical realization of role-based access control is founded on the MR-RBAC
approach [TLS13, TSL15], which is primarily designed for collaborating environments.
It respects data integrity, which ensures that each modification of the stored data is
protected by access control, as well as information confidentiality, which ensures that
each read operation is protected by access control.

An overview of the technical realization is shown in Figure 7.16. Each Project
represents one generated data-centric application. Technically, this is achieved by a
unique identification number, which is transmitted when the client logs in and is as-
signed by the generator unequally in the generation process. A Project manages
multiple users (User class), each of which can have multiple roles (Role class) and
permissions (Permission class) for a particular ObjectValue. As a result, this ap-
proach enables instance-level CRUD operations. A RoleAssignment is used to avoid
the “role-explosion problem” [KCW10, JSK12].

dex.server.metamodel

*1

1..*

*

*

*

*

CD

Project

User

Role Permission

ObjectValueRoleAssignment
1

roles permissions

objectassigned-

Roles

users

owner

*

Figure 7.16: Technical realization of the adapted MT-RBAC approach for role-based
access control in a multi-tenant environment.

Each permission is defined with respect to an instance with a particular type. Because
the persistence infrastructure is unaware of the types, the persistence layer transmits
the set of CD4A class types on the first connection. For each transmitted type, CRUD
permissions are created for the default ProjectAdmin role, which is assigned to the first
logged in user. Technically, the Apache Shiro [www16d] framework is used to realize
rights and roles management It allows to define rules, which are regular expressions that

136

7.4 Generic Persistence Infrastructure

are evaluated for each request, to define permissions. For instance, for a class A and the
user Alex, the expression “A:Alex:READ” defines that the user “Alex” is only allowed
to read instances of type “A”. Another example is the “*:Alex:*” rule, which allows all
CRUD operations for the user “Alex” on every type.

Although the technical realization allows to define more detailed CRUD operations,
e.g., for attributes or associations, in this thesis this kind of fine-grained role-based access
control has been omitted, because it may violate data consistency. For example, if an end
user is not allowed to access objects of a mandatory association, the client application
cannot create a consistent object.

When supporting role-based access control, concurrent manipulation of the same ob-
ject has to be addressed. In other words, two or more users should be allowed to con-
currently modify the same object (cf. RE-2-1). A solution is to immediately transmit
consistent changes to the server. Another solution is to transmit a set of changes.
Whereas the primer solution minimizes the possible conflicts because only one transmit-
ted change may conflict, the latter solution requires an approach for conflict detection
within multiple changes. Hence, the primer solution has been chosen in this thesis. Tech-
nically, the approach is realized using the revision number for each ObjectValue of
the meta-model (cf. Section 7.5). Changes are only accepted, if the object has not been
changed by another user, i.e., the version number has not been incremented. Otherwise,
the changes are not accepted and the end user is informed. This approach has been
chosen, because it has proven to be a lightweight solution to support multiple user and
distribution of data (cf. [ADH+09]).

7.4.3 Technical Realization of Accessing the WebService

To demonstrate the services provides by the persistence infrastructure, we consider the
ServerAccess class that is provided by the RTE of the data-centric infrastructure to
use the WebService. An overview of the main methods are shown in Figure 7.17. These
methods can be executed by end users with the ProjectAdmin role directly from the
client application.

The main methods for managing users, roles, and permissions are:

• login(String u, String p): Log in a user with the name u and the pass-
word p. If the user does not exist or the password is wrong, false is returned.

• logout(): Log out the user currently logged in and close the connection to the
persistence infrastructure.

• registerUser(String u, String p): This method can be used to register
a new user with the name u and the password p. If the user is already registered,
false is returned. By default, if the user is the first registered user, he receives the

137

Chapter 7 A Customizable Data-Centric Infrastructure

dex.server.access

ServerAccess

boolean login(String u, String p)

void logout()

boolean registerUser(String u, String p)

boolean createRoleForProject(String r)

boolean assignRole(String u, String r)

boolean deassignRole(String u, String r)

boolean deleteUser(String u)

boolean deleteRole(String r)

List<String> getAllUserNamesForProject()

List<String> getAllRoleNamesForProject()

boolean assignPersmission(String u, PermissionAction p)

boolean deassignPermission(String u, PermissionAction p)

boolean hasPermission(String u, PermissionAction p)

...

assign CRUD
permissions

register a new user
or throw exception
if user exists

«RTE»

CD

Figure 7.17: Overview of the ServerAccess class that handles communication to the
persistence infrastructure.

ProjectAdmin role with all rights and roles assigned, as explained in more detail
in Section 7.4.2.

• createRoleForProject(String r): Create a new role with the name r. It
this role exists, false is returned.

• assignRole(String u, String r): Assign a role with the name r to a user
with the name u. If either the role or the user does not exist, false is returned.

• deassignRole(String u, String r): Deassign an already assigned role
with the name r from a user with the name u. If the user or the role does not
exist, or the user does not have the role, false is returned.

• deleteUser(String u): Delete the user with the name u from the list of
currently managed users. If the user does not exists, false is returned.

• deleteRole(String r): Delete a role with the name r from all available roles.
If the role does not exist, false is returned.

• getAllUserNamesForProject(): Return a list of names of all managed user.

• getAllRoleNamesForProject(): Return a list of all available role names.

• assignPermission(String u, PermissionAction p): Assign the per-
mission p to a user with the name u. The PermissionAction enumeration

138

7.4 Generic Persistence Infrastructure

allows to assign CRUD operations. If the permission cannot be assigned or the
user does not exist, false is returned.

• deassignPermission(String u, PermissionAction p): Deassign the
permission p from a user with the name u. If the permission cannot be deassigned
or the user does not exist, false is returned.

• hasPermission(String u, PermissionAction p): Check if the user with
the name u has the permission p. If the user does not exist or does not have the
permission, false is returned.

In general, a design pattern to manage communication in a client and a persistence
infrastructure is the Response/Request-Pattern, which allows bidirectional communica-
tion between a server and a client [HW03]. A request is sent by the client and contains
a demand for modification of an object stored on the server, which processes the request
and returns a response. Hence, the persistence layer converts the model-specific com-
mands (cf. Section 7.3.3) to generic server requests. An advantage of requests is that
only the changes are regarded but not the whole object and, hence, change detection is
not necessary.

The methods provided by the ServerAccess to send CRUD requests and receive
responses from the persistence infrastructure are shown in Figure 7.18.

dex.server.access

ServerAccess

SizeObjectValueResponse sendSizeRequest(SizeObjectValueRequest s)

CreateObjectValueResponse sendCreateRequest(CreateObjectValueRequest r)

ReadObjectValueResponse sendReadRequest(ReadObjectValueRequest r)

UpdateObjectValueResponse sendUpdateRequest(UpdateObjectValueRequest r)

DeleteObjectValueRequest sendDeleteRequest(DeleteObjectValueRequest r)

... «RTE»

CD

Figure 7.18: Overview of the ServerAccess class to send CRUD requests and receive
responses from the persistence infrastructure.

All provided methods use the generic metamodel to communicate with the persistence
infrastructure (cf. Section 7.4.1). They are explained in the following.

• sendSizeRequest(SizeObjectValueRequest s): Size requests realizes the
search functionality and requests for a particular CD4A type the size of stored in-
stances. The response is an integer value.

• sendUpdateRequest(UpdateObjectValueRequest r): With this method,
a request to update an already stored objects is send to the persistence infrastruc-
ture. The request contains the list of attributes that have to be updated, the

139

Chapter 7 A Customizable Data-Centric Infrastructure

objects id, and the revision number (cf. Section 7.4.1). The response reveals if the
update has been successful.

• sendCreateRequest(CreateObjectValueRequest r): This method exe-
cutes a request to store a new object. It requires the object’s type and a list of
all attributes. The response contains the ObjectValue that has been stored.
However, the response is empty if an error occurred.

• sendDeleteRequest(DeleteObjectValueRequest r): A delete request
for a stored instance is send to the persistence infrastructure by calling this method.
It requires object to be deleted and the revision number. The response returns if
deletion has been performed successfully.

7.5 Mapping CD4A Models to a Persistence Layer

The persistence layer of the data-centric infrastructure is responsible for managing the
communication with the persistence infrastructure to persistently store created objects.
In addition, it supports data migration tasks, because each change to a CD4A model will
result in a new data-centric application, as explained in the remainder of this section.

In the remainder of this section, we explain the mapping of CD4A models to a persis-
tence layer in the data-centric infrastructure.

7.5.1 Lazy Loading of Objects from the Persistence Infrastructure

When the data-centric application requests a stored CD4A class instance from the per-
sistence infrastructure, the response has to be an ObjectValue that can be converted
to a consistent CD4A class instance. Taking the understanding of data consistency as
introduced in Section 5.1, this implies that all attribute values and all mandatory as-
sociation links are set. However, in a worst case scenario, this may lead to a request,
where the response contains all stored CD4A class instances due to transitive mandatory
associations in the CD4A model.

An approach to tackle this challenge and at the same time ensure data consistency is
to use a CD4A class instance representative, which only mimics a consistent CD4A class
instance, whenever the offline mode is used for persisting objects (cf. Section 7.2.2). It
is defined as follows:

Definition 18 (CD4A Class Instance Representative). A CD4A class instance represen-
tative Y of a CD4A class instance X represents X containing only all attribute values and
mandatory association links that do not reference other CD4A class instances set. For
all other attribute values and associations links it is allowed to reference a placeholder
denoting only the existence of a CD4A class instance.

140

7.6 Method for Consistent Data Migration

From this understanding, it can be concluded that it is sufficient that ObjectValue
responses only contain the necessary values such that the client can create a CD4A class
instance representative. In addition, we define that for associations with cardinality
[1..*] or [*] it is sufficient to contain only one placeholder to ensure consistency,
because it suffices to check if an association link is contained.

Nevertheless, a CD4A class instance representative only acts as a consistent CD4A
class instance, because it does not accurately substitute its representing object due to
the placeholders. Hence, the persistence layer automatically resolves all placeholders
whenever their value is required.

A CD4A class instance representative is systematically derived for each CD4A class
only, because CD4A interfaces are not stored and CD4A enumerations do not allow for
out going associations, as described in Section 4.2.4. Technically, it is realized using
an adapted Proxy-Pattern [GHJV95], which represents an object and defines means to
load required data on demand. A proxy of an object delegates a method call to the
encapsulated object.

The Proxy-Pattern used in this thesis is an adapted realization to regard handcoded
extensions (cf. Chapter 6), as shown in Figure 7.19. In this example, the A CD4A class
(at the top) is mapped to the proxy class AProxy (at the bottom). For all attributes
and associations referencing other CD4A classes, it provides accessors and mutators as
described in Chapter 5, e.g., iteratorBs()-method. For each such method, it first
checks if the placeholder is resolved (by calling the loadIfNecessary()-method) and
afterwards delegates the call to its superclass. By calling the superclass’ method, this
pattern ensures that a potential handcoded extension is used. In this case, the pattern
has to be adapted by the code generator to extend the handcoded extension. Besides,
if an association with cardinality [*] or [1..*] is loaded, only a chunk of association
links is loaded at once. In addition, the constructor of the AProxy requires all attributes
and mandatory associations, because it has to represent a consistent object.

An essential aspect of the proposed realization is to ensure that prospective developers
are unaware of a proxy’s existence. This is achieved by an additional extension of the
builders in the application layer (cf. Section 7.2.1), which is a package visible builder
for proxies. Its only purpose is to convert server responses into either a proxy or a
real instance, e.g., the AProxyBuilder shown in Figure 7.19 (at the bottom). Each
created proxy overrides the hashCode()- and equals()-method to ensure that the
encapsulated object is used when called.

7.6 Method for Consistent Data Migration

If the CD4A input model evolves and the data-centric application has to be regenerated,
the tenant identification number changes and the previously persisted objects cannot be
reused. This design decision has been chosen, because the consistency of the previously

141

Chapter 7 A Customizable Data-Centric Infrastructure

CD4A1 class A {
2 String s;
3 }
4 association A -> B [*];

AImpl

«interface»

A

Iterator iteratorBs();

«GEN»

CD

AProxy

AProxy(String s)

Iterator iteratorBs();

void loadIfNecessary();

&

loadIfNecessary();

return super.iteratorBs()

represents

0..1

ABuilder

A build()

AProxyBuilder

A buildProxy()

AProxyBuilder of(ObjectValue o)

AProxyBuilder proxiedOf(ObjectValue o)

«creates»

build proxy

create full object
from a server object

create proxy object
from a server object

Figure 7.19: The Proxy-Pattern realization used to support handcoded extensions.

stored objects with respect to the evolved CD4A model cannot be ensured anymore.
Hence, if the stored data is required, it has to be migrated to a consistent object structure
of the evolved CD4A model (cf. RE-2-3). This process is referred to as data migration:

Definition 19 (Data Migration). Data migration is the process of transforming an object
structure (source), which conforms to one CD4A model (source model) and is also data
structure consistent, to a new object structure (target) that conforms to a different CD4A
model (target model) and is also data structure consistent.

Note that because the persistence infrastructure uses a generic meta-model, ontology
evolution, e.g., [ES07], is not applicable. Moreover, data migration is only required, if
the input CD4A model evolves. If the model does not evolve, regeneration to provide
updates or bug fixes is always possible.

An overview of the developed data migration approach is shown in Figure 7.20. It
is separated into three consecutive steps (separated by dashed lines) executed by the
client. The data migration process starts by checking the rights of the user performing
the migration task. Only users who are allowed to read all persisted instances of the
source and are allowed to create objects of the target, are allowed to perform a data
migration. If the user does not have the required privileges, the process is aborted.

142

7.6 Method for Consistent Data Migration

Note that the user performing the migration task has to be known to the server storing
the source and the server persisting the target, if different application servers are used.
The first step ends by downloading the source and locally storing it as a UML/P object
diagram (UML/P OD) model [Rum12, Sch12].

check rights throw exception

[else]

download

source object

structure

[admin

rights]

validate source

object structure

[changes

detected]
check for

handwritten

adaptations

transform object

structure

[no handwritten adaptation]

instantiate

each class

update

optional

associations

[else]
[else]

ad Data Migration AD

Fetch Transform Store

Figure 7.20: Data migration is done by downloading the all instances of the source model
(Fetch), transforming it to conform to the evolved target (Transform), and
storing it on the new server (Store).

In the second step, visitors traverse the stored UML/P OD to identify CD4A classes
conforming to the target CD4A model, i.e., CD4A classes that did not evolve. Each
CD4A class instance defined in the source but not in the target, i.e., a CD4A class
instance that has been deleted, is ignored. For each evolved CD4A class instance, a
manually-written adaptation of the visitor is required, which specifies how the CD4A
class instance has been changed. Note that this approach is similar to specifying Deltas
[Loo17] without employing a DSL but use Java source code instead. If no manually-
written adaptation is defined for the evolved CD4A element, data migration fails. Fi-
nally, if for every evolved CD4A class instance a manually-written extension is defined,
the source is transformed into the target.

143

Chapter 7 A Customizable Data-Centric Infrastructure

In the last step, the target has to be stored on the server. Therefore, two steps are
performed. First, the transformed UML/P OD is again traversed and instances of the
evolved CD4A classes are created using the generated builders of the target CD4A model
(cf. Section 7.2.1). However, only the mandatory associations and all attribute values
are set. Second, the created objects are updated by adding the optional associations.
This two-phased process is required, because bidirectional ordinary associations may
introduce a cycle that makes it unfeasible to instantiate the CD4A class.

144

Chapter 8

Synergetic Transformation- and
Template-based Code Generation

The generated data structure (cf. Chapter 5) and data-centric infrastructure (cf. Chap-
ter 7) can be customized using the Extended Generation Gap-Pattern (cf. Chapter 6)
to meet varying end user (cf. Section 3.1.3) requirements. However, the Extended Gen-
eration Gap-Pattern is not practical if the same customizations have to be applied to
multiple artifacts. Moreover, it is restricted in terms of customizability, e.g., given struc-
tures in the generated Java source code are hard to be overridden. As a result, code
generator reuse is hampered. To tackle these customization restrictions, the CD4A-to-
Java source code mapping, which is defined by a generator developer in a code generator,
has to be adaptable.

In general, extensibility and adaptability of a code generator is influenced by the
approach used for code generation (cf. [ZR11b]). For example, template-based code gen-
eration can address such concerns by aspect-orientation [KR03, OH07, ZR11a, ZR11b],
where adaptation is achieved by aspect weaving; or semantically configurable code gen-
eration [PADS12], which uses a configuration-based approach to address adaptation.
Another example is aspect-orientation for transformations-based approaches [VG07] or
design guidelines [HKGV10]. However, for data-centric applications, practice has shown
that using one of the aforementioned code generation approaches solely has disadvan-
tages in realization of code generator modularity (cf. [ZR11b]) and generating source
code for the presentation layer and the application layer (cf. [MK09]).

Hence, an integration of (synergetic) transformation- and template-based code gener-
ation for object-oriented target languages has been developed in this thesis. It facilitates
the following aspects:

(i) Support for flexible use of transformations and templates.

(ii) Independence of the input and target language to support reuse of transformations
by using an intermediate representation (IR), which is represented by a model
conforming to the CD4Code ML (cf. Section 4.3).

(iii) Favor modular design of code generators (cf. GR-1).

145

Chapter 8 Synergetic Transformation- and Template-based Code
Generation

(iv) Facilitate black-box integration of manually-written transformations and templates
(cf. GR-2-2) to enable senior application developers (cf. Section 3.1.3) to adapt and
extend the code generator without a detailed knowledge of the internals (cf. GR-2).

The goal of this chapter is to introduce the integrated transformation- and template-
based code generation approach to help generator developers (cf. Section 3.1.3) in code
generator design and development.

This chapter is structured as follows. First, the requirements for an integrated trans-
formation- and template-based code generation approach that addresses code generation
adaptation and extension to facilitate code generator reuse are presented in Section 8.1.
Afterwards, the developed integrated code generation approach is described using a sim-
plified SC to Java example in Section 8.2. Next, the transformation- and template-based
code generation approach is extended with additional hook points, which are predefined
spots in templates, and template extensions to support black-box adaptation, as de-
scribed in Section 8.3. Finally, to guide generator developers in designing maintainable
transformations and templates and effectively use the developed code generation ap-
proach, a method is presented in Section 8.4.

8.1 General Requirements

Transformation- and template-based code generation are general approaches that are em-
ployed in code generators to generate source code from input models (cf. Section 2.2.4).
In the remainder of this section, requirements for an integrated solution of both ap-
proaches are listed. They are derived from the targeted usage scenario described in Chap-
ter 3.

GR-1-1 Code generation modularity: Modularity of code generation is concerned
with providing means to realize extensible and loosely coupled modules of the
code generator [ZR11b, RR15, JHH16], each of which generates a predefined
aspect of the generated source code. Such a modular design also demands
for an integration mechanism of each of these modules into the overall code
generation process in order to generate the overall software system.

PR-2-2 Code generation adaptability: We consider adaptability of code generators
as the ability to adapt a code generator to certain end user requirements that
affect generated source code. Rather than directly manipulating a code gen-
erator, a black-box adaptation of transformations and templates is targeted,
i.e., the code generator provides predefined spots for adaptation (in this thesis
they are called hook points as explained in more detail in Section 8.3.1), and
supports extension and adaptation of templates and transformations.

146

8.2 Integration of Transformation- and Template-based Code
Generation

PR-2-3 Flexible use of transformations and templates: Especially for data-
centric applications, a code generation approach influences the code genera-
tor’s maintenance and development, because code generation of a GUIs differs
from the code generation of an application layer (cf. [MK09]). In particular,
for the GUI generation, a template-based approach is suitable because gen-
erated source code consists of non-changing source code blocks with minimal
model-dependent parts. Code generation for an application layer benefits from
a transformation-based approach, since the generated source code depends on
the input model solely. Hence, an integrated approach has to be non-restrictive
and facilitate flexible use of transformations and templates.

PR-2-4 Target language independent transformations: To support reuse of trans-
formations, the proposed approach is restricted to object-oriented target lan-
guages and uses transformations on an CD4Code-AST. It describes the object-
oriented structure of the synthesized source code (as understood in [Eli94]), but
neglects implementation details. Hence, transformations on the CD4Code-AST
can be reused for different input and object-oriented target languages.

PR-2-5 Well-formedness checking: An essential requirement when generating source
code is to provide means to partially verify the well-formedness of the gener-
ated source code. We aim for an AST-based approach to check well-formedness
of only the object-oriented structure such as classes, methods, and variables.
Implementation details are not considered to keep the CD4Code ML target
language independent (cf. PR-2-4).

PR-2-6 Target language-specific templates: Transformations independent of the
target language do not provide sufficient means to write target language-specific
source code such as method implementations. Hence, to define such implemen-
tation concerns, target language-specific templates can be provided. Such tem-
plates are bound to particular CD4Code-AST nodes and are used in concert
with transformations to synthesize source code.

PR-2-7 Target language-specific default templates: The integrated approach pro-
vides a set of default templates for a particular target language. A default
template defines the mapping of a particular CD4Code-AST node type to a
target language concept.

8.2 Integration of Transformation- and Template-based Code
Generation

The integrated transformation- and template-based code generation approach developed
in this thesis is based on a partitioning of the overall code generation (i.e., code generation

147

Chapter 8 Synergetic Transformation- and Template-based Code
Generation

used in MC as described in Section 2.2.4) into three steps employing transformations,
templates, and an IR. A similar approach is used in reverse engineering [BCDM14]. It
employs transformations and code generation for model extraction rather than providing
flexible and adaptable code generation. In addition, an approach using transformation-
and template-based code generation has been proposed by the openArchitectureWare
system [HVEK07], which is now part of the Xtext project [www15c]. It defines workflows
that contain a transformation step before generating source code via templates. However,
support for AST-node-specific templates is lacking, which restricts adaptability of the
code generator. Geiger et. al. proposed an approach that transforms an input model
to a token tree and, afterwards, to a search tree to, eventually, use template-based
code generation [GSR05]. Nevertheless, the token and search tree are target language
dependent and adaptation concerns are not explicitly addressed.

The approach used in this thesis is shown in Figure 8.1. Code generation starts after a
model has been successfully processed and the AST has been built up. The first step (1
in this figure) supports endogenous transformations on the input model-AST, i.e., the
AST of the input model, only. Templates are not required, because the input model-AST
is not used for synthesizing the target language source code.

Model

CpD

AST

CD4Code-AST
Template

Engine

Code,

Reports, etc.
Code,

Reports, etc.
Code,

Reports, etc.

Templates

Key:

uses/accesses input/output transforms

1

23

Language

Processing

Endogenous

Transformation
Endogenous

Transformation
Endogenous

Transformation

Endogenous

Transformation
Endogenous

Transformation
Exogenous

Transformation

Endogenous

Transformation
Endogenous

Transformation
Endogenous

Transformation

Code,

Reports, etc.
Code,

Reports, etc.

Embedment

Helper

Figure 8.1: An overview of the integrated transformation- and template-based code gen-
eration, which is separated into three steps.

148

8.2 Integration of Transformation- and Template-based Code
Generation

To continue to the second code generation step (transition between 1 and 2 in Fig-
ure 8.1), the input model-AST has to be transformed to the CD4Code-AST, which is an
abstraction of object-oriented concepts, as explained in more detail in Section 4.3. Note
that in MDA this transition is considered as PIM-to-PSM transition [Mel04].

In the second step (2 in Figure 8.1), endogenous transformations on the CD4Code-
AST are executed to consecutively transform it by manipulating higher-level object-
oriented concepts such as classes, methods, an attributes. To realize target language
implementation details, e.g., method implementation, templates can be attached to
CD4Code-AST nodes (cf. GR-2-3 and GR-2-6). These templates can be passed ad-
ditional embedment helpers (cf. Section 2.2.4) or other CD4Code-AST nodes. There is
no restriction when to use transformations or templates; or how to design them. Never-
theless, for effective use of this approach design guidelines are presented in Section 8.4.

Finally, in the last step (3 in Figure 8.1), the transformed CD4Code-AST, the at-
tached templates, and additional default templates for the target language are passed to
a template engine and concrete source code is generated.

Subsequently, this code generation approach is described in detail using a case example.

8.2.1 Case Example: Statecharts-to-Java Source Code

Consider the following example, which aims to synthesize Java source code from a
SC [www15b]. The input SC describes a simplified Ping-Pong game as shown in Fig-
ure 8.2. It consists of a Ping and a Pong state. Starting from the initial Ping state, the
Pong state can be accessed when the stimulus returnBall is given. From the Pong
state, the Ping state can be accessed by the same stimulus.

SC PingPongGame

Ping Pong

returnBall

returnBall

Figure 8.2: A SC for a simplified Ping-Pong game.

To synthesize executable Java source code for the Ping-Pong game, the State-Pattern
[GHJV95] is used as shown in Listing 8.1. Note that for presentational reasons the
implementation has been simplified. This pattern introduces a Ping (ll.27-31) and a
Pong (ll.33-37) class for the equally named states. In addition, the PingPong class
(ll.1-21) is added to manage the transitions.

In the remainder of this section, the different aspects of the proposed code generation
approach are explained in more detail including the IR, model-to-model, and model-to-
text transformations using this example.

149

Chapter 8 Synergetic Transformation- and Template-based Code
Generation

Java1 public class PingPong {
2 private PingPongState state;
3 private Ping initialState = new Ping();
4 private Pong pongState = new Pong();
5

6 public void returnBall() {
7 state.handleReturnBall(this);
8 }
9

10 public void setState(PingPongState state) {
11 this.state = state;
12 }
13

14 public Ping getPing() {
15 return this.initialState;
16 }
17

18 public Pong getPong() {
19 return this.pongState;
20 }
21 }
22

23 public abstract class PingPongState {
24 public abstract void handleReturnBall(PingPong p);
25 }
26

27 public class Ping extends PingPongState {
28 public void handleReturnBall(PingPong p) {
29 p.setState(p.getPong());
30 }
31 }
32

33 public class Pong extends PingPongState {
34 public void handleReturnBall(PingPong p) {
35 p.setState(p.getPing());
36 }
37 }

Listing 8.1: State-Pattern realizing the SC in Figure 8.2

8.2.2 An Object-Oriented Intermediate Representation using CD4Code

The CD4Code ML is the foundation of the presented code generation approach. Such
an abstract representation of the generated source code can be used to validate well-

150

8.2 Integration of Transformation- and Template-based Code
Generation

formedness by using context conditions for CD4Code (cf. GR-2-5). It also facilitates
input and target language independence. Likewise, it improves reuse of code generation
because endogenous transformations on the CD4Code-AST can be reused.

In general, similar approaches to use an IR for code generation have been proposed.
An XML-based IR is used in the Clearwater code generation approach [SPJ+05]. Al-
though the IR is not restricted to an input language or a target language, because it
accepts arbitrary new tags, this IR hampers well-formedness checking. In [Rei15], an IR
(“Zwischenstruktur”) is created and used for template-based code generation to separate
the input model and the target source code from the code generation process to achieve
flexibility. Nevertheless, the IR is specifically restricted to UML CD input models and
mixes AST and ST related information. Moreover, a meta-model transformation-based
approach has been proposed in [HKGV10]. It uses the target language’s meta-model as
an IR. It has, additionally, been extended in order to allow merging. Another approach
based on a Java IR with additional EJB extensions has been proposed to generate Java
EJB applications [EBBG12]. The last two approaches use target language meta-models,
which makes them target language dependent. Moreover, such a target language meta-
model approach contains every implementation detail in the AST during code generation
and is used by pure transformation-based code generation approaches (cf. [HKGV10]).

In this thesis, the goal is to synthesize object-oriented source code only. Hence, the IR
is restricted to the general elements of object-oriented programming languages (cf. Sec-
tion 8.1). This design decision is manifested in the design of the CD4Code ML, which
is described in Section 4.3.

To demonstrate the use of CD4Code as an IR, the targeted Java source code’s object-
oriented structure of the case example in Section 8.2.1 is shown in Listing 8.2. In partic-
ular, the shown CD4Code model represents the object-oriented structure of the targeted
Java implementation shown in Listing 8.1 on page 150. It starts with a model defini-
tion of the Ping-Pong game (l.1) and contains each of the Java classes to be generated
(ll.2-11, ll.13-15, and ll.17-23). Each of them has public visibility defined and contain all
variables and method declarations but omits method implementations, e.g., ll.7-10.

While the chosen case example is kept simple for presentational reasons, the mapping
of the input model-AST to the CD4Code-AST requires knowledge of the input and target
language as well as the code generator itself and, hence, has to be done by the generator
developer (cf. Section 3.1.3). The development of such exogenous transformation can
be supported by domain-specific transformation languages (e.g., [Wei12]). Another ap-
proach, which is also used in this thesis, is to provide sophisticated APIs to create and
manipulate the CD4Code-AST, as described in Section 9.2.

8.2.3 Model-to-Model Transformations

The proposed approach also relies on model-to-model transformations - endogenous and
exogenous transformations described in Section 2.2.4 - to manipulate the input model-

151

Chapter 8 Synergetic Transformation- and Template-based Code
Generation

CD4Code1 classdiagram PingPongGame {
2 public class PingPong {
3 private PingPongState state;
4 private Ping initialState = new Ping();
5 private Pong pongState = new Pong();
6

7 public void returnBall();
8 public void setState(PingPongState state);
9 public Ping getPing();

10 public Pong getPong();
11 }
12

13 public abstract class PingPongState {
14 public abstract void handleReturnBall(PingPong p);
15 }
16

17 public class Ping extends PingPongState {
18 public void handleReturnBall(PingPong p);
19 }
20

21 public class Pong extends PingPongState {
22 public void handleReturnBall(PingPong p);
23 }
24 }

Listing 8.2: An example of the IR of the example in Listing 8.1 described using the
CD4Code ML.

AST, the CD4Code-AST, and transfer the input model-AST into an CD4Code-AST.
Each type of transformation is understood as defined in Def. 8 on page 17.

Two types of endogenous transformations are used. The first type are endogenous
transformations on the input model-AST (step 1 in Figure 8.1 on page 148). Such
endogenous transformations on the input model-AST are independent of CD4Code and
the target language and are required if:

• Not every input language concept can clearly be mapped to concepts of CD4Code
but can be resolved by “desugaring” [KV10] or normalization (cf. Section 2.2.4).

• A simplification of the mapping of the input model-AST to a CD4Code-AST in
terms of amount of classes, methods, etc is wanted.

For example, if the input model is a SC, as in the example in Section 8.2, hierarchies
in the SC can be flattened.

152

8.2 Integration of Transformation- and Template-based Code
Generation

The second type of transformations are endogenous transformations on the CD4Code-
AST. They are used to modify the implementation model that is used for code generation.
For instance, a serialize()-method can be added to the CD4Code-AST nodes of
the Ping-Pong game (shown in Listing 8.2 on page 152) to realize serialization. Every
modification done by such transformation directly influences the generated source code.
Such endogenous transformations on the CD4Code-AST support modularity of the code
generator (cf. GR-1-1), because they can be arbitrarily combined and used, and favor
reuse, because they are independent of the input model and target language (cf. GR-2-4).

In addition to endogenous transformations, exogenous transformations are used to
transfer the input model-AST to the CD4Code-AST (transition between 1 and 2
in Figure 8.1). Exogenous transformation can either

(i) built up the complete CD4Code-AST from the input model-AST or

(ii) can enrich an already existing CD4Code-AST, which has previously been created
by parsing a valid CD4Code model, with input model-specific parts.

The primer approach, i.e., (i), is suitable when the CD4Code-AST can solely be build
from the input model and does not require any additional static elements, e.g., technical
classes. In contrast, using a predefined CD4Code model, i.e., (ii), is suitable when
the object-oriented structure is mainly static or contains additional elements, which are
required for the generated source code but not defined in the input model.

This integrated code generation approach can be applied to arbitrary input languages.
However, exogenous transformations from the input model to the CD4Code-AST require
a clear mapping of the input language concepts to object-oriented concepts. For gener-
ating data-centric applications from CD4A models, the exogenous transformations are
defined by the mapping in Chapter 5 and in Chapter 7. For other input languages this
mapping may not make sense, is ambiguous, or infeasible.

For example, a sequence of transformations may still produce syntactic invalid source
code, because of CD4Code-AST nodes required by one of the transformation rule (Def. 8)
cannot be found or the synthesized source code has a static dependency to some other
source code produced by another transformation, which has not been executed. An ap-
proach to address this issue is to introduce preconditions for transformations, e.g., [SBM09,
RBP+14, MSCB15]. However, such preconditions are understood as guards that have to
be true in order to execute a transformation but do not consider static source code de-
pendencies on generated source code level. An alternative approach is to introduce addi-
tional target language constructs, e.g., partial classes, and context information, to enable
modularity of transformations [HKGV10]. Or frameworks for safe composition of trans-
formations [HKA10]. Finally, large scale transformation chain management [BPdOB13]
addresses transformation variability and explicit transformation dependencies (on trans-
formation and generated artifact level). However, this approach still has limitations,
e.g., co-evolution, and is not applicable in an agile environment (cf. [BPdODF14]).

153

Chapter 8 Synergetic Transformation- and Template-based Code
Generation

In this thesis, a methodological approach is proposed to design reusable transforma-
tions and avoid such issues, as explained in more detail in Section 8.4.1.

8.2.4 Adding Implementation Details via Template Attachments

In the integrated approach, the template-based part (3 in Figure 8.1) is used to re-
alize a model-to-text transformation (model-to-code transformation in [SVC06]) by syn-
thesizing source code from the CD4Code-AST. Therefore, this transformation uses de-
fault templates, which specify the mapping for every CD4Code language concept, i.e.,
CD4Code-AST type specific templates, to one particular default target language con-
cept (cf. GR-2-7). For example, mapping methods to methods with an empty method
body. To add implementation details such as method implementations to one or mul-
tiple CD4Code-AST nodes, default templates have to be replaced. Hence, we define a
template attachment as follows:

Definition 20 (Template Attachment). A template attachment is a replacement of a
default template for a particular CD4Code-AST node by a template.

All template attachments have to be attached before entering 3 of the code gener-

ation process by endogenous transformations on the CD4Code-AST in step 2 . Each
CD4Code-AST node can be attached multiple CD4Code-AST-specific templates. By de-
fault, each template attachment is a default template for the CD4Code-AST node’s type
(from the set of default templates). If no default template is defined for this CD4Code-
AST type, no template attachment exists.

Template attachments are handled for each AST node individually and can only be
defined once for an CD4Code-AST node. Hence, endogenous transformations on the
AST node do not affect template attachment as long as the AST node is not deleted or
copied. In this case, the template attachment is deleted as well.

To demonstrate template attachments, the example in Figure 8.3 shows an excerpt of
the CD4Code-AST from Listing 8.2. Note that to create the CD4Code-AST from the
CD4Code grammar, the approach described in Section 2.2.2 has been applied. In this ex-
ample, templates are attached to implement method bodies such as the r:ASTCDMethod,
which delegates the stimulus to a particular state, or the h2:ASTCDMethod to set the
new state Pong. Default templates are neglected for presentational reasons.

In general, different approaches integrating transformation- and template-based code
generation have been proposed. In particular, an approach to integrate template-based
code generation into graphical model transformations has been proposed in [Gir08].
It enables graphical modeling of endogenous transformations and define method body
strings via templates. A similar approach to use templates for implementation concerns
has also been presented in [BV06]. In contrast, our proposed approach employs endoge-
nous and exogenous transformations. In addition, templates can also be used to define,
e.g., default variable values, or even complete classes and, hence, are not restricted to

154

8.2 Integration of Transformation- and Template-based Code
Generation

AST-OD

String name="PingPong"

pi:ASTCDClass

String name="Ping"

po:ASTCDClass

String name="Pong"

r:ASTCDMethod

String name="returnBall“

s:ASTCDMethod

String name="setState"

pp:ASTCDClass

h2:ASTCDMethod

String name="handleReturnBall"

h3:ASTCDMethod

String name="handleReturnBall"

this.state = state;

state.handleReturnBall(this); p.setState(p.getPing());

p.setState(p.getPong());

template attachment

ppg:ASTCDDefinition

String name="PingPongGame"

pps:ASTCDClass

String name="PingPongState"

h1:ASTCDMethod

String name="handleReturnBall"

Figure 8.3: An excerpt of the CodeCD-AST for the Ping-Pong game shown in Listing 8.2
with additional templates attached to implement method bodies.

method bodies only. Moreover, [GSR05] allows to attach a template to the root node
of the search tree to handle all child nodes. Conversely, our approach allows to define
template attachments for arbitrary CD4Code-AST nodes.

8.2.5 Model-To-Text Transformation

The actual model-to-text transformation to produce source code starts by passing the
transformed CD4Code-AST, the template attachments, and a set of default templates
to the template engine (3 in Figure 8.1). The responsibilities of this step are:

(i) Traversal of the CD4Code-AST.

(ii) Execution of templates in the template attachment.

(iii) Writing of output into a file.

To demonstrate the code generation, consider the example shown in Figure 8.4. We
assume that the set of default templates contains templates for CD4Code-AST nodes. In
this particular case, the Class.ftl template is defined for the ASTCDClass type, the
Method.ftl template is defined for the ASTCDMethod type, and the Attribute.ftl
template is defined for the ASTCDAttribute type. The ASTCDDefinition type does
not have any default template. Additionally, CD4Code-AST-node-specific templates are
defined for c:ASTCDAttribute (IntValue.ftl), d:ASTCDMethod (ToString.ftl),
and b:ASTCDClass (MyClass.ftl).

155

Chapter 8 Synergetic Transformation- and Template-based Code
Generation

:ASTCDDefinition
AST-OD

«replace» «replace»«replace» CpD

MyClass.ftl

Method.ftl Attribute.ftl

Class.ftlToString.ftlIntValue.ftl

template attachment

default template
defined for
AST type

b:ASTCDClassa:ASTCDClass

d:ASTCDMethodc:ASTCDAttribute

Figure 8.4: An CD4Code-AST with template attachments and a set of default templates.
The execution order of all attached templates and default templates is com-
puted during template engine execution.

When the template engine is executed for this example, it traverses the CD4Code-AST
in a depth-first way. Thereby, the following templates are executed in the order from
top to bottom:

1. For :ASTCDDefinition, no template is called, because none is defined.

2. For a:ASTCDClass, the default template Class.ftl is called.

3. For c:ASTCDAttribute, the template IntValue.ftl is called instead of the
default template Attribute.ftl.

4. For d:ASTCDMethod, the template ToString.ftl is called instead of the default
template Method.ftl

5. For b:ASTCDClass, the MyClass.ftl template is called.

In order to write source code into a file, it has to be specifically defined for which
AST type a file is created. In this example, we define that for each CD4Code class the
source code resulting from traversal of the spanned subtree is written into a file. Hence,
for the a:ASTCDClass and b:ASTCDClass instance two separate files containing the
evaluated template content’s result are created.

156

8.3 Template Adaptation via Template Hook Points and Template
Extensions

This example assumes Java as the target language. It is possible to reuse the trans-
formations to generate different target language. However, in this case the set of default
templates has to be exchanged because the default templates are responsible to map
CD4Code language elements to the target language. For example, abstract CD4Code
classes is mapped to abstract Java classes but for C++ abstract classes have to be
mapped to virtual methods. Moreover, the CD4Code-AST-node-specific templates have
to be exchanged as well, because they are target language agnostic.

8.3 Template Adaptation via Template Hook Points and
Template Extensions

Synergetic transformation- and template-based code generation aims for black-box adap-
tation of the code generation process. Hence, in the remainder of this section, template
hook points and template extensions are presented to realize adaptation of the code
generation process if the template architecture is known.

8.3.1 Adaptation via Template Hook Points

Template attachments are primarily targeted to replace default templates and provide
implementation details for individual CD4Code-AST nodes. In some cases, this is not
practical. For example, if existing default templates are reused but have to be adapted
in minor parts.

An approach to adapt parts of code generator templates in a predefined way are
template hook points. This approach is based on the idea of variation points [CN01,
PBvdL05] and hooks methods [Pre95]. Each template hook point allows to adapt a
template in a dedicated place without manually changing it (cf. GR-2-1). A template
hook point is defined as follows:

Definition 21 (Template Hook Point). A template hook point is a spot in a template
planned for customization.

Typically, template hook points are designed during code generator development and
assigned a unique name. Note that template hook points can be added afterwards if
needed, as proposed in the method in Section 3.3.2. In contrast to hot spots, template
hook points affect multiple artifacts, i.e., adapting a template hook point affects all
artifacts that are generated by this template.

Adapting a template hook point means to set one of the following values to override
the default value, which may also be empty:

(i) Fixed String: A hook point’s value is set to a plain String value.

157

Chapter 8 Synergetic Transformation- and Template-based Code
Generation

(ii) Template Name: Instead of directly defining a String, a template is specified.
This template is executed on the available AST nodes and the resulting value is
used for the template hook point.

(iii) Template Content: A template string value is a String that contains FreeMarker
expressions. It is processed by the FreeMarker template engine and the result is
set for the hook point.

(iv) Executable Code: The value of a template hook point is defined as the return
value of a Java method, which is typically a String value. The value is inserted
into the template hook point.

Each provided hook point is set by (senior) application developers for extension and
adaptation purposes. In general, the aforementioned values for adapting hook points
have distinct benefits and drawbacks. In particular, (i) and (iii) are suitable, when the
adaptation can be expressed by a simple string or a simple template expression. This
may become a drawback in the maintenance of the code generator, if the used values
are large strings or template expressions because tooling cannot be used. Furthermore,
when using (i) and (iii) for adaptation, transitive adaptation, i.e., adapt the adaptation
using hook point values, are not feasible. Hence, approach (ii) overcomes this limitation
by allowing the use of manually-written templates. However, while the template content
may be arbitrary, only the AST-nodes passed to the hook point can be used. Finally,
(iv) provides the most powerful adaptation approach, because it allows to use arbitrary
executable source code. However, it requires recompilation of the code generator such
that the source code can be executed. This is not necessary for templates, because they
are interpreted.

8.3.2 Adaptation via Template Extensions

Besides adapting templates via template hook points, code generation can directly be
customized using template extensions, if the internal template architecture is known. In
this thesis, a template extension is understood as follows:

Definition 22 (Template Extension). A template extension is an assignment of a list
of templates to a particular CD4Code-AST type.

Template extensions are evaluated for individual CD4Code-AST nodes and contain
template attachments. The following modifications for template extensions are provided:

• Replace Operation: Replace a particular template from the template extension.

• Add-Before Operation: Prepend a template to the template extension.

• Add-After Operation: Append a template at the end of the template extension.

158

8.3 Template Adaptation via Template Hook Points and Template
Extensions

Template extensions and operations on them provide a powerful approach that, how-
ever, may result in conflicting operations. In the remainder of this section, all conflicts
and their resolution are explained in detail based on the overview shown in Figure 8.5.

CpD

«template»

A

a)
«replace»

«replace»
«template»

B

«template»

A

«replace» «template»

B

CpDb)

CpDc)

«template»

A

«replace»
«template»

B

«replace»

«template»

C

«template»

A

«replace» «template»

B

CpDd)

«template»

A

«attach» «template»

B

Key:

resolved to

«template»

A

«attach»
«template»

B

«replace»

«template»

C

«template»

A

«replace» «template»

B

«replace»

«template»

C

«template»

A

«replace» «template»

B

Figure 8.5: Resolution of conflicting template extension operations is done by only exe-
cuting the first replace operation (a) and (c) in a non-transitive manner (b);
and prioritize conflicting template attachments and template extensions (d).

To avoid cyclic add or replace operations, i.e., (a) and (b) in Figure 8.5, resolving
template extensions is not performed transitively but for only one operation. All further
operations are omitted. For example, in the example (a) the first operation (execution
order is from top to bottom) is the replacement of template A with template B. Hence,
the result is only the execution of first operation only. Similar holds for example (b)
(execution order is from left to right and top to bottom), where only the replacement of
template A with template B is executed.

159

Chapter 8 Synergetic Transformation- and Template-based Code
Generation

However, because operations on template attachments are executed sequentially, run-
time errors may occur. For example, when two replace operations sequentially replace
the same template, i.e., (c) in Figure 8.5, the latter replace operation will fail, because
the template has previously been replaced. In aspect-oriented programming this is con-
sidered as the “fragile point cut” problem [SK04]. An approach to detect such errors is
to process the sequence of template attachment operations a priori and analyze them
to detect conflicts. However, this will involve processing the complete code generator’s
source code. Alternatively, another approach is to detect such conflicts at run-time of
the code generator and inform the generator developer but do not stop code generation.
In this thesis, the latter approach has been chosen to prevent template processing.

It is also possible that a template attachment conflicts with a replace operation, i.e., a
template attachment exists that is not the default template and the default template is
to be replaced by a template extension. For example, (d) in Figure 8.5. In this case, the
template attachment is executed and the replacing operation is ignored. This convention
is used to resolve similar conflicts.

Note that if a template from a template extension is replaced, all before and after
templates of the replacing template are added.

Operations on template extensions can introduce syntax errors in the generated source
code. For example, it is possible to use incomplete target language statements in tem-
plates, which combined with other templates produce syntactically correct source code.
However, if these templates are executed in the wrong order or are replaced, the resulting
source code is syntactically incorrect. Although it is possible to restrict templates to pro-
duce syntactical correct target language statements only (as shown in [ZR11a, ZR11b]),
it is not practical because it restricts the overall code generation approach, i.e., templates
can then only be replaced by syntactically correct templates and multiple attached tem-
plates are not possible. However, because the presented approach is not restrictive and
syntax errors may occur, we provide methods to avoid such pitfalls (cf. Section 8.4).

8.3.3 Technical Realization in MontiCore

The MC framework uses the TemplateController class to manage template exe-
cution, which allows to define hook points, as shown in Figure 8.6. The Template-
Controller contains a defineHookPoint(String n)-method to define a hook
point. If the hook point has already been defined and, hence, the name is not unique,
a warning is raised during code generator execution. To avoid such name conflicts, a
naming convention can be used during code generator development, e.g., by using the
template name as a prefix.

The defined hook points are managed by the GlobalExtensionManagement class.
It contains the bindHookPoint(String hookName, HookPoint hp)-method to
bind a value to an existing hook point. Moreover, the existsHookPoint(String
hookName)-method can be used to check if a hook point does already exist. Each hook

160

8.3 Template Adaptation via Template Hook Points and Template
Extensions

TemplateController

String defineHookPoint(String n)

�

de.monticore.generating.templateengine
CD

TemplateHookPoint

StringHookPoint

CodeHookPoint

1

void bindHookPoint(String hookName, HookPoint hp)

boolean existsHookPoint(String hookName)

void setBeforeTemplate(String t, HookPoint hp)

void setBeforeTemplate(String t, List<HookPoint> hps)

void setAfterTemplate(String t, HookPoint hp)

void setAfterTemplate(String t, List<HookPoint> hps)

void replaceTemplate(String t, HookPoint hp)

void replaceTemplate(String t, List<HookPoint> hps)

void replaceTemplate(String t, ASTNode a, HookPoint hps)

GlobalExtensionManagement
�

glex

String processValue()

HookPoint

TemplateString

HookPoint

Figure 8.6: The technical realization of template hook points and template extensions.

point can be assigned a template, string, code, or template string value (cf Section 8.3.1).
Each value is realized as a subclass of the HookPoint class, as shown Figure 8.6.

In addition, the GlobalExtensionManagement class offers methods for each tem-
plate extension operation, i.e, set before, set after, and replace. All methods are shown
in Figure 8.6. Technically, template extensions are also HookPoints. Hence, not only
templates can replace other template but also StringHookPoint, TemplateString-
HookPoing and CodeHookPoint values. For example, the setBeforeTemplate(
String t, HookPoint hp)-method allows to add the hook point value hp before all
others for the hook point with the name t. All hook point types can be used for template
extensions. Similar holds for template attachments, i.e., a template attachment is set us-
ing the replaceTemplate(String t, ASTNode a, HookPoint hps)-method.

For example, Listing 8.3 gives an example of using the provided API. Before templates
can be replaced or hook points can be attached, an instance of the GlobalExtension-
mangement and the TemplateController has to be created. This is done by setting
the template engine (ll.3-4 and l.9) and a FileReaderWriter to write output files
(l.6 and l.10). In addition, a path for external templates can be set (l.12), the output
directory has to be set (l.13), and tracing can be enabled (l.14). With this configuration,
an instance of the TemplateController can be retrieved.

161

Chapter 8 Synergetic Transformation- and Template-based Code
Generation

To replace the existing template EmptyMethod, the replaceTemplate method is
called (l.20) and an instance of the TemplateHookPoint, which realizes the template
name hook point (cf. Section 8.3.1), is passed (l.21). In addition, in l.23 an already
defined hook point is bound to the string "@Entity" (l.24).

Java1 GlobalExtensionManagement glex =
2 new GlobalExtensionManagement();
3 FreeMarkerTemplateEngine ftl = new FreeMarkerTemplateEngine(
4 new FreeMarkerConfigurationBuilder().build());
5

6 FileReaderWriter fh = new FileReaderWriter();
7 TemplateControllerConfiguration cfg =
8 new TemplateControllerConfigurationBuilder().glex(glex)
9 .freeMarkerTemplateEngine(ftl)

10 .fileHandler(fh)
11 .classLoader(getClass().getClassLoader())
12 .externalTemplatePaths(new File[]{})
13 .outputDirectory("out")
14 .tracing(true)
15 .build();
16

17 tc = new TemplateController(cfg, "");
18

19 // replace existing template
20 glex.replaceTemplate("EmptyMethod",
21 new TemplateHookPoint("InitMethodBody"))
22 // bind a string to an existing hook point
23 glex.bindHookPoint("Class::addAnnotation",
24 new StringHookPoint("@Entity"));

Listing 8.3: An example of using the provided API to replace templates (ll.20-21)
and bind hook points (ll.23-24).

8.4 Methods for Transformation Design and Management

For effective use of the proposed code generation approach methods and guidelines for
transformation design and management are presented in the remainder of this section.

8.4.1 Method for Transformation and Template Development

The provided flexibility to switch between transformation- and template-based code
generation in step 2 of the code generation approach (Figure 8.1 on page 148) can
produce unwanted side-effects such as unmaintainable templates or transformations and

162

8.4 Methods for Transformation Design and Management

an inflexible transformation sequence. In consequence, a method and guidelines to guide
generator developers to reduce these disadvantages are needed.

The method and guidelines used in this thesis (i) are based on the assumption that
an initial exogenous transformation transformed the input model to the CD4Code-AST,
(ii) neglect testing concerns, because it is an essential part during development and
can be done as described in [KLM+16], and (iii) require the existence of a reference
implementation (cf. [Sch12]), which is a manually-written implementation of the targeted
software system’s functionality for one particular CD4A model.

The proposed method is shown in Figure 8.7. Based on a reference implementation,
in the first step, the overall source code is partitioned into a model-dependent part,
which has to be derived from the model, and model-independent part, which remains
static even if the model changes. The model-dependent part is to be generated by one
or multiple transformation and templates.

ad Develop Transformations and Templates

G
e
n
e
ra

to
r

D
e
v
e
lo

p
e
r

AD

define scope of the

transformation

develop

transformation rules

develop new

template

partition model-

dependent and model-

independent parts

reuse existing

template

add to code

generator

create

Run-time environment

design

development

deployment

Figure 8.7: A method to develop code generator transformations and templates.

In the next step, the scope of the transformation under development is defined. It
contains the artifacts and source code that should be generated. A guideline to identify
the transformation’s scope is to choose the parts of source code that form a functional
complete working unit, i.e., source code that implements a particular functionality of the
targeted software system and can be generated standalone. Whenever this is not possible

163

Chapter 8 Synergetic Transformation- and Template-based Code
Generation

the main goals in defining the scope are high cohesion and low coupling of the generated
source code. On the transformation level the goal should be to aim for horizontal sepa-
ration of concerns, i.e., reduction of dependencies between transformations [HKGV10].
However, interconnections on the generated source code and transformation level have
to be documented to make them explicit and support reuse. It is possible that in this
step multiple transformations have been identified and need to be developed. If multiple
transformations have been identified, the subsequent steps have to be performed for each
transformation individually.

After the particular part of the source code to be generated by one transformation
has been identified, the model-independent part of this particular piece of source code is
placed in a RTE (cf. Section 7.1.3). For the model-dependent part, transformation rules
are created that map input model concepts to the CD4Code-AST. All parts of the source
code to be generated that cannot be mapped to the CD4Code-AST because the CD4Code
does not support it, e.g., method bodies, annotations, and variable assignments, have to
be handled by templates and template attachments.

Before developing a new template, the generator developer should check if there are
already existing templates to be reused. This may also imply adapting existing tem-
plates by using further customization approaches, e.g., hook points (cf. Section 9.3).
Afterwards, it is attached to an CD4Code-AST node.

Technically, there is a strong bond between a transformation and templates, because
neither of them can be used standalone. Hence, this should be visible in the code gener-
ator by, e.g., placing them in the same package or folder. Likewise, the documentation
has to contain this relation.

Finally, after the transformation and necessary templates have been created, they
have to be added to the code generator. This may imply adapting default configurations
of the code generator (as explained in Section 9.3), deploying the transformations and
templates with the code generator, and providing a documentation on its usage.

164

Chapter 9

MontiDEx: MontiCore Data Explorer Code
Generator

The CD4A-to-Java source code mapping (cf. Chapter 5) and the mapping of CD4A to a
data-centric infrastructure (cf. Chapter 7) are designed such that they can be performed
by code generators. However, for efficient and effective use of a code generator, the gen-
erator developer has to address the different needs of potential users (cf. Section 3.1.3).
In particular, (i) a code generator has to be a black-box for application developers and
has to fit the application developer’s development environment. At the same time, (ii)
a code generator has to be designed in a configurable and adaptable way such that it
can be maintained and extended by generator developers and can be adapted by senior
application developers (cf. RE-3). Therefore, the transformation- and template-based
code generation approach (cf. Chapter 8) has been proposed. In addition, for MDP
of data-centric applications, a code generator also (iii) has to be designed to generate
data-centric application prototypes from underspecified models.

In this thesis, the MontiCore Data Explorer (MontiDEx) Code Generator (cf. RE-7),
which is technically based on the MC code generation framework (cf. Section 2.2), has
been developed to realize the developed concepts and mappings for data-centric applica-
tions. It processes CD4A and ADJava models to generate data-centric applications and
data-centric application prototypes (subsequently called MontiDEx products). The Mon-
tiDEx code generator provides defaults to handle underspecification, and facilitates code
generator reuse (cf. RE-4) and configuration by configuration scripts, which supports
configuration of every step of language processing and code generation (cf. GR-1-1).

The goal of this chapter is to provide a method to implement an adaptable and con-
figurable code generator. Hence, this chapter is structured as follows. First, developed
defaults to handle underspecification in CD4A models are presented in Section 9.1. Af-
terwards, the MontiDEx code generator’s architecture is described in Section 9.2. Next,
approaches for code generator configuration and adaptation are presented in Section 9.3.
To increase understandability and maintainability of the code generator, reports are in-
troduced in Section 9.4. Finally, in Section 9.5, methods to use, customize, and extend
the MontiDEx code generator are presented.

165

Chapter 9 MontiDEx: MontiCore Data Explorer Code Generator

9.1 Technique to Handle Underspecification in MontiDEx

MontiDEx1 generates for every well-formed CD4A model executable Java source code.
Due to the nature of CD4A models, this implies dealing with underspecification, because
it contains semantic variation points by design. This underspecification is, however, re-
quired to define well-known system properties but yet omit unspecified ones. If under-
specification is prevented by a code generator, its use in early stages of MDD, where
parts of the model are not specified yet, is hampered. Even worse, MDP is infeasible,
because prototypes only describe certain aspects of the overall software system [Som10].
Interested readers are advised to refer to [Rum12] for advantages and disadvantages of
underspecification in UML CD.

The MontiDEx code generator handles underspecification by using predefined but
reasonable defaults (cf. RE-5-2). Such a default is a design decision to resolve a particular
underspecification of the input model. It is automatically taken by the code generator
at its run-time and designed by the generator developer. Technically, a default can be
realized by:

(a) Enriching the input model using endogenous transformations on it (1 in Fig-
ure 8.1 on page 148).

(b) Exogenous transformations can be used to map underspecified concepts to prede-

fined target language concepts in the IR (2 in Figure 8.1 on page 148).

(c) Endogenous transformations on the IR assign defaults.

However, the first approach, i.e., (a), distorts the input model and may cause unwanted
side-effects during code generation. The second approach, i.e., (b), cannot handle all
underspecification, because the final software system is unknown at this point in time.
Finally, the latter, i.e., (c), requires that every endogenous transformations on the IR
handles underspecification independently.

In this thesis, (a) and (c) are used in concert. In particular, we propose to use (a)
whenever underspecification can be resolved globally for the overall code generation
process, e.g., a missing cardinality, and to use (c) to handle certain underspecification
locally for individual parts of the code generation process, e.g., the number of keys in a
qualified association.

A code generator that performs such modifications based on predefined defaults to
resolve underspecification takes these always relative to the targeted domain and software
system. The decision to take a default may be rooted on, e.g., structural properties of
the input model such as class hierarchies, but also on existence of external artifacts.
Hence, such defaults and the behavior of a code generator do not always fit. Even for

1MontiDEx is available at www.monticore.de/dex.

166

www.monticore.de/dex

9.1 Technique to Handle Underspecification in MontiDEx

the same domain but with different requirements, such defaults may not be well suited.
To address this issue, code generators allow for configuration and adaptation in order to
override such defaults, which is explained in more detail in Section 9.3.

In the remainder, the MontiDEx code generator’s defaults for underspecification in
the CD4A input model are described. Further defaults and assumptions of the CD4A
ML and the mapping are mentioned in Chapter 4, Chapter 5, and Chapter 7.

9.1.1 CD4A Underspecification and Defaults

An underspecification of the CD4A ML is the absence of cardinalities for associations. If
a cardinality is omitted, the default cardinality [*] is used. However, if the association
is qualified, the cardinality is [1]. Moreover, in case the underspecified association is a
composition, the default cardinality for the right composition end (part) is [1].

Another underspecification of associations is the navigation direction −−. The default
navigation in this case is a bidirectional navigation <->, which is a similar assumption
as in [SBPM09]. However, if one of the association ends is an external type or a CD4A
enumeration, the navigation from this association end is prohibited (cf. Section 6.4.1).

An overview of all cardinality and navigation defaults is shown in Table 9.1, where A
and B are classes defined in the model and E is an external class.

Underspecified Association MontiDEx default

association A -> B [*] A -> B [*]
association A <-> B [*] A <-> B [*]
association A −− B [*] A <-> B [*]
association A [String] − > B [*] A [String] -> B [1]
association A −− E [*] A -> E [*]
composition A −− B [1] A <-> B [*]
composition A −− E [1] A -> E [*]

Table 9.1: Cardinality and navigation underspecification in the CD4A ML and the de-
fined defaults (E is an externally defined type).

Another underspecification of the CD4A ML is the qualified association key size,
which groups a set of association links. The number of links is specified by the qualified
association’s cardinality. However, there is no means to specify the number of keys
(cf. Section 5.1). Hence, the MontiDEx code generator assumes in such cases that an
arbitrary number of keys can exist.

167

Chapter 9 MontiDEx: MontiCore Data Explorer Code Generator

9.2 MontiDEx Architecture and Technical Realization

As MontiDEx is a MC generator, its internal architecture is an extended variant of the
architecture introduced in Section 2.2 as illustrated in Figure 9.1. It is extended with
a set of predefined configurations, which predefine different variants of the generated
product, as proposed in Section 7.1.3. Moreover, the code generation approach proposed
in Chapter 8 is used. A core extension are MontiDEx modules, each of which encapsulates
one transformation, a set of templates, and a set of embedment helpers. Each trans-
formation uses the input model’s AST or the output AST but only manipulates one of
them to realize endogenous and exogenous transformations. A methodological approach
to design such modules is presented in Section 8.4. In addition, the overall architecture
is designed to allow adaptations and extensions of transformations and templates.

Control Script

Model
Code,

Reports, etc.
Code,

Reports, etc.
Code,

Reports, etc.

CpD

Language

Processing

Workflow Execution &

Functional Library

Synergetic Transformation-

& Template-based Code

Generation

ExtensionExtension

Java Template

Extension
Key:

uses/accesses

input/output

«HC»

CpD

MontiDEx

Module
MontiDEx

Module
MontiDEx

Module

encapsulates a
transformation,
templates, and
embedment
helpers

Figure 9.1: An overview of the MontiDEx code generator architecture.

In the remainder of this section, we present the infrastructure provided by the Mon-
tiDEx code generator to support generator developers in creating MontiDEx modules.
Afterwards, we present methods and concepts to realize adaptation of a code generator
in Section 9.3.

9.2.1 Technical Realization of the Common Infrastructure

Technically, the MontiDEx code generator is structured into six packages: common,
configure, reporting, cd2data, cd2swing, and cd2persistence. Each

168

9.2 MontiDEx Architecture and Technical Realization

package serves a designated purpose, e.g., the cd2data, the cd2swing, and the cd2-
persistence realize the mapping described in Chapter 5, and Chapter 7.

The common package contains shared embedment helpers to support creation of Mon-
tiDEx modules. It has a builder subpackage that contains extended MC builders to
ease the creation of CD4Code-AST nodes by predefining default values, e.g., default
visibility. Figure 9.2 illustrates the package’s content and structure. Note that for pre-
sentational reasons we omit an explicit description of each builder, because its name
indicates the AST node it creates. Furthermore, the ConcreteModifierDelegate
and the ModifierModifiable handle modifiers and are omitted as well.

common

CDAttribute

Builder

CDClass

Builder

CDMethod

Builder

CDReference

Builder

TypeHelper
CDAssociation

Utils

CDSymbol

TableHelper

Transformation

Utils
External

TypeHelper

«interface»

ModiferModifiable

Constants

Helper

CD

CDInterface

Builder

CDConstructor

Builder

builder

ConcreteModifier

Delegate

Figure 9.2: An overview of the common package, which groups common templates, em-
bedment helpers, and CD4Code-AST node builders.

In the following, each remaining class in this package is explained in detail from a
technical perspective.

AbstractTypeHelper and TypeHelper Embedment Helper

The AbstractTypeHelper and TypeHelper are embedement helpers that are used
to check for a particular type of an CD4Code-AST node, e.g., for checking whether an
attribute is of type String. It supports primitive, wrapper, collection, and external
types. Additionally, methods are provided to convert primitive data types into wrapper
types and methods to get a default value for a particular type, as shown in Figure 9.3.

In the remainder, the most relevant methods are explained in more detail.

• getDefaultValue(ASTType s): For each CD4Code-AST primitive type (int,
boolean, short, byte, float, long, double, and char), a default value is

169

Chapter 9 MontiDEx: MontiCore Data Explorer Code Generator

TypeHelper

AbstractTypeHelper

boolean isBoolean(ASTType s)

boolean isInt(ASTType s)

boolean isShort(ASTType s)

boolean isLong(ASTType s)

boolean isDouble(ASTType s)

boolean isFloat(ASTType s)

boolean isByte(ASTType s)

boolean isChar(ASTType s)

boolean isString(ASTType s)

boolean isWrapper(ASTType s)

boolean isPrimitiv(ASTType s)

boolean isList(ASTType s)

boolean isSet(ASTType s)

String getDefaultValue(ASTType s)

String getWrapperType(ASTType s)

boolean isExternalJavaType(ASTType s)

boolean isDate(ASTType s)

CDcommon

'

Figure 9.3: Methods provided by the AbstractTypeHelper and the TypeHelper
embedment helper.

returned. For wrapper types and String, an empty default value is assumed.
External types are not supported. Hence, the default value in this case is null.

• getWrapperType(ASTType s): A primitive wrapper type of a primitive data
type is a class encapsulating the primitive data type (cf. Chapter 4). This method
provides a primitive wrapper type for a given primitive type. If no wrapper can
be found String is used.

• isExternalType(ASTType s): An external type is a type not defined in the
CD4A input model (cf. Section 6.4.1). This method checks if the given type is an
external data type.

CDAssociationUtil Embedment Helper

This embedment helper groups methods for accessing properties of CD4Code associa-
tions, e.g., checking if the association is qualified in both directions. Its content is shown
in Figure 9.4, where the methods shown require a ASTCDAssociation, which is the
AST node that represents an association.

170

9.2 MontiDEx Architecture and Technical Realization

CDAssociationUtil

boolean isReflexive (ASTCDAssociation a)

boolean isOrdered(ASTCDAssociation a)

String getAssociationName(ASTCDAssociation a)

Optional<ASTCDQualifier> getOppositeQualifier(ASTCDAssociation a)

Optional<String> getQualifierType(ASTCDAssociation a)

Optional<String> getQualifierName(ASTCDAssociation a)

Optional<ASTCDAttribute> getQualifierReferenceAttribute (ASTCDAssociation a)

$
CDcommon

Figure 9.4: The methods provided by the CDAssociationUtil embedment helper to
check for certain properties of associations.

• isReflexive(ASTCDAssociation s): A reflexive association is an associa-
tion that is bidirectional with the source and the target being the same. This
methods checks if a given association fulfills this property.

• isOrdered(ASTCDAssociation s): This method checks if the association
is ordered in the given direction, i.e., the target of the association s has the
«ordered»-stereotype.

• getAssociationName(ASTCDAssociation s): The association name is de-
rived from the associations properties as described in Section 4.2.4. The associ-
ation’s name is always lower case and if the association has cardinality [*] or
[1..*], the letter s is appended to the association’s name.

• getOppositeQualifier(ASTCDAssociation s): This methods checks whether
the opposite of the given association is qualified. Technically, an association is
considered to be qualified in one direction if s has a qualifier on the source of the
association.

• getQualifierType(ASTCDAssociation s): Returns the qualifier’s type as
a String. If the given association is not qualified, Optional.empty() is re-
turned to denote a missing qualifier.

• getQualifierName(ASTCDAssociation s): Returns the qualifier’s name as
a String only if the association is qualified. Otherwise Optional.empty() is
returned showing a missing qualifier name.

• getQualifierReferenceAttribute(ASTCDAssociation s): If a quali-
fied association uses an attribute of the target as a qualifier, this method returns
the referenced attribute. If no attribute is found or the qualified association uses
a type qualifier, Optional.empty() is returned.

171

Chapter 9 MontiDEx: MontiCore Data Explorer Code Generator

TransformationUtil Embedment Helper

The transformations used in the proposed approach are implemented using Java. Hence,
support for handcoded extensions, design of run-time exceptions, or support for manually-
written templates has to be provided. For such concerns, MontiDEx provides the
TransformationUtil embedment helper, which is shown in Figure 9.5.

TransformationUtil

boolean existsHandwrittenFile(String f, String p, IterablePath pa, String ext)

boolean existsValidSIGExtension(String f, String p, IterablePath pa)

boolean existsValidEIMPExtension(String f, String p, IterablePath pa)

boolean existsHandwrittenTemplate(String f, IterablePath p)

String getPackageName(ASTCDCompilationUnit u)

String getErrorCode()

CDcommon

Figure 9.5: The methods provided by the TransformationUtil embedment helper
to support handcoded extensions and creation of run-time exceptions.

• existsHandwrittenFile(String f, String p, IterablePath pa,
String ext): This method checks for a particular file during code generations.
It is the essential method for realizing the handcoded extensions approach used
by the MontiDEx code generator (cf. Chapter 6). Given a file name f, a package
name p, a path pa, and a file extension ext, the method searches recursively in a
path pa for a manually-written file named f having the extension ext.

• existsValidEIMPExtension(String f, String p, IterablePath
pa): This method is used to detect if a manually-written implementation extension
for a particular class with the naming schema ”<Name>EIMP.java” exist, where
<Name> is an arbitrary name, exists. Given a file name f, a package name p, and
a path pa.

• existsValidSIGExtension(String f, String p, IterablePath
pa): Similar to the previous method, this method is used to detect if an interface
extension exists. Given a file name f, a package name p, and a path pa. The
naming schema of interface extensions is ”<Name>SIG.java”, where <Name> is
an arbitrary name.

• existsHandwrittenTemplate(String f, IterablePath pa): The Mon-
tiDEx code generator supports manually-written templates to customize the gen-
erated source code. This requires the generator developer to define such possi-
ble extensions by using this method to detect manually-written templates. This
method checks for a particular template with the name f in the path pa.

172

9.3 Methods for Code Generator Configuration

• getPackageName(ASTCDCompilationUnit u): This method returns the pack-
age name for a given CD4Code-AST.

• getErrorCode(): The generated sources contain explicit spots in the source
code, where exceptions have to be thrown, e.g., for derived attributes a Not-
ImplementedException is thrown. Each thrown exception contains a unique
error code, which is randomly generated each time the overall source code is pro-
duced. This helps tracing run-time exceptions. Hence, this method returns an
unique error code as a String value.

ConstantsHelper Embedment Helper

Additional methods that may be required during code generation are the user’s name,
the generation time, and the generation prefix. These values are considered as constant
during code generation and are provided by this embedment helper.

• getUserName(): Returns the name of the user generating the software system.
Typically, this is the application developer or senior application developer (cf. Sec-
tion 3.3).

• getGenerationTime(): The generation time is the time when the overall soft-
ware system is generated. It is retrieved when an instance of the Constants
Helper class is created. Hence, it is constant during the overall code generation
process.

• getGenPrefix(): The generation prefix is the prefix used for methods that
are additionally generated and required by the mapping in Chapter 5 to ensure
association consistency but should not be used by the developers. The default
prefix is ”raw”.

9.3 Methods for Code Generator Configuration

Even if a code generator is seen as a black-box by application developers, the predefined
defaults and the code generator’s behavior are not always suited. One simple example
is changing the output folder, where the generated artifacts are placed. Another ex-
ample is to generate only parts of the software system rather than the whole software
system. Adaptation concerns of the generated artifacts also become necessary, whenever
the intended changes to the generated source code affect multiple generated artifacts,
e.g., implementing a certain interface “to streamline the generated code for specific tar-
get environments” [Sel03]. In this case, the proposed handcoded integration approach
(cf. Chapter 6) is not practical.

173

Chapter 9 MontiDEx: MontiCore Data Explorer Code Generator

In this thesis, configurability of a code generator is regarded as the choice a (senior)
application developer has to influence the code generator’s behavior. Such configuration
options are predefined and designed by a generator developer and offer a limited degree
of flexibility, because they are typically either “switches” that can be turned on or key-
value pairs that can be set. Hence, the MC framework offers a script-based approach
to configure the code generator in a more detailed way (cf. Section 2.2). In particu-
lar, it uses a Groovy Script to define language processing, context condition checking,
and code generation. When combining this script-based approach with the synergetic
transformation- and template-based code generation (cf. Chapter 8), a code generator
allows application developers to arbitrarily select transformations that are executed by
the code generator to define the functionality of the generated software system. For
example, the MontiDEx architecture consists of MontiDEx modules (cf. Section 9.2),
that can be selected in a Groovy script to generate, e.g., only the application layer.

Configuration of a code generator allows for high-level decisions but is not sufficient
to change a code generator’s internals. Hence, adaptability addresses the adaptation of
code generation internals without changing the code generator’s source code. Note that
code generator extensions, i.e., manually-written transformations and templates that are
added to the code generator without adapting existing ones, can be executed directly or
even implemented in the configuration script.

9.3.1 Technical Realization of MontiDEx Configurations

The technical realization of MontiDEx configurations are located in the configuration
package (cf. Section 9.2). It consists of Java classes with predefined configuration options
and methods that can be used in a Groovy script. By default, a script to generate all
layers of a data-centric application and the following predefined scripts are provided: de-
veloper mode with additional reporting (dev); Plain-Old-Java-Objects (POJOs) (pojo);
and generate implementation concerns from ADJava models (ad), which are further ex-
plained in Chapter 10. An overview of the package is shown in Figure 9.6.

The DexConfiguration class provides all configuration options of the code gen-
erator that are used by the code generator at generation time. An instance of this
class is created before the code generator is executed based on the parameters passed to
the code generator. The following configuration options are supported. Note that for
presentational reasons only the accessors are explained.

• getModel(): Returns a reference to the input model passed to the code generator.

• getModelPath(): Returns a list of paths, where models are located.

• getOut(): Returns the output directory.

• getHandcodedPath(): Returns the list of paths that may contain manually-
written extensions for the code generator.

174

9.3 Methods for Code Generator Configuration

DexConfiguration

File getModel()

File getOut ()

IterablePath getHandcodedPath()

IterablePath getTemplatePath()

List<File> getModelPath()

DexDevScript DexPoJoScript DexADScript

DexScript

Optional<ASTCDCompilationUnit> parseCD4A(File m)

void checkCD4ACoCos(ASTCDCompilationUnit c)

void generateFiles(ASTCDCompilationUnit c,

GlobalExtensionManagement g, List<String> m,

File o, IterablePath tp, IterablePath tep)

void setupReporting(File o)

void flushReporting(ASTCDCompilationUnit c)

void reportingOff()

void reportingOn(ASTCDCompilationUnit c)

CDSymbolTable createSymTab(ASTCDCompilationUnit c,

List<File> modelPaths)

configure CD

dev pojo ad

0

1

0

Figure 9.6: The Java classes provided by the configure package and its subpackages.

• getTemplatePath(): Retrieve the list of paths that may contain manually-
written template extensions for the code generator.

The DexScript class is used by each Groovy script to access predefined functionality
to perform language processing, check context conditions, and generate source code. In
addition, it is also used to define default behavior of the code generator. Each default is
specified in a subclass executing predefined Groovy scripts. For example, the developer
configuration script is located in the dev package (cf. Figure 9.6) and contains the
predefined DexDevScript subclass that provides additional functionality and default
values. Another example is the DexPoJoScript default behavior specified for Java
POJOs. Subsequently, all methods provided by the DexScript class are explained.

• parseCD4A(File m): Parse the CD4A model in artifact m and return the root
AST node. If the model cannot be processed, Optional.empty() is returned.

• checkCD4ACoCos(ASTCDCompilationUnit c): This method is used to check
context conditions. By default, it checks all registered context conditions but allows
to add manually-written context conditions that are checked as well.

• generateFiles(ASTCDCompilationUnit c, GlobalExtensionManag-
ement g, List<String> m, File o, IterablePath tp, Iterable-
Path tep): This method executes the code generation for a particular CD4Code-
AST c. It requires a path to the model m, which may contain multiple CD4A

175

Chapter 9 MontiDEx: MontiCore Data Explorer Code Generator

models; an instance of the GlobalExtensionManagement, which is responsible
to handle global values and adaptations of the code generator process at run-tume
as explained in Section 9.3; an output directory o; a path containing manually-
written extensions tp; and a path that contains manually-written templates tep.

• setupReporting(File o): The MontiDEx code generator provides a set of re-
porting options, as described in Section 9.4. This method allows to setup reporting
by specifying the output directory o to which all files are written.

• flushReporting(ASTCDCompilationUnit c): Reporting can be flushed if
it is not used anymore. This means that all reporting for a particular parsed model
c is removed.

• reportingOff(): Disable reporting temporarily.

• reportingOn(ASTCDCompilationUnit c): Enable reporting if it has been
setup correctly by calling the setupReporting()-method.

• createSymTab(ASTCDCompilationUnit compUnit, List<File> model-
Paths): Create a symbol table for a parsed CD4A model. Model paths have to
be added if the parsed CD4A model references other CD4A models.

An example of a Groovy script using the predefined configuration options and func-
tionality is shown in Listing 9.1. Typically, a configuration script starts by parsing an
input model and checking context conditions, as shown in ll.2-9. Afterwards, transfor-
mations defined in MontiDEx modules are executed to manipulate the CD4Code-AST
(ll.12-13) and, finally, the files are generated (l.16).

Groovy1 // parse input model
2 cdAst = parseCD4A(model)
3 if (!cdAst.isPresent()) {
4 error("Failed to parse " + model)
5 return
6 }
7

8 // check context conditions
9 checkCD4ACoCos(cdAst.get());

10

11 // execute a transformation
12 ApplicationCore a = new ApplicationCore();
13 a.transform(cdAst.get())
14

15 // generate files
16 generateFiles(cdAst.get(), modelPath, out)

Listing 9.1: A configuration script to parse a model (ll.2-6), check context conditions
(l.9), execute a transformation (ll.12-13), and generate files (l.16).

176

9.4 MontiDEx Reporting Facility

By default a set of global variables are predefined to access the arguments passed to
the code generator. An overview of all predefined variables is given in Table 9.2.

Predefined Variable Name Description

model The reference to the input model.

modelpath A list of paths where models are located.

out The path to the output directory, where the gen-
erated files should be placed.

handcodedPath A list of paths, where manually-written source
code is located.

templatePath A list of paths, where manually-written tem-
plates are located.

Table 9.2: An overview of the set of variables that are predefined to be used in a Mon-
tiDEx configuration script.

In general, an advantage of using a scripting language to configure the code generator is
that the execution flow of the code generator can be defined and errors can be customized.
For instance, as shown in ll.3-6 in Listing 9.1 the script allows to handle errors that may
occur during parsing.

9.4 MontiDEx Reporting Facility

In general, “model-error reporting and debugging facilities must accompany practical
automatic code generators” [Sel03]. Such debugging facilities help in detecting modeling
errors and code generator errors. In MontiDEx debugging is supported by reports,
each of which presents structured and aggregated information about the code generation
process. Such traces and debugging information has already proven to be beneficial for
code generators [Jör13].

In the remainder of this section, all reports supported by MontiDEx are introduces
and explained in detail.

9.4.1 Textual Reports

We distinguish between log reports, which are reports comparable to log files containing
information about a certain part of the code generation process, and aggregation re-
ports, which aggregate information regarding the code generation process. Each report
provided by MontiDEx is located in the reports folder and explained in Table 9.3.

177

Chapter 9 MontiDEx: MontiCore Data Explorer Code Generator

Report Description

01 Summary.txt The overall summary presents an aggregated report
on the entire code generation process. It contains
the number of errors, warnings, generated files, in-
stantiations of embedment helpers, and templates
includings.

02 GeneratedFiles.txt This aggregated report lists all generated source
code files. It, additionally, links the template used
for generating a particular source code artifact and
the corresponding CD4Code-AST node.

03 HandwrittenCodeFiles.txt Because the code generator supports handcoded ex-
tensions, this report summarizes all found manually-
written source code files. If the code generator de-
tects a manually-written extension but cannot use
it for the generated source code (because it is not
a subclass of a generated file or a super interface),
then these files are listed as well.

04 Templates.txt During the code generation process, not all tem-
plates of the code generator are used, because the
model may not contain certain concepts. This log
report lists all templates used for code generation
for a particular input model and how often they
have been called. Nevertheless, this report lists all
unused templates as well. Furthermore, it lists all
manually-written templates located in the template
path (cf. Section 9.3.1).

05 HookPoint.txt This log report lists all hook points and the opera-
tions that have been executed, i.e., the hook point
was replaced, added before, added after, or simply
called with out any effect. Moreover, the type of the
value of each hook point is reported.

06 Instantiations.txt This log report contains all embedment helpers that
have been instantiated during the code generation
process as well as the number of instantiations.

178

9.4 MontiDEx Reporting Facility

07 Variables.txt During the code generation process, global variables
can be used to exchange information between tem-
plates (cf. Section 2.2.4). These variables are listed
in this log report. In addition, it contains the num-
ber of times the value of the global variable has been
changed.

08 TemplateTree.txt This report shows the executed templates in a tree-
like structure. Additionally, it contains all variable
assignments, embedment helper instantiations and
hook point executions.

09 NodeTree.txt The node tree log report represent the CD4Code-
AST used for code generation. It contains informa-
tion about how often a particular CD4Code-AST
node has been used by templates for generating
source code.

10 TypesOfNodes.txt A summary of the CD4Code-AST used for code gen-
eration focusing on CD4Code-AST node types is
listed in this log report. It contains the number of
AST objects of a certain AST type and how often
a particular CD4Code-AST type has been used by
templates for code generation.

11 SymbolTable.txt Besides the CD4Code-AST, the symbol table is used
during code generation to store and retrieve informa-
tion. This report lists the content of the symbol ta-
ble after the CD4Code-AST has been used for code
generation.

12 Transformations.txt This report visualizes the effects - modifications of
the CD4Code-AST and attachments of templates -
as a list in textual form.

13 Detailed.txt This report is a summary of the overall code genera-
tion process comprising all other reports. It provides
a detailed log of all occurred events.

Table 9.3: A list of all log and aggregation reports provided by MontiDEx.

9.4.2 Graphical Report

Besides textual reports, graphical reports of the code generation process are generated
showing interconnections between templates and embedment helpers. Templates and

179

Chapter 9 MontiDEx: MontiCore Data Explorer Code Generator

embedment helpers are grouped w.r.t to their package structure and the number of
embedment helper instantiations and template calls is shown.

An example is depicted in Figure 9.7. It shows templates (indicated by purple or
green circles), the template’s name, and number of template calls. For instance, the
Class.ftl template is called 51 times. The result of the templates marked green is
written into a file (Class.ftl and Interface.ftl), whereas the results of the purple-
colored templates (Constructor.ftl, Attribute.ftl, Generics.ftl, Method.
ftl, and InterfaceMethod.ftl) are returned to the calling template. An arrow
between two templates denotes a direct template call and the number next to an arrow
denotes the number of calls, e.g., the template Constructor.ftl has been called 51
times by the Class.ftl template. Depending on the number of calls, the thickness of
the arrow changes. The more often a template is called, the thicker an arrow is displayed.

cd2data.core

Constructor.ftl (51) Attribute.ftl (116) Generics.ftl (54) Method.ftl (412) InterfaceMethod.ftl (24)

TransformationUtils.java (21)

(51) (116) (54) (412)

Class.ftl (54)

(24)

Interface.ftl (6)

(24)

template called
51 times

template result
is written into a file

embedment helper
instantiated 21 times

template call
executed 24 times

package name

Figure 9.7: A graphical representation of templates and embedment helper interrelation
showing the amount of times each of which is called.

Embedment helpers are depicted using a purple diamond symbol, e.g., Transform-
ationUtils.java in Figure 9.7. The number next to the embedment helper’s name in-
dicates the total number of embedment helper instantiations. An arrow from a template
to an embedment helper shows the number of calls. For instance, the Transformation
Utils.java embedment helper has been instantiated 21 times and called 24 times.

A dashed bounding box around templates and embedment helpers denotes that they
are grouped into one MontiDEx module, which is represented by a Java package. The
name of the package is shown in the top right corner of the bounding box.

9.5 Method for Adapting and Deploying MontiDEx

To reduce the conceptual break introduced by an MDD approach, the tools have to
be seamlessly integrated into existing software development environments (cf. [Sel03]).

180

9.5 Method for Adapting and Deploying MontiDEx

Therefore, a usage methodology of the MontiDEx code generator has been proposed
in Section 3.3. However, it still leaves open the question, when to use what approach
to adapt the code generator. Hence, in the remainder of this section, we address this
question. Moreover, we elaborate on how to deploy the different generated products.

9.5.1 Method for Adapting the MontiDEx Code Generator

The MontiDEx code generator provides a variety of customization and extension mech-
anisms as introduced in Section 8.2.4 and in Section 9.3, each of which is particularly
designed for one type of customization or adaptation. To guide generator developers and
senior application developers in choosing the right mechanism, a method is provided.
Note that the method presented is designed for extensions of existing functionality of
the code generator. In particular, if, e.g., additional classes, variables, or interfaces have
to be created in the generated source code or well-formedness checks are required by
the code generator and the added functionality can be generalized in terms of object-
oriented concepts, then transformations have to be created as described in Section 8.4.1.
Moreover, manually-written extensions of the generated source code are not considered,
because a method of their use is explained in Section 6.4.

The proposed methodology is shown in Figure 9.8. The first step is to identify if the
extension affects only one product artifact or multiple. If the adaptation is local, i.e.,
affects only one file, then template attachments can be used to adapt CD4Code-AST-
specific templates. If customizations are global, i.e., affect multiple artifacts, then, at
first, the set of hook points has to be checked. If no hook point exist, then template
extensions are used to either add other templates or replace a template.

ad Customizing MontiDEx

G
e
n
e
ra

to
r

D
e
v
e
lo

p
e
r,

S
e
n
io

r
A

p
p
lic

a
ti
o
n

D
e
v
e
lo

p
e
r

[affects one artifact]

use template

extension

fill hook point

[no hook point]

AD

[else]

use template

attachment

[else]

Figure 9.8: A method for the adaptation approaches of the MontiDEx code generator.

9.5.2 MontiDEx Project Types and Deployment

Due to the configuration and adaptation mechanisms provided, MontiDEx allows to
synthesize a variety of products. Such MontiDEx products can be deployed as different

181

Chapter 9 MontiDEx: MontiCore Data Explorer Code Generator

projects according to their intended use and users. We distinguish between the following
different projects:

Developer Project: This version of the project contains the CD4A model, the generated
Java source code, and the handcoded extensions as well as the source code for the
persistence infrastructure. It is primarily intended for application developers, who
plan to continue development of the MontiDEx product. Note that the source code
of the MontiDEx code generator is not part of the MontiDEx product.

Client Model Development Project: This version contains only the CD4A model, the
generated Java source code and the handcoded extensions. The persistence infras-
tructure is not necessary, as only the application is further developed.

Client Java Development Project: This version consists of the generated Java source
code only but is not included the CD4A model. The goal of this project is to
continue development of the application without adapting the CD4A model.

Client Project: This version consists of only the executable MontiDEx product that is
started. It is primarily intended for end users.

Regardless of the project, a technical infrastructure is required in order to execute the
data-centric application or continue development. In particular, each MontiDEx product
requires Java version 1.8 and a persistence infrastructure supporting the functionality
described in Section 7.5.

After setting up a technical infrastructure, the MontiDEx product is deployed using
the following steps:

1. Infrastructure Setup.
Set up the application server in the targeted usage environment of the end user
or application developer. In addition, set up a the database server. Technically,
it can be either the same server or a different one. If an existing infrastructure is
reused, this step can be skipped.

2. Product Generation and Packaging.
Build the chosen version of the MontiDEx product. Before packaging the product,
the generated source code has to be manually adapted to fit into the created in-
frastructure, i.e., the corresponding IP addresses have to be set. Afterwards, the
source code is packaged into an executable Java Archive (JAR) file and deployed
to the application server. Packaging is done via the Maven [www16c] build au-
tomation tool. Deployment on the application server is necessary whenever the
source code of the generated product changes.

If a version of the MontiDEx product has previously been deployed, data migration
can be used to migrate already used databases Section 7.6.

182

Chapter 10

Case Example: Extended Infrastructure for
Process Automation

The data-centric infrastructure, which is described in Chapter 7, supports management
of data structures. Application-specific behavior enabling process automation [AHW03],
which is regarded as automated execution of CRUD operations on a data structure in
this thesis, has to be added via manually-written customizations of the generated source
code (cf. Chapter 6) or adaptations of the code generator (cf. Section 9.3).

In this thesis, an extended data-centric infrastructure for process modeling and exe-
cution aims to reduce manual implementation effort that is required to realize process
automation. It enables adaptation of processes after deployment of a data-centric ap-
plication, where a code generator is not available. This is achieved by explicit processes
modeling using the ADJava ML. This ML has been developed in this thesis and is
based on UML ADs with a simplified control flow notation and auto-connect capabilities
(cf. MR-2). Each ADJava model is executed by an interpreter, which is part of the
extended data-centric infrastructure, to facilitate rapid adaptation of processes for data-
centric applications by a modeler, who is unaware of implementation concerns (action
implementations, guards and conditions). Implementation concerns are added by an ap-
plication developer via manually-written Java source code extensions of the interpreter.
Alternatively, ADJava models can be enriched with Java source code to realize imple-
mentation concerns. If Java source code is used in an ADJava model, code generation
is used to generate Java source code that is executed by the interpreter at run-time.

The goal of this chapter is to present a method to implement an extended infrastructure
for process modeling and execution to evaluate the proposed customization and adap-
tation mechanisms of MontiDEx. The extended infrastructure extends the data-centric
infrastructure. Hence, this chapter is structured as follows. First, general considerations
and requirements for the extended infrastructure are presented in Section 10.1. After-
wards, the ADJava ML is introduced in Section 10.2. Next, the integrated approach
to execute ADJava models is presented in Section 10.3, which is based on previous
work [LN16]. Afterwards, a method for development of processes with ADJava models
is provided in Section 10.4. Finally, the customization and adaptation mechanisms used
for the realization are evaluated and limitations are discussed in Section 10.5.

183

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

10.1 General Considerations and Requirements

Besides the general requirements presented in Section 3.2, the following particular re-
quirements and considerations for an extended data-centric infrastructure for process
automation can be identified. They are derived from the described methods for MDP
and MDD of data-centric applications (cf. Section 3.3).

MR-2-1 Control and object flow chaining: To simplify the notation of control and
object flows, ADJava supports sequences of control and object flows.

MR-2-2 Pin and type auto-connect: Each input and output pin has to be connected
manually to denote object flows. To simplify this notation pin- and type-based
auto-connect capabilities are provided for input and output pins.

MR-2-3 Explicit roles modeling: To structure the overall process into partitions of
actions that have to be executed by certain end users, ADJava supports role
partitions.

GR-4-1 Stepwise execution: To facilitate the envisioned MDP of data-centric appli-
cations (cf. Section 3.3.1), execution of an ADJava model can be interrupted
at any point in time.

GR-4-2 Interpretation of ADJava models: To support rapid prototyping by mod-
elers, ADJava models are interpreted to facilitate rapid changes performed by
modelers.

GR-4-3 Integration of handwritten implementations: Implementation concerns
are added by the application developer via Java source code that extends the
interpreter and is executed at interpreter run-time. This approach for handling
implementation concerns is provided to support deployment of MontiDEx prod-
ucts without the MontiDEx code generator (cf. Section 9.5.2).

GR-4-4 Code generation from ADJava models: Implementations of actions, guards,
and conditions are also supported on the model-level via language composition
[Sar06, Rei15]. Therefore, the ADJava ML is a the composition of a base AD
ML, which is introduced in the remainder of this chapter, and the JavaDSL,
which is a DSL for the Java language. To execute Java source code embedded
in ADJava models, an extension for the MontiDEx code generator is provided.
This code generator extension transforms the JavaDSL part of a ADJava model
into executable Java source code, which is executed at interpreter run-time.
This approach aims to reduce the implementation effort required by applica-
tion developers to extend the interpreter to implement actions, guards, and
conditions (cf. GR-4-3).

184

10.2 ADJava: Activity Diagram Modeling Language

GR-5-1 GUI for managing ADJava model execution: The execution of ADJava
models is controlled via a GUI. It is an extension of the GUI provided by the
data-centric infrastructure (cf. Section 7.3).

GR-5-2 Execution state (de)serialization: When the execution of an ADJava model
is interrupted, the current execution state can be serialized. Likewise, serialized
states can be deserialized to continue execution.

10.2 ADJava: Activity Diagram Modeling Language

Before presenting the ADJava ML, we briefly introduce the main concepts of UML AD
because ADJava is based on UML AD. Interested readers are advised to refer to [Boc03a,
Boc03b, Boc03c, Boc04a, Boc04b, Boc05] for a detailed introduction.

The example in Figure 10.1 shows a transaction submission process. Each Customer
creates a transaction. This transaction is validated in the validate credit action
to ensure that the customer is able to pay for the transaction. If the customer is unable
to pay, he is notified and the process ends. Otherwise, if the customer is able to pay, the
Accountant validates (validate transaction action) if the receiver of the trans-
action is valid. If the receiver is valid, the transaction is executed and a fraud check
action is started. Alternatively, if the receiver is not valid, the customer is notified to
enter a correct receiver. After the transaction has been executed and the fraud check
has been performed, it is checked whether the transaction has been successfully executed
and the fraud check has not been positive. If the result is valid, then the transaction is
finalized and the process is terminated. Otherwise, if the result of processing a trans-
action or fraud checking returns an error or violation, the customer is notified and the
transaction is not finalized and the customer is notified.

ad Submit Transaction

C
u
s
to

m
e
r

A
c
c
o
u
n
ta

n
t merge node

action

pin

control flow

decision node

final node

fork
join

role

create

transaction

initial node

Customer

object node AD TranSub

validate

credit

validate

transaction
fraud

check

process

transaction finalize

transaction

notify

customer

object flow

[isValid]

[isValid]

[else]

[else]

[isValid]

[else]

Figure 10.1: A UML AD defining the actions for submitting a transaction.

185

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

Figure 10.1 also shows the main elements of a UML AD model. Each activity starts
in the initial node (black dot) and ends in a final node (circled black dot). In between,
actions are executed, e.g., “notify customer”, that are connected by a control flow or
an object flow. Besides actions, decision nodes can be used to indicate conditions and
merged by using merge nodes. For parallel execution of actions, fork nodes can be used,
which have to be joined by join nodes. Moreover, object nodes are abstract typed actions
denoting an object flow. Inputs and outputs of actions they are called pins.

Technically, the ADJava ML is realized with the MC framework (cf. Section 2.2). The
full description of the language including the grammar and context conditions is shown
in Section C.2 and Section E.3. As shown in Figure 10.2, the base activity language (AD),
which realizes the main concepts described in the example in Figure 10.1, is extended
with a the JavaDSL, which is a DSL for Java, to define guard, condition, and action
implementations.

ADJava

builds on

embedds

AD

JavaDSL

MCL

AD language with embedded
Java expressions and action

bodies

base AD language

Java language

Figure 10.2: Overview of the developed AD languages.

In the remainder of this section, the example in Figure 10.1 is used to present the
ADJava ML. The full textual model of the example is shown in Listing D.5.

10.2.1 Activity Definition

An ADJava model is defined in one single file that has the contained activity diagram’s
name. This design decision enables traceability during language processing (cf. [Sch12]).
Each ADJava model can contain a package declaration for structural purposes. A pack-
age declaration is defined with the package keyword and a full qualified name. In
addition, an import statement can be defined to reference external data types. An
import statement is defined with the import keyword and the qualified name of the
external data type. In general, each external data type used in an ADJava model has to
be imported to ensure referential integrity (cf. [Sch12]).

The main element of an ADJava model is the activity definition, which defines exactly
one activity. An activity definition starts with the activity keyword followed by a
name. Each activity can have arbitrary many input and output pins and encloses actions,
object nodes, and control and object flow definitions specified in arbitrary order.

For example, Listing 10.1 shows the SubmitTransaction activity (l.3) with the
dex.activities package declaration (l.1) and the dex.activities.Customer

186

10.2 ADJava: Activity Diagram Modeling Language

imported external data type (l.2). The SubmitTransaction activity has one input
pin (l.3), which is defined by a type (Customer) and a name (c) between two brackets.

ADJava TranSub
�

1 package dex.activities;
2 import dex.activities.Customer;
3 activity SubmitTransaction(Customer c){
4 }

Listing 10.1: An example of a simplified ADJava model.

Besides input pins, each activity can have arbitrary many output pins, each of which
is specified after a colon (:)-symbol as a comma separated list with a type and name
for each output pin. For instance, Listing 10.2 shows multiple input pins separated by
a comma (Order o, Customer c in l.1) and multiple output pins (Notification
n, Task t in l.2).

ADJava1 activity MultipleParams (Order o, Customer c)
2 : Notification n, Task t {
3 }

Listing 10.2: An ADJava model with multiple input and output pins.

An activity can also have a pre- and a postcondition. A precondition defines a con-
dition that has to be fulfilled before the activity is executed. A postcondition is a
condition that has to be fulfilled after an activity is executed. Preconditions are boolean
expressions between square brackets ([...]). Likewise, postconditions are boolean ex-
pressions between double square brackets ([[...]]). Technically, in the ADJava ML
the boolean expressions are Java expressions. However, it is possible to embed arbitrary
expression languages in the AD base language (cf. Section 10.2).

An example of an activity with a precondition and a postcondition is shown in List-
ing 10.3. The precondition is defined in l.1 ([c != null]). The postcondition is in
l.5 ([[t != null]]).

ADJava TranSub
�

1 [c != null]
2 activity SubmitTransaction(Customer c)
3 : Transaction t {
4 }
5 [[t != null]]

Listing 10.3: Each activity can have a precondition between [...] (l.1) and a
postcondition between [[...]] (l.4).

187

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

10.2.2 Actions

Actions define the behavioral units of an activity. Each action is defined by the action
keyword and a name. Just as an activity definition (cf. Section 10.2.1), an action can have
arbitrary many input and output pins as well as one precondition and one postcondition.
Moreover, an action’s body can be a Java implementation.

For example, Listing 10.4 shows the CreateTransaction action (ll.1-2), which
has one input pin (Customer c) and one output pin (Transaction t). Further-
more, this example shows the ValidateCredit action (ll.5-6), which has an input
pin (Transaction t) and an output pin (Transaction o) as well as a precondi-
tion ([t != null] in l.4) and a postcondition ([[o != null]] in l.5). The last
action in this example is the NotifyCustomer action, which shows an action body
implementation using Java (l.8).

ADJava TranSub
�

1 action CreateTransaction(Customer c)
2 : Transaction t;
3

4 [t != null]
5 action ValidateCredit(Transaction t)
6 : Transaction o;
7 [[o != null]]
8

9 action NotifyCustomer(Transaction t) {
10 NotificationService.notify(t.getFrom().getCustomer()).send();
11 }

Listing 10.4: Actions are defined with the action keyword and a name. They
can also have input and output pins (ll.1-2 and ll.5-6), pre- and
postconditions (l.4 and l.7), and Java implementations (l.10).

To reuse existing activities, actions may call other activities. This is denoted by the
execute keyword in an action’s body followed by a qualified activity name. If the called
activity has input and output pins, each input pin of the action has to be mapped to an
input pin of the called activity. Likewise, each output pin of an action has to be mapped
to an output pin of the called activity.

For example, Listing 10.5 shows two actions, each of which calls an activity. The
FinalizeTransaction action (ll.1-3) calls the coreactivities.ExecuteTrans-
action activity. The action’s input pin (Transaction t in l.1) is mapped to the
called activity’s input pin using the action pin’s name (l.2). The second action (Fraud-
Check in ll.5-7) calls the security.CheckValidity activity (l.6). Again the input
pins are passed to the called activity (l.6) but, in addition, the action’s output pin

188

10.2 ADJava: Activity Diagram Modeling Language

(Transaction o) is mapped to the activity’s output pin (r). This is done by address-
ing activity’s output pins via a dot (.) and mapping them via the arrow (->)-symbol,
as shown in l.6. In this example, the output pin r is mapped to the output pin o. Mul-
tiple output pins are addressed the same way but using a comma separated list. Hence,
multiple output pins are mapped element by element in the order they are defined.

ADJava TranSub
�

1 action FinalizeTransaction(Transaction t){
2 execute coreactivities.ExecuteTransaction(t);
3 }
4

5 action FraudCheck(Transaction t): Transaction o{
6 execute security.CheckValidity(t).r -> o;
7 }

Listing 10.5: Example of two actions calling activities.

10.2.3 Object Nodes

Object nodes are typed and abstract activity nodes that are used to define object flow
between actions. For example, the object flows in the examples in Section 10.2.1 are
defined via input and output pins. In addition, it is possible to define object nodes
that are shared between actions. Such object nodes are defined with a preceding data
keyword followed by a type and a name. Each shared object node can be accessed from
any action contained in the shared object node’s enclosing activity. Conceptually, shared
object nodes are based on central buffers and data stores, which are defined in the UML
AD specification [www15b].

For example, Listing 10.6 shows the shared object node t of type Transaction.

ADJava1 activity ADObjectNodes{
2 data Transaction t;
3 }

Listing 10.6: An example of a shared object node that can be used by actions within
the enclosing activity.

In general, shared object nodes are not considered as input and output pins of the
enclosing activity. Hence, when an activity with enclosed shared object nodes is called
from an action (cf. Section 10.2.2), the action’s input pins cannot be mapped to the
called activity’s shared object nodes.

189

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

10.2.4 Control And Object Flow

A control flow in an activity diagram describes a flow of control in the stepwise execution
of actions. It connects two actions or control nodes, which coordinate the flow between
other nodes, with a directed edge denoted by the (->)-symbol. For instance, Listing 10.7
shows a control flow between Action1 and Action2 in l.1. To simplify the notation
of control flows, multiple control flows can be chained (cf. MR-2-1), as already pro-
posed [www16j]. Note that this represents an extension to the UML AD ML designed
in [Rei15], where control flows are defined between two nodes only, as shown in l.1
in Listing 10.7.

ADJava1 Action1 -> Action2;
2 Action3 -> Action4 -> Action5;

Listing 10.7: An example of control flows, which define flows of control between
action and control nodes.

Besides control flows, object flows denote flows can be used to of objects between two
nodes (actions and control nodes). An object flow represents a special type of control flow
and, hence, is defined similarly, i.e., directed edge using the (->)-symbol. In addition,
each object flow specifies the mapping of an output pin to an input pin. An output pin
is mapped to multiple input pins, when a decision or fork node is used.

For instance, Listing 10.8 shows the definition of an object flow (l.4) from Action1
to Action2. It maps the output pin t of Action1 to the input pin of Action2 with
the same name.

ADJava1 action Action1 : Type t;
2 action Action2(Type t);
3

4 Action1.t -> Action2.t;

Listing 10.8: An example of an object flow definition (l.4).

The flow of control can explicitly be structured by different control nodes types. In
the remainder of this section, the different control node types supported by the ADJava
ML are explained.

Control Node Types

For presentational reasons, the presented examples of control node types show control
flows only. However, control nodes can also be use for object flows.

190

10.2 ADJava: Activity Diagram Modeling Language

Initial Node An initial node marks the start of the activity’s execution flow. It is defined
by the keyword initial keyword, as shown in Listing 10.9. Initial nodes have no
ingoing edges and only one outgoing. It is possible to have multiple initial nodes
as well as none.

ADJava1 initial -> CreateTransaction;

Listing 10.9: Initial nodes are denoted by the initial keyword and have to be
connected to one other node.

Final Node Final nodes denote the end of a flow in an activity. Hence, they have one
ingoing edge and no outgoing edges. Each final node is defined by the final
keyword, as shown in l.1 in Listing 10.10.

ADJava1 Action1 -> final;
2 Action2 -> flowfinal;

Listing 10.10: Final nodes are denoted by the final keyword and do not have any
outgoing edges.

In addition, to denote the end of a flow only rather than the end of a flow in an
activity, flow final nodes are supported [www15b]. Each flow final node is defined
by the flowfinal keyword as shown in l.2 in Listing 10.10.

Fork Node A fork node marks parallel execution of actions. It has one incoming edge,
which can be a control flow or an object flow. Each control flow can be defined in
a control flow or an object flow by using the ||-symbol, e.g., l.1 in Listing 10.11.
Alternatively, an explicit fork node, which is defined by the fork keyword (l.3)
and a name, can be used. Such explicit fork nodes can be used in other control or
object flows as well (ll.4-5).

ADJava1 Action1 -> (Action2 || Action3);
2

3 fork f1;
4 Action4 -> f1;
5 f1 -> (Action5 || Action6);

Listing 10.11: Fork nodes are either define implicit by the ||-symbol (l.1) or explicit
by the fork keyword and a name (l.3).

Join Node Join nodes allow to synchronize control and object flows previously forked
by fork nodes. A join node has multiple incoming edges but only one outgoing edge

191

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

and is defined similar to a fork node, i.e., implicit in a control flow or an object
flow using the ||-symbol or explicit as a join node defined by the join keyword
and a name.

For example, l.1 in Listing 10.12 shows an implicit definition, whereas ll.3-5 show
an explicit definition and its use. In contrast to fork nodes, the implicit definition
uses the ||-symbol on the left-hand side of a control flow.

ADJava1 (Action1 || Action2) -> Action3;
2

3 join j1;
4 Action4 -> j1;
5 Action5 -> j1;

Listing 10.12: Join nodes are defined implicitly on the left-hand side of a control or
object flow or explicit by the join keyword and a name.

Decision Node A decision node denotes a branch in a control flow or an object flow that
depends on predefined guards. Each decision node can have one or two incoming
edges and has two outgoing edges. For each outgoing node a guard has to be
defined. If a guard is true, the flow continues at this edge. Otherwise, the other
guard is evaluated. Syntactically, a decision node is defined either implicit using
the |-symbol or explicit using the decision keyword and a name.

For example, Listing 10.13 shows the implicit definition of a decision node in l.1.
The guard for Action2 is [t != null]. The guard for final is [else],
which is a predefined guard that can only be used if another guard that is not an
[else] guard is defined. Moreover, in l.3 an explicit definition is shown, which is
used within other control or object flows as shown in ll.5-6.

ADJava1 Action1 -> [t != null] Action2 | [else] final;
2

3 decision d;
4 Action2 -> d;
5 d -> [t!= null] Action1;
6 d -> [else] final;

Listing 10.13: Decision nodes are implicitly defined by a |-symbol and guards (l.1)
or explicitly by the decision keyword and a name (l.3).

Merge Node Similar to join nodes, merge nodes join control and object flows to one
single outgoing control or object flow. However, because there is no synchronization

192

10.2 ADJava: Activity Diagram Modeling Language

between the incoming flows, merge nodes should not be used to join concurrent
control and object flows created by fork nodes.

Following the general idea of implicit and explicit notion, a merge node can be
defined similarly. For an implicit definition the |-symbol is used on the left-hand
side of the flow definition as shown in Listing 10.14 in l.1. For an explicit definition,
the merge keyword followed by a name can be used (ll.3-5.).

ADJava1 (Action1 | Action2) -> Action3;
2

3 merge m:
4 Action1 -> m;
5 Action2 -> m;

Listing 10.14: Merge nodes are defined implicit by the |-symbol on the left hand
side (l.1) or explicit by the merge keyword and a name (l.3).

10.2.5 Roles

In general, activity diagrams support partitions, which groups actions with common
characteristics [www15b]. Semantically, they provide certain constraints on the invoked
action in the activity diagram. The ADJava ML developed in this thesis supports role
partition only (cf. GR-2-3). Such a partition groups actions that are assigned to a
particular role. Only this role is allowed to execute the actions in this partition.

Each role partition is defined with the role keyword followed by a name and a
comma separated list of actions that belong to this partition enclosed between {...}.
For example, Listing 10.15 defines the role user in ll.1-3, which consists of only the
Action1, Action2 actions (l.2). Hence, only the end user having the role user can
execute the actions Action1 and Action2.

ADJava1 role user{
2 Action1, Action2;
3 }

Listing 10.15: Role partitions are defined by the role keyword, a name (l.1), and
an action sequence (l.2).

10.2.6 Pin and Type Auto-Connect

To simplify ADJava model definitions by neglecting explicit mapping of input and out-
put pins, and object nodes, auto-connect capabilities based on MontiArc [Hab15] are

193

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

provided (cf. GR-2-2). In particular, ADJava ML supports pin connect and type con-
nect. Pin connect is designed to connect two non-referenced object nodes with the same
type and name. Type connect connects input and output pins with the same type.
Both auto-connect modes are defined by the autoconnect keyword followed by either
the pin or the type keyword for the modes with the same name. However, only one
auto-connect mode can be chosen in one ADJava model.

These modes are realized by connectors [LN16], which define how a mapping of input
and output pins is performed. Connectors can be arbitrarily selected and chained. In
the remainder of this section, all provided connectors are explained.

Call Behavior Connector

The call behavior connector simplifies the definition of call behavior actions (cf. Sec-
tion 10.2.2) by connecting input and the output pins. For the type auto-connect mode,
the input pins and the output pins with the same type are connected. However, this is
not always possible if the same type is used multiple times. For the pin auto-connect
mode, the input pins and output pins with the same name and type are connected.

For example, Figure 10.3 (at the top) shows an explicit mapping of input and output
pins. Here, the input pins s1 and s2 as well as the output pins d1 and d2 are explicitly
passed to the called Activity1 (l.2). An equivalent representation of the model is
shown in Figure 10.3 at the bottom. It uses the auto-connect pin (l.1) such that the
mapping of input and output pins can be neglected (ll.2-4). However, if the type auto-
connect mode is chosen alternatively, this example will fail, because both input pins and
output pins have the same type.

ADJava1 action Action1(String s1, String s2) : Date d1, Date d2 {
2 execute dex.activities.Activity1(s1,s2).o1,o2 -> d1, d2;
3 }

ADJava1 autoconnect pin;
2 action Action1(String s1, String s2) : Date d1, Date d2 {
3 execute dex.activities.Activity1;
4 }

Figure 10.3: The call behavior connector simplifies the definition of call behavior actions.

Activity Input Connector

The activity input connector allows to neglect mappings between the input pins of the
activities and the input pins of an action. It implicitly maps input pins of an activity

194

10.2 ADJava: Activity Diagram Modeling Language

to input pins of actions depending on the chosen auto-connect mode. However, this
connector is only applied to actions that are explicitly connected to the initial node.

For example, an explicit mapping is shown in Figure 10.4 (at the top). It connects
the input pin i1 of the activity (l.1) to the input pin i1 of the action Action1 (l.2).
This mapping is explicitly defined in l.3. At the bottom of Figure 10.4, an equal model
is shown, where the mapping is neglected because the auto-connect pin mode is selected.
Alternatively, the type auto-connect mode can be used in this example, because there is
only one pin with the type String.

ADJava1 activity Activity1(String i1){
2 action Action1(String i1);
3 i1 -> Action1.i1;
4 initial -> Action1;
5 }

ADJava1 activity Activity1(String i1){
2 autoconnect pin;
3 action Action1(String i1);
4 initial -> Action1;
5 }

Figure 10.4: The activity input connector connects the activity’s input pins to the ac-
tion’s input pins.

Action Output Connector

The action output connector simplifies the definition of object flows between actions. It
connects all not explicitly mapped output pins of actions to input pins of actions that
would otherwise have to be connected via object flows.

For example, the explicit definition of an object flow is shown in Figure 10.5 (at the
top). The object flow between the Action1 action (l.1) and the Action2 action (l.2)
is defined by mapping the o1 output pin of the primer to the i1 input pin of the latter
action (l.3). An equivalent model is shown in Figure 10.5 (at the bottom), which uses
the auto-connect type mode.

Control Node Connector

Each object flow can be directed through control nodes. For each such control node,
the input and output pins have to be explicitly mapped. Hence, control type connector
connects input and output pins of control nodes making object flows implicit.

195

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

ADJava1 action Action1 : String o1;
2 action Action2(String i1);
3 Action1.o1 -> Action2.i1;

ADJava1 autoconnect type;
2 action Action1 : String o1;
3 action Action2(String i1);

Figure 10.5: The action output connector connects output pins to input pins.

For example, Figure 10.6 (at the top) shows an example of an object flow between
Action1, Action2, and Action3 (ll.1-3), which is directed through a fork node (l.4).
In this case, the output pin o1 of Action1 is mapped to the input pin i1 of Action2
and i2 of Action3 (l.4). To simplify this mapping, the auto-connect type mode can
be used, as shown in Figure 10.6 (at the bottom). The defined control flow in l.4 (at the
bottom) becomes an implicit object flow.

ADJava1 action Action1: String o1;
2 action Action2(String i1);
3 action Action3(String i2);
4 Action1.o1 -> Action2.i1 || Action3.i2;

ADJava1 autoconnect type;
2 action Action1: String o1;
3 action Action2(String i1);
4 action Action3(String i2);
5 Action1 -> Action2 || Action3;

Figure 10.6: Object flows through control nodes can either be defined explicit (at the
top) or implicit (at the bottom) using the control node connector.

10.3 Execution of ADJava Models

To execute ADJava models, different approaches for execution of the UML AD ML, which
forms the basis for the ADJava ML, exist. In particular, execution of UML AD models
by code generation such as [NZ00, AT01, UN09, GR11, PADS12, Rei15, DKN+15]. An
alternative approach is execution by interpretation, i.e., a generic interpreter executes
UML AD models, such as [EW01a, EW01b, KG10, MLK12, LBG13]. However, code
generation from ADJava models demands that a code generator has to be deployed with
a data-centric application to allow application developers to redesign or create processes.

196

10.3 Execution of ADJava Models

Interpretation of ADJava models requires just-in-time compilation of Java source code
and reflective access to execute it, which is not targeted in this thesis (cf. Section 3.2
and Section 5.1).

Hence, an integrated interpretation- and code generation-based approach for execution
of ADJava models has been developed, as shown in Figure 10.7. Execution of ADJava
models is separated into an interpretation part (cf. GR-4-2) and an optional code gen-
eration part (cf. GR-4-4). In this approach, a modeler creates a CD4A model, which
describes the data structure to be managed. Modelers also create different ADJava mod-
els describing processes that are intended to be supported in the generated data-centric
application. Each ADJava model can use types defined in the CD4A. In addition, a
ADJava model can be enrich with Java source code by a senior application developer to
implement actions, guards, or conditions.

CpD

CD4A Model
AD (+ Java)

Model
AD (+ Java)

Model
ADJava

Model

«GEN»

CpD
Java Java

MontiDex

Code

Generator

ADJava

Execution

Engine

generated from
CD4A model generated from

AD model

Modeler

2

1

«HC»

CpDhandcoded
extensions Java

Senior Application

Developer

Key:

uses

input/output

3

Figure 10.7: An overview of the interpretation- and code generation-based approach for
ADJava model execution.

The execution of an ADJava model depends on the use of Java source code in the
ADJava model. In particular, an ADJava model without embedded Java source code is
executed by the ADJava Execution Engine (1 in Figure 10.7), which is an inter-
preter for ADJava models. Interpretation of ADJava models is explained in more detail
in Section 10.3.1. Such ADJava models without Java source code can be extended with
guard, condition, and action implementations by application developers using handcoded
extensions of the ADJava Execution Engine (3), which are realized as described
in Section 6.2 (cf. GR-4-3). To reduce the manual effort of creating handcoded exten-
sions, application developers can enrich the ADJava model with Java source code. In
this case, before executing the ADJava model using the ADJava Execution Engine,

197

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

code generation is required. In this code generation step, for every guard, condition, and
action implementation, a Java source file is generated (2). Each generated Java source
file contains the guard, condition, or action implementation that is executed during
interpretation by the ADJava Execution Engine.

At interpretation of an ADJava model, the ADJava Execution Engine ensures
that the correct handcoded extension and generated Java implementation for a particular
guard, condition, and action implementation is executed. In particular, if code genera-
tion has been used to generate Java source code from ADJava models, the interpreter uses
a hash-based approach, i.e., a hash code of the embedded Java source code of an action,
a guard, or a condition in the ADJava model is computed and associated with the corre-
sponding generate a Java implementation. If handcoded extensions of the interpreter are
provided, an application developer has to manually register the manually-written Java
implementation to the ADJava Execution Engine for a particular action by using
the action’s name (a detailed explanation is given in Section 10.3.3).

An approach of integrating interpretation and code generation for UML AD has al-
ready been proposed. In particular, an integration via a sequential execution of inter-
pretation (called simulation) and code generation to enable validated code generation
from UML AD models [BS05]. Moreover, Gessenharter presented the use of interpre-
tation and code generation to increase the interpretation performance by generating
source code containing additional information about the execution sequence [Ges10].
In addition, integration of handwritten code and interpretation on the model-level, i.e.,
integration of different DSLs via language extension mechanisms, and a compiler integra-
tion to reduce UML AD model complexity, which refers to the amount of used modeling
elements, has already been successfully used [Sar06].

In the remainder of this section, first, the interpretation of ADJava models is explained.
Afterwards, we describe how code generation benefits interpretation. Finally, we provide
the technical realization and integration into MontiDEx products.

10.3.1 Method for Interpretation of ADJava Models

The interpretation part is rooted on the UML AD semantics, which are based on Petri
Nets [Mur89] since UML 2.0 [www15b]. Activity diagrams are considered as a flow
of tokens through a directed graph. Based on this understanding, different approaches
have been proposed to execute UML AD models. Mayerhofer proposes a model execution
framework [May14] that enables execution, debugging, testing, and validation of UML
AD models based on fUML [www16h]. A similar approach based on fUML and focusing
on debugging has been proposed [LBG13]. Another approach, which is used as the
foundation for this thesis, proposes the ACTi interpreter using UML CD and UML AD
in Activity Diagram Linear Form to execute activities and actions [CD08]. Finally, a

198

10.3 Execution of ADJava Models

more general approach to support model execution of DSLs has been presented by the
GEMOC Studio [BDV+16].

In this thesis, the following assumptions for executing ADJava models are made. First,
parallel execution is omitted. Instead, it is resolved to sequential execution, which is
managed by a scheduler, of actions and control nodes to avoid synchronization concerns.
Second, it is assumed that interpretation is always possible but may raise a run-time
exception, if the ADJava model contains Java source code that has not previously been
processed in a code generation step before. Third, we do not aim to resolve semantic
variations in the execution semantics, which may cause non-determinism for certain UML
AD models (cf. [SF07, Ges10]). A proposed solution is to provide different execution
strategies to resolve such non-determinism (random and guided in [CD08]).

An overview of the proposed approach is shown in Figure 10.8. A detailed description
of the technical realization is provided in our previous work [LN16].

ad Interpreation of ADJava AD

load

activity
[else]

[error]

process

input

process

preconditions

and guards

[else]

[error]

execute

action[else]

[error]

execute

control node

[isAction]
[else]

process

postcondition

[canContinue]

[else]

[isActivity]

[else]

terminate

execution

[else]

[error]

[error]

[else]

Model Processing Pre-Execution Check Execution

Figure 10.8: An abstract view of the process of interpreting an ADJava model consists
of processing the ADJava model (Model Processing); setting input vari-
ables and checking preconditions and guards (Pre-Execution Check); and
executing the action body and check post conditions (Execution).

Interpretation starts by processing an ADJava model (cf. Section 10.2). If during this
language processing an error occurs, it is reported to the user and the execution ter-
minates. Otherwise, the process to execute the model is started. In more detail, if the
activity has input pins, the passed values are assigned. In general, this step requires code
generation or handcoded extensions, because external data types to define the input pin’s

199

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

type are used. Hence, it has to be ensured that the correct type of object is passed to
the activity without use of reflection (cf. Section 5.1). This is ensured using the Double
Dispatching-Pattern, as explained in Section 7.1.2. If input pins are defined, the inter-
preter uses the hash-based approach to locate the generated or manually-written source
code and executes it. Technically, a hashmap is used to register Java objects instantiated
from the generated Java source code, as it is explained in more detail in Section 10.3.3.
For models without input pins, code generation or handcoded extensions are not re-
quired and this step is skipped. All errors during the processing of input pins lead to
termination of the interpretation process.

After the input pins have been processed and their values have been assigned, pre-
conditions and guards are checked. If a precondition or guard is defined, the hash-based
approach is used to locate the generated or manually-written source code, which is then
executed. If no generated or handcoded source code is found, execution fails. Execution
also fails, if the executed precondition evaluates to false. However, if a guard fails, only
the corresponding flow is dropped but the execution does not terminate.

After evaluating the precondition, the action or control node is executed. In case of a
control node, the next elements to be processed are selected for the next execution cycle,
which starts by processing the input pins. If the control node has to handle an object
flow, the execution engine supports two different types to handle the objects. First, an
object can be copied and each following node receives a copy. However, this may require
merging data in join or merge nodes. Second, the data is not copied but handled as one
instance that is passed to each following node.

If the node to be processed is not a control node and the action is not a call of an
activity, then the action is executed, i.e., the action’s body is executed, which is the
generated or manually-written source code. If the action has no implementing body, the
execution of the action is finished. Alternatively, if the action contains an activity call,
the model processing step starts by loading the called activity, if it has not previously
been called.

After an action has been executed, its postcondition is processed. This is done in same
way as preconditions are handled, i.e., execution of handcoded extensions or generated
Java source code, and, hence, may require code generation or handcoded extensions.

Finally, if not all elements of the model are processed, the interpretation continues.
Otherwise, it is terminated. However, if an action called another activity, the overall
execution terminates once the called activity has terminated.

10.3.2 Code Generation from ADJava Models

Whenever an ADJava model contains Java source code, code generation is used to gen-
erate executable Java source code, which uses the Double Dispatching-Pattern. In more

200

10.3 Execution of ADJava Models

detail, for each ADJava, a dispatching interface containing a visit()-method for all
used types in the ADJava is generated. Each method uses the Java default concept
to realize a default implementation, which is empty to ensure that execution terminates
if double dispatching fails. Since double dispatching is only applicable for non-primitive
data types, wrapper types are used and extended with an additional accept()-method.

The example in Figure 10.9 shows an ADJava model (at the top left) that contains
Type1, Type2, and Type3, each of which is defined the CD4A model (at the top
right). For the ADJava model, the interface ActivityObjectVisitor (at the bot-
tom) is generated. It contains a visit method for each type (ll.2-4). The second String
parameter is required to pass the input/output pin’s name.

ADJava1 activity Activity {
2 data Type1 t1;
3 action Type2Action(Type2 t2);
4 action Type3Action(Type3 t3)
5 }

CD4A1 classdiagram Types {
2 class Type1;
3 class Type2;
4 class Type3;
5 }

Java1 public interface ActivityObjectVisitor
2 extends ADObjectVisitor {
3 public default void visit(Type1 p, String n){ }
4 public default void visit(Type2 p, String n){ }
5 public default void visit(Type3 p, String n){ }
6 }

Figure 10.9: An example of the generated visit()-methods for each used data type to
realize the Double Dispatching-Pattern.

The generated Java source code for a guard, a precondition, and a postcondition imple-
ments the dispatching interface whenever type information is required. In the remainder
of this section, code generation from guards, conditions, and action implementations in
ADJava models is described in more detail.

Generating Java Source Code from Input and Output Pins

If an ADJava model contains actions or defines an activity with input pins, Java source
code is generated to implement the dispatching interface for all input pin types. For
output pins no dispatching is required, because they are processed as input pins by the
subsequent action or control node.

For example, Figure 10.10 shows the generated source code for the CreateTrans-
action action at the top. For this action the CreateTransactionBody Java class
is generated. It extends the generic infrastructure provided by the execution engine

201

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

(AbstractAction in l.2 at the bottom) and implements the generated dispatching
interface SubmitTransactionObjectVisitor (l.3 at the bottom). For each input
pin and output pin, a protected variable with the defined type and name stores the
values (l.4). In addition, an init()-method, which initializes the variables is generated.
Furthermore, for the input pin i, the visit()-method having the type Customer is
generated (ll.11-15 at the bottom), which dispatches the correct type and checks if the
name is correct. For the output pin the getOutputs()-method is generated, which
passes the result to the execution engine such that it forward it to the next input pin.

ADJava TranSub
�

1 action CreateTransaction(Customer i): Customer o {
2 ...
3 }

Java

«GEN»
	

1 public class CreateTransactionBody
2 extends AbstractAction
3 implements SubmitTransactionObjectVisitor {
4 protected Customer i;
5

6 public void init() {
7 super.init();
8 this.i = null;
9 }

10

11 public void visit(Customer param, String name) {
12 if (name.equals("i")) {
13 this.i = param;
14 }
15 }
16 }

Figure 10.10: The generated Java source code (at the bottom) generated from the AD-
Java model (at the top) to realize double dispatching for input pins.

Generating Java Source Code from Action Implementations

For each action in an ADJava model that contains an implementation, a Java class is
generated. It contains the specified implementation in a doExecute()-method, which
is executed by the execution engine. If the action defines additional input and output
pins, the Double Dispatching-Pattern is added as described in Section 10.3.2.

For instance, the action in Figure 10.11 (at the top) shows an action implementation
in the ADJava model. The generated Java class ExecutableJavaCodeBody (at the
bottom) contains the specified Java source code in the doExecute()-method in ll.8-11.

202

10.3 Execution of ADJava Models

ADJava1 action ExecutableJavaCode {
2 // Java source code
3 }

Java

«GEN»
	

1 public class ExecutableJavaCodeBody
2 extends AbstractAction
3 implements AObjectVisitor {
4 protected void doExecute() {
5 // Java source code
6 }
7 }

Figure 10.11: For actions with implementations (at the top) a Java class with a
doExecute()-method (ll.8-11) is generated.

Generating Java Source Code from Pre- and Postconditions

If an ADJava model contains preconditions or postconditions, a Java source file is gener-
ated for each precondition and postcondition. It implements the dispatching interface to
realize double dispatching. Additionally, it contains the doEvaluate()-method, which
contains the precondition specified in the ADJava model. Pre- and postcondition imple-
mentations are generated into separate artifacts. For instance, for the action Action1
with a precondition and a postcondition, the artifacts Action1Precondition and
Action1Postcondition are generated.

For example, the action in Figure 10.12 (at the top) specifies a precondition. For
this action, the ValidateTransactionPrecondition Java file (at the bottom) is
generated. It contains the input pin (l.4) and implements the dispatching interface (ll.11-
15). The specified precondition is defined in the doEvaluate()-method in ll.17-19.

ADJava TranSub
�

1 [t != null]
2 action ValidateTransaction(Transaction t);

Java

«GEN»
	

1 public class ValidateTransactionPrecondition
2 extends AbstractCondition
3 implements SubmitTransactionVisitor {
4 protected boolean doEvaluate() {
5 return t != null;
6 }
7 }

Figure 10.12: The precondition defined for the ValidateTransaction action (at the
top) is generated to Java source code (at the bottom).

203

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

10.3.3 Technical Realization of the Extended Data-Centric Infrastructure

The data-centric infrastructure presented in Chapter 7 has been extended to realize
the proposed approach to execute ADJava models (cf. Section 10.3.1). In particular,
the generated presentation layer has been extended with an additional view as shown
in Figure 3.4 on page 31. It provides functionality to select, run, pause, stop, and save
the state of an ADJava model. Moreover, the execution engine is part of the RTE
(cf. Section 7.1.3). Hence, it is deployed with each MontiDEx product.

The main elements of the technical realization are shown in Figure 10.13. It depicts
a simplified view on the implementation to demonstrate the main elements. The full
technical realization can be found in [LN16].

«RTE»

CD«enum»

Status

RUNNING

WAITING

FAILED

STOPPED

SchedulerImpl

void run()

void terminate()

void next()

HashCodeChecker

«interface»

RuntimeTypeChecker

«interface»

GlobalRegistry

«interface»

NodeInvocation

ActivityInvocationImpl

AbstractRuntime

Typechecker

ADGlobalRegistry ADTypeChecker

1

1

1

InterpreterImpl

void interprete(File f)

void pause()

void save(File f)

void resume();

void terminate();

*

*

1

«GEN»

CD
registers generated

Java files
executes double

dispatching

«interface»

TokenOffer

*

0

0

Figure 10.13: Overview of the technical realization of the AD Execution Engine.

The execution engine is realized in the InterpreterImpl, which provides the fol-
lowing methods:

• interprete(File f): Start the execution of the UML AD model f. Each
valid model is immediately processed and the its interpretation starts as described
in Section 10.3.1.

• pause(): Interrupt execution if the interpretation has previously been started.
The current state is not serialized but kept in memory only.

204

10.3 Execution of ADJava Models

• save(File f): Serialize the current state of the execution into a file and can
be loaded to continue execution.

• resume(): Resume execution if it has previously been paused.

• terminate(): Terminates execution immediately. This does not terminate ex-
ecution of action implementations.

Each execution of an ADJava model starts by instantiating an ActivityInvo-
cationImpl, which represents the activity currently executed. Because actions can
call other activities, each InterpreterImpl instance manages all currently executed
activities. Each activity manages its own actions and control nodes that are currently
executed, which is represented by a NodeInvocation instance. For presentational rea-
sons the concrete subclasses for each action and control node are omitted. Furthermore,
it manages tokens, which represent markers on the currently executed nodes, in a queue.
Hence, each TokenOffer represents a currently active token that has to be processed.

Technically, the execution engine is realized using a scheduler, which has to perform
the following steps (based on [CD08]):

• Selects the actions or control nodes to be processed on round-trip basis.

• Execute the actions or control nodes.

• Pass tokens to the subsequent actions or control nodes.

The scheduler can be paused before and after processing a model element, i.e., an
action implementation cannot be paused. Moreover, it supports stepwise execution to
enable debugging (cf. GR-4-1). When the execution is started, the scheduler is started
by creating an SchedulerImpl instance. It allows to run, terminate, and execute the
next step. Execution is automatically terminated by the scheduler, if there are no more
tokens to be processed.

In addition, the HashCodeChecker is the technical realization of the hash-based
approach to identify generated (cf. Section 10.3).

Besides the run-time implementation, for each ADJava model a subclass of the Global-
Registry and the AbstractRuntimeTypeChecker is generated. In the exam-
ple in Figure 10.13, the ADGlobalRegistry is generated to store all generated and
manually-written files registered for a particular hash code, as explained in Section 10.3.
The ADTypeChecker contains the implementation of Double Dispatching-Pattern for
each data type in the ADJava model as described in Section 10.3.2.

10.3.4 Technical Realization of the MontiDEx Code Generator Extension

The MontiDEx code generator has been extended with a default configuration as shown
in Figure 10.14. It consists of a Java class (AdScript class) that enables support for

205

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

processing ADJava models (parseAD()-method) and checking ADJava model context
conditions (checkADCoCos()-method). In addition, the createSymbolTable()-
method allows to create a symbol table for a parsed UML AD model.

configure

DexScript

ad

AdScript

Optional<ASTADCompilationUnit> parseAD (File m)

void checkADCoCos(ASTADCompilationUnit ast)

Scope createSymbolTable(ASTCDCompilationUnit cd,

CDSymbolTable sym, ASTADCompilationUnit ad)

%

%

CD

Figure 10.14: MontiDEx code generator default configuration to process ADJava models.

Besides a default configuration, an activity MontiDEx module in the MontiDEx code
generator is provided, as shown in Figure 10.15. For presentational reasons, only the
transformations are illustrated and templates are omitted. The ADObject as well as
the ConcreteADObjectVisitor classes generate the Double Dispatching-Pattern.
In particular, the ADObject transformation adds the accept()-methods and the
ConcreteADObjectVisitor adds the visit()-methods. The ConcreteType-
Checker class adds the interface containing a method for each type used in the ac-
tivity that is required to be implemented (cf. Section 10.3.2). The ConcreteObject
Converter adds serialization capabilities (cf. GR-5-2). Finally, the ActionBody and
Condition transformations realize the code generation for action bodies, conditions
and guards.

src.ad

ADObject

ConcreteAD

ObjectVisitor

Condition

ActionBody

ToolbarExtension

ConcreteObject

Converter

Concrete

InterpreterConfig

ConcreteType

Checker

«uses»
«uses»

«uses» «uses»

CD

Figure 10.15: Transformations added to extend the MontiDex code generator.

206

10.4 Method for Developing Processes with ADJava

10.4 Method for Developing Processes with ADJava

To support process automation of data-centric applications, this section presents a
method to use the developed concepts for ADJava modeling and execution. The method
shown in Figure 10.16 guides modelers and (senior) application developers in developing
and extending ADJava models. Furthermore, it helps the decision on when to use hand-
coded extensions or embedded Java in ADJava models to implement actions, guards,
and conditions.

ad Agile Development of ADs

create

ADJava

model

M
o
d
e
le

r
A

p
p
lic

a
ti
o
n

D
e
v
e
lo

p
e
r

AD

execute

ADJava model
[else]

[redesign]

[else]

partition

ADJava model
[else]

[needs

partitioning]redesign

ADJava model

[implementation

required]

extend ADJava

model with

Java code

execute code

generation

manually

implement

Java code

[no code generator

available]

[else]

S
e
n
io

r

A
p
p
lic

a
ti
o
n

D
e
v
e
lo

p
e
r

identify

process

Figure 10.16: An overview of the process of modeling and executing of ADJava models.

The first step is to identify the process that is to be modeled. This task is done
by an modeler during requirements analysis. If multiple processes are identified, the
subsequent steps have to be applied individually to each process.

Afterwards, the modeler creates an ADJava model using the ADJava ML. This AD-
Java model does not contain any guard, condition, or action implementation. Such
prototypical ADJava models can be executed to simulate the process. If any redesign
attempts are identified during process simulation, e.g., missing actions, then the ADJava

207

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

model is redesigned by the modeler. In addition, a modeler can also partition an ADJava
model into multiple activities and reference each other using the call behavior action.
A partitioning is necessary in the following cases: reduce complexity of processes, i.e.,
actions necessary to define the process; extract a self-contained part of the process for
reuse purposes.

If there are no redesign attempts, guard, conditions, and action implementations can
be added by the application developer. This can either be done by using the supported
embedded Java within the ADJava ML, which requires code generation to generate
executable Java source code. However, this has to be done by a senior application
developer. Alternatively, if the code generator is not available handcoded extensions can
be added to the interpreter. Such handcoded extensions have to be manually registered
in the interpreter (cf. Section 10.3.3). Afterwards, the ADJava model can be executed.

After implementing guards, conditions, and actions, the ADJava model can be ex-
ecuted. Redesign of the ADJava model and handcoded extensions can always be per-
formed. This cycle of process automation development is finished if the process identified
by the modeler is fully realized.

10.5 Evaluation and Limitation

This chapter summarizes the customization and adaptation mechanisms used to realize
the extended infrastructure for process automation. Furthermore, it discusses limita-
tions of the proposed approach. We are aware that the given lines of code (LoC) and
implementation only reflects our technical realization and are not statistically sound.
However, it gives a first indication to a potential reduced development time.

10.5.1 Evaluation of MontiDEx Customization and Adaptation Approaches

An overview of all chosen customization and adaptation mechanisms used to realize the
extended infrastructure is shown in Table 10.9. Subsequently, each of them is explained.

The presented extended infrastructure uses the ADJava ML, which has been devel-
oped with MC, for process modeling. To process ADJava models, the MontiDEx code
generator has been extended with a default configuration script, as described in Sec-
tion 10.3.4, by using the proposed approach presented in Section 9.3.1. It consists of a
Groovy script (231 LoC) and a Java configuration class (210 LoC).

Each generated MontiDEx product requires an ADJava Execution engine to execute
ADJava models. Hence, each MontiDEx product has to be deployed with the ADJava
Execution engine. Technically, it is realized as a second RTE, as shown in Figure 3.5 on
page 39. Hence, it does not require any adaptation of the MontiDEx.

208

10.5 Evaluation and Limitation

Handcoded Extensions Approach Used Unused

Extended Generation Gap

- Signature Extension X
- Implementation Extension X
- Hot Spots X
Template Attachments

- Add before X
- Add after X
- Replace X
Template Extensions

- Add before X
- Add after X
- Replace X
Template Hook Point X

Table 10.9: The customization and adaptation approaches used to realize the extended
infrastructure for process automation.

To realize the code generation from ADJava models, as described in Section 10.3.2, one
MontiDEx module has been developed. It consists of nine templates (182 LoC) and eight
transformations (769 LoC) as shown in Section 10.3.4. The technical realization uses the
common infrastructure to realize MontiDEx modules, which is introduced in Section 9.2.

Since ADJava models support CD4A types in object flows, the generated source code
has been extended such that the ADJava Execution Engine can process CD4A types.
Therefore, each generated CD4A class extends the ADObject interface, which real-
izes double dispatching. Technically, this is realized using a template extension, which
replaces the default template and adds a modified one. In addition, the Concrete-
Controller:addToolBarButton hook point has been used to extend the GUI to
provide support for ADJava execution, as described in Section 3.3.2. This GUI required
a minimal extension of the RTE to provide the static non-generated source code.

In summary, the MontiDEx code generator and product could be extended with the
provided customization and adaptation mechanisms. However, additional hook points
had to be added to realize the required functionality. Therefore, the provided methods
have shown to be valuable assets to support unexperienced users to adapt and extend
the code generator.

10.5.2 Limitations

Due to the requirements (cf. Section 3.2), design guidelines (cf. Section 5.1), and targeted
development methods (cf. Section 3.3), the interpretation- and code generation-based

209

Chapter 10 Case Example: Extended Infrastructure for Process
Automation

approach for ADJava model execution harbors limitations. In the remainder of this
section, these limitations are explained.

The first limitation is the need to deploy the interpreter with the MontiDEx product.
In particular, to execute an ADJava model, each generated MontiDEx product has to
be deployed with the interpreter contained. This introduces additional unnecessary
dependencies, because the interpreter itself requires the ADJava ML. In addition to
the deployment of the interpreter, the code generator has to be deployed as well, if
implementation concerns are realized in the ADJava model and handcoded extensions
of the interpreter are not wanted. For handcoded extensions, the MontiDEx product’s
source code is required to compile the manually-written Java source code.

Another restriction arises from the client-side ADJava model execution. In this case,
the roles modeled cannot be used for collaborative working, because the process is exe-
cuted by one particular end user and the state is stored locally. Hence, to support such
scenarios, it has to be executed on server-side. However, such a solution yields additional
challenges, e.g., persistence of different states of execution among different end users.

A further restriction is based on the ADJava ML supports of auto-connect capabil-
ities, and control and object flows chaining. In particular, auto-connect may result in
unwanted side-effects during model execution. The reason is that the implicit mapping
of input and output pins (cf. Section 10.2.6). Such implicit mapping form control and
object flows, which are not visible a priori but only when executing the ADJava model.
Hence, modelers should avoid the same name and type of input pins for different actions,
activities, and data types if auto-connect is not explicitly wanted. As a consequence, the
presented approach enforces more responsibility to the modeler because he has to ensure
that the model conforms to the semantics (cf. [CD08]), i.e., no semantic variations are
introduced.

Finally, the source code generated from an ADJava model ensures type-safety without
reflective access but uses String comparisons to connect input and output pins. This
is, however, necessary to ensure that auto-connect pin capabilities are supported.

210

Chapter 11

Case Example: MDP and MDD with
MontiDEx

The concepts, methods, and tools developed in this thesis have been used in the develop-
ment of multiple data-centric applications and data-centric application prototypes. The
MontiDEx product (cf. Chapter 9) has been used standalone, i.e., including all layers
of the data-centric infrastructure, as well as a framework-like part of a software system,
i.e., only parts of the data-centric infrastructure have been used.

In this chapter, case examples developed in the course of this thesis are presented. For
each case example the LoC generated, which alternatively would have to be manually-
written, and LoC additionally required to be manually-written to implement the case
example are compared. In addition, an overview of customization and adaptation ap-
proach used in each case example is given to demonstrate their use.

In general, such comparison is difficult (cf. [FRS13]). However, it provides an indi-
cation for a potential reduced development time, because the generated functionality is
reused and does not have to be manually-written. Nonetheless, the collected data is not
statistically sound, but only reflects the technical realization of each case example.

This chapter is structured as follows. First, a Points-of-Interest (POI) management
system, which demonstrates framework-like use, is presented as the first case example
in Section 11.1. The second case example for framework-like use is an audio and video
streaming platform described in Section 11.2. Finally, MDP of an examination regulation
system for universities is shown in Section 11.3 as an example for standalone use of the
MontiDEx product.

11.1 Points-of-Interest Management System

The first case example is a POI management system, which manages radar traps, traffic
jams, construction sites, accidents, and general POIs. An Android [www16f] application
allows to manage POIs, which are stored with their geographical location and an optional

211

Chapter 11 Case Example: MDP and MDD with MontiDEx

photo or a textual description. Also, it tracks the user’s current position and displays
nearby POIs, which are periodically updated and can also be filtered or ranked.

The UML CD model describing the data structure is shown in Figure 11.1. The CD4A
model of this UML CD is presented in Listing D.2. It contains the POI class, which rep-
resents a general POI having a geographical location (longitude and latitude at-
tributes), the creation date (created attribute), an optional description (description
attribute), an optional photo (photopath attribute), and an optional deprecation
date (destroyed attribute). Each POI has exactly one POIType and a particular
POIRating, which represents the rating for this POI.

POIRating

Date closedDue

«enumeration»

POIType

BLITZER

STAU

BAUSTELLE

GENERAL

UNFALL

1

1

*

1

*
1

/userrank

1

POI

Date created

double longitude

double latitude

Optional<Date> destroyed

Optional<String> photopath

Optional<String> description

«enumeration»

Rating

VERY_BAD

BAD

NEUTRAL

GOOD

VERY_GOOD

User

String name

Date registered

Date lastLogin

CD POIManagement

Figure 11.1: A UML CD for describing a POI management system.

Users are explicitly modeled (User class), because they are allowed to create ratings
and can as well have a rating and a user rank (userrank) that represents their credi-
bility. The rating and a POI’s type is used to create a POI’s expiration date. The better
a POI is rated, the longer the POI is active, i.e., stored and displayed to users.

11.1.1 Technical Realization

This case example was realized within four months by two computer science students
in the course of a software lab at the RWTH Aachen university. Both students were
graduate students and experienced in Java programing. Because the primary goal of
MontiDEx products are lightweight client applications, only the MontiDEx product ap-
plication layer (cf. Section 7.2) and persistence layer (cf. Section 7.5) have been generated
and used. With this generated part, the following extensions that have to be manually
added have been identified:

• A manually-written native Android application allowing user interaction and con-
nects to a RESTful service1.

1Representational state transfer (REST) is an architectural style for design of web services [Fie00].

212

11.1 Points-of-Interest Management System

CpD

«RT-IF»

Background

Service

Photo

Handling

Task

Management

A
u
th
e
n
ti
fi
c
a
ti
o
n

MontiDEx

Product

Activity

Management

Android client

MontiDex‘

infrastructure

Web Server for

RESTful API

4

File

Server

1

3 CpD

«HC»

CpD

«GEN»

MontiDEx

Application

Server

2

Spark

Framework

Figure 11.2: An overview of the POI Management system’s client architecture consisting
of an Android client, a Web Server, and the MontiDEx infrastructure.

• A web server providing RESTful services and running the MontiDEx product.

• An additional file storage support to store uploaded photos.

To fulfill these requirements, the architecture shown in Figure 11.2 has been developed.
It consists of a file server to store the uploaded photos (1), the MontiDEx application

server to store created instances of the data structure (2), a web server providing the

RESTful service and running the headless MontiDEx product (3), and the Android

client handling user interactions (4).

The MontiDEx application server stores instances of the modeled data structure only.
To enable management of files, it contains the path to the uploaded file managed by the
file server, i.e., the photopath attribute in the POI class in Figure 11.1. The path is
a valid path on the file server. For each requested photo, the web server requests the
stored file identified by the path from the file server and returns the result to the client.

The headless MontiDEx product, i.e., no presentation layer, is executed on a web
server using the SparkJava framework [www16m] to provide a RESTful interface for the

Android client (3 in Figure 11.2). It allows authenticated users to perform CRUD
operations on the managed data. Technically, MontiDEx’s user management system

213

Chapter 11 Case Example: MDP and MDD with MontiDEx

(cf. Section 7.4.2) was reused and extended to provide the required REST authentication.

Besides authentication, the REST service offers the following functionality:

• Retrieve all POIs in a radius of less than 10 km.

• By explicitly stating the POI-ID a particular POI can be queried, i.e., that all its
contained data is returned.

• Retrieve all POIs in a greater radius (20 km) to enable offline mode.

• Given a particular POI-ID, a rating can be set for a POI. Ratings can only be set
once by a user.

• Create a new POI for a particular location. Optionally, attach an image.

These RESTful services are used by the Android client, which contains a Photo-
Handling component allowing upload and download of Base64-encoded photos. More-
over, to handle user events, the front-end is subdivided into multiple Android activities,
each of which handles one event, e.g., store POI. Those that require a connection are
realized as asynchronous activities to avoid a blocking UI. All synchronous activities are
managed by the ActivityManagement component, whereas all asynchronous activi-
ties are handled by the TaskManagement component.

The BackgroundService component allows to update the application’s POI list
without the need to execute the Android UI. When the client application is launched
a background service is started to determine the user’s location. If a connection to the
server is established, the location is transmitted and all relevant POIs are retrieved, each
of which is displayed in an overview as shown in Figure 11.3 (left side). If the user’s
current position changes by 1 km, this list is updated. In addition, a filter for the POI
list allows to search for POI and a settings dialog is provided (right side).

Figure 11.3: Android client’s main UI (left) and configuration dialog (right).

214

11.2 Audio and Video Streaming Platform

11.1.2 Discussion

This case example presents the development of a management system using only the
application and persistence layer of a MontiDEx product. It also shows the framework-
like use of these parts as a back-end of a web server. This has been beneficial because
the role-based-access control (cf. Section 7.5) has been reused to provide authentication
for a REST interface to manage the different clients.

In general, this reuse of generated functionality indicates a potential speedup in the
development time as shown in Table 11.1, which presents the LoCs of the generated
and manually-written code excluding empty lines and comments. It shows that the
Android client is handcoded, because the MontiDEx product targets lightweight client
applications. Likewise, the SparkJava web server is manually-written. However, the
MontiDEx product provided 99.87 % of the required management functionality, which
is generated from 37 LoCs of the CD4A model (cf. Listing D.2), with only 0.13 % of
handcoded extensions required to implement the derived association. In total, the overall
application contains 89.62 % of generated code and 10.38 % of manually-written code.
This equals a factor of 8.64 of generated to manually-written code.

LoC Percentage
handcoded generated handcoded generated

Android Application 2119 0 100 % 0 %

SparkJava WebServer 720 0 100 % 0 %

MontiDEx Product 32 24799 0.13 % 99.87 %

Sum 2871 24799 10.38 % 89.62 %

Table 11.1: An overview of the LoC generated and manually-written for the POI man-
agement system.

Besides a LoC comparison, Table 11.2 gives an overview of the used customization and
adaptation mechanisms provided by the MontiDEx product and code generator. It shows
that the generated MontiDEx product is extended using the implementation extension.
This is necessary to implement the derived association (userrank in Figure 11.1).
Moreover, the replace template attachment operation is used by the MontiDEx code
generator to replace the default templates (cf. Section 8.2.5).

11.2 Audio and Video Streaming Platform

The second case example is an audio and video streaming platform. It provides a Web-
Front-end to manage different types of media, each of which can be viewed and rated

215

Chapter 11 Case Example: MDP and MDD with MontiDEx

Handcoded Extensions Approach Used Unused

Extended Generation Gap

- Signature Extension X
- Implementation Extension X
- Hot Spots X
Template Attachments

- Add before X
- Add after X
- Replace X
Template Extensions

- Add before X
- Add after X
- Replace X
Template Hook Point X

Table 11.2: Overview of used customization approaches for the POI management system.

by users but only uploaded by an administrator. In addition, functionality to manage
watch lists, histories and comments is provided.

An overview of the data structure to be managed is shown in the UML CD model
in Figure 11.4. Note that the corresponding CD4A model is shown in Listing D.3. It can
be partitioned into user management with different profiles, media management including
containers, rating and commenting functionality, watch lists, and history functionality.

Users are explicitly modeled (Account class in Figure 11.4) and associated with one
Profile and one Role. While the Account class is a wrapper for the MontiDEx user
management (cf. Section 7.4.2) to explicify the two supported roles ADMIN and USER
(Role enumeration), a Profile is the user displayed in the application. This explicit
modeling of users enables user management capabilities in the web-front-end.

A media file is represented by the DexFile class shown in Figure 11.4. It is either
a file (DexFileElement) or a container (DexFileContainer), which groups files to
represent, e.g., albums or series. Both store the amount of times they have been viewed
in the consumed attribute. However, the container has a derived consumed attribute,
because it is computed based on the consumption of the enclosed files. Moreover, for
each DexFile additional meta information in the DexFileMetaData is stored such as
age restriction (FSK enumeration), public availability (Visibility enumeration), and
the file format (MediaType enumeration).

Rating and commenting functionality is offered by the Rating and Comment classes.
Users can create multiple ratings and comments for a particular DexFile only once.
Each comment receives a timestamp (creationDate attribute in the Comment class).

216

11.2 Audio and Video Streaming Platform

«enumeration»

Role

ADMIN

USER

1

1

0..1

*

1

«enumeration»

Gender

MALE

FEMALE

1

*

0..1

«ordered»

DexFile

«ordered» *

0..1
profile-

Image

profile-

Picture

*

0..1

0..1

*
*

1

*

DexFileContainer

/int consumed
1

«enumeration»

FSK

FSK0

FSK6

FSK12

FSK16

FSK18

1

«enumeration»

Visibility

VIEW_PRIVATE

VIEW_PUBLIC

1

0..1 0..1 coverPicture

cover

String uuid

boolean deleted

/double rating

ViewState

Date startViewing

Date stopViewing

int pausingSecond

int views

«ordered»

0..1

0..1

0..1

0..1

Rating

int value

*

DexFileElement

int consumed

String url

double duration

boolean over

Comment

String comment

Date creationDate

«ordered»

WatchList

CD AVManagement

History

«enumeration»

Type

VIDEO_MP4

AUDIO_MP3

IMAGE_JPEG

<

Account

String

loginName

String password

boolean blocked

boolean upload

Profile

String displayName

Date birthDate

/int age

SearchTag

String value

String title

String description

DexFileMetaData

Figure 11.4: A UML CD showing the main elements to manage audio and video media.

Besides commenting and rating media, a user is allowed to mark media to be watched
later, which is stored in a watch list (WatchList class). A watch list is modeled as an
explicit class, because it is possible to share them among users.

Finally, history functionality is concerned with keeping track of the watched media
for one particular user. Hence, each user is associated with the History class, which
manages multiple ViewStates of watched media. A ViewState stores the time when
the user has started (startViewing attribute) to watch the media as well as the date
when the user finished watching (stopViewing attribute). In addition, the amount of
views (views attribute) and the progress (pausingSecond attribute), i.e., time of the
media that has been watched, is stored. This enables users to continue watching media
at any the paused time.

11.2.1 Technical Realization

The technical realization of this case example was realized within four months by two
computer science students in the course of a software lab at the RWTH Aachen univer-

217

Chapter 11 Case Example: MDP and MDD with MontiDEx

sity. Both students were graduate students and highly experienced in web development.
Before presenting the technical realization, we summarize the requirements for the tar-
geted application as follows:

• Provide a web-front-end to view, rate, and comment media.

• Provide a GUI to manage users.

• Provide functionality and an infrastructure to upload media.

• Provide an infrastructure that manages the Web-Front-end’s requests and gives
access to the managed media.

The technical realization can be partitioned into a back-end, which is based on Mon-
tiDEx product to provide the necessary management functionality extended by a Sea-
weedFS [www16l] file server to store the uploaded files, and a front-end, which is based
on the AngularJS [www16b] and the Spring Boot framework [www16n].

Back-end

The back-end architecture is shown in Figure 11.5. It provides RESTful services to
clients allowing to manage the data structure and the uploaded files. Furthermore, it
consists of the MontiDEx application server (2) for the data structure, a file server

(1), which stores the media files, and a web server (3) that executes the headless
MontiDEx product and provides a REST interface.

CpD

«HC»

Comment

Controller

File

Controller

History

Controller

Rating

Controller
User

Controller

Watchlist

Controller

Comment

Service

History

Service

User

Service

Watchlist

Service

Authentication

MontiDEx

Application

Server

2

MontiDex

Product

DexRating

Service

CpD

«GEN»

CpD

«RT-IF»
File

Server

1

Media

Service

Figure 11.5: Overview of the back-end architecture.

218

11.2 Audio and Video Streaming Platform

The MontiDEx application server and the file server work in concert using the same
integration approach as described in Section 11.1.1. Namely, using an attribute (url in
the DexFileElement class in Figure 11.4) to store the path to the corresponding file.

To use the provided web services, a user has to be authenticated. Afterwards, the
following controllers can be accessed, each of which provides on of the following REST
services (Note that due to presentational reasons only the main services are listed.):

File Controller This service allows to upload and stream media files. A user can upload
a media file and automatically receives the management rights for this particular
file. The upload process works as follows:

1. Ensure that the uploaded file is supported. This is achieved by using the
Apache Tika framework [www16e], which also supports prevention against
uploading executable files.

2. Compute the length of the media file.

3. Send the file to the SeaweedFS distributed filesystem to store it permanently.

4. Create the corresponding media representation (DexFileElement object)
in the MontiDEx database and store the path of the uploaded media file.

Comment Controller Manage comments for all stored files and containers.

History Controller Each valid user has a history in the system, which can be managed
via this service. It contains information such as the upload of a particular file and
when the last log in has taken place.

Rating Controller This interface can be used to manage the rating system. The rating
is on a scale from 1 (very bad) to 5 (excellent).

User Controller This service allows to manage the different users and to distinguish
between administrator and normal user. An administrator can view and manage
all user accounts, while a user cannot. Each user - regardless of their role - can
define their profile with a password, an avatar, and details. It is also possible to
delete user accounts using this service.

Watchlist Controller A watch list is a collection of files that are marked as to be watched
by a user. This service allows to manage such watch lists.

Front-End

The services provided by the back-end are used by dedicated services in the front-end,
each of which is responsible for managing one particular back-end functionality and
is realized by a dedicated controller. Each controller is responsible for directing user
interactions to the services. It is also used to provide requested service results, as shown

219

Chapter 11 Case Example: MDP and MDD with MontiDEx

in Figure 11.6. In addition, the front-end provides an authentication service to manage
authentication concerns with the back-end and uses the Interceptor-Pattern [GHJV95]
to allow interceptions during authentication. It also provides logging functionality and
session management. Note that a detailed description of each controller and service is
omitted, because they realized the functionality shown in Figure 11.5.

CpD

«HC»

Comment

Dataservice

History

Dataservice
Rating

Dataservice

User

Dataservice

Watchlist

Dataservice

File

Dataservice

Authentication Interceptor

User

Controller
Watchlist

Controller

Dashboard

Controller

Authentication

Service
Logging

User

Session

Figure 11.6: Overview of the front-end architecture.

The handcoded GUI provides multiple user interfaces for the varying concerns in-
cluding a dashboard, user management, container management, search, watch list, and
statistics overview. An example is illustrated in Figure 11.7. It shows all available files
and containers. If a container or a file has a cover, then the cover is shown as well.
The same applies to ratings and number of views for containers and files. Moreover, the
dashboard allows to filter (by type, rating, and views) and search for files and containers.

Another example is the view for a selected media file, which is shown in Figure 11.8.
Depending on the media file’s type either audio or video is played. The overview shows
a short description, the user who uploaded the media file, comments, and ratings. Note
that only logged in users are allowed to create new comments.

11.2.2 Discussion

The demonstrated case example has been developed using the proposed lightweight
method for MDD of data-centric applications (cf. Section 3.3.2). The overall results
show a potential decrease of LoC to be written, when developing such software systems.
In particular, because a Web-Front-end has been required, it has been manually-written
to 100 %, as shown in Table 11.3. The same holds for the web server providing the REST
interface. However, it uses the headless MontiDEx product, which consists of 0.14 %

220

11.2 Audio and Video Streaming Platform

Figure 11.7: A screenshot of the dashboard showing containers and media files.

Figure 11.8: A screenshot of the view for playing video files.

221

Chapter 11 Case Example: MDP and MDD with MontiDEx

manually-written LoC to implement the derived attributes and 99.86 % generated LoC,
as shown in Figure 11.4. Note that the manually-written code demonstrates how to
implement possible constraints such as a rating of 1 to 5 modeled as an int value. In
total, the created software system consists of 7.87 % manually-written LoC and 92.13 %
generated LoC, which represents a factor of 11.7.

LoC Percentage
handcoded generated handcoded generated

AndularJS Web-Front-end 4458 0 100 % 0 %

Web server 5022 0 100 % 0 %

MontiDEx Product 155 112743 0.14 % 99.86 %

Sum 9635 112743 7.87 % 92.13 %

Table 11.3: Overview of the manually-written and generated LoC.

This example also shows the simultaneous use of a MontiDEx database server and a
distributed file system. Moreover, it uses one client for user management and one for
media management showing the use of different front-ends with the same back-end.

The manually-written code is realized using the Extended Generation Gap-Pattern
(cf. Section 6.2). In this example, both the interface and the implementation extensions
are used. In particular, interface extensions are used to add technical details, which have
to be globally accessible. Moreover, only the template attachment replace operation are
used by the MontiDEx code generator to generate the overall software system. An
overview of all used customization approaches is shown in Table 11.4.

Handcoded Extensions Approach Used Unused

Extended Generation Gap

- Signature Extension X
- Implementation Extension X
- Hot Spots X
Template Attachments

- Add before X
- Add after X
- Replace X
Template Extensions

- Add before X
- Add after X
- Replace X
Template Hook Point X

Table 11.4: An overview of all used customization approaches.

222

11.3 Examination Regulation System

11.3 Examination Regulation System

A further example is a standalone data-centric application prototype of an examination
regulation system for universities, which manages lecture modules and their credits for
a particular degree course. In this case example, the focus has been set to develop
a functional prototype only. It targets evaluation of the required data structure but
adds additional functionality such as an importer for the existing system, notification
of responsible editors when a lecture module changes, particular views for students and
employees, PDF export, and overviews with multiple charts.

In multiple iterations, as proposed for prototyping (cf. Section 3.3.1), the data struc-
ture shown in Figure 11.9 has been identified. Note that this is only an excerpt due
to presentational reasons. The full CD4A model is shown in Listing D.4. It consists
of an ExaminationRegulation that represents the regulations for a particular de-
gree course. Each can exist in multiple versions and, hence, is aware of its predecessors
and successors. Changes leading to a new version have to be accepted by a responsible
Employee managing the degree course. Moreover, each ExaminationRegulation
consists of multiple ModuleAreas, each of which represent the different areas a Module
is part of, e.g., computer science or mechanical engineering. Such a module can exist in
multiple versions as well.

Event

*

1

«enumeration»

PLType

VARYING_WPL

FIXED_PL

VARYING_PL

NOT_AVAILABLE

1

«enumeration»

RegistrationStatus

POSITIVE

NEGATIVE

CHECKING

1

1

1

«enumeration»

MatriculationStatus

MATRICULATED

EXMATRICULATED

APPLIED

1

Student

double matNr

Examination

Regulation

0..1

0..1
succ

prev

Employee

ModuleArea

*
1

0..10..1succ prev

Module
*

1

*

* *

Examination

Performance

*

EPRegistration

CD POManagement

ExamAttempt

int grade

Account

Figure 11.9: The UML CD model for the examination regulation system.

Besides modeling the examination regulation, Students are modeled as well to man-
age their examination regulations and to allow notifications. Each Student has a

223

Chapter 11 Case Example: MDP and MDD with MontiDEx

particular MatriculationStatus, which is required to assign only matriculated stu-
dents to ExaminationRegulations. Moreover, Students are allowed to take an
ExamAttempt 4 times at max. Note that this constraint is not modeled in the data
structure but added via handcoded extensions.

Each ExamAttempt has exactly one EPRegistration, which defines the status of
the Student’s registration for a particular exam. To receive the credits, the exam is
associated with a ExaminationPerformance, which defines a particular exam type
(PLType) and the Event, when the exam takes place.

11.3.1 Technical Realization

The architecture of the developed prototype consists of all three MontiDEx product
layers with additional handcoded extensions, as shown in Figure 11.10. The manually-
written code comprises an extension for the ListView (CustomListView component)
to provide direct feedback of examination regulations as well as an overview of different
reports (StatisticsView component). In addition, the Notification component
enables email notifications whenever an examination regulation has been changed. In
order to evaluate the prototype with real data, the system provides an importer for the
current examination regulation system (ERImporter component) and a PDF exporter
to export examination regulations (PDFExpoerter component).

CpD

DEx Gui
DEx

Persistence
DEx

AppCore

ERImporter

PDFExporterCustomList

View

Student

View

Employee

View
Notification

Statistics

View

«HC»

CpD

«GEN»

Figure 11.10: Overview of the architecture of the examination regulation system.

The technical realization of this case example was realized within four months by four
computer science students in the course of a software lab at the RWTH Aachen university.
All students had some experience in Java programming and were undergraduates.

224

11.3 Examination Regulation System

The developed prototype provides distinct views for students and employees (Student-
View and EmployeeView component in Figure 11.10), each of which contains short-
cuts for specific user actions and additional information. An example of a student view
is shown in Figure 11.11. It contains the tasks (center), a weather overview (upper right
corner), and a calender displaying the current curriculum (lower right corner).

Figure 11.11: A screenshot of the student view extension.

11.3.2 Discussion

In contrast to the case examples in Section 11.1 and Section 11.2, this case example
demonstrates the development of a functional prototype using the provided standalone
MontiDEx product. Hence, all MontiDEx product layers have been used and extended.

For the developed prototype, this case example shows a potential decrease of LoC to
be written as shown in Table 11.5. It shows that the GUI has been manually-written to
18.42 %, which is mainly caused by the added views, reports, and notification support.
However, 81.58 % of the required functionality is generated. The persistence layer is gen-
erated to 99.71 % and only 0.29 % is manually-written. This is necessary to implement
the import and export functionality. Moreover, the application layer is generated to 98.17

225

Chapter 11 Case Example: MDP and MDD with MontiDEx

% and manually-written to 1.83 % to implement derived associations. As a result, the
overall software system is generate to 92.13 % and contains 7.87 % of manually-written
LoC. This represents a factor of 11.36 more generated LoC than manually-written.

LoC Percentage
handcoded generated handcoded generated

MontiDEx Product Graphical
User Interface Layer

10265 45459 18.42 % 81.58 %

MontiDEx Product Persistence
Layer

129 44713 0.29 % 99.71 %

MontiDEx Product Application
Layer

662 35429 1.83 % 98.17 %

Sum 11056 125601 7.87 % 92.13 %

Table 11.5: The amount of generated and manually-written LoC for the examination
regulation system.

In this case example, the required functionality is added using handcoded extensions
provided by the MontiDEx code generator and the MontiDEx generated product, as
shown in Table 11.6. In particular, it is sufficient to use the Extended Generation Gap-
Pattern, because only the generated product is extended without the need to adapt the
MontiDEx code generator. However, the MontiDEx code generator uses the template
attachment replace operation to replace the default templates.

Handcoded Extensions Approach Used Unused

Extended Generation Gap

- Signature Extension X
- Implementation Extension X
- Hot Spots X
Template Attachments

- Add before X
- Add after X
- Replace X
Template Extensions

- Add before X
- Add after X
- Replace X
Template Hook Point X

Table 11.6: The customization and adaptation approaches used in the development of
the examination regulation system.

226

Chapter 12

Conclusion

This thesis contributes concepts and methods to a lightweight approach for MDP and
MDD of data-centric applications. In this chapter, this thesis is concluded. First, Sec-
tion 12.1 summarizes this thesis and addresses the raised research question (cf. Sec-
tion 1.2). Afterwards, we propose potential further research directions in Section 12.2.

12.1 Summary

A data-centric application is a lightweight client application that offers a GUI and access
to a persistence infrastructure, and regards management of structured information as the
primary concern. The development of data-centric applications has been improved by
employing concepts and methods from MDD in various ways (cf. Section 2.4). Hence, this
thesis builds on these achievements to propose a lightweight method for data structure
prototyping of data-centric applications and a lightweight method for MDD of data-
centric applications (cf. Chapter 3). The approach proposed in this thesis differs form
existing approaches by explicitly addressing customizability and adaptation concerns,
facilitating code generator reuse, supporting underspecification to enable use in early
development stages, addressing the needs of different roles involved in the development
process (cf. Section 3.1.3), and ensuring data consistency to reduce the gap between
description of a data structure and its implementation.

Data-centric applications are generated from a structural description of the managed
data. Hence, this thesis addresses modeling concerns of data-centric applications by a
language family that comprises the CD4A ML for structural description of managed
data, the CD4Code ML for code generation, the ADJava ML for process description.
The CD4A ML (cf. Chapter 4) is explicitly designed for description of analysis models,
which is an abstract and descriptive model of a problem domain describing structured
information. It reduces semantic variation points and language concepts to provide a
clear mapping for synthesizing fully executable Java Swing applications. However, due
to the foundation of CD4A, i.e., UML/P CD, it still harbors semantic variation points,
which are obstructive for code generation. Hence, to achieve effectiveness, semantic

227

Chapter 12 Conclusion

variation points are resolved by defaults, which are predefined choices in the mapping
taken by the code generator to resolve underspecification.

The generated data-centric application is realized by a data-centric infrastructure that
extends the data structure, which is a generated implementation of a CD4A model,
with a GUI, an application core for object management, and access to a persistence
infrastructure to manage the created data structure instances. Mappings from CD4A to
Java targeting generator developers are proposed in Chapter 5 and in Chapter 7. The
data-centric infrastructure uses a three-layered architecture that can be used standalone
or in parts due the modular design. The persistence infrastructure to store instantiated
objects is generic to support rapid prototyping and development (cf. Section 7.5).

However, to generate executable data-centric applications, defaults and design deci-
sions are chosen that do not always fit and may hamper code generator reuse. Hence,
limitations and restrictions set by defaults and design decisions are addressed by cus-
tomization of the generated source code using the developed Extended Generation Gap-
Pattern (cf. Chapter 6). This pattern uses object-oriented inheritance to allow overriding
generated functionality and adding new ones. Such customization is supported by hot
spots, which mark dedicated spots for adaptation.

This customization is not always practical, e.g., because multiple artifacts have to be
extended. Furthermore, it is not always suited when overriding defaults and design deci-
sions, e.g., when overriding private methods. Hence, adaptation and reuse concerns of the
code generator is regarded by an integration of transformation- and template-based code
generation approach (cf. Chapter 8). It uses an IR, which is described by the CD4Code
ML, to represent the object-oriented structure of the generated source code. Exoge-
nous transformations are employed to transform the input model to a CD4Code-AST.
Afterwards, endogenous transformations are applied to the CD4Code-AST to produce
the targeted object-oriented structure. Because the CD4Code ML is target language
independent, target language specific source code is added via template attachments. A
template attachment allows to attach a list of templates to an CD4Code-AST node. A
default set of templates and the template attachments are executed by the template en-
gine to generate target language source code. Hence, the overall code generation process
can be adapted in a black-box way by hook points, which mark dedicated spots in tem-
plates designed for adaptation, and by direct manipulation of the template attachments
with manually-written templates.

The developed concepts and methods are realized in the MontiDEx code generator
(cf. Chapter 9). It uses a modular design to enable realization of code generator product
lines for data-centric applications. Furthermore, it provides a script-based configuration,
which allows to configure every aspect of language processing and code generation to sup-
port code generator reuse. In addition, it supports generator developers in maintaining
and extending the generator by providing suitable reporting facilities.

228

12.2 Potential Future Work

Process automation of the data-centric application is supported by an extended data-
centric infrastructure, which also represents a case example for using the developed
customization and adaptation mechanisms. It supports process description via the AD-
Java ML, which is a ML for UML ADs that embeds Java. ADJava facilitates simplified
control flow definition and provides auto-connect capabilities (cf. Chapter 10). ADJava
models are executed by interpretation to support process automation after deployment
of the data-centric application by modelers and senior application developers. To reduce
the implementation effort of process automation during the development of data-centric
applications, ADJava models can be enriched with Java source code. A code generator
is provided that extracts this added Java source code from ADJava models and gen-
erates executable Java source code that is executed by the interpreter. Alternatively,
such implementation concerns can be added via handcoded extensions. Because the in-
terpreter uses a hash-based mapping between implementation concerns and the action
definition, implementation concerns can be reused. However, this approach has shown
several limitations and drawbacks including deployment of the interpreter, necessity of
design guidelines for ADJava to avoid non-determinism, and use of string comparisons.
Such issues are addressed by methods and guidelines. Furthermore, this case example
has shown the applicability of the proposed customization and adaptation approaches,
and the benefits of the developed methods to support application developers.

Finally, the developed tools and methods are evaluated in the development of different
software systems (cf. Chapter 11). The presented examples demonstrate a framework-like
use, prototyping, and agile software development of different data-centric applications.
Although the results are not scientifically sound and demand for further evaluation, be-
cause they are bound to the chosen implementation, they indicate a reduction of the LoC
that would have to be manually-written in the development of data-centric applications.
In particular, the number of generated source code LoC of a developed data-centric appli-
cation ranges from 89.62% to 92.13% of the overall system. Alternatively, this generated
source code would have to be manually-written.

12.2 Potential Future Work

The proposed approach forms a foundation for effective development and prototyping
of data-centric applications and provides valuable results that show potential research
directions in MDD and MDP. Subsequently, we list some identified future work.

Extension of Data-Centric Infrastructure: The introduced approach relies on models
and defaults for effective code generation. Hence, adaptations and customizations
are added by manually-written code. The case examples have shown that this
customization has its limits and may require complete implementation of, e.g.,
GUIs. Hence, a potential research direction is to further reduce the implementation

229

Chapter 12 Conclusion

effort by extending the data-centric infrastructure. For example, to reduce the need
to implement a GUI from scratch, a framework-independent infrastructure for basic
GUI functionality can be provided.

Code Generator Product Lines: In [RR15, GMR+16], an approach to implement code
generator product lines, which are based on a set of modules, variability regions,
and a configuration to create code generator variants has been described. It has
been further evaluated to regard explicit interfaces [RRRW15] and use of the ST
for transformation composition [MSNRR15a]. Based on these variability mod-
eling approaches and the customization and adaptation mechanisms developed
in this thesis, a potential research direction are general code generator product
lines. Such general product lines of code generators are only partially addressed
by current research. In particular, ongoing research regards business application
families [Kul10, KBR12] and formalization of valid extension points [HFMH16].

Synergetic Code Generation: To allow adaptable and flexible code generation, we pro-
posed a synergetic transformation- and template-based code generation approach.
However, it has been evaluated for CD4A and Java only. In future work, mul-
tiple other input and output language combinations can be evaluated to extend
the code generation approach and identify potential drawbacks. For example, by
extending the IR with target language concepts to regard target language concerns
(e.g., [EBBG12]). However, target language independence is reduced in this case.
This research may also address the development of further adaptation approaches
for code generators and their current limitation in traceability, as indicated in ??.

Transformation Libraries: Transformations of the IR are essential elements of the code
generation approach used in this thesis. They may be extended or adapted to
fit different requirements. In addition, generator developers can contribute differ-
ent transformations to extend the generated data-centric application. To support
reuse, versioning, and collaboration concerns, a potential research direction are
transformation libraries (e.g., [BLWPO13]). A first step towards building blocks
in code generators has already been proposed (cf. [Bic04]).

Fine-grain Rights and Roles: The role-based access control used in this thesis uses types
to assign roles to users. This approach is in-line with data consistency. However,
if this approach is extend to more fine-grain permissions, e.g., on association or
attribute level, data consistency is at risk. Therefore, a potential research direction
is to evaluate and identify role-based access control for such scenarios.

Domain-specific Transformations: The transformations used for code generation are
designed using Java. To support development of transformations, current ap-
proaches on domain-specific transformation languages [Wei12, HHRW15] may be
evaluated for code generation as used in this thesis.

230

Bibliography

[ABKS13] S. Apel, D. Batory, C. Kästner, and Gunter S. Feature-Oriented Soft-
ware Product Lines: Concepts and Implementation. Springer Publishing
Company Inc., 2013. 6.2.2

[ABY14] P. A. Akiki, A. K. Bandara, and Y. Yu. Adaptive Model-Driven User
Interface Development Systems. ACM Comput. Surv., 47(1), 2014. 2.4

[ADH+09] N. Aschenbrenner, J. Dreyer, M. Hahn, R. Jubeh, C. Schneider, and
A. Zündorf. Building Distributed Web Applications Based on Model
Versioning with CoObRa: An Experience Report. In Proceedings of
the 2009 ICSE Workshop on Comparison and Versioning of Software
Models. IEEE Computer Society, 2009. 7.4.2

[AHMM07] D. Akehurst, G. Howells, and K. McDonald-Maier. Implementing asso-
ciations: UML 2.0 to Java 5. Software & Systems Modeling, 6(1), 2007.
5.1, 5.2.11, 7.2.2

[AHW03] W. M. P. Aalst, A. H. M. Hofstede, and M. Weske. Business Process
Management: A Survey. In Business Process Management: International
Conference. Springer Berlin Heidelberg, 2003. 10

[AIM10] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A Survey.
Comput. Netw., 54(15), 2010. 1

[AK03] C. Atkinson and T. Kuhne. Model-driven development: a metamodeling
foundation. IEEE Software, 20(5), 2003. 2.1

[Aki13] P. A. Akiki. Engineering Adaptive User Interfaces for Enterprise Appli-
cations. In Proceedings of the 5th ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems. ACM, 2013. 1

[Alf16] H. Alfraihi. Towards Improving Agility in Model-driven Development.
In Joint Proceedings of the Doctoral Symposium and Projects Showcase
Held as Part of STAF, 2016. 2.4

[AT01] J. Ali and J. Tanaka. Implementing the dynamic behavior represented
as multiple state diagrams and activity diagrams. Journal of Computer
Science and Information Management, 2(1), 2001. 10.3

[BCDM14] H. Brunelière, J. Cabot, G. Dupé, and F. Madiot. MoDisco: A model

231

Bibliography

driven reverse engineering framework. Information and Software Tech-
nology, 56(8), 2014. 8.2

[BCK12] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 3 edition, 2012. 2.3.1

[BCV05] L. Bettini, S. Capecchi, and B. Venneri. Translating Double Dispatch
into Single Dispatch. Electronic Notes in Theoretical Computer Science,
138(2), 2005. 2nd Workshop on Object Oriented Developments. 7.1.2

[BCW12] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven Software En-
gineering in Practice. Morgan & Claypool Publishers, 1st edition, 2012.
1, 2.1, 2.1, 3.2.1, 4.1

[BDLD11] M. L. Bernardi, G. A. Di Lucca, and D. Distante. A model-driven ap-
proach for the fast prototyping of web applications. In 13th IEEE Inter-
national Symposium on Web Systems Evolution, 2011. 3.1, 3.3.1

[BDV+16] E. Bousse, T. Degueule, D. Vojtisek, T. Mayerhofer, J. Deantoni, and
B. Combemale. Execution Framework of the GEMOC Studio (Tool
Demo). In Proceedings of the Int. Conf. on Soft. Lang. Eng., 2016. 10.3.1

[Bet13] L. Bettini. Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing Ltd, 2013. 2.2.4

[Béz05] J. Bézivin. On the unification power of models. Software & Systems
Modeling, 4(2), 2005. 2.1

[BFL13] O. B. Badreddin, A. Forward, and T. C. Lethbridge. Improving Code
Generation for Associations: Enforcing Multiplicity Constraints and En-
suring Referential Integrity. In 11th International Conference on Soft-
ware Engineering Research, Management and Applications, 2013. 1, 1,
4.2.4, 5, 5.1, 5.2, 5.2.5, 5.2.6, 5.2.6, 5.3, 5.3, 7.2.2

[BGSZ08] M. Bork, L. Geiger, C. Schneider, and A. Zündorf. Towards roundtrip
engineering - A template-based reverse engineering approach. In 4th
European Conference on Model Driven Architecture - Foundations and
Applications, 2008. 6.1.1

[BHKN96] H. Balzert, F. Hofmann, V. Kruschinski, and C. Niemann. The JANUS
Application Development Environment - Generating More than the User
Interface. In Computer-Aided Design of User Interfaces I, Proceedings of
the Second International Workshop on Computer-Aided Design of User
Interfaces, 1996. 1, 2.4.2, 7.2.2

[BHS07] F. Buschmann, K. Henney, and D. Schmidt. Pattern-Oriented Software
Architecture: A Pattern Language for Distributed Computing. John Wi-
ley & Sons, 2007. 1.2, 2.3.1

232

Bibliography

[Bic04] L. Bichler. Codegeneratoren für MOF-basierte Modellierungssprachen.
PhD thesis, Universität der Bundeswehr München, Germany, 2004. 12.2

[BK10] S. Barat and V. Kulkarni. Developing configurable extensible code gen-
erators for model-driven development approach. In SEKE. Knowledge
Systems Institute Graduate School, 2010. 2.4.2

[Blo08] J. Bloch. Effective Java. Prentice Hall PTR, 2 edition, 2008. 5.2.3, 5.2.4

[BLWPO13] F. P. Basso, C. M. Lima Werner, R. M. Pillat, and T. C. Oliveira. How
do You Execute Reuse Tasks Among Tools? In 25th International Con-
ference on Software Engineering and Knowledge Engineering. Knowledge
Systems Institute Graduate School, 2013. 12.2

[BME+07] G. Booch, R. Maksimchuk, M. Engle, B. Young, J. Conallen, and
K. Houston. Object-oriented Analysis and Design with Applications.
Addison-Wesley Professional, 3 edition, 2007. 7.1.3

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-Oriented Software Architecture - Volume 1: A System of Pat-
terns. Wiley Publishing, 1996. 7

[Boc03a] C. Bock. UML 2 Activity and Action Models. Journal of Object Tech-
nology, 2(4), 2003. 10.2

[Boc03b] C. Bock. UML 2 Activity and Action Models Part 2: Actions. Journal
of Object Technology, 2(5), 2003. 10.2

[Boc03c] C. Bock. UML 2 Activity and Action Models Part 3: Control Nodes.
Journal of Object Technology, 2(6), 2003. 10.2

[Boc04a] C. Bock. UML 2 Activity and Action Models Part 4: Object Nodes.
Journal of Object Technology, 3(1):27–41, 2004. 10.2

[Boc04b] C. Bock. UML 2 Activity and Action Models Part 5: Partitions. Journal
of Object Technology, 3(7), 2004. 10.2

[Boc05] C. Bock. UML 2 Activity and Action Models Part 6: Structured Activ-
ities. Journal of Object Technology, 4(4), 2005. 10.2

[BPdOB13] F. P. Basso, R. M. Pillat, T. C. de Oliveira, and L. B. Becker. Supporting
large scale model transformation reuse. ACM, 2013. 8.2.3

[BPdODF14] F. P. Basso, R. M. Pillat, T. C. de Oliveira, and M. D. Del Fabro. Gen-
erative adaptation of model transformation assets: experiences, lessons
and drawbacks. In Symposium on Applied Computing. ACM, 2014. 8.2.3

[BPKR09] B. Berenbach, D. Paulish, J. Kazmeier, and A. Rudorfer. Software &
Systems Requirements Engineering: In Practice. McGraw-Hill, Inc., 1
edition, 2009. 3.1.3

233

Bibliography

[BPRFF15] F. P. Basso, R. M. Pillat, F. Roos-Frantz, and R. Z. Frantz. Combining
MDE and Scrum on the Rapid Prototyping of Web Information Systems.
Int. J. Web Eng. Technol., 10(3), 2015. 1, 3.1.3, 3.3.1, 3.3.1, 4.1

[BS05] A. K. Bhattacharjee and R. K. Shyamasundar. Validated Code Genera-
tion for Activity Diagrams. Springer Berlin Heidelberg, 2005. 10.3

[BV06] A. Balogh and D. Varró. Advanced Model Transformation Language
Constructs in the VIATRA2 Framework. In ACM Symposium on Applied
Computing. ACM, 2006. 8.2.4

[BW07] T. Baar and J. Whittle. On the Usage of Concrete Syntax in Model
Transformation Rules. In 6th International Andrei Ershov Memorial
Conference on Perspectives of Systems Informatics. Springer-Verlag,
2007. 2.2.4

[CAB+94] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes,
and P. Jeremaes. Object-oriented Development: The Fusion Method.
Prentice-Hall, Inc., 1994. 4.1.1

[Cac07] J. Cachopo. Development of Rich Domain Models with Atomic Actions.
PhD thesis, Tech. Univ. of Lisbon, 2007. 5.1

[Cam14] F. Campagne. The MPS Language Workbench: Volume I. The MPS
Language Workbench. 2014. 2.2.4

[Cas85] A. F. Case. Computer-aided software engineering (CASE): technology for
improving software development productivity. ACM SIGMIS Database,
17(1), 1985. 2.1

[CCF+15] B. Combemale, B. H.C. Cheng, R. B. France, J.-M. Jézéquel, and
B. Rumpe. Globalizing Domain-Specific Languages, volume 9400 of
LNCS, Programming and Software Engineering. Springer International
Publishing, 2015. 1, 2.1, 2, 2.1.1

[CCS13] F. Ciccozzi, A. Cicchetti, and M. Sjödin. Exploiting UML Semantic
Variation Points to Generate Explicit Component Interconnections in
Complex Systems. In 10th International Conference on Information
Technology: New Generations (ITNG). IEEE, 2013. 4

[CD08] M. L. Crane and J. Dingel. Towards a UML Virtual Machine: Imple-
menting an Interpreter for UML 2 Actions and Activities. In Conference
of the Center for Advanced Studies on Collaborative Research: Meeting
of Minds, CASCON ’08. ACM, 2008. 10.3.1, 10.3.3, 10.5.2

[CE00] K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000. 2.2.4, 3.1.3

234

Bibliography

[CH03] K. Czarnecki and S. Helsen. Classification of Model Transformation
Approaches. In Workshop on the Generative Techniques in the Context
Of Model-Driven Architecture. Online Proceedings, 2003. 2.2.4

[CH06] K. Czarnecki and S. Helsen. Feature-based Survey of Model Transfor-
mation Approaches. IBM Systems Journal, 45(3), 2006. 2.2.4

[CHN12] M. R. Chaudron, W. Heijstek, and A. Nugroho. How Effective is UML
Modeling ? Softw. Syst. Model., 11(4), 2012. 2.1

[CML14] M. Chen, S. Mao, and Y. Liu. Big Data: A Survey. Mobile Networks
and Applications, 19(2), 2014. 1

[CN01] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley Longman Publishing Co. Inc., 2001. 3.2.3,
8.3.1

[CT13] Z. Chared and S. S. Tyszberowicz. Projective Template-Based Code
Generation. In CAiSE’13 Forum at the 25th International Conference
on Advanced Information Systems Engineering, volume 998. CEURS-
WS.org, 2013. 2.2.4, 2.2.4

[CY91] P. Coad and E. Yourdon. Object-oriented Analysis. Yourdon Press, 2
edition, 1991. 4.1.1

[DD06] Z. Diskin and J. Dingel. Mappings, Maps and Tables: Towards For-
mal Semantics for Associations in UML2. In Model Driven Engineering
Languages and Systems: 9th International Conference, MoDELS 2006.
Springer Berlin Heidelberg, 2006. 5.2.6

[DED08] Y. Diskin, S. M. Easterbrook, and J. Dingel. Engineering Associa-
tions: From Models to Code and Back through Semantics. In 46th In-
ternational Conference on Objects, Components, Models and Patterns.
Springer Berlin Heidelberg, 2008. 5.2.6

[Dij82] E. W. Dijkstra. On the role of scientific thought. In Selected Writings
on Computing: A Personal Perspective. Springer-Verlag, 1982. 3.2.4

[DKN+15] G. Dévai, M. Karácsony, B. Németh, R. Kitlei, and T. Kozsik. UML
model execution via code generation. In 1st International Workshop on
Executable Modeling), 2015. 10.3

[DMPT10] I. Dejanović, G. Milosavljević, B. Perǐsić, and M. Tumbas. A Domain-
Specific Language for Defining Static Structure of Database Applica-
tions. Computer Science and Information Systems, 7(3), 2010. 2.4.2

[Dog08] A. Dogar. Model driven development for enterprise applications. PhD
thesis, Concordia University, Faculty of Engineering and Computer Sci-

235

Bibliography

ence, Computer Science and Software Engineering, Canada, 2008. 1

[DREP12] D. Di Ruscio, R. Eramo, and A. Pierantonio. Model Transformations. In
Formal Methods for Model-Driven Engineering, volume 7320 of LNCS.
Springer Berlin Heidelberg, 2012. 2.2.4

[EBBG12] O. El Beggar, B. Bousetta, and T. Gadi. Automatic code generation
by model transformation from sequence diagram of system’s internal be-
havior. International Journal of Computer and Information Technology,
1(02), 2012. 2.2.4, 8.2.2, 12.2

[EKBM+03] A. A. El Kalam, S. Benferhat, A. Miège, R. El Baida, F. Cuppens,
C. Saurel, P. Balbiani, Y. Deswarte, and G. Trouessin. Organization
Based Access Control. In 4th IEEE International Workshop on Policies
for Distributed Systems and Networks. IEEE Computer Society, 2003.
7.4.2

[EKW92] D. W. Embley, B. D. Kurtz, and S. N. Woodfield. Object-oriented Sys-
tems Analysis: A Model-driven Approach. Yourdon Press, 1992. 4.1.1

[Eli94] A. Eliens. Principles of Object-Oriented Software Development. Addison-
Wesley Longman Publishing Co. Inc., 1994. 6.2.1, 8.1

[ES07] J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag, 2007.
7.6

[EvdSV+13] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. P. Konat,
P. J. Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler,
R. Solmi, V. A. Vergu, E. Visser, K. van der Vlist, G. H. Wachsmuth,
and J. van der Woning. The State of the Art in Language Workbenches.
In Software Language Engineering, volume 8225 of LNCS. Springer In-
ternational Publishing, 2013. 2.2

[EW01a] R. Eshuis and R. Wieringa. A Real-Time Execution Semantics for UML
Activity Diagrams. Springer Berlin Heidelberg, 2001. 10.3

[EW01b] R. Eshuis and R. Wieringa. An Execution Algorithm for UML Activity
Graphs. In 4th International Conference on The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools. Springer-Verlag, 2001.
10.3

[FBHK+07] J. C. Flores Beltran, B. Holzer, T. Kamann, M. Kloss, S. A. Mork,
B. Niehues, K. Thoms, G. Pietrek, and J. Trompeter. Modellgetriebene
Softwareentwicklung. MDA und MDSD in der Praxis. Entwickler-Press,
2007. 6.1.1

[FBL10] A. Forward, O. Badreddin, and T. Lethbridge. Umple: Towards Com-

236

Bibliography

bining Model Driven with Prototype Driven Software Development. In
International Symposium on Rapid System Prototyping, pages 1–7, 2010.
2.4.1

[FBLS12] A. Forward, O. Badreddin, T. C. Lethbridge, and J. Solano. Model-
driven Rapid Prototyping with Umple. Softw. Pract. Exper., 42(7), 2012.
1, 2.4.1, 3.1, 3.2.1

[FBY08] J. Fu, F. B. Bastani, and I-L. Yen. 14th Monterey Workshop on Inno-
vations for Requirement Analysis. From Stakeholders’ Needs to Formal
Designs, chapter Model-Driven Prototyping Based Requirements Elici-
tation. Springer Berlin Heidelberg, 2008. 3.1

[FHR08] F. Fieber, M. Huhn, and B. Rumpe. Modellqualität als Indikator für
Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5), 2008.
2.1

[Fie00] R. T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, 2000.
1

[FKC07] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-Based Access
Control. Artech House Inc., 2nd edition, 2007. 3.2.1, 7.4.2

[Fow97] M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley
series in object-oriented software engineering. Addison Wesley, 1997.
4.1.1, 5.2.6

[Fow03a] M. Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003. 7.3.2

[Fow03b] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Mod-
eling Language. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 3 edition, 2003. 4.1

[Fow10] M. Fowler. Domain-Specific Languages. Addison-Wesley Professional,
2010. 1.2, 6.2

[FR07] R. France and B. Rumpe. Model-driven development of complex soft-
ware: A research roadmap. In Future of Software Engineering 2007,
2007. 2.1

[FRS13] R. France, B. Rumpe, and M Schindler. Why it is so hard to use models
in software development: observations. Software & Systems Modeling,
12(4), 2013. 11

[GAL15] M. Garzón, H. I. Aljamaan, and T. C. Lethbridge. Umple: A frame-
work for model driven development of object-oriented systems. In 22nd

237

Bibliography

International Conference on Software Analysis, Evolution, and Reengi-
neering, 2015. 1, 2.4.1

[GDCL03] G. Génova, C. R. Del Castillo, and J. Llorens. Mapping uml associations
into java code. Journal of Object Technology, 2(5):135–162, 2003. 5.1,
5.2.6, 5.2.6, 5.2.7

[Gén01] G. Génova. Semantics of navigability in UML associations. Technical
Report UC3M-TR-CS-2001-06, Computer Science Department, Carlos
III University of Madrid, 2001. 4.2.4

[Ges08] D. Gessenharter. Mapping the UML2 Semantics of Associations to a Java
Code Generation Model. In 11th International Conference on Model
Driven Engineering Languages and Systems, MoDELS ’08. Springer-
Verlag, 2008. 5.1, 5.2.11, 5.2.11, 7.2.2

[Ges09] D. Gessenharter. Implementing uml associations in java: A slim code
pattern for a complex modeling concept. In Proceedings of the Work-
shop on Relationships and Associations in Object-Oriented Languages,
RAOOL ’09, pages 17–24. ACM, 2009. 5.1, 5.2.6, 5.2.7

[Ges10] D. Gessenharter. UML Activities at Runtime. In Advances in Conceptual
Modeling – Applications and Challenges, pages 275–284. Springer Berlin
Heidelberg, 2010. 3.2.3, 10.3, 10.3.1

[GGLVG08] J. Guerrero Garćıa, C. Lemaigre, J. Vanderdonckt, and J. M. González-
Calleros. Model-Driven Engineering of Workflow User Interfaces. In 7th
International Conference on Computer-Aided Design of User Interfaces,
2008. 7.3

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1995. 3.2.4, 5.3, 6.1, 6.1.1, 6.1.2, 6.4.1, 7.2.1, 7.3.3, 7.5.1, 8.2.1,
11.2.1

[GHK+15a] T. Greifenberg, K. Hölldobler, C. Kolassa, M. Look, P. Mir Seyed Nazari,
K. Müller, A. Navarro Pérez, D. Plotnikov, D. Reiss, A. Roth, B. Rumpe,
M. Schindler, and A. Wortmann. A Comparison of Mechanisms for Inte-
grating Handwritten and Generated Code for Object-Oriented Program-
ming Languages. CoRR, abs/1509.04498, 2015. 1.4, 6, 6.1.1, 6.2

[GHK+15b] T. Greifenberg, K. Hölldobler, C. Kolassa, M. Look, P. Mir Seyed Nazari,
K. Müller, A. Navarro Pérez, D. Plotnikov, D. Reiss, A. Roth, B. Rumpe,
M. Schindler, and A. Wortmann. Model-Driven Engineering and Soft-
ware Development: Third International Conference, chapter Integration
of Handwritten and Generated Object-Oriented Code. Springer Interna-

238

Bibliography

tional Publishing, 2015. 1.4, 6, 6.1.1, 6.2

[Gil16] A. Gilchrist. Introducing Industry 4.0, pages 195–215. Apress, 2016. 1

[Gir08] M. Girschick. Integrating Template-Based Code Generation into Graph-
ical Model Transformation. In Modellierung 2008, Berlin, 2008. 8.2.4

[GKR+07] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel.
Textbased Modeling. In 4th International Workshop on Software Lan-
guage Engineering, 2007. 2.2

[GKR+08] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and Völkel S. Mon-
ticore: a framework for the development of textual domain specific lan-
guages. In 30th International Conference on Software Engineering, 2008.
2.2

[GLRR13] A. Ganser, H. Lichter, A. Roth, and B. Rumpe. Proactive Quality Guid-
ance for Model Evolution in Model Libraries. In ME@MoDELS, volume
1090 of CEUR Workshop Proceedings. CEUR-WS.org, 2013. 1.4, 6.1.1

[GLRR15] A. Ganser, H. Lichter, A. Roth, and B. Rumpe. Staged model evolution
and proactive quality guidance for model libraries. Software Quality
Journal, 2015. 1.4, 6.1.1

[GMR+16] T. Greifenberg, K. Müller, A. Roth, B. Rumpe, C. Schulze, and A. Wort-
mann. Modeling Variability in Template-based Code Generators for
Product Line Engineering. In Modellierung 2016, LNCS P-254. Bon-
ner Köllen Verlag, 2016. 1.4, 12.2

[Gol11] D. Gollmann. Computer Security. Wiley, 2011. 7.4.2

[GR11] D. Gessenharter and M. Rauscher. Code Generation for UML 2 Ac-
tivity Diagrams: Towards a Comprehensive Model-driven Development
Approach. In Proceedings of the 7th European Conference on Modelling
Foundations and Applications. Springer-Verlag, 2011. 10.3

[Grö10] H. Grönniger. Systemmodell-basierte Definition objektbasierter Mod-
ellierungssprachen mit semantischen Variationspunkten. PhD thesis,
RWTH Aachen University, 2010. 3.2.1, 5.1

[GSR05] L. Geiger, C. Schneider, and C. Reckord. Template- and modelbased
code generation for MDA-tools. Technical report, 2005. 8.2, 8.2.4

[GVM09] G. Génova, M. C. Valiente, and M. Marrero. On the difference between
analysis and design, and why it is relevant for the interpretation of models
in Model Driven Engineering. Journal of Object Technology, 8(1), 2009.
4.1, 4.1, 4.1

[GW11] M. Goldberg and G. Wiener. 5th International Conference on Evaluation

239

Bibliography

of Novel Approaches to Software Engineering, chapter Generating Code
for Associations Supporting Operations on Multiple Instances. Springer
Berlin Heidelberg, 2011. 5.1

[Hab15] A. Haber. MontiArc - Architectural Modeling and Simulation of Interac-
tive Distributed Systems. PhD thesis, RWTH Aachen University, Aachen,
2015. 1.1, 2.2, 10.2.6

[Har12] R. Harper. Practical Foundations for Programming Languages. Cam-
bridge University Press, 2012. 5.1

[HBR00] W. Harrison, C. Barton, and M. Raghavachari. Mapping UML Designs
to Java. In 15th ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA ’00. ACM,
2000. 3.1.3, 5.1, 5.2.3, 5.2.5, 5.2.5, 6.1.1, 6.2.2, 7.2.1

[Her13] C. Herrmann. Integrierte Software Engineering Services zu effizienten
Unterstützung von Entwicklungsprojekten. PhD thesis, RWTH Aachen
University, Aachen, 2013. 1.1, 3.1.3

[HFMH16] N. Harrand, F. Fleurey, B. Morin, and K. E. Husa. ThingML: A Lan-
guage and Code Generation Framework for Heterogeneous Targets. In
19th International Conference on Model Driven Engineering Languages
and Systems, MODELS ’16. ACM, 2016. 12.2

[HHRW15] L. Hermerschmidt, K. Hölldobler, B. Rumpe, and A. Wortmann. Gen-
erating Domain-Specific Transformation Languages for Component &
Connector Architecture Descriptions. In 2nd International Workshop
on Model-Driven Engineering for Component-Based Software Systems,
page 18, 2015. 12.2

[HKA10] F. Heidenreich, J. Kopcsek, and U. Aßmann. Safe Composition of Trans-
formations. Springer Berlin Heidelberg, 2010. 8.2.3

[HKGV10] Z. Hemel, L. C. L. Kats, D. M. Groenewegen, and E. Visser. Code gen-
eration by model transformation: a case study in transformation modu-
larity. Software & Systems Modeling, 9(3), 2010. 2.2.4, 2.2.4, 2.2.4, 2.2.4,
2.2.4, 8, 8.2.2, 8.2.3, 8.4.1

[HL01] H. F. Hofmann and F. Lehner. Requirements engineering as a success
factor in software projects. IEEE Software, 18(4), 2001. 1

[HLMSN+15a] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez, B. Rumpe,
S. Völkel, and A. Wortmann. Composition of Heterogeneous Modeling
Languages. Springer International Publishing, 2015. 2.2.1

[HLMSN+15b] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez, S. Völkel,
and A. Wortmann. Integration of Heterogeneous Modeling Languages

240

Bibliography

via Extensible and Composable Language Components. In 3rd Interna-
tional Conference on Model-Driven Engineering and Software Develop-
ment. SciTePress, 2015. 2.2.1

[HMZ11] H. Hussmann, G. Meixner, and D. Zuehlke. Model-Driven Development
of Advanced User Interfaces. Studies in Computational Intelligence.
Springer Berlin Heidelberg, 2011. 7.3

[HR00] D. Harel and B. Rumpe. Modeling Languages: Syntax, Semantics and
All That Stuff (Part I: The Basic Stuff). Technical Report MCS00-16,
Mathematics & Computer Sience, Weizmann Institute Of Sience, 2000.
2.2, 3.2.1

[HR04] D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics
of “Semantics“? Computer, 37(10), 2004. 2.2

[HRR12] A. Haber, J. O. Ringert, and B. Rumpe. MontiArc - Architectural Mod-
eling of Interactive Distributed and Cyber-Physical Systems. Technical
Report AIB-2012-03, RWTH Aachen University, 2012. 2.1

[HRW15] K. Hölldobler, B. Rumpe, and I. Weisemöller. Systematically deriv-
ing domain-specific transformation languages. In Conference on Model
Driven Engineering Languages and Systems. ACM/IEEE, 2015. 2.2.4

[HS93] G. M. Høydalsvik and G. Sindre. On the Purpose of Object-oriented
Analysis. SIGPLAN Not., 28(10), 1993. 4.1, 4.1

[HVEK07] A. Haase, M. Völter, S. Efftinge, and B. Kolb. Introduc-
tion to openarchitectureware 4.1. 2. In MDD Tool Implementers
Forum at TOOLS Europe. http://www.dsmforum.org/events/
mdd-tif07/oAW.pdf, 2007. 8.2

[HW03] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley Longman
Publishing Co. Inc., 2003. 7.4.3

[Jac04] I. Jacobson. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison Wesley Longman Publishing Co. Inc., 2004. 4.1.1

[JBW+14] E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, Á Hegedüs, M. Her-
rmannsdörfer, T. Horn, E. Kalnina, C. Krause, K. Lano, M. Lepper,
A. Rensink, L. Rose, S. Wätzoldt, and S. Mazanek. A survey and com-
parison of transformation tools based on the transformation tool contest.
Science of Computer Programming, 85, Part A, 2014. 2.2.4

[JC15] M. Janc̆ár and S. Chodarev. A Generative Framework for Development
of CRUD-based Linux Desktop Applications. In 13th International Sci-
entific Conference on Informatics, 2015. 1, 2.4.2

241

http://www.dsmforum.org/events/mdd-tif07/oAW.pdf
http://www.dsmforum.org/events/mdd-tif07/oAW.pdf

Bibliography

[JHH16] R. Jung, R. Heinrich, and W. Hasselbring. GECO: A Generator Compo-
sition Approach for Aspect-Oriented DSLs. Springer International Pub-
lishing, 2016. 8.1

[Jör13] S. Jörges. Construction and Evolution of Code Generators: A Model-
Driven and Service-Oriented Approach. LNCS sublibrary: Programming
and software engineering. Springer Berlin Heidelberg, 2013. 2.2.4, 2.2.4,
9.4

[JSK12] X. Jin, R. Sandhu, and R. Krishnan. 6th International Conference on
Mathematical Methods, Models and Architectures for Computer Network
Security, chapter RABAC: Role-Centric Attribute-Based Access Control.
Springer Berlin Heidelberg, 2012. 7.4.2

[Kai99] H. Kaindl. Difficulties in the Transition from OO Analysis to Design.
IEEE Software, 16(5), 1999. 4.1

[Kaj12] E. Kajan. Information Technology Encyclopedia and Acronyms. Springer
Berlin Heidelberg, 2012. 1

[Kar08] A. Karagkasidis. Developing GUI Applications: Architectural Patterns
Revisited. In 13th Annual European Conference on Pattern Languages
of Programming, 2008. 7.3.2

[KBR11] V. Kulkarni, S. Barat, and U. Ramteerthkar. Early Experience with
Agile Methodology in a Model-driven Approach. In 14th International
Conference on Model Driven Engineering Languages and Systems, MOD-
ELS’11. Springer-Verlag, 2011. 1, 1.2, 2.1, 6

[KBR12] V. Kulkarni, S. Barat, and S. Roychoudhury. Towards Business Ap-
plication Product Lines. In 15th International Conference on Model
Driven Engineering Languages and Systems, MODELS’12. Springer-
Verlag, 2012. 12.2

[KCW10] D. R. Kuhn, E. J. Coyne, and T. R. Weil. Adding Attributes to Role-
Based Access Control. Computer, 43(6), 2010. 7.4.2

[Ken02] S. Kent. Model Driven Engineering. In Integrated Formal Methods,
volume 2335 of LNCS. Springer Berlin Heidelberg, 2002. 2.1

[KG10] C. Knieke and U. Goltz. An Executable Semantics for UML 2 Activ-
ity Diagrams. In International Workshop on Formalization of Modeling
Languages, FML ’10. ACM, 2010. 10.3

[KGBE06] M. Karow, A. Gehlert, J. Becker, and W. Esswein. On the Transition
from Computation Independent to Platform Independent Models. In
12th Americas Conference on Infromation Systems, 2006. 4.1

242

Bibliography

[KGK+07] D. Koenig, A. Glover, P. King, G. Laforge, and J. Skeet. Groovy in
Action. Manning Publications Co., 2007. 3.3

[KKP+09] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and
S. Völkel. Design Guidelines for Domain Specific Languages. In 9th
OOPSLA Workshop on Domain-Specific Modeling, 2009. 1.1, 3.2.2, 4

[Kla06] C. Klare. Konzeption und Realisierung eines Code-Generators mit Tripel
Graph Grammatiken. Master’s thesis, University of Paderborn, Depart-
ment of Computer Science, Paderborn, Germany, 2006. 2.2.4

[KLM+16] C. Kolassa, M. Look, K. Müller, A. Roth, D. Reiß, and B. Rumpe. TUnit
- Unit Testing For Template-based Code Generators. In Modellierung
2016, 2016. 1.4, 8.4.1

[KNNZ99] T. Klein, U. A. Nickel, J. Niere, and A. Zündorf. From UML to Java
And Back Again. Technical Report tr-ri-00-216, University of Paderborn,
September 1999. 5.2.6

[KR03] V. Kulkarni and S. Reddy. Separation of Concerns in Model-Driven
Development. IEEE Software, 20(5), 2003. 8

[KR08] V. Kulkarni and S. Reddy. An Abstraction for Reusable MDD Com-
ponents: Model-based Generation of Model-based Code Generators. In
Proceedings of the 7th International Conference on Generative Program-
ming and Component Engineering. ACM, 2008. 1, 2.4.2

[Kra10] H. Krahn. MontiCore: Agile Entwicklung von domänenspezifischen
Sprachen im Software-Engineering. Aachener Informatik-Berichte, Soft.
Eng., Band 1. Shaker Verlag, 2010. 2.2, 2.2.4, 2.2.4, 2.2.4, 2.3, I

[KRV07] H. Krahn, B. Rumpe, and S. Völkel. Integrated Definition of Abstract
and Concrete Syntax for Textual Languages. In Proceedings of Models
2007, pages 286–300, 2007. 2.2, 2.2.1

[KRV08] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: Modular Development
of Textual Domain Specific Languages. In Proceedings of Tools Europe,
2008. 2.2

[KRV10] H. Krahn, B. Rumpe, and S. Völkel. Monticore: a framework for com-
positional development of domain specific languages. In International
Journal on Software Tools for Technology Transfer, volume 12, 2010. 2.2

[KT08] S. Kelly and J.P. Tolvanen. Domain-Specific Modeling: Enabling Full
Code Generation. Wiley, 2008. 3.1.3, 3.2.1

[Küh06] T. Kühne. Matters of (Meta-) Modeling. Software & Systems Modeling,
5(4), 2006. 1

243

Bibliography

[Kul10] V. Kulkarni. Raising family is a good practice. In 2nd International
Workshop on Feature-Oriented Software Development. ACM, 2010. 12.2

[Kul16] V. Kulkarni. Model Driven Development of Business Applications: A
Practitioner’s Perspective. In Proceedings of the 38th International Con-
ference on Software Engineering Companion. ACM, 2016. 2.1, 2.4.2,
3.1.3

[KV10] L. C.L. Kats and E. Visser. The Spoofax Language Workbench: Rules
for Declarative Specification of Languages and IDEs. SIGPLAN Not.,
2010. 8.2.3

[KVR02] V. Kulkarni, R. Venkatesh, and S. Reddy. Generating Enterprise Appli-
cations from Models. Springer Berlin Heidelberg, 2002. 1, 2.4.2

[KWB03] A. G. Kleppe, J. Warmer, and W. Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman
Publishing Co. Inc., 2003. 8

[Lan16] K. Lano. Agile Model-Based Development Using UML-RSDS. CRC Press
LLC, 2016. 1, 2.4.2, 5.2.3, 5.2.5, 5.2.6, 5.2.7, 5.2.11, 7.3

[LBG13] Y. Laurent, R. Bendraou, and M.-P. Gervais. Executing and Debugging
UML Models: An fUML Extension. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing, SAC ’13. ACM, 2013. 10.3,
10.3.1

[Let14a] T. C. Lethbridge. Teaching Modeling using Umple: Principles for the
Development of an Effective Tool. In 27th Conference on Software En-
gineering Education and Training, 2014. 1, 2.4.1

[Let14b] T. C. Lethbridge. Umple: An Open-Source Tool for Easy-To-Use Mod-
eling, Analysis, and Code Generation. In 17th International Conference
on Model Driven Engineering Languages and Systems, 2014. 1, 2.4.1

[LEW+02] M. Loy, R. Eckstein, D. Wood, J. Elliott, and B. Cole. Java Swing.
O’Reilly Media, 2002. 7.3.4

[LL08] X. Li and Z. Liu. Prototyping System Requirements Model. Electronic
Notes in Theoretical Computer Science, 207, 2008. 1, 2.4.1

[LL13] J. Ludewig and H. Lichter. Software Engineering: Grundlagen, Men-
schen, Prozesse, Techniken. dpunkt.verlag GmbH, 3 edition, 2013. 3.1,
3.1.1, 3.1.3

[LLHL05] X. Li, Z. Liu, J. He, and Q. Long. Generating a Prototype from a UML
Model of System Requirements. Springer Berlin Heidelberg, 2005. 1,
2.4.1

244

Bibliography

[LN16] J. Lekane Nimpa. Integration of UML Activity Diagrams @ Runtime
into the Data Explorer. Master’s thesis, Software Engineering, RWTH
Aachen University, 2016. 10, 10.2.6, 10.3.1, 10.3.3, E.3

[LNPR+13] M. Look, A. Navarro Pérez, J. O. Ringert, B. Rumpe, and A. Wortmann.
Black-box Integration of Heterogeneous Modeling Languages for Cyber-
Physical Systems. In B. Combemale, J. De Antoni, and R. B. France,
editors, Proceedings of the 1st Workshop on the Globalization of Modeling
Languages, volume 1102 of CEUR Workshop Proceedings, 2013. 2.2.1

[Loo17] M. Look. Unterstützung modellgetriebener, agiler Entwicklung mehrbe-
nutzerfähiger, ubiquitärer Enterprise Applikationen durch Generatoren.
PhD thesis, RWTH Aachen University, Aachen, 2017. 1, 1.1, 2.1.1, 2.2,
2.2.1, 2.3, 2.4, 3.2.1, 7.6

[LSHA08] S. Link, T. Schuster, P. Hoyer, and S. Abeck. Focusing Graphical User
Interfaces in Model-Driven Software Development. In 1st International
Conference on Advances in Computer-Human Interaction, 2008. 7.3

[LSM+98] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor, S. J.
Turner, and J. F. Farrell. The Inevitability of Failure: The Flawed
Assumption of Security in Modern Computing Environments. In 21st
National Information Systems Security Conference, 1998. 7.4.2

[May14] T. Mayerhofer. Defining executable modeling languages with fUML. PhD
thesis, Technische Universität Wien, Fakultät für Informatik, Institut für
Softwaretechnik und Interaktive Systeme, E188, 2014. 10.3.1

[MBR08] T. Memmel, C. Bock, and H. Reiterer. Joint Working Conferences on
Engineering Interactive Systems, chapter Model-Driven Prototyping for
Corporate Software Specification. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008. 3.1

[MCF03] S. J. Mellor, A. N. Clark, and T. Futagami. Model-driven development
- guest editor’s introduction. Software, IEEE, 20(5), 2003. 2.1

[MCvG05] T. Mens, K. Czarnecki, and P. van Gorp. A Taxonomy of Model Trans-
formations. In Language Engineering for Model-Driven Software De-
velopment. Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum (IBFI), 2005. 2.2.4

[Mel04] S. J. Mellor. MDA Distilled: Principles of Model-driven Architecture.
Addison-Wesley object technology series. Addison-Wesley, 2004. 4.1, 8.2

[MFBC12] P.-A. Muller, F. Fondement, B. Baudry, and B. Combemale. Modeling
Modeling Modeling. Software & Systems Modeling, 11(3), 2012. 2.1

[MFM+13] G. Milosavljević, M. Filipović, V. Marsenić, D. Pejaković, and I. De-

245

Bibliography

janović. Kroki: A Mockup-Based Tool for Participatory Development of
Business Applications. In 12th International Conference on Intelligent
Software Methodologies, Tools and Techniques, 2013. 1, 2.4.2

[MGS+13] P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fernandez, B. Nord-
moen, and M. Fritzsche. Where does model-driven engineering help?
Experiences from three industrial cases. Software & Systems Modeling,
12(3), 2013. 2.1

[Mil07] D. Milicev. On the Semantics of Associations and Association Ends in
UML. IEEE Trans. Software Eng., 33(4), 2007. 5.2.6

[MK09] R. Mohan and V. Kulkarni. Model Driven Development of Graphi-
cal User Interfaces for Enterprise Business Applications - Experience,
Lessons Learnt and a Way Forward. In Model Driven Engineering Lan-
guages and Systems, volume 5795 of LNCS. Springer Berlin Heidelberg,
2009. 1, 2.2.4, 8, 8.1

[MLK12] T. Mayerhofer, P. Langer, and G. Kappel. A Runtime Model for fUML.
In Proceedings of the 7th Workshop on Models@Run.Time, MRT ’12.
ACM, 2012. 10.3

[MP03] G. Milosavljević and B. Perĭsić. Really Rapid Prototyping of Large-Scale
Business Information Systems. In 14th IEEE International Workshop on
Rapid Systems Prototyping, 2003. Proceedings, 2003. 1, 2.4.1, 2.4.2, 3.1.3,
3.3.1, 3.3.1

[MP04] G. Milosavljević and B. Perĭsić. A Method and a Tool for Rapid Proto-
typing of Large-Scale Business Information Systems. Computer Science
and Information Systems, 1(2), 2004. 1, 2.4.1

[MRR11] S. Maoz, J. O. Ringert, and B. Rumpe. 14th International Conference
on Model Driven Engineering Languages and Systems, chapter Semanti-
cally Configurable Consistency Analysis for Class and Object Diagrams.
Springer Berlin Heidelberg, 2011. 3.2.1

[MS92] S. J. Mellor and S. Shlaer. Object Life Cycles: Modeling the World In
States. Prentice Hall, 1992. 4.1.1

[MSCB15] J. M. Mottu, S. S. Simula, J. Cadavid, and B. Baudry. Discovering
model transformation pre-conditions using automatically generated test
models. In 26th International Symposium on Software Reliability Engi-
neering, pages 88–99, 2015. 8.2.3

[MSHL06] G. Monsieur, M. Snoeck, R. Haesen, and W. Lemahieu. Pim to psm
transformations for an event driven architecture in an educational tool.
In European Workshop on Milestones, Models and Mappings for Model-

246

Bibliography

Driven Architecture, 2006. 1, 2.4.1, 5.2.3, 7.2.1, 7.3

[MSN17] P. Mir Seyed Nayari. MontiCore: Efficient Development of Composed
Modeling Language Essentials. PhD thesis, RWTH Aachen University,
Aachen, 2017. 2.2, 2.2.1, 2.1, 2.2.1, 3, 2.2.3, 4, 2.2.3, 5, I

[MSNRR15a] P. Mir Seyed Nazari, A. Roth, and B. Rumpe. An Extended Symbol Ta-
ble Infrastructure to Manage the Composition of Output-Specific Gen-
erator Information. In Proceedings of the Workshop on Domain-Specific
Modeling. ACM, 2015. 1.4, 12.2

[MSNRR15b] P. Mir Seyed Nazari, A. Roth, and B. Rumpe. Management of Guided
and Unguided Code Generator Customizations by Using a Symbol Ta-
ble. In Proceedings of the Workshop on Domain-Specific Modeling. ACM,
2015. 1.4

[MSNRR15c] P. Mir Seyed Nazari, A. Roth, and B. Rumpe. Mixed Generative and
Handcoded Development of Adaptable Data-centric Business Applica-
tions. In Proceedings of the Workshop on Domain-Specific Modeling.
ACM, 2015. 1.4

[Mül17] K. Müller. Modellbasierte Unterstützung der Software Evolution im in-
dustriellen Kontext. PhD thesis, RWTH Aachen University, Aachen,
2017. (to appear). 1.4

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4), 1989. 10.3.1

[MvG06] T. Mens and P. van Gorp. A Taxonomy of Model Transformation. Elec-
tron. Notes Theor. Comput. Sci., 152, 2006. 2.2.4

[MZ04] T. Maier and A. Zündorf. Yet another association implementation. 2nd
International Fujaba Days, 2004. 5.1, 5.2.7

[NPR13] A. Navarro Pérez and B. Rumpe. Modeling Cloud Architectures as
Interactive Systems. In 2nd International Workshop on Model-Driven
Engineering for High Performance and Cloud computing, volume 1118.
CEUR Workshop Proceedings, 2013. 2.1

[NS16] N. Nahar and K. Sakib. ACDPR: A Recommendation System for the
Creational Design Patterns Using Anti-patterns. In 23rd International
Conference on Software Analysis, Evolution, and Reengineering, vol-
ume 4, 2016. 7.2.1

[NZ00] J. Niere and A. Zündorf. Using Fujaba for the Development of Production
Control Systems. Springer Berlin Heidelberg, 2000. 10.3

[OH07] J. Oldevik and Ø. Haugen. Higher-order transformations for product

247

Bibliography

lines. Software Product Line Conference, International, 2007. 8

[Øs07] K. Østerbye. Design of a Class Library for Association Relationships. In
Symposium on Library-Centric Software Design, LCSD ’07. ACM, 2007.
5.2.6

[PADS12] A. Prout, J. M. Atlee, N. A. Day, and P. Shaker. Code generation for a
family of executable modelling notations. Software & Systems Modeling,
11(2), 2012. 8, 10.3

[Par71] D. L. Parnas. Information Distribution Aspects of Design Methodology.
In IFIP Congress (1), 1971. 5.1

[Par72] D. L. Parnas. On the Criteria To Be Used in Decomposing Systems into
Modules. Commun. ACM, 15(12), 1972. 5.1

[PBCN14] J. Porubän, M. Baćıková, S. Chodarev, and M. Nosál. Pragmatic Model-
Driven Software Development from the Viewpoint of a Programmer:
Teaching Experience. In Federated Conference on Computer Science and
Information Systems, 2014. 2.4.2

[PBCN15] J. Porubän, M. Baćıková, S. Chodarev, and M. Nosál. Teaching prag-
matic model-driven software development. Comput. Sci. Inf. Syst., 12(2),
2015. 1, 2.4.2

[PBvdL05] K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., 2005. 3.2.3, 8.3.1

[PMDM11] B. Perisić, G. Milosavljević, I. Dejanović, and B. Milosavljević. UML
Profile for Specifying User Interfaces of Business Applications. Comput.
Sci. Inf. Syst., 8(2), 2011. 2.4.1

[Pre95] W. Pree. Design Patterns for Object-oriented Software Development.
ACM Press/Addison-Wesley Publishing Co., 1995. 3.2.3, 3.2.4, 6.1.1,
6.3, 8.3.1

[Pre00] W. Pree. Building Application Frameworks: Object-Oriented Founda-
tions of Framework Design, chapter Hot-spot-driven framework develop-
ment. Wiley & Sons, 2000. 6.3

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-oriented Modeling and Design. Prentice-Hall Inc., 1991. 4.1, 4.1.1

[RBP+14] E. Richa, E. Borde, L. Pautet, M. Bordin, and J. F. Ruiz. Towards
Testing Model Transformation Chains Using Precondition Construction
in Algebraic Graph Transformation. In Workshop on Analysis of Model
Transformations, 2014. 8.2.3

248

Bibliography

[RDJK15] Q. M. Rajpoot, C. Damsgaard Jensen, and R. Krishnan. Attributes
Enhanced Role-Based Access Control Model. In 12th International Con-
ference on Trust, Privacy and Security in Digital Business, 2015. 7.4.2

[RdS15] A. Rodrigues da Silva. Model-driven engineering: A survey supported by
the unified conceptual model. Computer Languages, Systems & Struc-
tures, 43, 2015. 2.1

[Rei15] D. Reiß. Modellgetriebene generative Entwicklung von Web-
Informationssystemen. PhD thesis, RWTH Aachen University, Aachen,
2015. 1.1, 2.2, 2.4, 8.2.2, 10.1, 10.2.4, 10.3

[REM15] S. Roubi, M. Erramdani, and S. Mbarki. A Model-Driven Approach of
User Interface for MVP Rich Internet Application. 2(2), 2015. 2.4.2

[RGLR13] A. Roth, A. Ganser, H. Lichter, and B. Rumpe. Staged Evolution with
Quality Gates for Model Libraries. In DChanges, volume 1008. CEUR-
WS.org, 2013. 1.4, 6.1.1

[Ros97] K. T. Roshan. Team-based access control (tmac): A primitive for apply-
ing role-based access controls in collaborative environments. In Proceed-
ings of the Second ACM Workshop on Role-based Access Control, RBAC
’97. ACM, 1997. 7.4.2

[RR15] A. Roth and B. Rumpe. Towards Product Lining Model-Driven Devel-
opment Code Generators. In 3rd International Conference on Model-
Driven Engineering and Software Development. Springer International
Publishing, 2015. 1.4, 2.2.4, 1, 8.1, 12.2

[RRRW15] J. O. Ringert, A. Roth, B. Rumpe, and A. Wortmann. Language and
Code Generator Composition for Model-Driven Engineering of Robotics
Component & Connector Systems. Journal of Software Engineering for
Robotics, 6(1), 2015. 1.4, 12.2

[RRW14] J. O. Ringert, B. Rumpe, and A. Wortmann. Architecture and Behav-
ior Modeling of Cyber-Physical Systems with MontiArcAutomaton, vol-
ume 20 of Aachener Informatik-Berichte, Software Engineering. Shaker
Verlag, 2014. 2.1

[Rum12] B. Rumpe. Agile Modellierung mit UML. Springer, 2012. 1, 4.1.1, 4.2.4,
4.2.4, 4.2.4, 4.2.4, 4.2.5, 4.2.5, 5, 5.1, 5.2, 5.2.3, 5.2.5, 5.2.5, 5.2.5, 5.2.6,
5.2.6, 5.2.7, 5.2.11, 5.2.11, 6.2.2, 7.2.1, 7.6, 9.1

[Rum16] B. Rumpe. Modeling with UML. Springer, 2016. 1.1, 4, 4.1, 4.1.1, 4.2.4,
4.2.4, 4.2.4, 4.2.4, 4.2.4, 4.2.5

[RW11] B. Rumpe and I. Weisemöller. A Domain Specific Transformation Lan-
guage. In Workshop on Models and Evolution, volume 11, 2011. 2.2.4

249

Bibliography

[Sar06] S. Sarstedt. Semantic Foundation and Tool Support for Model-Driven
Development with UML 2 Activity Diagrams. PhD thesis, Universität
Ulm, Fakultät für Informatik, Abteilung Programmiermethodik und
Compilerbau, 2006. 3.2.3, 10.1, 10.3

[SBM09] S. Sen, B. Baudry, and J.-M. Mottu. Automatic Model Generation
Strategies for Model Transformation Testing. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009. 8.2.3

[SBPM09] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, 2 edition, 2009.
5.2.3, 5.2.4, 5.2.5, 5.2.6, 5.2.6, 5.2.10, 5.2.11, 9.1.1

[Sch97] H. A. Schmid. Systematic Framework Design by Generalization. Com-
munication ACM, 40(10), 1997. 6.3

[Sch12] M. Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P. Aachener Informatik-Berichte, Software Engineering, Band
11. Shaker Verlag, 2012. 1.1, 2.2, 2.2.4, 2.2.4, 2.2.4, 2.3, 4, 4.1.1, 4.2.1,
4.2.5, 4.2.5, 4.2.5, 4.3.1, 5.2.1, 7.6, 8.4.1, 10.2.1, I

[Sco04] K. Scott. Fast Track UML 2.0. Apresspod Series. Apress, 2004. 4.1.1

[Sel03] B. Selic. The Pragmatics of Model-Driven Development. IEEE Software,
20(5), 2003. 3.2.1, 6.1.1, 9.3, 9.4, 9.5

[SF07] T. Schattkowsky and A. Forster. On the Pitfalls of UML 2 Activity
Modeling. In Proceedings of the International Workshop on Modeling in
Software Engineering. IEEE Computer Society, 2007. 10.3.1

[SG16] S. Seifermann and H. Groenda. Survey on Textual Notations for the
Unified Modeling Language. In 4th International Conference on Model-
Driven Engineering and Software Development. Springer International
Publishing, 2016. 4.2

[SK04] M. Störzer and C. Koppen. PCDiff: Attacking the Fragile Pointcut
Problem. In European Interactive Workshop on Aspects in Software,
2004. 8.3.2

[SLK06] A. L. Santos, A. Lopes, and K. Koskimies. Modularizing Framework Hot
Spots Using Aspects. In XI Jornadas de Ingenieŕıa del Software y Bases
de Datos, 2006. 6.3, 6.3

[Sol10] J. Solano. Exploring How Model Oriented Programming Can Be Extended
to the User Interface Level. PhD thesis, University of Ottawa, Ottawa,
2010. 1, 2.4.2

[Som10] I. Sommerville. Software Engineering. Addison-Wesley, 9 edition, 2010.

250

Bibliography

1, 3.1, 3.1.1, 3.1.3, 3.3.1, 9.1

[SPHV10] A. Schramm, A. Preußner, M. Heinrich, and L. Vogel. Rapid UI De-
velopment for Enterprise Applications: Combining Manual and Model-
driven Techniques. In Proceedings of the 13th International Conference
on Model Driven Engineering Languages and Systems: Part I. Springer-
Verlag, 2010. 2.4.2

[SPJ+05] G. S. Swint, C. Pu, G. Jung, W. Yan, Y. Koh, Q. Wu, C. Consel, A. Sa-
hai, and K. Moriyama. Clearwater: Extensible, Flexible, Modular Code
Generation. In 20th IEEE/ACM international Conference on Automated
software engineering. ACM, 2005. 8.2.2

[SQK06] G. Stevens, G. Quaisser, and M. Klann. End User Development, chapter
Breaking It Up: An Industrial Case Study of Component-Based Tai-
lorable Software Design. Springer Netherlands, 2006. 7.1.1

[SS16] A. Shatnawi and R. Shatnawi. Generating a language-independent
graphical user interfaces from UML models. Int. Arab J. Inf. Technol.,
13(3), 2016. 3.3.1

[Sta09] G. Starke. Effektive Software-Architekturen: ein praktischer Leitfaden.
Hanser, 4 edition, 2009. 2.3.1

[Ste02] P. Stevens. On the interpretation of binary associations in the Unified
Modelling Language. Software and Systems Modeling, 1(1), 2002. 5.1,
5.2.6, 5.2.10

[Ste08] P. Stevens. International Summer School: Generative and Transforma-
tional Techniques in Software Engineering II, chapter A Landscape of
Bidirectional Model Transformations. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008. 2.2.4

[Ste13] F. Steimann. Content over Container: Object-oriented Programming
with Multiplicities. In International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, Onward! 2013.
ACM, 2013. 5.2.6

[Sub15] A. F. Subahi. A Business User Model-Driven Engineering Method for
Developing Information Systems. PhD thesis, University of Sheffield,
Sheffield, UK, 2015. 1, 2.4.2

[SVC06] T. Stahl, M. Voelter, and K. Czarnecki. Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons,
2006. 1, 1.2, 2.1, 3.2.1, 3.3.1, 6, 6.1, 6.1.1, (i), 6.1.1, 6.2, 7.1.3, 8.2.4

[TLS13] B. Tang, Q. Li, and R. Sandhu. A multi-tenant RBAC model for col-
laborative cloud services. In 11th Annual International Conference on

251

Bibliography

Privacy, Security and Trust (PST), 2013. 7.4.2

[TM05] D. Travkin and M. Meyer. Generation of Type Safe Association Im-
plementations. In 3rd International Fujaba Days, volume tr-ri-05-259 of
Technical Report. University of Paderborn, 2005. 5.1, 5.2.7, 5.2.9

[TS98] R. K. Thomas and R. S. Sandhu. Task-Based Authorization Controls
(TBAC): A Family of Models for Active and Enterprise-Oriented Au-
torization Management. In 11th International Conference on Database
Securty XI: Status and Prospects. Chapman & Hall, Ltd., 1998. 7.4.2

[TSL15] B. Tang, R. Sandhu, and Q. Li. Multi-tenancy Authorization Models for
Collaborative Cloud Services. Concurr. Comput. : Pract. Exper., 27(11),
2015. 7.4.2

[UN09] M. Usman and A. Nadeem. Automatic Generation of Java Code from
UML Diagrams using UJECTOR. International Journal of Software
Engineering and Its Applications, 3(2), 2009. 10.3

[Vö11] S. Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen.
Aachener Informatik-Berichte, Software Engineering Band 9. 2011.
Shaker Verlag, 2011. 2.2

[Van05] J. Vanderdonckt. A MDA-Compliant Environment for Developing User
Interfaces of Information Systems. Springer Berlin Heidelberg, 2005. 1

[VBD+13] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L.
Kats, E. Visser, and G. Wachsmuth. DSL Engineering - Designing,
Implementing and Using Domain-Specific Languages. dslbook.org, 2013.
2.1.1, 2.2.4

[VG07] M. Völter and I. Groher. Handling Variability in Model Transformations
and Generators. In 7th Workshop on Domain-Specific Modeling, 2007. 8

[Vis02] E. Visser. Meta-programming with Concrete Object Syntax. In Gener-
ative Programming and Component Engineering, volume 2487 of LNCS.
Springer Berlin Heidelberg, 2002. 2.2.4

[vL00] A. van Lamsweerde. Requirements Engineering in the Year 00: A Re-
search Perspective. In 22nd International Conference on Software Engi-
neering. ACM, 2000. 1

[Vli98] J. Vlissides. Pattern Hatching: Design Patterns Applied. Addison-
Wesley, 1998. 1.2, 6.2

[Wac09] G. Wachsmuth. A Formal Way from Text to Code Templates. In Fun-
damental Approaches to Software Engineering, volume 5503 of LNCS.
Springer Berlin Heidelberg, 2009. 2.2.4

252

Bibliography

[Wei12] I. Weisemöller. Generierung domänenspezifischer Transformation-
ssprachen. PhD thesis, RWTH Aachen University, Aachen, 2012. ISBN
978-3-8440-1191-3, Aachener Informatik-Berichte, Software Engineering
Band 12, Shaker Verlag. 2.2.4, 2.2.4, 8.2.2, 12.2

[WN94] K. Walden and J.-M. Nerson. Seamless Object-oriented Software Archi-
tecture: Analysis and Design of Reliable Systems. Prentice-Hall, 1994.
4.1.1

[Wor16] A. Wortmann. An Extensible Component & Connector Architecture De-
scription Infrastructure for Multi-Platform Modeling. PhD thesis, RWTH
Aachen University, Aachen, 2016. 2, 2.1, 2.2.1, 3.1.3

[WS07] K. Wang and W. Shen. Runtime Checking of UML Association-Related
Constraints. In Fifth International Workshop on Dynamic Analysis,
2007. 5.2.6

[www15a] Freemarker template language. http://www.freemarker.org/, Oc-
tober 2015. 2.2

[www15b] OMG UML Specification. http://www.omg.org/spec/UML/2.5/,
October 2015. 1, 8.2.1, 10.2.3, 10.2.4, 10.2.5, 10.3.1

[www15c] openarchitectureware. https://web.archive.org/web/
20140225123932/http://www.openarchitectureware.org/
index.php, October 2015. 8.2

[www16a] Acceleo User Guide. http://www.acceleo.org/doc/obeo/en/
acceleo-2.6-user-guide.pdf, 2016. 2.2.4

[www16b] AngularJS Framework. https://angularjs.org/, July 2016. 11.2.1

[www16c] Apache maven. https://maven.apache.org/, December 2016. 2

[www16d] Apache Shiro. http://shiro.apache.org/, April 2016. 7.4.2

[www16e] Apache Tika Framework. https://tika.apache.org/, July 2016.
1

[www16f] Google Android. https://www.android.com/, May 2016. 11.1

[www16g] Metaborg Spoofax. http://www.metaborg.org/spoofax/, April
2016. 2.2.4

[www16h] Omg fuml specification. http://www.omg.org/spec/FUML/, De-
cember 2016. 10.3.1

[www16i] Oracle glassfish application server. https://glassfish.java.
net/, February 2016. 7.4

[www16j] PlantUML. http://plantuml.com/, July 2016. 10.2.4

253

http://www.freemarker.org/
http://www.omg.org/spec/UML/2.5/
https://web.archive.org/web/20140225123932/http://www.openarchitectureware.org/index.php
https://web.archive.org/web/20140225123932/http://www.openarchitectureware.org/index.php
https://web.archive.org/web/20140225123932/http://www.openarchitectureware.org/index.php
http://www.acceleo.org/doc/obeo/en/acceleo-2.6-user-guide.pdf
http://www.acceleo.org/doc/obeo/en/acceleo-2.6-user-guide.pdf
https://angularjs.org/
https://maven.apache.org/
http://shiro.apache.org/
https://tika.apache.org/
http://www.metaborg.org/spoofax/
http://www.omg.org/spec/FUML/
https://glassfish.java.net/
https://glassfish.java.net/
 http://plantuml.com/

Bibliography

[www16k] PostgreSQL. http://www.postgresql.org/, February 2016. 7.4

[www16l] SeaweedFS Scalable Distributed File System. https://github.com/
chrislusf/seaweedfs, July 2016. 11.2.1

[www16m] Spark Framework. http://sparkjava.com/, July 2016. 11.1.1

[www16n] Spring Boot Framework. http://projects.spring.io/spring-
boot/, July 2016. 11.2.1

[YT05] E. Yuan and J. Tong. Attributed Based Access Control (ABAC) for Web
Services. In International Conference on Web Services. IEEE Computer
Society, 2005. 7.4.2

[ZR11a] S. Zschaler and A. Rashid. Symmetric Language-Aware Aspects for
Modular Code Generators. Technical Report TR-11-01, King’s College,
Department of Informatics, 2011. 8, 8.3.2

[ZR11b] S. Zschaler and A. Rashid. Towards Modular Code Generators Using
Symmetric Language-aware Aspects. In 1st International Workshop on
Free Composition. ACM, 2011. 1.2, 8, 8.1, 8.3.2

254

http://www.postgresql.org/
https://github.com/chrislusf/seaweedfs
https://github.com/chrislusf/seaweedfs
http://sparkjava.com/
http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-boot/

Appendix A

Index of Abbreviations

API Application Programming Interface

AST Abstract Syntax Tree

CD4A UML Class Diagram for Analysis

CD4Code UML Class Diagram for Code

CRUD Create Read Update Delete

DAO Data Access Object

DSL Domain-specific Language

DSML Domain-specific Modeling Language

EBNF Extended Backus-Naur Form

EJB Enterprise Java Beans

EMF Eclipse Modeling Framework

GPL General Purpose Programming Language

GPML General Purpose Modeling Language

GUI Graphical User Interface

HCI Human Computer Interface

HTML Hypertext Markup Language

IR Intermediate Representation

InfoSys Information System

J2EE Java 2 Platform Enterprise Edition

JDK Java Development Kit

LHS Left-Hand Side

LoC Lines of Code

MC MontiCore

ML Modeling Language

MBD Model-Based Development

255

Appendix A Index of Abbreviations

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

MDP Model-Driven Prototyping

MontiDEx MontiCore Data Explorer

MVP Model-View-Presenter

OOA Object-Oriented Analysis

PIM Platform Independent Model

POJO Plain-Old-Java-Object

PSM Platform Specific Model

RTE Run-time Environment

RTF Rich Text Format

REST Representational State Transfer

RHS Right-Hand Side

SC UML Statechart

SD UML Sequence Diagram

ST Symbol Table

UI User Interface

UML Unified Modeling Language

UML AD UML Activity Diagram

UML CD UML Class Diagram

UML OD UML Object Diagram

UML OCL UML Object Constraint Language

UML/P CD UML/P Class Diagram

UML/P OCL UML/P Object Constraint Language

UML/P OD UML/P Object Diagram

YAML Yet Another Markup Language

256

Appendix B

Diagram and Listing Tags

Tag Description

AD Activity Diagram

ADJava Activity Diagram with Java

AST-CD Abstract Syntax Tree Class Diagram

AST-OD Abstract Syntax Tree Object Diagram

CD Class Diagram

CD4A Class Diagram for Analysis Diagram

CpD Component Diagram

CD4Code Class Diagram for Code

Groovy Groovy Script

Java Java Source Code

MCG MontiCore Grammar

MCL MontiCore Languages

SC Statechart Diagram

SD Sequence Diagram

Table B.1: Explanation of the used tags in listings and figures.

257

Appendix B Diagram and Listing Tags

Stereotype Description

«EXT» External elements

«GEN» Generated elements

«HC» Handcoded elements

«RTE» Run-time Environment elements

«RT-IF» Run-time Infrastructure elements

Table B.2: Explanation of the used stereotypes in listings and tags.

258

Appendix C

Grammars

In this chapter, the grammars for the developed DSLs are presented. In particular, first
the CD4Code grammar is introduced in Section C.1. Note that the CD4Code grammar
is the same used for CD4A. However, to realize CD4A additional context conditions
are provided, as shown in Section E.1. Afterwards, the AD grammar is introduced
in Section C.2 and the ADJava with embedded Java is presented in Section C.3.

C.1 CD4Code Grammar

MCG1 package de.monticore.umlcd4a;
2

3 /* MCG for CD 4 Analysis, Version Feb. 01st, 2016 */
4 grammar CD4Analysis extends de.monticore.types.Types {
5

6 CDCompilationUnit = ("package" package:(Name& || ".")+ ";")?
7 (ImportStatement)* CDDefinition;
8

9 CDDefinition = "classdiagram" Name "{"
10 (cDClasses:CDClass | CDInterface | CDEnum | CDAssociation)*
11 "}";
12

13 CDClass astimplements ASTCDType = Modifier? "class" Name
14 ("extends" superclass:ReferenceType)?
15 ("implements" interfaces:(ReferenceType || ",")+)?
16 ("{" (CDAttribute | CDConstructor | CDMethod)* "}"
17 | ";");
18

19 CDInterface astimplements ASTCDType = Modifier? "interface" Name
20 ("extends" interfaces:(ReferenceType || ",")+)?
21 ("{" (CDAttribute | CDMethod)* "}" | ";");
22

23 CDEnum astimplements ASTCDType = Modifier? "enum" Name

259

Appendix C Grammars

24 ("implements" interfaces:(ReferenceType || ",")+)?
25 ("{"
26 (CDEnumConstant || ",")* ";" (CDConstructor | CDMethod)*
27 "}"
28 | ";");
29

30 CDAttribute = Modifier? Type Name ("=" Value)? ";";
31

32 CDEnumConstant = Name ("("
33 cDEnumParameters:(CDEnumParameter || ",")+ ")")?;
34

35 CDEnumParameter = Value;
36

37 CDConstructor = Modifier Name "(" (CDParameter || ",")* ")"
38 ("throws" exceptions:(QualifiedName || ",")+)? ";";
39

40 CDMethod = Modifier ReturnType Name "("
41 (CDParameter || ",")* ")"
42 ("throws" exceptions:(QualifiedName || ",")+)? ";";
43

44 CDParameter = Type (Ellipsis:["..."])? Name;
45

46 CDAssociation = Stereotype?
47 (["association"] | ["composition"])
48 ([Derived:"/"])? Name?
49 leftModifier:Modifier?
50 leftCardinality:Cardinality?
51 leftReferenceName:QualifiedName
52 leftQualifier:CDQualifier?
53 ("(" leftRole:Name ")")?
54 (leftToRight:["->"]
55 | rightToLeft:["<-"]
56 | bidirectional:["<->"]
57 | unspecified:["--"])
58 ("(" rightRole:Name ")")?
59 rightQualifier:CDQualifier?
60 rightReferenceName:QualifiedName
61 rightCardinality:Cardinality?
62 rightModifier:Modifier? ";" ;
63

64 Modifier = Stereotype?
65 (["abstract"] | ["final"] | ["static"]
66 | ["private"] | [private:"-"]
67 | ["protected"] | [protected:"#"]
68 | ["public"] | [public:"+"]
69 | ["derived"] | [derived:"/"])*;

260

C.2 Activity Diagram Language Grammar

70

71 Cardinality = many:["[*]"] | one:["[1]"]
72 | oneToMany:["[1..*]"] | optional:["[0..1]"];
73

74 CDQualifier = "[[" Name "]]" | "[" Type "]";
75

76 Stereotype = "<<" values:(StereoValue || ",")+ ">" ">"
77 // It is not possible to define ">>".
78 {((_input.LT(-2).getLine()==_input.LT(-1).getLine())
79 && (_input.LT(-1).getCharPositionInLine() ==
80 _input.LT(-2).getCharPositionInLine()+1))}?;
81

82 StereoValue = Name ("=" value:String)?;
83

84 Value = SignedLiteral;
85 }

Listing C.1: The complete grammar of CD4Code, which is used for code generation,
including methods, constructors, and modifiers.

C.2 Activity Diagram Language Grammar

MCG1 package de.monticore.umlad;
2

3 grammar ActivityGrammar extends de.monticore.types.Types{
4

5 interface LeftEdgeSide;
6 interface RightEdgeSide;
7 interface EdgeElement extends LeftEdgeSide, RightEdgeSide;
8

9 external Body;
10 external BooleanExpression;
11

12 Names = values:Name ("," values:Name)*;
13

14 VariableDeclaration = type:SimpleReferenceType name:Name;
15

16 InputParameters = "(" declarations:VariableDeclaration
17 ("," declarations:VariableDeclaration)* ")";
18

19 OutputParameters = ":" declarations:VariableDeclaration
20 ("," declarations:VariableDeclaration)* ;
21

261

Appendix C Grammars

22 Guard = "[" ["else"] "]" | "[" BooleanExpression "]" ;
23

24 ADCompilationUnit = PackageStatement? ImportStatement*
25 ActivityDefinition;
26

27 PackageStatement = "package" QualifiedName ";" ;
28

29 ActivityDefinition = ("[" precondition:BooleanExpression "]")?
30 "activity" name:Name InputParameters? OutputParameters? "{"
31 AutoConnectMode?
32 (roles:RoleDeclaration
33 | objects:ObjectNodeDeclaration
34 | simpleActions:SimpleActionDeclaration
35 | callActions: CallBehaviorActionDeclaration
36 | decisionNodes: DecisionNodeDeclaration
37 | mergeNodes : MergeNodeDeclaration
38 | forkNodes : ForkNodeDeclaration
39 | joinNodes : JoinNodeDeclaration
40 | edges:ActivityEdgeSequence
41)*
42 "}"
43 ("[[" postcondition:BooleanExpression "]]")?;
44

45 AutoConnectMode = "autoconnect" (["type"]| ["pin"]) ";";
46

47 RoleDeclaration = "role" name:Name "{" actionNames:Names "}" ;
48

49 ObjectNodeDeclaration =
50 "data" type:SimpleReferenceType names:Names ";" ;
51

52 ActionSignature =
53 "action" name:Name InputParameters? OutputParameters? ;
54

55 SimpleActionDeclaration =
56 ("[" localPrecondition:BooleanExpression "]")?
57 ActionSignature
58 (actionBody:Body | ";")
59 ("[[" localPostcondition:BooleanExpression "]]")?;
60

61 CallBehaviorActionDeclaration = ActionSignature "{"
62 "execute" activityName:QualifiedName
63 ("("adInput:Names")")?
64 ("." adOutput:Names "->" actionOutput:Names)? ";"
65 "}";
66

67 DecisionNodeDeclaration = "decision" names:Names ";" ;

262

C.2 Activity Diagram Language Grammar

68

69 MergeNodeDeclaration = "merge" names:Names ";" ;
70

71 ForkNodeDeclaration = "fork" names:Names ";" ;
72

73 JoinNodeDeclaration = "join" names:Names ";" ;
74

75 ActivityEdgeSequence = sequence:EdgeSequence ";" ;
76

77 EdgeSequence = leftSide:LeftEdgeSide "->"
78 (elements:EdgeElement "->")*
79 rightSide:RightEdgeSide ;
80

81 AtomicElement implements EdgeElement = Guard?
82 (["initial"]
83 | ["final"]
84 | ["flowfinal"]
85 | Names
86 | nodeName:Name "." nodeParameters:Names);
87

88 CompositeElement implements EdgeElement =
89 AtomicElement ("," EdgeElement);
90

91 SequenceElement implements EdgeElement =
92 Guard? "(" EdgeSequence ")" ("," EdgeElement)? ;
93

94 ForkJoinNotation implements LeftEdgeSide, RightEdgeSide =
95 elements:EdgeElement ("||" elements:EdgeElement)+ Guard?;
96

97 EnclosedForkJoinNotation implements EdgeElement =
98 Guard? "(" ForkJoinNotation ")";
99

100 DecisionMergeNotation implements LeftEdgeSide, RightEdgeSide =
101 elements:EdgeElement ("|" elements:EdgeElement)+ Guard?;
102

103 EnclosedDecisionMergeNotation implements EdgeElement =
104 Guard? "(" DecisionMergeNotation ")";
105 }

Listing C.2: The full grammar of the activity diagram modeling language to define
workflows.

263

Appendix C Grammars

C.3 Activity Diagram Language Grammar with Embedded Java

MCG1 package de.monticore.umlad;
2

3 grammar ActivityGrammarWithJava
4 extends de.monticore.umlad.ActivityGrammar,
5 de.monticore.java.JavaDSL {
6

7 Body = MethodBody;
8 BooleanExpression = Expression;
9 }

Listing C.3: The extended grammar of the activity diagram modeling language with
embedded Java.

264

Appendix D

Examples

In this chapter, the CD4A and ADJava models used throughout this thesis are presented.
In particular, the lightweight banking system used to introduce the CD4A ML is shown
in Section D.1. The ADJava model used to introduce the ADJava language is presented
in Section D.5. Finally, the CD4A models for the case examples are shown in Section D.2,
Section D.3, and Section D.4.

D.1 CD4A Model for Banking System

CD4A1 package dex;
2

3 import java.util.Date;
4

5 classdiagram BankingSystem {
6

7 class Customer {
8 String firstName;
9 String lastName;

10 Date birthdate;
11 String city;
12 String street;
13 String country;
14 }
15

16 abstract class Account {
17 long number;
18 int balance = 5;
19 int overdraft;
20 }
21

22 class CheckingAccount extends Account {
23 double fixedInterestRate;

265

Appendix D Examples

24 }
25

26 class SavingsAccount extends Account {
27 double effectiveInterestRate;
28 }
29

30 interface Employee;
31

32 class Consultant implements Employee {
33 / String personelId;
34 }
35

36 class Transaction {
37 String reference;
38 Optional<Date> executionDate;
39 int value;
40 /boolean completed;
41 }
42

43 class Deposit {
44 int balance;
45 }
46

47 class Share {
48 String name;
49 int value;
50 }
51

52 enum TransactionType {
53 PERIODIC,
54 ONE_TIME;
55 }
56

57 association [1] Account <-> [[number]] Consultant;
58 association [1] Account (from) <-> (incoming) Transaction;
59 association [1] Account (to) <-> (outgoing) Transaction;
60 association [*] Account <-> Customer [1];
61 association [1] Customer <-> Deposit [0..1];
62 association [1] Deposit <-> Share [*] <<ordered>>;
63 association type Transaction -> TransactionType [1];
64 association / [*] Customer <-> Transaction [*];
65 }

Listing D.1: The complete CD4A model for the simplified banking system example
in Figure 4.1

266

D.2 CD4A Model for the POI Management System

D.2 CD4A Model for the POI Management System

CD4A1 classdiagram POISystem {
2

3 class POI {
4 double longitude;
5 double latitude;
6 Date created;
7 Optional<String> description;
8 Optional<String> photopath;
9 Optional<String> deprecated;

10 }
11

12 enum POIType {
13 RADAR, TRAFFIC_JAM, COPNSTRUCTION, ACCIDENT, GENERAL;
14 }
15

16 enum Rating {
17 VERY_BAD, BAD, NEUTRAL, GOOD, VERY_GOOD;
18 }
19

20 class POIRating {
21 Date closed;
22 }
23

24 class User {
25 String name;
26 Date registered;
27 Date lastLogin;
28 }
29

30 association [1] User <-> POIRating;
31 association POIRating <-> POI [1];
32 association POIRating -> Rating [1];
33 association / userrating User -> Rating [1];
34 association POI -> POIType [1];
35 }

Listing D.2: The CD4A model for the POI Management System.

267

Appendix D Examples

D.3 CD4A Model for the Audio and Video Streaming

CD4A1 classdiagram DexflixSystem {
2 class Account {
3 String loginName;
4 boolean blocked;
5 boolean upload;
6 }
7

8 enum Role {
9 ADMIN, USER;

10 }
11

12 class Profile {
13 String displayName;
14 Date birthDate;
15 /int age;
16 }
17

18 class Rating {
19 int ratingValue;
20 }
21

22 class Comment {
23 String comment;
24 Date creation;
25 }
26

27 enum Gender {
28 MALE, FEMALE;
29 }
30

31 abstract class DexFile {
32 boolean deleted;
33 /double rating;
34 }
35

36 class WatchList {
37 String name;
38 }
39

40 class WatchListElement {
41 int order;
42 }

268

D.3 CD4A Model for the Audio and Video Streaming

43

44 class History;
45

46 class ViewState {
47 Date startViewing;
48 Date stopViewing;
49 int pausingSec;
50 int views;
51 }
52

53 class SearchTag {
54 String tag;
55 }
56

57 enum FSK {
58 FSK0, FSK6, FSK12, FSK16, FSK18;
59 }
60

61 class DexFileMetaData {
62 String title;
63 String description;
64 }
65

66 enum Visibility {
67 PRIVATE, PUBLIC;
68 }
69

70 class DexFileContainer extends DexFile {
71 /int consumed;
72 }
73

74 class DexFileElement extends DexFile {
75 int consumed;
76 String url;
77 double duration;
78 boolean over;
79 }
80

81 enum MediaType {
82 VIDEO_MP4, VIDEO_WEBM, VIDEO_OGG,
83 AUDIO_MP3, AUDIO_OGG, AUDIO_WAV,
84 IMAGE_JPEG, IMAGE_PNG, IMAGE_GIF;
85 }
86

87 association Account -> Role [1];
88 association [1] Account <-> Profile [0..1];

269

Appendix D Examples

89 association [0..1] Profile <-> WatchList [0..1];
90 association [0..1] Profile <-> History [0..1];
91 association Profile -> Gender [1];
92 association [1] Profile <-> Rating;
93 association [0..1] Profile <-> Comment <<ordered>>;
94 association profilePicture [1] Profile <-> DexFile [0..1];
95 association Rating <-> DexFile [1];
96 association [0..1] DexFile <-> Comment <<ordered>>;
97 association [0..1] WatchList <-> WatchListElement;
98 association WatchListElement -> DexFile [1];
99 association [1] History <-> ViewState <<ordered>>;

100 association ViewState -> DexFile [0..1];
101 association SearchTag <-> DexFile;
102 association DexFile <-> (coverPicture) DexFileMetaData [0..1];
103 association metaData DexFile <-> DexFileMetaData [0..1];
104 association DexFileMetaData -> Visibility [1];
105 association DexFileMetaData -> FSK [1];
106 association DexFileElement -> MediaType [1];
107 association [1] DexFileContainer <->
108 DexFileElement [1..*] <<ordered>>;
109 }

Listing D.3: The CD4A model for the audio and video streaming platform

D.4 CD4A Model for the Examination Regulation System

CD4A1 classdiagram ExaminationRegulationSystem {
2 class ExaminationRegulation {
3 String reference;
4 String title;
5 String shortDescription;
6 String prefix;
7 String postfix;
8 String linkToDokument;
9 String linkToInformation;

10 Date startDate;
11 Date examinationRevision;
12 }
13

14 enum ERStatus {
15 ER_STATUS_ACTIVE,
16 ER_STATUS_RETIRED,
17 ER_STATUS_IN_CHECK;

270

D.4 CD4A Model for the Examination Regulation System

18 }
19

20 class Modulearea {
21 int moduleareaID;
22 String title;
23 String shortDescription;
24 }
25

26 class Module {
27 String reference;
28 String title;
29 String shortDescription;
30 String linkToInformation;
31 int durrationInSemesters;
32 int semester;
33 int cycleSemester;
34 String cycleStartSemester;
35 String content;
36 String educationalObjective;
37 String studyAdvisor;
38 String language;
39 String literatur;
40 String grading;
41 }
42

43 class ExaminationPerformance {
44 String title;
45 String shortDescription;
46 String content;
47 String infoLink;
48 int semester;
49 float creditWorkload;
50 float creditBonus;
51 float contactTime;
52 float selfStudyTime;
53 String reference;
54

55 boolean isModularPerformance;
56 }
57

58 enum SpecialRegistrationType {
59 REGISTRATION_WITH_WRITTEN_APPLIKATION;
60 }
61

62 class Account {
63 String login;

271

Appendix D Examples

64 String emailAddress;
65 }
66

67 class Student extends Account {
68 int studentID;
69 int alter;
70 String geschlecht;
71 int cp;
72 }
73

74 class StaffMember extends Account {
75 int staffMemberID;
76 }
77

78 enum Verankerung {
79 SEMESTERVARIABLE_WAHLPFLICHTLEISTUNG,
80 SEMESTERFIXIERTE_PFLICHTLEISTUNG,
81 SEMESTERVARIABLE_PFLICHTLEISTUNG,
82 NICHT_VORHANDEN;
83 }
84

85 class ExamAttempt {
86 Date examDate;
87 }
88

89 enum Grade {
90 GRADE_1_0, GRADE_1_3, GRADE_1_7,
91 GRADE_2_0, GRADE_2_3, GRADE_2_7,
92 GRADE_3_0, GRADE_3_3, GRADE_3_7,
93 GRADE_4_0,
94 GRADE_5_0,
95 GRADE_PLUS,
96 GRADE_MINUS;
97 }
98

99 class ERDiff {
100 String fields;
101 String oldValue;
102 String newValue;
103 Date erRevision;
104 }
105

106 enum ERDiffStatus {
107 WAITING_FOR_REVIEW,
108 REVIEWED;
109 }

272

D.4 CD4A Model for the Examination Regulation System

110

111 class Event {
112 String description;
113 Date firstStart;
114 int duration;
115 int count;
116 int daysToNext;
117 }
118

119 class EPRegistration {
120 Date registrationDate;
121 Optional<String> registrationText;
122 }
123

124 enum RegistrationStatus {
125 REGISTRATION_POSITIV,
126 REGISTRATION_NEGATIV,
127 REGISTRATION_IN_CHECK;
128 }
129

130 class Notification {
131 Date createdAt;
132 String text;
133 boolean read;
134 }
135

136 class Matriculation {
137 String semester;
138 }
139

140 enum MatriculationStatus {
141 MATRICULATED,EXMATRICULATED,APPLYED;
142 }
143

144 /*Matriculation*/
145 association Matriculation -> MatriculationStatus [1];
146 association [*]Matriculation <-> Student [1];
147 association [*]Matriculation <-> ExaminationRegulation [1];
148

149 /*Notification*/
150 association [*] Notification -> Account [1];
151 association [*] Notification -> ERDiff [*];
152

153 /*EPRegistration*/
154 association EPRegistration -> RegistrationStatus [1];
155 association [*] EPRegistration <-> ExaminationPerformance [1];

273

Appendix D Examples

156 association [*] EPRegistration <-> Student [1];
157

158 /*Event*/
159 association /Event -> Date[*];
160 association [*]Event <-> ExaminationPerformance [*];
161

162 /*Module and Modulearea*/
163 association [0..1] Module (prerequisite) <->
164 (follows) Module [*];
165 association [*] Module (manages_Module) <->
166 (managedBy) StaffMember [*];
167 association [0..1] Modulearea (part_of) <->
168 (contains) Module [*];
169 association [0..1] Module (assigned) <->
170 (uses) ExaminationPerformance [*];
171 association [0..1] Module (modulePerformanceOf) <->
172 (modulePerformance)
173 ExaminationPerformance [0..1];
174

175 /*ExaminationRegulation*/
176 association ExaminationRegulation -> ERStatus[1];
177 association [0..1] ExaminationRegulation (predecessor) <->
178 (successor) ExaminationRegulation [0..1];
179 association [0..1] ExaminationRegulation <-> Modulearea [*];
180 association [0..1] ExaminationRegulation <->
181 (changesInRevisions) ERDiff[*];
182

183 /*Person,Account,Staff,...*/
184 association [*] Student (usedBy) <->
185 (studiesWith) ExaminationRegulation [*];
186 association [*] StaffMember (managedBy)<->
187 (managesER) ExaminationRegulation [*];
188 association /ERDiff -> StaffMember [*];
189 association [*] Student <-> Module [*];
190 association [*] Student <-> Modulearea [*];
191

192 /*ERDiff*/
193 association ERDiff -> ERDiffStatus [1];
194

195 /*ExaminationPerformance*/
196 association ExaminationPerformance -> Verankerung [1];
197 association ExaminationPerformance ->
198 SpecialRegistrationType [0..1];
199

200 /*ExamAttempt*/
201 association [*] ExamAttempt <-> Student [1];

274

D.5 Activity Diagram for Transaction Submission

202 association [*] ExamAttempt <-> ExaminationPerformance [1];
203 association ExamAttempt -> Grade [1];
204 }

Listing D.4: The CD4A model for the Examination Regulation System

D.5 Activity Diagram for Transaction Submission

ADJava1 package dex.activities;
2

3 import dex.submission.Transaction;
4 import dex.submission.Customer;
5

6 activity SubmitTransaction(Customer c) {
7

8 role customer {
9 CreateTransaction;

10 }
11

12 role accountant {
13 ValidateCredit,
14 ValidateTransaction,
15 NotifyCustomer,
16 ProcessTransaction,
17 FraudCheck,
18 FinalizeTransaction;
19 }
20

21 merge m1;
22 join j1;
23

24 // actions
25 action CreateTransaction(Customer t) : Transaction o;
26

27 [t != null]
28 action ValidateCredit(Transaction t) : Transaction o;
29 [[o != null]]
30

31 [t != null]
32 action ValidateTransaction(Transaction t) : Transaction o;
33

34 action NotifyCustomer(Transaction t);
35

275

Appendix D Examples

36 action ProcessTransaction(Transaction t) : Transaction o;
37

38 action FraudCheck(Transaction t) : Transaction o;
39

40 action FinalizeTransaction(Transaction t);
41

42 // control and object flow
43 c -> CreateTransaction.t;
44 initial -> CreateTransaction;
45 CreateTransaction.o -> ValidateCredit.t;
46

47 ValidateCredit.o ->
48 [o.getFrom().getCustomer().getCredit() > t.getCredit()]

ValidateTransaction.t
49 | [else] m1;
50

51 m1 -> NotifyCustomer -> final;
52

53 ValidateTransaction.t ->
54 [isValid] (ProcessTransaction.t || FraudCheck.t) -> j1
55 | [else] m1;
56

57 j1 -> [!valid] m1
58 | [else] FinalizeTransaction.t;
59

60 FinalizeTransaction -> final;
61 }

Listing D.5: The ADJava model showing the textual version of Figure 10.1

276

Appendix E

Context Conditions

This chapter lists all context conditions for the CD4A ML in Section E.1, CD4Code ML
in Section E.2, and AD ML in Section E.3.

E.1 CD4A Context Conditions

ID 0xC4A01

Name DiagramNameUpperCase

Severity Error

Description First character of the diagram name must be upper-case.

ID 0xC4A04

Name UniqueTypeNames

Severity Error

Description The name is used several times. Classes, interfaces and enumera-
tions may not use the same names.

ID 0xC4A05

Name TypeNameUpperCase

Severity Error

Description The first character of the type name must be upper-case.

ID 0xC4A06

Name EnumConstantsUnique

Severity Error

Description Duplicate enumeration constant names.

ID 0xC4A07

Name ExtendsNotCyclic

Severity Error

277

Appendix E Context Conditions

Description An inheritance cycle has been introduced by an extends or
implements construct. Inheritance may not be cyclic.

ID 0xC4A08

Name ClassExtendsOnlyClasses

Severity Error

Description A class may only extend classes.

ID 0xC4A09

Name InterfaceExtendsOnlyInterfaces

Severity Error

Description An interface may only extend interfaces.

ID 0xC4A11

Name AttributeTypeCompatible

Severity Error

Description The value assignment for an attribute is not compatible to its type.

ID 0xC4A12

Name AttributeNameLowerCase

Severity Error

Description An attribute must start in lower-case.

ID 0xC4A13

Name AttributeOverriddenTypeMatch

Severity Error

Description A class overrides an attribute of another class with a different type.

ID 0xC4A14

Name AttributeTypeExists

Severity Error

Description The type of an attribute is unknown.

ID 0xC4A15

Name AttributeUniqueInClassCoco

Severity Error

Description Attributes defined multiple times in class.

ID 0xC4A16

Name AssociationNameLowerCase

Severity Error

Description An association name must start in lower-case.

278

E.1 CD4A Context Conditions

ID 0xC4A17

Name AssociationRoleNameLowerCase

Severity Error

Description A role name of an association must start with a lower-case.

ID 0xC4A18

Name CompositionCardinalityValid

Severity Error

Description A composition has an invalid cardinality that is greater than one.

ID 0xC4A19

Name AssociationQualifierTypeExists

Severity Error

Description Only external data types and types defined within the class dia-
gram may be used.

ID 0xC4A20

Name AssociationQualifierAttributeExistsInTarget

Severity Error

Description If the qualifier is an attribute qualifier, then it has to exist in the
referenced type.

ID 0xC4A21

Name AssociationSourceNotEnum

Severity Error

Description An association is invalid, because an association’s source may not
be an Enumeration.

ID 0xC4A22

Name AssociationSourceTypeNotExternal

Severity Error

Description An association’s source may is an external type.

ID 0xC4A24

Name AssociationOrderedCardinalityGreaterOne

Severity Error

Description An association is invalid, because ordered associations are forbid-
den for a cardinality lower or equal to 1.

ID 0xC4A25

Name AssociationNameNoConflictWithAttribute

279

Appendix E Context Conditions

Severity Error

Description An association conflicts with an attribute, i.e., they have the same
name.

ID 0xC4A10

Name ClassImplementOnlyInterfaces

Severity Error

Description A class may only implement interfaces.

ID 0xC4A26

Name AssociationNameUnique

Severity Error

Description An association is defined multiple times.

ID 0xC4A27

Name AssociationRoleNameNoConflictWithAttribute

Severity Error

Description The role name of an association conflicts with an attribute’s name.

ID 0xC4A28

Name AssociationRoleNameNoConflictWithOtherRoleNames

Severity Error

Description A role name of an association conflicts with a role name of another
association.

ID 0xC4A29

Name GenericsNotNested

Severity Error

Description Generic types may not be nested.

ID 0xC4A34

Name TypeNoInitializationOfDerivedAttribute

Severity Error

Description Derived attributes may not be initialized.

ID 0xC4A35

Name AssociationQualifierOnCorrectSide

Severity Error

Description The qualifier of an qualified association is at an invalid position
regarding the association’s direction.

ID 0xC4A36

Name AssociationSrcAndTargetTypeExistChecker

280

E.1 CD4A Context Conditions

Severity Error

Description Either the source or the target of an association does not exist,
i.e., it is not defined.

ID 0xC4A52

Name AttributeNotAbstractCoCo

Severity Error

Description An attribute cannot be abstract.

ID 0xC4A61

Name ClassModifierOnlyAbstractCoCo

Severity Error

Description The class modifier is not abstract but a different one. Only ab-
stract is permitted.

ID 0xC4A62

Name ClassNoConstructorsCoCo

Severity Error

Description A class has a constructor defined. Classes cannot have construc-
tors.

ID 0xC4A63

Name ClassNoMethodsCoCo

Severity Error

Description A class has a method defined. Classes cannot have methods.

ID 0xC4A64

Name AttributeModifierOnlyDerivedCoCo

Severity Error

Description The modifier of an attribute is only derived.

ID 0xC4A65

Name InterfaceNoModifierCoCo

Severity Error

Description Interface may not have modifiers.

ID 0xC4A66

Name InterfaceNoAttributesCoCo

Severity Error

Description Interface may not have attributes.

ID 0xC4A67

Name InterfaceNoMethodsCoCo

281

Appendix E Context Conditions

Severity Error

Description Interface may not have methods.

ID 0xC4A68

Name EnumNoModifierCoCo

Severity Error

Description Enumerations may not have any modifier.

ID 0xC4A69

Name EnumNoConstructorsCoCo

Severity Error

Description Enumerations may not have any constructor.

ID 0xC4A70

Name EnumNoMethodsCoCo

Severity Error

Description Enumerations may not have any Method.

ID 0xC4A72

Name AssociationEndModifierRestrictionCoCo

Severity Error

Description Associations cannot have any stereotype other than
�ordered�.

ID 0xC4A73

Name EnumerationNameUpperCase

Severity Error

Description The name of each enumeration constant has to be written in upper
cases.

ID 0xC4A74

Name NoInitialValueExpression

Severity Error

Description An initial value has to be a primitive value or a String value match-
ing the attributes type.

ID 0xC4A80

Name AssociationQualifierAttributeExistsInTarget

Severity Error

Description The referenced qualifier type cannot be resolved.

ID 0xC4A92

Name NoExternalSuperClassOrInterface

282

E.2 CD4Code Context Conditions

Severity Error

Description External data types that are not defined in another CD4A model
cannot be used as super classes or implemented.

E.2 CD4Code Context Conditions

Note that these are additional context conditions for the CD4Code language. The full
language specification requires the Section E.1 as well.

ID 0xC4A57

Name AssociationModifier

Severity Error

Description The modifier abstract can not be used for associations.

ID 0xC4A51

Name InterfaceAttributesStatic

Severity Error

Description An attribute in an interface must be static.

ID 0xC4A56

Name InterfaceInvalidModifiers

Severity Error

Description Interfaces may only be public.

ID 0xC4A52

Name AttributeNotAbstract

Severity Error

Description Attributes may not be abstract.

ID 0xC4A54

Name ModifierNotMultipleVisibilities

Severity Error

Description Only none or one visibility is supported per modifier.

ID 0xC4A53

Name ClassInvalidModifiers

283

Appendix E Context Conditions

Severity Error

Description Classes may neither be derived nor static.

ID 0xC4A55

Name EnumInvalidModifiers

Severity Error

Description Enums may only be public (or have no modifier).

E.3 Activity Context Conditions

Note that these context conditions are an adapted version from our previous work [LN16].

ID 0xAD0022

Name ActivityInputNameNotUsedAsOutputNameCoCo

Severity Error

Description The name of an activity input parameter should not be used to
name an output parameter of the same activity.

ID 0xAD0023

Name ActivityInputParameterOverwritingCoCo

Severity Warning

Description If an Activity Input parameter is on the right side of an edge, then
there is a danger of overwriting its value.

ID 0xAD0025

Name ActivityInputUsedCoCo

Severity Error

Description Each activity input parameter should occurs exactly once on the
left side of an edge.

ID 0xAD0028

Name ActivityNameEqualsSimpleFileNameCoCo

Severity Error

Description The name of an activity has to be same as the name of the file
containing it textual definition.

ID 0xAD0031

Name ActivityNameStartsWithUpperCaseLetterCoCo

284

E.3 Activity Context Conditions

Severity Warning

Description The name of an activity starts with a capital letter.

ID 0xAD0033

Name ActivityOutputParameterReadCoCo

Severity Warning

Description If an activity output parameter occurs on the left side of an edge,
null values may be read.

ID 0xAD0034

Name ActivityOutputUsedCoCo

Severity Error

Description Each activity output parameter should occur at least once on the
right side of an edge.

ID 0xAD0036

Name DistinctImportsCoCo

Severity Warning

Description Import statements should be distinct.

ID 0xAD0037

Name NoConflictingImportsCoCo

Severity Error

Description Conflicting imports are forbidden, e.g.
import de.monticore.types.CustomType; and
import de.monticore.CustomType; are conflicting.

ID 0xAD0038

Name StarImportNotAllowedCoCo

Severity Warning

Description Import statements such as import de.monticore.types.*; are not
recommended.

ID 0xAD0120

Name DistinctRoleNamesCoCo

Severity Error

Description Role names should be distinct.

ID 0xAD0122

Name RoleActionsAreDefinedCoCo

Severity Error

285

Appendix E Context Conditions

Description The actions belonging to a role should be defined in the same
activity.

ID 0xAD0123

Name RoleNameDistinctFromActivityNameCoCo

Severity Warning

Description The activity name should not be used to name a role.

ID 0xAD0124

Name RoleNameStartsWithUpperCaseLetterCoCo

Severity Warning

Description The name of a role or activity partition should start with a capital
letter.

ID 0xAD0105

Name DistinctDataNodeNamesCoCo

Severity Error

Description In an activity, the names of object nodes that are neither input
nor output parameters should be distinct.

ID 0xAD0106

Name DataNodeNameDistinctFromInputAndOutputCoCo

Severity Error

Description An object node that is neither an activity input nor output should
have a name distinct from the activity input and output parameter
names.

ID 0xAD0108

Name DataNodeNameStartsWithLowerCaseLetterCoCo

Severity Warning

Description The name of an object node that is neither an input nor an output
parameter should start with a lower case letter.

ID 0xAD0109

Name DataNodeReadOnceCoCo

Severity Error

Description An object node that is neither an activity input nor output pa-
rameter should occur exactly once on the left side of an edge.

ID 0xAD0111

Name DataNodeReadWriteCoCo

Severity Error

286

E.3 Activity Context Conditions

Description When an object node that is neither an activity input nor output
parameter occurs on the left side of an edge (the node is read),
then is must also occur on the right side of another edge (the node
must be set).

ID 0xAD0114

Name DistinctInputParameterNamesCoCo

Severity Error

Description Activity or action input parameter names should be distinct.

ID 0xAD0116

Name DistinctOutputParameterNamesCoCo

Severity Error

Description Activity or action output parameter names should be distinct.

ID 0xAD0119

Name ParameterNameStartsWithLowerCaseLetter

Severity Warning

Description The name of an activity, action input, or output parameter should
start with a lower case letter.

ID 0xAD0039

Name ControlNodeNameDistinctFromActionNameCoCo

Severity Error

Description An action name can not be used to name a control node.

ID 0xAD0040

Name ControlNodeNameDistinctFromActivityNameCoCo

Severity Warning

Description The name of a control node should be distinct from that of the
corresponding activity.

ID 0xAD0041

Name ControlNodeNameDistinctFromRoleNameCoCo

Severity Error

Description A role name should not be used to name a control node.

ID 0xAD0042

Name ControlNodeNameStartsWithUpperCaseLetterCoCo

Severity Error

Description The name of an explicitly defined control node should start with
an upper case letter.

287

Appendix E Context Conditions

ID 0xAD0043

Name DecisionNodeAndDataFlowCoCo

Severity Error

Description If the incoming edge of a decision node is a control flow, then all
outgoing edges shall be control flows as well. But, if it is an object
flow, then all outgoing edges shall be object flows as well.

ID 0xAD0047

Name DecisionNodeAndElseGuardCoCo

Severity Error

Description A decision node has at most one outgoing edge with the guard
else.

ID 0xAD0049

Name DecisionNodeHasAtLeastTwoOutgoingEdgesCoCo

Severity Error

Description A decision node should have at least 2 outgoing edges.

ID 0xAD0051

Name DecisionNodeHasOneIncomingEdgeCoCo

Severity Error

Description Each decision node has exactly one incoming edge.

ID 0xAD0052

Name DistinctControlNodeNamesCoCo

Severity Error

Description Control node names should be distinct.

ID 0xAD0055

Name FinalNodeHasNoOutgoingEdgesCoCo

Severity Error

Description A final (activity final or flow final) node has no outgoing edges.

ID 0xAD0058

Name ForkNodeAndDataFlowCoCo

Severity Error

Description If the incoming edge of a fork node is a control flow, then all
outgoing edges shall also be control flows. But, if it is an object
flow, then all outgoing edges shall be object flows as well.

288

E.3 Activity Context Conditions

ID 0xAD0061

Name ForkNodeHasAtLeastTwoOutgoingEdgesCoCo

Severity Error

Description A fork node should have at least two outgoing edges.

ID 0xAD0063

Name ForkNodeHasOneIncomingEdgeCoCo

Severity Error

Description A fork node has exactly on incoming edge.

ID 0xAD0065

Name InitialNodeHasNoIncomingEdgesCoCo

Severity Error

Description An initial node has no incoming edges.

ID 0xAD0067

Name InitialNodeOnlyInvolvedInControlFlowsCoCo

Severity Error

Description The outgoing edges of an initial node are control flows only.

ID 0xAD0068

Name JoinNodeIncomingDataFlowsAndPinCoCo

Severity Error

Description Two distinct incoming edges of a join node should not specify the
same parameter.

ID 0xAD0070

Name JoinNodeAndDataFlowCoCo

Severity Error

Description If an incoming edge of a join node is a data flow, then the outgoing
edge shall be a data flow. If all incoming edges are control flows,
then the outgoing edge is also a control flow.

ID 0xAD0073

Name JoinNodeHasAtLeastTwoIncomingEdgesCoCo

Severity Error

Description A join node should have at least 2 incoming edges.

ID 0xAD0074

Name JoinNodeHasDistinctSourcesCoCo

Severity Error

289

Appendix E Context Conditions

Description The sources of the edges leading to a join node should be distinct.

ID 0xAD0076

Name JoinNodeHasOneOutgoingEdgeCoCo

Severity Error

Description A join node has exactly one outgoing edge.

ID 0xAD0078

Name MergeNodeAndDataFlowCoCo

Severity Error

Description If the outgoing edge of a merge node is a control flow, then all
incoming edges shall be control flows. But, if it is an object flow,
then all incoming edges shall be object flows.

ID 0xAD0081

Name MergeNodeDataFlowAndTargetNodeCoCo

Severity Error

Description When the outgoing edge of a merge node is a data flow, then the
target node of that edge is not a fork, decision or join node.

ID 0xAD0083

Name MergeNodeHasAtLeastTwoIncomingEdgesCoCo

Severity Error

Description A merge node should have at least 2 incoming edges.

ID 0xAD0084

Name MergeNodeHasDistinctSourcesCoCo

Severity Error

Description The sources of the edges leading to a merge node should be distinct.

ID 0xAD0086

Name MergeNodeHasOneOutgoingEdgeCoCo

Severity Error

Description A merge node has exactly one outgoing edge.

ID 0xAD0014

Name ActionDistinctIncomingEdgesAndPinCoCo

Severity Error

Description Two distinct incoming data flows of an action node should not
specify the same input parameter.

ID 0xAD0015

Name ActionDistinctOutgoingEdgesAndPinCoCo

290

E.3 Activity Context Conditions

Severity Error

Description Two distinct outgoing data flows of an action node should not
specify the same output parameter.

ID 0xAD0016

Name ActionInputNameNotUsedAsOutputNameCoCo

Severity Error

Description The name of an action input parameter should not be used to
name an output parameter of the same action.

ID 0xAD0017

Name ActionNameDistinctFromActivityNameCoCo

Severity Error

Description The name of an action should be different from the name of the
corresponding activity.

ID 0xAD0019

Name ActionNameDistinctFromRoleNameCoCo

Severity Error

Description A role name can not be used to name an action.

ID 0xAD0020

Name ActionNameStartsWithUpperCaseLetterCoCo

Severity Warning

Description An action name starts with an upper case letter.

ID 0xAD0021

Name DistinctActionNamesCoCo

Severity Error

Description Action names should be distinct.

ID 0xAD0001

Name CallBehaviorActionOutputsDefinedCoCo

Severity Error

Description Consider the example shown below. This context condition checks
whether t1,t2 are defined as output parameters of the action and
whether r1,r2 are defined as output parameters of the called ac-
tivity.

1 action CallBehaviorAction(Object in1, Object in2)
2 : Object out1, Object out2{
3 execute CalledActivity(in2,in1).r2,r1 -> t1,t2;
4 }

291

Appendix E Context Conditions

ID 0xAD0004

Name CallBehaviorActionInputOutputParameterNumberCoCo

Severity Error

Description This context condition checks the following properties:
• A CallBehavior action and the called activity should have

the same number of input parameters.

• A CallBehavior action and the called activity should have
the same number of output parameters

• All input parameters of a CallBehavior action should be
passed to the called activity.

• All output parameters of the called activity should be
mapped to the outputs of the calling action.

ID 0xAD0011

Name CalledActivityExistsOnFileSystemCoCo

Severity Error

Description The name of a called activity should reference an existing file on
the file system.

ID 0xAD0013

Name CalledActivityInputsDefinedCoCo

Severity Error

Description Inputs passed to a called activity should be defined as action in-
puts. Consider the following example:

1 action MyCallAction(Object input1,
2 Object input2){
3 execute AnotherActivity(input2,input1);
4 }

ID 0xAD0088

Name ActionSymbolReferenceInputCoCo

Severity Error

Description When an action name occurs on the right side of an edge, the
associated parameter names should be defined as action inputs.

ID 0xAD0090

Name ActionSymbolReferenceOutputCoCo

Severity Error

292

E.3 Activity Context Conditions

Description When an action name occurs on the left side of an edge, the asso-
ciated parameter names should be defined as action outputs.

ID 0xAD0091

Name AtomicElementAndNamesCoCo

Severity Error

Description When a list of names occurs on an edge side, then exactly one of
the following should hold:

• All names reference either object nodes or activity input/out-
put parameters

• All names reference either control nodes or actions
ID 0xAD0094

Name ControlNodeParameterReadWriteCoCo

Severity Error

Description A control node parameter that is read should also be set, e.g., if
ControlNode.param occurs on the left side of an edge, then Con-
trolNode.param must also occurs on the right side of another edge.

ID 0xAD0096

Name EnclosedDecisionMergeNotationAndGuardCoCo

Severity Error

Description Only EnclosedDecisionMergeNotation should have a guard.

ID 0xAD0097

Name EnclosedForkJoinNotationAndGuardCoCo

Severity Error

Description Only EnclosedForkJoinNotation should have a guard.

ID 0xAD0098

Name EnclosedNotationNotInSequenceCoCo

Severity Error

Description EnclosedDecisionMergeNotation and EnclosedForkJoinNotation
should not occur in the middle of a sequence.

ID 0xAD0100

Name GuardOnObjectFlowCoCo

Severity Error

Description Guards should only label data flows.

ID 0xAD0101

Name LeftSideHasNoGuardCoCo

293

Appendix E Context Conditions

Severity Error

Description The left side of an EdgeSequence should not have a guard.

ID 0xAD0103

Name SelfLoopForbiddenCoCo

Severity Error

Description Self loops are forbidden, as they lead to deadlocks.

ID 0xAD0104

Name SequenceElementAndGuardCoCo

Severity Error

Description When a SequenceElement specifies a guard, the referenced Edge-
Sequence should not specify one.

ID 0xAD0115

Name DistinctNamesCoCo

Severity Error

Description A list of names should contain no duplicate.

ID 0xAD0118

Name DistinctTargetsCoCo

Severity Error

Description Outgoing edges of action and control nodes should have distinct
targets.

294

Appendix F

MontiDEx Hot Spots

The MontiDEx product offers a variety of hot spots in the generated source code that
are designed for customization of the generated source code. Hence, in this chapter, an
overview of the most important hot spots is given.

F.1 Graphical User Interface

Hot Spot XControllerEIMP StartUp

Hot spot class XControllerEIMP for the domain model X.cd

Purpose Add specific code that is executed before the graphical user
interface is started.

Methods to adapt startUp()

Available API XController

Mandatory/Optional Optional

Hot Spot XControllerEIMP Tear Down

Hot spot class XControllerEIMP for the domain model X.cd

Purpose Add specific code that is executed after the graphical user
interface has ended.

Methods to adapt tearDown()

Available API XController

Mandatory/Optional Optional

Hot Spot XControllerEIMP Add Menu Item

Hot spot class XControllerEIMP for the domain model X.cd

Purpose Extend the existing MenuBar with additional MenuItems.

Methods to adapt addMenuItem()

Available API XController

Mandatory/Optional Optional

295

Appendix F MontiDEx Hot Spots

Hot Spot XControllerEIMP Add ToolBar Item

Hot spot class XControllerEIMP for the domain model X.cd

Purpose Extend the existing ToolBar with additional ToolItems.

Methods to adapt addToolItem()

Available API XController

Mandatory/Optional Optional

Hot Spot XControllerEIMP ServerAccess

Hot spot class XControllerEIMP for the domain model X.cd

Purpose Add the responsible class to access the persistence server.

Methods to adapt getServerAccess()

Available API XController

Mandatory/Optional Mandatory

Hot Spot XControllerEIMP Init Persistence-Mode

Hot spot class XControllerEIMP for the domain model X.cd

Purpose Configure the DataManager to use the Persistence-Mode.

Methods to adapt initPersistenceMode()

Available API XController

Mandatory/Optional Mandatory

Hot Spot MainWindowView Init Persistence-Mode

Hot spot class MainWindowViewEIMP

Purpose Define the layout of the main window including the Tree-
View and the TabView.

Methods to adapt layoutMainWindow()

Available API MainWindowView

Mandatory/Optional Optional

Hot Spot MainWindowView Admin Panel

Hot spot class MainWindowViewEIMP

Purpose Define the window for the Admin Tool

Methods to adapt getAdminPanelItem()

Available API MainWindowView

Mandatory/Optional Mandatory

296

F.1 Graphical User Interface

Hot Spot MainWindowMenuBar Customize MenuBar

Hot spot class MainWindowMenuBarEIMP

Purpose Customize the layout of the MenuBar.

Methods to adapt createMenus()

Available API MainWindowMenuBar

Mandatory/Optional Optional

Hot Spot MainWindowToolBar Customize ToolBar

Hot spot class MainWindowToolBarEIMP

Purpose Customize the layout of the ToolBar.

Methods to adapt createControls()

Available API MainWindowToolBar

Mandatory/Optional Optional

Hot Spot MainWindowToolBar Extend ToolBar

Hot spot class MainWindowToolBarEIMP

Purpose Using the predefined layout, the ToolBar can be extended
with additional ToolBar elements.

Methods to adapt addControls()

Available API MainWindowToolBar

Mandatory/Optional Optional

Hot Spot MainWindowContent Adapt the Content of the MainWindow

Hot spot class MainWindowContentEIMP

Purpose Define all elements in the MainWindow.

Methods to adapt createContent()

Available API MainWindowContent

Mandatory/Optional Optional

Hot Spot MainWindowContent Adapt TreeView

Hot spot class MainWindowContentEIMP

Purpose Customize the TreeView element in the MainWindow.

Methods to adapt createMainWindowConcreteMenu()

Available API MainWindowContent

Mandatory/Optional Optional

297

Appendix F MontiDEx Hot Spots

Hot Spot MainWindowContent Customize the TabView

Hot spot class MainWindowContentEIMP

Purpose Extend and Customize the existing TabView.

Methods to adapt createTabbedPane()

Available API MainWindowContent

Mandatory/Optional Optional

Hot Spot XPanelComponentView Customize Component Layout

Hot spot class XPanelComponentViewEIMP for the domain class X

Purpose Customize the layout of a component view, which encapsu-
lates the user interface elements for attributes and associa-
tions.

Methods to adapt createPanel()

Available API XPanelComponentView

Mandatory/Optional Optional

Hot Spot XPanelComponentPresenter Add DirtyEventListener

Hot spot class XPanelComponentPresenterEIMP for the domain class
X

Purpose PanelComponents are marked as dirty when the user
changed a value. This hot spot can be used to add addi-
tional Listeners that listen to such events.

Methods to adapt addDirtyStateChangeEventListener()

Available API XPanelComponentView

Mandatory/Optional Optional

Hot Spot XPanelComponentPresenter Load Data

Hot spot class XPanelComponentPresenterEIMP for the domain class
X

Purpose Customize the loading of data and how the data is set in the
user interface elements.

Methods to adapt doLoadData()

Available API XPanelComponentView

Mandatory/Optional Mandatory

298

F.1 Graphical User Interface

Hot Spot XPanelComponentPresenter Save Data

Hot spot class XPanelComponentPresenterEIMP for the domain class
X

Purpose Adapt the condition that tells when data is able to be stored.

Methods to adapt canSaveData()

Available API XPanelComponentView

Mandatory/Optional Mandatory

Hot Spot XPanelComponentPresenter Before Save Data

Hot spot class XPanelComponentPresenterEIMP for the domain class
X

Purpose Add addititional functionality before the data is eventually
stored.

Methods to adapt doBeforeSaveData()

Available API XPanelComponentView

Mandatory/Optional Optional

Hot Spot XPanelComponentPresenter Do Save Data

Hot spot class XPanelComponentPresenterEIMP for the domain class
X

Purpose Adapt process of storing data.

Methods to adapt doSaveData()

Available API XPanelComponentView

Mandatory/Optional Mandatory

Hot Spot XPanelComponentPresenter Undo

Hot spot class XPanelComponentPresenterEIMP for the domain class
X

Purpose Define what needs to be done for Undo-Functionality.

Methods to adapt undo()

Available API XPanelComponentView

Mandatory/Optional Optional

Hot Spot XPanelComponentPresenter Redo

Hot spot class XPanelComponentPresenterEIMP for the domain class
X

Purpose Define what needs to be done for Redo-Functionality.

Methods to adapt redo()

Available API XPanelComponentView

Mandatory/Optional Optional

299

Appendix F MontiDEx Hot Spots

Hot Spot XPanelComponentPresenter Delete

Hot spot class XPanelComponentPresenterEIMP for the domain class
X

Purpose Define what needs to be done for Delete-Functionality.

Methods to adapt delete()

Available API XPanelComponentView

Mandatory/Optional Optional

Hot Spot XPanelComponentPresenter Clear

Hot spot class XPanelComponentPresenterEIMP for the domain class
X

Purpose Define what needs to be done for Clear-Functionality.

Methods to adapt clear()

Available API XPanelComponentView

Mandatory/Optional Optional

Hot Spot XPanelComponentPresenter Clear

Hot spot class XPanelComponentPresenterEIMP for the domain class
X

Purpose Define when the input in the View is valid.

Methods to adapt validateInput()

Available API XPanelComponentView

Mandatory/Optional Optional

Hot Spot XEditPanelModel Update Data On Server

Hot spot class XEditPanelModelEIMP for the domain class X

Purpose Adapt the behavior to update the changes of the model to
the server.

Methods to adapt update()

Available API XEditPanelModel

Mandatory/Optional Optional

Hot Spot XEditPanelModel Reload Model

Hot spot class XEditPanelModelEIMP for the domain class X

Purpose Customize what needs to be done when the model is reloaded
from the server.

Methods to adapt reloadModel()

Available API XEditPanelModel

Mandatory/Optional Optional

300

F.1 Graphical User Interface

Hot Spot XEditPanelModel Do Before Store

Hot spot class XEditPanelModelEIMP for the domain class X

Purpose Add functionality that is executed before the model is stored
on the server.

Methods to adapt doBeforeStore()

Available API XEditPanelModel

Mandatory/Optional Optional

Hot Spot XEditPanelModel Store

Hot spot class XEditPanelModelEIMP for the domain class X

Purpose Adapt the behavior that defines how to store elements on
the server.

Methods to adapt store()

Available API XEditPanelModel

Mandatory/Optional Optional

Hot Spot XEditPanelView Customize Layout

Hot spot class XEditPanelViewEIMP for the domain class X

Purpose Customize the layout and of the edit view.

Methods to adapt addPanelComponents()

Available API XEditPanelView

Mandatory/Optional Optional

Hot Spot XEditPanelPresenter Define the View Instance

Hot spot class XEditPanelPresenterEIMP for the domain class X

Purpose Define the instance of the EditPanelView that is used in the
Presenter.

Methods to adapt getView()

Available API AbstractEditPanelPresenter

Mandatory/Optional Mandatory

Hot Spot XEditPanelPresenter Define the Model Instance

Hot spot class XEditPanelPresenterEIMP for the domain class X

Purpose Define the instance of the EditPanelModel that is used in
the Presenter.

Methods to adapt getModel()

Available API AbstractEditPanelPresenter

Mandatory/Optional Mandatory

301

Appendix F MontiDEx Hot Spots

Hot Spot XEditPanelPresenter Define Attached Listeners

Hot spot class XEditPanelPresenterEIMP for the domain class X

Purpose Define what action listeners are used for the different ele-
ments in the user interface.

Methods to adapt doAttachListeners()

Available API AbstractEditPanelPresenter

Mandatory/Optional Optional

Hot Spot XEditPanelPresenter Set ToolTips

Hot spot class XEditPanelPresenterEIMP for the domain class X

Purpose Define the ToolTips for elements in the EditPanelView.

Methods to adapt setToolTips()

Available API AbstractEditPanelPresenter

Mandatory/Optional Optional

Hot Spot XEditPanelPresenter Define After Save Behavior

Hot spot class XEditPanelPresenterEIMP for the domain class X

Purpose Define the behavior that is executed after the object is stored
or updated successfully.

Methods to adapt doAfterSaveData()

Available API AbstractEditPanelPresenter

Mandatory/Optional Optional

Hot Spot XEditPanelPresenter Define Action Before Tab is closed

Hot spot class XEditPanelPresenterEIMP for the domain class X

Purpose Define the behavior that is executed shortly before the tab
is closed.

Methods to adapt tabAboutToBeClosed()

Available API AbstractEditPanelPresenter

Mandatory/Optional Optional

Hot Spot XEditPanelPresenter Define when input is valid

Hot spot class XEditPanelPresenterEIMP for the domain class X

Purpose Allow to define the validity of the object.

Methods to adapt isInputValid()

Available API AbstractEditPanelPresenter

Mandatory/Optional Mandatory

302

F.1 Graphical User Interface

Hot Spot XEditPanelPresenter Adapt Update Controls

Hot spot class XEditPanelPresenterEIMP for the domain class X

Purpose Defines how the controls are updated after the user interface
has changed.

Methods to adapt updateControls()

Available API AbstractEditPanelPresenter

Mandatory/Optional Mandatory

Hot Spot XEditPanelPresenter Remove Element from TabView

Hot spot class XEditPanelPresenterEIMP for the domain class X

Purpose All opened Tabs correspond to a particular object. If these
are closed they have to be unregistered. This method allows
to define how this unregistration is done.

Methods to adapt handBackIdent()

Available API AbstractEditPanelPresenter

Mandatory/Optional Mandatory

Hot Spot XEditPanelPresenter Adapt Component Refresh

Hot spot class XEditPanelPresenterEIMP for the domain class X

Purpose Components are refresched whenever the user interface is
updated. This method specifies how this refresh works.

Methods to adapt refreshComponent()

Available API AbstractEditPanelPresenter

Mandatory/Optional Optional

Hot Spot XEditPanelPresenter Load Data of PanelComponents

Hot spot class XEditPanelPresenterEIMP for the domain class X

Purpose Specifiy how to load data when an edit view is opened.

Methods to adapt doLoadData()

Available API AbstractEditPanelPresenter

Mandatory/Optional Mandatory

Hot Spot XListPanelView Specify Layout

Hot spot class XListPanelViewEIMP for the domain class X

Purpose Specify the layout of the user interface.

Methods to adapt createPanel()

Available API AbstractListPanelView

Mandatory/Optional Optional

303

Appendix F MontiDEx Hot Spots

Hot Spot XListPanelView Define the banner

Hot spot class XListPanelViewEIMP for the domain class X

Purpose Define the Banner for list views.

Methods to adapt createBanner()

Available API AbstractListPanelView

Mandatory/Optional Optional

Hot Spot XListPanelView Header Layout

Hot spot class XListPanelViewEIMP for the domain class X

Purpose Layout of the header.

Methods to adapt createHeader()

Available API AbstractListPanelView

Mandatory/Optional Optional

Hot Spot XListPanelView Table Layout

Hot spot class XListPanelViewEIMP for the domain class X

Purpose Specify the table layout of the list view body.

Methods to adapt createTablePanel()

Available API AbstractListPanelView

Mandatory/Optional Optional

Hot Spot XListPanelModel Override Table Model

Hot spot class XListPanelModelEIMP for the domain class X

Purpose Override the default table model.

Methods to adapt getDomainSpecificTableModel()

Available API AbstractListPanelModel

Mandatory/Optional Mandatory

Hot Spot XListPanelModel Define Remove

Hot spot class XListPanelModelEIMP for the domain class X

Purpose Define the action to be done when removing an object.

Methods to adapt removeObjectFromManagerAndSynchronize()

Available API AbstractListPanelModel

Mandatory/Optional Optional

304

F.1 Graphical User Interface

Hot Spot XListPanelPresenter Override Table Model

Hot spot class XListPanelPresenterEIMP for the domain class X

Purpose Override the default table model.

Methods to adapt getDomainSpecificTableModel()

Available API AbstractListPanelModel

Mandatory/Optional Mandatory

Hot Spot XListPanelPresenter Load Data

Hot spot class XListPanelPresenterEIMP for the domain class X

Purpose Define how to retrieve the data.

Methods to adapt loadData()

Available API AbstractListPanelPresenter

Mandatory/Optional Optional

Hot Spot XListPanelPresenter Execute Delete Action

Hot spot class XListPanelPresenterEIMP for the domain class X

Purpose Allows to add an additional delete action to be executed.

Methods to adapt deleteActionMethod(ActionEvent e)

Available API AbstractListPanelPresenter

Mandatory/Optional Optional

Hot Spot XListPanelPresenter Remove Object

Hot spot class XListPanelPresenterEIMP for the domain class X

Purpose Specify how to remove objects from the list view.

Methods to adapt removeObject(Collection<X> objects)

Available API AbstractListPanelPresenter

Mandatory/Optional Optional

Hot Spot XListPanelPresenter Search Listeners

Hot spot class XListPanelPresenterEIMP for the domain class X

Purpose Attach listeners to search field.

Methods to adapt attachListenerToSearchField()

Available API AbstractListPanelPresenter

Mandatory/Optional Optional

305

Appendix F MontiDEx Hot Spots

Hot Spot XListPanelPresenter Listeners for Table

Hot spot class XListPanelPresenterEIMP for the domain class X

Purpose Attach additional listeners to the JTable.

Methods to adapt attachListenersToJTable()

Available API AbstractListPanelPresenter

Mandatory/Optional Optional

Hot Spot XListPanelPresenter Set ToolTips

Hot spot class XListPanelPresenterEIMP for the domain class X

Purpose Set the tool tips for the list view elements.

Methods to adapt setToolTipTexts()

Available API AbstractListPanelPresenter

Mandatory/Optional Optional

Hot Spot XListPanelPresenter Define Status update

Hot spot class XListPanelPresenterEIMP for the domain class X

Purpose Define the message that is printed to the StatusBar after the
items have been loaded.

Methods to adapt updateStatus()

Available API AbstractListPanelPresenter

Mandatory/Optional Optional

Hot Spot XListPanelPresenter Define TabTitle

Hot spot class XListPanelPresenterEIMP for the domain class X

Purpose Define the title of the tab for the list view.

Methods to adapt getTabTitle()

Available API AbstractListPanelPresenter

Mandatory/Optional Optional

Hot Spot XListPanelPresenter Define Action Before Close Tab

Hot spot class XListPanelPresenterEIMP for the domain class X

Purpose Add additional action before the tab is closed.

Methods to adapt tabAboutToBeClosed()

Available API AbstractListPanelPresenter

Mandatory/Optional Optional

306

F.2 Application Core

F.2 Application Core

Hot Spot XBuilder Specify Validity

Hot spot class XBuilderEIMP for the domain class X

Purpose Define when an object is valid so that it can be stored.

Methods to adapt isValid()

Available API XBuilder

Mandatory/Optional Optional

F.3 Persistence

Hot Spot XStorageBuilder Building Proxy

Hot spot class XStorageBuilderEIMP for the domain class X

Purpose Specify how to build a Proxy for the type X.

Methods to adapt buildProxy()

Available API XStorageBuilder

Mandatory/Optional Optional

Hot Spot XStorageBuilder Convert to Proxy

Hot spot class XStorageBuilderEIMP for the domain class X

Purpose On receiving an object in generic form, define how to map
it to a real proxy object of type X.

Methods to adapt proxiedOf()

Available API XStorageBuilder

Mandatory/Optional Optional

Hot Spot XStorageBuilder Convert to Full Object

Hot spot class XStorageBuilderEIMP for the domain class X

Purpose On receiving an object in generic form, define how to map
it to a real object of type X.

Methods to adapt of()

Available API XStorageBuilder

Mandatory/Optional Optional

307

Appendix F MontiDEx Hot Spots

Hot Spot XProxy Define Loading

Hot spot class XProxyEIMP for the domain class X

Purpose Define behavior to load full objects from server.

Methods to adapt loadObjectIfNecessary()

Available API XProxy

Mandatory/Optional Optional

Hot Spot XServerAccess Conext Identifier Definition

Hot spot class XServerAccessEIMP for the domain model X.cd

Purpose Define which project identifier is used for the server.

Methods to adapt getContextIdentifier()

Available API XServerAccess

Mandatory/Optional Optional

308

Appendix G

MontiDEx Package Structure

accessmethods

AccessMethod

Transformation

builder

Builder

Transformation

constructor

Constructor

Transformation

pretransformations

CollectionType

Transformation

DefaultVisibility

Transformation

HashEquals

Transformation

Interface

Transformation
associations

Association

Transformation

Association

AttributeFactory

Association

MethodFactory

Association

NameUtil

Defautl

Association

Cardinaltiy

derived

Derived

Association

Strategy

DerivedOrdered

Association

Strategy

QualifiedDerived

Association

Strategy

QualifiedDerived

OrderedAssociation

Strategy

«interface»

AssociationStrategy

ordered

OrderedAssociation

ordinary

OrdinaryAssociation

qualified

Qualified

Association

qualifiedordered

QualifiedOrdered

Association

CD
cd2data

Figure G.1: An overview of the cd2data package of the MontiDEx code generator.

309

Appendix G MontiDEx Package Structure

commands

Command

Transformation

tablemodel

TableModel

Transformation

search

search

Transformation

launch

Launch

Transformation

component

Component

Presenter

Component

View

Component

Model

edit

Edit

Presenter

Edit

View

Edit

Model

list

List

Presenter

List

View

List

Model

treemenu

TreeMenu

Transformation

CD
cdpersistence

Figure G.2: An overview of the cd2swing package of the MontiDEx code generator.

dao

ConcreteDAO

Transformation

builder

Builder

Transformation

converter

Converter

Request

Transformation

management

Delegating

Manager

Transformation

Manager

Dispatcher

Transformation

od

OD

Transformation

proxy

Proxy

Transformation

requests

Requests

Transformation

server

ServerAccess

Transformation

storage

Persistence

Storage

Transformation

Storage

Mock

Transformation

«uses»

«uses»

«uses»

CD
cd2swing

Figure G.3: An overview of the cd2persistence package of the MontiDEx code gen-
erator.

310

Appendix H

MontiDEx Hook Points

Hook Point Name Template Comment

SetMethodBody:addCheck SetMethodBody.ftl It allows to add arbitrary
valid Java source code to the
mutator methods.

ClassAttribute:addAnnotations Attribute.ftl Enables to define annota-
tions for attributes.

ClassContent:addComment Class.ftl Add comment to a generated
Java class.

ClassContent:addImports Class.ftl Add additional imports to a
Java class.

ClassContent:addAnnotations Class.ftl Add annotations to a Java
class.

ClassContent:addMember Class.ftl Add a member (attribute or
method) to a Java class.

ClassConstructor:addAnnotations Constructor.ftl Add an annotation to a Java
constructor.

EnumContent:addComment Enum.ftl Add a comment to a Java
enumeration.

InterfaceContent:addComment Interface.ftl Add a comment to a Java in-
terface.

InterfaceContent:addImports Class.ftl Add additional imports to a
Java interface.

InterfaceContent:addAnnotations Class.ftl Add annotations to a Java in-
terface.

InterfaceContent:addMember Class.ftl Add a member (attribute or
method) to a Java interface.

311

Appendix H MontiDEx Hook Points

ClassMethod:addAnnotations Method.ftl Add annotations to a Java
method.

ConcreteController:addToolBar-
Button

GetToolBar-
Components-
MethodBody.ftl

Add a widget to the ToolBar.

Table H.1: List of hook points in the MontiDExcode generator.

312

Appendix I

Curriculum Vitae

Personal Data
Family Name: Roth

First Name: Alexander

Date of Birth: 25.03.1986

Place of Birth: Ujar (Russia)

Nationality: German

Academic Employment

10/2012 - 09/2017:
RWTH Aachen University: Research Assistant and
Team Leader of the Digitalization Group

Education

10/2012 - 11/2017:
RWTH Aachen University: Ph.D. studies in Software
Engineering

10/2010 - 09/2012:
RWTH Aachen University: Computer Science studies
Master of Science in Computer Science

10/2007 - 09/2010:
RWTH Aachen University: Computer Science studies
Bachelor of Science in Computer Science

07/2006
Albert-Einstein-Gymnasium Sankt Augustin: German
Abitur

313

List of Figures

2.1 MC’s code generation architecture for model processing and code genera-
tion based on [MSN17]. 12

2.2 The generated AST from the MC grammar defined in Listing 2.1. 14
2.3 An overview of template-based code generation based on [Kra10, Sch12]. . 16
2.4 An overview of transformation-based code generation using exogenous

transformations to create the target language’s AST. 17

3.1 A UML CD for a lightweight applicant management system. 28
3.2 Generated prototype from the UML CD shown in Figure 3.1. 29
3.3 A UML AD of a process to manage new applicants. 31
3.4 Integration of a GUI for process automation in a data-centric application. 31
3.5 Overview of the MontiDEx code generator and the MontiDEx product. . 39
3.6 A Method to use the developed concepts and tools for MDP. 40
3.7 Method to use the MontiDEx generator and the MontiDEx product for

MDD. 42

4.1 A UML CD for a simplified banking system. 48

5.1 An example of mapping a CD4A interface (at the top) to a Java interface
(at the bottom). 70

5.2 An example of mapping CD4A interface’s extends-concept (at the top)
to Java’s extends-concept (at the bottom). 71

5.3 An example of a CD4A class (A at the top) that is mapped to a Java
interface (A bottom left) and a Java implementing class (AImpl bottom
right) with additional standard Java methods. 71

5.4 An abstract CD4A class (A at the top) that is mapped to a Java interface
(A bottom left) and a Java implementing class (AImpl bottom right). . . 72

5.5 An example of a CD4A class (CheckingAccount at the top) with an
extends-relation that is regarded in the Java source code (bottom right
and bottom left). 73

5.6 A CD4A enumeration (TransactionType at the top) is mapped to a
Java enumeration (TransactionType at the bottom) with the same
name. 74

315

List of Figures

5.7 The CD4A attribute (l.2 at the top) is mapped to a private Java variable
(l.4 at the bottom), and an accessors and a mutator (ll.6-12 at the bottom). 75

5.8 An example of a mutator for non-primitive CD4A attributes. 76
5.9 An example of mapping a CD4A class (at the top) to a Java class (at the

bottom) that ensures data consistency in the constructor. 76
5.10 The derived CD4A attribute completed (l.1 at the top) is mapped to

the isCompleted() accessor (ll.2-4 at the bottom). 77
5.11 The CD4A association at the top is mapped to the Java accessor getType()

and the mutator setType(). 79
5.12 For CD4A association with cardinality [0..1] an additional mutator

having the enclosed generic type is added. 79
5.13 CD4A association with cardinality [*] are mapped to methods for man-

aging sets of association links. 80
5.14 An example mapping a mandatory association (at the top) that is required

to be set in the constructor (at the bottom) to ensure data consistency. . 81
5.15 Methods provided to ensure association consistency for the association

with cardinality [0..1] (bottom left) and cardinality [1..*] (bottom
right). 82

5.16 An example of handling data consistency when ensuring association con-
sistency. If data consistency is violated, a run-time exception is raised. . . 83

5.17 For ordered associations additional methods for index-based access, adding,
and removal; and iterators for bidirectional link traversal are provided. . . 84

5.18 Methods provided for qualified associations with cardinality [0..1]. . . 86
5.19 Methods provided for qualified associations with cardinality [1..*]. . . 87
5.20 Additional methods for handling qualified ordered associations, which ex-

tends the mapping shown in Figure 5.19. 88
5.21 Derived association (at the top) is mapped to an accessor throwing an

exception (l.2 at the bottom) only. 88
5.22 Mapping derived associations with cardinality [*] to access methods only. 89
5.23 Qualified derived ordered associations are mapped to accessors only. . . . 89
5.24 An example of mapping CD4A composition to Java source code. 90
5.25 The association at the top is regarded in the mapped Java class BImpl

(bottom left) and the Java class AImpl (bottom right). 91

6.1 The Extended Generation Gap-Pattern allows for implementation exten-
sions (TransactionEIMP) and interface extensions (TransactionSIG).100

6.2 An example of implementing interface extensions using Java default meth-
ods. 102

6.3 An example showing that adding handwritten extensions to subclasses
requires adaptation of the generated source code. 103

316

List of Figures

6.4 A method for using interface and implementation extensions of the Ex-
tended Generation Gap-Pattern. 105

6.5 A UML CD showing of a Customer referencing externally defined classes. 106
6.6 A UML CD showing the proposed use of externally defined classes for the

example in Figure 6.5. 107

7.1 Overview of the developed layered architecture for data-centric applications.110
7.2 An example of the Double Dispatch-Pattern used to ensure type-safety. . 113
7.3 An example of mapping a CD4A class (at the top) to a Builder-Pattern

implementation (at the bottom). 115
7.4 Example of mapping a concrete management facility (at the bottom) for

a CD4A class (at the top). 118
7.5 Hierarchies of CD4A classes and interfaces are respected by an additional

dispatching interface that realizes the Double Dispatch-Pattern. 119
7.6 The model-independent part of the MontiDEx product GUI. 121
7.7 CD4A interfaces and classes are mapped to views showing their instances

(right-hand-side), which can be accessed via a tree view (left-hand-side). . 122
7.8 Hierarchies in the CD4A model are represented in the Tree Area (left-hand

side) and in the EditView (right-hand side). 123
7.9 Associations are represented as lists of elements, where blue-colored de-

note derived associations and red-colored denote mandatory associations. 125
7.10 Overview of the main architecture of the MontiDEx product GUI. 126
7.11 The technical realization of the EditView for the CD4A class CA. 128
7.12 Example of mapping model-specific commands (at the bottom) for the A

CD4A class (at the top). 130
7.13 Example of mapping CD4A classes to model-specific threads. 132
7.14 An overview of the generic persistence infrastructure. 134
7.15 Meta-model of the generic server’s database. 134
7.16 Technical realization of the adapted MT-RBAC approach for role-based

access control in a multi-tenant environment. 136
7.17 Overview of the ServerAccess class that handles communication to the

persistence infrastructure. 138
7.18 Overview of the ServerAccess class to send CRUD requests and receive

responses from the persistence infrastructure. 139
7.19 The Proxy-Pattern realization used to support handcoded extensions. . . 142
7.20 Data migration is done by downloading the all instances of the source

model (Fetch), transforming it to conform to the evolved target (Trans-
form), and storing it on the new server (Store). 143

8.1 An overview of the integrated transformation- and template-based code
generation, which is separated into three steps. 148

317

List of Figures

8.2 A SC for a simplified Ping-Pong game. 149
8.3 An excerpt of the CodeCD-AST for the Ping-Pong game shown in List-

ing 8.2 with additional templates attached to implement method bodies. . 155
8.4 An CD4Code-AST with template attachments and a set of default tem-

plates. The execution order of all attached templates and default tem-
plates is computed during template engine execution. 156

8.5 Resolution of conflicting template extension operations is done by only ex-
ecuting the first replace operation (a) and (c) in a non-transitive manner
(b); and prioritize conflicting template attachments and template exten-
sions (d). 159

8.6 The technical realization of template hook points and template extensions. 161
8.7 A method to develop code generator transformations and templates. . . . 163

9.1 An overview of the MontiDEx code generator architecture. 168
9.2 An overview of the common package, which groups common templates,

embedment helpers, and CD4Code-AST node builders. 169
9.3 Methods provided by the AbstractTypeHelper and the TypeHelper

embedment helper. 170
9.4 The methods provided by the CDAssociationUtil embedment helper

to check for certain properties of associations. 171
9.5 The methods provided by the TransformationUtil embedment helper

to support handcoded extensions and creation of run-time exceptions. . . 172
9.6 The Java classes provided by the configure package and its subpackages.175
9.7 A graphical representation of templates and embedment helper interrela-

tion showing the amount of times each of which is called. 180
9.8 A method for the adaptation approaches of the MontiDEx code generator. 181

10.1 A UML AD defining the actions for submitting a transaction. 185
10.2 Overview of the developed AD languages. 186
10.3 The call behavior connector simplifies the definition of call behavior actions.194
10.4 The activity input connector connects the activity’s input pins to the

action’s input pins. 195
10.5 The action output connector connects output pins to input pins. 196
10.6 Object flows through control nodes can either be defined explicit (at the

top) or implicit (at the bottom) using the control node connector. 196
10.7 An overview of the interpretation- and code generation-based approach

for ADJava model execution. 197
10.8 An abstract view of the process of interpreting an ADJava model consists

of processing the ADJava model (Model Processing); setting input vari-
ables and checking preconditions and guards (Pre-Execution Check); and
executing the action body and check post conditions (Execution). 199

318

List of Figures

10.9 An example of the generated visit()-methods for each used data type
to realize the Double Dispatching-Pattern. 201

10.10The generated Java source code (at the bottom) generated from the AD-
Java model (at the top) to realize double dispatching for input pins. . . . 202

10.11For actions with implementations (at the top) a Java class with a doExecute()-
method (ll.8-11) is generated. 203

10.12The precondition defined for the ValidateTransaction action (at the
top) is generated to Java source code (at the bottom). 203

10.13Overview of the technical realization of the AD Execution Engine. 204
10.14MontiDEx code generator default configuration to process ADJava models.206
10.15Transformations added to extend the MontiDex code generator. 206
10.16An overview of the process of modeling and executing of ADJava models. 207

11.1 A UML CD for describing a POI management system. 212
11.2 An overview of the POI Management system’s client architecture consist-

ing of an Android client, a Web Server, and the MontiDEx infrastructure. 213
11.3 Android client’s main UI (left) and configuration dialog (right). 214
11.4 A UML CD showing the main elements to manage audio and video media. 217
11.5 Overview of the back-end architecture. 218
11.6 Overview of the front-end architecture. 220
11.7 A screenshot of the dashboard showing containers and media files. 221
11.8 A screenshot of the view for playing video files. 221
11.9 The UML CD model for the examination regulation system. 223
11.10Overview of the architecture of the examination regulation system. 224
11.11A screenshot of the student view extension. 225

G.1 An overview of the cd2data package of the MontiDEx code generator. . 309
G.2 An overview of the cd2swing package of the MontiDEx code generator. . 310
G.3 An overview of the cd2persistence package of the MontiDEx code

generator. 310

319

Listings

2.1 An example of a MC grammar for a lightweight UML CD DSL. 13

4.1 A model definition for the banking system example in Figure 4.1. 49
4.2 A CD4A model showing the definition of an Employee interface. 49
4.3 CD4A supports interface hierarchies using the extend keyword. 49
4.4 CD4A classes can be abstract (l.1), can extend other classes (l.3), or

implement interface (l.5). 50
4.5 A CD4A definition of the TransactionType enumeration. 50
4.6 A CD4A definition of attributes within classes. 51
4.7 CD4A supports the predefined data types List<.>, Set<.>, and Opti-

onal<.>. 51
4.8 An association is defined by an association keyword, a cardinality, a

navigation direction, an association name (l.4) and role names (ll.2-3). . . 52
4.9 Associations to external data type Date (l.1) and Integer (l.2). 52
4.10 Derived associations are denoted with a /-symbol. 53
4.11 Every CD4A association can be marked as derived by a /-symbol (l.1) or

a dervied keyword (l.2). 53
4.12 Associations can be marked to preserve the order of association links with

the «ordered»-stereotype. 53
4.13 A qualified associations using an attribute value as the qualifier. 54
4.14 An example of supported qualified associations. 54
4.15 The composition keyword denotes a composition that can be derived

(l.2) or qualified (l.3). 55
4.16 An example of a CD4A model with an invalid diagram name. 55
4.17 An example of an invalid CD4A model because of non-unique and lower

case type names. 56
4.18 A CD4A model with an invalid definition of enumeration constants. . . . 56
4.19 An example of a CD4A model with a circular inheritance. 57
4.20 An example of a CD4A model with an invalid extends-relation. 57
4.21 The implements-relation allows to implement interfaces only. 58
4.22 Example of restrictions for CD4A attributes’ name, value, and type. . . . 59
4.23 Attributes have unique names and cannot be defined multiple times. . . . 59

321

Listings

4.24 A CD4A model showing invalid association definitions, where the names
are not unique or invalid. 60

4.25 An example showing that an association’s source cannot be an external
data type or an enumeration. 60

4.26 The cardinality for ordered associations should be [*] or [1..*] but
the cardinality of composition’s whole has to be [1]. 61

4.27 The qualifier of a qualified association has to be either an external data
type or a type defined in the model. 61

4.28 Generics in CD4A are only simple and with only one parameter. 62
4.29 Modifiers allow to define stereotypes and visibilities for classes, interfaces,

enumerations, attributes, methods, and constructors. 63
4.30 Each CD4Code class and enumeration can define a constructor with a set

of parameters but no implementation body. 64
4.31 CD4Code supports method-signatures with modifiers, return types, and

parameters but no implementation bodies. 64
4.32 CD4Code supports methods and static attributes in interfaces. 64
4.33 CD4Code supports methods and constructors in enumerations. 65

5.1 A CD4A model that requires resolving multi-inheritance when mapping
CD4A interfaces to Java interfaces and implementations. 70

5.2 An implementation example of the CD4A model in Figure 5.25 to imple-
ment CD4A composition. 93

6.1 The Override-Static-Pattern implementation to instantiate objects. 98
6.2 A handcoded Java class for the generated A class shown in Listing 6.1. . . 99
6.3 An excerpt of the CD4A model in Figure 4.1 with a hierarchy of classes. . 102

7.1 Implementation of the build()-method for Figure 7.3. 116
7.2 Implementation of the isValid()-method for Figure 7.3. 116
7.3 Example of using the generated builder in Figure 7.3 to create Consultant-

Impl objects. 117
7.4 Implementation of the UpdateAname command for Figure 7.12. 131

8.1 State-Pattern realizing the SC in Figure 8.2 150
8.2 An example of the IR of the example in Listing 8.1 described using the

CD4Code ML. 152
8.3 An example of using the provided API to replace templates (ll.20-21) and

bind hook points (ll.23-24). 162

9.1 A configuration script to parse a model (ll.2-6), check context conditions
(l.9), execute a transformation (ll.12-13), and generate files (l.16). 176

322

Listings

10.1 An example of a simplified ADJava model. 187
10.2 An ADJava model with multiple input and output pins. 187
10.3 Each activity can have a precondition between [...] (l.1) and a post-

condition between [[...]] (l.4). 187
10.4 Actions are defined with the action keyword and a name. They can also

have input and output pins (ll.1-2 and ll.5-6), pre- and postconditions (l.4
and l.7), and Java implementations (l.10). 188

10.5 Example of two actions calling activities. 189
10.6 An example of a shared object node that can be used by actions within

the enclosing activity. 189
10.7 An example of control flows, which define flows of control between action

and control nodes. 190
10.8 An example of an object flow definition (l.4). 190
10.9 Initial nodes are denoted by the initial keyword and have to be con-

nected to one other node. 191
10.10Final nodes are denoted by the final keyword and do not have any

outgoing edges. 191
10.11Fork nodes are either define implicit by the ||-symbol (l.1) or explicit by

the fork keyword and a name (l.3). 191
10.12Join nodes are defined implicitly on the left-hand side of a control or

object flow or explicit by the join keyword and a name. 192
10.13Decision nodes are implicitly defined by a |-symbol and guards (l.1) or

explicitly by the decision keyword and a name (l.3). 192
10.14Merge nodes are defined implicit by the |-symbol on the left hand side

(l.1) or explicit by the merge keyword and a name (l.3). 193
10.15Role partitions are defined by the role keyword, a name (l.1), and an

action sequence (l.2). 193

C.1 The complete grammar of CD4Code, which is used for code generation,
including methods, constructors, and modifiers. 259

C.2 The full grammar of the activity diagram modeling language to define
workflows. 261

C.3 The extended grammar of the activity diagram modeling language with
embedded Java. 264

D.1 The complete CD4A model for the simplified banking system example
in Figure 4.1 . 265

D.2 The CD4A model for the POI Management System. 267
D.3 The CD4A model for the audio and video streaming platform 268
D.4 The CD4A model for the Examination Regulation System 270
D.5 The ADJava model showing the textual version of Figure 10.1 275

323

List of Tables

5.1 An example of the mapping of CD4A attributes to Java variables. 74
5.2 An example of how the Java variable to manage association links depends

on the cardinality and the existence of an association name or a role name. 78
5.3 An overview of the Java variables to store qualified association links. The

association keyword and the private visibility have been omitted. . . . 85

7.1 Overview of the mapping of attributes to GUI elements. 124
7.2 Mapping overview of CD4A model elements to the meta-model elements. 135

9.1 Cardinality and navigation underspecification in the CD4A ML and the
defined defaults (E is an externally defined type). 167

9.2 An overview of the set of variables that are predefined to be used in a
MontiDEx configuration script. 177

9.3 A list of all log and aggregation reports provided by MontiDEx. 179

10.9 The customization and adaptation approaches used to realize the extended
infrastructure for process automation. 209

11.1 An overview of the LoC generated and manually-written for the POI man-
agement system. 215

11.2 Overview of used customization approaches for the POI management sys-
tem. 216

11.3 Overview of the manually-written and generated LoC. 222
11.4 An overview of all used customization approaches. 222
11.5 The amount of generated and manually-written LoC for the examination

regulation system. 226
11.6 The customization and adaptation approaches used in the development

of the examination regulation system. 226

B.1 Explanation of the used tags in listings and figures. 257
B.2 Explanation of the used stereotypes in listings and tags. 258

H.1 List of hook points in the MontiDExcode generator. 312

325

Related Interesting Work from the SE Group, RWTH Aachen

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an exe-
cutable, yet abstract and multi-view modeling language for modeling, designing and programming
still allows to use an agile development process.” Modeling will be used in development projects
much more, if the benefits become evident early, e.g with executable UML [Rum02] and tests
[Rum03]. In [GKRS06], for example, we concentrate on the integration of models and ordinary
programming code. In [Rum12] and [Rum16], the UML/P, a variant of the UML especially
designed for programming, refactoring and evolution, is defined. The language workbench Mon-
tiCore [GKR+06, GKR+08] is used to realize the UML/P [Sch12]. Links to further research, e.g.,
include a general discussion of how to manage and evolve models [LRSS10], a precise definition
for model composition as well as model languages [HKR+09] and refactoring in various model-
ing and programming languages [PR03]. In [FHR08] we describe a set of general requirements
for model quality. Finally [KRV06] discusses the additional roles and activities necessary in a
DSL-based software development project. In [CEG+14] we discuss how to improve reliability of
adaprivity through models at runtime, which will allow developers to delay design decisions to
runtime adaptation.

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound
derivate of the UML designed for product and test code generation. [Sch12] describes a flexi-
ble generator for the UML/P based on the MontiCore language workbench [KRV10, GKR+06,
GKR+08]. In [KRV06], we discuss additional roles necessary in a model-based software devel-
opment project. In [GKRS06] we discuss mechanisms to keep generated and handwritten code
separated. In [Wei12] demonstrate how to systematically derive a transformation language in
concrete syntax. To understand the implications of executability for UML, we discuss needs and
advantages of executable modeling with UML in agile projects in [Rum04], how to apply UML for
testing in [Rum03] and the advantages and perils of using modeling languages for programming
in [Rum02].

Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in [KER99]
many of our contributions build on the UML/P variant, which is described in the two books
[Rum16] and [Rum12] implemented in [Sch12]. Semantic variation points of the UML are dis-
cussed in [GR11]. We discuss formal semantics for UML [BHP+98] and describe UML semantics
using the“System Model” [BCGR09a], [BCGR09b], [BCR07b] and [BCR07a]. Semantic variation
points have, e.g., been applied to define class diagram semantics [CGR08]. A precisely defined
semantics for variations is applied, when checking variants of class diagrams [MRR11c] and ob-
jects diagrams [MRR11d] or the consistency of both kinds of diagrams [MRR11e]. We also apply
these concepts to activity diagrams [MRR11b] which allows us to check for semantic differences

327

Related Interesting Work from the SE Group, RWTH Aachen

of activity diagrams [MRR11a]. The basic semantics for ADs and their semantic variation points
is given in [GRR10]. We also discuss how to ensure and identify model quality [FHR08], how
models, views and the system under development correlate to each other [BGH+98] and how to
use modeling in agile development projects [Rum04], [Rum02]. The question how to adapt and
extend the UML is discussed in [PFR02] describing product line annotations for UML and more
general discussions and insights on how to use meta-modeling for defining and adapting the UML
are included in [EFLR99], [FELR98] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use,
but need appropriate tooling. The MontiCore language workbench [GKR+06, KRV10, Kra10,
GKR+08] allows the specification of an integrated abstract and concrete syntax format [KRV07b]
for easy development. New languages and tools can be defined in modular forms [KRV08,
GKR+07, Völ11] and can, thus, easily be reused. [Wei12] presents a tool that allows to cre-
ate transformation rules tailored to an underlying DSL. Variability in DSL definitions has been
examined in [GR11]. A successful application has been carried out in the Air Traffic Manage-
ment domain [ZPK+11]. Based on the concepts described above, meta modeling, model analyses
and model evolution have been discussed in [LRSS10] and [SRVK10]. DSL quality [FHR08], in-
structions for defining views [GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based
tooling for DSLs [KRV07a] complete the collection.

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable language
components, we adopt an engineering viewpoint on these techniques. General ideas on how to
engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15]. As said, the
MontiCore language workbench provides techniques for an integrated definition of languages
[KRV07b, Kra10, KRV10]. In [SRVK10] we discuss the possibilities and the challenges us-
ing metamodels for language definition. Modular composition, however, is a core concept to
reuse language components like in MontiCore for the frontend [Völ11, KRV08] and the back-
end [RRRW15]]. Language derivation is to our believe a promising technique to develop new
languages for a specific purpose that rely on existing basic languages. How to automatically
derive such a transformation language using concrete syntax of the base language is described
in [HRW15, Wei12] and successfully applied to various DSLs. We also applied the language
derivation technique to tagging languages that decorate a base language [GLRR15] and delta
languages [HHK+15a, HHK+13], where a delta language is derived from a base language to be
able to constructively describe differences between model variants usable to build feature sets.

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals,
streams of telephone or video data, method invocation, or data structures passed between soft-
ware services. We use streams, statemachines and components [BR07] as well as expressive

328

Related Interesting Work from the SE Group, RWTH Aachen

forms of composition and refinement [PR99] for semantics. Furthermore, we built a concrete
tooling infrastructure called MontiArc [HRR12] for architecture design and extensions for states
[RRW13b]. MontiArc was extended to describe variability [HRR+11] using deltas [HRRS11, ?]
and evolution on deltas [HRRS12]. [GHK+07] and [GHK+08] close the gap between the re-
quirements and the logical architecture and [GKPR08] extends it to model variants. [MRR14]
provides a precise technique to verify consistency of architectural views [Rin14, MRR13] against
a complete architecture in order to increase reusability. Co-evolution of architecture is discussed
in [MMR10] and a modeling technique to describe dynamic architectures is shown in [HRR98].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling.
The mechanisms for distributed systems are shown in [BR07] and algebraically underpinned in
[HKR+07]. Semantic and methodical aspects of model composition [KRV08] led to the language
workbench MontiCore [KRV10] that can even be used to develop modeling tools in a composi-
tional form. A set of DSL design guidelines incorporates reuse through this form of composition
[KKP+09]. [Völ11] examines the composition of context conditions respectively the underlying in-
frastructure of the symbol table. Modular editor generation is discussed in [KRV07a]. [RRRW15]
applies compositionality to Robotics control. [CBCR15] (published in [CCF+15]) summarizes
our approach to composition and remaining challenges in form of a conceptual model of the
“globalized” use of DSLs. As a new form of decomposition of model information we have devel-
oped the concept of tagging languages in [GLRR15]. It allows to describe additional information
for model elements in separated documents, facilitates reuse, and allows to type tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and de-
tailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by using
mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version espe-
cially suited for the UML is given in [BCGR09b] and in [BCGR09a] its rationale is discussed.
[BCR07a, BCR07b] contain detailed versions that are applied to class diagrams in [CGR08]. To
better understand the effect of an evolved design, detection of semantic differencing as opposed
to pure syntactical differences is needed [MRR10]. [MRR11a, MRR11b] encode a part of the
semantics to handle semantic differences of activity diagrams and [MRR11e] compares class and
object diagrams with regard to their semantics. In [BR07], a simplified mathematical model
for distributed systems based on black-box behaviors of components is defined. Meta-modeling
semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages for the
description of an exemplary object interaction, today called sequence diagram. [BGH+98] dis-
cusses the relationships between a system, a view and a complete model in the context of the
UML. [GR11] and [CGR09] discuss general requirements for a framework to describe semantic
and syntactic variations of a modeling language. We apply these on class and object diagrams in
[MRR11e] as well as activity diagrams in [GRR10]. [Rum12] defines the semantics in a variety of
code and test case generation, refactoring and evolution techniques. [LRSS10] discusses evolution
and related issues in greater detail.

329

Related Interesting Work from the SE Group, RWTH Aachen

Evolution & Transformation of Models

Models are the central artifact in model driven development, but as code they are not initially
correct and need to be changed, evolved and maintained over time. Model transformation is
therefore essential to effectively deal with models. Many concrete model transformation problems
are discussed: evolution [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactor-
ing [Rum12, PR03], translating models from one language into another [MRR11c, Rum12] and
systematic model transformation language development [Wei12]. [Rum04] describes how compre-
hensible sets of such transformations support software development and maintenance [LRSS10],
technologies for evolving models within a language and across languages, and mapping archi-
tecture descriptions to their implementation [MMR10]. Automaton refinement is discussed in
[PR94, KPR97], refining pipe-and-filter architectures is explained in [PR99]. Refactorings of
models are important for model driven engineering as discussed in [PR01, PR03, Rum12]. Trans-
lation between languages, e.g., from class diagrams into Alloy [MRR11c] allows for comparing
class diagrams on a semantic level.

Variability & Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one man-
ufacturer develops several products with many similarities but also many variations. Variants
are managed in a Software Product Line (SPL) that captures product commonalities as well as
differences. Feature diagrams describe variability in a top down fashion, e.g., in the automotive
domain [GHK+08] using 150% models. Reducing overhead and associated costs is discussed in
[GRJA12]. Delta modeling is a bottom up technique starting with a small, but complete base
variant. Features are additive, but also can modify the core. A set of commonly applicable deltas
configures a system variant. We discuss the application of this technique to Delta-MontiArc
[HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only describe spacial
variability but also temporal variability which allows for using them for software product line
evolution [HRRS12]. [HHK+13] and [HRW15] describe an approach to systematically derive
delta languages. We also apply variability to modeling languages in order to describe syntactic
and semantic variation points, e.g., in UML for frameworks [PFR02]. Furthermore, we specified a
systematic way to define variants of modeling languages [CGR09] and applied this as a semantic
language refinement on Statecharts in [GR11].

Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physi-
cal entities. Contributions for individual aspects range from requirements [GRJA12], complete
product lines [HRRW12], the improvement of engineering for distributed automotive systems
[HRR12] and autonomous driving [BR12a] to processes and tools to improve the development as
well as the product itself [BBR07]. In the aviation domain, a modeling language for uncertainty
and safety events was developed, which is of interest for the European airspace [ZPK+11]. A
component and connector architecture description language suitable for the specific challenges in
robotics is discussed in [RRW13b, RRW14]. Monitoring for smart and energy efficient buildings
is developed as Energy Navigator toolset [KPR12, FPPR12, KLPR12].

330

Related Interesting Work from the SE Group, RWTH Aachen

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using statema-
chines for modeling systems. Our contributions to state based modeling can currently be split
into three parts: (1) understanding how to model object-oriented and distributed software using
statemachines resp. Statecharts [GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding
the refinement [PR94, RK96, Rum96] and composition [GR95] of statemachines, and (3) applying
statemachines for modeling systems. In [Rum96] constructive transformation rules for refining
automata behavior are given and proven correct. This theory is applied to features in [KPR97].
Statemachines are embedded in the composition and behavioral specification concepts of Focus
[BR07]. We apply these techniques, e.g., in MontiArcAutomaton [RRW13a, RRW14] as well as
in building management systems [FLP+11].

Robotics

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an
inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineering
of robotics applications requires composition and interaction of diverse distributed software mod-
ules. This usually leads to complex monolithic software solutions hardly reusable, maintainable,
and comprehensible, which hampers broad propagation of robotics applications. The MontiAr-
cAutomaton language [RRW13a] extends ADL MontiArc and integrates various implemented
behavior modeling languages using MontiCore [RRW13b, RRW14, RRRW15] that perfectly fit
Robotic architectural modelling. The LightRocks [THR+13] framework allows robotics experts
and laymen to model robotic assembly tasks.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication
systems as well as advanced active and passive safety-systems result in complex embedded sys-
tems. As these feature-driven subsystems may be arbitrarily combined by the customer, a huge
amount of distinct variants needs to be managed, developed and tested. A consistent require-
ments management that connects requirements with features in all phases of the development
for the automotive domain is described in [GRJA12]. The conceptual gap between requirements
and the logical architecture of a car is closed in [GHK+07, GHK+08]. [HKM+13] describes a tool
for delta modeling for Simulink [HKM+13]. [HRRW12] discusses means to extract a well-defined
Software Product Line from a set of copy and paste variants. [RSW+15] describes an approach
to use model checking techniques to identify behavioral differences of Simulink models. Quality
assurance, especially of safety-related functions, is a highly important task. In the Carolo project
[BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-based func-
tions through fully-automatic simulation [BBR07]. This technique allows a dramatic speedup
in development and evolution of autonomous car functionality, and thus enables us to develop
software in an agile way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in
development and evolution on a more general level by considering any kind of critical system that
relies on architectural descriptions. As tooling infrastructure, the SSElab storage, versioning and

331

Related Interesting Work from the SE Group, RWTH Aachen

management services [HKR12] are essential for many projects.

Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2
emissions is an important challenge. Thus, energy management in buildings as well as in neigh-
bourhoods becomes equally important to efficiently use the generated energy. Within several
research projects, we developed methodologies and solutions for integrating heterogeneous sys-
tems at different scales. During the design phase, the Energy Navigators Active Functional
Specification (AFS) [FPPR12, KPR12] is used for technical specification of building services
already. We adapted the well-known concept of statemachines to be able to describe different
states of a facility and to validate it against the monitored values [FLP+11]. We show how our
data model, the constraint rules and the evaluation approach to compare sensor data can be
applied [KLPR12].

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for
web-based application and service architectures with high complexity, criticality and new appli-
cation domains. It promises to enable new business models, to lower the barrier for web-based
innovations and to increase the efficiency and cost-effectiveness of web development [KRR14].
Application classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15b], Big
Data, App and Service Ecosystems bring attention to aspects like responsiveness, privacy and
open platforms. Regardless of the application domain, developers of such systems are in need
for robust methods and efficient, easy-to-use languages and tools [KRS12]. We tackle these chal-
lenges by perusing a model-based, generative approach [NPR13]. The core of this approach are
different modeling languages that describe different aspects of a cloud-based system in a concise
and technology-agnostic way. Software architecture and infrastructure models describe the sys-
tem and its physical distribution on a large scale. We apply cloud technology for the services we
develop, e.g., the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for
our tool demonstrators and our own development platforms. New services, e.g., collecting data
from temperature, cars etc. can now easily be developed.

332

Related Interesting Work from the SE Group, RWTH Aachen

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems
Engineering Process and Tools for the Development of Autonomous Driving In-
telligence. Journal of Aerospace Computing, Information, and Communication
(JACIC), 4(12):1158–1174, 2007. I, I

[BCGR09a] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Considerations and Rationale for a UML System Model. In K. Lano, editor, UML
2 Semantics and Applications, pages 43–61. John Wiley & Sons, November 2009. I,
I, I

[BCGR09b] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Definition of the UML System Model. In K. Lano, editor, UML 2 Semantics and
Applications, pages 63–93. John Wiley & Sons, November 2009. I, I, I

[BCR07a] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU
Munich, Germany, February 2007. I, I

[BCR07b] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 3: The State Machine Model. Technical Report TUM-I0711,
TU Munich, Germany, February 2007. I, I, I

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger, Bern-
hard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and Complete
Object Interaction Descriptions. In Object-oriented Behavioral Semantics Workshop
(OOPSLA’97), Technical Report TUM-I9737, Germany, 1997. TU Munich. I

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin.
Systems, Views and Models of UML. In Proceedings of the Unified Modeling Lan-
guage, Technical Aspects and Applications, pages 93–109. Physica Verlag, Heidel-
berg, Germany, 1998. I, I

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katharina Spies.
Software and System Modeling Based on a Unified Formal Semantics. In Workshop
on Requirements Targeting Software and Systems Engineering (RTSE’97), LNCS
1526, pages 43–68. Springer, 1998. I, I

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3–
18, Februar 2007. I, I, I, I

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the
Urban Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In Auto-
motive Software Engineering Workshop (ASE’12), pages 789–798, 2012. I, I

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Software.
In C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban Challenge,
pages 243–271. Springer, Germany, 2012. I

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe. Con-
ceptual Model of the Globalization for Domain-Specific Languages. In Globalizing
Domain-Specific Languages, LNCS 9400, pages 7–20. Springer, 2015. I, I

333

Related Interesting Work from the SE Group, RWTH Aachen

[CCF+15] Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel,
and Bernhard Rumpe, editors. Globalizing Domain-Specific Languages, LNCS 9400.
Springer, 2015. I, I

[CEG+14] Betty Cheng, Kerstin Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi
Müller, Patrizio Pelliccione, Anna Perini, Nauman Qureshi, Bernhard Rumpe,
Daniel Schneider, Frank Trollmann, and Norha Villegas. Using Models at Run-
time to Address Assurance for Self-Adaptive Systems. In Models@run.time, LNCS
8378, pages 101–136. Springer, Germany, 2014. I

[CGR08] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model
Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig, Ger-
many, 2008. I, I

[CGR09] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability within
Modeling Language Definitions. In Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’09), LNCS 5795, pages 670–684. Springer, 2009. I,
I

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling
Semantics of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral
Specifications of Businesses and Systems, pages 45–60. Kluver Academic Publisher,
1999. I, I

[FELR98] Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as a for-
mal modeling notation. Computer Standards & Interfaces, 19(7):325–334, November
1998. I

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indikator
für Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5):408–424, Okto-
ber 2008. I, I, I

[FLP+11] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. State-based Modeling of Buildings and Facilities. In Enhanced Building
Operations Conference (ICEBO’11), 2011. I, I

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The
Energy Navigator - A Web-Platform for Performance Design and Management. In
Energy Efficiency in Commercial Buildings Conference(IEECB’12), 2012. I, I, I

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard
Rumpe. View-based Modeling of Function Nets. In Object-oriented Modelling of
Embedded Real-Time Systems Workshop (OMER4’07), 2007. I, I, I

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Rothhardt,
and Bernhard Rumpe. Modelling Automotive Function Nets with Views for Fea-
tures, Variants, and Modes. In Proceedings of 4th European Congress ERTS - Em-
bedded Real Time Software, 2008. I, I, I

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Model-
ing Variants of Automotive Systems using Views. In Modellbasierte Entwicklung
von eingebetteten Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76–89. TU
Braunschweig, 2008. I

334

Related Interesting Work from the SE Group, RWTH Aachen

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System
Model with State. Technical Report TUM-I9631, TU Munich, Germany, July 1996.
I, I

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domän-
spezifischer Sprachen. Informatik-Bericht 2006-04, CFG-Fakultät, TU Braun-
schweig, August 2006. I, I, I

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. Textbased Modeling. In 4th International Workshop on Software Lan-
guage Engineering, Nashville, Informatik-Bericht 4/2007. Johannes-Gutenberg-
Universität Mainz, 2007. I

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore: A Framework for the Development of Textual Domain Specific
Languages. In 30th International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10-18, 2008, Companion Volume, pages 925–926, 2008. I,
I, I

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler. Integration
von Modellen in einen codebasierten Softwareentwicklungsprozess. In Modellierung
2006 Conference, LNI 82, Seiten 67–81, 2006. I, I

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe. Engi-
neering Tagging Languages for DSLs. In Conference on Model Driven Engineering
Languages and Systems (MODELS’15), pages 34–43. ACM/IEEE, 2015. I, I

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical
Report TUM-I9533, TU Munich, Germany, October 1995. I

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In Workshop
on Modeling, Development and Verification of Adaptive Systems, LNCS 6662, pages
17–32. Springer, 2011. I, I, I, I

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level
Requirements Management and Complexity Costs in Automotive Development
Projects: A Problem Statement. In Requirements Engineering: Foundation for
Software Quality (REFSQ’12), 2012. I, I, I

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of Ac-
tivity Diagrams with Semantic Variation Points. In Conference on Model Driven
Engineering Languages and Systems (MODELS’10), LNCS 6394, pages 331–345.
Springer, 2010. I, I

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bern-
hard Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In Software
Product Line Conference (SPLC’13), pages 22–31. ACM, 2013. I, I

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based Ser-
vices in the Internet of Things. In Conference on Future Internet of Things and
Cloud (FiCloud’14). IEEE, 2014. I

335

Related Interesting Work from the SE Group, RWTH Aachen

[HHK+15a] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bern-
hard Rumpe, Ina Schaefer, and Christoph Schulze. Systematic Synthesis of Delta
Modeling Languages. Journal on Software Tools for Technology Transfer (STTT),
17(5):601–626, October 2015. I

[HHK+15b] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. A comprehensive approach to privacy in the cloud-
based Internet of Things. Future Generation Computer Systems, 56:701–718, 2015.
I

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bernhard
Rumpe, and Ina Schaefer. First-Class Variability Modeling in Matlab/Simulink. In
Variability Modelling of Software-intensive Systems Workshop (VaMoS’13), pages
11–18. ACM, 2013. I, I

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. An Algebraic View on the Semantics of Model Composition. In
Conference on Model Driven Architecture - Foundations and Applications (ECMDA-
FA’07), LNCS 4530, pages 99–113. Springer, Germany, 2007. I

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Scaling-Up Model-Based-Development for Large Heterogeneous Sys-
tems with Compositional Modeling. In Conference on Software Engineeering in
Research and Practice (SERP’09), pages 172–176, July 2009. I, I

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer.
Delta-oriented Architectural Variability Using MontiCore. In Software Architecture
Conference (ECSA’11), pages 6:1–6:10. ACM, 2011.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-In-
Based Framework for Web-Based Project Portals. In Developing Tools as Plug-Ins
Workshop (TOPI’12), pages 61–66. IEEE, 2012. I, I

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of
”Semantics”? IEEE Computer, 37(10):64–72, October 2004. I

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Compo-
nent Interfaces. In Technology of Object-Oriented Languages and Systems (TOOLS
26), pages 58–70. IEEE, 1998. I

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der
Linden. Hierarchical Variability Modeling for Software Architectures. In Software
Product Lines Conference (SPLC’11), pages 150–159. IEEE, 2011. I, I

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural
Modeling of Interactive Distributed and Cyber-Physical Systems. Technical Report
AIB-2012-03, RWTH Aachen University, February 2012. I, I

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling
for Software Architectures. In Tagungsband des Dagstuhl-Workshop MBEES: Mod-
ellbasierte Entwicklung eingebetteterSysteme VII, pages 1 – 10. fortiss GmbH, 2011.
I

336

Related Interesting Work from the SE Group, RWTH Aachen

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-
oriented Software Product Line Architectures. In Large-Scale Complex IT Systems.
Development, Operation and Management, 17th Monterey Workshop 2012, LNCS
7539, pages 183–208. Springer, 2012. I, I

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung
eines Produktlinienansatzes in die automotive Softwareentwicklung am Beispiel von
Steuergerätesoftware. In Software Engineering Conference (SE’12), LNI 198, Seiten
181–192, 2012. I, I

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. Systematically Deriv-
ing Domain-Specific Transformation Languages. In Conference on Model Driven
Engineering Languages and Systems (MODELS’15), pages 136–145. ACM/IEEE,
2015. I, I

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ. In A. Mor-
eira and S. Demeyer, editors, Object-Oriented Technology, ECOOP’99 Workshop
Reader, LNCS 1743, Berlin, 1999. Springer Verlag. I

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. Design Guidelines for Domain Specific Languages. In Domain-
Specific Modeling Workshop (DSM’09), Techreport B-108, pages 7–13. Helsinki
School of Economics, October 2009. I, I

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Modeling
Cyber-Physical Systems: Model-Driven Specification of Energy Efficient Buildings.
In Modelling of the Physical World Workshop (MOTPW’12), pages 2:1–2:6. ACM,
October 2012. I, I

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification and
Refinement with State Transition Diagrams. In Workshop on Feature Interactions in
Telecommunications Networks and Distributed Systems, pages 284–297. IOS-Press,
1997. I, I

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navigator. In
H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von Forschungssoft-
ware. Tagungsband, Rolduc, 10.-11.11.2011, Aachener Informatik-Berichte, Soft-
ware Engineering, Band 14. Shaker Verlag, Aachen, Deutschland, 2012. I, I, I

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im
Software-Engineering. Aachener Informatik-Berichte, Software Engineering, Band
1. Shaker Verlag, März 2010. I, I

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical
model for distributed information processing systems - SysLab system model. In
Workshop on Formal Methods for Open Object-based Distributed Systems, IFIP Ad-
vances in Information and Communication Technology, pages 323–338. Chapmann
& Hall, 1996. I

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Computing.
Springer, Schweiz, December 2014. I

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical Sys-

337

Related Interesting Work from the SE Group, RWTH Aachen

tems - eine Herausforderung für die Automatisierungstechnik? In Proceedings of
Automation 2012, VDI Berichte 2012, Seiten 113–116. VDI Verlag, 2012. I, I

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Develop-
ment using Domain Specific Modelling Languages. In Domain-Specific Modeling
Workshop (DSM’06), Technical Report TR-37, pages 150–158. Jyväskylä Univer-
sity, Finland, 2006. I, I

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Generation for
Compositional DSLs in Eclipse. In Domain-Specific Modeling Workshop (DSM’07),
Technical Reports TR-38. Jyväskylä University, Finland, 2007. I, I

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of Ab-
stract and Concrete Syntax for Textual Languages. In Conference on Model Driven
Engineering Languages and Systems (MODELS’07), LNCS 4735, pages 286–300.
Springer, 2007. I, I

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular Devel-
opment of Textual Domain Specific Languages. In Conference on Objects, Models,
Components, Patterns (TOOLS-Europe’08), LNBIP 11, pages 297–315. Springer,
2008. I, I, I

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for
Compositional Development of Domain Specific Languages. International Journal
on Software Tools for Technology Transfer (STTT), 12(5):353–372, September 2010.
I, I, I, I

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan Sprinkle.
Model Evolution and Management. In Model-Based Engineering of Embedded Real-
Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 241–270. Springer,
2010. I, I, I, I

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture
Descriptions of Critical Systems. IEEE Computer, 43(5):42–48, May 2010. I, I, I

[MRR10] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for Seman-
tic Model Differencing. In Proceedings Int. Workshop on Models and Evolution
(ME’10), LNCS 6627, pages 194–203. Springer, 2010. I

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Differ-
encing for Activity Diagrams. In Conference on Foundations of Software Engineering
(ESEC/FSE ’11), pages 179–189. ACM, 2011. I, I

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Semantics
for Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH Aachen
University, Aachen, Germany, July 2011. I, I

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Dia-
grams Analysis Using Alloy Revisited. In Conference on Model Driven Engineering
Languages and Systems (MODELS’11), LNCS 6981, pages 592–607. Springer, 2011.
I, I

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Diagrams.

338

Related Interesting Work from the SE Group, RWTH Aachen

In Object-Oriented Programming Conference (ECOOP’11), LNCS 6813, pages 281–
305. Springer, 2011. I

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Config-
urable Consistency Analysis for Class and Object Diagrams. In Conference on Model
Driven Engineering Languages and Systems (MODELS’11), LNCS 6981, pages 153–
167. Springer, 2011. I, I

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component
and Connector Models from Crosscutting Structural Views. In Meyer, B. and Baresi,
L. and Mezini, M., editor, Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’13), pages 444–454. ACM New York, 2013. I

[MRR14] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component and
Connector Models against Crosscutting Structural Views. In Software Engineering
Conference (ICSE’14), pages 95–105. ACM, 2014. I

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures as
Interactive Systems. In Model-Driven Engineering for High Performance and Cloud
Computing Workshop, CEUR Workshop Proceedings 1118, pages 15–24, 2013. I

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Annotations
with UML-F. In Software Product Lines Conference (SPLC’02), LNCS 2379, pages
188–197. Springer, 2002. I, I

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for Be-
haviour Modelling with Automata. In Proceedings of the Industrial Benefit of Formal
Methods (FME’94), LNCS 873, pages 154–174. Springer, 1994. I, I

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architectures.
In Congress on Formal Methods in the Development of Computing System (FM’99),
LNCS 1708, pages 96–115. Springer, 1999. I, I

[PR01] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov, H. and Ba-
clavski, K., editor, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa
Bay, Florida, USA, October 15. Northeastern University, 2001. I

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications. In
Kilov, H. and Baclavski, K., editor, Practical Foundations of Business and System
Specifications, pages 281–297. Kluwer Academic Publishers, 2003. I, I

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and Connector
Systems. Aachener Informatik-Berichte, Software Engineering, Band 19. Shaker
Verlag, 2014. I

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In
B. Harvey and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages
265–286. Kluwer Academic Publishers, 1996. I

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes mathematis-
ches Modell verteilter informationsverarbeitender Systeme - Syslab-Systemmodell.
Technischer Bericht TUM-I9510, TU München, Deutschland, März 1995. I

339

Related Interesting Work from the SE Group, RWTH Aachen

[RRRW15] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann.
Language and Code Generator Composition for Model-Driven Engineering of
Robotics Component & Connector Systems. Journal of Software Engineering for
Robotics (JOSER), 6(1):33–57, 2015. I, I, I

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software Ar-
chitecture Structure and Behavior Modeling to Implementations of Cyber-Physical
Systems. In Software Engineering Workshopband (SE’13), LNI 215, pages 155–170,
2013. I, I

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAutoma-
ton: Modeling Architecture and Behavior of Robotic Systems. In Conference on
Robotics and Automation (ICRA’13), pages 10–12. IEEE, 2013. I, I, I

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architecture and
Behavior Modeling of Cyber-Physical Systems with MontiArcAutomaton. Aachener
Informatik-Berichte, Software Engineering, Band 20. Shaker Verlag, December 2014.
I, I, I

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver Ringert,
and Peter Manhart. Behavioral Compatibility of Simulink Models for Product Line
Maintenance and Evolution. In Software Product Line Conference (SPLC’15), pages
141–150. ACM, 2015. I

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Sys-
teme. Herbert Utz Verlag Wissenschaft, München, Deutschland, 1996. I

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare?
In T. Clark and J. Warmer, editors, Issues & Trends of Information Technology
Management in Contemporary Associations, Seattle, pages 697–701. Idea Group
Publishing, London, 2002. I, I, I

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In Symposium
on Formal Methods for Components and Objects (FMCO’02), LNCS 2852, pages
380–402. Springer, November 2003. I, I

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical Innova-
tions of Software and Systems Engineering in the Future (RISSEF’02), LNCS 2941,
pages 297–309. Springer, October 2004. I, I, I, I

[Rum11] Bernhard Rumpe. Modellierung mit UML, 2te Auflage. Springer Berlin, September
2011. I

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle, Refac-
toring, 2te Auflage. Springer Berlin, Juni 2012. I, I, I, I, I

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer
International, July 2016. I, I, I

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UM-
L/P. Aachener Informatik-Berichte, Software Engineering, Band 11. Shaker Verlag,
2012. I, I, I

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Meta-

340

Related Interesting Work from the SE Group, RWTH Aachen

modelling: State of the Art and Research Challenges. In Model-Based Engineering of
Embedded Real-Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 57–76.
Springer, 2010. I, I, I

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas
Wortmann. A New Skill Based Robot Programming Language Using UML/P Stat-
echarts. In Conference on Robotics and Automation (ICRA’13), pages 461–466.
IEEE, 2013. I

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen. Aach-
ener Informatik-Berichte, Software Engineering, Band 9. Shaker Verlag, 2011. I, I,
I

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen.
Aachener Informatik-Berichte, Software Engineering, Band 12. Shaker Verlag, 2012.
I, I, I, I

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Kumardev
Chatterjee, Andreas Horst, and Bernhard Rumpe. On Demand Data Analysis and
Filtering for Inaccurate Flight Trajectories. In Proceedings of the SESAR Innovation
Days. EUROCONTROL, 2011. I, I

341

	Table of Contents
	Introduction
	Context of the Thesis
	Objectives and Contribution
	Organization of the Thesis
	Related Own Publications

	Foundations: Model-Driven Development and Data-Centric Application
	Model-Driven Development
	Domain-Specific (Modeling) Language

	MontiCore Language Workbench and Code Generation Framework
	MontiCore Grammar
	AST Generation from MontiCore Grammars
	Symbol Table
	Code Generation

	Data-Centric Applications
	Layered Architecture

	Related MDP and MDD Approaches
	Related MDP Approaches for Data-Centric Applications
	Related MDD Approaches for Data-Centric Applications

	Requirements for the Envisioned Methodology
	Typical Scenario for Generative Development of a Data-Centric Application
	Model-Driven Prototyping of Data Structures
	Model-Driven Development of Data-Centric Applications
	Roles in the Development and Prototyping Process

	Primary High-Level Requirements
	General Requirements
	Modeling Requirements
	Code Generator Requirements
	Generated Product Requirements

	Envisioned Methods for MDP and MDD of Data-Centric Applications
	MDP of Data Structures with MontiDEx
	MDD of Data-Centric Applications with MontiDEx

	UML Class Diagrams in Analysis, Design and Implementation
	Analysis, Design, and Implementation Model
	Language Concepts in Analysis Models

	CD4A: Modeling Language for Analysis Models
	Model Definition
	Interfaces, Classes, and Enumerations
	Attributes and Predefined Data Types
	Associations
	Context Conditions

	CD4Code: Modeling Language for Implementation Models
	Modifiers
	Constructor-Signatures
	Method-Signatures
	CD4Code Interface
	CD4Code Enumeration

	Systematic CD4A ML to a Java Mapping
	General Considerations and Mapping Guidelines
	Mapping of CD4A Concepts to Java Source Code
	Mapping CD4A Model Definition
	Mapping CD4A Interfaces
	Mapping CD4A Classes
	Mapping CD4A Enumerations
	Mapping CD4A Attributes
	Mapping CD4A Unidirectional Associations
	Mapping CD4A Bidirectional Associations
	Mapping CD4A Ordered Associations
	Mapping CD4A Qualified Associations
	Mapping CD4A Derived Associations
	Mapping CD4A Compositions

	Method for Handling Mandatory-to-Mandatory Associations

	Generated Code Customization via Handcoded Extensions and Hot Spots
	General Considerations of Handcoded Extensions
	Separation of Generated and Non-Generated Artifacts
	Override-Static-Pattern

	Integration of Generated and Non-Generated Code
	Implementation of Interface Extensions using Java-Default Interfaces
	CD4A Hierarchy and Handcoded Extensions

	Customization via Hot Spots in Generated Source Code
	Methods for using Handcoded Extensions
	Extending and Associating External Data Types in CD4A Models

	A Customizable Data-Centric Infrastructure
	General Considerations and Architectural Design Drivers
	Architectural Impact of Infrastructure Customization
	Type-specific Method Invocation via Double Dispatching
	Run-time Environment and Modularity

	Mapping CD4A Models to an Application Layer
	Object Instantiation and Manipulation
	Data Structure Management

	Mapping CD4A Models to a Presentation Layer
	Mapping Model Definition, Interfaces, Classes, and Enumerations
	Technical Realization of GUI Architecture
	Manipulating Objects via Model-Specific Commands
	Managing Execution of Model-Specific Commands

	Generic Persistence Infrastructure
	Generic CD4A Meta-Model
	Multi-Tenancy and Role-Base Access Control
	Technical Realization of Accessing the WebService

	Mapping CD4A Models to a Persistence Layer
	Lazy Loading of Objects from the Persistence Infrastructure

	Method for Consistent Data Migration

	Synergetic Transformation- and Template-based Code Generation
	General Requirements
	Integration of Transformation- and Template-based Code Generation
	Case Example: Statecharts-to-Java Source Code
	An Object-Oriented Intermediate Representation using CD4Code
	Model-to-Model Transformations
	Adding Implementation Details via Template Attachments
	Model-To-Text Transformation

	Template Adaptation via Template Hook Points and Template Extensions
	Adaptation via Template Hook Points
	Adaptation via Template Extensions
	Technical Realization in MontiCore

	Methods for Transformation Design and Management
	Method for Transformation and Template Development

	MontiDEx: MontiCore Data Explorer Code Generator
	Technique to Handle Underspecification in MontiDEx
	CD4A Underspecification and Defaults

	MontiDEx Architecture and Technical Realization
	Technical Realization of the Common Infrastructure

	Methods for Code Generator Configuration
	Technical Realization of MontiDEx Configurations

	MontiDEx Reporting Facility
	Textual Reports
	Graphical Report

	Method for Adapting and Deploying MontiDEx
	Method for Adapting the MontiDEx Code Generator
	MontiDEx Project Types and Deployment

	Case Example: Extended Infrastructure for Process Automation
	General Considerations and Requirements
	ADJava: Activity Diagram Modeling Language
	Activity Definition
	Actions
	Object Nodes
	Control And Object Flow
	Roles
	Pin and Type Auto-Connect

	Execution of ADJava Models
	Method for Interpretation of ADJava Models
	Code Generation from ADJava Models
	Technical Realization of the Extended Data-Centric Infrastructure
	Technical Realization of the MontiDEx Code Generator Extension

	Method for Developing Processes with ADJava
	Evaluation and Limitation
	Evaluation of MontiDEx Customization and Adaptation Approaches
	Limitations

	Case Example: MDP and MDD with MontiDEx
	Points-of-Interest Management System
	Technical Realization
	Discussion

	Audio and Video Streaming Platform
	Technical Realization
	Discussion

	Examination Regulation System
	Technical Realization
	Discussion

	Conclusion
	Summary
	Potential Future Work

	Bibliography
	Index of Abbreviations
	Diagram and Listing Tags
	Grammars
	CD4Code Grammar
	Activity Diagram Language Grammar
	Activity Diagram Language Grammar with Embedded Java

	Examples
	CD4A Model for Banking System
	CD4A Model for the POI Management System
	CD4A Model for the Audio and Video Streaming
	CD4A Model for the Examination Regulation System
	Activity Diagram for Transaction Submission

	Context Conditions
	CD4A Context Conditions
	CD4Code Context Conditions
	Activity Context Conditions

	MontiDEx Hot Spots
	Graphical User Interface
	Application Core
	Persistence

	MontiDEx Package Structure
	MontiDEx Hook Points
	Curriculum Vitae
	List of Figures
	Listings
	List of Tables

