

Analysis and Synthesis of Interactive
Component and Connector Systems

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Dipl.-Inform. Jan Oliver Ringert
aus Hildesheim

Berichter: Universitätsprofessor Dr. rer. nat. Bernhard Rumpe
University Professor Marsha Chechik, PhD

Tag der mündlichen Prüfung: 24.04.2014

[Rin14] J. O. Ringert:
Analysis and Synthesis of Interactive Component and Connector Systems.
Shaker Verlag, ISBN 978-3-8440-3120-1. Aachener Informatik-Berichte, Software Engineering, Band 19. 2014.
www.se-rwth.de/publications/

Shaker Verlag
Aachen 2014

Aachener Informatik-Berichte, Software Engineering

herausgegeben von
Prof. Dr. rer. nat. Bernhard Rumpe

Software Engineering
RWTH Aachen University

Band 19

Jan Oliver Ringert

Analysis and Synthesis of Interactive
Component and Connector Systems

WICHTIG: D 82 überprüfen !!!

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: D 82 (Diss. RWTH Aachen University, 2014)

Copyright Shaker Verlag 2014
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8440-3120-1
ISSN 1869-9170

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen
Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9
Internet: www.shaker.de • e-mail: info@shaker.de

Abstract

The development of distributed interactive hard- and software systems is a challeng-
ing endeavor. Component and connector (C&C) architecture descriptions address the
complexity of interactive systems by formalizing the logical and physical decomposi-
tion of systems into subsystems. C&C descriptions model components with well-defined
interfaces and component interaction via connectors.

Current modeling languages and specification mechanisms rely on the traditional,
implementation-oriented hierarchical decomposition of systems into subsystems. We
are developing modeling languages and methods that crosscut these boundaries and
allow to capture the partial knowledge available to different stakeholders involved in
a system’s design. Usage scenarios include formalizing crosscutting knowledge about
the C&C structure of the system, specifying behavior and interaction, and providing a
model-based implementation for code generation and deployment.

We present a language to describe design decisions and knowledge available about a
system’s decomposition in partial C&C views. This language is based on C&C model-
ing languages and adds powerful abstraction mechanisms for hierarchical containment,
connectedness, and interfaces. C&C views may specify valid, invalid, alternative, and
dependent designs. Our analysis methods can verify whether a C&C model satisfies a
C&C view. We have also developed a synthesis method to automatically compute a
satisfying C&C model for a given specification, if one exists.

To describe the interaction behavior of components, we have developed a modeling
language for automata that are embedded in components and interact by sending and
receiving messages via the components’ typed input and output ports. This language
has various mechanisms for underspecification of component behavior. We have devel-
oped tool support to verify the implementation of components and component composi-
tions against underspecified models. The verification enables incremental development
of component behavior based on stepwise refinement. We also present a code gener-
ation framework for the educational Lego NXT robotics platform to demonstrate an
application of our work in the robotics domain.

Prototype implementations and evaluation in a user study, a case study, and over
example systems show promising results towards a comprehensive model-based develop-
ment environment for interactive component and connector systems.

Acknowledgments

I would like to express my deep gratitude to Prof. Dr. Bernhard Rumpe for giving
me the opportunity to realize this thesis, for composing a strong research group fun to
work with, and for the many fruitful discussions and advice on the research presented
here.

I would like to thank Prof. Marsha Chechik, PhD for being the second examiner of
my thesis and for her helpful comments on improving the presentation of my research.
My thanks also goes to Prof. Dr.-Ing. Stefan Kowalewski for heading my PhD exam
committee and to Prof. Dr. Thomas Noll for being part of the committee as well as for
many interesting discussions on my research in previous years.

I would also like to thank the professors of the DFG research training group “Algo-
rithmic synthesis of reactive and discrete-continuous systems” (AlgoSyn) for providing
a lively and productive forum for PhD students and researchers to collaborate and ex-
change their ideas on a common research topic. Special appreciation goes to Prof. Dr.
Dr. h.c. mult. Wolfgang Thomas for the great organization and his exceptional care
and efforts for the people in AlgoSyn.

It was not only the exciting research that made the past five years a great time at
RWTH Aachen but also my colleagues of which many had an impact on my research
and work: Dr. Ibrahim Armac, Marita Breuer, Angelika Fleck, Dr. Hans Grönniger,
Timo Greifenberg, Dr. Tim Gülke, Sylvia Gunder, Arne Haber, Dr. Thomas Heer, Lars
Hermerschmidt, Dr. Christoph Herrmann, Katrin Hölldobler, Andreas Horst, Steffi
Kaiser, Dennis Kirch, Dr. Anne-Thérèse Körtgen, Carsten Kolassa, Thomas Kurpick,
Achim Lindt, Markus Look, Ulrich Loup, Dr. Shahar Maoz, Dr. Cem Mengi, Klaus
Müller, Antonio Navarro Pérez, Pedram Mir Seyed Nazari, Johanna Nellen, Dr. Claas
Pinkernell1, Dimitri Plotnikov, Deni Raco, Holger Rendel, Dirk Reiss, Alexander Roth,
Dr. Martin Schindler, Christoph Schulze, Galina Volkova, Michael von Wenckstern, Dr.
Erhard Weinell, Dr. Elias Weingärtner, Dr. Ingo Weisemöller, Andreas Wortmann1,
and Ralf Zimmermann.

Finally, I am very grateful to my family for their support and the appreciation they
show for my work.

1The best office mate.

Contents

1. Introduction 1
1.1. Context . 2
1.2. Related Work on Component and Connector Modeling and Analyses . . . 3
1.3. Objective and Main Results . 9
1.4. Thesis Organization . 11

2. Component and Connector Software Architectures 13
2.1. Component and Connector Models . 14
2.2. Modeling Component and Connector Models Using MontiArc 17
2.3. Component Type Definitions and Component and Connector Models . . 20
2.4. Related Component and Connector Architecture Description Languages . 21

3. Component and Connector Views for Component and Connector Models 25
3.1. Introducing the Pump Station System . 26
3.2. Component and Connector Views Usage Scenarios and Language Features 28
3.3. Component and Connector Views . 33
3.4. Satisfaction of Component and Connector Views 36
3.5. Component and Connector Views Specifications 38
3.6. Modeling Component and Connector Views using MontiArcView 40
3.7. Discussion and Views Related Concepts . 44

4. Component and Connector Views Verification 49
4.1. Component and Connector Views Verification Example 50
4.2. Component and Connector Views Verification Problem 54
4.3. Checking Satisfaction and Generating Witnesses 55
4.4. Implementation and Evaluation . 74
4.5. Discussion . 86
4.6. Related Work . 90

5. Component and Connector Model Synthesis from Views Specifications 93
5.1. Component and Connector Model Synthesis Example 94
5.2. Synthesis Problem Definition . 98
5.3. Component and Connector Model Synthesis 100
5.4. Advanced Features . 123
5.5. Synthesis with Architectural Styles . 129
5.6. Implementation and Evaluation . 141

5.7. Discussion . 148
5.8. Related Work . 153

6. MontiArcAutomaton: State-Based Behavior Modeling 157
6.1. Example of a Reactive System . 158
6.2. MontiArcAutomaton Modeling Language 160
6.3. Streams, I/O Relations, and Stream Processing Functions 168
6.4. Language Profile for Time-Synchronous Communication 180
6.5. Refinement of MAAts Automata . 199
6.6. Related Work . 201

7. An Analysis Framework for Component Behavior 207
7.1. Specification and Analysis Example . 208
7.2. Behavior Refinement and Equality Analysis Problem 214
7.3. Translation into Mona . 217
7.4. Specifications and Specification Language 253
7.5. Advanced Analyses Example . 259
7.6. Implementation and Evaluation . 265
7.7. Discussion . 271
7.8. Related Work . 276

8. MontiArcAutomaton Code Generation 279
8.1. Code Generation Example . 280
8.2. MontiArcAutomaton Java Code Generator 281
8.3. Advanced Code Generator Features . 291
8.4. Case Study: Robotic Coffee Service . 295
8.5. Discussion . 306
8.6. Related Work . 310

9. Summary and Conclusion 313
9.1. Main Results . 313
9.2. Limitations . 315
9.3. Recommendation for Future Research . 316
9.4. Conclusion . 317

Bibliography 319

Index 339

List of Definitions 341

List of Figures 343

List of Listings 355

A. Symbols 359

B. Translation Rule Notation 361

C. How to Use the C&C Views Verification Plug-In 371

D. How to Use the C&C Views Synthesis Plug-In 381

E. How to Use the MontiArcAutomaton Verification Implementation 391

F. How to Use the MontiArcAutomaton Java Code Generator 399

G. Complete PumpStation Component and Connector Model 407

H. Survey – Helpfulness of Generated Witnesses 413
H.1. Reference Materials . 413
H.2. Printed Survey . 416

I. Complete C&C Views Synthesis Alloy Translation Example 433

J. MontiArcAutomaton Grammar for Human Reading 441

K. MontiArcAutomaton Specification Suite Grammar for Human Reading 443

L. Complete MontiArcAutomaton Mona Translation Example 445
L.1. Example Translation of a Composed Component 445
L.2. Example Translation of a MAAts automaton 448

M. Curriculum Vitae 451

Chapter 1.

Introduction

Interactive systems are systems that typically consist of multiple, to some extent inde-
pendent, subsystems that collaboratively perform complex tasks [BS01]. The subsystems
of interactive systems may include and depend on hardware and software. Examples of
these systems are control units of aircrafts and automobiles, the software modules of
cloud computing systems, and the hardware and software of robotic systems.

Separate components of interactive systems cooperate by exchanging messages. A
component interacts with its environment by consuming and providing information.
The environment of a component can again consist of multiple components or physical
systems [Lee08].

The development of distributed interactive systems is an inherently complex and chal-
lenging task. Systems and subsystems typically operate in previously unknown cyber-
physical environments, different configurations, and various compositions of subsystems.
We are specifically interested in the software that controls these interactive systems and
its logical architecture.

The software architecture of a system is the set of its principal design decisions deci-
sions [TMD09]. A common approach to describe the logical decomposition of the soft-
ware architecture of an interactive system are component and connector models [BS01,
TMD09, CBB+10].

Component and connector models describe the organization of systems as a set of
components interacting via connectors. Components encapsulate a system’s functional-
ity and offer it via explicitly defined ports and interfaces. Connectors enable and control
the communication between components.

We are interested in the development and integration of suitable specification, analysis,
and synthesis mechanisms for the structure and behavior of interactive component and
connector systems.

Section 1.1 introduces the context of this thesis including a brief overview of C&C sys-
tems and model-based software development. We summarize related work for modeling
structure and behavior of interactive C&C systems in Section 1.2. We state the objec-
tive of our research and highlight its main contributions to model-based development of
interactive C&C systems in Section 1.3. Section 1.4 gives an overview of the structure
of this thesis.

2 Chapter 1. Introduction

1.1. Context

Interactive systems [BDD+92, BS01] consist of multiple interacting components. These
systems are also called distributed, embedded, or cyber-physical systems [Lee08, LS11].
Cyber-physical systems comprise software systems that interact with physical processes.
We focus on the software part of these systems.

The software part of cyber-physical systems is again an interactive system. Its struc-
ture and organization is one of the concerns of software architecture [TMD09]. A com-
mon way of modeling the structure of interactive systems are component and connector
(C&C) models [TMD09, CBB+10]. C&C models consist of components that encapsulate
dedicated functionality. Every component has an interface that publishes information
on the input required by the component and the output that it provides. Connectors
connect the interfaces of components and enable component interaction. Components
and connectors can be hierarchically composed to new components.

C&C models of interactive systems are often described using C&C architecture de-
scription languages (ADL) [TMD09]. Many integrated development tools, e.g., Matlab
Simulink [wwwn], Ptolemy II [wwwaa], or AutoFOCUS [wwwe], provide related formal-
izations of components and connectors. The description of an interactive system requires
not only a definition of its structure and decomposition into components but also a de-
scription of component behavior. These descriptions are provided as implementations
in programming languages or as behavioral models.

We focus on both the structural and behavioral aspects of the software architecture
of interactive C&C systems. A general model of the behavior of software components
are discrete event systems [BS01, CL07]. The interaction of components can be for-
malized as observations of the messages received and the messages sent by components.
These communication histories are formalized as traces or message streams [BS01, BK08,
LS11, RR11]. Convenient mechanisms for describing component behavior are state-based
modeling languages that describe a component’s interaction with its environment. Ex-
amples for these description techniques are I/O automata [LT89], Statecharts [Har87],
and Stateflow diagrams [wwwo].

Model-based software development centers around using models throughout the soft-
ware development process [Sch06, SVB+06, Rum12]. Models are constructs that refer to
selected aspects and attributes of originals [Sta73], e.g., a model of a component refers
to its manifestation in the software system. A model might selectively focus on the
component’s interface, its behavior, or both. In model-based development, models are
employed throughout the development process for requirements specification, testing,
model checking, and code generation. We are interested in model-based analyses where
a specification and a system are defined by sets of models and an analysis determines
whether the system satisfies the specification. In the case of synthesis, a specification is
provided and an algorithm computes a satisfying system, if one exists.

Our work on analysis and synthesis methods for interactive C&C systems builds on
the ADL MontiArc [HRR12], the Focus [BS01] stream processing framework, and the
MontiCore framework [KRV10, wwwv]:

1.2. Related Work on Component and Connector Modeling and Analyses 3

• We formalize C&C models using the ADL MontiArc [HRR12, wwwq]. Language
features of the ADL MontiArc to describe software architecture models include
hierarchical composition of components, component type definitions, instance dec-
larations for component reuse, and message type definitions using UML/P class
diagrams [Rum11, Sch12].

• We use Focus as a foundational theory and semantic domain for interactive C&C
systems. Focus provides a system development methodology based on behavior
specifications and stepwise refinement of interactive systems. For the definition of
component behavior, we employ time-synchronous streams and state-based models
following the I/Oω automata paradigm [Rum96] with stream processing semantics.
Our notion of refinement is based on component refinement as defined in [Bro93]
and [BS01].

• The modeling and specification languages presented throughout this thesis are im-
plemented using the MontiCore framework for the development of textual domain-
specific languages and tools. Our work extends and employs existing MontiCore
languages, e.g., MontiArc and UML/P. The analysis, synthesis, and code gener-
ation prototypes implemented make use of the MontiCore symbol table frame-
work [Vö11] and the MontiCore code generation framework [Sch12].

The field of cyber-physical systems deals with many heterogeneous concerns and so
does software architecture. Software architecture concerns not addressed in our work
are descriptions of continuous processes and topics such as realtime properties, timing
constraints, and memory or other resource consumption. These issues form important
research fields of their own [TMD09, Lee09, ABG+13].

1.2. Related Work on Component and Connector Modeling
and Analyses

We briefly review related work in the area of modeling and specification languages for
component and connector systems. The first part of this section provides an overview
of description mechanisms for the structure of C&C systems and related analysis and
synthesis methods. The second part deals with the definition of component behavior for
the description and analyses of interactive systems.

1.2.1. Component and Connector Structure Descriptions

A common approach to describing the structure of distributed interactive systems and
their hierarchical decomposition are component and connector models [TMD09, CBB+10].
The organization of a system into components that encapsulate functionality and connec-
tors that enable interaction are common in architecture description languages, general
system modeling languages and tools. In the following we describe some ADLs from the

4 Chapter 1. Introduction

literature and describe their modeling capabilities for C&C models. A deeper discussion
of these languages in the context of our work can be found in Section 2.4.

The Architecture Analysis Design Language (AADL) [wwwa, FGH06, FG12] is an
architecture description language standardized by the Society for Automotive Engineers.
AADL models contain component type declarations and implementation declarations.
A special design concept of AADL are predefined component categories divided into
application software, execution platform, and generic components. This domain-specific
orientation of AADL makes it suitable for embedded realtime systems especially in the
automotive, avionics, and aerospace domains [wwwa, HWF+10, BCK+11, FG12].

Acme [GMW00, SG04] is an ADL that was initially developed as an architecture lan-
guage interchange format [GMW97] containing the common elements of various ADLs.
These elements comprise components, ports and connectors. Acme has evolved to a
stand alone ADL. One of the main features of Acme and its tool support AcmeStu-
dio [wwwy] is the definition and analysis of patterns of architectural elements called
architectural styles [SG04, KG10].

ArchiMate [LPJ10, JPL+11] is a modeling language for enterprise architecture. In
a recent survey on the use of ADLs in industry [MLM+13] it was reported the second
most used ADL after UML [Obj12a]. ArchiMate divides the description of a system
into three layers: the business layer, the application layer, and the technology layer.
The application layer contains models of the application software that are organized in
components. Components can interact via provided and required application interfaces
or via application collaboration [The12].

MontiArc [HRR12] is an ADL designed for modeling cyber-physical systems [Lee08].
The ADL is developed based on the core ADL concepts identified in [MT00] and its
semantics is based on the stream processing theory Focus [BS01]. MontiArc is a textual
ADL developed using the language workbench MontiCore [KRV10]. One important
feature of MontiArc is its typing and instantiation mechanism for components. Haber
et al. [HRRS11, HRR+11, HRRS12] have extended MontiArc with support for modeling
variability in the context of software product lines.

Many works also consider the Unified Modeling Language (UML) [Obj12a] an ar-
chitecture description language [ICG+04, MDT07, MLM+13]. The UML consists of 14
diagram types for modeling the structure and the behavior of software systems. Ivers
et al. [ICG+04] describe how to use UML 1.4 and UML 2.0 for documenting component
and connector models.

The Systems Modeling Language (SysML) [FMS11, Obj12b, Wei07] is a derivation of
UML 2 defined as a profile using UML’s profile mechanism [Obj12a]. SysML introduces
block definition diagrams (based on UML class diagrams) and internal block diagrams
(based on UML composite structure diagrams). It extends ports and flows of UML
and thereby overcomes some of the criticized weaknesses of UML for the definition of
component and connector models.

A variety of tools implements C&C models. One popular example is the block diagram
language implemented in MathWorks Simulink [wwwn]. Block diagrams consist of blocks
and lines. In the terminology of C&C models blocks are components, signals and ports

1.2. Related Work on Component and Connector Modeling and Analyses 5

correspond to ports, and lines correspond to connectors. Another implementation of
C&C models is provided within the AutoFOCUS tool suite [BHS99, HF07, wwwe]. C&C
models are modeled as component architectures consisting of components with typed
input and output ports that are connected via channels (connectors).

Our work is based on these popular description mechanism and their separation of
systems into components and connectors. We intentionally focus on the pure and clean
concepts of C&C models common to these description techniques.

1.2.2. Structural Specification Mechanisms and Analyses
For many use cases a complete hierarchical implementation-oriented description of a
system and its subsystems as a C&C model does not provide the right level of abstraction
to present relevant details and context information. In early design phases some details of
components and connectors might still be unknown. For documenting important design
decisions the description of some components and ports may be irrelevant or distracting.
We now reflect on existing specification mechanisms for C&C models, related analyses,
and their support for abstraction and refinement. A deeper discussion of these topics in
the context of our work can be found in Section 3.7, Section 4.6, and Section 5.8.

AADL [FGH06, FG12] supports specifications with incomplete information of port
types and with abstract flows, which show the source and sink of flows but not their
complete path through the system. We have not found previous works on checking the
structure of AADL architectures against specifications including abstractions of connec-
tors and of component hierarchies.

Armani [Mon98, Mon99] is a framework to define architectural styles and design rules
for architectures. Armani is based on the ADL Acme [GMW00, GMW97]. An engineer
can define styles and rules for systems using a constraint language based on first or-
der predicate logic. Example predicates include connected(c1, c2) and reachable(c1, c2),
which assert connectedness and transitive connectedness of components c1 and c2. Ar-
mani’s constraints are evaluated over concrete architectures. The constraint language is
integrated into AcmeStudio [wwwy] and constraints are automatically evaluated while
editing architectures. To the best of our knowledge, the language neither supports a
transitive subcomponent relation nor supports constructs to crosscut the bounds of the
traditional implementation-based hierarchical decomposition of systems to their subsys-
tems, types to subtypes etc.

Bhave et al. [BKGS11] have extended AcmeStudio to support structural consistency
between heterogeneous models as architectural views, specifically for cyber-physical sys-
tems. View consistency is checked by verifying if a morphism exists between two typed
graphs.

Chechik et al. [FBDCS11, SFC12] introduce a language independent mechanism for
incomplete models. Their approach operates on the syntax definition of a modeling
language and adds annotations to mark an element as optional (May), as abstract rep-
resenting sets of concrete elements (Abs), as possibly identical with another element
(Var), and to mark the whole model as incomplete (OW). The approach is generic and
language independent. It focuses on syntactic incompleteness of models.

6 Chapter 1. Introduction

Many works in software architecture deal with refinement relations between architec-
tural elements. Broy and Stølen [Bro93, BS01] introduce glass-box refinement where
a refinement has to respect the decomposition of a specification into components and
directed channels between them. Philipps and Rumpe [PR97, PR99] have developed a
set of proven refinement rules based on [Bro93].

Previous work in our group [GHK+08b, GHK+08a] described the use of views with
a focus on the automotive domain, using SysML’s internal block diagrams. SysML’s
internal block diagrams provide under-specification mechanisms for component hierarchy
and connectivity. However, the question of verifying the structure of a C&C model
against a view is discussed neither in these works nor in any other SysML related work
we have found.

Boucké et al. [BWH10] present composition operators for C&C models to avoid the
repetition of elements in integrated models. The integration of sets of architecture models
is based on a user specified unification relation (marking identical elements across input
models) and a submodel relation (e.g., a component is detailed in another model). This
model composition is an imperative composition of concrete C&C models.

Giese and Vilbig [GV06] discuss separation of non-orthogonal concerns in software
architecture and design. Architectural views are defined as directed graphs represent-
ing components and connectors extended with behavior contracts. The structural part
of architectural view composition can be handled by superposition of these directed
graphs [GV06]. The work does not allow abstraction of direct hierarchy and connectiv-
ity.

Sabetzadeh and Easterbrook introduce a graph based framework for view merging
for arbitrary modeling languages [SE04, SE06]. Their framework is modeling language
independent. The merging of multiple views integrates the information contained in
several partial views. One weakness of the framework is that it does not handle com-
plex well-formedness rules of the views merged. A merge of views using the framework
from [SE06] might result in a structure that is neither a view nor a C&C model.

Common limitations of structural specification and analyses mechanisms

Generic, syntax-based approaches [SE06, BKGS11, FBDCS11] can be applied to a wide
range of modeling and description languages but do not allow domain specific abstrac-
tions with semantics beyond generic syntactic criteria. The Armani [Mon99] specification
language integrated with Acme allows expressing well-formedness rules and predicates in
the implementation-oriented view of ADLs, i.e., not crosscutting the component hierar-
chy or multiple components. To the best of our knowledge the AADL [FG12] is the only
ADL that directly supports refinement statements for architectural elements. Checking
refinements seems however not to be automated.

In general, the existing works do not provide C&C model specific means for doc-
umenting partial knowledge and design decisions while selectively abstracting away
implementation-specific information such as direct component hierarchies, component
interfaces, and connectivity. Currently, integrating the knowledge and designs of multi-
ple system descriptions requires user interaction [BWH10], might not lead to well-formed

1.2. Related Work on Component and Connector Modeling and Analyses 7

models [SE06], or restricts specification mechanisms available to the modeler [GV06,
FBDCS11].

1.2.3. Interactive Systems Behavior Descriptions
We now briefly review description mechanisms for modeling the behavior of interactive
systems. Some of these constitute basic models of computation with unambiguous se-
mantics while others are modeling languages with no or incomplete formal semantics
definitions. We give an overview of these languages. A deeper discussion in the context
of our work can be found in Section 6.6.

I/O automata by Lynch and Tuttle [LT89] model components that are executed in
parallel and communicate by executing input and output actions. Each transition is
labeled with one action. Transitions labeled with input actions can be executed when the
identical action is executed as an output action by another automaton. The composition
of multiple I/O automata requires the disjointness of the sets of output actions of different
automata because the execution of each action may only be controlled by one component.

Alfaro and Henzinger [dAH01] introduced interface automata to describe possible
compositions of components. Interface automata capture input assumptions and output
guarantees of components. A set of components can be composed if there is at least one
environment that fulfills the assumptions of the composition. The structure of interface
automata is similar to I/O automata.

Constraint automata [BSAR06] are an extension of I/O automata. The transitions of
constraint automata are guarded with sets of active channels and constraints over the
data on these channels. Another extension are message-passing automata [BL01, BL06]
that describes communicating components. A message passing automaton consists of
a finite set of local automata that represent components. Components are connected
pairwise by reliable channels of unbounded size that allow an asynchronous FIFO com-
munication [BL06].

Statecharts by Harel [HP85, Har87] are one of the most prominent visual description
techniques for reactive systems. The language provides many features, e.g., hierarchi-
cal states, action execution in states, receiving and sending signals. Statecharts are
standardized both in UML [Obj12a] and SysML [Obj12b]. As described before these
languages also offer the modeling of C&C models. SysML allows for defining bindings
and allocations to relate statecharts to components in block diagrams and thus enables
behavior modeling for C&C models.

The AutoFOCUS tool [HSSS96, HF07] for the specification and prototyping of dis-
tributed systems allows behavior definition of components using state transition dia-
grams. These can be edited in a graphical representation and translated into executable
simulation code. Transitions read messages on input ports of components and send
messages on output ports.

The block diagram language implemented in MathWorks Simulink [wwwn] is extended
with state transition diagrams in Stateflow [wwwo]. The automata of Stateflow are a
combination of Mealy and Moore machines and they are fully integrated in the simulation
and code generation environment of Stateflow. The semantics of Stateflow diagrams is

8 Chapter 1. Introduction

only given informally but has been formalized in many ways by various translations into
other formalisms [MC12].

For the modeling of interactive C&C systems we are mainly interested in modeling lan-
guages that are syntactically and semantically integrated with component models such
as Stateflow and AutoFOCUS’ transition diagrams. These languages provide domain
specific concepts, e.g., receiving and sending messages via ports of components.

1.2.4. Underspecification Mechanisms and Refinement

An important concept of behavioral models is underspecification, which allows to leave
open some details in a specification. Underspecification enables iterative development
through step-wise refinement [BS01]. Automated refinement checking assists in devel-
oping an implementation that conforms to, i.e., refines, its specification. We review
specification mechanism of state-based behavior models below. A deeper discussion in
the context of our work can be found in Section 6.6 and Section 7.8.

Underspecification can be modeled by distinguishing possible from required behavior.
This distinction is an integral part of modal transition systems (MTS) [LT88, Lar89]
where transitions are marked as may or must. Informally, a refining MTS has to pre-
serve all must transitions of the MTS it refines. The refining MTS can preserve may
transitions, change them to must transitions, or remove them. The classic refinement
relations for MTS is strong modal refinement [LT88]: the corresponding states of the
refining MTS can simulate all must transitions and the states of the more abstract
MTS can simulate all may transitions. Further refinement relations are defined for
MTS [LNW07b].

Interface automata [dAH01], which distinguish between input and output, define a
refinement based on alternating simulation [AHKV98]. The more concrete automaton
can simulate all input steps of the abstract one while the abstract can simulate all output
steps of the concrete, i.e., an implementation may allow more inputs and less outputs.

Differently, Baier et al. [BSAR06] relate constraint automata to timed data stream
semantics and define refinement of constraint automata as the containment of relations
over timed data streams in the semantics of the constraint automata. Thus, the accepted
input may not be extended as part of a refinement.

This notion of refinement is also defined as behavioral refinement in the Focus frame-
work [Bro93, BS01]. Scholz [Sch98] has defined a semantics based on Focus’ message
streams for a subset of Harel’s statecharts with a refinement based on inclusion of the
relations of input and output streams. A different refinement of statecharts for mod-
eling object oriented systems has been defined by Harel and Kupferman [HK02]. The
refinement is based on the object oriented is-a relation and thus requires that a refined
statechart has every behavior the abstract statechart has. The refinement thus may
only add behavior while Focus considers a refinement that removes behavior (remove
uncertainty).

1.3. Objective and Main Results 9

Common limitations

Many formalisms exist for the state-based modeling of behavior. Some of these have
no explicit composition mechanisms, define composition based on common actions, or
composition based on recognized input and output messages. Refinement is a well-
understood concept for many formalisms but lacks thorough integration into higher-
level modeling languages used in combination with C&C models such as UML and
SysML statecharts, AutoFOCUS’ diagrams, and Stateflow. In some cases a lack of well-
defined semantics and underspecification mechanisms hampers possible automation and
assistance of engineers.

To the best of our knowledge no existing solution provides high-level modeling lan-
guages with rich syntactic features for integrated C&C structure and behavior modeling
with automated refinement checking for iterative system development.

1.3. Objective and Main Results
Current approaches to model-based development of interactive C&C systems follow the
traditional, implementation-oriented hierarchical decomposition of systems into subsys-
tems and components. This approach limits the possibilities of stakeholders and engi-
neers to document and express concerns in C&C models that crosscut the boundaries of
components or subsystems.

We investigate modeling languages that allow to express partial and crosscutting
knowledge about the structure and behavior of interactive C&C systems. For these
modeling languages, we identify and formally define analysis and synthesis problems
resulting from the newly available specification mechanisms.

The research objective of this thesis is to support the model-based development and
evolution of distributed interactive systems. The goal is to provide domain-specific no-
tations with corresponding analysis and synthesis methods to guarantee the correctness
of implementations.

We introduce modeling languages, methods, and tools applicable in different stages
of system development. The introduced modeling languages and language profiles al-
low to express requirements and partial knowledge available about the structure and
behavior of interactive C&C systems. We define structural specifications, analysis, and
synthesis methods for C&C models. Behavior of components in C&C software archi-
tectures is modeled using MontiArcAutomaton automata following the I/Oω automata
paradigm [Rum96]. Based on these behavior specifications, we have developed meth-
ods for automated verification and refinement checking. In addition to verification, the
MontiArcAutomaton framework also supports code generation, e.g., for robotic systems.

The contributions presented in this thesis are:

• We have developed a language profile of the MontiArc modeling language for C&C
views, which includes novel abstraction mechanisms to describe the structure of
C&C models. C&C views crosscut the traditional boundaries of the implementation-
oriented hierarchical decomposition of systems and subsystems by providing ab-

10 Chapter 1. Introduction

stractions over direct hierarchy, direct connectivity, port names and types. The
concrete syntax for C&C views is similar to that of the ADL MontiArc and thus
allows a ’by example’ description of C&C models.

• Given a candidate or evolved C&C model of a software architecture and a set of
C&C views, an engineer can check whether the architecture satisfies the views.
In addition to a Boolean verification result, our algorithms generate informative
witnesses, for inspection by the engineer, that demonstrate the reasons for sat-
isfaction or non-satisfaction. We have presented the verification of C&C models
against C&C views in [MRR14].

• Given a set of C&C views and a propositional formula over these views describing
required, alternative, dependent, and forbidden designs, an engineer can automat-
ically synthesize a satisfying architecture, if one exists. Our synthesis method is
based on a reduction to a Boolean satisfiability problem via Alloy [Jac06]. We
have presented the synthesis of a C&C model from C&C views in [MRR13].

• We have developed a modeling language for a state-based description of the input
and output behavior of components. The description mechanism allows underspec-
ification and capturing partial knowledge available about a component’s behavior.
This language is introduced in [RRW12] and [RRW14].

• Given behavior descriptions of components, an engineer can automatically check
whether a modeled system satisfies its specification. The implemented analysis
methods also allow to check whether one subsystem can replace an other subsystem
in a given context.

• One result of the analysis framework for checking component equivalence and
refinement is a generic translation of component behavior to the model checker
Mona [EKM98] that allows the definition of further analyses.

• Given a complete description of a system’s C&C architecture and the behavior of
its atomic components, our code generator generates Java code for deployment on
the leJOS Lego NXT robotics platform. We have previously reported on our code
generation framework in [RRW13b].

• We have implemented and evaluated the analysis and synthesis methods for C&C
models on various example systems. We have assessed the helpfulness of generated
witnesses for C&C views verification in a user study. In addition we have evalu-
ated the modeling and code generation framework for programming distributed,
autonomous robotic systems in a one-semester workshop class with eight master
students. We have reported observations from this case study in [RRW13a].

1.4. Thesis Organization 11

1.4. Thesis Organization
We introduce the basic concepts of C&C software architectures, define C&C models, and
introduce the modeling language MontiArc in Chapter 2. We discuss similar ADLs and
related modeling languages.

In Chapter 3, we introduce C&C views and a profile of the modeling language Monti-
Arc to document these views. The semantics of a C&C view is defined by the C&C
models satisfying the C&C view.

We present algorithms to check whether a C&C model satisfies a C&C view in Chap-
ter 4. We identify reasons for non-satisfaction and present techniques to compute wit-
nesses that demonstrate positive and negative verification results.

Chapter 5 investigates the problem of synthesizing a C&C model from a C&C views
specification and presents our solution based on a translation into Alloy. We extend our
solution for supporting advanced features such as library components and architectural
styles.

Chapter 6 presents the modeling language MontiArcAutomaton for modeling behavior
of components as state machines. We introduce a language profile for synchronous
communication and its semantics based on the Focus theory of streams.

We present a translation of C&C models and time-synchronous automata into the
decidable logic WS1S [Tho90] in Chapter 7. Our prototype implementation uses Mona,
which implements a decision procedure for WS1S, for checking equality and refinement
of systems and subsystems.

In Chapter 8, we present a framework and code generator for generating executable
Java code from MontiArcAutomaton models. As one example application, the generated
code is deployed to Lego NXT robotic systems.

Evaluation based on example systems and a case study are presented within every
chapter that introduces novel techniques and prototype implementations.

Chapter 9 concludes the thesis and outlines open research questions for future work.

Chapter 2.

Component and Connector Software
Architectures

Software architecture deals with high-level descriptions of a software system structure
and behavior. Taylor et al. [TMD09] give a broad definition of the term software architec-
ture as the set of principal design decisions about the system. Following their definition,
the architecture of a software systems contains, e.g., decisions about the structure, be-
havior, interaction, and non-functional properties of the system. We are most interested
in the structure and behavior of software systems and ways to formalize both to support
engineers and architects in developing software systems.

Specifically, we are interested in component and connector (C&C) architectures, which
are used in many application domains, from cyber-physical and embedded systems to
web services to enterprise applications [BDD+92, BS01, Bro05, BR07, TMD09]. C&C
architectures offer a physically distributed computation model as well as a logically
distributed development process of components with well-defined interfaces. A C&C
model consists of components at different containment levels, their typed input and
output ports, and the connectors between them.

Components are C&C model elements that provide and encapsulate services. Provided
services are, e.g., the computation or storage of data. Components provide and require
services via publicly published interfaces. An example for a component is, e.g., an
arbiter that requires input from two sources and provides a single output based on
the two inputs. Figure 2.1 shows an arbiter component with the component name
ModeArbiter. The arbiter is contained in its parent component Controller.

Connectors are C&C model elements that enable the interaction of components. In
the example of the ModeArbiter, two incoming connectors connect the two sources
required by the arbiter with its input ports. In logical software architectures we treat
components and connectors as abstract elements independent of concretizations as pieces
of hardware, buses, or wires connecting components.

An example for a C&C model consisting of four components is shown in Figure 2.1.
The component named Controller has two incoming ports and a single outgoing
port. It contains three subcomponents: component UserOperation, component EMS-
Operation, and component ModeArbiter. The three subcomponents may be atomic
components or further decomposed. The example in Figure 2.1 shows an abstraction over
the implementation details of components inherent to C&C models. For the composition
of components only the (type) names and interfaces of the subcomponents are relevant

14 Chapter 2. Component and Connector Software Architectures

��������	

����������

	�
�������

�	���������

������������ ��������
���

��������
���
���

��������
����

�������	���
��
������������

���� ��	���
��
������������

��������
���

��������
���
����

��
��������������
������

��
���������
������

Figure 2.1.: A simple C&C model — consisting of a composed component with three
subcomponents — shown in the graphical syntax of the ADL MontiArc.

and not their implementations.
The components UserOperation and EMSOperation both have an outgoing port

of the type ChangeCmd named cmd which is connected to an incoming port of the
component ModeArbiter. The names of ports are unique in the context of their com-
ponent. A connector forwards all messages from the output port res of the component
ModeArbiter to the single output port of the component Controller. Please note
that all ports have names but we omit them inside Figure 2.1 to avoid clutter. The only
communication allowed by the configuration shown in Figure 2.1 is communication via
the directed connection between the component’s ports.

Chapter outline and contributions

Our main contribution presented in this chapter is the formal definition of C&C models
in Section 2.1 and a language profile of the ADL MontiArc to provide a concrete syntax
for C&C models illustrated in Section 2.2. Section 2.3 explains the difference between
C&C models and component type definitions in MontiArc. We conclude this chapter
with an overview of C&C modeling in other ADLs and modeling notations in Section 2.4.

2.1. Component and Connector Models
Based on component and connector models as described in [MT00], as used in the Focus
framework [BS01], and as formalized by the ADL MontiArc [HRR12], we now define the
basic structure of C&C models used in this thesis.

Component and connector models consist of components at different containment
levels, their directed, typed, and named ports as well as connectors that connect these
ports. We formally define C&C models in Definition 2.2. The first part of Definition 2.2
describes the main elements of C&C models: components, ports, connectors, and port
types. The second part defines well-formedness rules of C&C models as requirements on
relations between C&C model elements.

2.1. Component and Connector Models 15

Definition 2.2 (Component and connector model). A Component and Connector model
m is a structure m = (Cmps, Ports, PNames, Types, Cons, subs, ports, dir, type,
name) where

1. Cmps is a set of components cmp ∈ Cmps (with unique names), each of which
has a set of ports ports(cmp) ⊆ Ports and a (possibly empty) set of immediate
subcomponents subs(cmp) ⊂ Cmps,

2. Ports is a set of directed input and output ports p ∈ Ports with dir(p) ∈ {IN, OUT}
where each port has a name name(p) ∈ PNames, a type type(p) ∈ Types, and be-
longs to exactly one component ∃!cmp ∈ Cmps ∶ p ∈ ports(cmp),

3. Cons is a set of directed connectors con ∈ Cons, each of which connects two ports
(con.srcPort ∈ ports(con.srcCmp) and con.tgtPort ∈ ports(con.tgtCmp)) of the
same type type(con.srcPort) = type(con.tgtPort), and

4. Types is a finite set of types t ∈ Types that appear on ports: t ∈ Types ⇔ ∃p ∈
Ports ∶ type(p) = t.

Additionally, the following rules for well-formedness apply:

5. ∄c ∈ Cmps ∶ c ∈ subs+(c), where subs+ denotes the transitive closure of the sub-
component relation subs ∶ Cmps×Cmps, i.e., no component is its own (transitive)
parent,

6. ∀child ∈ Cmps ∶ ∣{parent ∈ Cmps ∣ child ∈ subs(parent)}∣ ≤ 1, i.e., every compo-
nent has at most one direct parent,

7. ∀cmp ∈ Cmps ∶ ∀p1, p2 ∈ ports(cmp) ∶ name(p1) = name(p2) ⇒ p1 = p2, i.e., port
names are unique within each component, and

8. ∀p ∈ Ports ∶ ∣{con ∈ Cons ∣ con.tgtPort = p}∣ ≤ 1, i.e., every port has at most one
incoming connector, and

9. ∀con ∈ Cons we have exactly one of the four cases
(a) con.srcCmp = con.tgtCmp ∧ dir(con.srcPort) ≠ dir(con.tgtPort), i.e., a com-

ponent forwards input directly as output or feeds back its own output as input,
(b) ∃parent ∈ Cmps ∶ {con.srcCmp, con.tgtCmp} ⊆ subs(parent) ∧ con.srcCmp ≠

con.tgtCmp ∧ dir(con.srcPort) = OUT ∧ dir(con.tgtPort) = IN , i.e., two sib-
ling components with a common parent are connected,

(c) con.tgtCmp ∈ subs(con.srcCmp)∧dir(con.srcPort) = IN∧dir(con.tgtPort) =
IN , i.e., a component forwards input to an immediate child,

(d) con.srcCmp ∈ subs(con.tgtCmp) ∧ dir(con.srcPort) = OUT ∧ dir(con.tgt-
Port) = OUT , i.e., a component forwards output from an immediate child.

△

16 Chapter 2. Component and Connector Software Architectures

Notation: For a C&C model m, a port p ∈ m.Ports, and a component c ∈ m.Cmps
we use the short notation p ∈ c.ports to denote p ∈ m.ports(c) in case the C&C model
m is clear from the context. For a component c ∈ Cmps we write c.PortsIN to refer to
its input ports {p ∈ c.Ports ∣ p.dir = IN} (respectively c.PortsOUT for its output ports).
In addition, we write m.name and c.name (for c ∈ Cmps) for the unique names of C&C
models and components.

Without loss of generality, we consider only C&C models with exactly one top com-
ponent, i.e., ∃!cmp ∈ Cmps ∶ ∄parent ∈ Cmps ∶ cmp ∈ subs(parent). The second part
of Definition 2.2 lists important rules for the well-formedness of C&C models. Together
with the requirement of a single top component the subcomponent relation subs forms
a tree since it has no cycles (see Definition 2.2, Item 5).

In Definition 2.2, Item 4 we define the set of types for a C&C model m, i.e., m.Types,
as the types that appear on ports. An alternative to this definition would allow the set
m.Types to contain types not used in the C&C model, e.g., a set of common basic types.
We apply this restriction without loss of generality since it simplifies the definition of
the set m.Types in the concrete syntax of C&C models and the completeness proof of
our verification algorithm in Section 4.3.5.

The four cases of valid connectors in C&C models are listed under Item 9 of Defini-
tion 2.2. No connector may cross the boundaries of the parent component or the subcom-
ponents. As a concrete example consider Figure 2.3: a connector from the output port
of component ModeArbiter connecting to the input port of the component Actuator
is not allowed by Definition 2.2. In the C&C model from Figure 2.3 the connection
is realized by two connectors: one connector from the output port of the component
ModeArbiter to the output port of its direct parent component Controller (con-
nector of type Definition 2.2, Item 9 (d) and a second connector from the output port of
the component Controller to the input port of the component Actuator (connector
of type Definition 2.2, Item 9 (b).

Please note that the structure of C&C models given in Definition 2.2 describes concrete
component and connector models, i.e., the instances of components and their compo-
sition. Some ADLs, e.g., the AADL [FG12], Acme [GMW00], and MontiArc [HRR12],
separate the definition of components from the description of their instantiation and
composition to systems (C&C models). This separation is supported, e.g., by instanti-
ation mechanisms used in AADL and MontiArc or the explicit models for systems and
representations used in Acme. These mechanisms simplify the reuse of components over
multiple C&C models and also allow the reuse in the same C&C model. We briefly
discuss the relation of component definitions and their instantiation to C&C models in
the case of MontiArc in Section 2.3.

We use a subset of the ADL MontiArc as a concrete syntax to model the C&C models
from Definition 2.2 as demonstrated in Section 2.2.

2.2. Modeling Component and Connector Models Using MontiArc 17

������������

����������

	�
�������

�	���������

������������ ��������
���

��������
���
���

��������
����
��������

��������	

Figure 2.3.: The C&C model PumpingSystem shown in graphical syntax. Some details,
e.g., the types and names of ports are omitted to avoid clutter. An excerpt
of the textual MontiArc syntax of this example is shown in Listing 2.4.

2.2. Modeling Component and Connector Models Using
MontiArc

We now give a brief overview of the concrete textual syntax of MontiArc for model-
ing C&C models. The following description is based on the MontiArc language refer-
ence [HRR12] with additional examples of MontiArc’s concrete syntax.

The basic elements of MontiArc are components with ports, subcomponents, and con-
nectors that unidirectionally connect ports of components. The interface of a component
is a set of typed and directed ports. The internal structure of components can be defined
by the decomposition of a component to subcomponents and connectors.

For the description of C&C models we ignore the following MontiArc language fea-
tures: component types, referencing and instantiation, generic component types, and
configurable components. These features are described in the MontiArc technical re-
port [HRR12] with examples for the concrete textual syntax. We discuss the instantia-
tion mechanism and component type definitions as used in MontiArc in Section 2.3 and
Section 6.2.1.

2.2.1. Components and Subcomponents
An example of a C&C model in concrete textual MontiArc syntax is shown in Listing 2.4.
The listing shows excerpts of the C&C model PumpingSystem also shown in Figure 2.3.
Every MontiArc artifact (file that contains the model) starts with a package declaration
(see Listing 2.4, l. 1). The outer most element of MontiArc models is a component
definition (line 3). The package name pumpStationExample and the component
name PumpingSystem are the unique coordinates of the MontiArc model.

Listing 2.4 shows the C&C model PumpingSystem named after its top component

18 Chapter 2. Component and Connector Software Architectures

PumpingSystem. The C&C model contains the components Controller (line 8) and
Actuator (line 34) as direct subcomponents of component PumpingSystem. The sub-
component Controller consists of the components UserOperation, EMSOperation,
and ModeArbiter. The subcomponent Actuator of the component PumpingSystem
is not further decomposed.

Components are modeled using the keyword component. Syntactically, there is no
difference between subcomponents and parent components except that subcomponents
are defined inside the body of their parent component (see, e.g., line 11, line 17, and
line 23 of Listing 2.4 for three subcomponents defined inside the body of the component
Controller). Since the subcomponent relation of C&C models has no cycles (see
Definition 2.2, Item 5) we exclusively and completely express it by the inclusion of the
subcomponents in the textual MontiArc C&C models.

2.2.2. Interfaces and Ports
The interface of a component is the set of its incoming and outgoing typed ports.

The interface of the component PumpingSystem (lines 4-6) consists of an incoming
port with the name ready of the type Boolean and an outgoing port with name
act, which also sends messages of the type Boolean. The ports of each compo-
nent are defined inside the body of the component, e.g., the ports of the component
PumpingSystem are defined in lines 4-6 and the ports of the component ModeArbiter
are defined in lines 24-27. The definition of a single port or a set of ports starts with the
keyword port the direction of the ports is given by the keywords in and out followed
by the port’s type and name. Multiple ports of one component can each be defined in
a separate port statement (e.g., lines 12-13) or in one port statement separated by
commas (e.g., lines 24-27).

The definition of ports has to respect the well-formedness rules in Definition 2.2, e.g.,
the names of all ports of one component have to be unique as defined in Definition 2.2,
Item 7.

For a C&C model m we define the set m.Types as the set of all type names that appear
on ports. This ensures the constraint that all types appear on ports (Definition 2.2,
Item 4) and it makes the explicit definition of the set m.Types of all types unnecessary.

In addition it is of course possible to define all valid port types in an accompanying
class diagram and use it to check the existence and compatibility of port types. This
feature is supported by our implementation of behavior analysis in Chapter 7 and the
code generation presented in Chapter 8.

2.2.3. Connectors
Connectors in C&C models connect two ports of a single component, two sibling com-
ponents, or a parent and child component. Connected ports are the only means for
interaction in C&C models. For the definition of C&C models, connectors are always
placed inside their parent component and reference the ports of the parent unqualified
while qualifying subcomponent’s ports with their component names.

2.2. Modeling Component and Connector Models Using MontiArc 19

MontiArc

1 package pumpStationExample;
2

3 component PumpingSystem {
4 port
5 in Boolean ready,
6 out Boolean act;
7

8 component Controller {
9 //...

10

11 component UserOperation {
12 port
13 out ChangeCmd cmd;
14 //...
15 }
16

17 component EMSOperation {
18 port
19 out ChangeCmd cmd;
20 //...
21 }
22

23 component ModeArbiter {
24 port
25 in ChangeCmd cmdUser,
26 in ChangeCmd cmdEms,
27 out ChangeCmd res;
28 }
29

30 connect UserOperation.cmd -> ModeArbiter.userCmd;
31 //...
32 }
33

34 component Actuator {
35 port
36 //...
37 out Boolean pAct;
38 }
39

40 connect Actuator.pAct -> act;
41 //...
42 }

Listing 2.4: An excerpt from the C&C model PumpingSystem given in MontiArc
textual syntax. The C&C model is shown in graphical syntax in Figure 2.3.

20 Chapter 2. Component and Connector Software Architectures

The connector in line 30 of Listing 2.4 is placed inside the body of the composed com-
ponent Controller and connects the port cmd of the subcomponent UserOperation
with the port userCmd of its sibling component ModeArbiter. This connector is of
the kind given in Definition 2.2, Item 9 (b).

The connector in line 40 of Listing 2.4 connects the port pAct of the subcompo-
nent Actuator with the port act of the parent component PumpingSystem. This
connector is of the kind given in Definition 2.2, Item 9 (d).

For the purpose of presentation and without loss of generality we only consider C&C
models that are — with all subcomponents and connectors — completely defined within
one file. Please note that MontiArc also supports component definitions in separate
files down to one component per file. MontiArc offers suitable import and instantiation
mechanisms that are essential for the reuse of models.

2.3. Component Type Definitions and Component and
Connector Models

Component and connector models as introduced in Definition 2.2 consist of components
and connectors with unique identities. For components solving recurring and general-
izable problems, it is useful to extract component types that can be instantiated and
reused. Many modeling languages in the architecture modeling domain have mechanisms
that allow the definition of component types [TMD09, HRR12, FG12].

We focus on component type definitions and the instantiation mechanism as imple-
mented in the ADL MontiArc [HRR12].

The component type definitions expressed in MontiArc appear very similar to C&C
models. The main difference is that a component type definition defines not the identity
of a concrete instance in a C&C model but a more general component type. A component
type definition consists of the interface of a component and its possible decomposition.
The decomposition modeled in a component type definition is restricted to one level of
hierarchy (it is however technically possible to model more than one component type in
a single artifact [HRR12]).

Subcomponent references in component type definitions are definitions of component
instances consisting of a subcomponent name and a reference to the component type
definition of the subcomponent. An example of the composed component type definition
TwoSwitchController is shown in Figure 2.5 (a). The composed component type
has two subcomponents of the component type ToggleSensor and one subcomponent
of the component type Controller. The component type definition of the component
type ToggleSensor is shown in Figure 2.5 (b).

A component type can be instantiated to a C&C model. When instantiating a compo-
nent of the type TwoSwitchController from Figure 2.5 (a) a component instance is
created that consists of the composition of the instances of all subcomponents of the com-
ponent TwoSwitchController. The instance of the component type TwoSwitch-
Controller is shown as the C&C model twoSwitchController in Figure 2.5 (c).
Since C&C models as defined in Definition 2.2 do not share the concept of component

2.4. Related Component and Connector Architecture Description Languages 21

������������

����������� ������ ����������� �����

������������������

������������ ������

������������ �����

������������

������������������

������������������!�����

������������������!�

������������������!����� !������

������������������!����� !�����

������������������!������

������������������!������!������

������������������!������!�����

��������	

���
����� �
������������

�������������	����
����������������
��
������������	��������
�	��

���
����� �
������������

����
�	�������������������������������
��
�������������������������������

�����������
������������	����������
"�# "�#

"�#

Figure 2.5.: An instantiation of component type definitions to C&C models.

types and all components in a C&C model require a unique name, we have chosen the
names of the components (fully qualified) based on their subcomponent definition in-
stance names from the component type definitions in this example. Different namings
are possible.

We formally define the structure of component type definitions for MontiArcAuto-
maton components in Definition 6.8 in Section 6.2.1. The modeling language MontiArc-
Automaton is based on MontiArc and extends component type definitions with variables.

For the first part of this thesis in Chapters 2-5 we focus on C&C models as presented
in Definition 2.2. We extend our focus to component type definitions in Chapters 6-8.

2.4. Related Component and Connector Architecture
Description Languages

C&C models are an integral part of many architecture description languages. Early clas-
sification frameworks for ADLs [GS93, KC94, Cle96, MT00] characterized ADLs by the

22 Chapter 2. Component and Connector Software Architectures

ability to represent components and connectors. Medvidovic and Taylor [MT00] define
the main features of ADLs as components with interfaces, connectors, and architectural
configurations. MontiArc and the subset of MontiArc elements we use to express C&C
models is an ADL according to these definitions. A component is a unit of computation,
an interface is the set of interaction points defined for a component, connectors model
component interaction and the rules of the interaction. Architectural configurations are
graphs that describe the composition of components and connectors [MT00]. In our
terms interfaces are the set of ports of a component in C&C models, the architectural
configuration is given by the connectors and the subcomponent relation in C&C models.

More recent characterizations of ADLs include more viewpoints than just the C&C
viewpoint [MDT07, TMD09, CBB+10]. Clements et al. [CBB+10] suggest the documen-
tation of a system architecture from overlapping and interrelated viewpoints describing,
e.g., the system’s modules, its components and connectors, the allocation of software
components to non-software structures, and the system’s behavior.

Similarly, Medvidovic et al. [MDT07] have observed the extension of ADLs from the
more technical side elaborated in their classification framework in [MT00] to application
domain-specific descriptions. Furthermore, some ADLs support or reflect the business
context by adapting to processes (e.g., the ADL ArchiMate [The12]), supporting product
lines (e.g., Koala [vOvdLKM00] and MontiArc [HRRS11, HRR+11]), or allowing cost
analyses [MDT07]. A recent survey on the use of architectural languages in industry
[MLM+13] shows that the five most useful features rated by industrial ADL users are
the support for iterative architecting, well-defined semantics, tool support, checking the
alignment between an architecture model and the implementation, and the extensibility
of the ADL.

These features and characterizations show that architecture descriptions and their
applications go far beyond C&C models. Despite these extensions most ADLs contain
means to describe C&C models or even focus descriptions based on components, ports,
and connectors. Thus, we consider C&C models a common central subset of architecture
descriptions. In the following we describe some ADLs from the literature and describe
their modeling capabilities for C&C models.

The Architecture Analysis Design Language (AADL) [wwwa, FGH06, FG12] is an
architecture description language. AADL is standardized by the Society for Automo-
tive Engineers. AADL models contain component type declarations and implementation
declarations. Component type declarations define the features of a component including
directed and typed ports. Implementation declarations define the internal structure of a
component in terms of subcomponent instances and connectors. A special design concept
of AADL are predefined component categories. These are categories of application soft-
ware, e.g., thread or subprogram, the execution platform, e.g., memory, composite,
and generic components with the categories system and abstract. This domain-
specific orientation of AADL makes it suitable for embedded realtime systems especially
in the automotive, avionics, and aerospace domains [wwwa, HWF+10, BCK+11, FG12].

Acme [GMW00, SG04] is an ADL that was initially developed as an architecture lan-
guage interchange format [GMW97] containing the common elements of various ADLs.

2.4. Related Component and Connector Architecture Description Languages 23

These elements comprise components, ports and connectors. Acme has evolved to a stand
alone ADL. One of the main features of Acme and its tool support AcmeStudio [wwwy]
is the definition and analysis of architectural styles [SG04, KG10]. Our approach to C&C
model synthesis supports architectural styles for C&C models as presented in Section 5.5.

ArchiMate [LPJ10, JPL+11] is a modeling language for enterprise architecture. In
a recent survey on the use of ADLs in industry [MLM+13] it was reported the second
most used ADL after UML [Obj12a]. ArchiMate divides the description of a system
into three layers: the business layer, the application layer, and the technology layer.
The application layer contains models of the application software that are organized in
components. Components can interact via provided and required application interfaces
or via application collaboration [The12].

MontiArc [HRR12] is an ADL designed for modeling cyber-physical systems [Lee08].
The ADL is developed based on the core ADL concepts identified in [MT00] and its
semantics is based on the stream processing theory Focus [BS01]. MontiArc is a textual
ADL developed using the language workbench MontiCore [KRV10]. One important
feature of MontiArc is its typing and instantiation mechanism for components. The
structure of composed components is defined as the instantiation of components and the
connection of the ports of their interfaces. MontiArc supports the definition of generic
component types that can be instantiated with type parameters to configure, e.g., the
type of a port.

The ADL MontiArc is developed in an extensible way. We have implemented an ex-
tension via stereotypes for C&C views presented in Section 3.6. Another extension of
MontiArc is the language MontiArcAutomaton [RRW12, RRW13b], which embeds au-
tomata in atomic components. Haber et al. [HRRS11, HRR+11, HRRS12] have extended
MontiArc with support for modeling variability in the context of software product lines.

Many works also consider the Unified Modeling Language (UML) [Obj12a] an ar-
chitecture description language [ICG+04, MDT07, MLM+13]. The UML consists of 14
diagram types for modeling the structure and the behavior of software systems. Ivers
et al. [ICG+04] describe how to use UML 1.4 and UML 2.0 for documenting component
and connector models. One major criticism by Ivers et al. is that UML connectors are
not first class elements. In UML it is thus not easily possible to associate behavior and
interface descriptions [ICG+04]. In our work we also use a basic model of connectors.
Our connectors do not exhibit interfaces, behavior, or roles.

The Systems Modeling Language (SysML) [FMS11, Obj12b, Wei07] is a derivation of
UML 2 defined as a profile using UML’s profile mechanism [Obj12a]. SysML introduces
block definition diagrams (based on UML class diagrams) and internal block diagrams
(based on UML composite structure diagrams). It extends ports and flows of UML and
thus overcomes some of the criticized weaknesses of UML for the definition of component
and connector models.

A variety of tools implements C&C models similar to the structure defined in Defini-
tion 2.2. One popular example is the block diagram language implemented in MathWorks
Simulink [wwwn]. Block diagrams consist of blocks and lines. One kind of the blocks in
block diagrams are function blocks, which have input and output signals that are con-

24 Chapter 2. Component and Connector Software Architectures

nected via lines. Multiple blocks can be composed to subsystems with input and output
ports. Subsystems are again a special kind of blocks. In the terminology of C&C models
blocks are components, signals and ports correspond to ports, and lines correspond to
connectors.

Another implementation of C&C models is provided within the AutoFOCUS tool
suite [BHS99, HF07, wwwe]. C&C models are modeled as component architectures
consisting of components with typed input and output ports that are connected via
channels (connectors). Components in C&C architectures can be composed and consist
of further components or they are atomic and their behavior is specified using behavioral
models or code implementations.

As a concrete ADL for C&C models we use MontiArc [HRR12]. We consider support-
ing the subsets of other ADLs and related formalisms that match the structure of C&C
models as defined in Definition 2.2 a technical issue.

Chapter 3.

Component and Connector Views for
Component and Connector Models

Existing languages and tools for C&C modeling are built around the implementation-
oriented hierarchical decomposition of systems to subsystems. This hierarchical decom-
position supports a distributed development process of components with well-defined
interfaces and fits well with downstream code generation. However, it limits possible
support for specifying structural properties that reflect the partial knowledge available
to different stakeholders and their interests at different stages of the system’s develop-
ment life-cycle, which inevitably crosscut the boundaries of subsystems.

We present C&C views, as a language for C&C modeling that enables the specification
of structural properties that crosscut the boundaries of subsystems. C&C views take
advantage of novel abstraction mechanisms for hierarchy and connectivity, not present in
comparable languages. These mechanisms enable different stakeholders to create views
that express partial knowledge about the structure of the system at hand, corresponding
to different use cases, functions, or concerns.

A C&C view documents one or more design decisions and their relevant environment.
C&C views are independent of C&C models and can be reused, modified, and evolved
independently of a concrete C&C model. Different analyses connect C&C views with
C&C models. We formally define the semantics of C&C views by a satisfaction relation
between C&C models and C&C views.

Moreover, we lift the definition of single C&C views to C&C views specifications. A
C&C views specification consists of a propositional formula over C&C views. Thus, a
specification may contain, e.g., positive views, which should be satisfied, negative ones,
which should not be satisfied, disjunctions between views, allowing one to express alter-
native designs, and implications, allowing one to express dependencies between design
decisions.

We introduce the three main applications supported by our work. First, documen-
tation, to highlight and make knowledge contained in a C&C model explicit. Second,
verification, deciding whether a C&C model satisfies a C&C view. Third, synthesis, au-
tomatically constructing a satisfying C&C model given a C&C views specification. We
have implemented C&C views verification and synthesis of C&C models. We present
C&C views verification in Chapter 4 and synthesis from C&C views specifications in
Chapter 5.

26Chapter 3. Component and Connector Views for Component and Connector Models

Chapter outline and contributions

Section 3.1 presents a pump station system and its C&C model provided by the Auto-
FOCUS IDE [wwwd]. We use the pump station as a running example in Chapter 3 and
Chapter 4. Section 3.2 continues with an overview of C&C views usage scenarios. A
formal definition for C&C views is given in Section 3.3 and for C&C views satisfaction in
Section 3.4 expressing C&C views semantics in relation to C&C models. The formaliza-
tion of C&C views, their abstraction mechanisms over C&C models, and their semantics
constitute a main contribution of this thesis.

Another contribution presented in this chapter is the extension of C&C views to C&C
views specifications in Section 3.5 allowing one to express mandatory, alternative, and
negative structural properties using C&C views.

We introduce a language profile of the ADL MontiArc for modeling C&C views in
Section 3.6. Finally, Section 3.7 discusses variations and extensions of C&C views and
related approaches for specifying structural properties of C&C models and architectural
models in general.

3.1. Introducing the Pump Station System
We use the pump station system C&C model given with the AutoFOCUS IDE [BHS99,
HF07, wwwd] as a starting point for our running example.

���������������
�����������

�����������
�����	����

��������	��
��
���������	������������

�������������������
����������

��������������������

Figure 3.1.: An illustration of the pump station with two water tanks, a pump, a valve,
and a control panel.

The physical structure and parts of the pump station are illustrated in Figure 3.1.
The pump station consists of two water tanks, a pump, a valve, and a control panel.
Water flows into the first tank and the water level rises. The water level can be pumped
to the second water tank, which has a drain, by the pump if the valve is opened. The
pump becomes active when either an engineer activates it via the control panel, or the

3.1. Introducing the Pump Station System 27

water level in the first tank rises to a critical level.
A team of engineers has modeled the software C&C model of the pump station system

consisting of components and connectors and their composition at different containment
levels. The C&C model of the pump station includes the pumping system and a model
of the environment for simulation, as shown in Figure 3.2 using separate subfigures for
each component definition. Components are either atomic and not further detailed here
or they are defined by composition of subcomponents and connectors.

����������

��$������� ������������
������������

������%��
��
����������

������������

&��$���������

������%��
��

����������%��
��

����'�����%��
��

���(������%��
��

&��$�������%��
��

����������

	�
�������

�	���������

������������

��$�������

������)
��������

��������
�����

��������	 ��������	
�

Figure 3.2.: The C&C model of the pump station system adapted from an example of the
AutoFOCUS IDE [wwwd]. The C&C model is shown in five separate com-
ponent definitions as presented by state-of-the-art C&C modeling languages
and tools, e.g., AcmeStudio [wwwy] and AutoFOCUS. To omit clutter we
do not show port names or data types in the figure. The complete model
with port names and data types is shown in Appendix G.

The root of the pump station C&C model is the component PumpStation with its
two subcomponents Environment and PumpingSystem. The logical architecture of
the software system to control the pump station (shown in Figure 3.1) is contained
in the component PumpingSytem. The component PumpingSystem consists of the
component SensorReading for reading sensor data from different sources, a controller
component Controller, and actuators for effecting changes on the pump (component

28Chapter 3. Component and Connector Views for Component and Connector Models

PumpActuator) and on the valve (component ValveActuator).
The component SensorReading has subcomponents that read data from various

sensors, e.g., the pump sensor, a button on the control panel, the tank sensor, and the
valve sensor. The component Controller receives the inputs from the user button
sensor and the tank sensor. Internally, the component Controller independently
computes desired control commands for the valve and the pump in its subcomponents
UserOperation and EMSOperation. The component ModeArbiter decides based
on its specification which commands to forward to the pump and valve actuators.

The second subsystem of the pump station C&C model is modeled as the component
Environment. It is used by the engineers for the simulation of the pump station. The
component Environment consists of two subcomponents: a simulation panel (com-
ponent SimulationPanel) to simulate the control panel of the pump station and a
physics simulation (component PhysicsSimulation) to compute the water levels of
the tanks.

3.2. Component and Connector Views Usage Scenarios and
Language Features

We now present usage scenarios for C&C views during the development and maintenance
of C&C models. In Section 3.2.2 we highlight the key language features of C&C views
supporting these usage scenarios before we formally define the structure of C&C views
in Section 3.3.

3.2.1. Usage Scenarios for C&C Views

We present examples of C&C views and various usage scenarios in the context of the
pump station system. The presentation of C&C views in this section is semi-formally.
Formal definitions are given in Section 3.3.

Documentation

C&C views can be used to document partial knowledge about a C&C model. Consider
the following scenario.

The team wants to create documentation for the C&C model of the pump station,
to make knowledge contained in the model explicit and to guide new team members in
understanding the C&C model design. One important information is that the pump
sensor reader is connected to the pump actuator via the actuator’s incoming port
pumpState and that the valve sensor reader is connected to the valve actuator via
the port valvePosition.

The team documented this information by creating the C&C view ASPumpingSystem,
shown in Figure 3.3 (a). Please note that the view abstracts away the (direct) contain-
ment of the sensors inside component SensorReading, which is not shown in the view,

3.2. Component and Connector Views Usage Scenarios and Language Features 29

������������

����������%��
��

&��$�������%��
��

&��$���������

������������

���������

$��$�������

�������� ������	�������

��������������

����'�����%��
��

������������

	�
�������

������

����'�����

�������������

����&��$�������

�������� ��������
���
�

"�# "�#

Figure 3.3.: Two C&C views related to the pumping station system. The C&C view
ASPumpingSystem documents the C&C model PumpingSystem by show-
ing relevant components and connectors across different containment levels.
The C&C view UserButtonFlow shows components and connectors par-
ticipating in the flow of user button messages.

and does not mention the exact source ports of the connectors from the sensors, although
this information appears in the C&C model.

A team member created another view, UserButtonFlow, shown in Figure 3.3 (b),
to document the components and connectors handling the pressing of the user button.
The engineer decided to document all relevant ports but only some port names. She
abstracted away parent components, e.g., Environment and SensorReading, and
presented all relevant components at a single level.

C&C views verification

A C&C view can be used as a specification that a C&C model should satisfy. Satisfaction
can be checked automatically. Consider the following scenario.

A team of engineers has described its design in several C&C views, highlighting rele-
vant design decisions for the C&C model. The team is using the views as specifications
and wants to automatically check whether the C&C model they built satisfies these
views.

The C&C model PumpStation depicted in Figure 3.2 satisfies the C&C view AS-
PumpingSystem shown in Figure 3.3 (a) (formally written as PumpStation ⊧ AS-
PumpingSystem), since all components shown in the view exist in the C&C model,
the model preserves the containment relation between components in the view, and
the ports and connectors in the view are concretized in the definitions of components

30Chapter 3. Component and Connector Views for Component and Connector Models

SensorReading and PumpingSystem (connectors in the view have corresponding
chains of connectors in the model).

When checking the model against the view UserButtonFlow, the team discovers a
mismatch between the C&C view specification and the pump station C&C model (for-
mally written as PumpStation /⊧ UserButtonFlow). There is no chain of connectors
from component PhysicsSimulation to component UserButtonReader. When
replacing component PhysicsSimulation by component SimulationPanel, the
C&C view is satisfied by the pump station model.

In the set of C&C views, used as a specification for the C&C model, the team formal-
ized both desired and undesired designs: positive C&C views, which should be satisfied,
and negative C&C views, which should not be satisfied by the C&C model they build.
Throughout the system’s design the engineering team applies C&C views verification to
check that the C&C model satisfies the positive views and does not satisfy the negative
ones.

C&C views synthesis

A C&C views specification consisting of positive and negative views can be used not only
for verification, i.e., after a C&C model is built, but also as input for a synthesis process
that outputs a correct by construction C&C model, one which satisfies the positive
views and does not satisfy the negative ones, if such a C&C model exists. Consider the
following scenario.

An engineering team is going to develop the software C&C model of a pump station.
The team has no initial C&C model, but different team members have partial knowledge
available.

One team member knows that the pumping system will contain a pump actuator
and a valve actuator that are both connected to relevant sensors. She expresses this
knowledge as the C&C view ASPumpingSystem depicted in Figure 3.3 (a). Another
team member describes a component EmergencyController that is part of the pump
station and is connected to component UserOperation, which is further connected to
component ModeArbiter. The engineer currently cannot specify further properties
of the connection, e.g., source or target port name and type, between the emergency
controller and component UserOperation. She simply specifies that these two are
connected. The C&C view SystemEmergencyController created by the engineer is
shown in Figure 3.4 (a).

The C&C view SystemEmergencyController from Figure 3.4 (a) needs only to be
satisfied if the component EmergencyController is indeed part of the system. The
existence of the component EmergencyController is expressed in the C&C view
ExistsEmergencyController from Figure 3.4 (b). The dependency of the views is
formalized as (ExistsEmergencyController⇒ SystemEmergencyController)
inside a C&C views specification. An architect combines the C&C views to a views
specification, i.e., a propositional formula over the views, which may contain positive,
negative, alternative, and dependent views. The architect uses our tool to synthesize a

3.2. Component and Connector Views Usage Scenarios and Language Features 31

����������

�������� ���������������
���
����

������������

	�
�������
�������������

�������������������

�������������������

�������� ��	������������
���
����

"�# "�#

Figure 3.4.: Two C&C views related to the pumping station system. The views docu-
ment relations between component EmergencyController and its rele-
vant part of the pumping system.

satisfying C&C model. The synthesized C&C model is complete (all ports have data
types and names) and is ready for code generation.

3.2.2. C&C Views Key Language Features
The key, distinctive language features of C&C views include three abstraction mecha-
nisms: an abstraction of hierarchy, an abstraction of connectivity, and an abstraction of
interfaces.

The syntax we use for C&C views is intentionally taken from C&C models. No special
syntactic constructs are added, so as to keep the language simple and ensure ease of use
and learning: any engineer familiar with C&C models can specify C&C views.

Hierarchy abstraction

Putting one component inside another in a view does not mean that the second is
necessarily a direct subcomponent of the first. Rather, it means that the second is
contained in the first, but not necessarily directly. Putting two components as siblings
in a view does not necessarily mean that they are direct subcomponents of a common
parent, but it means that they are not contained within one another. This abstraction
allows engineers to specify partial knowledge about the hierarchical structure of the
system they build.

As an example consider the components PumpSensorReader and PumpActuator
in the view ASPumpingSystem shown in Figure 3.3 (a). These two components are
not contained within one another but they are not necessarily sibling components in a
satisfying C&C model. As another example consider component PumpStation in view
the SystemEmergencyController shown in Figure 3.4 (a) and the three compo-
nents shown inside it, e.g., ModeArbiter. These components need to be contained in

32Chapter 3. Component and Connector Views for Component and Connector Models

component PumpStation in any satisfying C&C model, but not necessarily as direct
subcomponents.

Connectivity abstraction

Connectors appearing in a view are abstract: connecting two components in a view with
a connector does not mean that they are directly connected with a single connector.
Rather, it means that they are connected by a chain of connectors (all having the same
data type), leading from one component to the other. As opposed to connectors in C&C
models, an abstract connector in a view may connect components directly via optional
ports.

As an example consider the abstract connector between component UserButton-
Reader and component UserOperation shown in view UserButtonFlow in Fig-
ure 3.3 (b). This abstract connector is implemented by a chain of three connectors
as shown in view UserButtonFlowImpl in Figure 3.5. The view UserButtonFlow
with component PhysicsSimulation renamed SimulationPanel is satisfied by the
C&C model. Its complete implementation by the C&C model PumpStation is shown
in Figure 3.5.

�������� �	������
���������
�

����������

��$�������

������������

�
�

��
��

�
��

��
��

������%��
��

�
��

�'
��

��
�%

��

�

�

����������

������������

	�
�������

������

����'�����

�������������

����&��$�������

Figure 3.5.: A C&C view generated to show the implementation of the view
UserButton (view UserButtonFlow from Figure 3.3 with component
PhysicsSimulation renamed SimulationPanel) in the C&C model
PumpStation shown in Figure 3.2.

Incomplete interfaces

The third abstraction mechanism in C&C views concerns component interfaces, consist-
ing of port names and their types. Specifically, component interfaces presented in a view

3.3. Component and Connector Views 33

may be incomplete, and not show all port names and all types.
As an example consider the view SystemEmergencyController in Figure 3.4 (a).

The interface of component EmergencyController is not given at all, although the
component is the source of an abstract connector. For component ModeArbiter two
ports are shown of which only one is named.

Extension points for additional language features

Variability within the definition of a modeling language allows the extension and cus-
tomization of a modeling language’s syntax and semantics [CGR09, GR10]. Our mod-
eling language for C&C views contains an extension mechanisms to attach additional
properties to components, ports, subcomponents, and connectors via stereotypes (see
Section 3.6.5).

We have used this extension mechanism of our modeling language for C&C views to
specify further knowledge available to the engineers and add it to the views. We present
two examples for these extensions. An engineer can specify that a component in a view
is atomic, i.e., the component may not have subcomponents or internal connectors in
any satisfying C&C model. Engineers can further specify that their knowledge of a
components interface is complete, i.e., the component has exactly the ports specified in
the C&C view in any satisfying C&C model.

3.3. Component and Connector Views
We give a formal definition of the structures of C&C views with well-formedness rules for
valid views. C&C views consist of components at different containment levels, directed,
possibly typed, and possibly named ports, and connectors connecting components or
ports.

Definition 3.6 (Component and connector view). A component and connector view is a
structure view = (Cmps, Ports, PNames, AbsCons, Types, subs, ports, dir, type, name,
stereotypes) where

1. Cmps is a set of components cmp ∈ Cmps (with unique names), each of which has
a set of ports ports(cmp) ⊆ Ports and a set of subcomponents subs(cmp) ⊂ Cmps,

2. Ports is a set of directed input and output ports p ∈ Ports with dir(p) ∈ {IN, OUT}
where each port has a (possibly unknown) name name(p) ∈ PNames∪{�}1, a (pos-
sibly unknown) type type(p) ∈ Types∪{�}, and belongs to exactly one component
∃!cmp ∈ Cmps ∶ p ∈ ports(cmp),

3. AbsCons is a set of directed abstract connectors con ∈ Cons, each of which connects
two components optionally via their ports (con.srcPort ∈ ports(con.srcCmp) ∨

1We use � to denote unknown names, types, and ports.

34Chapter 3. Component and Connector Views for Component and Connector Models

con.srcPort = � and con.tgtPort ∈ ports(con.tgtCmp) ∨ con.tgtPort = �), con-
nected ports have the same or an unknown type (∣{type(con.srcPort), type(con.tgt-
Port)} ∖ {�}∣ ≤ 1), and

4. Types is a finite set of types t ∈ Types that appear on ports: t ∈ Types ⇔ ∃p ∈
Ports ∶ type(p) = t.

Additionally, the following rules for well-formedness apply:

5. ∄c ∈ Cmps ∶ c ∈ subs+(c), where subs+ denotes the transitive closure of the sub-
component relation subs ∶ Cmps×Cmps, i.e., no component is its own (transitive)
parent,

6. ∀child ∈ Cmps ∶ ∣{parent ∈ Cmps ∣ child ∈ subs(parent)}∣ ≤ 1, i.e., every compo-
nent has at most one direct parent in the view, and

7. ∀cmp ∈ Cmps ∶ ∀p1, p2 ∈ ports(cmp) ∶ � ≠ name(p1) = name(p2) ⇒ p1 = p2, i.e.,
known port names are unique within each component.

Variability mechanism: Stereotypes may be added to the elements of the sets Cmps,
Ports, and AbsCons to extend or modify the semantics of C&C views. For example, the
set of stereotypes added to a component cmp ∈ Cmps is the set stereotypes(cmp). △

Please note that in a C&C view, abstract connectors are not restricted to the four
cases of connectors in C&C models as defined in Definition 2.2, Item 9. Rather, they
may connect between any two ports and components in the view. Also, ports may have
multiple incoming connectors in C&C views since these might refer to the same concrete
chain of connectors in a C&C model. We do not restrict C&C views to have exactly one
top component.

Notation: For a C&C view view, a port p ∈ view.Ports, and a component c ∈
view.Cmps we use the short notation p ∈ c.ports to denote p ∈ view.ports(c) in case the
C&C view view is clear from the context. In addition, we write view.name and c.name
(for c ∈ Cmps) for the unique names of views and components.

C&C models and C&C views share the same structural elements, i.e., hierarchically
composed components as well as directed, named, and typed ports. They however
differ in the amount of required information specified about these elements and in their
semantics.

Because of the common structural elements between C&C views and C&C models
we are again able to use the modeling language MontiArc to model C&C views as
demonstrated in Section 3.6.

3.3.1. Language Variability Mechanism
We have added a language extension mechanism based on stereotypes to the C&C views
modeling language. We follow the framework described in [CGR09] to define variability
for C&C views.

3.3. Component and Connector Views 35

��������������*

����"�+,*#�-
�../

0

��������������* ��������������
�����*

��������
������������������

��� �������1����

�������

�����*

Figure 3.7.: The basic parts of a modeling language definition in the framework defined
in [CGR09]. We define the concrete and abstract syntax based on MontiArc
in Section 3.6. The minimal abstract syntax for C&C views is the structure
given in Definition 3.6.

Figure 3.7 shows the conceptual parts of a modeling language definition as presented
in [CGR09]. For us, the concrete and abstract syntax are defined by a MontiCore
grammar (the grammar of the modeling language MontiArc, see Section 3.6). The
minimal abstract syntax is the structure of C&C views given in Definition 3.6.

According to the classification presented in [CGR09, Table 1] modeling language vari-
ability is classified as presentation variability, syntactic variability, and semantic vari-
ability. Presentation variability refers to variability on the presentation of elements in
graphical or textual concrete syntax. We present our textual syntax for C&C views
in Section 3.6. Syntactic variability is based on stereotypes, language parameters and
context conditions (well-formedness rules) [CGR09]. We define syntactic variability for
C&C views based on stereotypes and add additional rules for the well-formedness of
C&C views with modified abstract syntax.

Stereotypes may be applied to the key elements of C&C views: components, ports, and
abstract connectors. We give two examples of variations for C&C views and informally
sketch the semantics of the language extension. A formal definition of the semantics of
the extensions in terms of a satisfaction relation between C&C models and C&C views
is presented in Section 3.4.1.

Atomic components An atomic component is a component that is not further de-
composed, i.e., that has no subcomponents. In case an engineer knows that a component
modeled in a C&C view is an atomic component in any C&C model that satisfies the
view, this knowledge can be attached to the component in the view using the stereotype
«atomic». Expressing the atomicity of a component without this language extension is
not easy and might require multiple C&C views.

36Chapter 3. Component and Connector Views for Component and Connector Models

In addition to the well-formedness rules described in Definition 3.6 this language ex-
tension adds the new well-formedness rule:

∀cmp ∈ Cmps ∶ «atomic» ∈ stereotypes(cmp) ⇒ subs(cmp) = ∅
Interface-complete components In case an engineer knows that the interface of a

component specified in a C&C view is the complete interface of the component in every
satisfying C&C model, this knowledge can be attached to the component in the view
using the stereotype «interfaceComplete».

In addition to the well-formedness rules described in Definition 3.6 the language ex-
tension adds the new well-formedness rule:

∀cmp ∈ Cmps ∶ «interfaceComplete» ∈ stereotypes(cmp) ⇒
∀p ∈ ports(cmp) ∶ name(p) ≠ �

The rule above requires that all ports of an interface-complete component have names.
It is not required that ports have known types. This gives more freedom to the engineer
creating the view with the interface-complete component.

The extension mechanism of C&C views, which is based on syntactic variability, also
requires semantic variability to assign a meaning to the extended language, i.e., the
stereotypes attached to the components, ports, and abstract connectors. For the two
above examples we show how syntactic variability influences the semantics of C&C views
in terms of their satisfaction by C&C models in Section 3.4.1.

Unless stated otherwise by C&C views we refer to the basic C&C views from Defini-
tion 3.6 without an extension with stereotypes.

3.4. Satisfaction of Component and Connector Views
Based on the formal definitions of the structures of C&C models from Definition 2.2 and
C&C views from Definition 3.6 we now define the satisfaction of a C&C view by a C&C
model.

Roughly, a C&C model satisfies a C&C view if and only if the types, components,
and ports mentioned in the view are contained in the C&C model, the C&C model
respects the subcomponent relation induced by the view, two ports connected by an
abstract connector in the view are connected by a chain of connectors in the C&C model
(respecting direction, names, and types), and all ports of a component in the view belong
to the same component in the C&C model with corresponding name, type and direction.
More formally:

Definition 3.8 (C&C model ⊧ C&C view). A C&C model m satisfies a C&C view view
if and only if:

1. view.Types ⊆ m.Types,

2. view.Cmps ⊆ m.Cmps,

3.4. Satisfaction of Component and Connector Views 37

3. ∀cmp1, cmp2 ∈ view.Cmps:
cmp1 ∈ view.subs(cmp2) if and only if cmp1 ∈ m.subs+(cmp2)
(we use + to denote the transitive closure),

4. ∀cmp ∈ view.Cmps:
(a) ∀p ∈ view.ports(cmp) ∃p′ ∈ m.ports(cmp) ∶ p ≅ p′ where
(b) p ≅ p′ if and only if
(b1) view.dir(p) = m.dir(p′) ∧
(b2) view.type(p) ∈ {�, m.type(p′)}∧
(b3) view.name(p) ∈ {�, m.name(p′)}, and

5. ∀ac ∈ view.AbsCons ∃c1, ..., cn ∈ m.Cons such that
(a) ac.srcCmp = c1.srcCmp ∧ (ac.srcPort ≅ c1.srcPort ∨ ac.srcPort = �) ∧
(b) ac.tgtCmp = cn.tgtCmp ∧ (ac.tgtPort ≅ cn.tgtPort ∨ ac.tgtPort = �) ∧
(c) ∀1 ≤ i < n ∶ ci.tgtPort = ci+1.srcPort.

△
Definition 3.8 formally defines the satisfaction relation between a C&C model and a

C&C view. For the data types on ports and for components we use the same structures
in C&C models and C&C views which allows us to use set inclusion in Item 1 and Item 2.

The matching of ports is more complicated since we can not identify ports by their
name, which is optional in C&C views. For a given C&C model m and a C&C view
view we thus introduce the relation ≅ ⊆ (view.Ports × m.Ports) for matching ports in
Item 4 (b).

Please note that a well-formed C&C view with a satisfying C&C model m has in-
finitely many satisfying C&C models because the set m.Cmps and the subcomponent
function m.subs can always be extended with additional subcomponents without affect-
ing satisfaction. Also note that by definition the empty view is satisfied by any C&C
model.

3.4.1. Language Variability and Satisfaction
The language variability mechanism introduced in C&C views in Definition 3.6 also has
an impact on the semantics of C&C views captured by the satisfaction relation of C&C
models and C&C views. We show how to adapt the satisfaction relation defined in
Definition 3.8 to support the two example language extensions for atomic components
and interface-complete components.

Atomic components A C&C model m satisfies a C&C view view extended with the
stereotype «atomic» for components if and only if the C&C model m satisfies the C&C
view view according to Definition 3.8 (or its extensions for further language variations)
and

∀cmp ∈ view.Cmps ∶ «atomic» ∈ cmp.stereotypes ⇒ m.subs(cmp) = ∅
Interface-complete components A C&C model m satisfies a C&C view view

extended with the stereotype «interfaceComplete» for components if and only if the

38Chapter 3. Component and Connector Views for Component and Connector Models

C&C model m satisfies the C&C view view according to Definition 3.8 (or its extensions
for further language variations) and

∀cmp ∈ view.Cmps ∶ «interfaceComplete» ∈ cmp.stereotypes ⇒
∀p ∈ m.ports(cmp) ∃p′ ∈ view.ports(cmp) ∶ m.name(p) = view.name(p′)

Please note that these two language extensions exhibit nice properties with respect
to the satisfaction relation. First, the two extensions are independent, i.e., they do not
require or contradict each other. Second, the language extensions refine the semantics
of C&C views, i.e., they strengthen the satisfaction relation by additional constraints.
These two properties do not necessarily hold for all possible variations of C&C views. In
general, variations of the syntax and semantics of modeling languages may influence or
contradict each other. A more sophisticated handling of language variability is proposed
in [Grö10, GR10] using feature models [CE00] to formalize and manage dependencies
between different variations.

3.5. Component and Connector Views Specifications
A C&C views specification combines multiple views in a single propositional formula. A
C&C views specification allows to define positive views, which should be satisfied, neg-
ative views, which should not be satisfied, and dependent views, where the satisfaction
of one view implies the satisfaction of another.

Definition 3.9 (C&C views specification). A C&C views specification S is a proposi-
tional formula over a set of C&C views V . △

By natural extension of Definition 3.8, a C&C model m satisfies a specification S,
denoted m ⊧ S, if and only if for each view v ∈ V the view name replaced by the Boolean
valuation m ⊧ v satisfies the propositional formula S. We denote replacing each v ∈ V
in S by the valuation of m ⊧ v as S[v/(m ⊧ v)]v∈V in Definition 3.10.

Definition 3.10 (C&C model ⊧ C&C views specification). A C&C model m satisfies a
C&C views specification S over a set of views V if and only if S[v/(m ⊧ v)]v∈V . △

Consider a views specification S1 over the views ASPumpingSystem, UserButton-
Flow (shown in Figure 3.3 (b)), UserButtonRemote (shown in Figure 3.11 (a)),
SystemEmergencyControllerFixed (shown in Figure 3.11 (b)), EmergencyIn-
sidePumpingSystem (shown in Figure 3.11 (c)), and UserButtonReaderInside-
Controller (shown in Figure 3.12). The view UserButtonRemote is similar to the
view UserButtonFlow (shown in Figure 3.3 (b)) but the specified data flow path for
the user button does not start at component SimulationPanel but at component
RemoteControlPanel. The view EmergencyInsidePumpingSystem specifies the
existence of component EmergencyController inside component PumpingSystem.

Equation 3.1 shows the propositional formula for the C&C views specification S1.

3.5. Component and Connector Views Specifications 39

������������

�������� ���������������
���
�����	���

������������

	�
�������
'������

�������������
&��$�������

����&��$�������

�������������������

%�����������������

����'�����%��
��

������������

	�
�������

������

����'�����

�������������

����&��$�������

�������� ��������
����
��

������������

�������������������

�������� �����������	������	�������

"�# "�#

"�#

Figure 3.11.: Three C&C views used in specification S1: UserButton-
Remote (a), SystemEmergencyControllerFixed (b), and
EmergencyInsidePumpingSystem (c).

����������
����'�����%��
��

�������� ��������
����������	���
���
����

Figure 3.12.: The C&C view UserButtonReaderInsideController that depicts
the component UserButtonReader contained in the component Con-
troller.

S1 = ASPumpingSystem ∧ ¬UserButtonReaderInsideController ∧
(EmergencyInsidePumpingSystem⇒ SystemEmergencyControllerFixed) ∧

(UserButtonFlow ∨ UserButtonRemote) (3.1)

S1 specifies that the C&C model should satisfy the view ASPumpingSystem, that it
should not satisfy the view UserButtonReaderInsideController, that if it satis-
fies the view EmergencyInsidePumpingSystem then it should also satisfy the view

40Chapter 3. Component and Connector Views for Component and Connector Models

SystemEmergencyControllerFixed, and that it should satisfy the UserButton-
Flow view or the UserButtonRemote view.

It is easy to check whether the C&C model PumpStation introduced in Section 3.1
satisfies or does not satisfy each of the C&C views mentioned in S1. Specifically, the C&C
model satisfies the view ASPumpingSystem and the view UserButtonFlow but it
does not satisfy the view the view UserButtonRemote, the view UserButtonReader-
InsideController, the view EmergencyInsidePumpingSystem, and the view
SystemEmergencyControllerFixed. Assigning the resulting truth values to the
corresponding variables in the propositional formula shown in S1 (Equation 3.1) shows
that PumpStation ⊧ S1.

3.6. Modeling Component and Connector Views using
MontiArcView

We now present a language profile of the ADL MontiArc for documenting C&C views.
The language profile MontiArcView extends the MontiArc language with several stereo-
types.

3.6.1. Defining a View
Every MontiArcView C&C view definition is marked with the stereotype «view» on the
top level. While in C&C models the first component definition is the root of the system,
the stereotype «view» around the outer definition does not resemble a component but a
view, which is a collection of the components of interest and the relations known between
them. Line 3 in Listing 3.13 defines the view UserButton.

3.6.2. Containment and Independence of Components
Listing 3.13 shows the view UserButton which contains the two components User-
ButtonReader and SimulationPanel. In a view the knowledge specified about a
C&C model is partial. For example, the component UserButtonReader does not
necessarily need to be a sibling component of component SimulationPanel. The two
components are however shown side by side meaning that they are not contained in each
other in any satisfying C&C model.

The component Sensor (l. 10) is shown to be contained in component UserButton-
Reader. This containment is not necessarily concrete — component Sensor might be a
direct subcomponent of UserButtonReader or contained in any of its subcomponents
that might exist but are not shown inside the view.

3.6.3. Component Interface
In C&C views the interfaces of components may be underspecified. The interface of a
component can be either completely omitted, contain untyped or unnamed ports, or can
be marked as complete.

3.6. Modeling Component and Connector Views using MontiArcView 41

MontiArcView

1 package pumpStationExample;
2

3 <<view>> component UserButton {
4

5 component UserButtonReader {
6 port
7 <<untyped>> in button,
8 <<unnamed>> out UserInput;
9

10 component Sensor {
11 }
12 }
13

14 component SimulationPanel {
15 port
16 out Button button;
17 }
18 }

Listing 3.13: A view of the system called UserButton.

Missing Interface If a component in a view has no definition of an interface
(starting with keyword port) nothing is known about the component’s interface (see,
e.g., component Sensor in line 10 of Listing 3.13). It is not restricted nor required to
contain any ports in a satisfying C&C model.

Untyped Port The stereotype «untyped» in front of the port of a component, e.g.,
the first port of component UserButtonReader in Listing 3.13 indicates that the type
of the port with the name button (Listing 3.13, l. 7) is not known in the view. In a
satisfying C&C model there will be an incoming port with name button and a concrete
type.

Unnamed Port The stereotype «unnamed» on the second port of component
UserButtonReader means that the name of the port is not known in the view. The
C&C view specifies that the port has the direction outgoing and the type UserInput
(Listing 3.13, l. 8).

In all cases (unnamed or untyped) the direction of the port has to be specified inside
C&C views.

3.6.4. Abstract Connectors

Abstract connectors allow the abstraction of connectedness between components and
ports in C&C models.

In views connections are not defined on the level of the containing component but the
level of the view. Listing 3.14 shows the definition of three abstract connectors in the
C&C view UserButtonWithConnections.

42Chapter 3. Component and Connector Views for Component and Connector Models

MontiArcView

1 package pumpStationExample;
2

3 <<view>> component UserButtonWithConnections {
4

5 component UserButtonReader {
6 port
7 in Button button;
8 }
9

10 component SimulationPanel {
11 port
12 out Button button;
13

14 component PreProcessor {
15 port
16 <<untyped>> out trans;
17 }
18 }
19

20 component Environment {
21 }
22

23 connect SimulationPanel -> Environment;
24 connect UserButtonReader -> SimulationPanel.button;
25 connect PreProcessor.trans -> Environment;
26 }

Listing 3.14: The C&C view UserButtonWithConnections in MontiArcView
syntax. The abstract connectors in lines 23-25 illustrate the cases
component-to-component, component-to-port, and port-to-component.

3.6. Modeling Component and Connector Views using MontiArcView 43

Component-to-Component Line 23 specifies that component SimulationPanel
and component Environment are connected. In C&C models components can only be
connected via corresponding ports — these are not required to be given for abstract con-
nectors in views. Required ports, e.g., an incoming port of component Environment
can be omitted in C&C views as long as their name is not referenced in the definition
of a connector.

Component-to-Port Line 24 specifies a connection between component User-
ButtonReader and component SimulationPanel. The endpoint of the connector is
the port button of component SimulationPanel. Similarly, MontiArcViews allows
the definition of Port-to-Component connectors (line 25) and Port-to-Port connectors
(see Definition 3.6, Item 3 for the types of abstract connectors in C&C views).

Connectors Crossing Components Line 25 specifies a connection between com-
ponent PreProcessor’s port trans and component Environment. In this view
the connector crosses the border of component SimulationPanel that contains com-
ponent Environment. Similarly, if the components UserButtonReader and Sim-
ulationPanel are not immediate siblings in a satisfying C&C model the connector
in line 24 might cross other component’s interfaces requiring corresponding ports and
further connectors not shown in the view.

Abstract connectors in views specify a chain of connectors in the C&C model — the
data is passed as is: no intermediate processing by components is allowed unless these
only forward the data by (chains of) connectors.

3.6.5. Extension Points for Additional Language Features
The C&C model language variability mechanism described in Definition 3.6 offers ex-
tension points for additional language features by attaching stereotypes to components,
ports, and connectors. This variability mechanism directly maps to stereotypes in the
MontiArc ADL. In the concrete syntax of MontiArc, stereotypes are enclosed by double
angle brackets («...»). Multiple stereotypes are placed as a comma separated list —
within opening and closing angle brackets — before the element they apply to (e.g.,
«atomic,interfaceComplete» in front of a component).

Atomic components The stereotype «atomic» in front of the component Sensor
(Listing 3.15, l. 6) requires that the component is atomic in any satisfying C&C model.
The component must not have subcomponents in the view (see Section 3.3.1).

Interface-complete components The stereotype «interfaceComplete» in front
of the component SimulationPanel (Listing 3.15, l. 9) means that its interface is
completely specified in the model and thus consists of the single outgoing port button
of type Button. When using the stereotype «interfaceComplete» all ports in the
interface of the component have to be listed at least with a name and direction. To-
gether with the stereotype «interfaceComplete» it is possible to use the stereotype
«untyped» but not the stereotype «unnamed» for individual ports of the marked com-
ponent (see Section 3.3.1).

Further extensions of C&C views with stereotypes require adapting the well-formedness
rules for C&C views as shown for the two above examples in Section 3.3.1 and adapting

44Chapter 3. Component and Connector Views for Component and Connector Models

MontiArcView

1 package pumpStationExample;
2

3 <<view>> component UserButtonExtended {
4

5 component UserButtonReader {
6 <<atomic>> component Sensor { }
7 }
8

9 <<interfaceComplete>> component SimulationPanel {
10 port
11 out Button button;
12 }
13 }

Listing 3.15: A view of the system called UserButtonExtended with stereotypes
«atomic» and «interfaceComplete».

the satisfaction relation between C&C models and C&C views as shown for the two
examples in Section 3.4.1.

3.7. Discussion and Views Related Concepts
In this section we discuss some of the design decisions of C&C views, we discuss the
usage of the term view in the field of software architecture, and we discuss concepts of
ADLs that are related to our notion of C&C views .

3.7.1. Corresponding Elements are not Necessarily Independent
According to the definition of satisfaction of a C&C view by a C&C model (see Defini-
tion 3.8) two different elements shown in a C&C view may have the same corresponding
element in a C&C model. Thus, corresponding elements are not necessarily independent.

The satisfaction of a C&C view by a C&C model in Definition 3.8 is defined based on
the satisfaction of the view’s elements, e.g., the satisfaction of an abstract connector by
a concrete chain of connectors in the C&C model (Definition 3.8, Item 5). The definition
does not require independence of the C&C model elements satisfying separate elements
of the C&C view. We give two examples for the view UserButtonEnvPS shown in
Figure 3.16.

The abstract connector from the port button of the component SimulationPanel
to the component UserButtonReader, the abstract connector from component Envi-
ronment to component UserButtonReader, and the abstract connector from com-
ponent Environment to component PumpingSystem are all three satisfied by the
chain of connectors shown in the witness for the view UserButton shown in Figure 3.5
although they appear as separate elements in the view. In fact, the chain of connectors

3.7. Discussion and Views Related Concepts 45

��������������$�������

�������������
����'�����%��
��

������������

	�
�������

2������
3
������ 2������
3

����'�����

2������
3
�������������

2������
3
����&��$�������

�������� ��������
������

2������
3�
&��$�������

����������������������� �������
��������������
�

�����������������������
��	���
���������� �������

Figure 3.16.: A modified version of the C&C view UserButtonFlow shown in Fig-
ure 3.3. The unnamed input port of type ValvePosition and the port
userValvePosition with unknown type are satisfied by a the single
port userValvePosition of type ValvePosition in the C&C model
PumpStation.

shown in the view is the only way to satisfy the first two abstract connectors in the C&C
model PumpStation since the component UserOperation only has a single incoming
connector. The top-most of the three abstract connectors has multiple corresponding
chains of connectors in the C&C model PumpStation.

As a second example, the unnamed port of the type ValvePosition of component
ModeArbiter and the port userValvePosition of the same component with an
unknown type are both satisfied by the single port userValvePosition of the type
ValvePosition in the C&C model PumpStation. An alternative match for the
unnamed port in the C&C model is the port emsValvePosition of the same type.

If the independence of matching elements in the C&C model was required, the C&C
model PumpStation would not satisfy the C&C view UserButtonEnvPS. There
would be no independent chains of connectors for the two abstract connectors to com-
ponent UserButtonReader. We consider a user study of C&C views satisfaction def-
initions with different treatments of the independence of elements an interesting future
work.

3.7.2. Unnamed Components in Component and Connector Views

In our definition of C&C views we decided to require a name for every component in the
view while, e.g., ports might be unnamed. We believe that it would be possible to also

46Chapter 3. Component and Connector Views for Component and Connector Models

allow unnamed components and define the correspondence of the unnamed component
based on the hierarchy and connectedness information given for the unnamed component
in the C&C view. In this case an unnamed component might have multiple possible
matches in the C&C model and in case of non-satisfaction of the view the reasons for
non-satisfaction would depend on the different matches of the corresponding component.

We believe that for specifying and documenting structural properties of C&C models
and for understanding verification results components that always have a name are more
intuitive. Nevertheless, we consider unnamed components an interesting extension of the
basic C&C views language and its expressiveness.

3.7.3. Component and Connector Views for Component Type Definitions
We have formally defined the satisfaction relation between C&C models and C&C views
in Section 3.4. One of the main purposes of C&C views is the specification of relations
between components that are identified by their names in a C&C model. Many ADLs
allow modeling of C&C models in three steps by first defining component types, secondly
defining component implementations, and finally instantiating component implementa-
tions (note that MontiArc [HRR12] combines the first and second step for composed
components).

One might want to extend the satisfaction relation between a C&C model and a C&C
view to a set of component type definitions and a C&C view. Component type definitions
introduce names for their subcomponents. These names are not necessarily unique for
all component type definitions and component types may be instantiated multiple times.
We have illustrated the relation between component type definitions and C&C models
in Section 6.2.1, Figure 2.5. The component names in the C&C model resulting from
the component type definition instantiation are chosen as full qualified names derived
from the subcomponent hierarchy.

An extension of C&C views to describe the instantiation of component type definitions
would require establishing a name mapping from components in C&C views to compo-
nents instantiated from component type definitions. Furthermore, to trace a property
formulated in a C&C view might require the inclusion of component type names in C&C
views. We consider investigating possible extensions of C&C views and the satisfaction
relation to handling component type definitions a future work.

3.7.4. Component and Connector Views to Model Variability
We have introduced various usage scenarios for C&C views in Section 3.2.1. The doc-
umentation usage scenario presented is based on works by Grönniger et al. [GHK+07,
GHK+08b] about feature modeling. C&C views are applied to modeling feature views
on a given C&C model expressed in SysML [Obj12b] that only contain model elements
of interest for a given feature in an automotive function network.

The same group of authors further investigated the application of C&C views for vari-
ability modeling for C&C models. To model software product variability C&C models
are used as 150% models — containing many variants of one logical architecture in one

3.7. Discussion and Views Related Concepts 47

model — and every view describes a concrete product [GKPR08, GHK+08a]. Modeling
150% models requires different well-formedness rules for C&C models, e.g., a port might
be the target of multiple connectors as long as at most one of the incoming connectors
is selected in every valid configuration.

3.7.5. Component and Connector Views Related Concepts

Our notion and terminology of C&C views is based on works by Grönniger et al. [GHK+07,
GHK+08a, GHK+08b, GKPR08]. The term view is however very general and used in
the modeling and software architecture literature in various ways.

The term architectural view

Software architecture deals with high-level descriptions of a software system structure
and behavior [GS94]. In the software architecture literature, the terms view and archi-
tectural view are used in a rather broad and sometimes informal way.

Kruchten [Kru95] divides the documentation of a software architecture in 4+1 “con-
current views, each one addressing one specific set of concerns”. The views identified are
the logical view, the process view, the physical view, the development view, and scenar-
ios combining these views. This usage of the term view is on a different conceptual level
than in our work. Kruchten uses notations similar to C&C models in the process view
and the development view [Kru95].

Many very general definitions of views exist in the software architecture literature. For
example, Taylor et al. [TMD09] define a viewpoint as “a perspective from which a view
is taken” and a view as “a set of design decisions related by a common concern (or set of
concerns)”. In the IEEE standard 1471 [IEE], a view is defined as “a representation of a
whole system from the perspective of a related set of concerns”. Giese and Vilbig [GV06]
define that an architectural view of a system “represents a partial software C&C model
dedicated to a particular concern”. Finally, the book by Clements et al. [CBB+10]
defines a view as a “representation of a set of system elements and the relationships
associated with them”. Others have very concrete notions of views, e.g., Sabetzadeh and
Easterbrook [SE04, SE06] refer to views as parts of partial models that they represent
as typed graphs.

We focus on a structural viewpoint of software architecture. Our notion of view for
the structure of component and connector C&C models falls within the broad definitions
cited above.

Related specification mechanisms in ADLs and modeling languages

We have presented C&C views for the specification and documentation of crosscutting
concerns for C&C models and formally defined the satisfaction relation between C&C
models and C&C views.

The satisfaction relation between a C&C model and a C&C view might be seen as a
refinement relation where the C&C model refines the C&C view. Many works in software

48Chapter 3. Component and Connector Views for Component and Connector Models

architecture deal with refinement relations between architectural elements. Broy and
Stølen [Bro93, BS01] introduce glass-box refinement where a refinement has to respect
the decomposition of a specification into components and directed channels between
them. Philipps and Rumpe [PR97, PR99] have developed a set of proven refinement
rules based on [Bro93]. Moriconi et al. [MQR95] have investigated a notion of what
they call refinement between architectural models. However, the notion of refinement
from [Bro93, PR97, PR99, BS01] and ours are fundamentally different from [MQR95] as
the C&C model may add elements (components, ports, connectors) that do not appear
in the view. To the best of our knowledge the AADL [FG12] is the only ADL that
directly supports refinement statements for architectural elements. A distinction from
our work common to all refinement approaches above is that these approaches allow to
extend but require to preserve component hierarchies and thus do not offer features as
abstraction over component hierarchy and abstract connectors.

Chechik et al. [FBDCS11, SFC12] introduce a language independent mechanism for
incomplete models. Their approach operates on the syntax definition of a modeling
language and adds annotations to mark an element as optional (May), as abstract rep-
resenting sets of concrete elements (Abs), as possibly identical with another element
(Var), and to mark the whole model as incomplete (OW). The incomplete models de-
veloped by Chechik et al. may appear similar to C&C views treated as incomplete C&C
models because elements in C&C views can by default be considered abstract (Abs)
and incomplete (OW). The approach of Chechik et al. is however generic and language
independent while C&C views offer domain-specific abstraction mechanism and a corre-
sponding satisfaction relation, e.g., abstract connectors can not easily be expressed in a
generic approach. Abstract connectors require weakening specific well-formedness rules
of the original language, e.g., allow crossing of component boundaries.

C&C views are a specification mechanism for structural models. It is important not to
confuse behavioral views and structural ones. There are many behavioral specification
languages and many of them have related views. For example, linear temporal logic
(LTL) [MP92, Pnu77] is a behavioral specification language, and scenarios, expressed,
e.g., using live sequence charts (LSC) [DH01, HM08], may be considered as related be-
havioral views. In contrast, C&C views are intentionally limited to structural properties,
expressed using structural views. In the behavioral case, a system behavior is typically
described using a state machine. The properties it needs to satisfy are expressed using
LTL formulas or scenarios.

Chapter 4.

Component and Connector Views
Verification

A C&C view documents design decisions and relations between the elements of a C&C
model. It is thus a specification that a C&C model should satisfy. We have formally
defined the satisfaction relation between C&C models and C&C views in Section 3.4.

When C&C views are created as specifications a C&C model should satisfy or when
they are employed as documentation to highlight design decisions, it is useful to auto-
matically determine whether a C&C model satisfies a C&C view. In this chapter we
present an algorithm for the verification of C&C models with respect to C&C views.

The problem we solve is as follows: Given a C&C model m and a C&C view view,
decide whether m ⊧ view. Moreover, in addition to the Boolean answer, we are interested
in generating informative formal witnesses in the form of views, each of which will serve
as a concrete proof for satisfaction or non-satisfaction and help the engineer understand
the satisfaction checking result and the result’s root causes.

A witness justifies a positive verification result by listing the elements of the C&C
model implementing the C&C view or it justifies a negative verification result by ex-
hibiting a small subset of the C&C model that violates the view.

We have reported on parts of this work in [MRR14].

Chapter outline and contributions

The next section refers to the C&C model of the pump station example introduced in
Section 3.1 and adds C&C views for C&C views verification. We formally introduce
the C&C views verification problem in Section 4.2. Section 4.3 presents our algorithms
for checking satisfaction and generating witnesses. The polynomial algorithms for solv-
ing the C&C views verification problem and generating witnesses justifying verification
results are a major contribution of this thesis.

Section 4.4 describes our prototype tool implementation and the evaluation we have
conducted. Section 4.5 discusses advanced topics related to C&C views verification,
strengths, and limitations. We review related work in Section 4.6.

50 Chapter 4. Component and Connector Views Verification

4.1. Component and Connector Views Verification Example

Figure 4.1 shows the complete C&C model of the pump station system adopted as an
example from the AutoFOCUS IDE [HF07]. It consists of 16 components, a contain-
ment hierarchy of four levels, and 47 connectors. The complete C&C model with all
port names and types is presented in Appendix G. The C&C model is also available
in textual MontiArc format with supporting materials from [wwwu]. Please note the
difference in the representations of the same C&C model in Figure 3.2 and Figure 4.1:
the PumpStation system is shown in five compartments in Figure 3.2, one for each
component and its immediate subcomponents. In Figure 4.1 we show the C&C model
in its complete depth with four levels of hierarchy to give a comprehensive perspective
of the C&C model.

Figure 4.2 (a) shows a C&C view named ASPumpingSystem. This view focuses only
on the connections between sensors and actuators in the system. As ASPumpingSystem
is a view, it does not contain all components and connectors. While the components
shown inside the PumpingSystem component must actually be inside it, they may be
nested within some of its subcomponents (not shown in this view). Finally, each of the
sensors shown must be connected to the corresponding actuator in the C&C model, but
the connection between them is not necessarily direct. It is easy to see that the C&C
model satisfies the view: all components mentioned in the view are present in the C&C
model, the C&C model respects the containment relation specified by the view, and
all connectors in the view have corresponding chains of connectors in the C&C model.
Satisfaction is denoted PumpStation ⊧ ASPumpingSystem. We have given the formal
definition of when does a C&C model satisfy a view in Section 3.4.

Figure 4.2 (b) shows another C&C view, named UserButton. The view focuses on
the components and their connectors that participate in a specific use case, namely,
when the user presses the button. Again, not all components are shown, but only the
ones participating in this use case. Please note that the containment hierarchy is not
shown, and the connectors are abstract, i.e., they specify connections, but not necessarily
direct ones. It is easy to see that the C&C model satisfies this view: all the components
mentioned in the view exist in the C&C model, and all abstract connectors in the view
have corresponding chains of concrete connectors.

Figure 4.3 (a) shows a C&C view named PCPumpingSystem, which includes a con-
nection from the PhysicsSimulation component to the Controller component,
both within the PumpingSystem component. It is easy to see that the C&C model does
not satisfy the view. We denote this by PumpStation /⊧ PCPumpingSystem. First,
in the view PCPumpingSystem, component PhysicsSimulation is inside compo-
nent PumpingSystem, while in the C&C model it is not. Second, the connector from
PhysicsSimulation to Controller shown in the view does not have a correspond-
ing connector or chain of connectors in the C&C model.

Finally, Figure 4.3 (b) shows the C&C view SystemEmergencyController, which
specifies structural properties related to a use case of emergency. Again, the pump
station C&C model does not satisfy this view. First, the view includes the Emergency-

4.1. Component and Connector Views Verification Example 51

��������	 ��������	
�

����������

��$������� ������������

������)
��������

��������
����� ������%��
��

�������)
���%��
��

����'��)
���%��
��

���(���)
���%��
��

&��$����)
���%��
��

&��$���������

������������

����������

������������

�	���������

	�
�������

Figure 4.1.: The C&C model of the pump station. Here we show the C&C model with
its complete depth in one figure, in order to give a comprehensive per-
spective. To avoid clutter we omit port names and types from the figure.
However, as this is a C&C model (and not a view), all ports have names
and types. For example, the type of the upper left incoming port of the
component ModeArbiter, with a connector coming from the component
UserOperation, is Boolean and its name is userPumpState. The
complete model with all port names and types is shown in Appendix G.

Controller component, which does not exist in the C&C model. Second, the type
Integer of the port named userPumpState of the ModeArbiter component, does
not match the type Boolean of the port with the same name userPumpState in the
C&C model.

Please note that the views shown above crosscut the traditional boundaries of systems
and subsystems. They abstract the hierarchy (or parts of the hierarchy) away and instead
focus on the components and connectors participating in a use case, e.g., the user pressing
a button, or a certain concern, e.g., an emergency system. We consider this to be an
important feature of our work.

52 Chapter 4. Component and Connector Views Verification

������������

����������%��
��

&��$�������%��
��

&��$���������

������������

���������

$��$�������

�������� ������	�������

�������������

����'�����%��
��

������������

	�
�������

������

����'�����

�������������

����&��$�������

�������� ��������
�

"�# "�#

Figure 4.2.: Two C&C views: ASPumpingSystem (a) and UserButton (b). Please
note that as these are views, they allow one not to fully specify ports, port
types, and port names. For example, the abstract connector going out
from PumpSensorReader in the ASPumpingSystem view has no specified
source port. The C&C model PumpStation satisfies these views.

4.1.1. Witnesses for Satisfaction and Non-Satisfaction

As mentioned above, given a C&C model and a view, we are interested in checking
whether the former satisfies the latter. However, in practice, a Boolean answer is by
far not enough. Rather, we are interested in concrete proofs for satisfaction or non-
satisfaction. These should enable comprehension and in the case of non-satisfaction,
point the architect to the problems and assist her in correcting her design.

As an example, Figure 4.4 shows a view which serves as a witness for showing that
PumpStation ⊧ UserButton, that is, that the C&C model PumpStation satisfies
the view UserButton. Please note the complete hierarchy (excluding siblings) up until
the least common parents of the components appearing in the view, and the chain of
concrete connectors corresponding to the abstract connectors in the view, i.e., the chain
from SimluationPanel to ModeArbiter. This information demonstrates satisfac-
tion by showing the elements of the C&C model required to satisfy the view and their
hierarchical containment in the relevant subsystem.

As another example, Figure 4.5 shows two views which serve as witnesses for showing
that PumpStation /⊧ PCPumpingSystem, that is, that the C&C model PumpStation

4.1. Component and Connector Views Verification Example 53

������������

��������������

�������� ������	�������

����������

������������

�������� ���������������
���
����

������������

	�
�������

4������
�������������

&��$�������
$��$�������

�������������������

"�# "�#

Figure 4.3.: Two C&C views: PCPumpingSystem and SystemEmergencyControl-
ler. The C&C model PumpStation does not satisfy these views.

�������� �	������
���������
�

����������

��$�������

������������

�
�

��
��

�
��

��
��

������%��
��

�
��

�'
��

��
�%

��

�

�

����������

������������

	�
�������

������

����'�����

�������������

����&��$�������

Figure 4.4.: Generated witness for satisfaction of the UserButton view.

does not satisfy the view PCPumpingSystem. While in the view PCPumpingSystem
the PumpingSystem component contains the PhysicsSimulation component, in
the C&C model, as shown in the witness in Figure 4.5 (a), they are independent.
While in PCPumpingSystem there is a connection from an unnamed port of com-
ponent PhysicsSimulation to an unnamed port of component Controller, in the

54 Chapter 4. Component and Connector Views Verification

C&C model, as shown in the witness in Figure 4.5 (b), the component Controller
is not in the set of components reachable with a chain of connectors from component
PhysicsSimulation. Please note that the two witnesses include annotations which
explain, in natural language, the relevant reason for non-satisfaction.

In Section 4.3 we show the algorithms to decide satisfaction and to generate informa-
tive witnesses like the ones we show above.

�������� 	�����!�"	�����!

����������

������������

��$�������

��������������

�������� "	��	��
�����	
�

�����������������������������

���������������������������������
�
����
�����������5����
��������������
����������$�����������������!

�����5����
������������������������
����������1���������������������������������
����������������������������"1����������
���������
������
�����#!

����������

��$������� ������������

������)
�����)
���

��������
����� ������%��
��

����������
%��
��

���(������
%��
��

&��$�������
%��
��

����������

"�# "�#

Figure 4.5.: Two generated witnesses for non-satisfaction of the PCPumpingSystem
view.

4.2. Component and Connector Views Verification Problem
The C&C views verification problem for a C&C view and a C&C model is defined in
Definition 4.6. The input for the verification problem is a C&C view (defined in Defini-
tion 3.6) and a C&C model (defined in Definition 2.2). The output of the verification
problem is a Boolean answer whether the C&C model satisfies the C&C view.

Definition 4.6 (C&C views verification problem). Given a C&C view view and a C&C
model m determine whether m ⊧ view. △

In addition to a Boolean answer to the verification problem, we are interested in
constructing witnesses that demonstrate the verification result. In case the C&C model

4.3. Checking Satisfaction and Generating Witnesses 55

satisfies the view, the witness should be a minimal subset of the C&C model that is
by itself a well-formed C&C view and contains components (including their concrete
hierarchical relations), ports, and connectors of the C&C model that satisfy all elements
appearing in the view.

In case the C&C model does not satisfy the view, we are interested in a set of witnesses,
each of which should explain one reason for non-satisfaction. We list all classes of reasons
for non-satisfaction and the elements provided in each witness in Section 4.3.2. The
elements contained in the generated witnesses for non-satisfaction are implementation-
specific, while the classification of the reasons for non-satisfaction is independent of
a concrete implementation and directly follows from the view’s semantics defined in
Definition 3.8.

4.3. Checking Satisfaction and Generating Witnesses
Our algorithm checks whether a given C&C model satisfies a given C&C view. In case
the C&C model satisfies the view our algorithm computes a witness for satisfaction
including all elements shown in the view and their concrete relations in the C&C model
to support engineers in finding view’s elements in the architecture. In case the C&C
model does not satisfy the view the algorithm computes witnesses for non-satisfaction.
Each witness for non-satisfaction shows the relevant subsystem and the elements of the
C&C model that violates the C&C view and thus may help an engineer understand the
exact reasons for non-satisfaction.

As witnesses are meant for human comprehension, our algorithm generates minimal
witnesses for non-satisfaction with respect to the elements required by the witnesses for
different reasons for non-satisfaction. In case of satisfaction the witness is not necessarily
unique. For satisfaction the algorithm employs a heuristics to generates a small but not
necessarily minimal witness (see the description of the algorithm in Section 4.3.3 and
the discussion of minimality in Section 4.5.2).

We start with a description of the different kinds of witnesses we are interested in and
then give an overview of the algorithm. We prove the correctness and completeness of
the algorithm and discuss its complexity.

4.3.1. A Witness for Satisfaction

In case the C&C model satisfies the view, the algorithm outputs a positive answer and
produces a witness: a minimal subset of the C&C model that contains all the components
appearing in the view and their parent components up until their least common parent,
all the C&C model ports corresponding to the ports appearing on all components in
the view, and chains of C&C model connectors representing all abstract connectors
appearing in the view.

For example, recall the two views shown in Figure 4.2. Both views are satisfied by
the pump station C&C model. Figure 4.4 shows the generated witness for satisfaction
of the UserButton view (see Section 4.1), and Figure 4.7 shows the generated witness

56 Chapter 4. Component and Connector Views Verification

for satisfaction of the view ASPumpingSystem. Please note the complete hierarchy
(excluding siblings) up until the least common parents of the components appearing in
the views, e.g., for the view ASPumpingSystem, the least common parent component
is the component PumpingSystem as shown in the witness in Figure 4.7. Also note
the chain of concrete connectors corresponding to the abstract connectors in the views,
e.g., the chain from PumpSensorReader to PumpActuator.

������������

&��$���������

������������������%��
�� ���������

$��$�������

�������� �	������
�������	�������

����������%��
��

&��$�������%��
��

Figure 4.7.: Generated witness for satisfaction of the ASPumpingSystem view.

4.3.2. Witnesses for Non-Satisfaction

In case the C&C model does not satisfy the view, our algorithm outputs a negative
answer and produces a set of witnesses. The witnesses are divided into four classes
according to four reasons of non-satisfaction as follows:

• Missing Component: the view contains a component that does not exist in
the C&C model (MISS_COMP) — the generated witness, one for each missing
component, is an empty view annotated with the name of the missing component;

• Hierarchy Mismatch: the view contains two components that are in a different
containment relation in the C&C model, more specifically

– HIER_IND_IN_VIEW: independent in the view but not independent in the
C&C model

– HIER_IND_IN_CNCM: not independent in the view but independent in the
C&C model

– HIER_REV_CONT: reverse containment relation in the C&C model

the generated witness, one for each hierarchy mismatch, consists of the relevant
pair of components up to their least common parent in the C&C model but without
siblings and without any connectors and ports;

• Interface Mismatch: the view contains a component with a port that does not
exist in the C&C model, more specifically

4.3. Checking Satisfaction and Generating Witnesses 57

– PORT_WRONG_TYPE: the port has a wrong type in the C&C model
– PORT_WRONG_DIR: the port has the wrong direction in the C&C model
– PORT_NO_MATCH: no port in the C&C model matches the port

the generated witness, one for each interface mismatch, consists of the relevant
component in the C&C model without subcomponents with the relevant port or
its complete interface, for the non-satisfaction reason PORT_NO_MATCH, an-
notated with the port from the view that has no match; and

• Missing Connection: the view contains an abstract connector that has no corre-
sponding concrete chain of connectors in the C&C model (CONN_NO_MATCH)
— the generated witnesses consist of the relevant pairs of components up to their
least common parent in the C&C model but without siblings and with all compo-
nents reachable by connectors from the source component.

In Section 4.3.5 we show that this classification of four reasons for non-satisfaction is
complete, that is, given a C&C model m and a view view, if m /⊧ view then at least one
of the reasons above holds.

Moreover, note that each of the witnesses for non-satisfaction as well as for satisfaction
is by itself a view that is satisfied by the C&C model. The witness is a C&C view with
concrete containment and abstract connectors each matching exactly one connector in
the C&C model. The satisfaction of the witness by the C&C model can be checked by
the same algorithm. This has two advantages. First, the engineer does not need to learn
a new language in order to understand the witness. Second, the same tools applied to
the views, e.g., for presentation or further analysis, may be applied to the witnesses.

All witnesses have some common properties. First, each contains a single least com-
mon parent component, which is the top of the relevant subsystem (except for the case
of a missing component, see the discussion in Section 4.5). Second, each is a view with
concrete containment and connectors. Finally, each witness includes complete port infor-
mation of name, type, and direction (although the set of ports shown is not necessarily
complete). Interestingly, all witness are their own witness for satisfaction, when checked
against the same C&C model.

Example witnesses for non-satisfaction

For example, as presented in Section 4.1, for the pump station C&C model and the
view PCPumpingSystem (see Figure 4.1 and Figure 4.3 (a)), our algorithm provides a
negative answer and the two witnesses shown in Figure 4.5.

First, the algorithm finds a hierarchy mismatch — in the view the PumpingSystem
component contains the PhysicsSimulation component but in the C&C model they
are independent — and generates the view shown in Figure 4.5 (a), asserting that
PumpingSystem and PhysicsSimulation are independent. Second, the algorithm
finds a missing connection — the C&C model is missing a connection from component
PhysicsSimulation to component Controller — and generates the view shown in

58 Chapter 4. Component and Connector Views Verification

Figure 4.5 (b), asserting that component Controller is not in the set of components
reachable with a chain of connectors from component PhysicsSimulation.

As another example, when checking whether the C&C model PumpStation shown in
Figure 4.1 satisfies the view SystemEmergencyController shown in Figure 4.3 (b),
our algorithm provides a negative answer and produces three witnesses.

First, the algorithm finds two interface mismatches — the type of port userPump-
State of component ModeArbiter is Integer in the view but Boolean in the C&C
model, and there is no match for the port valvePosition of component ModeArbiter
in the C&C model. For these, the algorithm generates the witnesses shown in Figure 4.8.
Second, the algorithm finds a missing component — the component EmergencyCon-
troller is not present in the C&C model — and generates an empty view as a witness
for non-satisfaction.

�������� �����#���"	�����!$ �������� �����#���"	�����!%

	�
�������

'�������
�������������

	�
�������

'������
�������������

'������
������������

&��$�������
���&��$�������

'������

����
���������

&��$�������
����&��$�������

&��$�������

����
&��$�������

6����������1���������������������
�1���������������	�
������� "4������#!

7��������1��������$��$�������
�1���������������	�
�������!

"�# "�#

Figure 4.8.: Generated non-satisfaction witnesses for the view SystemEmergency-
Controller.

Natural language descriptions

Finally, for each of the generated witnesses, in each of the four classes, we generate a
detailed description in natural language.

For example, for the hierarchy mismatch between the pump station C&C model and
the view PCPumpingSystem, as discussed above, we generate the following text:

The component PumpingSystem and the component
PhysicsSimulation are independent in the C&C model
PumpStation but not in the view PCPumpingSystem.

4.3. Checking Satisfaction and Generating Witnesses 59

These generated texts appear on the witnesses view in the Eclipse plug-in (see Sec-
tion 4.4) and as a comment in the generated witness’s document (see, e.g., Figure 4.8
(a) and (b)). The generated text is intended to further help the engineer identify the
cause for non-satisfaction.

The natural language descriptions are generated using templates as we describe in
Section 4.3.4.

4.3.3. Algorithms Overview
The input for the algorithm consists of a C&C model and a view. The output is a
Boolean answer, whether the C&C model satisfies the view or not, and a set of one or
more witnesses. The algorithm works by checking for reasons of non-satisfaction of the
view and the C&C model in the four classes described in Section 4.3.2. The checks are
done independently and the answer that the C&C model satisfies the view is returned
if and only if no reason for non-satisfaction is found.

We have implemented the algorithms as an Eclipse plug-in written in Java. The
implementation is based on the MontiCore framework as described in Section 4.4.

Procedure 1 contains a pseudo code for the algorithm computing the non-satisfaction
reasons for a C&C model m and a C&C view view. The algorithm works by checking for
non-satisfaction reasons of each class separately: in Procedure 2 for the non-satisfaction
reason Missing Component, in Procedure 3 for the non-satisfaction reason Hierarchy
Mismatch, in Procedure 4 for the non-satisfaction reason Interface Mismatch, and in
Procedure 5 for the non-satisfaction reason Missing Connection.

Procedure 1 computeNonSatReasons(m, view)
1: define NonSatReasons as set of NonSatisfactionReason
2: add all computeNonSatReasonsMissingComponent(m, view) to NonSatReasons
3: add all computeNonSatReasonsHierarchyMismatch(m, view) to NonSatReasons
4: add all computeNonSatReasonsInterfaceMismatch(m, view) to NonSatReasons
5: add all computeNonSatReasonsMissingConnection(m, view) to NonSatReasons
6: return NonSatReasons

Procedure 2 computeNonSatReasonsMissingComponent(m, view)
1: define NonSatReasons as set of NonSatisfactionReason
2: for all missingCmp ∈ (view.Cmps ∖m.Cmps) do
3: add (MISS_COMP, missingCmp) to NonSatReasons
4: end for
5: return NonSatReasons

The algorithm’s pseudo code uses the structures and functions of the definitions of
C&C models from Definition 2.2 and C&C views from Definition 3.6. In our implemen-
tation — based on MontiArc — the operators for membership of components, and types
are defined by name. The names of components are unambiguous in every C&C model
and view. The comparison of ports is defined in accordance to Definition 3.8, Item 4 (b)

60 Chapter 4. Component and Connector Views Verification

Procedure 3 computeNonSatReasonsHierarchyMismatch(m, view)
1: define NonSatReasons as set of NonSatisfactionReason
2: for all cmp ∈ (view.Cmps ∩m.Cmps) do
3: for all subCmp ∈ (view.subs(cmp) ∩m.Cmps) do
4: if cmp is not parent of subCmp in m then
5: if subCmp is parent of cmp in m then
6: add (HIER_REV_CONT, cmp, subCmp) to NonSatReasons
7: else
8: add (HIER_IND_IN_CNCM, cmp, subCmp) to NonSatReasons
9: end if

10: end if
11: end for
12: for all cmp′ ∈ (view.Cmps ∩m.Cmps ∖ cmp) do
13: if cmp is not parent of cmp′ in view ∧ cmp′ is not parent of cmp in view then
14: if cmp is parent of cmp′ in m then
15: add (HIER_IND_IN_VIEW, cmp, cmp′) to NonSatReasons
16: else if cmp′ is parent of cmp in m then
17: add (HIER_IND_IN_VIEW, cmp′, cmp) to NonSatReasons
18: end if
19: end if
20: end for
21: end for
22: return NonSatReasons

Procedure 4 computeNonSatReasonsInterfaceMismatch(m, view)
1: define NonSatReasons as set of NonSatisfactionReason
2: for all cmp ∈ (view.Cmps ∩m.Cmps) do
3: for all p ∈ view.ports(cmp) do
4: if view.name(p) = � then
5: if ∄p′ ∈ m.ports(cmp) ∶ view.dir(p) = m.dir(p′) ∧ view.type(p) ∈ {m.type(p′),�}

then
6: add (PORT_NO_MATCH, cmp, p) to NonSatReasons
7: end if
8: else if ∀p′ ∈ m.ports(cmp) ∶ m.name(p′) ≠ view.name(p) then
9: add (PORT_NO_MATCH, cmp, p) to NonSatReasons

10: else
11: define p′ as THE p′ ∈ m.ports(cmp) ∶ m.name(p′) = view.name(p)
12: if view.dir(p) ≠ m.dir(p′) then
13: add (PORT_WRONG_DIR, cmp, p) to NonSatReasons
14: end if
15: if view.type(p) ≠ � ∧ view.type(p) ≠ m.type(p′) then
16: add (PORT_WRONG_TYPE, cmp, p) to NonSatReasons
17: end if
18: end if
19: end for
20: end for
21: return NonSatReasons

4.3. Checking Satisfaction and Generating Witnesses 61

Procedure 5 computeNonSatReasonsMissingConnection(m, view)
1: define NonSatReasons as set of NonSatisfactionReason
2: for all ac ∈ view.AbsCons with ac.srcCmp, ac.tgtCmp ∈ m.Cmps do
3: if ac is cmp-to-cmp ∧ ∄p, p′ with (ac.srcCmp, p) →∗ (ac.tgtCmp, p′) in m then
4: add (CONN_NO_MATCH, ac) to NonSatReasons
5: else if ac is cmp-to-port ∧ ∄p, p′ with ac.tgtPort ≅ p′∧

(ac.srcCmp, p) →∗ (ac.tgtCmp, p′) in m then
6: add (CONN_NO_MATCH, ac) to NonSatReasons
7: else if ac is port-to-cmp ∧ ∄p, p′ with ac.srcPort ≅ p∧

(ac.srcCmp, p) →∗ (ac.tgtCmp, p′) in m then
8: add (CONN_NO_MATCH, ac) to NonSatReasons
9: else if ac is port-to-port ∧ ∄p, p′ with ac.srcPort ≅ p ∧ ac.tgtPort ≅ p′∧

(ac.srcCmp, p) →∗ (ac.tgtCmp, p′) in m then
10: add (CONN_NO_MATCH, ac) to NonSatReasons
11: end if
12: end for
13: return NonSatReasons

based on the containing component and port name. In case the name of a port p is
omitted in the view the implementation iterates over the ports p′ of the corresponding
component in the C&C model and checks for a match between ports p and p′ by checking
view.type(p) ∈ {m.type(p′),�}∧ view.dir(p) = m.dir(p′). This check is required, e.g., in
Procedure 4, l. 5 for the non-satisfaction reason Interface Mismatch.

The algorithm’s pseudo code uses high-level operations, e.g., for two components c1
and c2 the check c1 is parent of c2 in m or view checks that the component c1 is
a not necessarily direct parent component of the component c2 in the C&C model m or
the C&C view view.

We formally state and prove the correctness and completeness of the algorithms in Sec-
tion 4.3.5. We discuss the time complexity of the algorithms and the maximal numbers
of witnesses computed in Section 4.3.6.

Algorithm for generating witnesses for satisfaction

If no non-satisfaction reasons are produced by any of the checks, the C&C model satisfies
the view and the algorithm generates a positive witness as shown in Procedure 6.

Witness generation starts with an empty view witness (l. 1). The witness is popu-
lated with elements from the C&C model m that witness the view view’s components
and hierarchy (ll. 5-9), abstract connectors (ll. 10-15), ports (ll. 16-23), and additional
elements required by the well-formedness rules of witnesses, e.g., the possible intermedi-
ate components from the C&C model between two components shown in the view. The
component lcpCmp (l. 5) is the least common parent component in the C&C model that
contains all components shown in the view. All subcomponents added to the witness
are directly contained subcomponents in the C&C model. This also requires adding
intermediate components from the C&C model to the witness (l. 8). All components
added to the witness in the first step (ll. 5-9) have empty interfaces, i.e., have no ports.

62 Chapter 4. Component and Connector Views Verification

Procedure 6 Witness generation for m ⊧ view
1: define witness as V iew
2: define lcpCmp as Component
3: define p′ as Port
4: define chain as chain of Connector
5: lcpCmp ← least common parent of view.Cmps in m
6: add lcpCmp to witness
7: for all cmp ∈ view.Cmps do
8: add cmp to witness with intermediate components
9: end for

10: for all ac ∈ view.AbsCons do
11: if ∄chain in witness with chain corresponds to ac then
12: find chain in m with chain corresponds to ac
13: add chain to witness with intermediate ports and components
14: end if
15: end for
16: for all cmp ∈ view.Cmps do
17: for all p ∈ cmp.Ports do
18: if ∄p′ in witness with p′ corresponds to p then
19: find p′ in m with p′ corresponds to p
20: add p′ to cmp in witness
21: end if
22: end for
23: end for
24: return witness

To generate a small witness for m ⊧ view, before adding a chain of connectors for an
abstract connector or adding a port shown in the view to the witness, the algorithm
checks whether the elements in the witness already provide a matching (ll. 11, 18). If
no match of the view’s element exists in the witness, a match in the C&C model is
computed (ll. 12, 19) and added to the witness (ll. 13, 20). Please note that this check is
a heuristics to create small witnesses, in terms of the number of concrete connectors and
ports in the witnesses, but it does not guarantee that the generated witness is minimal
to this measure. We discuss minimality of witnesses for satisfaction in Section 4.5.2.

Algorithm for generating witnesses for non-satisfaction

For every non-satisfaction reason found when checking the C&C model and view, the
algorithm generates one witness that justifies non-satisfaction. The witnesses are gener-
ated according to the rules described in Section 4.3.2. All witnesses for non-satisfaction
are unique. Thus, our algorithm always generates minimal witnesses with respect to
the rules described in Section 4.3.2. We show the pseudo code for the algorithm in
Procedure 7.

Missing Component The witness generated for a missing component is the empty wit-
ness together with the natural language description of the non-satisfaction reason

4.3. Checking Satisfaction and Generating Witnesses 63

Procedure 7 Witness generation for m ⊭ view

Missing Components genWitnessMissingCmp(m, view, missingCmp)
1: define witness as V iew
2: add comment descrMissingCmp(m, view, missingCmp) to witness
3: return witness

Hierarchy Mismatch genWitnessHierarchyMismatch(m, view, kind, cmp, subCmp)
1: define witness as V iew
2: add comment descrHierarchyMismatch(m, view, kind, cmp, subCmp) to witness
3: lcpCmp ← least common parent of {cmp, subCmp} in m
4: add lcpCmp to witness
5: if lcpCmp ≠ cmp then
6: add cmp to witness with intermediate components
7: end if
8: add subCmp to witness with intermediate components
9: return witness

Interface Mismatch genWitnessInterfaceMismatch(m, view, kind, cmp, port)
1: define witness as V iew
2: add comment descrInterfaceMismatch(m, view, kind, cmp, port) to witness
3: add cmp to witness
4: if kind = PORT_NO_MATCH then
5: for all p ∈ cmp.Ports in m do
6: add p to cmp in witness
7: end for
8: else
9: add port from m to cmp in witness

10: end if
11: return witness

Missing Connection genWitnessMissingConnection(m, view, absConn)
1: define witness as V iew
2: define chain as chain of Connector
3: add comment descrMissingConnection(m, view, absConn) to witness
4: lcpCmp ← least common parent of {absConn.srcCmp, absConn.tgtCmp} in m
5: add lcpCmp to witness
6: add absConn.srcCmp to witness
7: add absConn.tgtCmp to witness
8: if ac is port-to-port ∨ port-to-cmp then
9: for all chain in m with chain starts from ac.srcPort do

10: add chain to witness with intermediate ports and components
11: end for
12: else
13: for all p ∈ cmp.Ports in m do
14: if p.direction = IN then
15: for all chain in m with chain starts from p do
16: add chain to witness with intermediate ports and components
17: end for
18: end if
19: end for
20: end if
21: return witness

64 Chapter 4. Component and Connector Views Verification

(see the first algorithm of Procedure 7).
Hierarchy Mismatch For all three kinds of hierarchy mismatches HIER_REV_CONT,

HIER_IND_IN_CNCM, and HIER_IND_IN_VIEW the second algorithm in
Procedure 7 computes the least common parent component of the conflicting com-
ponents from the view and adds it to the witness (ll. 3-4). Only for the mismatch
kind HIER_IND_IN_CNCM, the component lcpCmp is different from the com-
ponent cmp. In this case, the algorithm adds the components cmp and its interme-
diate components from the C&C model to the witness (ll. 5-7). The algorithm then
adds the component subCmp to the witness that demonstrates the contradicting
containment. The algorithm also adds all intermediate components that exist in
the C&C model between the components lcpCmp and subCmp.

Interface Mismatch For all three kinds of interface mismatches PORT_NO_MATCH,
PORT_WRONG_DIR, and PORT_WRONG_TYPE the third algorithm in Pro-
cedure 7 adds the component with the interface mismatch to the witness (l. 3). In
case there was no match (kind PORT_NO_MATCH) the algorithm adds all ports
from the C&C model to the component in the view (ll. 4-7). In all other cases the
single port from the C&C model that conflicts the port from the view is added to
the witness.

Missing Connection The last algorithm in Procedure 7 creates a witness for a missing
connection. The algorithm adds the source and target components together with
their least common parent in the C&C model to the witness. In case the source
port is known the algorithm adds all chains of connectors leaving the source port
to the witness. In case the source port is unknown all chains of connectors leaving
the source component are added. This demonstrates that there is no chain of
connectors ending at the specified port of the target component (or any port of
the target component if the target port is not given by the abstract connector).

4.3.4. Generating Natural Language Descriptions for Non-Satisfaction
In case C&C model does not satisfy a view we generate natural language descriptions
that explain the non-satisfaction reasons. The texts are intended to help the engineer
identifying the reasons for non-satisfaction.

To generate natural language descriptions for the reasons for non-satisfaction we use
plain-text templates. The input of the templates is the output of the algorithm from
Procedure 1 added to the set NonSatReasons. Each of the templates in Table 4.9,
Table 4.10, Table 4.11, and Table 4.12 has a template name, a list of the inputs for the
template, an optional block for assignments, and a block of the template text.

The template text is given in the translation notation defined in Appendix B. The nota-
tions consists of basic control structures that can be mixed with the resulting natural lan-
guage text. Variables are printed in italics. Using a variable in the template text prints
its value. Fixed parts of the resulting text are set in underlined type writer font�������������������������.

Missing Component The natural language text for missing components is generated

4.3. Checking Satisfaction and Generating Witnesses 65

from the template in Table 4.9. The inputs for this template are the C&C model m,
the C&C view view and the component missing in the C&C model missingCmp.

Hierarchy Mismatch The natural language text template for a hierarchy mismatch is
shown in Table 4.10. This template distinguishes the three different kinds of hierar-
chy mismatches and reports on the two components participating in the mismatch.

Interface Mismatch The natural language text template for missing connections is
shown in Table 4.11. In this template we also report on the source and target
port of the missing connection. Since port names are optional in C&C views we
compute descriptions of the ports (srcPort and tgtPort) based on their availability
in the Assignments section of the template.

Missing Connection The natural language text template for an interface mismatch is
shown in Table 4.12. We distinguish three cases for port mismatches and generate
natural language text containing the optional name and direction of the port from
the C&C view that has no match in the C&C model.

Table 4.9.: Template for generating the natural language description for a missing
component.

Template name descrMissingCmp
Inputs m, view, the missing component missingCmp

Text The component������������ missingCmp.name of the view���������� view.name

is missing in the C&C model������������������������ m.name .��

66 Chapter 4. Component and Connector Views Verification

Table 4.10.: Template for generating the natural language description for a hierarchy
mismatch.

Template name descrHierarchyMismatch
Inputs m, view, the mismatch kind HIER_REV_CONT,

HIER_IND_IN_CNCM, or HIER_IND_IN_VIEW, the
parent component cmp, and the child component subCmp

Text case HIER_REV_CONT:
The component������������ cmp.name contains the component��������������������
subCmp.name in the view���������� view.name but the latter�������������
contains the former in the C&C model�������������������������������� m.name .��
case HIER_IND_IN_CNCM:
The component������������ cmp.name and the component���������������
subCmp.name are independent in the view������������������������ view.name

but not in the C&C model��������������������� m.name .��
case HIER_IND_IN_VIEW:
The component������������ cmp.name and the component���������������
subCmp.name are independent in the C&C model�����������������������������
m.name but not in the view����������������� view.name .��

Table 4.11.: Template for generating the natural language description for a missing
connection.

Template name descrMissingConnection
Inputs m, view, and the abstract connector ac

Assignments srcPort ← if ac.srcPort = � then "unnamed port"
else "port" +ac.srcPort.name

tgtPort ← if ac.tgtPort = � then "unnamed port"
else "port" +ac.tgtPort.name

Text The C&C model������������ m.name is missing a connection from�������������������������
the component������������ ac.srcCmp to the component�������������� ac.tgtCmp

(from����� srcPort to�� tgtPort).��

4.3. Checking Satisfaction and Generating Witnesses 67

Table 4.12.: Template for generating the natural language description for an interface
mismatch.

Template name descrInterfaceMismatch
Inputs m, view, the mismatch kind PORT_NO_MATCH,

PORT_WRONG_DIR, or PORT_WRONG_TYPE, the
component cmp, and the port p

Assignments pName ← if p.name = � then "unnamed port"
else p.name

direction ← if p.direction = IN then "incoming"
else "outgoing"

Text case PORT_NO_MATCH:
No match for port��������������� pName of the component�������������� cmp.name .��
case PORT_WRONG_DIR:
Wrong direction for port���������������������� pName of the component��������������
cmp.name (��direction).��
case PORT_WRONG_TYPE:
Wrong type for port����������������� pName of the component�������������� cmp.name

(��p.type).��

68 Chapter 4. Component and Connector Views Verification

4.3.5. Correctness and Completeness
We show the correctness and completeness of the algorithm in Procedures 1-5 for deter-
mining whether an C&C model m satisfies a view view and for computing the reasons for
non-satisfaction. Correctness means that whenever the algorithm computes at least one
non-satisfaction reason, indeed m /⊧ view. Completeness means that whenever m /⊧ view,
the algorithm computes at least one reason for non-satisfaction.

Lemma 4.13. The verification algorithm in Procedures 1-5 is correct, i.e.,

computeNonSatReasons(m, view) ≠ ∅ ⇒ m /⊧ view.

We show the correctness of Procedures 1-5 according to Lemma 4.13 with respect
to Definition 3.8 of the satisfaction m ⊧ view. We show that every element added
to the set NonSatReasons in Procedures 2-5 executed by the algorithm is a reason
for non-satisfaction of the C&C model and view. The proof — as the algorithm itself
— is structured by the four classes of reasons for non-satisfaction and the lines from
Procedures 2-5 that add elements to the set NonSatReasons. Most proof steps work
by assuming satisfaction and then deriving contradictions with well-formedness rules or
properties of the elements identified by the algorithm.

Proof. We show that whenever the algorithm adds an element to the set NonSatReasons,
the C&C model m does indeed not satisfy the view view.

Missing Components (Procedure 2, l. 3) From the existence of component missing-
Cmp ∈ (view.Cmps ∖ m.Cmps) it follows that view.Cmps /⊆ m.Cmps. This con-
tradicts Definition 3.8, Item 3, thus m /⊧ view.

Hierarchy Mismatch (Procedure 3, ll. 6, 8) According to line 3 component subCmp is
a subcomponent of component cmp in the view: subCmp ∈ view.subs(cmp). As-
suming m ⊧ view it follows from Definition 3.8, Item 3 that subCmp ∈ m.subs+(cmp).
This contradicts subCmp /∈ m.subs+(cmp) from line 4 and the well-formedness rules
of the C&C model from Definition. 2.2, thus m /⊧ view.

Hierarchy Mismatch (Procedure 3, ll. 15, 17) Component cmp′ is a subcomponent of
component cmp (l. 12): cmp′ ∈ view.subs(cmp). Assuming m ⊧ view it fol-
lows from Definition 3.8, Item 3 that cmp′ ∈ m.subs+(cmp). This contradicts
subCmp /∈ m.subs+(cmp) from line 13 and the well-formedness rules of the C&C
model from Definition. 2.2, thus m /⊧ view.

Interface Mismatch (Procedure 4, l. 6) Assuming m ⊧ view it follows from the ex-
istence of a port p ∈ view.ports(cmp) (l.3) by Definition 3.8, Item 4 (a) that
∃p′ ∈ m.ports(cmp) ∶ p ≅ p′ which contradicts ∄p′ ∈ m.ports(cmp) ∶ view.dir(p) =

4.3. Checking Satisfaction and Generating Witnesses 69

m.dir(p′) ∧ view.type(p) ∈ {m.type(p′),�} (l. 5). Thus, if the algorithm adds an
element to NonSatReasons in l. 6 the C&C model indeed does not satisfy the view.

Interface Mismatch (Procedure 4, l. 9) Assuming m ⊧ view it follows from the ex-
istence of a port p ∈ view.ports(cmp) (l.3) by Definition 3.8, Item 4 (a) that
∃p′ ∈ m.ports(cmd) ∶ p ≅ p′ and from view.name(p) ≠ � (else if of condition
in line 4) by Definition 3.8, Item 4 (b3) that view.name(p) = m.name(p′) which
contradicts view.name(p) ≠ m.name(p′) (l. 8). Thus, if the algorithm adds an ele-
ment to NonSatReasons in line 9 the C&C model indeed does not satisfy the view.

Interface Mismatch (Procedure 4, l. 13) Assuming m ⊧ view it follows from the ex-
istence of a port p ∈ view.ports(cmp) (l.3) by Definition 3.8, Item 4 (a) that
∃p′ ∈ m.ports(cmd) ∶ p ≅ p′ and from line 11 by Definition 3.8, Item 4 (b1) that
view.dir(p) = m.dir(p′) which contradicts view.dir(p) ≠ m.dir(p′) (l. 12). Thus,
if the algorithm adds an element to NonSatReasons in line 13 the C&C model
indeed does not satisfy the view.

Interface Mismatch (Procedure 4, l. 16) Assuming m ⊧ view it follows from the ex-
istence of a port p ∈ view.ports(cmp) (l.3) by Definition 3.8, Item 4 (a) that
∃p′ ∈ m.ports(cmd) ∶ p ≅ p′ and from line 11 by Definition 3.8, Item 4 (b2) that
view.type(p) ∈ {�, m.type(p′)} which contradicts view.type(p) ≠ �∧view.type(p) ≠
m.type(p′) (l.15). Thus, if the algorithm adds an element to NonSatReasons in
l.16 the C&C model indeed does not satisfy the view.

Missing Connection (Procedure 5, ll. 4, 6, 8, 10) Assuming m ⊧ view, the existence
of a chain of connectors c1, ..., cn ∈ m.Cons follows from Definition 3.8, Item 5.

• The connector c1 starts from the component ac.srcCmp (Definition 3.8, Item
5 (a)) at the port c1.srcPort that by definition of the C&C model belongs to
the component c1.srcCmp = ac.srcCmp (Definition 2.2, Item 3).

• The connector cn connects to component ac.tgtCmp (Definition 3.8, Item 5
(b)) via port cn.tgtPort that by definition of the C&C model belongs to
component cn.tgtCmp = ac.tgtCmp (Definition 2.2, Item 3).

The satisfaction of the condition in line 3 with ac.srcPort = � = ac.tgtPort and
p ∶= c1.srcPort and p′ ∶= cn.tgtPort leads to a contradiction of the assumption,
since p and p′ exist in the C&C model. Thus, if the algorithm adds an element to
NonSatReasons in line 4 the C&C model indeed does not satisfy the view.

The satisfaction of the condition in line 5 with ac.srcPort = � ≠ ac.tgtPort and p ∶=
c1.srcPort and p′ ∶= cn.tgtPort leads to a contradiction of the assumption, since p
and p′ exist in the C&C model and ac.tgtPort ≅ p′ (Definition 3.8, Items 5 (b)).

70 Chapter 4. Component and Connector Views Verification

Thus, if the algorithm adds an element to NonSatReasons in line 6 the C&C
model indeed does not satisfy the view.
The satisfaction of the condition in line 7 with ac.srcPort ≠ � = ac.tgtPort and p ∶=
c1.srcPort and p′ ∶= cn.tgtPort leads to a contradiction of the assumption, since p
and p′ exist in the C&C model and ac.srcPort ≅ p (Definition 3.8, Items 5 (a)).
Thus, if the algorithm adds an element to NonSatReasons in line 8 the C&C
model indeed does not satisfy the view.
The satisfaction of the condition in line 9 with ac.srcPort ≠ � ≠ ac.tgtPort and
p ∶= c1.srcPort and p′ ∶= cn.tgtPort leads to a contradiction of the assumption,
since p and p′ exist in the C&C model, ac.srcPort ≅ p (Definition 3.8, Items 5 (a)),
and ac.tgtPort ≅ p′ (Definition 3.8, Items 5 (b)). Thus, if the algorithm adds an
element to NonSatReasons in line 10 the C&C model indeed does not satisfy the
view.

Every addition of elements to the initially empty set NonSatReasons means that the
C&C model m does not satisfy the view view and thus:

computeNonSatReasons(m, view) ≠ ∅ ⇒ m /⊧ view.

We now state and prove completeness of the algorithm from Procedures 1-5: if a
C&C model does not satisfy a view, the algorithm will find at least one reason for
non-satisfaction.

Lemma 4.14. The verification algorithm in Procedures 1-5 is complete, i.e.,

m /⊧ view ⇒ computeNonSatReasons(m, view) ≠ ∅.

Proof. According to Definition 3.8 m ⊧ view if and only if all properties of m and view,
as stated in items 1-5, hold. Thus, for m /⊧ view it is enough that one of the properties
described in items 1-5 does not hold. We show for every case of non-satisfaction that the
algorithm detects this case and adds at least one element to the set NonSatReasons.
The proof assumes for every required property the negation of the property and shows
that a non-satisfaction reason is generated by the algorithm.

Detecting violation of Definition 3.8, Item 1 Assume view.Types /⊆ m.Types:
Since every type missingType ∈ (view.Types ∖ m.Types) appears on a port in
the view (see Definition 3.6, Item 4) this implies ∃p ∈ view.Ports such that
view.type(p) = missingType ≠ �. In addition, missingType ∉ m.Types together
with Definition 2.2, Item 4 implies ∀p′ ∈ m.Ports ∶ m.type(p′) ≠ missingType.
This case is thus analogous to the item [Detecting violation of Definition 3.8, Item 4]
of this proof since for the port p with view.type(p) = missingType none of the ports
p′ ∈ m.Ports satisfy p ≅ p′. The algorithm adds an element to NonSatReasons in
Procedure 4.

4.3. Checking Satisfaction and Generating Witnesses 71

Detecting violation of Definition 3.8, Item 2 Assume view.Cmps /⊆ m.Cmps:
This implies the existence of at least one component missingCmp ∈ (view.Cmps∖
m.Cmps). The condition in Procedure 2, line 2 is satisfied. The algorithm will
add an element to NonSatReasons in line 3.

Detecting violation of Definition 3.8, Item 3 Assume ∃cmp1, cmp2 ∈ view.Cmps with
cmp1 ∈ view.subs(cmp2) and cmp1 ∉ m.subs+(cmp2):

• In case cmp1 or cmp2 /∈ m.Cmps the algorithm will add an element to Non-
SatReasons for the missing component as in the item [Detecting violation of
Definition 3.8, Item 2].

• For cmp1, cmp2 ∈ m.Cmps the nested loops in Procedure 3 in line 2 and line 3
will be entered with cmp ∶= cmp2 satisfying cmp ∈ view.Cmps∩m.Cmps (l. 2)
and subCmp ∶= cmp1 satisfying subCmp ∈ view.subs(cmp) (l. 3).
The condition in line 4 is exactly the assumption cmp1 ∉ m.subs+(cmp2) and
thus the algorithm adds an element to NonSatReasons in either line 6 or
line 8.

Detecting violation of Definition 3.8, Item 4 Assume ∃cmp′ ∈ view.Cmps
∃p1 ∈ view.ports(cmp′)∀p2 ∈ m.ports(cmp′) ∶ p1 /≅ p2:

• For cmp′ ∉ m.Cmps see item [Detecting violation of Definition 3.8, Item 2].
• Otherwise the algorithm will enter the nested loops in Procedure 4 in line 2

and line 3 with cmp ∶= cmp′ and p ∶= p1.
In case p1.name = � the assumption implies that either m.ports(cmp′) = ∅
or that with Definition 3.8, Item 4 (b) of ≅ unfolded ∀p2 ∈ m.ports(cmp′) ∶
view.dir(p) ≠ m.dir(p′) ∨ view.type(p) /∈ {m.type(p′),�}. In both cases the
condition in line 5 is satisfied and the algorithm adds a reason for non-
satisfaction to the set NonSatReasons in line 6.
In case p1.name ≠ � the assumption implies that either m.ports(cmp′) = ∅
or that for all ports p2 ∈ m.ports(cmp) at least one of the conditions from
Definition 3.8, Item 4 (b1)-(b3) of p1 ≅ p2 is violated.

– In case of m.ports(cmp′) = ∅ the condition in line 8 is satisfied and the
algorithm adds a reason for non-satisfaction to the set NonSatReasons
in line 9.

– Otherwise we have left two cases of possible violations for p1 ≅ p2 for
all ports p2 ∈ m.ports(cmp). In case view.name(p1) ∈ {�, m.name(p2)}
(Definition 3.8, Item 4 (b3)) and p1.name ≠ � (see above) we obtain
∀p2 ∈ m.ports(cmp′) ∶ m.name(p2) ≠ view.name(p1) which satisfies
the condition in line 8 with cmp = cmp′ and p = p1. The algorithm
adds a reason for non-satisfaction to the set NonSatReasons in line 9.

72 Chapter 4. Component and Connector Views Verification

In all other cases there is a unique port p2 ∈ cmp.ports(cmp′) with
m.name(p2) = view.name(p1). The algorithm assigns this port to the
variable p′ in line 11.

In case Definition 3.8, Item 4 (b1) is not satisfied, the condition in line 12
is met and the algorithm adds a reason for non-satisfaction to the set
NonSatReasons in line 13.

In case Definition 3.8, Item 4 (b2) is not satisfied, the condition in line 15
is met and the algorithm adds a reason for non-satisfaction to the set
NonSatReasons in line 16.

Detecting violation of Definition 3.8, Item 5 (a) Assume ∃ac ∈ view.AbsCons
∀c1, ..., cn ∈ m.Cons ∶ ¬(ac.srcCmp = c1.srcCmp) ∨ ¬(ac.srcPort ≅ c1.srcPort ∨
ac.srcPort = �):

• The case ¬(ac.srcCmp = c1.srcCmp) means that there is no connector in the
C&C model starting from component ac.srcCmp. Thus no chain of connec-
tors can exist and any condition in Procedure 5, lines 3-9 evaluates to true.
The algorithm will add an element to the set NonSatReasons.

• The case ¬(ac.srcPort ≅ c1.srcPort ∨ ac.srcPort = �) implies that port
ac.srcPort ≠ � is known but there exists no connector in the C&C model
starting from a port that is equivalent to ac.srcPort and that is a port of
the component ac.srcCmp. Thus no chain of connectors can exist and the
two conditions in Procedure 5 in line 7 and in line 9 evaluate to true. The
algorithm will add an element to the set NonSatReasons.

Detecting violation of Definition 3.8, Item 5 (b) Assume ∃ac ∈ view.AbsCons
∀c1, ..., cn ∈ m.Cons ∶ ¬(ac.tgtCmp = cn.tgtCmp) ∨ ¬(ac.tgtPort ≅ c1.tgtPort ∨
ac.tgtPort = �):

• The case ¬(ac.tgtCmp = cn.tgtCmp) means that there is no connector con-
necting to component ac.tgtCmp thus no chain of connectors can exist and
any condition in Procedure 5 in lines 3-9 evaluates to true. The algorithm
will add an element to the set NonSatReasons.

• The case ¬(ac.tgtPort ≅ c1.tgtPort ∨ ac.tgtPort = �) implies that the port
ac.tgtPort ≠ � is known in the C&C view but there exists no connector in the
C&C model connecting to a port equivalent to port ac.tgtPort that is a port
of the component ac.tgtCmp. Thus no chain of connectors can exist and any
conditions in Procedure 5 in lines 5 and 9 evaluate to true. The algorithm
will add an element to the set NonSatReasons.

Detecting violation of Definition 3.8, Item 5 (c) Assume ∃ac ∈ view.AbsCons
∀c1, ..., cn ∈ m.Cons ∶ ¬(∀1 ≤ i < n ∶ ci.tgtPort = ci+1.srcPort):

4.3. Checking Satisfaction and Generating Witnesses 73

• The assumption ¬(∀1 ≤ i < n ∶ ci.tgtPort = ci+1.srcPort) for all possible
chains c1, ..., cn is equivalent to ∃1 ≤ i < n ∶ ci.tgtPort ≠ ci+1.srcPort. Thus,
no connected chain of connectors exists in the C&C model and any condition
from Procedure 5 in lines 3-9 evaluates to true. The algorithm will add an
element to the set NonSatReasons.

Every violation of Definition 3.8 for m ⊧ view will be detected by the algorithm and
results in adding at least one element to the set NonSatReasons of reasons for non-
satisfaction and thus:

m /⊧ view ⇒ computeNonSatReasons(m, view) ≠ ∅.

4.3.6. Complexity
We now examine the algorithm in Procedures 1-5, the time complexity and the maxi-
mal number of reasons for non-satisfaction it computes. The time complexities of the
algorithms for each check for non-satisfaction reasons are summarized in Table 4.15.

Non-Satisfaction Check Time Complexity
Missing Component O(∣view.Cmps∣)
Hierarchy Mismatch O(∣view.Cmps∣2 ∗ ∣m.Cmps∣)
Interface Mismatch O(∣view.Ports∣ ∗ ∣m.Ports∣)
Missing Connection O(∣view.AbsCons∣ ∗ ∣m.Ports∣ ∗ ∣m.Cons∣)

Table 4.15.: Time complexities for the checks for non-satisfaction reasons of the algo-
rithm from Procedures 1-5. The inputs are a C&C model m and a C&C
view view. These are the time complexities of our implementation and thus
only upper bounds for the complexity of the satisfaction checking problem.

Time complexity

The time complexity of the algorithm in Procedures 1-5 depends on the size of the two
input structures m and view. It depends on the number of components in the C&C
model ∣m.Cmps∣, its number of ports ∣m.Ports∣ and its number of connectors ∣m.Cons∣.
It also depends on the number of components in the view ∣view.Cmps∣, its number of
ports ∣view.Ports∣ and its number of abstract connectors ∣m.AbsCons∣.

We examine the time complexity for each procedure called from Procedure 1 sepa-
rately. These results describe the complexity of our algorithm and thus only give an
upper bound to the complexity of the satisfaction problem for C&C views.

Missing Component (Procedure 2) We consider the look up c ∈ m.Cmps to take con-
stant time. The computation time for non-satisfaction reasons is thus linear in
∣view.Cmps∣.

74 Chapter 4. Component and Connector Views Verification

Hierarchy Mismatch (Procedure 3) The check of c1 is parent of c2 requires at most
enumerating all the (indirectly contained) subcomponents of c1. The time com-
plexity of our current naive implementation of checking c1 is parent of c2 in m is
in O(∣m.Cmps∣), thus the time complexity of the Hierarchy Mismatch part of the
algorithm is in O(∣view.Cmps∣2∗∣m.Cmps∣). It could be reduced to O(∣m.Cmps∣2+
∣view.Cmps∣2) by employing a pre-processing step of the subs relation that will
allow the algorithm to determine c1 is parent of c2 in m in constant time.

Interface Mismatch (Procedure 4) Every port in the view is checked for a correspond-
ing port in the C&C model. For each unnamed port the algorithm checks all
ports of the corresponding component in the C&C model for a matching type
and direction. The computation time for the non-satisfaction reasons is thus in
O(∣view.Ports∣ ∗ ∣m.Ports∣).

Missing Connection (Procedure 5) The computation of reasons for non-satisfaction re-
quires, in the worst case, for all abstract connectors to look at all possible source
ports in the C&C model and all outgoing chains of connectors. The time complex-
ity is thus in O(∣view.AbsCons∣ ∗ ∣m.Ports∣ ∗ ∣m.Cons∣).

Maximal number of reasons for non-satisfaction

For every class of reasons for non-satisfaction the algorithm in Procedures 1-5 adds a
bounded number of elements to NonSatReasons. For Missing Component, the algo-
rithm adds at most ∣view.Cmps∣ elements to NonSatReasons. For Hierarchy Mismatch,
every pair of components from the view can only be in one of the four containment rela-
tions from Procedure 3 lines 5, 7, 14, 16. Thus no more than ∣view.Cmps∣2 elements are
added to the set NonSatReasons. For Interface Mismatch, the algorithm adds at most
2 ∗ ∣view.Ports∣ elements to NonSatReaons in case all ports in the view have wrong
type and direction. For Missing Connection, the algorithm adds at most ∣view.AbsCons∣
elements to NonSatReasons because the four cases it considers are disjoint.

Please note that these upper bounds are not independent. For example, if the algo-
rithm computes ∣view.Cmps∣ reasons of non-satisfaction because of missing components
no further reasons for non-satisfaction will be found.

4.4. Implementation and Evaluation

We have implemented support for C&C views within a prototype Eclipse plug-in, on
top of MontiCore [wwwv, KRV10]. MontiCore provides parsers, Eclipse editors etc. for
MontiArc [wwwq, HRR12].

Our implementation is completely written in Java. It consists of a library provid-
ing utility operations on C&C views and C&C models including a bridge from and to
MontiCore ASTs, a verification engine implementing the verification algorithms, and
an Eclipse plug-in. We report the size of the implementation in effective lines of code

4.4. Implementation and Evaluation 75

(ELOC). Lines counted as ELOC contain characters other than white spaces or com-
ments and are contained in classes of the implementation. The numbers of ELOC do
neither include unit tests nor code for validation. The C&C views and C&C model util-
ity library consists of 9 classes with a total of 911 ELOC. The C&C views verification
engine consists of 19 classes with a total of 1,129 ELOC. The C&C views verification
plug-in consists of 11 classes with a total of 565 ELOC.

Using the C&C views verification plug-in, the engineer can select two files, an C&C
model and a view, and check whether the C&C model satisfies the view. In case of a
positive answer, a witness for satisfaction is generated and presented as an annotated
view in the main editing pane. In case of a negative answer, all witnesses for non-
satisfaction are generated and listed in a hierarchical problems view titled Witnesses for
Non-Satisfaction. The hierarchy in the problems view reflects the classification of non-
satisfaction reasons described above, i.e., of missing component, hierarchy mismatch,
interface mismatch, and missing connection. Clicking a specific entry in the problems
view opens up the corresponding witness as an annotated view in the main editing pane.
Figure 4.16 shows a screen capture from the prototype plug-in.

Figure 4.16.: A screen capture from the prototype plug-in, after checking the C&C
model PumpStation shown in Figure 4.1 against the view System-
EmergencyController shown in Figure 4.3 (b). The lower pane shows
the Eclipse problems view titled Witnesses for Non-Satisfaction, which
provides a hierarchical list of the generated witnesses for non-satisfaction
together with their generated natural language descriptions. Four witnesses
were generated, one for a missing component, two for interface mismatches,
and one for a missing connection. The main editing pane on the top right
shows one of the generated witnesses for interface mismatch.

76 Chapter 4. Component and Connector Views Verification

We present a tutorial on how to install the plug-in, import the example systems, and
execute C&C views verification in Appendix C.

4.4.1. Example Systems

We evaluated our work on C&C models and views taken from four example systems,
from different sources and of different domains. The evaluation on example systems
is of qualitative nature. We wanted to gain experience with creating C&C views for
documenting and specifying C&C models and their use for C&C views verification. We
describe the C&C models and the C&C views that we have created below and report on
the lessons learned in Section 4.4.4.

All the C&C models, views, and specifications used in our evaluation, as described
below, are available with the prototype tool implementation as supporting materials
from [wwwu]. We encourage the interested reader to inspect them.

Avionics system

We evaluated our work on an AADL architecture of an avionics system. Specifically, the
model Avionics_System.aadl of the OSATE AADL Project, available from [wwwa].
The avionics system architecture is a high-level model of several avionics system subsys-
tems. The purpose of this AADL architecture is to determine the minimum end-to-end
flow latency for providing a new page on a multi-function display. Indirect AADL flows
between the Pilot_Display component and the Flight_Director component are
specified with minimal latencies. Since in this work we are only interested in the struc-
ture of the C&C models, in our translation of this AADL architecture into a MontiArc
C&C model we have ignored the flows definitions but preserved the hierarchical structure
and all ports and connectors.

The avionics system C&C model has 6 components, 16 ports, and 8 connectors. The
depth of the component hierarchy of the system architecture is 2.

Based on various use cases, related to the interaction between the avionics system’s
components, we created 9 C&C views, with 1-6 components each. The views are inspired
by the original analysis of AADL’s flows. For example, one view gives an overview of
the complete data flow in the system, declared using abstract connectors. This view
does not provide additional information such as port names or types. Another view
provides more details about the communication between the Pilot_Display and it’s
Page_Content_Manager, showing incoming and outgoing ports with their names and
connectors. An overview of the C&C views and their sizes is given in Table 4.17. The
table lists all views, their number of components and abstract connectors, satisfaction
by the C&C model, the number of generated witnesses and satisfaction checking and
witness generation time in milliseconds.

We defined 2 views specifications, one with 5 views and one with 9 views. The
first deals only with the views that contain components that are connected to the Pi-
lot_Display. The second contains all the views that we have created.

4.4. Implementation and Evaluation 77

Checking satisfaction produced a positive witness in 6 of 9 cases. The algorithm
produced up to 4 witnesses for non-satisfaction for each C&C view not satisfied by the
C&C model (see Table 4.17).

Bumper bot

We evaluated our work on the software architecture of a Lego Mindstorms NXT [wwwl]
bumper bot similar to the bumper car model from [wwwx]. The bumper bot can power
its left and right motors and detect obstacles in front of it. In addition, it is equipped
with an emergency stop button. The bumper bot’s objective is to go around obstacles
and keep driving forward. As part of this case study system, we have designed a set of
views and a complete C&C model for the bumper bot software in MontiArc. We have
used automata to define the behavior of the components mentioned in the bumper bot
C&C model, used the code generator described in Chapter 8, and successfully deployed
the generated code to the controller of the bumper bot.

The bumper bot architecture consists of 12 components, 28 ports, and 20 connectors.
It is a layered architecture with three layers, the sensors layer, the control components
layer, and the actuators layer. The depth of the component hierarchy of the bumper bot
C&C model is 3.

We developed 8 C&C views in total, each with 2-8 components. For example, one
view shows the basic components of the bumper bot, showing neither the layers of
the architecture nor the emergency stop related components. Another view contains
only the structure and division into layers, without any ports or connectors. Of the
8 C&C views, 5 are independent of the emergency stop feature and describe only the
components and abstract connectors for fulfilling the main purpose of the bumper bot.
The remaining 3 views exhibit components required by the emergency stop feature. For
example, one of these adds a mode arbiter to the components and abstract connectors
participating in the regular robot control. Another one shows the components and paths
of signals used in case of an emergency stop, including the mode arbiter. An overview
of the C&C views and their sizes is given in Table 4.17. The table lists all views, their
number of components and abstract connectors, satisfaction by the C&C model, the
number of generated witnesses and satisfaction checking and witness generation time in
milliseconds.

Checking satisfaction produced a positive witness in 6 of 8 cases. The algorithm
produced up to 2 witnesses for non-satisfaction for each C&C view not satisfied by the
C&C model (see Table 4.17).

Pump station

We further evaluated our work on a pump station C&C model taken from an example
system provided with the AutoFOCUS tool [BHS99, HF07, wwwe] (the C&C model we
use as a running example introduced in Section 3.1). The physical pump station system
consists of two water tanks connected by a pipeline system with a valve and a pump. The
water level in the first water tank can rise (this is controlled by the environment). When

78 Chapter 4. Component and Connector Views Verification

the water level of the first tank rises to a critical level, the water has to be pumped to
the second water tank. The second water tank has a drain. The C&C model presented
in Figure 4.1 also shows a model of the environment with a physics simulation, used to
test the pumping system.

The pump station C&C model consists of 16 components, 67 ports, and 47 connectors.
The depth of the component hierarchy of the pump station C&C model is 4.

Again, based on several design decisions and relations we wanted to highlight and
document, we created 11 C&C views, each with 2-5 components. For example, one view
gives an overview of the basic structure of the system and omits details about interfaces
and connectors. Another view documents part of the connections between the actuators
and their environment, hiding hierarchies and omitting elements not connected to the
actuators. An additional C&C view shows an undesired design where the simulation
component is placed inside the pumping system. We have already described some of
the views of this case study in Section 4.1. An overview of the C&C views and their
sizes is given in Table 4.17. The table lists all views, their number of components and
abstract connectors, satisfaction by the C&C model, the number of generated witnesses
and satisfaction checking and witness generation time in milliseconds.

To be able to document undesired designs and alternatives, we created 7 views spec-
ifications. Two specifications specify the optional existence of an emergency system
and its implications (one of these is specification S1 described in Section 3.5). Another
specification prohibits an emergency system. Further specifications combine views of
the function of the pump station with ones that specify the separation of the pumping
system from the simulation part.

Checking satisfaction produced a positive witness in 6 of 11 cases. The algorithm
produced up to 4 witnesses for non-satisfaction for each C&C view not satisfied by the
C&C model (see Table 4.17).

Robotic arm

Finally, we evaluated C&C views verification on a robotic arm C&C model — specifically
the rotational joint of a robotic arm, taken from an industrial system by VTT Tampere,
Finland. The main components of the rotational joint’s C&C model are a cylinder, a
servo valve, a sensor, a joint limiter, and an actuator. The rotational joint is a subsystem
of a robotic arm containing in total eight identical copies of rotational and translational
joints.

The robotic arm rotational joint C&C model consists of 8 components, 18 ports, and
16 connectors. The depth of the component hierarchy of the robotic arm rotational joint
C&C model is 3.

Again, based on several requirements and partial knowledge or particular features, we
created 11 C&C views, each with 1-5 components. Some views highlight the components
necessary for the function of the joint while others document design alternatives on the
placement of sensor and actuator components. Some of the views give an overview of
related components with only few details of their interfaces or connectedness. Other
views document complete interfaces of relevant components and some of their connec-

4.4. Implementation and Evaluation 79

tions. An overview of the C&C views and their sizes is given in Table 4.17. The table
lists all views, their number of components and abstract connectors, satisfaction by the
C&C model, the number of generated witnesses and satisfaction checking and witness
generation time in milliseconds.

To experiment with non-satisfaction, we modified the C&C model to not satisfy any
of the views. The modifications are renaming ports, removing connectors, and changing
component hierarchies. The algorithm produced up to 4 witnesses for non-satisfaction
for each C&C view not satisfied by the C&C model (see Table 4.17).

Running times on example systems

We have measured the running times of our algorithm for the C&C views and example
systems presented above. We executed all the experiments on an ordinary laptop com-
puter, Intel Dual Core CPU, 2.8 GHz, running 64-bit Windows 7 and Java 1.7.0_17.
We repeated the experiments 12 times for each C&C model and view.

Table 4.17 reports on the numbers of components and connectors of each C&C model,
the numbers of components and abstract connectors of each view, the satisfaction result,
the number of generated witnesses, the time for checking satisfaction and computing non-
satisfaction reasons (tc) in milliseconds, and the time for generating the witnesses (tg) in
milliseconds. The times were measured by the system clock accessed through the Java
API and are presented in the table as the average computed over 12 runs.

It is interesting to see that the average verification time stays below a millisecond.
The four cases where the verification time is 0.5ms or 1ms are half cases of satisfaction
and non-satisfaction. The maximum time of 8.5ms for witness generation is spent in
case of non-satisfaction.

Threats to Validity

The choice of C&C models for our experiments is limited to four systems from different
sources. To address the threat to generalizability of the results, we have selected example
systems from different domains: avionics, robotics, automation, and control. Further
studies with more and larger real-world systems could provide more insight and might
allow capturing differences and similarities between the C&C models of diverse domains.

For all example systems only C&C models were available and we created the C&C
views ourselves. An evaluation with independent subjects to assess the expressiveness
and comprehensibility of C&C views could address this threat of a possible bias.

Please note that the running times for C&C views verification reported in Table 4.17
are very low. We do not use these to asses the performance and scalability of our algo-
rithms. We instead set up different experiments to analyze performance and scalability.

4.4.2. Performance and Scalability
To evaluate the performance and scalability of C&C views verification in handling large
C&C models and views, we have experimented with synthesized C&C models of differ-

80 Chapter 4. Component and Connector Views Verification

Model C Con View C ACon SAT Wit tc tg

AvionicsSystem 6 8 ConnectPilotDisplayAndPCM 2 1 1 0 2
AvionicsSystem 6 8 ControlFlowInSystem 5 8 1 0 0
AvionicsSystem 6 8 DisplayAndManager 2 2 1 0 0
AvionicsSystem 6 8 FlightManagerAndDirector 2 2 1 0 0
AvionicsSystem 6 8 FlightSystemStructure 6 0 1 0 0
AvionicsSystem 6 8 PilotAndPageContentManager 3 2 1 0 0
AvionicsSystem 6 8 PDMIndependentOfPilotDisplay 2 0 1 0 0
AvionicsSystem 6 8 PDMInsidePilotDisplay 2 0 1 0 2
AvionicsSystem 6 8 PDMPortsReversed 1 0 4 0 5
BumperBot 12 18 BumpControlOverview 3 3 1 0 0
BumperBot 12 18 BumperBotEmgSystem 3 1 1 0 0
BumperBot 12 18 BumperBotSensors 2 0 1 0 0
BumperBot 12 18 BumperBotStructure 8 5 2 1 4.5
BumperBot 12 18 BumperBotStructureOnly 8 0 1 0 0
BumperBot 12 18 BumperBotMotorWrongPlace 3 0 2 0 3
BumperBot 12 18 MotorArbiterConnectionsEmergency 5 4 1 0 0
BumperBot 12 18 MotorArbiterConnectionsOldBehavior 4 4 1 0 0
PumpStation 16 47 ASPumpingSystem 5 2 1 0 0
PumpStation 16 47 EnvironmentPhysics 4 4 1 0.5 0
PumpStation 16 47 ModeArbiterOutsideController 2 0 1 0 1.5
PumpStation 16 47 PhysicsAndControllerPumpingSystem 3 1 2 0.5 6
PumpStation 16 47 PhysicsInsidePumpingSystem 2 0 1 0 2
PumpStation 16 47 PumpStationStructure 3 0 1 0 0
PumpStation 16 47 PumpingSystemStructure 5 5 1 1 0
PumpStation 16 47 SimulationInput 3 3 1 0 0
PumpStation 16 47 SystemEmergencyController 4 3 4 0 5.5
PumpStation 16 47 SystemEmergencyControllerFixed 4 3 1 0 1
PumpStation 16 47 UserButton 4 4 1 0 0
RotationalJoint 8 16 ASDependence 3 0 1 0 1.5
RotationalJoint 8 16 BodySensorIn 5 5 4 0 8.5
RotationalJoint 8 16 BodySensorOut 5 5 3 0 6
RotationalJoint 8 16 OldDesign 3 1 3 0 5
RotationalJoint 8 16 OldDesignExternalCylinder 3 1 2 0 4
RotationalJoint 8 16 RJFunction 4 1 1 0 2
RotationalJoint 8 16 RJStructure 4 4 2 0 4
RotationalJoint 8 16 SensorAmplifierView 1 0 1 0 1
RotationalJoint 8 16 SensorConnections 3 2 1 0 2
RotationalJoint 8 16 SensorConnectionsInterfaceComplete 3 2 1 0 2
RotationalJoint 8 16 SensorHasAmplifier 2 0 1 0 1

Table 4.17.: C&C views verification times for four example systems. The table reports on
the numbers of components and connectors of the C&C model, the numbers
of components and abstract connectors of the view, the satisfaction result,
the number of generated witnesses, the time for checking satisfaction (tc) in
milliseconds, and the time for generating the witnesses (tc) in milliseconds.
Times are reported as averages computed over 12 runs.

4.4. Implementation and Evaluation 81

ent sizes and with related synthesized views where we have randomly applied various
mutations listed in Table 4.18. We describe the setup of our experiments below. The
code to reproduce our experiments or further define and execute similar ones is avail-
able together with related evaluation materials for C&C views verification from [wwwu].
Appendix C explains how to use the provided code and execute the experiments.

We have implemented a generator for randomly constructed C&C models. The gener-
ator constructs C&C models based on the following parameters: number of components,
maximal number of subcomponents per component, number of types of ports in the C&C
model, maximal number of ports in the C&C model, and maximal number of connectors
in the C&C model.

The algorithm first creates the root component of the C&C model. Then it creates
new components and adds them as subcomponents to existing components in the C&C
model until the total number of components equals the specified number of components in
the C&C model. The parent component for each new subcomponent is chosen randomly
using the Java random number generator. A component is only added as a subcomponent
if the parent has less than the maximal allowed number of subcomponents. Otherwise
another parent is chosen at random. Similarly, the ports generated by the algorithm are
randomly placed on the components in the C&C model while satisfying the constraint
of the maximal number of ports per component. Initially ports do not have a type and
a direction. The type and the direction of ports are set by the algorithm during the
addition of connectors to the C&C model. This ensures that only ports of the same type
and compatible directions are connected. The algorithm picks a port and randomly
chooses the port’s direction. It then computes all the possible targets of connectors in
the C&C model and chooses one. The list of possible connector targets includes ports
that are sources of other connectors but not those that are already targets of connectors
(see well-formedness rules for connectors in C&C models in Definition 2.2, Item 8).

We further implemented a generator for random views. For a given C&C model, the
views generator works in two steps. First, it clones the C&C model and eliminates
some components, ports, and connectors based on the following parameters: number
of components to keep, maximal number of ports to keep, and maximal number of
connectors to keep (the actual number of ports and connectors in the view depends also
on the number of ports and connectors left on the components to keep). Moreover, chains
of concrete connectors are replaced by corresponding abstract connectors. Second, the
algorithm randomly applies one or more of the mutations shown in Table 4.18.

Three of the seven mutation shown in Table 4.18 are benign. We call a mutation
benign if it preserves satisfaction for all possible mutated elements in C&C views. The
first three mutations introduce port types, component names, and port names that
are not in the C&C model. Thus after any of these mutations has been applied to
a derived C&C view the C&C model does not satisfy the C&C view. The mutation
SwitchCmpNames might preserve satisfaction but not in all cases. It can change both
satisfaction and non-satisfaction or have no effect if applied to two otherwise identical
subcomponents of the same parent in the C&C model. The three latter mutations
always preserve satisfaction since they only remove information from the C&C view.

82 Chapter 4. Component and Connector Views Verification

Mutation Effect Benign
ChangePortType changes the type of a randomly chosen

port to a type not in the C&C model
no

RenameCmp changes the name of a component to a new
unique name not in the C&C model

no

RenamePort changes the name of a port to a new
unique name not in the C&C model

no

SwitchCmpNames switches the names of two components no
RemovePortName removes the name of a randomly chosen

port
yes

RemovePortType removes the type of a randomly chosen
port

yes

RemoveAbsConnPorts removes either the source port or the tar-
get port information from an abstract con-
nector

yes

Table 4.18.: Mutations for C&C views. A mutation is benign if it preserves satisfaction
for all possible mutated elements in C&C views.

The benign mutations however do not necessarily preserve non-satisfaction. In case the
single reasons for non-satisfaction of a view is a port that has no match in the C&C
model, the RemovePortName mutation applied to this port will restore satisfaction.

In all cases, we implemented the mutations in a way that guarantees that the resulting
mutated view is well-formed with respect to Definition 3.6. For example, if a component
is renamed, the new name is also applied to the connectors that end or start at this
component, i.e., the sets Cmps and AbsCons and the functions subs and ports are
all updated accordingly. As another example, the mutation RemovePortName is only
applied to a port if the port is has a known type (see Definition 3.6 for all well-formedness
rules).

Experiments

We have set up two experiments to address the research question whether C&C views
verification is feasible and scales for large C&C models.

Specifically, in the experiments we increased the number of components in the syn-
thesized C&C models from 20 to 200, the maximal number of direct subcomponents per
component was fixed to eight, the maximal number of port types was fixed to eight,
the total number of ports in the C&C model was fixed to eight times the number of
components in the C&C model, and the maximal number of connectors in the C&C
model was set to half of the number of ports.

In our variable size setup we set the number of components in the view to be a fifth
of the number of components in the C&C model, and set the number of mutations to a
third of the number of components in the view.

4.4. Implementation and Evaluation 83

In our fixed size setup we fixed the number of components in the view to 12 and the
number of mutations to six. In both setups, we set the number of ports and abstract
connectors to two times the number of components in the view. The first setup is
designed to examine scalability. The fixed size setup where the views are of fixed size is
designed to be more realistic, based on our experience with using C&C views verification,
since views are typically of a smaller size not depending on the size of the C&C model.

In Figure 4.19 we show the results of two experiments of executing C&C views veri-
fication, including the computation of non-satisfaction reasons, on randomly generated
C&C models and mutated views of different sizes.

0

10

20

30

40

50

60

70

80

90

100

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

T
i

m
e
 (

m
s)

C&C model size (number of components)

Average C&C Verification Time

Variable size setup

Fixed size setup

Figure 4.19.: Average times in milliseconds to decide satisfaction and compute the rea-
sons for non-satisfaction, for the two setups, the variable size setup where
the view size is a fifth of the C&C model size, and the fixed size setup where
the view size is fixed to 12 components. Although the average times for
the variable setup grow faster than the average times for the fixed setup,
the absolute times recorded and the chart’s growth clearly show that C&C
views verification is feasible and scales well.

We executed all the experiments on an ordinary laptop computer, Intel Dual Core
CPU, 2.8 GHz, running 64-bit Windows 7 and Java 1.7.0_17. We repeated the experi-
ments 12 times for each C&C model size, from 20 to 200, for the two setups. Figure 4.19
reports the average times (in milliseconds) to decide satisfaction and compute the rea-
sons for non-satisfaction, for the two setups. For every size from 20 to 200 — defining the
number of components in the generated C&C model — we have computed the average
times over the 12 independent runs with the random application of the mutations.

Although the average times for the variable setup grow faster than the average times
for the fixed setup, the absolute times recorded and the chart’s growth clearly show that
C&C views verification is feasible and scales well. Moreover, in our experiments, average
and maximal times to generate a witness were 11 ms and 595 ms respectively in the first
setup, and 5 ms and 768 ms respectively in the second setup.

84 Chapter 4. Component and Connector Views Verification

The running times obtained from the example systems in Table 4.17 seem to be in line
with the times for the synthetic examples. For C&C models of sizes between 20 and 30
components (compared to 6-16 components in Table 4.17) the average running times for
verification are 0.3ms (compared to 0.1ms) and for witness generation 1.8ms (compared
to 1.8ms).

To conclude, the experiment results show that C&C views verification is feasible and
scales well. Please note that fast and scalable performance comes at no surprise, since
our algorithms are polynomial in the size of the input C&C model and views.

Threats to Validity

It is important to note that the experiment as designed only gives a rough indication
of the algorithms’ performance on real-world examples. On the one hand, the available
C&C models of the example systems from various real-world and literature sources we
reported on in Section 4.4.1 were too small to evaluate scalability. As demonstrated
by the verification times shown in Table 4.17 these cases are handled almost instantly.
On the other hand, the generated C&C models are not necessarily ones encountered
in real-world systems. To address this bias we have made the C&C models generation
parametrized and set the parameters to plausible values encountered in real-world C&C
models, e.g., up to eight subcomponents per component. To give a closer estimate of the
performance on real-world models these parameters should be validated on real-world
examples.

To experiment with satisfied and non-satisfied views, we have created seven muta-
tions that again are not necessarily the mutations resulting in non-satisfaction reasons
encountered in real-world C&C models and views. We tried to address this issue by
randomly choosing mutations and running the experiment multiple times. Thus, our
results on the performance of the algorithm are only an indication for the performance
on real-world examples.

4.4.3. Helpfulness of Generated Witnesses
We conducted a small user study to examine two high-level research questions: [RC1] is
C&C verification difficult to do manually, and [RC2] are witnesses for satisfaction/non-
satisfaction helpful. The study included a two-pages introduction on C&C views to
read, 3 verification questions (each presenting one C&C view), and 3 questions about
the usefulness of a set of witnesses that was presented to the user, all referring to a
common C&C model. Two of the views in the first 3 questions had 2 non-satisfaction
reasons each. The questions of each group were presented to the users in a random order
to avoid a bias due to learning effect.

The study subjects were all CS graduate students or professional software engineers,
all with some modeling background but no specific previous knowledge on our work
on C&C views. No grades or other reward was involved. The study was anonymous
and conducted online. We obtained complete set of answers from 17 subjects. The
complete questionnaire and reference materials provided to the subjects are available in

4.4. Implementation and Evaluation 85

Appendix H. The complete raw data including times for answering all questions and the
comments of the subjects are available from [wwwu].

To answer [RC1] we measured the time spent on the first three questions, the correct-
ness of the answers, and their completeness (identifying all reasons for non-satisfaction,
where applicable). We also asked the subjects to report about their confidence in the
correctness and completeness of their answers. The average (median) time to answer a
verification question was 3.4 (2.9) minutes. 9 subjects (53%) identified non-satisfaction
correctly and found all non-satisfaction reasons. 8 subjects (47%) missed at least one
reason for non-satisfaction. Only 13 subjects (76%) identified satisfaction correctly (4
have ‘identified’ wrong non-satisfaction reasons). Only 3 subjects (18%) reported full
confidence in the correctness of their answers and only 4 reported full confidence that
they have identified all non-satisfaction reasons.

These results show that manual C&C verification is time-consuming and error prone.
This justifies the need for automation.

To answer [RC2] we presented satisfaction results and witnesses (same C&C model as
in the first three questions, but different views) to the subjects and asked them about
the helpfulness of the witnesses. On average, 11.6 subjects (68%) reported to have found
the witnesses we presented to them helpful or very helpful (top 2 out of 5 options). Only
two subjects never found any of the witnesses helpful. 15 subjects found the witnesses
helpful at least once.

These results are promising. Further investigation is required in order to identify
which types of witnesses are more helpful than others, and how to improve witnesses
helpfulness. Ideas for improvement we have received from the study subjects and other
users include alternative witness constructions (e.g., not include the least common parent
component), different witness presentation (e.g., using animation, or by visually over-
laying the witness and the model to prevent the need for context switching), and richer
textual explanations (e.g., adding text explicitly describing the elements shown in the
witness).

Threats to Validity

Our set of 17 subjects is small and heterogeneous, e.g., in terms of previous modeling
experience. The study involved a single small model (the pump station model) and only
3 verification questions and 3 witness usefulness questions based on views that we have
designed. In the second part, we did not distinguish between different kinds of witnesses
although their usefulness may vary. We also did not check for a correlation between the
correctness of the answers in the first part to the perceived usefulness of witnesses in
the second part. In the future we plan a larger study with more control on participants
background and with more questions.

4.4.4. Lessons Learned
In our case studies running times for checking satisfaction, including parsing and witness
generation for satisfaction or non-satisfaction, were in all cases very fast. For example,

86 Chapter 4. Component and Connector Views Verification

running all the checks for the four example systems from Section 4.4.1 took less than
1 second, in total on an ordinary laptop computer. This seems to be in line with the
results of our synthetic experiments of performance and scalability.

The number of witnesses computed for all C&C views in all our four example systems
was at most 4. We believe that this is due to the relatively small number of design
decisions typically documented in a single view. The underspecification mechanisms of
C&C views allow to focus on only few elements per view to support comprehension.
Another reason for the small number of witnesses is that by our definition, all checks for
non-satisfaction reasons — except for missing components — ignore components in the
view that are not shown in the C&C model.

On a more qualitative note, we observed that the generated natural language text was
very helpful to us and to some colleagues we have presented our work to in understanding
the reasons for non-satisfaction. Moreover, we found that witnesses with fewer elements
make it easier for us to capture the reason for non-satisfaction. As a result, we have
changed our initial witness generation for the interface mismatch case, from one that
consists of the complete interface of the relevant component, to one that consists of only
the port in question (as shown in Figure 4.8). We applied this change only to the port
mismatch cases direction and type. It is not applicable to the missing port case since it
requires showing all ports.

In a small user study we found out that manual verification of C&C models is a
time-consuming and error prone task. Also, 15 out of 17 subjects found the generated
witnesses helpful at least once for understanding positive and negative results of C&C
views verification.

Finally, in almost all cases, we were able to express the structural properties we
wanted to express using views and specifications. Only in one instance, in the robotic
arm case study, we were not able to express a structural requirement, specifically, that
no component should have the component Sensor and the component Actuator as
direct subcomponents. Expressing this property requires quantification, which is not
available in C&C views. As future work, one may suggest to define a structural C&C
model specification language that supports quantification.

Additional experience and evaluation of our work with more case study C&C models
and with the engineers that actually developed these C&C models will be valuable in
further evaluating the usefulness and the contribution of our work to software architects.

4.5. Discussion

We now discuss several advanced topics and the strengths and limitations of our work.

4.5.1. Alternative Witnesses

One may consider generating witnesses for C&C views satisfaction and non-satisfaction
that are different than the ones we currently generate.

4.5. Discussion 87

One alternative relates to the witness we currently generate for a missing component.
When the view includes a component that is not present in the C&C model, we currently
generate a witness which is an empty view, annotated with a natural language description
about the missing component. Instead, it may be valuable to generate a witness that
shows the (minimal) subsystem of the C&C model in which the missing component
should have been included. The minimal subsystem of a component c missing in the
C&C model m is the most direct parent component of c in the view that also appears in
m or the top component of m itself. This alternative may be considered a better fit with
the characteristics of witnesses discussed in Section 4.3.2. In our current implementation
we chose the empty view as a natural witness for a missing component. The algorithms
in Procedure 7 may easily be adapted to generate alternative witnesses.

Further experience with witnesses for C&C views satisfaction and non-satisfaction is
required in order to better evaluate the advantages and disadvantages of these alterna-
tives.

4.5.2. Minimal Witnesses
The generated witnesses for non-satisfaction are minimal in terms of number of com-
ponents, connectors, and ports, because there is only one possible witness to construct
in each case, by definition. For the witness of satisfaction, minimality is more subtle,
because, as we explain below, there may be more than one possible correct witness.

As explained in Section 4.3.3, our algorithm generates witnesses for satisfaction that
are minimal with regard to the number of components and number of concrete chains of
connectors that correspond to the abstract connectors that appear in the view. However,
the witnesses we generate may not be minimal with regard to the total number of
connectors. That is, if the C&C model includes several concrete chains of connectors
that satisfy one abstract connector, our algorithm will add only one of these chains to
the witness, but not necessarily the shortest one. Also, computing a shortest chain of
connectors for each abstract connector does not guarantee a global minimum either,
because in a minimal solution, some concrete connectors may potentially belong to
multiple chains, i.e., be used to implement multiple abstract connectors.

Computing minimal witnesses for satisfaction is possible because the number of chains
of connectors matching each abstract connector is finite and all combinations could be
enumerated to find a global minimum. The computation is however more complex and
computationally expensive. In the current implementation we chose a fast computation
based on the heuristics described above rather than a slower computation of a global
minimum.

4.5.3. Presentation Alternatives
The concrete presentation of witnesses may affect their effectiveness in explaining the
reasons for satisfaction or non-satisfaction. We consider two kinds of presentations for the
generated witnesses. First, a stand-alone representation consisting of the subset of the
C&C model included in the witness. Second, alternatively, a highlighted representation

88 Chapter 4. Component and Connector Views Verification

of the components and connectors of the witness on top of the concrete syntax of the
C&C model document itself.

The advantage of the first representation is that it is typically small relative to the
larger, complete C&C model, and thus easy to read and understand. The advantage
of the second representation is that it does not require context switching; the view is
displayed on top of the C&C model. However, this representation may not be suitable
for large C&C models. Finally, the choice between the two presentations may also be
related to whether we use a visual or a textual concrete syntax.

Our current implementation follows the first alternative.

4.5.4. Additional Abstraction Mechanisms

C&C views provide means for underspecification: not showing all components, not show-
ing all ports and connectors, connecting ports or components using abstract connectors
rather than chains of concrete connectors etc. Checking whether an C&C model satis-
fies a view may be viewed as checking whether the abstraction employed by the view is
consistent with the C&C model.

One may consider applying abstraction mechanisms to the satisfaction problem, be-
yond the ones already embedded in C&C views. First, a connectors abstraction, where
the satisfaction relation ignores all abstract and concrete connectors, and thus only
checks for the existence of components, their ports, and their hierarchical configuration.
Second, a ports abstraction, where the satisfaction relation ignores not only the connec-
tors but also the ports. Finally, one may consider an even stronger abstraction, which
ignores the hierarchical configuration.

Checking for satisfaction under these abstractions may be useful in some situations.
Specifically, if the C&C model and view are very large, to the extent that it takes much
time to check the former against the latter, one may use the abstractions suggested
above as a faster, sound, but incomplete, approximation to satisfaction. For example, if
an C&C model does not satisfy a view under the ports abstraction, i.e., when ignoring
connectors and ports, then it clearly does not satisfy it without this abstraction. This
means that the analysis with the abstraction is sound. On the other hand, if the C&C
model satisfies a view under the ports abstraction, it may well be the case that it does
not satisfy it without the abstraction because of missing connections. This means that
the analysis with the abstraction is incomplete.

4.5.5. Identification of Components by Name

Our present work assumes a common name space for the C&C model and the view and
considers an element’s (component or port) name to represent its unique identity. In
practice, it may be the case that different views use different names to denote the ‘same’
components or ports. A similar problem arises when components are renamed in the
C&C model but not in existing views during the evolution of the modeled system. This
will of course limit the value of the analysis.

4.5. Discussion 89

Indeed, some works in the area of differencing and merging of models [XS07, KRPP09]
use name matching based on lexical and structural similarity or other matching heuris-
tics to find correspondence between two models. These techniques may be applied to
component and connector architectures.

Thus, it may be possible to integrate a matching heuristics, based on lexical or struc-
tural similarity as a pre-processing step, before checking satisfaction. The input for the
satisfaction algorithm will consist of the C&C model and the view after the different
names that have been identified as referring to the same components or ports have been
unified.

4.5.6. Verification of C&C Views Specification

The verification of a C&C model against a single C&C view can be extended to the
verification of a C&C views specification as defined in Definition 3.9. Checking the
satisfaction of a C&C views specification S by a C&C model m can be done by evaluating
for every view v ∈ V used in the specification whether m ⊧ v. The Boolean results of
the checks m ⊧ v then replace the view names in S as defined in Definition 3.10 of C&C
views specification satisfaction. The remaining Boolean expression S[v/(m ⊧ v)]v∈V can
be evaluated in linear time.

The verification of a C&C model against a C&C views specifications thus requires a
number of executions of the polynomial-time C&C views verification algorithm which is
linear in the number of C&C views in the specification.

4.5.7. Applications of C&C Views Verification

We suggest example usage scenarios of C&C views in general in Section 3.2.1. One can
use our work on C&C views verification to support maintaining a verified documentation
of the C&C model using C&C views. Furthermore, our work supports an iterative ‘check,
debug, fix’ cycle for C&C models and views. Given a set of views, as a specification, and
a candidate C&C model representing the implementation, we check whether the model
satisfies all the views. If it does not satisfy a view, we browse the generated witnesses
and attempt to change the C&C model so that it satisfies the views. After the fix, we
check again. We iterate until we find a C&C model that satisfies all the views.

Second, we may extend our views language with positive and negative modalities fol-
lowing similar modal extensions in other modeling languages [HM08, MRR11]. Positive
views are ones that the C&C model should satisfy. Negative views are ones that the C&C
model should not satisfy. Given a candidate version of the architecture, one can check it
against all positive and negative views. The extension with modalities is an alternative
to the views specifications as introduced in Section 3.5. While positive and negative
modalities can also be expressed by views specifications, it might be more convenient for
an engineer to directly add the modalities to the views.

90 Chapter 4. Component and Connector Views Verification

4.6. Related Work
We discuss related work on various analyses related to C&C views, on structural abstrac-
tion mechanisms in ADLs, and on the relationships between structural and behavioral
architectural views in the context of views verification. We have already discussed dif-
ferent usages of the term view in the modeling and software architecture literature in
Section 3.7.5.

The key distinctive features of our work on C&C views verification are the focus on
structure, the crosscutting ‘by example’ and partial characteristics of the views, the
expressive power and formal nature of the specification approach, and the generation of
witnesses to justify the results of the automated analysis.

4.6.1. Structural Abstraction and Verification in ADLs

A number of architecture description languages (ADLs) have been suggested in the
literature (for a classification and survey see, e.g., [MT00] and [MDT07]). We discuss
three widely used standard ADLs below. We repeat some of their structural specification
mechanism mentioned in Section 3.7.5 and focus on their verification capabilities.

Armani and Acme

Armani [Mon98, Mon99] is a framework to define architectural styles and design rules
for architectures. Armani is based on the ADL Acme [GMW00, GMW97]. An engineer
can define styles and rules for systems using a constraint language based on first or-
der predicate logic. Example predicates include connected(c1, c2) and reachable(c1, c2),
which assert connectedness and transitive connectedness of components c1 and c2. Ar-
mani’s constraints are evaluated over concrete architectures. The constraint language is
integrated into AcmeStudio [wwwy] and constraints are automatically evaluated while
editing architectures.

Acme’s predicate language is in some ways more expressive than C&C views, as it has
the flexibility of first order logic and allows quantification over components, connectors,
ports, and roles. However, as far as we understand, the language neither supports
the transitive subcomponent relation nor supports constructs to crosscut the bounds
of the traditional implementation-based hierarchical decomposition of systems to their
subsystems, types to subtypes etc.

Thus, while C&C views are less flexible than Acme’s predicate language, it pro-
motes a ‘by example’, easy to read and write specification style, and, significantly,
provides natural means for abstraction, writing specifications that crosscut the tradi-
tional, implementation-oriented hierarchical decomposition of systems to subsystems,
required to represent the concerns of interest of and the incomplete knowledge about
the structure of the system available to different stakeholders involved in the software
development process.

It may be possible to express the semantics of an C&C view as an Acme invariant.
However, this invariant may be very long and difficult to understand relative to the

4.6. Related Work 91

succinctness and intuitive nature of the view. Moreover, in case of non-satisfaction,
C&C views verification provides a set of witnesses. We have not seen similar witnesses
for non-satisfaction of Armani invariants in AcmeStudio.

More recently, Bhave et al. [BKGS11] have extended AcmeStudio to support structural
consistency between heterogeneous models as architectural views, specifically for cyber-
physical systems. View consistency is checked by verifying if a morphism exists between
two typed graphs. The work mentions reporting back to the user so she is able to
“spot the inconsistent elements” as future work. In addition, the work discusses a single
case study and provides no performance and scalability results. We currently do not
deal with heterogeneous models, but instead focus on structural properties and on the
abstraction of direct containment and connectivity. Unlike this work, we do report on
several example systems, and performance results that examine the usefulness of our
solution.

AADL

AADL (Architecture Analysis Design Language) [wwwa, FGH06] is an architecture de-
scription language. AADL is standardized by the Society for Automotive Engineers
(SAE). To a certain extent, the language includes under-specification mechanisms simi-
lar to the ones available in C&C views. For example, AADL supports specifications with
incomplete information of port types and with abstract flows, which show the source and
sink of flows but not their complete path through the system. Abstract flows are similar
to the abstract connectors in C&C views. However, unlike the abstract connectors of
C&C views, AADL flows refer to control flow rather than to data flow. In this sense
C&C views may be seen as complementing AADL. We have not found any previous work
on checking the structure of AADL architectures against specifications (made of some
kind of views or by other means).

SysML

SysML [Obj12b, Wei07] is a general-purpose modeling language for systems engineering
applications. The language is defined as an extension of a subset of the Unified Modeling
Language (UML) [Obj12a], using UML’s profiling mechanism. Previous work in our
group [GHK+08b, GHK+08a] described the use of views in the context of product lines,
with a focus on the automotive domain, using SysML’s internal block diagrams. SysML’s
internal block diagrams provide under-specification mechanisms, for example, to specify
abstract connectors similar to the abstract connectors of C&C views. However, the
question of verifying the structure of a C&C model against a view is discussed neither
in these works nor in any other SysML related work we have found.

Behjati et al. [BYN+11] have encoded the AADL as a profile on top of SysML. The
main purpose of their work is to make commercial tools that support SysML available
for creating AADL models and in turn benefit from the analysis and modeling features
of AADL. This integration of AADL and SysML may be a good starting point for an
integration of C&C views with both languages and with standard, available tools.

92 Chapter 4. Component and Connector Views Verification

4.6.2. Structural and Behavioral Architectural Views
Our present work on C&C views is intentionally limited to a structural viewpoint. Cur-
rently, behavior is abstracted away. Most ADLs, however, combine structure and be-
havior.

Many behavioral specification languages exist and some of them have related views.
For example, linear temporal logic (LTL) [MP92, Pnu77] is a behavioral specification
language, and scenarios, expressed, e.g., using live sequence charts (LSC) [DH01, HM08],
may be considered as related behavioral views. As another example, in SysML, behavior
is specified using activity diagrams and state machine diagrams.

In the behavioral case, a system’s behavior is typically modeled using a state machine,
and the behavioral properties this state machine needs to satisfy are expressed using LTL
formulas or scenarios. Model-checking techniques [BK08] can be used to check whether
a state machine satisfies a behavioral property and provide a counterexample in case
of a negative answer [CGP99]. In the structural case, which is the focus of our work,
the structure of a system is described using a C&C model and the properties it needs
to satisfy are expressed using C&C views. The algorithm presented in Section 4.3 is
used to check whether a C&C model satisfies a view. The witnesses we generate in case
of non-satisfaction may be considered as the structural analogue to counterexamples
in behavioral model checking; as in the behavioral case, where counterexamples may
themselves be viewed as scenarios (at least in the context of LTL model checking). In the
structural case we focus on with C&C views verification, witnesses for non-satisfaction
are themselves views.

An interesting and challenging possible direction for future work is to combine the
structural and behavioral viewpoints into a single views language, with a related formal
verification technique.

To conclude this section, as the discussions above show, to the best of our knowledge,
no previous work is directly comparable to C&C views verification and witness generation
for the structure of C&C architectures.

Chapter 5.

Component and Connector Model Synthesis
from Views Specifications

C&C views are partial models of a logical software architecture. They represent the
concerns of interest of and the incomplete knowledge available to different stakehold-
ers involved in a software development process. As such, they may be related to the
participants in a specific use case or scenario and thus typically crosscut the traditional
hierarchical, implementation-oriented decomposition of systems to subsystems.

A system’s C&C architecture is typically complex; it is not designed by a single archi-
tect and is not completely described in a single document. Moreover, some C&C models
may be bound to reuse library or third-party components designed and documented
elsewhere. Thus, we consider a setup where many different, incomplete, relatively small
views of the C&C model are provided by architects responsible for subsystems, for the
implementation of specific features, use cases, or functionality, which crosscut the bound-
aries of components. Such views may be developed by separate, distributed teams, each
focusing on only some aspects of the system and its development and having only partial
knowledge of the system as a whole. Moreover, a team may have several, alternative
solutions that address the same concern, and some knowledge about designs that must
not be used. To move forward in the development process and to enable implemen-
tation, these partial views and their design rationales should be integrated and then
realized into a single, complete C&C model of the software architecture. However, such
an integration is a complex and challenging task.

In this chapter we introduce the C&C model synthesis problem: constructing a C&C
model from a declarative specification made of C&C views, representing mandatory,
alternative, and negative structural properties. The modalities of the C&C views are
specified in C&C views specifications as introduced in Section 3.5.

The C&C views synthesis problem is NP-hard. We solve it, in a bounded scope, using a
reduction to SAT, via Alloy [Jac06] (since the problem is NP-hard, the use of Alloy/SAT
to solve it is justified). If a satisfying assignment is found by Alloy, we translate it back
into a complete C&C model and present it to the architect. Our solution for synthesizing
C&C models is extensible. We demonstrate how the solution supports variability in the
views language and provide support for library components.

We have reported on parts of this work in [MRR13].

94 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Chapter outline and contributions

Section 5.1 illustrates an example for synthesizing a C&C model from multiple C&C
views. We define the C&C views synthesis problem in Section 5.2 and show that the
problem is NP-hard. Our main contribution of this chapter is an extensible formalization
of the C&C views synthesis problem in Alloy presented in Section 5.3. Extensions of the
C&C views synthesis for handling new features of the C&C views language are defined in
Section 5.4. Section 5.5 presents extensions for synthesizing C&C models that conform
to architectural styles.

We present our implementation of C&C views synthesis and an evaluation based on
applying it to four example systems in Section 5.6. Section 5.7 discusses strengths and
weaknesses of our solution and implementation for solving the synthesis problem. We
examine related work in Section 5.8.

5.1. Component and Connector Model Synthesis Example
We present an overview of C&C views synthesis using an example, adopted from an
industrial model of a robotic arm1, which is typical to a cyber-physical or an embedded
system. We focus here on a single joint of this arm.

5.1.1. Synthesizing a C&C Model

Imagine a scenario where a team of engineers is developing the C&C model of the robotic
arm based on C&C views documenting the partial knowledge available and the design
decisions made by the team.

One of the engineers creates the view RJFunction shown in Figure 5.1 (a) to describe
the system’s C&C model from the point of view of the team responsible for its func-
tion: the RotationalJoint contains the component Cylinder and the component
Sensor that is connected to the component Actuator. As a C&C view, RJFunc-
tion is partial, so it may not contain all components of the system. Moreover, while
the components shown inside the joint must actually be inside the joint, they may be
nested within some of its subcomponents (not shown in this view). On the other hand,
the view specifies that the three subcomponents, Cylinder, Sensor, and Actuator
are not nested within one another. Finally, the component Sensor and the component
Actuator must be connected, but their connection is not necessarily direct.

The senior architect initially created the view RJStructure shown in Figure 5.1 (b)
to provide a high-level description of the RotationalJoint structure, some of the
components it contains and the connections between them. In this C&C view the ar-
chitect describes her knowledge of the joint. The view shows the name angle and type
float of an incoming port of the component Cylinder for a connection (not neces-
sarily direct) coming from the component Body. The architect decided to document the

1We thank Ali Muhammad, Remote Operation and Virtual Reality Group, VTT Tampere, Finland,
for allowing us to use this model.

5.1. Component and Connector Model Synthesis Example 95

detailed information of the port of the component Cylinder, while she laid less focus
on other connections, e.g., from the component ServoValve to the component Body.

%��������8���

������

��������

����
��

%��������8���

����
�����$�&��$� '�
�

1����������

����������&�����	
� ����������&���������

"�# "�#

Figure 5.1.: The C&C views RJFunction and RJStructure documenting partial
knowledge available to the engineers. Please note that the implementation
details about the connection between the components Sensor and Actu-
ator are not given in the view RJFunction, e.g., the source and target
ports do not appear in the view.

When specifying the structure of the component Body the team had a long discus-
sion about the placement of the component Sensor. The C&C views BodySensorIn
and BodySensorOut shown in Figure 5.2 (a) and (b) describe two alternatives for
the decomposition of the component Body with focus on its internal structure. The
first specifies four subcomponents of the component Body (not necessarily direct sub-
components, not necessarily all of them) and the connections between them (again, not
necessarily all connections, not necessarily direct ones). The second view documents the
alternative, where the component Sensor is outside the component Body.

'�
�

������

��������

8���9����

8���
1�

1
'�
�

������

��������

8���9����

8���

1�
1

����������
������
��� ����������
������
�'��

"�# "�#

Figure 5.2.: The C&C views BodySensorIn and BodySensorOut showing two alter-
native designs with different placements of the component Sensor.

The team’s expert for sensors added the C&C view SensorConnections shown in

96 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Figure 5.3 (a) to document her knowledge about the sensor component and its outgoing
ports. The view shows that the component Sensor is connected to the component
Cylinder via an output port named val2 of type int and to a component named
JointLimiter via the output port val1 of type float. Again, the C&C view is
partial, thus in the complete C&C model the connections shown may be indirect and
Sensor may be connected to additional components.

Finally, the sensor expert also added the C&C view ASDependence shown in Fig-
ure 5.3 (b), which shows the component Actuator and the component Sensor inside
the component Body. It describes some domain knowledge concerning a requirement for
independence between the component Actuator and the component Sensor. Thus,
it is used in the specification (see below) in a negated form, to not allow a C&C model
where the component Actuator and the component Sensor are both inside the same
component, in this case, Body.

������

8���9����

����
��

1�����$���

�� $�� '�
�

������ ��������

�������������
��
�����	
�� �����������(���������

"�# "�#

Figure 5.3.: The C&C view SensorConnections documents details about the con-
nections starting from the component Sensor. The C&C view ASDepen-
dence depicts a design where the components Sensor and Actuator are
both contained in the component Body.

After all C&C views have been collected from the team members the senior architect
compiles the views specification S1 to capture the views about the function and struc-
ture of the joint, the alternative designs regarding sensor placement, the details about
the sensor connections, and the forbidden design where the components Sensor and
Actuator are both contained inside the component Body:

S1 = RJFunction ∧ RJStructure ∧
(BodySensorIn ∨ BodySensorOut) ∧

SensorConnections ∧ ¬ASDependence.

Is there a C&C model that satisfies this specification? Our work provides a fully
automated and constructive answer to this question. Specifically, given this specification,
our tool provides a positive answer and outputs the C&C model shown in Figure 5.4. For
readability, we omit some port names, types, and internal connectors from the diagram.

5.1. Component and Connector Model Synthesis Example 97

%��������8���

����
��

���$�&��$�

1�����$���

�� 1

�� $��

1����������

������

'�
�

8���9����

�������� 8���

��������	��$

Figure 5.4.: A C&C model with 20 ports satisfying the C&C views specification S1.

5.1.2. An Unsatisfiable Specification

The member of another engineering team suggests to add a C&C view used in a previous
project. The additional view OldDesign is shown in Figure 5.5. The view specifies
that the component Actuator is connected to the component Cylinder and that
both components are contained inside the component Body (although not necessarily
directly). It also depicts the name angle and type int of the component Cylinder’s
incoming port for a connection (not necessarily direct) coming from the component
Actuator.

'�
�

�������� ����
��
�� �������

���������'��(��	�

Figure 5.5.: The C&C view OldDesign describes the relation between components Ac-
tuator and Cylinder.

Is there a C&C model that satisfies the revised specification S2 (consisting of S1 after
adding OldDesign as another conjunct)?

S2 = RJFunction ∧ RJStructure ∧
(BodySensorIn ∨ BodySensorOut) ∧
SensorConnections ∧ ¬ASDependence ∧ OldDesign

98 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Our tool identifies that S2 is unsatisfiable and informs that no C&C model exists
that satisfies S2. One reason relates to the containment relation between the component
Body and the component Cylinder: according to the view RJStructure, the two
components are not contained within one another; according to the view OldDesign,
the latter is contained within the former. Another reason is the type conflict float vs.
int for the component Cylinder’s incoming port angle.

5.2. Synthesis Problem Definition
The C&C model synthesis problem for a C&C views specification is defined in Def-
inition 5.6. The input for the synthesis problem is a set of C&C views (defined in
Definition 3.6) and a views specification as defined in Section 3.5. The output of the
synthesis problem is a C&C model that satisfies the views specification, if one exists.

Definition 5.6 (C&C views synthesis problem). Given a C&C views specification S over
a set of views views, find a C&C model m such that m ⊧ S if such a model exists. △

5.2.1. Synthesis from Views Specifications is NP-hard
We show that the C&C views synthesis problem for C&C views (even without connec-
tors) is NP-hard, using a reduction from 3SAT [GJ79]. An instance of the 3SAT problem
is a propositional formula given in conjunctive normal form (conjunction over clauses
of disjunction) with at most three literals per clause. A literal is the possibly negated
name of a Boolean variable. The decision problem is to decide whether there exists an
assignment of the Boolean variables that satisfies the formula. This problem is known
to be NP-complete [GJ79]. If an NP-complete problem can be reduced by a polynomial
transformation to another problem the latter is NP-hard.

The main idea behind our reduction of 3SAT to the C&C views synthesis problem is
to translate each Boolean variable into two views for representing positive and negative
evaluations of the variable as shown in Figure 5.7. No C&C model can satisfy both views
since they contain a contradiction in the hierarchy of the two components xTi and xFi
contained in the views, i.e., ∄m ∶ m ⊧ vTi ∧m ⊧ vTi. We then express the 3SAT problem
in terms of these views as a C&C views synthesis problem.

Lemma 5.8. The C&C views synthesis problem defined in Definition 5.6 is NP-hard.

Proof. We show that the C&C views synthesis problem is NP-hard by a reduction of the
3SAT problem to the C&C views synthesis problem.

Given a 3SAT formula over variables x1, . . . , xn in clauses c1, . . . , cm we construct the
following C&C views specification. First, for each variable xi we define two components
xTi and xFi and two views vTi and vFi such that in vTi, the component xTi contains
the component xFi, and in vFi, the component xFi contains the component xTi (see
Figure 5.7). Intuitively, vTi (vFi) represents a positive (negative) valuation for xi. Ob-
viously, a given C&C model can only satisfy one of them. Second, for each clause cj we
create a views clause cVj that includes a disjunction of up to three views, vTi or vFi for

5.2. Synthesis Problem Definition 99

*�

����������)	 �����������	

*:

*:

*�

�����������������!� ���������������������!�

"�# "�#

Figure 5.7.: Translation of every variable xi to views vTi and vFi for representing the
positive and negative evaluations of variables.

each variable xi in cj : if xi appears positive in cj we use vTi, if it appears negated we
use vFi.

We create a propositional formula for the C&C views specification consisting of a
conjunction of the views disjunction vTi ∨ vFi for all 1 ≤ i ≤ n, and the views clauses
cVj for all 1 ≤ j ≤ m:

n

⋀
i=1
(vTi ∨ vFi) ∧

m

⋀
j=1

cVj (5.1)

The first part makes sure that any satisfying C&C model encodes a valuation for every
variable of the 3SAT formula. The second part encodes the satisfaction constraints of
the 3SAT formula on its variables. Thus, the 3SAT formula has an assignment if and
only if the specification has a satisfying C&C model.

The generation of the first part of expression (5.1) is linear in the number of variables
x1, . . . , xn of the 3SAT problem. The generation of the second part of expression (5.1)
is linear in the number of clauses c1, . . . , cm of the 3SAT problem.

The linear reduction of the NP-hard problem 3SAT to the C&C views synthesis prob-
lem shows that C&C views synthesis is NP-hard.

In Chapter 4 we have presented a verification algorithm with polynomial time com-
plexity. It is important to note that this algorithm can verify a given C&C model
against a C&C views specification in polynomial time as discussed in Section 4.5.6 while
synthesizing a satisfying C&C model is NP-hard.

We present a solution to the synthesis problem by a reduction to a SAT solver via the
Alloy Analyzer. Our experiments show that despite the non-polynomial complexity, we
can synthesize C&C models with 5-15 components from 5-10 views in under a minute
on an ordinary desktop computer.

100 Chapter 5. Component and Connector Model Synthesis from Views Specifications

5.3. Component and Connector Model Synthesis

Our solution for solving C&C model synthesis is based on a reduction of the synthesis
problem to a model finding problem for the Alloy Analyzer. The Alloy Analyzer is able
to analyze modules written in the Alloy language based on first order relational logic.
Alloy is a model finder that is complete only in a bounded scope. Thus, our solution
to C&C views synthesis is also restricted to a user defined upper bound of the numbers
of elements in the C&C model. Due to the nature of our solution a user only needs
to define an upper bound for the number of ports and the number of port names (see
Section 5.7.1).

	�������
�5��$���

������
��
���

������
�������

4��������
����������
"������5����#

�5����
��
����������

1��� �������

�� �������

�5��$���
����1�����

9������
����������

*	����+

	�������
�5����
��

*��������+

*	����+

*��������+

*	����+

*��������+

�����������
�1 $��� ��
���
�����

*��������+

Figure 5.9.: An illustration of our approach to C&C model synthesis. The rectangular
boxes represent the main computation steps. The translation of C&C views
into predicates is described in Section 5.3.4. The translation of Alloy in-
stances into C&C models is described in Section 5.3.6. The optional input
of library components is described in Section 5.4.2.

Our approach is illustrated in Figure 5.9. The input to the synthesis engine is a
set of views, the views specification, and optional definitions of library components.
We translate each view into a predicate over a C&C model domain expressed in Alloy.
The views specification is translated into an expression combining the generated view
predicates into an integrated Alloy module. We then run the Alloy Analyzer on the
generated module. If an instance is found, we translate this instance into an abstract
syntax tree using MontiArc’s APIs and use the pretty printer generated by MontiCore
to print the MontiArc model of a C&C model satisfying the views specification.

The formulation of the C&C views synthesis problem in Alloy consists of four parts:
a fixed set of signatures and facts describing a metamodel for C&C models inside Alloy
(see Section 5.3.2), a fixed set of predicates used as a language to specify the semantics
of C&C views as predicates over satisfying C&C models (see Section 5.3.3), a set of
signatures and predicates derived from the specific input views (see Section 5.3.4), and
the specification’s propositional formula (see Section 5.3.5).

5.3. Component and Connector Model Synthesis 101

5.3.1. Alloy and the Alloy Analyzer

Alloy refers to both, a textual specification language to define Alloy modules [Jac06] and
the Alloy Analyzer [wwwb], a tool that offers analysis support for these modules.

The Alloy specification language is based on relational first-order logic. The basic
elements of this logic are sets and relations. An Alloy module consists of signature
declarations, predicates, functions, facts, and commands. A signature declaration may
contain the signature’s cardinality and define generalization or subset relations to other
signatures. As an example, consider the Alloy module alloyExample in Listing 5.10.
The singleton signatures IN and OUT (ll. 4-5) extend the abstract signature Direction
(l. 3).

Alloy

1 module alloyExample
2

3 abstract sig Direction {}
4 one sig IN extends Direction{}
5 one sig OUT extends Direction{}
6

7 sig Name {}
8

9 sig Port {
10 name: one Name,
11 dir: one Direction
12 }
13

14 fact uniquePortNames {
15 all p1, p2 : Port |
16 p1.name = p2.name implies p1 = p2
17 }
18

19 run {} for 5 but exactly 3 Port

Listing 5.10: A simple Alloy example of Ports with unique names and a direction.

Signature declarations may also contain fields with multiplicities referring to other
signatures. The signature Port has a field name whose value is exactly one instance of
the signature Name (see l. 10, Listing 5.10). Each signature denotes a set of instances
called atoms. Each field represents a relation between the atoms of its parent signature
and the atoms of the field’s type. Relations are thus sets of tuples of atoms.

Alloy uses facts to constrain the possible valuations of signatures and relations. The
fact uniquePortNames (ll. 14-17) quantifies over all port atoms p1 and p2 of the
signature Port (l. 15). The body of the quantification states that equal names of port
p1 and p2 imply that the ports are identical (l. 16). The notation p1.name describes
the left relational join of the relation name ⊆ Port × Name with the singleton relation
{p1} ⊆ Port, which in this case yields a single atom from the set denoted by the

102 Chapter 5. Component and Connector Model Synthesis from Views Specifications

signature Name.
Predicates are parametrized constraints, which can be included in other predicates or

facts. Functions may have parameters and return atoms or sets of atoms. A complete
language reference is given in [Jac06]2.

The Alloy Analyzer is a fully automated constraint solver for Alloy modules. To
perform analysis for finding models that satisfy or violate predicates the search space
has to be bounded by the user. This bound is set for every signature and thus also
implies bounds on all relations. In the example in Listing 5.10 the run command in line
19 bounds the number of names to any number from 0 to 5 and the number of ports to
exactly 3.

The Alloy Analyzer translates the bounded relational problem into a propositional for-
mula and solves it using a SAT solver [GKSS08]. This approach has the advantage, that
problems formulated in first order relational logic which is in general undecidable [HR04]
can be solved in a bounded scope where the problems are decidable. A disadvantage is
the limitation to a user specified bound (analysis scope). If the bound on the scope is
not known and the Alloy analyzer does not find a solution, it is unclear whether one
exists in a larger scope. The search within a scope is complete, i.e., if a solution in the
scope exists, it is found.

5.3.2. C&C Metamodel in Alloy

Our approach to solve the synthesis problem is to define the domain of valid C&C models
as an Alloy metamodel using signatures with fields (Listing 5.11) and facts (Listing 5.12
and Listing 5.13). This metamodel is generic and independent of the specific synthesis
problem. A specific synthesis problem is then an additional set of constraints that
needs to be solved by computing a valid model with respect to the constraints and the
metamodel.

Listing 5.11 shows the Alloy signatures describing the metamodel for C&C models,
e.g., the signatures Component (ll. 1-5) and Port (ll. 15-22). A component has a set
of ports, a set of sub components, and at most one parent. The parent value of a
component is derived from the subComponents relation using the fact subCompo-
nentsAndParents shown in Listing 5.12, ll. 1-4 . Ports in the metamodel have a
direction (IN or OUT), a type and a name. Connectors in C&C models are modeled as
the field receivingPorts of the signature Port (Listing 5.11, l. 19). The relation
receivingPorts relates each port to its set of immediately connected ports. Analo-
gously the field sendingPort (l. 21) relates a port to the single direct sender port, if
one exists.

The signature and field definitions, as depicted in Listing 5.11, allow the instantiation
of structures that represent invalid C&C models. We thus define a set of facts about
legal instantiations of the signatures and relations. Listing 5.12 shows facts about the
Component signature, its parent relation, and its subComponents relation. The

2The language reference is also available from http://alloy.mit.edu/alloy/documentation/
book-chapters/alloy-language-reference.pdf (accessed 04/2013)

5.3. Component and Connector Model Synthesis 103

Alloy

1 abstract sig Component {
2 ports : set Port,
3 subComponents : set Component,
4 parent : lone Component // fixed by fact subComponentsAndParents
5 }
6

7 abstract sig Direction {}
8 one sig IN extends Direction{}
9 one sig OUT extends Direction{}

10

11 sig PortName {}
12

13 sig Type {}
14

15 sig Port {
16 direction: one Direction,
17 type : one Type,
18 name: one PortName,
19 receivingPorts : set Port,
20 owner : one Component, // fixed by fact portsAndOwners
21 sendingPort : lone Port // fixed by fact portsAndSender
22 }

Listing 5.11: The Alloy signatures of the C&C model metamodel in Alloy.

Alloy

1 fact subComponentsAndParents {
2 all ch, par : Component |
3 (ch in par.subComponents iff ch.parent = par)
4 }
5

6 fact subComponentsAcyclic {
7 no comp : Component |
8 comp in comp.^subComponents
9 }

Listing 5.12: Alloy facts about components in the C&C model metamodel in Alloy.

fact subComponentsAndParents determines the single parent component of a child
component (see the well-formedness rule in Definition 2.2, Item 6). The fact subCom-
ponentsAcyclic states that no component is contained in the transitive closure of its
subcomponent relation.

Listing 5.13 contains various facts about the ports of components and the C&C model’s
connectors expressed as relations between ports. The fact portsAndOwners constrains
the field owner of ports based on the values of the field ports of a component. In a

104 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Alloy

1 fact portsAndOwners {
2 all cmp : Component | all port: cmp.ports |
3 cmp = port.owner
4 }
5

6 fact allPortsOwned {
7 Port in Component.ports
8 }
9

10 fact portsOfComponentHaveUniqueNames {
11 all c: Component | all disj p1, p2: c.ports |
12 (p1.name != p2.name)
13 }

Listing 5.13: Alloy facts about ports in the C&C model metamodel in Alloy.

legal Alloy instance representing a C&C model the ports owned by a component (relation
ports) are thus the ones that have the component as their owner (relation owner).

The fact allPortsOwned (ll. 6-8) states that all atoms of the signature Port are
contained in the join of the signature Component with the relation ports, i.e., all
instantiated ports belong to at least one component. Since we model connectors in C&C
models using a relation between ports, it is important to not have connections from
dangling ports.

The fact portsOfComponentHaveUniqueNames (ll. 10-13) ensures that no two
ports that belong to the same component have the same name (see the well-formedness
rule in Definition 2.2, Item 7).

Listing 5.14 contains facts about the relations of the signature Port that we use
to represent connectors in C&C models. The first fact portsAndSender defines the
relation sendingPort in terms of the relation receivingPorts to ensure consistency
of the relations. The second fact notConnectedToSelf states that a port is never its
own sender and never among its own receiving ports.

The fact portsConnectedLegally (ll. 13-29) states that a sending port and all its
receiving ports have the same type (l. 15) and that each pair belongs to one of the four
possible cases for connectors in C&C models. The cases are: a direct or pass-through
connection from an input to an output port (l. 17), a connector from a parent component
to an input port of one of its subcomponents (l. 20), a connector from a subcomponent
to an output port of the parent component (l. 23), and a connector from a subcomponent
to another subcomponent. These four cases correspond to the four cases listed in the
definition of C&C models (see Definition 2.2, Item 9).

5.3. Component and Connector Model Synthesis 105

Alloy

1 fact portsAndSender {
2 all disj sender, receiver: Port |
3 (sender = receiver.sendingPort iff
4 receiver in sender.receivingPorts)
5 }
6

7 fact notConnectedToSelf {
8 all p: Port |
9 p != p.sendingPort and

10 p not in p.receivingPorts
11 }
12

13 fact portsConnectedLegally {
14 all sender: Port | all receiver: (sender.receivingPorts-sender) |
15 (receiver.type = sender.type and
16 // direct connector
17 ((receiver.owner = sender.owner and sender.direction = IN
18 and receiver.direction= OUT) or
19 // toChildConnector
20 (receiver.owner in sender.owner.subComponents and
21 sender.direction = IN and receiver.direction= IN) or
22 // fromChildConnector
23 (sender.owner in receiver.owner.subComponents and
24 sender.direction = OUT and receiver.direction= OUT) or
25 // subComponentConnector
26 (receiver.owner != sender.owner and
27 sender.owner.parent = receiver.owner.parent and
28 sender.direction = OUT and receiver.direction= IN)))
29 }

Listing 5.14: Alloy facts about the representation of connectors in the C&C model
metamodel in Alloy.

5.3.3. C&C Views Semantics in Alloy

We define the semantics of each view by a translation of the view into an Alloy predicate
over valid C&C models of the metamodel described in Section 5.3.2. The predicate
for a view is composed of parametrized predicates about the relations of components,
component connectivity and component interfaces. We give an overview of these basic
predicates in Listings 5.15, 5.16, and 5.17.

Listing 5.15 shows the predicate contains parametrized with a component parent
and a component child. The predicate holds if and only if the component child is
in the transitive closure of the subcomponent relation of the component parent. The
complementary predicate independentSet (ll. 5-9) defines the semantics of a set of
components where no two components contain each other.

106 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Alloy

1 pred contains [parent: Component, child: Component] {
2 child in parent.^(subComponents)
3 }
4

5 pred independentSet [components: set Component] {
6 all disj c1, c2 : components |
7 ((no c1.subComponents) or
8 (not contains[c1, c2]))
9 }

Listing 5.15: Alloy predicates about the containment relation of components to define
the semantics of C&C views.

Alloy

1 pred connected[sender: Component, receiver: Component] {
2 some p : receiver.ports |
3 p in sender.ports.^receivingPorts
4 }
5

6 pred connectedWithPortNames[sender: Component, sendName : PortName,
7 receiver: Component, recvName: PortName] {
8 some sp : sender.ports | some rp : receiver.ports |
9 rp.name = recvName and

10 rp in sp.^receivingPorts and
11 sp.name = sendName and
12 sp in rp.^~receivingPorts
13 }
14

15 pred connectedWithReceiverPortName[sender: Component,
16 receiver: Component, recvName : PortName] {
17 some sendName : sender.ports.name |
18 connectedWithPortNames[sender, sendName, receiver, recvName]
19 }
20

21 pred connectedWithSenderPortName[sender: Component,
22 sendName : PortName, receiver: Component] {
23 some recvName : receiver.ports.name |
24 connectedWithPortNames[sender, sendName, receiver, recvName]
25 }

Listing 5.16: Alloy predicates about the connectedness of components.

Listing 5.16 contains predicates about the connectedness of components in a view.
The first predicate connected is parametrized with the components sender and re-
ceiver. The predicate holds if and only if component receiver has a port contained

5.3. Component and Connector Model Synthesis 107

in the transitive closure of the receivingPorts relation of sender’s ports. This
predicate expresses the semantics of an abstract connector with source sender and
target receiver and no information on the source or target ports.

The predicate connectedWithPortNames (ll. 6-13) is instantiated to express the
semantics of an abstract connector for which the source component and source port
as well as the target component and target port are known. The similar predicate
connectedWithReceiverPortName (ll. 15-19) handles the case where the target
port is known but not the source port. This predicate is defined by stating that there is
a port name sendName in the set of names of the set of ports of the source component
sender that satisfies the predicate connectedWithPortNames. Analogously, the
predicate connectedWithSenderPortName (ll. 21-25) handles the case where the
source port is given but not the target port.

Alloy

1 pred untypedPort[cmp: Component, dir: Direction,
2 portName: PortName] {
3 some port : cmp.ports |
4 port.direction = dir and
5 port.name = portName
6 }
7

8 pred unnamedPort[cmp: Component, dir: Direction, pType: Type] {
9 some port : cmp.ports |

10 port.direction = dir and
11 port.type = pType
12 }
13

14 pred portOfComponent[cmp: Component, dir: Direction, pType: Type,
15 portName: PortName] {
16 some port : cmp.ports |
17 port.direction = dir and
18 port.name = portName and
19 port.type = pType
20 }

Listing 5.17: Alloy predicates about the interfaces of components to define the semantics
of C&C views.

Listing 5.17 contains predicates to formulate the semantics of component interfaces
(ports of the component). The first parametrized predicate untypedPort states that
the component cmp has a port with the direction dir, and the port name portName.
The predicate unnamedPort (ll. 8-12) is analogously defined for ports with unknown
name but known type. The last predicate in Listing 5.17 can be instantiated with a
component, port direction, port type, and port name to require a port with the given
properties in every satisfying C&C model.

108 Chapter 5. Component and Connector Model Synthesis from Views Specifications

5.3.4. C&C Views Translation
The translation of views into Alloy predicates has two stages. First, we collect from the
input views the component names, port names, and types to define signatures extending
Component, PortName, and Type. These elements are collected from all views and
serve as the building blocks for instances representing valid C&C models. Second, we
translate each view into a predicate, which expresses the view’s semantics using the
predicates defined in Section 5.3.3.

An overview of the translation is given in Figure 5.18 using a formal notation for
translation rules defined in Appendix B. The rules operate on the abstract syntax of
C&C views, e.g., the line ∀view ∈ views executes the following indented lines for each
C&C view view in the set views. The result produced in the target language (here the
Alloy language) is marked by underlining the elements���������������������� of the target language
syntax. Explanations of the execution of the rules are given in Appendix B. We provide
concrete examples in the figures of most of the rules referenced in Figure 5.18, e.g.,
for rule V2 in Figure 5.20. A complete example for the translation of a C&C views
specification including all views is presented in Appendix I.

5.3. Component and Connector Model Synthesis 109

Translation Rule

Overview of the translation of a set of C&C views views into an Alloy module:

module CnCViewsSynthesis����������������������
// generic part: signatures, facts, predicates��

see Section 5.3.2 and Section 5.3.3

executeRule(V1) see Figure 5.19 for body of rule V1
// all components used in views����������������������������
executeRule(V2) see Figure 5.20 for body of rule V2
// all port names used in views���������������������������
executeRule(V3) see Figure 5.21 for body of rule V3
// all types used in views�����������������������
executeRule(V4) see Figure 5.22 for body of rule V4

∀view ∈ views ∶
pred���� view.name {��

// all components shown in the view exist������������������������������������
executeRule(P1) see Figure 5.24 for body of rule P1
// ensure all independent sets���������������������������
executeRule(P2) see Figure 5.25 for body of rule P2
// component containment relation������������������������������
executeRule(P3) see Figure 5.26 for body of rule P3
// ports of components��������������������
executeRule(P4) see Figure 5.27 for body of rule P4
// connections between components������������������������������
executeRule(P5) see Figure 5.28 for body of rule P5

}��
// synthesis predicate��������������������

see Section 5.3.5

// synthesis run command����������������������
see Section 5.3.5

Figure 5.18.: Overview of the translation of a C&C views specification into an Alloy mod-
ule. Comments above the rule executions belong to the respective rules.
The syntactical elements of the translation rules are listed in Appendix B.

110 Chapter 5. Component and Connector Model Synthesis from Views Specifications

The first rule V1 shown in Figure 5.19 states as a fact that any valid C&C model
has exactly one parent component. We have included this fact as a rule since it can
be removed for advanced synthesis cases, e.g., when synthesizing a client and server
architecture the server and all its clients are components on the top most level (see
Section 5.5.2).

Translation Rule

Translation rule:

V1 fact oneRoot {�������������
one (Component - Component.subComponents)��������������������������������������

}��

Figure 5.19.: Translation rule V1 adding a fact about a single parent component.

The second rule V2 defined in Figure 5.20 creates a signature for each component
found in any of the views. This signature has the multiplicity lone (0 or 1) since it
is not known whether all components are contained in a satisfying C&C model. The
translation of all six views shown in Figures 5.1, 5.2, and 5.3 produces the result shown
in the lower part of Figure 5.20.

Translation Rule

Translation rule:

V2 // all components used in views����������������������������∀cmp ∈ ⋃v∈views v.Cmps ∶
lone sig������� cmp.name extends Component {}������������������

Result of application to views shown in Figures 5.1, 5.2, and 5.3:

Alloy

1 // all components used in views
2 lone sig RotationalJoint extends Component {}
3 lone sig Body extends Component {}
4 lone sig Actuator extends Component {}
5 lone sig Sensor extends Component {}
6 lone sig ServoValve extends Component {}
7 lone sig Cylinder extends Component {}
8 lone sig Joint extends Component {}
9 lone sig JointLimiter extends Component {}

Figure 5.20.: Translation rule V2 for components.

5.3. Component and Connector Model Synthesis 111

The third rule V3 defined in Figure 5.21 creates a singleton signature representing each
port name occurring in any view. The result produced by translation rule V3 on the set
of views depicted in Figures 5.1, 5.2, and 5.3 is shown in the lower part of Figure 5.21.

Translation Rule

Translation rule:

V3 // all port names used in views���������������������������∀pName ∈ ⋃v∈views v.PNames ∶
one sig������ pName extends PortName {}�����������������

Result of application to views shown in Figures 5.1, 5.2, and 5.3:

Alloy

1 // all port names used in views
2 one sig val1 extends PortName {}
3 one sig f1 extends PortName {}
4 one sig val2 extends PortName {}
5 one sig f2 extends PortName {}
6 one sig angle extends PortName {}

Figure 5.21.: Translation rule V3 for port names.

The rule V4 defined in Figure 5.22 creates a singleton signature representing port
types occurring in the views. The result produced by the translation rule V4 on the set
of views depicted in Figures 5.1, 5.2, and 5.3 is shown in the lower part of Figure 5.22.

Translation Rule

Translation rule:

V4 // all types used in views�����������������������∀type ∈ ⋃v∈views v.Types ∶
one sig my_���������� type extends Type {}�������������

Result of application to views shown in Figures 5.1, 5.2, and 5.3:

Alloy

1 // all types used in views
2 one sig my_int extends Type {}
3 one sig my_float extends Type {}

Figure 5.22.: Translation rule V4 for port data types. We add the prefix "my_" to all
type names to avoid name clashes, e.g., with Alloy’s built-in signature int.

112 Chapter 5. Component and Connector Model Synthesis from Views Specifications

An overview of the translation rules that translate a single C&C view into an Alloy
predicate expressing the view’s semantics is shown in Figure 5.18. The resulting predicate
consists of statements about the existence of all components shown in the view (rule P1),
their possible independence (rule P2) and containment (rule P3), a list of statements
about the ports of components, and statements about component connections (rule P4).

As an example for the translation of a C&C view to an Alloy predicate consider the
view BodySensorOut shown in Figure 5.23.

'�
�

��������������

8���9����

8���1�
1

����������
������
�'��

Figure 5.23.: The C&C view BodySensorOut as shown in Figure 5.2 (b).

Translation rule P1 shown in Figure 5.24 adds statements for each component in the
view that it has to exist in an Alloy instance satisfying the view’s predicate.

Translation Rule

Translation rule:

P1 // all components shown in the view exist������������������������������������∀cmp ∈ view.Cmps ∶
one��� cmp.name

Result of application to view BodySensorOut shown in Figure 5.23:

Alloy

1 // all components shown in the view exist
2 one Body
3 one Actuator
4 one Sensor
5 one JointLimiter
6 one Joint

Figure 5.24.: Translation rule P1 regarding the existence of components.

Translation rule P2 shown in Figure 5.25 instantiates predicates to ensure that com-
ponents shown on the same level and contained by the same parent are enforced to be

5.3. Component and Connector Model Synthesis 113

independent, i.e., not contained in each other in any satisfying C&C model. The first
part of the translation handles the top-level components which are not contained in any
other component shown in the view. In the view BodySensorOut these are the compo-
nents Body and Sensor. The second part handles the sets of immediate subcomponents
of components shown in the view.

Translation Rule

Translation rule:

P2 // top-level components are pairwise independent��
let topCmps = {cmp ∈ view.Cmps ∣

∄cmp′ ∈ view.Cmps ∶ cmp ∈ cmp′.subs} in
independentSet[�������������� {|cmp.name|} +

��
cmp∈topCmps]��

// sibling components are pairwise independent��∀cmp ∈ view.Cmps, iSet = {sc ∣ sc ∈ cmp.subs} ≠ ∅ ∶
independentSet[�������������� {|sc.name|} +

��
sc∈iSet]��

Result of application to view BodySensorOut shown in Figure 5.23:

Alloy

1 // top-level components are pairwise independent
2 independentSet[Body + Sensor]
3 // sibbling components are pairwise independent
4 independentSet[Actuator + Joint + JointLimiter]

Figure 5.25.: Translation rule P2 regarding independence of components. The operator
{|body|}sep

elems executes the statement body with all elements from the set
elems and separates the results with the separator sep (see Appendix B).

Translation rule P3 shown in Figure 5.26 instantiates the predicate contains for
every component and its immediate subcomponents. If a component has no subcom-
ponents nothing is generated by this rule. In the C&C view BodySensorOut only
component Body has subcomponents. The corresponding instantiation of the predicate
for this component is shown in the listing at the bottom of Figure 5.26.

Translation rule P4 shown in Figure 5.27 iterates over all components of the view and
instantiates predicates based on the completeness of the port’s type and name infor-
mation. The example view BodySensorOut shows two incoming ports on component
Actuator with names f1 and f2 but with unknown types.

114 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Translation Rule

Translation rule:

P3 // component containment relation������������������������������∀parent ∈ {parent ∈ view.Cmps ∣ ∃child ∈ parent.subs} ∶
contains[�������� parent.name ,�� {|child.name|} +

��
child ∈ parent.subs]��

Result of application to view BodySensorOut shown in Figure 5.23:

Alloy

1 // containment relation
2 contains[Body, Actuator + Joint + JointLimiter]

Figure 5.26.: Translation rule P3 regarding containment of components.

Translation Rule

Translation rule:

P4 // ports of components��������������������∀cmp ∈ view.Cmps ∶
// ports of component������������������� cmp.name

∀port ∈ {port ∈ cmp.ports ∣ port.name = �} ∶
unnamedPort[�����������cmp.name ,�� port.dir ,�� port.type]��∀port ∈ {port ∈ cmp.ports ∣ port.type = �} ∶
untypedPort[�����������cmp.name ,�� port.dir ,�� port.name]��∀port ∈ {port ∈ cmp.ports ∣ port.type ≠ � ∧ port.name ≠ �} ∶
portOfComponent[���������������cmp.name ,�� port.dir ,�� port.type ,�� port.name]��

Result of application to view BodySensorOut shown in Figure 5.23:

Alloy

1 // ports of components Actuator
2 untypedPort[Actuator, IN, f1]
3 untypedPort[Actuator, IN, f2]

Figure 5.27.: Translation rule P4 regarding ports of components.

5.3. Component and Connector Model Synthesis 115

Translation rule P5 shown in Figure 5.28 has four parts that handle abstract con-
nectors. Each exclusive part instantiates a corresponding predicate about the connect-
edness with all information available from the abstract connector. The example C&C
view BodySensorOut contains three abstract connectors with no information about the
source or target ports given (ll. 2-4, listing in Figure 5.28) and two abstract connectors
with a known target port but unknown source port (ll. 5-6).

Translation Rule

Translation rule:

P5 // connections between components������������������������������∀c ∈ {c ∈ view.AbsCons ∣ c.srcPort = � ∧ c.tgtPort = �} ∶
connected[���������c.srcCmp ,�� c.tgtCmp]��∀c ∈ {c ∈ view.AbsCons ∣ c.srcPort ≠ � ∧ c.tgtPort = �} ∶
connectedWithReceiverPortName[����������������������������c.srcCmp ,�� c.tgtCmp ,��

c.tgtPort]��∀c ∈ {c ∈ view.AbsCons ∣ c.srcPort = � ∧ c.tgtPort ≠ �} ∶
connectedWithSenderPortName[��������������������������c.srcCmp ,�� c.srcPort ,�� c.tgtCmp]��∀c ∈ {view.AbsCons ∣ c.srcPort ≠ � ∧ c.tgtPort ≠ �} ∶
connectedWithPortNames[����������������������c.srcCmp ,�� c.srcPort ,�� c.tgtCmp ,��

c.tgtPort]��
Result of application to view BodySensorOut shown in Figure 5.23:

Alloy

1 // connections between components
2 connected[Actuator, Joint]
3 connected[Sensor, JointLimiter]
4 connected[JointLimiter, Actuator]
5 connectedWithReceiverPortName[Body, Actuator, f1]
6 connectedWithReceiverPortName[Body, Actuator, f2]

Figure 5.28.: Translation rule P5 regarding connections between components.

5.3.5. Synthesis Predicate and Alloy Command
Finally, we construct a predicate specification representing the specification’s propo-
sitional formula over the views’ predicates. This predicate is exactly the propositional
formula of the views specification S. The translation of a specification S into the Alloy
predicate specification is straight forward since the names of the views are the
names of the Alloy predicates representing the semantics of the views (see Figure 5.18).
The predicate specification for specification S1 from the robotic arm example in

116 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Section 5.1.1 is shown in Listing 5.29 (ll. 1-5). In our implementation we have developed
a user friendly dialog to compile the specification S based on the views of the synthesis
problem (see Section 5.6.1 and Appendix D).

Alloy

1 pred specification {
2 (RJFunction) and (RJStructure) and
3 (BodySensorIn or BodySensorOut) and
4 (SensorConnections) and (not ASDependence)
5 }
6

7 run specification for 6 but exactly 20 Port, 8 Component

Listing 5.29: The Alloy predicate specification representing the views specification
S1 introduced in Section 5.1.1 and the Alloy command to find a satisfying
C&C model.

We run the module defined above with an Alloy run command to find an instance that
satisfies the predicate specification. The Alloy run command from the robotic arm
example is shown in Listing 5.29 (l. 7). Please note that Alloy analysis must be done
within a user-defined, given scope, which specifies an upper bound for the number of
instances per signature. The default scope 6 (l. 7) is an upper bound for the signatures
Type and PortName. We automatically calculate the upper bound for the number
of components. The upper bound for signature Component is the number of unique
component names contained in all views occurring in the specification (in this example
8). The upper bound for the total number of ports and the maximal number of ports per
component, however, cannot be derived from the specification. We currently let the user
choose the scope for ports manually. In the example shown in Listing 5.29 the chosen
upper bound for the number of ports is 20.

If an Alloy instance is found, we translate it back to the problem domain, that is, to
a C&C model specified in MontiArc. However, if an Alloy instance is not found, in the
general case, we do not know whether the specification could be satisfiable in a larger
scope, that is, using more ports. As stated before, our solution is sound but incomplete
(although it is complete within the given scopes).

The translation back is linear in the size of the solution and we describe it in Sec-
tion 5.3.6.

5.3.6. Translation of Alloy Instances into C&C Models
An Alloy instance consists of the signatures, fields and relations specified by the Alloy
module. Each signature is a set containing atoms within the scope of the signature. Each
field and relation is translated into a set of tuples of atoms. All Alloy modules generated
for C&C views synthesis include the signature definitions and facts of the C&C model
metamodel described in Section 5.3.2. All generated instances thus have a common form
described in Definition 5.30.

5.3. Component and Connector Model Synthesis 117

Definition 5.30 (Alloy instances of C&C views synthesis). An Alloy instance computed
for C&C views synthesis consists of the sets of atoms

• Component of atoms for components,
• Port of atoms for ports,
• Direction = {IN, OUT} of atoms for directions of ports,
• Type of atoms for port types, and
• PortName of atoms for port names,

and the relations

• subComponents ⊆ (Component ×Component) of direct subcomponents,
• parent ⊆ (Component ×Component) the inverse of relation subComponents,
• ports ⊆ (Component × Port) of components and their ports
• owner ⊆ (Port ×Component) the inverse of relation ports,
• direction ⊆ (Port ×Direction) of ports and their directions,
• type ⊆ (Port × Type), of ports and their types,
• name ⊆ (Port × PortName) of ports and their names, and
• receivingPorts ⊆ (Port × Port) of ports and the ports they are connected to.
• sendingPort ⊆ (Port × Port) the inverse of relation receivingPorts.

△
Both the Alloy metamodel described in Section 5.3.2 and the Alloy instances for C&C

views synthesis contain redundant relations, e.g., the relation subComponents and its
inverse relation parent. These redundancies help to make the definitions inside Alloy and
in the translation rules more intuitive. From our experience and experiments with the
formulation of the synthesis problem inside Alloy it is not clear whether the redundancies
improve or deteriorate the performance of C&C views synthesis (see Section 5.7.2).

The Alloy instance corresponding to the C&C model from Figure 5.4 for the C&C
views specification S1 from Section 5.1.1 is shown in the concrete textual syntax of
Alloy instances in Listing 5.31. The sets of atoms are listed in the order as speci-
fied in Definition 5.30 in lines 1-7 of the listing. The computed relations of the Al-
loy instance are shown in lines 9-36. We have omitted the two relations parent ⊆
(Component × Component) and sendingPort ⊆ (Port × Port) since they are not re-
quired for the translation back into a MontiArc C&C model. These relations are the
inverse relations of the relations subComponents ⊆ (Component × Component) and
receivingPorts ⊆ (Port × Port), respectively. The instance shown in Listing 5.31
contains both the relation ports ⊆ (Component × Port) and its inverse the relation
owner ⊆ (Port × Component) since we use the relation owner in the translation rules
for the translation of connectors from a computed Alloy instance into a MontiArc C&C
model.

118 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Alloy Instance

1 Component = {Actuator, Body, Cylinder, Joint, JointLimiter,
2 RotationalJoint, Sensor, ServoValve}
3 Port = {P0, P1, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19,
4 P2, P3, P4, P5, P6, P7, P8, P9}
5 Direction = {IN, OUT}
6 Type = {my_float, my_int}
7 PortName = {PortName0, angle, f1, f2, val1, val2}
8

9 subComponents = {Body->Actuator, Body->Joint, Body->JointLimiter,
10 RotationalJoint->Body, RotationalJoint->Cylinder,
11 RotationalJoint->Sensor, RotationalJoint->ServoValve}
12 ports = {Actuator->P10, Actuator->P11, Actuator->P12,
13 Actuator->P8, Actuator->P9, Body->P16, Body->P5, Body->P6,
14 Body->P7, Cylinder->P17, Cylinder->P18, Cylinder->P19,
15 Joint->P14, JointLimiter->P13, JointLimiter->P15,
16 RotationalJoint->P0, Sensor->P2, Sensor->P3,
17 ServoValve->P1, ServoValve->P4}
18 owner = {P0->RotationalJoint, P1->ServoValve, P10->Actuator,
19 P11->Actuator, P12->Actuator, P13->JointLimiter, P14->Joint,
20 P15->JointLimiter, P16->Body, P17->Cylinder, P18->Cylinder,
21 P19->Cylinder, P2->Sensor, P3->Sensor, P4->ServoValve, P5->Body,
22 P6->Body, P7->Body, P8->Actuator, P9->Actuator}
23 direction = {P0->IN, P1->IN, P10->IN, P11->IN, P12->OUT, P13->IN,
24 P14->IN, P15->OUT, P16->OUT, P17->IN, P18->IN, P19->OUT, P2->OUT,
25 P3->OUT, P4->OUT, P5->IN, P6->IN, P7->IN, P8->IN, P9->IN}
26 type = {P0->my_int, P1->my_int, P10->my_float, P11->my_float,
27 P12->my_int, P13->my_float, P14->my_int, P15->my_float,
28 P16->my_float, P17->my_float, P18->my_int, P19->my_int,
29 P2->my_float, P3->my_int, P4->my_int, P5->my_int, P6->my_int,
30 P7->my_float, P8->my_int, P9->my_int}
31 name = {P0->angle, P1->f2, P10->f1, P11->angle, P12->PortName0,
32 P13->val1, P14->angle, P15->val2, P16->val1, P17->angle,
33 P18->val1, P19->val2, P2->val1, P3->val2, P4->f1, P5->f2,
34 P6->PortName0, P7->angle, P8->f2, P9->val2}
35 receivingPorts = {P0->P1, P12->P14, P15->P11, P16->P17, P19->P5,
36 P2->P7, P3->P18, P4->P6, P5->P8, P6->P9, P7->P10, P7->P13}

Listing 5.31: An instance generated by the Alloy Analyzer for the Alloy module
generated from the C&C views specification S1. The computed instance
corresponds to the C&C model shown in Figure 5.4. The relations
parent ⊆ (Component × Component) and sendingPort ⊆ (Port × Port)
are not shown in the listing since they are not used in the translation of
Alloy instances into MontiArc models.

5.3. Component and Connector Model Synthesis 119

The translation of Alloy instances into MontiArc C&C models starts with the trans-
lation rule I1 shown in Figure 5.32. The translation rule determines the single atom
root ∈ Component for which the relation subComponents does not define a parent. It
then executes the translation rule I2 for components with the parameter root. We use the
join operator # as an equivalent to the dot-join operator of Alloy [Jac06, Section 3.4.3]
(see also Appendix A). The atom parent ∈ Component is treated by the operator as
the unary relation containing the single element parent. The join of the unary rela-
tion {parent} with the binary relation subComponents results in the unary relation
{cmp ∈ Component ∣ (parent, cmp) ∈ subComponents}, i.e., the set of all subcompo-
nents of the component parent.

Translation Rule

Translation rule:

I1 let root = THE cmp ∈ Component ∶
∄parent ∈ Component ∶ cmp ∈ parent # subComponents in

executeRule(I2 root) see Figure 5.33 for body of rule I2

Figure 5.32.: Translation rule I1 for the translation of an Alloy instance into a C&C
model in the concrete syntax of MontiArc. This rule selects the parent
component of the computed Alloy instance and translates it into concrete
MontiArc syntax by executing rule I2.

The translation rule I2 is shown in the upper part of Figure 5.33. This translation
rule is parametrized with an atom cmp ∈ Component. The rule creates a MontiArc
component definition for the component represented by the atom (see Section 2.2 on
how to model C&C models using MontiArc). All Alloy atoms are basic entities with no
further properties. Atoms are identified only by their name. Thus, using the element
cmp ∈ Component in a translation rule prints the name of the atom as shown in the
result of the execution of rule I2 with the parameter RotationalJoint ∈ Component in the
lower part of Figure 5.33. The translation rule I2 executes rule I3 in case the translated
component cmp has ports. It executed itself recursively for all subcomponents of the
component cmp and finally executes rule I4 to print all connectors defined inside the
component cmp.

120 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Translation Rule

Translation rule with parameter cmp ∈ Component:

I2 component��������� cmp {��
if (∃p ∈ cmp # ports) then

executeRule(I3 cmp) see Figure 5.34 for body of rule I3
// subcomponents of component���������������������������cmp

∀sub ∈ cmp # subComponents ∶
executeRule(I2 sub) recursive execution of this rule
// connectors of component������������������������cmp

executeRule(I4 cmp) see Figure 5.35 for body of rule I4
}��

Result of application to the Alloy top component of the instance shown in List-
ing 5.31 (parameter cmp = RotationalJoint ∈ Component):

MontiArc

1 component RotationalJoint {
2 see result of execution of rule I3
3

4 // subcomponents of component RotationalJoint
5 execution of rule I2 (recursive application of rule)
6 for components Body, Cylinder, Sensor, and ServoValve
7

8 // connectors of component RotationalJoint
9 see result of execution of rule I4

10 }

Figure 5.33.: Translation rule I2 for the translation of a component cmp ∈ Component
of an Alloy instance into a component in the concrete syntax of MontiArc.

The translation rule I3 is parametrized with an atom cmp ∈ Component and creates
MontiArc declarations for the input and output ports of the component from the C&C
model corresponding to cmp. The rule is shown in the upper part of Figure 5.34. The
direction of ports is defined by the preceding keyword in or out. For a port p ∈ Port
the joins p # type and p # name each result in a single element. In the translation rule
I2 we were able to use the atoms cmp ∈ Component directly to print the names of the
components they represent. This is different for the atoms p ∈ Port, since these have
names on their own, e.g., P0 or P12, as can be seen in the Alloy instance in Listing 5.31.
The names of ports p ∈ Port of the Alloy instance in their MontiArc representation are
given as the second elements of the relation name ⊆ (Port × PortName). Thus, the
statement p # name prints the port name in the translation rule I3 as demonstrated in
the listing in the lower part of Figure 5.34.

5.3. Component and Connector Model Synthesis 121

As part of rule I3 the prefix my_ (added to type names in the translation rule V4
defined in Figure 5.22) is removed from the port types. We denote this simple String
manipulation informally as the function remPrefix.

Translation Rule

Translation rule with parameter cmp ∈ Component:

I3 // ports of component�������������������cmp

port����
{| if(p # direction = IN)

in�� remPrefix(p # type) �� p # name

else
out��� remPrefix(p # type) �� p # name|} ,

��
p∈cmp�ports ;��

Result of application to the Alloy instance shown in Listing 5.31 with the parameter
cmp = RotationalJoint ∈ Component:

MontiArc

1 // ports of component RotationalJoint
2 port
3 in float val2;

Figure 5.34.: Translation rule I3 for the translation of the ports of a component cmp ∈
Component of an Alloy instance to the concrete syntax of MontiArc. The
function remPrefix removes the prefix my_ added to type names in the
translation rule V4 from Figure 5.22.

The translation rule I4 shown in Figure 5.35 creates the declarations of MontiArc
connectors in the C&C model represented by the computed Alloy instance. The rule
is again parametrized with an atom cmp ∈ Component. The first two let . . . in
statements introduce the local variables cmpPorts of ports of the component cmp and
subCmpPorts of all ports of the direct subcomponents of the component cmp. The rule
consists of two outer quantifications, one over each of the introduced sets of ports. The
two nested quantifications range first over the ports of the component cmp and then over
the ports of its subcomponents, that are connected to the port selected in the parent
quantification. A join of the outer quantified port with the relation receivingPorts
yields only the connected ports. The intersection with the ports of the component or
the ports of the subcomponents leaves only the ports relevant for one of the four cases of
connectors. There are four cases for MontiArc connect statements since ports of the
parent component cmp are not qualified with their component name, while the ports of
subcomponents are.

122 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Translation Rule

Translation rule with parameter cmp ∈ Component:

I4 let cmpPorts = cmp # ports in
let subCmpsPorts = cmp # subs # ports in
∀pcmp ∈ cmpPorts ∶

∀p ∈ cmpPorts ∩ (pcmp # receivingPorts) ∶
connect������� pcmp # name ->�� p # name ;��∀p ∈ subCmpsPorts ∩ (pcmp # receivingPorts) ∶
connect������� pcmp # name ->�� p # owner .��p # name ;��∀psub ∈ subCmpPorts ∶

∀p ∈ cmpPorts ∩ (psub # receivingPorts) ∶
connect������� psub # owner .��psub # name ->�� p # name ;��∀p ∈ subCmpsPorts ∩ (psub # receivingPorts) ∶
connect������� psub # owner .��psub # name ->�� p # owner .��p # name ;��

Result of application to the Alloy instance shown in Listing 5.31 with the parameter
cmp = RotationalJoing ∈ Component:

MontiArc

1 connect val2 -> ServoValve.val2;
2 connect Body.angle -> Cylinder.angle;
3 connect Cylinder.f1 -> Body.PortName0;
4 connect Sensor.val1 -> Body.val2;
5 connect Sensor.val2 -> Cylinder.f2;
6 connect ServoValve.PortName0 -> Body.val1;

Figure 5.35.: Translation rule I4 for the translation of the connectors of a composed
component cmp ∈ Component of an Alloy instance to the concrete syntax
of MontiArc.

5.4. Advanced Features 123

5.4. Advanced Features

We have extended our work on C&C model synthesis with several advanced features
to support engineers when creating views and views specifications. An extension of
the views language with stereotypes (see Section 5.4.1) allows users to add additional
knowledge to views beyond the C&C views language introduced in Chapter 3.6. An-
other extension is adding support for library components to C&C views synthesis (see
Section 5.4.2). We have identified several specification patterns in views specifications
and introduce them in Section 5.4.3.

5.4.1. Handling Language Variability in C&C Views

The C&C views language as defined in Definition 3.6 has a built-in mechanism for
language variability based on stereotypes. We demonstrated the variability with two
language extensions on the level of the abstract syntax (see Section 3.3.1), the concrete
syntax (see Section 3.6.5), and the semantics in terms of the views satisfaction relation
(see Section 3.4.1). In this section we show how we support these additional language
features in our translation of C&C views into Alloy.

We have extended our translation of C&C views into Alloy with support for marking
components as interface-complete and as atomic. The engineer marks components in a
view using stereotypes. The additional constraint is interpreted at the level of the view,
e.g., a component that is marked as atomic is only required to be atomic in a C&C
model satisfying the view.

Interface-complete components An engineer can strengthen a view by declaring
some of the components mentioned in it as interface-complete (technically, using the
stereotype «interfaceComplete» in front of a component). This is useful when the
engineer knows the complete interface of a component, e.g., some subcomponents or
their hierarchy are either not relevant in the view or not completely known.

For example, consider adding the stereotype «interfaceComplete» to the compo-
nent Sensor in the view SensorConnections shown in Figure 5.36. In a synthesized
C&C model satisfying the view SensorConnections, the component Sensor must
have exactly the set of ports (identified by their name) defined in this view.

The additional Alloy predicate we use to support interface-complete components is
shown in Listing 5.37. We instantiate this predicate with every component that is
specified as interface-complete in a view.

To support the stereotype «interfaceComplete», we have adapted our basic trans-
lation of C&C views into Alloy from Section 5.3.4 by adding the new rule P4a to the set
of translation rules. The new rule is executed inside the body of the predicate describing
a view (see Figure 5.18). Rule P4a is shown in Figure 5.38 with an example applica-
tion to the view SensorConnections from Figure 5.36 with the interface-complete
component Sensor.

The stereotype «interfaceComplete» is applicable to any component and specifies
nothing about the component’s decomposition.

124 Chapter 5. Component and Connector Model Synthesis from Views Specifications

*	����#����
������+
������

8���9����

*��
�	�+
����
��

1�����$���

�� $��

�������������
��
�����	
��

Figure 5.36.: The view SensorConnections adapted from Figure 5.3 with component
Sensor marked as interface-complete and component Cylinder marked
as atomic.

Alloy

1 pred interfaceComplete[cmp: Component, portNames: set PortName] {
2 cmp.ports.name = portNames
3 }

Listing 5.37: Predicate to specify that a component is interface-complete, technically, by
stating that the set of its port names, as appearing in the view, is exactly
its complete set of port names.

Translation Rule

Translation rule:

P4a ∀cmp ∈ {cmp ∈ view.Cmps ∣ «interfaceComplete» ∈ cmp.stereotypes} ∶
// component����������� cmp.name is interface-complete�������������������
if(cmp.ports ≠ ∅) then

interfaceComplete[�����������������cmp.name ,�� {|p.name|} +
��
p∈cmp.ports]��

else
interfaceComplete[�����������������cmp.name, none]������

Result of application to view SensorConnections shown in Figure 5.36:

Alloy

1 // component Sensor is interface-complete
2 interfaceComplete[Sensor, val1 + val2]

Figure 5.38.: Translation rule P4a handling components marked as interface-complete.

5.4. Advanced Features 125

Atomic components Based on existing knowledge or requirements an engineer may
mark a component in a view as atomic (technically, using the stereotype «atomic» in
front of a component). Atomic components are not further decomposed in C&C models.

The additional Alloy predicate we use to support atomic components is shown in List-
ing 5.39. The predicate atomicComponent parametrized with component cmp states
that the subcomponent relation of component cmp is empty (l. 3) and that the com-
ponent has no connection starting from its incoming ports, i.e., no internal connectors
(l. 5). We instantiate this predicate with every component that is specified as atomic in
a view.

Alloy

1 pred atomicComponent[cmp: Component] {
2 // no children
3 no cmp.subComponents
4 // no internal connectors (starting from incoming ports)
5 no (cmp.ports & direction.IN).receivingPorts
6 }

Listing 5.39: Predicate to specify that a component is atomic, technically, by stating
that the component has no subcomponents in a satisfying C&C model and
no internal connectors.

We have adapted our basic translation of C&C views into Alloy from Section 5.3.4 by
adding the new rule P3a to the set of translation rules executed inside the body of the
predicate describing a view (see Figure 5.18). Rule P3a is shown in Figure 5.40 with
an example application to the view SensorConnections from Figure 5.36 with the
atomic component Cylinder.

Translation Rule

Translation rule:

P3a ∀cmp ∈ {cmp ∈ view.Cmps ∣ «atomic» ∈ cmp.stereotypes} ∶
// component����������� cmp.name is atomic��������
atomicComponent[���������������cmp.name]��

Result of application to view SensorConnections from Figure 5.36:

Alloy

1 // component Cylinder is atomic
2 atomicComponent[Cylinder]

Figure 5.40.: Translation rule P3a about components marked as atomic.

126 Chapter 5. Component and Connector Model Synthesis from Views Specifications

5.4.2. Library Components
Most software systems reuse library components, pre-defined or existing components
adopted from other systems. Thus, it is crucial that our technique would allow the
architect to import such components and apply an integrated synthesis solution.

Specifically, our C&C model synthesis supports the integration of library components
or similar components at two levels. First, the architect can extend the specification
with a list of imported library component definitions. A component definition is com-
plete: it specifies the complete interface (port names and types) of the component. If
a component definition for the component Cmp is imported, we add its interface (and
the requirement that it is complete) as an additional constraint to the generated Alloy
module. This ensures that a synthesized C&C model that uses Cmp would be consistent
with its interface and use it as is.

As an example, consider the ServoValve component in the view RJStructure
shown in Figure 5.1 (b) to be an imported library component. In the library, the
complete interface of ServoValve is given. Importing it to the specification S1 ensures
its interface is used as is in the synthesized C&C model and rules out solutions that put
other components that are mentioned in the views as its subcomponents. For example,
a solution where ServoValve contains Sensor will not be possible.

To support library components we add a library component specification lib as defined
in Definition 5.41 to the input for the translation on the same level as the set views.
Each component cmp ∈ lib.Cmps contains the definition of a library component, e.g.,
the set cmp.ports contains the complete set of ports of the component cmp.

Definition 5.41 (Library components specification). A library components specifica-
tion is a C&C model lib as defined in Definition 2.2 (not necessarily with a single top
component). △

In addition to adding the library components specification to the input, we also
add rule V5 shown in Figure 5.42 to the translation. This translation rule reuses the
predicates atomicComponent (see Listing 5.39) and interfaceComplete (see List-
ing 5.37). Library components are not part of a single C&C view, but of a C&C views
synthesis problem. Multiple views may refer to the same library component. The trans-
lation rule V5 is added to the set of rules executed for the generation of the C&C views
synthesis Alloy module on the same level as rules V1 to V4 (see Figure 5.18).

The translation rule for library components only adds constraints to the fact li-
braryComponents if the library component is mentioned in at least one C&C view.
Otherwise the library component is not relevant for the synthesis problem. But although
a library component is mentioned in a view and added to the set of library components,
it is still possible that the component is not part of an instance satisfying the C&C views
specification.

Instantiating the Alloy predicate interfaceComplete with any component as pa-
rameter cmp forces the existence of that component in an Alloy instance since the predi-
cate forces the expression cmp.ports.name to evaluate to the parameter portNames
(see Listing 5.37) and it thus forces the component cmp to exist. To prevent this side

5.4. Advanced Features 127

Translation Rule

Translation rule:

V5 ∀type ∈ lib.Types ∖⋃v∈views v.Types ∶
one sig my_���������� type extends Type {}�������������∀pName ∈ lib.PNames ∖⋃v∈views v.PNames ∶
one sig������ pName extends PortName {}�����������������
fact libraryComponents {����������������������∀cmp ∈ lib.Cmps ∩⋃v∈views v.Cmps ∶

atomicComponent[���������������cmp.name]��
if(cmp.ports ≠ ∅) then

some���� cmp.name implies (��������
interfaceComplete[�����������������cmp.name ,�� {|p.name|}+p∈cmp.ports] and����
{|portOfComponent[���������������cmp.name ,�� port.direction ,�� port.type ,��

port.name]�� |}and���p∈cmp.ports

)��
else

some���� cmp.name implies interfaceComplete[������������������������cmp.name, none]������
}��

Result of application to the C&C model ServoValve containing the library com-
ponent ServoValve shown in Figure 5.43:

Alloy

1 one sig forceLimit extends PortName {}
2 one sig torque extends PortName {}
3

4 fact libraryComponents {
5 atomicComponent[ServoValve]
6 some ServoValve implies (
7 interfaceComplete[ServoValve, forceLimit + torque] and
8 portOfComponent[ServoValve, IN, my_float, forceLimit] and
9 portOfComponent[ServoValve, OUT, my_float, torque]

10)
11 }

Figure 5.42.: Translation rule V5 to create a fact about library components. The rule
also creates signatures for port names and types required for the definition
of the library components if not previously defined.

128 Chapter 5. Component and Connector Model Synthesis from Views Specifications

effect of the predicate interfaceComplete, the translation rule V5 introduces an
implication depending on the existence of an instance of each library component. The
instantiation of the predicate atomicComponent does not have a similar side effect.

���$�&��$�
1��������;��

1�����1����9��

��������	�����
,����

Figure 5.43.: The library component ServoValve with the input port forceLimit
and the output port torque both of type float.

The result of an application of the rule V5 to the C&C views views from the views
specification S1 and the C&C model lib containing the library component ServoValve
from Figure 5.43 is shown in the lower part of Figure 5.42.

Please note that the synthesis considers an imported component as a black-box: it
uses its interface and needs no knowledge of its subcomponents. This separation is
meant to support encapsulation and modularity: as long as the interface is kept fixed,
the implementation of imported library components can be replaced without affecting
the synthesized C&C model.

Finally, please note that both features, importing library components and declaring
components in views as interface-complete, not only extend the usefulness and expressive
power of C&C views, but also further constrain the specification. As part of our evalua-
tion (see Section 5.6) we examine the effect of the use of library and interface-complete
components on the performance of synthesis for various example specifications.

5.4.3. Specification Patterns

The use of propositional formulas in C&C views specifications makes them very expres-
sive. However, for the architect who constructs the specification, using only low level
basic propositional connectives may be inconvenient and error prone. Thus, we look for
higher-level specification patterns, which can be used to express the required semantics
more intuitively, and can be reused across different specifications.

Based on our experience with creating specifications, some examples of simple patterns
are: [ALT], given a set of views, specifying that the synthesized C&C model must satisfy
at least one of the alternative views in the set; [ONEALT], given a set of views, specifying
that the synthesized C&C model must satisfy exactly one of the alternative views in the
set; [IMP], given two views, if the C&C model satisfies the first, it must also satisfy the
second; and [NOCOMP], a given component should not be present in the synthesized
C&C model. Please note that the last three patterns depend on the use of negation in
the specification language.

5.5. Synthesis with Architectural Styles 129

As an example, recall specification S1 (Section 5.1.1). Assume that the architect re-
sponsible for Sensor knows that if it is located outside Body, then it must use an inner
amplifier Amplifier. To express this knowledge, the architect can create the view Sen-
sorHasAmp shown in Figure 5.44 (a) and add the implication IMP(BodySensorOut,
SensorHasAmp) to the specification’s propositional formula (as another conjunct). To
make sure the amplifier is not used when it is not necessary, the architect can create
the view Amp shown in Figure 5.44 (b), and add the implication IMP(BodySensorIn,
¬Amp) (since the view Amp consists of the single component Amplifier, the expression
¬Amp used here is an instance of the pattern [NOCOMP] mentioned above).

������
����1��

����1��

�������������
� ����� ������������

"�# "�#

Figure 5.44.: The additional views SensorHasAmp and Amp, to be added to the specifi-
cation S1 with the implications IMP(BodySensorOut,SensorHasAmp)
and IMP(BodySensorIn,¬Amp).

As another example, the choice between BodySensorIn and BodySensorOut in S1
can be strengthened by the architect to ONEALT(BodySensorIn, BodySensorOut)
without loosing or adding possible implementations, that is, as a form of refactoring.
The semantics of the two views entails that no C&C model can satisfy both and their
use in the specification S1 entails that at least one of them must be satisfied.

Specification patterns do not add expressive power. Rather, they are only meant to
improve the readability and usability of C&C views specifications. Indeed, as part of
our prototype implementation, we have developed friendly interfaces to add and edit the
specification’s propositional formula, including support for several patterns as shown in
Figure 5.45. Our ideas on specification patterns for C&C model structures are inspired
by previous works on patterns of temporal specifications (e.g., [DAC99]).

5.5. Synthesis with Architectural Styles
Architectural styles systematize successful architectural design practices in terms of con-
straints on architectural elements and their composition into systems [SG96]. Clements
et al. [CBB+10] define an architectural style as “a specialization of element and relation
types, together with a set of constraints on how they can be used”. Some examples of
well-known architectural styles include the pipe-and-filter style, the client-server style,
and the layered style (an overview can be found in [TMD09, Chapter 4]).

Besides additional constraints, architectural styles often add a new vocabulary for ele-
ments in C&C models, e.g., client, server, or layer. Benefits of styles are the application

130 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Figure 5.45.: The specification editor developed as part of our C&C views synthesis
Eclipse plug-in. The screen capture shows the dialog to create a conjunct
following the [ONEALT] pattern (xor in the screen capture).

of well-understood solutions to new problems and improved understanding conveyed
by the problem specific terminology [TMD09]. For example, the architectural design
environment AcmeStudio [wwwy] supports style-specific visualizations of C&C models.

We have extended C&C views synthesis with support for three architectural styles.
As applicable, style specific constraints are added to the synthesis input so that the
synthesized C&C model, if any is found, obeys the rules of the style. We give three
examples below and show how the translation rules are adapted to support the styles.
All three architectural styles are supported by our implementation.

5.5.1. Hierarchical Style

A C&C model in the hierarchical style has no directed cycles of connected components.
The hierarchical style is important, because hierarchical architectures are suitable for
behavioral synthesis: while the problem of synthesizing a finite-state distributed reactive
system over a given architecture is in general undecidable, it is decidable for the class of
hierarchical architectures [PR90].

To enforce the hierarchical style of the synthesized C&C model we add to the generated
Alloy module a fact that requires that no directed cycles exist (see Listing 5.46). The
implementation of the hierarchical style shown in Listing 5.46 does not require any
changes to the translation rules shown in the translation overview in Figure 5.18. The
new fact, signature, and predicate depicted in Listing 5.46 are added to the generic part
of the translation.

The type of connections relevant for the hierarchical style are end-to-end connections
between components. End-to-end connections between components are defined in the

5.5. Synthesis with Architectural Styles 131

Alloy

1 fact hierarchicalArchitecture {
2 no c: Component |
3 c in ^(Talker.talksTo).c
4 }
5

6 one sig Talker {
7 talksTo: Component -> Component
8 } {
9 all c1, c2: Component |

10 c2 in talksTo.c1 iff endToEndConnection[c1,c2]
11 }
12

13 pred endToEndConnection[senderC: one Component,
14 receiverC: one Component] {
15 some senderP: senderC.ports |
16 some receiverP: receiverC.ports |
17 no senderP.sendingPort and // no forward
18 no receiverP.receivingPorts and // no forward
19 receiverP in senderP.^receivingPorts
20 }

Listing 5.46: A fact for the hierarchical architecture style specifying that no component
in the C&C model has a directed end-to-end feedback loop.

predicate endToEndConnection in Listing 5.46 in lines 13-20. The receiving port
is in the transitive closure of the receiving ports of the sending port (l. 19), i.e., the
ports are connected by a chain of directed connectors. The sending port is an end-
point if it has no incoming connector (l. 17) and the receiving port is an endpoint if
it has no outgoing connector (l. 18). Examples for components satisfying the predicate
endToEndConnection are the component pairs Actuator and JointLimiter or
RotationalJoint and Actuator from the C&C model shown in Figure 5.47. The
component pair RotationalJoint and Body does not satisfy the predicate since the
incoming port of the component Body is not an endpoint.

The relation talksTo of the signature Talker is essentially a translation of the pred-
icate endToEndConnection into a relation (see the equivalence defined in Listing 5.46,
l. 10). This translation is needed since we are interested in the transitive closure of the
end-to-end communication relation. Alloy has an operator for the transitive closure of
relations but no similar concept for predicates. We thus translate the predicate to a re-
lation to compute the transitive closure of the relation in line 3. We finally require that
no component is in a (transitive) end-to-end communication relation with itself (l. 3) to
enforce the hierarchical style.

The example of a C&C model shown in Figure 5.47 demonstrates that it is important
to only consider end-to-end communication since the C&C model has a direct feed-
back communication cycle for component Body. The cycle is however resolved by the

132 Chapter 5. Component and Connector Model Synthesis from Views Specifications

%��������8���

'�
�

8���9����

��������

��������	

Figure 5.47.: An example of a C&C model in the hierarchical architecture style. Please
note that the direct feedback connector of component Body is resolved
inside the component and does not lead to a directed communication cycle.

decomposition of the component Body and thus the C&C model respects indeed the
hierarchical style.

5.5.2. Client-Server Style
Our implementation of C&C views specification synthesis supports the client-server style,
whose essence is to identify one of the components as a single server and to forbid any
direct communication between clients. Also, the server and the clients are all assumed
to be independent in terms of containment; a client is not contained within the server or
another client etc. To integrate this style into our synthesis solution we add the identities
of the server and the client components, as defined by the architect, to the specification.
We add a client-server specification as defined in Definition 5.48.

Definition 5.48 (Client-server specification). A client-server specification for a C&C
views specification over the set of views views consists of server and clients where

• server ∈ {cmp.name ∣ cmp ∈ ⋃v∈views v.Cmps} is the name of the server component
and

• clients ⊆ {cmp.name ∣ cmp ∈ ⋃v∈views v.Cmps} ∖ {server} is the set of names of
the client components.

△
To make the knowledge of the server and the clients available in the Alloy module, we

add the translation rule V6 shown in Figure 5.49 to the list of executed translation rules.
The rule is executed at the same level as the rules V1 to V4 shown in the overview of
the translation in Figure 5.18. The translation parameter server contains the name of
the server component. Thus, the Alloy function myServer returns the Alloy atom that
represents the server component. Similarly, the generated function myClients returns
the atoms that represent the client components. An example of the application of rule
V6 is shown the lower part of Figure 5.49.

5.5. Synthesis with Architectural Styles 133

Translation Rule

Translation rule:

V6 fun myServer : one Component {���������������������������
server

}��
fun myClients : set Component {����������������������������

{|client|} +
��
client∈clients

}��
Result of application to a specification from the avionics system (see Section 5.6.2
and [wwwu] for the complete specification) with server = Pilot_DM and clients =
{PCM,Pilot_Display}:

Alloy

1 fun myServer : one Component {
2 Pilot_DM
3 }
4

5 fun myClients : set Component {
6 PCM + Pilot_Display
7 }

Figure 5.49.: Translation rule V6 to create functions that return the server and the set
of clients in the client-server style.

Translation Rule

Translation rule:

V1cs fact onlyServerAndClientsAreRoot {�������������������������������
Component.subComponents =�����������������������

Component - myServer - myClients�����������������������������
}��

Figure 5.50.: Modification of translation rule V1 to V1cs for the client-server style. The
fact states that all components except the client and the server components
are subcomponents.

134 Chapter 5. Component and Connector Model Synthesis from Views Specifications

In addition, in the translation of C&C views into Alloy we replace the constraint of a
single top component (translation rule V1 defined in Figure 5.19), with a constraint that
specifies that the server and the clients are the only top components. This constraint
is implemented in the translation rule V1cs. By making the server and the clients the
top components in the C&C model we also enforce that they are not contained in one
another but may contain further subcomponents.

Translation Rule

Translation rule:

V2cs // all components used in views����������������������������∀cmp ∈ ⋃v∈views v.Cmps ∶
if (cmp.name ∈ {server} ∪ clients) then
one sig������ cmp.name extends Component {}������������������
else
lone sig������� cmp.name extends Component {}������������������

Result of application to a specification from the avionics system (see Section 5.6.2
and [wwwu] for the complete specification) with server = Pilot_DM and clients =
{PCM,Pilot_Display}:

Alloy

1 // all components used in views
2 lone sig FM extends Component {}
3 one sig PCM extends Component {}
4 one sig Pilot_Display extends Component {}
5 one sig Pilot_DM extends Component {}

Figure 5.51.: Translation rule V2cs for components. Components identified as client or
server are required to exist in any synthesized C&C model.

The components identified as the server and the clients are required to exist in any
synthesized C&C model. We thus modify the translation rule V2 defined in Figure 5.20
to the new translation rule V2cs shown in Figure 5.51. The translation rule V2 declares
the Alloy signatures for C&C model components with the multiplicity lone for one or
no instance. In case the component is identified as the server or the clients the new rule
V2cs uses the multiplicity one for exactly one instance.

An application of the rule V2cs is shown in the lower part of Figure 5.51. The
set of components from the views are the components FM, Pilot_DM, PCM, and Pi-
lot_Display. In this example the component Pilot_DM is identified as the server
and the components PCM and Pilot_Display are identified as clients. The compo-
nents are from the avionics system example presented in Section 5.6.2. The complete
set of views, a specification with client-server style, and a synthesized C&C model for

5.5. Synthesis with Architectural Styles 135

this example are available from [wwwu].
Finally, to enforce the communication constraints of the client-server style, we add

the fact clientServerCommunication shown in Listing 5.52 to the generic part of
the translation. The fact uses the parametrized predicate immediatelyConnected-
NoOrder that defines whether two components in a C&C model are directly connected
(in any direction). The fact enforces that all clients are connected to the server and that
no two clients are connected with each other directly.

Alloy

1 fact clientServerCommunication {
2 all client : myClients |
3 immediatelyConnectedNoOrder[myServer, client] and
4 no c : (myClients-client) |
5 immediatelyConnectedNoOrder[client, c]
6 }
7

8 pred immediatelyConnectedNoOrder[c1: Component, c2: Component] {
9 some p : c1.ports |

10 (p in c2.ports.receivingPorts or
11 p in c2.ports.sendingPort)
12 }

Listing 5.52: Excerpt from the Alloy code for the client-server style. The functions
myServer and myClients are generated Alloy functions returning the
server component and the client components respectively (see translation
rule V6 shown in Figure 5.49).

Again, if a C&C model that satisfies the specification together with the additional
restrictions exists, it is found. If not, it means that the semantics of the specification
cannot be satisfied within the client-server style, e.g., without direct client to client
connectors (or that it cannot be satisfied at all).

5.5.3. Layered Style
The layered style forces a partition of the system’s components into a sequence of layers,
and allows direct connectors on the top level only between consecutive layers.

Figure 5.53 shows a C&C model of the Avionics system (see description in Sec-
tion 5.6.2) synthesized in the layered architectural style. All components that correspond
to layers are marked with the stereotype «layer». The complete views, the C&C views
specification, and a synthesized C&C model conforming to the layered architectural style
are available from [wwwu]. All components shown in the C&C model in Figure 5.53 are
identified as layers. The layers are arranged such that every layer only communicates
with the layer above and the layer below. Interestingly, the outgoing port from layer FM
has connectors to the layer PCM above and to the layer FD below.

To integrate this style with our synthesis solution we add the partition of the com-

136 Chapter 5. Component and Connector Model Synthesis from Views Specifications

*�����+ ����<=�����

*�����+ ����<=	

*�����+ ��	

*�����+ :	

*�����+ :=

��������	

Figure 5.53.: A C&C model of the avionics system (see Section 5.6.2) in the layered
architectural style. The complete C&C views specification is available
from [wwwu].

ponents into layers, as defined by the architect, as additional input to the specification.
In the example shown in Figure 5.53 the existing components are identified as layers.
It is also possible to add new names of layers to the synthesis specification that are not
contained in the set of components depicted in the views.

Definition 5.54 (Layer specification). A layer specification layers, for a C&C views
specification over the set of views views, is a list of pairs (name, Cmps) where

• name is the unique name of a layer and
• Cmps ⊆ ⋃v∈views v.Cmps is the (incomplete) set of components contained in the

layer name.

The name of every layer is unique and no two layers share components: ∀layer1, layer2 ∈
layers ∶ layer1 ≠ layer2 ⇒ (layer1.name ≠ layer2.name ∧ layer1.Cmps ∩ layer2.Cmps =
∅). △

Definition 5.54 defines a layer specification that we add as an additional parameter
for C&C views synthesis. For a layer layer ∈ layers we interpret the set of contained
components layer.Cmps to be the minimal required set of components contained in the
layer. Thus, we do not require that the assignment of components to layers is complete
for all components in the views.

A layer specification layers is a list of layer names and their contained components.
Thus an engineer can specify the order of the layers in the synthesized C&C model. In
the example shown in Figure 5.53 the first layer is the component Pilot_Display. All

5.5. Synthesis with Architectural Styles 137

of the following translation rules except for fact orderOfLayers of rule V7 shown in
Figure 5.55 are independent of the given order of the layers and also support synthesis
of layered C&C models without an order specified.

In every C&C model, satisfying the C&C views specification and the layer specifica-
tion layers, the set of top components is the set of layers. Every layer layer ∈ layers
(transitively) contains at least the components layer.Cmps. The order of the layers in
the specification is respected by the connectors of the C&C model: every layer in the list
of layers has to be exclusively connected to its predecessor and successor, if it exists. The
connection may be in one direction only, e.g., the layered C&C model from Figure 5.53
would still be valid if the connector from component Pilot_Display to component
Pilot_DM would be removed since the two are still connected in the other direction.

To make the layers specification available in the Alloy module, we add the transla-
tion rule V7 defined in Figure 5.55 to the list of executed translation rules. The rule
is executed at the same level as the rules V1 to V4 shown in the overview in Fig-
ure 5.18. The translation parameter layers contains the layer specification as defined in
Definition 5.54. The generated Alloy function myLayers returns the Alloy atoms that
represent the layer components. The fact componentsInLayers adds the containment
constraints for the components contained in layers specified in the layer specification.
The constraints are added using the Alloy predicate for transitive component contain-
ment shown in Listing 5.15. The fact orderOfLayers adds connectedness constraints
between all layers in the list layers using the following notation: the first element of
the list is layers[1] = (Pilot_Display,∅) and ∣layers∣ denotes the length of the list
(number of elements). An example of the application of rule V7 is shown the lower part
of Figure 5.55.

138 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Translation Rule

Translation rule:

V7 fun myLayers : set Component {���������������������������
{|layer.name|} +

��
layer∈layers

}��
fact componentsInLayers {�����������������������∀layer ∈ layers ∶
∀cmp ∈ layer.Cmps ∶

contains[��������layer.name ,�� cmp.name]��
}��
fact orderOfLayers {������������������

{|immediatelyConnectedNoOrder[��������������������������layers[i].name ,��
layers[i + 1].name]��|}and���

∀1≤i<∣layers∣

}��
Result of application to a C&C views specification of the avionics system
(see Section 5.6.2 and [wwwu] for the complete specification) with layers =
[(Pilot_Display,∅), (Pilot_DM,∅), (PCM,∅), (FM,∅), (FD,∅)] :

Alloy

1 fun myLayers : set Component {
2 FD + FM + PCM + Pilot_Display + Pilot_DM
3 }
4

5 fact componentsInLayers {
6

7 }
8

9 fact orderOfLayers {
10 immediatelyConnectedNoOrder[Pilot_Display, Pilot_DM] and
11 immediatelyConnectedNoOrder[Pilot_DM, PCM] and
12 immediatelyConnectedNoOrder[PCM, FM] and
13 immediatelyConnectedNoOrder[FM, FD]
14 }

Figure 5.55.: Translation rule V7 to create functions that return the atoms of components
identified as layers in the layered style.

5.5. Synthesis with Architectural Styles 139

As in the client-server style, we replace the constraint of a single top component with
a constraint that specifies that the layers are the top components. This is constraint
is formalized in translation rule V1l which replaces the translation rule V1 defined in
Figure 5.19.

Translation Rule

Translation rule:

V1l fact onlyLayersAreRoot {����������������������
Component.subComponents = Component - myLayers��

}��

Figure 5.56.: Modification of translation rule V1 to V1l for the layered style. The fact
states that all components except the layers are subcomponents.

We also adapt the translation rule V2 defined in Figure 5.20, which adds Alloy signa-
ture definitions for all components from the C&C views. In addition to the components
from the C&C views, the translation rule V2l shown in Figure 5.57 also adds signatures
for the layers defined in the layer specification (second part of rule V2l). The difference
between the signatures is that layers are forced to exist in any C&C model by using
Alloy’s multiplicity constraint one while the signatures for all other components are
declared using the multiplicity lone as done in rule V2.

An application of the translation rule V2l to the avionics system with a layer specifi-
cation is shown in the lower part of Figure 5.57. All components shown in the views of
the specification are listed as layers in the layer specification.

Finally, we add a fact about the layered architectural style for C&C models shown
in Listing 5.58 to the generic part of the translation. The fact layeredArchitec-
ture specifies that every C&C model satisfying the layered architectural style has two
outer layers and the set of layers specified is the union of the outer and inner layers.
Outer layers are defined in the body of the function outerLayers in Listing 5.58,
ll. 7-10, i.e., the layers that are directly connected to exactly one other layer (l. 8). In
the avionics system C&C model shown in Figure 5.53 these are the top and bottom
layers Pilot_Display and FD. Inner layers are defined in the body of the function
innerLayers (lines 12-17), i.e., the layers that are directly connected to exactly two
other layers (l. 16). Direct connectedness is specified by the predicate immediately-
ConnectedNoOrder (ll. 19-23). Two components are directly connected if the first has
a port that is either in the receivingPorts or in the sendingPort relation with
any port of the second component.

If a C&C model that satisfies the specification together with the additional restrictions
induced by the partition of the layers exists, it is found. If not, it means that the partition
into layers conflicts with the semantics of the specification (or that the specification, even

140 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Translation Rule

Translation rule:

V2l // components used in views that are not layers��∀name ∈ {cmp.name ∣ cmp ∈ ⋃v∈views v.Cmps} ∖ {l.name ∣ l ∈ layers} ∶
lone sig������� name extends Component {}������������������
// all layers of the C&C model��������������������������∀name ∈ {l.name ∣ l ∈ layers} ∶
one sig������ name extends Component {}������������������

Result of application to a C&C views specification of the avionics system
(see Section 5.6.2 and [wwwu] for the complete specification) with layers =
[(Pilot_Display,∅), (Pilot_DM,∅), (PCM,∅), (FM,∅), (FD,∅)]:

Alloy

1 // all layers of the C&C model
2 one sig FD extends Component {}
3 one sig FM extends Component {}
4 one sig PCM extends Component {}
5 one sig Pilot_Display extends Component {}
6 one sig Pilot_DM extends Component {}

Figure 5.57.: Translation rule V2l for components. Components identified as layers are
required to exist in any synthesized C&C model.

without the style constraints, is not satisfiable, at least within the given scope).

5.5.4. On Styles and Views

It is important to note that each of the views in the specification is independent of and
does not have to be compliant, by itself, with the constraints induced by the architectural
style. For example, even though a layered architecture is enforced, abstract connectors in
a view may connect components from nonconsecutive layers. The synthesis is responsible
to implement these abstract connectors through chains of concrete connectors that obey
the layered architecture. As another example, what looks like a communication cycle in
a given view (and thus apparently violates a hierarchical style), may end up implemented
in the synthesized C&C model without creating a cycle. For example, recall specification
S1 from Section 5.1.1 where view RJStructure shown in Figure 5.1 seems to contain a
cycle between Body and Cylinder. In the synthesized C&C model, shown in Figure 5.4,
we see that the implementation contains no concrete end-to-end cycle. Thus, the views
and the architectural style are specified independently. The synthesis is responsible for
finding a C&C model that satisfies both, if one exists.

5.6. Implementation and Evaluation 141

Alloy

1 fact layeredArchitecture {
2 # outerLayers = 2 and
3 myLayers = innerLayers + outerLayers
4 }
5

6 fun outerLayers : set Component {
7 {endP : myLayers |
8 one partner : (myLayers - endP) |
9 immediatelyConnectedNoOrder[partner, endP] }

10 }
11

12 fun innerLayers : set Component {
13 {layer : myLayers|
14 # {partner : (myLayers - layer) |
15 immediatelyConnectedNoOrder[partner, layer]}
16 = 2}
17 }
18

19 pred immediatelyConnectedNoOrder[c1: Component, c2: Component] {
20 some p : c1.ports |
21 (p in c2.ports.receivingPorts or
22 p in c2.ports.sendingPort)
23 }

Listing 5.58: Additional Alloy functions and predicates for the layered style. myLayers
is a generated Alloy function returning the layer components (see
translation rule V7 in Figure 5.55).

5.6. Implementation and Evaluation
The plug-in implementation and all specifications reported on below are available in
supporting materials [wwwu], together with screen captures and relevant documentation.
All specifications can be inspected and all experiments can be reproduced. We encourage
the interested reader to try it out.

5.6.1. C&C Views Synthesis Plug-In
We implemented C&C views synthesis in a prototype Eclipse plug-in. The input consists
of a C&C views specification. The specification — selection of views and components,
definition of the propositional formula, scope, and optional parameters about styles —
is edited using a user-friendly dedicated UI shown in Figure 5.59. At the back end,
the plug-in implements the translation into Alloy using MontiCore APIs [KRV10] and
FreeMarker [wwwf]. The SAT solver we use is MiniSat [wwwp]. When a C&C model
is synthesized, it is presented to the engineer who can inspect it and further use it for
code generation.

142 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Our implementation consists of a library providing utility operations on C&C views
and C&C models and a bridge from and to MontiCore ASTs, a synthesis engine and
an Eclipse plug-in both written in Java. We report the size of the implementation in
effective lines of code (ELOC). Lines counted as ELOC contain characters other than
white space or comments and are contained in classes of the implementation. Thus the
numbers of ELOC do not include unit tests and code for validation. The C&C views and
C&C model utility library consists of 9 classes with a total of 911 ELOC (also used for
the implementation reported on in Chapter 4). The C&C views synthesis engine consists
of 14 classes with a total of 1,086 ELOC and 5 Freemarker templates with 368 ELOC.
The C&C views synthesis plug-in consists of 38 classes with a total of 2,061 ELOC.

Figure 5.59.: A screen capture of the Eclipse plug-in for C&C views synthesis showing
the specification editor.

We tested the implementation over C&C views specifications for four systems from
different sources and of different domains (see Section 5.6.2). We experimented with
several different specifications for each system, in order to test and evaluate the use of
different features (e.g., library components, specification patterns, architectural styles).
For validation, we have also applied our algorithm from Chapter 4 to verify whether a
given C&C model satisfies a given view.

5.6. Implementation and Evaluation 143

We present a tutorial on how to install the plug-in, import the example systems, edit
C&C views specifications, and synthesize C&C models in Appendix D.

5.6.2. Evaluation Example Systems

We evaluated C&C views synthesis on four systems, taken from different sources. The
evaluation based on example systems is of qualitative nature. We wanted to gain expe-
rience with creating C&C views for specifying C&C models and their use for synthesis.
We discuss the results of our evaluation in Section 5.7.

Avionics system

We evaluated C&C views synthesis on an AADL C&C model of an avionics system, taken
from [wwwa] (specifically Avionics_System.aadl of the OSATE AADL Project).
The avionics system C&C model is a high-level model of several avionics system subsys-
tems.

Based on various use cases related to interactions between system’s components, we
created 9 C&C views, 1-6 components each. For example, one view gives an overview
of the complete data flow in the system, declared using abstract connectors. This view
does not provide additional information such as port names or types. Another view
provides more details about the communication between the Pilot_Display and it’s
Page_Content_Manager, showing incoming and outgoing ports with their names and
connectors. We defined 7 satisfiable and unsatisfiable C&C views specifications, using 3
to 9 views, some extended with styles.

Pump station

We further experimented with a pump station design taken from an example system
provided with the AutoFOCUS tool [HF07, wwwe]. The physical pump station system
consists of two water tanks connected by a pipeline system with a valve and a pump.
The water level in the first water tank can rise (this is controlled by the environment).
When the water level of the first tank rises to a critical level, the water has to be pumped
to the second water tank. The second water tank has a drain.

Based on several design decisions and relations we wanted to highlight and document,
we created 10 C&C views, each with 2-5 components. For example, one view gives an
overview of the basic structure of the system and omits details about interfaces and
connectors. Another view documents part of the connections between the actuators
and their environment, hiding hierarchies and omitting elements not connected to the
actuators. An additional C&C view shows an undesired design where the simulation
component is placed inside the pumping system.

We defined 8 satisfiable and unsatisfiable C&C views specifications. Two specifications
specify the optional existence of an emergency system and its implications, using the
[ALT] and [IMP] patterns. Another specification prohibits an emergency system. Other

144 Chapter 5. Component and Connector Model Synthesis from Views Specifications

specifications combine models of the function of the pump station with ones that specify
the separation of the pumping system from the simulation part.

Robotic arm

We evaluated C&C views synthesis on a robotic arm C&C model – specifically a ro-
tational joint, taken from an industrial system by VTT Tampere, Finland (the system
used as running example in this chapter). The main components of the rotational joint’s
model are a cylinder, a servo valve, a sensor, a joint limiter, and an actuator. The rota-
tional joint is a subsystem of a robotic arm containing eight rotational (identical copies)
and translational joints in total.

Based on several requirements and partial knowledge or particular features, we cre-
ated 11 C&C views, each with 1-5 components. Some views highlight the components
necessary for the function of the joint while others document design alternatives on the
placement of sensor and actuator components. Some of the views give an overview of
related components with only few details of their interfaces or connectedness. Other
views document complete interfaces of relevant components and some of their connec-
tions. Moreover, we created 8 C&C views specifications, each combining 6-8 C&C views
to express design alternatives (pattern [ALT]), undesired designs, and implications of
design decisions (pattern [IMP]).

Lunar lander

We evaluated C&C views synthesis on the lunar lander model, which is used by Taylor et
al. as a running example in their book on software architecture [TMD09] and presented
in a related work by Bagheri and Sullivan [BS10]. The lunar lander is a space ship with
various sensors, a controller, and actuators. The objective of the lunar lander is to land
safely on the surface of the moon.

Based on the natural language description of the lunar lander consisting of three
components presented in [TMD09, pp. 201] we have created 8 C&C views, each with
1-3 components. Each C&C view covers parts of the natural language description. Since
the natural language description is formulated positively, the C&C views specification is
a conjunction of the 8 views.

Based on a shorter natural language description of the same lunar lander with 8
components (4 sensors, one controller, and 3 actuators) from [BS10] we have created 2
views and again the C&C views specification is a conjunction of these 2 views. Both
original examples from [TMD09] and [BS10] contained neither port names nor types,
and no hierarchy. We introduced port names in the C&C views of the lunar lander
example from [TMD09].

Threats to validity

The choice of example systems for our experiments is limited to four systems from dif-
ferent sources. To address this threat, we have selected example systems from different

5.6. Implementation and Evaluation 145

domains: avionics, automation, robotics, and control. Further studies with more exam-
ple systems could provide more insight.

For three of the example systems only C&C models were available and we created the
C&C views ourselves. An evaluation with independent subjects to assess the expressive-
ness of C&C views could address the threat of a possible bias. For the Lunar Lander
example we derived the views from natural language descriptions of the architecture of
the system. These descriptions only contain statements that result in positive views.
More natural language descriptions of example systems are required to investigate this
phenomenon.

5.6.3. Synthesis Results and Times

We have run performance experiments with different C&C views specifications to address
the research question whether C&C views synthesis is feasible for the example systems.
We were also interested in answering whether parameters of synthesis — including sat-
isfiability, advanced features, and scopes — influence the performance of our synthesis
implementation.

Table 5.60 summarizes the results of our experiments in synthesizing C&C models
from different specifications for the four systems listed above. We show the concrete
performance results in wall-clock time in order to give a general, rough idea about
feasibility.

For each specification we report on the total number of components, number of views,
the use of advanced features (library components, patterns, styles), the scope (upper
bound for total number of ports) used, whether the specification was satisfiable or not,
the components’ nesting depth in the synthesized C&C model (if any), and the running
times (in seconds). We discuss the performance results in Section 5.7.2.

We performed the experiments shown in Table 5.60 on a regular desktop computer,
Intel Quad Core CPU, 3.4 GHz, running 64-bit Windows 7. The SAT solver we used is
MiniSat [wwwp].

We have executed C&C views synthesis for the two specifications LL-BS10 and LL-
TMD09 of the lunar lander with increasing scopes. For each of the specifications we
started from the smallest scope that makes the specification satisfiable. In each run
we increased the scope by one and report on the times it takes Alloy to translate the
generated Alloy module into a propositional formula in conjunctive normal form (CNF).
The CNF formula is subsequently solved by a SAT solver. We also report on the times
it takes the SAT solver MiniSat to solve the formula for a C&C model that satisfies the
specification. The results of the experiment are shown in Figure 5.61 for the specification
LL-BS10 with a resulting C&C model with 8 components and in Figure 5.62 for the
specification LL-TMD09 with a resulting C&C model with 3 components. The chart
shown in Figure 5.61 contains a gap at scope 18. The actual time by the SAT solver to
solve the CNF formula was more than five minutes (confirmed by multiple executions).
We have omitted this number from the diagram to keep a scale better suited for all other
results.

146 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Spec Name # Cmp. # Views Adv. Features Scope Sat. Depth Time (s)
RA: S1 9 6 – 18 Y 3 9
RA: S1IC 9 6 Int. complete 18 Y 3 62
RA: S1LC 9 7 Lib. component 20 Y 3 7
RA: S1IMP 9 8 Imp. pattern 18 Y 3 40
RA: S1CS 9 6 CS arch. style 18 N – 2
RA: S1HIER 9 6 Hier. arch. style 18 Y 3 29
RA: S2 9 7 – 18 N – 2
RA: S2XCYL 9 7 – 18 N – 2
PS: ALL 16 6 – 30 Y 3 56
PS: ALL-EMRG 16 7 – 30 N – 8
PS: ALL-EMRG-FIX 16 7 – 30 Y 3 59
PS: PHIS-SIM 16 4 – 20 N – 2
PS: PHIS-SIM2 16 3 – 20 Y 3 6
PS: PHIS-SIM2-BADS 16 3 – 10 N – <1
PS: PHIS-SIM2-NO-EMRG 16 4 – 20 Y 3 16
PS: SENSOR-LIB 16 6 Lib. component 20 Y 3 2
AS: ALL 7 9 – 16 Y 2 2
AS: ALL-BADS 7 9 – 10 N – <1
AS: ALL-HIER 7 9 Hier. arch. style 16 Y 2 7
AS: ALL-LAY 7 8 Lay. arch. style 16 Y 2 1
AS: ALL-NOLAY 7 9 Lay. arch. style 16 N – <1
AS: PILOT 7 6 – 16 Y 2 <1
AS: PILOT-CS 7 3 CS arch. style 16 Y 2 <1
LL: LL-BS10 8 2 atomic comp. 14 Y 1 2
LL: LL-TMD09 3 6 – 22 Y 1 3

Table 5.60.: Results from running synthesis on several C&C views specifications for the
robotic arm (RA), the pump station (PS), the avionics system (AS), and
the lunar lander (LL). For each specification we report on the total number
of components, number of views, the use of advanced features, the scope
used (upper bound for total number of ports), whether the specification
was satisfiable or not, the depth of the synthesized C&C model (if any),
and the running times (in seconds).

We performed the experiments shown in Figure 5.61 and Figure 5.62 on a regular
laptop computer, Intel Dual Core CPU, 2.8 GHz, running 64-bit Windows 7 and Java
1.7.0_17. The SAT solver we used is MiniSat [wwwp].

Threats to validity

The choice of example systems used in our evaluation may not be representative of C&C
models used in practice. To mitigate this we have chosen C&C models from different
sources and domains.

We measured and reported the combined analysis times of our plug-in, Alloy, and
the SAT solver in Table 5.60. Different versions of Alloy may include different internal
translations to CNF which affect the running times of the SAT solver. Different SAT
solvers and different SAT solver configurations may again affect analysis times. We have
chosen the the SAT solver MiniSAT, which is widely used and readily integrated in Alloy
with its default configuration.

5.6. Implementation and Evaluation 147

12 13 14 15 16 17 18 19 20 21 22
SAT solving 2,188 7,385 1,83 3,675 6,943 7,468 11,221 20,018 25,25 30,098
CNF computation 0,337 0,403 0,457 0,521 0,595 0,775 0,886 1,177 1,195 1,469 1,586

0

5

10

15

20

25

30

35

Lunar Lander LL-BS10 with increasing scope
tim

e
in

 se
co

nd
s

ports (scope)

t. o.

Figure 5.61.: Running times for synthesizing the lunar lander specification LL-BS10
with increasing scopes for the number of ports. The scope for port names
was set to 6 on all runs. We report times starting from scope 12, which is the
first scope to make the problem satisfiable. All times for CNF computation
and SAT solving are reported in seconds. For scope 18 the SAT solver timed
out (t. o.) after 5 minutes.

21 22 23 24 25 26 27 28 29 30 31
SAT solving 0,684 0,95 1,041 1,55 1,612 2,023 2,956 4,728 9,2 6,528 8,805
CNF computation 2,181 2,537 2,854 3,175 3,851 4,214 4,574 5,147 5,871 6,534 6,963

0

2

4

6

8

10

12

14

16

18

Lunar Lander LL-TMD09 with increasing scope

tim
e

in
 se

co
nd

s

ports (scope)

Figure 5.62.: Running times for synthesizing the lunar lander specification LL-TMD09
with increasing scopes. Starting from scope 21, which is the first scope to
make the problem satisfiable. All times for CNF computation and SAT
solving are reported in seconds.

Our experiments for synthesis of the same satisfiable C&C views specifications with
different scopes was restricted to two example specifications. This impedes the gener-
alizability of the findings that the scope influences synthesis times in an irregular way
as shown in Figure 5.61. In our evaluation we focus however on the existence of the

148 Chapter 5. Component and Connector Model Synthesis from Views Specifications

phenomenon and not its generalization.

5.7. Discussion
In this section we report on the lessons learned from our evaluation and discuss various
topics and advanced features of C&C views synthesis. Many of the topics, such as
completeness and performance, are related to the choice of Alloy as a target formalism
to express the C&C views synthesis problem and to using the Alloy Analyzer to find
Alloy instances.

5.7.1. Completeness and Synthesis Scopes

Our solution for C&C views synthesis is based on a reduction to Alloy. Alloy is a model
finder, which is complete in a bounded scope. The scope for the Alloy Analyzer is
defined as either upper bounds or exact numbers of the atoms in each signature. The
Alloy Analyzer is guaranteed to find a solution in the specified scope, i.e., it is complete.
If a solution does not exist in a given scope a solution might exist for a different definition
of the scope.

Since we use Alloy, the completeness of our synthesis solution also depends on the
scope specified. An upper bound for the number of components in the C&C model is
the number of components with distinct names in the C&C views. The upper bound
for the number of port types is the number of different port types in all the views plus
one (the additional type is required in case an untyped port is required to exist but all
other types appearing in views are forbidden by the specification).

Remaining scopes to be given are the upper bound for the number of ports in the
C&C model and the upper bound for the number of port names. One upper bound
for the number of ports is the number of all abstract connectors in all views times two
ports times the number of components in all views. This scope is large enough for every
abstract connector to be implemented by an independent chain of connectors in the C&C
model. An example of a C&C view that requires exactly this upper bound is shown in
Figure 5.63. The view contains the two independent components Body and Joint. The
component Body has n input ports each with a unique name. The component Joint
has n output ports with the same n unique names. The C&C view also contains n
abstract connectors connecting the input ports of the component Body to the output
ports of the component Joint. To satisfy this view the chains of connectors need to
be independent since their sources (the ports of component Body) are independent and
every port in a C&C model may have only up to one incoming connector. Every chain
of connectors requires one output port on the component Body and one additional input
port on the component Joint not shown in the C&C view.

For most C&C views synthesis problems this upper bound is however computationally
not feasible to use with our reduction to Alloy. For example, the lunar lander system
LL-BS10 from Section 5.6.2 has 7 abstract connectors and 9 components shown in all
views. The synthesis problem with an upper bound of 2 ∗ 7 ∗ 9 = 126 for the number of

5.7. Discussion 149

8���'�
�

��������

>

*�������+-��

*�������+-��

������������������
�������
����" �����

*�������+-��

*�������+-��

> ������������������
�������
����" �����>

����������������������
���������#��������" �����

Figure 5.63.: A C&C view view that has only satisfying C&C models with at least
2∗∣view.AbsCons∣∗∣view.Cmps∣ ports. Every satisfying C&C model needs
at least twice the number of port names shown in this view.

ports is not feasible to compute — as shown by the trend of the synthesis times shown
in Figure 5.61. Thus, we currently leave it to the user to specify an upper bound for the
number of ports in the C&C model to be synthesized. It might be possible to compute
smaller upper bounds when taking the structure of the synthesis problems’ views and
propositional formula into account.

The number of port names used for synthesis again influences satisfiability. If the
number of port names is chosen too low, synthesis might fail only because every port
of a component needs a unique name. The number of port names is also the maximal
number of ports per component. For n unique port names in all views our current
implementation sets the upper bound for the number of port names to n if n > 6,
otherwise it is set to the current default scope 6. Please note that the number 6 is
chosen arbitrarily and should be replaced by a user defined number. In the example
C&C view in Figure 5.63 the minimal number of ports required for synthesizing a C&C
model is 2 ∗ n where n is the number of ports on the component Body (same as for the
component Joint).

5.7.2. Performance

For some specifications, synthesis took only a few seconds, while for others it took up
to a minute to complete (on a regular desktop computer). Our experience shows that
relatively minor changes in a specification, such as ones that add no views or components
but only further constrain the specification with library components or statements of
interface-completeness, and even ones that do not affect the semantics (such as different
ordering of the views in the propositional formula), sometimes have a significant effect
on performance. Indeed, it is known that the performance of Alloy and SAT solvers in
general, is sensitive to the order of variables in the input.

150 Chapter 5. Component and Connector Model Synthesis from Views Specifications

Our definition of the C&C metamodel inside Alloy (see Section 5.3.2) contains some
redundancies we added for convenience and readability. Examples of these redundan-
cies are the relation Component.parent, which is the inverse of the relation Compo-
nent.subComponents, and the relation Port.sendingPort, which is the inverse
of the relation Port.receivingPorts. It is not clear whether removing these redun-
dancies improves performance.

One observation is that synthesis times depend to a great extent on the scope (number
of ports) chosen by the user of the plug-in. From the change in synthesis times with
increasing scope shown in Figure 5.61 we can see that an increased scope significantly
increases synthesis times. This is not surprising, since the time complexity of SAT solvers
is exponential in their input. However it is also interesting to note that even for small
scopes there are some outliers, e.g., scopes 13 and 18. The scope for C&C views synthesis
is chosen by the user. Thus these outliers are interesting since they influence synthesis
times in a way that is hard to predict. We leave it to future work to further investigate
this issue.

Another observation from the two experiments is that for some specifications the time
consuming part of synthesis is spent by Alloy’s translation of the module to a CNF
formula. From the times reported in Figure 5.62 we can see that the translation into a
CNF formula from scope 21 to 29 was more time consuming than solving the formula.
This suggests that a direct translation into a SAT problem instead of an intermediate
translation into Alloy might be a possibility to speed up synthesis.

Since C&C views synthesis is NP-hard, one cannot expect it to be instantaneous.
Thus, we consider the resulting times to be reasonable. Also, interestingly, deciding
that a specification is not satisfiable was typically (but not always) much faster than
deciding that it is satisfiable and providing the synthesized C&C model (see results
reported in Table 5.60).

5.7.3. Language Expressiveness
We found that the use of a propositional formula over views, together with the patterns,
in particular the use of alternatives, negations, and implications, is both expressive and
easy to read and write. We thus believe that C&C views’ ‘by example’ characteristics is
attractive to engineers (our belief is supported also by the analogous use of scenarios as
views in behavioral specifications). On the other hand, the use of views to specify some
properties was not always natural and intuitive. Instead, sometimes we wished to have
a more fine-grained, flexible, and powerful language that allows one to write symbolic,
succinct specifications (e.g., using quantification). We leave this topic for future work.

5.7.4. Multiple Solutions
A C&C views specification may have more than one satisfying C&C model. For example,
consider the specification S1 of Section 5.1.1. Figure 5.4 shows a possible solution. An
alternative satisfying C&C model may be a C&C model which is identical to the first
except that ServoValve contains Sensor. If this is not an acceptable C&C model,

5.7. Discussion 151

the architect can disallow it (e.g., by adding it, or a smaller view consisting of the
ServoValve and the Sensor, in a negated form to the specification), and run synthesis
again.

Most of our specifications had many satisfying solutions. So, we found that it may
be useful to have a better way of choosing between solutions, e.g., by optimizing some
cost functions (hierarchy depth, ports’ number, connector chains length). This however
cannot be efficiently done using our current technique. We leave this issue for future
work.

5.7.5. Expressiveness vs. Performance
Our work uses a rather strong definition of a specification, supporting arbitrary propo-
sitional formulas over views. Alternatively, one may suggest to allow only a conjunction
of views, or a conjunction of disjunctions of views, but without negation. Such a lim-
ited definition may lead to better performance by creating opportunities for the use of
abstractions.

For example, we may consider abstracting ports and connectors away, dealing at first
only with the subcomponent relation. Such an abstraction may be useful as a means
to reduce the size of the problem and accelerate the computation, specifically for the
purpose of falsification. If negation is not allowed, this is indeed an abstraction; that is,
it will allow the same or more solutions (if a solution is not found, we know the original
problem, without abstraction, has no solution too; if a solution is found, we need to
go back to the original problem). However, if negation is allowed, ignoring ports and
connectors may not only add but also eliminate possible solutions. Thus, this abstraction
is possible only in case of specifications without negation.

On the other hand, a language without negation would indeed limit the expressive
power of the views specification, e.g., without negation, one cannot specify exclusive
alternatives or implications between views (see Section 5.4.3).

In future work it may be worthwhile to further investigate the trade-off between ex-
pressiveness and performance in the context of C&C views synthesis, in particular with
regard to the use of abstractions on real-world views specifications.

5.7.6. Synthesis and Evolution
Software systems and their architectures evolve over time. Indeed, support for architec-
tural evolution and the evolvability of C&C models (the ability to easily accommodate
future changes) has been extensively studied (see, e.g., [MRT99, MMR10, BCL12]).
Thus, in our context, one may be interested in an incremental variant of the synthesis
problem where the input consists not only of a set of partial views but also of an existing
C&C model.

The revised synthesis problem would be to compute an extension of an existing C&C
model that satisfies a new views specification. The architect would specify which parts
or properties of the existing C&C model may change and which ones may not. Please
note that synthesis might fail if either the specification is unsatisfiable or an invariant

152 Chapter 5. Component and Connector Model Synthesis from Views Specifications

part of the model contradicts the updated views specification. It is possible to extend
our current work to support this variant of the problem. We leave its formal definition,
implementation, and evaluation to future work.

5.7.7. Handling Unsatisfiable Specifications

A C&C views specification may be unsatisfiable. In addition to identifying unsatisfiabil-
ity, one may be interested in presenting the root cause of conflicts to the architect, i.e.,
to identify a minimal subset of the specification (propositional formula) that is unsatis-
fiable. Please note that unsatisfiability may have more than one cause, for example, as
explained earlier in subsection 5.1.2, the specification S2 is unsatisfiable both because of
a conflict in component containment and because of a port type mismatch.

Heuristics may be used to detect some simple patterns of unsatisfiability in linear or
polynomial time. A complete but inefficient solution to find a minimal subset would
require an exponential number of synthesis runs. We believe that providing tools to
handling unsatisfiable specifications efficiently is an important direction for future work.
One may be able to build these on top of existing technologies for UNSAT core, as
supported by some SAT solvers. However, in order to be effective, the identified core
must be lifted and presented to the engineer back using the abstractions defined by the
views.

5.7.8. Choice of Alloy as the Target Formalism

Our choice of Alloy as the target formalism for analysis, on the way to SAT, was moti-
vated by Alloy’s expressive power, readability, and readily available automated analysis.
From our performance experiments we have seen that in some cases much of the time for
solving the synthesis problem is used by Alloy to translate the specification into a CNF
formula for the SAT solver (see the example in Figure 5.62). Thus, an alternative for
C&C views synthesis could have been a direct translation to SAT, which may be better
from a performance point of view. On the other hand, Alloy analyzer does use various
heuristics to optimize the translation to SAT.

As a future work one could investigate the performance of C&C views synthesis us-
ing different model finders. A possible candidate is the relational model finder Kod-
kod [TJ07] used as a back-end by Alloy. Kodkod models are created using an API.
They consist of relations and their bounds given as sets of tuples. Kodkod provides less
abstractions than Alloy, e.g., fields and inheritance between signatures, but allows more
control over the lower and upper bounds for relations. Another possible tool to solve the
synthesis problem via a reduction is FORMULA [JLB11]. FORMULA takes as input
domain descriptions as algebraic data types and constraint logic programs. It can com-
plete partial models using a combination of symbolic execution and satisfiability modulo
theories (SMT) solving. Similar to a direct reduction to SAT the synthesis problem could
also be reduced directly to an SMT solver such as Z3 [dMB08]. SMT solvers typically
solve first order logic formulas over background theories. The formulation of the model

5.8. Related Work 153

finding problem for C&C views synthesis in terms of background theories, e.g., arrays
and arithmetic, might allow a more convenient formulation compared to SAT.

We believe that the various extensions, e.g., styles and library components, we have
presented and implemented are a good reason for the use of Alloy. Especially the im-
plementation of styles required not only to add but also to modify parts of the existing
translation rules. The abstractions provided by Alloy make these extensions possible
with reasonable effort. Our rule-based translation using concrete syntax templates with
the readable syntax of Alloy has proven helpful for modifications and maintenance.

Finally, we consider our implementation using Alloy to be a sufficient proof of concept
research prototype for C&C views synthesis. In the future it may be interesting to
compare our implementation with ones that use alternative encodings and tools.

5.8. Related Work
Many works have suggested synthesis and composition methods related to architec-
ture views. These include differencing and merging (e.g., Abi-Antoun et al. [AAAN+08],
Chen et al. [CCG+03], Sabetzadeh and Easterbrook [SE04, SE06]), as well as related for-
mal analyses of architectures within architecture styles (e.g., Kim and Garlan [KG10]).
Boucké et al. [BWH10] present composition operators for architectural models. Their
approach is imperative rather than declarative. Giese and Vilbig [GV06] discussed sep-
aration of non-orthogonal concerns in software architecture and design. The work deals
with composition of structure as well as composition of behavior.

We review related works for views merging, synthesis approaches for behavior in the
context of software architecture, and formalizations of architecture analyses based on
Alloy below. To the best of our knowledge, no previous work has suggested to consider
views as specifications for the structure of architectures and use them for an automated
synthesis process, as is done in our work.

5.8.1. Views Merging

Chen et al. [CCG+03] present differencing and merging techniques for product-line ar-
chitectures, specifically in the context of evolution. Differences are categorized as ele-
ments that have been added, elements that have been removed, or elements that have
changed. The differences are represented in XML format using a schema that extends
xADL [DvdHT01] and then merged into a target architecture.

Abi-Antoun et al. [AAAN+08] present differencing and merging of architectural views
using a technique that detects renames, inserts, deletes, and restricted moves. The
technique is inspired by tree-to-tree correction algorithms.

Sabetzadeh and Easterbrook introduce a graph based framework for view merging
for arbitrary modeling languages [SE04, SE06]. Their framework is modeling language
independent. The merging of multiple views integrates the information contained in
several partial views. One weakness of the framework is that it does not handle complex
well-formedness rules of the views merged. Examples for these rules in C&C views are

154 Chapter 5. Component and Connector Model Synthesis from Views Specifications

that no component contains itself. A merge of views using the framework from [SE06]
might result in a structure that is neither a view nor a C&C model.

Boucké et al. [BWH10] present composition operators for C&C models to avoid the
repetition of elements in integrated models. The integration of sets of architecture models
is based on a user specified unification relation (marking identical elements across input
models) and a submodel relation (e.g., a component is detailed in another model). This
model composition is thus an imperative composition of concrete C&C models rather
than a declarative one as in our approach. We believe that our work may benefit as well
from a more complex and maybe user specified unification relation across C&C views as
suggested in [BWH10].

5.8.2. Synthesis Related to Architecture Behavior

Issarny et al. [KI01, IKZ02] present a development environment for the composition of
middleware architectures. The input for composition are two C&C models. The output
of the directed composition operator is a single C&C model where possibly multiple
copies of components of the second model are connected with components of the first. A
valid composition preserves communication order of the input models and CTL proper-
ties checked against PROMELA implementations of components, both specified by the
user. The work may be viewed as similar to ours, as it translates a C&C model com-
position problem into a model checking problem. It differs significantly, since the input
in [KI01, IKZ02] consists of concrete models without common elements, without hierar-
chies (they are flat) or abstraction mechanisms as supported by C&C views. Moreover,
their composition is binary and directed while ours supports propositional specifications
over C&C views, including negation, alternatives etc.

Giese and Vilbig [GV06] discuss separation of non-orthogonal concerns in software
architecture and design. The work deals with composition of structure and behavior
from architectural views. Architectural views are defined as directed graphs represent-
ing components and connectors extended with behavior contracts. According to [GV06],
the structural part of their architectural view synthesis can be handled by superposition
of these directed graphs. In contrast, the synthesis problem for our C&C views specifi-
cations is more complex because of its rich abstraction mechanisms (of direct hierarchy
and connectivity) and its support for the specification of negative or alternative designs,
which prohibit simple superposition.

From a broader, high-level perspective, variants of synthesis from partial views have
been studied in the area of behavioral specifications (see, e.g., the works of Harel et al.,
Uchitel et al., and Whittle et al. on synthesizing behavior models from scenarios [WS00,
UBC07, HS12]). These works assume the structure of the systems to be given; only the
behavior is synthesized. Our present work deals with the synthesis of structures, not
behaviors, and may be viewed as complementing some of these works. As future work
one may develop integrated structural and behavioral synthesis techniques.

5.8. Related Work 155

5.8.3. Analyses of Architecture Models using Alloy
Jackson and Sullivan [JS00] analyze a part of the Microsoft Component Object Model
(COM) [Box98] using the Alloy Analyzer. They have translated a Z [Spi92] specification
of COM into a specification in the Alloy language. The resulting Alloy formalization
contains hierarchical components with connected interfaces similar to our Alloy meta-
model for C&C models. The goal of Jackson and Sullivan was to check properties of the
specification and to refine the model to a simpler representation. The analysis was not
on specific C&C models or C&C views as in our case but on the meta-model itself.

Kim and Garlan [KG10] present formal analysis of C&C models within architecture
styles, focusing on structural properties. Structural architectural style definitions are
translated into a relational model, specifically in Alloy [wwwb, Jac06], in order to allow
various consistency checks and related analyses.

Bagheri and Sullivan [BS10] use Alloy to construct a style-specific architecture from
a style-independent application model. Their work is based on the observation that an
application can be described independently of an architectural style [BSS10]. Unlike our
work, the input for their technique is a single style-independent application model, not
a propositional formula over a set of partial views. As styles are common and successful
design practices, we have included support for some architectural styles in our synthesis
solution (see Section 5.5).

Bagheri and Sullivan [BS10] use the lunar lander example as a case study. Although
this example is small and flat (and thus does not take advantage of the unique features
of our approach), we use it in our evaluation too, for the purpose of comparison (see
Section 5.6).

Chapter 6.

MontiArcAutomaton: State-Based Behavior
Modeling

The software components in interactive systems communicate via messages sent and
received through their ports. Examples of components are, e.g., sensors that produce
data messages, controllers that monitor sensor data and issue actuator commands, and
actuators that consume commands for actions to execute on a physical system. We are
most interested in discrete controllers that control cyber-physical systems based on data
read from sensors and the actions effected by actuators.

We use a state-based model for the interaction of components described in MontiArc
software architectures. We implement a description technique in the new modeling
language MontiArcAutomaton that extends MontiArc with automata following the I/Oω

automaton paradigm [Rum96]. Examples of the kind of systems we model are embedded
software systems from the automotive domain or the software systems of robots.

As a system model for distributed interactive systems we employ streams, I/O re-
lations, and stream processing functions from Focus [BS01]. These concepts form a
semantic domain for MontiArcAutomaton models. We introduce a language profile for
MontiArcAutomaton to model time-synchronous component behavior on which we focus
in the remainder of this work.

The MontiArcAutomaton modeling language implements the underspecification mech-
anisms of I/Oω automata: behavior descriptions of components may be non-deterministic
and different completions complement the transition relation with behavior. Based on
the Focus theory of behavior refinement, MontiArcAutomaton models thus serve as
behavior specifications as well as implementations.

We discuss two semantics of MontiArcAutomaton automata: one based on stream pro-
cessing functions from [Rum96] and one based on relations of input and output streams
from [BS01]. We chose to present both semantics because the first is used for the se-
mantics definition of I/Oω automata on which MontiArcAutomaton automata are based
and the second because it is commonly used in the Focus framework. In Section 6.5
we show that the two semantics definitions lead to different notions of refinement for
the MontiArcAutomaton language profile we focus on. Highlighting this difference is
important for the remainder: in Chapter 7 we rely on the I/O relation semantics with a
conceptually simpler semantic domain than stream processing functions.

We have summarized the preliminaries given in Section 6.3 in [RR11] and presented
the modeling language MontiArcAutomaton in [RRW12, RRW14].

158 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

Chapter outline and contributions

We present an example of a basic robotic system whose behavior can be described and
implemented using automata of the modeling language MontiArcAutomaton in Sec-
tion 6.1. Section 6.2 gives an overview of the MontiArcAutomaton modeling language
as one contribution of our work.

Preliminary work on streams, I/O relations, and stream processing functions from
Focus [BDD+92, Bro93, Rum96, BS01, RR11] is summarized in Section 6.3.

We introduce a language profile for MontiArcAutomaton in Section 6.4, on which we
focus in the remainder of this work. As one of our contributions we present formal
semantics for MontiArcAutomaton components. Section 6.5 shows that the semantics
definitions based on stream processing functions and I/O relations lead to different no-
tions of refinement for MontiArcAutomaton.

Finally, Section 6.6 surveys related modeling formalisms for state-based descriptions
of interactive systems.

6.1. Example of a Reactive System
As an example for a reactive system consider the bumper bot robot shown in Figure 6.1.
The robot has a touch sensor mounted at the front, a wheel in the back to balance,
and two motors, one on each side of the robot powering a wheel. The objective of the
bumper bot is to traverse an area by going straight forward until it hits an obstacle. The
robot then backs up, turns around, and proceeds forward. The complete component and
connector software architecture of the robot is shown in Figure 6.2.

���������������
������������������

��������	�����

����
�������������#�
�������	���#���������

Figure 6.1.: The bumper bot robot with a touch sensor in front and two motors to power
the left and right wheels.

The components TouchSensor, Timer, and the parametrized components Motor
are components from a Lego NXT specific component library and wrap access to hard-
ware — touch sensor, clock, and motors of the robot. The state-based description of the

6.1. Example of a Reactive System 159

�����'�����'��
2
�����3

����

	����"	��������!'#��9�1�

�����������
"����������!��# 	����"	��������!�#��%���

'����������

��
��������������
������	������

���������������������
���������������"����
$%��&�#��'����

����������������
�������������'

�����������������

Figure 6.2.: The C&C architecture SimpleBumperBot of the bumper bot.

behavior of the component BumpControl is shown in Figure 6.3. The types shown on
the ports of the component are the basic type Boolean = {true,false} and the enu-
meration types TimerSignal, MotorCmd, and TimerCmd defined in the class diagram
shown in Figure 6.4.

'����������

'�����������

������������

������
���

	������
��	��

	������
��	��

��

?��	�� ,�����@�
�	�� ,�����

�$
��

���(
��

����
��

�����,������?��	�� ,�:�%6�%=@�
�	�� ,�:�%6�%=

�����,������?��	�� ,�'��A6�%=@�
�	�� ,�'��A6�%=@
�� ,�=��'9�<=�9�B

�� ,��9�%��?��	�� ,�:�%6�%=@�
�� ,�=�9�B

�����������������

Figure 6.3.: The component definition and state-based behavior description of compo-
nent BumpControl of the bumper bot.

The component BumpControl shown in Figure 6.3 initially stops the motors by
sending a STOP command on both output ports rMot and lMot of the type MotorCmd.
The component activates the driving mode of the robot once the bump sensor is pressed.
It sends commands for both motors to drive forward and the controller switches to the
state driving. In case the controller registers bumping into any object by receiving

160 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

2����������3
	������

����
:�%6�%=
'��A6�%=

2����������3
������

%����
=�9�B
=��'9�<=�9�B

2����������3
���������

�9�%�

��

Figure 6.4.: A UML/P class diagram defining the enumeration types TimerSignal,
MotorCmd, and TimerCmd.

the message true on port bump, both motors are set to drive backwards. In addition, a
timer is set with the command DOUBLE_DELAY sent on port tc. The controller waits in
the state backing until it receives the message ALERT on the port ts. The controller
then issues motor command for the robot to turn around by going forward with one
motor while the other one still rotates backwards. At the end of another delay the
second motor is also set to rotate forward and the controller goes back to the state
driving.

6.2. MontiArcAutomaton Modeling Language
MontiArcAutomaton is a modeling language for modeling the behavior of components
in C&C models. We describe the behavior of components depending on their current
state as the reaction to the inputs a component receives on its ports. The reaction of
a component is expressed by the messages sent on the component’s output ports. The
internal states and processing steps of components are hidden from the outside. This
implements the concept of information hiding of component-based design where only
information required for the use of the component is made public through its interface.
This follows the compositional approach of Focus implemented in MontiArc.

The MontiArcAutomaton modeling language is an implementation of the I/Oω au-
tomata paradigm presented in [Rum96]. There are some differences between I/Oω au-
tomata and MontiArcAutomaton. First, I/Oω automata allow infinite output to describe
non-terminating actions. We restrict the output per port and transition in MontiArc-
Automaton to finite sequences. Second, I/Oω automata allow an infinite state space.
In MontiArcAutomaton states have to be enumerated and their number is thus finite.
MontiArcAutomaton however allows an infinite state space, expressed using variables.
Finally, MontiArcAutomaton extends I/Oω automata with explicit support for multiple
ports, support for guards on transitions, and support for local variables. These exten-
sions are well-known from existing modeling languages [Har87, Obj12b, Obj12a, Rum11].

Listing 6.5 depicts a model expressed in the concrete syntax of the MontiArcAuto-
maton modeling language. The modeling language MontiArcAutomaton extends the
modeling language MontiArc. Every MontiArc model is also a MontiArcAutomaton
model. In addition to the concepts of MontiArc (see [HRR12]), the definition of a com-

6.2. MontiArcAutomaton Modeling Language 161

ponent may contain variable declarations and automata. The component type definition
BumpControl in Listing 6.5 shows a component with the input ports bump of type
Boolean and ts of type TimerSignal and three output ports.

MontiArcAutomaton

1 package bumperbot;
2

3 component BumpControl {
4

5 port
6 in Boolean bump,
7 in TimerSignal ts,
8 out TimerCmd tc,
9 out MotorCmd rMot,

10 out MotorCmd lMot;
11

12 automaton {
13 state
14 idle, driving, backing, turning;
15 initial
16 idle / {rMot = STOP, lMot = STOP};
17

18 idle -> driving {bump = true} /
19 {rMot = FORWARD,
20 lMot = FORWARD};
21 driving -> backing {true} /
22 {rMot = BACKWARD,
23 lMot = BACKWARD,
24 tc = DOUBLE_DELAY};
25 backing -> turning {ts = ALERT} /
26 {rMot = FORWARD,
27 DELAY};
28 turning -> driving {ALERT} /
29 {lMot = FORWARD};
30 }
31 }

Listing 6.5: The MontiArcAutomaton model of the component BumpControl.

The component definition of the component BumpControl contains an automaton
(Listing 6.5, ll. 12-30). The automaton has four states idle, driving, backing, and
turning. The block starting with the keyword initial (l. 15-16) declares the state
idle as an initial state that sends the initial output STOP of type MotorCmd on the
two outgoing ports rMot and lMot. The transitions in the example have a source state
and a target state separated by ->, an input block, and an output block. The first
transition from the initial state idle goes to state driving if the input on port bump
is the value true (ll. 18-20). When the transition is taken, the value FORWARD is sent

162 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

on the two outgoing ports rMot and lMot.
MontiArcAutomaton has some syntactic convenience mechanism. Instead of writing

the port name and value, it is enough to write the port’s value if the port name can be
uniquely determined by the type of the value. Examples for this notation are given in
line 21 and line 28 of Listing 6.5. Here, the value’s type uniquely determines the name
of the input port where the value is read. The same short notation also works for output
ports and values as shown in line 27.

MontiArcAutomaton

1 package util;
2

3 component Buffer<T> {
4

5 port
6 in Boolean request,
7 in T data,
8 out T response;
9

10 T storage;
11

12 automaton {
13 state
14 buffering;
15 initial
16 buffering;
17

18 buffering {request = true} / {response = storage,
19 storage = data};
20 buffering [ocl: data != null && request == false]
21 / {storage = data};
22 }
23 }

Listing 6.6: The MontiArcAutomaton model of the generic component Buffer.

As another example for the concrete syntax and features of the modeling language
MontiArcAutomaton, consider the component Buffer<T> shown in Listing 6.6. The
component has a generic data type T in its signature. When instantiating the component
Buffer<T>, a concrete type, e.g., String or Integer, has to be supplied for the type
variable T. The component Buffer<T> can thus be used to buffer messages of any type.
In line 7 and line 8 of Listing 6.6 the generic type T is used as the data type of the input
port data and the output port response.

MontiArcAutomaton allows the definition of variables inside components, e.g., to store
data of previous calculations. An example of the concrete syntax for the declaration of
variables is shown in line 10 of Listing 6.6 on the example of the declaration of a variable
storage of the type T. The automaton implementing the behavior of the component

6.2. MontiArcAutomaton Modeling Language 163

Buffer<T> has a single state buffering. The first transition of the automaton has
the same source and target state buffering which can be written in the short form
shown in line 18 (omitting the arrow and target state). In case the input port request
receives the Boolean message true, the value stored in the local variable storage is
sent on the port response and the value received on the input port data is stored to
the variable storage. Please note that new values are assigned to variables only for the
next execution cycle of the automaton, i.e., independent of the order of the assignments
in lines 18 and 19 the previous value of the variable storage is sent on the output port
response. The elements on the right side of assignments to ports and local variables in
output blocks may be concrete values, local variables (denoting the value of the variable)
or names of input ports as shown in line 19 (denoting the value received on the port).

The transition in Listing 6.6, l. 20 is guarded by an OCL/P [Rum11, Sch12] predicate
to ensure that the value on the port data is not null and that no request is issued.
Please note that we have defined a semantics for embedded OCL/P expressions in Monti-
ArcAutomaton. In the semantics used in this example data != null means that
some meaningful value is received on the input port data and request == false
means that the value false is read on the input port request. Our code generator
for the robotics platform leJOS, presented in Chapter 8, translates embedded OCL/P
expressions in guards according to this semantics. The modeling language MontiArc-
Automaton currently supports embedded OCL/P and embedded Java guards.

The output of each transition of MontiArcAutomaton automata can be specified for
multiple output ports. The modeling language MontiArcAutomaton allows the output
on each port to be a finite stream of messages. An example is the concatenation of the
three messages STOP, BACKWARD, and FORWARD on the output port rMot as shown in
line 19 of Listing 6.7.

In case multiple messages can trigger the same transition, MontiArcAutomaton allows
to define these alternatives in one transition as shown in Listing 6.7, l. 20. More complex
conditions may be expressed using guard expressions in an embedded guard language.

In this language overview we only presented the main features of the MontiArcAuto-
maton modeling language. Appendix J contains a complete grammar. A detailed de-
scription of the MontiArcAutomaton language is given in a technical report [RRW14]
with a detailed introduction of the syntactic elements and a complete list of context
conditions. We define a language profile of MontiArcAutomaton with a subset of the
features mentioned here in Section 6.4 that we use throughout the remainder of this
thesis.

6.2.1. Component Type Definitions
In many cases in component based system development the same component type is
used multiple times in a software system. Examples are generic component types such as
buffers, filters, or components wrapping access to hardware as the components Touch-
Sensor and Motor from the initial example in Figure 6.2. To allow the reuse of
components, the ADL MontiArc distinguishes between the definition of a component
and the instantiation of a component.

164 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

MontiArcAutomaton

1 package robot;
2

3 component ManeuverController {
4

5 port
6 in HighLevelManeuver maneuver,
7 out MotorCmd rMot,
8 out MotorCmd lMot;
9

10 automaton {
11 state
12 stopped,
13 // ... more states ...
14 driving;
15 initial
16 stopped;
17

18 driving {TURN_RIGHT} /
19 {rMot = STOP:BACKWARD:FORWARD};
20 driving -> stopped {HALT | STOP} /
21 {rMot = STOP, lMot = STOP};
22 // ... more transitions ...
23 }
24 }

Listing 6.7: An excerpt of the automaton inside component ManeuverController in
concrete MontiArcAutomaton syntax.

Previously, we have mainly considered C&C models for describing complex systems
as instances of hierarchically composed components. We now introduce component type
definitions in Definition 6.8. A component type definition can be seen as a blueprint,
which describes the elements required to instantiate a component of the defined compo-
nent type.

Definition 6.8 (Component type definition). Given a universe of names Name, a uni-
verse of ports Port, and a universe of data types Type, a component type definition is
a structure cmp = (cType, CPorts, CV ars, CSubCmps, CCons) ∈ CTDefs where

1. cType ∈ Name is the unique type name of the component (∀c1, c2 ∈ CTDefs ∶
c1.cType = c2.cType ⇒ c1 = c2),

2. CPorts ⊆ Port ⊆ (dir ∶ {IN, OUT} × name ∶ Name × type ∶ Type) is the set of
directed input and output ports of the component type cType where each port
p ∈ CPorts has a direction p.dir, name p.name, and a type p.type,

3. CV ars ⊆ (name ∶ Name×type ∶ Type) is the set of local variables of the component
type cType, where each v ∈ CV ars has a name v.name and a type v.type,

6.2. MontiArcAutomaton Modeling Language 165

4. CSubCmps ⊆ (name ∶ Name × type ∶ CTDefs) is the set of subcomponents of the
component type cType where each subcomponent sub ∈ CSubCmps has a name
sub.name and a component type definition sub.type, and

5. CCons ⊆ (srcCmp ∶ Name×srcPort ∶ Port× tgtCmp ∶ Name× tgtPort ∶ Port) is a
set of directed connectors con ∈ Cons, each of which connects two ports of the same
type con.srcPort.type = con.tgtPort.type, with con.srcPort ∈ getCTDef (con.src-
Cmp).CPorts and con.tgtPort ∈ getCTDef (con.tgtCmp).CPorts, where

getCTDef ∶ name ↦ THE t ∈ CTDefs ∶ (name, t) ∈ CSubCmps ∪ {(cType, cmp)}
retrieves the unique component type definition for the name cType or the subcom-
ponent name name.

Component types are either atomic where CSubCmps = ∅ = CCons or composed where
CSubCmps ≠ ∅ ∨ CCons ≠ ∅ and CV ars = ∅. The following rules for well-formedness
apply:

6. ∀c ∈ CTDefs ∶ ∄(n1, c1), .., (nk, ck) ∶ (n1, c1) ∈ c.CSubCmps ∧ ck = c ∧ ∀i < k ∶
(ni+1, ci+1) ∈ ci.CSubCmps, i.e., no component type definition transitively contains
itself and

7. ∀pv1, pv2 ∈ CPorts∪CV ars ∶ pv1.name = pv2.name ⇒ pv1 = pv2, i.e., the names of
ports and variables are unique within the component type definition.

Additionally, for composed component types:

8. ∀sub ∈ CSubCmps ∶ sub.name ≠ cType ∧ ∀sub1, sub2 ∈ CSubCmps ∶ sub1.name =
sub2.name ⇒ sub1 = sub2, i.e., each subcomponent has a unique name different
from cType,

9. ∀con1, con2 ∈ CCons ∶ con1.tgtCmp = con2.tgtCmp∧con1.tgtPort = con2.tgtPort ⇒
con1 = con2, i.e., each port has at most one incoming connector,

10. Each connector con ∈ CCons satisfies exactly one of the four cases
(a) con.srcCmp = cType = con.tgtCmp∧con.srcPort.dir = IN ∧con.tgtPort.dir =

OUT , i.e., the component directly forwards input as output,
(b) con.srcCmp = cType ∧ ∃sc ∈ CTDefs ∶ (con.tgtCmp, sc) ∈ CSubCmps ∧

con.srcPort.dir = IN ∧ con.tgtPort = IN , i.e., the parent component forwards
input to a subcomponent,

(c) con.tgtCmp = cType ∧ ∃sc ∈ CTDefs ∶ (con.srcCmp, sc) ∈ CSubCmps ∧
con.srcPort.dir = OUT ∧ con.tgtPort.dir = OUT , i.e., the parent component
forwards the output of a subcomponent, or

(d) ∃s1, s2 ∈ CTDefs ∶ (con.srcCmp, s1), (con.srcCmp, s2) ∈ CSubCmps ∧
con.srcPort.dir = OUT ∧ con.tgtPort.dir = IN , i.e., two subcomponents are
connected or, for s1 = s2, a subcomponent receives its own output as input.

166 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

11. ∀p ∈ CPorts ∶ p.dir = OUT ⇒ ∃con ∈ CCons ∶ con.tgtCmp = cType∧ con.tgtPort =
p.name, i.e., all outgoing ports of the component are the target of an internal
connector.

△
Notation: For a component type definition c ∈ CTDefs we denote the set of input

ports {p ∈ c.CPorts ∣ p.dir = IN} as c.CPortsIN (respectively c.CPortsOUT for output
ports).

The structures of component type definitions (Definition 6.8) and C&C models (Defi-
nition 2.2) appear similar, since both describe components, ports, and connectors. They
are however conceptually very different: a component type definition describes the struc-
ture of a single component and references its immediate subcomponents, while a C&C
model describes a complete system composed of component instances.

An element not known from C&C models is the set of local variables CV ars of com-
ponent types. In addition, the subcomponent relation is fundamentally different. Sub-
components in component type definitions have a name and a type. The name of a
subcomponent is unique in the scope of the component type. The type of the subcom-
ponent refers to another component type definition. In contrast, in C&C models the
names of components are unique in the model and components do not have a type.

Connectors in component type definitions are again very different from connectors in
C&C models. A connector in a component type definition connects either a parent com-
ponent to its direct subcomponents or a subcomponent to its siblings. It is important,
that the connectors identify components by their locally unique name inside the com-
ponent type definition and not by their component type. A component type definition
might have multiple subcomponents of the same component type.

A component type definition c ∈ CTDefs may be instantiated to a C&C model m,
where c defines the ports, connectors and subcomponents of the top level component
cmp ∈ m.Cmps. The structure of the immediate children of the component cmp is
defined by the component type definitions in the name and type pairs c.CSubCmps ⊆
(name ∶ Name × type ∶ CTDefs).

We repeat the illustration of component type instantiation previously shown in Fig-
ure 2.5. Figure 6.9 illustrates the instantiation of a component type definition to a
corresponding C&C model. The component type definition ToggleSensor defines
that components of the type ToggleSensor have two subcomponents: sensor of
type TouchSensor and switch of type ToggleSwitch. Components of the type
TwoSwitchController have three subcomponents: tsens1 and tsens2 both of
type ToggleSwitch and controller of type Controller.

The referenced component types TouchSensor, ToggleSwitch, and Controller
are atomic. Their component type definitions are given in the set CTDefs (see Defi-
nition 6.8, Item 4), but are not shown in Figure 6.9. Component type definitions of
atomic components define neither subcomponents nor connectors. The component type
definition TwoSwitchController is instantiated to the C&C model shown in Fig-
ure 6.9 (c).

6.2. MontiArcAutomaton Modeling Language 167

������������

����������� ������ ����������� �����

������������������

������������ ������

������������ �����

������������

������������������

������������������!�����

������������������!�

������������������!����� !������

������������������!����� !�����

������������������!������

������������������!������!������

������������������!������!�����

��������	

���
����� �
������������

�������������	����
����������������
��
������������	��������
�	��

���
����� �
������������

����
�	�������������������������������
��
�������������������������������

�����������
������������	����������
"�# "�#

"�#

Figure 6.9.: Two component type definitions (upper part) and the instantiation of com-
ponent type TwoSwitchController as a C&C model (lower part). The
component type TwoSwitchController defines two subcomponents of
the component type ToggleSensor. The referenced component types
TouchSensor, ToggleSwitch, and Controller are atomic and not
shown in the figure. The C&C model on the right is an instance of the
component type TwoSwitchController that contains two instances of
the component type ToggleSensor.

The well-formedness rules for component type definitions in Definition 6.8 ensure
that the corresponding C&C model is also well-formed with respect to the rules in
Definition 2.2.

In addition to the features listed in Definition 6.8, component type definitions of
MontiArcAutomaton support parameters to configure component instances. An example
shown in Figure 6.2 is the parameter value MotorPort.A of component type Motor
that configures the component instance to use the hardware port MotorPort.A on the
NXT controller. Component definitions also support type parameters to define, e.g., the
type of ports in component definitions and instances as shown in the example of the

168 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

component Buffer<T> in Listing 6.6.
Definition 6.8 abstracts MontiArcAutomaton’s component type name, the component

parameters, and the type parameters to the single element cType. We omit the im-
plementation details of these advanced concepts, which are not required for consecutive
definitions and the techniques presented in Chapter 7. The complete structure of com-
ponent type definitions is given in the MontiArc grammar in [HRR12].

6.3. Streams, I/O Relations, and Stream Processing Functions
We use the Focus framework [BS01] as a semantic domain of the interactive systems
described using MontiArcAutomaton. Focus is a mathematical framework for the spec-
ification of interactive distributed systems. A central idea of the Focus approach is
to describe component behavior as observable interactions on channels between systems
and subsystems. Systems and subsystems are formalized as components with defined
input and output interfaces. The behavior of a component is defined as the possible out-
put histories produced for a given input history. These histories are formally described
as streams [BS01].

In this section we introduce message streams, I/O relations for defining the behavior
of components, stream processing functions as an alternative formalization, component
composition, and refinement.

6.3.1. Streams of Messages

The behavior of a component can be described as its observable reaction to input by
corresponding output. The complete histories of messages sent on input and output
ports of a component are formalized as message streams. For each port, a message
stream captures the messages in the order they occur [BS01]. A stream may be a finite
or an infinite sequence. The type of finite streams of messages over the alphabet M
is denoted as M∗ whereas Mω = M∗ ∪ M∞ denotes finite as well as infinite streams of
messages over the alphabet M .

Examples of streams over the alphabet Boolean = {true,false} are ⟨true,true,
false,true⟩ ∈ Boolean∗ ⊆ Booleanω and the infinite stream true∞ ∈ Booleanω.
Many different kinds of streams are known from Focus and other frameworks with
stream-based semantics (see [MS96, Bro97a, Ste97, RR11] for more examples). We
employ a discrete model of streams where each element on the stream is indexed by a
number n ∈ N. This model of discrete message streams allows a simple abstraction of time
known as time-synchronous streams. The time-synchronous model of streams models
pulsed systems with a global clock and synchronous time behavior of all subsystems.
The messages sent (the event observed) at a discrete time n ∈ N are recorded at position
n of the message streams formalizing the communication history of the system.

The time-synchronous model of Focus requires all streams to be infinite since time
never stops. For the purpose of behavior specifications it is still possible to use finite
streams as prefixes of infinite time-synchronous streams. There are multiple possibilities

6.3. Streams, I/O Relations, and Stream Processing Functions 169

Operations on streams s, s′ ∈ Mω, message m ∈ M , and n ∈ N∞:

Notation Signature Functionality
⟨⟩ empty ∶ Mω empty stream
m∶s cons ∶ M ×Mω → Mω append first element
ŝs′ conc ∶ Mω ×Mω → Mω concatenation of streams
s ⊑ s′ pref ∶ Mω ×Mω → B prefix relation
#s ∈ N∞ len ∶ Mω → N∞ length of stream
s.n nth ∶ N ×Mω → M nth element of stream

hd ∶ Mω → M first element of stream: s.0
rt ∶ Mω → Mω stream without first element

s∣n take ∶ N∞ ×Mω → Mω prefix of length n
mn ntimesm ∶ N∞ ×M → Mω message iterated n times
sn ntimes ∶ N∞ ×Mω → Mω stream iterated n times

Table 6.10.: Some operations on discrete message streams from [RR11].

to encode time information in message streams. One possibility is the addition of a
special symbol

√
(called tick) to denote the end of a time slice (time between two ticks

of the global clock). In the time-synchronous streams of our semantics definition of
MontiArcAutomaton models every time slice contains at most one message. We thus
omit ticks between all time slices and use the special message + to denote the absence
of a message in a time slice.

The modeling language MontiArcAutomaton is not limited to time-synchronous streams.
Other types of message streams are discrete timed streams of Focus of the form N→ M∗

that allow to model timed systems where multiple messages may be received and sent
in one time slice or dense streams R+ → M [MS96, Bro97b] and super dense streams
R+ → M∗ [MMP91, LML06] where time is not required to be discrete. An event-based
application of MontiArcAutomaton for modeling and code generation based on dense
timed streams is described in [Mar12]. Depending on the problem domain and run-time
system used, one may chose the most appropriate kind of streams. We have chosen
time-synchronous streams which allow automated verification (see Chapter 7) and have
proven useful in a case study on model-based robotics development (see [RRW13a] and
Chapter 8).

Some operations on streams are shown in Table 6.10. The empty stream is denoted as
⟨⟩. Appending an element m ∈ M as the first element to a stream s ∈ Mω is denoted m∶s.
We use the prefix order s ⊑ s′ for streams s ∈ M∗ and s′ ∈ Mω when s is a prefix of s′,
i.e., ∃r ∈ Mω ∶ ŝr = s′. For n ∈ N the nth element of a stream s is denoted s.n. The first
element is s.0. The operation take ∶ N∞ × Mω → Mω applied to a stream s ∈ Mω with
#s ≥ n yields the prefix s∣n ⊑ s with #(s∣n) = n or s∣n = s for #s < n. The take operation
is useful for specifications and restrictions of infinite to finite message streams.

170 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

6.3.2. Component Behavior Specifications as I/O Relations and Stream
Processing Functions

The behavior of a component in Focus is specified as its observable I/O behavior. As
a concrete example for an elementary specification in Focus, consider the component
TogglSwitch shown in Figure 6.11.

�����������'�������������

'����������$�

�����������������

Figure 6.11.: The component ToggleSwitch with input port pressed of type
Boolean and output port active of type Boolean.

The component has an input port pressed and an output port active both of type
Boolean. The component reads a stream of Boolean values on the port pressed.
Initially the value on port active is set to false meaning that the toggle switch is
turned off. Once the value true is received on port pressed the component switches
the output to true. If the component receives the value false the switch is still turned
on and the component continues sending the value true. It toggles the output value on
port active any time that it receives the input true, i.e., that a button is pressed.

An observation of the component’s behavior is described by the following streams,
which are valid infinite observations of the component’s I/O behavior. Please note
that the component ToggleSwitch produces the initial output false that delays its
reaction to inputs by one time slice:

pressed = ⟨false,false,true,false,false,true, ⟩̂false∞
active = ⟨false,false,false,true,true,true,false⟩̂false∞

A formal description of the component’s I/O behavior is given in the Focus specifica-
tion frame shown in Figure 6.12. The specification starts with declaring the component’s
inputs and outputs as infinite message streams of the types of the ports. We use infinite
streams since we describe the behavior of a time-synchronous reactive system. The body
of the specification is a predicate over the input and output streams declared in the head
of the specification.

The semantics of the specification in Figure 6.12 is defined by a schematic translation
into the predicate Φ(i, o) = i ∈ Boolean∞ ∧ o ∈ Boolean∞ ∧ (active.0 = false ∧ ∀n ∈
N ∶ pressed.n = true ⇔ active.(n + 1) = ¬active.n) (see [BS01, Section 5.2.3]) that
characterizes a relation R ⊆ Boolean∞ × Boolean∞. The relation R is referred to as
the I/O behavior of the specification.

For multiple inputs and outputs of the specification we denote the I/O behavior as
R ⊆ I⃗∞×O⃗∞, where I⃗ is the product of all input types and O⃗ is the product of all output
types.

6.3. Streams, I/O Relations, and Stream Processing Functions 171

in Boolean pressed
out Boolean active

active.0 = false ∧
∀n ∈ N ∶ pressed.n = true⇔ active.(n + 1) = ¬active.n

Figure 6.12.: A Focus specification for the I/O behavior of the component Tog-
gleSwitch from Figure 6.11. Following the notation used in [BS01] the
names of inputs are given with their types in the head of the specifica-
tion and the names are used as streams of these types in the body of the
specification.

A number of specification mechanism for component behavior has been developed for
the Focus framework. One example is the direct definition of the relation between inputs
and outputs as shown in the specification in Figure 6.12. Other examples are assumption
and guarantee style predicates, description of possible behaviors as sets of functions,
state-based description of behavior using automata, and composed specifications that
combine multiple specifications [Rum96, BS01, RR11].

Not all specified I/O behaviors are realizable in the sense that they are computable and
can be implemented in a component. In the Focus framework a specification with the
I/O behavior R ⊆ I⃗∞×O⃗∞ is realizable if and only if at least one causal winning strategy
τ ∶ I⃗∞ → O⃗∞ exists. A function τ is a winning strategy if and only if ∀i⃗ ∈ I⃗ ∶ (⃗i, τ (⃗i)) ∈ R.
A winning strategy is called causal if it is weakly causal, meaning

∀i⃗, i⃗′ ∈ I⃗∞ ∀n ∈ N ∶ i⃗∣n = i⃗′∣n ⇒ τ (⃗i)∣n = τ (⃗i′)∣n,

or if the winning strategy is strongly causal, meaning

∀i⃗, i⃗′ ∈ I⃗∞ ∀n ∈ N ∶ i⃗∣n = i⃗′∣n ⇒ τ (⃗i)∣n+1 = τ (⃗i′)∣n+1

Weak causality in the time-synchronous model means that the output of a component
up to time n ∈ N is determined by its input received until time n. Thus, the output of the
component may not depend on any input the component receives in the future after time
n. Strong causality implies weak causality and further strengthens the requirement: the
output until time n+1 may only depend on the input received until time n. This models
computation time: a component requires at least one time cycle for the computation
triggered by an input before it can respond with an output.

The behavior of the component ToggleSwitch is deterministic and total, i.e., for
every possible input stream i ∈ Boolean∞ there is exactly one defined output stream.
We can thus specify the behavior of the component as a total function from the stream
of messages on its input port to the stream of messages on its output port. One possible
description is the recursive definition of a function ts ∶ Boolean∞ → Boolean∞ using
the helper function tsh ∶ Boolean → Boolean∞ → Boolean∞ to keep track of the

172 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

toggle state using the first parameter t ∈ Boolean:

ts(bs) = false ∶ tsh(false, bs)
tsh(t,true ∶ bs) = (¬t) ∶ tsh(¬t, bs)

tsh(t,false ∶ bs) = t ∶ tsh(t, bs)

The specification above is complete and can thus also be seen as an implementation
of the component ToggleSwitch. The function ts implementing component Tog-
gleSwitch is strongly causal since its output stream up to position n+1 is completely
determined by a prefix of the input stream of length n.

Not all functions describe valid implementations of components. For example the func-
tion chgPast ∶ Boolean∞ → Boolean∞ with the following partial behavior definition
does not describe realizable component behavior:

chgPast(x) =
⎧⎪⎪⎨⎪⎪⎩
false∞ if ∃t ∈ N ∶ x.t = false
true∞ otherwise

The function chgPast is not weakly causal. For the stream i = true∞, the natural
number 0 ≠ n ∈ N, and the stream i′ = truen̂falsêtrue∞ the function chgPast
contradicts weak causality: i∣n = i′∣n ∧ chgPast(i)∣n ≠ chgPast(i′)∣n. Intuitively, a time-
synchronous component realizing the function chgPast would need to produce an output
in the first time cycle without knowing whether it will receive the value false at a later
time cycle. Either way the component would be required to change the past if the value
false appears later on or if it never appears.

We will call the strategies τ ∶ I⃗∞ → O⃗∞ time-synchronous Stream Processing Func-
tions (SPF) [Rum96, RR11]. By definition stream processing functions are realizable
functions, i.e., timed SPF are required to be weakly causal. Untimed SPF also allow
finite input and finite output streams. For the untimed case weak causality is replaced
by the concept of continuity defined for functions on the complete partial orders (I⃗ω, ⊑)
and (O⃗ω, ⊑) with the prefix order ⊑ on streams from Table 6.10 extended point-wise for
all input and output streams in I⃗ and O⃗ [BDD+92, Rum96].

Instead of specifying the I/O behavior of a component as a relation R ⊆ I⃗∞ × O⃗∞ we
can also specify the behavior of the component as an SPF as seen in the example for
the component ToggleSwitch. In case a specification allows alternative behaviors it
is given as a set of SPF. Each SPF describes one possible behavior implementation of
the component [RR11].

6.3.3. Component Composition

Composition is one of the most important concepts for systems engineering since it allows
the tackling of larger and more complex problems by the composition of solutions for
smaller well-understood problems (see, e.g., [BR07] or [TMD09]). The composition of

6.3. Streams, I/O Relations, and Stream Processing Functions 173

components and the connectors between them is part of the architectural configuration
of the system to accomplish the system’s objectives [TMD09].

One of the key features of Focus is the composition of specifications to composed
specifications. This allows the independent development, generalization, and reuse of
component specifications for the specification of complex subsystems and systems. Com-
posite specifications in Focus may be defined in graphical style, constraint style, and
operator style. Out of these three kinds we focus on the graphical style that we use
for component composition in the modeling languages MontiArc and MontiArcAuto-
maton and the constraint style that is close to our implementation for the composition
of specifications in the MontiArcAutomaton analysis framework presented in Chapter 7.

An example of the graphical style is given in Figure 6.13 where the specification of the
component BumperBotESController is graphically represented as the composition
of the specifications of the components BumpControlES and Timer.

'�����'��������������

���� ����

'������������ ����

'�����������

'�������������

������������

	������
��	��

	������
��	��

������
���

'�����������

'�������������

������������

������
���

	������
��	��

	������
��	��

�����������������

Figure 6.13.: The composed component BumperBotESController with its subcom-
ponents BumpControlES and Timer.

The same example of the composed specification BumperBotESController can be
formulated in the constraint style as shown in Figure 6.14. The head of the Focus com-
posed specification contains input channels (one for each input port of the composed
component), output channels (one for each output port), and local channels (one for
each connector between subcomponents). The body of the specification in Figure 6.14
consists of constraints that constrain the input, local, and output channels of the spec-
ification based on the composition and the specifications of the subcomponents. Here
the specifications of the subcomponents are interpreted as assignments of input histories
to output histories [BS01].

The semantics of composite specifications, which is also the semantics of component
composition in MontiArc and MontiArcAutomaton, is the existential quantification of
streams for the local channels and the conjunction of all subspecifications. In the example
of the specification of the component BumperBotESController, the denotational

174 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

in Boolean emgStp, Boolean bump
out MotorCmd rMot, MotorCmd lMot
loc TimerCmd tc, TimerSignal ts

(rMot, lMot, tc) ∶= BumpControlES(emgStp, bump, ts)
(ts) ∶= Timer(tc)

Figure 6.14.: A Focus composite specification of the component BumpControlES from
Figure 6.13 given in constraint style.

semantics of the composition in Figure 6.13 and Figure 6.14 is given as the following
predicate:

ΦBumperBotESController(emgStp, bump, rMot, lMot) =
∃tc, ts ∶ ΦBumpControlES(emgStp, bump, ts, rMot, lMot, tc) ∧ΦTimer(tc, ts)

In the MontiArcAutomaton modeling language component composition is defined in
component type definitions from Definition 6.8. A component definition does not explic-
itly list its local channels, as necessary in Focus composite specifications. The analogue
concept to local channels in Focus composite specifications are the connectors in com-
ponent definitions. It is not necessary to introduce an existentially quantified message
stream for every connector in a composed component definition. Multiple connectors
with the same source (subcomponent and port) require only a single source stream.

The specification of a composed component is composed of the specifications of its
subcomponents. In the I/O relation semantics of a composed component type defini-
tion all specifications are given as relations R ⊆ I⃗∞ × O⃗∞ where I⃗∞ is the input on all
input ports of the component with I⃗ = ⨉p∈CP ortsIN

p.type and O⃗∞ is the output on all
output ports of the component with O⃗ = ⨉p∈CP ortsOUT

p.type. We formally define the
I/O relation semantics of MontiArcAutomaton composed component types from Defini-
tion 6.8 based on the I/O relation semantics of their subcomponents in Definition 6.15.
The semantics definition starts with the existential quantification of the streams on local
channels (variables l(sub,p) in Definition 6.15) — here, all output ports of all subcompo-
nents. Finally, a pair of inputs and outputs is in the semantics of the component if and
only if the inputs and outputs selected according to subcomponent composition are in
the I/O relation semantics of the subcomponents.

The output outsub of the subcomponent sub constrains the local channel streams l(sub,p)

(see Definition 6.15, Item 1).
The input streams (insub)p of the subcomponents sub and their input ports p are

determined according to three cases in Definition 6.15, Item 2. For all subcomponents
sub ∈ CSubCmps and their input ports p ∈ sub.type.CPortsIN we distinguish: (a) the
stream is provided via a connector from an incoming port of the parent component, (b)
the input is provided from a local channel l(sc,sp) identified by a source component sc
and the source port sp, or (c) the input port is not connected and thus set to an infinite
stream of empty messages.

6.3. Streams, I/O Relations, and Stream Processing Functions 175

Finally, for the streams on the output ports p ∈ CPortsOUT of the parent component
we distinguish two cases (see Definition 6.15, Item 3): (a) the output stream is assigned
the value of the local channel variable of the connected port of a subcomponent or (b)
the output stream is the same as one of the input streams.

176 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

Definition 6.15 (I/O relation semantics for composed components). The I/O relation
semantics of a composed component type with the subcomponent and output port pairs
(sub1, p1), .., (subn, pn) ∈ {(sub, p) ∣ sub ∈ CSubCmps, p ∈ sub.type.CPortsOUT } is the
relation R ⊆ I⃗∞ × O⃗∞ with I⃗ = ⨉p∈CP ortsIN

p.type and O⃗ = ⨉p∈CP ortsOUT
p.type, where

R(in, out) ⇔ ∃l(sub1,p1) ∈ p1.type∞, .., l(subn,pn) ∈ pn.type∞ ∶ local channels
∀sub ∈ CSubCmps ∶ Rsub.type(insub, outsub) subcomponents

with the variables insub and outsub assigned according to subcomponent composition

1. ∀p ∈ sub.type.CPortsOUT ∶ (outsub)p = l(sub,p) output to local channel

2. ∀p ∈ sub.type.CPortsIN ∶ (insub)p ∈ p.type∞∧

(insub)p =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inpp if ∃con ∈ CCons ∶ con.tgtCmp = sub.name∧
con.tgtPort = p ∧ con.srcCmp = cType∧
con.srcPort = pp parent-to-child

l(sc,sp) if ∃con ∈ CCons ∶ con.tgtCmp = sub.name∧
con.tgtPort = p ∧ con.srcCmp = sc.name∧
con.srcPort = sp child-to-child

+∞ otherwise not connected

3. ∀p ∈ CPortsOUT ∶

outp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l(sc,sp) if ∃con ∈ CCons ∶ con.tgtCmp = cType∧
con.tgtPort = p ∧ con.srcCmp = sc.name∧
con.srcPort = sp child-to-parent

inpp if ∃con ∈ CCons ∶ con.tgtCmp = cType = con.srcCmp∧
con.tgtPort = p ∧ con.srcPort = pp parent-to-parent

△

Composition with strong and weak causality

In Section 6.3.2 we have introduced the concept of strong and weak causality for strate-
gies τ realizing component behavior. Intuitively, a weakly causal component may react
to an input instantaneously in the same global time slice. A strongly causal component
may react to input received at time t ∈ N no earlier than at time t + 1. We repeat the
definition of strong causality for a strategy τ ∶ I⃗ω → O⃗ω realizing component behavior:

∀i⃗, i⃗′ ∈ I⃗∞ ∀n ∈ N ∶ i⃗∣n = i⃗′∣n ⇒ τ (⃗i)∣n+1 = τ (⃗i′)∣n+1

For the composition of components it is important to distinguish between strong and
weak causality. The composition of strongly causal components preserves realizability,

6.3. Streams, I/O Relations, and Stream Processing Functions 177

whereas the composition of weakly causal components may lead to unrealizable behav-
ior. Consider the component SumUp shown in Figure 6.16. The subcomponent Add is
specified by the relation RAdd as

∀i ∈ ⃗I∞, o ∈ O⃗∞ ∶ RAdd(i, o) ⇔ ∀t ∈ N ∶ is1.t + is2.t = osum.t

This specification has a single (weakly causal) strategy add:

add ∶ (int∞ × int∞) → int∞ where
add(a∶as, b∶bs) ↦ (a + b)̂add(as, bs)

Please note that the strategy add is not strongly causal.

�����
������

������
�

�����

����
������

�����������������

Figure 6.16.: The composed component SumUp consisting of the component Add with a
feedback look.

If we compute the specification of the composed component type SumUp according
to Definition 6.15 we receive the specification of the component SumUp as the relation
RSumUp:

RSumUp(in, out) ⇔ ∃l(add,sum) ∈ int∞ ∶
RAdd(inadd, outadd) ∧ outsum = l(add,sum) where

(inadd)s1 = innum ∧
(inadd)s2 = l(add,sum) ∧

(outadd)sum = l(add,sum)

Together with the definition of the relation RAdd we receive

RSumUp(in, out) ⇔ ∃l(add,sum) ∈ int∞ ∶
∀t ∈ N ∶ innum.t + l(add,sum).t = l(add,sum).t ∧
outsum = l(add,sum)

The constraint in line two innum.t + l(add,sum).t = l(add,sum).t is created due to the
immediate feedback of the weakly causal component Add. It can only be satisfied for

178 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

innum.t = 0, i.e., the relation RSumUp contains the single element (0∞, 0∞) and is not
total. Thus, there is no winning strategy that implements the behavior of the component
SumUp. The composition shown in Figure 6.16 leads to unrealizable behavior.

In case of strong causality the composition of realizable specifications preserves re-
alizability [BS01, RR11]. Component composition in the case of weak causality does
not necessarily preserve realizability. Feedback cycles of arbitrary length, e.g., direct
feedback as in the example in Figure 6.16, may lead to an unrealizable behavior specifi-
cation. One solution to compose components with feedback cycles is to make sure that
every feedback cycle contains at least one strongly causal component, e.g., a component
that delays its output by one time cycle. For a discussion of the causality problem and
various solutions in synchronous communication see also [CRT07].

6.3.4. Refinement
Refinement is the transition from an abstract specification to a more concrete specifi-
cation or implementation. One of the main concepts of Focus is stepwise behavioral
refinement. An abstract specification Sabstract is refined by a specification Sconcrete if
and only if all I/O behaviors allowed by Sconcrete are also allowed by Sabstract. Behav-
ioral refinement may be written as a logical implication between the predicates of the
specifications Φconcrete ⇒ Φabstract or as an implication for the I/O relations [BS01]:

∀i ∈ I⃗∞, o ∈ O⃗∞ ∶ (i, o) ∈ Rconcrete ⇒ (i, o) ∈ Rabstract

We denote the refinement of the specification Sabstract to the specification Sconcrete as
Sabstract ↝ Sconcrete. Behavioral refinement is reflexive, i.e., for all specifications S: S ↝
S, and transitive, i.e., for all specifications S1, S2, and S3: S1 ↝ S2∧S2 ↝ S3 ⇒ S1 ↝ S3.

The refinement of specifications based on SPF is defined as the inclusion of the set of
functions of the more concrete specification in the set of functions in the abstract spec-
ification [RR11]. Given the specification Fabstract as a set of SPF and the specification
Fconcrete as a set of SPF, the specification Fconcrete refines Fabstract if and only if

Fconcrete ⊆ Fabstract

As before, this type of refinement based on set inclusion for sets of SPF is reflexive
and transitive.

In Focus refinement is compatible with the composition of specifications [Bro93,
BS01]. A refinement of one of the specifications leads to a refinement of the composition
of the specifications. Thus, we have a suitable theory to, e.g., specify the behavior of a
system as a MontiArcAutomaton automaton and freely decompose the implementation
while still being able to reason about the refinement of the specification by implemen-
tations.

In some cases an implementation may refine not only the behavior of a specification
but also the interface of the component or subsystem under consideration. One example
would be adding an additional output in the implementation for monitoring. Another
example might be extending a subsystem with additional inputs and outputs to fulfill

6.3. Streams, I/O Relations, and Stream Processing Functions 179

related or independent tasks. In these cases a specification of the behavior of a system
might still be valid but the existing definition of refinement does not apply anymore.
Broy [Bro93] has extended the refinement notion to various cases of interface refinements
to address this problem.

We are particularly interested in the interface refinement case of upward simulation.
This case is illustrated in Figure 6.17 for two components abstract and concrete.
The component abstract has as input an abstraction of the concrete input that the
component concrete receives. The input abstraction is depicted as A. To be in an
upward simulation refinement relation, the output of the component concrete, after
applying the output abstraction Ã, matches the output of the component abstract.

>

>

>

>

Figure 6.17.: Upward simulation for behavior refinement of components in combination
with interface refinement (see [Bro93]).

The upward input and output abstractions A and Ã may be any kind of Focus spec-
ification [Bro93]. In the two scenarios above and in the remainder of this thesis we limit
ourselves to projections over the set of input streams that may only remove streams from
the input and the output respectively. An example of this kind of abstractions is shown
in Figure 6.18. The abstractions A and Ã are implemented as composed components
that implement the projection by only forwarding some of their input streams.

It is easy to see that the two abstractions A and Ã shown in Figure 6.18 composed
with the specification BumpControlSpec1a and the component BumpControl result
in specifications with the same interface (see top and bottom of Figure 6.18). We can thus
apply the general notion of behavior refinement to the compositions of the components
with the two abstractions A and Ã.

For the purpose of this thesis we only consider abstractions that remove inputs and
outputs and thus can be easily derived from the matching names of the ports of the com-
ponents under consideration. Intuitively, with our special form of the upward simulation
refinement, the specification ignores additional inputs and does not constrain additional
outputs. We consider this restricted kind of upward simulation useful when only a sub-

180 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

'����������������
'�����������

	������
��	��

	������
��	��

�����������������

'����������
'�����������

������������

������
���

	������
��	��

	������
��	��

'�����������

������������

	������
��	��

	������
��	��

Figure 6.18.: A concrete example of two abstractions A and Ã for upward simulation
refinement of the specification BumpControlSpec1a by the component
BumpControl (see the example in Section 7.1).

set of all ports of a component are relevant for a specification or if the interface of a
component expands during evolution but existing specifications should still be checked
for refinement. Some examples are available in Section 7.1.

6.4. MAAts: a MontiArcAutomaton Language Profile for
Time-Synchronous Communication

In the previous sections we have presented the syntax of the modeling language Monti-
ArcAutomaton and the framework Focus which serves as a semantic domain for de-
scribing component behavior and interaction. We now define a subset of the modeling
language MontiArcAutomaton, on which we focus for the rest of this thesis. The subset
is a language profile [CGR09] of MontiArcAutomaton for time-synchronous commu-
nication (short MAAts). It restricts the automata inside components to specify and
implement strongly causal behavior based on discrete message streams. The profile only
restricts the structure of the automata inside components but not the language elements
for component definition and composition.

We formally define the structure of MontiArcAutomaton automata in the MAAts

profile in Definition 6.19.

6.4. Language Profile for Time-Synchronous Communication 181

Definition 6.19 (MAAts automaton). A MAAts automaton for a component type def-
inition cmp ∈ CTDefs (see Definition 6.8) is a tuple (S, I⃗, O⃗, V⃗ , γ⃗, δ, ι) where

• S is a non-empty finite set of states,
• I⃗ = ⨉p∈cmp.CP ortsIN

I⃗p, where I⃗p = p.type is the type of input port p,
• O⃗ = ⨉p∈cmp.CP ortsOUT

O⃗p, where O⃗p = p.type is the type of output port p,
• V⃗ = ⨉var∈cmp.CV ars V⃗var, where V⃗var is the type of local variable var,
• γ⃗ ∈ V⃗ is the initial assignment to local variables,
• δ is a transition relation, and
• ι ⊆ (S × O⃗), where (s, o⃗) ∈ ι is an initial state s ∈ S and its initial output.

We require +⃗ ∈ I⃗ and +⃗ ∈ O⃗, i.e., all input and output alphabets contain the special
semantic value + that denotes the absence of a message.
The transition relation δ is a set of tuples (ssrc, i⃗, v⃗, stgt, o⃗, a⃗), where

• ssrc ∈ S is a source state,
• i⃗ ∈ I⃗ and for p ∈ cmp.CPortsIN the value on input port p is i⃗p ∈ I⃗p,
• v⃗ ∈ V⃗ and for var ∈ cmps.CV ars the value of local variable var is v⃗var ∈ V⃗var,
• stgt ∈ S is a target state,
• o⃗ ∈ O⃗ and for p ∈ cmp.CPortsOUT the value on output port p is o⃗p ∈ O⃗p, and
• a⃗ ∈ V⃗ and for var ∈ cmp.CV ars the assignment to local variable var is a⃗var ∈ V⃗var.

△
The language profile presented in Definition 6.19 restricts the modeling language

MontiArcAutomaton presented in Section 6.2 to one message on every input and output
port. This allows a direct definition of a strongly causal time-synchronous semantics.
The inputs on a transition are the inputs read in the current time cycle and the outputs
defined by the transition are the outputs sent in the next time cycle.

Modeling MAAts automata with MontiArcAutomaton according to the format shown
in Definition 6.19 would require the modeler to always specify input and output messages
on all ports even if only some of the messages are required to enable a transition. Also,
the structure given in Definition 6.19 does not contain guard predicates to conveniently
specify multiple valid input values and variable values combinations. We thus extend
the basic structure of MAAts automata with syntactic features to ∗MAAts automata in
Definition 6.20.

Definition 6.20 (∗MAAts automata). ∗MAAts automata extend MAAts automata with
references to ports, variables, and the symbol ∗ to denote syntactically unspecified values.
We denote the extension of all alphabets A⃗k in A⃗ with the symbol ∗ as ∗A⃗ = ⨉k(A⃗k∪{∗}).
The difference between the structure of MAAts automata and ∗MAAts automata is:

• γ⃗ ∈ ∗V⃗ and for var ∈ cmp.CV ars the (possibly unspecified) initial value of variable
var is γ⃗var,

182 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

• ι ⊆ (S × ∗O⃗), where for (s, o⃗) ∈ ι and for p ∈ cmp.CPortsOUT the (possibly unspec-
ified) initial output on port p is o⃗p.

The transition relation δ is extended with guard predicates φ to contain the tuples
(ssrc, φ, i⃗, v⃗, stgt, o⃗, a⃗). The differences to MAAts automata are:

• φ ∶ I⃗ × V⃗ → B is a guard predicate over inputs and local variables,
• i⃗ ∈ ∗I⃗ ∪ cmp.CV ars allows unspecified values and references to variables on input

ports,
• v⃗ ∈ ∗V⃗ ∪ cmp.CV ars with ∀var ∈ CV ars ∶ v⃗var ≠ var allows unspecified values and

references to other variables for local variables,
• o⃗ ∈ ∗O⃗ ∪ cmp.CV ars∪ cmp.CPortsIN allows unspecified values, references to vari-

ables, and references to input ports on output ports, and
• a⃗ ∈ ∗V⃗ ∪cmp.CV ars∪cmp.CPortsIN allows unspecified assignments, references to

variables, and references to input ports for local variables.

△
Definition 6.20 does not require every transition specified by the transition relation

δ to provide an assignment of values on all ports and local variables (denoted by the
symbol ∗). This incomplete information in ∗MAAts automata is interpreted as syntactic
underspecification of the modeled component. Handling syntactic underspecification is
part of the semantics definition of the MAAts language profile.

Please note the difference between the + message (introduced in Definition 6.19 to be
an element of every input and output alphabet) and the missing value denoted by ∗.
While the former is an element contained in the input and output alphabets, the latter
is only used on the structure definition level to mark underspecification. The symbol ∗
only exists in ∗MAAts automata, while + is part of the semantics of MAAts automata
to denote the absence of a message.

Figure 6.21 repeats the ∗MAAts model of component BumpControl from Section 6.1
and shows the transition relation δ of the automaton inside the component following
Definition 6.19. This illustrates the connection between MontiArcAutomaton models in
concrete syntax and their structural representation including the symbol ∗.

In addition to adding the symbol ∗ to ∗MAAts automata we also allow the inputs i⃗,
variable values v⃗, outputs o⃗, and variable assignments a⃗ of the automaton’s transitions
to refer to variable names or input and output ports respectively. This is a convenience
mechanism for modelers to model transitions where, e.g., the input read on one port
should correspond to the value of a local variable. As another example, consider for-
warding the value read on an input port via an output port of the component (the output
o⃗p then equals the name of the corresponding input port on a transition of the ∗MAAts

automaton). In Definition 6.20 we assume that names of variables and ports can be dis-
tinguished from values of the corresponding variables or ports that reference the names
on a transition. In the concrete syntax of the MontiArcAutomaton implementation this
is ensured by context conditions [RRW14].

6.4. Language Profile for Time-Synchronous Communication 183

'����������

'�����������

������������

������
���

	������
��	��

	������
��	��

��

?��	�� ,�����@�
�	�� ,�����

�$
��

���(
��

����
��

�����,������?��	�� ,�:�%6�%=@�
�	�� ,�:�%6�%=

�����,������?��	�� ,�'��A6�%=@�
�	�� ,�'��A6�%=@
�� ,�=��'9�<=�9�B

�� ,��9�%��?��	�� ,�:�%6�%=@�
�� ,�=�9�B

�����������������

ssrc i⃗bump i⃗ts stgt o⃗rMot o⃗lMot o⃗tc

idle true ∗ driving FORWARD FORWARD ∗
driving true ∗ backing BACKWARD BACKWARD DOUBLE_DELAY
backing ∗ ALERT turning FORWARD ∗ DELAY
turning ∗ ALERT driving ∗ FORWARD ∗
Figure 6.21.: The MontiArcAutomaton component BumpControl with a ∗MAAts au-

tomaton (upper part, also shown in Figure 6.3) and its transition relation
δ according to Definition 6.20. To fit all entries in the table we omitted the
guard φ = true and the empty list of variables v⃗.

Guards in ∗MAAts automata are predicates over inputs and local variable values.
A transition can only be taken if its guard predicate evaluates to true. Guards are a
convenience element of the MontiArcAutomaton language. In MAAts automata, without
guard predicates φ in the transition relation, guards may be expressed as the (possibly
infinite) set of concrete value combinations that satisfy the guard predicate.

The language elements added to MAAts automata in Definition 6.20 do not increase
the expressiveness of MAAts automata. We show a syntactic translation of ∗MAAts

automata into MAAts automata from Definition 6.19. This translation consists of three
steps: (1) remove references from and to variables and ports (see Section 6.4.1), (2)
enabledness expansion of the transition system (see Section 6.4.2), and (3) completion of
the transition system. The completion of the transition system as a removal of syntactic
underspecification via the symbol ∗ is a semantic variation point [GR10]. Depending on
the usage of the model different semantics might be intended. We handle three different
cases. In Section 6.4.3 we complete the transition system for using ∗MAAts automata
as implementations. In Section 6.4.4 we present two completions for using ∗MAAts

automata as specifications.

184 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

6.4.1. Removing References
To remove references to other elements from ∗MAAts automata transitions we replace
the transitions that include references by transitions that unfold these references with
concrete values. In case the value of the referenced element is given on the transition,
the reference is replaced by that value. In case the transition does not specify a value
for the referenced entity, we replace the transition with all possible transitions where
the referenced and the referencing elements have the same value. This replacement is
formalized as the function removeReferences in Definition 6.22.

The function definition handles the four main cases for references in inputs i⃗, variable
values v⃗, outputs o⃗, and variable assignments a⃗ according to Definition 6.20. For all four
cases the function considers two or three subcases for each value or reference. There
are two cases for inputs i⃗ and variable values v⃗. These may be given as references to
variables or as values. There are three cases for outputs o⃗ and variable assignments a⃗.
These may be given as references to variables, as references to input ports, or as values.

In each of the four steps in Definition 6.22 the transition relation is defined based
on the previous transition relation. For a single transition from the previous transition
relation possibly multiple transitions are added to the new relation. The transitions may
only differ in the elements that are introduced with a primed name in the definition of
the relation in each step. All other elements are fixed. The last three steps require a
possible expansion of more than one element of each transition. The last lines in the
definition of the new transition relation then fix the values that should not be expanded
because they are not referenced.

The reference removal is organized in four steps in Definition 6.22, Item 1-Item 4. The
function removeReferences first removes all references from elements possibly referenced
in later steps. This ensures that references evaluate to either + or concrete values. The
first step in Definition 6.22, Item 1 forms an exception. Variables v⃗ might reference
variables and thus one iteration of the set comprehension could replace a reference by
a reference. In this case the set comprehension needs to be iterated again with the
intermediate transition relation from the first evaluation instead of the original transition
relation δ. Each iteration removes references. After at most ∣cmp.CV ars∣ iterations of
Definition 6.22, Item 1, all references from local variables to local variables are removed.

Definition 6.22 (∗MAAts automata reference removal). The function removeReferences
updates the transition relation δ of ∗MAAts automata by removing references to vari-
ables and input ports on transitions

removeReferences ∶ (S, I⃗, O⃗, V⃗ , γ⃗, δ, ι) ↦ (S, I⃗, O⃗, V⃗ , γ⃗, δ′, ι)
where

1. remove references from variables to variables (iterate at most ∣cmp.CV ars∣ times);
δ′′′′ = {(ssrc, φ, i⃗, v⃗′, stgt, o⃗, a⃗) ∣ (ssrc, φ, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ,
∀var ∈ cmp.CV ars ∶
if(v⃗var ∈ cmp.CV ars) then reference to other variable

6.4. Language Profile for Time-Synchronous Communication 185

if (v⃗(v⃗var) = ∗) then v⃗′var = v⃗′(v⃗var)
∈ V⃗var else v⃗′var = v⃗(v⃗var) = v⃗′(v⃗var)

else
v⃗′var = v⃗var

}
2. remove references from input ports to variables

δ′′′ = {(ssrc, φ, i⃗′, v⃗′, stgt, o⃗, a⃗) ∣ (ssrc, φ, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ′′′′,
∀p ∈ cmp.CPortsIN ∶

if(i⃗p ∈ cmp.CV ars) then reference to variable from input port
if (v⃗(⃗ip)

= ∗) then i⃗′p = v⃗′
(⃗ip)

∈ V⃗(⃗ip)
else i⃗′p = v⃗(⃗ip)

= v⃗′
(⃗ip)

else
i⃗′p = i⃗p,

preserve variable values not referenced
∀var ∈ {var ∈ cmp.CV ars ∣ ∄p ∈ cmp.CPortsIN ∶ i⃗p = var} ∶ v⃗′var = v⃗var

}
3. remove references from output ports to variables and input ports

δ′′ = {(ssrc, φ, i⃗′, v⃗′, stgt, o⃗′, a⃗) ∣ (ssrc, φ, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ′′′,
∀p ∈ cmp.CPortsOUT ∶

if(o⃗p ∈ cmp.CV ars) then reference to variable from output port
if (v⃗(o⃗p) = ∗) then o⃗′p = v⃗′(o⃗p)

∈ V⃗(o⃗p) else o⃗′p = v⃗(o⃗p) = v⃗′(o⃗p)

else if(o⃗p ∈ cmp.CPortsIN) then reference to input from output
if (i⃗(o⃗p) = ∗) then o⃗′p = i⃗′(o⃗p)

∈ I⃗(o⃗p) else o⃗′p = i⃗(o⃗p) = i⃗′(o⃗p)
else

o⃗′p = o⃗p,
preserve variable values and inputs not referenced

∀var ∈ {var ∈ cmp.CV ars ∣ ∄p ∈ cmp.CPortsOUT ∶ o⃗p = var} ∶ v⃗′var = v⃗var,
∀inp ∈ {inp ∈ cmp.CPortsIN ∣ ∄p ∈ cmp.CPortsOUT ∶ o⃗p = inp} ∶ i⃗′inp = i⃗inp

}
4. remove references from variable assignments to variables and input ports

δ′ = {(ssrc, φ, i⃗′, v⃗′, stgt, o⃗, a⃗′) ∣ (ssrc, φ, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ′′,
∀var ∈ cmp.CV ars ∶

if(a⃗var ∈ cmp.CV ars) then reference to variable in assignment
if (v⃗(a⃗var) = ∗) then a⃗′var = v⃗′(a⃗var)

∈ V⃗var else a⃗′var = v⃗(a⃗var) = a⃗′(a⃗var)

else if(a⃗var ∈ cmp.CPortsIN) then reference to input
if (i⃗(a⃗var) = ∗) then a⃗′var = i⃗′(a⃗var)

∈ V⃗var else a⃗′var = i⃗(a⃗var) = i⃗′(a⃗var)
else

a⃗′var = a⃗var

preserve variable values and inputs not referenced
∀var ∈ {var ∈ cmp.CV ars ∣ ∄asgmt ∈ cmp.CV ars ∶ a⃗asgmt = var} ∶ v⃗′var = v⃗var,
∀inp ∈ {inp ∈ cmp.CPortsIN ∣ ∄asgmt ∈ cmp.CV ars ∶ a⃗asgmt = inp} ∶ i⃗′inp = i⃗inp

}
△

186 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

We illustrate the effect of the function removeReferences from Definition 6.22 to
the transition system of the automaton of the component Buffer<MotorCmd>. The
parametrized component Buffer<T> is shown in Listing 6.6 and the enumeration type
MotorCmd = {STOP,FORWARD,BACKWARD} is shown in Figure 6.4. We show the first
transition of the automaton in the top table in Figure 6.23. The transition includes two
references where the element o⃗response = storage references the value v⃗storage of the local
variable storage of the type MotorCmd. Also, the element a⃗storage = data references
the value i⃗data of the input port data. In both cases the transition does not define a
value for the referenced element.

The second table in Figure 6.23 shows the expansion of the transition according to
Definition 6.22, Item 3. The reference o⃗response = storage has been expanded to the set
of transitions where o⃗response = v⃗storage.

The third table in Figure 6.23 shows the expansion of the transition according to
Definition 6.22, Item 4. The reference a⃗storage = data has been expanded to the set of
transitions where a⃗storage = i⃗data.

After the application of the function removeReferences from Definition 6.22 all refer-
ences are removed.

6.4.2. Enabledness Expansion
Definition 6.19 has added guards to the transition relation and the symbol ∗ to mark
syntactic underspecification in ∗MAAts automata. A transition of a ∗MAAts automaton
is enabled if and only if it matches the current input (for all p ∈ cmp.CPortsIN the
value i⃗p equals the current input on port p or i⃗p = ∗), matches the current values of local
variables (for all var ∈ cmp.CV ars the value v⃗var equals the current value of the local
variable var or v⃗var = ∗), and the guard predicate φ is satisfied by the current input and
the current values of the local variables. The symbol ∗ is basically used for input ports
and variables to state that the concrete values are not relevant for the enabledness of
the transition.

Based on this interpretation of the enabledness of transitions we can replace all tran-
sitions containing the symbol ∗ as part of their input or as part of the specified values
for local variables by the (possibly infinite) set of transitions matching the enabled-
ness behavior without using the symbol ∗ in the input tuples i⃗ and variable tuples v⃗.
This expansion of the transition system is called enabledness expansion and defined in
Definition 6.24.

In addition, the expansion of all transitions in δ to transitions where i⃗ and v⃗ no
longer contain the symbol ∗ allows us to evaluate all guard predicates on all transitions.
Transitions are only relevant if φ(⃗i, v⃗) = true. Definition 6.24 removes the transitions
that are never enabled from the transition relation δ.

6.4. Language Profile for Time-Synchronous Communication 187

Given the following transition of the component Buffer<MotorCmd> from List-
ing 6.6, ll. 16-17 (first transition):

ssrc v⃗storage i⃗request i⃗data stgt o⃗response a⃗storage

buffering ∗ true ∗ buffering storage data

Application of removeReferences from Definition 6.22, Item 3 for the case o⃗response =
storage and v⃗storage = ∗:

ssrc v⃗storage i⃗request i⃗data stgt o⃗response a⃗storage

buffering STOP true ∗ buffering STOP data
buffering FORWARD true ∗ buffering FORWARD data
buffering BACKWARD true ∗ buffering BACKWARD data

Application of removeReferences from Definition 6.22, Item 4 for the case a⃗storage =
data and i⃗data = ∗:

ssrc v⃗storage i⃗request i⃗data stgt o⃗response a⃗storage

b. . . STOP true STOP b. . . STOP STOP
b. . . STOP true FORWARD b. . . STOP FORWARD
b. . . STOP true BACKWARD b. . . STOP BACKWARD
b. . . FORWARD true STOP b. . . FORWARD STOP
b. . . FORWARD true FORWARD b. . . FORWARD FORWARD
b. . . FORWARD true BACKWARD b. . . FORWARD BACKWARD
b. . . BACKWARD true STOP b. . . BACKWARD STOP
b. . . BACKWARD true FORWARD b. . . BACKWARD FORWARD
b. . . BACKWARD true BACKWARD b. . . BACKWARD BACKWARD

Figure 6.23.: Example of an application of the function removeReferences to the first
transition of the transition system of the automaton Buffer<MotorCmd>
with the component Buffer<T> shown in Listing 6.6 and the enumeration
type MotorCmd shown in Figure 6.4.

188 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

Definition 6.24 (Enabledness expansion for ∗MAAts automata). The transition re-
lation expansion function enablednessExpansion updates the transition relation δ of
∗MAAts automata by expanding the enabledness elements inputs, variables and guards

enablednessExpansion ∶ (S, I⃗, O⃗, V⃗ , γ⃗, δ, ι) ↦ (S, I⃗, O⃗, V⃗ , γ⃗, δ′, ι)
where

δ′ = {(ssrc,true, i⃗′, v⃗′, stgt, o⃗, a⃗) ∣ (ssrc, φ, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ,
(∀p ∈ cmp.CPortsIN ∶ if (i⃗p = ∗) then i⃗′p ∈ I⃗p else i⃗′p = i⃗p),
(∀var ∈ cmp.CV ars ∶ if (v⃗var = ∗) then v⃗′var ∈ V⃗var else v⃗′var = v⃗var),
φ(⃗i, v⃗)}. △

The enabledness expansion function enablednessExpansion, as described in Defini-
tion 6.24, replaces the ∗ symbol on inputs and variable values on transitions with all
possible combinations. An example of the application of the function enabledness-
Expansion is given in the next section as part of a larger example in Figure 6.26.
A ∗MAAts automaton without guard predicates other than true and without under-
specified input and variable values is not modified by the enabledness expansion from
Definition 6.24.

We call a ∗MAAts automaton with all references removed, without the symbol ∗ on
any input port or variable value of any transition, and with all guards set to true an
enabledness expanded ∗MAAts automaton. The following definitions of ∗MAAts seman-
tics all handle enabledness expanded ∗MAAts automata that are obtained from regular
∗MAAts automata by applying the function removeReferences from Definition 6.22 and
the function enablednessExpansion from Definition 6.24.

6.4.3. Completions when using ∗MAAts Automata as Implementations

When using ∗MAAts automata to implement component behavior, we expect that all
relevant information on how a component reacts to its inputs is given in the automaton’s
transition system. In case no reaction is specified there should be indeed no action taken
by the component. In this case the state of the component does not change and the
component does not send any messages. In time-synchronous streams the absence of a
message is denoted by the symbol +. The component thus sends the symbol + on all
output ports.

We formally define this implementation-based interpretation of the automaton as +
completion for ∗MAAts automata. This completion of the transition system removes
syntactic-underspecification based on the symbol ∗. It also handles the omission of
transitions from ∗MAAts automata and finally yields a MAAts automaton. The + com-
pletion is formally defined in Definition 6.25. We define + completion for enabledness
expanded automata, i.e., any ∗MAAts automaton with the prior application of the func-
tions removeReferences from Definition 6.22 and enablednessExpansion from Defini-
tion 6.24.

6.4. Language Profile for Time-Synchronous Communication 189

All unspecified outputs are replaced by the + message and unassigned variables are
assigned their previous values. In case no transition in the ∗MAAts automaton is enabled,
the +-completed automaton sends the + message on all ports and preserves the values of
all local variables (see last item in Definition 6.25).

The +-completed automaton is a MAAts automaton that no longer uses the symbol
∗ and has no guards. All occurrences of ∗ are replaced in the first two items of Defini-
tion 6.25 and the tuples added to the transition contain only elements from I⃗, V⃗ , and
O⃗ without the addition of the symbol ∗ as employed in the definition of the structure of
∗MAAts automata from Definition 6.19.

Definition 6.25 (+ completion for enabledness expanded ∗MAAts automata). The +
completion takes as input an enabledness expanded ∗MAAts automaton (S, I⃗, O⃗, V⃗ , γ⃗, δ, ι)
and produces the MAAts automaton (S, I⃗, O⃗, V⃗ , γ⃗, δ′, ι′), where

1. unspecified initial output is set to +:
ι′ = {(s, o⃗′) ∈ (S × O⃗) ∣ (s, o⃗) ∈ ι,

∀p ∈ cmp.CPortsOUT ∶ if (o⃗p = ∗) then o⃗′p = + else o⃗′p = o⃗p}
2. unspecified output is set to + and unspecified variable assignments are set to pre-

serve variable values:
δ′′ = {(ssrc, i⃗, v⃗, stgt, o⃗′, a⃗′) ∣ (ssrc,true, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ,

∀p ∈ cmp.CPortsOUT ∶ if (o⃗p = ∗) then o⃗′p = + else o⃗′p = o⃗p,
∀var ∈ cmp.CV ars ∶ if (a⃗var = ∗) then a⃗′var = v⃗var else a⃗′var = a⃗var}

3. undefined behavior is expanded to preserve the current state and variable values
and to produce the symbol + on all output ports:
δ′ = δ′′ ∪ {(ssrc, i⃗, v⃗, ssrc, +⃗, v⃗) ∣ ∄s′tgt, o⃗′, a⃗′. (ssrc, i⃗, v⃗, s′tgt, o⃗′, a⃗′) ∈ δ′}

△
An example of + completion for a MAAts automaton is shown in Figure 6.26. The first

table shows the single transition from state idle to state driving of the automaton
inside component BumpControl shown in Figure 6.21.

The second table shows the transition after the application of the function enabled-
nessExpansion from Definition 6.24. The underspecified input on the port ts is re-
placed by the two alternative values + and ALERT.

Finally, the third table in Figure 6.26 shows the transition system after + completion
defined in Definition 6.25. The previously unhandled input value combinations on the
ports bump and ts are now handled by the automaton. The corresponding outputs are
+ values on all output ports.

6.4.4. Completions when using MAAts Automata as Specifications
We define two additional completions that handle syntactic underspecification by re-
placing the symbol ∗ with multiple behaviors. These completions are useful when using
∗MAAts automata as specifications. In these cases we do not expect that the model

190 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

Given the following transition from the transition system of the ∗MAAts automaton
shown in Figure 6.21:
ssrc i⃗bump i⃗ts stgt o⃗rMot o⃗lMot o⃗tc

idle true ∗ driving FORWARD FORWARD ∗
Application of enabledness expansion (Definition 6.24) leads to:

ssrc i⃗bump i⃗ts stgt o⃗rMot o⃗lMot o⃗tc

idle true + driving FORWARD FORWARD ∗
idle true ALERT driving FORWARD FORWARD ∗
+ completion (Definition 6.25) leads to:

ssrc i⃗bump i⃗ts stgt o⃗rMot o⃗lMot o⃗tc

idle true + driving FORWARD FORWARD +
idle true ALERT driving FORWARD FORWARD +
idle false + idle + + +
idle false ALERT idle + + +
idle + + idle + + +
idle + ALERT idle + + +

Figure 6.26.: Example for guards and input expansion and + completion for a single tran-
sition of the automaton inside component BumpControl (see Figure 6.21).

explicitly contains all reactions of the component specified as transitions. The ∗MAAts

automaton is considered a specification of what the implementation must do.
As an example, consider the specification for component ToggleSwitch shown in

Figure 6.27. The automaton inside component ToggleSwitchSpec requires that every
implementation starts with the output false on the port active. When receiving the
message false on the port pressed the component has to emit the message false on
the port active.

���������������
'�������������

'����������$���
?����$��,�1����

������
�,�1�����
?����$��,�1����

�����������������

Figure 6.27.: A partial specification for the behavior of component ToggleSwitch
given as a ∗MAAts automaton.

6.4. Language Profile for Time-Synchronous Communication 191

When treating the automaton inside component ToggleSwitchSpec as an imple-
mentation the toggle switch would simply ignore any message not specified, e.g., the
message true on port pressed, and send + messages. Viewed as a specification we
want to allow arbitrary behavior if not stated otherwise. This freedom is added to the
transition relation of an automaton using chaos completion.

Chaos completion allows an arbitrary reaction to inputs once a component has received
an input for which its behavior is undefined. After reacting to the input, the automaton
of the component can go to any of its states or a special state schaos that allows arbitrary
behavior. Outputs not specified are interpreted as all possible combinations of outputs.
If at least one transition is enabled in the specification automaton the component has to
react as specified. Chaos completion has been defined for I/Oω automata in [Rum96].
An adapted version for ∗MAAts automata is given in Definition 6.28.

Definition 6.28 (Chaos completion for enabledness expanded ∗MAAts automata).
The chaos completion takes as input an enabledness expanded ∗MAAts automaton
(S, I⃗, O⃗, V⃗ , γ⃗, δ, ι) and produces the MAAts automaton (S′, I⃗, O⃗, V⃗ , γ⃗, δ′, ι′), where

1. a chaos state is added:
S′ = S ∪ {schaos}

2. unspecified initial output is expanded to all possible output combinations:
ι′ = {(s, o⃗′) ∈ (S × O⃗) ∣ (s, o⃗) ∈ ι,

∀p ∈ cmp.CPortsOUT ∶ if (o⃗p = ∗) then o⃗′p ∈ O⃗p else o⃗′p = o⃗p}
3. unspecified outputs and variable assignments are expanded to all possible combi-

nations of values:
δ′′ = {(ssrc, i⃗, v⃗, stgt, o⃗′, a⃗′) ∈ (S′ × I⃗ × V⃗ × S⃗′ × O⃗ × V⃗) ∣

(ssrc,true, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ,
∀p ∈ cmp.CPortsOUT ∶ if (o⃗p = ∗) then o⃗′p ∈ O⃗p else o⃗′p = o⃗p,

∀var ∈ cmp.CV ars ∶ if (a⃗var = ∗) then a⃗′var ∈ V⃗var else a⃗′var = a⃗var}
4. undefined behavior is expanded to all possible behaviors:

δ′ = δ′′ ∪ {(ssrc, i⃗, v⃗, stgt, o⃗, a⃗) ∈ (S′ × I⃗ × V⃗ × S⃗′ × O⃗ × V⃗) ∣
∄s′tgt, o⃗′, a⃗′ ∶ (ssrc, i⃗, v⃗, s′tgt, o⃗′, a⃗′) ∈ δ′′}

△
An example for chaos completion of the transition system of the automaton shown

in Figure 6.27 is shown in Figure 6.29. Please note that in this case the enabledness
expansion from Definition 6.24 has no effect on the transition relation δ since no un-
derspecification based on the symbol ∗ is used in the input or local variables. The
transition relation δ is expanded from one tuple to 31 tuples by chaos completion. There
are 3 ∗ ∣S′∣ ∗ 3 transitions starting in state schaos where 3 is the number of distinct mes-
sages that can be received on port pressed or sent on port active. Both ports are
of type Boolean extended with the special symbol + (with ∣{true,false, +}∣ = 3).

192 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

Given the transition relation δ of the ∗MAAts automaton from Figure 6.27:

ssrc i⃗pressed stgt o⃗active

s1 false s1 false

Chaos completion (Definition 6.28) leads to the expanded transition relation with
S′ = S ∪ {schaos}:

ssrc i⃗pressed stgt o⃗active

s1 false s1 false
s1 + schaos true
s1 + schaos false
s1 + schaos +
s1 + s1 true
s1 + s1 false
s1 + s1 +
s1 true ∣S′∣ ∗ 3 combinations
schaos 3 ∗ ∣S′∣ ∗ 3 combinations

Figure 6.29.: Chaos completion of the transition system of the automaton inside compo-
nent ToggleSwitchSpec from Figure 6.27.

Chaos completion allows arbitrary behavior once the automaton switches to the chaos
state. An alternative to chaos completion is, e.g., relaunch completion without the addi-
tional state schaos. Relaunch completion allows arbitrary behavior in case no transition
of the original automaton is enabled but requires a relaunch of the automaton in a state
of the automaton after each transition (see relaunch completion for I/Oω automata de-
fined in [Rum96]). One implementation related pattern for MAAts automata is to idle
in a state until a special event/input pattern occurs. When using ∗MAAts automata
as implementations, this behavior is realized by + completion. To use this pattern for
waiting for special events in specifications we define the output completion for ∗MAAts

automata.
Output completion as defined in Definition 6.30 can be used to specify complex be-

havior using multiple states with unknown behavior in some or all of the states. This
completion is less permissive than chaos completion. If the component receives an in-
put for which no transition of the automaton is activated it can produce an arbitrary
output. Similarly, if an output is marked as unspecified using the symbol ∗, the output
is arbitrary. The values of local variables are treated as part of the state space of the
specification and are thus preserved if not explicitly specified. The execution of the au-
tomaton resumes in the state where the previously unhandled input and variable values
combination was received.

6.4. Language Profile for Time-Synchronous Communication 193

Definition 6.30 (Output completion for enabledness expanded ∗MAAts automata).
The output completion takes an enabledness expanded ∗MAAts automaton (S, I⃗, O⃗, V⃗ ,
γ⃗, δ, ι) as input and produces the MAAts automaton (S, I⃗, O⃗, V⃗ , γ⃗, δ′, ι′), where

1. unspecified initial output is expanded to all possible output combinations:
ι′ = {(s, o⃗′) ∈ (S × O⃗) ∣ (s, o⃗) ∈ ι,

∀p ∈ cmp.CPortsOUT ∶ if (o⃗p = ∗) then o⃗′p ∈ O⃗p else o⃗′p = o⃗p}

2. unspecified output is expanded to all possible combinations of values and unspec-
ified variable assignments are set to preserve variable values:
δ′′ = {(ssrc, i⃗, v⃗, stgt, o⃗′, a⃗′) ∣ (ssrc,true, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ,

∀p ∈ cmp.CPortsOUT ∶ if (o⃗p = ∗) then o⃗′p ∈ O⃗p else o⃗′p = o⃗p,
∀var ∈ cmp.CV ars ∶ if (a⃗var = ∗) then a⃗′var = v⃗var else a⃗′var = a⃗var}

3. undefined behavior is expanded to preserve the current state and variable values
and to sending all possible combinations of outputs:
δ′ = δ′′ ∪ {(ssrc, i⃗, v⃗, ssrc, o⃗, v⃗) ∣ ∄s′tgt, o⃗′, a⃗′. (s, i⃗, v⃗, s′tgt, o⃗′, a⃗′) ∈ δ′′}

△

The Item 1 of Definition 6.30 adds arbitrary output on the ports with unspecified
output (modeled by the symbol ∗). Item 2 of Definition 6.30 adds arbitrary output to
all transitions for ports where the output was not specified. The values of local variables
are preserved if no assignment was specified. Item 3 of Definition 6.30 adds arbitrary
transitions from a state to itself preserving all variable values for all state, input, and
variable value combinations that do not enable a transition after the completion of δ to
δ′′ in Item 2.

An example for output completion of the transition system of the ∗MAAts automaton
shown in Figure 6.27 is shown in Figure 6.31. The transition relation δ is expanded from
one tuple to 7 tuples. The 6 additional transitions handle the inputs true and + for
which no transition was defined in the original automaton.

6.4.5. MAAts Automaton Semantics as I/O Relations and SPF

Our semantics definition for MAAts automata does not handle arbitrary MAAts au-
tomata as defined in Definition 6.19. For defining its semantics we require that a MAAts

automaton has a defined (possibly non-deterministic) response to every possible input
in any possible state and variable configuration. Otherwise, a modeled system would
not be able to react to all possible input situations. In our time-synchronous semantics
this means that the system would stop time on the output channels. A total transition
function ensures that the automaton can answer all requests. A transition function is
total if the automaton has at least one enabled transition for every state, input, and
valuation of local variables. We call a MAAts automaton with a total transition relation
a total MAAts automaton (see Definition 6.32).

194 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

Given the transition relation δ of the ∗MAAts automaton from Figure 6.27:

ssrc i⃗pressed stgt o⃗active

s1 false s1 false

Output completion (Definition 6.30) leads to the expanded transition relation:

ssrc i⃗pressed stgt o⃗active

s1 false s1 false
s1 true s1 true
s1 true s1 false
s1 true s1 +
s1 + s1 true
s1 + s1 false
s1 + s1 +

Figure 6.31.: Output completion of the transition system of the automaton inside com-
ponent ToggleSwitchSpec from Figure 6.27.

Definition 6.32 (Total MAAts automaton). A MAAts automaton (S, I⃗, O⃗, V⃗ , γ⃗, δ, ι) is
total if and only if the transition relation contains a transition for every possible state,
variable assignment, and input:

∀ssrc ∈ S, i⃗ ∈ I⃗ , v⃗ ∈ V⃗ ∶
∃stgt ∈ S, o⃗ ∈ O⃗, a⃗ ∈ V⃗ ∶

(ssrc, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ. △

The values of variables are essentially treated as an extension of the state space of
the automaton. Instead of requiring the existence of a transition for every combination
of states and variables, we could weaken Definition 6.32 to only require the existence of
transitions from reachable states and variable assignments. This modification is not re-
quired in our case since the completions + completion (Definition 6.25), chaos completion
(Definition 6.28), and reaction completion (Definition 6.30) all result in total automata
according to Definition 6.32. Specifically, the transition system of the automata is made
total in the last bullet of each of the three definitions.

We now give the semantics of total MAAts automata as I/O relations. The I/O relation
of a MAAts automaton is the relation of all possible input histories to the respective
output histories produced by the automaton. The input histories of a MAAts automaton
(S, I⃗, V⃗ , O⃗, γ⃗, δ, ι) are all timed streams I⃗∞ over tuples of the input port types of the
automaton. The output histories of the automaton are the streams o ∈ O⃗∞ produced by
the automaton as a response to an input i ∈ I⃗∞.

6.4. Language Profile for Time-Synchronous Communication 195

A pair consisting of the input streams i ∈ I⃗∞ and the output stream o ∈ O⃗∞ is in
the semantics of the automaton if the first element of the output o equals an initial
output from the set ι and the input and output streams elements result from tuples in
the transition relation of the automaton. We define the I/O relation semantics of total
MAAts automata in Definition 6.33 in two parts. The first part of the definition ensures
the existence of an initial output and state pair. The second part of Definition 6.33
introduces a recursive characterization of valid input and output streams based on a
state and variable values. This part selects a tuple in δ that produces the current input
and output elements. The remainder of the input and output streams is defined by the
recursive application of the relation.

Definition 6.33 (I/O relation semantics of total MAAts automata). The I/O relation
semantics of a total automaton A = (S, I⃗, O⃗, V⃗ , γ⃗, δ, ι) is defined as the relation

RA = {(in, out) ∈ (I⃗∞ × O⃗∞) ∣
∃(s, o⃗) ∈ ι ∶ out.0 = o⃗ ∧R′A(s, γ, in, rt(out))}

where R′A is the unique largest solution of the following recursive definition:

R′A = {(s, v⃗, in, out) ∈ S × V⃗ × I⃗∞ × O⃗∞ ∣
∃t ∈ S, a⃗ ∈ V⃗ ∶ (s, in.0, v⃗, t, out.0, a⃗) ∈ δ ∧R′A(t, a⃗, rt(in), rt(out))}

△
All reactions to elements of inputs i ∈ I⃗∞ are delayed by one time cycle in the output

stream o ∈ O⃗∞ by the first part of Definition 6.33. Since the I/O relation semantics is
defined for total MAAts automata there is at least one pair (i, o) ∈ R for every i ∈ I⃗∞.

The semantics for total MAAts automata is well-defined. The recursive definition in
the second part of Definition 6.33 has a unique least fixpoint. The functional of the
recursive definition is σ ∶ ℘(S × V⃗ × I⃗∞ × O⃗∞) → ℘(S × V⃗ × I⃗∞ × O⃗∞) defined as

σ(X) = {(s, v⃗, in, out) ∈ S × V⃗ × I⃗∞ × O⃗∞ ∣
∃t ∈ S, a⃗ ∈ V⃗ ∶ (s, in.0, v⃗, t, out.0, a⃗) ∈ δ ∧X(t, a⃗, rt(in), rt(out))}

To show that the recursive definition in Definition 6.33 has a unique solution we fol-
low similar proofs from [Rum96] that show the existence of a unique smallest fix-
point based on the Tarski fixpoint theorem [Tar55]. As in [Rum96], we use the com-
plete partial order of sets where the order ⊑ is defined as the inverse subset relation
S1 ⊑ S2 ⇔ S2 ⊆ S1 with the smallest element S where ∀S′ ∈ ℘(S) ∶ S ⊑ S′. We
show that the functional σ is monotonic on ℘(S × V⃗ × I⃗∞ × O⃗∞) with respect to ⊑, i.e.,
∀X, Y ⊆ S × V⃗ × I⃗∞ × O⃗∞ ∶ X ⊑ Y ⇒ σ(X) ⊑ σ(Y).

We replace ⊑ with the inverse subset relation ⊆ and unfold the definition of the func-
tional σ for elements in σ(Y). We then replace Y with X on the right side, since
for Y ⊆ X all (t, a⃗, in, out) ∈ Y are also in X. The right side is now σ(X) and thus
X ⊑ Y ⇒ σ(X) ⊑ σ(Y):

196 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

Y ⊆ X ∧ ∀(s, v⃗, i⃗∶in, o⃗∶out) ∈ σ(Y) ∶ ∃t ∈ S, a⃗ ∈ V⃗ ∶ (s, i⃗, v⃗, t, o⃗, a⃗) ∈ δ ∧ (t, a⃗, in, out) ∈ Y

⇒∀(s, v⃗, i⃗∶in, o⃗∶out) ∈ σ(Y) ∶ ∃t ∈ S, a⃗ ∈ V⃗ ∶ (s, i⃗, v⃗, t, o⃗, a⃗) ∈ δ ∧ (t, a⃗, in, out) ∈ X

⇒∀(s, v⃗, i⃗∶in, o⃗∶out) ∈ σ(Y) ∶ (s, v⃗, i⃗∶in, o⃗∶out) ∈ σ(X)
⇒ σ(Y) ⊆ σ(X)

The functional is monotonic and thus has a unique least fixpoint that uniquely char-
acterizes the largest relation R′A defined in Definition 6.33.

As an alternative definition of the semantics, we give semantics of total MAAts as
time-synchronous SPF. We define the semantics as a set of time-synchronous SPF by
a translation of total MAAts automata into total time pulsed automata as defined in
[Rum96, Definition 5.32]. An adapted structure of time pulsed automata is shown in
Definition 6.34. This structure is adapted from [Rum96, Definition 5.32] for the time-
synchronous case where each time slice of the input and output streams contains exactly
one message. In [Rum96, Definition 5.32] the transition relation is defined to handle
time slices of finite streams instead of a single message on all input and output channels.

Definition 6.34 (Time pulsed automaton [Rum96, adapted from Definition 5.32]). A
time pulsed I/Oω automaton is a tuple (S, Min, Mout, δ, I), where

• S is a non-empty set of states,
• Min is a non-empty input alphabet,
• Mout is a non-empty output alphabet,
• δ ⊆ S ×Min × S ×Mout is a transition relation, and
• I ⊆ S ×Mout is a set of initial states and their initial output.

△
The main differences between the structure of time pulsed automata from Defini-

tion 6.34 and MAAts automata from Definition 6.19 are that we allow multiple input
and output ports for MAAts automata and local variables which can be read and set
in transitions. We translate these concepts of MAAts into concepts of time pulsed au-
tomata as shown in Definition 6.35. This translation is similar to the translation used
in [Rum96, Definition 33] where finite streams on multiple channels are interpreted as
a single message in a new alphabet. Here we interpret the messages on all input and
output ports as single input and output messages.

Definition 6.35 (Translation of total MAAts automata to time pulsed automata). The
function toTPA ∶ (S, I⃗, O⃗, V⃗ , γ⃗, δ, ι) ↦ (S′, M ′

in, M ′
out, δ′, I ′) translates a total MAAts

automaton into a total time pulsed automaton, where

• S′ = S × V⃗

• M ′
in = I⃗

6.4. Language Profile for Time-Synchronous Communication 197

• M ′
out = O⃗

• δ′ = {((ssrc, v⃗), i⃗, (stgt, a⃗), o⃗) ∣ (ssrc, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ}
• I ′ = {((s, γ), o⃗) ∣ (s, o⃗) ∈ ι}

△
A time pulsed automaton (S, Min, Mout, δ, I) is total if and only if it defines at least

one transition for every input in every state, i.e., ∀s ∈ S, m ∈ Min ∶ ∃t ∈ S, o ∈ Mout ∶
(s, m, t, o) ∈ δ [Rum96, Definition 4.2]. The translation function toTPA translates total
MAAts automata into total time pulsed I/Oω automata since the source state and input
combinations of the I/Oω automaton are composed of the source state, variable values,
and inputs of the total MAAts automaton.

The semantics of total I/Oω automata as sets of SPF is defined in Definition 6.36.
This is a schematic adaption of Proposition 5.34 from [Rum96] to the time-synchronous
case. The only changes are again the adaption of the time slices from finite streams to
single messages.

Definition 6.36 (Semantics of total time pulsed automata [Rum96, adapted from
Proposition 5.34]). The set of SPF realized by the total automaton (S, Min, Mout, δ, I)
is

�(S, Min, Mout, δ, I)� = {g ∈ M∞
in → M∞

out ∧ g strongly causal ∣
∃h ∈ �(S, Min, Mout, δ, I)�tap, (si, outi) ∈ I ∶

∀in ∈ M∞
in ∶ g(in) = outîh(si, in)}

where �.�tap is the unique largest solution of the following recursive definition:

�(S, Min, Mout, δ, I)�tap = {h ∈ S → M∞
in → M∞

out ∧ ∀s ∶ h(s) weakly causal ∣
∀m ∈ Min, s ∈ S ∶ ∃t ∈ S, out ∈ Mout ∶ (s, m, t, out) ∈ δ ∧

∃h′ ∈ �(S, Min, Mout, δ, I)�tap ∶
∀in ∈ M∞

in ∶ h(s, m̂in) = out̂h′(t, in)}
△

The first part of the definition ensures that every start state and initial output com-
bination of the automaton is covered by at least one SPF . The second part defines a
predicate �.�tap recursively over the transition relation. This recursive definition is well
formed and does have a unique largest solution [Rum96]. The core idea of predicate
�.�tap is to unfold the transition relation by one step, by defining the state parametrized
function h through selection of a transition (s, m, t, out) ∈ δ and a continuation function
h′ that handles the rest. Taking the largest solution resembles that nondeterminism is
interpreted as all possible SPF (underspecification).

The translation of MAAts automata into time pulsed automata and this semantics
definition for time pulsed automata immediately gives us a semantics of MAAts automata
as sets of SPF as defined in Definition 6.37.

198 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

Definition 6.37 (SPF semantics of total MAAts automata). The SPF semantics of a
total MAAts automaton (S, I⃗, O⃗, V⃗ , γ⃗, δ, ι) is defined as �toTPA(S, I⃗, O⃗, V⃗ , γ⃗, δ, ι)�.

△

�����������

'�������������
 '����������$�

�11

?����$��,�1���� ������
�,������?����$��,�����

��

������
�,������?����$��,�1����

������
�,�1�����
?����$��,�1���� ������
�,�1����

?����$��,�����

�����������������

Figure 6.38.: The implementation of component ToggleSwitch as a total MAAts

automaton.

As a concrete example consider the automaton inside component ToggleSwitch as
shown in Figure 6.38. The + completion of the automaton only adds self-loops to the
two states off and on that take as input + and produce the output +. The +-completed
MAAts automaton is total according to Definition 6.32, has no guards and all inputs
and outputs of each transition are defined. The semantics of the automaton shown in
Figure 6.38 is a singleton set consisting of the function g defined by:

g ∶ Boolean∞ → Boolean∞

g(in) = falsêh(off, in)

where h is the single element from the set �(S, Min, Mout, δ, I)�tap from the second part
of Definition 6.36:

h ∶ {off,on} × Boolean∞ → Boolean∞

h(off,truêin) = truêh(on, in)
h(off,falsêin) = falsêh(off, in)

h(on,truêin) = falsêh(off, in)
h(on,falsêin) = truêh(on, in)

h(off, +̂in) = +̂h(off, in)
h(on, +̂in) = +̂h(on, in)

6.5. Refinement of MAAts Automata 199

The last line in the definition of the function h is added by the + completion of
the automaton. For total and deterministic time pulsed automata the set of (timed)
stream processing functions �(S, Min, Mout, δ, I)� is always a singleton [Rum96]. This
corresponds to a single possible implementation of the automaton’s behavior.

The two semantics for MAAts automata appear similar but they are different. The
functions in the SPF semantics preserves the state changes of a system whereas I/O
relation based semantics loses the connection to the states of the automaton. We show
in Section 6.5.1 that the two semantics lead to different notions of refinement.

6.5. Refinement of MAAts Automata

From the definitions of MAAts automata semantics and the definitions of behavior re-
finement we immediately receive a refinement for MAAts automata. In fact, we receive
two notions of refinement: one based on I/O relations and one based on SPF. The I/O
relation refinement of MAAts automata is based on the inclusion of input and output
pairs of communication histories. All pairs of input and output that the semantics of a
more concrete MAAts automaton allows have to be valid input and output pairs allowed
by the semantics of the more abstract MAAts automaton. The I/O relation refinement
for MAAts automata is given in Definition 6.39.

Definition 6.39 (I/O relation refinement of MAAts automata). A MAAts automaton
Aconcrete refines a MAAts automaton Aabstract based on the I/O relation semantics from
Definition 6.33 if and only if

∀i ∈ I⃗∞, o ∈ O⃗∞ ∶ (i, o) ∈ RAconcrete ⇒ (i, o) ∈ RAabstract

△

From the semantics definition for MAAts automata based on SPF (Definition 6.37)
we receive a different refinement relation between MAAts automata. A more concrete
MAAts automaton refines a more abstract MAAts automaton if all possible realizations
of the behavior of the concrete, i.e., all SPF in the automaton’s semantics, are also
possible realizations of the behavior of the abstract MAAts automaton. This refinement
relation is formally given in Definition 6.40.

Definition 6.40 (SPF refinement of MAAts automata). A MAAts automaton Aconcrete

refines a MAAts automaton Aabstract based on the SPF semantics from Definition 6.37
if and only if

�toTPA(Aconcrete)� ⊆ �toTPA(Aabstract)�
△

200 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

���������
'�������

'��������

�����?�1����

��

1�����?�1����

�C

�D

1�����?�1����

?�1����

?�����

?�1����

9���4���
'�������

'��������

��

?�1����

�����?�1����

�
1�����?�1����

�C

�D

1�����?�1����

?�1����

?�����

�����?�����

�����������������

"�# "�#

Figure 6.41.: Two MontiArcAutomaton components with automata that demonstrate
different semantics of the MAAts refinement based on the I/O relation
semantics and the MAAts refinement based on the SPF semantics.

6.5.1. Different Refinements
It is important to note that the two notions of refinement based on the different semantics
of MAAts automata are not equivalent. We present an example consisting of two MAAts

automata in Figure 6.41 (a) and (b). The component EarlySpec contains a total
MAAts automaton with a single input port and a single output port both of the type
Boolean. The component LateImpl has the same input and output ports.

We show that the component LateImpl refines the component EarlySpec based
on the I/O relation semantics from Definition 6.33 but not based on the SPF semantics
from Definition 6.37. Without loss of generality we ignore the symbol + and + completion
in this example: the type Boolean could be replaced with a single value taking the role
of true while + would take the role of false in this example.

The automaton of component EarlySpec is non-deterministic with a single non-
deterministic choice between the transitions to the state s3 and the state s4 when
receiving the value false in the state s1. The SPF semantics of the automaton is the un-
countably infinite set �toTPA(EarlySpec)� that contains functions gK ∶ Boolean∞ →
Boolean∞ for all K ⊆ N ∪ {∞} where

gK ∶
⎧⎪⎪⎨⎪⎪⎩
truen̂⟨false⟩̂{true,false}∞ ↦ ⟨false⟩̂falsen̂⟨false⟩̂false∞ for n ∈ K

truen̂⟨false⟩̂{true,false}∞ ↦ ⟨false⟩̂falsen̂⟨false⟩̂true∞ for n ∉ K

The inclusion of ∞ in the set K is valid because for a message m the iteration m∞ is
well-defined as the infinite iteration of the message m.

6.6. Related Work 201

The MAAts automaton LateImpl is total and deterministic. Thus, its seman-
tics given by the set �toTPA(LateImpl)� contains the single SPF f ∶ Boolean∞ →
Boolean∞ as defined below with n ∈ N ∪ {∞}:

f ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

truen̂⟨false,false⟩̂{true,false}∞ ↦
falsêfalsen̂⟨false,false⟩̂false∞

truen̂⟨false,true⟩̂{true,false}∞ ↦
⟨false⟩̂falsen̂⟨false,true⟩̂true∞

The function f does not equal any function gK for K ⊆ N. Assume ∃K ⊆ N ∶ gK = f .
From f(⟨false⟩̂true∞) = ⟨false,false⟩̂true∞ = g(⟨false⟩̂true∞) it follows
from the definition of gK that 0 ∈ K. From f(false∞) = false∞ = g(false∞) it
follows from the definition of gK that 0 ∉ K. We thus have a contradiction and it
follows that ∀K ⊆ N ∶ gK ≠ f . In summary, the automaton LateImpl does not re-
fine the automaton EarlySpec with the SPF semantics since �toTPA(LateImpl)� /⊆
�toTPA(EarlySpec)�.

The I/O relation semantics MAAts automaton LateImpl is the relation RLateImpl

where

RLateImpl = {(i, o) ∈ Boolean∞ × Boolean∞ ∣
∃n ∈ N ∪ {∞} ∶

(i = truen̂⟨false,false⟩̂{true,false}∞ ∧ o = false∞) ∨
(i = truen̂⟨false,true⟩̂{true,false}∞ ∧ o = falsen+2̂true∞)}

Both cases of the I/O tuples in the I/O relation RLateImpl are also contained in the
I/O relation semantics of the MAAts automaton EarlySpec: for all n ∈ N∪{∞} the I/O
tuples (truen̂⟨falses3,false⟩̂{true,false}∞,false∞) are contained in the rela-
tion REarlySpec. The subscript s3 for the message false denotes the non-deterministic
choice of the target state s3, which leads to the output false∞. Similarly, for all n ∈
N ∪ {∞} the I/O tuples (truen̂⟨falses4,true⟩̂{true,false}∞,falsen+2̂true∞)
are contained in the relation REarlySpec. The subscript s4 for the message false de-
notes the non-deterministic choice of the target state s4, which leads to the output suffix
true∞.

Thus, the different semantics lead to different refinements.

6.6. Related Work

In this section we discuss related types of automata and some works that deal with
incompleteness and uncertainty in automata models. We also compare MontiArcAuto-
maton to approaches that go beyond the modeling of automata and include component
models as does MontiArcAutomaton.

202 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

6.6.1. Related Types of Automata

Mealy automata [Mea55] and Moore automata [Moo56] are finite state automata with
finite input and output alphabets. Mealy and Moore automata consume input words
and produce output words. Transitions in Mealy automata are labeled with one input
and one output letter. Transitions in Moore automata are only labeled with an input
letter and each state is labeled with one output letter.

I/O automata by Lynch and Tuttle [LT89] are a description mechanism for describing
components that are executed in parallel and communicate asynchronously by executing
actions. The actions of I/O automata are divided in input, output, and internal actions.
All actions are atomic. Every transition of an I/O automaton is labeled with one action.
Transitions labeled with input actions can be executed when the identical action is
executed as an output action by another automaton. The composition of multiple I/O
automata is a synchronization of the execution of transitions of composed automata on
actions with the same name. This requires, e.g., the disjointness of the sets of output
actions of different automata because only one component should control the execution
of each action.

Message-passing automata [BL01, BL06] are an automaton model that describes com-
municating components. A single message passing automaton consists of a finite set of lo-
cal automata that represent components. Components are connected pairwise by reliable
channels of unbounded size that allow an asynchronous FIFO communication [BL06].
Because of the unbounded channel size and asynchronous communication the model is
more expressive than MAAts automata. The modeling language MontiArcAutomaton
however may also describing message-passing automata as presented in [BL01, BL06].

Constraint automata [BSAR06] are an extension of I/O automata. Constraint au-
tomata were introduced as a semantic model of connectors in the connector coordi-
nation framework Reo [Arb04]. The transitions of constraint automata are guarded
with sets of active channels and constraints over the data on these channels. Baier et
al. [BSAR06] relate constraint automata to a timed data stream semantic defined for
Reo connectors in [AR02] and define refinement (containment) of constraint automata
as the containment of relations over timed data streams in the semantics of the con-
straint automata. Constraint automata and their semantics are somewhat related to the
automata of MontiArcAutomaton because of the timed data streams semantics and the
concept of channels. However, constraint automata focus on the description of connec-
tors rather than that of components. A combination of these complementing approaches
might be an interesting future work.

Alfaro and Henzinger [dAH01] introduced interface automata to describe possible
compositions of components. Interface automata capture input assumptions and output
guarantees of components. A set of components can be composed if there is at least
one environment that fulfills the assumptions of the composition. The structure of
interface automata is similar to I/O automata. The assumptions of an automaton to the
environment are that the environment provides only inputs the automaton can handle
and that it accepts all outputs the automaton provides. In Focus [BS01] and for the
MontiArcAutomaton components defined in Section 6.4 all components (including the

6.6. Related Work 203

environment) are considered to be input-enabled (total), i.e., accepting all inputs in any
reachable state. The correctness of component composition in our case is thus only
a syntactic type compatibility criterion for connected ports. Extensions of Focus to
partial behavior, which could benefit from using composition techniques similar to the
one for interface automata [dAH01], exist [Bro05] but are outside the scope of this work.

Other language profiles of MontiArcAutomaton

The MAAts language profile is only one profile of the modeling language MontiArcAuto-
maton. Other profiles put different restrictions on the abstract syntax of automata and
define different semantics. Our initial works were based on a similar profile for time-
synchronous communication without the symbol + for the absence of messages [Kir11].
This profile has a time-synchronous semantics but requires the models to receive and
send messages in every time step, i.e., when waiting for an event all cases and time steps
of the event not arriving have to be handled explicitly by additional transitions.

In another work on MontiArcAutomaton we have experimented with a language profile
for single event-based processing of messages [Mar12]. In this language profile the input
on transitions is restricted to a single input on a single port while output is allowed on
all output ports and with an arbitrary finite stream of events. The communication in
this work is not time-synchronous.

More general, the modeling language MontiArcAutomaton is a member of the Monti-
Arc [HRR12] language family. MontiArc is a modeling language for modeling C&C sys-
tems. The modeling language itself does not include concepts for the implementation of
component behavior. We have added these concepts in MontiArcAutomaton by embed-
ding automata to describe component behavior as described in Chapter 6 and [RRW14].
Another modeling language of the MontiArc family is AJava [HRR10]. AJava embeds
elements of the programming language Java in MontiArc component definitions.

Underspecification mechanisms and refinement in automata

An important property of behavioral specifications is to allow underspecification and
refinement, i.e., to leave open some details in a specification and provide them later. A
specification mechanism typically used to express underspecification is non-determinism
available in most automata specification languages. We review some additional mecha-
nisms below.

An interesting difference between interface automata [dAH01] and MAAts automata
is the definition of refinement. One motivation for different refinement is that interface
automata are not input-enabled while MAAts automata with their Focus semantics are,
i.e., components in Focus produce output histories for all input histories. We thus use
a refinement based on containment and I/O stream relations while interface automata
use an alternating simulation [AHKV98] refinement. This means that the more concrete
automaton can simulate all input steps of the abstract one while the abstract can simulate
all output steps of the concrete, i.e., an implementation may allow more inputs and less
outputs.

204 Chapter 6. MontiArcAutomaton: State-Based Behavior Modeling

MontiArcAutomaton allows the creation of partial models of a behavior in the sense
that required behavior is explicitly modeled whereas unknown behavior is not. Other
approaches to modeling possible and required behavior are modal transition systems
(MTS) [LT88, Lar89] where behavior expressed by a set of transitions is marked as may
or must. Disjunctive MTS (DMTS) [LX90] extend MTS with disjunctions between must
transitions outgoing from a common state.

Informally, a refining MTS has to preserve all must transitions of the MTS it refines.
The refining MTS can preserve may transitions, change them to must transitions, or
remove them. For DMTS only one must transition of each disjunction has to be pre-
served. Refinement relations for MTS are typically defined based on similarity relations
between states. For classic strong modal refinement [LT88] the corresponding states of
the refining MTS can simulate all must transitions and the states of the more abstract
MTS can simulate all may transitions. Other refinement relations are, e.g., syntactic
refinement where the relation between the states of the MTSs is a partial injective func-
tion from the states of the more concrete to the states of the abstract MTS [LNW07b]
and weak modal refinement where the must and may transitions can be simulated with
additional internal actions of the simulating MTS [LNW07a].

As a major difference to MAAts automata the various notions of refinement of MTS
are all contravariant: allowed behavior must have been allowed and required behavior is
still required. Our semantics of MAAts automata does not explicitly distinguish between
may an must and it does allow the removal of behavior as long as input-enabledness of
MAAts automata is preserved. Finally, in MTS and DMTS all behaviors have to be
modeled explicitly while MontiArcAutomaton offers implicit completions.

Famelis et al. [FBDCS11] have introduced partial modeling and a language indepen-
dent refinement for partial models [SFC12]. Partial models extend a modeling lan-
guage, e.g., with markers for optional or abstract elements. The refinement introduced
in [SFC12] is purely syntactic based on the introduced annotations. It thus does not
take into account the semantics of a model. As an example of a difference, our approach
defines refinement for MontiArcAutomaton automata based on their I/O behavior. One
automaton may refine a syntactically very different automaton that it does not neces-
sarily refine syntactically.

6.6.2. State-Based System Modeling Languages
Statecharts by Harel [HP85, Har87] are one of the most prominent visual description
techniques for reactive systems. Statecharts combine many modeling language features,
e.g., hierarchical states, action execution in states, receiving and sending signals. After
their introduction many variants [Bee94] were derived and statecharts were adopted as
part of the standardized UML [Obj12a]. Scholz [Sch98] has defined a semantics based on
message streams for a subset of Harel’s statecharts with a refinement that corresponds
to our definition in Section 6.3.4. A different refinement in the context of object oriented
systems has been defined by Harel and Kupferman [HK02]. The refinement is based on
the object oriented is-a relation and thus requires that a refined statechart has every
behavior the abstract statechart has. The refinement thus may only add behavior while

6.6. Related Work 205

we consider refinements that remove behavior (remove uncertainty).
Some of the features available in statecharts, e.g., hierarchical states, are likely to

be also useful for the modeling language MontiArcAutomaton. However, we have no
sufficient experience yet how decomposition of components relates to decomposition of
states and what is more useful in the development of interactive systems. We leave these
evaluations and possible modeling language extensions as future work.

Statecharts are standardized both in UML [Obj12a] and SysML [Obj12b]. As de-
scribed before these languages also offer the modeling of component types and C&C
models (see Section 2.4). The combination of statecharts with SysML’s internal block
diagrams or UML’s composite structure diagrams allows similar models to the models
we describe using MontiArcAutomaton. We consider it an advantage of MontiArcAuto-
maton to allow the definition of a component and its behavior in one artifact without
additional bindings and allocation as necessary in SysML.

The AutoFOCUS tool [HSSS96, HS97, BHS99, HF07] for the specification and pro-
totyping of distributed systems allows the behavioral specification of components us-
ing state transition diagrams. These can be edited in a graphical representation and
translated into executable simulation code. Currently, AutoFOCUS supports time-
synchronous streams with weakly and strongly causal behavior of components. The
automata for modeling AutoFOCUS components are similar to MAAts automata. In
contrast to MontiArcAutomaton AutoFOCUS does not distinguish between a compo-
nent and its type and it does not support the instantiation of components.

The block diagram language implemented in MathWorks Simulink [wwwn] is extended
with state transition diagrams in Stateflow [wwwo]. The automata of Stateflow are a
combination of Mealy and Moore machines and they are fully integrated in the simulation
and code generation environment of Stateflow. The semantics of Stateflow diagrams is
only given informally but has been formalized in many ways by various translations
into other formalisms [MC12]. To the best of our knowledge there is no support for
underspecification and refinement of Stateflow automata as allowed in MAAts automata
(see Section 6.4).

Ptolemy II [Pto14, wwwaa] is a modeling and simulation tool for actor systems.
Ptolemy allows the composition of models with heterogeneous models of computation
(semantics domains and scheduling) [Lee10]. The discrete event and the synchronous-
reactive model of computation are similar to the Focus time-synchronous streams of our
semantics [TSSL13]. In the description of Ptolemy II [Pto14] the term refinement refers
to the syntactical hierarchical decomposition of state machines. We are not aware of
refinement and specification mechanisms in Ptolemy II similar to completions of MAAts

automata.
Finally, many works consider hybrid systems and extensions of automata with multiple

clocks, differential equations, and probabilities [Rab63, AD94, GSB98, LSV03]. These
extensions go beyond the scope our current work.

Chapter 7.

An Analysis Framework for Component
Behavior

The development of the functional behavior of component and connector systems typ-
ically starts with initial specifications of the behavior of a system or its subsystems.
These initial models contain underspecified behavior, which leaves some decisions to a
more detailed later specification or an implementation. Adding details to specifications
is known as refinement. A refinement preserves or removes possible behaviors from the
specification of a system.

In this chapter we address the challenge of automatically verifying the behavior re-
finement and equality relations between MontiArcAutomaton models. By extending the
notion of equality and refinement to behavior observed on shared ports, our work allows
to define behavior specifications only for relevant ports.

Engineers may define refinement and equality checks for component type definitions
in MontiArcAutomaton specification suites. We present a modeling language for Monti-
ArcAutomaton specification suites and checks. The definition and organization of speci-
fication checks in MontiArcAutomaton specification suites allows hiding technical details
from the users of the framework.

To solve the analysis problems we express the semantics of MontiArcAutomaton com-
ponent type definitions as Mona [EKM98, wwwz] programs. Our translation supports
composed component type definitions as well as different completions of automata. Each
translated component type definition results in a predicate over input and output his-
tories of the component. Due to this general translation, the analysis opportunities
provided by this general translation are not limited to checking equivalence and refine-
ment.

We have reported on the modeling of functional requirements using MontiArcAuto-
maton automata in [RRW12] and our code generation approach for MontiArcAutomaton
models has been presented in [RRW13b].

Chapter outline and contributions

We present an example for the application of the refinement of component behavior in
Section 7.1 and formulate the MontiArcAutomaton component behavior refinement and
equality analysis problems in Section 7.2.

208 Chapter 7. An Analysis Framework for Component Behavior

As one of the main contributions of this chapter we express the semantics of Monti-
ArcAutomaton component type definitions as Mona [EKM98, wwwz] programs in Sec-
tion 7.3 providing full automation for solving the analysis problems. We present a
modeling language for MontiArcAutomaton specification suites and specification checks
for conveniently expressing the MontiArcAutomaton behavior analysis problems in Sec-
tion 7.4. Section 7.5 provides additional analysis examples and their formulation as
MontiArcAutomaton specification suites.

Section 7.6 gives an overview of our implementation and evaluation. We discuss the
presented approach in Section 7.7 and conclude this chapter with an overview of related
work in Section 7.8.

7.1. Specification and Analysis Example
We present an example for the development of a software controller for the bumper bot
shown in Figure 7.1. We have introduced parts of the example system in Section 6.1.
The main objective of the bumper bot is to drive around and traverse a floor. In case the
robot bumps into an obstacle it should back up, turn to another direction, and continue
the exploration of the floor.

���������������
������������������

��������	�����

����
�������������#�
�������	���#���������

Figure 7.1.: The bumper bot robot with a touch sensor in front and two motors to power
the left and right wheels.

The structure of the system architecture of the robot is shown in Figure 7.2. The
parent component SimpleBumperBot is marked with the stereotype «deploy» since
this component aggregates the components deployed to the robots physical control de-
vice. The parametrized component TouchSensor provides access to the values read
on the touch sensor mounted at the front of the robot shown in Figure 7.1. The two
components mRight and mLeft of the parametrized component type Motor provide
access to the physical motors powering the left and right wheels as shown in Figure 7.1.
The component BumpControl shown in the center of Figure 7.2 controls the robot.

The complete interface of the component BumpControl is shown in Figure 7.3. The
ports bump and ts (on the left) are input ports and ports lMot, rMot, and tc (on the

7.1. Specification and Analysis Example 209

right) are output ports.
The components TouchSensor, Timer, and Motor are reused from an available

component library. It is now the task of the engineers to develop the MontiArcAuto-
maton implementation of the component BumpControl of the robot architecture shown
in Figure 7.2.

�����'�����'��
2
�����3

����

	����"	��������!'#��9�1�

�����������
"����������!��# 	����"	��������!�#��%���

'����������

��
��������������
������	������

���������������������
���������������"����
$%��&�#��'����

����������������
�������������'

�����������������

Figure 7.2.: The architecture definition SimpleBumperBot of the bumper bot robot.
The top level component is marked with the stereotype «deploy». It de-
scribes the deployment of the displayed components on the physical control
device of the robot shown in Figure 7.1.

'����������
'�����������

������������

������
���

	������
��	��

	������
��	��

�����������������

Figure 7.3.: The complete interface of component BumpControl. The input ports of
the component are shown on the left and the output ports are shown on the
right.

7.1.1. Specification of Required Component Behavior

In a first step an engineer has formulated the requirement [Spec1a] that the robot should
not move forward until the bumper has been pressed to initially activate the robot.

210 Chapter 7. An Analysis Framework for Component Behavior

• [Spec1a] When turned on, the bumper bot does not drive until the bumper is
pressed.

The engineer translated this requirement into the MontiArcAutomaton specification
BumpControlSpec1a shown in Figure 7.4. She decided to apply chaos completion to
the automaton (see Definition 6.28) and accordingly marked the component with the
stereotype «chaosCompletion». Please note that this specification does not mention
the input port ts or the output port tc of the component BumpControl shown in
Figure 7.3. These ports are not relevant for the specification.

The concrete syntax expression -- denotes the absence of a message and corresponds
to the symbol + used in the semantics definition of ∗MAAts automata. The specification
BumpControlSpec1a only allows behaviors, where for k ∈ N the input falsek on the
port bump implies that at any time t ≤ k+1 there is either no output on the ports rMot
and lMot or the output is the message STOP on both ports. The specification leaves
underspecified what happens if the value true is received on the input port bump. In
this case the specification allows arbitrary behavior because of chaos completion.

'����������������
2��������������3

'�����������

	������
��	��

	������
��	��

��

?��	���,�����@�
�	���,�����

�����,�1�����?��	���,�����@�
�	���,�����

�����,�1�����?��	���,�))@�
�	���,�))

�����������������

Figure 7.4.: The MontiArcAutomaton specification of the behavior of component Bump-
Control.

During a discussion, the engineer extended the initial specification to specification
[Spec1b] as follows:

• [Spec1b] When turned on the bumper bot does not drive until the bumper is
pressed. The bumper bot starts going forward if the bumper is pressed after being
turned on.

The updated MontiArcAutomaton specification BumpControlSpec1b is shown in
Figure 7.5. The transition leaving the state idle to the state driving is enabled
when the bump sensor is pressed. The specification determines the possible transitions
to choose from in state idle for the two expected inputs true and false on the input
port bump. The automaton does not define a transition for the case that no message is
received on the port bump. The specified behavior is unconstrained after the specification
enters the state driving.

7.1. Specification and Analysis Example 211

'����������������
2��������������3

'�����������

	������
��	��

	������
��	��

��

?��	���,�����@�
�	���,�����

�����,�1�����?��	���,�����@�
�	���,�����

�$
��

�����,������?��	���,�:�%6�%=@�
�	���,�:�%6�%=

�����,�1�����?��	���,�))@�
�	���,�))

�����������������

Figure 7.5.: A MontiArcAutomaton specification expressing [Spec1b]. This specification
refines BumpControlSpec1a.

The engineer makes sure that BumpControlSpec1b refines BumpControlSpec1a.
In addition the engineer can later check that the implementation of component Bump-
Control from Section 6.1 is a refinement of both specifications.

Consider the MontiArcAutomaton specification BumpControlSpec1c shown in Fig-
ure 7.6, which also expresses the requirements of [Spec1a] and [Spec1b]. This speci-
fication is a refinement of the component BumpControlSpec1a and the component
BumpControlSpec1b. The difference between the two automata in Figure 7.5 and
Figure 7.6 is the additional state driving which is not added in the BumpControl-
Spec1c. Through chaos completion of the transitions of this state the specification
BumpControlSpec1b allows arbitrary behavior after the initial falsek̂⟨true⟩ se-
quence on the input port bump. On the other hand, the specification BumpControl-
Spec1c requires that pressing the bump sensor always results in sending a forward
command to both motors. For the initial activation of the robot this behavior is reason-
able. Later on, a pressed bump sensor signals a collision with another object and driving
forward is no longer the desired behavior for the bumper bot. Although the specification
refines previous specifications and expresses desired requirements, it is too restrictive.

7.1.2. Specifications for Composed Components
Another engineer is working on an extended bumper bot robot with an emergency stop
switch as shown in Figure 7.7.

The component architecture of the robot is shown in Figure 7.8. The two sensor
reading components for the emergency switch and the front bumper are arranged on
the left while the components to control the two motors are arranged on the right. The
central component of the robot architecture is the component BumpControlES.

The emergency switch is constructed as a touch sensor mounted on top of the robot (see
Figure 7.7). The sensor is read by the component ToggleSensor which is decomposed
(see, e.g., Figure 6.9) into a component of the type TouchSensor and a component of

212 Chapter 7. An Analysis Framework for Component Behavior

'����������������
2��������������3

'�����������

	������
��	��

	������
��	��

��

?��	���,�����@�
�	���,����� �����,�1�����?��	���,�����@�

�	���,�����

�����,������?��	���,�:�%6�%=@�
�	���,�:�%6�%= �����,�1�����?��	���,�))@�

�	���,�))

�����������������

Figure 7.6.: A MontiArcAutomaton specification expressing [Spec1c]. This specification
refines BumpControlSpec1a and BumpControlSpec1b.

���������������
������������������

��������	�����

����
�������������#�
�������	���#���������

�
��#����������������

Figure 7.7.: A picture of the extended bumper bot with an emergency stop switch.

the type ToggleSwitch (shown in Figure 6.38).
A requirement for the behavior implementation of the component RobotControl-

lerES is given as [Spec2].

• [Spec2] While the emergency stop switch is pressed the robot stops the engines.

The engineer expresses the requirement as an automaton in Figure 7.9 inside compo-
nent RobotControllerESSpec2. The specification of the behavior is not complete.
Instead of using chaos completion, the engineer decided to use output completion (see
Definition 6.30) for the transition system of the automaton. Output completion does not
add additional states or transitions between states. Thus, every time the value true is
received on the port emgStp, the STOP command has to be sent on both output ports
to the motors. For all other inputs the specification allows arbitrary outputs.

7.1. Specification and Analysis Example 213

'�����'���������������
2
�����3

	����"	��������!'#��9�1������������
"����������!��#

	����"	��������!�#��%���
������������
"����������!� #

'������������

�����������������

����

Figure 7.8.: The architecture of of the extended bumper bot with an emergency stop
switch. Component BumpControlES is composed from the components
MotorStopper, Arbiter, and BumpControl as shown in Figure 7.10.

'����������������
2���������������3

'�������������

	������
��	��

	������
��	��

����5
����

�������,������?��	���,�����@�
�	���,�����

�����������������

Figure 7.9.: Specification [Spec2] expressed as an automaton.

The engineer working on the robot with the emergency stop switch later created an
implementation of the component BumpControlES based on some components pre-
viously created by other engineers and components taken from a component library.
The composed component BumpControlES is shown in Figure 7.10. The subcom-
ponent BumpControl was introduced in the example in Section 6.1, Figure 6.3 and
Section 7.1.1.

The component MotorStop is a library component. It constantly sends the message
STOP of the type MotorCommand defined in the class diagram shown in Figure 6.4.
The engineer has also developed the subcomponent ArbiterMotorCmd shown in Fig-
ure 7.11. It has two pairs of input ports of the type MotorCmd, one control port of the
type Boolean with the name mode, and one pair of output ports again of the type Mo-
torCmd. Based on the Boolean value received on its port mode the arbiter forwards the
first or second pair of inputs to its output ports. Specifically, if the emergency button is
toggled the arbiter receives the value true on the port mode and forwards the constant

214 Chapter 7. An Analysis Framework for Component Behavior

'����������

������	������
	�����������

'������������

�����������������

'����������� 	������
��	��

	������
��	��

'�������������

������
���������������

Figure 7.10.: Component BumpControlES is composed of components Motor-
Stopper, Arbiter, and BumpControl.

output STOP of MotorStopper to both motors of the robot.

������	������

��

?����9�1��,�����@�
���%����,����� ��
��,������?� ���9�1��,���9�1�@�

���%����,���%���

��
��,�1�����? ���9�1��,�� 9�1�@�
���%����,�� %���

'���������
�

	������
���9�1�

	������
���%���

	������
�� 9�1�

	������
�� %���

	������
����9�1�

	������
����%���

�������������������
���������������	

�����������������

������	�
����#�����������
�������������������

Figure 7.11.: The component ArbiterMotorCmd from a component library imple-
mented as a ∗MAAts automaton. The outputs on the transitions of the
state idle refer to input port names and thus forward the corresponding
input message as output.

After creating the implementation, the engineer successfully validates that the com-
posed robot controller BumpControlES refines the specification BumpControlESSpec2.

7.2. Behavior Refinement and Equality Analysis Problem

From the definition of the semantics of MAAts automata in Definition 6.33 and the
semantics of composed component types from Definition 6.15 we obtain I/O relation

7.2. Behavior Refinement and Equality Analysis Problem 215

semantics definitions for decomposed as well as for atomic MontiArcAutomaton com-
ponent type definitions. In the following definition we thus refer to the semantics of
component types as their relations R ⊆ I⃗∞ × O⃗∞.

7.2.1. MontiArcAutomaton Component Refinement
The definition of upward simulation refinement for I/O relation semantics is given in
Section 6.3.4. We are interested in upward simulation refinement of components where
an implementation impl may have additional inputs and additional outputs compared
to the specification spec, that it refines. Formally, this is denoted spec.CPortsIN ⊆
impl.CPortsIN and spec.CPortsOUT ⊆ impl.CPortsOUT . The complete input for the
component impl is the tuple of streams in ∈ ⨉p∈impl.CP ortsIN

(p.type∞). We denote the
restriction of the input in of the component impl to the input ports of the component
spec as in∣spec.CP ortsIN

= ⨉p∈spec.CP ortsIN
(inp) where inp selects the stream on the input

port p. The restriction of component output is defined analogously.
We formally define MontiArcAutomaton component behavior refinement as I/O rela-

tion refinement with upward simulation in Definition 7.12.

Definition 7.12 (MontiArcAutomaton component behavior upward simulation refine-
ment). For two MontiArcAutomaton component type definitions spec, impl ∈ CTDefs
with spec.CPortsIN ⊆ impl.CPortsIN and spec.CPortsOUT ⊆ impl.CPortsOUT the
component type impl is an upward simulation behavior refinement of the component
type spec if and only if
∀i ∈ ⨉p∈impl.CP ortsIN

(p.type∞), o ∈ ⨉p∈impl.CP ortsOUT
(p.type∞) ∶

Rimpl(i, o) ⇒ Rspec(i∣spec.CP ortsIN
, o∣spec.CP ortsOUT

) △
The MontiArcAutomaton refinement problem is to decide for two component type

definitions spec and impl whether impl is a component behavior refinement of spec
according to Definition 7.12. Please note that this notion of refinement requires that the
implementation refines the specification in all possible environments, i.e., independent
of the inputs on the ports impl.CPortsIN ∖ spec.CPortsIN .

The definition of refinement in Definition 7.12 allows the specification of behavior
refinement on a subset of component interfaces. In some cases it is also interesting
to check a refinement relation that allows the substitution of the specification spec
by the implementation impl [BS01, LS11]. This requires that all inputs required by
the component type definition impl are also provided for spec, i.e., impl.CPortsIN ⊆
spec.CPortsIN , and that all outputs provided by spec are also provided by impl, i.e.,
spec.CPortsOUT ⊆ impl.CPortsOUT .

We formally define MontiArcAutomaton component behavior refinement as I/O rela-
tion refinement in Definition 7.13.

Definition 7.13 (MontiArcAutomaton component behavior refinement). For two Monti-
ArcAutomaton component type definitions spec, impl ∈ CTDefs with impl.CPortsIN ⊆
spec.CPortsIN and spec.CPortsOUT ⊆ impl.CPortsOUT the component type impl is a
behavior refinement of the component type spec if and only if

216 Chapter 7. An Analysis Framework for Component Behavior

∀i ∈ ⨉p∈spec.CP ortsIN
(p.type∞), o ∈ ⨉p∈impl.CP ortsOUT

(p.type∞) ∶
Rimpl(i∣impl.CP ortsIN

, o) ⇒ Rspec(i, o∣spec.CP ortsOUT
) △

7.2.2. MontiArcAutomaton Component Equality
We define MontiArcAutomaton component behavior equality as the equality of the
streams on shared input and output ports. The restriction to shared ports is more
permissive than upward simulation but it ensures symmetry of the equality defined in
Definition 7.14.

Definition 7.14 (MontiArcAutomaton component shared ports behavior equality).
Two MontiArcAutomaton component type definitions impl1, impl2 ∈ CTDefs have equal
I/O behavior on shared ports if and only if
∀i ∈ ⨉p∈impl1.CP ortsIN∪impl2.CP ortsIN

(p.type∞),
o ∈ ⨉p∈impl1.CP ortsOUT∪impl2.CP ortsOUT

(p.type∞) ∶
Rimpl1(i∣impl1.CP ortsIN

, o∣impl1.CP ortsOUT
) ⇔

Rimpl2(i∣impl2.CP ortsIN
, o∣impl2.CP ortsOUT

) △
The MontiArcAutomaton component equality problem is to decide for two component

type definitions impl1 and impl2 whether the two have equal component behavior on
shared ports according to Definition 7.14.

For components with different interfaces the equality of Definition 7.14 does not nec-
essarily allow the substitution of a component type definition by one with equal behavior
on shared ports. It can however easily be strengthened by the requirement for equal in-
terfaces of the component type definitions as defined in Definition 7.15. The additional
requirement of equal component interfaces can easily be checked on the component type
definition syntax.

Definition 7.15 (MontiArcAutomaton component behavior equality). Two MontiArc-
Automaton component type definitions impl1, impl2 ∈ CTDefs with equal interfaces
impl1.CPorts = impl2.CPorts have equal I/O behavior if and only if
∀i ∈ ⨉p∈impl1.CP ortsIN

(p.type∞), o ∈ ⨉p∈impl1.CP ortsOUT
(p.type∞) ∶

Rimpl1(i, o) ⇔ Rimpl2(i, o) △

7.2.3. Component Specification Analysis in Mona
The analysis problems, definitions, and structures presented so far operate on infinite
timed streams. We will present a representation of streams in Mona in Section 7.3.2 on
which we base our analysis. This representation is limited to finite streams.

A well known result in model checking is that for two finite transition systems the
inclusion of finite traces is equivalent to the inclusion of finite and infinite traces [BK08,
Theorem 3.30]. We can employ this result to show that refinement and equality for all
finite I/O histories of finite MAAts automata is equivalent to refinement and equality on
infinite streams. Transitions systems from [BK08, Definition 2.1] as used in the proof by
Baier and Katoen are constructed from a MAAts automaton (S, I⃗, O⃗, V⃗ , γ⃗, δ, ι) where

7.3. Translation into Mona 217

• S′ = δ ∪ ι is the finite set of states,
• I ′ = ι is the finite set of initial states,
• AP ′ = I⃗ × O⃗ is the finite set of labels,

• L′(r) =
⎧⎪⎪⎨⎪⎪⎩
(⃗i, o⃗) for r = (s, i⃗, v⃗, t, o⃗, v⃗) ∈ δ

(+, o⃗) otherwise
is the labeling function, and

• Post′(r) =
⎧⎪⎪⎨⎪⎪⎩
{(s, i⃗, v⃗, t, o⃗, v⃗) ∈ δ ∣ r = (s, o⃗′) ∧ v = γ⃗} for r ∈ ι

{(s, i⃗, v⃗, t, o⃗, a⃗) ∈ δ ∣ r = (t, i⃗′, a⃗, t′, o⃗′, v⃗′)} otherwise
is the successor

function of the transition system.

Please note that the proof of [BK08, Theorem 3.30] relies on the finiteness of the set
of states and the set of labels. Thus, it only holds for MAAts automata with finite port
types, finite variable types, and a finite set of transitions.

7.3. Translation into Mona

We present a solution to solving the refinement analysis problem for MontiArcAuto-
maton components by a reduction to an analysis problem in a decidable fragment of
second order logic. We have implemented a translation of ∗MAAts automata into Mona
programs [EKM98] that can be analyzed by the Mona model checker [wwwz]. We in-
troduce Mona in Section 7.3.1 and give an overview of our representation of streams in
Mona in Section 7.3.2.

The modeling languages MontiArc and MontiArcAutomaton distinguish between two
types of components: atomic and composed. The behavior of a composed component
is defined as the composition of the behavior of its subcomponents. This composition
is oblivious to whether a subcomponent is atomic or again composed. We preserve this
feature of hiding the implementation details of components in our translation to Mona
and handle the translation of composed components separately from atomic components
while ensuring a common interface that hides implementation details. This separation
allows us to extend the analysis framework to components implemented in other model-
ing languages integrated in MontiArc or MontiArcAutomaton, e.g., using the I/O tables
behavior modeling language introduced in [RRW13c]. It also allows the creation of
manual implementations for components in Mona as presented in Section 7.3.5.

We show a translation of composed components from Definition 6.8 in Section 7.3.3
and a translation of atomic components with ∗MAAts automata from Definition 6.20 in
Section 7.3.4. The current translation only handles ∗MAAts automata without guards
and with port and variable types that have finite sets of values. Currently supported
types are the type Boolean and enumerations from UML/P class diagrams. The values
of an enumeration type are its enumeration constants.

218 Chapter 7. An Analysis Framework for Component Behavior

7.3.1. Mona and the WS1S Logic

Second order logic is first order logic extended with quantification over predicates. Weak
monadic second order logic of one successor (WS1S) is a logic with quantification over
finite sets of elements with one successor. The word monadic restricts the quantified
predicates to be unary, i.e., sets, and the word weak in the name of the logic restricts sets
to be finite. These restrictions make WS1S a decidable logic [Tho90]. The complexity
of the decision procedure is non-elementary in the length of the WS1S formula [Mey75].

Mona [EKM98, wwwz] is an implementation of a decision procedure of WS1S and
related logics. The basic elements in WS1S and Mona are elements from propositional
logic, e.g., conjunction, disjunction, and implication, elements from first order logic
(natural numbers), and second order elements (finite sets). In addition to the basic
elements Mona adds syntactic sugar and allows, e.g., the addition of constant integer
values to first order elements (multiple applications of the successor function +1).

The basic syntax of Mona that we will use in this work is shown in Figure 7.16. Mona
allows quantification over 0th, 1st, and 2nd order elements using the universal quantifier
all0, all1, and all2 and the existential quantifiers ex0, ex1, and ex2. Mona also
defines the usual operators for sets, e.g., intersection, union, or the subset relation.

Mona Syntax Explanation
all0, all1, all2 universal quantification over propositional values (0th or-

der), natural numbers (1st order), and sets (2nd order)
ex0, ex1, ex2 existential quantification
& conjunction
| disjunction
<=> equivalence of Boolean values(0th order)
= equality (for 1st, and 2nd order elements)
+1 successor function for 1st order elements
empty empty set (2nd order)
inter intersection of sets of natural numbers (2nd order)
union union of sets of natural number (2nd order)
sub subset relation (2nd order)

Figure 7.16.: Syntactic elements of WS1S in Mona

A Mona program may consist of variable declarations, predicate definitions, asser-
tions of Boolean statements, and Boolean statements that evaluate to true or false.
The example Mona program shown in Listing 7.17 is based on the specification of the
behavior of component ToggleSwitch from the example in Section 6.3.2. The Mona
program declares two variables pressed and active as sets of natural numbers. The
set pressed is fixed by the assert statement to contain only the natural numbers 2
and 5 (Listing 7.17, l. 4). The expression shown in lines 6 to 9 is a schematic translation

7.3. Translation into Mona 219

of the Focus specification shown in Figure 6.12:

active.0 = false ∧ ∀n ∈ N ∶ pressed.n = true⇔ active.(n + 1) = ¬active.n

Since the input stream of the component ToggleSwitch is of the type Boolean,
we represent it in Listing 7.17 as a set of natural numbers where the stream contains
the value true at time t ∈ N if and only if t ∈ pressed.

Mona

1 var2 pressed;
2 var2 active;
3

4 assert {2,5} = pressed;
5

6 0 notin active &
7 all1 t:
8 t in pressed <=>
9 (t+1 in active <=> t notin active);

Listing 7.17: A specification of the behavior of the component ToggleSwitch based
on the Focus specification from Figure 6.12.

Running the Mona program in Listing 7.17 results in checking the satisfiability of the
expression in lines 6-9 under the assumption that the expression in line 4 holds for all
possible values of the variables pressed and active.

Running a Mona program in general may have three different kinds of outputs:

tautology The formula is valid for all possible assignments to free variables. Mona
computes a smallest example that satisfies the formula.

contradiction The formula is unsatisfiable. Mona computes a smallest example that
does not satisfy the formula.

examples The formula is neither a tautology nor a contradiction. Mona computes an
assignment that satisfies the formula and one that does not.

The example computed by Mona for the program shown in Listing 7.17 is depicted in
Figure 7.18. The computed example corresponds to the streams shown in Section 6.3.2:

pressed = ⟨false,false,true,false,false,true⟩̂false∞
active = ⟨false,false,false,true,true,true,false⟩̂false∞

It is important to note that Mona can only handle finite sets and thus only finite
streams. One problem of the simple translation scheme applied in Listing 7.17 is that
for all times t we specify properties for times t + 1. In case the input stream pressed
would contain the message true an odd number of times (the toggle switch is not

220 Chapter 7. An Analysis Framework for Component Behavior

MonaAnalysisOutput

1 A satisfying example of least length (6) is:
2 pressed X 001001
3 active X 000111
4

5 pressed = {2,5}
6 active = {3,4,5}

Listing 7.18: An example for an assignment that satisfies the formula given in the Mona
program from Listing 7.17 as computed by Mona.

turned off) the specification becomes unsatisfiable since the set active would need to
be infinite.

We extend the simple encoding of streams of the type Boolean to streams of other
finite types and address the problem of infinitely many executions of transitions in our
translation of ∗MAAts automata into Mona.

7.3.2. Streams and Stream Processing in Mona
As we have seen in the example presented in Listing 7.17, sequences of messages may be
encoded as sets of natural numbers. To express streams of finite message types we use
an encoding similar to the one applied by Schätz [Sch09]. For each message on a stream
we create one set of natural numbers. As an example, consider the enumeration type
MotorCmd with the three enumeration values STOP, FORWARD, and BACKWARD from
the initial example shown in Figure 6.4. To encode a stream rightMotor ∈ MotorCmd∗
we declare three second order variables in Mona as shown in Listing 7.19, ll. 1-3, one for
each possible value STOP, FORWARD, and BACKWARD.

It is necessary to ensure that at each point in time the stream will not have more
than one value, i.e., that each natural number t ∈ N is contained in only one of the
sets. Thus, we assert that the intersection of each set representing a possible value on
the stream with the union of all other sets is empty. Asserting a predicate in a Mona
program ensures that the analysis only considers assignments where the predicate holds.
The assertions are shown in Listing 7.19, ll. 6-11. This part of the translation requires
one assertion for every possible value of the stream’s type.

Finally, we have to assert that at every point in time one value is defined for the
stream, i.e., the union of the sets representing the values on the stream at any point
in time contains all points in time represented by the set allTime. This assertion is
shown in Listing 7.19, ll. 14-15.

The special set allTime is defined as the set containing all natural numbers up to
some finite point in time. We define allTime only once. When declaring more than one
stream the common set allTime makes sure the streams have the same length. The
declaration of the set allTime is shown in Listing 7.20. The direction of the implication
∀t ∈ N ∶ t + 1 ∈ allTime ⇒ t ∈ allTime in line 3 is very important. The implication
∀t ∈ N ∶ t ∈ allTime ⇒ t + 1 ∈ allTime would be too restrictive since there is only

7.3. Translation into Mona 221

Mona

1 var2 rightMotor_STOP;
2 var2 rightMotor_FORWARD;
3 var2 rightMotor_BACKWARD;
4

5 # at most one value at any time
6 assert rightMotor_STOP inter
7 (rightMotor_FORWARD union rightMotor_BACKWARD) = empty;
8 assert rightMotor_FORWARD inter
9 (rightMotor_STOP union rightMotor_BACKWARD) = empty;

10 assert rightMotor_BACKWARD inter
11 (rightMotor_STOP union rightMotor_FORWARD) = empty;
12

13 # at least one value at any time
14 assert (rightMotor_STOP union rightMotor_FORWARD
15 union rightMotor_BACKWARD) = allTime;

Listing 7.19: The stream rightMotor ∈ MotorCmd∗ encoded in Mona using the variable
allTime that defines all points in time of interest (see Listing 7.20).

one finite set that satisfies it: the empty set. Please note that the set allTime is of
arbitrary finite size.

Mona

1 # global system time
2 var2 allTime; # universal quantification over all sets allTime
3 assert all1 t: t+1 in allTime => t in allTime;

Listing 7.20: The set all time containing all points in time.

The concrete stream rightMotor = ⟨STOP,STOP,FORWARD,BACKWARD,STOP,STOP⟩
is encoded using the four sets as shown in Table 7.21. In this example, the set allTime
contains all natural numbers from 0 to 5. Thus, we have a finite prefix of the timed
stream rightMotor up to time 5.

For the translation of ∗MAAts automata into Mona we need to add the special value +
to all types. We represent the value + at time t as the absence of t from all sets defining
the values of the stream. Thus, to add the value + to the type of a stream we replace the
assertion of at least one value at any time in allTime by a weaker assertion. Replacing
the equality in line 15 of Listing 7.19 by the subset relation sub restricts all streams
(possibly containing the special symbol +) to the points in time defined by allTime.

The I/O relation semantics of MontiArcAutomaton components are relations over in-
put and output streams. To encode the I/O relation of a stream processing component
in Mona we encode the I/O relation as a Mona predicate over input and output streams.
An example of a Mona predicate over the input stream pressed ∈ Boolean∗ and the
output stream active ∈ Boolean∗ of the component ToggleSwitch is shown in List-

222 Chapter 7. An Analysis Framework for Component Behavior

Mona 2nd order variable value
rightMotor_STOP {0, 1, 4, 5}
rightMotor_FORWARD {2}
rightMotor_BACKWARD {3}
allTime {0, 1, 2, 3, 4, 5}

Table 7.21.: The stream rightMotor = ⟨STOP,STOP,FORWARD,BACKWARD,STOP,STOP⟩
in its Mona representation.

ing 7.22. The declaration of a Mona predicate starts with the keyword pred and the
name of the predicate. The head of the predicate also contains its parameters enclosed
in parenthesis as shown in lines 1-2 of Listing 7.22. The body of the predicate is an
expression that either evaluates to true or false. Head and body of a predicate are
connected with the symbol =.

Mona

1 pred ToggleSwitch(var2 pressed_false, var2 pressed_true,
2 var2 active_false, var2 active_true)
3 = 0 in active_false &
4 # further expressions here
5 ;

Listing 7.22: A Mona predicate of the behavior of the component ToggleSwitch
based on our encoding of streams and the Focus specification shown in
Figure 6.12.

With a translation of MontiArcAutomaton component type definitions into parametrized
Mona predicates the head of the predicate only depends on the interface of the compo-
nent. Thus, we achieve a compositional and uniform translation. As a result we benefit
from the concept of information hiding of component type definitions.

7.3.3. Translation of Composed Components to Mona

Our translation of composed component type definitions follows the semantics defini-
tion in Definition 6.15. The body of a predicate representing a composed component
is an instantiation of the predicates of the component’s subcomponents with suitable
parameters.

We briefly review the four kinds of connectors in composed component type defini-
tions from Definition 6.8 to explain the naming conventions of Mona variables in our
translation:

parent-to-parent an input port of the parent component is directly connected to one of
its output ports,

7.3. Translation into Mona 223

parent-to-child an input port of the parent component is connected to an input port of
a subcomponent,

child-to-parent the output port of a subcomponent is connected to an output port of
the parent component, and

child-to-child the output port of a subcomponent is connected to the input port of
another subcomponent.

In all four cases a source port may be connected to multiple target ports. For parent-to-
parent and parent-to-child connectors the source port is a port of the parent component.
The variables that represent the stream on an input port are declared in the signature
of the predicate. The name of each variable is the name of the component cType and
the name of the input port.

For child-to-parent connectors variables for the streams on the target ports are again
declared in the signature of the Mona predicate. To uniformly reference variables we
change the name of the variable declared in the head of the Mona predicate to the
name of the source component and source port of the child-to-parent connector (see the
equality in Definition 6.15, Item 3).

For child-to-child connectors we introduce a set of existentially quantified variables
representing the stream on the internal channel with the name of the source component
and port (unless this variable already exists in the head of the predicate).

'�����'��������������

���� ����

'������������ ����

'�����������

'�������������

������������

	������
��	��

	������
��	��

������
���

'�����������

'�������������

������������

������
���

	������
��	��

	������
��	��

�����������������

Figure 7.23.: The composed component BumperBotESController with its subcom-
ponents BumpControlES and Timer.

Consider the component BumperBotESController shown in Figure 7.23 with its
subcomponents BumpControlES and Timer. This composed component is translated
into a predicate with the signature ΦBumperBotESController ∶ (Boolean∗ × Boolean∗ ×
MotorCmd∗ × MotorCmd∗) → B. According to the naming conventions of variables for
streams in Mona the predicate of the composed component BumperBotESController

224 Chapter 7. An Analysis Framework for Component Behavior

is defined as:

ΦBumperBotESController(sBumperBotESController_emgStp, sBumperBotESController_bump,
sbces_rMot, sbces_lMot) ⇔

∃sbces_tc ∈ TimerCmd∗, stimer_ts ∈ TimerSignal∗ ∶
ΦBumpControlES(sBumperBotESController_emgStp, sBumperBotESController_bump,

sTimer_ts, sbces_rMot, sbces_lMot, sbces_tc) ∧
ΦTimer(sbces_tc, stimer_ts)

Please note that in the translation into Mona each stream is represented by a set of
2nd order variables as described in Section 7.3.2.

Translation rules for composed components

We now formally define the translation rules for composed component type definitions
from Definition 6.8 to a Mona predicate. The translation follows the definition of the
semantics of composed component types in Definition 6.15. An overview of the transla-
tion rules is shown in Figure 7.24. A complete example for the translation of a composed
component is included in Appendix L.1.

Translation Rule

Overview of the translation of a composed component type definition into Mona:

predicate for component�����������������������cType

executeRule(C1) see Figure 7.25 for body of rule C1
connectors/local channels of component������������������������������������
executeRule(C2) see Figure 7.26 for body of rule C2
parent-to-parent connectors���������������������������
executeRule(C3) see Figure 7.28 for body of rule C3
instantiation an connection of subcomponents on channels���
executeRule(C4) see Figure 7.29 for body of rule C4

Figure 7.24.: Overview of the translation of composed component types into the concrete
syntax of the Mona language. The comments above the rule execution
commands belong to the respective rules and are reproduced in this listing
to give an intuition of the rules’ contents.

The translation of composed components has four parts. The translation rule C1 cre-
ates the head of the Mona predicate representing the component. The translation rule
C2 declares existentially quantified variables for the streams on local channels, the trans-

7.3. Translation into Mona 225

lation rule C3 handles input that is directly forwarded as output by asserting equality of
the corresponding parameters of the predicate, and the translation rule C4 instantiates
the parametrized predicates of the subcomponents of the composed component.

The translation rules operate on the abstract syntax of component type definitions,
e.g., the line ∀sub ∈ CSubCmps would execute the following indented lines for each
subcomponent in the set CSubCmps. The result produced in the target language (here
the Mona language) is marked by underlining the elements���������������������� of the target language
syntax. Explanations of the execution of translation rules are given in Appendix B. We
provide concrete examples in the figures of most of the rules referenced in Figure 7.24,
e.g., for rule C1 in Figure 7.25.

The translation rule C1 is shown in Figure 7.25. The rule translates the type defini-
tion of a composed component (Definition 6.8) into the head of a parametrized Mona
predicate. The parameters of the predicate are the input and output message streams
represented in Mona according to the name pattern introduced in Section 7.3.2. The
first part of the rule declares a predicate with the name of the component type cType
from Definition 6.8 to uniquely identify the predicate. First, the rule iterates over all
input ports and creates parameters for the predicate that are Mona 2nd order variables
representing input streams. The result of the application of the rule to the component
BumperBotESController is shown in the lower part of Figure 7.25.

The second set of variables — declared in the iteration over all output ports of the com-
ponent type definition — represents the streams on the output ports of the component.
For each of the output ports the rule determines the unique connector that connects to
the output port. The application of the definite description operator THE always yields
a unique result because every outgoing port of a composed component type definition
has one child-to-parent or parent-to-parent connector (Definition 6.8, Item 11). In the
case that the output port is the target port of a child-to-parent connector the variables
are named after the source subcomponent and port. Otherwise, the variables of the
output streams are named after the component type and output port.

In the latter case of a parent-to-parent connector the streams on the connected input
and output ports are required to be equal. The equality constraint for the Mona variables
representing the stream on the input port and the stream on the output port is added
by translation rule C3 presented in Figure 7.28.

The translation rule C2 is shown in Figure 7.26. The rule adds variable declarations
for the local channels of the component, i.e., variables for streams on child-to-child
connectors.

The set locChs consists of all output ports of subcomponents minus the ports con-
nected to output ports of the parent component (kinds child-to-parent and parent-to-
parent). The latter are subtracted because the variables for the streams on the source
ports of child-to-parent connectors are declared by the translation rule C1 in the head
of the predicate.

The translation rule C2 shown in Figure 7.26 iterates over the component and port
pairs in locChs and declares variables for streams in Mona that are prefixed with the
name of the subcomponent and its output port. Finally, the translation rule ensures

226 Chapter 7. An Analysis Framework for Component Behavior

Translation Rule

Translation rule:

C1 # predicate for component����������������������� cType

pred���� cType (��∀p ∈ CPortsIN ∶ declare variables for all input streams
∀val ∈ p.type ∶

var2���� cType _��p.name _��val ,�� *-to-parent connector source
∀p ∈ CPortsOUT ∶ variables for output streams named after their source
let con = THE con ∈ CCons ∶ con.tgtCmp = cType ∧ con.tgtPort = p in
∀val ∈ con.srcPort.type ∶

if(con.srcCmp ≠ cType) then child-to-parent connector
var2���� con.srcCmp _��con.srcPort.name _��val ,��

else parent-to-parent connector
var2���� cType _��p.name _��val ,��

common time range allTime������������������������
var2 allTime)�������������

Result of application to composed component type definition BumperBotES-
Controller from Figure 7.23:

Mona

1 # predicate for component BumperBotESController
2 pred BumperBotESController (
3 var2 BumperBotESController_emgStp_false, var2

BumperBotESController_emgStp_true,
4 var2 BumperBotESController_bump_false, var2

BumperBotESController_bump_true,
5 var2 bces_rMot_FORWARD, var2 bces_rMot_BACKWARD, var2

bces_rMot_STOP,
6 var2 bces_lMot_FORWARD, var2 bces_lMot_BACKWARD, var2

bces_lMot_STOP,
7 # common time range allTime
8 var2 allTime)

Figure 7.25.: Translation rule C1 for the translation of the interface of composed com-
ponent type definitions into the head of a Mona predicate.

that each set of variables representing a stream conforms to the constraints for streams
in Mona by executing the translation rule STRM for each stream.

The parametrized translation rule STRM is shown in Figure 7.27. The rule introduces
constraints for the Mona variables used to represent streams. The parameters of the

7.3. Translation into Mona 227

Translation Rule

Translation rule:

C2 # connectors/local channels of component������������������������������������
let locChs = {(srcCmp.name, srcPort) ∣ subcomponents’ output ports

srcCmp ∈ CSubCmps ∧ srcPort ∈ srcCmp.CPortsOUT }∖
{(con.srcCmp, con.srcPort) ∣ output ports connected to parent

con ∈ CCons ∧ con.tgtCmp = cType} in
ex2��� {| iterate over output ports of subcomponents in locChs

{|srcCmp _��srcPort.name _��val|} ,
��
val∈srcP ort.type

|} ,
��
(srcCmp,srcP ort)∈locChs

:��
values on internal channels��������������������������∀(srcCmp, srcPort) ∈ locChs ∶

executeRule(STRM srcCmp _��srcPort.name, srcPort.type)

see Figure 7.27 for body of rule STRM

Result of application to composed component type definition BumperBotES-
Controller from Figure 7.23:

Mona

1 # connectors/local channels of component
2 = ex2 bces_tc_DELAY, bces_tc_DOUBLE_DELAY, bces_tc_ABORT,

timer_ts_ALERT:
3 rule STRM applied to bces_tc and type TimerCmd
4 rule STRM applied to timer_ts and type TimerSignal

Figure 7.26.: Translation rule C2 for the translation of child-to-child connectors in com-
posed component type definitions to variables in Mona.

translation rule are the name strmName of the stream and its type given as the set of
values Univ. The translation rule STRM from Figure 7.27 consists of two parts. The
first part introduces the constraint that the stream defines only messages at the points
in time considered (points in time from the set allTime). The second part of rule
STRM adds the constraint that only one value (possibly +) is defined on the stream for
all points in time.

The translation rule C3 is shown in Figure 7.28. This rule handles the special case of
a parent-to-parent connectors. For parent-to-parent connectors the translation rule C1
from Figure 7.25 declares two streams each with the name of the input port and the name
of the output port of the component, respectively. The translation rule C3 presented
in Figure 7.28 implements the parent-to-parent connector by stating the equality of all
variables representing the input and the output streams on the connected ports.

The translation rule C4 is shown in Figure 7.29. This rule iterates over all subcom-

228 Chapter 7. An Analysis Framework for Component Behavior

Translation Rule

Translation rule with parameters strmName and Univ:

STRM # defined values in all points in time����������������������������������
{|strmName _��val|}union����

val∈Univ sub allTime &�������������
at most one value on stream at any point in time��∀v1 ∈ Univ ∶
strmName _��v1 inter (������ {|strmName _��v2|}union����

v2≠v1∈Univ) = empty &���������
Result of application to parameters strmName = bces_tc������� and Univ =
{DELAY,DOUBLE_DELAY,ABORT}:

Mona

1 # defined values in all points in time
2 bces_tc_DELAY union bces_tc_DOUBLE_DELAY union bces_tc_ABORT sub

allTime &
3 # at most one value on stream at any point in time
4 bces_tc_DELAY inter (bces_tc_DOUBLE_DELAY union bces_tc_ABORT)

= empty &
5 bces_tc_DOUBLE_DELAY inter (bces_tc_DELAY union bces_tc_ABORT)

= empty &
6 bces_tc_ABORT inter (bces_tc_DELAY union bces_tc_DOUBLE_DELAY)

= empty &

Figure 7.27.: Translation rule STRM for the translation of constraints on a set of
variables representing a stream strmName with possible messages m ∈
Univ ∪ {+} to a Mona expression.

ponents and instantiates existing predicates of the subcomponent’s component types
according to the definition of the composed component. The translation rule instanti-
ates the predicates with their input streams and output streams as parameters.

The input streams for the subcomponents are named after the source port of the in-
coming connector. It is important to select the corresponding stream not only by the
target port con.tgtPort but also by the name of the target subcomponent con.tgtCmp.
In case that the composed component has multiple subcomponents of the same compo-
nent type a match by the port is not unique. The corresponding Mona variables are
created by rule C1 shown in Figure 7.25 for parent-to-child connectors and by rule C2
shown in Figure 7.26 for child-to-child connectors. The input streams on input ports
of subcomponents without an incoming connector are set to the value +∞, which is
expressed in Mona by empty sets (empty).

The last quantification in the translation rule C4 shown in Figure 7.29 lists the Mona
variables for the output streams of the instantiated subcomponent. These variables are

7.3. Translation into Mona 229

Translation Rule

Translation rule:

C3 # parent-to-parent connectors���������������������������∀con ∈ {con ∈ CCons ∣ con.srcCmp = cType = con.tgtCmp} ∶
∀val ∈ con.tgtPort.type ∶

cType _��con.srcPort _��val =�� cType _��con.tgtPort _��val &��
Result of application to composed component type definition DifferentDelays
from Figure 7.68:

Mona

1 DifferentDelays_i1_false = DifferentDelays_o1_false &
2 DifferentDelays_i1_true = DifferentDelays_o1_true &

Figure 7.28.: Translation rule C3 for the translation of parent-to-parent connectors into
Mona statements.

named after the name of the subcomponent and the output port. The variables are
declared by rule C1 presented in Figure 7.25 for child-to-parent connectors and by rule
C2 shown in Figure 7.26 for child-to-child connectors.

230 Chapter 7. An Analysis Framework for Component Behavior

Translation Rule

Translation rule:

C4 {| iteration over all subcomponents sub ∈ CSubCmps
subcomponent������������� sub.name of type������ sub.type

sub.type.cType (��∀p ∈ sub.type.CPortsIN ∶ subcomponent input
if (∄con ∈ CCons ∶ con.tgtCmp = sub.name ∧ con.tgtPort = p) then

∀val ∈ p.type ∶
empty,������ input port not connected: input is +∞

else input port is connected
∀val ∈ p.type ∶ let con = THE con ∈ CCons ∶

con.tgtCmp = sub.name ∧ con.tgtPort = p in
con.srcCmp _��con.srcPort.name _��val ,��∀p ∈ sub.type.CPortsOUT ∶ subcomponent output from this port

∀val ∈ p.type ∶
sub.type.cType _��p.name _��val ,��

add common time to subcomponents������������������������������
allTime)��������

|} &
��
sub∈CSubCmps ;��

Result of application to composed component type definition BumperBotES-
Controller from Figure 7.23:

Mona

1 # subcomponent bces of type BumpControlES
2 BumpControlES(BumperBotESController_emgStp_false,

BumperBotESController_emgStp_true,
BumperBotESController_bump_false,
BumperBotESController_bump_true, timer_ts_ALERT,
bces_rMot_FORWARD, bces_rMot_BACKWARD, bces_rMot_STOP,
bces_lMot_FORWARD, bces_lMot_BACKWARD, bces_lMot_STOP,
bces_tc_DELAY, bces_tc_DOUBLE_DELAY, bces_tc_ABORT, allTime)

3 &
4 # subcomponent timer of type Timer
5 Timer(bces_tc_DELAY, bces_tc_DOUBLE_DELAY, bces_tc_ABORT,

timer_ts_ALERT, allTime);

Figure 7.29.: Translation rule C4 for the translation of subcomponents of composed com-
ponent type definitions into Mona predicate instantiations.

7.3. Translation into Mona 231

7.3.4. Translation of ∗MAAts into Mona
We have presented two definitions for time-synchronous MontiArcAutomaton automata
in Section 6.4: MAAts automata as the basic structure used for the definition of the
automata’s semantics and ∗MAAts automata whose structure is closer to the abstract
syntax of MontiArcAutomaton models. We can translate ∗MAAts automata into MAAts

automata using the reference removal from Definition 6.22, enabledness expansion from
Definition 6.24, and different completions of the transition system to remove syntactic
underspecification based on the symbol ∗. For finite input and output types enabledness
expansion and chaos completion may increase the number of tuples in the transition rela-
tion δ of a ∗MAAts automaton to (∣S∣+1)2∗(Πvar∈cmp.CV ars∣V⃗var ∣)2∗Πp∈cmp.CP ortsIN

∣I⃗p∣∗
Πp∈cmp.CP ortsOUT

∣O⃗p∣.
One advantage of our translation into Mona is that we avoid the expansion of the ab-

stract syntax (transition relation) of the input models and handle completions inside the
model checker Mona in a more compact, declarative form. The input of our translation
is a ∗MAAts automaton from Definition 6.20 and its component definition cmp ∈ CTDefs
from Definition 6.8.

We now present the translation rules for the translation of ∗MAAts automata, that
are used as implementations, into Mona. This translation contains the reference removal
from Definition 6.22, the enabledness expansion as defined in Definition 6.24, and the +
completion to the transition system as defined in Definition 6.25. We show how to adapt
the rules for chaos completion and I/O completion, when using ∗MAAts automata as
specifications, in Section 6.4.4.

We use the automaton inside component ToggleSwitch as shown in Listing 7.30
to illustrate the translation rules. The complete translation result is included in Ap-
pendix L.2.

An overview of the translation rules for ∗MAAts automata to the concrete syntax of
Mona is given in Figure 7.31. The rule A1 translates the input and output ports of the
component definition into the head of a Mona predicate. The rules A2 and A3 translate
the states and variables of the automaton into Mona. The rules A4 and A5 translate
the initial states, their outputs, and the initial values of variables. The rules A3 and A5
are only executed if the component cmp has local variables (cmp.CV ars ≠ ∅). Finally,
the translation rule A6 translates the transition system of the automaton.

The translation rule A1 shown in Figure 7.32 defines the head of the Mona predicate
which describes the behavior of the MontiArcAutomaton automaton. The first part
of rule A1 iterates over the input ports and defines one second order parameter for
each possible value per input stream (see the representation of streams in Mona in
Section 7.3.2). The stream on input port pressed of type Boolean (Listing 7.30, line
6) is translated into the two variables pressed_false and pressed_true as shown
in the lines 3 and 4 of the listing in the lower part of Figure 7.32. The second part of the
rule A1 (second universal quantification) does the same for all output ports. The third
part adds the parameter allTime to the predicate. For component composition and
behavior analysis, this parameter enables the synchronization of all components on one
common finite representation of time. The result of the application of the rule A1 to the

232 Chapter 7. An Analysis Framework for Component Behavior

MontiArcAutomaton

1 package example;
2

3 component ToggleSwitch {
4

5 port
6 in Boolean pressed,
7 out Boolean active;
8

9 automaton {
10 state off, on;
11

12 initial off / {active = false};
13

14 off -> off {pressed = false} / {active = false};
15 off -> on {pressed = true} / {active = true};
16 on -> on {pressed = false} / {active = true};
17 on -> off {pressed = true} / {active = false};
18 }
19 }

Listing 7.30: A model of the component ToggleSwitch given in MontiArcAutomaton
syntax.

component ToggleSwitch from Listing 7.30 is shown in the lower part of Figure 7.32.
The translation rule A2 shown in Figure 7.33 defines the automaton’s states as exis-

tentially quantified second order variables. The representation is very similar to that of
streams in Mona. A difference is that the sequence of states may not contain the value
+. The automaton is in a state s ∈ S at time t ∈ N if and only if the Mona set s contains
the value t.

The first condition after the existential quantification is that, at any point in time the
automaton is at least in one of its defined states. The last part of rule A2 additionally
states that the automaton is in at most one of its states at any point in time.

The existential quantification over the state sequence requires a sequence of well-
defined states that satisfies the further constraints imposed by the automaton in rules
A3 to A6. The result of the application of the rule A2 to the component ToggleSwitch
from Listing 7.30 with the two states on and off is shown in the lower part of Fig-
ure 7.33.

Rule A3 is shown in Figure 7.34 and translates the local variables of the automaton
similar to the translation of the automaton’s states. Again, the existence of a single
value for each variable at any point in time is stated. In fact, our translation handles
the states and local variables of the automaton in the same way.

The translation rule A4 shown in Figure 7.35 handles the translation of initial states
and their initial outputs. The outer iteration creates a disjunction of the statements
inside the iteration over the initial states and outputs (s, o⃗) ∈ ι. The first line inside the

7.3. Translation into Mona 233

Translation Rule

Overview of the translation of a ∗MAAts automaton into a Mona predicate:

predicate for component�����������������������cmp.cType

executeRule(A1) see Figure 7.32 for body of rule A1
states of the automaton����������������������
executeRule(A2) see Figure 7.33 for body of rule A2
if (cmp.CV ars ≠ ∅) then

local variables of automaton���������������������������
executeRule(A3) see Figure 7.34 for body of rule A3

assignment of initial state and output at time 0��
executeRule(A4) see Figure 7.35 for body of rule A4
if (cmp.CV ars ≠ ∅) then

assignment of values of local variables at time 0���
executeRule(A5) see Figure 7.37 for body of rule A5

transitions restricted to valid times from allTime���
executeRule(A6) see Figure 7.38 for body of rule A6

Figure 7.31.: Overview of the translation of ∗MAAts automata into the concrete syntax
of the Mona language. The comments above the rule execution commands
belong to the respective rules and are reproduced in this listing to give an
intuition of the rules.

iteration states that the automaton is in the state s from the pair (s, o⃗) at time 0. The
second line lists the outputs on all ports p ∈ cmp.CPortsOUT as defined in the second
element o⃗ of the pair (s, o⃗). The value of the stream on the port at time 0 is assigned
using the parametrized translation rule VAL shown in Figure 7.36. A special translation
is necessary since the initial value o⃗p on an output port p ∈ cmp.CPortsOUT may be set
to the special marker ∗. The translation rule VAL performs the + completion for the
initial outputs (see Definition 6.25, Item 1), i.e., in case of o⃗p = ∗ the rule VAL states
that there is no message on the stream at time 0, which is the implementation of the
symbol + in streams in Mona (see Section 7.3.2).

The translation rule A5 shown in Figure 7.37 translates the initial variable assignment
γ into Mona as a constraint that needs to be satisfied. The translation rule adds a
conjunct for every variable var ∈ cmp.CV ars and its value defined by γvar fixing the
value of the variable at time 0.

The result of an application of rule A5 to a ∗MAAts with a component definition
containing the single variable declaration Boolean open = false; is shown in the
listing in the lower part of Figure 7.37.

234 Chapter 7. An Analysis Framework for Component Behavior

Translation Rule

Translation rule:

A1 pred���� cmp.cType (��
input streams and their values�����������������������������
∀p ∈ cmp.CPortsIN ∀v ∈ I⃗p ∶

var2���� p.name _��v ,��
output streams and their values������������������������������
∀p ∈ cmp.CPortsOUT ∀v ∈ O⃗p ∶

var2���� p.name _��v ,��
common time range allTime������������������������
var2 allTime) =��������������

Result of application to automaton of component ToggleSwitch from Listing 7.30:

Mona

1 pred ToggleSwitch (
2 # input streams and their values
3 var2 pressed_true,
4 var2 pressed_false,
5 # output streams and their values
6 var2 active_true,
7 var2 active_false,
8 # common time range allTime
9 var2 allTime) =

Figure 7.32.: Translation rule A1 for representing the head of the predicate of ∗MAAts

automata in Mona.

The translation rule A6 shown in Figure 7.38 demonstrates the translation of the
transition system of the automaton including its completion. All previous rules have in-
troduced the necessary structures for input streams, states, variables and output streams
as well as the initial values at time 0. The transition system of the automaton determines
the state, output, and variable assignments for time t+1 based on the state, input, and
variable values at time t.

Because all second order variables in Mona are finite sets, a Mona formula is unsatis-
fiable if it contains a constraint requiring a set to be infinite. One such constraint would
be that for every state at time t we have a successor state at time t+1 (the sequence
of states represented as sets would need to be infinite). To prevent this cause of non-
satisfaction, the translation rule A6 in Figure 7.38 adds an implication to the predicate
guarding the quantification over times t by requiring that the time t+1 is still a valid

7.3. Translation into Mona 235

Translation Rule

Translation rule:

A2 # states of the automaton����������������������
ex2��� {|s|} ,

��
s∈S :��

at least one state active at any point in time��
{|s|}union����

s∈S = allTime &����������
at most one state active at any point in time���∀s1 ∈ S ∶

s1 inter (������ {|s2|}union����
s2≠s1∈S

) = empty &���������
Result of application to automaton of component ToggleSwitch from Listing 7.30:

Mona

1 # states of the automaton
2 ex2 on, off:
3 # at least one state active at any point in time
4 on union off = allTime &
5 # at most one state active at any point in time
6 on inter (off) = empty &
7 off inter (on) = empty &

Figure 7.33.: Translation rule A2 for the translation of the states of ∗MAAts automata
into Mona.

point in time defined in the set allTime. Thus, all transitions from time t to time t+1
with t+1 in allTime satisfy the constraints introduced by the translation rules A7
and A8 executed inside the translation rule A6. For all other times the behavior of the
component in Mona is not specified.

When using the ∗MAAts automata translations for the verification of properties we
always assert that the set allTime contains the time 0 and all intermediate times up
to its latest point in time. We check that the analyzed property holds for all finite sets
allTime (see Section 7.3.2, Listing 7.20). This external quantification over allTime
ensures that the analysis result is valid for all finite input and output streams and
prevents contradictions based on infinite sets inside the predicates of the components.

The translation rule A7 shown in Figure 7.39 translates the transitions relation δ of
a ∗MAAts automaton into a disjunction over the possible transitions of the automaton.
Each tuple (ssrc, φ, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ results in a conjunction of constraints over the
source state, the inputs, and the variable values at time t and the target state, the
outputs, and the variable assignments at time t+1. To satisfy the disjunction at least

236 Chapter 7. An Analysis Framework for Component Behavior

Translation Rule

Translation rule:

A3 # local variables of automaton���������������������������
ex2��� {|var.name _��v|} ,

��
var∈cmp.CV ars, v∈V⃗var

:��
∀var ∈ cmp.CV ars ∶
at least one value at any point in time������������������������������������

{|var.name _��v|}union����
v∈V⃗var

= allTime &����������
at most one value at any point in time�����������������������������������
∀v1 ∈ V⃗var ∶
var.name _��v1 inter (������ {|var.name _��v2|}union����

v1≠v2∈V⃗var
) = empty &���������

Result of application to a component cmp with cmp.CV ars = {(open,Boolean},
e.g., the variable declaration Boolean open = false;:

Mona

1 ex2 open_false, open_true:
2 open_false union open_true = allTime &
3 open_false inter (open_true) = empty &
4 open_true inter (open_false) = empty &

Figure 7.34.: Translation rule A3 for the variables of ∗MAAts automata to Mona.

one constraint on the states, variables, input, and output imposed by one transition
needs to be satisfied.

The translation of the transitions realizes the enabledness expansion for ∗MAAts au-
tomata of Definition 6.24 (without supporting guards). The expansion from Defini-
tion 6.24 adds tuples to the transition relation in case an input port or a variable value
is marked with the special symbol ∗. The additional tuples match all values of the port
or variable that was marked with the symbol ∗. The translation rule implements the
expansion by not adding a constraint for values marked with the symbol ∗. The checks
i⃗p ≠ ∗ and v⃗var ≠ ∗ are shown in the first two quantifications inside the translation rule
A7 in Figure 7.39. Thus, one tuple (ssrc, φ, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ from a ∗MAAts automaton
is expressed as a single disjunction in Mona that might represent multiple tuples of the
enabledness expanded transition relation.

The translation rule A7 also handles the reference removal defined in Definition 6.22
that removes references from variables, input ports, and output ports to other elements.
The reference removal is explicitly handled inside rule VAL shown in Figure 7.36. The
second condition checked in rule VAL is whether the message in its parameter m refers to
a local variable or a port. In this case the rule generates a constraint about the equality
of the referencing and the referenced elements values at time t.

7.3. Translation into Mona 237

Translation Rule

Translation rule:

A4 # assignment of initial state and output at time 0��
(��{| (0 in�����s quantification over initial states and output (s, o⃗) ∈ ι

∀p ∈ cmp.CPortsOUT ∶
&�� executeRule(VAL 0��, p.name, o⃗p, O⃗p)

)�� |}
|
��
(s,o⃗)∈ι

) &���
Result of application to automaton of component ToggleSwitch from Listing 7.30:

Mona

1 # assignment of initial state and output at time 0
2 ((0 in off & 0 in active_false)) &

Figure 7.35.: Translation rule A4 for the initial states and output of ∗MAAts automata
in Mona.

Translation Rule

Translation rule with parameters t, prefix, m, Univ, and optional tsrc:

VAL if (m = + ∨m = ∗) then assign no value
t notin������{|prefix _��v|}union����

v∈Univ

else if (m ∈ cmp.CV ars ∪ cmp.CPorts) then
assign value of referenced variable/port at time tsrc

{|t in���prefix _��val <=>����tsrc in���m.name _��val|} &
��
val∈Univ

else
t in���prefix _��m

Result of application to parameters t = 0��, prefix = pressed�������, m = +, and Univ =
{true,false}:

Mona

1 0 notin (pressed_false union pressed_true)

Figure 7.36.: Translation rule VAL for the translation of a message m ∈ Univ ∨m = ∗ on
a port prefix at time t into a Mona expression.

238 Chapter 7. An Analysis Framework for Component Behavior

Translation Rule

Translation rule:

A5 # assignment of values of local variables at time 0���
{|0 in����var.name _��γvar|} &

��
var∈cmp.CV ars &��

Result of application to a component cmp with cmp.CV ars = {(open,Boolean}
and γopen = false, i.e., the variable declaration Boolean open = false;:

Mona

1 # assignment of values of local variables at time 0
2 0 in open_false &

Figure 7.37.: Translation rule A5 for the initial values of variables of ∗MAAts automata
in Mona.

Translation Rule

Translation rule:

A6 # transitions restricted to valid times from allTime���
all1 t: t+1 in allTime => (������������������������

transitions of the automaton���������������������������
(�� executeRule(A7))�� see Figure 7.39 for body of rule A7
completion of the transition system���������������������������������
|�� executeRule(A8) see Figure 7.41 for body of rule A8

);��

Figure 7.38.: Translation rule A6 for the transition system of ∗MAAts automata and its
+ completion to Mona.

The translation of the transitions in rule A7 from Figure 7.39 also implements Item 2
of Definition 6.25 of the + completion. The third quantification in the translation rule A7
shown in Figure 7.39 uses the translation rule VAL from Figure 7.36, which translates
the symbol ∗ on an output port p ∈ cmp.CPortsOUT into not sending any message on the
corresponding stream at time t+1. Assignments of values other than ∗ to the variables
at time t+1 are translated in the fourth quantification in rule A7. Variable assignments
that are marked with the symbol ∗ are translated in the last quantification inside rule
A7 into instantiations of the predicate sameNextValue shown in Listing 7.40. The
predicate states that the value of a variable at time t is equal to its value at time t+1.

7.3. Translation into Mona 239

A single variable of an automaton is represented by one set for each possible value.
Due to our representation of variables, the rule adds one instantiation of the predicate
sameNextValue for every set used for the encoding of the variable.

Translation Rule

Translation rule:

A7 # transitions of the automaton���������������������������
{| (t in������ssrc source state, inputs, and variable values at time t

∀p ∈ {p ∈ cmp.CPortsIN ∣ i⃗p ≠ ∗} ∶
&�� executeRule(VAL t��, p.name, i⃗p, I⃗p, t��)∀var ∈ {var ∈ cmp.CV ars ∣ v⃗var ≠ ∗} ∶
&�� executeRule(VAL t��, var.name, v⃗var, V⃗var, t��)

& t+1 in��������stgt target state, outputs, and variable values at time t+1
∀p ∈ cmp.CPortsOUT ∶

&�� executeRule(VAL t+1���, p.name, o⃗p, O⃗p, t��)∀var ∈ {var ∈ cmp.CV ars ∣ a⃗var ≠ ∗}
&�� executeRule(VAL t+1���, var.name, a⃗var, V⃗var, t��)∀var ∈ {var ∈ cmp.CV ars ∣ a⃗var = ∗}
&�� {|sameNextValue(�������������var.name _��val, t)���|} &

��
val∈V⃗var

)�� |}
|
��
(ssrc,φ,⃗i,v⃗,stgt,o⃗,a⃗)∈δ

Result of application to automaton of component ToggleSwitch from Listing 7.30:

Mona

1 # the transitions of the automaton
2 (t in off & t in pressed_false
3 & t+1 in off & t+1 in active_false) |
4 (t in off & t in pressed_true
5 & t+1 in on & t+1 in active_true) |
6 (t in on & t in pressed_false
7 & t+1 in on & t+1 in active_true) |
8 (t in on & t in pressed_true
9 & t+1 in off & t+1 in active_false)

Figure 7.39.: Translation rule A7 for the transitions of ∗MAAts automata to Mona.

Finally, the translation rule A8 is shown in Figure 7.41. This rule expresses the
completion of the transition system for + completion from Definition 6.25, Item 3 in
Mona. The last step of + completion adds those transitions where no transition is
defined in the transition system δ′ for a given source state ssrc ∈ S, a given input i⃗ ∈ I⃗,

240 Chapter 7. An Analysis Framework for Component Behavior

Mona

1 # the value at time t is also the value at time t+1
2 pred sameNextValue(var2 value, var1 t) =
3 t in value <=> t+1 in value;

Listing 7.40: Predicate for sets representing values on streams to state that the value
does not change from time t to time t + 1.

and the variable values v⃗ ∈ V⃗ . The added transitions define the target state stgt = ssrc,
the output +⃗ (interpreted as not sending a message), and a variable assignment of the
previous values:

{(ssrc, i⃗, v⃗, ssrc, +⃗, v⃗) ∣ ∄s′tgt, o⃗′, a⃗′. (ssrc, i⃗, v⃗, s′tgt, o⃗′, a⃗′) ∈ δ′}
The first part of the translation rule A8 shown in Figure 7.41 is a negation of the

enabledness conditions of all transitions of the automaton. The enabledness conditions
are based on the source state, the inputs on all ports, and the values of all variables at
time t. For every transition defined in δ these conditions are identical with the first part
of the constraint created by the translation rule A7 (only covering ssrc, i⃗, and v⃗).

The negation of the enabledness conditions expresses that none of the defined tran-
sitions is enabled. The translation rule adds conjuncts that the state at time t+1 is
the same as the state at time t. Again, this is done by instantiating the predicate
sameNextValue from Listing 7.40 for all the variables representing the state of the
automaton. Next, the translation rule adds one conjunct for every output port stating
that no message is sent at time t+1 by executing the rule VAL (see Figure 7.36) with
the output port and the value + as parameters. The translation rule A8 finally adds a
conjunct for every local variable to ensure that its value does not change from time t to
time t+1.

The formula generated by the translation rule A7 for the transitions defined by the
automaton and the formula generated by the translation rule A8 for previously unde-
fined behavior are combined into one disjunction in the translation rule A6 shown in
Figure 7.38. This ensures that either one of the given transitions is taken or that the
current state and variable values are preserved and no message is sent.

7.3. Translation into Mona 241

Translation Rule

Translation rule:

A8 # + completion of the transition system�����������������������������������∼ (�� {| (t in������ssrc no transition enabled at time t
∀p ∈ {p ∈ cmp.CPortsIN ∣ i⃗p ≠ ∗} ∶

&�� executeRule(VAL t��, p.name, i⃗p, I⃗p, t��)∀var ∈ {var ∈ cmp.CV ars ∣ v⃗var ≠ ∗} ∶
&�� executeRule(VAL t��, var.name, v⃗var, V⃗var, t��)

)�� |}
|
��
(ssrc,φ,⃗i,v⃗,stgt,o⃗,a⃗)∈δ

)��∀s ∈ S ∶ stay in same state
& sameNextValue(���������������s, t)���∀p ∈ cmp.CPortsOUT ∶ send + on all ports
&�� executeRule(VAL t+1���, p.name, +, O⃗p)

∀var ∈ cmp.CV ars ∶ preserve values of variables
&�� {|sameNextValue(�������������var.name _��val, t)���|} &

��
val∈V⃗var

Result of application to automaton of component ToggleSwitch from Listing 7.30:

Mona

1 # completion of the transition system
2 ~ ((t in off & t in pressed_false) |
3 (t in off & t in pressed_true) |
4 (t in on & t in pressed_false) |
5 (t in on & t in pressed_true))
6 & sameNextValue(on, t)
7 & sameNextValue(off, t)
8 & t+1 notin (active_false union active_true)

Figure 7.41.: Translation rule A8 for the + completion of the transition system of ∗MAAts

automata in Mona. In case no transition is enabled the component does not
send any message on any port (+) and preserves the values of the variables.

242 Chapter 7. An Analysis Framework for Component Behavior

Chaos completion translation rules

Chaos completion of the behavior of a ∗MAAts automaton is applied when using the
automaton as an incomplete specification. Chaos completion completes the inputs, out-
puts, variable values and assignments, and target states with all possible combinations
in case these are not specified by the automaton.

Technically, chaos completion adds a special state Chaos that the automaton may
enter whenever its reaction to a state, input, and variable combination is not defined
by a transition. The behavior in the state Chaos is arbitrary. Chaos completion for
enabledness expanded ∗MAAts automata is formally defined in Definition 6.28. An
example specification of the behavior of the component ToggleSwitch is shown in
Listing 7.42. We have used this example in Section 6.4.4 to illustrate chaos completion.
A graphical representation of the component and automaton is shown in Figure 6.27.
The chaos completion of the transition relation δ of the automaton is illustrated in
Figure 6.29.

MontiArcAutomaton

1 package example;
2

3 component ToggleSwitchSpec {
4

5 port
6 in Boolean pressed,
7 out Boolean active;
8

9 automaton {
10 state s1;
11

12 initial / {active = false};
13

14 s1 -> s1 {pressed = false} / {active = false};
15 }
16 }

Listing 7.42: A specification for the behavior of the component ToggleSwitch. The
component ToggleSwitchSpec is shown in a graphical representation in
Figure 6.27.

The difference between + completion and chaos completion requires updating the pre-
viously presented translation rules to support chaos completion. For chaos completion
we replace the translation rule A2 (Figure 7.33) by the translation rule A2c (Figure 7.43),
the translation rule A4 (Figure 7.35) by the translation rule A4c (Figure 7.44), the trans-
lation rule A7 (Figure 7.39) by the translation rule A7c (Figure 7.45), and the translation
rule A8 (Figure 7.41) by the translation rule A8c (Figure 7.46).

7.3. Translation into Mona 243

The translation rule A2c shown in Figure 7.43 implements Item 1 of Definition 6.28.
It adds the state Chaos to the set of states in the Mona translation of the automaton.

Translation Rule

Translation rule:

A2c # states of the automaton����������������������
ex2��� {|s|} ,

��
s∈S, Chaos:�������

at least one state active at any point in time��
{|s|}union����

s∈S union Chaos = allTime &��������������������
at most one state active at any point in time���∀s1 ∈ S ∪ {Chaos} ∶

s1 inter (������ {|s2|}union����
s2≠s1∈S∪{Chaos}

) = empty &���������
Result of application to automaton of component ToggleSwitchSpec from List-
ing 7.42:

Mona

1 # states of the automaton
2 ex2 s1, Chaos:
3 # at least one state active at any point in time
4 s1 union Chaos = allTime &
5 # at most one state active at any point in time
6 s1 inter (Chaos) = empty &
7 Chaos inter (s1) = empty &

Figure 7.43.: Translation rule A2c for the translation of the states of ∗MAAts automata
into Mona.

244 Chapter 7. An Analysis Framework for Component Behavior

The translation rule A4c is shown in Figure 7.44 and implements Item 2 of Defini-
tion 6.28. The only difference between the rule A4c and the rule A4 shown in Figure 7.35
is in the line with the universal quantification over the output ports. In case the initial
output on port p ∈ cmp.CPortsOUT is unspecified o⃗p = ∗ the rule A4c does not add a
constraint on the sets representing the output at time 0.

Translation Rule

Translation rule:

A4c # assignment of initial state and output at time 0��
(��{| (0 in�����s

∀p ∈ {p ∈ cmp.CPortsOUT ∣ o⃗p ≠ ∗} ∶
&�� executeRule(VAL 0��, p.name, o⃗p, O⃗p)

)�� |}
|
��
(s,o⃗)∈ι

) &���
Result of application to automaton of component ToggleSwitchSpec from List-
ing 7.42:

Mona

1 # assignment of initial state and output at time 0
2 ((0 in s1 & 0 in active_false)) &

Figure 7.44.: Translation rule A4c for the initial states and output of ∗MAAts automata
in Mona.

7.3. Translation into Mona 245

The translation rule A7c is shown in Figure 7.45 and implements Item 3 of Defini-
tion 6.28. One difference between the rule A7c and the rule A7 shown in Figure 7.39 is
that rule A7c does not add any constraint to the generated formula if the output on a
port p ∈ cmp.CPortsOUT is undefined (o⃗p = ∗). Another difference is that the variable
value of a variable var ∈ cmp.CV ars is not preserved in case the assignment is undefined
(a⃗var = ∗).

Translation Rule

Translation rule:

A7c # transitions of the automaton���������������������������
{| (t in������ssrc source state, inputs, and variable values at time t

∀p ∈ {p ∈ cmp.CPortsIN ∣ i⃗p ≠ ∗} ∶
&�� executeRule(VAL t��, p.name, i⃗p, I⃗p, t��)∀var ∈ {var ∈ cmp.CV ars ∣ v⃗var ≠ ∗} ∶
&�� executeRule(VAL t��, var.name, v⃗var, V⃗var, t��)

& t+1 in��������stgt target state, outputs, and variable values at time t+1
∀p ∈ {p ∈ cmp.CPortsOUT ∣ o⃗p ≠ ∗} ∶

&�� executeRule(VAL t+1���, p.name, o⃗p, O⃗p, t��)∀var ∈ {var ∈ cmp.CV ars ∣ a⃗var ≠ ∗}
&�� executeRule(VAL t+1���, var.name, v⃗var, V⃗var, t��)

)�� |}
|
��
(ssrc,φ,⃗i,v⃗,stgt,o⃗,a⃗)∈δ

Result of application to automaton of component ToggleSwitchSpec from List-
ing 7.42:

Mona

1 # the transitions of the automaton
2 (t in s1 & t in pressed_false
3 & t+1 in s1 & t+1 in active_false)

Figure 7.45.: Translation rule A7c for the transitions of ∗MAAts automata to Mona.

246 Chapter 7. An Analysis Framework for Component Behavior

The translation rule A8c is shown in Figure 7.46 and implements Item 4 of Defini-
tion 6.28. The difference between the rule A8c and the rule A8 shown in Figure 7.41
is that rule A8c does not add any constraint to the generated formula in case none of
the defined transitions is enabled. The translation rule A6 from Figure 7.38 creates a
disjunction of the formulas created by the translation rule A7c and the rule A8c. Thus,
either one of the transitions defined in the ∗MAAts automaton is executed at time t, i.e.,
the target state, the output, and the variable assignment for time t+1 are determined,
or none of the transitions was enabled at time t and the target state, the output, and
the variable assignments for time t+1 are not further constrained. This corresponds to
a completion with all possible transitions as defined in Definition 6.28, Item 4.

Translation Rule

Translation rule:

A8c # chaos completion of the transition system���������������������������������������∼ (�� {| (t in������ssrc no transition enabled at time t
∀p ∈ {p ∈ cmp.CPortsIN ∣ i⃗p ≠ ∗} ∶

&�� executeRule(VAL t��, p.name, i⃗p, I⃗p, t��)∀var ∈ {var ∈ cmp.CV ars ∣ v⃗var ≠ ∗} ∶
&�� executeRule(VAL t��, var.name, v⃗var, V⃗var, t��)

)�� |}
|
��
(ssrc,φ,⃗i,v⃗,stgt,o⃗,a⃗)∈δ

)��
Result of application to automaton of component ToggleSwitchSpec from List-
ing 7.42:

Mona

1 # chaos completion of the transition system
2 ~ ((t in s1 & t in pressed_false))

Figure 7.46.: Translation rule A8c for the chaos completion of the transition system of
∗MAAts automata in Mona. In case no transition is enabled the behavior
is not constrained.

7.3. Translation into Mona 247

Output completion translation rules

Output completion is less permissive than chaos completion. It may be used to specify
complex behavior using multiple states with unknown output behavior for some or all
of the states and transitions. The symbol ∗ as the output on a port is interpreted as
all possible values. If the automaton receives an input for which no transition of the
automaton is enabled it produces an arbitrary output. However, it stays in the state that
it is in and preserves the values of the local variables. Output completion is formally
defined in Definition 6.30.

The translation of a ∗MAAts automaton into Mona using output completion requires
the adaption of some of the translation rules A1 to A8 for the translation of automata.
For output completion we replace the translation rule A4 (Figure 7.35) by the translation
rule A4c (Figure 7.44), the translation rule A7 (Figure 7.39) by the translation rule A7r

(Figure 7.47), and the translation rule A8 (Figure 7.41) by the translation rule A8r

(Figure 7.48).
Our implementation of output completion through the translation rules replaces the

rule A4 of the translation implementing + completion with the translation rule A4c

presented in Figure 7.44 that we have already used for the implementation of chaos
completion. The execution of the rule A4c results in a formula that does not constrain
the initial output on a port if it is marked with ∗ in the ∗MAAts automaton. This rule
implements Item 1 of Definition 6.30.

248 Chapter 7. An Analysis Framework for Component Behavior

The rule A7r shown in Figure 7.47 implements Item 2 of Definition 6.30. The only
difference to rule A7 shown in Figure 7.39 is the third universal quantification in the
middle of the rule, which is now restricted to defined outputs (o⃗p ≠ ∗). For outputs on
ports set to ∗ no constraint is added to the formula generated by this translation rule.

A difference of this rule compared to the translation rule A7c from Figure 7.45 for
chaos completion is that variable values are preserved if their assignment is set to ∗ (see
last quantification in rule A7r in Figure 7.47).

Translation Rule

Translation rule:

A7r # transitions of the automaton���������������������������
{| (t in������ssrc source state, inputs, and variable values at time t

∀p ∈ {p ∈ cmp.CPortsIN ∣ i⃗p ≠ ∗} ∶
&�� executeRule(VAL t��, p.name, i⃗p, I⃗p, t��)∀var ∈ {var ∈ cmp.CV ars ∣ v⃗var ≠ ∗} ∶
&�� executeRule(VAL t��, var.name, v⃗var, V⃗var, t��)

& t+1 in��������stgt target state, outputs, and variable values at time t+1
∀p ∈ {p ∈ cmp.CPortsOUT ∣ o⃗p ≠ ∗} ∶

&�� executeRule(VAL t+1���, p.name, o⃗p, O⃗p, t��)∀var ∈ {var ∈ cmp.CV ars ∣ a⃗var ≠ ∗}
&�� executeRule(VAL t+1���, var.name, v⃗var, V⃗var, t��)∀var ∈ {var ∈ cmp.CV ars ∣ a⃗var = ∗}
&�� {|sameNextValue(�������������var.name _��val, t)���|} &

��
val∈V⃗var

)�� |}
|
��
(ssrc,φ,⃗i,v⃗,stgt,o⃗,a⃗)∈δ

Result of application to automaton of component ToggleSwitchSpec from List-
ing 7.42:

Mona

1 # the transitions of the automaton
2 (t in s1 & t in pressed_false
3 & t+1 in s1 & t+1 in active_false)

Figure 7.47.: Translation rule A7r for the transitions of ∗MAAts automata into Mona.

7.3. Translation into Mona 249

The rule A8r shown in Figure 7.48 implements Item 3 of Definition 6.30. The difference
to rule A8 from Figure 7.41 is that the lower part of the rule does not add any constraints
on possible outputs at time t+1. The difference of rule A8r to the rule A8c shown in
Figure 7.46 is that the two quantifications at the bottom or rule A8r add constraints on
preserving the state and variable values of the automaton.

Translation Rule

Translation rule:

A8r # output completion of the transition system��∼ (�� {| (t in������ssrc no transition enabled at time t
∀p ∈ {p ∈ cmp.CPortsIN ∣ i⃗p ≠ ∗} ∶

&�� executeRule(VAL t��, p.name, i⃗p, I⃗p, t��)∀var ∈ {var ∈ cmp.CV ars ∣ v⃗var ≠ ∗} ∶
&�� executeRule(VAL t��, var.name, v⃗var, V⃗var, t��)

)�� |}
|
��
(ssrc,φ,⃗i,v⃗,stgt,o⃗,a⃗)∈δ

)��∀s ∈ S ∶ stay in same state
& sameNextValue(���������������s, t)���∀var ∈ cmp.CV ars ∶ preserve values of variables
&�� {|sameNextValue(�������������var.name _��val, t)���|} &

��
val∈V⃗var

Result of application to automaton of component ToggleSwitchSpec from List-
ing 7.42:

Mona

1 # response completion of the transition system
2 ~ ((t in s1 & t in pressed_false))
3 & sameNextValue(s1, t)

Figure 7.48.: Translation rule A8r for the output completion of the transition system of
∗MAAts automata in Mona. In case no transition is enabled the automaton
stays in the current state and leaves variable values unchanged.

250 Chapter 7. An Analysis Framework for Component Behavior

7.3.5. Mona Dependency Resolution and Manual Mona Implementations

We discuss two implementation specific solutions of the representation of MontiArc-
Automaton components in Mona. First, we show how to support our compositional
code generation with a suitable dependency resolution not directly available in Mona.
Second, we show how to provide manual implementations for component types in case
neither an automaton nor a decomposition to subcomponents is specified for a Monti-
ArcAutomaton component.

Mona dependency resolution

One important language feature of the modeling language MontiArcAutomaton is black
box component composition. Our Mona translation carries over this concept to the gen-
erated predicates: the predicate for a component is generated independently of its future
use. The compositional generation however requires a resolution of the dependencies of
generated Mona artifacts. We first discuss how dependencies are declared in MontiCore
modeling languages and then present our solution for Mona.

Modeling languages developed using the DSL framework MontiCore distinguish be-
tween two coordinates of models. Models are organized in physical files (artifacts) and
therefore have a name in the computer’s file system that identifies them. More impor-
tantly, models are also organized in virtual, hierarchical packages and every model has
a unique name in its package. Thus, a model is also identified by its virtual coordinates
consisting of a package and model name. MontiCore allows to handle models by their
virtual coordinates. This enables a uniform handling of models from different physical
sources, e.g., multiple model folders or model libraries in archives.

The composition of components in MontiArcAutomaton is done on the level of model
names that are visible for the importing model. MontiCore supports a mechanism to
make imported models visible to importing models [Vö11]. The input language of the
tool Mona does not provide a distinction between the physical and virtual coordinates of
an artifact. Mona only offers a basic include directive to include verbatim code from
another file. Multiple inclusions of the same artifact lead to inconsistent input since
Mona includes files verbatim. In addition, all dependencies of a Mona file have to be
included before the file itself.

In our implementation of the translation of MontiArcAutomaton models into Mona
we rebuild the virtual MontiArcAutomaton coordinates of packages and model names
as physical artifact coordinates. We generate one Mona artifact for every MontiArc-
Automaton component type definition in a folder corresponding to the package name of
the component. The Mona artifact contains the predicate expressing the semantics of
the MontiArcAutomaton model. Since Mona only offers verbatim inclusion of code we
name predicates fully qualified after their component type definition. As an example,
the component type definition Timer in the package util is translated into the Mona
predicate util_Timer in a file Timer.mona in a subfolder util.

Figure 7.49 shows Mona include dependencies derived from MontiArcAutomaton
component dependencies of a refinement check between two composed components. The

7.3. Translation into Mona 251

nodes in Figure 7.49 are labeled with the names of imported components.

%�1�����������(

'�����'������� '�����'�����������

'�������������� ������ 	�����������

��������������

2����
�3 2����
�3

2����
�3

2����
�3 2����
�3

2����
�3 2����
�3

2����
�3

Figure 7.49.: Dependencies of Mona files of the MontiArcAutomaton models for the re-
finement check between the component BumperBotSimple and the com-
ponent BumperBotEmergency.

We solve the problem of importing the relevant predicates for all Mona files by includ-
ing the dependencies of each generated file as an annotation. To analyze the refinement
check illustrated in Figure 7.49 we compute the order of the dependencies by a depth-first
traversal of the directed acyclic dependency graph. During the traversal the algorithm
lists the file names of the node for inclusion. The file names of all children are listed
before the file names of their parents. The traversal descends to every node only once.

Consider the example of the Mona dependencies shown in Figure 7.49. In a dependency
resolution stage of our execution of the Mona analysis the algorithm computes the list of
include statements shown in Listing 7.50. This pre-processing allows the compositional
code generation in separate Mona files independent of the way that the generated Mona
predicates of the component types are used.

Mona

1 include "lib/Timer.mona";
2 include "bumperbot/BumpControl.mona";
3 include "bumperbot/BumperBotSimple.mona";
4 include "lib/Arbiter.mona";
5 include "lib/MotorStopper.mona";
6 include "bumperbot/BumperBotEmergency.mona";

Listing 7.50: The include statements in the parent Mona file generated from the
dependency graph in Figure 7.49.

252 Chapter 7. An Analysis Framework for Component Behavior

Artifact Kind Project Folder
MontiArcAutomaton model /src/main/model/
Mona code /src/main/mona/
generated Mona code /target/generated-mona/

Table 7.51.: Organization of artifacts in MontiArcAutomaton Mona project folders.

Generation gap for manual implementations

In some cases the behavior of a component can not be easily specified using an automaton
or a composition of available components. To support manual implementations of Monti-
ArcAutomaton components in Mona we have implemented a variant of the generation
gap pattern [Vli98, Fow10] in our Mona code generator.

The generation gap pattern allows the separation of generated code from handwritten
code. In case the generated code is regenerated the manual implementation is not lost
as it might happen in an approach where generated code is modified. Implementations
of the generation gap pattern are mostly seen in object-oriented programming where
the generated code and the handwritten code are kept in multiple classes linked by
inheritance [Fow10]. A very basic form of the pattern is the generation of an abstract
class that is later extended by a manually written class.

A MontiArcAutomaton component type definition that does not contain an automa-
ton and is not composed of other components is expected to come with a manual Mona
implementation. To separate the manual implementations from generated code we or-
ganize Mona code, MontiArcAutomaton models, and generated code according to the
structure shown in Table 7.51.

Our variant of the generation gap pattern generates a Mona file for the component
that requires a manual implementation into the folder /target/generated-mona/ to
allow a uniform handling of generated artifacts independent of manual implementations.
The generated Mona file declares a Mona predicate that points to an predicate with the
suffix Impl specified in a file in the folder /src/main/mona/.

An example for a component with a manual implementation in Mona is the Timer
component. The MontiArcAutomaton component type definition of the Timer compo-
nent is shown in Listing 7.52. The code generator for the translation of MontiArcAuto-
maton components into Mona code detects that the component type definition contains
no implementation — it is not decomposed and does not contain an automaton. The
Mona predicate lib_Timer generated for the component Timer in the package lib
is shown in Listing 7.53. The predicate depends on the manual implementation of
the predicate lib_TimerImpl that is expected in the file /src/main/mona/lib/-
TimerImpl.mona. The dependency is not declared in Mona using the include state-
ment but in a comment that is processed in the dependency resolution stage of the Mona
execution described before.

The generation gap pattern as implemented in our Mona code generation allows the
regeneration of predicates for component type definitions without loosing manual Mona

7.4. Specifications and Specification Language 253

MontiArcAutomaton

1 package lib;
2

3 component Timer {
4 port
5 in TimerCmd tc,
6 out TimerSignal ts;
7 }

Listing 7.52: The MontiArcAutomaton component type definition of the component
Timer in concrete syntax.

Mona

1 #DEPENDENCY "/src/main/mona/lib/TimerImpl.mona";
2

3 pred lib_Timer (var2 Timer_tc_DELAY,
4 var2 Timer_tc_DOUBLE_DELAY, var2 Timer_tc_ABORT,
5 var2 Timer_ts_ALERT, var2 allTime)
6 = lib_TimerImpl (Timer_tc_DELAY, Timer_tc_DOUBLE_DELAY,
7 Timer_tc_ABORT, Timer_ts_ALERT, allTime);

Listing 7.53: The Mona predicate lib_Timer generated for the component type
definition Timer from Listing 7.52.

implementations. However, changes to the interface of a component still require adap-
tions of the manually written Mona code.

7.4. Specifications and Specification Language

The translation introduced in Section 7.3 allows us to express the semantics of Monti-
ArcAutomaton composed components and ∗MAAts automata in WS1S logic. We may
express both, behavior specifications and implementations, in the modeling language
MontiArcAutomaton. With Mona we receive a framework for formal verification of the
properties of these components.

We are mainly interested in checking whether one specification refines another to
allow an iterative approach to systems development. Furthermore, we are interested in
related questions, e.g., whether two specifications are equivalent with respect to their
input and output or whether an implementation is a refinement of the conjunction of
specifications. We now introduce a specification language for specifying these properties
for MontiArcAutomaton specifications and implementations.

254 Chapter 7. An Analysis Framework for Component Behavior

7.4.1. Specification Language

We have developed a MontiArcAutomaton specification language to assert relations be-
tween MontiArcAutomaton components that should be verified. Such a statement is
called a check. Multiple checks are organized in a suite.

MontiArcAutomaton specification suite

The declaration of a MontiArcAutomaton specification suite starts with the keyword
suite. It has a name and a body as shown in line 8 of Listing 7.54. Each suite is defined
in its own file. The suite in Listing 7.54 is called BumperBotRefinementSteps. It im-
ports three component type definitions BumpControlSpec1a, BumpControlSpec1b,
and BumpControlSpec1c that specify the behavior of the component BumpControl
(ll. 3-6). The specifications and the implementation of the component BumpControl
were introduced as part of the example in Section 7.1.

MAASpecification

1 package bumperbot;
2

3 import bumperbot.BumpControlSpec1a;
4 import bumperbot.BumpControlSpec1b;
5 import bumperbot.BumpControlSpec1c;
6 import bumperbot.BumpControl;
7

8 suite BumperBotRefinementSteps {
9

10 check Spec1bRefinesSpec1a:
11 BumpControlSpec1b refines BumpControlSpec1a;
12

13 check ImplRefinesSpec1a1b:
14 BumpControl refines (BumpControlSpec1a and BumpControlSpec1b);
15

16 check NotImplEqualsSpec1c:
17 not BumpControl equals BumpControlSpec1c;
18 }

Listing 7.54: The MontiArcAutomaton specification suite BumperBotRefinement-
Steps consisting of three MontiArcAutomaton specification checks.

MontiArcAutomaton specification check

A MontiArcAutomaton specification check is a statement about the relation of the be-
haviors of MontiArcAutomaton components. A check starts with the keyword check
and a name followed by an assertion of the relation of the analyzed components. We
distinguish between two relations:

7.4. Specifications and Specification Language 255

refines the behavior of the component on the left refines the behavior of the component
on the right on all shared ports

equals all input histories and their according output histories are valid I/O histories of
either of the components if and only if they are accepted by the other component

Please note that the relation refines enables us to check both the refinement with
possible upward simulation according to Definition 7.12 and the refinement for compo-
nent replacement according to Definition 7.13. In both cases the syntactic requirements
on the component interfaces need to be checked as defined in Definition 7.12 and Defi-
nition 7.13.

The check Spec1bRefinesSpec1a (see Listing 7.54, ll. 10-11) states that the be-
havior of the component BumpControlSpec1b (see Figure 7.5) refines the behavior of
the component BumpControlSpec1a (see Figure 7.4).

It is possible to use multiple components on either side of the refines or equals
statements. An example is shown in line 14 of Listing 7.54 in the check called Im-
plRefinesSpec1a1b. This check states that the component BumpControl shown
in Figure 6.3 refines the conjunction of the specifications BumpControlSpec1a and
BumpControlSpec1b. The conjunction expressed by the keyword and refers to the
conjunction of the predicates over input and output streams, i.e., the implementation
BumpControl refines both specifications.

We finally state that the implementation BumpControl does not equal the specifica-
tion BumpControlSpec1c from Figure 7.6 (the most refined specification introduced
in the example in Section 7.1). The keyword not (see Listing 7.54, l. 17) can be placed
in front of every statement to specify that the relation equals or refines does not
hold.

Example specification suites, also introduced in Section 7.6, are available from [wwws].
The complete grammar of the MontiArcAutomaton specifications suite language is shown
in Appendix K. A definition of the structure of a MontiArcAutomaton specification check
is shown in Definition 7.55. The sets LeftSide and RightSide contain the component
type definitions on the left and right sides of the check. The well-formedness rule in
Definition 7.55, Item 5 ensures that all shared ports, i.e., ports with the same name,
have the same type.

Definition 7.55 (MontiArcAutomaton specification check). A MontiArcAutomaton
specification check is a structure (negation, LeftSide, rel, RightSide) with

1. negation ∈ {false,true} the possible negation of the check,

2. LeftSide ⊆ CTDefs a non-empty set of component type definitions,

3. rel ∈ {refines,equals} the relation to check, and

4. RightSide ⊆ CTDefs a non-empty set of component type definitions.

With the well-formedness rule

256 Chapter 7. An Analysis Framework for Component Behavior

5. ∀p, p′ ∈ ⋃cmp∈(RightSide∪LeftSide) cmp.CPorts ∶ p.name = p′.name ⇒ p.type = p′.type,
i.e., the port and type combinations of the checked component types are unique.

△

7.4.2. Checking Specifications and Witnesses for Non-Satisfaction
To verify a MontiArcAutomaton specification check statement we translate it into a ver-
ification problem for Mona and check it using the Mona tool [wwwz]. The translation
of a MontiArcAutomaton specification check from Definition 7.55 is based on our trans-
lation of component types into Mona. The predicates generated from component type
definitions are referenced by the formula checked by Mona.

We translate a specification check of the type refines into an implication between
the conjunctions of the predicates for the components on the left side and the components
on the right side of the check. A specification check of the type equals is translated
into the equivalence of the conjunctions of the predicates for all inputs and outputs. The
translation rule SC for the translation of a MontiArcAutomaton specification check is
shown in Figure 7.56.

The first part of the translation rule SC presented in Figure 7.56 creates variables for
all input and output streams of the component specifications on the left side and right
side of the specification check. The lower part of the translation rule adds a negation in
case the property negation of the specification check equals true. For every component
type definition a corresponding predicate is instantiated parametrized with the variables
of input and output streams. Please note that in this case the order of the variables
is important: for the translation rule we assume that the elements p ∈ cmp.CPorts
and val ∈ p.type are iterated in the same order as in the translation rules C1 shown in
Figure 7.25 and A1 shown in Figure 7.32 for the heads of the predicates of composed
and atomic MontiArcAutomaton components. Our implementation based on MontiCore
guarantees this property.

Finally we include the definition of the variable allTime from Listing 7.20 and ref-
erences to the files containing the generated Mona predicates for the component type
definitions in the specification check. The Mona program is then executed by the Mona
tool and we interpret the outcome of the execution to decide the result of the specifica-
tion check. Please note that the outcome of a Mona program can be of the three kinds
tautology, contradiction, or examples (see Section 7.3.1). In case the speci-
fication check does not include negation the verification result is positive if the Mona
outcome is of the kind tautology.

The use of negation as shown in the translation rule SC from Figure 7.56 is a bit more
involved. All stream variables and the set allTime in Mona are implicitly universally
quantified. The negation in rule SC is only placed behind the universal quantification
while the analysis problem requires it in front of the quantification. The formula checked
by Mona for the negated equality or refinement problem Φ is ∀i ∈ I⃗∗, o ∈ O⃗∗ ∶ ¬Φ when
the original problem is ¬(∀i ∈ I⃗∗, o ∈ O⃗∗ ∶ Φ). The latter is however equivalent to
∃i ∈ I⃗∗, o ∈ O⃗∗ ∶ ¬Φ. Thus, if Mona determines the kind examples or tautology as

7.4. Specifications and Specification Language 257

Translation Rule

Translation rule:

SC variables for streams on all input and output ports of left side components
∀p ∈ ⋃cmp∈LeftSide∪RightSide cmp.CPorts ∶
var2���� {|p.name _��val|} ,

��
val∈p.type ;��

streams restricted to all points in time
assert((��������{|p.name _��val|}union����

val∈p.type) sub allTime);�������������∀v1 ∈ p.type ∶ at most one value at any point in time
assert(�������p.name _��v1 inter (������ {|p.name _��v2|}union����

v1≠v2∈p.type) = empty);����������
if (negation) then ~��

specification conjunction on left side of check
(�� {| cmp.cType (�� {|{|p.name _��val|} ,

��
val∈p.type|} ,

��
p∈cmp.CP orts)�� |} &

��
cmp∈LeftSide

if (rel = refines) then =>�� else <=>���
specification conjunction on right side of check

{| cmp.cType (�� {|{|p.name _��val|} ,
��
val∈p.type|} ,

��
p∈cmp.CP orts)�� |} &

��
cmp∈RightSide);��

Result of application to check Spec1bRefinesSpec1a from Listing 7.54:

Mona

1 var2 bump_false;
2 var2 bump_true;
3 assert((bump_false union bump_true) sub allTime);
4 assert(bump_false inter (bump_true) = empty);
5 assert(bump_true inter (bump_false) = empty);
6 similar for rMot_FORWARD, rMot_BACKWARD, and rMot_STOP
7 similar for lMot_FORWARD, lMot_BACKWARD, and lMot_STOP
8

9 (bumperbot_BumpControlSpec1b(bump_false, bump_true,
10 rMot_FORWARD, rMot_BACKWARD, rMot_STOP, lMot_FORWARD,
11 lMot_BACKWARD, lMot_STOP, allTime) =>
12 bumperbot_BumpControlSpec1a(bump_false, bump_true, rMot_FORWARD,
13 rMot_BACKWARD, rMot_STOP, lMot_FORWARD, lMot_BACKWARD,
14 lMot_STOP, allTime));

Figure 7.56.: Translation rule SC for MontiArcAutomaton specification checks from Def-
inition 7.55 into Mona.

outcome for the negated case the original problem is positively verified. In case of the
outcome contradiction the assertion of the check is indeed false.

258 Chapter 7. An Analysis Framework for Component Behavior

7.4.3. Witnesses for Non-Satisfaction
In the case that the generated formula is not a tautology Mona computes a shortest
counter example. The shortest counter example is an assignment of all free variables
such that the formula is not satisfied. In the case of refinement checking this means that
the assignment satisfies the predicate of the implementation but not the predicate of the
specification.

An excerpt of the Mona output for executing the check BumpControl refines
BumpControlSpec1c is shown in Listing 7.57.

MonaAnalysisOutput

1 A counter-example of least length (3) is:
2

3 allTime = {0,1,2}
4 bump_false = {}
5 bump_true = {0,1}
6 ts_ALERT = {}
7 tc_DELAY = {}
8 tc_DOUBLE_DELAY = {2}
9 tc_ABORT = {}

10 rMot_FORWARD = {1}
11 rMot_BACKWARD = {2}
12 rMot_STOP = {0}
13 lMot_FORWARD = {1}
14 lMot_BACKWARD = {2}
15 lMot_STOP = {0}

Listing 7.57: A counter example computed by Mona when checking BumpControl
refines BumpControlSpec1c.

The set allTime is shown in line 3 of Listing 7.57 and contains the natural numbers
up to 2. Thus, two transitions have been executed for the inputs at time 0 and time
1 to determine the output up to time 2. The variables bump_false and bump_true
in lines 4-5 describe the prefix of the input stream on the port bump of the component
BumpControl. The variable assignments shown in Listing 7.57 can be translated into
a more readable format by constructing the message streams represented by the vari-
ables. The witness that the component BumpControl does not refine the component
BumpControlSpec1c is then given as:

bump = ⟨true,true, +⟩
ts = ⟨+, +, +⟩
tc = ⟨+, +,DOUBLE_DELAY⟩

rMot = ⟨STOP,FORWARD,BACKWARD⟩
lMot = ⟨STOP,FORWARD,BACKWARD⟩

7.5. Advanced Analyses Example 259

This example shows a behavior of the component BumpControl that is not allowed
by the component BumpControlSpec1c: whenever the component BumpControl-
Spec1c receives the message true on the port bump it requires the activation of the
bumper bot by sending the message FORWARD on both motor ports. In this case the
specification is too strict to allow different behavior once the bumper bot has been
activated.

7.5. Advanced Analyses Example

We continue the example from Section 7.1 of the engineering team developing the soft-
ware for a bumper bot.

The engineering team has developed a software for the bumper bot with the emer-
gency stop feature based on the component BumpControl from the regular bumper
bot. The extended version uses an arbiter component that is connected to the emer-
gency stop button and bypasses the component BumpControl with a constant stop
command when the emergency switch is toggled. An apprentice has been ordered to do
a redesign of the component as a single automaton. The result of the work is component
BumpControlES2 shown in Figure 7.58.

'������������

'�����������

������������

������
���

	������
��	��

	������
��	��
��

?��	�� ,�����@�
�	�� ,�����

�$
��

���
(��

����
��

�����,�����@������� ,�1�����E�))
?��	�� ,�:�%6�%=@�
�	�� ,�:�%6�%= �����,�����@������� ,�1�����E�))

?��	�� ,�'��A6�%=@�
�	�� ,�'��A6�%=@
�� ,�=��'9�<=�9�B

�� ,��9�%�@������� ,�1�����E�)) ?��	�� ,�:�%6�%=@�
�� ,�=�9�B

�� ,��9�%�@�
������ ,�1�����E�)) ?�

�	�� ,�:�%6�%=

'�������������

����
��

������ ,������?�
�	�� ,�����@
�	�� ,�����

������ ,�1�����?�
�	�� ,�:�%6�%=@�
�	�� ,�:�%6�%=

������ ,������?�
�	�� ,�����@
�	�� ,�����

�����������������

Figure 7.58.: An implementation of the controller for the bumper bot with the emergency
stop feature. The automaton is proposed as an alternative to the composed
component BumpControlES from Figure 7.10.

260 Chapter 7. An Analysis Framework for Component Behavior

The automaton of component BumpControlES2 is based on the automaton of com-
ponent BumpControl from Figure 6.3. The apprentice added the state stopped and
transitions from every original state of the automaton. The new transitions are enabled
when the value true is received on the input port emgStp. In addition, the apprentice
updated the other transitions to only being enabled if the port emgStp received either
the message false or no message. The alternative is expressed using the symbol | and
the symbol -- denoting that no message is received (+). Finally, the apprentice added
a resume functionality: if the automaton is in the state stopped and receives the mes-
sage false on the port emgStp, it changes to state driving and sends the FORWARD
command on both MotorCmd output ports.

The quality inspector checks the new design to verify that it complies with the specifi-
cation for the bumper bot with the emergency stop feature. She executes the MontiArc-
Automaton specification suite shown in Listing 7.59 that checks whether the new imple-
mentation BumpControlES2 refines the three specifications presented in Section 7.1.

MAASpecification

1 suite EmergencySpecs {
2

3 check BumpControlES2refinesSpec1a:
4 // does not start unless bumper is initially pressed
5 BumpControlES2 refines BumpControlSpec1a;
6

7 check BumpControlES2refinesSpec1b:
8 // FORWARD commands are sent if bumper is initially pressed
9 BumpControlES2 refines BumpControlSpec1b;

10

11 check BumpControlES2refinesSpec2:
12 // STOP commands are sent if emergency button pressed
13 BumpControlES2 refines BumpControlESSpec2;
14 }

Listing 7.59: The MontiArcAutomaton specification suite EmergencySpecs consisting
of three MontiArcAutomaton specification checks.

The quality inspector is pleased to see that at least the emergency off feature is im-
plemented correctly. The last check in Listing 7.59, ll. 11-13 succeeds and thus the
implementation always stops the motors if it receives the message true from the emer-
gency stop button on the port emgStp.

The other two specifications are not satisfied. The quality engineer reviews the counter
example produced by Mona that proves that the implementation does not refine the
specification by component BumpControlSpec1b as asserted in Listing 7.59, ll. 7-9.
The specification from Figure 7.5 requires the bumper bot to send FORWARD commands
to the motors if activated by an initial pressing of the bump sensor. The generated
counter example consists of the prefixes of the streams on all input ports: bump = ⟨true⟩,
emgStp = ⟨true⟩, and ts = ⟨+⟩. It reveals that component BumpControlES2 violated

7.5. Advanced Analyses Example 261

the specification because the emergency stop was activated. The quality inspector needs
to include this case in the specification, which was created before the emergency stop
feature was known.

Finally, the quality inspector is surprised that the simple requirement of the bumper
bot to not start moving before the bumper is initially pressed is also violated (see List-
ing 7.59, ll. 3-5). She reviews the model of the implementation provided by the appren-
tice in Figure 7.58. Still puzzled why the specification is violated the quality inspector
reviews the counter example generated by the verification. The counter example is:
bump = ⟨false,false, +⟩, emgStp = ⟨true,false, +⟩, and ts = ⟨+, +, +⟩. Thus, the veri-
fication has exploited the emergency stop feature in combination with the resume feature
to activate the bumper bot without the initial pressing of the bump sensor. This prob-
lem is serious since it might lead to unwanted activation of the robot. The apprentice
needs to fix the implementation.

7.5.1. Replacement of Components

The engineering team decides to replace the software implementation of all bumper bot
variants by a single implementation. Thereby, for both variants only one implementation
needs to be maintained. The component BumpControlES2 shown in Figure 7.58 seems
to be a good candidate to replace the component BumpControl in the bumper bot
without the emergency stop feature.

The chief engineer only agrees to the change if the apprentice can show that the
replacement ensures equal behavior for the bumper bot without the emergency feature.
The apprentice checks the two components BumpControl shown in Figure 6.3 and
BumpControlES2 shown in Figure 7.58 for equality as shown in lines 3-4 in Listing 7.60.
The verification tool reports different behavior since the automaton of component Bump-
ControlES2 sends STOP messages to the motors if the emergency stop button is pressed
while the component BumpControl ignores the emergency stop input.

MAASpecification

1 suite ReplacementChecks {
2

3 check ComponentEquality:
4 BumpControl equals BumpControlES2;
5

6 check CompositionEquality:
7 BumperBotApp equals BumperBotAppV2;
8 }

Listing 7.60: The MontiArcAutomaton specification suite ReplacementChecks
consisting of two MontiArcAutomaton specification checks.

The apprentice is unhappy with the result and wants to check the behavior of the
component BumpControlES2 in the context of the bumper bot system. She creates a

262 Chapter 7. An Analysis Framework for Component Behavior

model that composes all application components of the bumper bot, i.e., all its compo-
nents except for sensors and actuators. The application part of the bumper bot is shown
in Figure 7.61 (a). The apprentice also creates a second variant of the application part
but with the component BumpControl replaced by the component BumpControlES2
shown in Figure 7.61 (b). In this model the input port emgStp of the component
BumpControlES2 is not connected.

'�����'�����

'�����������

	������
��	��

	������
��	��

�����������������

'����������

����

'�����'�����&

'�����������

	������
��	��

	������
��	��

'������������

����

����������
#����
���������������	

"�# "�#

Figure 7.61.: Two versions of the application part of the C&C architecture of the bumper
bot. The application part consists of all components of the robot except
for the sensors and actuators.

Finally, the apprentice verifies that the two compositions have equivalent behavior
and that it is safe to replace the component BumpControl with the component Bump-
ControlES2 (Listing 7.60, ll. 6-7).

7.5.2. Specification of the Environment
A new quality inspector has joined the team. She is surprised to see that the most
important specification for the bumper bot had not been defined and verified so far:

• [Spec3] The bumper bot drives backwards whenever an obstacle is hit.

The specification is implemented as a MAAts automaton shown in Figure 7.62. The
initial state of the specification is the state idle that is left after the initial pressing
of the touch sensor. In the state driving the component sends BACKWARD messages
whenever an obstacle is hit.

The quality inspector creates a MontiArcAutomaton specification check to verify that
the implementation of the component BumpControl satisfies the specification of the
component BumpControlSpec3. The check is shown in lines 3-4 of Listing 7.63.
It is not satisfied and a witness is generated. The quality inspector reviews the wit-
ness generated by our tool to understand the cause of the violation. The prefixes are

7.5. Advanced Analyses Example 263

'��������������C
2���������������3

'�����������

	������
��	��

	������
��	��

��

?��	���,�����@�
�	���,�����

�$
��

�����,������?

�����������������

�����,������?��	���,�'��A6�%=@�
�	���,�'��A6�%=

Figure 7.62.: A specification for the bumper bot to drive backwards whenever the
bumper is pressed.

bump = ⟨true,true,true⟩ and tc = ⟨+, +, +⟩. The first message true received on the port
bump activates the bumper bot. The second message true starts the backwards driving
process. The third message true is ignored by the automaton inside the component
BumpControl shown in Figure 6.3. The engineers did not expect the front bumper to
be pressed while the robot is driving backwards. The assumption is reasonable.

MAASpecification

1 suite BumperBotBacks {
2

3 check BackingBumperBot:
4 BumpControl refines BumpControlSpec3;
5

6 check BackingWithEnvBumpGuard:
7 (BumpControl and EnvBumpGuard) refines BumpControlSpec3;
8 }

Listing 7.63: The MontiArcAutomaton specification suite BumperBotBacks consisting
of two MontiArcAutomaton specification checks.

To solve this problem the engineering team decides that the specification should in-
clude some knowledge about the environment. The current analysis based on Mona
evaluates the MontiArcAutomaton specification check for all possible input streams on
the ports bump and tc of the component BumpControl. These possible values should
be restricted to the ones that can occur in realistic environments of the bumper bot.

The team develops the guard component EnvBumpGuard for the environment. This
component reads the commands that the component BumpControl sends to the motors
and evaluates whether the current driving behavior allows bumping into objects. When
the robot is not driving forward the input bump must be set to false. The updated
specification check is shown in Listing 7.63, l. 6-7. The implementation BumpControl
with the environment guard EnvBumpGuard refines the specification BumpControl-
Spec3.

264 Chapter 7. An Analysis Framework for Component Behavior

The MontiArcAutomaton implementation of the environment guard is shown in Fig-
ure 7.64 (a). The composed component EnvBumpGuard consists of two instances of
the component MotorObserver, each connected to one of the MotorCmd input ports
lMot and rMot.

'���&��
����
2���������������@

���(��������3

��

$��

����

�=������,�)) ?�
�����,�1����

�=������,�)) ?�
�����,�1����

�=������,�����@�
�=������,�����

'�������
����

	���������$��
2�����������@����(��������3

��1� ����1�

��
�,������E�'��A6�%=

��
�,�)) E�:�%6�%=�?�

������,�����

��
�,�:�%6�%=�?�

������,�����

'�������
�=�����

'�������
�=�����

'�������

�����

	������

��

��$'���F���

	���������$�� ���

	���������$�� ���

'���)
&��
���� '�������

����

	������

�	��

	������

�	��

�����������������

"�#

"�# "�#

Figure 7.64.: The implementation of the environment guard EnvBumpGuard (a). The
guard is implemented as a composition of MAAts automata.

The component MotorObserver is shown in Figure 7.64 (b). The component has
two states and decides based on input of the type MotorCmd whether the motor drives
forward or not. If the motor command FORWARD is received, the automaton of the
component switches to the state unsafe and sends the message true on the outgoing
port danger. The message true is repeated on the port danger as long as the motor
turns forward. If the motor is stopped or turns backward nothing is sent on the port
danger (see the stereotype «nilCompletion»).

The component BumpValidation is shown in Figure 7.64 (c). Inside the composition
defined by the component EnvBumpGuard the instance of the component BumpVal-
idation evaluates the messages sent by the MotorObserver components of the left
and right motor. The automaton inside component BumpValidation switches from
the state idle to the state validating if it receives the message true on both input
ports lDanger and rDanger that indicate that the motors are going forward (initial
activation of the bumper bot). In the state validating the automaton sends the mes-
sage false on the port bump whenever one of the ports lDanger or rDanger does
not receive a message. If one of the MotorObserver components does not report dan-
ger the bumper bot is either stopped, turning, or driving backwards. The automaton

7.6. Implementation and Evaluation 265

inside the component BumpValidation uses output completion. In this case output
completion allows arbitrary outputs on the port bump if nothing is specified, i.e., the
environment is not restricted unless BumpValidation requires the message false.

Both MAAts automata shown in Figure 7.64 use the stereotype «weaklyCausal»
which indicates an immediate reaction of the components to their input. The compo-
nent EnvBumpGuard does not contain feedback cycles and thus weak causality allows
a valid composition. The stereotype «weaklyCausal» is currently not supported by
our implementation. The verification result of this example is based on manual modi-
fications of the translation. For a discussion of the advanced feature of weakly causal
MAAts automata translations see Section 7.7.6.

The MontiArcAutomaton specification check that combines the environment guard,
the bumper bot implementation, and the specification from Listing 7.63, ll. 6-7 is defined
as (BumpControl and EnvBumpGuard) refines BumpControlSpec3. Please
note that the conjunction of the implementation BumpControl and the specification
EnvBumpGuard is not a composition of the corresponding MontiArcAutomaton com-
ponents. The conjunction denotes that input and output streams are restricted by both
specifications independently.

7.6. Implementation and Evaluation
We have implemented the translation of MontiArcAutomaton models for composed com-
ponents, atomic components, and for components with manual Mona implementations
into Mona. Our implementation uses the MontiCore template-based code generation
framework [Sch12]. In addition, we have implemented a MontiArcAutomaton specifi-
cation suite verification tool based on an extended version of the MontiArcAutomaton
specification suite and check language presented in Section 7.4.1. A screen capture of
the verification tool is shown in Figure 7.65.

Our implementation consists of a translation of MontiArcAutomaton components into
Mona and a translation and verification engine for MontiArcAutomaton specifications
both written in Java. The verification engine invokes the Mona executable using a pro-
cess call. We report the size of the implementation in effective lines of code (ELOC).
Lines counted as ELOC contain characters other than white space or comments and are
contained in classes of the implementation. Thus the numbers of ELOC do not include
unit tests and code for validation. The translation of MontiArcAutomaton components
into Mona consists of 20 classes with a total of 1,263 ELOC and 13 Freemarker templates
with 333 ELOC. The translation and verification engine for MontiArcAutomaton speci-
fications consists of 28 classes with a total of 2,138 ELOC and 12 Freemarker templates
with 226 ELOC.

A user of the verification tool may define MontiArcAutomaton specification suites
consisting of MontiArcAutomaton specification checks. Suites are executed using the
front-end of the JUnit testing framework [wwwi]. Our implementation uses MontiCore
tools to parse the specification suite file and generates Mona code for the specifications.
The Mona code for each specification check is automatically executed in Mona. The out-

266 Chapter 7. An Analysis Framework for Component Behavior

Figure 7.65.: A screen capture of the MontiArcAutomaton specification suite verification
tool.

put of the execution is interpreted and the results of passing and failing checks are shown
in a JUnit view as demonstrated in the left of Figure 7.65. Counter examples generated
by Mona are translated back into prefixes of message streams that show the violation of
a specification. For a tutorial on how to create MontiArcAutomaton specification suites
and execute the verification using our tools see Appendix E. The implementation with
more than 100 component type definitions and 12 MontiArcAutomaton specification
suites is available from [wwws].

Based on our implementation of the specification suite verification tool we have created
various example systems and specifications. We report on these systems in Section 7.6.1.
In Section 7.6.2 we present figures of the execution times of Mona for checking the Mona
programs generated by our tool.

7.6.1. Example Systems

We have applied our analysis framework for the verification of MontiArcAutomaton
specification suites to three example systems. The evaluation on example systems is of
qualitative nature. We wanted to gain experience with creating MAAts automata for
specifying component behavior and analyzing refinement and equality. We report on our

7.6. Implementation and Evaluation 267

experience in Section 7.7.
The complete set of models described in this section, models from additional experi-

ments, and all MontiArcAutomaton specification suites are available from [wwws].

Bumper bot

We have evaluated our approach on the C&C architecture of a bumper bot. The bumper
bot appears as a running example in Chapter 6 and Chapter 7. The bumper bot can
power its left and right motors and detect obstacles in front of it. In addition, it is
equipped with an emergency stop button. The bumper bot’s objective is to avoid ob-
stacles and turn once an obstacle has been hit.

The complete bumper bot example consists of four variants: the basic bumper bot
with a component BumpControl and two extensions of the robot with an emergency off
switch that immediately stops the bumper bot. One of the robots with the emergency
stop feature reuses the component BumpControl of the original bumper bot. The
fourth variant is again a bumper bot without the emergency stop feature that uses the
control implementation of a bumper bot that provides the feature.

The complete bumper bot example with all variants consists of 19 component type
definitions. Of these components 8 are composed components, 10 are implemented as
MAAts automata, and 1 is implemented manually. The MAAts automata have at most
3 variables, 3 states, and 10 transitions.

We have defined 4 MontiArcAutomaton specification suites with between 2 and 11
checks. The suites are implementations of the examples presented in Section 7.1 and
Section 7.5 and contain additional checks to validate our work. The checks use all of the
specification language features presented in Section 7.4.1: negation, refinement, equality,
and conjunction of components.

Pump station

We have evaluated the MontiArcAutomaton verification tool on the model of a pump
station taken from the AutoFOCUS tool [wwwe, HF07]. This example also appears as
a running example in Chapter 3 and Chapter 4. An overview of the components of the
pump station is given in Appendix G. The pump station C&C architecture describes
the software of a pump station consisting of two water tanks connected by a pipeline
system with a valve and a pump. The water level in the first water tank can rise (this is
controlled by the environment). When the water level of the first tank rises to a critical
level, the water has to be pumped to the second water tank. The second water tank has
a drain.

The adapted MontiArcAutomaton model of the pump station consists of 14 component
type definitions. Of these components 3 are composed components, 10 are implemented
as MAAts automata, and 1 is implemented manually. The MAAts automata have at most
3 variables, 3 states, and 26 transitions. We have added 14 component type definitions
for refinement and equality checking.

268 Chapter 7. An Analysis Framework for Component Behavior

We have defined 3 MontiArcAutomaton specification suites with between 1 and 42
checks. The three suites are mainly created to validate our implementation and to asses
the tool’s performance on a larger example. The first suite checks all components for
equality with themselves. All checks pass. The second suite contains checks for the
behavior of some of the pump station components. Finally, the third suite contains
checks to assess the performance. For every component of the pump station it checks
whether the component refines a specification with an identical interface but only a
single state and chaos completion. This suite also contains checks whether the chaos-
specification refines the implementation and whether the implementation equals the
chaos-specification.

Television set

The television set example is a MontiArcAutomaton model of a television set with a
decoder for the commands of a remote control, a volume manager, and a channel manager
with two subsystems for checking subscription access rights and for displaying content.
The television set was developed as an example in [Kir11].

The complete television set example consists of 12 component type definitions. Of
these components 2 are composed components and 10 are implemented as MAAts au-
tomata. The MAAts automata have at most 5 states and 22 transitions.

We have defined one MontiArcAutomaton specification suite for the television set ex-
ample with 7 checks. The checks verify specifications for the components of the television
set, e.g., the volume manager, the content display and the channel manager. One check
verifies a specification of the status output of the complete television set.

Threats to validity

The choice of example systems for our experiments is limited to three systems from
different sources. To address this threat to generalizability, we have selected example
systems from different domains: robotics, automation, and control.

Limits of the analysis procedure did not allow verifying specification suites for larger
examples. This is a threat to the generalizability of our method.

The performance limitations have also constrained us from creating and verifying more
complex specifications for the components of the pump station example. For this example
system the specification checks are limited to checking equality and refinement with a
chaos-specification, which allows arbitrary behavior. More meaningful specifications
could eliminate this threat to the qualitative evaluation.

7.6.2. Mona Verification Times

We now address the performance of our prototype implementation for the verification of
MontiArcAutomaton specification checks. We are interested in answering the research
question whether MontiArcAutomaton specification checking is feasible with our current
implementation and whether the verification times are acceptable.

7.6. Implementation and Evaluation 269

We have measured verification times of Mona on the generated Mona programs for
the MontiArcAutomaton specification checks of the bumper bot and the pump station
example systems. For each check we report on the number of input and output second
order Mona variables of the implementation that is verified against a specification. These
variables are universally quantified in the generated Mona programs. The variables
encode input and output streams and their number is the sum of the sizes of the port
types, e.g., for two output ports of type MotorCmd = {STOP,FORWARD,BACKWARD} the
number of second order output variables is 3+3 = 6. We have run all checks 12 times and
report on the median of the measured running times for each check. All times are given
in milliseconds. We performed the experiments on a regular laptop computer, Intel Dual
Core CPU, 2.8 GHz, running 64-bit Windows 7 and Java 1.7.0_17. We have used Mona
version 1.4-13 compiled for Windows available from [wwwz].

The results of running the bumper bot MontiArcAutomaton specification checks pre-
sented in previous examples are shown in Table 7.66. The first column contains the
specification name as used in the examples. The second and third columns contain
the verified relation and the positive or negative outcome of the check. The following
columns give indications of the size of the specification in terms of inputs, outputs, and
the number of MontiArcAutomaton component instances including subcomponents.

Each MontiArcAutomaton specification check for the bumper bot is verified in less
than 150 ms. The longest verification time is required for the check BackingWith-
EnvBumpGuard which includes a conjunction of the implementation of the component
BumpControl with the composed component EnvBumpGuard.

Check name relation result in out #cmps time
#var2 #var2 (ms)

Spec1bRefinesSpec1a refines 2 6 2 79
ImplRefinesSpec1a1b refines 3 8 3 125
NotImplEqualsSpec1c equals 3 8 2 103
BumpControlES2refinesSpec1a refines 5 8 2 124
BumpControlES2refinesSpec1b refines 5 8 2 130
BumpControlES2refinesSpec2 refines 5 8 2 126
ComponentEquality equals 5 8 2 139
CompositionEquality equals 2 6 6 145
BackingBumperBot refines 3 8 2 118
BackingWithEnvBumpGuard refines 3 8 6 149

Table 7.66.: Running times of the verification of the bumper bot example MontiArc-
Automaton specification checks presented in Section 7.1 and Section 7.5.

The results of running the pump station MontiArcAutomaton specification checks
are shown in Table 7.67. The first column contains the name of the component type
definition. The second column indicates whether the component is implemented as a
MAAts automaton (A), as a composed component type (C), or whether it is manually
implemented in Mona (M). The following columns report on the number of inputs,
outputs, subcomponents, local variables, states, and transitions where applicable.

270 Chapter 7. An Analysis Framework for Component Behavior

The column titled EQ reports on the verification time of a MontiArcAutomaton spec-
ification check stating the equality of a component with itself. The verification times
range from 59 ms to 211 ms for the verification of the component PhysicsSimulation
which contains a MAAts automaton with 26 transitions.

The column titled RC reports on checks whether each component refines a component
with the same syntactic interface and an automaton with one state and chaos comple-
tion. The verification times are again around 100 ms for many of the small automata.
The ModeArbiter component type definition requires almost two seconds for the ver-
ification and three of the MontiArcAutomaton specification checks do not complete. In
the cases for the component type definitions PhysicsSimulation, PumpingSystem,
and SensorReading the verification stops after five seconds with a message that Mona
ran out of memory. In all of these cases the memory consumption of Mona was close to
four gigabytes before Mona aborted the execution.

Finally, the column titled EQC reports on checks whether each of the components
equals its single-state-chaos-implementation. This verification takes in total a few mil-
liseconds longer than the check RC. Again, the verification for the component type def-
initions PhysicsSimulation, PumpingSystem, and SensorReading aborts with
an out of memory message from Mona.

Component kind in out subs var #state #trans EQ RC EQC
#var2 #var2 #var2 (ms) (ms) (ms)

Controller C 4 5 3 – – – 84 153 168
EMSOperation A 2 5 – – 1 2 72 78 72
ModeArbiter A 10 5 – – 1 2 78 1874 2022
PhysicsSimulation A 6 23 – 21 1 26 211 – –
PumpActuator A 4 2 – – 1 1 67 130 112
PumpingSystem C 20 6 4 – – – 165 – –
PumpSensorReader A 2 2 – – 1 1 59 104 87
SensorReading C 20 9 4 – – – 139 – –
SimulationPanel M 23 2 – – – – 119 155 142
TankSensorReader A 5 2 – – 1 2 75 90 75
UserButtonReader A 2 2 – 2 1 3 65 97 78
UserOperation A 2 5 – – 1 2 72 82 82
ValveActuator A 6 4 – – 3 7 74 100 92
ValveSensorReader A 11 3 – – 1 11 109 124 110

Table 7.67.: Running times of the verification of MontiArcAutomaton specification
checks for the component type definitions of the pump station example.

Threats to validity

The choice of example systems is a threat to the generalizability of the findings about
feasibility and performance of MontiArcAutomaton specification check verification. To
mitigate this threat we have chosen a small example system completely developed in the
context of this work and one taken from a public available resource. The systems are
different in the number and size of components, which is also reflected by the verification
times reported in Table 7.66 and Table 7.67.

7.7. Discussion 271

The specification checks developed for the pump station example system do not rep-
resent realistic examples. For this system only the implementation was available and
no specifications expressed as MAAts automata. We nevertheless performed three basic
checks per component for refinement and equality. These checks assess the capabilities of
the prototype implementation on specifications with more input variables, more output
variables, and more components when compared to the bumper bot example.

7.7. Discussion
In the following, we discuss several aspects and limitations of the current implementation
of the analysis framework for MAAts automata.

7.7.1. Performance
The running times of the specification checks for the example systems presented in Sec-
tion 7.6.2 show that our current implementation based on Mona handles small examples
reasonably fast. For most examples the running times of the verification are between 50
and 150 ms. However, the results of our evaluation indicate that the current solution
is not able to handle specification checks where the sum of the values of the input and
output ports’ types of the implementation is around 30.

One possibility to address the limitation of the input and output sizes is a different
encoding of streams in Mona. The encoding introduced in Section 7.3.2 and used in the
translation into Mona is rather naive. In the current encoding each value on a stream
is represented by one second order variable in Mona. Thus, the Mona encoding of a
stream with a type with 16 values results in 16 variables. A more efficient encoding
could represent the same stream in a binary encoding using only four variables. We
consider optimizations and their evaluation a future work.

7.7.2. Supported Elements of MontiArcAutomaton and ∗MAAts Automata
Our translation of MontiArcAutomaton component type definitions including ∗MAAts

automata supports the translation of component type definitions from Definition 6.8
and ∗MAAts automata from Definition 6.20 with the following restrictions. The first
restriction is that all types of input ports, local variables, and output ports are required
to be finite. To carry out an analysis using Mona the types also may not have many values
as demonstrated by the examples in Section 7.6.2. Types are defined as enumerations
with enumeration values in UML/P class diagrams.

The translation of ∗MAAts automata supports the elements defined in Definition 6.20
except for guard predicates on transitions. In addition to syntactic underspecification
using the symbol ∗ and non-deterministic transitions the translation supports + com-
pletion, output completion, and chaos completion. Adding support for guard predicates
requires the translation of Java or OCL/P guard expressions into Mona.

Additional features of the MontiArcAutomaton modeling language that are not con-
tained in Definition 6.8 of component type definitions are generic component types and

272 Chapter 7. An Analysis Framework for Component Behavior

parametrized component types. Our current translation does not support these features.
An example of a generic component type is the type Buffer<T> from Listing 6.6. A
concrete type for the type variable T is defined for every instantiation of the component.
With our current translation of component type definitions to Mona there is no simi-
lar concept to type variables that would allow us to generate a Mona predicate for the
component type Buffer<T>.

A simple way to support the translation of generic and parametrized component type
definitions is the translation of concrete instantiations with concrete parameters unfolded
in the definition of the component type. This approach gives up a compositional transla-
tion into Mona since generic and parametrized components can only be translated if their
type parameters and value parameters are known from subcomponent instantiations.

7.7.3. Language Expressiveness
In our experiments with writing specifications as MontiArcAutomaton components we
have found it useful to evaluate refinement with respect to an upward simulation as
presented in Section 6.3.4. We consider it important to support the verification of
composed components. Implementations created by the composition of components are
a crucial part of system development. For specifications the same rationales are be
applied. Instead of considering the specification as a single model our approach allows
to decompose specifications and reuse existing ones. The syntax and semantics for the
composition of specifications are the same as for the composition of components.

An orthogonal concept to the composition of components is the conjunction of speci-
fications and implementations. On the one hand, this allows reuse of specifications and
a more succinct definition of MontiArcAutomaton specification checks involving multi-
ple specifications and a single implementation. On the other hand, the conjunction of
specifications allows imposing additional restrictions, e.g., on the environment as shown
in Section 7.5.2.

During the creation and reuse of specifications for composed component type defini-
tions we have encountered difficulties with handling the accumulated processing delays
introduced by component composition (see Section 7.7.5). We have experimented with
a modified translation that allows immediate processing. This topic requires further
investigation.

7.7.4. Refinement and Equality
Our translation of MontiArcAutomaton models into Mona results in predicates over
input and output streams. These predicates express the I/O relation semantics of MAAts

automata defined in Definition 6.33 restricted to all finite prefixes. The Mona encoding
of the semantics of MontiArcAutomaton components enables the analysis framework to
check component refinement based on input and output streams.

We have defined two notions of refinement for MontiArcAutomaton components. Re-
finement with respect to upward simulation [Bro93], as defined in Definition 7.12, does
not require equality of the component interfaces of the implementation and specification.

7.7. Discussion 273

The implementation may have additional inputs and outputs. The refinement as defined
in Definition 7.13 is a more classical version [LS11]. The definition states that the imple-
mentation requires at most all inputs of the specification and provides at least the same
outputs. In this case the implementation can syntactically replace the specification.

Similarly, we have defined component equality only on shared ports in Definition 7.14
and for equivalent component interfaces in Definition 7.15.

In our current implementation we check refinement and equality on all shared input
and output ports. Combinations of these behavior refinement and equality checks with
syntactic checks of the component’s interfaces allow to determine the results for the cases
discussed above. We consider it a future work to extend the specification suite language
introduced in Section 7.4 with more specific refinement statements that subsume the
syntactic checks.

7.7.5. Component Processing Delay

We have chosen a strongly causal semantics for ∗MAAts automata. Strong causality
implies that a timed component may react to an input message only in the next time
slice. Strong causality has the benefit that the composition of components is well-
defined as discussed in Section 6.3.3. A downside of strong causality is however that
the sequential composition of components introduces a delay. This delay may be hidden
inside composed components.

Consider the composed component type DifferentDelays shown in Figure 7.68.
The component is composed of subcomponents of the component type Processor.
There is no processing delay between the ports i1 and o1 of the component Different-
Delays since a connector immediately forwards the messages. The processing delay be-
tween the ports i2 and o2 is the processing delay of the component type Processor.
Finally, the delay between the ports i3 and o3 of the component DifferentDelays
is three times the processing delay of the component type Processor. For the im-
plementation of systems and subsystems, components are treated as black boxes and
respectively no assumptions on the processing delay can be made.

=11�����=�����

�����������������

��������� ��

��������� � ��������� �C ��������� �D

�����#������������
�����
������������ ��������'��������

'�������

'�������C

'���������

'��������

'��������C

Figure 7.68.: The composed component DifferentDelays containing subcomponents
of the component type Processor with strongly causal behavior.

274 Chapter 7. An Analysis Framework for Component Behavior

The accumulated delay introduced by component composition also complicates the
specification of component behavior using MAAts automata. In some cases a speci-
fication has to be aware of introduced processing delay. For example the two imple-
mentations BumpControlES shown in Figure 7.10 and BumpControlES2 shown in
Figure 7.58 differ in the delay of the processing of messages on the port bump if the
emergency switch is not activated. The composition of the component BumpControl
with the component ArbiterMotorCmd delays the response of the composed compo-
nent BumpControlES by one time slice compared to the response of the component
BumpControlES2.

7.7.6. Immediate Processing

Components that are only weakly causal instead of strongly causal allow immediate
processing of messages. Weak causality is implied by strong causality. For a winning
strategy τ ∶ I⃗∞ → O⃗∞ that realizes component behavior weak causality is defined as:

∀i⃗, i⃗′ ∈ I⃗∞ ∀n ∈ N ∶ i⃗∣n = i⃗′∣n ⇒ τ (⃗i)∣n = τ (⃗i′)∣n

It is possible to adapt the semantics definition of MAAts automata to allow immediate
processing of messages. The adaption of the translation of ∗MAAts automata into Mona
requires changes in the translation rules of the transition system and the rules for the
transition system completions. With optional initial output on ports the transition rules
depend on the chosen initial state and its output. In case no initial output is allowed
the output of each message on an output port is set to time t instead of t+1 to model
immediate processing.

Please recall the example of the component EnvBumpGuard that restricts the envi-
ronment to only allow activation of the bump sensor when the robot moves forward. To
carry out the verification, the composed component has to react to input immediately.
We have manually changed the time of the outputs on the transitions of the ∗MAAts

automata inside the components MotorObserver and BumpValidation shown in
Figure 7.64. An excerpt of the code generated for the transitions of the component
BumpValidation including the changes is shown in Listing 7.69. The difference to
the Mona code generated for strongly causal component behavior is in lines 6 and 8. In
both cases the term t in bump_false defines that the output of the message false
on the port bump happens at the same time t as the input. In the strongly causal
implementation the term was t+1 in bump_false.

The generation of Mona code for immediate processing of messages is not fully auto-
mated in our current implementation. In addition to the changes in the translation rules,
immediate processing also requires additional well-formedness rules for component com-
position. Every directed communication cycle must contain at least one strongly causal
component to allow component composition.

7.7. Discussion 275

Mona

1 all1 t: t+1 in allTime =>
2 (
3 (t in idle & t in rDanger_true & t in lDanger_true &
4 t+1 in validating) |
5 (t in validating & t notin (lDanger_false union lDanger_true) &
6 t+1 in validating & t in bump_false) |
7 (t in validating & t notin (rDanger_false union rDanger_true) &
8 t+1 in validating & t in bump_false)
9)

Listing 7.69: An excerpt of the modified transition system of the component
BumpValidation presented in Figure 7.64 (c) to support immediate
processing of input messages.

7.7.7. Choice of Mona

Mona is an implementation of a decision procedure for the WS1S logic used as a target
formalism for our translation of MontiArcAutomaton components. On the one hand
we have demonstrated that ∗MAAts automata can be expressed in WS1S logic and
that many analysis problems can be formalized and solved using the Mona implemen-
tation. On the other hand the complexity of solving WS1S decision problems is non-
elementary [Mey75], i.e., bounded by a stack of exponentials with the height of the size
of the formula. The translation of MAAts automata into WS1S and solving the analysis
problems using Mona creates an analysis overhead that needs to be discussed.

For the purpose of this work we have decided to use an implementation based on
WS1S and Mona because of the natural formulation of analysis problems that coincides
with the formal definitions of the Focus framework [BS01]. The decision procedure as
well as counter example computation are fully automated. We believe that this trade-off
between implementation time and complexity of the automated analysis is legitimate for
a research prototype.

Preliminary experiments presented in Section 7.6.2 demonstrate that the current pro-
totype handles many of the examples presented in this thesis in 50-150ms. However,
it already fails to produce verification results on other small examples. Please note
that these restrictions are due to the complexity of the target logic and not due to the
complexity of the analysis problem itself.

Possible future work is the investigation of a translation of ∗MAAts automata into
SMV [BCM+92, wwww] modules and an implementation of the analysis algorithms using
BDD-based algorithms for checking trace containment and trace equivalence. Another
alternative to evaluate is an encoding in the Promela language of the model checker
SPIN [Hol04]. It is important to note that besides a faithful representation of the
semantics of MAAts automata and component compositions an alternative solution also
requires the formulation of the analysis problems for MontiArcAutomaton specification
checks. The direct formulation of the analysis problems is one of the benefits of Mona.

276 Chapter 7. An Analysis Framework for Component Behavior

7.8. Related Work
In this section we discuss three kinds of related works. We briefly review related appli-
cations using the verification tool Mona. We then list some approaches that address the
analysis of Focus specifications by formalization of Focus’ semantics in various tools.
Finally, we discuss related verification approaches and languages.

7.8.1. Mona for Analyses of Focus Specifications and Automata

Our encoding of message streams is inspired by the encoding of message streams by
Schätz [Sch09]. Schätz describes the behavior of a software system and subsystem as
the composition of modular functions. These functions are formalized as predicates on
streams similar to the predicates we generate for components. Schätz also formalizes
function composition and refinement in Mona. Modular functions may represent tran-
sitions of automata but transition system completions as presented in our work are not
discussed. Different from our work the translation of models and specifications into
Mona is not automated.

Schätz and Pfaller [SP10b, SP10a] define component behavior using predicates in
Mona similar to our formalization. In addition they define a component test case as
a sequence of messages received and sent by a component. Schätz and Pfaller use
Mona to synthesize the test case for a composed component from a test case for one
of its subcomponents. We believe that this approach to test case definition and to
test case synthesis can directly be applied to our formalization of MontiArcAutomaton
components in Mona.

Hune and Sandholm [HS00] use Mona for the synthesis of controllers for Lego robots.
The synthesis approach has as input an implementation of the controller given as an
automaton and a specification that restricts the implementation. From these inputs
Mona computes a minimal deterministic automaton with behavior that satisfies the
specification. The work of Hune and Sandholm [HS00] focuses on synthesis while we
focus on verification. Their specifications are logic-based and not modeled as automata.
In contrast to our work the approach does not handle composed components but only
single automata. It would be interesting to combine this synthesis approach with our
translation of automata to logic formulas as input for the synthesis.

Klarlund et al. [KNS96a, KNS96b] have developed the programming language FIDO
with a translation of FIDO programs into Mona programs. The language is developed
for the specification of properties on recursive data structures, e.g., message streams.
In [KNS96b] the authors present a case study of the RPC-memory specification problem
proposed by Broy and Lamport [BL94].

7.8.2. Tool Support for the Verification of Focus Specifications

The AutoFOCUS tool [HSSS96, HS97, BHS99, HF07] for the specification and prototyp-
ing of distributed systems is based on the Focus method and offers graphical represen-
tations of modeling and specification artifacts. The behavior of components is modeled

7.8. Related Work 277

using state transition diagrams similar to MontiArcAutomaton models. To the best of
our knowledge none of the verification approaches developed for AutoFOCUS covers the
completions defined in [Rum96] and Section 6.4.

Huber et al. [HSE97] report on automated verification of the refinement of Auto-
FOCUS components described by state transition diagrams and a sequence diagram
notation using the model checkers SMV [BCM+92] and μ-cke [Bie97]. Similar to our
approach refinement is based on trace inclusion.

Recent works have formalized parts of Focus in the interactive theorem prover Is-
abelle [NPW02]. All of these works formalize notions of streams, components, component
composition, and refinement.

Spichkova [Spi07] formalized parts of Focus in Isabelle/HOL. System specifications
can either be translated manually or developed directly in Isabelle/HOL. The imple-
mentation covers timed streams and proposes also ways to handle time-synchronous
streams. Based on some of the results Trachtenhertz [Tra09] has formalized semantics
for the description techniques of AutoFOCUS in Isabelle/HOL. The framework focuses
on temporal specifications of functional properties. The work aims at supporting the
development process from design phase to an executable specification. As an industrial
case study an adaptive cruise control system is formalized.

Gajanovic and Rumpe [GR06, GR07] have presented an implementation of Focus
streams based on the logic Isabelle/HOLCF [Slo97, Huf12]. The logic Isabelle/AL-
ICE [GR07] formalizes discrete finite and infinite streams as well as infinite timed (event)
streams. The work has been extended by Krüger [Krü11] and Raco [Rac13] with case
studies and an implementation of stream bundles for the definition of stream processing
functions [RR11].

An interesting future work is the combination of partially automated proofs in the
interactive theorem prover Isabelle and fully automated methods such as Mona.

7.8.3. Related Verification Tools

The verification problems we solve with the techniques and implementation presented
in this chapter have many possible formalizations in related formalisms used in the
area of model checking [BK08]. Related formalisms are, e.g., the SMV specification lan-
guage [McM99] that allows the definition of modules for the SMV model checker [wwww].
SMV supports the definition of state machines, modules, and module compositions. The
composition of modules is similar to the composition of predicates in Mona used in our
formalization of component composition. Another language that allows the definition
of distributes processes similar to components in Focus is the Promela language of the
model checker SPIN [Hol04]. We believe that these are two candidate languages for
alternative formalizations of MontiArcAutomaton models.

In the context of classical model checking of labeled transition systems (LTS) our
notion of refinement corresponds to trace inclusion. A stronger notion of refinement is,
e.g., simulation [LS11, BK08]. A state s1 of an LTS simulates a state s2 of another
LTS if for every successor s′1 of s1 there is a successor of s2 that has the same label as

278 Chapter 7. An Analysis Framework for Component Behavior

s′1 and simulates s′1. As an extension of the presented analysis framework we consider
supporting also refinement checks based on simulation.

Chapter 8.

MontiArcAutomaton Code Generation

The modeling language MontiArcAutomaton allows the modeling of control components
and the composition of their structure and behavior to complex systems. In model-
based engineering, code generators turn models into executable code of a programming
language. To enable the development of interactive C&C systems and their execution,
we have developed a code generation framework for MontiArcAutomaton models. The
framework generates code for the deployment to robotic platforms.

The code generator takes as input MontiArcAutomaton models with automata that
conform to the MAAts language profile. It generates Java code that can be directly
deployed to a Lego robot. Specifically, the target platform used for demonstration and
evaluation purposes is the Lego Mindstorms NXT robotics framework [wwwm] with the
Java leJOS firmware [wwwh]. An important feature of the code generation for this target
is that the execution of the generated code is designed to be faithful to the semantics
introduced in Chapter 6.

The code generator is implemented using the MontiCore template-based code gener-
ation framework introduced by Schindler [Sch12]. We have reported on the code gen-
eration from MontiArcAutomaton models in [RRW13b]. The case study presented in
Section 8.4 has been published in [RRW13a].

Chapter outline and contributions

We start with an example for code generation in Section 8.1. Our main contribution
presented in this chapter consists of the development of a target platform and a code
generator for MontiArcAutomaton models explained in Section 8.2. Section 8.2.1 and
Section 8.2.2 contain preliminary information on the leJOS platform and the Monti-
Core code generator framework from [Sch12]. We present advanced features of our code
generation approach in Section 8.3 including the integration of manual component im-
plementations and a simulation of the generated code.

Section 8.4 reports on a case study conducted as a one-semester course for graduate
students using the MontiArcAutomaton code generator to develop a robotic coffee ser-
vice. We discuss the code generator and case study in Section 8.5 and point out related
work in Section 8.6.

280 Chapter 8. MontiArcAutomaton Code Generation

8.1. Code Generation Example
Consider a scenario where a team of engineers has developed a complete C&C archi-
tecture of the control unit of a bumper bot with an emergency stop button as shown
in Figure 8.1. Figure 8.2 shows the component type definition BumperBotEmergen-
cyStop for the control unit software.

���������������
������������������

��������	�����

����
�������������#�
�������	���#���������

�
��#����������������

Figure 8.1.: A depiction of the hardware of the bumper bot with an emergency stop
switch. The software C&C architecture for the device is shown in Figure 8.2.

The team has created automata implementations for the components BumpControl,
MotorStopper, and Arbiter<MotorCmd>. The components for reading sensor data
and managing actuators are available with native implementations for the robotics plat-
form the team is using. The component Timer is not available yet but one of the
engineers will create a manual implementation later. The timer measures system time
in milliseconds and can not be implemented as an automaton since it need access to
native APIs of system clock on the robotics platform.

An engineer configures the code generator project to use the Lego NXT leJOS library
with MontiArcAutomaton models for the components ToggleSensor, TouchSensor
and Motor. She then executes the code generator on the MontiArcAutomaton com-
ponent type definitions of the components shown in Figure 8.2. The code generator
generates Java classes for all components and marks the implementation of the compo-
nent Timer with the Java keyword abstract.

The leJOS API expert of the engineering team creates the required implementation
of the abstract class for the component Timer. The generated code of the abstract
class Timer already provides APIs for accessing the data on input ports and sending
the messages via output ports. The engineer simply implements a compute() method,
which is executed every time cycle.

The software implementation of the bumper bot is ready for deployment on the NXT
brick. In addition to the Java classes for the MontiArcAutomaton components the code
generator generates a main class that can be directly executed on the Lego NXT robot.

8.2. MontiArcAutomaton Java Code Generator 281

'�����'���������������
2
�����3

	����"	��������!'#�
�9�1�

�����������
"����������!��#

	����"	��������!�#�
�%���

������������
"����������!� #

����"GHH#

'����������

������I	������
J	�����������

'������������

�����������������

Figure 8.2.: The component type definition BumperBotEmergencyStop and its sub-
component type definitions of the bumper bot robot. This figure integrates
Figure 7.8 and Figure 7.10.

8.2. MontiArcAutomaton Java Code Generator
This section gives an overview of the code generated by the MontiArcAutomaton Java
code generator. We first introduce the Lego NXT target platform that we generate code
for and give an overview of template-based code generation for MontiCore languages
as introduced in [Sch12]. Section 8.2.3 explains the general structures for components,
ports, and variables in the generated code. The code generated for composed components
and ∗MAAts automata is described in Section 8.2.4 and Section 8.2.5.

8.2.1. The Lego Mindstorms NXT Platform and leJOS
The Lego Mindstorms NXT platform is a robotics platform introduced by Lego in 2006
replacing earlier Lego robotics platforms. Besides being a toy, the NXT platform is also
used in education and research projects [IKL+00, HS00, KA03, NBD09, KJ09].

The central processing unit of NXT robots is the Lego NXT brick shown in Figure 8.3.
The NXT brick has limited computing resources with an 32 Bit 48 MHz ARM processor
and 64 KB RAM [wwwj]. Each brick has three sockets to connect actuators and four
sockets to connect sensors. The sensors available with the standard education kit are
touch sensors, ultrasonic distance sensors, color sensors, and sound sensors. The available
actuators are servo motors and lamps [wwwj].

The leJOS project [wwwh] provides a firmware with a Java virtual machine for the
Lego NXT brick. Most of the java.lang and the java.system libraries are im-

282 Chapter 8. MontiArcAutomaton Code Generation

����� ����� ��� ��������

��� ����� ��� �������

(�'�����

Figure 8.3.: The Lego NXT brick with a 48 MHz processor and 64 KB RAM.

plemented for the NXT. The firmware and tools allow the programming of robotics
applications in the programming language Java and provide an application program-
ming interface (API) for the sensors and actuators available with the Lego NXT ed-
ucation package [wwwh]. One limitation of the leJOS Java implementation is the
lack of support for reflection [wwwh]. Due to this limitation, e.g., the Java imple-
mentation of the observer pattern [GHJV95] (classes java.util.Observable and
java.util.Observer) and support for annotations as, e.g., used by JUnit [wwwi]
are missing. Any implementation that uses reflection mechanisms cannot be linked for
the Java virtual machine of the NXT brick.

The MontiArcAutomaton Java code generator we have developed is based on the
leJOS project version 0.9.1-beta.

8.2.2. MontiCore Code Generation

The modeling language MontiArcAutomaton is a MontiCore [KRV10] language. Monti-
Core facilitates the development of domain-specific modeling languages by providing a
grammar for language definition and tools for parser generation and symbol table man-
agement. MontiCore also provides a context conditions and code generation framework.

MontiCore languages, such as MontiArcAutomaton, are defined by context-free gram-
mars. To specify and check well-formedness rules not expressible in context-free gram-
mars, e.g., whether a variable is defined twice, MontiCore provides a compositional
Java-based context condition framework [Vö11]. As these context conditions often re-
quire information from other models (e.g., to determine whether an assignment violates
a type constraint), MontiCore also contains a compositional symbol table framework
[Vö11], to facilitate development of complex context conditions.

The component diagram in Figure 8.4 illustrates the components of the MontiCore
DSL framework: based on the MontiArcAutomaton grammar MontiCore generates a

8.2. MontiArcAutomaton Java Code Generator 283

����

����	
��
�
	�	
����

����	

���

������������
���
��
��
�

����	
���

�
����

�����������	

2���1���3

2���������3

2�������3

2����3
2����3

2����32����3

2����3

2����3

2���������3

������	

2����3

�������
����������

�����	
�
�	��

2����3

2����3

2����3 2���������3

2����3

���������	
�����

'���)*�	
�+���������

,����)*�	
�&��#�#��,��
������

Figure 8.4.: MontiCore uses the grammar to generate a parser for MontiArcAutomaton
models which creates the AST (see [Sch12]). The DSLTool uses the parser to
read models, which are validated by the context condition framework using
the symbol tables provided by the DSLTool. The DSLTool further may use
FreeMarker templates and template calculators to generate code from the
models based on the AST.

parser for MontiArcAutomaton models. The MontiCore DSLTool executes the parser
on a model and orchestrates the generation of symbol tables and the checking of context
conditions on the abstract syntax tree (AST) generated by the parser. All MontiArc-
Automaton context conditions are documented in [RRW14]. After the validation of the
AST the DSLTool invokes the FreeMarker [wwwf] template engine for code generation.

The code generation framework of MontiCore extends the Java-based template engine
FreeMarker with calculators and MontiCore specific APIs [Sch12]. The templates of the
MontiArcAutomaton Java code generator consist of Java code and FreeMarker control
directives. The templates have direct access to the contents of the MontiArcAutomaton
AST and are typically organized along the AST structure. For complex computations
and operations that require information from other models, the templates invoke tem-
plate calculators. Template calculators are written in Java and may resolve information
about related models via the MontiCore symbol table framework. For example, to gen-
erate code for ∗MAAts automata transitions, a calculator uses the symbol table to look
up port types defined in UML/P class diagrams.

284 Chapter 8. MontiArcAutomaton Code Generation

8.2.3. MontiArcAutomaton Components, Ports, and Variables in Java

The MontiArcAutomaton Java code generator takes as input a set of MontiArcAuto-
maton component type definitions and generates a set of Java files. The code generator
is specific to the MAAts profile for time-synchronous communication and the target
language Java. One requirement for the development of the code generator was preserv-
ing the composition mechanisms of the modeling language MontiArcAutomaton. The
code generated for a component should be independent of the use of the component.
This enables incremental code generation and the packaging of generated component
implementations in component libraries.

For every component type definition the code generator generates a Java class that
represents the component. Figure 8.5 shows the interface Component that the class
generated for a component type definition implements. The interface allows a uniform
handling of components and contains four methods that every component is required to
implement. The methods setUp() and init() are called only once for the instantia-
tion of the component. The methods compute() and update() are called in compute
and update cycles during the execution of the modeled system.

����I�J

���������&����
����*�&����

������������&����"#
$�
����7�*�&����"��$��#
$�
���
���"#

���������

$�
������"#
$�
���"#
$�
��������"#
$�
���
���"#

2����1���3 &������I�J

���������&����
����*�&����

������������&����"#
$�
����7�*�&����"��$��#
$�
���
���"#

��

Figure 8.5.: The interface Component that allows uniform handling of components and
the generic classes Port<T> for component ports and Variable<T> for
local variables of components.

The class Port<T> shown in Figure 8.5 represents MontiArcAutomaton ports in the
generated Java code. The generic class is parametrized with the Java or UML/P [Rum11,
Sch12] type of a MontiArcAutomaton port. The Java port implementation is specific
to the time-synchronous semantics of the MAAts language profile. Because of strongly
causal time-synchronous communication, messages are only required to be buffered for
one time slice. The class Variable<T> shown in Figure 8.5 represents MontiArcAuto-
maton variables in the generated Java code. Similar to ports the values of variables
depend on the current time slice and are thus buffered.

The types of the ports and variables in MontiArcAutomaton models may be native
Java types or types defined in UML/P class diagrams. As part of the code generation
process the MontiArcAutomaton code generator uses the UML/P class diagram code
generator presented in [Sch12] to generate Java implementations of UML/P types.

The execution of the generated Java implementations of MontiArcAutomaton compo-

8.2. MontiArcAutomaton Java Code Generator 285

nents has two phases that are continuously executed. First, the compute() methods
of all components are executed. The components read their input and compute their
output for the next time cycle. Second, the update() methods of all component are
executed and the values on all ports and of all variables are updated to the values for
the next time cycle. This division of the execution cycle into a compute and an update
phase has the benefit that the order of the execution of the components does not matter
for the data available on output ports and local variables. During each computation
cycle all values on output ports are fixed until they are replaced in the update phase.
The sending and buffering of copies of messages transmitted between the components
in a single Java virtual machine is thus not required. This allows us to save valuable
resources on the Java virtual machine of the NXT brick.

It is enough if the source port of a connector provides the message for all receiving
ports. Figure 8.6 illustrates all instances of ports necessary for the communication of the
components of the bumper bot when the component BumperBotEmergencyStop is
deployed on the NXT brick. Only nine of the total 25 ports are instantiated at runtime.
The connected ports only have references to the port instances.

'�����'���������������
2
�����3

	����"	��������!'#�
�9�1�

�����������
"����������!��#

	����"	��������!�#�
�%���

������������
"����������!� #

����

'����������

������	������
	�����������

'������������

������� �1 ����I�J��� ������
��1������ �� ������� �� ������

�����������������

Figure 8.6.: Illustration of the necessary instances of ports (9 of 25 ports) at the runtime
of the generated Java code. The dashed ports are only references to port
instances.

The MontiArcAutomaton Java code generator distinguishes between the code gener-
ated for composed component types (see Section 8.2.4), the code generated for atomic
components with automata implementations (see Section 8.2.5), and the code generated
for atomic components that have manual implementations (see Section 8.3.1).

286 Chapter 8. MontiArcAutomaton Code Generation

8.2.4. Code Generation for Composed Component Types

For every composed component type the Java code generator produces a class with the
name of the component, e.g., BumpControlES, that implements the interface Com-
ponent. The class contains private fields for all input and output ports of the com-
ponent. For each input port the code generator generates a public mutator method,
e.g., setPort_bump(Port<Boolean> p), to set the instance of the port for the
component. For each output port the code generator creates an accessor method, e.g.,
getPort_lMot(), to retrieve the instance of the port. In addition, the code generator
creates a private field in the class for every subcomponent. An example of the gener-
ated members of the class BumpControlES for the MontiArcAutomaton component
BumpControlES is shown in Figure 8.7.

���������
2����1���3

'������������

.�$�
��������<������"����I'������J�������#

.�$�
��������<����"����I'������J�����#

.�$�
��������<��"����I���������J���#

.�����I	������
J��������<�	��"#

.�����I	������
J��������<�	��"#

.�����I������
J��������<��"#

) 	����������� ������������
) '���������� �����������
) ������I	������
J�������

'������������:������

.�'������������ ������"#
K�'������������
�������"#
.�$�
����4�������"

'������������:������ �������#

) '������������:������ �������

2����������3

>

��

Figure 8.7.: The Java classes BumpControlES and BumpControlESFactory gen-
erated for the MontiArcAutomaton composed component type definition
BumpControlES shown in Figure 8.2.

The code generated for composed components is complete. The component can be
used as is without further requirements for manual implementation. The methods
setUp(), init(), compute(), and update() are all implemented.

For every component the code generator creates a factory that implements a factory
pattern [GHJV95]. The factory class generated for the component BumpControlES is
shown in Figure 8.7. The creation of objects of the type BumpControlES is handled
by the static method create() of the factory. The generated factory provides a de-
fault creation of BumpControlES instances via its method doCreate(). To allow the
replacement of the factory with another instance, the factory provides a static method
setInstance with a parameter for the instance of the alternative factory implemen-
tation. The use of factories for all component instances allows the easy replacement of

8.2. MontiArcAutomaton Java Code Generator 287

component implementations, e.g., for testing and simulation as described in Section 8.3.3.

Execution phases of composed components

The execution of composed components starts with a setup and initialization of the
structure of the component using the methods setUp() and init(). The system then
repeatedly executes the compute() and update() methods.

setUp() The composed component instantiates all of its subcomponents with instances
provided from the subcomponent’s factories. It then calls the setUp() methods
of its subcomponents. Finally, the composed component establishes all child-to-
parent connectors by creating a reference of its output ports to the output ports
of the subcomponent instances.

After the execution of the setUp() method all output port fields of the composed
component hold references to port instances.

init() The composed component establishes all parent-to-child and all child-to-child con-
nectors between its subcomponents by setting a reference to the source port from
all target ports. The composed component finally executes the init() methods
of all of its subcomponents.

After the execution of the init() method, all connectors of the composed com-
ponent and its subcomponents are established.

compute() The composed component calls the compute() methods of each of its sub-
components.

update() The composed component calls the update() methods of each of its sub-
components.

Setting up the connectors of composed components is separated. After the execution
of the method setUp() output ports of the component and all of its subcomponents
have references to instances of ports, while the input ports of composed components
are still null references. The execution of the init() method first establishes the
remaining connectors on the level of the composed component before initializing the
subcomponents. Thus, when the init() method of a subcomponent is executed all
input ports of the component have references to port instances.

8.2.5. Code Generation for ∗MAAts Automata

For every atomic component with a ∗MAAts automaton implementation the Java code
generator produces one Java class with the name of the component implementing the
interface Component shown in Figure 8.5 and a factory for the creation of instance of
the class.

288 Chapter 8. MontiArcAutomaton Code Generation

The generated class contains private fields for all input and output ports of the compo-
nent and mutator and accessor methods as in the case of composed components. Thus,
the composition of components is the same for composed and atomic components.

For each local variable of the component the code generator generates an attribute of
the type Variable<T> where T is the type of the variable. An enumeration State of
the states of the automaton is generated inside the class that represents the component.
The current state of the automaton is stored in an attribute state of the class.

The code generator implements all methods required by the interface Component.
We describe the purpose of the generated methods in the robots execution phases below
before we focus on the generation of the compute() method.

Execution phases of atomic components

The execution of atomic components starts with setup and initialization of the compo-
nent. The system then repeatedly executes the compute() and update() methods.

setUp() The atomic component instantiates all of its output ports.

init() The component sets the initial state, the initial variable assignment for all vari-
ables, and the initial output values on all output ports.

The generated init() method sets the field currentValue of the variables and
ports to make the values immediately available.

compute() Depending on the current value of the variable state, the component de-
termines the first enabled transition that matches the values of the local variables
and the inputs. The component executes the transition by setting the value of
the attribute state, the nextValue attributes of the output ports, and the
nextValue attributes of the variables.

update() The component calls the update() methods of each of its variables and ports.

Of these methods we focus on the generation of the Java code for the compute()
method. It is the most important method to implement the strongly causal time-
synchronous semantics of ∗MAAts automata. Consider the example of the MontiArc-
Automaton component BumpControl shown in Figure 6.3. From the ∗MAAts automa-
ton inside the component the code generator generates the Java compute() method
shown in Listing 8.8. The code in Listing 8.8 has been slightly modified to improve
presentation, e.g., by removing checks for null values from the conditions of the if
statements.

For every transition (ssrc, φ, i⃗, v⃗, stgt, o⃗, a⃗) ∈ δ of the ∗MAAts automaton of the compo-
nent BumpControl one if statement is generated in the compute() method shown
in Listing 8.8. The condition of the if statement is a conjunction that checks the
satisfaction of the elements ssrc, φ, i⃗, and v⃗.

8.2. MontiArcAutomaton Java Code Generator 289

Java

1 public void compute() {
2 if (state == State.idle && bump.currentValue == true) {
3 rMot.nextValue = MotorCmd.FORWARD;
4 lMot.nextValue = MotorCmd.FORWARD;
5 state = State.driving;
6 }
7 else if (state == State.driving && bump.currentValue == true) {
8 rMot.nextValue = MotorCmd.BACKWARD;
9 lMot.nextValue = MotorCmd.BACKWARD;

10 tc.nextValue = TimerCmd.DOUBLE_DELAY;
11 state = State.backing;
12 }
13 else if (state == State.backing &&
14 ts.currentValue == TimerSignal.ALERT) {
15 rMot.nextValue = MotorCmd.FORWARD;
16 tc.nextValue = TimerCmd.DELAY;
17 state = State.turning;
18 }
19 else if (state == State.turning &&
20 ts.currentValue == TimerSignal.ALERT) {
21 lMot.nextValue = MotorCmd.FORWARD;
22 state = State.driving;
23 }
24 }

Listing 8.8: The generated compute() method of the component BumpControl shown
in Figure 6.3.

For each transition, the first conjunct in the if statement checks that the current
state state of the automaton corresponds to the source state ssrc of the transition.
Next, a translation of the guard φ into a Java expression is evaluated. The following
conjuncts check the values on all input ports p ∈ cmp.CPortsIN , if an expected input i⃗p

is defined (⃗ip ≠ ∗). Finally, conjuncts are added for all variables var ∈ cmp.CV ars, if an
expected variable value v⃗var is defined (v⃗var ≠ ∗).

The generation of the if statement implements the reference removal from Defini-
tion 6.22 and the enabledness expansion from Definition 6.24. Reference removal is
implemented by directly referencing the currentValue Java attribute of the element
referenced in the ∗MAAts automaton. Enabledness expansion is implemented by admit-
ting all possible values for inputs and variable values set to ∗.

If a transition is enabled the generated condition of the if statement is satisfied
and the compute() methods executes the body of the statement. The body of the
statement is generated from the elements o⃗, a⃗, and stgt of the transition. For every
output port p ∈ cmp.CPortsOUT with o⃗p ≠ ∗ the value or referenced value o⃗p is assigned
to the attribute nextValue of the Java representation of the output port p. Similarly,

290 Chapter 8. MontiArcAutomaton Code Generation

for every variable var ∈ cmp.CV ars with an assignment a⃗var ≠ ∗ the value or referenced
value is assigned to the attribute nextValue of the Java representation of the variable
var. Finally, the target state is set by an assignment of the value stgt to the attribute
state of the generated class.

The assignment of the values o⃗p from the example of the component BumpControl is
shown in the generated Java code in Listing 8.8. Please note that in lines 8-10 values for
all three output ports of the component are assigned. In the body of the if statement
in lines 19-23, only the output on the port lMot is set since no other values are specified
on the corresponding transition as shown in Figure 6.3.

An example for the result of the implementation of reference removal as defined in Def-
inition 6.22 is shown in Listing 8.9. The listing shows the compute() method generated
for the component Arbiter<T> which is similar to the component ArbiterMotorCmd
shown in Figure 7.11. The outputs on the ports outLeft and outRight reference the
input port pairs in1Left, in1Right and in2Left, in2Right. The translation of
the references is shown in Listing 8.9 lines 3-4 and lines 8-9.

Java

1 public void compute() {
2 if (state == State.arbiting && mode.currentValue == true) {
3 outLeft.nextValue = in1Left.currentValue;
4 outRight.nextValue = in1Right.currentValue;
5 state = State.arbiting;
6 }
7 else if (state == State.arbiting && mode.currentValue == false) {
8 outLeft.nextValue = in2Left.currentValue;
9 outRight.nextValue = in2Right.currentValue;

10 state = State.arbiting;
11 }
12 }

Listing 8.9: The generated compute() method of the component Arbiter<T> which
is similar to ArbiterMotorCmd from Figure 7.11 but parametrized with
the type T.

Together with the update() methods of variables and ports this strategy implements
Definition 6.25, Item 2 of + completion. The update() method of the class Port<T>
replaces the value currentValue with the value nextValue and sets nextValue
to null which represents + in the Java implementation. If the value of an entity is
not set in the body of the generated if statement its nextValue attribute remains
null. An execution of the update() method of the class Port<T> propagates the
null reference to the attribute currentValue. The update() method of the class
Variable<T> replaces the value currentValue with the value nextValue unless
nextValue is null. In all cases nextValue is set to null. If a next value is not set,
the value of the variable is preserved.

8.3. Advanced Code Generator Features 291

The generated code also implements Definition 6.25, Item 3 of + completion. In case
no transition is enabled, none of the bodies of the if statements are executed. The
component thus remains in its current state. The execution of the update() method
executes the update() methods of the ports and variables and thus sets all outputs to
null and preserves variable values.

Every execution of the compute() method executes at most one transition of the
automaton. This is ensured by connecting the if statements with else in the generated
code, e.g., in Listing 8.8, ll. 7, 13, 19. This implementation resolves nondeterminism by
executing the first enabled transition.

8.3. Advanced Code Generator Features
This section explains some of the advanced features supported by the MontiArcAuto-
maton Java code generator. We explain how to use MontiArcAutomaton components
with manual implementations and the code that is generated for deployment of a compo-
nent on the NXT brick. We also report on a preliminary experiment with a Java based
simulator for executing the generated code without a Lego NXT robot.

8.3.1. Code Generation for Manually Implemented Components

Some MontiArcAutomaton components of the C&C architecture of robotic systems re-
quire access to low level platform APIs not available in the modeling language MontiArc-
Automaton. Examples for these components are wrappers for sensors and actuators as,
e.g., the components TouchSensor or Motor of the example robot shown in Figure 8.2.
Another example is the parametrized component Timer[long delay] that accesses
the system clock to measure time. The code generator can not generate a complete
implementation for these components. It thus provides a mechanism to add manual
implementations in the target language Java.

The parametrized component Timer[long delay] can be instantiated with a pa-
rameter delay of the type long. In the example of the bumper bot shown in Figure 8.2
it is instantiated as Timer(500) to alert after delays of 500 milliseconds. The Monti-
ArcAutomaton model of the component type definition Timer[long delay] is shown
in Listing 8.10.

For every atomic MontiArcAutomaton component without a ∗MAAts automaton im-
plementation, the Java code generator generates an abstract implementation with all
elements generated as described in Section 8.2.5 for ∗MAAts automata except for the
compute() method. These methods are left for implementation by the user. As for
all classes generated to represent MontiArcAutomaton components, again a factory is
generated. For components that require manual implementation, the method doCre-
ate() of the generated factory creates instances of a user provided class as shown in
Figure 8.11 for the example of the component Timer[long delay].

The manual implementation supplied by the user is expected to be in a Java pack-
age that corresponds to the package of the MontiArcAutomaton model. The name of

292 Chapter 8. MontiArcAutomaton Code Generation

MontiArcAutomaton

1 component Timer[long delay] {
2 port
3 in TimerCmd timerCmd,
4 out TimerSignal timerSignal;
5 }

Listing 8.10: The MontiArcAutomaton component type definition of the parametrized
component Timer[long delay] that requires a manual implementation
of the component behavior.

���������
2����1���3

2��������3�
����

.�$�
��������<��"����I����������
J���#

.�����I���������J��������<��"#

>

����:������

.������������"�����
����#
K������
�������"�����
����#
.�$�
����4�������"����:������ �������#

) ����:������ �������

2����������3
����4���

����4���"�����
����#
.�$�
��������"#

>

#�������	

���� �
���
��������>

>

��

Figure 8.11.: The classes Timer and TimerFactory generated for the component
parametrized Timer[long delay] from Listing 8.10 which requires a
manual implementation supplied in the class TimerImpl.

the manual implementation is the name of the component with the suffix Impl. The
example shown in Figure 8.11 also demonstrates how the Java code generator supports
parametrized components. The parameter delay, required by the component, is added
to the constructor of the component TimerImpl and to the method create(long
delay) of the factory.

The manual implementation of a component has to extend the abstract class generated
for the atomic MontiArcAutomaton component. The minimal manual implementation
required for a MontiArcAutomaton component is the compute() method. The code
generator already provides setUp(), init(), and update() methods that handle the
instantiation and management of ports and variables. For parametrized components as
the component Timer[long delay] a constructor has to be implemented that may
call the constructor of the parent. An excerpt of the manually implemented compute()
method of the class TimerImpl is shown in Listing 8.12.

8.3. Advanced Code Generator Features 293

Java

1 private long start;
2 private boolean set;
3 private TimerCmd lastCmd;
4

5 public void compute() {
6 if (tc.currentValue == TimerCmd.DELAY ||
7 tc.currentValue == TimerCmd.DOUBLE_DELAY) {
8 start = System.currentTimeMillis();
9 set = true;

10 lastCmd = tc.currentValue;
11 }
12 else if (tc.currentValue == TimerCmd.ABORT) {
13 set = false;
14 }
15

16 if (set && ((lastCmd == TimerCmd.DELAY &&
17 System.currentTimeMillis() - start > delay) ||
18 System.currentTimeMillis() - start > 2 * delay)) {
19 set = false;
20 ts.nextValue = TimerSignal.ALERT;
21 }
22 }

Listing 8.12: A manual implementation of the compute() method of the parametrized
component Timer[long delay].

Manually written code interacts with the API provided by our framework. In lines
6 and 7 of Listing 8.12 the manually written code reads the values received on the
input ports from the attribute tc of type Port<TimerCmd> that represents the input
port tc of the component Timer. Similarly, messages are sent by setting the attribute
nextValue of the output ports. An example of sending the message ALERT on the
output port ts of the Timer component is shown in line 20 of Listing 8.12. Manual
implementations may use variables defined in the MontiArcAutomaton component type
definition or introduce their own local variables as seen in lines 1-3 of Listing 8.12.

8.3.2. Code for Deployment

The MontiArcAutomaton Java code generator generates code for all component type
definitions in the input path of the code generator. To deploy the code generated for
a component to a Lego robot the component has to be marked with the stereotype
«deploy». In the example of the bumper bot with the emergency feature shown in Fig-
ure 8.2 the top component BumperBotEmergencyStop is marked with the stereotype
«deploy». The code generator generates the additional Java class DeployBumper-
BotEmergencyStop shown in Listing 8.13.

294 Chapter 8. MontiArcAutomaton Code Generation

Java

1 public class DeployBumperBotEmergencyStop {
2 public static void main(String[] args) {
3 Component cmp = BumperBotEmergencyStopFactory.create();
4 cmp.setUp();
5 cmp.init();
6 while (true) {
7 cmp.compute();
8 cmp.update();
9 }

10 }
11 }

Listing 8.13: The code generated for the deployment
of the component BumperBotEmergencyStop shown in Figure 8.2 on
the LeJOS platform.

The generated class has a main method that calls the factory for the composed com-
ponent BumperBotEmergencyStop to create an instance of the component. The code
for deployment then executes the methods setUp() and init() of the component
as shown in lines 4 and 5 of Listing 8.13. The deployment code starts an infinite loop
iterating the compute and update cycles of all components.

The generated classes for deployment can be compiled and linked by the leJOS Java
compiler and linker1. The leJOS compiler compiles Java files for the leJOS specific
implementations of the standard Java libraries. The leJOS linker packages the compiled
classes for the NXT brick. All classes required to execute a main class, e.g., the class
DeployBumperBotEmergencyStop from Listing 8.13, are packaged in one archive
that can be uploaded to the NXT brick.

8.3.3. Simulation Example
A robotics simulation environment allows the execution of the software of a robot with-
out depending on physical hardware. It is essential for a simulation to execute the same
code as deployed on the physical robot. To simulate and visualize the execution of the
code generated by our code generator we have experimented with the SimBad simula-
tor [HB06]. The SimBad simulator is written in Java and can execute Java code that
controls a mobile robot in a simulated three-dimensional world.

A SimBad simulation requires a three-dimensional environment that can be created
via SimBad APIs and an agent implemented in Java. An agent is an object in a three-
dimensional world that can be equipped with sensors. Agents periodically read their
sensors and can set their translational and rotational velocity. It is possible to simulate
multiple agents at once [HB06].

1See leJOS compiler and linker documentation: http://www.lejos.org/nxt/nxj/tutorial/
Preliminaries/CompileAndRun.htm (accessed 11/13).

8.4. Case Study: Robotic Coffee Service 295

To simulate the bumper bot from our example we have created a class that implements
a SimBad agent with a touch sensor. The agent instantiates the component BumperBot
as shown in Figure 8.14. For the instantiation of the component BumperBot it uses
the factory generated by the Java code generator. All subcomponents of the component
BumperBot are instantiated using their corresponding factories.

'�����'��
2
�����3

����

	����"	��������!'#��9�1�

�����������
"����������!��# 	����"	��������!�#��%���

'����������

��-.� �
���
����������������	�
�������
�������
���
��������

�����������������

��-.� �
���
����������������	�
�������
�������
���
��������

#�������	���	�������������	
�����
����������
�����

Figure 8.14.: The component BumperBot as instantiated in the SimBad simulator. The
NXT platform specific implementations of the sensors and actuators are
replaced by simulator specific implementations.

The factory mechanism allows the simulator to provide a custom factory for compo-
nent instances of the type TouchSensor and Motor. During simulation the simulator
periodically triggers the the agent that hosts the component BumperBot. The agent
reads the sensor values provided by the simulation and translates them into signals on
the bumper bot’s touch sensor. The commands received by the simulation specific motor
implementations are translated into the rotational and translational velocity of the robot.
The agent then executes the compute() and update() methods of the BumperBot
component instance. A visualization of the simulation is shown in Figure 8.15.

Our preliminary experiments with the SimBad simulator show that it is possible to
execute the generated for the Lego NXT robots in a simulation environment without
modifications. Necessary replacements of sensor and actuator component implementa-
tions are enabled by the factory pattern implemented in the generated code.

8.4. Case Study: Robotic Coffee Service

To evaluate the modeling language MontiArcAutomaton and our code generator, we held
a one-semester course on model-driven robotics software development. From the first
day of the course our students were working with the modeling language MontiArcAuto-
maton. The course was divided into three stages. During the first stage, a preparation

296 Chapter 8. MontiArcAutomaton Code Generation

Figure 8.15.: Simulation of a single bumper bot using the generated Java code from
MontiArcAutomaton models in the simulator SimBad [HB06].

phase before the start of the course, the students were assigned to prepare presentations
about the modeling languages, tooling, and infrastructure based on available documen-
tation. Aim of the second stage was to develop a robotic coffee service. In the third
stage, the students improved the MontiArcAutomaton tooling based on the experiences
from the second stage.

We conducted this course as a case study on the usage of model-driven engineering
in the robotics domain in general and on the benefits of using the MontiArcAutomaton
modeling language in particular. Using discussions, surveys and key figures from the
students’ development behavior, we tried to determine whether MontiArcAutomaton
can be applied for the development of robotic software and which tools are most essential
for successful model based development of robotic software.

Please note that we have only evaluated the modeling language MontiArcAutomaton
and model-based development using the MontiArcAutomaton Java code generator. In
this case study, the students have not applied the specification, synthesis, and analysis
techniques presented in previous chapters.

Section 8.4.1 explains the course structure, background, and aims. Section 8.4.2 re-
ports on the project results of stage two. Afterwards, Section 8.4.3 describes the results
of our survey, discussions with the students, and key figures of their development behav-
ior.

8.4. Case Study: Robotic Coffee Service 297

8.4.1. Project Description
During our course, the eight participating master level students learned model-driven
engineering, development of robot control software, agile development using Scrum, and
development of modeling tools. The students were evaluated weekly based on their
reports and developed artifacts.

The course was divided into three stages: During stage one (nine weeks), the eight
participants prepared presentations on technologies and practices, e.g., Scrum [SB01],
JUnit [wwwi], MontiCore [KRV10], and MontiArcAutomaton, to be applied during de-
velopment. In stage two (six weeks) the students developed a system of robots able to
provide a coffee service using Lego Mindstorms robots. The robots development stage
ended with a presentation of the working system2. Afterwards, we surveyed the stu-
dents on their modeling experiences during the development stage. In the third state
(ten weeks), the students were assigned to improve the MontiArcAutomaton tooling
based on their answers from the survey and discussions.

During the latter two stages, the team was led by a student Scrum Master and a
student Product Owner. We enacted the Scrum roles Customer and User to provide
requirements and feature decisions. We participated in weekly sprint meetings to plan
the next sprint and review the previous one. Due to the participants schedules, the
development team was unable to have daily Scrum meetings. Weekly participation was
mandatory to pass the class.

Goals

The goals of our study are to (1) determine whether MontiArcAutomaton can be applied
for the development of robotic control software, (2) which tools are most essential for
successful model-based development of robotic software. More specifically, we want to
determine (1a) whether the decomposition of a robotic system can be adequately modeled
using MontiArcAutomaton and whether (1b) the control logic and behavior of compo-
nents can be adequately modeled using the I/Oω automata paradigm [Rum96, RRW12]
with time-synchronous communication. We also wanted to find out (2a) whether the
existing tools for code generation and context condition checks were missing any fea-
tures and (2b) which tools were missing for effective and efficient development of robotic
software.

Students and background

All of the participating students had selected our course as first choice out of three
choices. All but one student had previously attended the lecture Software Engineering
with a basic introduction of model-based software development. Five of the students had
attended the lecture Model-Based Software Engineering on UML and other modeling lan-
guages. Two of the students had attended the lecture Generative Software Engineering
on DSL and code generator development using MontiCore. Three of the students had

2See the video at http://www.se-rwth.de/materials/ioomega/#RoboticsLab

298 Chapter 8. MontiArcAutomaton Code Generation

experience with the Lego NXT platform. Two of the students are professional mathemat-
ical technical software engineers and have programming experience from industry jobs.
One of the students conducted his bachelor thesis using the MontiCore code generation
framework and the architecture description language MontiArc.

None of the students had experience with the modeling language MontiArcAutomaton
and the runtime framework developed for the Lego NXT robots. In the first stage of the
project each student was assigned a topic to prepare a presentation in front of the group.
The topics covered in the presentations were: development tools (SVN, JUnit), leJOS,
MontiCore (AST generation), MontiCore (language composition), MontiCore (code gen-
eration and templates), MontiArc, MontiArcAutomaton (language), and MontiArcAuto-
maton code generation. The slides of the talks presented by the participants of the case
study are available from [wwwt].

Available material

For the first stage of the course we supplied our students with technical reports, papers,
and presentations about the technology and tools to use. The materials included an
introduction to the modeling language MontiArcAutomaton as presented in Chapter 6
and a draft of the MontiArcAutomaton technical report [RRW14].

For the second stage the students were supplied with two Lego NXT education kits and
additional four regular Lego NXT sets. The NXTs were running Java using the leJOS
firmware [wwwh]. We provided the code generator for MontiArcAutomaton models to
Java code and a runtime environment with a library of platform specific components for
the NXT leJOS platform described in Section 8.2. The students were using services of
the SSELab [HKR12] that include a wiki, a bug tracking system, a mailing list, and an
SVN repository to collaborate.

Task and user stories

The task of the students in the development stage (second stage) was to develop a system
of autonomous robots that is able to receive coffee orders and deliver coffee to different
offices and places. The initial task was described in 10 user stories:

1. As coffee drinkers, we want to instruct the robot to bring us fresh coffee.
2. As cleaning personnel, we do not want our cleaning cart to be knocked down by

the robot.
3. As employees of the department, we do not want the robot to drive around mean-

ingless in our offices.
4. As coffee drinkers, we want the robot to be able to fetch coffee with sugar.
5. As coffee drinkers, we want the robot to be able to fetch coffee with milk.
6. As robot owners, we do not want the robot to fall down stairs.
7. As impatient people, we want the robot to signal us, if it is waiting at a closed

door.

8.4. Case Study: Robotic Coffee Service 299

8. As cleaning personnel, we want the robot to leave the coffee machine as clean as
it found it.

9. As coffee machine owners, we want the robot not to operate the coffee machine
when there is no water.

10. As agile scientists, we want the robot to deliver coffee to the following places:
rooms 4304, 4312, 4315, and the sofa in the hall.

We gave no explicit orders on the number of robots to develop and many of the design
and implementation decisions were left open, e.g., the implementation of ordering a coffee
via a robot, web browser, or smart phone. Following Scrum practice the requirements
were elicited, refined, and discussed in regular meetings.

Analysis procedure

Our analysis of the project is based on informal discussions with our students, results of a
questionnaire, and statistics of their development behavior based on the version control
system. In weekly meetings we had discussions about problems encountered during
each previous sprint. We documented these discussions, which contained technical or
organizational problems of the team, as informal notes. After the development stage
and the presentation of the running system we discussed the deficiencies of the existing
tools and the necessary improvements and additional tools to be created.

To capture the subjective evaluation of our students we created a questionnaire filled
out after the development stage. The questionnaire contains 14 questions about the
efforts spent on learning and development, about the confidence in the models and
implementations, about the effort of fixing bugs and the amount of testing.

To complement the results of the survey, we also studied the students’ development
behavior. Therefore we identified several interesting key figures and monitored these
from October 21 to November 17 at a three days sampling rate. The key figures identi-
fied are number of architecture changes in composed components, behavior changes in
∗MAAts automata, and changes in Java files as well as the total number of composed
and automaton components and number of components with Java implementations.

We furthermore counted for each project the number of components that were de-
fined and instantiated within this project and the number of components from a library
or runtime environment that were instantiated within this project in the final robot
implementations.

8.4.2. Project Results
The students solved the second stage by implementing a system of three cooperating
robots that receive a coffee order via a website, pick up a mug, fetch coffee, and deliver
it to the person having placed the order. The system consists of a mug provider robot,
a coffee preparation robot, and a coffee delivery robot as depicted in Figure 8.16. The
coffee preparation robot is connected to an Android cellphone via Bluetooth, which hosts
the coffee service website. After a user requests a coffee via the website, this issue is

300 Chapter 8. MontiArcAutomaton Code Generation

forwarded to the coffee preparation robot, which informs the coffee delivery robot to
pick up a cup, fetch coffee, and deliver it to the user.

�������	�������������

������������������������

#������	��������

Figure 8.16.: The coffee service at work. A coffee request triggered the coffee service
robot to pick up a mug and proceed to fetch coffee. A video is available
from our website [wwwt].

Structure and behavior of all robots were modeled using MontiArcAutomaton. From
these models, Java implementations were generated with the code generator we provided.
The application models interface the robot using library components wrapping respective
parts of the leJOS API.

The coffee delivery robot consists of ten component type definitions. Four of these
contain automata and four others are composed. The remaining two components have
Java implementations. The robot further reuses 15 components from the library, e.g.,
wrappers for hardware sensors and actuators.

Figure 8.17 shows the composed component NavigationUnit implementing the
navigation of the robot. The component NavigationController for example deter-
mines the robot’s next actions using an automaton. The inputs that the automaton reads
come from several components wrapping access to the NXT’s buttons Button(1), But-
ton(2), and Button(3), and augmented readings from two color sensors (component
instances csl and csr of type ColorSensor). The automaton inside the component
NavigationController has eleven states and 41 transitions. The component Dif-
ferentialPilot is implemented in Java and uses a part of the leJOS framework to
move the robot.

8.4. Case Study: Robotic Coffee Service 301

7�$��������

�����=��������� �
�

�����=��������� �
�

'�����" #���

'�����"�#������

'�����"C#���

=11�����������

F����
=��
������������� ���

����������� ���

%�����
7�$�����
����������

�����������������

Figure 8.17.: Structure of the composed component NavigationUnit.

8.4.3. Analysis and Interpretation

Our analysis covers results from weekly discussions with all students, model changes
from version control, and a survey.

Results from weekly discussions

In weekly meetings, we conducted regular discussions with the students about the issues
at hand. During the development stage, the students had problems structuring the
development tasks which yielded claims for better communication and for a dedicated
system architect administering interface changes of MontiArcAutomaton components.
Due to the lack of arrangement, the Bluetooth communication was implemented three
times: first, as a detailed design document, second, as a deviating implementation,
communicating complex data structures not suitable for MontiArcAutomaton, and third,
as another deviating implementation, communicating enumeration types.

Similarly, the initially developed and agreed upon architecture of the team was dis-
missed unused. Another important issue was the lack of tool support to facilitate de-
velopment. The students claimed that editor support (e.g., model completion, context
conditions) is crucial to efficient model-driven engineering and thus created a text editor
with these features in the third project stage. Other technological issues expressed were
the parallel development of both software and hardware and the manual deployment of
components to platforms.

302 Chapter 8. MontiArcAutomaton Code Generation

Regarding MontiArcAutomaton, our students had initial problems to restrict compo-
nent communication to simple message passing using automata. On the other hand,
they did not miss language features like hierarchical states in MontiArcAutomaton au-
tomata. This supposedly is due to the existence of composed components, which allow
similar decomposition mechanisms using subcomponents. Please note that seven stu-
dents attended the lecture Software Engineering teaching basic concepts of Statecharts
while five students in addition attended the lecture Model-Based Software Engineering
with exercises on more complex features, e.g., history states or entry actions. We are
not aware of Statechart modeling experience of the students beyond these lectures.

On a less technical note, the students mentioned that Scrum may be suboptimal
when the semester schedule prohibits daily Scrum meetings. Unfortunately, this issue
was beyond our control. While the discussions mostly addressed process issues, the
questionnaire focused on the effort required to model robot control software using Monti-
ArcAutomaton.

Results from the questionnaire

After the students finished the development stage with a presentation of the running
system, we conducted a survey using the questionnaire available on the MontiArcAuto-
maton website [wwwt]. We asked the students 14 questions on their development efforts,
problems, confidence in the artifacts, and testing behavior. We handed out eight ques-
tionnaires and all eight were returned fully filled.

The results suggest that learning MontiArcAutomaton was a major effort during the
development stage of the course and that this effort can be eased by helpful develop-
ment tooling (e.g., editor support with early feedback). The students reported to have
implemented only two regression tests, but many manual tests of their systems.

First, we asked the students how much time they have spend learning our technologies.
The results, displayed in Figure 8.18 (a), point out that learning the leJOS robot API
was significantly easier than learning the modeling language MontiArcAutomaton. We
believe this is partly due to the amount of available well-written documentation for
leJOS, many examples, and an active online community. Compared to this, information
on MontiArc and MontiArcAutomaton was only available from two technical reports,
one paper, and about 30 example models.

The second question of the questionnaire asked what percentage of the time the stu-
dents spent on using MontiArcAutomaton for modeling the structure of the system,
using MontiArcAutomaton for modeling component behavior, using Java for program-
ming component behavior in leJOS, and how much time they spent on the construction
of the robots. Figure 8.18 (b) shows, that the students spent most of their time modeling
the behavior of components, followed by the time spend to construct the actual Lego
robots. While the former did not surprise much, we learned from observations that it
was surprisingly hard for some students to construct useful Lego robots without building
instructions.

We asked the students to estimated the effort required to understand composed com-
ponent models, automaton models, and Java implementations on a scale from 1 (simple)

8.4. Case Study: Robotic Coffee Service 303

�
�
���!
�����
"��	�����
�����

#$%&'

��!
����
����	��(�#)*&'

+�����������������
#$-&'

�������
����	��(�#/:&'

������������
���
#;<&'

	��=�
#//&'

����������
����
#))&'#
'

#�'

Figure 8.18.: Fractions of the time spent on (a) learning the technologies and on (b)
creation of the three robots of the coffee system.

to 10 (almost impossible). The results displayed in Figure 8.19 (a) show that the stu-
dents found composed components as comprehensible as Java, which they had been
introduced to in their first semester. Automata were considered harder to understand.

While we expected similar results, we were surprised by the students’ feedback that the
effort for fixing bugs3 in composed component type definitions was assumed to be as high
as the effort for fixing bugs in automata (Figure 8.19 (b)). The students considered the
effort for fixing bugs in MontiArcAutomaton twice as high as the effort for fixing bugs in
Java artifacts. Discussions yielded the result that this is due to Java being taught from
the first semester and due to the lack of development tooling for MontiArcAutomaton
such as a debugger.

/

$

)

-

;

<

*

/

$

)

-

;

<

*#
'�����	�������>�?������
����(�����>
���

��������
���������

����	�

����
�
 �
�
�
"��	�����
�����

#
'�@>>����>���B����(��(�

��������
���������

����	�

����
�
 �
�
�
"��	�����
�����

Figure 8.19.: Efforts for understanding the different development artifacts and fixing
bugs as rated by the students on a scale from 1 (simple) to 10 (almost
impossible).

We also asked the students to estimate their confidence in the artifacts created by
them and their team members on a scale from 1 (no confidence) to 10 (works perfectly).
The answers are shown in Figure 8.20. While we found little difference between the
confidence in the artifacts created by students themselves or others, the students were
overall less confident in the automata than in the component and Java artifacts, which
follows from the assumed complexity of automata.

3Our broad definition of bug covers any incorrect or unexpected behavior of the software (sub-)system.

304 Chapter 8. MontiArcAutomaton Code Generation

��������
����������

���
����
�����

����
�

���
����
�����

�
�
�"��	D
���
����
�����

���������
����������

���
����
�����!���

����
�

���
����

�����!���

�
�
�"��	D
���
���

�����!���

;E;

<

<E;

*

*E; ���>��������������>
���

Figure 8.20.: Confidence in the correctness of different development artifacts as rated by
the students on a scale from 1 (no confidence) to 10 (works perfectly).

The students claimed to have used automata for 57.3% of the atomic components and
that they could have used automata to implement the behavior of up to 64.6% of the
components. Actually they modeled 12 of the 23 (= 52.2%) components with automata
and developed two components with Java implementations. If these would have been
modeled with automata too, they would have modeled the total of 60.1% components
with automata, which is close to their estimate. In conclusion, the students estimated,
that they could have modeled all behavior implementations with automata. Overall, the
results showed that learning a new modeling language poses the expected challenges and
is even harder if lacking tool support.

Results from the students’ development behavior

To complement the results of the questionnaire, we also monitored the students’ devel-
opment behavior as described in Section 8.4.1. We present several key figures.

For the three robot projects we have counted the numbers of MontiArcAutomaton
components implemented as pure models (automata and composed components) and
the number of components implemented in Java over time as shown in Figure 8.21. The
rise after six days was an initial version of the robots created by the students mainly
in Java. Another week later the components implemented as composed and automaton
components started to outgrow the Java implementations. Of the two remaining Java
implementations one is a value lookup component and the other one implements an
obstacle detection and classification. A review of the code suggests that both could be
implemented using automata with some additional effort. The development over time
indicates the learning curve of our students. Initially, they created the implementation in
Java and then switched to modeling all but two components using MontiArcAutomaton.

We have analyzed the changes of artifacts in the version control history of the stu-
dents’ projects. We distinguish between the library project with hardware wrappers

8.4. Case Study: Robotic Coffee Service 305

H

G

�H

�G

 H

 G

 �!��(� D!��(� L!��(� CH!��(� H !�7�$ HG!�7�$ HM!�7�$ ��!�7�$ �D!�7�$ �L!�7�$

��
��
	��
��

��
���

��
��

	
��

��
��
��
��
�

�

��
��
�

���
��������
	���������������������

8�$�
��
��

 �)������� D)�������� L)��������CH)��������)7�$�������G)7�$�����M)7�$������)7�$�����D)7�$�����L)7�$

Figure 8.21.: The total number of components implemented as Java implementations
and models.

implemented in Java and the three projects containing the robot control software.
The numbers of changes per artifact in the three robot projects are shown in Fig-

ure 8.22. Again we can see a difference from the beginning of development — with
equal or more changes per Java file — to the second part of development with many
more changes per model file. We see a peak of 2.4 changes per MontiArcAutomaton
model around November 8 before the scheduled final presentation of the robots. On
average and over the complete development time each MontiArcAutomaton model has
been changed 8.6 times and each Java file 4.8 times.

������������������������

#������	��������

H

H@G

�

�@G

 @G

 �!��(� D!��(� L!��(� CH!��(� H !�7�$ HG!�7�$ HM!�7�$ ��!�7�$ �D!�7�$ �L!�7�$

�
��
��
�

��
�

��
��
��
���
��

������������� ������������

8�$�
��
��

 �)���������� D)���������� L)����������CH)������������)7�$��������G)7�$���������M)7�$�������)7�$��������D)7�$��������L)7�$

Figure 8.22.: The changes over time per Java and model file of the implementations of
all three robots.

An interesting observation on the artifact changes in the library project is that models
were changed on average 0.3 times while each Java file was changed 4.5 times. This indi-
cates that component interfaces did not change much while component implementations
did.

306 Chapter 8. MontiArcAutomaton Code Generation

8.4.4. Threats to Validity
We performed this study on a single software project with a group of eight graduate
students. The students took part in this course to obtain a certificate and data was
gathered using discussions, a survey, and development figures. This setup yields threats
to the internal validity (causality) and to the external validity (generalizability) of this
study.

Threats to the internal validity stem from the students’ lack of previous experience
using MontiArcAutomaton. They had to learn and apply the MontiArcAutomaton lan-
guage before they could determine any benefits for modeling robotics software. Another
study, wherein the same group of students develops a new robot control software with
prior knowledge of MontiArcAutomaton could resolve this issue. Further threats to
causality follow from the instruments we chose to determine the students opinion on
modeling: Questionnaires are subject to several issues, e.g., the scales are understood
differently by participants, there are several well-known response biases, and the results
only reflect the participants self-perception.

Threats to generalizability ensue from the number of participating students and the
fact that the students were graded. While the first threat can be eliminated by future
experiments with a greater number of students, omitting grades is not feasible in the
setting of a university class.

8.5. Discussion
This section presents a discussion of the results of the case study and several advanced
features regarding MontiArcAutomaton code generation. We discuss the language ele-
ments supported by code generation and the relation between the code generation and
the analysis framework presented in Chapter 7. We also discuss future work to support
components that are only weakly and not strongly causal, and we discuss challenges in
component distribution.

8.5.1. Case Study Discussion
Modeling robot control software poses several challenges. In both discussions and survey,
the students pointed out that learning the ∗MAAts automaton part of MontiArcAuto-
maton was rather hard. On one hand one could expect that ∗MAAts automata with
their similarity to Mealy machines or UML Statecharts are easy to learn, on the other
hand, mastering a new language and paradigm for application development is never
easy. This problem was amplified due to the lack of tooling supporting the modeling
process. Despite these issues, the students developed 86% of the atomic components
using MontiArcAutomaton and believe that they could have modeled the remaining
atomic components also as automata instead of providing manual Java implementations.

MontiArcAutomaton is implemented as a MontiCore language, which allows to em-
bed arbitrary MontiCore behavior modeling languages into components. Thus, specific
modeling languages for common robotics problems may further ease robotics software

8.5. Discussion 307

development. We have reported on our plans for extending the modeling language Monti-
ArcAutomaton with robotics domain-specific languages in [RRW13c].

During the development stage, the students especially claimed that editor support
is crucial to efficient model-driven engineering. They therefore developed a text editor
with several features and integrated it into a graphical editor Eclipse plug-in for ∗MAAts

automata4. To facilitate deployment, they further developed a deployment language pro-
file of MontiArcAutomaton, which maps components to platforms and communication
technologies.

8.5.2. Supported Elements of MontiArcAutomaton and ∗MAAts Automata

The MontiArcAutomaton Java code generator supports all features supported by the
translation of MontiArcAutomaton into Mona presented in Chapter 7. This includes
component type definitions from Definition 6.8 and ∗MAAts automata from Defini-
tion 6.20 without the restrictions of the translation into Mona. The subset of ∗MAAts

automata from Definition 6.20 supported by our translation into Mona is fully supported
by the MontiArcAutomaton Java code generator. In addition, our code generator sup-
ports OCL/P guard predicates. The code generator also supports using types defined in
UML/P class diagrams and primitive types, such as, float, double, and int.

Additional features of the MontiArcAutomaton modeling language that are not con-
tained in Definition 6.8 of component type definitions are generic component types and
parametrized component types. The MontiArcAutomaton Java code generator supports
these language features by generating implementations that use similar concepts of the
Java programming language. Generic component types are translated into generic Java
classes and parametrized component types are translated into classes with factories that
require values for all parameters to construct component instances.

8.5.3. Verification and Code Generation

The MAAts language profile of MontiArcAutomaton has been developed in parallel with
the verification environment described in Chapter 7. After an initial MontiArcAuto-
maton verification prototype presented in [Kir11] we have started with the development
of the MontiArcAutomaton Java code generator. The code generator implements the
time-synchronous model of computation of MontiArcAutomaton components used in
Chapter 7. We consider it an important feature of our work to support the same seman-
tics for verification and code generation.

In early experiments with a prototype of the code generator used in the case study
we found out that some features were missing from the language profile of MontiArc-
Automaton that we had initially considered. Specifically, the preliminary language used
in [Kir11] did not have support for + values and + completion. This feature was added
to the modeling language and both the analysis and code generation prototypes. Other
missing features were local variables and guard predicates on transitions. We have added

4See the video at http://www.se-rwth.de/materials/ioomega/#Editor

308 Chapter 8. MontiArcAutomaton Code Generation

these features to the language profile as described in Chapter 6. The verification tool
prototype presented in Chapter 7 also supports local variables but not guard expressions.

In the current tool implementations, all of the features of the verification tool are
supported by the Java code generator. For the case study, the students were not using the
verification tool. The implementation of the robotic coffee service employs the following
features not supported by the verification prototype: ports of the Java types Integer
and Double, OCL/P guard predicates, e.g., for comparing distances measured by ultra
sonic sensors of the robots, and parametrized components, e.g., to provide initialization
parameters for the speed of motors.

8.5.4. Strong vs. Weak Causality and Scheduling

The MontiArcAutomaton code generator generates code for components that are strongly
causal. Strong causality is enforced by a computation and a separate update phase of all
components deployed on one robot. Outputs of the computation phase are only avail-
able to other components after the global update phase. The students participating in
the case study have not reported any difficulties with the delays introduced by strong
causality.

We have discussed an extension of the MontiArcAutomaton semantics to also support
weakly causal immediate processing of messages in Section 7.7.6. The composition of
only weakly causal components may lead to contradictions and unrealizable behavior.
The problem does not occur if every directed feedback cycle in a composition contains
at least one strongly causal component.

In this case, the communication dependencies between atomic components, limited to
one time slice, do not contain cycles. Thus, it is possible to compute a fixed schedul-
ing of the atomic components and adapt our code generator to support weakly causal
components.

8.5.5. Component Distribution

In many cases component and connector architectures are not only logically decomposed
but also physically distributed to different processing units. The system developed in
the case study described in Section 8.4 consists of four interacting devices: a cell phone
to place coffee orders, a robot operating a coffee machine, a robot operating a cup
dispenser, and a mobile robot that delivers coffee. The cell phone and the three robots
communicate via Bluetooth connections.

The top level component type definitions for the deployment of the coffee preparing
robot and the cup dispenser robot are shown in Figure 8.23. The two robots communicate
via a their subcomponents of type PrepCommunication and Communication. These
components wrap access to the Bluetooth interfaces of the respective NXT bricks. A
message sent by the component CommandController of the coffee preparing robot
is received by the component PrepCommunication and sent to the cup dispenser
robot via Bluetooth. The component Communication of the cup dispenser queries the

8.5. Discussion 309

Bluetooth interface in every execution cycle. Once it receives the messages it forwards
it on a corresponding output port to the component CupDispenserControl.

��11����������%����
2
�����3

��������������� ������
����������

�����������������

'������������

�

��

����

���=�������'��
2
�����3

����������� ���=��������������
	����"	��������!�#

���������������

"�#

"�#

��
������������'����������

�������� �����������������

Figure 8.23.: The top level decomposition of (a) the coffee preparing robot and (b) the
cup dispenser robot. The interaction between the robots is realized via
the components PrepCommunication and Communication that pro-
vide access to the Bluetooth interface of the NXT brick.

The communication between the robots is not modeled in a way accessible for formal
analysis. The Bluetooth communication interface is used similarly to an actuator that
manipulates the environment and a sensor that observes it.

As a future work we are investigating methods that make the communication explicit
by adding a special type of connectors representing Bluetooth communication between
ports of the deployed components. This will include a synchronization of the currently
independent computation and update cycles of the interacting robots.

8.5.6. Different Robotics Target Platforms
The code generation approach we have implemented is not limited to the educational
Lego Mindstorms NXT robotics platform. We have also developed a code generator for
industrial robotics platforms running the robot operating system (ROS) [QGC+09]. The
code generation for ROS generates Python code.

310 Chapter 8. MontiArcAutomaton Code Generation

The development of code generators for additional target platforms and different pro-
gramming languages is facilitated by the MontiCore code generation framework. Many
of the calculators we have developed for code generation are target agnostic. The Java
and the Python code generation have seven calculators in common and each only two
specific calculators [RRW13b].

We have reported on code generation from MontiArcAutomaton models to different
target platforms in [RRW13b]. The main challenges in supporting a new target platform
are (1) the development of an execution and scheduling mechanism that implements the
time-synchronous semantics and (2) the manual implementation of hardware specific
components using the native APIs of the target platform.

8.6. Related Work
The main goal of our code generator is to provide a model-based solution for the devel-
opment of interactive C&C systems. An important factor for a continuous development
process is the conformance of the execution of the generated code to the semantics of the
modeling language MontiArcAutomaton. This ensures that analysis results established
in previous development steps carry over to generated system implementations.

We discuss related code generators for state-based behavior modeling languages and
formalizations of the modeling languages’ semantics.

Many code generators are available for UML Statecharts [Obj12a]. Examples of
code generators that produce Java code are Rational Rhapsody [wwwg] and Visual
Paradigm [wwwab]. Ab Rahim and Whittle [RW10] have analyzed the conformance
of UML Statechart code generators to the semantics described in the UML specifica-
tion [Obj12a]. They have found that the Java code generated by Rational Rhapsody
and Visual Paradigm deviates from UML semantics. It might be possible to apply Ab
Rahim and Whittle’s approach to our code generator and validated the conformance of
the code generated from MontiArcAutomaton models.

Another modeling formalism related to MontiArcAutomaton is Matlab Simulink ex-
tended with Stateflow charts [wwwo]. A formal definition of the Stateflow semantics
semantics is, e.g., given in [HR07]. Matlab Simulink provides a block library to model
components of Lego NXT robots and a C code generator for the deployment and exe-
cution of Simulink models on Lego NXT robots [wwwk]. Similar to our code generator,
Simulink supports manual implementations of blocks in block diagrams. It is thus pos-
sible to provide C code for direct access to the Lego NXT’s APIs.

AutoFOCUS [BHS99, HF07] is a complete IDE with many graphical modeling lan-
guages for specification, implementation, testing, and deployment of reactive distributed
systems. AutoFOCUS’ semantics for automata is similar to the semantics of ∗MAAts

automata implemented in our MontiArcAutomaton Java code generator. Code genera-
tion from AutoFOCUS models is available for multiple target languages including C and
Java [HS97, HST10]. We are not aware of code generators from AutoFOCUS models to
robotic platforms or reports on case studies similar to ours.

Finally, MontiArcAutomaton is implemented as a MontiCore language, thus it fa-

8.6. Related Work 311

cilitates the embedding other behavior modeling languages and integration of other
MontiCore code generators [RRW13b, RRW13c]. These possibilities make MontiArc-
Automaton and extensible framework for the development of interactive C&C systems.

Chapter 9.

Summary and Conclusion

In this thesis, we have developed description techniques that allow crosscutting model-
based specifications of the structure and behavior of C&C systems. To enable efficient
and effective system design, we have presented analysis and synthesis methods support-
ing model-based development of interactive C&C systems.

In the next section, we will briefly summarize the main results of our work. We discuss
some of the limitations of the current results in Section 9.2 and suggest future work based
on our evaluation in Section 9.3. We conclude our contribution in Section 9.4.

9.1. Main Results

The goal of this thesis was to support the development and evolution of interactive
C&C systems. Our approach is based on domain-specific notations for modeling and
specifying the structure and behavior of C&C systems at different levels of abstraction.
We have introduced these notations to provide novel, model-based analysis and synthesis
methods that guarantee the correctness of implementations.

We specifically focused on a modeling language for partial knowledge of the structure
of C&C models and on a language for state-based component behavior modeling. Both
modeling languages have powerful mechanisms for abstraction and underspecification.
The specification mechanisms of these languages enable new approaches to document-
ing, analyzing, and synthesizing interactive C&C systems. We have formally defined
the respective analysis problems and provided prototype implementations that serve as
demonstrations for the feasibility of the new approaches.

Chapter 3 introduced a modeling language for C&C views. C&C views allow the
documentation of partial knowledge of the decomposition and connectivity of a C&C
system. C&C views offer powerful abstractions of ports, component hierarchy, and
connectors. A variability mechanism within the views language allows extensions of the
syntax and semantics of C&C views increasing the expressiveness of the language. The
corresponding verification problem, investigated in Chapter 4, is to determine whether
a given C&C model satisfies a C&C view. We have developed a polynomial verification
algorithm that determines satisfaction and computes witnesses that demonstrate the
reasons for verification results. The automated verification enables the development and
evolution of C&C models that satisfy crosscutting structural constraints documented in
C&C views. The generated witnesses support engineers in understanding verification

314 Chapter 9. Summary and Conclusion

results.
A C&C views specification is a propositional formula over views that specifies valid,

invalid, alternative, and dependent designs. We have shown in Chapter 5 that the prob-
lem of synthesizing a C&C model that satisfies a C&C views specification is NP-hard.
We solve it by a reduction to SAT via Alloy. Our prototype tool enables the synthesis
of C&C models from a set of crosscutting structural specifications that are correct by
construction. We have developed a synthesis implementation using a translation into
Alloy. Advanced features supported by our implementation are language extensions for
atomic and interface-complete components, library components, and support for archi-
tectural styles. This shows that synthesis from C&C views is not only feasible, but also
extensible to advanced features of architectural modeling.

We have presented the modeling language MontiArcAutomaton and a language pro-
file for ∗MAAts automata in Chapter 6. These automata provide underspecification
mechanisms for specifying behavior of components and component compositions. Chap-
ter 7 presented an analysis framework for component behavior based on a representation
of MontiArcAutomaton semantics in Mona. A specification language allows to define
MontiArcAutomaton specification checks that include behavior refinement and equality
of components. Our verification environment provides engineers with means to analyze
component behavior and verify behavior refinement from early specifications to compo-
nent implementations.

Finally, we have developed a code generator for a robotics platform that supports
code generation from MontiArcAutomaton models. Our code generator allows engineers
to directly deploy modeled interactive C&C systems on robotic hardware or in simula-
tion environments. It supports the integration of manually implemented components to
access a platform’s native APIs. The MontiArcAutomaton modeling language and our
code generator were evaluated in a case study conducted with graduate students. The
students developed a distributed robotic coffee service.

Our work provides modeling languages and prototype tool implementations supporting
the development of interactive C&C systems during various phases of system develop-
ment. This is achieved by providing mechanisms for expressing partial knowledge and
crosscutting concerns regarding the structure and behavior of these systems.

In a larger scope, this work is an example for the rigorous development of model-based
synthesis and analysis tools. The development of the four prototypes for C&C views ver-
ification, C&C views synthesis, MontiArcAutomaton component behavior verification,
and MontiArcAutomaton code generation has followed a structured approach:

1. identifying relevant structures and modeling languages of implementations,
2. developing suitable modeling languages to express specifications,
3. relating the semantics of the investigated models,
4. defining the analysis or synthesis problem,
5. developing a translation or algorithm to solve the problem, and
6. translating the results back into the problem domain.

9.2. Limitations 315

sin
gl

e
co

m
p.

in
st

.

m
ul

tip
le

co
m

p.
in

st
.

ge
ne

ric
co

m
p.

ty
pe

s

pa
ra

m
.

co
m

p.
ty

pe
s

po
rt

ty
pe

s

co
nn

ec
to

rs

lib
ra

ry
/m

an
ua

li
m

pl
.

Language: C&C models (Ch. 2) - - -
Language: C&C views (Ch. 3) - - -
Application: C&C views verification (Ch. 4) - - -
Application: C&C views synthesis (Ch. 5) - - -
Language: MontiArcAutomaton (Ch. 6)
Application: MAAts analysis (Ch. 7) - - a

Application: MAAts code generation (Ch. 8)
aThe port types supported by MAAts verification are UML/P enumerations and other finite types.

Table 9.1.: Overview of the concepts for modeling C&C systems supported () or not
supported (-) by the languages and applications presented in this thesis.

9.2. Limitations

We have examined some limitations of the introduced languages and prototypes in ded-
icated discussion sections of the chapters throughout this thesis. In this section, we
discuss limitations of our current work in the context of a system development process
based on the presented techniques. An integrated development process would ideally
combine all presented approaches from initial structural and behavioral specifications to
executable code. We highlight differences between the developed languages and tech-
niques that currently impose limitations on such a process.

The modeling languages and description techniques presented in this thesis differ in
the concepts for modeling C&C software architectures they support. The main language
concepts of C&C systems that we use for a comparison of the presented techniques
are component instantiation, component types, port types, connectors, and support for
library and manually implemented components. An overview of these concepts and their
support by the modeling languages and applications introduced in Chapters 2-8 is given
in Table 9.1.

The modeling language for C&C views presented in Chapter 3 is a specification lan-
guage for the structure of C&C models introduced in Chapter 2. C&C models represent
instances of C&C systems as hierarchically decomposed components with well-defined
interfaces communicating via connectors between the ports of components. The C&C
views verification problem and the C&C views synthesis problem are defined for C&C
views and C&C models. The developed techniques focus on component instances and not

316 Chapter 9. Summary and Conclusion

on component types and thus do naturally neither provide an instantiation mechanism
nor support generic and parametrized component types as shown in Table 9.1.

The modeling language MontiArcAutomaton introduced in Chapter 6 supports compo-
nent types and their instantiation. It also supports multiple instantiation of components,
generic component types, and parametrized component types. While all these features
are supported by the MontiArcAutomaton code generator introduced in Chapter 8,
generic and parametrized component types are not supported by the Mona verification
presented in Chapter 7, as indicated in Table 9.1 and discussed in Section 7.7.2.

The differences in the C&C modeling concepts supported by the techniques presented
in this thesis constrain a seamless integration. The set of supported concepts is nonethe-
less increasing from C&C views verification to MontiArcAutomaton code generation.
This does allow transitions from modeling the structure of C&C models to behavior
implementations using MontiArcAutomaton and to code executed on robots.

9.3. Recommendation for Future Research
In previous chapters we have suggested future work and experiments to extend and
evaluate the applicability of the developed techniques and to improve performance of the
analyses. We have suggested future research motivated by the results of our evaluation
and by related work in the discussion sections of each chapter.

One future work is extending the language for C&C views with additional abstrac-
tions, e.g., of component names, and with quantification over components and ports (see
Section 4.4.4). These extensions might be implemented using the existing variability
mechanism of C&C views. We consider it very important to balance the expressiveness
of the language with its intuitiveness, i.e., the ‘by example’ nature of C&C views.

An important future work on C&C views synthesis is handling unsatisfiable specifi-
cations. The attempt to synthesize a C&C model for a C&C views specification might
have different reasons to fail. One reason is the limit of the manually chosen synthesis
scope. A satisfying C&C model might exist in a larger scope. Another reason is that the
C&C views synthesis specification might be unsatisfiable in any scope. As a future work
we propose to analyze possible reasons for the unsatisfiability of a given specification
and report these to the user (see Section 5.7.7).

We have presented a verification framework for the behavior of MontiArcAutomaton
components. We evaluated the supported refinement and equality checking on exam-
ple systems. The results of running times clearly show a limitation of the framework
for verifying larger models (see Section 7.7.1). This limitation is due to our current
translation into WS1S formulas solved by Mona. A future work regarding MontiArc-
Automaton component verification is either an improved translation into WS1S or an
implementation of the verification based on other techniques and model checkers.

Our code generator for MontiArcAutomaton models generates code that can be di-
rectly executed on Lego NXT robots. The generated code is executed in cycles imple-
menting the time-synchronous semantics of MontiArcAutomaton. The code generator
does currently not support the scheduling of code on physically distributed systems. As a

9.4. Conclusion 317

future work we suggest to model the deployment of components to physically distributed
systems and support the synchronization of these systems to ensure the time-synchronous
semantics (see Section 8.5.5).

Apart from the improvement of the proposed techniques and prototypes, their inte-
gration also poses interesting research questions. We have identified some limitations in
the applicability of the development techniques in an integrated process in Section 9.2.
These limitations suggest extending C&C views and the C&C views satisfaction relation
to component type definitions. We discussed this extension in Section 3.7.3. Addition-
ally, the integration of the methods requires an extension of the MontiArcAutomaton
verification framework to handle all concepts supported by MontiArcAutomaton code
generation.

Important phases of the life-cycle of interactive C&C systems are maintenance and
evolution [MMR10]. These phases are currently partially covered, e.g., by the support
of regression testing using C&C views and the verification of MontiArcAutomaton com-
ponent behavior. Our current implementations mostly handle structure and behavior
independently while they are often not. For example, the C&C views synthesis pro-
cess does not consider component behavior. Changes in the structure of components,
however, might influence the behavior implementations in MontiArcAutomaton models.

We thus suggest investigating theories and tools for co-evolution of the structure and
behavior of C&C systems. Focus [Bro93, BS01] provides necessary theories for these
tasks and existing works already address handling structural and behavioral changes that
preserve or refine behavior [PR99, Gru05]. We propose the integration and automation
of these techniques in our model-based development framework as future work.

9.4. Conclusion
We presented novel modeling languages for the specification of the structure and behavior
of interactive C&C systems.

C&C views specify structural properties of C&C models in an expressive and intu-
itive way. C&C views provide means to abstract away direct hierarchy, direct connec-
tivity, port names and types, and thus can crosscut the traditional boundaries of the
implementation-oriented hierarchical decomposition of systems and subsystems. Monti-
ArcAutomaton is a modeling language for modeling component composition and state-
based component behavior. The language provides powerful underspecification mecha-
nisms and MontiArcAutomaton models can be used as specifications as well as imple-
mentations of component behavior.

We have presented model-based analysis techniques to verify the structure of C&C
models using C&C views and to check refinement and equality between MontiArcAuto-
maton component behavior definitions. The verification prototypes translate the ver-
ification results back to the problem domain and provide witnesses that demonstrate
reasons for non-satisfaction.

We implemented a synthesis prototype that given a C&C views specification consisting
of mandatory, alternative, and negative views, computes a C&C model that satisfies the

318 Chapter 9. Summary and Conclusion

specification, if one exists. The result of synthesis can be used for further exploration or
as the complete, final model itself. For MontiArcAutomaton models we have developed
a code generator that generates executable code for a robotics platform.

The prototypes that solve these novel analysis problems were evaluated on example
systems, in an online user study, and in a case study of a distributed robotic system. Our
evaluation shows the feasibility of the analysis and synthesis tasks and the applicability
of the modeling languages for developing interactive C&C systems.

Our results go beyond the applications introduced in this thesis. The generic imple-
mentation of C&C models in Alloy presented in Chapter 5 allows arbitrary analyses
of C&C models. Similarly, our translation of C&C views into Alloy is not limited to
the current language features of C&C views. We have demonstrated the translation’s
extensibility and its support for the language variability mechanism of C&C views in
Section 5.4.1. Thus, we provide a general and extensible solution for formal C&C model
analyses.

The translation of MontiArcAutomaton components into Mona, which we have pre-
sented in Chapter 7, is not specific to checking refinement and equality. The resulting
predicates express finite I/O relation semantics of MontiArcAutomaton components as
Mona predicates. Additional analyses may employ this translation, e.g., to check whether
a component satisfies incomplete observations of messages defined in sequence diagrams.

Finally, the modeling language MontiArcAutomaton is the basis of an extensible
robotics modeling framework with support for multiple robotics platforms and target
programming languages. The extensibility of the language allows embedding modeling
languages other than automata to define component behavior. MontiArcAutomaton
constitutes a powerful framework beyond the results presented in this thesis.

We believe that our work provides promising results and suggest interesting future
research directions towards a comprehensive model-based development environment for
interactive component and connector systems.

Bibliography

[AAAN+08] Marwan Abi-Antoun, Jonathan Aldrich, Nagi H. Nahas, Bradley R.
Schmerl, and David Garlan. Differencing and merging of architectural
views. Autom. Softw. Eng., 15(1):35–74, 2008.

[ABG+13] Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Koziolek, and In-
dika Meedeniya. Software architecture optimization methods: A sys-
tematic literature review. IEEE Trans. Software Eng., 39(5):658–683,
2013.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[AHKV98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.
Vardi. Alternating refinement relations. In Davide Sangiorgi and Robert
de Simone, editors, CONCUR, volume 1466 of Lecture Notes in Computer
Science, pages 163–178. Springer, 1998.

[AR02] Farhad Arbab and Jan J. M. M. Rutten. A coinductive calculus of
component connectors. In Martin Wirsing, Dirk Pattinson, and Rolf
Hennicker, editors, WADT, volume 2755 of Lecture Notes in Computer
Science, pages 34–55. Springer, 2002.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical Structures in Computer Science, 14(3):329–
366, 2004.

[BCK+11] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen
Nguyen, Thomas Noll, and Marco Roveri. Safety, Dependability and Per-
formance Analysis of Extended AADL Models. Comput. J., 54(5):754–
775, 2011.

[BCL12] Hongyu Pei Breivold, Ivica Crnkovic, and Magnus Larsson. A system-
atic review of software architecture evolution research. Information &
Software Technology, 54(1):16–40, 2012.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic model checking: 1020 States and beyond.
Information and Computation, 98(2):142 – 170, 1992.

320 Bibliography

[BDD+92] Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs, Thomas
Gritzner, and Rainer Weber. The Design of Distributed Systems - An
Introduction to FOCUS. Technical report, TUM-I9202, SFB-Bericht Nr.
342/2-2/92 A, 1992.

[Bee94] Michael von der Beeck. A Comparison of Statecharts Variants. In
ProCoS: Proceedings of the Third International Symposium Organized
Jointly with the Working Group Provably Correct Systems on Formal
Techniques in Real-Time and Fault-Tolerant Systems, pages 128–148,
London, UK, 1994. Springer-Verlag.

[BHS99] Manfred Broy, Franz Huber, and Bernhard Schätz. AutoFocus – Ein
Werkzeugprototyp zur Entwicklung eingebetteter Systeme. Informatik
Forschung und Entwicklung, 14(3):121–134, 1999.

[Bie97] Armin Biere. μcke - Efficient μ-Calculus Model Checking. In CAV, pages
468–471, 1997.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

[BKGS11] Ajinkya Bhave, Bruce H. Krogh, David Garlan, and Bradley R. Schmerl.
View consistency in architectures for cyber-physical systems. In ICCPS,
pages 151–160. IEEE, 2011.

[BL94] Manfred Broy and Leslie Lamport. The RPC-Memory Specification
Problem - Problem Statement. In Manfred Broy, Stephan Merz, and
Katharina Spies, editors, Formal Systems Specification, volume 1169 of
Lecture Notes in Computer Science, pages 1–4. Springer, 1994.

[BL01] Benedikt Bollig and Martin Leucker. Modelling, specifying, and verifying
message passing systems. In TIME, pages 240–247. IEEE Computer
Society, 2001.

[BL06] Benedikt Bollig and Martin Leucker. Message-passing automata are ex-
pressively equivalent to emso logic. Theor. Comput. Sci., 358(2-3):150–
172, 2006.

[Box98] Don Box. Essential COM: The Component Object Model. [DevelopMen-
tor Series. Addison-Wesley Professional, 1998.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Model-
lierung als Grundlage der Software- und Systementwicklung. Informatik
Spektrum, 30(1):3–18, 2007.

[Bro93] Manfred Broy. (Inter-)Action Refinement: The Easy Way. In Manfred
Broy, editor, Program Design Calculi, volume 118 of Series F: Computer
and System Sciences. Springer NATO ASI Series, 1993.

Bibliography 321

[Bro97a] Manfred Broy. Compositional Refinement of Interactive Systems Mod-
elled by Relations. In Willem P. de Roever, Hans Langmaack, and Amir
Pnueli, editors, COMPOS, volume 1536 of Lecture Notes in Computer
Science, pages 130–149. Springer, 1997.

[Bro97b] Manfred Broy. Refinement of time. Transformation-Based Reactive Sys-
tems Development, Volume 1231/1997:44–63, 1997.

[Bro05] Manfred Broy. Service-oriented Systems Engineering: Specification and
Design of Services and Layered Architectures–The Janus-Approach, pages
47–81. Springer, 2005.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Inter-
active Systems. Focus on Streams, Interfaces and Refinement. Springer
Verlag Heidelberg, 2001.

[BS10] Hamid Bagheri and Kevin J. Sullivan. Monarch: Model-based develop-
ment of software architectures. In Petriu et al. [PRH10], pages 376–390.

[BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan J. M. M. Rutten.
Modeling component connectors in reo by constraint automata. Sci.
Comput. Program., 61(2):75–113, 2006.

[BSS10] Hamid Bagheri, Yuanyuan Song, and Kevin J. Sullivan. Architectural
style as an independent variable. In Charles Pecheur, Jamie Andrews,
and Elisabetta Di Nitto, editors, ASE, pages 159–162. ACM, 2010.

[BWH10] Nelis Boucké, Danny Weyns, and Tom Holvoet. Composition of archi-
tectural models: Empirical analysis and language support. Journal of
Systems and Software, 83(11):2108–2127, 2010.

[BYN+11] Razieh Behjati, Tao Yue, Shiva Nejati, Lionel C. Briand, and Bran Selic.
Extending SysML with AADL concepts for comprehensive system archi-
tecture modeling. In Robert B. France, Jochen Malte Küster, Behzad
Bordbar, and Richard F. Paige, editors, ECMFA, volume 6698 of Lecture
Notes in Computer Science, pages 236–252. Springer, 2011.

[CBB+10] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers,
Reed Little, Paulo Merson, Robert Nord, and Judith Stafford. Doc-
umenting Software Architectures: Views and Beyond. Addison-Wesley
Professional, 2 edition, 2010.

[CCG+03] Ping Chen, Matt Critchlow, Akash Garg, Christopher van der West-
huizen, and André van der Hoek. Differencing and merging within
an evolving product line architecture. In PFE, volume 3014 of LNCS.
Springer, 2003.

322 Bibliography

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, Cambridge, MA, USA, 1999.

[CGR09] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Vari-
ability within modeling language definitions. In Andy Schürr and Bran
Selic, editors, MoDELS, volume 5795 of Lecture Notes in Computer Sci-
ence, pages 670–684. Springer, 2009.

[CL07] Christos G. Cassandras and Stephane Lafortune. Introduction to discrete
event systems. Springer, 2007.

[Cle96] Paul Clements. A Survey of Architecture Description Languages. In
Software Specification and Design, 1996., Proceedings of the 8th Inter-
national Workshop on, pages 16–25, 1996.

[CRT07] Paul Caspi, Pascal Raymond, and Stavros Tripakis. Synchronous pro-
gramming. In I. Lee, J. Leung, and S. Son, editors, Handbook of Real-
Time and Embedded Systems, chapter 14, pages 1–21. Chapman & Hall,
2007.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in property specifications for finite-state verification. In ICSE, pages
411–420, 1999.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Pro-
ceedings of the 8th European software engineering conference held jointly
with 9th ACM SIGSOFT international symposium on Foundations of
software engineering, ESEC/FSE-9, pages 109–120, New York, NY, USA,
2001. ACM.

[DH01] Werner Damm and David Harel. LSCs: Breathing Life into Message
Sequence Charts. FMSD, 19(1):45–80, 2001.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer,
2008.

[DvdHT01] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. A highly-
extensible, XML-based architecture description language. In WICSA
[IEE01], pages 103–112.

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders Møller. MONA 1.x: new tech-
niques for WS1S and WS2S. In Computer-Aided Verification, (CAV ’98),
volume 1427 of LNCS, pages 516–520. Springer-Verlag, 1998.

Bibliography 323

[FBDCS11] Michalis Famelis, Shoham Ben-David, Marsha Chechik, and Rick Salay.
Partial models: a position paper. In Proceedings of the 8th Interna-
tional Workshop on Model-Driven Engineering, Verification and Valida-
tion, MoDeVVa, pages 1:1–1:4, New York, NY, USA, 2011. ACM.

[FG12] Peter H. Feiler and David P. Gluch. Model-based Engineering with
AADL: An Introduction to the SAE Architecture Analysis and Design
Language. SEI Series in Software Engineering. Addison-Wesley Long-
man, Amsterdam, 2012.

[FGH06] Peter H. Feiler, David P. Gluch, and John J. Hudak. The architecture
analysis & design language (AADL): An introduction. Technical report,
Software Engineering Institute, Carnegie Mellon University, 2006.

[FMS11] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide
to SysML. Morgan Kaufmann, 2011.

[Fow10] Martin Fowler. Domain-Specific Languages. Addison-Wesley Signature
Series (Fowler). Pearson Education, 2010.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1995.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and
Bernhard Rumpe. View-based modeling of function nets. In Proceed-
ings of the Object-oriented Modelling of Embedded Real-Time Systems
(OMER4) Workshop, Paderborn,, October 2007.

[GHK+08a] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz
Rothhardt, and Bernhard Rumpe. View-centric modeling of automotive
logical architectures. In Tagungsband des Dagstuhl-Workshops MBEES:
Modellbasierte Entwicklung eingebetteter Systeme IV, 2008.

[GHK+08b] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz
Rothhardt, and Bernhard Rumpe. Modelling Automotive Function Nets
with Views for Features, Variants, and Modes. In Proceedings of ERTS
’08, 2008.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H. Freeman, 1979.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe.
Modeling Variants of Automotive Systems using Views. In Proceedings
of Workshop Modellbasierte Entwicklung von eingebetteten Fahrzeugfunk-
tionen (MBEFF), pages 76–89, March 2008.

324 Bibliography

[GKSS08] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Sat-
isfiability Solvers. In Handbook of Knowledge Representation, volume 3
of Foundations of Artificial Intelligence, pages 89–134. Elsevier, 2008.

[GMW97] David Garlan, Robert T. Monroe, and David Wile. Acme: An architec-
ture description interchange language. In Proceedings of CASCON’97,
pages 169–183, Toronto, Ontario, November 1997.

[GMW00] David Garlan, Robert T. Monroe, and David Wile. Acme: Architectural
description of component-based systems. In Gary T. Leavens and Murali
Sitaraman, editors, Foundations of Component-Based Systems, pages 47–
68. Cambridge University Press, 2000.

[GR06] Boris Gajanovic and Bernhard Rumpe. Isabelle/HOL-Umsetzung strom-
basierter Definitionen zur Verifikation von verteilten, asynchron kommu-
nizierenden Systemen. Informatik-Bericht 2006-03, Technische Univer-
sität Braunschweig, Carl-Friedrich-Gauss-Fakultät für Mathematik und
Informatik, 2006.

[GR07] Borislav Gajanovic and Bernhard Rumpe. Alice: An advanced logic
for interactive component engineering. In 4th International Verification
Workshop (Verify’07), Bremen, 2007.

[GR10] Hans Grönniger and Bernhard Rumpe. Modeling Language Variabil-
ity. In Radu Calinescu and Ethan K. Jackson, editors, Monterey Work-
shop, volume 6662 of Lecture Notes in Computer Science, pages 17–32.
Springer, 2010.

[Grö10] Hans Grönniger. Systemmodell-basierte Definition objektbasierter Mod-
ellierungssprachen mit semantischen Variationspunkten. PhD thesis,
RWTH Aachen University, 2010.

[Gru05] Lars Grunske. Formalizing architectural refactorings as graph trans-
formation systems. In Lawrence Chung and Yeong-Tae Song, editors,
SNPD, pages 324–329. IEEE Computer Society, 2005.

[GS93] David Garlan and Mary Shaw. An Introduction to Software Architec-
ture. In Vincenzo Ambriola and Genoveffa Tortora, editors, Advances
in Software Engineering and Knowledge Engineering, chapter 1, pages
1–39. World Scientific Pub Co Inc, 1993.

[GS94] David Garlan and Mary Shaw. An introduction to software architecture.
Technical Report CMU-CS-94-166, Carnegie Mellon University, 1994.

[GSB98] Radu Grosu, Thomas Stauner, and Manfred Broy. A Modular Visual
Model for Hybrid Systems. In Anders Ravn and Hans Rischel, editors,
Formal Techniques in Real-Time and Fault-Tolerant Systems, volume

Bibliography 325

1486 of Lecture Notes in Computer Science, pages 471–471. Springer
Berlin / Heidelberg, 1998.

[GV06] Holger Giese and Alexander Vilbig. Separation of non-orthogonal con-
cerns in software architecture and design. Software and Systems Model-
ing, 5(2):136–169, 2006.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Sci-
ence of computer programming, 8(3):231–274, 1987.

[HB06] Louis Hugues and Nicolas Bredeche. Simbad: An Autonomous Robot
Simulation Package for Education and Research. In Stefano Nolfi, Gi-
anluca Baldassarre, Raffaele Calabretta, John C. T. Hallam, Davide
Marocco, Jean-Arcady Meyer, Orazio Miglino, and Domenico Parisi, ed-
itors, SAB, volume 4095 of Lecture Notes in Computer Science, pages
831–842. Springer, 2006.

[HF07] Florian Hölzl and Martin Feilkas. Autofocus 3 - a scientific tool prototype
for model-based development of component-based, reactive, distributed
systems. In Model-Based Engineering of Embedded Real-Time Systems,
volume 6100 of LNCS, pages 317–322. Springer, 2007.

[HK02] David Harel and Orna Kupferman. On Object Systems and Behavioral
Inheritance. IEEE Trans. Software Eng., 28(9):889–903, 2002.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab:
A Plug-In-Based Framework for Web-Based Project Portals. In Devel-
oping Tools as Plug-ins (TOPI), 2012 2nd Workshop on, pages 61 –66,
june 2012.

[HM08] David Harel and Shahar Maoz. Assert and negate revisited: Modal
semantics for UML sequence diagrams. SoSyM, 7(2):237–252, 2008.

[Hol04] Gerard J. Holzmann. The SPIN Model Checker - primer and reference
manual. Addison-Wesley, 2004.

[HP85] David Harel and Amir Pnueli. On the development of reactive systems.
In Krzysztof R. Apt, editor, Logics and models of concurrent systems,
pages 477–498. Springer-Verlag New York, Inc., New York, NY, USA,
1985.

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science: modelling and
reasoning about systems (second edition). Cambridge University Press,
2004.

[HR07] Grégoire Hamon and John M. Rushby. An operational semantics for
stateflow. STTT, 9(5-6):447–456, 2007.

326 Bibliography

[HRR10] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. Towards Ar-
chitectural Programming of Embedded Systems. In Tagungsband des
Dagstuhl-Workshop MBEES: Modellbasierte Entwicklung eingebetteter
Systeme VI, pages 13–22, Munich, Germany, February 2010. fortiss
GmbH.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank
van der Linden. Hierarchical Variability Modeling for Software Architec-
tures. In Eduardo Santana de Almeida, Tomoji Kishi, Christa Schwan-
ninger, Isabel John, and Klaus Schmid, editors, SPLC, pages 150–159.
IEEE, 2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernard Rumpe. Montiarc - archi-
tectural modeling of interactive distributed and cyber-physical systems.
Technical Report AIB-2012-03, RWTH Aachen, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta
Modeling for Software Architectures. In Holger Giese, Michaela Huhn,
Jan Phillips, and Bernhard Schätz, editors, MBEES, pages 1–10. fortiss
GmbH, München, 2011.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolv-
ing delta-oriented software product line architectures. In Radu Calinescu
and David Garlan, editors, Monterey Workshop, volume 7539 of Lecture
Notes in Computer Science, pages 183–208. Springer, 2012.

[HS97] Franz Huber and Bernhard Schätz. Rapid Prototyping with Auto-
Focus. In A. Wolisz, I. Schieferdecker, and A. Rennoch, editors, Formale
Beschreibungstechniken für verteilte Systeme, GI/ITG Fachgespräch,
pages 343 – 352. GMD Verlag (St. Augustin), 1997.

[HS00] Thomas Hune and Anders Sandholm. A case study on using automata
in control synthesis. In T. S. E. Maibaum, editor, FASE, volume 1783 of
Lecture Notes in Computer Science, pages 349–362. Springer, 2000.

[HS12] David Harel and Itai Segall. Synthesis from scenario-based specifications.
J. Comput. Syst. Sci., 78(3):970–980, 2012.

[HSE97] Franz Huber, Bernhard Schätz, and Geralf Einert. Consistent graphical
specification of distributed systems. FME’97: Industrial Applications
and Strengthened Foundations of Formal Methods, pages 122–141, 1997.

[HSSS96] Franz Huber, Bernhard Schätz, Alexander Schmidt, and Katharina Spies.
Autofocus — a tool for distributed systems specification. In Bengt Jon-
sson and Joachim Parrow, editors, Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 1135 of Lecture Notes in Computer Sci-
ence, pages 467–470. Springer Berlin / Heidelberg, 1996.

Bibliography 327

[HST10] Florian Hoelzl, Maria Spichkova, and David Trachtenherz. AutoFocus
Tool Chain. Technical Report TUM-I1021, TU Munich, 2010.

[Huf12] Brian Huffman. HOLCF ’11: A Definitional Domain Theory for Verify-
ing Functional Programs. PhD thesis, Portland State University, 2012.

[HWF+10] Jorgen Hansson, Lutz Wrage, Peter H. Feiler, John Morley, Bruce A.
Lewis, and Jérôme Hugues. Architectural Modeling to Verify Security
and Nonfunctional Behavior. IEEE Security & Privacy, 8(1):43–49, 2010.

[ICG+04] James Ivers, Paul Clements, David Garlan, Robert Nord, Bradley
Schmerl, and Jaime Rodrigo O. Silva. Documenting Component and
Connector Views with UML 2.0. Technical Report CMU/SEI-2004-TR-
008, Software Engineering Institute (Carnegie Mellon University), 2004.

[IEE] IEEE. IEEE 1471-2000: Recommended Practice for Architectural De-
scription for Software-Intensive Systems. http://standards.ieee.
org/findstds/standard/1471-2000.html.

[IEE01] IEEE Computer Society. 2001 Working IEEE / IFIP Conference on
Software Architecture (WICSA 2001), 28-31 August 2001, Amsterdam,
The Netherlands. IEEE Computer Society, 2001.

[IKL+00] Torsten K. Iversen, Kåre J. Kristoffersen, Kim Guldstrand Larsen,
Morten Laursen, Rune G. Madsen, Steffen K. Mortensen, Paul Petters-
son, and Chris B. Thomasen. Model-checking real-time control programs:
verifying lego(r) mindstormstm systems using uppaal. In ECRTS, pages
147–155. IEEE Computer Society, 2000.

[IKZ02] Valérie Issarny, Christos Kloukinas, and Apostolos Zarras. Systematic
aid for developing middleware architectures. Commun. ACM, 45(6):53–
58, 2002.

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis.
MIT Press, 2006.

[JLB11] Ethan K. Jackson, Tihamer Levendovszky, and Daniel Balasubramanian.
Reasoning about metamodeling with formal specifications and automatic
proofs. In Jon Whittle, Tony Clark, and Thomas Kühne, editors, MoD-
ELS, volume 6981 of Lecture Notes in Computer Science, pages 653–667.
Springer, 2011.

[JPL+11] Henk Jonkers, Erik Proper, Marc M. Lankhorst, Dick A. C. Quartel, and
Maria-Eugenia Iacob. Archimate(r) for integrated modelling through-
out the architecture development and implementation cycle. In Birgit
Hofreiter, Eric Dubois, Kwei-Jay Lin, Thomas Setzer, Claude Godart,
Erik Proper, and Lianne Bodenstaff, editors, CEC, pages 294–301. IEEE,
2011.

328 Bibliography

[JS00] Daniel Jackson and Kevin J. Sullivan. COM revisited: tool-assisted
modelling of an architectural framework. In SIGSOFT FSE, pages 149–
158. ACM, 2000.

[KA03] Frank Klassner and Scott D. Anderson. LEGO MindStorms: not just
for K-12 anymore. IEEE Robot. Automat. Mag., 10(2):12–18, 2003.

[KC94] Paul Kogut and Paul Clements. Features of architecture description
languages. In In Proceedings of the Eighth International Workshop on
Software Specification and Design, pages 16–25, 1994.

[KG10] Jung Soo Kim and David Garlan. Analyzing architectural styles. Journal
of Systems and Software, 83(7):1216–1235, 2010.

[KI01] Christos Kloukinas and Valérie Issarny. SPIN-ning Software Architec-
tures: A Method for Exploring Complex. In WICSA [IEE01], pages
67–76.

[Kir11] Dennis Kirch. Analysis of Behavioral Specifications for Distributed Inter-
active Systems with MONA. Bachelor Thesis, RWTH Aachen University,
2011.

[KJ09] Seung Han Kim and Jae Wook Jeon. Introduction for Freshmen to
Embedded Systems Using LEGO Mindstorms. IEEE Trans. Education,
52(1):99–108, 2009.

[KNS96a] Nils Klarlund, Mogens Nielsen, and Kim Sunesen. Automated logical
verification based on trace abstractions. In James E. Burns and Yoram
Moses, editors, PODC, pages 101–110. ACM, 1996.

[KNS96b] Nils Klarlund, Mogens Nielsen, and Kim Sunesen. A case study in auto-
mated verification based on trace abstractions. In Manfred Broy, Stefan
Merz, and Katharina Spies, editors, Formal System Specification, The
RPC-Memory Specification Case Study, volume 1169 of LNCS, pages
341–374. Springer Verlag, 1996.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen
Sprachen im Software-Engineering. Aachener Informatik-Berichte, Soft-
ware Engineering, Band 1. Shaker Verlag, 2010.

[KRPP09] Dimitrios S. Kolovos, Davide Di Ruscio, Richard F. Paige, and Alfonso
Pierantonio. Different Models for Model Matching: An analysis of ap-
proaches to support model differencing. In Proceedings of the 2009 ICSE
Workshop on Comparison and Versioning of Software Models, CVSM ’09,
pages 1–6, Washington, DC, USA, May 2009. IEEE Computer Society.

[Kru95] Philippe Kruchten. Architectural Blueprints – The "4+1" View Model of
Software Architecture. IEEE Software, 12(6):42–50, 1995.

Bibliography 329

[Krü11] Andreas Krüger. Stream-Based Specification in Isabelle/HOLCF – To-
wards ALICE 2.0. Bachelor Thesis, RWTH Aachen University, 2011.

[KRV10] Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore: a
framework for compositional development of domain specific languages.
STTT, 12(5):353–372, 2010.

[Lar89] Kim Guldstrand Larsen. Modal specifications. In Joseph Sifakis, editor,
Automatic Verification Methods for Finite State Systems, volume 407 of
Lecture Notes in Computer Science, pages 232–246. Springer, 1989.

[Lee08] Edward A. Lee. Cyber Physical Systems: Design Challenges. In ISORC,
pages 363–369. IEEE Computer Society, 2008.

[Lee09] Edward A. Lee. Computing needs time. Communications of the ACM,
52(5):70–79, May 2009.

[Lee10] Edward A. Lee. Disciplined heterogeneous modeling - invited paper. In
Petriu et al. [PRH10], pages 273–287.

[LML06] Xiaojun Liu, Eleftherios Matsikoudis, and Edward A. Lee. Modeling
timed concurrent systems. In CONCUR, pages 1–15, 2006.

[LNW07a] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal
i/o automata for interface and product line theories. In Rocco De Nicola,
editor, ESOP, volume 4421 of Lecture Notes in Computer Science, pages
64–79. Springer, 2007.

[LNW07b] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. On modal
refinement and consistency. In Luís Caires and Vasco Thudichum Vas-
concelos, editors, CONCUR, volume 4703 of Lecture Notes in Computer
Science, pages 105–119. Springer, 2007.

[LPJ10] Marc M. Lankhorst, Henderik Alex Proper, and Henk Jonkers. The
anatomy of the archimate language. IJISMD, 1(1):1–32, 2010.

[LS11] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to Em-
bedded Systems — A Cyber-Physical Systems Approach. LeeSeshia.org,
first edition, version 1.08 edition, 2011.

[LSV03] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Hybrid i/o
automata. Inf. Comput., 185(1):105–157, 2003.

[LT88] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic. In
LICS, pages 203–210. IEEE Computer Society, 1988.

[LT89] Nancy Lynch and Mark Tuttle. An Introduction to Input/Output au-
tomata. Technical Memo MIT/LCS/TM-373, Massachusetts Institute of
Technology, September 1989.

330 Bibliography

[LX90] Kim Guldstrand Larsen and Liu Xinxin. Equation solving using modal
transition systems. In LICS, pages 108–117. IEEE Computer Society,
1990.

[Mar12] Philip Martzok. Action-Stream-Based Modeling of Robots using I/Oω-
automata and MontiArc. Bachelor Thesis, RWTH Aachen University,
2012.

[MC12] Alvaro Miyazawa and Ana Cavalcanti. Refinement-oriented models of
stateflow charts. Science of Computer Programming, 77(10–11):1151 –
1177, 2012.

[McM99] Kenneth L. McMillan. The SMV language. Technical report, Cadence
Berkeley Labs, 1999.

[MDT07] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Taylor. Moving ar-
chitectural description from under the technology lamppost. Information
& Software Technology, 49(1):12–31, 2007.

[Mea55] George H. Mealy. A Method for Synthesizing Sequential Circuits. Bell
System Technical Journal, 34:1045–1079, 1955.

[Mey75] Albert R. Meyer. Weak monadic second order theory of succesor is not
elementary-recursive. In Rohit Parikh, editor, Logic Colloquium, volume
453 of Lecture Notes in Mathematics, pages 132–154. Springer Berlin
Heidelberg, 1975.

[MLM+13] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and
Antony Tang. What Industry Needs from Architectural Languages: A
Survey. IEEE Trans. Software Eng., 39(6):869–891, 2013.

[MMP91] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid
systems. In REX Workshop, pages 447–484, 1991.

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving software archi-
tecture descriptions of critical systems. IEEE Computer, 43(5):42–48,
2010.

[Mon98] Robert T. Monroe. Capturing Software Architecture Design Expertise
with Armani. Technical Report CMU-CS-98-163, School of Computer
Science, Carnegie Mellon University, 1998.

[Mon99] Robert T. Monroe. Rapid Development of Custom Software Architecture
Design Environment. PhD thesis, School of Computer Science, Carnegie
Mellon University, 1999.

[Moo56] Edward F. Moore. Gedanken-experiments on sequential machines. In
Claude Shannon and John McCarthy, editors, Automata Studies, pages
129–153. Princeton University Press, Princeton, NJ, 1956.

Bibliography 331

[MP92] Zohar Manna and Amir Pnueli. The temporal logic of concurrent and
reactive systems: specification. Springer, 1992.

[MQR95] Mark Moriconi, Xiaolei Qian, and Robert A. Riemenschneider. Cor-
rect architecture refinement. IEEE Trans. Software Eng., 21(4):356–372,
1995.

[MRR11] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal object
diagrams. In Mira Mezini, editor, ECOOP, volume 6813 of Lecture Notes
in Computer Science, pages 281–305. Springer, 2011.

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of
component and connector models from crosscutting structural views. In
Bertrand Meyer, Luciano Baresi, and Mira Mezini, editors, ESEC/SIG-
SOFT FSE, pages 444–454. ACM, 2013.

[MRR14] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Com-
ponent and Connector Models against Crosscutting Structural Views. In
Pankaj Jalote, Lionel C. Briand, and André van der Hoek, editors, ICSE,
pages 95–105. ACM, 2014.

[MRT99] Nenad Medvidovic, David S. Rosenblum, and Richard N. Taylor. A
language and environment for architecture-based software development
and evolution. In ICSE, pages 44–53, 1999.

[MS96] Olaf Müller and Peter Scholz. Specification of Real-Time and Hybrid
Systems in FOCUS. Technical Report TUM-I9627, Technische Univerität
München, 1996.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and compar-
ison framework for software architecture description languages. IEEE
Trans. Software Eng., 26(1):70–93, 2000.

[NBD09] Andrew L. Nelson, Gregory J. Barlow, and Lefteris Doitsidis. Fitness
functions in evolutionary robotics: A survey and analysis. Robotics and
Autonomous Systems, 57(4):345–370, 2009.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
- A Proof Assistant for Higher-Order Logic. Springer, 2002.

[Obj12a] Object Management Group. OMG Unified Modeling Language (OMG
UML). http://www.uml.org/, 2012. Accessed 8/2012.

[Obj12b] Object Management Group (OMG). OMG Systems Modeling Language
(OMG SysML), Version 1.3. http://www.omg.org/spec/SysML/
1.3/, 2012. Accessed 8/2012.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, 1977.

332 Bibliography

[PR90] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to
synthesize. In FOCS, pages 746–757. IEEE Computer Society, 1990.

[PR97] Barbara Paech and Bernhard Rumpe. State based service description. In
FMOODS ’97: Proceeding of the IFIP TC6 WG6.1 international work-
shop on Formal methods for open object-based distributed systems, pages
293–302, London, UK, UK, 1997. Chapman & Hall, Ltd.

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe And Filter Ar-
chitectures. In FM’99, LNCS 1708, pages 96–115, 1999.

[PRH10] Dorina C. Petriu, Nicolas Rouquette, and Øystein Haugen, editors. Model
Driven Engineering Languages and Systems - 13th International Confer-
ence, MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings,
Part II, volume 6395 of LNCS. Springer, 2010.

[Pto14] Claudius Ptolemaeus, editor. System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org, 2014. Accessed 10/13, cited like this on
request by the authors.

[QGC+09] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an open-
source Robot Operating System. In ICRA Workshop on Open Source
Software, 2009.

[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control,
6(3):230–245, 1963.

[Rac13] Deni Raco. Towards ALICE 2.0, a Logic for Stream Processing Functions.
Diploma Thesis, RWTH Aachen University, 2013.

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams,
Stream Processing Functions, and State-Based Stream Processing. Inter-
national Journal of Software and Informatics, 5(1-2):29–53, July 2011.

[RRW12] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Re-
quirements Modeling Language for the Component Behavior of Cyber
Physical Robotics Systems. In Modelling and Quality in Requirements
Engineering. Monsenstein und Vannerdat Münster, 2012.

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Case
Study on Model-Based Development of Robotic Systems using Monti-
Arc with Embedded Automata. In Dagstuhl-Workshop MBEES: Mod-
ellbasierte Entwicklung eingebetteter Systeme IX, Schloss Dagstuhl, Ger-
many, 2013.

Bibliography 333

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From
Software Architecture Structure and Behavior Modeling to Implementa-
tions of Cyber-Physical Systems. In Stefan Wagner and Horst Lichter,
editor, Software Engineering 2013 Workshopband, LNI, pages 155–170.
GI, Köllen Druck+Verlag GmbH, Bonn, 2013.

[RRW13c] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Monti-
ArcAutomaton : Modeling Architecture and Behavior of Robotic Sys-
tems. In Workshops and Tutorials Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), Karlsruhe, Germany,
May 6-10 2013.

[RRW14] Jan Oliver Ringert, Bernard Rumpe, and Andreas Wortmann. Architec-
ture and Behavior Modeling of Cyber-Physical Systems with MontiArc-
Automaton. Technical Report AIB-2014-XXX, RWTH Aachen, 2014.
Draft available from [wwwt].

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektori-
entierter Systeme. Herbert Utz Verlag Wissenschaft, 1996.

[Rum11] Bernhard Rumpe. Modellierung mit UML. Springer, 2 edition, 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML. Springer, 2 edition,
2012.

[RW10] Lukman Ab Rahim and Jon Whittle. Verifying semantic conformance
of state machine-to-java code generators. In Dorina C. Petriu, Nicolas
Rouquette, and Øystein Haugen, editors, MoDELS (1), volume 6394 of
Lecture Notes in Computer Science, pages 166–180. Springer, 2010.

[SB01] Ken Schwaber and Mike Beedle. Agile Software Development with Scrum.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2001.

[Sch98] Peter Scholz. A refinement calculus for statecharts. In Egidio Astesiano,
editor, Fundamental Approaches to Software Engineering, volume 1382
of Lecture Notes in Computer Science, pages 285–301. Springer Berlin
Heidelberg, 1998.

[Sch06] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engi-
neering. Computer, 39(2):25–31, 2006.

[Sch09] Bernhard Schätz. Model-Based Development of Software Systems: From
Models to Tools. Technische Universität München, 2009. Habilitation
Thesis.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung
mit der UML/P. Aachener Informatik-Berichte, Software Engineering,
Band 11. Shaker Verlag, 2012.

334 Bibliography

[SE04] Mehrdad Sabetzadeh and Steve M. Easterbrook. An Algebraic Frame-
work for Merging Incomplete and Inconsistent Views. Technical Report
CSRG-496, Department of Computer Science, University of Toronto,
September 2004.

[SE06] Mehrdad Sabetzadeh and Steve Easterbrook. View merging in the pres-
ence of incompleteness and inconsistency. Requir. Eng., 11(3):174–193,
2006.

[SFC12] Rick Salay, Michalis Famelis, and Marsha Chechik. Language indepen-
dent refinement using partial modeling. In Juan de Lara and Andrea
Zisman, editors, FASE, volume 7212 of Lecture Notes in Computer Sci-
ence, pages 224–239. Springer, 2012.

[SG96] Mary Shaw and David Garlan. Software architecture - perspectives on
an emerging discipline. Prentice Hall, 1996.

[SG04] Bradley R. Schmerl and David Garlan. Acmestudio: Supporting style-
centered architecture development. In Anthony Finkelstein, Jacky Es-
tublier, and David S. Rosenblum, editors, ICSE, pages 704–705. IEEE
Computer Society, 2004.

[Slo97] Oscar Slotosch. Refinements in HOLCF: Implementation of interactive
systems. PhD thesis, Technische Universität München, 1997.

[SP10a] Bernhard Schätz and Christian Pfaller. Test case integration: From com-
ponents to systems. In Holger Giese, Michaela Huhn, Jan Phillips, and
Bernhard Schätz, editors, MBEES, pages 65–76. fortiss GmbH, München,
2010.

[SP10b] Bernhard Schätz and Christian Pfaller. Integrating component tests to
system tests. Proceedings of the 5th International Workshop on Formal
Aspects of Component Software (FACS 2008). Electronic Notes in The-
oretical Computer Science, 260(0):225 – 241, 2010.

[Spi92] J. Michael Spivey. Z Notation - a reference manual (2. ed.). Prentice
Hall International Series in Computer Science. Prentice Hall, 1992.

[Spi07] Maria Spichkova. Specification and Seamless Verification of Embedded
Real-Time Systems: FOCUS on Isabelle. PhD thesis, Technische Uni-
versität München, 2007.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, Wien,
New York, 1973.

[Ste97] Robert Stephens. A survey of stream processing. Acta Informatica,
34(7):491–541, 1997.

Bibliography 335

[SVB+06] Thomas Stahl, Markus Völter, Jorn Bettin, Arno Haase, and Simon
Helsen. Model-Driven Software Development: Technology, Engineering,
Management. Pitman, 2006.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific journal of Mathematics, 5(2):285–309, 1955.

[The12] The Open Group. ArchiMate® 2.0 Specification. Van Haren Publishing,
2012.

[Tho90] Wolfgang Thomas. Automata on Infinite Objects. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, Volume B: Formal
Models and Sematics (B), pages 133–192. Elsevier Science & Technology,
1990.

[TJ07] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder.
In Orna Grumberg and Michael Huth, editors, TACAS, volume 4424 of
Lecture Notes in Computer Science, pages 632–647. Springer, 2007.

[TMD09] Richard N. Taylor, Nenad Medvidovic, and Eric Dashofy. Software Ar-
chitecture: Foundations, Theory, and Practice. Wiley, 2009.

[Tra09] David Trachtenherz. Eigenschaftsorientierte Beschreibung der logischen
Architektur eingebetteter Systeme. PhD thesis, Institut für Informatik,
Technische Universität München, 2009.

[TSSL13] Stavros Tripakis, Christos Stergiou, Chris Shaver, and Edward A. Lee.
A modular formal semantics for ptolemy. Mathematical Structures in
Computer Science, 23:834–881, 8 2013.

[UBC07] Sebastián Uchitel, Greg Brunet, and Marsha Chechik. Behaviour model
synthesis from properties and scenarios. In ICSE, pages 34–43, 2007.

[Vö11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer
Sprachen. Aachener Informatik-Berichte, Software Engineering Band 9.
2011. Shaker Verlag, 2011.

[Vli98] John Vlissides. Pattern Hatching: Design Patterns Applied. Addison-
Wesley Longman Ltd., Essex, UK, UK, 1998.

[vOvdLKM00] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee.
The Koala Component Model for Consumer Electronics Software. Com-
puter, 33(3):78–85, 2000.

[Wei07] Tim Weilkiens. Systems Engineering with SysML/UML: Modeling, Anal-
ysis, Design. Morgan Kaufmann, 2007.

[WS00] Jon Whittle and Johann Schumann. Generating statechart designs from
scenarios. In ICSE, pages 314–323. ACM, 2000.

336 Bibliography

[wwwa] AADL website. http://www.aadl.info/. Accessed 8/2013.

[wwwb] Alloy Analyzer website. http://alloy.mit.edu/. Accessed 8/2012.

[wwwc] AutoFOCUS 3 – The Picture Book. http://www4.in.tum.
de/~ccts/af3/picturebook/af3_picturebook.pdf. Accessed
01/13.

[wwwd] AutoFocus3 developers website. https://af3.fortiss.org/
projects/autofocus3. Accessed 8/2012.

[wwwe] AutoFocus3 website. http://autofocus.informatik.
tu-muenchen.de/. Accessed 8/2012.

[wwwf] FreeMarker website. http://freemarker.sourceforge.net/. Ac-
cessed 7/2012.

[wwwg] IBM Rational Rhapsody family. http://www-03.ibm.com/
software/products/us/en/ratirhapfami. Accessed 11/13.

[wwwh] Java for LEGO Mindstorms. http://www.lejos.org. Accessed
10/13.

[wwwi] JUnit – A programmer-oriented testing framework for Java. http://
junit.org. Accessed 10/13.

[wwwj] LEGO Mindstorms Education NXT User Guide. http://cache.
lego.com/r/education/-/media/lego%20education/home/
downloads/user%20guides/global/mindstorms/9797_lme_
userguide_us_low.pdf?l.r=-1708348262. Accessed 10/13.

[wwwk] LEGO MINDSTORMS NXT Hardware – MATLAB & Simulink
Website. http://www.mathworks.com/help/simulink/
lego-mindstorms-nxt.html. Accessed 11/13.

[wwwl] LEGO Mindstorms NXT website. http://mindstorms.lego.com/.
Accessed 8/2012.

[wwwm] LEGO.com Mindstorms. http://mindstorms.lego.com. Accessed
10/13.

[wwwn] MathWorks Simulink website. http://www.mathworks.com/
products/simulink/. Accessed 8/2012.

[wwwo] Mathworks stateflow. http://www.mathworks.com/products/
stateflow/index.html. Accessed 10/2013.

[wwwp] MiniSat website. http://minisat.se/. Accessed 7/2012.

Bibliography 337

[wwwq] MontiArc website. http://www.monticore.de/languages/
montiarc/. Accessed 8/2012.

[wwwr] MontiArcAutomaton Code Generation website. http://www.
monticore.de/languages/montiarcautomaton/codegen/.
Contains supporting materials for this thesis.

[wwws] MontiArcAutomaton Verification website. http://www.monticore.
de/languages/montiarcautomaton/verification/. Contains
supporting materials for this thesis.

[wwwt] MontiArcAutomaton website. http://www.monticore.de/
languages/montiarcautomaton/. Contains supporting materials
for this thesis.

[wwwu] MontiArcView Verification and Synthesis Evaluation Materials. http:
//www.se-rwth.de/materials/cncviews/. Contains supporting
materials for this thesis.

[wwwv] MontiCore Project website. http://www.monticore.org/. Accessed
8/2012.

[wwww] NuSMV home page. http://nusmv.fbk.eu/. Accessed 01/13.

[wwwx] NXT Programs Bumper Car website. http://www.nxtprograms.
com/bumper_car/. Accessed 8/2012.

[wwwy] The ACME Studio Homepage. http://www.cs.cmu.edu/~acme/
AcmeStudio/. Accessed 8/2012.

[wwwz] The MONA Project. http://www.brics.dk/mona/. Accessed
09/2013.

[wwwaa] The Ptolemy Project. http://ptolemy.eecs.berkeley.edu/. Ac-
cessed 10/13.

[wwwab] Visual Paradigm for UML Website. http://www.
visual-paradigm.com/. Accessed 11/2013.

[XS07] Zhenchang Xing and Eleni Stroulia. Differencing logical UML models.
Autom. Softw. Eng., 14(2):215–259, 2007.

Index

� symbol, 33, 360
∗ symbol, 181, 359
+ symbol, 359
∗MAAts automaton, 181
+ completion, 188
+ symbol, 181

abstract connector, 32, 33, 41
all, 359
Alloy, 101
Alloy Analyzer, 101
architectural style, 129
Architecture Description Language, 21
atomic component, 35, 164

C&C model, 15
C&C view, 33
C&C view ⊧ C&C model, 36
C&C view semantics, 36
C&C views specification, 38
C&C views synthesis, 98
C&C views synthesis specification pat-

tern, 128
C&C views verification witness, 52
chaos completion, 191
client-server style, 132
code generation, 279
component, 15, 33, 164, 284
component and connector model, 15
component and connector view, 33
component behavior specification, 170
component composition, 172
component type definition, 20, 163
composed component, 164
compute, 287, 288

concatenation, 169, 360
connectivity abstraction, 32
connector, 15
contradiction (Mona result), 219

enabledness expansion, 188
equals, 255
examples (Mona result), 219
exists, 359

factory, 286
Focus, 168
FreeMarker, 283

generation gap, 252
generic component type, 162

hierarchical style, 130
hierarchy abstraction, 31

I/O relation semantics, 195
interface-complete component, 36
intersection, 360

join, 359

layered style, 135
Lego Mindstorms, 281
leJOS, 281
local variable, 162, 181, 284

manual implementation, 252, 291
Mona, 218
MontiArc, 17, 40
MontiArcAutomaton, 160

339

340 Index

MontiArcAutomaton component behav-
ior upward simulation refinement,
215

MontiArcAutomaton component equal-
ity, 216

MontiArcAutomaton component refine-
ment, 215

MontiArcAutomaton specification check,
254, 255

MontiArcAutomaton specification suite,
254

MAAts automaton, 181
MAAts language profile, 180
MontiCore, 282

negation, 255
NXT, 281

output completion, 192

port, 15, 284
prefix order, 169

reference removal, 184
refinement, 178, 199, 255
relation, 359

simulation, 179, 294
specification, 38, 170, 253
specification language, 253
SPF, 172
SPF semantics, 196
state, 161, 181
stream, 168, 360
stream operations, 169
stream processing functions, 172
subcomponent, 15, 33
subset, 360
symbols, 359

take, 169
target syntax, 362
tautology (Mona result), 219
THE, 359
transition, 161, 181

transitive closure, 359
translation rule

execute, 368
if–then–else, 367
iteration, 364
let–in, 365
quantification, 363

translation rule notation, 361
transpose, 359
tuple, 359
type, 15, 33, 163

union, 360
update, 287, 288
upward simulation refinement, 179

witness, 52, 55, 56, 258
WS1S – weak monadic second order logic

of one successor, 218

List of Definitions

2.2. Definition (Component and connector model) 15

3.6. Definition (Component and connector view) 33
3.8. Definition (C&C model ⊧ C&C view) . 36
3.9. Definition (C&C views specification) . 38
3.10. Definition (C&C model ⊧ C&C views specification) 38

4.6. Definition (C&C views verification problem) 54

5.6. Definition (C&C views synthesis problem) 98
5.30. Definition (Alloy instances of C&C views synthesis) 117
5.41. Definition (Library components specification) 126
5.48. Definition (Client-server specification) . 132
5.54. Definition (Layer specification) . 136

6.8. Definition (Component type definition) . 164
6.15. Definition (I/O relation semantics for composed components) 176
6.19. Definition (MAAts automaton) . 181
6.20. Definition (∗MAAts automata) . 181
6.22. Definition (∗MAAts automata reference removal) 184
6.24. Definition (Enabledness expansion for ∗MAAts automata) 188
6.25. Definition (+ completion for enabledness expanded ∗MAAts automata) . 189
6.28. Definition (Chaos completion for enabledness expanded ∗MAAts automata)191
6.30. Definition (Output completion for enabledness expanded ∗MAAts au-

tomata) . 192
6.32. Definition (Total MAAts automaton) . 194
6.33. Definition (I/O relation semantics of total MAAts automata) 195
6.34. Definition (Time pulsed automaton [Rum96, adapted from Definition 5.32])196
6.35. Definition (Translation of total MAAts automata to time pulsed automata)196
6.36. Definition (Semantics of total time pulsed automata [Rum96, adapted

from Proposition 5.34]) . 197
6.37. Definition (SPF semantics of total MAAts automata) 198
6.39. Definition (I/O relation refinement of MAAts automata) 199
6.40. Definition (SPF refinement of MAAts automata) 199

7.12. Definition (MontiArcAutomaton component behavior upward simulation
refinement) . 215

342 List of Definitions

7.13. Definition (MontiArcAutomaton component behavior refinement) 215
7.14. Definition (MontiArcAutomaton component shared ports behavior equality)216
7.15. Definition (MontiArcAutomaton component behavior equality) 216
7.55. Definition (MontiArcAutomaton specification check) 255

List of Figures

2.1. A simple C&C model — consisting of a composed component with three
subcomponents — shown in the graphical syntax of the ADL MontiArc. 14

2.3. The C&C model PumpingSystem shown in graphical syntax. Some
details, e.g., the types and names of ports are omitted to avoid clutter.
An excerpt of the textual MontiArc syntax of this example is shown in
Listing 2.4. 17

2.5. An instantiation of component type definitions to C&C models. 21

3.1. An illustration of the pump station with two water tanks, a pump, a valve,
and a control panel. 26

3.2. The C&C model of the pump station system adapted from an example
of the AutoFOCUS IDE [wwwd]. The C&C model is shown in five sepa-
rate component definitions as presented by state-of-the-art C&C modeling
languages and tools, e.g., AcmeStudio [wwwy] and AutoFOCUS. To omit
clutter we do not show port names or data types in the figure. The com-
plete model with port names and data types is shown in Appendix G. . . 27

3.3. Two C&C views related to the pumping station system. The C&C view
ASPumpingSystem documents the C&C model PumpingSystem by
showing relevant components and connectors across different containment
levels. The C&C view UserButtonFlow shows components and connec-
tors participating in the flow of user button messages. 29

3.4. Two C&C views related to the pumping station system. The views doc-
ument relations between component EmergencyController and its
relevant part of the pumping system. 31

3.5. A C&C view generated to show the implementation of the view User-
Button (view UserButtonFlow from Figure 3.3 with component Phy-
sicsSimulation renamed SimulationPanel) in the C&C model
PumpStation shown in Figure 3.2. 32

3.7. The basic parts of a modeling language definition in the framework de-
fined in [CGR09]. We define the concrete and abstract syntax based on
MontiArc in Section 3.6. The minimal abstract syntax for C&C views is
the structure given in Definition 3.6. 35

3.11. Three C&C views used in specification S1: UserButtonRemote (a),
SystemEmergencyControllerFixed (b), and EmergencyInsid-
ePumpingSystem (c). 39

344 List of Figures

3.12. The C&C view UserButtonReaderInsideController that depicts
the component UserButtonReader contained in the component Con-
troller. 39

3.16. A modified version of the C&C view UserButtonFlow shown in Fig-
ure 3.3. The unnamed input port of type ValvePosition and the port
userValvePosition with unknown type are satisfied by a the single
port userValvePosition of type ValvePosition in the C&C model
PumpStation. 45

4.1. The C&C model of the pump station. Here we show the C&C model with
its complete depth in one figure, in order to give a comprehensive per-
spective. To avoid clutter we omit port names and types from the figure.
However, as this is a C&C model (and not a view), all ports have names
and types. For example, the type of the upper left incoming port of the
component ModeArbiter, with a connector coming from the component
UserOperation, is Boolean and its name is userPumpState. The
complete model with all port names and types is shown in Appendix G. . 51

4.2. Two C&C views: ASPumpingSystem (a) and UserButton (b). Please
note that as these are views, they allow one not to fully specify ports,
port types, and port names. For example, the abstract connector going
out from PumpSensorReader in the ASPumpingSystem view has no
specified source port. The C&C model PumpStation satisfies these views. 52

4.3. Two C&C views: PCPumpingSystem and SystemEmergencyControl-
ler. The C&C model PumpStation does not satisfy these views. 53

4.4. Generated witness for satisfaction of the UserButton view. 53

4.5. Two generated witnesses for non-satisfaction of the PCPumpingSystem
view. 54

4.7. Generated witness for satisfaction of the ASPumpingSystem view. . . . 56

4.8. Generated non-satisfaction witnesses for the view SystemEmergency-
Controller. 58

4.16. A screen capture from the prototype plug-in, after checking the C&C
model PumpStation shown in Figure 4.1 against the view System-
EmergencyController shown in Figure 4.3 (b). The lower pane shows
the Eclipse problems view titled Witnesses for Non-Satisfaction, which
provides a hierarchical list of the generated witnesses for non-satisfaction
together with their generated natural language descriptions. Four wit-
nesses were generated, one for a missing component, two for interface
mismatches, and one for a missing connection. The main editing pane on
the top right shows one of the generated witnesses for interface mismatch. 75

List of Figures 345

4.19. Average times in milliseconds to decide satisfaction and compute the rea-
sons for non-satisfaction, for the two setups, the variable size setup where
the view size is a fifth of the C&C model size, and the fixed size setup
where the view size is fixed to 12 components. Although the average
times for the variable setup grow faster than the average times for the
fixed setup, the absolute times recorded and the chart’s growth clearly
show that C&C views verification is feasible and scales well. 83

5.1. The C&C views RJFunction and RJStructure documenting partial
knowledge available to the engineers. Please note that the implementa-
tion details about the connection between the components Sensor and
Actuator are not given in the view RJFunction, e.g., the source and
target ports do not appear in the view. 95

5.2. The C&C views BodySensorIn and BodySensorOut showing two al-
ternative designs with different placements of the component Sensor. . 95

5.3. The C&C view SensorConnections documents details about the con-
nections starting from the component Sensor. The C&C view ASDe-
pendence depicts a design where the components Sensor and Actua-
tor are both contained in the component Body. 96

5.4. A C&C model with 20 ports satisfying the C&C views specification S1. . 97
5.5. The C&C view OldDesign describes the relation between components

Actuator and Cylinder. 97
5.7. Translation of every variable xi to views vTi and vFi for representing the

positive and negative evaluations of variables. 99
5.9. An illustration of our approach to C&C model synthesis. The rectangular

boxes represent the main computation steps. The translation of C&C
views into predicates is described in Section 5.3.4. The translation of Alloy
instances into C&C models is described in Section 5.3.6. The optional
input of library components is described in Section 5.4.2. 100

5.18. Overview of the translation of a C&C views specification into an Alloy
module. Comments above the rule executions belong to the respective
rules. The syntactical elements of the translation rules are listed in Ap-
pendix B. 109

5.19. Translation rule V1 adding a fact about a single parent component. . . . 110
5.20. Translation rule V2 for components. 110
5.21. Translation rule V3 for port names. 111
5.22. Translation rule V4 for port data types. We add the prefix "my_" to all

type names to avoid name clashes, e.g., with Alloy’s built-in signature int.111
5.23. The C&C view BodySensorOut as shown in Figure 5.2 (b). 112
5.24. Translation rule P1 regarding the existence of components. 112
5.25. Translation rule P2 regarding independence of components. 113
5.26. Translation rule P3 regarding containment of components. 114
5.27. Translation rule P4 regarding ports of components. 114

346 List of Figures

5.28. Translation rule P5 regarding connections between components. 115
5.32. Translation rule I1 for the translation of an Alloy instance into a C&C

model in the concrete syntax of MontiArc. This rule selects the parent
component of the computed Alloy instance and translates it into concrete
MontiArc syntax by executing rule I2. 119

5.33. Translation rule I2 for the translation of a component cmp ∈ Component
of an Alloy instance into a component in the concrete syntax of MontiArc. 120

5.34. Translation rule I3 for the translation of the ports of a component cmp ∈
Component of an Alloy instance to the concrete syntax of MontiArc. The
function remPrefix removes the prefix my_ added to type names in the
translation rule V4 from Figure 5.22. 121

5.35. Translation rule I4 for the translation of the connectors of a composed
component cmp ∈ Component of an Alloy instance to the concrete syntax
of MontiArc. 122

5.36. The view SensorConnections adapted from Figure 5.3 with compo-
nent Sensor marked as interface-complete and component Cylinder
marked as atomic. 124

5.38. Translation rule P4a handling components marked as interface-complete. 124
5.40. Translation rule P3a about components marked as atomic. 125
5.42. Translation rule V5 to create a fact about library components. The rule

also creates signatures for port names and types required for the definition
of the library components. 127

5.43. The library component ServoValve with the input port forceLimit
and the output port torque both of type float. 128

5.44. The additional views SensorHasAmp and Amp, to be added to the specifi-
cation S1 with the implications IMP(BodySensorOut,SensorHasAmp)
and IMP(BodySensorIn,¬Amp). 129

5.45. The specification editor developed as part of our C&C views synthesis
Eclipse plug-in. The screen capture shows the dialog to create a conjunct
following the [ONEALT] pattern (xor in the screen capture). 130

5.47. An example of a C&C model in the hierarchical architecture style. Please
note that the direct feedback connector of component Body is resolved
inside the component and does not lead to a directed communication cycle.132

5.49. Translation rule V6 to create functions that return the server and the set
of clients in the client-server style. 133

5.50. Modification of translation rule V1 to V1cs for the client-server style. The
fact states that all components except the client and the server compo-
nents are subcomponents. 133

5.51. Translation rule V2cs for components. Components identified as client or
server are required to exist in any synthesized C&C model. 134

5.53. A C&C model of the avionics system (see Section 5.6.2) in the layered
architectural style. The complete C&C views specification is available
from [wwwu]. 136

List of Figures 347

5.55. Translation rule V7 to create functions that return the atoms of compo-
nents identified as layers in the layered style. 138

5.56. Modification of translation rule V1 to V1l for the layered style. The fact
states that all components except the layers are subcomponents. 139

5.57. Translation rule V2l for components. Components identified as layers are
required to exist in any synthesized C&C model. 140

5.59. A screen capture of the Eclipse plug-in for C&C views synthesis showing
the specification editor. 142

5.61. Running times for synthesizing the lunar lander specification LL-BS10
with increasing scopes for the number of ports. The scope for port names
was set to 6 on all runs. We report times starting from scope 12, which
is the first scope to make the problem satisfiable. All times for CNF
computation and SAT solving are reported in seconds. For scope 18 the
SAT solver timed out (t. o.) after 5 minutes. 147

5.62. Running times for synthesizing the lunar lander specification LL-TMD09
with increasing scopes. Starting from scope 21, which is the first scope to
make the problem satisfiable. All times for CNF computation and SAT
solving are reported in seconds. 147

5.63. A C&C view view that has only satisfying C&C models with at least
2 ∗ ∣view.AbsCons∣ ∗ ∣view.Cmps∣ ports. Every satisfying C&C model
needs at least twice the number of port names shown in this view. 149

6.1. The bumper bot robot with a touch sensor in front and two motors to
power the left and right wheels. 158

6.2. The C&C architecture SimpleBumperBot of the bumper bot. 159

6.3. The component definition and state-based behavior description of com-
ponent BumpControl of the bumper bot. 159

6.4. A UML/P class diagram defining the enumeration types TimerSignal,
MotorCmd, and TimerCmd. 160

6.9. Two component type definitions (upper part) and the instantiation of
component type TwoSwitchController as a C&C model (lower part).
The component type TwoSwitchController defines two subcompo-
nents of the component type ToggleSensor. The referenced component
types TouchSensor, ToggleSwitch, and Controller are atomic and
not shown in the figure. The C&C model on the right is an instance of the
component type TwoSwitchController that contains two instances of
the component type ToggleSensor. 167

6.11. The component ToggleSwitch with input port pressed of type Boolean
and output port active of type Boolean. 170

348 List of Figures

6.12. A Focus specification for the I/O behavior of the component Tog-
gleSwitch from Figure 6.11. Following the notation used in [BS01]
the names of inputs are given with their types in the head of the speci-
fication and the names are used as streams of these types in the body of
the specification. 171

6.13. The composed component BumperBotESController with its subcom-
ponents BumpControlES and Timer. 173

6.14. A Focus composite specification of the component BumpControlES
from Figure 6.13 given in constraint style. 174

6.16. The composed component SumUp consisting of the component Add with
a feedback look. 177

6.17. Upward simulation for behavior refinement of components in combination
with interface refinement (see [Bro93]). 179

6.18. A concrete example of two abstractions A and Ã for upward simulation
refinement of the specification BumpControlSpec1a by the component
BumpControl (see the example in Section 7.1). 180

6.21. The MontiArcAutomaton component BumpControl with a ∗MAAts au-
tomaton (upper part, also shown in Figure 6.3) and its transition relation
δ according to Definition 6.20. To fit all entries in the table we omitted
the guard φ = true and the empty list of variables v⃗. 183

6.23. Example of an application of the function removeReferences to the first
transition of the transition system of the automaton Buffer<MotorCmd>
with the component Buffer<T> shown in Listing 6.6 and the enumera-
tion type MotorCmd shown in Figure 6.4. 187

6.26. Example for guards and input expansion and + completion for a single
transition of the automaton inside component BumpControl (see Fig-
ure 6.21). 190

6.27. A partial specification for the behavior of component ToggleSwitch
given as a ∗MAAts automaton. 190

6.29. Chaos completion of the transition system of the automaton inside com-
ponent ToggleSwitchSpec from Figure 6.27. 192

6.31. Output completion of the transition system of the automaton inside com-
ponent ToggleSwitchSpec from Figure 6.27. 194

6.38. The implementation of component ToggleSwitch as a total MAAts

automaton. 198
6.41. Two MontiArcAutomaton components with automata that demonstrate

different semantics of the MAAts refinement based on the I/O relation
semantics and the MAAts refinement based on the SPF semantics. 200

7.1. The bumper bot robot with a touch sensor in front and two motors to
power the left and right wheels. 208

List of Figures 349

7.2. The architecture definition SimpleBumperBot of the bumper bot robot.
The top level component is marked with the stereotype «deploy». It
describes the deployment of the displayed components on the physical
control device of the robot shown in Figure 7.1. 209

7.3. The complete interface of component BumpControl. The input ports of
the component are shown on the left and the output ports are shown on
the right. 209

7.4. The MontiArcAutomaton specification of the behavior of component Bump-
Control. 210

7.5. A MontiArcAutomaton specification expressing [Spec1b]. This specifica-
tion refines BumpControlSpec1a. 211

7.6. A MontiArcAutomaton specification expressing [Spec1c]. This specifica-
tion refines BumpControlSpec1a and BumpControlSpec1b. 212

7.7. A picture of the extended bumper bot with an emergency stop switch. . 212
7.8. The architecture of of the extended bumper bot with an emergency stop

switch. Component BumpControlES is composed from the components
MotorStopper, Arbiter, and BumpControl as shown in Figure 7.10. 213

7.9. Specification [Spec2] expressed as an automaton. 213
7.10. Component BumpControlES is composed of components MotorStopper,

Arbiter, and BumpControl. 214
7.11. The component ArbiterMotorCmd from a component library imple-

mented as a ∗MAAts automaton. The outputs on the transitions of the
state idle refer to input port names and thus forward the corresponding
input message as output. 214

7.16. Syntactic elements of WS1S in Mona . 218
7.23. The composed component BumperBotESController with its subcom-

ponents BumpControlES and Timer. 223
7.24. Overview of the translation of composed component types into the con-

crete syntax of the Mona language. The comments above the rule execu-
tion commands belong to the respective rules and are reproduced in this
listing to give an intuition of the rules’ contents. 224

7.25. Translation rule C1 for the translation of the interface of composed com-
ponent type definitions into the head of a Mona predicate. 226

7.26. Translation rule C2 for the translation of child-to-child connectors in com-
posed component type definitions to variables in Mona. 227

7.27. Translation rule STRM for the translation of constraints on a set of
variables representing a stream strmName with possible messages m ∈
Univ ∪ {+} to a Mona expression. 228

7.28. Translation rule C3 for the translation of parent-to-parent connectors into
Mona statements. 229

7.29. Translation rule C4 for the translation of subcomponents of composed
component type definitions into Mona predicate instantiations. 230

350 List of Figures

7.31. Overview of the translation of ∗MAAts automata into the concrete syntax
of the Mona language. The comments above the rule execution commands
belong to the respective rules and are reproduced in this listing to give
an intuition of the rules. 233

7.32. Translation rule A1 for representing the head of the predicate of ∗MAAts

automata in Mona. 234
7.33. Translation rule A2 for the translation of the states of ∗MAAts automata

into Mona. 235
7.34. Translation rule A3 for the variables of ∗MAAts automata to Mona. . . . 236
7.35. Translation rule A4 for the initial states and output of ∗MAAts automata

in Mona. 237
7.36. Translation rule VAL for the translation of a message m ∈ Univ ∨ m = ∗

on a port prefix at time t into a Mona expression. 237
7.37. Translation rule A5 for the initial values of variables of ∗MAAts automata

in Mona. 238
7.38. Translation rule A6 for the transition system of ∗MAAts automata and

its + completion to Mona. 238
7.39. Translation rule A7 for the transitions of ∗MAAts automata to Mona. . . 239
7.41. Translation rule A8 for the + completion of the transition system of

∗MAAts automata in Mona. In case no transition is enabled the com-
ponent does not send any message on any port (+) and preserves the
values of the variables. 241

7.43. Translation rule A2c for the translation of the states of ∗MAAts automata
into Mona. 243

7.44. Translation rule A4c for the initial states and output of ∗MAAts automata
in Mona. 244

7.45. Translation rule A7c for the transitions of ∗MAAts automata to Mona. . 245
7.46. Translation rule A8c for the chaos completion of the transition system of

∗MAAts automata in Mona. In case no transition is enabled the behavior
is not constrained. 246

7.47. Translation rule A7r for the transitions of ∗MAAts automata into Mona. 248
7.48. Translation rule A8r for the output completion of the transition system

of ∗MAAts automata in Mona. In case no transition is enabled the au-
tomaton stays in the current state and leaves variable values unchanged. 249

7.49. Dependencies of Mona files of the MontiArcAutomaton models for the
refinement check between the component BumperBotSimple and the
component BumperBotEmergency. 251

7.56. Translation rule SC for MontiArcAutomaton specification checks from
Definition 7.55 into Mona. 257

7.58. An implementation of the controller for the bumper bot with the emer-
gency stop feature. The automaton is proposed as an alternative to the
composed component BumpControlES from Figure 7.10. 259

List of Figures 351

7.61. Two versions of the application part of the C&C architecture of the
bumper bot. The application part consists of all components of the robot
except for the sensors and actuators. 262

7.62. A specification for the bumper bot to drive backwards whenever the
bumper is pressed. 263

7.64. The implementation of the environment guard EnvBumpGuard (a). The
guard is implemented as a composition of MAAts automata. 264

7.65. A screen capture of the MontiArcAutomaton specification suite verifica-
tion tool. 266

7.68. The composed component DifferentDelays containing subcomponents
of the component type Processor with strongly causal behavior. 273

8.1. A depiction of the hardware of the bumper bot with an emergency stop
switch. The software C&C architecture for the device is shown in Figure 8.2.280

8.2. The component type definition BumperBotEmergencyStop and its sub-
component type definitions of the bumper bot robot. This figure inte-
grates Figure 7.8 and Figure 7.10. 281

8.3. The Lego NXT brick with a 48 MHz processor and 64 KB RAM. 282
8.4. MontiCore uses the grammar to generate a parser for MontiArcAuto-

maton models which creates the AST (see [Sch12]). The DSLTool uses
the parser to read models, which are validated by the context condi-
tion framework using the symbol tables provided by the DSLTool. The
DSLTool further may use FreeMarker templates and template calculators
to generate code from the models based on the AST. 283

8.5. The interface Component that allows uniform handling of components
and the generic classes Port<T> for component ports and Variable<T>
for local variables of components. 284

8.6. Illustration of the necessary instances of ports (9 of 25 ports) at the run-
time of the generated Java code. The dashed ports are only references to
port instances. 285

8.7. The Java classes BumpControlES and BumpControlESFactory gen-
erated for the MontiArcAutomaton composed component type definition
BumpControlES shown in Figure 8.2. 286

8.11. The classes Timer and TimerFactory generated for the component
parametrized Timer[long delay] from Listing 8.10 which requires a
manual implementation supplied in the class TimerImpl. 292

8.14. The component BumperBot as instantiated in the SimBad simulator.
The NXT platform specific implementations of the sensors and actuators
are replaced by simulator specific implementations. 295

8.15. Simulation of a single bumper bot using the generated Java code from
MontiArcAutomaton models in the simulator SimBad [HB06]. 296

352 List of Figures

8.16. The coffee service at work. A coffee request triggered the coffee service
robot to pick up a mug and proceed to fetch coffee. A video is available
from our website [wwwt]. 300

8.17. Structure of the composed component NavigationUnit. 301
8.18. Fractions of the time spent on (a) learning the technologies and on (b)

creation of the three robots of the coffee system. 303
8.19. Efforts for understanding the different development artifacts and fixing

bugs as rated by the students on a scale from 1 (simple) to 10 (almost
impossible). 303

8.20. Confidence in the correctness of different development artifacts as rated
by the students on a scale from 1 (no confidence) to 10 (works perfectly). 304

8.21. The total number of components implemented as Java implementations
and models. 305

8.22. The changes over time per Java and model file of the implementations of
all three robots. 305

8.23. The top level decomposition of (a) the coffee preparing robot and (b)
the cup dispenser robot. The interaction between the robots is realized
via the components PrepCommunication and Communication that
provide access to the Bluetooth interface of the NXT brick. 309

B.1. Rule to create a class in concrete Java syntax for a component cmp with
name cmp.cType. 362

B.2. Excerpt of a FreeMarker template implementing the translation rule shown
in Figure B.1. 362

B.3. Rule to create a variable declaration for every port p in cmp.CPorts. . . 363
B.4. Excerpt of a FreeMarker template implementing the translation rule shown

in Figure B.3. 363
B.5. Rule to create a Java method that returns all port names of a component.

Strings of port names are concatenated in Java using +��. 364
B.6. Excerpt of a FreeMarker template implementing the translation rule shown

in Figure B.5. 364
B.7. Rule to create Java methods to set the instances of incoming ports. . . . 365
B.8. Excerpt of a FreeMarker template implementing the translation rule shown

in Figure B.7. 366
B.9. Rule R5 generates a method that returns whether the component repre-

sented by the generated class is an atomic component. 367
B.10.Excerpt of a FreeMarker template implementing the translation rule shown

in Figure B.9. 367
B.11.Modification of rule R1 that adds the declaration of variables for all ports

by executing rule R2 and mutator methods for all input ports by executing
rule R4. 368

B.12.Excerpt of a FreeMarker template implementing the translation rule shown
in Figure B.11. 369

List of Figures 353

G.1. The component PumpStation with all immediate subcomponents and
ports. The component Environment is shown in Figure G.2. The com-
ponent PumpingSystem is shown in Figure G.3. 408

G.2. The component Environment with all immediate subcomponents and
ports. The components SimulationPanel and PhysicsSimulation
are atomic. 409

G.3. The component PumpingSystem with all immediate subcomponents and
ports. The component SensorReading is shown in Figure G.4. The
component Controller is shown in Figure G.5. The components PumpActu-
ator and ValveActuator are atomic. 410

G.4. The component SensorReading with all immediate subcomponents and
ports. All subcomponents are atomic. 411

G.5. The component Controller with all immediate subcomponents and
ports. All subcomponents are atomic. 412

List of Listings

2.4. An excerpt from the C&C model PumpingSystem given in MontiArc
textual syntax. The C&C model is shown in graphical syntax in Figure 2.3. 19

3.13. A view of the system called UserButton. 41
3.14. The C&C view UserButtonWithConnections in MontiArcView syn-

tax. The abstract connectors in lines 23-25 illustrate the cases component-
to-component, component-to-port, and port-to-component. 42

3.15. A view of the system called UserButtonExtended with stereotypes
«atomic» and «interfaceComplete». 44

5.10. A simple Alloy example of Ports with unique names and a direction. . . . 101
5.11. The Alloy signatures of the C&C model metamodel in Alloy. 103
5.12. Alloy facts about components in the C&C model metamodel in Alloy. . . 103
5.13. Alloy facts about ports in the C&C model metamodel in Alloy. 104
5.14. Alloy facts about the representation of connectors in the C&C model

metamodel in Alloy. 105
5.15. Alloy predicates about the containment relation of components to define

the semantics of C&C views. 106
5.16. Alloy predicates about the connectedness of components. 106
5.17. Alloy predicates about the interfaces of components to define the seman-

tics of C&C views. 107
5.29. The Alloy predicate specification representing the views specification

S1 introduced in Section 5.1.1 and the Alloy command to find a satisfying
C&C model. 116

5.31. An instance generated by the Alloy Analyzer for the Alloy module gen-
erated from the C&C views specification S1. The computed instance cor-
responds to the C&C model shown in Figure 5.4. The relations parent ⊆
(Component × Component) and sendingPort ⊆ (Port × Port) are not
shown in the listing since they are not used in the translation of Alloy
instances into MontiArc models. 118

5.37. Predicate to specify that a component is interface-complete, technically,
by stating that the set of its port names, as appearing in the view, is
exactly its complete set of port names. 124

5.39. Predicate to specify that a component is atomic, technically, by stating
that the component has no subcomponents in a satisfying C&C model
and no internal connectors. 125

356 List of Listings

5.46. A fact for the hierarchical architecture style specifying that no component
in the C&C model has a directed end-to-end feedback loop. 131

5.52. Excerpt from the Alloy code for the client-server style. The functions
myServer and myClients are generated Alloy functions returning the
server component and the client components respectively (see translation
rule V6 shown in Figure 5.49). 135

5.58. Additional Alloy functions and predicates for the layered style. myLay-
ers is a generated Alloy function returning the layer components (see
translation rule V7 in Figure 5.55). 141

6.5. The MontiArcAutomaton model of the component BumpControl. 161
6.6. The MontiArcAutomaton model of the generic component Buffer. . . . 162
6.7. An excerpt of the automaton inside component ManeuverController

in concrete MontiArcAutomaton syntax. 164

7.17. A specification of the behavior of the component ToggleSwitch based
on the Focus specification from Figure 6.12. 219

7.18. An example for an assignment that satisfies the formula given in the Mona
program from Listing 7.17 as computed by Mona. 220

7.19. The stream rightMotor ∈ MotorCmd∗ encoded in Mona using the variable
allTime that defines all points in time of interest (see Listing 7.20). . . 221

7.20. The set all time containing all points in time. 221
7.22. A Mona predicate of the behavior of the component ToggleSwitch

based on our encoding of streams and the Focus specification shown
in Figure 6.12. 222

7.30. A model of the component ToggleSwitch given in MontiArcAutomaton
syntax. 232

7.40. Predicate for sets representing values on streams to state that the value
does not change from time t to time t + 1. 240

7.42. A specification for the behavior of the component ToggleSwitch. The
component ToggleSwitchSpec is shown in a graphical representation
in Figure 6.27. 242

7.50. The include statements in the parent Mona file generated from the
dependency graph in Figure 7.49. 251

7.52. The MontiArcAutomaton component type definition of the component
Timer in concrete syntax. 253

7.53. The Mona predicate lib_Timer generated for the component type defi-
nition Timer from Listing 7.52. 253

7.54. The MontiArcAutomaton specification suite BumperBotRefinement-
Steps consisting of three MontiArcAutomaton specification checks. . . . 254

7.57. A counter example computed by Mona when checking BumpControl
refines BumpControlSpec1c. 258

7.59. The MontiArcAutomaton specification suite EmergencySpecs consist-
ing of three MontiArcAutomaton specification checks. 260

List of Listings 357

7.60. The MontiArcAutomaton specification suite ReplacementChecks con-
sisting of two MontiArcAutomaton specification checks. 261

7.63. The MontiArcAutomaton specification suite BumperBotBacks consist-
ing of two MontiArcAutomaton specification checks. 263

7.69. An excerpt of the modified transition system of the component BumpVal-
idation presented in Figure 7.64 (c) to support immediate processing
of input messages. 275

8.8. The generated compute() method of the component BumpControl
shown in Figure 6.3. 289

8.9. The generated compute() method of the component Arbiter<T> which
is similar to ArbiterMotorCmd from Figure 7.11 but parametrized with
the type T. 290

8.10. The MontiArcAutomaton component type definition of the parametrized
component Timer[long delay] that requires a manual implementation
of the component behavior. 292

8.12. A manual implementation of the compute() method of the parametrized
component Timer[long delay]. 293

8.13. The code generated for the deployment of the component BumperBotE-
mergencyStop shown in Figure 8.2 on the LeJOS platform. 294

I.1. Alloy module translated from specification S1 presented in Section 5.1.1. 433

J.1. The grammar of MontiArcAutomaton extending the MontiArc ADL with
automata and local variables inside components. 442

K.1. The grammar of the MontiArcAutomaton specification language to define
specification suites containing specification checks. 443

L.1. MontiArcAutomaton model of the composed component BumperBotESCon-
troller. 445

L.2. Mona translation of the composed component BumperBotESController
shown in Listing L.1. 446

L.3. A model of the component ToggleSwitch given in MontiArcAutomaton
syntax. 448

L.4. Mona translation of the component ToggleSwitch shown in Listing L.3. 448

Appendix A.

Symbols

General symbols

△ end of a definition
end of a proof

Automata

+ absence of a message in MAAts automata
∗ omission of elements in the syntax of ∗MAAts automata
I⃗ cross product of sets, e.g., I⃗ = I1 × . . . × In

i⃗ tuple; element of cross product of sets, e.g., i⃗ = (i1, . . . , in) ∈ I⃗ =
I1 × . . . × In

Logic

∀ universal quantification
∃ existential quantification
∃! existential quantification satisfied by exactly one element
THE definite description operator; THE x ∶ Φ(x) is the unique x that

satisfies Φ

Arithmetic for a, b ∈ N
a ∗ b multiplication
Πr∈Rf(r) multiplication of values f(r) for every r ∈ R

Relations

R+ transitive closure of the binary relation R
R−1 transposed relation, e.g., inverse of a binary relation R
R #Q join of relations on the last element of R and first element of Q

removing the matching element: (x1, .., xm−1, xm+2, .., xn) ∈ R #
Q ⇔ (x1, .., xm) ∈ R ∧ (xm+1, .., xn) ∈ Q ∧ xm = xm+1
equivalent to the dot-join operator of Alloy [Jac06, Section 3.4.3]

360 Appendix A. Symbols

Sets

N natural numbers including 0
N∞ N ∪ {∞}
R real numbers
S ⊆ T the set S is included in the set T
S × T the cross product of sets S and T

⨉r∈S(f(r)) the cross product of all sets f(r) (using a fixed order of the ele-
ments r ∈ S)

S ∪ T the union of sets S and T

⋃r∈S(f(r)) the union of all sets f(r)
S ∩ T the intersection of sets S and T
S ∖ T the removal of all elements of T from S

Streams where n ∈ N, M set of messages, s ∈ Mω

Mω finite or infinite stream
M∞ infinite (timed) stream
I⃗ input type for component type cmp with I⃗ =

⨉p∈cmp.CP ortsIN
(p.type)

O⃗ output type for component type cmp with O⃗ =
⨉p∈cmp.CP ortsOUT

(p.type)
⟨⟩ empty stream
m∶s append first element
ŝs′ concatenation of streams
s ⊑ s′ prefix relation
#s ∈ N∞ length of stream
s.n nth element of stream
s∣n prefix of length n
mn message iterated n times
sn stream iterated n times
s∣P domain restriction of input or output s of a component cmp ∈

CTDefs to ports in P ⊆ cmp.CPorts: s∣P = ⨉p∈P (sp)
C&C Views

� unknown ports, names, or types in C&C views
≅ correspondence between ports from a C&C model and a C&C view

(see Definition 3.8, Item 4 (b))

Appendix B.

Translation Rule Notation

Many analyses on models can be carried out by translating models from one language
into another language that provides similar analyses and then translating the results
back into the problem domain. The modeling languages employed in this thesis have
a textual concrete syntax. We use a compact notation for translation rules from the
abstract syntax of one language into the concrete syntax of a target language.

The translations described in this thesis are implemented using FreeMarker tem-
plates [wwwf] following the MontiCore code generation approach described in [Sch12].
In this approach, templates retrieve relevant information about the source model from
nodes of the model’s abstract syntax tree and calculators implemented in Java.

We use a more compact notation introduced here, that allows us to (1) use less tech-
nical and conceptually simplified source structures, (2) access information about the
relevant input structures independent of current AST nodes, and (3) declaratively ex-
press complex calculation that otherwise require Java implementations of calculators in
the MontiCore code generation framework.

In the following sections we introduce the basic notations and constructs used in the
translation rules. The translation constructs are illustrated on example applications to
a model of the component BumpControl shown in Listing 6.5. We show excerpts of
FreeMarker templates to illustrate our translation notation for users of the MontiCore
code generation framework. For a detailed reference of this framework see [Sch12].

362 Appendix B. Translation Rule Notation

Source Structure and Target Syntax
In the translation rules, we identify and access elements of the source structure using ital-
ics. Elements of the concrete syntax of the target language are typeset in underlined���������
type writer font��������������.

As an example, consider a translation of the MontiArcAutomaton component type
definitions defined in Definition 6.8 into Java. In the abstract syntax, a component type
definition cmp has the component type name cmp.cType. In a translation into the target
language Java, the translation rule shown in Figure B.1 creates a Java class declaration
with the name of the component.

Translation Rule

Translation rule:

R1 class����� cmp.cType implements Component {��������������������
/*. . . */��������

}��
Result of application to the component BumpControl shown in Listing 6.5:

Java

1 class BumpControl implements Component {
2 /* ... */
3 }

Figure B.1.: Rule to create a class in concrete Java syntax for a component cmp with
name cmp.cType.

In FreeMarker templates the current node of the abstract syntax tree of the source
model is available as the variable ast. The freemarker syntax to access variables and
invoke methods is ${. . . }. The example in Figure B.2 invokes the method print-
Name() of the AST class ASTArcComponent which returns a string. Often the tem-
plates refer to manually implemented methods of the AST nodes that allow convenient
printing of complex AST nodes.

FreeMarker Template

class ${ast.printName()} implements Component {
/* ... */

}

Figure B.2.: Excerpt of a FreeMarker template implementing the translation rule shown
in Figure B.1.

363

Quantification
For multiple repetitions of fragments we use quantification over the elements of the source
structure that the fragment is repeated for. Quantification over elements introduces the
quantified variables in the enclosed lines and produces one copy for each element. An
example is shown in Figure B.3 where a variable p is introduced for ports from the set
of ports cmp.CPorts.

Translation Rule

Translation rule:

R2 ∀p ∈ cmp.CPorts ∶
private Port<������������p.type> my_����p.name ;��

Result of application to the component BumpControl shown in Listing 6.5:

Java

1 private Port<Boolean> my_bump;
2 private Port<TimerSignal> my_ts;
3 private Port<TimerCmd> my_tc;
4 private Port<MotorCmd> my_rMot;
5 private Port<MotorCmd> my_lMot;

Figure B.3.: Rule to create a variable declaration for every port p in cmp.CPorts.

The quantification used here is similar to the foreach directive of the FreeMarker
template language as shown in Figure B.4.

FreeMarker Template

<#foreach port in ast.getPorts()>
private Port<${port.printType()}> my_${port.printName()};

</#foreach>

Figure B.4.: Excerpt of a FreeMarker template implementing the translation rule shown
in Figure B.3.

364 Appendix B. Translation Rule Notation

Iteration
The iteration of the statement body for elements elems with an infix separator sep is
specified inline using the operator {|body|}sep

elems. An example application of the operator
is shown in Figure B.5. The inner translation rule "��p.name "�� prints the name of every
port p ∈ cmp.CPorts in quotation marks and joins the separate elements with the Java
String concatenation operator +��.

Translation Rule

Translation rule:

R3 public String getPortNames() {���������������������������
return������ {| "��p.name "��|} +

��
p∈cmp.ports ;��

}��
Result of application to the component BumpControl shown in Listing 6.5:

Java

1 public String getPortNames() {
2 return "bump" + "ts" + "tc" + "rMot" + "lMot";
3 }

Figure B.5.: Rule to create a Java method that returns all port names of a component.
Strings of port names are concatenated in Java using +��.

The iteration {|body|}sep
elems can be implemented as a combination of the list and

_has_next directives of FreeMarker as shown in Figure B.6.

FreeMarker Template

public String getPortNames() {
return <#list port in ast.getPorts()> "${port.printName()}"

<#if port_has_next> + </#if></#list>;
}

Figure B.6.: Excerpt of a FreeMarker template implementing the translation rule shown
in Figure B.5.

365

let–in
The construct let var = exp in body assigns the evaluation of the expression exp to
the variable var and executes the body of the rule that might depend on the variable
var. An example of the application of the construct let var = exp in body is shown
in Figure B.7.

Translation Rule

Translation rule:

R4 let inPorts = {p ∈ cmp.CPorts ∣ p.dir = IN} in
∀p ∈ inPorts ∶

public void setPort_������������������p.name(Port<������p.type> port) {��������
my_���p.name = port;������

}��
Result of application to the component BumpControl shown in Listing 6.5:

Java

1 public void setPort_bump(Port<Boolean> port) {
2 my_bump = port;
3 }
4

5 public void setPort_ts(Port<TimerSignal> port) {
6 my_ts = port;
7 }

Figure B.7.: Rule to create Java methods to set the instances of incoming ports.

The MontiCore code generation framework provides a calculator mechanism to do
complex calculations in Java. Calculators allow the definition of variables accessible
in FreeMarker templates. A corresponding example with a Java calculator Ports-
Calculator is shown in Figure B.8.

366 Appendix B. Translation Rule Notation

FreeMarker Template

<#if op.callCalculator(
"montiarcautomaton.codegen.PortsCalculator")>

Java calculator stores set of incoming ports in variable inPorts
(successful calculators return true)

<#foreach port in op.getValue(inPorts)>
public void setPort_${port.printName()}(

Port<${port.printType()}> port) {
my_${port.printName()} = port;

}
</#foreach>

</#if>

Figure B.8.: Excerpt of a FreeMarker template implementing the translation rule shown
in Figure B.7.

367

if–then–else
The construct if (bexp) then x else y evaluates the Boolean expression bexp and
executes the statement x if bexp evaluates to true. The statement y is executed if bexp
evaluates to false. An example for the application of the if-then-else construct is
shown in Figure B.9.

Translation Rule

Translation rule:

R5 public boolean isAtomic() {�������������������������
if (cmp.CSubCmps ≠ ∅) then
return false;������������

else
return true;�����������

}��
Result of application to the component BumpControl shown in Listing 6.5:

Java

1 public boolean isAtomic() {
2 return true;
3 }

Figure B.9.: Rule R5 generates a method that returns whether the component repre-
sented by the generated class is an atomic component.

The template engine FreeMarker provides a similar if-then-else construct as shown
in Figure B.10.

FreeMarker Template

public boolean isAtomic() {
<#if ast.getSubComponents()?has_content>
return false;

<#else>
return true;

</#if>
}

Figure B.10.: Excerpt of a FreeMarker template implementing the translation rule shown
in Figure B.9.

368 Appendix B. Translation Rule Notation

Executing Rules
The construct executeRule(R param) executes the rule R with the parameter param.
An example for the application of the executeRule() construct is shown in Fig-
ure B.11. The rule R6 executes the two rules R2 and R4. In this example, no parameters
are passed to the rules.

Translation Rule

Translation rule:

R6 class����� cmp.cType extends Component {�����������������
// add variables for all ports���������������������������
executeRule(R2) see rule R2 in Figure B.3
// add setters for all incoming ports���������������������������������
executeRule(R4) see rule R4 in Figure B.7

}��
Result of application to the component BumpControl shown in Listing 6.5:

Java

1 class BumpControl implements Component {
2 //add variables for all ports result of rule R2
3 private Port<Boolean> my_bump;
4 private Port<TimerSignal> my_ts;
5 private Port<TimerCmd> my_tc;
6 private Port<MotorCmd> my_rMot;
7 private Port<MotorCmd> my_lMot;
8

9 //add setters for all incoming ports result of rule R4
10 public void setPort_bump(Port<Boolean> port) {
11 my_bump = port;
12 }
13 public void setPort_ts(Port<TimerSignal> port) {
14 my_ts = port;
15 }
16

17 }

Figure B.11.: Modification of rule R1 that adds the declaration of variables for all ports
by executing rule R2 and mutator methods for all input ports by executing
rule R4.

In the MontiCore code generation framework the execution of another rule corresponds
to the inclusion of a template using the template operator. An example is shown in Fig-
ure B.12. For this example we assume that the template shown in Figure B.4 is stored in

369

the Java package montiarcautomaton and has the file name PortVariables.ftl.
Similarly, the template shown in Figure B.8 is stored in the same package with the
file name PortSetter.ftl. The template operator includes the templates from these
coordinates.

FreeMarker Template

class ${ast.printName()} implements Component {
${op.includeTemplate("montiarcautomaton.PortVariables", ast)}
${op.includeTemplate("montiarcautomaton.PortSetter", ast)}
}

Figure B.12.: Excerpt of a FreeMarker template implementing the translation rule shown
in Figure B.11.

Appendix C.

How to Use the C&C Views Verification
Plug-In

This appendix presents an overview of how to use the C&C views verification Eclipse
plug-in. The C&C views verification plug-in is an implementation of the algorithms
presented in Chapter 4 for checking C&C views satisfaction and generating witnesses.

The plug-in comes with the example systems listed in Section 4.4.1 and their cor-
responding sets of views. In addition we have made available the implementation of
the synthetic C&C model generation, view derivation, and the mutations used for our
performance analysis described in Section 4.4.2.

The plug-in and the evaluation project are available for download from [wwwu]. The
first slides on the following pages explain how to install the plug-in in Eclipse and how to
import the evaluation project. The plug-in has been tested with the following software:

• Eclipse 3.7 (32-bit) and 4.2.2 (32-bit)
• Java SE Development Kit 7, 1.7.0_21 (32-bit)
• Windows 7 (64-bit)

Installing the Plug-In (pt. 1)

• The plug-in is available for download from
http://www.se-rwth.de/materials/cncviews/

1

Click “Help” and choose
“Install New Software”

(1) Click “Add…”

(2) Click “Archive…” and
select the file cncviews-
plugin.zip, click “OK”

(3) Select
“MontiArcViewFeature”

(4) Proceed by clicking “Next >” a few times

Installing the Plug-In (pt. 2) 2

372 Appendix C. How to Use the C&C Views Verification Plug-In

Right-click in the “Package
Explorer” and select “Import…”

Select “Existing Projects into
Workspace” and press “Next >”

Importing the Evaluation Project (pt. 1) 3

Select the archive file arcvcheck-
evaluation.zip and click “Finish”

The project “arcvcheck-evaluation”
will appear in the workspace

Importing the Evaluation Project (pt. 2) 4

373

C&C models have the file extension *.arc
C&C views have the file extension *.arcv

Edit a C&C model or
C&C view file in the

Eclipse editor

Overview: C&C models and C&C views 5

The example systems are
in subfolders of the
folder /evalInput/

Checking Satisfaction

• Selecting a C&C model and a C&C view
• Negative verification result and witnesses
• Positive verification result and witness

6

374 Appendix C. How to Use the C&C Views Verification Plug-In

Select a C&C model (*.arc)
and a C&C view (*.arcv)…

… then right click and select
“Check C&C View Satisfaction”

Check C&C View Satisfaction 7

A negative verification
result produces a non-
satisfaction message

Categorized list of
generated witnesses for

non-satisfaction

Negative Verification Result 8

375

Generated witness
opened in editor

Double-click the
description to

open the
generated witness

Natural language
descriptions of the
reasons for non-

satisfaction

Negative Verification Result: Browse Witnesses 9

Positive Verification Result

A positive verification
result produces a

satisfaction message

Generated witness for satisfaction
automatically opened in editor

10

376 Appendix C. How to Use the C&C Views Verification Plug-In

Programmatically Executing
C&C Views Verification

• Executing the verification via JUnit tests, e.g.,
for regression testing

11

Programmatic Execution of Verification (pt. 1) 12

JUnit tests using APIs
to verify C&C models

Test methods instantiate and execute
commands via C&C views verification API

377

Programmatic Execution of Verification (pt. 2) 13

Execute as regular
JUnit test.

Advanced Evaluation Project Contents

• Code to generate random C&C models and
views

• Code to mutate views
• Code to reproduce experiments results

14

378 Appendix C. How to Use the C&C Views Verification Plug-In

C&C Model and C&C View Generator & Mutations

Parametrized generator for
randomized architectures and
ViewDeriver to derive views
satisfied by the architecture

Mutations for
mutating views

15

Code to execute performance
experiments using randomly

generated C&C models and views

Automated Experiments 16

379

Appendix D.

How to Use the C&C Views Synthesis
Plug-In

This appendix presents an overview of how to use the C&C views synthesis Eclipse plug-
in presented in Chapter 5 for synthesizing C&C models from C&C views specifications.

The plug-in comes with various views for the example systems and corresponding C&C
views specifications listed in Section 5.6.2.

The plug-in and the evaluation project are available for download from [wwwu]. The
first slides on the following pages explain how to install the plug-in in Eclipse and how to
import the evaluation project. The plug-in has been tested with the following software:

• Eclipse 3.7 (32-bit) and 4.2.2 (32-bit)
• Java SE Development Kit 7, 1.7.0_21 (32-bit)
• Windows 7 (64-bit)

The synthesis functionality of the plug-in is only available on Windows. The synthesis
executes a 32-bit Windows executable of the SAT solver MiniSAT version 2.2.0 provided
with the plug-in.

Installing the Plug-In (pt. 1)

• The plug-in is available for download from
http://www.se-rwth.de/materials/cncviews/

1

Click “Help” and choose
“Install New Software”

(1) Click “Add…”

(2) Click “Archive…” and
select the file cncviews-
plugin.zip, click “OK”

(3) Select
“MontiArcViewFeature”

(4) Proceed by clicking “Next >” a few times

Installing the Plug-In (pt. 2) 2

382 Appendix D. How to Use the C&C Views Synthesis Plug-In

Right-click in the “Package
Explorer” and select “Import…”

Select “Existing Projects into
Workspace” and press “Next >”

Importing the Evaluation Project (pt. 1) 3

Importing the Evaluation Project (pt. 2)

Select the archive file arcvsynth-
evaluation.zip and click “Finish”

The project “arcvsynth-evaluation”
will appear in the workspace

4

383

Importing the Evaluation Project (pt. 2) 5

The example systems are in subfolders of
the folder /evalInput/

C&C models have the file extension *.arc
C&C views have the file extension *.arcv
C&C views specifications have the file extension *.arcvspec

Synthesizing a C&C Model

• Running synthesis from an existing
specification

384 Appendix D. How to Use the C&C Views Synthesis Plug-In

To run synthesis, right click on a file
with the extension *.arcvspec and

select “Synthesize C&C Model”

Running Synthesis with an Existing Specification 7

Wait for synthesis results
(may take a few minutes)

Synthesis finishes with a
report whether it was

successful or not

Running Synthesis with an Existing Specification 8

385

The synthesized C&C model
can be opened and inspected

in the Eclipse editor

If synthesis was successful, a new C&C
model file is generated with the name of

the specification and a timestamp

Inspecting Successful Synthesis Results 9

Creating C&C Views Specifications

• Creating or editing C&C views
• Adding C&C views
• Adding library components
• Editing the propositional formula
• Synthesis with architectural styles

10

386 Appendix D. How to Use the C&C Views Synthesis Plug-In

Creating and Editing C&C Views

Create a new file with the
extension *.arcv or select an

exitsing C&C view to edit

Edit the C&C view in
the Eclipse editor

11

(1) Right click and select
“New” -> “Other…”

(2) Choose “New C&C
Views Specification”
and press “Next >”

(3) Choose a file name
and press “Finish”

Creating C&C Views Specifications 12

387

Add / remove views from the
specification, browsing for *.arcv files

Adding C&C Views 13

Adding Library Components

Select “Components”
and click “Add…” Select the component

definitions to add (files *.arc)

14

388 Appendix D. How to Use the C&C Views Synthesis Plug-In

View the expression (each
line is a conjunct)

Add / edit conjuncts of different
kinds: disjunction (or), exclusive

disjunction (xor), implication

Example dialog to add/edit
a disjunction

Editing Propositional Views Formula 15

Set the scope, i.e., the upper bound
for the number of ports in the

synthesized C&C model

Setting the Scope for Synthesis 16

389

Define style parameters
(client-server style in this

example)

Select architecture style

Selecting the Architectural Style 17

Architectural Style Parameters

• No parameters are required for Hierarchical style
• For Client/Server, enter the name of the server

component and the list of its clients
server=serverCompName
clients=clientCompName1,clientCompName2

• For Layered style, enter the list of layers, one layer
per line, in order. For each layer add the list of its
subcomponents (if known)
layerName1=comp1,comp2
layerName2=comp3

18

390 Appendix D. How to Use the C&C Views Synthesis Plug-In

Appendix E.

How to Use the MontiArcAutomaton
Verification Implementation

This appendix explains how to use the MontiArcAutomaton verification implementation.
The MontiArcAutomaton verification framework does not require the installation as a
plug-in. The necessary MontiArcAutomaton parsers and generators are resolved from a
public repository by the Maven software project management and comprehension tool.1
The use of Maven requires the installation of the Eclipse m2e Maven plug-in and a Java
SE Development Kit.

We provide the Eclipse project bumperbot-verification which contains the Monti-
ArcAutomaton models and specification suites of the bumper bot presented in Section 7.1
and in Section 7.5. Additional MontiArcAutomaton models and specification suites de-
scribed in Section 7.6 are provided in the Eclipse project maa-verification.

Both evaluation projects are available for download from [wwws]. The slides on the fol-
lowing pages explain how to import the bumperbot-verification project and how
to verify specification suites. The plug-in has been tested with the following software:

• Eclipse 3.7 (32-bit) and 4.2.2 (32-bit), with the installed plug-in:
– Maven plug-in m2e – Maven Integration for Eclipse 1.4.02

• Java SE Development Kit 7, 1.7.0_21 (32-bit)
• Windows 7 (64-bit)

The verification functionality of the plug-in is only available on Windows. The verifi-
cation executes a 32-bit Windows executable of Mona version 1.4-13 provided with the
example projects.

1http://maven.apache.org/ (accessed 11/13)
2Available from m2e Update Site – http://download.eclipse.org/technology/m2e/
releases (accessed 11/13)

Right-click in the “Package
Explorer” and select “Import…”

Select “Existing Projects into
Workspace” and press “Next >”

Importing the Evaluation Project (pt. 1) 1

Importing the Evaluation Project (pt. 2)

Select the archive file bumperbot-
verification.zip and click “Finish”

The project “bumperbot-verification”
will appear in the workspace

2

392 Appendix E. How to Use the MontiArcAutomaton Verification Implementation

MontiArcAutomaton Component Models

All MontiArcAutomaton component
type definitions (files *.cmp) are in

the folder /src/main/model

Manual implementations of component
behavior in Mona (files *.mona) are in

the folder /src/main/mona

3

Specification suites (files *.spec)
are placed in the folder /def/

MAA Specification
suites import

MontiArcAutomaton
models JUnit wrappers for

executing checks are in the
folder /src/test/java

Specification Suites and JUnit Wrappers 4

393

Running Existing Specification Suites

• Generating Mona code for components
• Executing JUnit wrappers for specification

suites
• Result of verification

Mona Code Generation for Components

Run the main method of RunCodegenMona
to generate Mona code

Mona code is generated into the folder
/target/generated-mona – one Mona

predicate for each MontiArcAutomaton
component type definition

6

394 Appendix E. How to Use the MontiArcAutomaton Verification Implementation

Executing Specification Suites

To execute a specification suite right click
on the corresponding JUnit wrapper and

select “Run As” “JUnit Test”

7

The execution of the JUnit wrapper
generates additional Mona code, executes
Mona and reports the verification results

Verification Results 8

395

Verification Results and Witnesses

In case the verification fails a
witness is generated and

shown in the console window

Tests can be rerun selectively
to see the witness

9

Creating Specification Suites

• Creating specification suites
• Setting up the JUnit wrapper

10

396 Appendix E. How to Use the MontiArcAutomaton Verification Implementation

Create a new file under /def/
with the extension *.spec

Import component type
definitions to check from

/src/main/model/

Creating Specification Suites 11

Create a new class that
extends RunMonaSuiteAsUnit

Creating Specification Suite JUnit Wrappers

Implement a method with the annotation @Parameters
that calls the parent’s method readSpecsFromSuite()

with the name of the new suite

12

397

Whenever MontiArcAutomaton models are
changed, the code needs to be regenerated by

executing RunCodegenMona

Always Generate Code before Running Verification!

Then execute the new JUnit wrapper

13

398 Appendix E. How to Use the MontiArcAutomaton Verification Implementation

Appendix F.

How to Use the MontiArcAutomaton Java
Code Generator

This appendix explains how to use the MontiArcAutomaton Java code generator. The
MontiArcAutomaton Java code generator does not require the installation as a plug-in.
The necessary MontiArcAutomaton and UML/P parsers and generators are resolved
from a public repository by the Maven software project management and comprehension
tool.1 The use of Maven requires the installation of the Eclipse m2e Maven plug-in and
a Java SE Development Kit.

We provide the Eclipse project bumperbot-codegen which contains the MontiArc-
Automaton models of the bumper bot presented in Section 6.1.

The evaluation project is available for download from [wwwr]. The slides on the
following pages explain how to import the bumperbot-codegen project and how to
generate code. The code generator has been tested with the following software:

• Eclipse 3.7 (32-bit) and 4.2.2 (32-bit), with the installed plug-ins:
– Maven plug-in m2e – Maven Integration for Eclipse 1.4.02

– leJOS NXJ plug-in 0.9.03

• Java SE Development Kit 7, 1.7.0_21 (32-bit)
• leJOS 0.9.1beta-3 (32-bit)4

• Windows 7 (64-bit)

The deployment of the generated code to a Lego NXT robot requires the installation
of the leJOS framework and the USB driver included in the leJOS installation package.
The code generation itself does not require the installation of leJOS or the leJOS plug-in.

1http://maven.apache.org/ (accessed 11/13)
2Available from m2e Update Site – http://download.eclipse.org/technology/m2e/
releases (accessed 11/13)

3Available from LeJOS Update Site – http://www.lejos.org/tools/eclipse/plugin/nxj/
(accessed 11/13)

4Available from http://sourceforge.net/projects/lejos/files/lejos-NXJ/0.9.1beta/
(accessed 11/13)

Right-click in the “Package
Explorer” and select “Import…”

Select “Existing Projects into
Workspace” and press “Next >”

Importing the Bumper Bot Project (pt. 1) 1

Importing the Bumper Bot Project (pt. 2)

The project “bumperbot-codegen”
will appear in the workspace

Select the archive file bumperbot-
codegen.zip and click “Finish”

2

400 Appendix F. How to Use the MontiArcAutomaton Java Code Generator

Bumper Bot Project Overview

MontiArcAutomaton component
type definitions of the bumper

bot are placed in the folder
/src/main/models/bumperbot/

Composed component BumperBot
marked for deployment

3

MontiArcAutomaton
Java Code Generation

• Invoking the code generator

The code generator is invoked for all
MontiArcAutomaton and Class Diagram
models placed in /src/main/models/.

401

Generate Code

Right click on the project or
pom.xml and select “Run As” ->

“Maven install” to generate code

Refresh the project after
generating code and these errors

about missing code will disappear;
it has just been generated

5

Generated Java Code

For every MontiArcAutomaton model in the folder
/src/main/models/ the code generator generates a

component implementation and a factory into the folder
/target/generated-sources/dsltool/sourcecode/

6

402 Appendix F. How to Use the MontiArcAutomaton Java Code Generator

Deploying the Generated Code

• Convert the project to a leJOS project
• Connect the robot via USB
• Upload the code

7

Convert Project for leJOS

To convert the bumperbot-codegen
project to a leJOS NXJ project, right click

on the project select “leJOS NXJ” ->
“Convert to leJOS NXJ project”

8

403

Connect the Robot to the PC

Turn on the robot (press
button in the middle) USB

Connect the robot to
the computer via USB

Make sure the letters “USB”
appear on the NXT’s screen

9

Deploy Code to Robot

Select the generated Java class DeployBumperBot, right
click and choose “Run As” -> “LeJOS NXT Program”

10

404 Appendix F. How to Use the MontiArcAutomaton Java Code Generator

The leJOS Eclipse plug-in will upload and start the
program on the robot; disconnect the cable and press

the bumper to start the robot

Deployment Message from leJOS Plug-In 11

405

Appendix G.

Complete PumpStation Component and
Connector Model

Chapter contains the complete C&C model PumpStation used in the example intro-
duced in Section 3.1. The example is published with the AutoFOCUS IDE [BHS99,
HF07, wwwe] as part of the AutoFOCUS picture book [wwwc].

The top component of the C&C model is the component PumpStation. Each figure
displays the parent component with its immediate subcomponents and the names and
types of all ports.

408 Appendix G. Complete PumpStation Component and Connector Model

!��
"������

#���������� !��
�� "�����

������� $��$�����

������� $��$������

������� ������������

�� ��$���

������� ����

�� $��$�

������� ������

������� $��$�����

������� $��$������

������� ������������

�� ��$���

������� ����

�� $��$�

������� ������

��������	

Figure G.1.: The component PumpStation with all immediate subcomponents and
ports. The component Environment is shown in Figure G.2. The com-
ponent PumpingSystem is shown in Figure G.3.

409

#����������

!������"���	�����

"���	�����!���	

�������
$��$�����

�������
$��$������

�������
������������

��
��$���

�������
������

��
$��$�

�������
������

��
��$��

�������
����

��
��$��

��
��$���

��
$��$�

�������
����

��
��$���

��
$��$�

�������
����

�������
$��$�����

�������
$��$������

�������
������������

��������	

Figure G.2.: The component Environment with all immediate subcomponents and
ports. The components SimulationPanel and PhysicsSimulation
are atomic.

410 Appendix G. Complete PumpStation Component and Connector Model

!��
�� "�����

"�����������

������		��

���
�
�������	/ �
	����������

��������
	����������

���
	���	/

���	�
�
�����

���	�
�
�����
��

�
	����������
�
	����������

!��
��������

���	�
�
������������
��

���	�
�
������
���

$�	����������

���	�
�
�
	��=���

�
	����������
�
	����������

���
�
	��

���	�
�
���

?���"���
��������=����

	���	/

���	�
�
�����

���
�
	��

���	�
�
���

���
�
�������	/

?���"���
��������=�

���	�
�
�����
��

���	�
�
������������
��

���	�
�
������
���

�
	����������
��������
	����������

���	�
�
�
	��=���

���	�
�
�
	���	���

���	�
�
�
	���	���

��������	

Figure G.3.: The component PumpingSystem with all immediate subcomponents and
ports. The component SensorReading is shown in Figure G.4. The
component Controller is shown in Figure G.5. The components
PumpActuator and ValveActuator are atomic.

411

"�����������

!��
"�����������

%���&�����������

��'"�����������

$�	��"�����������

���
�
�������	/���

	���	/

���	�
�
�����

���	�
�
�����
��

�
	����������
�
	�������������

�
	��

���	�
�
���

?���"���
��������=�

���
	���	/

���	�
�
�����

���
�
	��

���	�
�
���

���
�
�������	/

���	�
�
�����
��

�
	����������
�
	����������

?���"���
��������=�

��������	

Figure G.4.: The component SensorReading with all immediate subcomponents and
ports. All subcomponents are atomic.

412 Appendix G. Complete PumpStation Component and Connector Model

������		��

�����������

#�"(
�������

%���(
�������

�
	����������
��������
	����������

���
�
�������	/

?���"���
��������=� ���	�
�

������������
��

?���"���
��������

���
�
�������	/

�
	����������
��������
	����������

���	�
�
������������
��

���	�
�
������������
��

�
	����������
��������
	����������

���	�
�
��������
��

�
	����������
����
	����������

���	�
�
������������
��

�
	����������
��������
	����������

���	�
�
��������
��

�
	����������
����
	����������

��������	

Figure G.5.: The component Controller with all immediate subcomponents and
ports. All subcomponents are atomic.

Appendix H.

Survey – Helpfulness of Generated
Witnesses

This appendix contains the materials used for the survey described in Section 4.4.3.

H.1. Reference Materials
The subjects of the survey were presented the C&C model of the pump station as shown
in Appendix G and the following two pages of materials that introduce C&C models,
C&C views, C&C views satisfaction, and reasons for non-satisfaction.

Component & Connector models

Component and Connector (C&C) models, which are used in many application domains of software engineering,
consist of components, ports and connectors, where

� components are named, may have ports and immediate subcomponents (components without
subcomponents are called atomic),

� ports are directed (input or output), have a name and a type
� connectors are directed and connect two ports of components.

Component & Connector views

C&C views can be used to specify structural properties, e.g., which component should be inside which com-
ponent, which component should be connected to which component, in an expressive and intuitive way.
The elements of C&C views are components, ports and abstract connectors, where:

� components are named, may have ports and subcomponents,
� ports are directed (input or output), have an optional name and an optional type
� abstract connectors are directed and connect two ports of components or components directly.

414 Appendix H. Survey – Helpfulness of Generated Witnesses

C&
C

vi
ew

s s
at

is
fa

ct
io

n

Re
as

on
s f

or
 n

on
-s

at
is

fa
ct

io
n

A
C&

C
m

od
el

 sa
tis

fie
s a

 C
&

C
vi

ew
 if

 a
nd

 o
nl

y
if:

Di
re

ct
ly

 d
er

iv
ed

 re
as

on
s f

or
 n

on
-s

at
isf

ac
tio

n:

al
l c

om
po

ne
nt

s
sh

ow
n

in
 th

e
vi

ew
 e

xi
st

 in
 th

e
C&

C
m

od
el

,

M
is

si
ng

 C
om

po
ne

nt
: t

he
 v

ie
w

 c
on

ta
in

s a
 c

om
po

ne
nt

 th
at

 d
oe

s n
ot

 e
xi

st
 in

 th
e

C&
C

m
od

el

co
m

po
ne

nt
 h

ie
ra

rc
hy

 sh
ow

n
in

 th
e

vi
ew

 is
 p

re
se

rv
ed

 in
 th

e
C&

C
m

od
el

 (n
ot

 n
ec

es
sa

ril
y

im
m

ed
ia

te
 c

on
ta

in
m

en
t),

H
ie

ra
rc

hy
 M

is
m

at
ch

: t
he

 v
ie

w
 c

on
ta

in
s t

w
o

co
m

po
ne

nt
s t

ha
t i

n
th

e
C&

C
m

od
el

 a
re

 in
 a

di

ffe
re

nt
 c

on
ta

in
m

en
t r

el
at

io
n

(r
ev

er
se

 c
on

ta
in

m
en

t,
no

t c
on

ta
in

ed
, c

on
ta

in
ed

)

al
l p

or
ts

 in
 th

e
vi

ew
 h

av
e

co
rr

es
po

nd
in

g
po

rt
s (

na
m

e,
 ty

pe
, a

nd

di
re

ct
io

n)
 in

 th
e

m
od

el
, a

nd

In

te
rf

ac
e

M
is

m
at

ch
: t

he
 v

ie
w

 c
on

ta
in

s a
 c

om
po

ne
nt

 w
ith

 a
 p

or
t t

ha
t d

oe
s n

ot
 e

xi
st

 in
 th

e
C&

C
m

od
el

 (n
o

fu
ll

m
at

ch
 o

f n
am

e,
 ty

pe
, a

nd
 d

ire
ct

io
n)

al
l a

bs
tr

ac
t c

on
ne

ct
or

s
in

 th
e

vi
ew

 h
av

e
co

rr
es

po
nd

in
g

ch
ai

ns
 o

f
co

nn
ec

to
rs

 in
 th

e
m

od
el

M
is

si
ng

 C
on

ne
ct

io
n:

 th
e

vi
ew

 c
on

ta
in

s a
n

ab
st

ra
ct

 c
on

ne
ct

or
 th

at
 h

as
 n

o
co

rr
es

po
nd

in
g

co
nc

re
te

 c
ha

in
 o

f c
on

ne
ct

or
s i

n
th

e
C&

C
m

od
el

.

 Ch
ai

ns
 o

f c
on

ne
ct

or
s a

re
 se

qu
en

ce
s o

f c
on

ne
ct

or
s w

he
re

 th
e

ta
rg

et
 p

or
t o

f t
he

 p
re

vi
ou

s c
on

ne
ct

or
 is

 th
e

so
ur

ce
 p

or
t o

f t
he

 n
ex

t c
on

ne
ct

or
. C

ha
in

s e
nd

 w
he

n
th

ey
 le

ad

to
 a

 c
om

po
ne

nt
 th

at
 d

oe
s n

ot
 fo

rw
ar

d
th

e
da

ta
 v

ia
 in

te
rn

al
 c

on
ne

ct
or

s.

Th
e

C&
C

m
od

el
 M

ov
em

en
tC

on
-t

ro
lle

r f
ro

m
 th

e
pr

ev
io

us
 p

ag
e

sa
tis

fie
s t

he
 C

&
C

vi
ew

 S
en

so
rO

nl
y.

Th

e
C&

pr
ev

io

Th
e

C&
C

m
od

el
 M

ov
em

en
tC

on
-t

ro
lle

r f
ro

m
 th

e
pr

ev
io

us
 p

ag
e

do
es

 n
ot

 sa
tis

fy
 th

e
C&

C
vi

ew

Se
ns

or
An

dC
al

c.

de
riv

ed

de
riv

ed

de
riv

ed

de
riv

ed

H.1. Reference Materials 415

416 Appendix H. Survey – Helpfulness of Generated Witnesses

H.2. Printed Survey
The following pages contain a printed version of the online survey presented to the
subjects. The links on the pages point to a PDF displaying the C&C model of the pump
station shown in Appendix G and to a PDF with the document presented in Section H.1.

ArcVCheck
There are 10 questions in this survey

Intro

[Intro]

Component and connector (C&C) models are used in many application domains
of software engineering.

C&C views can be used to specify structural properties of C&C models, e.g.,
which component should be inside which component, which component should
be connected to which component, in an expressive and intuitive way.

An introduction to C&C models and C&C views is given in this PDF.

All the tasks in the exercise are based on the same C&C model of a pump
station (download the PDF here).

Are you ready to start the exercise?

*

Please choose only one of the following:

 Yes, I am ready.

H.2. Printed Survey 417

C&C Views Verification

In this part we will ask you to check whether a given C&C model satisfies three C&C views.

[SAT1]

Does the C&C model of the pump station (same as before) satisfy this view?

Check either "Yes, ..." or check "No, ..." for ALL reasons for non-
satisfaction you find.

*

418 Appendix H. Survey – Helpfulness of Generated Witnesses

Bitte wählen Sie zwischen 1 und 4 Antworten aus.

Please choose all that apply:

 Yes, the C&C model satisfies the view.

 No, there is a Hierarchy Mismatch

 No, there is a Missing Component

 No, there is a Interface Mismatch

 No, there is a Missing Connector

H.2. Printed Survey 419

[SAT2]

Does the C&C model of the pump station (same as before) satisfy this view?

Check either "Yes, ..." or check "No, ..." for ALL reasons for non-
satisfaction you find.

*

Bitte wählen Sie zwischen 1 und 4 Antworten aus.

Please choose all that apply:

 Yes, the C&C model satisfies the view.

 No, there is a Hierarchy Mismatch

 No, there is a Missing Component

 No, there is a Interface Mismatch

 No, there is a Missing Connector

420 Appendix H. Survey – Helpfulness of Generated Witnesses

[SAT3]

Does the C&C model of the pump station (same as before) satisfy this view?

Check either "Yes, ..." or check "No, ..." for ALL reasons for non-
satisfaction you find.

*

Bitte wählen Sie zwischen 1 und 4 Antworten aus.

Please choose all that apply:

 Yes, the C&C model satisfies the view.

 No, there is a Hierarchy Mismatch

 No, there is a Missing Component

 No, there is a Interface Mismatch

 No, there is a Missing Connector

H.2. Printed Survey 421

[Correctness]

Please rate your confidence that you correctly identified whether the C&C
views were satisfied by the C&C model. Rate your confidence regardless of the
reasons you identified.

*

Please choose only one of the following:

 I am 100% right

 I might have decided wrong on 1 of 3

 I might have decided wrong on 2 of 3

 I don't think I decided satisfaction right for any of the views

[Completeness]

Please rate your confidence in finding all reasons for non-satisfaction.

*

Please choose only one of the following:

 I always found all reasons

 I might have missed one

 I probably missed most of them

422 Appendix H. Survey – Helpfulness of Generated Witnesses

Helpful Witnesses

In this second part of the exercise you will see a view and witnesses that support the verification result. We will ask you
whether these are helpful to you.

[Witness1]

Consider the C&C model of the pump station (same as before) and the C&C
view below:

The C&C model does not satisfy this C&C view. Here are two witnesses that
demonstrate separate reasons for non-satisfaction:

First witness for non-satisfaction:

H.2. Printed Survey 423

Second witness for non-satisfaction:

424 Appendix H. Survey – Helpfulness of Generated Witnesses

Do you find these witnesses helpful in understanding the verification result
(non-satisfaction)?

*

Please choose only one of the following:

 Yes, the witnesses are very helpful

 Yes, they help me

 I don't know

 No, they are not helpful

 No, the witnesses are misleading

[Witness2]

Consider the C&C model of the pump station (same as before) and the C&C
view below:

The C&C model satisfies this C&C view. Here is a witnesses for satisfaction:

H.2. Printed Survey 425

Do you find this witnesses helpful in understanding the verification result
(satisfaction)?

*

Please choose only one of the following:

 Yes, the witnesses are very helpful

 Yes, they help me

 I don't know

 No, they are not helpful

 No, the witnesses are misleading

[Witness3]

Consider the C&C model of the pump station (same as before) and the C&C
view below:

426 Appendix H. Survey – Helpfulness of Generated Witnesses

The C&C model does not satisfy this C&C view. Here are four witnesses that
demonstrate separate reasons for non-satisfaction.

First witness for non-satisfaction:

H.2. Printed Survey 427

Second witness for non-satisfaction:

Third witness for non-satisfaction:

428 Appendix H. Survey – Helpfulness of Generated Witnesses

Fourth witness for non-satisfaction:

H.2. Printed Survey 429

Do you find these witnesses helpful in understanding the verification result
(non-satisfaction)?

*

Please choose only one of the following:

 Yes, the witnesses are very helpful

 Yes, they help me

 I don't know

 No, they are not helpful

 No, the witnesses are misleading

430 Appendix H. Survey – Helpfulness of Generated Witnesses

Remarks

[Remarks]

Please note any comments you may have about C&C models, C&C views, and
C&C witnesses.

Please write your answer here:

H.2. Printed Survey 431

Appendix I.

Complete C&C Views Synthesis Alloy
Translation Example

This appendix contains the complete translation result of the C&C views synthesis ex-
ample presented in Section 5.1.1. The views used as input for the translation are shown
in Figure 5.1, Figure 5.2, and Figure 5.3. The specification used is specification S1 from
Section 5.1.1 with a port scope of 18, no library components, and no selected architec-
tural style.

The example illustrates the translation rules introduced in Section 5.3.4.

Alloy

1 // Alloy Module for view synthesis of views:
2 // ASDependence, BodySensorIn, BodySensorOut, RJFunction,

SensorConnections, RJStructure
3

4 module viewSynthesis
5

6 ///
7 // Part I: C&C models
8 ///
9

10 abstract sig Direction {}
11 one sig IN extends Direction{}
12 one sig OUT extends Direction{}
13

14 sig PortName {}
15

16 sig Type {}
17

18 abstract sig Component {
19 ports : set Port,
20 subComponents : set Component,
21

22 //derived
23 parent : lone Component
24 }
25

26 fact subComponentsAndParents {

434 Appendix I. Complete C&C Views Synthesis Alloy Translation Example

27 all ch, par : Component|
28 (ch in par.subComponents iff ch.parent = par)
29 }
30

31 fact subComponentsAcyclic {
32 no comp : Component |
33 comp in comp.^subComponents
34 }
35

36 sig Port {
37 type : one Type,
38 name: one PortName,
39 direction: one Direction,
40

41 receivingPorts : set Port,
42

43 //derived
44 owner : one Component,
45 sendingPort : lone Port
46 } {
47 this != sendingPort
48 this not in receivingPorts
49 }
50

51 fact portsAndOwners {
52 all cmp : Component | all port: cmp.ports |
53 cmp = port.owner
54 }
55

56 fact portsAndSender {
57 all disj sender, receiver :Port |
58 //(sender = receiver) or
59 (sender = receiver.sendingPort iff receiver in sender.

receivingPorts)
60 }
61

62 fact portsOfComponentHaveUniqueNames {
63 all c:Component | all disj p1, p2 : c.ports |
64 (p1.name != p2.name)
65 }
66

67 fact portsConnectedLegally {
68 all sender: Port | all receiver : (sender.receivingPorts-sender)

|
69 (receiver.type = sender.type and
70 // direct connector
71 ((receiver.owner = sender.owner and sender.direction = IN

and receiver.direction= OUT) or
72 // toChildConnector

435

73 (receiver.owner in sender.owner.subComponents and sender.
direction = IN and receiver.direction= IN) or

74 // fromChildConnector
75 (sender.owner in receiver.owner.subComponents and sender.

direction = OUT and receiver.direction= OUT) or
76 // subComponentConnector
77 (receiver.owner != sender.owner and sender.owner.parent =

receiver.owner.parent and sender.direction = OUT and
receiver.direction= IN)))

78 }
79

80 // instance does not contain any unused atoms
81 fact allPortsOwned {
82 Port in Component.ports
83 }
84

85

86 ///
87 // Part II: Views
88 ///
89

90 // Containment and Independence
91 ///
92

93 pred contains [parent: Component, child: Component] {
94 child in parent.^(subComponents)
95 }
96

97 // components are not contained in each other when shown in the
same view side by side

98 pred independent[p: Component, child: Component] {
99 not (contains[p, child] or contains[child, p])

100 }
101

102 pred independentSet [components : set Component] {
103 all disj c1, c2 : components |
104 ((no c1.subComponents) or
105 (not contains[c1, c2]))
106 }
107

108 pred atomicComponent[cmp: Component] {
109 // no children
110 no cmp.subComponents
111 // no connectors starting in incoming ports
112 no (cmp.ports & direction.IN).receivingPorts
113 }
114

115 // Connectedness
116 ///

436 Appendix I. Complete C&C Views Synthesis Alloy Translation Example

117

118 pred connected[sender: Component, receiver: Component] {
119 some p : receiver.ports |
120 p in sender.ports. ^receivingPorts
121 }
122

123 pred connectedWithPortNames[sender: Component, sendName : PortName,
receiver: Component, recvName: PortName] {

124 some sp : sender.ports | some rp : receiver.ports |
125 rp.name = recvName and
126 rp in sp.^receivingPorts and
127 sp.name = sendName and
128 sp in rp.^~receivingPorts
129 }
130

131 pred connectedWithSenderPortName[sender: Component, sendName :
PortName, receiver: Component] {

132 some recvName : receiver.ports.name |
133 connectedWithPortNames[sender, sendName, receiver, recvName]
134 }
135

136 pred connectedWithReceiverPortName[sender: Component, receiver:
Component, recvName : PortName] {

137 some sendName : sender.ports.name |
138 connectedWithPortNames[sender, sendName, receiver, recvName]
139 }
140

141 // Ports of Components
142 ///
143

144 pred untypedPort[cmp : Component, dir: Direction, portName :
PortName] {

145 some port : cmp.ports |
146 port.direction = dir and
147 port.name = portName
148 }
149

150 pred unnamedPort[cmp : Component, dir: Direction, pType : Type] {
151 some port : cmp.ports |
152 port.direction = dir and
153 port.type = pType
154 }
155

156 pred portOfComponent[cmp : Component, dir: Direction, pType: Type,
portName : PortName] {

157 some port : cmp.ports |
158 port.direction = dir and
159 port.name = portName and
160 port.type = pType

437

161 }
162

163 pred interfaceComplete[cmp:Component, portNames : set PortName] {
164 cmp.ports.name = portNames
165 }
166

167 fact oneRoot{
168 one (Component - Component.subComponents)
169 }
170

171

172 ///
173 // Signatures for all components, port names and types
174 ///
175

176 // Concrete components from all views
177 lone sig RotationalJoint extends Component {}
178 lone sig Body extends Component {}
179 lone sig Actuator extends Component {}
180 lone sig Sensor extends Component {}
181 lone sig ServoValve extends Component {}
182 lone sig Cylinder extends Component {}
183 lone sig Joint extends Component {}
184 lone sig JointLimiter extends Component {}
185

186 // Port names used in all views
187 one sig val1 extends PortName {}
188 one sig f1 extends PortName {}
189 one sig val2 extends PortName {}
190 one sig f2 extends PortName {}
191 one sig angle extends PortName {}
192

193 // Types used in all views
194 one sig my_int extends Type {}
195 one sig my_float extends Type {}
196

197

198 ///
199 // Predicates for the views
200 ///
201

202 pred ASDependence {
203 (some Component)
204 and one Body
205 and one Actuator
206 and one Sensor
207

208 // all independent sets
209 and independentSet[Actuator + Sensor]

438 Appendix I. Complete C&C Views Synthesis Alloy Translation Example

210

211 // containment relation
212 and contains[Body, Actuator + Sensor]
213

214 // ports of components
215

216 // connections between components
217 }
218

219 pred BodySensorIn {
220 (some Component)
221 and one Body
222 and one Actuator
223 and one Sensor
224 and one JointLimiter
225 and one Joint
226

227 // all independent sets
228 and independentSet[Actuator + Joint + JointLimiter + Sensor]
229

230 // containment relation
231 and contains[Body, Actuator + Joint + JointLimiter + Sensor]
232

233 // ports of components
234 // ports of components Actuator
235 and untypedPort[Actuator, IN, f1]
236 and untypedPort[Actuator, IN, f2]
237

238 // connections between components
239 and connectedWithReceiverPortName[Body, Actuator, f1]
240 and connectedWithReceiverPortName[Body, Actuator, f2]
241 and connected[Actuator, Joint]
242 and connected[Sensor, JointLimiter]
243 and connected[JointLimiter, Actuator]
244 }
245

246 pred BodySensorOut {
247 (some Component)
248 and one Body
249 and one Actuator
250 and one Sensor
251 and one JointLimiter
252 and one Joint
253

254 // all independent sets
255 and independentSet[Actuator + Joint + JointLimiter]
256 and independentSet[Body + Sensor]
257

258 // containment relation

439

259 and contains[Body, Actuator + Joint + JointLimiter]
260

261 // ports of components
262 // ports of components Actuator
263 and untypedPort[Actuator, IN, f1]
264 and untypedPort[Actuator, IN, f2]
265

266 // connections between components
267 and connectedWithReceiverPortName[Body, Actuator, f1]
268 and connectedWithReceiverPortName[Body, Actuator, f2]
269 and connected[Actuator, Joint]
270 and connected[Sensor, JointLimiter]
271 and connected[JointLimiter, Actuator]
272 }
273

274 pred RJFunction {
275 (some Component)
276 and one RotationalJoint
277 and one Actuator
278 and one Sensor
279 and one Cylinder
280

281 // all independent sets
282 and independentSet[Sensor + Actuator + Cylinder]
283

284 // containment relation
285 and contains[RotationalJoint, Sensor + Actuator + Cylinder]
286

287 // ports of components
288

289 // connections between components
290 and connected[Sensor, Actuator]
291 }
292

293 pred SensorConnections {
294 (some Component)
295 and one Sensor
296 and one JointLimiter
297 and one Cylinder
298

299 // all independent sets
300 and independentSet[Sensor + Cylinder + JointLimiter]
301

302 // containment relation
303

304 // ports of components
305 // ports of components Sensor
306 and portOfComponent[Sensor, OUT, my_float, val1]
307 and portOfComponent[Sensor, OUT, my_int, val2]

440 Appendix I. Complete C&C Views Synthesis Alloy Translation Example

308

309 // connections between components
310 and connectedWithSenderPortName[Sensor, val1, JointLimiter]
311 and connectedWithSenderPortName[Sensor, val2, Cylinder]
312 }
313

314 pred RJStructure {
315 (some Component)
316 and one RotationalJoint
317 and one Body
318 and one ServoValve
319 and one Cylinder
320

321 // all independent sets
322 and independentSet[ServoValve + Body + Cylinder]
323

324 // containment relation
325 and contains[RotationalJoint, ServoValve + Body + Cylinder]
326

327 // ports of components
328 // ports of components Cylinder
329 and portOfComponent[Cylinder, IN, my_float, angle]
330

331 // connections between components
332 and connected[RotationalJoint, ServoValve]
333 and connected[ServoValve, Body]
334 and connectedWithReceiverPortName[Body, Cylinder, angle]
335 and connected[Cylinder, Body]
336 }
337

338 fact libraryComponents {
339 }
340

341 pred specification {
342 ((not ASDependence)) and (BodySensorIn or BodySensorOut) and (

RJFunction) and (SensorConnections) and (RJStructure)
343 }
344

345 ///
346 // Run command
347 ///
348

349 run specification for 6 but exactly 18 Port, 8 Component

Listing I.1: Alloy module translated from specification S1 presented in Section 5.1.1.

Appendix J.

MontiArcAutomaton Grammar for Human
Reading

The modeling language MontiArcAutomaton is an extension of the architecture descrip-
tion language MontiArc for the modeling of cyber-physical systems. The grammar of
the MontiArc modeling language is provided in [HRR12, Appendix A.2].

The grammar of the MontiArcAutomaton language is shown in Listing J.1. It has been
adapted from the original MontiCore grammar to a more readable form by removing
some technical annotations from the grammar. The complete grammar is provided
in [RRW14].

Details on the MontiCore grammar format are available in [Kra10, KRV10].

442 Appendix J. MontiArcAutomaton Grammar for Human Reading

MontiCore Grammar

1 grammar MontiArcAutomaton extends MontiArc {
2

3 VariableDeclaration implements ArcElement =
4 "var"? Type Variable ("," Variable)* ";";
5

6 Variable = Name ("=" Value)?;
7

8 Automaton implements ArcElement =
9 Stereotype? "automaton" Name? "{"

10 (StateDeclaration |
11 InitialStateDeclaration |
12 Transition)*
13 "}" ;
14

15 StateDeclaration = "state" State ("," State)* ";" ;
16

17 State = Stereotype? Name;
18

19 InitialStateDeclaration =
20 "initial" Name ("," Name)* ("/" IOBlock)? ";";
21

22 Transition = source:Name ("->" target:Name)?
23 Guard? input:IOBlock?
24 ("/" output:IOBlock)? ";";
25

26 Guard = "[" (kind:Name ":")?
27 guardExpression:InvariantContent(parameter kind) "]";
28

29 IOBlock = ("{" IOAssignment ("," IOAssignment)* "}")
30 | (IOAssignment ("," IOAssignment)*);
31

32 IOAssignment = (Name "=")? IOStream ("|" IOStream)*;
33

34 IOStream = Value (":" Value)*;
35

36 NoData implements Value = "--";
37 }

Listing J.1: The grammar of MontiArcAutomaton extending the MontiArc ADL with
automata and local variables inside components.

Appendix K.

MontiArcAutomaton Specification Suite
Grammar for Human Reading

The grammar of the modeling language for MontiArcAutomaton specification suites
and specification checks is shown in Listing J.1. It has been adapted from the original
MontiCore grammar to a more readable form by removing some technical annotations
from the grammar.

Details on the MontiCore grammar format are available in [Kra10, KRV10].

MontiCore Grammar

1 grammar MAASpecification {
2

3 SpecificationSuite =
4 Stereotype? "suite" Name "{"
5 CTDefCheck+
6 "}";
7

8 CTDefCheck = "check" Name ":"
9 (negate:["not"])?

10 left:Conjunct Relation right:Conjunct";";
11

12 Conjunct = CTDef:Name ("and" CTDef:Name)*;
13

14 Relation = (refinement:["refines"] | equality:["equals"]);
15 }

Listing K.1: The grammar of the MontiArcAutomaton specification language to define
specification suites containing specification checks.

Appendix L.

Complete MontiArcAutomaton Verification
Mona Translation Example

This appendix contains complete input models and their translation results for the
MontiArcAutomaton verification implementation based on the translation rules intro-
duced in Section 7.3. Translation results for a composed component are shown in Sec-
tion L.1. Translation results for an atomic component with an automaton are shown in
Section L.2.

L.1. Example Translation of a Composed Component

A complete translation of the composed component BumperBotESController shown
in Listing L.1 in MontiArcAutomaton syntax is shown in Listing L.2 in Mona syntax. The
example has been used in Section 7.3.3 to illustrate the translation rules for composed
components.

MontiArcAutomaton

1 package bumperbotv2;
2

3 import lib.Timer;
4 import lib.types.*;
5 import bumperbotemergency.BumpControlES;
6

7 component BumperBotESController {
8

9 port
10 in Boolean emgStp,
11 in Boolean bump,
12 out MotorCmd rMot,
13 out MotorCmd lMot;
14

15 component Timer timer;
16

17 component BumpControlES bces;
18

446 Appendix L. Complete MontiArcAutomaton Mona Translation Example

19 connect emgStp -> bces.emgStp;
20 connect bump -> bces.bump;
21 connect bces.lMot -> lMot;
22 connect bces.rMot -> rMot;
23 connect timer.ts -> bces.ts;
24 connect bces.tc -> timer.tc;
25

26 }

Listing L.1: MontiArcAutomaton model of the composed component
BumperBotESController.

Mona

1 # Mona predicate representing component BumperBotESController
2 #DEPENDENCY include "../lib/Timer.mona";
3 #DEPENDENCY include "../bumperbotemergency/BumpControlES.mona";
4

5 pred bumperbotemergencyv2_BumperBotESController (
6 var2 BumperBotESController_emgStp_false,
7 var2 BumperBotESController_emgStp_true,
8 var2 BumperBotESController_bump_false,
9 var2 BumperBotESController_bump_true,

10 var2 bces_rMot_FORWARD,
11 var2 bces_rMot_BACKWARD,
12 var2 bces_rMot_STOP,
13 var2 bces_lMot_FORWARD,
14 var2 bces_lMot_BACKWARD,
15 var2 bces_lMot_STOP,
16 # time
17 var2 allTime)
18 # internal channels of component
19 = ex2 bces_tc_SINGLE_DELAY, bces_tc_DOUBLE_DELAY, bces_tc_ABORT,

timer_ts_ALERT:
20 # defined value for all points in time
21 bces_tc_SINGLE_DELAY union bces_tc_DOUBLE_DELAY union

bces_tc_ABORT sub allTime &
22 # unique value for all points in time
23 bces_tc_SINGLE_DELAY inter (empty union bces_tc_DOUBLE_DELAY

union bces_tc_ABORT) = empty &
24 bces_tc_DOUBLE_DELAY inter (empty union bces_tc_SINGLE_DELAY

union bces_tc_ABORT) = empty &
25 bces_tc_ABORT inter (empty union bces_tc_SINGLE_DELAY union

bces_tc_DOUBLE_DELAY) = empty
26 &
27 # defined value for all points in time
28 timer_ts_ALERT sub allTime &
29 # unique value for all points in time
30 timer_ts_ALERT inter (empty) = empty
31 &

L.1. Example Translation of a Composed Component 447

32 # parent-to-parent connectors
33 # instantiation and connection of subcomponents on channels
34 # subcomponent timer of type lib_Timer
35 lib_Timer(bces_tc_SINGLE_DELAY, bces_tc_DOUBLE_DELAY,

bces_tc_ABORT, timer_ts_ALERT, allTime) &
36 # subcomponent bces of type bumperbotemergency_BumpControlES
37 bumperbotemergency_BumpControlES(

BumperBotESController_emgStp_false,
BumperBotESController_emgStp_true,
BumperBotESController_bump_false,
BumperBotESController_bump_true, timer_ts_ALERT,
bces_rMot_FORWARD, bces_rMot_BACKWARD, bces_rMot_STOP,
bces_lMot_FORWARD, bces_lMot_BACKWARD, bces_lMot_STOP,
bces_tc_SINGLE_DELAY, bces_tc_DOUBLE_DELAY, bces_tc_ABORT,
allTime);

Listing L.2: Mona translation of the composed component BumperBotESController
shown in Listing L.1.

448 Appendix L. Complete MontiArcAutomaton Mona Translation Example

L.2. Example Translation of a MAAts automaton

A complete translation of the MAAts automaton inside component ToggleSwitch
shown in Listing L.3 in MontiArcAutomaton syntax is shown in Listing L.4 in Mona
syntax. The example has been used in Section 7.3.4 to illustrate the translation rules
for atomic components with embedded MAAts automata.

MontiArcAutomaton

1 package lib;
2

3 component ToggleSwitch {
4

5 port
6 in Boolean pressed,
7 out Boolean active;
8

9 automaton {
10 state Off, On;
11

12 initial Off / {active = false};
13

14 Off -> Off {pressed = false} / {active = false};
15 Off -> On {pressed = true} / {active = true};
16 On -> On {pressed = false} / {active = true};
17 On -> Off {pressed = true} / {active = false};
18 }
19 }

Listing L.3: A model of the component ToggleSwitch given in MontiArcAutomaton
syntax.

Mona

1 # Mona predicate representing component lib_ToggleSwitch
2

3 pred lib_ToggleSwitch(
4 # read values on port pressed
5 var2 pressed_false,var2 pressed_true,
6 # written values on port active
7 var2 active_false, var2 active_true,
8

9 # time
10 var2 allTime) =
11 # internal states of automaton
12 ex2 On, Off:
13

14 # defined value for all points in time
15 On union Off = allTime &
16 # unique value for all points in time

L.2. Example Translation of a MAAts automaton 449

17 On inter (empty union Off) = empty &
18 Off inter (empty union On) = empty
19

20 &
21 # setting initial states and their outputs in case of strong

causality
22 ((0 in Off & 0 in active_false))
23 &
24 # restriction to all points in time that we consider
25 # (to prevent infinite histories in example case)
26 all1 t: t+1 in allTime =>
27 (
28 (t in Off
29 & (
30 t in pressed_false
31)
32 & t+1 in Off
33 & t+1 in active_false
34) |
35

36 (t in Off
37 & (
38 t in pressed_true
39)
40 & t+1 in On
41 & t+1 in active_true
42) |
43

44 (t in On
45 & (
46 t in pressed_false
47)
48 & t+1 in On
49 & t+1 in active_true
50) |
51

52 (t in On
53 & (
54 t in pressed_true
55)
56 & t+1 in Off
57 & t+1 in active_false
58)
59)
60

61 # add nil completion
62 | (~(
63 (t in Off
64 & (

450 Appendix L. Complete MontiArcAutomaton Mona Translation Example

65 t in pressed_false
66)
67) |
68

69 (t in Off
70 & (
71 t in pressed_true
72)
73) |
74

75 (t in On
76 & (
77 t in pressed_false
78)
79) |
80

81 (t in On
82 & (
83 t in pressed_true
84)
85)
86)
87 # stay in same state
88 & sameNextValue(On, t) & sameNextValue(Off, t)
89 # send no message on port active
90 & t+1 notin (active_false union active_true)
91);

Listing L.4: Mona translation of the component ToggleSwitch shown in Listing L.3.

Appendix M.

Curriculum Vitae

Jan Oliver Ringert, born August 24, 1983 in Hildesheim, Germany

Academic Employment

3/2013-11/2013 RWTH Aachen University: research and teaching assistant
4/2010-3/2013 RWTH Aachen University: fellowship of research training group

Algorithmic Synthesis of Reactive and Discrete-Continuous
Systems, German Research Foundation

1/2009-3/2010 RWTH Aachen University: research and teaching assistant
11/2008-12/2008 Technical University Braunschweig: research and teaching

assistant
11/2004-4/2008 Technical University Braunschweig: student research and

teaching assistant at the institutes: Computational Mathematics
(5 semesters), Programming and Reactive Systems (1 semester),
Software Systems Engineering (2 semesters)

Education

1/2009-11/2013 RWTH Aachen University: PhD studies in Software Engineering
10/2003-9/2008 Technical University Braunschweig: Computer Science studies;

diploma in Computer Science with distinction
06/2003 Scharnhorstgymnasium Hildesheim: German Abitur
8/2000-7/2001 Connell High School, Connell, WA, US: student exchange year

Related Interesting Work from the SE Group, RWTH Aachen

Agile Model Based Software Engineering
Agility and modeling in the same project? This question was raised in [Rum04]: “Using an executable, yet
abstract and multi-view modeling language for modeling, designing and programming still allows to use
an agile development process.” Modeling will be used in development projects much more, if the benefits
become evident early, e.g with executable UML [Rum02] and tests [Rum03]. In [GKRS06], for example,
we concentrate on the integration of models and ordinary programming code. In [Rum12] and [Rum11],
the UML/P, a variant of the UML especially designed for programming, refactoring and evolution, is
defined. The language workbench MontiCore [GKR+06] is used to realize the UML/P [Sch12]. Links
to further research, e.g., include a general discussion of how to manage and evolve models [LRSS10], a
precise definition for model composition as well as model languages [HKR+09] and refactoring in various
modeling and programming languages [PR03]. In [FHR08] we describe a set of general requirements for
model quality. Finally [KRV06] discusses the additional roles and activities necessary in a DSL-based
software development project.

Generative Software Engineering
The UML/P language family [Rum12, Rum11] is a simplified and semantically sound derivate of the
UML designed for product and test code generation. [Sch12] describes a flexible generator for the UML/P
based on the MontiCore language workbench [KRV10, GKR+06]. In [KRV06], we discuss additional
roles necessary in a model-based software development project. In [GKRS06] we discuss mechanisms
to keep generated and handwritten code separated. In [Wei12] we show how this looks like and how
to systematically derive a transformation language in concrete syntax. To understand the implications
of executability for UML, we discuss needs and advantages of executable modeling with UML in agile
projects in [Rum04], how to apply UML for testing in [Rum03] and the advantages and perils of using
modeling languages for programming in [Rum02].

Unified Modeling Language (UML)
Many of our contributions build on UML/P described in the two books [Rum11] and [Rum12] are im-
plemented in [Sch12]. Semantic variation points of the UML are discussed in [GR11]. We discuss formal
semantics for UML [BHP+98] and describe UML semantics using the “System Model” [BCGR09a],
[BCGR09b], [BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied to define class
diagram semantics [CGR08]. A precisely defined semantics for variations is applied, when checking va-
riants of class diagrams [MRR11c] and objects diagrams [MRR11d] or the consistency of both kinds of
diagrams [MRR11e]. We also apply these concepts to activity diagrams (ADs) [MRR11b] which allows
us to check for semantic differences of activity diagrams [MRR11a]. We also discuss how to ensure and
identify model quality [FHR08], how models, views and the system under development correlate to each
other [BGH+98] and how to use modeling in agile development projects [Rum04], [Rum02] The question
how to adapt and extend the UML in discussed in [PFR02] on product line annotations for UML and to
more general discussions and insights on how to use meta-modeling for defining and adapting the UML
[EFLR99], [SRVK10].

Domain Specific Languages (DSLs)
Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need
appropriate tooling. The MontiCore language workbench [GKR+06], [KRV10], [Kra10] describes an in-
tegrated abstract and concrete syntax format [KRV07b] for easy development. New languages and tools

Related Interesting Work from the SE Group, RWTH Aachen

can be defined in modular forms [KRV08, Völ11] and can, thus, easily be reused. [Wei12] presents a tool
that allows to create transformation rules tailored to an underlying DSL. Variability in DSL definitions
has been examined in [GR11]. A successful application has been carried out in the Air Traffic Manage-
ment domain [ZPK+11]. Based on the concepts described above, meta modeling, model analyses and
model evolution have been examined in [LRSS10] and [SRVK10]. DSL quality [FHR08], instructions
for defining views [GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based tooling for DSLs
[KRV07a] complete the collection.

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of
telephone or video data, method invocation, or data structures passed between software services. We use
streams, statemachines and components [BR07] as well as expressive forms of composition and refi-
nement [PR99] for semantics. Furthermore, we built a concrete tooling infrastructure called MontiArc
[HRR12] for architecture design and extensions for states [RRW13b]. MontiArc was extended to des-
cribe variability [HRR+11] using deltas [HRRS11] and evolution on deltas [HRRS12]. [GHK+07] and
[GHK+08] close the gap between the requirements and the logical architecture and [GKPR08] extends
it to model variants. Co-evolution of architecture is discussed in [MMR10] and a modeling technique to
describe dynamic architectures is shown in [HRR98].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling. The me-
chanisms for distributed systems are shown in [BR07] and algebraically underpinned in [HKR+07]. Se-
mantic and methodical aspects of model composition [KRV08] led to the language workbench MontiCore
[KRV10] that can even develop modeling tools in a compositional form. A set of DSL design guidelines
incorporates reuse through this form of composition [KKP+09]. [Völ11] examines the composition of
context conditions respectively the underlying infrastructure of the symbol table. Modular editor genera-
tion is discussed in [KRV07a].

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and detailedness
is discussed in [HR04]. We defined a semantic domain called “System Model” by using mathematical
theory. [RKB95, BHP+98] and [GKR96, KRB96]. An extended version especially suited for the UML
is given in [BCGR09b] and in [BCGR09a] its rationale is discussed. [BCR07a, BCR07b] contain detai-
led versions that are applied on class diagrams in [CGR08]. [MRR11a, MRR11b] encode a part of the
semantics to handle semantic differences of activity diagrams and [MRR11e] compares class and object
diagrams with regard to their semantics. In [BR07], a simplified mathematical model for distributed sys-
tems based on black-box behaviors of components is defined. Meta-modeling semantics is discussed in
[EFLR99]. [BGH+97] discusses potential modeling languages for the description of an exemplary object
interaction, today called sequence diagram. [BGH+98] discusses the relationships between a system, a
view and a complete model in the context of the UML. [GR11] and [CGR09] discuss general require-
ments for a framework to describe semantic and syntactic variations of a modeling language. We apply
these on class and object diagrams in [MRR11e] as well as activity diagrams in [GRR10]. [Rum12] em-
bodies the semantics in a variety of code and test case generation, refactoring and evolution techniques.
[LRSS10] discusses evolution and related issues in greater detail.

Related Interesting Work from the SE Group, RWTH Aachen

Evolution & Transformation of Models
Models are the central artifact in model driven development, but as code they are not initially correct
and need to be changed, evolved and maintained over time. Model transformation is therefore essential
to effectively deal with models. Many concrete model transformation problems are discussed: evolution
[LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactoring [Rum12, PR03], translating
models from one language into another [MRR11c, Rum12] and systematic model transformation langua-
ge development [Wei12]. [Rum04] describes how comprehensible sets of such transformations support
software development, maintenance and [LRSS10] technologies for evolving models within a language
and across languages and linking architecture descriptions to their implementation [MMR10]. Automaton
refinement is discussed in [PR94, KPR97], refining pipe-and-filter architectures is explained in [PR99].
Refactorings of models are important for model driven engineering as discussed in [PR03, Rum12].
Translation between languages, e.g., from class diagrams into Alloy [MRR11c] allows for comparing
class diagrams on a semantic level.

Variability & Software Product Lines (SPL)
Many products exist in various variants, for example cars or mobile phones, where one manufacturer
develops several products with many similarities but also many variations. Variants are managed in a
Software Product Line (SPL) that captures the commonalities as well as the differences. Feature dia-
grams describe variability in a top down fashion, e.g., in the automotive domain [GHK+08] using 150%
models. Reducing overhead and associated costs is discussed in [GRJA12]. Delta modeling is a bottom
up technique starting with a small, but complete base variant. Features are added (that sometimes also
modify the core). A set of applicable deltas configures a system variant. We discuss the application of
this technique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can
not only describe spacial variability but also temporal variability which allows for using them for soft-
ware product line evolution [HRRS12]. [HHK+13] describes an approach to systematically derive delta
languages. We also apply variability to modeling languages in order to describe syntactic and semantic
variation points, e.g., in UML for frameworks [PFR02]. And we specified a systematic way to define va-
riants of modeling languages [CGR09] and applied this as a semantic language refinement on Statecharts
in [GR11].

Cyber-Physical Systems (CPS)
Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical en-
tities. Contributions for individual aspects range from requirements [GRJA12], complete product lines
[HRRW12], the improvement of engineering for distributed automotive systems [HRR12] and autono-
mous driving [BR12a] to processes and tools to improve the development as well as the product itself
[BBR07]. In the aviation domain, a modeling language for uncertainty and safety events was develo-
ped, which is of interest for the European airspace [ZPK+11]. A component and connector architecture
description language suitable for the specific challenges in robotics is discussed in [RRW13b]. Monito-
ring for smart and energy efficient buildings is developed as Energy Navigator toolset [KPR12, FPPR12,
KLPR12].

State Based Modeling (Automata)
Today, many computer science theories are based on state machines in various forms including Petri nets
or temporal logics. Software engineering is particularly interested in using state machines for modeling
systems. Our contributions to state based modeling can currently be split into three parts: (1) under-
standing how to model object-oriented and distributed software using statemachines resp. Statecharts

Related Interesting Work from the SE Group, RWTH Aachen

[GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement [PR94, RK96, Rum96] and
composition [GR95] of statemachines, and (3) applying statemachines for modeling systems. In [Rum96]
constructive transformation rules for refining automata behavior are given and proven correct. This theory
is applied to features in [KPR97]. Statemachines are embedded in the composition and behavioral speci-
fications concepts of Focus [BR07]. We apply these techniques, e.g., in MontiArcAutomaton [RRW13a]
as well as in building management systems [FLP+11].

Robotics

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-
ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics
applications requires composition and interaction of diverse distributed software modules. This usually
leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensible, which
hampers broad propagation of robotics applications. The MontiArcAutomaton language [RRW13a] ex-
tends ADL MontiArc and integrates various implemented behavior modeling languages using MontiCore
[RRW13b] that perfectly fits Robotic architectural modelling. The LightRocks [THR+13] framework
allows robotics experts and laymen to model robotic assembly tasks.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication systems
as well as advanced active and passive safety-systems result in complex embedded systems. As these
feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct va-
riants needs to be managed, developed and tested. A consistent requirements management that connects
requirements with features in all phases of the development for the automotive domain is described
in [GRJA12]. The conceptual gap between requirements and the logical architecture of a car is clo-
sed in [GHK+07, GHK+08]. [HKM+13] describes a tool for delta modeling for Simulink [HKM+13].
[HRRW12] discusses means to extract a well-defined Software Product Line from a set of copy and
paste variants. Quality assurance, especially of safety-related functions, is a highly important task. In
the Carolo project [BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-
based functions through fully-automatic simulation [BBR07]. This technique allows a dramatic speedup
in development and evolution of autonomous car functionality, and thus, enables us to develop software
in an agile way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in development and
evolution on a more general level by considering any kind of critical system that relies on architectural de-
scriptions. As tooling infrastructure, the SSElab storage, versioning and management services [HKR12]
are essential for many projects.

Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emissions is
an important challenge. Thus, energy management in buildings as well as in neighbourhoods becomes
equally important to efficiently use the generated energy. Within several research projects, we developed
methodologies and solutions for integrating heterogeneous systems at different scales. During the design
phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12, KPR12] is used for tech-
nical specification of building services already. We adapted the well-known concept of statemachines to
be able to describe different states of a facility and to validate it against the monitored values [FLP+11].
We show how our data model, the constraint rules and the evaluation approach to compare sensor data
can be applied [KLPR12].

Related Interesting Work from the SE Group, RWTH Aachen

Cloud Computing & Enterprise Information Systems
The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based
application and service architectures with high complexity, criticality and new application domains. It
promises to enable new business models, to lower the barrier for web-based innovations and to incre-
ase the efficiency and cost-effectiveness of web development. Application classes like Cyber-Physical
Systems [KRS12], Big Data, App and Service Ecosystems bring attention to aspects like responsiveness,
privacy and open platforms. Regardless of the application domain, developers of such systems are in need
for robust methods and efficient, easy-to-use languages and tools. We tackle these challenges by perusing
a model-based, generative approach [PR13]. The core of this approach are different modeling languages
that describe different aspects of a cloud-based system in a concise and technology-agnostic way. Soft-
ware architecture and infrastructure models describe the system and its physical distribution on a large
scale. We apply cloud technology for the services we develop, e.g., the SSELab [HKR12] and the Energy
Navigator [FPPR12, KPR12] but also for our tool demonstrators and our own development platforms.
New services, e.g.,c collecting data from temperature, cars etc. are easily developed.

Related Interesting Work from the SE Group, RWTH Aachen

References
[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems Enginee-

ring Process and Tools for the Development of Autonomous Driving Intelligence. Journal of
Aerospace Computing, Information, and Communication (JACIC), 4(12):1158–1174, Octo-
ber 2007.

[BCGR09a] Manfred Broy, Maria Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Conside-
rations and Rationale for a UML System Model. In Kevin Lano, editor, UML 2 Semantics
and Applications, pages 43–61. John Wiley & Sons, 2009.

[BCGR09b] Manfred Broy, Maria Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Definition
of the UML System Model. In Kevin Lano, editor, UML 2 Semantics and Applications,
pages 63–93. John Wiley & Sons, 2009.

[BCR07a] Manfred Broy, Maria Victoria Cengarle, and Bernhard Rumpe. Towards a System Model
for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU Munich, February
2007.

[BCR07b] Manfred Broy, Maria Victoria Cengarle, and Bernhard Rumpe. Towards a System Model
for UML. Part 3: The State Machine Model. Technical Report TUM-I0711, TU Munich,
February 2007.

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger, Bernhard Rumpe,
Monika Schmidt, and Wolfgang Schwerin. Exemplary and Complete Object Interaction
Descriptions. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Proceedings OOPSLA’97
Workshop on Object-oriented Behavioral Semantics, TUM-I9737, TU Munich, 1997.

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin. Systems,
Views and Models of UML. In M. Schader and A. Korthaus, editors, Proceedings of the
Unified Modeling Language, Technical Aspects and Applications. Physica Verlag, Heidel-
berg, 1998.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katharina Spies. Softwa-
re and System Modeling Based on a Unified Formal Semantics. In M. Broy and B. Rumpe,
editors, RTSE ’97: Proceedings of the International Workshop on Requirements Targeting
Software and Systems Engineering, LNCS 1526, pages 43–68, Bernried, Germany, October
1998. Springer.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als Grundlage
der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3–18, Februar 2007.

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the Urban
Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In Proceedings of the
10th Workshop on Automotive Software Engineering (ASE 2012), pages 789–798, Braun-
schweig, Germany, September 2012.

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Software. In C.
Rouff and M. Hinchey, editors, Experience from the DARPA Urban Challenge. Springer,
2012.

Related Interesting Work from the SE Group, RWTH Aachen

[CGR08] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model Semantics
of Class Diagrams. Informatik-Bericht 2008-05, CfG Fakultät, TU Braunschweig, 2008.

[CGR09] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability within Mo-
deling Language Definitions. In Model Driven Engineering Languages and Systems. Pro-
ceedings of MODELS 2009, LNCS 5795, pages 670–684, Denver, Colorado, USA, October
2009.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling Semantics
of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications of
Businesses and Systems. Kluver Academic Publisher, 1999.

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indikator für
Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5):408–424, Oktober 2008.

[FLP+11] Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. State-
Based Modeling of Buildings and Facilities. In Proceedings of the 11th International Con-
ference for Enhanced Building Operations (ICEBO’ 11), New York City, USA, October
2011.

[FPPR12] Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The Energy Na-
vigator - A Web-Platform for Performance Design and Management. In Proceedings of
the 7th International Conference on Energy Efficiency in Commercial Buildings (IEECB),
Frankfurt a. M., Germany, April 2012.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard Rumpe.
View-based Modeling of Function Nets. In Proceedings of the Object-oriented Modelling
of Embedded Real-Time Systems (OMER4) Workshop, Paderborn, Germany, October 2007.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Rothhardt, and
Bernhard Rumpe. Modelling Automotive Function Nets with Views for Features, Vari-
ants, and Modes. In Proceedings of 4th European Congress ERTS - Embedded Real Time
Software, Toulouse, 2008.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Modeling Variants
of Automotive Systems using Views. In Modellbasierte Entwicklung von eingebetteten
Fahrzeugfunktionen (MBEFF), Informatik Bericht 2008-01, pages 76–89, CFG Fakultät,
TU Braunschweig, March 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System Model
with State. Technical Report TUM-I9631, TUM, Munich, Germany, 1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domänspezifischer Spra-
chen. Technical Report 2006-04, CfG Fakultät, TU Braunschweig, August 2006.

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler. Integration von
Modellen in einen codebasierten Softwareentwicklungsprozess. In Proceedings der Model-
lierung 2006, Lecture Notes in Informatics LNI P-82, Innsbruck, März 2006. GI-Edition.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical Report
TUM-I9533, TUM, Munich, Germany, 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In Workshop on
Modeling, Development and Verification of Adaptive Systems. 16th Monterey Workshop,
LNCS 6662, pages 17–32, Redmond, Microsoft Research, 2011. Springer.

Related Interesting Work from the SE Group, RWTH Aachen

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level Require-
ments Management and Complexity Costs in Automotive Development Projects: A Problem
Statement. In Requirements Engineering: Foundation for Software Quality. 18th Interna-
tional Working Conference, Proceedings, REFSQ 2012, Essen, Germany, March 2012.

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of Activity Dia-
grams with Semantic Variation Points. In Model Driven Engineering Languages and Sys-
tems, Proceedings of MODELS, LNCS 6394, Oslo, Norway, 2010. Springer.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bernhard
Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In Proceedings of the
17th International Software Product Line Conference (SPLC), Tokyo, pages 22–31. ACM,
September 2013.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bernhard Rumpe,
and Ina Schaefer. First-Class Variability Modeling in Matlab / Simulink. In Proceedings of
the Seventh International Workshop on Variability Modelling of Software-intensive Systems,
pages 11–18, New York, NY, USA, 2013. ACM.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
An Algebraic View on the Semantics of Model Composition. In D. H. Akehurst, R. Vogel,
and R. F. Paige, editors, Proceedings of the Third European Conference on Model Driven
Architecture - Foundations and Applications (ECMDA-FA 2007), Haifa, Israel, pages 99–
113. Springer, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
Scaling-Up Model-Based-Development for Large Heterogeneous Systems with Composi-
tional Modeling. In H. Arabnia and H. Reza, editors, Proceedings of the 2009 International
Conference on Software Engineeering in Research and Practice, Las Vegas, Nevada, USA,
2009.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-In-Based
Framework for Web-Based Project Portals. In Proceedings of the 2nd International Work-
shop on Developing Tools as Plug-Ins (TOPI) at ICSE 2012, pages 61–66, Zurich, Switzer-
land, June 2012. IEEE.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of ”Se-
mantics”? IEEE Computer, 37(10):64–72, Oct 2004.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Component Inter-
faces. In Madhu Singh, Bertrand Meyer, Joseph Gil, and Richard Mitchell, editors, TOOLS
26, Technology of Object-Oriented Languages and Systems. IEEE Computer Society, 1998.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der Linden.
Hierarchical Variability Modeling for Software Architectures. In Proceedings of Interna-
tional Software Product Lines Conference (SPLC 2011). IEEE Computer Society, August
2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural Modeling
of Interactive Distributed and Cyber-Physical Systems. Technical Report AIB-2012-03,
RWTH Aachen, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling for Soft-
ware Architectures. Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte Ent-
wicklung eingebetteter Systeme VII, fortiss GmbH, February 2011.

Related Interesting Work from the SE Group, RWTH Aachen

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-oriented
Software Product Line Architectures. In Large-Scale Complex IT Systems. Development,
Operation and Management, 17th Monterey Workshop 2012, LNCS 7539, pages 183–208,
Oxford, UK, March 2012. Springer.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung eines Pro-
duktlinienansatzes in die automotive Softwareentwicklung am Beispiel von Steuergeräte-
software. In Software Engineering 2012: Fachtagung des GI-Fachbereichs Softwaretechnik
in Berlin, Lecture Notes in Informatics LNI 198, pages 181–192, 27. Februar - 2. März
2012.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler, and Ste-
ven Völkel. Design Guidelines for Domain Specific Languages. In Proceedings of the 9th
OOPSLA Workshop on Domain-Specific Modeling (DSM’09), Sprinkle, J., Gray, J., Ros-
si, M., Tolvanen, J.-P., (eds.), Techreport B-108, Helsinki School of Economics, Orlando,
Florida, USA, October 2009.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Modeling Cyber-
Physical Systems: Model-Driven Specification of Energy Efficient Buildings. In Procee-
dings of the Modelling of the Physical World Workshop MOTPW’12, Innsbruck, October
2012, pages 2:1–2:6. ACM Digital Library, October 2012.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification and Refine-
ment with State Transition Diagrams. In Fourth IEEE Workshop on Feature Interactions in
Telecommunications Networks and Distributed Systems. P. Dini, IOS-Press, 1997.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navigator. In Ent-
wicklung und Evolution von Forschungssoftware. Tagungsband, Rolduc, 10.-11.11.2011,
Aachener Informatik-Berichte, Software Engineering Band 14. Shaker Verlag Aachen,
2012.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im
Software-Engineering. Aachener Informatik-Berichte, Software Engineering Band 1. Sha-
ker Verlag, Aachen, Germany, 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical model
for distributed information processing systems - SysLab system model. In Proceedings
of the first International Workshop on Formal Methods for Open Object-based Distributed
Systems, pages 323–338. Chapmann & Hall, 1996.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical Systems
- eine Herausforderung für die Automatisierungstechnik? In Proceedings of Automation
2012, VDI Berichte 2012, pages 113–116. VDI Verlag, 2012.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Development using
Domain Specific Modelling Languages. In J. Gray, J.-P. Tolvanen, and J. Sprinkle, editors,
Proceedings of the 6th OOPSLA Workshop on Domain-Specific Modeling 2006 (DSM’06),
Portland, Oregon USA, Technical Report TR-37, pages 150–158, Jyväskylä University, Fin-
land, 2006.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Generation for Com-
positional DSLs in Eclipse. In Proceedings of the 7th OOPSLA Workshop on Domain-
Specific Modeling (DSM’ 07), Montreal, Quebec, Canada, Technical Report TR-38, pages
8–10, Jyväskylä University, Finland, 2007.

Related Interesting Work from the SE Group, RWTH Aachen

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of Abstract and
Concrete Syntax for Textual Languages. In G. Engels, B. Opdyke, D. C. Schmidt, and
F. Weil, editors, Proceedings of the ACM/IEEE 10th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2007), Nashville, TN, USA, October
2007, LNCS 4735. Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular Development of
Textual Domain Specific Languages. In R. F. Paige and B. Meyer, editors, Proceedings
of the 46th International Conference Objects, Models, Components, Patterns (TOOLS-
Europe), Zurich, Switzerland, 2008, Lecture Notes in Business Information Processing LN-
BIP 11, pages 297–315. Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for Com-
positional Development of Domain Specific Languages. International Journal on Software
Tools for Technology Transfer (STTT), 12(5):353–372, September 2010.

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan Sprinkle. Model
Evolution and Management. In MBEERTS: Model-Based Engineering of Embedded Real-
Time Systems, International Dagstuhl Workshop, Dagstuhl Castle, Germany, LNCS 6100,
pages 241–270. Springer, October 2010.

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture Descriptions
of Critical Systems. IEEE Computer, 43(5):42–48, May 2010.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Differencing for
Activity Diagrams. In Proc. Euro. Soft. Eng. Conf. and SIGSOFT Symp. on the Foundations
of Soft. Eng. (ESEC/FSE’11), pages 179–189. ACM, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Semantics for
Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH Aachen University,
Aachen, Germany, July 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Diagrams Analy-
sis Using Alloy Revisited. In Model Driven Engineering Languages and Systems (MODELS
2011), Wellington, New Zealand, LNCS 6981, pages 592–607, 2011.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Diagrams. In Proc.
25th Euro. Conf. on Object Oriented Programming (ECOOP’11), LNCS 6813, pages 281–
305. Springer, 2011.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Configurable Con-
sistency Analysis for Class and Object Diagrams. In Model Driven Engineering Langua-
ges and Systems (MODELS 2011), Wellington, New Zealand, LNCS 6981, pages 153–167.
Springer, 2011.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Annotations with
UML-F. In G. J. Chastek, editor, Software Product Lines - Second International Conference,
SPLC 2, LNCS 2379, pages 188–197, San Diego, 2002. Springer.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for Behaviour
Modelling with Automata. In M. Naftalin, T. Denvir, and M. Bertran, editors, FME’94:
Industrial Benefit of Formal Methods, LNCS 873. Springer, October 1994.

Related Interesting Work from the SE Group, RWTH Aachen

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architectures. In J. Da-
vies J. M. Wing, J. Woodcock, editor, FM’99 - Formal Methods, Proceedings of the World
Congress on Formal Methods in the Development of Computing System, LNCS 1708, pages
96–115. Springer, 1999.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications. In H. Ki-
lov and K. Baclawski, editors, Practical foundations of business and system specifications,
pages 281–297. Kluwer Academic Publishers, 2003.

[PR13] Antonio Navarro Perez and Bernhard Rumpe. Modeling Cloud Architectures as Interactive
Systems. In I. Ober, A. S. Gokhale, J. H. Hill, J. Bruel, M. Felderer, D. Lugato, and A. Dab-
holka, editors, Proc. of the 2nd International Workshop on Model-Driven Engineering for
High Performance and Cloud Computing. Co-located with MODELS 2013, Miami, Sun
SITE Central Europe Workshop Proceedings CEUR 1118, pages 15–24. CEUR-WS.org,
2013.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In H. Kilov and
W. Harvey, editors, Specification of Behavioral Semantics in Object-Oriented Information
Modeling, pages 265–286. Kluwer Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes mathematisches
Modell verteilter informationsverarbeitender Systeme - Syslab-Systemmodell. Technical
Report TUM-I9510, Technische Universität München, 1995.

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software Architecture
Structure and Behavior Modeling to Implementations of Cyber-Physical Systems. Software
Engineering 2013 Workshopband, LNI P-215:155–170, May 2013.

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAutomaton: Mo-
deling Architecture and Behavior of Robotic Systems. In Workshops and Tutorials Procee-
dings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), May
6-10, 2013, Karlsruhe, Germany, pages 10–12, 2013.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag Wissenschaft, ISBN 3-89675-149-2, 1996.

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare? In T. Clark
and J. Warmer, editors, Issues & Trends of Information Technology Management in Con-
temporary Associations, Seattle, pages 697–701. Idea Group Publishing, Hershey, London,
2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In F. de Boer, M.
Bonsangue, S. Graf, W.-P. de Roever, editor, Formal Methods for Components and Objects,
LNCS 2852, pages 380–402. Springer, November 2003.

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In M. Wirsing, A. Knapp, and S. Bal-
samo, editors, Radical Innovations of Software and Systems Engineering in the Future. 9th
International Workshop, RISSEF 2002. Venice, Italy, October 2002, LNCS 2941. Springer,
October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML. Springer, second edition, September 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle, Refactoring.
Springer, second edition, Juni 2012.

Related Interesting Work from the SE Group, RWTH Aachen

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P. Aa-
chener Informatik-Berichte, Software Engineering Band 11. Shaker Verlag, Aachen, Ger-
many, 2012.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Metamodelling:
State of the Art and Research Challenges. In MBEERTS: Model-Based Engineering of Em-
bedded Real-Time Systems, International Dagstuhl Workshop, Dagstuhl Castle, Germany,
LNCS 6100, pages 57–76, October 2010.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas Wort-
mann. A New Skill Based Robot Programming Language Using UML/P Statecharts. In Pro-
ceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA),
pages 461–466, Karlsruhe, Germany, May 2013. IEEE.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen. Aachener
Informatik-Berichte, Software Engineering Band 9. Shaker Verlag, Aachen, Germany, 2011.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen. Aache-
ner Informatik-Berichte, Software Engineering Band 12. Shaker Verlag, Aachen, Germany,
2012.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Kumardev Chat-
terjee, Andreas Horst, and Bernhard Rumpe. On Demand Data Analysis and Filtering for
Inaccurate Flight Trajectories. In D. Schaefer, editor, Proceedings of the SESAR Innovation
Days. EUROCONTROL, November 2011.

Related Interesting Work from the SE Group, RWTH Aachen

	dissRingert
	Diss-Ringert-Analysis-and-Synthesis-of-Interactive-Component-and-Connector-Systems

