
Lukas Netz

Model-Driven Method for the

Development of Full-Size

Web-Based Information Systems

Aachener Informatik-Berichte,
Software Engineering

Hrsg: Prof. Dr. rer. nat. Bernhard Rumpe

Band 55

Model-Driven Method

for the Development of Full-Size

Web-Based Information Systems

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der

RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Lukas Stephan Michael Netz,

M.Sc. RWTH

aus Düsseldorf

Berichter: Universitätsprofessor Dr. rer. nat. Bernhard Rumpe

Assistant Prof. Dr.rer.pol. Dominik Bork

Tag der mündlichen Prüfung: 7 Oktober 2024

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

[Net24] L. Netz:
Model-Driven Method for the Development of Full-Size Web-Based Information Systems.
Aachener Informatik-Berichte, Software Engineering, Band 55,
ISBN 978-3-8440-9833-4, Shaker Verlag, Dec. 2024.

Shaker Verlag
Düren 2024

Aachener Informatik-Berichte, Software Engineering

herausgegeben von
Prof. Dr. rer. nat. Bernhard Rumpe

Software Engineering
RWTH Aachen University

Band 55

Lukas Netz
RWTH Aachen University

Model-Driven Method for the Development of

sFull-Size Web-Based Information Systems

WICHTIG: D 82 überprüfen !!!

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über
http://dnb.d-nb.de abrufbar.

Zugl.: D 82 (Diss. RWTH Aachen University, 2024)

Copyright Shaker Verlag 2024
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen
oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungs-
anlagen und der Übersetzung, vorbehalten.

Printed in Germany.

Print-ISBN 978-3-8440-9733-7
PDF-ISBN 978-3-8440-9833-4
ISSN 1869-9170
eISSN 2944-6910
https://doi.org/10.2370/9783844098334

Shaker Verlag GmbH � Am Langen Graben 15a � 52353 Düren
Telefon: 02421 / 99 0 11 - 0 � Telefax: 02421 / 99 0 11 - 9
Internet: www.shaker.de � E-Mail: info@shaker.de

Eidesstattliche Erklärung

Lukas Netz
erklärt hiermit, dass diese Dissertation und die darin dargelegten Inhalte die eigenen
sind und selbstständig, als Ergebnis der eigenen originären Forschung, generiert wurden.
Hiermit erkläre ich an Eides statt

1. Diese Arbeit wurde vollständig oder größtenteils in der Phase als Doktorand dieser
Fakultät und Universität angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor für einen akademischen Ab-
schluss oder eine andere Qualifikation an dieser oder einer anderen Institution
verwendet wurde, wurde dies klar angezeigt;

3. Wenn immer andere eigene- oder Veröffentlichungen Dritter herangezogen wurden,
wurden diese klar benannt;

4. Wenn aus anderen eigenen- oder Veröffentlichungen Dritter zitiert wurde, wurde
stets die Quelle hierfür angegeben. Diese Dissertation ist vollständig meine eigene
Arbeit, mit der Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstützung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen
basiert, wurde von mir klar gekennzeichnet, was von anderen und was von mir
selbst erarbeitet wurde;

7. Teile dieser Arbeit wurden zuvor veröffentlicht und zwar in:

[NMB24] L. Netz, J. Michael, B. Rumpe: From Natural Language to Web
Applications: Using Large Language Models for Model-Driven Software En-
gineering. In Modellierung 2024, Volume 348, pp 179-195, Mar 2024.

[BDM+24] N. Baumann, J. Diaz, J. Michael, L. Netz, H. Nqiri, J. Reimer, B.
Rumpe: Combining retrieval-augmented generation and few-shot learning for
model synthesis of uncommon DSLs. In Modellierung Satellite Events 2024,
Mar 2024.

[BGK+24] C. Buschhaus, A. Gerasimov, J. C. Kirchhof, J. Michael, L. Netz,
B. Rumpe, S. Stüber: Lessons Learned from Applying Model-Driven Engi-
neering in 5 Domains: The Success Story of the MontiGem Generator Frame-
work. In: Science of Computer Programming, Volume 232, pp. 103033, Jan.
2024.

[FHM+23] S. Fur, M. Heithoff, J. Michael, L. Netz, J. Pfeiffer, B. Rumpe, A.
Wortmann: Sustainable Digital Twin Engineering for the Internet of Produc-
tion. In: Digital Twin Driven Intelligent Systems and Emerging Metaverse,
E. Karaarslan, Ö. Aydin, Ü. Cali, M. Challenger (Eds.), pp. 101-121, Springer
Nature Singapore, Apr. 2023.

[MNN+22] J. Michael, I. Nachmann, L. Netz, B. Rumpe, S. Stüber: Gener-
ating Digital Twin Cockpits for Parameter Management in the Engineering
of Wind Turbines. In: Modellierung 2022, pp. 33-48, Gesellschaft für Infor-
matik, Jun. 2022.

[DHM+22] M. Dalibor, M. Heithoff, J. Michael, L. Netz, J. Pfeiffer, B.
Rumpe, S. Varga, A. Wortmann: Generating Customized Low-Code Devel-
opment Platforms for Digital Twins. In: Journal of Computer Languages
(COLA), Volume 70, Art. 101117, Elsevier, Jun. 2022.

[DGM+21] I. Drave, A. Gerasimov, J. Michael, L. Netz, B. Rumpe, S. Varga:
A Methodology for Retrofitting Generative Aspects in Existing Applications.
In: Journal of Object Technology (JOT), A. Pierantonio (Eds.), Volume 20,
pp. 1-24, AITO - Association Internationale pour les Technologies Objets,
Nov. 2021.

[GMNR21] A. Gerasimov, J. Michael, L. Netz, B. Rumpe: Agile Generator-
Based GUI Modeling for Information Systems. In: Modelling to Program
(M2P), A. Dahanayake, O. Pastor, B. Thalheim (Eds.), pp. 113-126, Springer,
Mar. 2021.

[GMN+20] A. Gerasimov, J. Michael, L. Netz, B. Rumpe, S. Varga: Con-
tinuous Transition from Model-Driven Prototype to Full-Size Real-World En-
terprise Information Systems. In: 25th Americas Conference on Information
Systems (AMCIS 2020), B. Anderson, J. Thatcher, R. Meservy (Eds.), pp.
1-10, AIS Electronic Library (AISeL), Association for Information Systems
(AIS), Aug. 2020.

[AMN+20b]K. Adam, J. Michael, L. Netz, B. Rumpe, S. Varga: Model-Based
Software Engineering at RWTH Aachen University. In: 40 Years EMISA:
Digital Ecosystems of the Future: Methodology, Techniques and Applications
(EMISA’19), Volume P-304, pp. 183-188, LNI, Gesellschaft für Informatik
e.V., May 2020.

[AMN+20a] K. Adam, J. Michael, L. Netz, B. Rumpe, S. Varga: Enter-
prise Information Systems in Academia and Practice: Lessons learned from
a MBSE Project. In: 40 Years EMISA: Digital Ecosystems of the Future:
Methodology, Techniques and Applications (EMISA’19), Volume P-304, pp.
59-66, LNI, Gesellschaft für Informatik e.V., May 2020.

[GHK+20] A. Gerasimov, P. Heuser, H. Ketteniß, P. Letmathe, J. Michael,
L. Netz, B. Rumpe, S. Varga: Generated Enterprise Information Systems:
MDSE for Maintainable Co-Development of Frontend and Backend. In: Com-
panion Proceedings of Modellierung 2020 Short, Workshop and Tools & Demo
Papers, J. Michael, D. Bork (Eds.), pp. 22-30, CEUR Workshop Proceedings,
Feb. 2020.

[MNRV19] J. Michael, L. Netz, B. Rumpe, S. Varga: Towards Privacy-
Preserving IoT Systems Using Model Driven Engineering. In: Proceedings of
MODELS 2019. Workshop MDE4IoT, N. Ferry, A. Cicchetti, F. Ciccozzi, A.
Solberg, M. Wimmer, A. Wortmann (Eds.), pp. 595-614, CEUR Workshop
Proceedings, Sep. 2019.

[ANV+18] K. Adam, L. Netz, S. Varga, J. Michael, B. Rumpe, P. Heuser, P.
Letmathe: Model-Based Generation of Enterprise Information Systems. In:
Enterprise Modeling and Information Systems Architectures (EMISA’18), M.
Fellmann, K. Sandkuhl (Eds.), Volume 2097, pp. 75-79, CEUR Workshop
Proceedings, CEUR-WS.org, May 2018.

Aachen, den 26.6.2024

Lukas Netz

Abstract
The implementation of information systems poses a variety of challenges for developers
and requires a large number of experts from different application domains. This work
presents a methodology in the area of generative model-driven development (MDD) for
web-based information systems. The methodology consists of three basic building blocks:
LLM4CD, CD2GUI and MontiGem. The first building block LLM4CD is based on
generative artificial intelligence (LLMs) and transforms natural language requirements
and domain descriptions into class diagrams in CD4A notation. The second building
block CD2GUI uses these class diagrams and derives models for user interfaces in GUI-
DSL notation. The last building block is MontiGem. It uses both types of models to
generate a data-centric information system.
An important part of this work is the adaptability of the generated artifacts, this

mainly concerns the possibility for modelers to adapt the models generated by the AI
and CD2GUI, and to adapt and extend the code generated by MontiGem without hav-
ing to edit the generated code or models directly. This makes iterative work with the
methodology possible without discarding adapted code or adapted models.
It is precisely this adaptability that facilitates the transition from an underspecified

modeled software prototype to a full-size model-driven information system that can
be actively used in industry. In addition to the three building blocks, this thesis also
presents the domain-specific modeling languages GUI-DSL and CD4A. The methodology
is evaluated and discussed both in parts and as a whole. The practical applicability of
the methodology is demonstrated using the case study MaCoCo, an information system
used by RWTH Aachen University, which serves as a robust benchmark for the validation
of the methodology. In addition, other smaller projects are presented that offer a wide
range of applications and valuable insights.

Kurzfassung
Die Implementierung von Informationssystemen stellt eine Vielzahl von Herausforderun-
gen an die Entwickler und erfordert eine Vielzahl von Experten aus unterschiedlichen
Anwendungsdomänen. In dieser Arbeit wird eine Methodik im Bereich der generativen
modellgetriebenen Entwicklung (MDD) für webbasierte Informationssysteme vorgestellt.
Die Methodik besteht aus drei grundlegenden Bausteinen: LLM4CD, CD2GUI und
MontiGem. Der erste Baustein LLM4CD basiert auf generativer künstlicher Intelligenz
(LLMs) und transformiert natürlichsprachige Anforderungen und Domänenbeschreibun-
gen in Klassendiagramme in CD4A-Notation. Der zweite Baustein CD2GUI verwendet
diese Modelle und leitet daraus Modelle für Benutzeroberflächen in GUI-DSL-Notation
ab. Der letzte Baustein MontiGem verwendet beide Modellarten, um daraus ein daten-
zentrisches Informationssystem zu generieren.
Ein wichtiger Bestandteil dieser Arbeit ist die Anpassbarkeit der erzeugten Artefakte.

Dies betrifft vor allem die Möglichkeit für Modellierer, sowohl die durch die KI und
CD2GUI erzeugten Modelle, als auch den durch MontiGem erzeugten Code zu editieren
und zu erweitern. Somit ist einen iteratives Arbeiten mit der Methodik möglich, ohne
dass händisch angepasste Modelle oder Code bei jeder Iteration verworfen werden.
Genau diese Anpassbarkeit begünstigt den Übergang von einem unterspezifiziert mod-

elliertem Software-Prototypen zu einem funktional vollständigen modellgetriebenen In-
formationssystem welches aktiv in Industrie verwendet werden kann.
In dieser Arbeit werden neben den drei Bausteinen auch die domänenspezifischen

Modellierungssprachen GUI-DSL und CD4A erläutert. Die Methodik wird sowohl in
Teilen als auch als Gesamtes evaluiert und diskutiert. Die praktische Anwendbarkeit der
Methodik wird anhand der Fallstudie MaCoCo demonstriert. MaCoCo ist ein Informa-
tionssystem, das von der RWTH Aachen eingesetzt wird und als robuster Maßstab für
die Validierung der Methodik dient. Darüber hinaus werden weitere kleinere Projekte
vorgestellt, die ein breites Spektrum an Anwendungen und Erkenntnissen bieten.

Danksagung
Die Erstellung einer Dissertation ist ein langwieriges und herausforderndes Unterfangen.
Es ist mir daher ein großes Anliegen, all jenen zu danken, die mich auf diesem Weg
begleitet und unterstützt haben.

Ich möchte meinem Doktorvater, Prof. Dr. Bernhard Rumpe danken, der mir die
Möglichkeit gab, an seinem Lehrstuhl zu forschen und zu promovieren. Die ausgiebigen
Diskussionen mit ihm, waren entscheidend für den Fortschritt meiner Arbeit und haben
mir geholfen, die wissenschaftlichen Inhalte von neuen Seiten zu betrachten. Ebenso
möchte ich auch Professor Prof. Dr. Dominik Bork für seine Zeit und sein Feedback
danken. Ein besonderer Dank gilt Prof. Dr. Erica Ábráham, die mir als studentische und
wissenschaftliche Hilfskraft an Ihrem Lehrstuhl die Chance gab, an Forschungsprojekten
und wissenschaftlichen Publikationen mitzuwirken. Ihre Leidenschaft für die Forschung
war ansteckend und hat mich maßgeblich dazu inspiriert, die Promotion als spannende
Option zu betrachten. Ein ganz besonderer Dank gebührt Dr. Judith Michael, meiner
Gruppenleiterin am Lehrstuhl, die mich auf meinem gesamten Promotionsweg unter-
stützt hat. Ihre stets offene Tür und Bereitschaft auch nach Feierabend für Diskus-
sionen und Fragen zur Verfügung zu stehen, war für mich von unschätzbarem Wert.
Ebenfalls danken möchte ich meinen Kollegen, insbesondere Imke Nachmann, Arkadii
Gerasimov, Joel Charles, Alex Hellwig, Malte Heithoff, Constantin Buschhaus, Marita
Breuer, Marco Konersmann, Nico Jansen und Haron Nqiri, die nicht nur bereit waren,
wertvolles Feedback zu dieser Arbeit zu geben sondern auch stets Zeit hatten, sich mit
mir über die Forschungsthehmen auszutauschen.
Meinen Brüdern möchte ich ebenfalls meinen Dank aussprechen. Ihre ständige Un-

terstützung und das Wissen, dass ich mich jederzeit auf sie verlassen kann, waren mir
eine große Stütze in allen Lebenslagen. Abschließend gilt mein größter Dank meinen
Eltern, ohne deren Unterstützung und Ermutigung dieser akademische Weg für mich
nicht möglich gewesen wäre.

Meinem Vater Priv. Doz. Dr. med. Dipl.-Phys. Johannes Netz.
In Gedenken an seine Zeit als Wissenschaftler und Arzt.

Aachen, April 2024
Lukas Netz

Contents

1 Introduction 1

1.1 Motivation and Problem Statement . 2

1.2 Research Questions . 3

1.3 Contribution . 7

1.4 Requirements and Objectives . 7

1.4.1 Transition to Real-World Systems 8

1.4.2 Adaptability . 9

1.4.3 Variability . 11

1.4.4 Usability . 12

1.5 Thesis Structure . 15

1.6 Publications . 16

2 Model-Driven Method 19

2.1 Roles . 19

2.2 Transforming Natural Language into a Web Application 20

2.2.1 Transformer overview: LLM4CD 20

2.2.2 Transformer overview: CD2GUI 21

2.2.3 Transformer overview: MontiGem 23

2.3 Tool Chain Overview . 24

3 Foundations 27

3.1 Web Application Architectures . 28

3.2 Model-Driven Software-Development . 29

3.3 MontiCore . 29

3.3.1 Overview . 30

3.3.2 Symbol Table . 31

3.3.3 Templates . 32

3.3.4 Reports . 32

3.4 Class Diagram for Analysis . 33

3.4.1 Model Definition . 33

3.4.2 Classes, Interfaces and Enumerations 34

3.4.3 Attributes and Predefined Data Types 35

3.4.4 Associations . 36

3.4.5 Context Conditions . 37

xiii

3.5 Tagging . 38

3.5.1 Approach . 38

3.5.2 Common Tag Schema . 40

3.5.3 Common Tags . 41

4 Automated Domain Modeling with Large Lanugage Models 43

4.1 Large Language Models . 44

4.2 Research Method . 48

4.3 Challenges . 49

4.3.1 Using proprietary Language Models 49

4.3.2 Limited Context Length . 50

4.3.3 Hallucinations . 50

4.3.4 Overfitting . 51

4.4 Transforming Informal Specifications to a Structured Model 52

4.5 Modelling with Large Language Models 54

4.5.1 Creation of a CD4A model . 55

4.5.2 Creating a PlantUML CD . 60

4.5.3 Evaluating Semantic Correctness 60

4.5.4 Iteratively correcting models using an LLM 62

4.5.5 Adapting Existing Models . 67

4.6 Limitations . 68

4.7 Using LLMs for MDSE . 71

4.7.1 MontiCore Feature Diagrams . 71

4.7.2 MontiCore Sequence Diagrams . 71

4.7.3 MontiArc . 74

4.7.4 Creating GUIDSL Models . 76

5 Defining GUI models for Information Systems 79

5.1 Defining Graphical User Interfaces with GUIDSL v1 80

5.1.1 Core Grammar . 83

5.1.2 Charts . 85

5.1.3 Tables . 87

5.1.4 Input & Output Elements . 92

5.1.5 Layouting . 95

5.1.6 Navigation . 97

5.1.7 Context Conditions . 99

5.2 Defining Graphical User Interfaces with GUIDSL v2 100

5.2.1 Distinction with GUIDSL v1 . 100

5.2.2 Basic Structure . 101

5.2.3 GUIComponent . 102

5.2.4 GUIGuard . 104

5.2.5 GUIIterate . 104

5.2.6 Context Conditions . 105

5.2.7 Library Components . 105

5.2.8 Defining a Model in GUIDSL v2 108

5.3 Tagging in CD-Based Web Application Development 111

5.3.1 Tag Schema for CD4A . 111

6 GUI-Model Derivation from Class Diagrams 115

6.1 Research Method . 118

6.2 Schneidermann’s Mantra: Some Core Pages 119

6.2.1 Dashboard Page . 119

6.2.2 Class-Overview Page . 120

6.2.3 Object-Details Page . 122

6.3 Additional Pages for the Web Application 124

6.3.1 Change Data Capture . 124

6.3.2 Navigatable UML Class Diagram 124

6.3.3 Global Search . 125

6.4 Architecture . 127

6.4.1 Template Usage . 128

6.4.2 Handling Inheritance . 133

6.4.3 Handling Abstract classes . 134

6.4.4 Handling Associations . 135

6.4.5 Handling Generics . 137

6.5 Further Artifacts Derived from Single Underlying Model 138

6.5.1 Generated Role Based Access Control 138

6.5.2 Generated Test Data . 144

6.6 Modifying Model Generation: Variability 146

6.6.1 Template Replacement . 147

6.6.2 Using Stereotypes to Customize Generation of GUI-Models 150

6.7 Modifying Generated Models: Adaptability 152

6.7.1 Adaptability . 152

6.7.2 Handwritten GUI-model Extensions 152

6.7.3 Adaptability Transformation . 154

6.7.4 Edge Cases . 158

7 Generator Framework for Enterprise Management: MontiGem 161

7.1 Research Method . 163

7.2 Target Application . 164

7.3 Data Structure Generator . 167

7.3.1 Domain Model . 167

7.3.2 View Model . 178

7.3.3 Command Model . 180

7.3.4 Constraint Model . 181

7.3.5 Tagging . 183

7.4 Generator for Graphical User Interfaces 187

7.4.1 Generator-Architecture . 187

7.4.2 Overview of Generated Artefacts 190

7.5 Server Run Time Environment . 193

7.5.1 Used Server Architecture in MontiGem-Base Application 193

7.5.2 Persistence Management in MontiGem-Based Applications 194

7.5.3 Deploying MontiGem-Based Applications with Docker 195

7.5.4 Command API . 197

7.5.5 Security . 198

7.6 Client Run Time Environment . 202

7.6.1 Apache HTTP . 202

7.6.2 Usage of Angular in the MontiGem Client 202

7.7 Modifying Generated Code . 203

8 Case Study: Management Cockpit for Controlling: MaCoCo 205

8.1 Motivation for MaCoCo . 206

8.2 The MaCoCo Use Case . 207

8.3 Requirements at MaCoCo . 211

8.3.1 Technical Requirements . 212

8.4 Implementing a Model-Driven Real-World Application 212

8.4.1 Modeling Financial Management within MaCoCo 218

8.4.2 Modeling Staff and Human Resources within MaCoCo 225

8.4.3 Modeling Projects and Time Tracking within MaCoCo 227

8.5 Extending MontiGem to Generate MaCoCo 230

8.5.1 Used Domain-Specific languages 230

8.5.2 MaCoCo-Specific Extensions . 232

8.6 Lessons Learned from the MaCoCo Project 233

9 Further Applications Studies 235

9.1 Agile Data Dev - Data Management for Wind-Turbine Engineering 235

9.1.1 Evaluation and Lessons Learned 236

9.2 InviDas - Interactive, Visual Data Rooms for Sovereign, Data Protection
Decision-making . 237

9.2.1 Evaluation and Lessons Learned 238

9.3 Ford Pro Tool Tracking Platform . 239

9.3.1 Evaluation and Lessons Learned 239

9.4 Usage as a LCDP in Teaching . 241

9.4.1 The A12 LCDP . 241

9.4.2 The Application Modeling Process 241

9.4.3 Results and Lessons Learned . 242

9.5 Consulting Use Case . 243

9.6 Fenix / MontiGem 3 . 244

10 Discussion of the Approach 249

10.1 Methodology . 249

10.1.1 Using LLMs to transform natural Language into Domain Models . 250

10.1.2 Transforming the domain model into GUI-models 250

10.1.3 Generating an Information System 251

10.2 Software Engineering with Low-Code Development Platforms 251

10.2.1 Definition . 251

10.2.2 Mendix . 253

10.2.3 OutSystems . 253

10.3 Software Engineering with Large Language Models 254

10.4 Software Generation with Large Language Models 255

10.5 MontiCore-Based Systems . 256

10.5.1 MontiDEx . 256

10.5.2 MontiWis . 257

10.5.3 MontiTrans . 258

10.6 Technology Readyness of MaCoCo . 259

11 Conclusion 261

11.1 Summary . 261

11.2 Results . 263

11.2.1 Model-Driven Development for Information Systems 263

11.2.2 Using Large Language Models for Model-Driven Development . . . 265

11.2.3 Transforming Domain Models to Application Models 266

11.2.4 Technology Readyness Level of Produced Web applications 267

11.2.5 Limitations . 270

Bibliography 271

A Code Listings 291

A.1 Domain Models . 291

A.2 Freemarker Templates . 324

A.3 GUI-models . 327

A.4 Few-Shot Learning Example Files . 332

A.4.1 MontiArc . 332

A.4.2 Sequence Diagrams . 333

A.4.3 Feature Diagrams . 336

A.4.4 Examtask . 337
A.5 CD4A-Models containing Syntax Errors 338

B Diagram and Listing Tags 341

List of Figures 347

Listings 355

List of Tables 361

Glossary 363

Chapter 1

Introduction

Figure 1.1: Cover Image: Zoomed out view on a class diagram of all persisted classes of
the MaCoCo information system. The project will be presented in detail in
Chapter 8

The widespread adoption of digital technology has fundamentally changed how we com-
municate, work, and handle information [BP20, Sch20]. It has reshaped software en-
gineering, driving the need for complex, flexible systems focused on user experience
[TWT22, XX13]. This shift, widely known as digitalization [BK16], is a defining feature

1

Chapter 1 Introduction

of both our personal lives and professional environments. The COVID-19 pandemic has
significantly accelerated the global shift toward digitalization, leading to an increased
demand for Information Systems (IS) [DAKM20, JHC21, ST19]. These systems are
crucial for integrating various processes and data, enabling businesses to operate more
efficiently and innovatively. Developing such sophisticated software systems requires a
blend of specialized software development skills and in-depth understanding of the spe-
cific domain [FR07]. A zoomed-out view of the underlying data structure of such a
complex system (MaCoCo) developed during this thesis is shown in Figure 1.1. This
creates a challenge for organizations as they strive to quickly implement these systems
while also managing the investment of time and resources involved. The modern indus-
try is a fast-paced environment that necessitates rapid development and presentation
of products. The ability to prototype rapidly and validate ideas before full-scale devel-
opment can save precious time and resources [HWDB20], offering businesses the agility
they need to stay ahead. There are platforms designed to streamline the creation of IS,
such as Low-Code Development platforms (LCDP) [PRH21, DRKdL+22], which aim to
simplify the software development process. However, the issue with the available plat-
forms is that they still demand a considerable level of software engineering expertise
to effectively utilize them [HSVT21]. Our recent research in software engineering has
led to new tools [MNN+22, DHM+22], languages [GMNR21], and methods [DGM+21]
that provide more efficient methods to build complex IS [GMN+20, BGK+23a]. Our
exploration and application of Large Language Models (LLMs) [CGR23], points out the
potential for individuals lacking formal software skills, to define these systems by only
using natural language [MFBF+22].

1.1 Motivation and Problem Statement

There is a clear need for a solid approach and a set of tools to build ISs that reduce
the workload of professional software developers. As digital technology becomes a stan-
dard part of business, we need systems that can be at least partially developed by those
without training in software engineering or programming. Thus, we need a toolchain
that allows us to systematically reproduce software engineering knowledge in an ex-
tended form, e.g. by processing informal input from a domain expert and producing
a corresponding IS. In adopting an approach where non-software developers drive the
development of ISs, we must ensure that software engineers are still able to support
the software development process and achieve more engineering with less intervention.
Established practices, such as Model-Driven Software Engineering (MDSE) and tradi-
tional source code writing, should remain applicable and efficient, allowing engineers to
fine-tune and integrate these systems effectively within existing frameworks.

2

1.2 Research Questions

1.2 Research Questions

The creation of information systems is a challenging task [XL05, ST19]. Model-driven
methodologies [BGRW17, FR07] can be used to define transformers that generate soft-
ware artifacts based on the models provided in a given modeling language. In the context
of model-driven generation of information systems, we look at three main layers of ar-
chitectural abstraction in model-driven architectures [ET12]: Computation Independent
Model, Platform Independent Model, Platform Specific Model and the resulting source
code of the application.

1. Computation Independent Model: In the most abstract layer, the system is de-
scribed informally without stating the implementation details. In this work, the
requirements for the system that are defined as natural language are referred to as
Informal Specification.

Definition 1 (Computation Independent Model (CIM)). [BCD+03] A CIM is
a model of a system that shows the system in the environment in which it will
operate, and thus helps to present exactly what the system is expected to do. It
is useful, not only as an aid in understanding a problem, but also as a source
of a shared vocabulary for use in other models. In an MDA specification of a
system, CIM requirements should be traceable to the PIM and PSM constructs
that implement them, and vice versa.

2. Platform Independent Model: A model or a set of models that define the structure
of the target application. These models are independent of the concrete platform
on which the application is built. We can use these models to formally define
the application structure while remaining platform-independent. In this work, we
refer to the set of PIMs that define the data structure of the application Modeled
Specification.

Definition 2 (Platform Independent Model (PIM)). [ET12] A platform inde-
pendent model (PIM) describes a system’s structure and functions formally,
but without specifying platform-specific implementation details.

3

Chapter 1 Introduction

3. Platform Specific Model: A model or a set of models that is specific to the tech-
nology used in the target platform such as a user interface model that uses specific
interfaces of the application front end or contains code snippets.

Definition 3 (Platform Specific Model (PSM)). [ET12] A platform-specific
model (PSM) includes details that are important to the implementation of
a system on a given platform. By platform, MDA means a cohesive set of
subsystems and technologies on which a system can execute.

4. Application: The handwritten source code and the generated software artifacts of
the application itself. Note that the source code itself can also be seen as a PSM,
in the context of this thesis we distinguish between artifacts defined in a modeling
language (DSL) to which we refer as PSM and artifacts defined in a general purpose
language (GPL) such as Java or Typescript to which we refer as source code or
target code, in case it is generated. In the context of this work, we refer to the
collection of generated and handwritten software artifacts that compose the final
application as the ”Target System”.

Software development typically begins with domain experts describing their problem
domain. Thus, we will define a series of transformers that transform informal speci-
fications into application code. As software development is a highly iterative process
[GR18, Loo17a] that typically develops systems with an incremental process, adding
features over time, we need to take into account that any system we generate needs to
be able to be regenerated, adapted, and incrementally refined over time. We can derive
the following research questions for a potential transformer that produces an IS:

Research Question I
What is the structure of a model-driven approach that can be used to build a
full-sized information system?

RQ1.1 What kind of models are needed to define an information system?

RQ1.2 How to transform a set of models into a running application?

RQ1.3 How to allow developers to incrementally transform the application
from a prototype to a full-sized real-world system

Domain-specific languages (DSLs) make it easier for domain experts of a particular appli-
cation area to work with software engineers [FL10] by using higher-level concepts that are

4

1.2 Research Questions

focused specifically on their needs [KT08]. This helps both to speak the same language
and to address problems more effectively. However, domain expert still needs to have
some experience defining models of the given DSL (e.g., knowing the syntax or specific
design patterns common to the modeling language). Using LLMs to transform informal
textual requirements into a previously defined modeling language, we could bridge the
gap between software engineers and domain experts and interpret and formalize any in-
put provided by an individual who has no background in software engineering or system
modeling. As LLMs are stochastic models whose output is difficult to predict, we need
to evaluate if and to what degree they can be used to produce valid models:

Research Question II
To what degree can large language models be used to transform natural language
into a domain model?

RQ2.1 To what degree are LLMs capable of reliably transforming natural
language to a model of a given DSL?

RQ2.2 How to use LLMs in an iterative process to incrementally create and
modify a domain model?

The models produced by the LLM and the models needed by the generator can be part
of different modeling languages (e.g. the LLM produces class diagrams, and the gener-
ator needs a combination of class diagrams and GUI-models). The models produced by
the LLM are platform independent models describing the domain and use case, and the
models needed by the generator might be platform specific models that describe elements
that relate directly to used technologies of the platform such as specific interfaces for
GUI or database constraints.

The models produced by an LLM would have to be transformed into the set models
needed by the generator. A transformer can be used to perform this task. For data-
centric Information Systems in particular, we need a clearly defined set of models that
define both the data structure and the user interfaces. In order to ensure data consis-
tency, we merge any data structure model into one singular model, which we refer to as
the single underlying model (SUM). Next, we need to investigate to what degree it is
possible to derive these models from the SUM. In order not to lose the advantages of agile
model-driven software development at this point, it must be ensured that a developer
can still adapt the models produced by the M2M transformer.

5

Chapter 1 Introduction

Research Question III
What methodology is followed to translate platform-independent domain models into
platform-specific models for building an information system?

RQ3.1 How can we derive models defining user interfaces of a data-centric
information system for efficient data access?

RQ3.2 How can we ensure that the transformation from domain model to
application model integrates seamlessly into the agile-iterative development process
and allows for the customization of the generated models?

Up to this point, the research questions target primarily the individual transformations
and generation steps within a tool chain. However, we also have to consider the require-
ments for the tool chain as a whole. As we define a generative approach, we need to
be able to modify the elements that are generated. This applies not only to generated
source code, but also to generated models. As we cannot anticipate all use cases that
might occur, we need to ensure that the tool chain is flexible enough to be applied in
different domains. In addition, we need to ensure a minimal degree of usability of the
generated application. Hence, we can define the fourth research question:

Research Question IV
How to ensure adaptability, variability, and usability throughout a generative tool
chain for information systems.

RQ4.1 How to ensure adaptability and variability of generated models and
target code?

RQ4.2 How to define the tool chain for an information system so that it is
customizable to any target domain?

RQ4.3 What UI-elements are required to ensure the usability of the gener-
ated information system?

Having defined our research questions, we now can develop a corresponding research ap-
proach. These questions are vital because they shape the direction of our study. They

6

1.3 Contribution

function as a road map, outlining the destination and the path to reach it.

1.3 Contribution

In this work, we define a tool chain consisting of three major transformers, as shown
in Figure 1.2. The tool chain is capable of transforming informal specifications into a
domain model, which is transformed into a set of platform-specific models that, in turn,
can be used by a generator framework to generate an IS. The capabilities of the generator
framework and transformers were established in multiple real-world projects, notably the
MaCoCo project which serves an active user base of more than 200 daily users (at the
time of writing). We were able to show that LLMs could be used to define valid models
for several MontiCore-based DSLs [HKR21] and could be integrated into the proposed
tool chain to iteratively define and modify a single underlying model, which serves as a
foundation to generate the IS.

Figure 1.2: Tool chain Overview: Transforming natural language first into Domain Mod-
els, next into Application Models, and finally into a Target System

1.4 Requirements and Objectives

We are guided by the research questions to define three transformers. We propose
further overarching requirements that the tool chain needs to fulfill, to create a robust
and flexible system that can be applied in real world systems. We place particular
emphasis on:

7

Chapter 1 Introduction

TRL Description

Deployment
9 Actual system proven in operational environment
8 System complete and qualified
7 System prototype demonstration in operational environment

Development
6 Technology demonstrated in relevant environment
5 Technology validated in relevant environment
4 Technology validated in lab

Research
3 Experimental proof of concept
2 Technology concept formulated
1 Basic principles observed

Table 1.1: Technology readiness levels (TRLs) as defined by NASA [Com14]

• Technology Readiness Levels: Initially create a prototype that can transition to
a full-size application. We use TRLs to measure the readiness of the produced
application.

• Adaptability: Artifacts that are iteratively generated by the tool chain must be
modifiable.

• Variability: Ability of a software system to be efficiently extended, changed, cus-
tomized, or configured for use in a particular context.

• Usability: Both the initial use case definition and the resulting information system
should be easy to use for domain expert.

1.4.1 Transition to Real-World Systems

In software development, applications can be experimental, designed for lab testing, or
full-scale for real-world use. Real-world applications are typically operated by users with-
out specialized training, necessitating high technological robustness to meet both func-
tional and various nonfunctional requirements. The technology readiness levels (TRLs)
of NASA [Com14] are a good metric to measure the gap between experimental software
and a finished product (see Table 1.1). In a university environment, the target readiness
level often does not exceed TRL-3 (research). ESA also provides a refined version of
these TRLs (cf. [G+13]).

TRLs adapted for Software Projects by ESA (ISO 16290:2013): Software developed
in a research context is typically used as a proof of concept and to analyze methodologies
or algorithms. Within the fast development cycles of agile software development, this
level is maintainable with a small group of relatively inexperienced software developers.
However, TRL-3 is not suitable for software deployment in a real-world scenario. Extra

8

1.4 Requirements and Objectives

Level Description

TRL 1 Basic principles observed and reported: Initial observations and
descriptions of the software concept are made.

TRL 2 Technology concept and/or application formulated: The concept is further
developed, and potential applications are identified.

TRL 3 Analytical and experimental critical function and / or Characteristic Proof
of Concept: The software concept undergoes analytical and experimental
studies to validate its potential functionalities.

TRL 4 Breadboard validation in laboratory environment: A prototype (or
breadboard) version of the software is developed and tested in a lab setting.

TRL 5 Breadboard validation in relevant environment: The prototype software is
tested in a relevant environment, closer to where it would actually be used.

TRL 6 Model or prototype demonstration in a relevant environment: A more
refined prototype or model of the software is demonstrated in a relevant
environment.

TRL 7 System prototype demonstration in an operational environment: The
software prototype is demonstrated in an operational setting, showing its
functionality in a real-world scenario.

TRL 8 Actual system completed and qualified through tests and demonstrations:
The software system has been finalized, tested, and qualified for
operational use.

TRL 9 Actual system proven through successful mission operations: The software
has been used successfully in real mission operations, proving its reliability
and effectiveness.

Table 1.2: Technology Readiness Levels (TRLs) [HJ16]

effort and additional methodologies must be invested to raise TRL-3 to TRL-9 (cf.
Chapter 8). The building blocks and tools used and referred to in this work can also be
assigned to the corresponding TRL (cf. Table 1.3).

R1 (Transition Capability): The framework must support the developer to transition
(parts of) the application from a prototype state (TRL 3) to a production version (TRL
9) of the application.

1.4.2 Adaptability

Within this work, we refer to adaptability as follows:

9

Chapter 1 Introduction

TRL Project Name Type Description

9 MontiCore Tool Language Workbench (cf. Section 3.3)
6 LLM4CD Building Block Transformer (cf. Chapter 4)
4 CD2GUI Building Block Transformer (cf..Chapter 6)
6 MontiGem Building Block Generator (cf. Chapter 7)
9 MaCoCo Tool Web Application (cf. Chapter 8)
7 ADD Tool Web Application (cf. Section 9.1)

Table 1.3: Technology readiness level mapping for building blocks and tools, in the De-
cember 2023 assessment.

Definition 4 (Adaptability). [SC01] The term “adaptation” in computer science
refers to a process where an interactive system (adaptive system) adapts its be-
havior to individual users based on information acquired about its user(s) and its
environment.

This approach quickly provides domain expert with a web application for the given spec-
ifications. Although this enables a quick start to a running prototype, adaptability must
be considered, especially with respect to any user interfaces that should be synthesized
based on the initial input of the domain expert. It is expected that not all elements of
the single underlying model should be represented with the same structured user inter-
faces. Reasons to deviate from the default generation process for a specific element in
the domain model can be:

• Privacy Concerns: Data fields such as passwords, test results, contact information,
and corporate data, should not be visible to anyone and should not be transmitted
to the user without extra caution.

• Derived or computed data: Data fields such as checksums, last edit time, cached
values for efficiency optimization, and data that contain the results of computations
and should not be modified by the user. If unrestricted access to the database
is enabled, the user could disable his own account or any other by editing the
password hashes.

• Aesthetics or Readability: Unreadable fields that are hard to visualize such as
JSON-objects or floating-point numbers with a high decimal count. Some fields
are not optimized to be displayed in a cell of a table, such as lists or complex
objects. These should be omitted from the default view and displayed in a custom
or adapted table.

• Relevance: Fields that are irrelevant for day-to-day use or certain tasks, such as
unique database IDs or revision information, should be hidden from the user. The

10

1.4 Requirements and Objectives

data structure has to be able to store the information needed for any use case, but
very often the typical use case only requires the interaction with only a fraction of
the data set. Thus, many fields can be omitted for a user interface that is meant
to be used on a daily basis.

• Domain specific presentation: Field can be presented differently based on the do-
main they are presented in. For example, temperature can be presented differently
than an interest rate, a weight, or a maximum payload.

For the reasons mentioned above, we need to introduce mechanisms to adapt any user
interfaces we derive from any single underlying model. Similarly, we cannot rely on the
semantics of the given model to automatically infer these differences, as they may change
from use case to use case, for example, because privacy policies are different in different
projects. It is also impossible to anticipate any future use cases.
In generator frameworks for web applications, all code created can be extended using

inheritance [HR17], with the exception of HTML files, as this markup language does
not support inheritance. This limits the developer in two important aspects. Firstly,
by not being able to adapt the generated HTML-Code he can not add further elements
to the user interface and is restricted to adaptation in the business logic in either front
end or back end. Secondly, because the developer edits the target code, he has to
make adjustments to his code after each change to the data structure. As long as the
corresponding models are customizable by the developer, this issue does not pose a
problem. Thus, we can conclude the following requirement:

R2 (Adaptability): All derived models and the generated code must be adaptable by the
developer to respond to the use case-specific properties of the class diagram.

These requirements define a strong adaptability for the transformation approach.
However, this high degree is necessary because we not only target the generation of
a prototype system, but also aim for a prototype that can transition to a full-sized
real-world system.

1.4.3 Variability

With this approach, the developer benefits from many automatically generated artifacts.
However, in order to maintain pragmatism, the developer must also be able to adapt the
sum of the artifacts to his use case. The concepts of variability offer a suitable approach
that we would like to apply. Galster et. al. define Variability within the context of
software development as follows:

11

Chapter 1 Introduction

Definition 5 (Variability [GWT+13, VGBS01, GWT+14]). Variability is commonly
understood as the ability of a software system or software artifact (e.g., component)
to be changed so that it fits a specific context. Variability allows us to adapt the
structure, behavior, or underlying processes of the software. These adaptations are
enabled through [predetermined] variation points and variants as options that can be
selected at these variation points.

Adaptability refers to a software system’s ability to adapt to changing requirements or
environments without major changes to its structure or functionality. Key aspects in-
clude flexibility, robustness, and maintainability. Variability refers to a software system’s
ability to support different configurations or customizations based on predefined options.
It is often used in software product lines. Key aspects include feature modeling, con-
figuration management, and reuse. In short: Adaptability deals with handling changes,
while variability focuses on supporting various configurations or customizations. Reasons
to handle variability can be:

1. Integration of Domain Specific GUI Components Although any UI modeling lan-
guage used might offer a wide range of GUI-Components, it is very likely that there
are use cases where components are needed that are not yet provided by the DSL.
Therefore, we need a mechanism to systematically integrate custom components.

2. Generic Component Modification The provided GUI components might not pro-
vide the desired functionality required by the developer of the application. It is
conceivable that an adapted set of information or functions should be systemati-
cally integrated into the user interfaces.

Variability and adaptability face similar challenges and requirements, so the concerns
mentioned in Section 1.4.2: Privacy concerns, derived or computed data, aesthetics or
readability, and relevance apply here as well.

1.4.4 Usability

The approach presented is intended to improve the existing software development method-
ology. For it to be successful, it needs to be more efficient in producing web applications
than common approaches. Model-driven approaches typically reduce the amount of
handwritten code by providing generated source code, but the effort saved can be can-
celed out if the developer has to make time-consuming adjustments to the generated
code afterward. Thus, we need to maximize both the portion of code we can generate
and to focus on mechanisms that help the developer to make adjustments to generated
code.

12

1.4 Requirements and Objectives

We identify two user groups that are affected: (1) End users of the web application
must have a system developed with a focus on user experience. (2) Developers using the
generator framework must have a system that is easy to use.

R3 (Usability): The framework must support the domain expert in providing an efficient,
intuitive, web information system to access and manage data.

Usability of the Target Application

The usability of websites is not only an interesting research topic, but also a highly
profitable commercial topic. Therefore a lot of tools exist to analyze the various aspects
of a web application. According to Kumar and Hasteer [KH17], the usability of a website
can be defined by the following metrics:

• Navigability Defines how well a website is frequented by users, how long they
remain on the page, and to what extent they move between pages. The accessibility
can be measured using the following attributes: Returning Visitors, Page Views,
Pages per Session (how many pages were visited during one session), bounce rate
(how many visitors leave the page without navigating to any second page on the
website), Session duration, Average Drop-Off per interaction (likeliness to leave the
page after any interaction). Google Analytics1 or others can be used to measure
the above attributes.

• Readability Defines how easy or difficult a text is to read. It is typically measured
in scores. The Readable.io tool2 [TMR+23, MEBF+19] provides spatial measures:
A generic rating from A to F and an Avarage grade level comparing the read-
ability with the formal education needed to understand the text (e.g., fifth grade
student). There is also the more popular Flesh Kincaid measure [Fle79], scoring
the readability from 0 (hard to read) to 100 (easy to read).

• Loading Speed Defines the time required to fully display the web page. Different
institutions provide different standards here. Google defines the loading speed for
the first contentful paint (FCP) as ’Good’ if the page loads within the first 1800ms,
as ’Needs Improvement’ if it loads within the first 3000ms, and as ’Poor’ if the page
takes longer to load [HŠB21].

• Accessibility Defines the practice of making your websites usable by as many people
as possible, considering not only people with disabilities but also the variety of
devices e.g. mobile or wearables that might want to access the website [MBLK23].

1analytics.google.com
2readable.io

13

Chapter 1 Introduction

The tool Qualidator3 [KJN19] shows possible weaknesses of the site and gives
three scores in addition to the specific problems of the site. It provides an overall
accessibility score, a usability score, and a search engine optimization score.

• Functional Performance Defines how well the page works and how well it is received
by the end user. Nibbler4 [KH17, JP21] is a tool to analyze these aspects of a
website, based on multiple metrics such as server behavior checking for basic
functions such as 404 pages and well-definedness of links. Further metrics are
Marketing, whether there are analytics data, a linked X5 (former Twitter6) account,
and the freshness of content and Technology analyzing printability of pages, the
mobile capability, and in general how well designed and built the website.

With minor exceptions (e.g., marketing measures with social media), these metrics pro-
vide a good basis on how to measure the usability of a generated web information system
[CCOTF09] such as the target application of the generator framework that is presented
in this thesis.

Usability of the Generator framework

In the previous section, we provided measures on how to test whether the requirements
for a highly usable website are met. Now we need to provide requirements for the
framework to enable the developer to create such a website. In contrast to usability
measures for web applications, there are fewer tools available to measure the usability
of a generator framework. In this thesis, we refer to the usability of the generator as
its ability to relieve the developer of work. Thus we can derive a few requirements for
model-driven tooling:

• Flexibility: Because the adaptation of a generator to a new target domain often
happens, it’s important to prioritize flexibility to ensure that it can be integrated
and reused across various projects. This flexibility minimizes the learning curve
and time investment required to familiarize yourself with the system, making it
more efficient for developers to adapt the framework to different needs.

• Customizability: To maintain efficiency and avoid clutter, a framework should
allow easy addition and removal of extensions. This ensures that each project
includes only necessary components, preventing the accumulation of unused ele-
ments. By tailoring the framework to the specific needs of each project, developers
can keep their workspaces streamlined and focused on relevant tasks.

3www.qualidator.com
4www.nibbler.silktide.com
5www.x.com
6www.twitter.com

14

1.5 Thesis Structure

• Iterativity: The framework should be designed to generate code in stages, build-
ing progressively over each phase, and increasing the generated code incrementally.
This step-by-step approach ensures a structured development process and facili-
tates easier tracking of changes and additions.

• Robustness: The generator should notify the developer of any issues (such as type
checks and context conditions) during generation time and avoid errors that come
up during run time.

• Ease of use and documentation: To ensure developers can easily start using the
framework, there should be minimal initial obstacles. Comprehensive documenta-
tion and introductory guides are essential to facilitate this.

1.5 Thesis Structure

The structure of the thesis is outlined as follows:

Introduction (Chapter 1) The first chapter provides an introduction to the topic,
as well as a presentation of the research questions and requirements of
the proposed tool chain.

Methodology (Chapter 2) The second chapter presents the methodology and gives
a short introduction to each transformer.

Foundation (Chapter 3) This chapter gives a provision of the necessary founda-
tions, including the basic architectures of web applications, the founda-
tions of model-driven software development, the language workbench
MontiCore and preexisting domain-specific languages.

LLM4CD (Chapter 4) The fourth chapter presents the modeling capabilities of
large language models and introduces the first transformer (LLM4CD)
used to transform natural language into CD4A and other languages
developed for web application generation.

DSLs (Chapter 5) The fifth chapter introduces both GUIDSL v1 and GUIDSL v2
as the primary languages used to define user interfaces for information
systems. In addition, the usage of the Tagging Language for Class
Diagrams is presented.

CD2GUI (Chapter 6) This chapter presents the next transformer CD2GUI and
its options for reconfiguration. It also provides insights into mecha-
nisms for adaptability and variability of CD2GUI, as well as several
extensions to increase usability of the information system.

15

Chapter 1 Introduction

Generator (Chapter 7) Chapter seven focuses on the final transformation using
the MontiGem framework to generate Typescript, HTML and Java
code. We present the architecture of the target application and in-
troduce the artifacts generated. The key principles of front-end and
back-end generation are presented, as well as the generated command
pattern to enable seamless data transfer between the server and the
client.

MaCoCo (Chapter 8) This chapter presents MaCoCo, a case study on a full-size
web application created using the MontiGem-framework.

Examples (Chapter 9) Chapter nine presents additional use cases of the model-
driven approach, highlighting lessons learned from each project.

Discussion (Chapter 10) This chapter presents a discussion of the thesis and its
results, as well as a contextual comparison.

Conclusion (Chapter 11) The final chapter provides a conclusion of the thesis with
final thoughts.

1.6 Publications

This thesis is based on several years of research. Thus, some of the findings have been
previously published in various contexts prior to the completion of this thesis. As a
result, certain results, figures, data, and other content within this thesis have already
appeared in conferences and journals, or are currently in press or in preparation. This
section offers an overview of these publications.

• [ANV+18] describes the initial concept of the usage of the MontiGem generator
framework (Chapter 7), to generate information systems based on a limited set of
modeling languages. The Alpha version of MontiGem was developed in collabo-
ration with Simon Varga and Kai Adam. The concepts were continued in later
versions of MontiGem. MontiGem was refined in several Student and Industry
projects. The paper was a joint effort of the authors.

• [GHK+20] focuses on the effects of simultaneous generation of the front- and back-
end using MontiGem as an example. It specifically focuses on the role of the
domain expert in defining the information system through models. The results are
presented in more detail in Chapter 7.

• [AMN+20] describes the lessons learned from the early development and appli-
cation of the MontiGem generator framework to generate enterprise information
systems (cf. Section 7.3.1, Section 7.3.1).

16

1.6 Publications

• [GMN+20] presents a methodology that enables the transition (cf. Section 4.5.5)
from a prototype implementation to a full-size real-world system in the context of
model-driven software engineering.

• [DGM+21] describes a process on how to retrofit a generative approach to an
existing implementation (cf. Section 8.2). This paper is based on insights from the
MaCoCo project.

• [BGK+23b] Summarizes lessons learned from the application of MontiGem in five
different domains. The author of this thesis contributed the foundation and the
section describing MaCoCo, cf. Chapter 8. Christian Kirchhof contributed the sec-
tion describing the ’Ford’ project (cf. Section 9.3). Arkadii Gerasiomiv contributed
the section describing the System for energy management, and Sebastian Stüber
contributed the section describing the invidas (cf. Section 9.2) project.

• [NGM+24] Presents the usage of model-driven methodologies to develop the full-
size real-world system MaCoCo. It summarizes the lessons learned from the devel-
opment process of the MaCoCo project (cf. Chapter 8).

• [Kro23] shows an implementation of the concepts to extend the GUIDSL v2 for
adaptability as previously defined in [GMN+20] (cf. Section 4.5.5).

• [Sla22] examines multiple variants of generated user interfaces for website navi-
gation, which are aimed at enterprise information systems and are based on the
provided class diagram (cf. Section 6.3.2).

• [Ort22] evaluates the usage of tagged class diagrams (cf. Section 3.5, Section 6.5.1)
in order to automatically introduce model-driven role-based access control into the
generated web application.

• [Fel23] performs a user study to evaluate the ability of MontiGem to operate as a
low-code development platform compared to commercial software system develop-
ment solutions (cf. Section 9.4).

17

Chapter 2

Model-Driven Method

We address the three research questions and subsequent requirements by proposing a
methodology and a corresponding tool chain that enables the iterative creation of a
web-based information system using informal specifications as input.

Contents

2.1 Roles . 19

2.2 Transforming Natural Language into a Web Application 20

2.2.1 Transformer overview: LLM4CD 20

2.2.2 Transformer overview: CD2GUI 21

2.2.3 Transformer overview: MontiGem 23

2.3 Tool Chain Overview . 24

2.1 Roles

Individuals that can interact with this tool chain and its results can assume four roles:

a) The domain expert: An individual, also known as a subject matter expert, who
has knowledge of a specific domain (e.g., finance or healthcare). The domain ex-
pert is one of the stakeholders that defines the use case of the targeted application
and describes it in natural language at the beginning of the generation process of
the target application. Within this methodology, domain expert is not required
to have any experience in the definition of any models or is required to have any
programming skills. The domain expert has both functional and non-functional
requirements at the target application and is able to evaluate the resulting appli-
cation against his input.

b) The system modeler has expertise in defining models for the languages used in this
tool chain. He is familiar with the modeling languages that are used in this tool
chain and can define, extend, and modify models accordingly. He does not have to
be an expert on the subject matter and is not required to have any programming
skills.

19

Chapter 2 Model-Driven Method

c) The programmer is familiar with the target languages (HTML, TypeScript, and
Java), but does not need to have any subject matter expertise nor is required
to know any of the modeling languages used. The programmer can extend and
modify the target application directly. By adding handwritten code directly to the
generated source code of the application.

d) The Toolsmith, develops and configures the individual tools within the tool chain.

e) The user is the individual who interacts with the produced application.

Within this tool chain, an individual can have multiple roles as they are not exclusive.
It is very likely that the system modeler is the same person as the programmer or that
the user is the same individual as domain expert.

2.2 Transforming Natural Language into a Web Application

The proposed tool chain can be broken down into three major transformers:

1 Natural language to Class Diagram transformer (LLM4CD)

2 Class Diagram to Graphical User Interface Model Transformer (CD2GUI)

3 MontiCore-based Generator for Enterprise Management Systems (MontiGem)

They operate as follows:

2.2.1 Transformer overview: LLM4CD

We start by interpreting and formalizing the informal input provided by domain expert
(cf. Figure 2.1). As the targeted information system is data-centric, the first transfor-
mation converts the user input into a class diagram. This class diagram ideally describes
most of the relevant data concepts of the application. The input of domain expert can
be changed iteratively, to adapt the application to changing requirements, as LLM4CD
is the first transformation, there are no dependencies of these specifications on any pre-
ceding models. The domain expert can freely choose his input. These modifications can
also be provided as informal specifications by the domain expert (Chapter 4). LLM4CD
is well suited to interpret informal specifications and to produce a corresponding class
diagram. However, in case a very specific class diagram is already envisioned, the user
would have to specify this model very precisely. In this case, it would be more efficient
to enable the direct definition of a class diagram. Therefore, an additional mechanism is
used to include class diagrams directly. CDMerge [LRSS23], a tool to merge two class di-
agrams and detect possible conflicts within that merge, is used to add additional classes
to the output of LLM4CD. Thus, allowing for a combination of informal specifications

20

2.2 Transforming Natural Language into a Web Application

Figure 2.1: Transforming informal specifications into class diagrams: LLM4CD leverages
the NLP capabilities of LLMs to transform continuous text into valid CD4A
syntax. In order to permit the inclusion of preexisting models, a System
Modeler can merge handwritten models with any class diagram that was
produced by the LLM.

and formal data structures. This allows the domain expert to vaguely describe certain
aspects of the application while allowing a system modeler to precisely define specific el-
ements, such as classes for the run-time environment or API descriptions. As this model
is the basis for all subsequent transformations, we refer to the merged model as the root
class diagram. The first transformer (LLM4CD) is used to transform domain descrip-
tions into platform-independent domain models. LLM4CD uses large language models
that are based on statistical analysis. Therefore, there is a chance that it can return
an invalid model (e.g. bad syntax, or semantically wrong). In this case, domain expert
can simply run the transformation again to produce a valid model. Another aspect of
large language models is the unpredictability of the returned output, minor changes in
input can result in major changes in output. We address the challenges of LLM-based
algorithms in Chapter 4.

2.2.2 Transformer overview: CD2GUI

CD2GUI uses the merged root class diagram as input and derives for each class a set of
GUI-models (cf. Figure 2.2). Each describes a web page in the targeted web application.
The modeled user interfaces allow the user to create, read, update, and delete (CRUD)
data defined by root class diagram. Depending on its configuration, additional user
interfaces can be produced that are based on root class diagram, such as change data
capture (history), access control, or class-specific dashboards. Similarly to LLM4CD,
we need to provide adaptability to the models produced. CD2GUI can be configured
to produce GUI-models differently based on a class, association, or attribute being pro-

21

Chapter 2 Model-Driven Method

Figure 2.2: Transforming data structure models into user interface models: CD2GUI
provides the necessary user interface needed to create an application. It can
be configured with Custom Templates (cf. Section 6.6.1), and receives Class
CD4A diagrams as input. Within the tool chain, LLM-based CD4A models
can be merged with handwritten ones in a pre-processing step. CD2GUI
produces GUI-models and hand over the merged CD to the next tool in the
tool chain.

cessed (Section 6.6). A system modeler can change the behavior of the generator based
on the type of data handled. This mechanism can be used to include specific visualiza-
tions, functions, and behaviors in the user interface each time a specific type is handled,
e.g., displaying a temperature with a gauge or hiding private user data in all user inter-
faces. A second mechanism for adapting models is introduced into the modeling language
used to define GUI-models (GUIDSL) itself. Hand-written models can be used to adapt
generated ones, allowing modification of the CD2GUI output. Each element in a GUI-
model can be referenced and modified, allowing removal, replacement, and addition of
any element defined in a GUI-model.

The single underlying model is used to create GUI-models, but it also passes through
the next transformation step unchanged. CD2GUI is used to transform domain models
that primarily describe the target domain into application models that can be used to
define software for that target domain.

22

2.2 Transforming Natural Language into a Web Application

2.2.3 Transformer overview: MontiGem

Figure 2.3: Transforming system models to the target system (web application). A sys-
tem modeler can contribute additional models, a programmer can add hand-
written code. (Excerpt from Figure 2.4)

MontiGem is used to transform a set of models into a web application (cf. Figure 2.3).
MontiGem follows the basic architecture of a generator as described in [HKR21]. As
all DSLs used in this approach are based on the same language workbench, we use the
tools provided by that workbench to develop the corresponding generator. In order
to generate a web application MontiGem requires at least a set of class diagrams and
GUI-models. In addition, further models can be provided, such as tagging and OCL
models. In addition to the GUI-models provided by CD2GUI, a system modeler can
provide additional GUI-models, defining further custom pages. MontiGem produces
a fully functional data-centric web application, consisting of a presentation layer, an
application layer, and a persistence layer. The generator provides both the server and
the client with the root class diagram-data structure and a corresponding command
pattern that is used to handle data transfer between both. The server is provided with
a persistence API to define and access the data types declared in the root class diagram.
In addition to the core functionalities MontiGem also provides several additional classes
that help the developer create a sophisticated application. The application produced
by MontiGem can be used as is. If necessary, a programmer can modify and extend
the code produced by MontiGem using the TOP-Mechanism ([HR17]). Although the
above method describes many options to configure, adapt, and modify the generation

23

Chapter 2 Model-Driven Method

process, it is still capable of operating on the basis of the initial informal specifications
of domain expert alone (RQ 1). The method is intended to be used iteratively, enabling
the transformation from a simple unconfigured prototype to a full-size real-world system
(RQ 3) such as MaCoCo (cf. Chapter 8).

2.3 Tool Chain Overview

Figure 2.4: Method Overview: Transforming informal specifications into a fully func-
tional web application

The development of web applications is complex [GM01, CDDM09, XL05] and costly
[RJW03]. It starts from an informal concept and evolves through multiple iterations,
involving various skilled individuals, into a complete system. The key is adherence to the
requirements of the stakeholders [FR07]. By combining these three transformers, this
thesis introduces a method to generate web applications from informal specifications, a
complete overview is shown in Figure 2.4. This process can produce a prototype from
an informal specification. A domain expert provides informational requirements, which
are transformed by a transformer (1 LLM4CD) using a large language model (LLM)
into domain models [BGS05]. This model can be merged with further models defined
by a system modeler. The resulting model is the single underlying model used to define
the web application. The system modeler can also define custom templates to configure
the next transformer (2 CD2GUI) The single underlying model is then converted into
application models and further transformed into the Target System’s source code (3

24

2.3 Tool Chain Overview

MontiGem).

Running Example

The following example illustrates the approach (cf. Figure 2.4): The domain expert de-
fines ”A web store for books”and passes the informal specifications to the first transformer
(1 LLM4CD), this informal specification is transformed to the class diagram shown in
Figure 2.5. The model can be reviewed and modified iteratively using informal specifica-
tions in LLM4CD to adjust the model. The domain expert could add the requirement to
enable the bookstore to also offer videos. This would result in LLM4CD adding a Video-
class next to the Book-class without requiring domain expert to perform this change
directly on the model. LLM4CD sends the class diagram to the next transformer: 2

CD2GUI. It produces for each class (BookStore, Book, Order, Customer) two GUI-models
that define two kinds of pages: An overview page to find individual objects, e.g., the
overview page for the Book -Class, which lists all books in the database, a details page,
used to inspect individual objects, e.g., to change details on a specific Order. In addition,
more GUI-models are produced to improve the overall user experience. CD2GUI passes
the input class diagram and GUI-models over to the next transformer 3 MontiGem.
MontiGem produces Java, HTML and TS files and generates a web application based
on the input models. Thus, a basic prototype of a Web application is produced for a
bookstore, based on the initial input by the domain expert. As the developed application
is only a prototype, the system modeler and the programmer can iteratively edit and
refine any of the produced models and source code in order to iteratively transform the
prototype into a real-world application.

25

Chapter 2 Model-Driven Method

Figure 2.5: Visualization of a simplified class diagram, produced by LLM4CD based on
the input ”A web store for Books”.

26

Chapter 3

Foundations

In this chapter, we introduce basic concepts and foundations relevant to this thesis:

Contents

3.1 Web Application Architectures . 28

3.2 Model-Driven Software-Development 29

3.3 MontiCore . 29

3.3.1 Overview . 30

3.3.2 Symbol Table . 31

3.3.3 Templates . 32

3.3.4 Reports . 32

3.4 Class Diagram for Analysis . 33

3.4.1 Model Definition . 33

3.4.2 Classes, Interfaces and Enumerations 34

3.4.3 Attributes and Predefined Data Types 35

3.4.4 Associations . 36

3.4.5 Context Conditions . 37

3.5 Tagging . 38

3.5.1 Approach . 38

3.5.2 Common Tag Schema . 40

3.5.3 Common Tags . 41

27

Chapter 3 Foundations

3.1 Web Application Architectures

Figure 3.1: Typical architecture of a web application

One goal of this thesis is the generation of web applications; therefore, we will have a
closer look at the structure of such a system and what its basic components are. Fig-
ure 3.1 depicts a typical architecture of a web application. A web application consists of
two sides: The client located on the user system and a server located on the application
provider system. On the client side, the user uses a browser to request data from the
server. Upon request, the server provides the client with runnable code (e.g., HTML,
Typescript, or PHP) that is executed in the browser, providing the user with an interac-
tive user interface. The executable layer that presents the data to the user is defined in
the presentation tier of the server. This layer is used to visualize data input and output
to the user and enable tailored interactions with the server to the specific domain or use
case at hand. A user always interacts through the front end with the server. Next to
the front end is the back end. It contains both Application Tier and Data Tier. The
Application Tier defines any business logic needed to run the application. Any logic
that is needed to process data inputs that are received through the Presentation Tier is
defined in this layer. Both the presentation tier and the Application Tier rely on a set of
data. This data is managed in the persistence tier, which defines how the data is stored
and who can access it. Thus any data storage (persistence) and external data sources
(third party service) are linked to the Data Tier. The web application that is generated
by MontiGem follows this basic architecture for its target application.

28

3.2 Model-Driven Software-Development

3.2 Model-Driven Software-Development

Model-Driven Software Development (MDSD or MDD) is a software engineering ap-
proach that emphasizes the use of models to design, develop and maintain software
systems. The main goal of MDD is to improve the productivity, quality, and main-
tainability of software by automating repetitive tasks and providing a higher level of
abstraction when working with complex systems. In MDD, models are used as pri-
mary artifacts to capture the essential elements of the system being developed, such as
structure, behavior, and requirements. These models are often created using specialized
modeling languages like Unified Modeling Language (UML) [Obj17], SysML [H+06], or
Domain Specific Languages. The development process in MDD involves the following
steps:

1. Requirements Analysis and Modeling: The requirements of the system are cap-
tured and represented using suitable models.

2. Design and Architecture: High-level system design and architecture are defined
using models, which serve as a blueprint for the system.

3. Model Transformation: Models are transformed into other models or lower-level
artifacts, such as source code, configuration files, or database schemas, using au-
tomated tools and techniques such as model-to-model (M2M) and model-to-text
(M2T) transformations.

4. Implementation: The generated code and other artifacts are integrated, tested,
and deployed.

5. Maintenance and Evolution: Changes and enhancements to the system are made
by modifying and updating models or integrating handwritten artifacts, which are
then transformed to update the corresponding artifacts.

MDD offers several advantages, such as increased productivity due to automation,
improved quality through better abstraction and consistency, and easier maintainability
by focusing on models rather than code. However, it also has some drawbacks, such as
the need for expertise in modeling languages and the potential for a steep learning curve
for novice practitioners.

3.3 MontiCore

In this chapter, we introduce the key concepts behind MontiCore. The complete documen-
tation of the latest version of MontiCore can be found at monticore.github.io [HKR21]

29

monticore.github.io

Chapter 3 Foundations

In this work, we use many languages based on MontiCore. In addition to that MontiCore
was used to generate a lot of the infrastructure that is used to work with those DSLs.

3.3.1 Overview

MontiCore [GKR+06, KRV08, GKR+08, HR17, HKR21] is a language workbench that
supports the development of domain-specific modeling languages and code generation.
A language workbench, in general, is a software development tool that allows users to
create, modify, and analyze DSLs to simplify the development process and increase pro-
ductivity. Some popular language workbenches include JetBrains1 MPS, Xtext, and
Spoofax2. MontiCore provides a framework to design and implement DSLs tailored for
specific tasks and domains. MontiCore enables the creation of modeling languages by
defining the context-free grammar for a particular domain. It then provides infrastruc-
ture for the development of generators (Figure 3.2) for the synthesis of code from models
created in the defined DSL. This allows for a higher level of abstraction in software de-
velopment, making it easier to specify complex systems and generate software artifacts
(such as code, documentation, or configuration files) from the models. MontiCore has
several features that make it a powerful tool for DSL development:

1. A Modular Language Development Approach: MontiCore supports the creation of
modular and reusable language components, allowing developers to build languages
tailored to specific domains and applications [HJK+23, JR23, KRV10, Völ11].

2. Code Generation: The MontiCore system provides the means to generate code in
various programming languages, based on the defined DSL models.

3. Model Analysis and Transformation: Support of the analysis and transformation
of models, enabling the creation of model-to-model and model-to-text transforma-
tions.

4. Extensibility: The language workbench can be extended with additional features
and plugins to cater to specific requirements.

Within MontiCore, a language is defined with context-free grammar. Based on that
grammar a parser, a data structure for an abstract syntax tree (AST), and the imple-
mentation for a visitor pattern [GHJ+95] to traverse the given AST can be generated.
Typically the AST is extended by a Symbol Table (ST) mapping uniquely identifiable
names and nodes in the AST to a collection of scoped symbols. The symbol table can
be used to define and check context conditions (CoCos). Before transforming the AST
into target code, one or more model-to-model transformations can be applied to extend
or modify the input AST. These can be implemented by hand as in this work or be

1https://www.jetbrains.com/
2https://spoofax.dev/

30

https://www.jetbrains.com/
https://spoofax.dev/

3.3 MontiCore

Figure 3.2: Typical architecture of a MontiCore based generator (Adapted from
[HKR21]).

implemented by specific transformation languages as shown in [Wei12, Höl18, HRW15].
Finally, the generated template engine can be used to create source code in the desired
target language using a set of templates. Next to the target code, MontiCore-based
generators create a set of reports outlining information on the produced artifacts.

3.3.2 Symbol Table

In MontiCore, a symbol table plays a crucial role in the language infrastructure by stor-
ing information about symbols, used in the models created in a domain-specific language.
Symbol tables in MontiCore are designed to support modularity, reusability, and extensi-
bility, which align with its overall objectives as a DSL workbench [Völ11, HLMSN+15b,
HLMSN+15a]. The MontiCore symbol table serves several important purposes, includ-
ing symbol resolution, scope management, and model analysis. It helps resolve symbols
within the models by managing the relationships between symbols and their definitions
and handling symbol imports and inheritance. Additionally, MontiCore’s symbol table
assists in managing the scope of symbols, ensuring that symbols are accessible only within
their appropriate context. Symbol tables also play a role in model analysis, facilitating
tasks such as type-checking and consistency validation. They provide the necessary in-
formation about the symbols in the models, which is crucial to analyze the models and
ensuring their correctness. Lastly, symbol tables are essential for code generation. They
store information about the symbols and their associated attributes, which is necessary
for generating correct and efficient code in the target programming language. [MSN17]
defines a symbol table as follows:

31

Chapter 3 Foundations

Definition 6. Symbol Table

”
The ST is a data structure consisting of a scope graph with an associated collec-
tion of symbols at each scope. It maps names to essential information about model
elements, represented as symbols. The ST allows to efficiently organize and find,
among others, declarations, types, and implementation details associated with those
model elements.“ (cf. [CBCR15])

The symbol table significantly enhances the efficiency of navigation between AST
nodes within the given models. In addition, the symbol table encapsulates the core
aspects of a language and its models. It embodies the model interfaces, which are an
integral part of the language interface.

3.3.3 Templates

MontiCore has a template-based generator [Fow10]. It uses the FreeMarker3 Template-
Engine to generate its target code. The AST can be transformed over multiple trans-
formations into the final source code. The final product itself can also be a generator
as shown in Figure 3.2 (Input AST to Output AST) [HKR21]. Thus, MontiCore is
also a generator that is used to generate generators. The template engine uses specific
templates to specify how the target code is to be created. Each template consists of a
static and a dynamic part, the latter being provided by the symbol table or by a visitor
traversing the AST. [CFJ+16] describes a template as:

Definition 7. Template [A template] is a raw piece of an artifact with explicitly
marked expressions that are evaluated relative to a model and whose results are
inserted to complete the artifact.

3.3.4 Reports

MontiCore provides next to the target code a set of reports (Figure 3.2). The reports
provide additional information summarizing meta-information on the generated source
code. Reports can be used to help understand the operations of tools and artifacts that
are generated with MontiCore. They differ from logs, as the reports do not provide step-
by-step notes on the generation process but rather aggregate statistics on the finished
product.

3https://freemarker.apache.org/

32

3.4 Class Diagram for Analysis

Figure 3.3: Class diagram describing a university

3.4 Class Diagram for Analysis

The DSL Class Diagram for analysis (CD4A) was developed by Roth [Rot17, MSNRR15a,
MSNRR15b], to address the requirements of analysis models. The DSL was realized us-
ing MontiCore (cf. Section 3.3). In the following, we explain the CD4A language with
an example. Figure 3.3 shows the relationship between a university and its members.
The example describes a university (University) that has members (Member) who can be
students (Student) or professors (Professor). Students are enrolled in a degree program
(StudyProgram) and take courses (Course). Next, we build up this class diagram as a
CD4A model step by step, highlighting the characteristics of the language.

3.4.1 Model Definition

Every CD4A model is defined in a single file with the same name as the model (such as
in Listing 3.1). A CD4A model may begin with an optional package declaration (line
1) to group models into logical units and prevent conflicts. Imports, specified using the
keyword import (line 3), allow the inclusion of external artifacts, including types not
defined in the model.

33

Chapter 3 Foundations

1 package gem;

3 import java.time.ZonedDateTime;

5 classdiagram University {
6 // [...]
7 }

Listing 3.1: Basic structure of a CD4A model

We use the keyword classdiagram (Line 5) to define the main part of the model. Within
brackets, we can define classes, interfaces, enumerations, and associations that belong
to this model.

3.4.2 Classes, Interfaces and Enumerations

CD4A allows the definition of multiple classes within one model (cf. Listing 3.2). Each
class is defined with the keyword class followed by the class name (lines 1-5). The
keyword abstract (Line 1) as a modifier can be placed in front of a class to define
abstract classes. A class can extend another class by adding the extends keyword and
the targeted class after the class name (line 3). Similarly, an interface can be implemented
using the keyword implements (line 5).

1 abstract class Member { ... }

3 class Student extends Member { ... }

5 class University implements Institution { ... }

Listing 3.2: Class definitions within a CD4A model. The classes can be abstract and
extend each other. Interfaces can be implemented.

CD4A also allows for the definition of interfaces. They are defined with the interface
keyword followed by its name. Listing 3.3 shows the definition of the interface Institution
as shown in Figure 3.3.

1 interface Institution;

Listing 3.3: Interface definition within a CD4A model as shown in Figure 3.3

Interfaces may extend other interfaces by using the extends keyword as shown in List-
ing 3.4.

34

3.4 Class Diagram for Analysis

1 interface BasicShape;
2 interface Colored;
3 interface Polygon extends BasicShape;
4 interface ColoredPolygon extends Colored, Polygon;

Listing 3.4: An example using interfaces to define shapes: Interface extending other
interfaces within a CD4A model

Next to classes and interfaces, enumerations can be defined in CD4A (cf. Listing 3.5).
An enumeration is defined with the keyword enum followed by a name (line 1). Within
its brackets, the enumeration defines a set of literals (lines 2-3). In CD4A an enumera-
tion cannot inherit from classes, interfaces, or other enumerations; it also cannot have a
modifier.

1 enum Degree {
2 BACHELOR,
3 MASTER;
4 }

Listing 3.5: Deinition of the Degree enumeration as shown in Figure 3.3

3.4.3 Attributes and Predefined Data Types

A class in a CD4A model may contain a set of attributes. Listing 3.6 shows the classes
University (lines 1-5) and Professor (lines 7-9) and their attributes as shown in Fig-
ure 3.3. We can add the modifier derived or / in front of the type (Line 4) to define the
types that themselves are computed based on other attributes. A derived attribute has
a getter, but no setter or local variable declaration. In addition, default values can be
defined. An attribute can be initialized with a primitive type such as boolean or int.

35

Chapter 3 Foundations

1 class University {
2 String name;
3 int amountStundents;
4 /boolean excellency;
5 }

7 class Professor extends Member {
8 String title = "Prof";
9 }

Listing 3.6: Definitions of the classes University and Professor with their attributes as
shown in Figure 3.3

Each attribute has a type, which must either be a primitive type, one defined in the
model itself, or imported as an external data type. Listing 3.7 shows the definition of
different types within a CD4A model. Types can be used in type constructors such as
List<...> (line 2) or Set<...> (line 3) as well as Optional<...> (line 7). In addition to
complex types, primitive types can also be used for generic collection types, for example
List<int>.

1 class MyCollections {
2 List<Long> longValues;
3 Set<String> stringValues;
4 }

6 class MyOptionals {
7 Optional<MyCollections> optionalValue;
8 }

Listing 3.7: Definitions several generic types within CD4A.

3.4.4 Associations

Associations describe the relationships between classes, interfaces, and enumerations.
Listing 3.8 shows some of the associations depicted in Figure 3.3. In CD4A the associa-
tion is defined with the keyword association followed by the end of the left association
and an arrow that is directed (<-, ->) or undirected (<->) or not specified (–) and fi-
nally the end of the right association. Cardinalities may be added to the left of the
left association end and to the right of the right one. CD4A supports the following
cardinalities: [1], [0..1], [*], [1..*]. Further restrictions on cardinality have to be
implemented by hand or modeled using OCL / P [BRW16]. Cardinalities are optional
and are interpreted as underspecifications. Similarly, the roles of an association (cf. Line
2 (program)) are only necessary to prevent ambiguity; otherwise, the role can be derived

36

3.4 Class Diagram for Analysis

from the type of opposite end of the association. The navigation direction is restricted
in the cases of enumeration and external types, as it is not possible to navigate from
those types.

1 association [1] University <-> Member [*];
2 association [*] Student (program) -> StudyProgram [1];
3 association [1] type StudyProgram -> Degree [1];

Listing 3.8: Definitions of associations as shown in Figure 3.3

In Figure 3.3 another type of association is shown: the qualified association. The access
from one instance to a collection of instances via a qualifier. Listing 3.9 shows the qual-
ified association from Student to Course. The qualifier is enclosed in double brackets:
[[id]]. The double brackets denote that the qualifier (id) is a parameter of the target
instance. In case an arbitrary parameter is used as a qualifier, single brackets are used.

1 association [0..1] Student [[id]] -> Course

Listing 3.9: Definitions of associations as shown in Figure 3.3

Further documentation for derived and ordered associations, as well as compositions, can
be found in [Rot17].

3.4.5 Context Conditions

Context conditions are rules or constraints that govern the validity of language constructs
within specific contexts or situations. Context conditions help to ensure that the elements
of DSL are used correctly and in a semantically appropriate way, preventing errors or
inconsistencies in the final model. For example, in the CD4A context, conditions prevent
the use of an attribute that is neither imported nor defined. As there are several sets
of context conditions defined for CD4A, we will only look at a few examples of context
conditions of the DSL.

• CDAttributeUniqueInClass Within each class, an attribute must be unique. There
must not be two attributes with the same name within a class.

• CDAttributeTypeExists The type of any declared attribute must be either an ex-
ternal data type that is qualified by an import statement, a primitive type or a
type that has been declared in the model.

• CDInterfaceExtendsOnlyInterfaces Interfaces cannot extend classes. Interfaces
may only extend other interfaces.

37

Chapter 3 Foundations

• CDAssociationNameUnique Within one class diagram, the name of an association
must be unique.

• RoleAndFieldNamesUnique The role of an association must not have the same name
as an attribute in one of the classes as either side of the association. This context
condition also applies to implicit role names.

The context conditions in CD4A cover naming conventions such as capitalization of
classes, the name of the diagram, or the uniqueness of names within the scopes. They
also prevent circular inheritance or invalid extensions of enumerations or interfaces.

3.5 Tagging

In MDSE [Grö10, MNRV19] models are used as fundamental artifacts to focus on the
application layer during development. The models are abstracted from technical con-
figurations. In generative development approaches, models are often used as input for
a generator [Cza02], to define how large parts of the application are generated auto-
matically. To do so, the generator requires additional technical information, that is not
part of the original input model and needs to be provided in another way. Greifenberg
[GLRR15] initially developed the TaggingDSL to tackle this issue. The DSL can extend
another modeling language and add additional information, by ’tagging’ the symbols of
the target model. This concept enables the separation of technical information from the
input model. In the following, we take a look at the tagging concept, related work, and
how it is used in the context of MontiGem.

3.5.1 Approach

The tagging concept for a DSL L is described in [GLRR15], it relies on three key arti-
facts: (1) the target model ML that is to be extended by tagging, (2) the tagging schema
MLSchema

, a model that defines what elements of the target model can be tagged with
which attributes, and finally (3) the tagging model MLTag

itself, defining which elements
in the target model are tagged with which values. Figure 3.4 gives an overview of the lan-
guages and models involved in the tagging language. The lower part shows the languages
defined as MontiCore grammars (MCG), and the upper part shows the corresponding
MontiCore models (MCG). The diagram shows the relation between the language LG

and the tagging language derived from it. The language LTag
G and the tagschema LSchema

G

can be derived from the existing language LG, by extending the grammar of the exist-
ing language LG. Thus, any model MLG

can be referenced from M
L
Tag
G

, regardless of

the language in which MLG
is defined, as long as both models correspond to the same

language LG. Similarly LSchema
G extends LG allowing the model MLSchema

G
to reference

elements of LG.

38

3.5 Tagging

Figure 3.4: Relations between grammars and models of the tagging language
(based on [GLRR15])

39

Chapter 3 Foundations

3.5.2 Common Tag Schema

1 grammar TagSchema extends Common {
2 TagSchema = "tagschema" Name
3 "{"
4 TagType*
5 "}"
6 ;
7 interface TagType;

9 Scope = "for"
10 (ScopeIdentifier ("," ScopeIdentifier)* | "*")
11 ;
12 SimpleTagType implements TagType =
13 ["private"]? "tagtype" Name Scope? ";"
14 ;
15 ValuedTagType implements TagType =
16 ["private"]? "tagtype" Name ":"
17 ("int"|"String"|"Boolean") Scope? ";"
18 ;
19 EnumeratedTagType implements TagType =
20 ["private"]? "tagtype" Name ":"
21 "[" String ("|" String)* "]" Scope? ";"
22 ;
23 ComplexTagType implements TagType =
24 ["private"]? "tagtype" Scope?
25 "{" Reference ("," Reference)* ";" "}"
26 ;
27 Reference = Name ":" ReferenceTyp ("?"|"+"|"*")? ;
28 ReferenceTyp = ("int"|"String"|"Boolean"|Name);
29 }

Listing 3.10: MontiCore grammar of for
the common TagSchema [Loo17b], showing the four common TagTypes:
SimpleTagType, ValuedTagType. EnumeratedTagType and ComplexTagType.

The tagschema allows the developer to define a type system for tags. Providing the
domain expert with customized tools that ensure that all used tags are valid and allowing
the generator developer to implement a generator that can process these predefined tag
types. A tag schema is based on the grammar shown in Listing 3.10. A tagschema
can consist of multiple definitions for TagTypes (Line 4). When defining a TagType,
we distinguish in four different kinds of Tags: SimpleTagType (line 13) consists only
of its name and is intended to flag only an element in the target model without any
further information. ValuedTagType (Line 16) consists of a name and a value, allowing
the developer to attach a value to a tagged element. Similarly to the ValuedTagType,

40

3.5 Tagging

EnumeratedTagType (Line 20) defines a name and a value, however, the TagType defines
a set of which the provided value must be part. Finally, ComplexTagType (Line 27) defines
a tag that can have an arbitrary number of subtags. These subtags can be primitive
types such as int, String or boolean, but also other tag types already defined within
the tagschema, allowing for unlimited depth in hierarchy and complexity.

3.5.3 Common Tags

1 grammar Tags extends Common{
2 TagModel =
3 "conforms" "to"
4 QualifiedName ("," QualifiedName)*";"
5 "tags" Name "for" targetModel:QualifiedName
6 "{" (contexts:Context | tags:TargetElement)* "}"
7 ;

9 Context = "within" ModelElementIdentifier "{"
10 (contexts:Context | tags:TargetElement)*
11 "}"
12 ;

14 interface ModelElementIdentifier;
15 DefaultIdent implements ModelElementIdentifier = QualifiedName;

17 interface Tag;
18 TargetElement = "tag" ModelElementIdentifier("," ModelElementIdentifier

)* "with" Tag ("," Tag)* ";" ;

20 SimpleTag implements Tag = Name;
21 ValuedTag implements Tag = Name "=" String;
22 ComplexTag implements Tag = Name "{" (Tag ("," Tag)* ";")? "}";
23 }

Listing 3.11: The MontiCore Grammar LTAG
Common [Loo17b] defining common features of

a tag.

The TagModel is based on the common tag grammar (Listing 3.11). It relates to at
least one TagSchema (line 4) that has a Name and a targetModel (line 5). The gram-
mar implements two key concepts: first the Context production, which allows the
navigation into elements with the within keyword. Allowing the modeler to nest el-
ements. Second, the TargetElement production, which defines how a specific element in
targetModel can be tagged. The TargetElement consists of the keyword tag, one or more
ModelElementIdentifier (lines 14) that has to be implemented in the sublanguage for
the targetModel and finally one or more Tags that contain the actual tagged information.

41

Chapter 4

Automated Domain Modeling with Large
Lanugage Models

As the definition of a model for a specific DSL can be a challenging task for an
individual who is unfamiliar with software engineering, we will take a closer look at the
usage of large language models in order to transform natural language into a model of
a predefined DSL.

Contents

4.1 Large Language Models . 44

4.2 Research Method . 48

4.3 Challenges . 49

4.3.1 Using proprietary Language Models 49

4.3.2 Limited Context Length . 50

4.3.3 Hallucinations . 50

4.3.4 Overfitting . 51

4.4 Transforming Informal Specifications to a Structured Model 52

4.5 Modelling with Large Language Models 54

4.5.1 Creation of a CD4A model 55

4.5.2 Creating a PlantUML CD 60

4.5.3 Evaluating Semantic Correctness 60

4.5.4 Iteratively correcting models using an LLM 62

4.5.5 Adapting Existing Models 67

4.6 Limitations . 68

4.7 Using LLMs for MDSE . 71

4.7.1 MontiCore Feature Diagrams 71

4.7.2 MontiCore Sequence Diagrams 71

4.7.3 MontiArc . 74

4.7.4 Creating GUIDSL Models 76

43

Chapter 4 Automated Domain Modeling with Large Lanugage Models

Yang and Sahraoui [YS22] explore the automatic creation of UML class diagrams
using information extraction and model-driven methodologies for the classification of
the natural language used as input. This method does not use LLMs and relies on rule-
based transformation. Yang and Sahraoui describe their approach as having relatively
low accuracy. Using LLMs we hope to improve upon these results.

Figure 4.1: Except from Figure 2.4 (system architecture): First transformer of three.
Transforming informal specifications into CD4A models.

As presented in Chapter 2 we use an LLM to transform the natural language input
from domain expert into a data-structure model (cf. Figure 4.1). LLMs are based on
stochastic models that in contrast to a deterministic algorithm can be imprecise and
unpredictable. We have to treat LLMs as a black box that has a probability of yielding
the desired result. Thus we have to investigate and measure the reliability of the used
LLM to produce a model of a given DSL. In the following, we will take a closer look at
large language models and their integration in our tool chain.

4.1 Large Language Models

A large language model is a type of artificial intelligence (AI) that is trained to un-
derstand, generate, and manipulate human language. It is typically built using deep
learning techniques, particularly neural networks, and is trained on vast amounts of text
data. The “large” in its name refers to the model’s size in terms of the number of pa-
rameters it has, which can be in the range of billions or even trillions (cf. Figure 4.2,
Table 4.1).
The language model learns the structure, grammar, and semantics of the language

through exposure to the text data, allowing it to perform a wide range of language-related
tasks. These tasks can include text generation, translation, summarization, question
answering, and more. The text processed by the model is divided into small segments

44

4.1 Large Language Models

1,5

65

70

175

1760

30

140

200

30

0 200 400 600 800 1000 1200 1400 1600 1800

GPT-2

LLaMa

LLaMa 2

GPT-3

GPT-4

Pretraning Tokens (in 10 billion) # of Parameters (in billions)

Figure 4.2: Size comparison of estimated parameter and token size of the currently
largest language models available to the public.

Name Release date Produced by Parameters Open-sourced Type
CodeBERT February 2020 Microsoft 125M YES Encoder-decoder

InCoder April 2022 Meta 6.7B, 1.3B YES Decoder-only

AlphaCode February 2022 DeepMind 300M, 1B, 3B, 9B, and 41B NO Encoder-decoder

CodeX August 2021 OpenAI 12B YES Encoder-decoder

Copilot May 2022 GitHub and OpenAI 12B YES Decoder-only

CodeT5 October 2021 Salesforce Research 2B, 6B, 16B YES Encoder-only

PolyCoder Oct 2022 Carnegie Mellon University 160M, 400M, 2.7B YES Decoder-decoder

CodeWhisperer April 2023 Amazon unknown NO unknown

CodeGen March 2022 Salesforce Research 350M, 1B, 3B, 7B, 16B YES Decoder-only

StarCoder May 2023 BigCode 15B YES Decoder-only

phi-l June 2023 Microsoft 1.3B NO Decoder-only

Code Llama August 2023 Meta 7B, 13B, 34B YES Decoder-only

Table 4.1: Existing Large Language Models [FGH+23]

called tokens. A token typically refers to a piece of text, such as a word or part of a word,
that the model processes as a single unit of meaning or syntax. The LLM generates text
by using an auto-regressive model: Predicts the upcoming token in a sequence based on
the preceding tokens, thus generating coherent and contextually relevant text over longer
passages. One of the key advantages of large language models is their ability to generalize
within their training data. As the language model was trained on large amounts of data
its capability to respond to text input is equally large. However, if prompted with input
it was less trained on it will provide worse results this is referred to as out of distribution
generalization (OOD). Within the context of machine learning OOD describes the ability
of a model to perform well on a new, unseen dataset that differs in some ways from the
data it was trained on. This concept is important because it relates to the robustness
and versatility of the model when applied to real-world scenarios, where the data may
not always match the conditions of the training set. Achieving OOD generalization is a
significant challenge in machine learning because models tend to learn patterns specific
to their training data. When faced with OOD data, these models might fail because
they haven’t learned the underlying, more general principles needed to handle the new

45

Chapter 4 Automated Domain Modeling with Large Lanugage Models

conditions. OOD is relevant to our use case as we provide the LLM with data set that
are not yet publicly available (e.g., models of new developed DSLs). Large language
models do not yet have the capability to generalize upon data they were not trained on,
as humans do. E.g. a model trained on the inventory restocking of a supermarket would
be unable to predict inventory changes during the pandemic, as it was only trained on
the regular shopping behavior of the customers The models we use within this work
are trained on vast sets of data, making them versatile and powerful tools for many
natural language processing (NLP) applications. However, they also have limitations,
including the potential to generate biased or incorrect information, and they require
careful handling to mitigate these risks. Context size and tokens are critical aspects
of large language models that directly impact their performance and capabilities. The
context size refers to the maximum number of tokens that the model can consider when
generating a response. This is determined by the method used to train the model. A
longer context size allows the model to maintain coherence over longer passages of text
and to understand and refer back to information presented earlier in the text. However,
increasing the context size also requires more computational resources, especially to
train the model, making it a trade-off between performance and efficiency. Using a
larger context on a model that was trained on a lower context size leads to a decline in
response quality due to OOD.
The sentence ”The quick brown fox jumps over the lazy dog.” is tokenized using openAIs
tokenizer1 into 10 tokens as:

The quick brown fox jumps over the lazy dog.

Not only the input is tokenized, but all received and returned messages are used as con-
text and separated into tokens. The following CD4A model (cf. Listing 4.1) is tokenized
into 22 tokens as follows:

1 class University {
2 String name;
3 int amountStudents;
4 /boolean excellency;
5 }

Listing 4.1: Example of a simple class diagram defined in CD4A

class University {

String name ;

int amountStundents;

/boolean excellency;

1https://platform.openai.com/tokenizer

46

4.1 Large Language Models

}

Note that in contrast to tokenization of natural language, tokenization of source code
might use up more tokens as it tends to separates words into multiple tokens and special
characters such as brackets and semicolons require additional tokens as well. We intro-
duce the following terms:

• System message The interaction with a language model is often formed as a di-
alog: A user provides input, and the language model responds to which the user
can reply again. The system message can be used to initially provide guidance on
how to use the API effectively, including formatting requests or handling output.

• Priming Priming refers to providing the model with a context or an example of
the desired output before it generates a response. This can be done by including
a specific prompt or set of instructions that ’prime’ the model to respond in a
certain way. For example, providing a detailed description of a style or tone can
prime the model to generate text that matches these criteria. The effectiveness of
priming depends on the complexity of the task, the specificity of the prime, and
the underlying capabilities of the model. In language models, priming is a way to
steer the generation process and can be crucial for applications where the context
or style of the output is important.

• Prompt An Input provided to the language model that stimulates a response.

• Parameters refer to the elements of the model that are learned from training data.
These parameters are essentially the internal settings or weights that the model
adjusts during training. Each parameter influences how the model processes and
generates text, contributing to its ability to understand language, context, and
generate responses. The number of parameters in a model is a key factor in its
capacity to handle complex language tasks, as more parameters generally allow for
a more nuanced understanding of language.

• Temperature The temperature of a language model, is a hyper parameter that
controls the randomness in the model’s text generation. Hyper parameters, more
broadly, are external configurations set before training a model. They guide the
learning process but are not learned from data, unlike model parameters. Hyper
parameters include settings like learning rate, batch size, and in the case of LLMs,

47

Chapter 4 Automated Domain Modeling with Large Lanugage Models

temperature. They are crucial for optimizing model performance and require care-
ful tuning. A low temperature leads to more predictable, conservative responses,
while a high temperature results in more varied and creative outputs, but with an
increased risk of irrelevant or nonsensical text.

• Few-Shot learning Few-shot learning is a concept in machine learning where a
model is designed to learn information with a very small amount of data. Tradi-
tional machine learning models often require large datasets to learn from so that
the patterns they recognize are robust and generalizable. However, in few-shot
learning, the model must be able to make accurate predictions or understandings
based on only a few examples. This approach is particularly important in situ-
ations where collecting large datasets is impractical or impossible, such as rare
medical diagnoses, specific types of image recognition, or in the case of language
models, understanding niche tasks or topics.

• ChatGPT ChatGPT is a platform optimized for chat-like conversation with a lan-
guage model. ChatGPT itself relies on either GPT-3.5 or GPT-4. Table 4.3 shows
the language models that were available at the time of writing. In the following
GPT-3.5 refers to the gpt-3.5-turbo-0613 model and GPT-4 refers to the gpt-4-0613
model.

GPT-Modell Technical Name Max. Token ˜ DIN A4 Pages

GPT-4 (32k) gpt-4-32k-0613 32,768 6.3
GPT-4 (8k) gpt-4-0613 8,192 1.5
ChatGPT (16k) gpt-3.5-16k-turbo-0613 16,384 3.0
ChatGPT (Standard 4k) gpt-3.5-turbo-0613 4,096 0.8

Note: One DIN A4 standard page corresponds to 1,500 characters incl. spaces

Table 4.2: Different input lengths of selected models

4.2 Research Method

Due to the rapid advancements in the field of generative AI, and especially large lan-
guage models, the development and evaluation of approaches in this area is challenging.
An entire field of research is dedicated to the explanation of the behavior of these kinds
of algorithm: Explainable artificial intelligence [DBH18, MWLN22]. As LLMs are sta-
tistical algorithms, we will rely mainly on empirical research methodologies to verify the
validity of our approach.

48

4.3 Challenges

Therefore, we rely on both quantitative data analysis and qualitative data analysis
to evaluate each approach. In order to perform quantitative analysis, comparable and
reproducible statistics are set up to reduce the influence of chance on the result. When
evaluating results quantitatively, we primarily focus on the parsability of the given re-
sults. The prompts and configurations for the specific experiments can be found in the
appendix in Section A.4. In addition to parsability, the quality of the produced artifacts
is also evaluated. Currently, no generalizable method for evaluating AI-based models is
known. Within this thesis, we rely on proven methods, such as grading schemas from
exams, to measure model quality. These methods involve human supervision, and thus
do not scale as well as the quantative analysis.

Currently, there is a need to standardize experimental setups involving LLMs Cámara,
Burgueo, and Troya point out a suitable methodology in [CBT24].

4.3 Challenges

There are several challenges to using a large language model:

4.3.1 Using proprietary Language Models

Recent advances in LLM development have occurred primarily in the private sector. Due
to the great progress made by OpenAI2, especially in the context of GPT-4 [Ope23], there
has been a great general interest in the development of further LLMs. At the time of
this work, however, OpenAI has such a large lead with its GPT models (cf. Figure 4.2)
that this work is primarily concerned with their models.

Cost of Operation: The training and operation of the newer generation of models
require considerable computing power. Dedicated hardware is necessary to run an LLM
with an equivalent size as GPT-3.5 or GPT-4. Thus OpenAI operates a paid Cloud-
API. Since data is collected systematically and in large quantities in research, the costs
incurred here can be an inhibiting factor.

Transparency: Since there are many direct commercial use cases for LLMs and com-
petition for market leadership is fierce, OpenAI has no interest in disclosing algorithms,
training data, or internal parameters. This within this work LLMs from OpenAI are
treated as a ’black box’ as almost no information of the inner workings of the provided
models is known.

2openai.com

49

openai.com

Chapter 4 Automated Domain Modeling with Large Lanugage Models

Reproducibility: The Cloud-API we can use gives us access to a specific model such as
GPT-4 or GPT-3.5. However, we cannot use a specific version of that model. As OpenAI
constantly optimizes and improves its models, we can not guarantee that an experiment
will perform precisely the same if repeated after an update of the used model occurs. The
usage of multiple different language models to generalize the validity of an experiment
helps mitigate this challenge.

4.3.2 Limited Context Length

As mentioned in Section 4.1 the context of the language model is used to keep coherence
over large input and is limited to a fixed number of tokens. In its default configuration,
GPT-4 and similar transformers can process a context of up to 8.000 Tokens. There
are language models that support up to 32.000 tokens (as of November 2023). However,
these models were not publicly available at this time. The class diagram of a full-size
application can easily reach the token limit. The CD4A-model [GHL+22] of the infor-
mation system MaCoCo (cf. Chapter 8) consists of more than 100 classes and spans over
25.963 characters that would be broken down to 10.461 tokens. Thus this model could
not be processed by the 8000-Token-Variant of GPT-4. There exist several approaches
to tackle the challenge of a limited context size. Approaches such as AutoGPT [YYH23]
can be used to break down and automate tasks. Different Large Language Models em-
ploy various methods to handle the challenge of processing long stretches of text. One
such method is the Receptance Weighted Key Value (RWKV) [PAA+23], which builds
upon Recurrent Neural Networks (RNNs) [Elm90]. RWKV creates a lasting state that
is carried forward through each step of processing, akin to RNNs, but it operates at a
more granular level, dealing with individual tokens. One of the key benefits of RWKV
is its adaptability in handling texts of any length without a predetermined limit, and
it manages to do so without increasing computational complexity. This contrasts with
the current mainstream approach, transformers, which are widely used in LLMs but
have their limitations. Despite their potential, RWKV systems have not yet received the
same level of interest as transformers, resulting in a lack of large-scale models and com-
prehensive research to evaluate their performance over varying lengths of text. There
is a hypothesis that RWKV models may experience a linear decline in performance as
context lengthens, but this theory has yet to be thoroughly investigated and proven.

4.3.3 Hallucinations

Hallucinations refer to instances where the language model generates information or data
that is not grounded in reality or is factually incorrect [MIT23]. This phenomenon occurs
due to various reasons, such as the model’s reliance on patterns it has learned during
training rather than verifiable facts, or the model’s attempt to fill in gaps in its knowledge
with plausible-sounding but inaccurate information. The impact of hallucinations on

50

4.3 Challenges

the reliability of LLM output is significant. It undermines the trustworthiness of the
information provided by these models, as users may not be able to easily distinguish
between accurate information and hallucinations without cross-referencing other sources
[MLG23]. A hallucination could occur as follows: The LLM is prompted: ”What is the
main function of HTML in web development?” and it responds with ”HTML is primarily
used to program the logic and functionalities of web applications,” this would be a
hallucination. The correct answer is that HTML (HyperText Markup Language) is used
for creating and structuring the content on the web, such as text, images, and links. It
does not handle program logic, which is typically managed by languages like JavaScript.
The response of LLM provided an answer that is plausible to those unfamiliar with
web development, but it is factually incorrect. Hallucinations are the reason we need
validation steps within our toolchain, to ensure the correctness of the produced output,
as a simple plausibility check does not suffice.

4.3.4 Overfitting

The generation of MontiCore-based Models without specifically optimized prompting
often leads to incorrect results both in GPT-3.5 and GPT-4 (cf. Zero-Shot Table 4.5).
The language model often tends to produce models in PlantUML Syntax. As a result
of OOD the language model has a tendency to reproduce data it was trained on rather
than producing new data sets.

This can be attributed to PlantUML’s significantly larger data foundation compared
to MontiCore. Public sources have limited examples of MontiCore-based models, while
PlantUML, a widely used open-source tool chain for UML diagrams, is present in various
projects and organizations. Its straightforward text-based syntax and use in documen-
tation, tutorials, and course materials provide a wealth of examples. The abundant
examples could be utilized by OpenAI to train its language models.

Currently, MontiCore is primarily utilized in academic, research, and specialized in-
dustrial projects, limiting access to data compared to tools like PlantUML. As a result,
over fitting may occur if the model is trained excessively on more common data, specif-
ically PlantUML-Syntax, which may cause the model to struggle when generating less
common data like MontiCore-based artifacts. Overfitting happens when a model is fine-
tuned to a specific data set, leading to a loss of the ability to generalize to new and
unknown data. This results in high accuracy when generating PlantUML artifacts, but
low accuracy when generating MontiCore-based artifacts.

One solution to improve the accuracy of the model is by precise prompting. Clear
and precise instructions can more effectively direct the model. For example, a prompt
could specifically request a particular artifact, provide context or examples to help the
model understand the requirements and increase the likelihood of generating a correct
model. Effective prompting of a language model can be complicated and requires an un-
derstanding of the types of instruction needed to achieve accurate results. The developer

51

Chapter 4 Automated Domain Modeling with Large Lanugage Models

of the toolchain must pre-identify effective prompts and integrate user input into useful
prompts. Similar to programming, it is crucial to give precise instructions to language
models that authentically reflect the user’s intent. Unclear or ambiguous prompts can
result in unpredictable or imprecise outcomes.

4.4 Transforming Informal Specifications to a Structured
Model

Figure 4.3: LLM2CD user interface for a domain expert used to provide informal speci-
fications.

Although LLMs present many challenges, they also offer important functions that we
can use for our transformation step. In the following, we consider a process chain that
processes natural language as input, passes it to an LLM, post-processes the response,
and finally outputs a CD4A model. Figure 4.4 presents the process of the transformer.
A domain expert provides informal specifications as unstructured natural languages via
a command line interface or for user convenience via an optimized web interface (cf.
Figure 4.3). The domain expert can enter an informal set of specifications into a web
client via a simple text field and start the transformation with one simple button (gray
button in Figure 4.3). Any response from the tool chain is presented to the domain

52

4.4 Transforming Informal Specifications to a Structured Model

Figure 4.4: Transforming Natural language into CDs using priming, few-shot learning
with provided examples, and post-processing. Based on [NMR24a]

expert in two forms: first, as the textual model and second as a visual representation as
shown in Figure 4.5. A parser checks the validity of the model and indicates the result
in the GUI as well providing the domain expert with direct feedback about the success
or failure of the transformation. The domain expert can edit the textual variant and
modify it before it is further processed. With the orange button below the input field,
the domain expert can pass on the (edited) output to the next transformer, ultimately
leading to the generation of a web application based on the produced class diagram. Let
us take a closer look at the transformation from the domain expert input to a CD4A
model: As shown in Figure 4.4, the input that the domain expert entered into the client
is passed on to the Prompt Builder. We can use several methods to improve the chance
of getting valid results from the language model. The prompt builder is provided with a

GPT-Modell Technical Name Max. Token ˜ DIN A4 Pages

GPT-4 (32k) gpt-4-32k-0613 32,768 6.3
GPT-4 (8k) gpt-4-0613 8,192 1.5
ChatGPT (16k) gpt-3.5-16k-turbo-0613 16,384 3.0
ChatGPT (Standard 4k) gpt-3.5-turbo-0613 4,096 0.8

Note: One DIN A4 standard page corresponds to 1,500 characters incl. spaces

Table 4.3: Different input lengths of selected models

configuration that contains access data for the used LLM-API as well as Priming data
for the LLM. In addition, examples are provided in order to use the few-shot learning
approach. Note that the choice of fitting examples has a high impact on the performance

53

Chapter 4 Automated Domain Modeling with Large Lanugage Models

of this approach. The prompt builder assembles the prompt and passes it on to the
configured LLM. The response is provided in a post-processing step. Here the model is
extracted from the response message. Specific reoccurring errors are easier to fix in a
post-processing step than to invest time and message space to train or prime the LLM
in the initial prompt. Therefore, a list of checks and fixes can be included in this step.
In addition, the CD4A model is transformed into a PlantUML model that can be easily
transformed into a visual model. Both processed CD4A model and image are passed on
to the domain expert for optional inspection.

Figure 4.5: Visualization of a PlantUML Model extracted from a GTP-4 response. This
model was generated as part of the ’E-Bike’ use case (cf. Figure 4.8)

The toolchain utilizes the LLM to generate a valid CD4A model directly. This model
is then applicable in subsequent transformation stages. While the language model ex-
hibits superior performance in generating PlantUML models, we refrain from initially
creating a PlantUML model to convert into CD4A. This is because the two languages are
not entirely compatible—lacking 100% compatibility. Consequently, PlantUML serves
merely as a visualization tool for the class diagram, and we continue our process with
the CD4A model.

4.5 Modelling with Large Language Models

As we outsource modeling tasks to an LLM, we need to evaluate whether and how
reliably LLMs can create models for informal requirements for a particular modeling
language. We consider a synthesized model to be correct if both the syntax is valid and
the semantics fit the original input. As there is a clear set of rules for the syntactical
correctness of a model defined by the grammar of the used DSL, we can use a parser to
validate syntax. MontiCore provides a parser for all DSLs defined with its tool chain.

54

4.5 Modelling with Large Language Models

Semantic correctness is harder to validate, as there is not yet a generic automated process
comparable to a check via a parser. Therefore, we have to check each model by hand.
For the evaluation, we will measure at what ratio a produced model is syntactically
valid (in the following also referred to as success rate), and semantically correct. Several
LLMs were evaluated and tasked to produce models for multiple DSLs. The following
evaluations were performed

1. Creating a new CD4A model: Following the setup shown in Figure 4.4, we it-
eratively produce models based on informal specifications. We use established
methods such as few-shot learning to provide the used LLMs with the necessary
knowledge about the grammar of the target DSL.

2. Creating a new PlantUML CD: In order to generalize the results from the first eval-
uation, we analyze the performance of LLMs to create syntactically valid models
on another DSL. Using the same method as before.

3. Evaluating semantic correctness: Having analyzed syntactic correctness, we pro-
vide ChatGPT with a task from an exam and assess the results based on a grading
schema. Giving us a representative metric on semantic correctness and comparable
data from student performance on previous exams.

4. Passing parser feedback back to ChatGPT: Up to this point, we have established to
what rate individual LLMs can produce correct models for informal specifications.
In the case of syntactical errors, the parser will state specifics of the encountered
problem with the model. We evaluate in this section to what degree we can improve
the success rate by iteratively providing ChatGPT with error messages of the
parser.

5. Adapting existing models: Finally, assuming that it is feasible to use an LLM to
create an initial model, we evaluate the success rate of modification of a textual
model, based on a natural language input.

4.5.1 Creation of a CD4A model

To assess the capacity for generating syntactically accurate models, the identical query
was executed multiple times (cf. Table 4.4). It is worth noting that these use cases were
under-specified, causing the LLM to come up with its own solutions. A high degree of
under specification is well suited to evaluate the capacity of a generative AI approach to
create syntactically correct models [NMR24b, BDM+24]. However in order to evaluate
semantic correctness we need to focus on use cases that specify a very small set of valid
models. In the following we take a closer look at the syntax of the created models hence
we can use very broad requirements that leave the LLM a high degree of freedom of

55

Chapter 4 Automated Domain Modeling with Large Lanugage Models

interpretation. In an attempt to craft a CD for a Ping Pong game leveraging GPT-
4 (as seen in the 4th row of Table 4.4), the resulting models demonstrated significant
variability in terms of size (between 60 and 20 lines of code) and the nature of the game.
We can use cosine similarity [RKA12] to determine how similar two texts are to each
other. We can do so by converting each text into vectors. The most common way to do
this is by using the bag-of-words model or TF-IDF (Term Frequency-Inverse Document
Frequency) model. In a bag-of-words model, a text is represented as the bag of its words,
disregarding grammar and even word order but keeping multiplicity. The TF-IDF model
reflects how important a word is to a document in a collection or corpus. The similarity
ranges from −1 to 1, whereas 1 indicates a very high similarity, and −1 indicates that
the two texts are completely dissimilar. The computed average cosine similarity for all
models if compared pairwise, stands at 0.52. An instance of the execution is presented
in Figure 4.6.

User: Please generate a Monticore CD4A model of a simple
user interface.

Predefined context: A Monticore CD4A model starts with
’classdiagram’ Name { where ’Name’ should be the name of
the model. [...]

GPT-4: [...]a

1 classdiagram PingPongGame {
2 class Player {
3 String name;
4 int score;
5 }
6 class Ball {
7 double speed;
8 double direction;
9 }
10 class Game {
11 Player player1;
12 Player player2;
13 Ball ball;
14 }

16 association Player -- Ball;
17 association Player -- Game;
18 }

aAdditional ’chat’-text is omitted to increase readability.

Figure 4.6: Interaction with ChatGPT: Creating a CD4A model

56

4.5 Modelling with Large Language Models

Model Use Case Valid N Rate

gpt-3.5-turbo-0613 Ping Pong game 15 20 75%
gpt-4-0613 Ping Pong game 99 100 99%
gpt-3.5-turbo-0613 Simple User Interfaces 76 100 76%
gpt-4-0613 Simple User Interfaces 97 100 97%
gpt-4-0613 Digital Twin of a Hydraulic Press 19 20 95%
gpt-4-0613 Lego Set 75192 19 20 95%

Table 4.4: Rate of syntactically valid models of different use cases evaluated over N

iterations

To reduce the systematic error based on specific use cases, we ran further use cases
(Table 4.4). GPT-4 has a high chance (97%) of providing a parsable model.
Both GPT-3.5 and GPT-4 exhibit a strong likelihood of producing a valid CD4A model.
The LLM GPT-4 surpasses its predecessor in performance, owing to its more advanced
language modeling capabilities [Ope23]. The success rate is consistent across different
use cases, provided they share a similar level of complexity (For a more intricate use case,
refer to Section 4.5.3). OpenAI has highlighted potential performance drops when the
model encounters topics with limited or no prior training [Ope23]. While GPT-4 might
reliably model a general product, it may falter and produce semantically inaccurate
models for a specialized product having a distinct configuration. To evaluate this claim,
we presented the LLMs with narrowly defined target domains such as:

User: Please generate a model of Lego Set 75192.

The prompt requires the LLM to generate a model for a very specific product, without
giving additional information about the product in question (A Lego model of a Space
Ship of the Star Wars franchise). The prompt was provided 20 times, in 19 cases the
LLM provided a valid model. Only 4 described the specific Lego set corresponding to the
corresponding ID (75192 : Millennium Falcon). The remaining models described generic
Lego sets. We can conclude that an LLM also can produce models that correspond to
very specific requirements or even unique identifiers.
We initially instructed the LLM to draft a CD4A model. [BMR+20, OKH+22] suggest
that similar outcomes can be achieved by using examples instead of explicit instruc-
tions. As shown in Table 4.5, without any examples, both LLMs can fail to generate
syntactically correct models. GPT-3.5 and GPT-4 are able to produce accurate results
when provided with an example. Interestingly, GPT-3.5 performs worse when presented
with more examples, whereas GPT-4’s performance is enhanced with additional models.
We assume that this is due to over-adaption to the examples and out-of-distribution
generalization as well as the reduced context size of the smaller LLMs.

57

Chapter 4 Automated Domain Modeling with Large Lanugage Models

Language Model Kind of Context Valid N Rate Similarity

gpt-3.5-turbo-0613 Zero-Shot 0 100 0% 0.08
gpt-3.5-turbo-0613 One-Shot 51 100 51% 0.20
gpt-3.5-turbo-0613 Few-Shot 26 100 26% 0.22
gpt-4-0613 Zero-Shot 0 20 0% 0.12
gpt-4-0613 One-Shot 73 100 73% 0.25
gpt-4-0613 Few-Shot 88 100 88% 0.32

Table 4.5: Rate of syntactically valid models generated for the same task (Creating a
CD4A model) using different contexts, evaluated over N iterations. Similarity
is based on the pairwise average cosine similarity of all generated models.

The following prompt is used to apply the few-shot learning approach to a LLM:

1 [
2 {
3 "role": "system",
4 "content": "You create cd4a class diagrams based on examples"
5 },
6 {
7 "role": "user",
8 "content": "Create a cd4a file of a simple user interface"
9 },

10 {
11 "role": "user",
12 "content": "Here are example of cd4a files do not use PlantUML

syntax: example1:{example1} , example2:{example2},
example3:{example3}"

↪→

↪→

13 },
14 {
15 "role": "assistant",
16 "content": "I will always create the cd4a file and not ask additional

questions. I will surround the diagram code with ```. start the
code the line after ``` "

↪→

↪→

17 }
18]

Figure 4.7: Prompts applying few-shot learning to produce a cd4a class diagram

The LLM is very unlikely to produce the correct syntax if only provided with the task
to transform the specification to a specific DSLs, assuming that the DSL is not widely
used and thus the LLM is less likely to be trained on that DSL. We can teach the LLM
by either giving examples of the DSL (Few shot learning) or by providing it with a few
instructions on how to adhere to the syntax. [WTB+22] describes this effect as emergent

58

4.5 Modelling with Large Language Models

abilities. The model was not specifically trained to solve these tasks and this effect
increases with the size of the language model.

59

Chapter 4 Automated Domain Modeling with Large Lanugage Models

4.5.2 Creating a PlantUML CD

We achieved a success rate of up to 99% for CD4A models using GPT-4, as documented
in Table 4.4. The DSL in question is tailored for developers and bears a syntax strongly
reminiscent of Java. Given that the language model has also been trained on Java code,
it is plausible that this facilitates generating code with a Java-like syntax, leading to an
impressive success rate.
To further probe this capability, we explore its performance on a different DSL: Plan-
tUML [Arn23]. Unlike MontiCore based CD4A, the PlantUML language encompasses
various diagram formats, including CDs, state charts, activity diagrams, BPMN, and
component diagrams. Consistent with our methodology for evaluating CD4A models,
we employed a parser to ascertain the syntactic accuracy of the generated models.

Model Use Case Valid N Rate Similarity

gpt-4-0613 Ping Pong game 20 20 100% 0.33
gpt-4-0613 Simple User Interface 18 20 90% 0.24
gpt-4-0613 Exam Task 18 20 90% 0.63

Table 4.6: Success rate of different use cases evaluated of N iterations. The Cosine Sim-
ilarity of models increases with more restrictive use-case descriptions. ’Ping
Pong game’ and ’Simple User Interface’ are used as task descriptions ’as-is’.
’Exam Task’ is presented in detail in the Appendix at Section A.4.4.

Table 4.6, shows that the variation in data structure describing DSLs has a minimal
impact on the approach’s success rate. The achieved success rates (90%-100%) align
closely with those observed for CD4A.

4.5.3 Evaluating Semantic Correctness

Assessing semantic correctness remains a challenge (cf. [VAT+20]) and is frequently
debated. To provide a practical measure, we provide the system with an examination task

60

4.5 Modelling with Large Language Models

User: Generate a class diagram of an EBike according to these
specifications:
The EBike is composed of a frame (made out of steel), a drive
system, and a controller. Two wheels are inserted into each
frame. The drive system is composed of a motor. Each EBike
can be connected to a removable battery. The battery has a
stored energy measured in Watt-hours (Wh). The controller
can be in one of three states: On, Off, and Charging. It also
controls the battery, if one is connected, and commands the
drive system. The company plans two different variants of the
controller, a basic controller, and an advanced controller. The
advanced controller should be able to estimate the next Date the
bike should be inspected for maintenance.

GPT-4:
1 @startuml

3 class EBike {
4 frame : Frame
5 driveSystem : DriveSystem
6 controller : Controller
7 battery : Battery
8 }

10 [...]

12 @enduml

For complete model cf. Figure 4.9

Figure 4.8: Exam task, describing several specifications for an EBike.

By utilizing the exam’s grading criteria, we compare the LLMs output against students’
performances who undertook the same exam. This specific task is scored out of a possible
13.5 points, evaluating not only the diagram’s completeness but also key elements like
compositions, inheritance, cardinalities of associations, and common design pitfalls.
We evaluated 20 models generated by ChatGPT, with an average score of 7.5 out of 13.5
points. Scores ranged from a low of 5 points to a high of 10.5. Models that scored less
than 50% of the available points ’failed’ the test. Thus three of the generated models
were deemed unsuccessful. In comparison, a set of 40 students who took the exam
achieved an average score of 10.0 points. While the task is regarded as an entry-level
task for the students—with the majority scoring above 50%—it underscores that our
method can yield models that closely align with specific requirements.

61

Chapter 4 Automated Domain Modeling with Large Lanugage Models

Figure 4.9: Visualization of the Textual Model extracted from a GTP-4 response. This
model was graded with 8.5/13.5 Points according to the grading schema of
the exam. (cf. Figure 4.8)

4.5.4 Iteratively correcting models using an LLM

Up to this point, we know that LLMs have a certain chance to produce a correct model.
Next, we evaluate methods to fix incorrect model that were produced by a language
model:

Correcting a Model by Informal Request

The LLM can be used to correct an existing model. We tasked it with extending a
provided CD without specifying the employed DSL (cf. Figure 4.10). In the following
step, another adaptation was issued. In both instances, GPT-4 generated valid models.
Yet, its method of ’optimization’ was to merely comment out the problematic code (as
seen in the second response’s fourth line), an approach often viewed as poor practice.

62

4.5 Modelling with Large Language Models

User: Add to the following class diagram a new class ’dog’:

1 classdiagram Flensburg {
2 class Human { int age; }
3 class Person extends Human {
4 String nickname;
5 }
6 }

GPT-4: [...]

1 classdiagram
2 class Animal {
3 int age;
4 }
5 class Human extends Animal {
6 int age;
7 }
8 class Person extends Human {
9 String nickname;

10 }
11 class Dog extends Animal {
12 String name;
13 String breed;
14 [...]
15 }
16 }

User: Both Animal and Human have the attribute age and Human
inherits from Animal please optimize the model.

GPT-4: [...]a

1 class Human extends Animal {
2 // removed because inherited from Animal
3 // int age;
4 }
5 [...]

aNote that GPT-4 provided the complete model, we reduced the model
to the relevant class to improve readability.

Figure 4.10: Using GPT-4 to adapt models

63

Chapter 4 Automated Domain Modeling with Large Lanugage Models

Using Parser-Feedback to Correct Syntactically Incorrect Model

We have shown that an LLM can be used to correct models based on informal feedback.
In case we provide erroneous models to a model-driven software development framework,
we will receive error messages. These messages can be used to task an LLM to correct
the model it provided. Thus, we evaluate next if we can employ the parsers feedback to
rectify syntactically invalid models. We use a parser to evaluate if a model is correct.
In case it is not, a new prompt is assembled that contains both the input model, the
corresponding error message of the parser, and instructions to the LLMs on how to
handle the input. The result from the LLM is sent to a parser again, in case the model
is still syntactically wrong, we repeat the process with the new error message from the
parser, otherwise, the valid model is passed on to the framework to be processed further.
The resulting prompt is structured as follows:

Predefined context: You will get a MontiCore CD4A model
then I will pass you parser errors and you will correct the model
with the help of those errors.

User: Here is the model: [...]a

aIn order to maintain readability, we omit the CD4A model

GPT-4: Please provide me the Syntax Errors

User: Here are the syntax Errors: [...]b

bIn order to maintain readability, we omit the specific parser Errors. An
example can be found below.

GPT-4: I will now provide the code that I have corrected with
the help of the syntax errors

We use the following setup: the domain expert defines a use case. The informal use case
description is sent together with the initial context to ChatGPT. The CD4A model is
extracted from the response and provided to the parser. The parser either passes on the
model to a generator or returns an Error. In case there is an error, it is paired with the
context shown above and sent to ChatGPT together with the invalid model, in order to
fix any problematic lines. Out of more than 10 attempts to correct an invalid model,
none succeeded within our automated loop, with each running up to a maximum of 100
iterations between parser and LLM.
Let us take a look at the following example: the LLM provides the user with a CD4A
model with invalid syntax: Instead of classdiagram, it places class at the beginning of
the model:

64

4.5 Modelling with Large Language Models

GPT-4: [...]

1 class Pong {
2 class Player {
3 private int score;
4 [...]
5 }
6 }

We return the following parser error together with the context mentioned above back to
GPT-4:

Parser: Here are the syntax Errors:
[ERROR] 0.cd:<2,0>:
extraneous input ’class’ expecting ’«’, ’protected’,
’readonly’, ’package’, ’static’, ’final’, ’?’,
’private’, ’import’, ’public’, ’abstract’, Name in
rule stack: [CDCompilationUnit]

In this example GPT-4 has difficulties correcting the mistake, as the error message itself
does not contain the correct hint for the solution and is misleading. Thus the resulting
model produced by the LLM will not parse. The system is stuck in a loop.

GPT-4: [...]

1 CDCompilationUnit {
2 class Pong {
3 class Player {
4 private int score;
5 [...]
6 }
7 }

The non-determinism of the algorithm could help here to break free from this loop, but
after an average of 4.5 runs, the loop ”degenerates” as ChatGPT insists that there are
no more syntax errors. ChatGPT can get stuck in a loop stating the following refusal
to work:

65

Chapter 4 Automated Domain Modeling with Large Lanugage Models

GPT-4: I am sorry, but it seems like you have not provided
the complete code or the syntax error you have provided is not
related to the code you gave me. [...] Apology as there was no
syntax error in your given MontiCore model ” Pong ”. Can you
give me a valid MontiCore model with Syntax errors so that we
can move forward?

Figure 4.11: GPT is unable to further debug a model.

Example of a degenerated model, containing multiple lines of comments and very few
LoC, while still being invalid.

GPT-4:

1 class Paddle {
2 private int paddleSize;
3 // Updated method signature to be
4 // grammatically correct (added name)
5 public void setPaddleSize(int size) {
6 // Update assignment statement to use
7 // 'this.' to refer to variable
8 this.paddleSize = size;
9 }

LLM Use Case Runs Valid

gpt-3.5-turbo-0613 Ping Pong (missing brackets cf. Listing A.17) 9 0
gpt-3.5-turbo-0613 Ping Pong (missing brackets cf. Listing A.17) 2 0
gpt-3.5-turbo-0613 Ping Pong (missing keyword cf. Listing A.18) 20 0
gpt-3.5-turbo-0613 Ping Pong (missing keyword cf. Listing A.18) 17 0
gpt-3.5-turbo-0613 Ping Pong (erroneous association cf. Listing A.19) 2 0
gpt-3.5-turbo-0613 Ping Pong (erroneous association cf. Listing A.19) 8 0
gpt-3.5-turbo-0613 Ping Pong (namespace violation cf. Listing A.20) 7 0
gpt-3.5-turbo-0613 Ping Pong (namespace violation cf. Listing A.20) 5 0

Table 4.7: Returning parser feedback to GPT did not lead to valid models. The process
was iterated until either a valid model was produced or the system stuck in a
loop losing the model (cf. Figure 4.11). There is a high tendency that further
errors were introduced into a invalid model.

66

4.5 Modelling with Large Language Models

With the current configuration, it is unfeasible to use the parser feedback to optimize
faulty models. Improvement of the error messages by the parser would improve the
performance of the LLM.

4.5.5 Adapting Existing Models

We presented methods above to create models using LLMs. To evaluate the usage of
LLMs in modeling, we need to analyze to what degree LLMs can be used to modify
already existing models.
Our method is highly probable to produce diverse, suitable model variants tailored to
specific use cases, making it ideal for prototyping or initializing a software project. How-
ever initial versions of a model often require adjustment and refinement. Given this, it is
crucial to assess whether parts of a model can be extended or adjusted based on domain
expert preferences and upcoming ideas.
To evaluate this, we utilize a CD from one of our research endeavors comprising roughly
30 classes (for an excerpt of the model, refer to [MNRV19], the complete model is shown
in Listing A.2). We then direct our tool to introduce a particular class and establish a
new context to guide ChatGPT in augmenting the model with accurate syntax.

User: Add a user class and an association between the user
class and Person to this model: [...]

Figure 4.12: User prompt to ChatGPT

In 20 iterations, 19 produced correct PlantUML models, each incorporating a user class.
With CD4A, all 20 models were successful. A noteworthy observation was ChatGPT’s
adaptation of model-specific attributes. For instance, within our model, the atypical
ZonedDateTime type was employed for time-centric attributes. When ChatGPT designed
attributes related to time, it mirrored this type (e.g. for an attribute dateOfBirth). A
similar trend was observed in commenting styles. The provided CD is segmented into
sections demarcated by large comment blocks (e.g., /******* ...); ChatGPT not only
replicated this style but also tailored it to its modifications (cf. Figure 4.13).

67

Chapter 4 Automated Domain Modeling with Large Lanugage Models

GPT-4: [...]

1 [...]
2 /************************************
3 * New class and association
4 *************************************/
5 class User {
6 String name;
7 String email;
8 String role;
9 }

11 Association User <-> Person [*];
12 [...]

Figure 4.13: Response from ChatGPT

Repeatedly iterating over the same model with commentary can pose challenges. Chat-
GPT occasionally omits elements by simply commenting them out, leading to compro-
mised models akin to those detailed in Section 4.5.4. Fine-tuning the context to prevent
ChatGPT from inserting comments might alleviate this issue.

Conclusion

LLMs can be used to perform modeling tasks and have a high chance of producing correct
models for data structures. We can also use LLMs to edit and correct models iteratively
based on informal specifications. We are unable to automatically use parser feedback to
fix syntactically incorrect models.

4.6 Limitations

Although Large Language Models possess exceptional capabilities that pave the way for
technological advancement, it is crucial to identify their limitations to comprehend and
responsibly harness their potential.

Issues Stemming from Non-Determinism

Most challenges associated with non-determinism are rooted in an inadequately specified
task for ChatGPT. Configuring the API to persistently use the same context for every
request and limiting ChatGPT to a designated target-DSL has led to consistent and
favorable outcomes. The influence of nondeterminism can be measured by the average

68

4.6 Limitations

variance among generated models via cosine similarity. Restricting the use-case descrip-
tion, as demonstrated in Table 4.6, can diminish this variance. A well-defined task tends
to yield more homogeneous models. Note that a consistent temperature setting of 0.8
was maintained for the API across all tests. The temperature of the language model can
be set to 0.0. Doing so would render systematic evaluation useless as all runs with the
same prompt return identical results. As the language model used is updated over time,
the model would still yield varying results. Keeping the unpredictability and to a certain
degree the non-determinism (due to language model updates) but losing the ability to
do a statistical evaluation. As we propose iterative usage of LLMs we have to take a
closer look at to what degree little changes to the prompt result in large changes in the
produced model. In order to evaluate this effect, several variations of the same prompt
were given to a GPT-3.5 model. Then the mean similarity of the resulting models was
computed

Create a CD4A file for the homework submission system of a school. The system
should include features for student submissions, teacher reviews, and grading. It
should support multiple file formats and ensure that submissions are timestamped.
Include sections for student registration, assignment creation by teachers, submission
by students, review by teachers, and feedback provision.

Figure 4.14: Baseline promt

The following prompt is derived from the baseline prompt. However, it describes the
same use case and contains many synonyms (underlined in the prompt).

Develop a CD4A document for the homework management system of a
school. The system should encompass functionalities for student submissions,
instructor evaluations, and grading. It must accommodate various file types and
guarantee that submissions are time-stamped. Incorporate sections for stu-
dent enrollment, assignment formulation by instructors, submissions by students,
evaluations by instructors, and the provision of feedback.

Figure 4.15: Promt with synonyms (underlined passages in prompt)

Prompts that describe almost identical use cases yield very similar class diagrams. On
average, class diagrams (n = 5) that were based on semantically similar prompts have a
similarity of 0.8 showing an almost identical set of attributes and tend to diverge stronger
when defining associations.
We can conclude that wording or spelling has little effect on the created model, as long
as the semantics of the prompt remain identical or at least very similar. However, we
cannot guarantee that the LLM will always produce a predictable model.

69

Chapter 4 Automated Domain Modeling with Large Lanugage Models

Issues Pertaining to Accuracy

As highlighted earlier, one inherent risk with ChatGPT is its potential to produce inac-
curate results. In our experiments, we only verified the syntactical integrity of the model,
delegating semantic validity checks to domain experts. With the aid of a parser, we can
confirm the syntactical soundness of each response. Concerning semantic accuracy, our
tests indicate a high probability of ChatGPT offering suitable results, though absolute
correctness for every run cannot be assured.

Challenges with Unfamiliar DSLs and Scalability

We assessed this method using two DSLs related to a standard UMLP Diagram: the
class diagram. Some positive outcomes might be attributed to ChatGPT’s familiarity
with UMLP concepts. It is plausible that designing models for alternative DSLs, such
as UI-description languages, might pose more challenges. Nonetheless, we observed
ChatGPT’s capability to adjust based on provided input (Section 4.5.5), which can be
enhanced with an appropriate context. Further exploration is warranted.

Employing Multiple Sequential Generative Techniques

Existing LLM-based solutions like CoPilot [BJP22] and Codex [SVD21] generate source
code from natural language descriptions. However, this is not an alternative to our
presented method. Using a model-driven approach has the benefit of defining large
structures while only requiring only a few artifacts. Model leverage higher level abstrac-
tions can be used to deterministically generate large quantities of source code. However,
direct code generation with LLMs, remains confined to relatively small code segments
and is best suited for smaller tasks, such as in educational settings [FADB+22].

Prompt Injection

Prompt injection is a technique, where a user intentionally crafts or modifies the input
prompt to influence or manipulate the model’s response. This can be done for vari-
ous purposes: Guiding the Response: By adding specific instructions or context to the
prompt, users can guide the model to respond in a certain way or focus on particular
aspects of a topic. Changing Behavior: Injecting certain phrases or keywords can alter
the model’s tone, style, or even the type of content it generates, like asking it to answer
in the style of a specific genre or character. Bypassing Restrictions: Sometimes, users at-
tempt to use prompt injection to circumvent built-in content filters or guidelines, though
robust models are often designed to recognize and resist such attempts. LLM4CD is sus-
ceptible to prompt injection as well. However, as we produce a model that is validated
by a parser, the options to misuse the language model are very limited.

70

4.7 Using LLMs for MDSE

Inherent Limitations

While our intention is to minimize the dependency of the domain expert, we cannot en-
tirely rule out potential misuse. As we rely on the domain expert’s written specifications,
we cannot validate user input, thus ensuring accurate output becomes challenging. For
instance, assuming the user does not dictate syntax, misaligned input, like requesting a
different DSL than what the tool is set up for, will likely yield suboptimal results. We
aim to refine this tool by introducing features for easier utilization. Furthermore, we’re
bound by the LLM’s current context capacity. ChatGPT-API, in its present form, can
only accommodate up to 8,000 tokens. The class diagram in Section 4.5.5 spanned 30
classes, translating to 1,647 tokens. A more extensive diagram such as the MaCoCo
class diagram (cf. Listing A.1) with 100 classes, equating to 12,031 tokens, would ex-
ceed this limit. Anticipated updates promise a 32,000-token capacity, allowing for more
expansive models. Lastly, ChatGPT’s knowledge is confined to its last training cut-off in
2021. Information post this period, or not publicly accessible, remains outside its scope.
While future updates to the dataset are conceivable, we currently operate with the 2021
dataset. OpenAI has hinted at plugins to enable ChatGPT to fetch real-time internet
data.

4.7 Using LLMs for MDSE

Up to this point, we only focused on the usage of LLMs to synthesize and edit class
diagrams. However, the assumption is reasonable that if a formalization of informal
requirements in class diagrams is possible, a similar formalization in other DSLs may
also be possible. In the following, we will take a look at a number of evaluations of this
approach for other DSLs.

4.7.1 MontiCore Feature Diagrams

The DSL is based on UML feature diagrams and follows its key principles [CE00, 50101].
We provided GPT-3.5 and GPT-4 with the needed examples for the few-shot approach
(cf. Listing A.13, Listing A.14, Listing A.15, Listing A.16) and requested a feature
diagram for multiple use cases (results see Table 4.8).
The prompt was set up as follows:
GPT-4 performs better in both 1-Shot and 2-Shot, than GPT-3.5. The majority (more
than 80%) of the models produced by GPT-4 are valid. Figure 4.17 gives an example of
one produced feature diagram for the hydraulic press use case

4.7.2 MontiCore Sequence Diagrams

Similar to the feature diagrams presented above, the performance of the approach can
be evaluated for the sequence diagram DSL [Obj17]. In this case the LLM was tasked

71

Chapter 4 Automated Domain Modeling with Large Lanugage Models

1 [
2 {
3 "role": "user",
4 "content": "Create a MontiCore feature diagram for a Hydraulic Press"
5 },
6 {
7 "role": "user",
8 "content": "Create a sequence diagram using MontiCore syntax to

describe a typical bar visit"↪→

9 }
10]

Figure 4.16: Prompts producing a feature diagram

Test Name Model
Models containing
Syntax Errors (N)1

Test
runs 2

Hydraulic Press 2-Shot GPT-4 10.00 % (3) 30
Hydraulic Press 1-Shot GPT-4 14.29 % (3) 21
Ping Pong 1-Shot GPT-4 12.33 % (3) 25
Falcon 1-Shot GPT-4 18.75 % (3) 16
Ping Pong 2-Shot GPT-3.5 40.00 % (14) 35
Falcon 2-Shot GPT-3.5 42.86 % (12) 28
Hydraulic Press 1-Shot GPT-3.5 45.83 % (22) 48

1: Absolute number on syntactically incorrect models. 2: Absolute number of created models.

Table 4.8: Percentage of erroneous feature diagrams, produced with our approach with
both 1-Shot and 2-Shot learning. A feature diagram is erroneous if the parser
detects a syntactical error. We do not cover semantic errors in this table.GPT-
3.5 denotes gpt-3.5-turbo-0613, GPT4 denotes gpt-4-0613.

to produce a sequence diagram of the review process of a conference paper:
The prompt was set up as shown in Figure 4.18. The models used as examples can be
found in the Appendix at Listing A.9, Listing A.10, Listing A.11, Listing A.12.

72

4.7 Using LLMs for MDSE

HydraulicPress

HydraulicSystem

ControlPanel

EnergySource

Press

System

TouchScreen

ButtonPanel

Tank

Pump

Cylinder

Valve

SmallTank MediumTank LargeTank

ElectricPumpDieselPump

SingleActingCylinderDoubleActingCylinder

ManualValveSolenoidValve

requires

excludes

excludesexcludesexcludesexcludes

Figure 4.17: PlantUML visualization of the Hydraulic Press use case (Rendered with
https://www.planttext.com/).

1 [
2 {
3 "role": "system",
4 "content": "You create sd files based on examples"
5 },
6 {
7 "role": "user",
8 "content": "Create a sd file of the submission and review process of

the Workshop Modeling in the Age of Large Language Models
(LLM4Modeling) conference."

↪→

↪→

9 },
10 {
11 "role": "user",
12 "content": "Here are example of sd files do not use arrays or lists

and keep it simple: example1:{example1} , example2:{example2},
example3:{example3}"

↪→

↪→

13 },
14 {
15 "role": "assistant",
16 "content": "I will always create the sd file and not ask additional

questions. I will surround the diagram code with ```. start the
code the line after ``` "

↪→

↪→

17 }
18]

Figure 4.18: Prompts producing a MontiCore sequence diagram

73

https://www.planttext.com/

Chapter 4 Automated Domain Modeling with Large Lanugage Models

Test Name Model
Models containing
Syntax Errors (N)1

Test
runs 2

Review 1-Shot (PUML Mitigation) GPT-4 32.5 % (13) 40
Review 2-Shot GPT-4 30.0 % (12) 40
Review 3-Shot GPT-4 40.0 % (16) 40
Review 3-Shot GPT-3.5 50.0 % (25) 50
Review 2-Shot GPT-3.5 60.0 % (12) 20
Review 1-Shot GPT-4 67.23 % (80) 119
Review 1-Shot GPT-3.5 78.33 % (47) 60
Review 1-Shot (PUML Mitigation) GPT-3.5 80.0 % (48) 60
Review 0-Shot GPT-3.5 100 % (34) 34
1: Absolute number on syntactically incorrect models. 2: Absolute number of created models.

Table 4.9: Percentage of invalid sequence diagrams, produced with our approach with
both 1-Shot and 2-Shot learning. As the creation MontiCore sequence dia-
grams is especially susceptible to overtraining (cf. Section 4.3.4), additional
fine-tuning was used to avoid PlantUML syntax.
GPT-3.5 denotes gpt-3.5-turbo-0613, GPT4 denotes gpt-4-0613.

In comparison to feature diagrams and class diagrams, sequence diagrams are harder
to produce with an LLM (cf. Table 4.9). Similar to previous evaluations, GPT-4 per-
forms significantly better than GPT-3.5. Both LLMs have a strong tendency to produce
PlantUML syntax instead of the specified MontiCore sequence diagrams. Therefore the
configuration was updated in order to mitigate this problem (cf. Section 4.3.4). The
results improved accordingly.

4.7.3 MontiArc

Both CDs, sequence diagrams and feature diagrams are well known as they are part
of the UML [Obj17]. As both models were trained on that data, a better performance
can be expected. Therefore, we will attempt to create a model with a lesser known
DSL: MontiArc [BKRW17, RRW13] for describing software architectures. They are
described as component and connector systems in autonomously acting components that
can perform computations. Figure 4.19 shows a simple example: The architecture of a
light controller. The model defines how the components are connected to each other
and what messages are sent. In this case, a simple controller decides based on a light
switch and a door status if it will turn a light on or off. The creation of MontiArc models
turned out to be more complex, as the LLMs creates one model for each component (e.g.:
one for DoorEval, Arbiter and LighCtrl) and these components have to use consistent
ports and connections to each other. Using custom instructions to GPT yielded no
results, in contrast to using few-shot learning. With the inclusion of example models

74

4.7 Using LLMs for MDSE

within the context, we could reach acceptable success rates with GPT-4 (see Table 4.10),
GPT-3.5, however, is not yet able to produce models reliably. Additionally, GPT-4 is
able to follow the requirements much closer than GPT-3.5 creating almost all iterations
6 interconnected MontiArc-components within their distinct models, whereas GPT-3.5
amount of components range from 1-7, averaging out at 4,48 and showing significant less
consistency.

Figure 4.19: Example of a MontiArc (MA) diagram. It defines the architecture for a
light controller that reacts on the input of a light switch and whether a
door is opened, it returns a corresponding command.

Test Name Model
Models containing
Syntax Errors (N)1

Test
runs 2

Hydraulic Press 1-Shot (a) GPT-4 0 % (0) 22
Hydraulic Press 1-Shot (a) GPT-3.5 96.94 % (95) 98
Hydraulic Press 1-Shot (b) GPT-4 100 (30) 30

1: Absolute number on syntactically incorrect models. 2: Absolute number of created models.

Table 4.10: Percentage of invalid models produced with LLMs. GPT-3.5 denotes gpt-
3.5-turbo-0613, GPT4 denotes gpt-4-0613.(a) denotes the example artifact
”bumperbot”(cf. Listing A.8) and (b) the ”elevator”example (cf. Listing A.7)

The data presented in Table 4.10 for the evaluation of MontiArc artifacts show that
the GPT-4 model has a lower error rate than the GPT-3.5 model. Figure 4.20 shows a
graphical representation. GPT-3.5 is not able to consistently generate correct MontiArc
models, and with a shorter ”elevator” (cf. Listing A.7) example for few-shot prompting,
GPT-4 is not able to generate correct artifacts either. GPT-3.5 seems to be unable to
generalize the relatively complex MontiArc artifacts from the chat prompt. Surprisingly,
with the only slightly larger example artifact ”bumperbot” (cf. Listing A.8), GPT-4 is
able to generate error-free MontiArc models that are almost completely semantically
correct.

75

Chapter 4 Automated Domain Modeling with Large Lanugage Models

HydraulicPress

PressController

Door

Piston

start stop pressureOk moldClosed

isOpenisClosed isObstacle valveOpen valveClosepistonUp pistonDown

start_c stop_c pressureOk_c moldClosed_c

isClosed_odoor_o piston_o

isOpen_disClosed_d isObstacle_d

open_d close_d closed_dcmd_d

up_p down_pcmd_p

cmd_ip

Figure 4.20: Example of a produced MontiArc model for a hydraulic press (cf. Table 4.10)

4.7.4 Creating GUIDSL Models

To generate a web application, a user interface description format is necessary. Therefore,
we assessed the feasibility of using an LLM to transform into a GUIDSL model. However,
up to this point, no valid models could be produced using GPT-3.5 or GPT-4 for any of
the user interface descriptions used in this dissertation. Comparable to the difficulties
faced in MontiArc, there is limited training data obtainable, and the targeted models
have a high level of complexity.
Some success could be achieved by tasking the LLM (GPT-4) with producing very simple
user interfaces:

Task: Create a component with the following specifications: The component has a
column with a width of 60%. Within the column, the expression “Welcome” is in the
center of a row. Below the row is another column. Within the column there are two
new columns that are positioned in the center and have the same horizontal distance
to each other. Both columns have a width of 30%. In each of the two columns there
is a button in the center of the column. One column has the button ’Start’ and the
other column has the button ’Exit’.

Figure 4.21: Prompt defining a very minimal user interface.

All models produced even for this simple UI did deviate from the requirements, and thus
did not score the maximum of 17 points. As we need a reliable mechanism to consis-

76

4.7 Using LLMs for MDSE

Requirements Maximum score

1 Column 1 (Width: 60%) 2
2 Row: (vAlign und hAlign: centered) 3
3 String

”
Welcome“ 2

4 Column 2 (vAlign: centered, hAlign: even spaced) 3
5 2 Columns within row 2 2
6 Width: 30% 1
7 vAlign und hAlign: centered 2
8 Start-Button 1
9 Exit-Button 1

∑
17

Table 4.11: Grading schema used for semantic analysis.

Temperature 1 2 3 4 5 6 7 8 9
∑

t = 0 2 3 2 0,85 2 1 1,85 1 1 14,7
t = 0, 2 2 2,97 2 0,43 1,96 1 1,55 0,92 0,92 13,75
t = 0, 4 1,98 2,63 1,87 0,47 1,71 1 1,42 0,79 0,79 12,66
t = 0, 6 2 2,13 1,89 0,35 1,82 1 1,43 0,74 0,74 12,1
t = 0, 8 2 2,02 1,82 0,41 1,87 1 1,54 0,66 0,66 11,98
t = 1, 0 2 1,97 1,57 0,39 1,69 0,97 1,38 0,63 0,63 11,24

Table 4.12: Average points scored (cf. Table 4.11) per requirement for the temperature
settings t = {0, 0.2, 0.4, 0.6, 0.8, 1}, whereby the results are rounded to two
decimal places.

tently produce user interfaces, we will proceed with a deterministic, model-driven and
transformer-based approach. That reliably derives user interfaces from class diagrams.

77

Chapter 5

Defining GUI models for Information
Systems

To generate an information system we need a modeling language that can define user
interfaces. In the following we will take a closer look at two variants of such an DSL:
GUIDSL v1 and GUIDSL v2:

Contents

5.1 Defining Graphical User Interfaces with GUIDSL v1 80

5.1.1 Core Grammar . 83

5.1.2 Charts . 85

5.1.3 Tables . 87

5.1.4 Input & Output Elements 92

5.1.5 Layouting . 95

5.1.6 Navigation . 97

5.1.7 Context Conditions . 99

5.2 Defining Graphical User Interfaces with GUIDSL v2 100

5.2.1 Distinction with GUIDSL v1 100

5.2.2 Basic Structure . 101

5.2.3 GUIComponent . 102

5.2.4 GUIGuard . 104

5.2.5 GUIIterate . 104

5.2.6 Context Conditions . 105

5.2.7 Library Components . 105

5.2.8 Defining a Model in GUIDSL v2 108

5.3 Tagging in CD-Based Web Application Development 111

5.3.1 Tag Schema for CD4A . 111

79

Chapter 5 Defining GUI models for Information Systems

A DSL, or Domain-Specific Language, is a specialized programming language designed
for a particular domain or industry [FL10]. It is tailored to address specific problems or
tasks within that domain, making it more efficient and easier to use for those purposes
compared to general-purpose programming languages. A DSL typically has a limited
vocabulary and syntax that directly reflects the concepts and operations of the target
domain, enabling users to express their intentions more clearly and concisely [FR07].
Examples of commonly known DSLs include SQL for database management, HTML for
web page structure, and CSS for web page styling. Within this work, we focus on a
model-driven approach that operates on the basis of specific DSLs, that help developers
to define a data-centric web information system. To generate an information system, we
need several DSLs that define platform-specific models of the various aspects of such a
system. Previous work by Roth [Rot17] and Reiß [Rei16] has already established the DSL
for class diagrams CD4A, and for tagging. To create an information system, however,
we also need a DSL to define the user interfaces. In the following, we will consider two
variants of a user interface description language and take a look at how tagging can be
applied to information systems (tagging for CD4A).

• GUIDSL v1: The first iteration of a modeling language to define user interfaces of
web applications (cf. Section 5.1).

• GUIDSL v2: The revised version of GUIDSL v1 (cf. Section 5.2).

• Tagging Language for CD4A A DSL used to add annotations and additional in-
formation to another DSL. In this work, we focus on the tagging language as it is
used for CD4A (cf. Section 5.3).

5.1 Defining Graphical User Interfaces with GUIDSL v1

User interfaces play an essential role in the usability and aesthetics of software applica-
tions. To simplify the creation and specification of user interfaces (UIs), developers and
designers often turn to DSLs tailored for UI description. The most common DSL used
for the description of UI is HTML (Hypertext Markup Language), primarily known as
the backbone of web content. HTML combined with CSS (Cascading Style Sheets) can
be viewed as DSL to describe the web user interfaces [HM02]. Several DSLs are used to
define user interfaces for all kinds of purposes and platforms. A generic common mod-
eling language for user interfaces has not yet been established. Some DSLs that reoccur
in the literature are IFML [HBAA18], UsiXML [LMPV96, LVM+04], UMLi [DS02], or
XIS-Mobile [RdS14]. A comprehensive evaluation of common UI-modeling languages
can be found at [MdS15].
In order to define an information system, we need to define its user interface (cf. Fig-
ure 2.3). The generators described in Chapter 7 and Chapter 8 use UI-description

80

5.1 Defining Graphical User Interfaces with GUIDSL v1

languages such as GUIDSL v1 to enable the system modeler to define user interfaces.
The presented method was implemented for both variants of GUIDSL. In the following,
we will take a closer look at the first variant of GUIDSL.

Please note that some explained elements are not bound to the features of the the
language described in this project, but rather comes from the interpretation of models
within a generator. The generator will be discussed in Chapter 7.

As the creation of user interfaces is a key element in this work, we will discuss the DSLs
used to do so. Within the MontiCore language family, GUIDSL is the language used
to define User Interfaces. It was first developed in the context of the MaCoCo-Project
(Chapter 8) to accelerate the development of GUIs (cf. [?]) and was later reused in the
following MontiGem projects. The first version of GUIDSL (GUIDSL v1) is based on the
web page description language developed by Roth [Rot17] for web information systems.
This first version has a strong focus on user interfaces for web applications for financial
management due to its origin in MaCoCo. The language supports a wide variety of GUI
elements, but is limited to the initial use cases.
Key principles of GUIDSL v1 are:

• One model per page: Each page in the targeted web application is represented as
one model

• Predefined behaviors: GUIDSL v1 provides a set of predefined functions such as
validation, permission checks, or data format transformations.

• Predefined component set: GUIDSL v1 provides a final component set that can
not be extended within the model.

Listing 5.1 depicts a very simple GUI-model, defining a simple web page with only a
title card and a simple model. Figure 5.1 shows the resulting userinterface.

81

Chapter 5 Defining GUI models for Information Systems

1 webpage MyPage {
2 card {
3 head {
4 label "My Page"
5 }
6 body {
7 label "Just a simple Text"
8 }
9 }

10 }

Listing 5.1: Simple Example of a GUI-model, defining a simple Web page with a title
card and a button. The results are shown in Figure 5.1

Figure 5.1: Resulting Web page, based on the GUI-model Listing 5.1

The grammar of GUIDSL v1 has to be extended each time new GUI elements are needed.
This leads to either GUI elements not being used optimally, as a change requires an
adjustment of both the grammar and the generator, or to adjustments being made to
the handwritten code. Although GUIDSL v1 is a very capable DSL (it is still in use in the
MaCoCo project) a refined version was developed to provide the application developer
with a more dynamic DSL that allows a higher degree of customization and extension of
GUI elements: GUIDSL v2. In the following, we will take a closer look at both DSLs.
The MontiCore-based language GUIDSL v1 is used to define the user interfaces of a web
application. Therefore, it relies mainly on arranging and configuring a predetermined
set of GUI elements for each web page of the application. The DSL itself does not define
the look and feel of the application. One GUI-model relates to one web page. In the
following, we will refer to that web page simply as the ’page’. Figure 5.2 shows the
structure of GUIDSL v1. GUIDSLCore defines the core structure of a page and provides
key interfaces for the elements contained. The page itself and the elements contained can
be configured with non-terminals that are defined in GUIDSLConfiguration. GUIDSL v1
provides a multitude of GUI-Elements, to define the content of a page. The elements
are grouped within seven grammars (charts, tables, input and output, layout, MaCoCo-

82

5.1 Defining Graphical User Interfaces with GUIDSL v1

specific elements, and navigation) each extending GUIDSLCore. Finally, an additional
Grammar GUIDSL is added to unify the GUIDSL with one grammar.

Figure 5.2: Structure of the component grammars of GUIDSL v1. GUI emblems used in
GUIDSL v1 are grouped within grammars. Use case-specific extensions can
be added by adding another component grammar - see GUIDSLMaCoCo.

5.1.1 Core Grammar

GUIDSL v1 is primarily used to define web pages. Within the component grammar
GUIDSLCore, we define the basic structure of one page. Every GUI-model in GUIDSL v1
consists of the definition for one page (cf. Listing 5.2).

83

Chapter 5 Defining GUI models for Information Systems

1 scope Page implements Root = "webpage" name:Name PageSettings?
2 "{" PageElement* "}";

3 interface PageElement;

Listing 5.2: Production for ’Page’ within GUIDSLCore

Each page has a set of input parameters with which it is instantiated (cf. Listing 5.3).
Next to a set of PageElements, a page also has a set of PageSettings. A PageSettings
is defined by an input which can be either a Parameter or a FormularInput.

1 PageSettings = "(" (Parameters)+ ")" ;
2 Parameters = param:Inputs+;
3 Inputs = (Parameter | FormularInputs);

Listing 5.3: Page settings within GUIDSLCore

The nonterminal Parameter defines one or many values that are loaded via a command
once the page is rendered. We distinguish the following :

a) ById: Data is retrieved by sending a command to retrieve one object for a specific
ID (byId)

b) ByMoreId: Retrieving one or many objects using multiple IDs (byMoreIds)

c) All: Sending a command to load all objects of one type. In contrast to the ID-
specific data retrievals, this mode is also used in case no ID is needed to load data.
For example, if there is always only one object of the given type in the database,
or the specification of the object is not determined on the client side.

d) Socket: Retrieving data as a constant data stream (socket)

In addition to parameters, FormularInputs can be defined. In contrast to Parameters,
they are used to store and send information the user enters in the user interface, and
thus operate in both communication directions. In case we define an input field of an
editable table, the data would be cached in a FormularInput before being sent to the
server.

84

5.1 Defining Graphical User Interfaces with GUIDSL v1

1 symbol Parameter =
2 (["all"] | "byId" | byMoreIds:"byMoreIds" | socket:"socket")
3 ("(" idName:Name ")")?
4 type:MCObjectType
5 Name&;

6 symbol FormularInputs = ("formular")
7 formName:MCObjectType "<" genericName:MCObjectType ">" Name&;

Listing 5.4: Page input definition within GUIDSLCore

GUI Page Elements

As shown in Figure 5.2, GUIDSL v1 is split up into several component grammars, several
of which group the GUI element definitions by category. In the following, we will take a
look at a few of the GUI elements that are defined in each component grammar:

5.1.2 Charts

This grammar contains a set of the most common [WBEJ20] chart types: Pie charts,
bar charts, and line charts. Page elements defined in this grammar are:

• PieChart A circular graph that displays data as a proportional part of a whole,
with each slice representing a percentage or fraction of the total.

• LineChart A graph that displays data as a series of points connected by straight
lines, used to show trends and patterns over time or other continuous variables.

• BarChart A graph that uses rectangular bars of varying heights or lengths to rep-
resent and compare different categories or discrete data points

• HorizontalBarChart Same kind of diagram as a bar chart, but with a horizontal
orientation.

• TimeLineChart A visual representation of events or milestones chronologically dis-
played along a linear scale, often used to illustrate historical or project-related
information.

As the page elements above follow similar principles in their definition within the gram-
mar, we will take a look at only two of them: The pie chart and the bar chart. Within
the GUIDSLCharts grammar component, a pie chart is defined as follows: data defines
the list of input values that make up each category within the pie chart. In addition, we
have to define which elements of the data list refer to the title of the category and which
refer to the actual value.

85

Chapter 5 Defining GUI models for Information Systems

1 PieChart implements PageElement = "pie" name:String "{"
2 "data" (dataRef:MyClass) "{"
3 ("title" ":" title:MyClass)
4 ("value" ":" value:MyClass)
5 "}"
6 PieTotal?
7 "}";

9 PieTotal =
10 "total" "{"
11 "title" ":" title:MyClass
12 "value" ":" value:MyClass
13 "}"
14 ;

Listing 5.5: Exerpt from GUIDSLCharts definig a PieChart Page element. The pie chart
is filled with data from ’MyClass’ objects.

Listing 5.6 shows a GUI model using a pie chart (cf. Figure 5.3). In order to display
values as a pie chart, we need to define a page (Line 1 MyPage) and configure the origin
of the data we want to use (Line 2 all MyClass myClass). In this case, all objects of the
type MyClass are requested from the server. We define the new pie chart pie "myPie"
providing it with the entries from the received class. We use the attribute name of each
entry to define the title of a category in the pie chart and the value attribute to define
the corresponding value. We use euro to configure the pie chart to display the value as
a financial parameter.

1 webpage MyPage(
2 all MyClass myClass
3) {
4 pie "myPie" {
5 data <myClass.entries {
6 title: <name
7 value: euro(<value)
8 }
9 total {

10 title: <totalName
11 value: <totalValue
12 }
13 }
14 }

Listing 5.6: Example of a GUI model displaying a pie chart

86

5.1 Defining Graphical User Interfaces with GUIDSL v1

Figure 5.3: An excerpt of a generated user interface showing a pie chart component
(Screenshot from the MaCoCo use case). Note that next to the diagram
itself, a legend with the raw data is produced as well.

1 BarChart implements PageElement =
2 "barchart" "{"
3 "data" ":" data:Reference
4 "dateRange" ":" dateRange:Reference
5 "}" ;

Listing 5.7: Exerpt from GUIDSLCharts definig a bar chart page element.

(a) Generated Vertical Bar Chart (b) Generated Horizontal Bar Chart

Figure 5.4: Examples of bar charts generated with GUIDSL v1

5.1.3 Tables

Tables (cf. Figure 5.5) are an important component of any information system. As
many use cases of information systems emerge around the interaction with the table
component, the list of supported functions has grown over time. Therefore, it is one of
the more complex page elements of the GUIDSL grammar. The basic structure is shown

87

Chapter 5 Defining GUI models for Information Systems

Figure 5.5: A data-table-component as used in MaCoCo. Note that the component does
not only provide plain data but also offers a variety of additional functions
to search, filter, and process the shown data.

in Listing 5.13

1 MacocoDataTable implements PageElement =
2 "datatable" name:String "{"
3 DataTableMethods?
4 DataTableConditions?
5 Content
6 "}"
7 ;

Listing 5.8: Excerpt from GUIDSLTable defining a data table page element.

The GUI component of the table (Listing 5.8) is primarily defined by three elements.
(1) Functions that are called when interacting with the table can be referenced via
DataTableMethods. (2) Configurations such as editing capability, a grouping of entries,
or export capability can be set through a DataTableCondition, and finally, (3) the table
content itself is defined through a Content production.
The table generated by the GUI generator already supports many interactions. With
the DataTableMethods production we can define which method (e.g. a method call over-
written by hand) should be called if one function of the table is used. Listing 5.9 displays
some of the implemented functions of a table. ViewMethod (Line 4, Line 13) is called

88

5.1 Defining Graphical User Interfaces with GUIDSL v1

if a user clicks on a table row to inspect it. Similarly EditMethod is configured if the
user chooses to start editing a row. SaveMethod and DeleteMethod are typically used to
define a method that transmits the changed or removed row to the server and stores the
updated data.

1 DataTableMethods =
2 "methods" "{"
3 (
4 ViewMethod
5 | EditMethod
6 | DeleteMethod
7 | SaveMethod
8 // [...]
9)*
10 "}"
11 ;

13 ViewMethod implements DataTableMethod = "view" "->" Expression;
14 EditMethod implements DataTableMethod = "edit" "->" Expression;
15 DeleteMethod implements DataTableMethod = "delete" "->" Expression;
16 SaveMethod implements DataTableMethod = "save" "->" Expression;
17 // [...]

Listing 5.9: Excerpt from GUIDSLTable defining method productions of a data table
page element.

The functionality and appearance of the table can be configured with
DataTableConditions. A condition can be, for example, NoFooterCondition(Lines
3, 12), which disables the footer of the table containing a paging mechanism and a
current row count, comparable to NoHeaderCondition(Lines 5, 16), which disables the
header of the table. The condition GroupableCondition(Lines 4, 14), allows the user
to group elements in the table. The developer can specify by what elements the table
is grouped, by default setting groupableRef. We can configure the table to allow the
user to add new entries by setting the HasCreateNewCondition. In total, there are 21
conditions that can be set in order to configure the behavior and appearance of the table
components. As the table is a key component of many projects, further configurability
was added in order to ensure that the table meets all requirements of multiple use cases.
Conditions can be constrained by PageElementConditions, which in turn can be defined
by Boolean parameters or methods, or permission settings.

89

Chapter 5 Defining GUI models for Information Systems

1 DataTableConditions = "conditions" "{"
2 (
3 NoFooterCondition
4 | GroupableCondition
5 | NoHeaderCondition
6 | HasCreateNewCondition
7 // [...]
8)*
9 "}"

10 ;

12 NoFooterCondition implements DataTableCondition =
13 "noFooter" PageElementCondition?;
14 GroupableCondition implements DataTableCondition =
15 "groupable" (":" groupableRef:Reference)? PageElementCondition?;
16 NoHeaderCondition implements DataTableCondition =
17 "noHeader" PageElementCondition?;
18 HasCreateNewCondition implements DataTableCondition =
19 "hasCreateNew" PageElementCondition?;
20 // [...]

Listing 5.10: Excerpt from GUIDSLTable definig a condition productions of a data table
page element.

Finally, after defining what features should be enabled and setting the methods behind
the functionality, we can define Content (Listing 5.11) of the table. A table consists of
rows. A list object is referenced containing the entries of the table. The columns (Col*)
define what attributes of each entry in the list object should be displayed in which
manner (cf. Listing 5.13). Each column defines how an attribute is shown in the table,
defining elements such as the width or column title. Listing 5.12 shows the definition
of a table column. Similarly to the conditions of the entire table, columns can also be
constrained by a PageElementCondition (Line 2) each column has a name and refers
to one attribute (TableCell). Additionally, a column itself can have some conditions.
Among other options it can be made mandatory, preventing this field from being left
blank upon saving. Other options can be hidden, thus not displaying an attribute, but
leaving an option to the user to display it again. Or disabled, showing this attribute,
but preventing the user from editing it.

90

5.1 Defining Graphical User Interfaces with GUIDSL v1

1 Content =
2 "rows" rowName:Reference "{"
3 Col*
4 "}"
5 ;

Listing 5.11: Excerpt from GUIDSLTable defining the content productions of a data
table page element.

1 Col =
2 "column" PageElementCondition? (columnName:String) ","
3 tableCells:TableCell ("," width:NatLiteral)
4 (
5 ("," ["mandatory"])
6 | ("," ["hidden"])
7 | ("," ["disabled"])
8 // [...]
9)* ";"
10 ;

Listing 5.12: Excerpt from GUIDSLTable defining the column productions of a data table
page element.

In the following, we will take a look at an example of a GUI model that defines a
table component. Listing 5.13 displays a web page TableExample. Within the page the
page element myExampleTable is defined. For this table, one method is defined (Line 4).
If the user clicks on a row, method navigateToDetails() is called. Additionally, two
conditions are set: deletable and viewable. Enabling the user to click on rows and to
delete entries. The table has three columns: Name, Adress, and Date of birth. All of
these are attributes of the tableEntry object that is used as data input for the table.
Similarly to Listing 5.6 we can use date to display the corresponding attribute as a time
parameter (e.g. giving it a date picker upon editing).

91

Chapter 5 Defining GUI models for Information Systems

1 webpage TableExample(all TableObject to) {
2 datatable "myExampleTable" {
3 methods {
4 view -> navigateToDetails($event)
5 }
6 conditions {
7 deletable
8 viewable
9 }

11 rows <to.tableEntry {
12 column "Name" , < name , 80;
13 column "Address" , < address , 120;
14 column "Date Of Birth" , date(< dateOfBirth) , 100;
15 }
16 }
17 }

Listing 5.13: GUI model defining a data table. The table starts with the keyword
datatable, has one method, defining the method that is called upon a
click on a row. Next, conditions of the table are defined, making the
entries clickable (viewable) and deletable finally, the rows are defined by
configuring three columns.

5.1.4 Input & Output Elements

The component grammar GUIDSLInOut defines key interactive elements in the user
interface. The page elements defined in this grammar are:

• Image A simple page element that embeds an image into the page.

• Label A simple text.

• Infosign A colored box with an icon, a title, and a text is used to provide the user
with critical or useful information.

• Button A simple button with different styles.

• HelpButton A customized version of Button but only with a question mark and
only with links to the handbook pages.

• SelectButton A toggle button.

• TextInput An element that allows users to input and edit multiple lines of text,
typically used in web forms or for user-generated content.

92

5.1 Defining Graphical User Interfaces with GUIDSL v1

• CheckBox An element that allows users to select or deselect an option, typically used
for multiple choice questions or to indicate agreement to terms and conditions.

• RadioButton An element that allows users to select one option from a group of
mutually exclusive options, typically used for single-choice questions or selecting
preferences.

• TextArea An element that can display multiple lines of text.

• DropDown A graphical user interface control that allows users to choose from a list
of predefined options, typically displayed as a list that expands when clicked or
hovered over.

• AutoComplete Similar to DropDown, but with the added functionality of autocom-
plete which displays suggestions as the user types, helping to speed up the selection
process.

In the following two of these components will be presented: Infosign and Button.

Infosign

The info sign shown in Figure 5.6 is used to provide guidance, instructions, or information
to users on the website. It is used to communicate important messages quickly and
effectively, improving safety, efficiency, and usability. Examples of info signs include
directional signs, warning signs, regulatory signs, and informational signs. In GUIDSL v1
(Listing 5.14) Infosign is a page element that, similar to most page elements, can be
shown or hidden based on an optional PageElementCondition (Line 2). The element is
defined by an icon, either in info, a spinning load icon, or a custom-defined one. In
addition, a title (header) and a message have to be provided.

Figure 5.6: Example of an info sign as used in MaCoCo

93

Chapter 5 Defining GUI models for Information Systems

1 InfoSign implements PageElement =
2 "infosign" PageElementCondition? "{"
3 "icon" ":" (["info"] | ["load"] | icon:String)
4 "header" ":" (header:String)
5 "message" ":" (message:String)
6 "}"
7 ;

Listing 5.14: Excerpt of the grammar GUIDSLInOut defining an info sign page element

1 infosign{
2 icon : info
3 header : "Did you know"
4 message : "This is an example text!"
5 }

Listing 5.15: Example of a GUIDSL v1 model defining the info sign page element shown
in Figure 5.6

Button

The generic button is a key component in every application. Therefore, GUIDSL provides
a button that can be customized in multiple ways. Listing 5.16 shows the corresponding
excerpt from the GUIDSLInOut grammar. Button is a PageElement that can be hidden
by a PageElementCondition. The button itself has a label, which defines the displayed
text. A button can have many configurations, some of which are listed in Listing 5.16 line
4..8. Specific style classes can be set at ConfigurationStyleclass, the button can be dis-
abled via ConfigurationDisabled height and width can be set via ConfigurationHeight
and ConfigurationWidth. Finally, the method that should be called upon clicking the
button can be set to ButtonClick. Note that instead of a method call, the method body
can also be provided (line 14). An example model is shown in Listing 5.17. In Line 1
the button is defined to display the text "Button A" and to only be visible if the method
showButton() returns true. Further, we define the method that is called upon clicking
the button: navigateToOverview() (line 2) and define the dimensions of the button in
Lines 3..4: height: 30 and width: 300.

94

5.1 Defining Graphical User Interfaces with GUIDSL v1

Figure 5.7: Example of three buttons as used in MaCoCo

1 Button implements PageElement =
2 "button" PageElementCondition? (label:String) "{"
3 (
4 ConfigurationStyleclass
5 | ConfigurationDisabled
6 | ConfigurationHeight
7 | ConfigurationWidth
8 | ButtonClick
9 //[...]
10)*
11 "}"
12 ;

14 ButtonClick = "click" "->" click:Expression ("{" methodBody:String "}")
?;

Listing 5.16: Excerpt of the grammar GUIDSLInOut defining an button page element

1 button if(showButton()) "Button A" {
2 click -> navigateToOverview()
3 height : 30
4 width : 300
5 }

Listing 5.17: Excerpt of an GUIDSL v1 model defining an button shown in Figure 5.7

5.1.5 Layouting

The component grammar GUIDSLLayout defines page elements that handle the arrange-
ment of other page elements. This grammar contains:

• Container: Simple layout element that can be used to box in page elements

95

Chapter 5 Defining GUI models for Information Systems

• Column: Similar to a container, but arranges contained elements in a column.

• Row: Unlike a container, it arranges the contained elements in a row.

• Card: A page element that displays a rounded box with a header. Elements in
both the header and the body are arranged in a row.

Card

Let us take a look at the card page element shown in Listing 5.18. A card consists of
two subcomponents (Line 5,6), an optional CardHead(Line 10), and a CardBody (Line
12). The head is used to display a title. It can be used to add buttons that refer to the
content of the body of the card. The cards are collapsible (using the ”-” button shown in
Figure 5.8 and Figure 5.7. Cards are primarily used to encapsulate and organize content
within the generated web pages.

1 Card implements PageElement =
2 "card" name:String? PageElementCondition?
3 ("collapsedIf" "(" collapsedIf:Expression ")")?
4 "{"
5 head:CardHead?
6 body:CardBody
7 "}"
8 ;

10 CardHead = "head" ("color" ":" color:String)? "{" PageElement* "}";

12 CardBody = "body" PageElementCondition? ("color" ":" color:String)? "{"
PageElement* "}";

Listing 5.18: Excerpt of the grammar GUIDSLLayout defining an card page element

1 card {
2 head {
3 // page elements for the title bar of the card
4 textoutput {"Exampletext"}
5 }
6 body {
7 // page elements for the title bar of the card
8 button "A Button" { click -> doSomething() }
9 }

10 }

Listing 5.19: Excerpt of a model defining an card page element

96

5.1 Defining Graphical User Interfaces with GUIDSL v1

Figure 5.8: Example of the page element card ”Account Settings” (containing a simple
table) as used in MaCoCo

5.1.6 Navigation

Next to the definition of web pages, GUIDSL v1 can be used to define a navigation tree
for the entire website. As this tree of page references can be used to generate menus and
sidebars for page navigation. The grammar defines the following elements:

• NavigationItemArray: A nested list of NavigationItems that can be used to define
a navigation menu.

• NavigationBar: Page Element that can be used to display navigation elements
within a page.

NavigationItemArray

Within the GUIDSL v1 we can use NavigationItemArray as shown in Listing 5.20.
In order to define a navigation menu within our application. A navigation menu is
a user interface element that displays a list of links or options that allow users to
navigate to different sections or pages within a website or application, as shown in
Figure 5.10. It typically appears on the top or side of a web page and may be or-
ganized hierarchically to help users find the information they need more easily. Nav-
igation menus can include links to the homepage, contact page, about page, prod-
uct or service pages, and any other important pages or sections of the website. A
NavigationItem is defined by the Link (NavigationItemLink) it navigates to, the text
(NavigationItemLabel) and icon (NavigationItemIcon) it displays, as well as further

97

Chapter 5 Defining GUI models for Information Systems

nested items (NavigationItemChildren) and conditions (NavigationItemCondition) sim-
ilar to PageElementConditions to define when an element should be visible.

1 Navigation implements Root = "sidenavigation" ":" NavigationItemArray;

3 NavigationItemArray = "[" (NavigationItem || ",")* "]";

5 NavigationItemLinkArray = "[" (String || ",")+ "]";

7 NavigationItem =
8 "{"
9 (

10 NavigationItemLink
11 | NavigationItemLabel
12 | NavigationItemIcon
13 | NavigationItemChildren
14 | NavigationItemCondition
15)*
16 "}"
17 ;

Listing 5.20: Excerpt of the grammar GUIDSLNavigation defining a Navigation. A
Navigation consists of a list of Navigation Items (NavigationItemArray),
each NavigationItem can contain a link (NavigationItemLink) a text to
display (NavigationItemLabel), an Icon (NavigationItemIcon), further
Navigation Items (NavigationItemChildren), and my own conditional
(NavigationItemCondition)

1 sidenavigation : [
2 {
3 label: "Dashboard" link: ["/", "dashboard"] icon: "dashboard"
4 },
5 {
6 label: "Finance" link: ["/", "finance", "dashboard"] icon: "

euro_symbol"
7 children: [
8 { label: "Accounts" link: ["/", "finance", "accounts", "overview"]

},
9 { label: "Billing" link: ["/", "finance", "billing"] },

10 { label: "Deadlines" link: ["/", "finance", "deadlines"] }
11]
12 }
13]

Listing 5.21: Excerpt of the GUI model that defines Navigation shown in Figure 5.10

98

5.1 Defining Graphical User Interfaces with GUIDSL v1

(a) Default MontiGem (b) Invidas use case (c) MaCoCo use case

Figure 5.9: Examples of side bar navigation generated with GUIDSL v1

5.1.7 Context Conditions

GUIDSL v1 does implement very few context conditions in Java but rather relies on
astrules [HKR21] to ensure valid models. These constraints primarily ensure the unique-
ness of configurations within components, e.g. ensuring that there can only be one
ConfigurationWidth defined for a button (cf. Listing 5.16 or that there is not more than
one ViewMethod defined as a DataTableMethod (cf. Listing 5.9). The definitions of the
page elements make up the bulk of the grammar. These symbols work mostly in isolation
and independently of each other. For example, a text field can be inserted anywhere in
the model without affecting other symbols. There is little need for context conditions in
GUIDSL v1, as they have little context that must be constrained.

99

Chapter 5 Defining GUI models for Information Systems

5.2 Defining Graphical User Interfaces with GUIDSL v2

The second user interface modeling language for which the presented method was realized
for is GUIDSL v2. In the following, we will take a closer look at this DSL.

Please note that some explained elements are not bound to the features of the the language
described in this project, but rather comes from the interpretation of models within a
generator.

5.2.1 Distinction with GUIDSL v1

In this thesis, we use two distinct DSLs to define graphical user interfaces. The initial
version of GUIDSL (cf. [GHK+20]), which is rooted in [Rot17], has undergone enhance-
ments and modifications to meet the demands of data-driven web information systems
[GMN+20]. Despite its expansive set of component grammars, it remains likely that
new components must be incorporated via grammar extensions to address the evolving
use-case demands. A notable limitation of GUIDSL v1 is its inability to refer to external
models, making the integration of model libraries unfeasible. Given the systematic nature
of the user interfaces of web information systems, the deployment of GUIDSL v1 often
culminates in repetitive code in multiple models. Subsequently, this redundancy am-
plifies the maintenance workload to maintain application-wide consistency. GUIDSL v2
enables the system modeler to encapsulate reusable components in separate models that
can be referenced. Another shortcoming of GUIDSL v1 is its omission of references to
CD4A.
While GUIDSL v1 delineates objects for each element of the page, it fails to perform
type checks on associated classes, leaving the validation task to developers and risking
potential runtime failures. Despite these limitations, DSL remains adept at articulating
user interfaces for comprehensive real-world platforms, as shown by [ANV+18]. The
system presented in Chapter 8 is built upon GUIDSL v1.
Having learned from development with GUIDSL v1 we developed GUIDSL v2. Although
the name suggests an evolution from one DSL to the other, GUIDSL v2 was a new
development and its grammar has little in common with the previous version of DSL.
Although both languages are designed to define web pages of enterprise information
systems, GUIDSL v2 provides several advantages over GUIDSL v1:

• Referencability of GUI components: Components can be defined in one model and
be used in another. This allows for the definition of predefined complex components
and model libraries, and enables mechanisms to adapt and extend models that are
produced by a generator.

• Referencability of class diagrams: Used types are defined and checked in a refer-
enced class diagram.

100

5.2 Defining Graphical User Interfaces with GUIDSL v2

• Loops: Components can be rendered based on input data. This enables the defi-
nition of dynamic content such as listings of components based on available data
(e.g. feeds as known from Facebook or Twitter)

• Introduction of new components through arbitrary import: New components can
be added by extension of the RTE and by definition of a new GUI component.
Components can be imported into other components. There is no need to extend
the grammar of the language.

5.2.2 Basic Structure

GUIDSL is a modeling language, developed primarily to describe graphical user interfaces
of web-based information systems. It is used primarily in the context of data-centric
information systems, as is the case in this thesis; however, GUIDSL is not limited to
that domain. Successful experiments in other domains and target frameworks (Mobile
Platforms, Flutter1, React2) were performed for both GUIDSL v1 and GUIDSL v2.

1 package example.simple; // package declaration

3 import example.MyComponent; // import statements

5 page MyPage(String username) { // GUIComponent declaration

7 // ... components, expressions, guards ...

9 }

Listing 5.22: Basic GUI-model structure. Each model has a package, can define imports
and defines a page or a component.

A GUI-Model defined with GUIDSL v2 (cf. Listing 5.22) consists of a package declara-
tion, import statements, and a GUIComponentDeclaration. This component declaration
defines a GUI component that can either be a page, used on its own to represent a web
page in the final product, or a component used as parts of other components or pages
in order to be able to reuse parts of models. The grammar of this looks as follows:

1(Only GUIDSL v2) flutter.dev
2(Only GUIDSL v2) react.dev

101

flutter.dev
react.dev

Chapter 5 Defining GUI models for Information Systems

1 MCPackageDeclaration

3 MCImportStatement*

5 //GUIComponentDeclaration starts here
6 "page" | "component" Name "("
7 GUIParams?
8 ")"

10 GUIBlock?

Listing 5.23: Simplified GUIDSL grammar

The package is used to import the component or page into other models in order to
create composite pages or to define a newly composed component. Similarly to Java,
the package name reflects the folder structure. The component declaration has a name
and GUIParams, these functions are similar to function parameters in Java and are used
for component instantiation in another model or for an automatic instantiation if the
component is declared as a page. Finally, the GUIBlock is where the appearance and
function of the page or component are specified.
An example of a page can be found in listing 5.22. A component (GUIBlock) can be
defined by the following symbols:

• Expression

• GUIComponent

• GUIGuardExpression

• GUIIterateExpression

Expressions are based on MontiCore-CommonExpressions, e.g. simple mathematical,
literal, boolean expressions, etc. An expression is typically used as an argument for the
instantiation of components or represents a variable. In the following, we will take a
closer look at the remaining productions.

5.2.3 GUIComponent

The GUI component allows the placement of other components on the page. We distin-
guish four types of GUI components.

• Generic Component: A software component with a graphical representation in a
web page that optionally includes a data state and a connection to a server back end
for receiving and updating the data. A GUI component allows visual interaction

102

5.2 Defining Graphical User Interfaces with GUIDSL v2

and/or provides a representation of information in a graphical (diagrammatic or
textual) form.

• Library Component: A predefined GUI component, such as a button or a text
field. These components serve as a foundation for assembling first models or more
complex components.

• Composed Component: A component is a composition of other GUI components
to form a new, more complex component.

• Container Component: A GUI component whose primary purpose is the allocation
of space, grouping, and arrangement of GUI components within a container. A
container is not necessarily directly visible. For example, when GUI components
are arranged in a grid pattern, one may consider the grid arrangement a property
of a container.

Note that a GUI component can be generic, library, and composed at the same time,
since predefined components themselves can be composed already (e.g., GemCard). The
grammar rule for the usage of a GUI component usage in GUIDSL v2 is defined as
follows:

1 GUIComponent =
2 id:GUIVariableDeclaration? "@"
3 Name:GUIFunction GUINamedArgs
4 ;

Listing 5.24: GUIComponent definition within GUIDSL v2 grammar

The definition of a GUI component starts with an id:id is an optional identifier that can
be used to reference the specific instance of the GUI component. Next, the name of the
GUI Component is declared after the ”@”notation. Finally, a collection of attributes that
are passed to the component in the form of assignments (GUINamedArgs) are declared.
Note that the GUI Component symbol has both a name and an id, this is necessary as
a GUI Component with the same name can be instantiated in one page (or component
definition) multiple times (e.g. displaying the same button multiple times in one user
interface). The introduction of the ID enables the developer to refer to specific instances
of the button. A component can also use other components as arguments to create
composite components (e.g. card, grid alignments of components). An example is shown
in Listing 5.25.

1 text1@Text(
2 value="This is a Text"
3)

Listing 5.25: Usage of a GUI component in GUIDSL v2

103

Chapter 5 Defining GUI models for Information Systems

5.2.4 GUIGuard

The GUIGuardExpression has a similar functionality as the if-statement. It has
a condition that is evaluated to a Boolean. If the defined condition holds,
the thenStatement is processed; otherwise the optional elseStatement is used.

1 GUIGuard =
2 id:GUIVariableDeclaration? "@guard" "(" condition:Expression ")"
3 thenStatement:GUIBlock
4 ("else"
5 elseStatement:GUIBlock
6)?
7 ;

Listing 5.26: Definition of a GUI guard expression in GUIDSL v2 grammar

Similarly to the GUI Component, GUIGuardExpression has an optional id that al-
lows giving the resulting statement a variable for later reference. In contrast to the
if-statement as defined in Java, the grammar does not specify when and how often the
condition is evaluated. The web applications we generate evaluate regularly the condi-
tion, leading to pages that react dynamically to the provided data set. An example of
the usage of the GUIGuard is shown in Listing 5.27.

1 //...
2 component RoomDashboardGuard(Room rooms) { // Component definition
3 @guard(!room.occupied) { // Check if a room is free
4 // Show a RoomInfo Component:
5 @RoomInfo(
6 roomName = room.name,
7 occupied = room.occupied
8);
9 }

10 }

Listing 5.27: Usage of a GUI guard expression in GUIDSL v2

The Web page shows a component for a room only if the room is not occupied. The
component appears as soon as the Boolean ’occupied’ of the room switches to false.

5.2.5 GUIIterate

The GUIIterateExpression allows the creation of components that have an unknown
number of sub-components at generation (e.g., a news feed). An example is shown
in 5.29. The construct works similarly to the for loop or while loop. Similarly to
the GUIGuard, it is intended to be evaluated regularly at the runtime of a generated
application, and thus allows for dynamically changing numbers of elements. Similarly

104

5.2 Defining Graphical User Interfaces with GUIDSL v2

to the GUI component the GUIIterate production, can define an id, to be referenced
later. It includes IterateControl which defines an iterable and a variable representing
an iteration item. For each iteration, the GUI components defined in the GUIBlock are
instantiated. When the iterable list object changes, the GUI is automatically updated.

1 GUIIterate =
2 id:GUIVariableDeclaration? "@iterate"
3 "(" IterateControl ")" GUIBlock
4 ;

Listing 5.28: Definition of a GUI iterate expression in GUIDSL v2 grammar

1 page RoomDashboard(List<Room> rooms) {
2 @iterate (Room r : rooms) {
3 @Text(value = r.name);
4 }
5 }

Listing 5.29: Example of the iterate, iteratively instantiating a text component in a
GUI, and thus creating a list of rooms.

Similarly to GUIGuard, GUIDSL evaluates GUIIterate regularly updating it any time
the data changes.

5.2.6 Context Conditions

The following context conditions are defined for GUIDSL v2.

• GUIParamDefaultFitsType: Checks if the default type matches the declared type.

• GUIRangeIterateControlExpressionsAreInt: Checks if the range of the iterate
component is declared as Integer.

• GuardConditionIsBoolean: Checks if the condition of a guard component is evalu-
ated to a boolean.

5.2.7 Library Components

Library components are the most basic building blocks of the GUIDSL v2. The language
is provided with a collection of these predefined components, enabling the developer to
compose user interfaces. In the following, we will take a look at some of those predefined
components. Note that this provided component library can be extended by custom
components for any given use case.

105

Chapter 5 Defining GUI models for Information Systems

Figure 5.10: Screenshot of a UI (SEHub) defined by Library components (Button,
TextInput, Column)

Button

The button is one of the most important interactive GUI elements. The provided library
GUI component (cf. Listing 5.30) is defined by a String text and an Event, leftClick.
The Event type represents an event in a system, typically triggered by a user, such as a
left click or a hover. In the button component, Event is provided when launching the GUI
component and is executed when the button is clicked. The type parameter provides
(Void in the button component) a hint on the type of object that will be passed when
an event is triggered, allowing an application developer to define a specific behavior.

1 package example.atomic;

3 component Button(
4 String text = "",
5 Event<Void> leftClick
6)

Listing 5.30: Button GUI component definition

1 @Button(text = "MyButton", leftClick = doSomething)

Listing 5.31: Usage of the Button component in a GUI model

106

5.2 Defining Graphical User Interfaces with GUIDSL v2

TextInput

The TextInput component produces a simple text field. The component can be config-
ured with an optional String value, a label, and a placeholder. A great benefit of the
GUIDSL v2 language compared to GUIDSL v1 is its ability to refer to other models. In
the following example, the TextInput component uses the username attribute, to store
any input.

1 package example.atomic;

3 component TextInput(
4 ?String value,
5 String label = "",
6 String placeholder = ""
7)

Listing 5.32: TextInput GUI component definition

1 @TextInput(
2 value = username,
3 label= "MyInput",
4 placeholder= "write here"
5)

Listing 5.33: Usage of the TextInput component in a GUI model

Layout

There are a few library GUI components that are used to arrange and group other com-
ponents. Within GUIDSL v2 there are the following predefined container components:
Column, Row, Grid, and Card. We will take a look at the Column component Listing 5.34
Similar to the previously shown components the Row component is defined via a set of
parameters. This component can be configured via hight, width, hAlign, vAlign, and
a style class style. In addition to these parameters, the component holds a list of GUI
Components (List<GUIViewElement> components). These elements will be arranged in
a column within the generated user interface. Listing 5.35 displays the usage of the
column component.

107

Chapter 5 Defining GUI models for Information Systems

1 component Column (
2 String height,
3 String width,
4 String hAlign,
5 String vAlign,
6 String style,
7 List<GUIViewElement> components,
8)

Listing 5.34: Column GUI Component Definition

1 @Column(height = "500px", hAlign = "center", components = [
2 // ... components ...
3]);

Listing 5.35: Usage of the Column component in a GUI model

5.2.8 Defining a Model in GUIDSL v2

Figure 5.11: Dashboard showing a card each for the Rooms Seminar Room and Guest
Room. The card content indicates if the room is occupied or not, as defined
by Listing 5.36

In the following, we will define a simple web page with a set of GUI models as shown
in Figure 5.11. The page is defined in Listing 5.36, by configuring a page (Line 7). The
page represents a simple dashboard that indicates whether two rooms are occupied or
free. The page is provided with two Room objects: room1 and room2. These objects are
used in the two RoomInfo components r1 (Line 10) and r2 (Line 16). These components
are provided with the name and the occupied status, as well as an action that is called
upon a click on the component.

108

5.2 Defining Graphical User Interfaces with GUIDSL v2

1 package pages.room.simple;

3 import example.Domain.Room;
4 import example.simple.RoomInfo;

6 page RoomDashboard(
7 Room room1,
8 Room room2
9) {

10 r1@RoomInfo(
11 roomName = room1.name,
12 occupied = room1.occupied,
13 clickRoomInfo = navigateRoomDetails1
14);

16 r2@RoomInfo(
17 roomName = room2.name,
18 occupied = room2.occupied,
19 clickRoomInfo = navigateRoomDetails2
20);
21 }

Listing 5.36: GUIDSL v2 model defining a simple dashboard showing cards that indicate
if a room is occupied or not.

In order for this model to function the RoomInfo component has to be imported (Line
4) and defined. Next, we take a closer look at the RoomInfo component definition in
Listing 5.37. The component RoomInfo is defined in the package example.simple and
imports two additional components: The composed component Card and the library
Text component. The RoomInfo component uses as input the name of the room (String
roomName) its current status (boolean occupied) which is default false and an event,
that can be executed upon clicking the component (Event<Void> clickRoomInfo). The
component definition contains a @Card component that both roomName and occupied
are passed on. Finally, we require a definition of the Card component, as shown in
Listing 5.38.

109

Chapter 5 Defining GUI models for Information Systems

1 package example.simple;

3 import example.simple.Card;
4 import example.atomic.Text;

6 component RoomInfo(
7 String roomName,
8 boolean occupied = false,
9 Event<Void> clickRoomInfo

10) {
11 @Card(
12 header = roomName,
13 body = @Text(value = occupied)
14);
15 }

Listing 5.37: Definition of the RoomInfo component

1 package example.simple;

3 import example.atomic.Text;
4 import example.atomic.Button;
5 import example.atomic.Column;
6 import example.atomic.Row;

8 component Card(
9 String header = "",

10 GUIViewElement body
11) {
12 @Column(width = "30%", components = [
13 @Row(vAlign = "center", hAlign = "spaceBetween", components = [
14 @Text(value = header, color = "white")
15]),
16 @Column(vAlign = "center", hAlign = "center", component = body)
17]);
18 }

Listing 5.38: Definition of the Card component

The Card component is composed of several layout elements that assemble a box with
a header that can contain a label. The component uses as an input a String for a
header (Lines 9 and 14) and a GUIViewElement body (Lines 10 and 16) containing the
GUI component that is shown within the box. A card is layouted as a Column with two
sub-layouts within. The header is modeled as a Row containing the header text and the
body is modeled as a Row again.

110

5.3 Tagging in CD-Based Web Application Development

5.3 Tagging in CD-Based Web Application Development

We established the foundation of the generic Tagging-DSL in Section 3.5. As mentioned
above the generic Tagging-DSL can be used to create a tagging language for a specific
DSL in order to enable the adding of Tags to that DSL. For this reason, the Tagging-
DSL variant Tagging4CD was developed. As the methodology presented in Chapter 2
aims at a generic data-centric system, additional options to adapt and customize the
outcome need to be provided. Tagging4CD enables the system modeler to add additional
information to the class diagram without changing the original CD4A-grammar or any
CD4A-model. This is especially useful if the model does not originate from the system
modeler himself and, thus might not be modifiable by him directly. In the following,
we take a look at the application of the Tagging language to the CD4A language in the
context of model-driven web application development:
Tagging requires next to the common languages (LTAG

Common and LSchema
Common) described

above a sublanguage LG from which the tagging language LTAG
G can be derived. Within

this thesis, we will use tagging primarily in model-driven approaches that rely on data-
structure models. Thus we will take a closer look at the tagging languages based on the
Class diagram DSL CD4A: LTag

CD4A and L
TagSchema
CD4A (cf. Figure 5.12).

Figure 5.12: Grammar relations of a tagging-DSL for CD4A based on Figure 3.4

5.3.1 Tag Schema for CD4A

The data-structure model can be used to generate major parts of the application. How-
ever for some use cases, additional information that is not contained within a typical
CD4A model is required. Instead of extending the DSL or extending the generated code,
it can be more efficient to tag the information to the CD4A model:

111

Chapter 5 Defining GUI models for Information Systems

1 package tagschema;

3 tagschema HumanTags {
4 tagtype HumanName:String for Attribute, Class;
5 }

Listing 5.39: Tag schema for HumanName as used in MontiGem

1 package tagschema;

3 tagschema DBTags {
4 tagtype NoCascade for Association;
5 tagtype UniqueDBColumn for Attribute;
6 }

Listing 5.40: Tagschema for DBTags, defining additional database configurations as used
in MontiGem

The example of a Tag Schema shown in Listing 5.39 allows the modeler to add designation
for both attributes and classes in the targeted class diagram, by using a ValuedTagType
with a String as an argument. This is especially useful if the model is used to generate
a presentation layer (e.g. graphical user interface). The names the modeler chooses
often deviate from the names the end user is familiar with. By adding this information,
the end user can be presented with the familiar name for the object in question rather
than the technical name used by the modeler. Listing 5.40 allows the modeler to add
information to attributes and classes of the targeted class diagram to manage how those
elements are handled in the persistence layer.

Tags for CD4A

The TagSchema defined in Listing 5.39 is implemented for the CD4A models used in
this thesis. It enables the developer to tag a String to either a class or an attribute
with the HumanName-Tag. In the example below the class Konto has four attributes that
might have names that are not suitable to be displayed to the end user in a GUI, as
developers typically use camel case spelling or other conventions such as is-prefix to
indicate a Boolean parameter. By adding the tag we can provide additional information
on how elements in the user interface should be designated. Interfaces and dialogs can
be generated, based on these tags and do not have to be refined to be human-readable.
Based on Listing 5.39 an Error Message generated because of the missing parameter
sapDatum could be generated to ”Date of SAP-Import is Missing” instead of ”sapDatum
is Missing”.
The Tags used, vary with the use case and target domain, and will be introduces with

112

5.3 Tagging in CD-Based Web Application Development

the corresponding projects throughout this thesis.

1 classdiagram MyDomainModel {
2 class Person {
3 String name;
4 String address;
5 Date age;
6 }
7 }

Listing 5.41: Example of a simple class. For corresponding class Diagram cf. Figure 7.5

1 package domain; //package of cd model

3 conforms to tagschema.HumanTags; //TagSchema described in Listing 5.39

5 tags HumanTags for DomainModel {
6 tag Person with HumanName = "Mitarbeiter";
7 tag Person.age with HumanName = "Alter";
8 tag Person.name with HumanName = "Benutzername";
9 }

Listing 5.42: Tags for the class in Listing 5.41, defining names for the attributes of the
class that can be used in user interfaces.

113

Chapter 6

GUI-Model Derivation from Class Diagrams

In the following, we take a closer look at the model-to-model transformer CD2GUI:

Contents

6.1 Research Method . 118

6.2 Schneidermann’s Mantra: Some Core Pages 119

6.2.1 Dashboard Page . 119

6.2.2 Class-Overview Page . 120

6.2.3 Object-Details Page . 122

6.3 Additional Pages for the Web Application 124

6.3.1 Change Data Capture . 124

6.3.2 Navigatable UML Class Diagram 124

6.3.3 Global Search . 125

6.4 Architecture . 127

6.4.1 Template Usage . 128

6.4.2 Handling Inheritance . 133

6.4.3 Handling Abstract classes 134

6.4.4 Handling Associations . 135

6.4.5 Handling Generics . 137

6.5 Further Artifacts Derived from Single Underlying Model 138

6.5.1 Generated Role Based Access Control 138

6.5.2 Generated Test Data . 144

6.6 Modifying Model Generation: Variability 146

6.6.1 Template Replacement . 147

6.6.2 Using Stereotypes to Customize Generation of GUI-Models . . 150

6.7 Modifying Generated Models: Adaptability 152

6.7.1 Adaptability . 152

6.7.2 Handwritten GUI-model Extensions 152

6.7.3 Adaptability Transformation 154

115

Chapter 6 GUI-Model Derivation from Class Diagrams

6.7.4 Edge Cases . 158

In order to generate a web-based information system, we need to specify the user inter-
faces that should be included in the application. However, as we can not anticipate every
possible use case, we need to include a mechanism that enables the system modeler to
pick and choose from his templates. In the first part of this chapter, we will focus on
the model definition of user interfaces for a generic information system. In the second
part (Section 6.6, Section 6.7), we will focus on ensuring the flexibility and adaptability
of these generic models such that the approach can be applied to a wide variety of use
cases.

Figure 6.1: Transforming domain models into system models. A system modeler can
add hand-written class diagrams to the domain models. CD2GUI derives
class diagrams into GUI-models. CD2GUI can be configured with custom
templates to add type-specific GUI-model-transformations.

There are several techniques to visualize information and to define corresponding models
[BDC23]. We need a transformer that produces these GUI-models based on the given
class diagram (cf. Figure 6.1) According to Encyclopedia Britannica1 an information
system is defined as follows:

1britannica.com

116

Definition 8. Information system, an integrated set of components for collecting,
storing, and processing data and for providing information, knowledge, and digital
products.

The National Institute of Standards and Technology (NIST)2 defines an Information
System as follows:

Definition 9. Information system: A discrete set of information resources or-
ganized for the collection, processing, maintenance, use, sharing, dissemination, or
disposition of information.

The Principioa Cybernetica Web3 provides the following definition:

Definition 10. Information system: A system of functions concerning the acqui-
sition and transfer of information, the carriers of which can be biological, personal,
social or technical units. An information system is dedicated to a certain kind of
information (topic), even if this may be a very broad one. It has always the purpose
of providing information to a user or a group of users. In most cases a storage
device is part of an information system.

In order to create such a system a set of domain-model dependent pages is needed in
our web application, that allow the user to enter an retrieve data for that model. Next
to these pages further pages that needed independently from the model provided:

• Login: A simple page ensuring that each user is authenticated and has the necessary
privileges to access data of the system. A login is necessary to ensure access
restrictions, and in order to prevent general access to potentially private data.

• User-Management: A small set of pages providing the user with options to man-
age their own profile and to recover a password in case it was forgotten. User
management ensures flexible granting of access permissions to any registered user.

• System Pages: Pages for the imprint, page-not-found page, and generic data pri-
vacy regulatory information as well as a generic landing page. These pages contain
regulatory information such as information according to general data protection
regulations (DSGvO).

The GUI-models for these pages usually do not need to be generated or at least not fully
be generated and can be part of a set of predefined static pages, as the basic structure
of these pages tends to be the same among all use cases cf. Figure 6.2 (e.g. changes in
the domain model will not lead to changes in the 404-page).

2nist.gov
3pespmc1.vub.ac.be

117

Chapter 6 GUI-Model Derivation from Class Diagrams

(a) Login Page from Reddit (b) Login Page from Facebook (c) Login Page from Dropbox

Figure 6.2: Login pages share a common design pattern, that is typically independent
from any modeled data structure (username, password and often optionally
a single sign-on interface such as google).

Next to these pages further pages might be useful to improve the usability and user
experience of the application. Some options are:

• Change Data Capture: A global log or history of actions throughout the application
(cf. Section 6.3.1).

• Navigatable UML A data overview showing what data is available and how it is
organized (cf. Section 6.3.2).

• Search: A global keyword search that screens the entire database (cf. Section 6.3.3).

There are many options to extend the generator in order to cover more use cases. For
this reason, we keep adaptability (cf. Section 6.7) and variability (cf. Section 6.6) of the
generator in mind while developing the approach.

6.1 Research Method

The development of the CD2GUI transformer follows the case study approach. A
methodology is developed for a specific use case and is generalized later on. The initial
scope of CD2GUI is the development of user interfaces for data-centric information sys-
tems in the finance sector. Therefore, we need to define an interface that an end user
can analyze and manipulate the data structure defined by the previously synthesized
domain model. We collect data on both the usage of these interfaces and the software
engineering processes related to the produced user interface models in multiple use cases

118

6.2 Schneidermann’s Mantra: Some Core Pages

[CMNR24, MNN+22]. The data is analyzed in order to uncover deeper insights, and find
potentials for improvements of the transformer. Thus updating and refining the used
languages (GUIDSL v1 → GUIDSL v2) and the corresponding generators.

6.2 Schneidermann’s Mantra: Some Core Pages

As defined above information systems are intended to provide the user with access to
information. In order to do so we follow the principles of the Schneiderman Mantra
[Shn96, CCOTF09]. This mantra encapsulates a design philosophy that prioritizes user
experience in interacting with information systems, allowing them to start with a broad
perspective and incrementally dive deeper into the details as required, thus facilitating
a more intuitive and effective exploration of the data [CC05]. Schneidermann proposes
the following key actions in order to create an effective data visualization:

• Overview: Gain an overview of the entire collection.

• Zoom : Zoom in on items of interest.

• Filter: filter out uninteresting items.

• Details-on-demand: Select an item or group and get.

• Relate: View relations hips among items.

• History: Keep a history of actions to support undo.

• Extract: Allow extraction of sub-collections and of the details when needed.

As our approach is data-centric and as our single underlying model is a class diagram
we can derive the following pages that we need to synthesize, based on Schneidermann.
We can implement the actions with the following kinds of pages:

6.2.1 Dashboard Page

A generic page (cf. Figure 6.3), that gives an overview of all data currently stored in the
system. This page targets primarily Schneidermann’s first mantra: Overview. It serves
as a starting point to navigate to more specific pages and provides meta-information
about the stored data. The dashboard page serves two purposes. First, provide the
user with an overview of the data currently stored in the database. Second, a means to
directly navigate to any of the overview pages of the modeled classes.
The generated dashboard can be modified and extended to show use case-specific visu-
alizations, such as pie charts and aggregated data sets.
Figure 6.4 depicts the class diagram for both Person-Class and Employee-Class that are
used in the following examples.

119

Chapter 6 GUI-Model Derivation from Class Diagrams

Figure 6.3: Generated Dashboard page for Person an Employee Class.

Similar to template hook points [HKR21] the dashboard can be used as a generic place-
holder for a landing page or further generic pages, that do not relate to one specific type.
The generated page or parts of it can be overwritten by custom hand-written models.

6.2.2 Class-Overview Page

A page that is created for each class of the root class diagram. The overview page (cf.
Figure 6.5) aims at the zoom and filter actions of Schneidermann’s mantra. Coming
from either a navigation bar or the dashboard, the user can ’zoom in’ on objects of a
specific type. The overview page provides a list of all elements. The table is provided
with options to filter and search entries, thus helping the user to keep an overview. The
table components that we use however allow grouping and export of data thus fulfilling
at least in part both the history and extract mantra.
In addition, the overview page also provides an option to enter new objects into the list.
Enabling the user to create a new object of the overview page-specific type.

120

6.2 Schneidermann’s Mantra: Some Core Pages

Figure 6.4: Class Diagram used for the examples showing a dashboard page (cf. Fig-
ure 6.3), an overview page (cf. Figure 6.5) and a details page (cf. Figure 6.6).

Figure 6.5: CD2GUI default overview page for all Employee-Objects.

Figure 6.5 provides an overview of the page configuration. The overview page primarily
consists of a table component, that lists all objects of a specific type and any type
that is a subtype. The example shown is the overview page for the Employee class.
Each entry in the Table is interactive and links to the details page (cf. Section 6.2.3)
of the corresponding object. Depending on the GUIDSL variant additional features are
provided with the table. The table component of GUIDSL v1 (cf. Section 5.1.3) provides
many features, such as sorting, filtering, and data export. The component provides
several extensions, as it was improved over the years of development of MaCoCo. The
first line in the table can be used to define a new object. The table component of

121

Chapter 6 GUI-Model Derivation from Class Diagrams

GUIDSL v2 only provides basic functions but is very likely to be extended in upcoming
projects.

6.2.3 Object-Details Page

A details page (cf. Figure 6.6) is created for each class. It is intended to provide informa-
tion on a single object. The details page can be accessed by clicking on an object listed
on the overview page. This action is based on the details-on-demand mantra. Next to
the information on the object itself, the details page also shows the relations the object
has to other objects. The user can inspect and navigate to any other linked object using
the details page, following the relate-mantra.
The fields shown in the details page can also be used to edit the shown object. In case the
user needs to change data he can do so directly, following the ’what you see is what you
get’ principle. The page shown in Figure 6.6 can be divided into two parts: the upper
part provides the attributes of the object in focus. Attributes can be edited directly,
either by entering the text directly or by using specialized components such as date
pickers or dropdown menus. The lower part of the page provides information about any
linked objects. Each association modeled in the input class diagram is represented with
its own table, as long as it has a cardinality greater than one. Associations that only
allow the link to a single object are treated like an attribute and thus are editable by the
upper part of the page. An association-specific table lists all currently linked objects.
Every listed object can be unlinked or can be clicked on to navigate to its corresponding
details page. Below the list of linked objects is another one: A list of linkable objects.
Linking via the ’add’ button moves objects to the first list, and clicking on ’remove’
moves objects to the second one. All association-specific tables do not only list objects
of the association type itself but also handle subtypes as well, similar to the table of the
overview page.

122

6.2 Schneidermann’s Mantra: Some Core Pages

Figure 6.6: CD2GUI default details page an Employee-Object. Inherited attributes (e.g.
’name’) are also listed.

In order to enable the user to view and edit specific objects, we need a type-specific
page that accesses individual objects from the database. For each class in the root class
diagram a details page (cf. Figure 6.6) is generated. The details page serves three main
functions:

1. Visualization: The page presents all attributes and linked objects of a specific
object to the user.

2. Data Modification: The page enables the user to change any attribute of the object
and provides functionalities to link and unlink objects from associated classes.

3. Navigation: The page enables the user to navigate to the details page of any linked
object. Enabling a data traversal through any related objects.

The details page provides in-depth information on each object of a specific type. The
page lists all attributes and associations of the object and provides functionality for
editing the object. It also provides links to related objects in order to enable navigation
through the entire data structure of the single underlying model.

123

Chapter 6 GUI-Model Derivation from Class Diagrams

6.3 Additional Pages for the Web Application

The principle idea of starting from a zoomed-out perspective and incrementally diving
deeper into more detailed views of the data can be realized with three kinds of pages: A
dashboard, an overview page, and a details page. We aim to provide an application with a
high degree of usability (Section 1.4.4), therefore the generator provides additional pages
that add additional functions and reduce the developers effort. The following section
presents further pages that are generated, based on the single underlying model.

6.3.1 Change Data Capture

Based on the input class diagram, a page can be synthesized that shows a history of all
database interactions (cf. Figure 6.7) implementing the history action.
One of the most important features of an EIS is the provision of real-time data access and
reporting [AKJP05, SBLY08]. This helps in better decision making, as managers and
leaders can access the most recent data and make decisions based on that information.
The features presented up to this point only visualize the data as-is and do not give
insight into actions from the past or historic data. As we are generating both the
persistence and the communication layer we can extend the generator to add a Change
Data Capture-GUI that provides the user with an overview of all past actions and historic
data states. In the context of this thesis, we implemented two variants of this feature:
(1) an extension of the generated command infrastructure (cf. Section 7.3.1) with a
memento pattern or (2) an extension of generated data access objects (cf. Section 7.3.1)
to include the memento pattern. In both cases, the current state of the affected objects
is stored before it is changed and can be visualized with a dedicated GUI as shown in
Figure 6.7. Since we do not lose the type information on the history records, we can
still apply RBAC (see Section 6.5.1) to the history records so that no user can access
restricted data. Both approaches are realized by extension of the function library of the
generator framework to synthesize additional methods that handle change data capture
in either the command class or the DAO class that corresponds to a specific class defined
in the base class diagram.

6.3.2 Navigatable UML Class Diagram

Depending on the size of the data structure and the corresponding use case, a simple
sidebar navigation might not be optimal to provide the user with access to the data.
Therefore, we explored different dashboard variants that list all available classes.
We can visualize the root class diagram by transforming it to PlantUML. The resulting
SVG is enhanced to be interactive, so that clicking on a class navigates to its corre-
sponding overview page. As class diagrams can be extensive, the diagram is scalable
with a simple slider. The resulting generated component is shown below in Figure 6.8.
This variant is defined by a combination of a single GUI-model and a generated SVG

124

6.3 Additional Pages for the Web Application

Figure 6.7: MaCoCo screenshot showing the history function of the EIS. The information
displayed is (1): When an action was performed, (2) a Unique event-id,
and (3) a collapsable description of the action. Additionally, all actions are
searchable

file. A drawback of this navigation-variant is its technicality: Although it visualizes the
precise relations between all navigable classes, it contains to much irrelevant informa-
tion for users with no software engineering background. Also, this variant relies on the
generated SVG file, which only can be used ’as-is’ and cannot be extended with our
established mechanisms.

6.3.3 Global Search

Finding relevant Data in an Information system is one of the most important aspects of
the platform. Although the navigation previously presented aids in finding specific types,
it still requires the user to traverse hierarchical structures to find searched data. Relying
only on the input CD we can generate both the user interface and search algorithm, which
is optimized for the generated data structure. Similar to the generic approach shown in
Section 6.4, another GUI-model for the Global Search is generated. This model is similar
to the overview page, except that it is not type-specific. Next to the model, the data
structure generator is extended to provide an additional search algorithm. In addition
to the previously introduced basic functions of the DAO (Section 7.3.1) type-specific
search functions are generated. Figure 6.10 depicts the generated search architecture:

125

Chapter 6 GUI-Model Derivation from Class Diagrams

Figure 6.8: Visual Representation of the input Class Diagram used as web page navi-
gation. This page is defined by a combination of GUI-Model and generated
SVG File.

Starting at the generated GUI-Model, a generic search command containing a search
term is sent from the Client (FE) to the Server (BE). As the command is generic, it does
not hold any information on any types or databases it can search, thus it accesses the
generated DAOLib in order to iterate over all available types. DAOLib itself calls search
algorithms within the specific DAOs that can access the database directly. Search results
are returned as a generic SearchResult-Type containing type information, target-Id, and
a result string, that indicates both the found element within the object, as well as its
surrounding context. The resulting User interface is shown in Figure 6.9: A user can
search for keywords and toggle case sensitivity. The results are listed in the table below.
Objects of any type are listed in the same table as every object is represented with its
type and ID, and its values are represented as a string. Any match with the search
keywords is highlighted. The user can navigate to the details page of each object by
clicking on it or by clicking on the ’eye-icon’ at the start of each entry. The user can
also delete elements with the ’bin icon’. We enable the visualization of any results by
shortening the object details to show only the part that matches any keyword. In order
to get full details on the object the user has to navigate to the details page.

126

6.4 Architecture

Figure 6.9: The user receives a search interface that can be used to search the entire
database. A click upon a search result navigates to the Details Page (Sec-
tion 6.2.3) of the corresponding object. The search can be toggled to be
case-sensitive and supports common features such as quoted search terms.

6.4 Architecture

The goal behind the development of CD2GUI is the creation of GUI-models for user
interfaces, based on a class diagram in order to provide the user with intuitive and
effective access to the data stored in the database. Within the proposed toolchain,
CD2GUI is placed after LLM4CD and before MontiGem. It receives the class diagram
from LLM4CD creates a set of GUI-models based on it and passes them and the class
diagram on to MontiGem.
In order to provide a GUI for efficient data access CD2GUI needs to provide a generic
dashboard page an overview page for each class and a details page for each class.
Figure 6.11 gives us an overview of the main architecture of CD2GUI. Starting on the left
CD2GUI is provided with both a class diagram and a configuration. In our approach, the
class diagram is provided by the preceding transformer: LLM4CD. The configuration is
set up in advance by the developer of the toolchain. The configuration primarily contains
paths for both the input and output of artifacts and paths to templates that should be

127

Chapter 6 GUI-Model Derivation from Class Diagrams

Figure 6.10: Extension of the RTE, and Generator enables the generation of a type
independent domain-specific global search through the entire database, that
the user has access to.

used. The model loader parses the root class diagram and prepares a list of classes that
are used by the GUI model creator. The GUI model creator provides the generators that
create for each kind of page a set of corresponding models. Each generator iterates over
the provided list and uses a set of templates to create either a set of pages or, in the case
of the dashboard, a single one.

6.4.1 Template Usage

The templates used by CD2GUI are organized in a tree structure, using separate tem-
plates to define components and subcomponents of each page. There are four sets of
templates: One for each generated kind of GUI-models and generic templates to include
new pages in the application. An overview is shown in Table 6.1. The relations between
the templates are depicted in Figure 6.12.

dashboard-gui.ftl
imports-dashboard.ftl
card-dashboard.ftl
table-header-dashboard.ftl
table-content-dashboard.ftl

overview-gui.ftl
imports-overview.ftl
card-overview.ftl
table-header-overview.ftl
table-content-overview.ftl
subclass-overview.ftl

detail-gui.ftl
imports-details.ftl
attributes-card-details.ftl
associations-card-details.ftl
associations-table-details.ftl
details-edit-gui.ftl

form-gui.ftl
attributes-card-form.ftl
associations-card-form.ftl

module.ftl
routing.ftl

128

6.4 Architecture

Page Template name Details
Dashbard dashboard-gui.ftl Defines basic structure of the Dashboard

imports-dashboard.ftl Defines imports needed by the dashboard GUI-model
card-dashboard.ftl Cards for each type within the dashboard
table-header-dashboard.ftl Defines table headers of tables within cards
table-content-dashboard.ftl Defines Corresponding content of tables

Overview Page overview-gui.ftl Basic structure of Overview page
imports-overview.ftl Defines imports needed by the overview GUI-model
attributes-overview.ftl Handles type-specific visualization of attributes
card-overview.ftl Hanldes card containing overview table
subclass-overview.ftl Provides navigation to overview pages of subclasses
table-header-overview.ftl Defines Table headers of tables within cards
table-content-overview.ftl Defines Corresponding content of tables

Details Page detail-gui.ftl Basic structure of Details page
imports-details.ftl Defines imports needed by the details GUI-model
attributes-card-details.ftl Handles type-specific visualization of attributes
associations-card-details.ftl Handles type-specific visualization of associations
associations-table-details.ftl Handles type-specific list of associations
details-edit-gui.ftl GUI for editing of data of a given object

Form Page1 form-gui.ftl Basic structure of Form page
attributes-card-form.ftl Handles type-specific visualization of attributes
associations-card-form.ftl Handles type-specific visualization of associations

Generic module.ftl Includes new pages in generated application
routing.ftl Sets routing for new pages in application

1: Form Page is a variant of the Details Page intended to create new objects, in contrast to the default
Details Page, the Form Page does not yet reference an existing object from the database.

Table 6.1: Primary templates used to generate an information system using GUI-DSL
v2. In comparison to the approach used with GUI-DSLv1 (cf. Table 6.2), the
templates are divided in further segments in order to ease the use of template
replacement (cf. Section 6.6.1).

129

Chapter 6 GUI-Model Derivation from Class Diagrams

Figure 6.11: Overview on CD2GUI as an extension within the MontiGem-framework

Figure 6.12: Template nesting of templates used in CD2GUI

Each template is used to assemble a GUI-model according to the properties of the pro-
vided class. We have to tackle for each template the problem of how to provide a
generic method to visualize non-primitive data types. Equivalent to a ’toString()’ func-
tion, CD2GUI has to provide a solution on how to present arbitrary data on the user
interface.
We take a closer look at the templates used to create a GUI-model for the details page:
Listing 6.1 depicts the basic structure of a Freemarker template to create a GUI-model
in GUIDSL v2 syntax. Below Listing 6.2 depicts the corresponding section of the gen-
erated GUI-model. The template is called for a single class, as the GUI model creator
iterates over the classes provided by the model loader. The template is provided with
the class name, its package, attributes, and associations (Line 1). Next, the compo-
nents and data classes that are used in the GUI-model are imported (Line 2). Each
GUI-model that defines a page starts with the page keyword. Each model is named
after the corresponding class e.g. PersonDetails. The page component itself is declared
with the object in question for that derails page: page personDetails(Person person)
(Listing 6.2 Line 2). Within the page component, we can define further GUI compo-
nents. Each component is defined with a unique name within the GUI-model. We can
rely on the naming conventions of class diagrams to provide unique class and attribute
names to name each component within the created GUI model. E.g. we can assume
that there are no two attributes within one class that share a name, thus we can name
components by the attributes, classes, or associations they handle. As shown previously
in the schematic representation of a details page (cf. Figure 6.6) the GUI-model contains

130

6.4 Architecture

Page Template name Details
Dashbard classes.ftl Complete GUI-model for dashboard
Overview Page overview-component.ftl Complete GUI-model

overview-component-ts.ftl Typescript logic for validators
Details Page detail-component.ftl Complete GUI-model

detail-component-ts.ftl Typescript logic for validators
imports.ftl Imports for TypeScript classes
component.ftl Typescript class structure
constructor.ftl Constructor for details page component class
role methods.ftl Typescript logic for permission management
edit save method.ftl Typescript logic for data persistence
derived attributes.ftl Typescript logic for derived attributes

Generic module.ftl Includes new pages in generated application
routing.ftl Sets routing for new pages in application

Table 6.2: Templates used to generate an information system using GUI-DSL v1. As
GUIDSL v2 supports the nesting of models, we are also able to nest templates
to a higher degree.

multiple cards. Listing 6.1 Line 4 shows the definition of the first of these cards resulting
in employeeDetailsCard@GemCard (Listing 6.2). This particular card is intended to list
all attributes that are defined within the given class (Listing 6.1 Line 7)

131

Chapter 6 GUI-Model Derivation from Class Diagrams

1 ${tc.signature("name", "domainPackage","attributes","roles")}
2 // imports and static parameters ...
3 page ${name}Details(${name} ${name?lower_case}) {
4 ${name?uncap_first}DetailsCard@GemCard(
5 title = "${name} Details",
6 component = ${name?uncap_first}DetailsRow@GemRow(components = [
7 // list of attributes ...
8])
9 // further components ...

10 }

Listing 6.1: Basic structure of a Freemarker template to create a GUI model in
GUIDSL v2 for a details page.

1 // ...
2 page employeeDetails(Employee employee) {
3 employeeDetailsCard@GemCard(
4 title = "employee Details",
5 component = employeeDetailsRow@GemRow(components = [
6 // some components ...
7])
8);
9 // ...

10 }

Listing 6.2: Corresponding section of the GUI-model for Listing 6.1

The method of data visualization depends on the type of data that should be shown
in the user interface. For this reason, we have included a case differentiation in our
templates, which visualizes the data differently depending on the type handled. For the
details page, there are four distinctions as shown in Listing 6.3. Booleans (Line 3) are
displayed as checkboxes (@GemCheckBoxInput()) and primitive types (Line 5) such as
String or Integer are shown directly as a text field (GemText()). A nonprimitive type can
not be displayed as easily as primitive ones, as they can have an arbitrary number of
attributes themselves, and the class diagram does not provide information on which of
those would be helpful to the user to identify the attribute. For example, An employee
can have a ’car’ attribute that itself has a’modelname’ and a ’numberplate’ attribute.
However, it is unclear, based on the class diagram, whether the numberplate or the
model name should be used as an identifying element, to show which car is an attribute
of the employee class. Circumvent this issue by providing a link to the specific attribute.
Enabling the user to investigate the attribute further. Line 7 shows the corresponding
GUI Component @GemLink(). Finally, in case the attribute is neither primitive nor has
a detail page, a simple text (line 10: @GemText()) is shown notifying the user that this
element cannot be handled. A handwritten extension is recommended for these edge

132

6.4 Architecture

cases.

1 // ...
2 <#list attributes as a>
3 <#if a.isBoolean()>
4 ${name?uncap_first}_${a.getName()}@GemCheckBoxInput(labelText = "

${a.getName()}"),
5 <#elseif a.isPrimitive()>
6 ${name?uncap_first}_${a.getName()}@GemText(value = "${a.getName()

} = " + ${name?lower_case}.${a.getName()}),
7 <#elseif a.isClassWithDetailsPage()>
8 ${name?uncap_first}_${a.getName()}@GemLink(url = "/cd2gui/models/

${a.getType().getName()?cap_first}Details/" + ${name?
lower_case}.${a.getName()}.gemId, text = "${a.getName()}"),

9 <#else >
10 ${name?uncap_first}_${a.getName()}@GemText(value = "No Details

Page Exists"),
11 </#if>
12 </#list>
13 // ...

Listing 6.3: Template defining a list of attributes (Listing 6.1 Line 7)

This concludes the first card of the details page: It lists all attributes of the shown
object and provides a visualization of the data for each type it can handle, otherwise, it
provides an option to navigate to the details page of the corresponding attribute. The
details page contains further cards that contain lists showing all objects that are linked
for each association of the given object. Similar to the attributes card the association
cards visualize data in case it is possible otherwise they provide links to investigate the
linked objects further. The complete template is shown in the appendix: Listing A.3.
The same mechanisms to handle nonprimitive data types were applied to the templates
for both dashboard and overview pages.

6.4.2 Handling Inheritance

The GUI-models created by CD2GUI, are customized for specific classes as they are
defined in the input class diagram. Therefore, for a detailed list of attributes of a class,
we do not only take into account the attributes and associations that are defined directly
within the class, but also all attributes and associations that are inherited from super
classes of that class. We do not show any attributes of potential subclasses. This affects
both the generated list of attributes as well as the table for linked objects: The list of
attributes is simply extended by the inherited ones. The Table of linked objects can
list objects of any type that extend the type of the association. Figure 6.13 depicts a
simple class diagram for a use case that involves inheritance and a corresponding object
diagram. Using that class diagram as input for CD2GUI would yield three details pages

133

Chapter 6 GUI-Model Derivation from Class Diagrams

Figure 6.13: Example of inheritance

(for the classes A,B,C), three overview pages, and a dashboard. The details page for
class A contains a list of all linked objects of type B. Due to inheritance, objects of type
A can also be linked to C and thus also appear in the list. As the list is defined for the
Type B, it will only show attributes of the B class. Thus, following the example, the list
would show: myObjectB, its id and its name, as well as myObjectC its id and only its
name. The age attribute however will not be shown. Clicking on each object will still
navigate the user to the correct type of each class.

6.4.3 Handling Abstract classes

Abstract classes can not be instantiated; thus we can only list objects that inherit from
that abstract type and only provide functions that allow the creation of a new object of
a subtype. Therefore, there are still use cases for which a dedicated page for an abstract
class can be useful:
Overview page for abstract classes: The overview page lists not only the objects of the
type in question, but also all subtypes. Thus, an overview page for an abstract class
can serve as a good page to get a generic overview of a subset of classes. In contrast,
no user interface is generated for enumerations or interfaces, as they are both abstract
and cannot be extended. Enumerations can still be used as a class attribute and will
be implemented with GUI components such as drop-downs for editing. Note that any
limitations imposed by the default configuration of CD2GUI can be overwritten and
extended with handwritten models.
Abstract classes in Details Pages: Details pages for abstract classes can exist for objects
of a subtype, providing a view of a subtype as the abstract type. Association to abstract
objects can be visualized on the details page in a similar mannor. As it shows, linked
object to abstract classes, in case that object inherits from that abstract class. Although
no abstract object can be listed, objects of the subtypes will appear in case they are linked

134

6.4 Architecture

to the object in the focus of the details page.
Abstract classes in the dashboard: The dashboard handles abstract classes as normal
classes and provides metadata if available. It also provides navigation options to the
overview pages of the abstract classes.

6.4.4 Handling Associations

As shown above, we can use CD2GUI to create pages that visualize any type of as-
sociation. However, the creation of a new object together with linked objects poses a
challenge. In the following let us assume we want to create an object of the class ’My-
Class’. A class modeled in CD4A can have associations that we have to distinguish by
their cardinalities: First, let us take a look at unidirectional associations.

MyClass MyOtherClass
*

The pages generated by CD2GUI to manage and view objects of type ’MyClass’ offer the
user the option to pick an existing object of type ’MyOtherClass’ to link it to the object in
question. If there are already objects linked, the link can be removed and further existing
MyOtherClass-Objects can be added. A ’MyClass’ object can be created without any
linked object.

MyClass MyOtherClass
0..1

Similarly to the previous association the pages generated by CD2GUI allow to add, edit,
and remove linked objects. In this case, however, the amount of linkable objects of type
B is limited to one. CD2GUI will provide the same user interface, but prevent the user
from linking more objects.

MyClass MyOtherClass
1

In contrast to previous associations, the [1] -> [1] association requires the linked object
B to exist before A is created. Forcing the user to create objects in a pre-defined order.
This condition might prevent the creation of objects in case there are cycles in the
class diagram. We can tackle this challenge by setting up a transitive closure around
any objects that should be linked and generating a corresponding GUI that creates
all required objects at the same time. CD2GUI tackles this challenge by generating
additional dialogs that allow the creation of the needed object Figure 6.15.
When creating an object we need to take into account both sides of the association:

MyClass MyOtherClass
* 1

135

Chapter 6 GUI-Model Derivation from Class Diagrams

Figure 6.14: Transitive Closure. Corresponding dialog is shown in Figure 6.15

In case multiple Objects of type ’MyClass’ can be linked to a single Object of type
’MyOtherClass’, the user interface behaves similarly to previous cases, offering the user
to set one object of type B as a target. Data validation at both the server and the client
ensures that a ’MyClass’ object is only linked to one ’MyOtherClass’ object.

MyClass MyOtherClass
* *

In case any amount of object ’MyClass’ is linked to an arbitrary amount of objects of
type ’MyOtherClass’. CD2GUI provides offers to link new and unlink associated objects
without any restrictions. Bi-directional associations are treated as the two associations
with opposite directions. Thus, the following associations are not supported by CD2GUI:

MyClass MyOtherClass
1 1

In this case, neither a ’MyClass’ object nor a ’MyOtherClass’ object can exist without
the other. CD2GUI is required to provide pages to create both objects at the same
time. In it’s current form there is no user interface to create both the ’MyClass’ object
and the ’MyOtherClass’ object at the same time. We tested an extension to CD2GUI
that generates a dialog to create the missing object, allowing to CD2GUI to create both
objects at the same time. We solve this issue as described above by forming a transitive
closure around all objects that need to be created at the same time. A corresponding
GUI is generated to enable the user to set up all objects simultaneously.

MyClass MyOtherClass
1 *

This association produces a similar problem as the association described before. The
’MyOtherClass’ object can not exist without a ’MyClass’ object present and thus has to

136

6.4 Architecture

Figure 6.15: CD2GUI tackles transitive closure with a dialog, listing all needed at-
tributes. This enables the user to define any object that is linked to the
new object in focus. There is one dialog for each outgoing association of
the new object that is currently being edited.

be created at the same time as the ’MyClass’ object.

MyClass MyOtherClass
0..1 *

In this case, the ’MyOtherClass’ object can exist without a ’MyClass’ object linked to
it thus we can create both objects in sequence.

6.4.5 Handling Generics

CD2GUI supports the following generics: Optional<A> and List<A>. Map<A,B> and
Set<A> are not supported. CD2GUI treats lists as associations providing GUIs that
offer the same mechanisms to add and remove elements to an object. An optional pa-
rameter is also treated like an association with a 0..1 cardinality. Permitting the creation
of an object while leaving that specific attribute empty.
Table 6.3 summarizes which elements of a CD4A model are supported by the class
diagram model to model transformer. As CD4A does not support packages, generics,
and annotations, CD2GUI that is based on the CD4A can not process these elements as
well.

137

Chapter 6 GUI-Model Derivation from Class Diagrams

Figure 6.16: Role Based Access Control as Defined in [FCK+95, SFK+00]

6.5 Further Artifacts Derived from Single Underlying Model

CD2GUI targets the creation of GUI-models based on the list of pages we identified in
Section 6.2 in order to provide efficient access and manipulation facilities to data. Next
to GUI-models we can create further code based on the single underlying model in order
to manage data access and finally testing of the system.

6.5.1 Generated Role Based Access Control

An information system is intended to serve multiple groups of users that each might
have varying access to the data stored within the system.
Therefore, we need to establish user-specific access policies [SS94] to restrict access to
the system. The system we propose has been successfully used in MaCoCo (Chapter 8)
and is based on Role Based Access Control (RBAC) [USMDAS14, FCK+95].
Role-based access control (RBAC) assigns system access to users based on their roles
within an organization, each with specific privileges, rather than assigning access on a
case-by-case basis as in rule-based systems. Unlike discretionary models where individ-
uals control access, RBAC centralizes access management by aligning it with the roles’
defined functions and responsibilities. Figure 6.16 depicts the principles behind RBAC:
Multiple Users can be assigned to a Role. The roles themselves contain privileges and
rules. In order to access an asset, a user must be assigned with a corresponding role.
The data structure of the generated application (cf. Figure 6.17) is structured as follows:
A domain user can be granted access policies. An access policy can contain a unique
asset ID stored in the database. It also links to one role. A role itself contains multiple
operations (permission) that define an operation that is performed on the asset (CREATE,
UPDATE ...). A role also links to a domain. A domain can group classes within the single
underlying model. Any class can be assigned to one domain. The rule to access an asset

138

6.5 Further Artifacts Derived from Single Underlying Model

Figure 6.17: Role Based Access Control as defined for a system configured by CD2GUI.

is implemented as follows:

User ×Role×Operation×Domain

A user has a role that defines an operation upon a domain. A user can only access or
modify data in the event that he is assigned a role that contains the operation he wants
to perform and in the event that the targeted object is in the same domain as defined
in that role.
Let us assume that the generated web application is a web store. Roles that would
be likely are Customer and StoreOwner. Setting up the system, the developer would
assign the Operation UPDATE on the Price-Objects to the StoreOwner Role. On the
other hand, the developer would assign the Operation READ on the Price-Objects to
the Customer Role. During runtime, when a new User is created it can be decided what
role to assign. The shopkeeper would be granted the StoreOwner Role, granting him
privileges to change any of the prices in his store. We can restrict the role assignments by
mapping a role to a specific subject, e.g. letting a user only see one specific Price-Object.
RBAC relies on a mapping of roles, operations, and objects that cannot be directly
derived from the same class diagram that defines the basic domain of the application.
One option to generate such a system would be to create a superset of all CRUD op-
erations and classes and transform them into roles that can be assigned to the users as
needed. This shifts the workload from the developer to the end user, as he has to figure
out the correct roles that are needed for his day-to-day usage of the web application.
This also bears the risk of inconsistent permissions among users which tends to result in

139

Chapter 6 GUI-Model Derivation from Class Diagrams

Figure 6.18: Generated Role Based Access Control integrated into MontiGem architec-
ture (cf. Figure 6.11)

more rights being granted than necessary. A more efficient solution is the usage of the
tagging language (see Section 3.5) to map roles to specific classes and thus have a use
case-specific set of roles similar to those mentioned in the web store example above.
Thus we can tag the root class diagram and generate RBAC that is linked directly to
the single underlying model.
Figure 6.18 shows the model-driven approach using tagging (cf. Section 3.5) in order
to define access control. The class diagram can be tagged with role definitions. The
tag schema defines how the class diagram can be tagged. Based on the tag schema the
tagging generator provides tag-specific methods to handle tagged elements of the class
diagram. Both CD2GUI and MontiGem have to be extended with methods provided
by the tagging generator to process the tagged CD4A model. Resulting in a generated
architecture that implements consistent access management for both the server as well
as the client.
In order to reduce to complexity of roles and permissions, every class is generated with
the methods getDomain() and getAccessId() (cf. Figure 6.17). The method getDomain()
is used to return the domain a class is grouped by. Multiple classes can return the same
domain. Enabling roles that grant access to a single domain rather than a set of classes.
The method getAccessId() can refer to either to the ID of the object itself or, refer
to the ID of another object. This allows to derive permissions from other objects. For
example, if a user has access to a ’Budget’ object and there are several ’Bookings’ within
the budget. By referring to the ID of the Budget we can enable a user to automatically
have access to any related ’Booking’ in case he has also access to the corresponding

140

6.5 Further Artifacts Derived from Single Underlying Model

’Budget’. This reduces the amount of assets we need to target in our permissions to key
objects in the data structure.

Tag Definition for SUM-Based RBAC

The fundamental concept of access control by tagging is to define a tag type that can
then be used in tagging definitions to tag elements of a class diagram model with access
permissions. CD2GUI uses a final tagging schema to define tag types for RBAC-related
tags. The tagging scheme has been specifically designed for access control, as demon-
strated in Listing 6.4, and is exclusively intended for access control purposes rather than
any other tag types the generator might employ. This has the advantage of clearly sep-
arating the functional logic, allowing the tagging schema to be easily reused for other
generators requiring access control. As a result, the tagging schema is referred to as the
AccessControl tagschema.

1 package de.monticore.taggingschema;

3 tagschema AccessControl {

5 tagtype AccessRight: {
6 flag: String,
7 operation: [R | CR | RU | RD | CRU | CRD | RUD | CRUD | NONE]
8 };

10 }

Listing 6.4: Used tagschema for access control. The used tag definition consists of two
inner tag types: flag and operation

The tagtype AccessRight used in the tagshema is a complex tag type (cf. Section 3.5).
The tagtype combines the two tags: flag in order to tag a Role to a class diagram
element and permission to tag permissions to the same element. Thus we can use the
combined tag to define what Role is needed for which Operation if access is requested for
a specific element in the class diagram. We take a closer look at the individual functions
of both tags:
Tagging a Role: As the roles are defined as a Java enum (cf. Figure 6.17), we can not
reference them directly from the tagging. Therefore, a value tag type with the type
String is used to reference the permission flags in a tag. As can be seen in Listing 6.5,
the designed tag type has the name Flag and the type String.

141

Chapter 6 GUI-Model Derivation from Class Diagrams

1 tagtype Flag: String;

Listing 6.5: Tagtype Flag

Listing 6.6 depicts how to tag the class ’Employee’ with a Role. The class ’Employee’ is
tagged with the ’ADMIN’ role. Configuring the targeted web application to only grant
users with the ’ADMIN’ role access to ’Employee’-objects.

1 tag Employee with Flag = "ADMIN";

Listing 6.6: Definition Operation Tag.

Tagging an Operation Next to defining what role can access an element, we define what
operation can be performed on that element. A role might have only grant a user limited
operations for a specific element therefore we need to specify what restrictions apply to
what role. For example: An ’ADMIN’ might have full access to create, read, update, and
delete any Employee object. A ’HR-Assistant’-Role however, only might have reading
access to any Employee-Object. It is crucial to differentiate whether a user may only view
data records or can also edit, create, and delete them as necessary. The web interface
functions can be categorized into CRUD (create, read, update, delete) operations. To
address this, a tag type Operation assigns CRUD operations to the elements in the class
diagram model.

1 1 tagtype Operation: [CREATE, READ, UPDATE, DELTE];

Listing 6.7: Tagging the Employee with Operation Tag. The depicted version is the
verbose variant. The current implementation uses the shortened variant cf.
Listing 6.9.

Listing 6.8 shows two tags for the ’Employee’ class. To access an ’Employee’ object a
user has to be assigned a Role that contains either ’Read’ or ’Update’ permissions.

1 tag Employee with Operation = [READ];
2 tag Employee with Operation = [UPDATE];

Listing 6.8: Verbose definition of an Operation Tag

In this example, the Employee class has been tagged with the initial variant of the
Operation tag type and given the READ and UPDATE values. The enum tag type is
designed to have only one assigned value in a tagging definition, which means that if
multiple operations are to be tagged to an element, multiple tags must be defined as well.

142

6.5 Further Artifacts Derived from Single Underlying Model

If an item requires all four CRUD operations to be tagged, then four separate tags are
necessary. To simplify this process, the Operation tag type has been shortened to allow
managing multiple CRUD operations with a single tag. The currently used definition of
the tag type is displayed in Listing 6.9.

1 // Shortened variant
2 tagtype Operation:[R| CR | RU | RD | CRU | CRD | RUD | CRUD | NONE];

Listing 6.9: Tagshema for shorter permission definition.

The AccessRight tag type is a complex one that includes both the Flag and Operation tag
types. They are defined as inner tag types within AccessRight. Listing 6.10 illustrates
the tag type’s application. Rather than defining two individual tags for the Employee
class, we tag the Employee class with the AccessRight tag. The tag specifies the values
’ADMIN’ for the Flag inner tag type and ’RU’ for the Operation inner tag type.

1 tagtype AccessRight: {
2 flag: String,
3 operation: [R | CR | RU | RD | CRU | CRD | RUD | CRUD | NONE]
4 };

Listing 6.10: Complex tag type used in current architecture, grouping multiple
permission options within one tag.

Using the complex AccessRight tag type allows for defining multiple tags for the same
element, each clearly assigned to a specific Rle and corresponding Operations.

1 // Only HR can read Employee Data:
2 tag Employee with AccessRight = { flag="HR-Assistant", operation=[RU] };

Listing 6.11: Tag defining what Role is needed with which rights to access an Employee
Object: A user needs the ’HR-Assistant’ Role to either read or update an
Employee object.

Tag-Based GUI-model generation

The RBAC information added to the SUM is used by CD2GUI to create corresponding
GUI-models. Both GUIDSL v1 and GUIDSL v2 permit the definition of guards that
define if a GUI component is displayed or not. Listing 6.11 gives an example of the
guard ifPermission, used within a GUI-model to ensure that a button is only shown in
case the current user is assigned the ’ADMIN’ role.

143

Chapter 6 GUI-Model Derivation from Class Diagrams

1 button ifPermission(ADMIN) 'Employees' {
2 click -> navigateToEmployees() {
3 ''this._router.navigate(['cd2gui/employees'],);'');
4 }

Listing 6.12: GUI-model using ifPermission to define an RBAC-constrained user
interface.

Depending on the tagging model, guards are applied to all tagged elements of the SUM
defining a set of user interfaces that show or hide elements based on the Roles of the
signed-in user.
In addition, the tagged class diagram is processed by the generator that provides the
infrastructure between the server and the client. Preventing not only the visualization
of GUI components but also the transmission of restricted data to the client based on
the privileges of the signed-in user.

6.5.2 Generated Test Data

A key element of prototyping is testing. Similar to RBAC, the single underlying model
can be used to generate test data. Within the different use cases this generative approach
was applied to, we developed four different ways to produce test data.

1. Random Data: A simple random number generator (RNG) is used to produce
random values during object creation. Although this method is very efficient and
resource-saving, it very often does not create data that fits any use cases. It is
best suited in unit testing to identify edge cases for specific parameter settings.
However, user interfaces require further refined data in order to be optimized to
better visualize data of a given use case.

2. Random Class Diagram Conform Data: In Order to better evaluate functions
and methods that are based on the base class diagram, we need a set of objects
that conform to it. We can combine the RNG with generated builder classes
from the class diagram to not only produce random data but also to create valid
random objects. Note that these objects are very likely to not match any use
case, as names are still random character sequences and values are only bound by
the constraints imposed by the builders. Similar to Random data, although this
data can be shown by the GUI-models this test data is unusable to optimize the
user interfaces, as fields like user names or addresses would still only be random
sequences of characters and would not represent typical usage.

3. Random Constrained Data: In order to create more applicable test data, we can
introduce constraints that are tagged to specific attributes in the base class diagram

144

6.5 Further Artifacts Derived from Single Underlying Model

(cf. Section 3.5). The generator is extended by a function library that enables it to
generate extended builders that not only can build objects, but also create random
dummy objects. Thus we can produce objects that are bound to specific properties
such as number ranges, string length, or amounts of linked objects.

4. Random Use Case Specific Data: User experience testing in particular relies on
realistic data to provide plausible interfaces for the everyday use of a system.
Therefore we can extend the generation of random constrained data with data sets
for specific values such as names or parameters. Depending on the tagging, each
parameter is either created at random or picked from a data set, thus assembling
a new random object. Values themselves can also be assembled by using multiple
data sets as input, enabling the creation of strings such as a concatenation of a
title, a name, and a surname.

5. AI-Based Data Generation: LLMs are capable of producing datasets for specific
data structures in various formats. The limits discussed in Section 4.1 apply here
as well: Only a limited amount of data can be produced due to the limited context
size of the used language model. Thus LLMs are well suited to find smaller edge
cases rather than producing large data sets. Generating and training LLMs is very
resource-intensive, a data set for test data should be created once and then used
iteratively rather than creating a data set with each run of the generator.

So, using a class diagram, we can create a prototype together with random data with
which the system can be tested and evaluated. However, as soon as we want to use data
that is more precisely tailored to a specific use case, we need further models in the form
of tagging.
Listing 6.13 depicts an excerpt of the tagschema used to define how test data should be
generated for the tagged element of the class diagram. In this case, three strings can be
tagged to an attribute: A default string (Line 7) that is used to set the attribute each
time a test object is created. A prefix (Line 8) and a suffix (Line 9) that can be chosen
from a list of strings stored in a file.

145

Chapter 6 GUI-Model Derivation from Class Diagrams

1 package de.monticore.montigem.tagging.tagschema;

3 import de.monticore.umlcd4a.symboltable.*;

5 tagschema GeneratorSchema {
6 // ...
7 tagtype StringEquals:String for Attr;
8 tagtype PrefixFromFile:String for Attr;
9 tagtype SuffixFromFile:String for Attr;

10 // ...
11 }

Listing 6.13: Excerpt from the tagschema used to specify how data should be generated
for a given class diagram.

An example is shown in Listing 6.14: The ’name’ attribute of the ’Person’ class is set to
the Space character (” ”). As a prefix, a name from a list is chosen at random, and as a
suffix, a surname from a list is chosen. Resulting in a random list of reasonable names -
rather than random sequences of characters.

1 package de.monticore.montigem.be.domain;

3 conforms to de.monticore.montigem.tagging.tagschema.GeneratorSchema;

5 tags GeneratorTags for Domain {
6 tag Person.name with PrefixFromFile = "firstNames.txt";
7 tag Person.name with StringEquals = " ";
8 tag Person.name with SuffixFromFile = "lastNames.txt";
9 }

Listing 6.14: Tags for the ’name’ attribute of the ’Person’ class, setting up a random
creation of a name-surname combination based on two name lists.

6.6 Modifying Model Generation: Variability

Up to now, we have demonstrated the capability of using a transformer to derive a set of
models from a single underlying model. Nevertheless, during the development process,
there might be a necessity to adjust the generated models or alter the general attributes
of the produced models. In the following, we will take a closer look at the variability
and adaptability of CD2GUI.
Variability is the ability of a software system to perform planned or anticipated changes
to meet new requirements that arise after its design [GWT+13, GWT+14]. The variabil-
ity has to be predefined in two ways: The locations where variation can occur (variation

146

6.6 Modifying Model Generation: Variability

points) [Jac97] as well as the process of how variability is performed (variability mecha-
nism). Examples of variability mechanisms are inheritance, parameterization, template
replacement, or generation [Jac97, Cle05]. The variability can be performed at design
time, runtime or configuration time [GWT+14] (e.g. selecting between different versions
of a component during the design or dynamically at runtime).
In the context of DSLs, one option to realize variability, is to define it in a variation
model, that describes how the variation is handled on a base model. The variation
model can be defined in a different DSL or the same as the base model. Both models are
then processed and a product model is produced. The product model is the base model
with the variability applied and is defined in the same DSL as the base model. This
process is called Variability Processing. The whole process is shown in Figure 6.21. The
product model can then be used instead of the software system’s base model, allowing
for variability at the model level [HMPO+08]. Further options to apply variability to
the generation process are template replacement and the usage of stereotypes.

6.6.1 Template Replacement

CD2GUI provides the same set of models for each class and does not handle visualization
of non-primitive attributes and associations type specific. CD2GUI uses a set of nested
templates to generate GUI-models. Each template can be replaced by handwritten
ones (variation points) using the manager-class TemplateManager in order to add custom
handling of additional types (cf. Figure 6.20). the template manager provides a Set
storing all templates that are used to assemble GUI-models. The manager provides the
methods to add, replace, and get templates which are called from within the templates
(cf. Listing 6.15). The template replacement is designed to be conditional: Based on
the provided class, attribute, or association, a different template can be returned. We
use this to pick fitting templates that match the use case defined by the domain model.
Thus a template that iterates over class attributes can use fitting templates to generate
GUI-Components that correspond to the attribute type. Hence a temperature parameter
is visualized with a temperature gauge and a percentage with a progress bar.
The method getTemplate(String oldTemplateDesignation) returns a specific
freemarker template. Additional conditions can be provided by providing further
arguments:

• Class specific template getTemplate(String templateDesignation, ASTCDClass
clazz): If provided with a class, any template for that designation and that class
will be used instead of the default template.

• Attribute specific template getTemplate(String templateDesignation,
ASTCDAttribute attribute) If provided with an attribute, any template for
that designation and that attribute will be used instead of the default template.

147

Chapter 6 GUI-Model Derivation from Class Diagrams

Figure 6.19: CD2GUI transforming CD4A models to GUI-models. CD2GUI can be con-
figured to use custom templates (top left) in order to systematically modify
the transformation.

• Association specific template getTemplate(String templateDesignation,
ASTCDRole role): If provided with an association, any template for that
designation and that association will be used instead of the default template.

• Template Replacement for multiple elements getTemplate(String oldTemplate,
ASTCDClass clazz, ASTCDAttribute attribute): In order to replace a template if
it is only used within a specific class, we can provide multiple elements such as
class and attribute. In case an attribute name occurs in multiple classes, we can
use this replacement to specify what attribute is replaced in which class.

Listing 6.15 shows the usage of template replacement in the template for the overview
page. Depending on the class in focus, a corresponding template is used. In case no
specific template is defined for that class the default template is used. In this case the
developer chooses if he wishes to use the default table representation (cf. Section 6.2.2),
or if he wants to use his own template e.g., defining a chart or a dashboard.

148

6.6 Modifying Model Generation: Variability

Figure 6.20: A system modeler can use a configuration template to change the mapping
of templates from default templates to custom ones.

The developer can use template replacement within his own template, allowing for tem-
plate reuse while keeping the variability of the template replacement.
As many of the MontiCore-based generators, CD2GUI can be provided with a config-
uration template (cf. Listing 6.15). The configuration template can be used to replace
the templates used to create each GUI-model.
Similar to getTemplate described above we can define templateReplacement based on the
class diagram elements that are provided. The method replaceTemplate defines rules
for with class, association, or attribute a template is used that deviates from the default
configuration. Similar to the definition above, rules for combinations of attributes and
classes, or associations and classes can be defined. A template-specific rule can only be
defined once for a specific template and a specific class diagram element. Two templates
can not be set to replace the same template for the same class. However, a specific
template can be replaced for different classes or different combinations of classes and
attributes. In case of a conflict in configuration, the more specific configuration overrules
the less specific one. E.g. getting a template for an attribute within a class will always
return the template configured for an attribute within a class not the one for only
the class, although both might be configured. Listing 6.16 shows a template defining
the replacement of the table-overview with the myTemplate template. The replaced
template is called in a template for the creation of the overview page. This mechanism

149

Chapter 6 GUI-Model Derivation from Class Diagrams

1 ${name?uncap_first}@GemCard(
2 title = "${name} Overview",
3 component = ${name?uncap_first}GemRow(hAlign = "space-between",

components = [
4 <#include TemplateManager.getTemplate("table-overview",

domainClass)>
5])
6);

Listing 6.15: Calling a template from within another template using the template
manager.

can be used to introduce type-sensitive logic into CD2GUI. As Freemarker supports
scripting and can run Java code, it can be used to switch between GUI components
depending on the type or the attribute name, e.g. replacing a text field with a chart in
case a specific type is provided to the template.

1 // Excerpt from configuration template
2 <#assign TemplateManager = tc.instantiate("cd2gui.util.TemplateManager")>
3 ${TemplateManager.replaceTemplate("table-overview", new File("myTemplate"

).getAbsolutePath())}

Listing 6.16: Configuration Template provided to CD2GUI, replacing a template.

Template replacement is a mechanism that is useful in order to add a stronger domain-
dependent focus on the generation process. The generic CD2GUI transfromer can be
configured to produce user interfaces that are optimized to one specific domain: e.g.
targeting financial dashboards and visualizations.
As this mechanism provides a systematic replacement of the templates used, it is not
intended to modify individual models. In the following, we will take a look at further
mechanisms that can be used to modify individual models.

6.6.2 Using Stereotypes to Customize Generation of GUI-Models

A primary advantage of CD2GUI is that it alleviates the need for expertise in GUI mod-
eling, emphasizing instead on the construction of class diagrams. However, when system
modelers employ template replacement, they reintroduce the demand for GUI modeling
skills and, additionally, must acquire expertise in freemarker template definitions.
To mitigate this challenge, the generator can be tailored using stereotypes. This adap-
tation allows it to implement fundamental modifications GUI-model based on the given
class diagram. As a result, the system modeler, by embedding information in root class

150

6.6 Modifying Model Generation: Variability

diagram through stereotypes, can change the result of the corresponding GUI-models.
Similar to the tagging-based RBAC (cf. Section 6.5.1) stereotypes ensure that CD2GUI
GUI models are generated in a different way. Depending on the stereotype, GUI com-
ponents are ordered differently or left out.
Note that both the usage of stereotypes and template replacement can be used in con-
junction. Stereotype usage targets the early stages of development, such as conceptual-
ization and prototyping, whereas template replacement enables the developer to refine
GUI-models in later stages of development. An overview of the stereotypes available in
CD2GUI is shown in Table 6.4.

Key Attributes

Class diagrams are not limited in the number of attributes and associations of each
class, but there is a limit to screen space and a hierarchy of relevance of class diagram
elements to the user. Users tend to identify objects by a small subset of attributes: A
user is typically identified by his username and not by his registration date. A booking
might have a unique booking number that is more relevant for its identification than its
booking status. When listing objects, identifying attributes must be prioritized in order
to help the user find specific objects. At the same time, additional attributes that are
irrelevant to the finding of an object should be removed from the overview pages. Thus,
we introduce the concept of key attributes:
The system designer may use the stereotype «key_attribute» to denote an attribute
as ’important’. Any lists containing objects of this kind will include this attribute.
CD2GUI will generate a maximum of 8 columns from the class’s attributes and exclude
any extras since the interface lacks the space to display an indefinite number of data
columns. Columns are selected based on the sequence in which they appear in the single
underlying model. Any attribute designated as «key_attribute» will be displayed. This
method can also accommodate over 8 columns if more than 8 attributes are marked.
However, the resultant UI may exceed the screen boundaries.
The key attribute mechanism is applied to both the object list on the overview page
and the linked objects list on the details page. The listed attributes of an object in the
details page are not affected by this stereotype.

Hiding Classes and Attributes

There is a possibility that not all elements defined in the root class diagram should
be visualized or editable in the UI. Common examples are sensitive data, such as the
user password, or private data such as salaries or phone numbers. This problem can be
addressed in part through role-based access control (cf. Section 6.5.1). Restricting access
to classes or attributes still leaves ’empty’ user interfaces, as the UI will leave blanks to
data that is restricted (empty tables, fewer rows, fields left blank).

151

Chapter 6 GUI-Model Derivation from Class Diagrams

In order to hide an attribute from all users irrespective of their user permissions, a
mechanism is provided to either exclude it from the generated GUI-model or stop its
generation entirely. The stereotype «invisible» can be assigned to both classes and
attributes. For classes, this stops CD2GUI from producing type-specific pages for that
class. For attributes, it prevents them from being displayed on any type-specific page.
When the system designer intends to conceal an attribute solely on the overview page
(see Section 6.2.2), the stereotype «hide_in_overview» can be used. This will remove
the attribute from the overview page of the relevant class.
An attribute designated as «key_attribute» and marked as «invisible» or
«hide_in_overview» will not be included in the corresponding GUI-models and con-
sequently will be hidden from the UI.

6.7 Modifying Generated Models: Adaptability

The previous section presented a mechanism on how to systematically modify the process
that generates GUI-models. In this section, we will take a closer look at the mechanism
that enables the modification of models once they are generated. This Section focuses
on mechanisms to modify generated models, the inclusion of the TOP-Mechanism is
discussed in Section 7.7.

6.7.1 Adaptability

Within this work, we refer to adaptability as the ability of a software system to be
adjustable in its behavior or structure in response to changes in its use case or in its
requirements. This often means that the software can evolve or change post-deployment
without requiring significant redevelopment.
We use similar mechanisms as presented in Section 6.6. The system modeler is provided
with a set of GUI-models and is required to adapt a generated ’generic’ model to better
fit the use case of the target domain of the application (e.g. change the visualization of
data to a more comprehensive model). Each model is defined to be assembled of a set of
exchangeable GUI-Components (cf. variation points Section 6.6). In the following, we
will present the mechanism governing the adaptation of models.

6.7.2 Handwritten GUI-model Extensions

This section deals with the adaptability of GUI models of GUIDSL v2 syntax. GUIDSL v1
models do not support references to other GUI models and therefore do not support this
mechanism.

152

6.7 Modifying Generated Models: Adaptability

Operations

In order to enable the complete modification of an arbitrary GUI-model to any other
(valid) GUI-model, we define a set of operations to describe GUI modifications. The
fundamental concept of delta modeling languages has already been explored by Haber
et al. in [HHK+13] and [HRRS12]. Instead of defining an additional language to define
deltas upon a GUIDSL model, we incorporated many of the presented concepts into
GUIDSL v2 directly.

1. replace - replaces an existing component with another one.

2. remove - removes a component from the model without replacement.

3. before - adds a new component before an existing one.

4. after - adds a new component after an existing one.

These operations enable modification at any variation point in the model. We can define
each GUI-component, guard-symbol, and iterate-symbol of a GUI-model with a unique
id (cf. Section 5.2), every unique identifiable element in a GUI-model can be targeted
by the operation above and thus servers as a variation point.
replace is an operation that removes a portion of the user interface and inserts a new
component in its place. Besides replacing it also implements removal - by replacing with
an empty statement, and adding constructs - by replacing an existing construct with
itself and a new component. However, using replace to perform removal or addition is
unintuitive, thus we introduce remove, before, and after.
The variation points may represent small parts of the user interface, such as a single
button or text element, but could also be a collection of components up to an entire
web page. This makes the operations a powerful tool for the modification of the GUI,
as it can be extended or reduced at any point.

In order to adapt a generated model, we have a second hand-written model that defines
which components of the generated model are modified and how they are modified. In
the following, we refer to the generated model as the Base Model and to the model
containing the adaptation operation as Adaptation Model (cf. Figure 6.21).

Identifying the Base Model

We define a GUI model as the target of the adaptation model. Thus, we need a
mechanism to identify the base model in question. Our solution is to import and
reference the name of the target in the adaptation model. The fully qualified model
name is unique, which guarantees proper target identification.

153

Chapter 6 GUI-Model Derivation from Class Diagrams

Figure 6.21: Adaptability for GUI-models

Implementing Delta definitions in GUIDSL v2

The hand-written model defining the adaptation of the base model is a gui model as well.
Therefore, we have to extend the GUIDSL grammar, in order to enable the system mod-
eler to define the operations within the GUIDSL syntax. The implementation of adapt-
ability in the GUIDSL grammar is shown in Listing 6.17. The GUIComponentAdaptation
realizes the identification of the target model. The syntax is similar to Java extends and
has a similar purpose. Operations replace, before, and after are all summarized in one
construct, since they are very similar and can be represented by a single grammar rule.
These operations are applied to a variation point referenced by its id (Name@Variable)
and add or replace a new GUI part (GUIArgValue), i.e. a GUIComponent, GUIGuard, or
GUIIterate construct. Remove on the other hand does place a new GUI part and thus
has a separate syntax and grammar rule specifying which portion of the user interface
has to be removed. The check whether the operation is properly defined and targeted
variation points exist takes place at generation time and is performed by the GUIDSL.
The new constructs reuse the grammar rules of GUIDSL, are intuitive and easy to learn
for a modeler familiar with GUIDSL. An example of an adaptation model is shown in
Listing 6.19. It modifies a base model shown in Listing 6.18, using extended grammar.
The resulting product model is shown in Listing 6.20. The base model (Listing 6.18)
defines the simple page BaseModel (Line 2) that contains 3 constructs: comp1, comp2,
comp3 (Line 3..5). The page consists of two texts and a simple button. The adaptation
model removes the construct with the ID comp1 (Line 5), replaces comp2 with a text (Line
6), and places another text after comp3 (Line 7). Therefore, the resulting product model
(Listing 6.20) is still named the original base model (BaseModel), but now contains the
new constructs new2 and new3 before and after the unchanged button comp3.

6.7.3 Adaptability Transformation

The adaptation transformation can be performed by traversing the AST. The nodes are
strictly hierarchically ordered without any interdependence, allowing for changes on a

154

6.7 Modifying Generated Models: Adaptability

1 symbol GUIComponentDeclaration
2 implements Function =
3 (["component"] | ["page"]) Name "("
4 (GUIParam || ",")*
5 ")"
6 GUIComponentAdaptation?
7 GUIBlock?;

9 GUIComponentAdaptation =
10 "adapts" target:
11 Name@GUIComponentDeclaration;

13 // Operations
14 GUIAdapt = position:
15 ["before" | "after" | "replace"]
16 Name@Variable ":" GUIArgValue;

18 GUIRemove = "remove" Name@Variable;

Listing 6.17: The GUIDSL grammar additions

1 // ...
2 page BaseModel() {
3 comp1@Text(value="Example UI");
4 comp2@Text(value="Example Text");
5 comp3@Button(text="Click me");
6 }

Listing 6.18: An example base model in GUI-DSLv2.

node without affecting other nodes than its children. Consequently, adding an AST
node or swapping the node at the variation point can be used to effectively perform the
adaptation transformation. The process can be seen in Figure 6.23, in this case, a table
component is changed into a pie chart component.
ASTs can be efficiently processed via traversal. Since both the base model and the
adaptation model can be represented as an AST, a combination of traversing both ASTs
is sufficient to perform the adaptability transformation. The process is shown in Fig-
ure 6.22.
In order to create the product model, both ASTs are traversed. For each operation in
an adaptation model AST, we store the corresponding target construct and continue by
traversing the base model AST.
Once the target construct of the operation is found, the operation can be performed
on the same AST that was traversed to find the target of the operation. After the

155

Chapter 6 GUI-Model Derivation from Class Diagrams

1 // ...
2 component VarModel() adapts BaseModel {
3 remove comp1;
4 replace comp2:new2@Text(value="repl 2");
5 after comp3:new3@Text(value="after 3");
6 }

Listing 6.19: An example of a adaptation model for Listing 6.18

1 // ...
2 page VarModel() {
3 new2@Text(value="repl 2");
4 comp3@Button(text="Click me");
5 new3@Text(value="after 3");
6 }

Listing 6.20: Resulting product model based on Listing 6.18 and Listing 6.19

operation is performed, the traversal of the adaptation AST is continued to perform
more operations that might be defined in the adaptation model. Editing the base AST
directly with each operation means that no conflicts between operations need to be
resolved. The approach used applies the operation sequentially, which means that the
conflicts either arise during the traversal, e.g., the target of an operation is non-existing,
or are resolved as a result of the used strategy, e.g. adapting a target twice. In the first
case, a warning is issued and in the second case, the behavior is normal since the target
can be adapted several times. In either way, no additional detection or resolution of
conflicts is needed.
The traverser for the implementation of the adaptability transformation is already by
MontiCore, so only the methods for the handling of the nodes in question need to be
implemented - for the adaptation AST GUIAdapt and GUIRemove and for the base AST
all nodes that can contain a GUIComponent, GUIGuard, and GUIIterate, i.e. GUIBlock.
When traversing the adaptation AST, the operation and respective parameters can all
be found directly in the GUIRemove and GUIAdapt AST nodes. Those can then be saved
for a traversal of the base AST, where the operation is performed.
The last part of the grammar to consider is the imports. The adaptation model should
be able to use different components as the base model, the product model should also
still be valid in case the base model imports change. To realize this, all imports that
are not already present in the base model are copied from the adaptation model. This
means that when the base model changes, potentially missing imports are still added
since they are present in the adaptation model. The addition of imports can be easily
handled in the ImportStatement nodes.

156

6.7 Modifying Generated Models: Adaptability

Figure 6.22: Adaptability Transformation

This general design makes this grammar extension very robust. New grammar constructs
are unlikely to affect this approach, which only needs to be changed when a new construct
needs to be supported. Changes to the existing grammar do not require an update unless
they specifically target the constructs used in this extension.
Issues in the adaptation model can also be caught quite easily. The adaptation model
itself can already be validated by the parser. Inconsistencies between the base and
adaptation model, e.g., a reference to a non-existing id, are also found early with the
help of the symbol table.

Figure 6.23: Using the tree structure to change sub-trees and alter the AST of the GUI-
model

157

Chapter 6 GUI-Model Derivation from Class Diagrams

6.7.4 Edge Cases

In GUI-models the order in which components are defined is relevant for the produced
user interface. This also holds for the operations to modify another model. In the
following, we will take a look at a few cases in which the order of operations changes the
outcome.

1 // ...
2 page BaseModel() {
3 c1@Text();
4 c2@Text();
5 }

Listing 6.21: Base model defining two
GUI Components

1 // ...
2 remove c1;
3 ✗ replace c1: c3@Text() ERROR
4 // ...

Listing 6.22: Attempt to replace
a component after it was
removed.

The targeted elements must be present in the targeted model. Therefore, in case we
try to call any operation on a GUI element that was already removed (cf. Listing 6.21,
Listing 6.22, an error will be thrown.

1 // ...
2 component VarModel() adapts

BaseModel {
3 replace c1: c3@Text()
4 // ...

Listing 6.23: Replacing component c1
with c3

1 // ...
2 component NewVarModel() adapts

VarModel {
3 replace c1: c2@Text()
4 // ...

Listing 6.24: Replacing component c1
with c2

In case two models target the same model to adapt, the order in which they are inter-
preted is relevant. Depending on which of both models Listing 6.23 and Listing 6.24 is
interpreted first, the resulting component will be ’c2’ or ’c3.’ An error will be thrown
because there is an ambiguity here.
The adaptability transformation is set up to match a set of handwritten models to a
set of generated ones. This excludes adaptations from handwritten models to other
handwritten ones or adaptations that span over multiple models (e.g., adapting a model
that already adapts another). Although these adaptations would be feasible, the method
implemented here focuses on enabling the modification of the generated artifacts and,
therefore, does not yet provide that functionality.

158

6.7 Modifying Generated Models: Adaptability

Type Supported

MyClass MyOtherClass
1 1

✗

MyClass MyOtherClass
1 0..1

✗

MyClass MyOtherClass
1 *

✓

MyClass MyOtherClass
1 *

✓

MyClass MyOtherClass
1 0..1

✓

MyClass MyOtherClass
1 1

✗

MyClass MyOtherClass
* *

✓

Enum ✓

Interface ✓

Abstract Class ✓

Inheritance ✓

Basic data types ✓

Zoned Date Time ✓

Optional<Class> ✓

Packages ✗

Generics (✗)1

Annotation ✗

Table 6.3: Supported class diagram elements by CD2GUI. 1: Only Lists and Optionals
are supported, not Generics in general.

Stereotype Function

«invisible» Element will not be shown at all
«hidden_in_details» Element will not be shown in the details page
«hidden_in_overview» Element will not be shown in overview
«key_attribute» In case of limited screenspace element will be prioritized

Table 6.4: List of stereotypes available in CD2GUI, adjusting what elements are shown
in the UI.

159

Chapter 7

Generator Framework for Enterprise
Management: MontiGem

In Chapter 2 we introduced a methodology that is based on three major transformation
steps. The first is a transformation from natural language to a data structure model
(LLM4CD Chapter 5) the second, is a transformer that produces GUI-models based on
the provided data structure models (CD2GUI Chapter 6) and the third being a
generator that uses both GUI-models and CDs to produce a web application:

Contents

7.1 Research Method . 163

7.2 Target Application . 164

7.3 Data Structure Generator . 167

7.3.1 Domain Model . 167

7.3.2 View Model . 178

7.3.3 Command Model . 180

7.3.4 Constraint Model . 181

7.3.5 Tagging . 183

7.4 Generator for Graphical User Interfaces 187

7.4.1 Generator-Architecture . 187

7.4.2 Overview of Generated Artefacts 190

7.5 Server Run Time Environment . 193

7.5.1 Used Server Architecture in MontiGem-Base Application . . . 193

7.5.2 Persistence Management in MontiGem-Based Applications . . 194

7.5.3 Deploying MontiGem-Based Applications with Docker 195

7.5.4 Command API . 197

7.5.5 Security . 198

7.6 Client Run Time Environment . 202

7.6.1 Apache HTTP . 202

7.6.2 Usage of Angular in the MontiGem Client 202

161

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

7.7 Modifying Generated Code . 203

MontiGem (Generator for Enterprise Management)[AMN+20, MNN+22, DHM+22,
DGM+21, GMNR21, GMN+20] is a generator framework for the engineering of web-
based information systems (cf. Figure 7.2). It synthesizes the source code for a web
application with a three-tier architecture, that uses a TypeScritpt-based client (Angu-
lar) in combination with a Java-based Server (Apache TomEE). The framework has
proven itself in several use cases, five of which are described in [BGK+23b]. An in-depth
discussion focusing on the perspective of this thesis is presented in Chapter 9. MontiGem
(Figure 7.1) uses textual models as input, that are parsed to Abstract Syntax (AST).
This abstract representation is transformed and extended, processing the information of
each model into the target code. Finally, the ASTs are passed to template engines, that
produce the target code, which is used in combination with a static RTE of the web
application which is provided by the framework.
These models include three kinds of UML class diagrams (cf. Section 3.4) to define data
structure of the application itself, to define views upon the data, and to define addditional
commands between server and client. Also models to define the graphical user interfaces
(cf. Section 5.1), and OCL models that define constraints for data validation within the
client and server of the derived application. Additional information can be appended to
the models via tagging (cf. Section 3.5) models.

Figure 7.1: Architecture overview of MontiGem. Parsers that were generated with Mon-
tiCore are used to convert textual models into abstract syntax. Input AST is
transformed for the abstract target implementation and finally transformed
into the target source code of the desired GPL. The generated code is only
a part of the target application, next to the RTE in both server and client.

The term MontiGem-framework describes a collection of components that are not lim-
ited to the generators. The generated code requires a run time environment (RTE) and
model-independent source code, in order to be able to produce a running web applica-

162

7.1 Research Method

tion. The code generated by MontiGem is used as part of an application implementation
(cf. Figure 7.2). The generators provided are used in the respective front-end and back-
end build processes to provide the target source code defined by the input models. This
generated code for both the front end (FE) and back end (BE) can be extended and over-
written by handwritten implementation. Additionally, there is static application source
code, that is not based on any of the input models. This includes generic application
configurations, but also common data structures e.g. user management that is required
by any web application. In the following, we first take a look at an overview of the
Target Application (cf. Section 7.2), next we present both generators: Data Structure
Generator(cf. Section 7.3) and Generator for Graphical User Interfaces (cf. Section 7.4).
The generated code works with two RTEs, the Client Run Time Envoronment (cf. Sec-
tion 7.6) and the Server Run Time environment (cf. Section 7.5). Finally, we present a
mechanism to extend generated code with handwritten code (cf. Section 7.7).

Figure 7.2: Key componentes of a MontiGem-generated application.

7.1 Research Method

The development of the MontiGem generator framework follows the case study ap-
proach. The generator is developed for several use cases [BGK+23a, NGM+24, DGM+21,
MNN+22, GHK+20]. The generator is initially developed for the use case MaCoCo a
data-centric information system for the controlling of finance, staff, and projects of the
MaCoCo. The chairs of the RWTH Aachen University. We collect data on the gener-
ator performance and gradually improve its usability and generalizability, enabling the

163

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

framework to be used more in general for further use cases.

7.2 Target Application

Figure 7.3: Three-tier architecture of MontiGem

We refer to MontiGem as the generator framework that produces the target source code
and not the resulting web application. The application based on it is either referred
to as web application or target application. The generator produces domain-specific
components that work in conjunction with the static run-time environment (RTE). Thus,
the architecture of the target application is predetermined by the generator configuration.
Similarly to MontiDEx [Rot17], it is based on a three-tier pattern [Eck95] (Figure 7.3).
In MontiGem the application layer resides on the remote server, whereas in MontiDEx
is run as a Java Application on the client system.
The first layer is the Presentation Layer. In our client-server architecture, it represents
the client part and the graphical user interface with which the user interacts. Multiple
clients can connect to the application server via an Apache-HTTP server. The presen-
tation layer contains user interfaces generated in HTML and Typescript. The generator
framework produces a thin client, reducing the logic in the presentation layer to a mini-
mum. Handwritten extensions adapt user interfaces and add small process flows to the
front end, which would be harder to define in corresponding models for the user inter-
faces. The RTE in this layer consists of generic web application components and utility

164

7.2 Target Application

classes, where standard components are the default building blocks of the user interface
such as generic tables, layouts, and buttons.
The second layer is the Application Layer. It contains a TomEE server that runs within
its own docker container and thus has the potential to be configured to run as multiple
instances at the same time. Open-source systems such as Kubernetes (K8s) can be used
to automate deployment and load balancing between deployed containers [NK20, Ren15],
making the approach scalable, as it provides the ability to distribute incoming network
traffic over a group of back-end services. The application core runs on the generated
data structure defined through the input models. Handwritten extensions can be used
to add more business logic to this layer. The RTE consists of several classes and utilities
that are needed to run any server back end (e.g. authentication or API-Services). These
components contain custom implementations for a MontiGem-based Server, but also
third-party frameworks such as Apache-Shiro and JAX-RS.
The third layer is the Persistence Layer. MontiGem-generated applications are provided
with a generated database and corresponding persistence management. The RTE of
the persistence layer contains database connectors such as JDBC and a persistence API
(Hibernate) that enables the application to access the database without conflict. The
generated access to the database is typically extended with handwritten code to optimize
performance or to add additional checks for validity or security. Next to the collection
of domain-dependent databases, a system database is generated that stores system-wide
information, such as global configurations for the system.
The core of the system consists of two generators that are responsible for the creation
of the user interface (GUI Generator) and the infrastructure for data management (DS
Generator). In combination, both generators create a custom web application based on
the provided data and UI models.
Figure 7.4 provides an overview of the basic artifacts used in the target code that was
generated with MontiGem. The generator framework produces a web application, as such
we can divide the code into front end A , back end B and database C . The generator
for the user interfaces D and the generator for the data management infrastructure E

are not part of the finished web application and can be managed in separate projects.
The code in the front end as well as in the back end can be adapted and personalized for
the application by handwritten code. In the front end, this is typically a customization
of the user interface or its underlying logic F , and in the back end, the DTOLoader G ,
a class defining how data is provided to the client is often extended with business logic
as well.
We can divide the implementation itself into three parts.

1. First, the domain-dependent code (below the dashed line). These artifacts are
related to the current use case and might change from application to application.
It contains business logic, such as case-specific data structure and user interfaces,
as depicted in Figure 7.4.

165

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

Figure 7.4: MontiGem generator output nested in RTE and External Libraries. DS Gen-
erator (E) generates data management infrastructure, GUI generator (D)
creates user interfaces, both can be extended with handwritten code such as
(F),(G). The target application is segmented into front end (A), back end
(B), and database (C).

2. Above the dashed line, generic (domain-independent) code is shown. We split the
generic code into further groups: It contains the second part: RTE elements such as
basic visual components, APIs, and elements that are typically reused between web
app implementations. This code is not produced by a generator and is provided
as-is by the framework. It is marked with «RTE» in Figure 7.4.

3. As a third part, we identify external libraries that are used by the web application.
This group contains, among other libraries, the Tomee1 Server Framework, Java
Persistence API2 and Security Framework3. This group is marked «EXT Lib» in
Figure 7.4.

1tomee.apache.org
2hibernate.org
3shiro.apache.org

166

7.3 Data Structure Generator

7.3 Data Structure Generator

In the following, we will focus on the domain-dependent aspects of the generator (cf.
Figure 7.4 below the dashed line). We will take a closer look at the classes that are
generated by the data structure generator E . The GUI-generator D will be presented
in the next section (Section 7.4) followed by a section regarding the RTE (cf. Section 7.5).
MontiGem produces a large collection of artifacts that govern the operation of both the
server and the client of the web application. In order to maintain readability, we do not
present every class that is generated by MontiGem, but focus on the most important
ones. The key classes the data-structure generator produces (as shown inFigure 7.4) will
be explained in detail in the following sections:

• Data Class: Basic Transformation from the Domain model into a Java class with
a simple extension for getters and setters.

• Data Access Object (DAO): Class that provides database access for a specific type.

• Data Transfer Object (DTO): Class that encapsulates an object for data transfer
so that all or at least only a few associated objects are loaded as well.

• Command (CMD): Class that provides means to trigger events in the back end
from the front end. For each class in the domain model a set of commands is
generated to load data and to provide basic CRUD operations.

• DTOLoader: Class that creates an DTO-Instance by using a corresponding DAO
to load data from the Database. The DTOLoader is typically used in the context
of a command.

7.3.1 Domain Model

MontiGem provides multiple classes for every class defined in the input class diagram
(domain model). Within our tool chain MontiGem is provided with the root class dia-
gram, in order to produce a corresponding data structure. In this section, we will take
a closer look at the classes generated by the DS-Generator (Figure 7.4 E). We will use
the simple person class (cf. Figure 7.5) as an example input throughout the upcoming
sections:
Based on the domain model, MontiGem generates infrastructure for the server and client.
Figure 7.6 shows the different components that are generated in order to access and
modify data in the client database. On the client DTOs are generated and used to store
data within the generated commands. The commands are generated for both the server
and the client and are used to run dedicated logic on the server. The data contained in
the commands is loaded into matching DTOs at the server. DTOLoaders are used to
map the data that is accessed via DAOs to these DTOs.

167

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

Figure 7.5: Class diagram defining a simple class for a person.

Dataclass

MontiGem produces a data class as shown in Figure 7.7, for each class defined in the
domain model. Each generated data class contains additional attributes and methods
and is structured as follows:

• Database Annotations: Generated annotation for the Persistence API. Based on
these annotations Hibernate (or a corresponding framework) creates tables in a re-
lational database. The annotation @Entity causes the creation of the corresponding
table for Person and @Audited creates an observer for that table. Data classes are
used to define the database schema.

• Attributes: Any non-derived (cf. Section 3.4.3 attribute defined in the domain
model will be added as a private attribute to the data class. Additionally a pro-
tected attribute for a unique database id is added that serves as a primary key in
the database table.

• Constructors: MontiGem adds default constructors. Note that MontiGem also
generates builder classes (PersonBuilder) that use validators, and should be pre-
ferred to these constructors if possible.

• Basic Object Methods: merge() and mergeWithoutAssociations() can be used to
update existing objects with a new set of values without creating a new database
entry, by merging both objects. The existing values are overwritten by the new
ones. The equals() method provides a simple way to compare two objects of this
data class type.

• ToString methods: In the context of the generated web information system, types
are often displayed directly on the user interface, therefore methods that provide
’human readable’ names are added to the data class. These names can be defined
and overwritten by stereotypes in the domain model. We differentiate between
these methods and the normal toString() as the names used for the data class
often differentiate from those displayed on the user interface.

168

7.3 Data Structure Generator

Figure 7.6: Relationships between generated components. A data can be accessed from
the front end through multiple classes: An object from the database is ac-
cessed via a DAO, and a DTOLoader transforms the object into a lightweight
DTO. The DTO is wrapped within a command, is serialized and sent to the
client. The client receives the command and deserializes a DTO, that can be
processed and visualized by the UI.

169

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

Figure 7.7: Generated data class for Figure 7.5. Data class implements two interfaces
IDomainClass and IDomainObject handling generic operations like merging.

• Getter and Setters: These are default methods needed to set and get values of the
attributes of the data class. The attributes can not be modified directly as they
are declared with the private access modifier.

• Validator Provides the corresponding validator for this data class. The validator
is a separate class that is generated by MontiGem and checks the validity of an
object of this data type.

Data Access Objects

The Data Access Object is the interface between the data class and the database. Map-
ping objects to a database is a challenging task. The Java Persistence API (JPA4)
is a specification that allows the developer to work directly with objects rather than
SQL statements. There are several implementations for JPA, such as EclipseLink5 or

4https://www.oracle.com/java/technologies/persistence-jsp.html
5https://eclipse.dev/eclipselink/

170

https://www.oracle.com/java/technologies/persistence-jsp.html
https://eclipse.dev/eclipselink/

7.3 Data Structure Generator

Figure 7.8: Generated data access object PersonDAO for Figure 7.5. The DAO extends
the generic class AbstractDomainDAO, which contains multiple methods to
access the database.

ApacheOpenJPA6, in MontiGem Hibernate7 is used.
For each class X in the Domain model a DAO-class XDAO.java is generated. Every DAO
extends the abstract generic class AbstractDomainDAO. The DAO uses a Java Database
Connectivity (JDBC8) router that can be configured via a specific JDBC driver to access
a database. Connections to several database types such as Access, FileMaker, SQLite
and many more are supported. There are implementations of MontiGem using both
MySQL and PostgreSQL connections [ANV+18]. Next to the database connection, the
JPA (Hibernate) has to be used in order to enable persistent database operations.
The DAO provides the developer with several methods to perform database operations,
each method is overloaded multiple times to match the multiple use cases the class is
used in. The example Figure 7.8 only shows a selection of representative methods.

• Creating new objects: The DAO provides several methods to store new objects
in the database. There are options to create objects within the currently running
persistence context or as an isolated object. Upon successful creation of the object
the DAO will return an updated object containing the Database ID.

• Updating an Object: The provided update methods will check if an object exists.
If so it will use the merge method defined in the data class to update the object.

6https://openjpa.apache.org/
7https://hibernate.org/
8https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

171

https://openjpa.apache.org/
https://hibernate.org/
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

If it does not exist, the corresponding create method is used.

• Retrieving an object: The DAO provides multiple methods to retrieve objects
from the Database. To optimize performance, objects can be retrieved without
any associated objects, as well as a specified depth of the association tree. This
is especially useful if only parameters from the directly targeted object are needed
and not of associated ones. As the retrieval of data from the database is on of
the most commonly used operation, there are many specialized and overloaded
methods for these tasks:

– Finding an element for a specific id

– Finding any element of a specific type

– Getting all elements of one specific type

– Getting all elements of one type for a List of IDs

– Methods for Lazy Loading

– Methods for Load eager

• Deleting an object: The DAO provides two options to delete an object. Deleting
the object only if no other objects are affected. Delete the object and any related
ones, keeping the database consistent. Note that in the default configuration, both
methods run the same code, as there is no specification on which elements must
not be deleted and which ones are fine to remove in a cascade.

Builder

MontiGem creates for each class in the domain model a builder class. The generated
builder is based on the builder design pattern [Zur18, HH13], and decouples the object
creation algorithm from the system. It allows to add new functionality to the creation
process. MontiGem adds a validation step for each created object. The builder itself
(Figure 7.9) is generated based on a corresponding class in the domain model. Thus it
contains an attribute and a setter and getter (omitted in Figure 7.9) for each attribute
of the original class. The generated setters support method chaining, thus keeping the
implementation for the creation of objects with many attributes readable Listing 7.1.
The build-Method produces an instance of the targeted class after using the generated
validator to check all provided data.

172

7.3 Data Structure Generator

Figure 7.9: Generated Builder PersonBuilder for Person-Class (cf. Figure 7.5). The
builder can hold the same attributes as the generated data class and provides
chainable setters to set those. Before returning an instance of the data class,
it uses the generated validator to check the input.

1 PersonBuilder buidler = new PersonBuilder();
2 Person person = buidler
3 .name("Sherlock")
4 .address("Baker street 221b")
5 .age(60)
6 .build();

Listing 7.1: Usage of PersonBuilder to create new Person object

Validator

MontiGem creates for each class a validator (Figure 7.10). Each validator provides
methods to validate each attribute, association, and additional constraints that can be
defined by an OCL model.

173

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

Figure 7.10: Generated Builder PersonValidator for Person-Class Figure 7.5.

1 context Person inv name:
2 name.length() <= 50;
3 shortError: "Max. 50 characters";
4 error: "The name (" + name + ") is longer than 50 characters";

Listing 7.2: Example of an OCL constraint limiting the length of the name attribute of
a person to 50 characters.

Additionally, an overloaded method to validate the complete object
(getValidationErrors()) is generated and used on the builder class. The valida-
tor returns its result as an instance of the generic class Result<OkType, ErrTyp> that
in case of the generated validator is implemented as a boolean indicating the success
or failure of the validation and a string containing corresponding which contains error
messages if necessary. The default generated validation checks for the type of the
object and if an attribute or a linked element is a mandatory object, whether it is null.
Similarly, it checks the cardinality for linked objects.

1 public Result<Boolean,String> isNameValid(String value){
2 if (value == null) {
3 String msg = "Parameter Name is missing (0xD0200)";
4 Log.debug("Validator: " + msg, getClass().getName());
5 return Result.err(msg);
6 }
7 return Result.ok(true);
8 }

Listing 7.3: Generated validation method for an attribute, without additional validation
defined by an OCL-Model.

174

7.3 Data Structure Generator

Data Transfer Objects

The MontiGem architecture can be divided into two major components: The front end
(Client) and the back end (Server), as shown in Figure 7.4 and Figure 7.6. In order to
operate the web information system, data must be exchanged between client and server
on a regular basis. Since loading and sending data is resource-intensive, it is necessary
to send no more than the absolutely necessary data.
For this purpose, we divide objects that can be sent into three categories: Domain
Classes, FullDTOs, and DTOs (Data Transfer Object). We refer to Data objects that
incorporate at least every association and attribute defined in the class diagram as
Domain Classes. Beyond merely housing its attributes and directly associated objects, a
domain class object also encompasses objects that are transitively linked via associations.
This facilitates the transmission of an object tree (see 7.11(a)). While this constitutes
the most resource-intensive data transfer method, it is sometimes indispensable. For
instance, when establishing a new intricate object, it is frequently dispatched to the
back end together with its associated objects. Web information systems often only load
directly required data in order to reduce the initial load time. Thus related objects are
often reduced to a unique ID, which allows us to load data from the server at a later
time. This concept is implemented in MontiGem through the FullDTO (7.11(c)). It
reduces all linked objects to either a Long attribute for associations without multiplicity
or List<Long> for associations that can link to multiple objects. Often, especially when a
specific object is in focus, but not its context (e.g. changing the name of a Person-Object,
does not affect further objects), only the data object itself, but not its linked objects are
needed. Therefore, the smaller DTO can be used. It only contains the attributes that
are defined in the domain model, next to the unique id of the corresponding object in
the database. This lightweight object is used to read, update or delete objects and is
well-suited for loading many objects from the database. Next to the DTOs the generator
also provides list-objects for both FullDTO and DTO (FullDTOList, DTOList) that ease
the transmission of multiple DTOs within one object.
Up to this point, we know that the generator creates a database scheme, database access,
and DTOs based on the same model. Thus we can generate a class that initializes DTOs
with the corresponding data from the database if provided with a corresponding ID.
Therefore for each class in the domain model, a DTOLoader is created. Listing 7.4 shows an
example of a generated DTO loader initializing a PersonDTO. The method loadDTO(long
id)(Line 1) is provided with the database id that is used by DAO (Figure 7.8) to retrieve
the object from the database. The method throws a class-specific exception (Line 4) in
case there is no object of the given type with the given ID in the database. MontiGem
also provides a loadDTO() method that does not take an id as an argument. It returns
all entries of the given type found in the database.

175

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

(a) Domain Class with Associations (b) DTO (c) FullDTO

Figure 7.11: (a): Domain Class with associations. (B): DTO, not containing associa-
tions. Instances of a DTO do not contain any information about linked
objects of the corresponding domain object. (c):FullDTO, resolving di-
rect associations with unique database IDs. There is no information stored
about associations of associated objects (PersonFullDTO has no informa-
tion about ’Insurance’ object.)

1 public PersonDTO loadDTO(long id) {
2 Optional<Person> person = DAOLib.getPersonDAO().findAndLoad(id);
3 if (!person.isPresent()) {
4 throw new NoSuchElementException("Can not load " +
5 "'Person' with id: " + id);
6 }
7 return new PersonDTO(person.get());
8 }

Listing 7.4: Generated DTO-loader method for Person-Class defined in Domain Model
(cf. Figure 7.5). loadDTO will throw an error in case there is no
Object persisted for the given ID. There are further generated methods
such as findAndLoad() that can handle missing data and will return
Optional.empty().

Commands

MontiGem implements the command pattern [HH13] in order to manage communication
between server and client. The DS-Generator provides for each class in the domain
model commands to create, read, update, and delete objects in the database. Additional
commands are generated to set single attributes of an object and to get lists of objects

176

7.3 Data Structure Generator

Figure 7.12: Sequence Diagram for the command usage in MontiGem. A command as-
sembled in the client is sent via the command manager to the back end.
The command is processed at the server before a response is sent to the
client.

177

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

from the database. In Figure 7.12 a typical process of command execution is shown:

A An event at the client triggers the creation of a command (e.g. initializing a page
in the web application or reacting on the push of a button). At this point the
create() method of the command manager is used to build a new command. At
this point the callback function, defining the code that should be executed upon a
response of the command, is defined as well. Once the command is created, it is
added to the command manager.

B After any number of commands have been added to the manager, they can be
submitted via the sendCommands() method.

C The commands are transmitted to the command manager of the server and del-
egated to the respective implementations of the commands in the back end. For
every generated command implementation in the client, there is a matching gen-
erated implementation in the server.

D Each command implementation on the server side implements a doRun() method,
that itself executes three methods cf. Figure 7.13. Each command checks first if the
received data is complete (checkContract) then if the current signed-in user has
the required permissions to run the command (checkPermission) and finally runs
a generated logic (doRun, Figure 7.12). The doRun method is typically overwritten
to execute custom logic. Every command produces either the expected DTO, or
an ErrorDTO containing a thrown error and a description of the problem.

E The responses are gathered by the command manager and returned to the Client.

F Upon receiving the results, the client runs each previously defined callback method
for each received response.

G In case of the reception of an ErrorDTO the client can react with a custom callback
as well, e.g. by displaying an Error Message to the user.

7.3.2 View Model

As initially presented, MontiGem uses three groups of class diagrams as input: The
first group is the domain model (as defined in the previous section Section 7.3.1), which
serves as the core of the data structure and defines the database and the core domain-
dependent infrastructure of MontiGem. The second group contains view models. A view
model defines a view of the database. It can define aggregated, recomposed, or derived
parameters that can be clustered in new classes. View models are used to define a data
structure that fits a specific user interface and can be mapped to the data structure of
the database. Thus, they define the objects that are only transferred between server and

178

7.3 Data Structure Generator

Figure 7.13: Every generated command at the server follows this standardized process:
A command is executed via the doRun() method. checkContract() evalu-
ates the well-formedness of the received data. checkPermission() evaluates
whether the current user has permission to run this command. doAction()
contains the logic that should be executed (e.g. CRUD Operations).

client; therefore, these objects are not persisted in the database. Therefore MontiGem
generates for each class in a view model a DTOLoader class that governs the mapping
from the domain model to the view model:

• DTO: (Described in Section 7.3.1) The same transformations are used to generate
DTOs from View models as for the domain model.

• DTOLoader: A DTOLoader is generated as well. This DTOLoader however does
not contain logic, that maps the data from the database to the DTO, as this logic
is not directly derivable from the class diagram.

• Commands: (Described in Section 7.3.1) For each class in the view model a com-
mand to get a specific object (getById) and a command to get all objects of that
type (getAll) is generated. Similar to the DTOLoader, commands that directly
load the data from the database can not be generated. The generated commands
need to be overwritten with custom logic by extending the generated DTOLoaders
in order to work. A not extended command will return an ErrorDTO Containing
the NotYetImplemented-Error.

In contrast to the domain model, the generator does neither generate database tables
and corresponding DAOs nor Builder and corresponding Validators for the classes in the
view model. Note that classes from the domain model can be referenced in the view
model, thus reusing class definitions e.g. to define a specific payload of a command
without having to redefine each class.

179

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

Figure 7.14: Class diagrams of View Model and Domain Model side by side. The pa-
rameters name, shortName and email map to DomainUser, The attribute
institutName maps to Institute.

7.3.3 Command Model

MontiGem can be provided with additional models to generate commands only. These
commands are used in case no data payload for the command is needed and the
intent is only to trigger an event on the server. These commands are also used, in
case there are multiple commands needed, that would use the same payload but serve
different purposes, e.g. deleting an object in two modes: in the MaCoCo use case (cf.
Chapter 8) the forceDelete command removes an object with all associated objects
without warning, in contrast to the normal delete command, which informs the user
of any problems. Both commands use the unique database id to target an object, but
the command class diagram is needed to generate an additional command and the
corresponding infrastructure to add the handwritten deletion logic. The command
class diagram allows the developer to add additional commands to the command
infrastructure without adding additional DTOs and DTOLoaders to the existing
infrastructure. Note that both view models and domain model can be referenced in the
command model thus reusing class definitions.

In summary, MontiGem generates for the three groups of class diagrams multiple com-
ponents (As shown in Figure 7.15):

1. Domain Model: A complete command infrastructure from the database through
the server to the client for the domain model.

2. View Model: Commands and DTOs to move data from the server to the client.

3. Command Model: Only Commands that reuse DTOs to move data.

180

7.3 Data Structure Generator

Figure 7.15: Not all Models are used to create the same amount of artifacts: Different
components are generated for different groups of input models.

7.3.4 Constraint Model

Data consistency is an important issue for any information system. A mechanism is
needed that ensures that any data sent or retrieved from the database is valid. Similar
to the test case generation presented in Section 6.5.2, there are several layers to the
validity of data. The first is a simple type check, ensuring that data is stored in the
correct type and format. The second is a data structure consistency check. This ensures
that objects and their relations match the underlying data structure of the application.
Finally, a constraint-based consistency check, testing for the semantic validity of provided
data.
Since the generator was implemented with Java (Strongly Typed GPL) we can take
type checks as given. The client however is based on TypeScript and thus does not
enforce type-checking natively, commands are serialized to JSON, a format that also
does not enforce type correctness. A mismatch in command definition could still lead to
a correctly typed object being serialized to JSON and wrongly de-serialized at the back
end. Therefore, the command manager can handle type check errors and will inform the
client accordingly.
The generated builder classes ensure validity based on the domain model. Before build-
ing, constraints set up by the class diagram are checked, such as cardinalities and oblig-
atory attributes.
The third kind of check is the semantic validity: For example, ensuring that an age
attribute is never larger than 200, or that every username has to be unique.
For each element in the domain model constraints can be defined in OCL syntax. These
constraints are enforced in the back end by generated builders (Section 7.3.1) through
corresponding generated validators and in the front end by generated validators that are
available for user interface optimization (e.g. notifying that user input is invalid, before
sending it to the server). Note that validation on the client is only an optimization to

181

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

the user experience, data integrity is ensured by data validation in the back end. Any
data received by the server will be validated in the back end before persisting it to the
database. Validation at the client helps the user to find erroneous input without a notice-
able impact on latency; this is especially helpful in case larger objects are created in the
front end. Listing 7.5 shows an Constraint Model for the constraint isAgeNotNegative
for the age-attribute of the Person-Class described in Figure 7.7. The constraint tests if
the age parameter is positive (Line 3).In case the condition should fail, the model offers
two texts for the output of error messages. In MontiGem these are used in the user in-
terface to inform the user of any invalid input on the user interface directly (shortError)
and to inform the developer by logging (error).

1 ocl ExampleConstraints {
2 context Person inv isAgeNotNegative:
3 age >= 0;
4 shortError: "Negative Age";
5 error: "The age has to be a positive integer!";
6 }

Listing 7.5: Example of an OCL model for the age attribute of Figure 7.7. The Model
contains next to the Constraint itself (Line 3) also Error messages (line 4,5)
to display on the User Interface or in Error Logs.

Validation steps are generated separately for both front end and back end, as the server
and client can be implemented in different programming languages [ANV+18]. The
principle methodology, however, remains similar in both the front end and back end:
Constraint models are parsed and checkers are generated in each corresponding language.
These validators are either included in Builders (back end) or in forms (front end), where
the including component can react on a violation of the check. In the back end, this
would result in an error sent to the front end and a cancellation of the creation or update
process of an object. In the front end, this would prevent the user from sending an invalid
create or update command. Figure 7.16 shows the generation process for validators.
The resulting code for both server and client is shown in Listing 7.6 and Listing 7.7. It
shows the check method for the constraint defined in Listing 7.5, which validates the age
parameter of a Person-Class.

182

7.3 Data Structure Generator

Figure 7.16: Builders and Checkers are generated by separate generators components.

1 if (age < 0) {
2 return age.getHumanName() + " is not correct \n";
3 }

Listing 7.6: Generated if-clause implementing the constraint check in the back end. The
method returns a message that provides further information to the user (’Age
is not correct ’) on the specific violation and can be sent to the front end,
together with other error messages.

1 if (age !== null && age < 0) {
2 throw new ValidationError("age is incorrect\n");
3 }

Listing 7.7: Generated if-clause implementing the constraint check in the front end.

7.3.5 Tagging

The complexity of languages chosen for defining input models is intentionally minimized.
For CD4A (cf.: Section 3.4), we adhere to the UMLP specification [Rum17] of class
diagrams. In the MontiGem-usecase however, a simple data structure definition is not

183

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

sufficient, as we also need to know further information like persistence strategies, or
database configurations. Our solution is to employ an auxiliary model, the tagging
model (cf. Section 3.5), which supplements this extra information without altering the
foundational language. An alternative to tagging is the usage of stereotypes. MontiGem
is capable to process several stereotypes as discussed in Section 6.6.2.
The introduction of a tagging language entails the adaptation of the generator frame-
work used. Although we have not yet explained the generator at this point, we briefly
present the necessary adaptations to it here. Figure 7.17 shows the generic MontiCore-
based architecture the MontiGem-framework adheres to. A complete description of the
generator can be found in Chapter 7.
To incorporate tagging into a generative approach, we need not only to define the target
language-specific tagging DSL but also to extend the generator that uses the tagged
models. In the following example (cf. Figure 7.17), we consider tagging for CD4A. Once
the DSL-specific tagging grammar (1) is defined (cf. Section 3.5.1), the developer can
define a Tag Schema and corresponding Tags (cf. Section 5.3.1) for the input models
(3). We can use MontiCore to provide a parser (2) that can handle both the CD4A
model as well as the Tagging model. The resulting input AST thus contains both the
CD4A model as well as the corresponding Tags. As the Tagging language extends
the targeted DSL (c.f. Section 3.5), we can treat the AST as an CD4A AST where
needed, minimizing the required adaptations in the generator when switching from an
untagged to a tagged model. The model transformer can still use the CD4A-specific
function library to transform the AST. Additionally, the developer can add tag-specific
functions (5). A corresponding transformation to Listing 5.42 would be the addition of
a toString() method to each class, that uses the HumanName from a tag instead of the
attribute name itself. Finally, the extended generator will produce the target code (6),
just like a regular generator.

Figure 7.17: Extending a generator (As shown in Figure 3.2) for tagged models.

184

7.3 Data Structure Generator

Within the MontiGem framework, tagging models are used to enrich AST-nodes in the
domain model with further details. By default, MontiGem supports two tag varieties:
database configurations and additional labels for user interface enhancement, such as
’Human Readable names’ for both attributes and classes.

1 tagschema DBTags {
2 tagtype NoCascade for Assoc;
3 tagtype ColumnDef:String for Attr;
4 tagtype UniqueDBColumn for Attr;
5 }

Listing 7.8: DBTags.tagshema: Tagschema defining what symbols in the class diagram
can be tagged with which tags to configure database behavior.

Listing 7.8 shows the default TagSchema for database configurations within Mon-
tiGem. There are three tags defined: NoCascade for associations, ColumnDef:String
and UniqueDBColumn for attributes. Adding DBTags (cf. Listing 7.8) to an attribute
can configure the generator with ColumDef:String to create the database to store large
amounts of text for this attribute and to ensure uniqueness of a field in a table for an at-
tribute with UniqueDBColumn. The NoCascade-Tag configures the database to not cascade
data operation over associations, e.g.removing one object will not cause the deletion of
all connected objects.

1 tagschema HumanTags {
2 tagtype HumanName:String for Attr, Class;
3 }

Listing 7.9: HumanTags.tagshema: Tagschema defining what symbols in the class diagram
can be tagged with which tags to add another designation.

Another TagSchema supported by MontiGem is the HumanTags-Schema (cf. Listing 7.9).
Attributes and Classes can be tagged with the HumanName:String tag. They are used to
add another designation to either an attribute or a class. This additional information
is especially useful for any automatically generated user notification or error message.
Often the naming of classes is either very technical or in the wrong language (e.g. the
system was developed in English, but the application language is German). The tags
can be used to easily add an end user-friendly designation that should be shown in the
user interface. An example is shown in Listing 7.10.

185

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

1 conforms to tagschema.HumanTags;
2 tag Account.startDate with HumanName = "Project start date";
3 tag Employment.emplType with HumanName="Type of employment";

Listing 7.10: Example for tags that improve the readability of specific attributes for the
end user. Putting a generic startDate into a Project context and writing
out abbreviations.

The generator can easily be configured and extended to support further tags. In sev-
eral projects, tags were used as well to define user access and permissions on specific
attributes (cf. Section 6.5.1) and classes or to define how test data should be created (cf.
Section 6.5.2).

186

7.4 Generator for Graphical User Interfaces

7.4 Generator for Graphical User Interfaces

The MontiGem-framework contains several generators to create a web application. In
the previous section the generator that synthesizes the data structure and correspond-
ing infrastructure for transmission and persistence of domain-specific data objects was
described. In this section, we will take a closer look at the generator for the graphical
user interface that synthesizes code that resides only in the presentation layer.
The web application generated with MontiGem is a single page application, thus the
generator for the graphical user interface (short: GUI-generator) provides components
that are embedded into a routing structure within the angular framework. This approach
was chosen as it allows to dynamically rewrite the current web page with new data from
the server instead of reloading the entire page. Different components are loaded based
on the URL provided by user navigation, or entered by the user directly. In this context,
we refer to a page as a component that is loaded upon a specific URL request, e.g. a
dashboard or a settings page.

7.4.1 Generator-Architecture

The GUI-generator is based on the MontiWis [RR13, Rei16] and MontiWeb approach
[DRRS09]. MontiGem uses models defined in the GUIDSL to implement theModel-view-
viewmodel pattern [And12, HH13]. The implementation of both model (Section 7.3.1)
and view model (Section 7.3.2) is provided by the data structure generator, leaving only
the implementation of the view to the GUI generator.
The GUI-generator is provided with a set of GUI-models. Each model is parsed and
processed individually and will be transformed into one corresponding page (cf. Fig-
ure 7.18). Once a model is parsed, it is provided to four transformers: (1) One for
providing the TypeScript implementation representing the displayed angular component
for a page. (2) One for the corresponding HTML implementation that references the
component. (3) One for the form that might be required for the component and (4) a val-
idator that is used by the form. Each transformer passes the output AST to a template
engine, that generates the target code. The GUI-generator creates, next to navigation
and the TypeScript compiler configuration tsconfig.json, the TypeScript and HTML
implementation of a page. If specified in the GUI-model the generator provides a form
and a validator for that form as part of the corresponding page.

Generating the TypeScript Component

In order to create a page, the generator uses a set of templates that are nested within
each other. Figure 7.19 shows the template structure that is used to synthesize Type-
script code for one page. Within the transformation step (TypeScript Trafo) the AST
is extended by multiple methods that are derived from the GUI-model, e.g., each table
defined in a gui-model will result in an additional init method for this table, also each

187

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

Figure 7.18: GUI-generator producing an Angular Component and a corresponding
HTML file with two different template engines, that can be embedded in
the single page application.

specified DTO will result in a method to gather the corresponding data from the server.
Next to the model-dependent methods, there are default methods such as NgOnInit or
OnrouteChange that are common to all websites in an Angular environment. Once AST
is extended with methods, attributes, imports, and annotations, it is passed on to the
Template Engine. Within the template engine, the AST is passed to the core-template
TSPage.ftl that defines the overall structure of the targeted TypeScript file. Listing 7.11
shows the FreeMarker Template used to define the structure of a TypeScript file: In the
first line, all the necessary AST nodes and parameters are provided to compose the
targeted class in TypeScript: the name of the class, required imports, implemented in-
terfaces, class attributes, constructor definition, and method definitions. In the next line,
the template Imports is used to define the implementation for the import statements.
The class body is defined from lines 3-14. In case the interface should be implemented,
the provided classes are added in line 5 as a comma-separated list. Similarly lines 7-9
list the class attributes. The Attribute-Template is used for each attribute. Line 10
calls the Constructor-Template with the corresponding Constructor-AST-node. Lastly,
all provided methods are listed by using the Method-Template with the corresponding
AST-nodes.

188

7.4 Generator for Graphical User Interfaces

Figure 7.19: Template structure used in the GUI-generator to synthesize Typescript code
for one website.

1 ${tc.signature("className", "methods", "attribute",
2 "constructor", "imports", "interfaces")}
3 ${tc.includeArgs("coretemplates.Imports", [imports])}
4 export class ${className}
5 <#if interfaces?size gt 0> implements
6 <#list interfaces as interface>${interface}<#sep>,</#list></#if>
7 {
8 <#list attributes as attribute>
9 ${tc.includeArgs("coretemplates.Attribute", [attribute])}

10 </#list>
11 ${tc.includeArgs("coretemplates.Constructor", [constructor])}
12 <#list methods as method>
13 ${tc.includeArgs("coretemplates.Method", [method])}
14 </#list>
15 }

Listing 7.11: Core template used in the GUI-generator that defines the basic structure
of a TypeScript class: Class.ftl(Figure 7.19)

Generating the HTML Component

The HTML code generator is structured differently from the TypeScript generator, as
the target programming language is a markup language instead of an object-oriented
programming language. Instead of processing the AST-nodes in the stack (e.g. attributes
first, methods next), the elements from the GUI-model can be processed in the sequence
as they are defined in the model. The visitor pattern is used to set a specific template

189

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

for each node, which is used later when synthesizing.

1 ${tc.signature("ast")}
2 <#list ast.getPageElementList() as p>
3 ${tc.include("gui.html.core.EmptyTemplate", p)}
4 </#list>

Listing 7.12: Core template used in the GUI-generator that defines the base of a HTML
File.

Generating Navigation

In MontiGem also the navigation bar within the application is also based on a GUI-model
(See Section 5.1.6). The corresponding GUI-model is provided separately from the other
models and processed in its own generator process. The GUI-model does not define the
routing or application modules, it only provides a structure for the user interface that
provides the user with means to interact with the existing front-end structure.

Generating TSConfig

In order to set up the TypeScript project the configuration file tsconfig.json is needed.
It defines the TypeScript-Compiler options and sets the multiple paths of both handwrit-
ten and generated artifacts within the project. The configuration file can be extended
multiple times, thus there is one configuration that is provided with the application and
a generated one that contains all domain-dependent configurations, extending the pro-
vided one. The generated one is synthesized through a simple template (TSConfig.ftl),
configuring the list of needed paths to the generated artifacts in front end.

7.4.2 Overview of Generated Artefacts

Figure 7.2 depicts the artifacts that are generated by MontiGem for both the server and
the client. In the shown use case, MontiGem is provided with a set of models (A): A
domain models defining a Person class a view model PersonDashboard and two GUI-
models for a web page person.dashboard and the navigation main.navigation. Based
on the GUI-model for the web page, a corresponding TypeScript- and HTML file is
generated (B). In addition, commands are generated (C)(cf. Section 7.3.1). In case
the GUI-model is defined to load all available Objects of the PersonDashboard type,
the persondashboard.getAll.ts command is used. Based on the input class diagrams,
the same commands are generated for both the Server and the Client. Therefore, a
command serialized and sent from the client can be deserialized and interpreted from
the server (D). As the command PersonDashboard_getAll targets a type defined by the
view model, which is not persisted in the database, we need a handwritten mapping

190

7.4 Generator for Graphical User Interfaces

that loads persisted data into the requested objects. MontiGem generates an empty
class, that has to be extended via the TOP mechanism with a handwritten one (E)(cf.
Section 7.3.2). The handwritten DTOLoader can use the generated Data Access Objects
(cf. Section 7.3.1) in order to retrieve data from the database (F).

191

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

Figure 7.20: Artefacts generated by MontiGem for the class diagrams Domain.cd,
Roomdashboard.cd and the GUI models room-dashboard.componentn.gui
and main.navigation.gui.

192

7.5 Server Run Time Environment

7.5 Server Run Time Environment

The code generated by MontiGem is tailored to the corresponding architecture of the
runtime environment. In the following, we will look at the architecture of both the client
and server. The central components of the server are the server application itself: Apache
TomEE, the persistence API Hibernate, and the Docker containers through which we
deploy and manage the entire application. We will take a closer look at these in the
following.

7.5.1 Used Server Architecture in MontiGem-Base Application

The server used as a back end is an Apache TomEE [Fou22]. Apache TomEE is an open-
source, lightweight, Java Enterprise Edition (Java EE) application server that extends
the capabilities of the popular Apache Tomcat web server. Apache TomEE is developed
and maintained by the Apache Software Foundation.
Apache Tomcat, which is the foundation of Apache TomEE, is a widely used web server
and servlet container designed to serve Java web applications. It was chosen for its
performance, reliability, and ease of use. However, Tomcat only provides a limited set
of features required for Java web applications and lacks full support for the Java EE
specifications.
Apache TomEE bridges this gap by integrating additional enterprise-class components
and libraries, such as the Java Persistence API (JPA) that we use with Hibernate to man-
age our persistence layer, Enterprise JavaBeans (EJB) that we use to manage DAOs, and
Contexts and Dependency Injection (CDI) which we use among other implementations
for our access control. These features enable developers to build and deploy robust, and
secure enterprise applications using the Java EE standards.
In summary, Apache TomEE is used for:

1. Developing and deploying Java EE web applications and services.

2. Providing a lightweight, flexible, and production-ready application server for Java
EE projects.

3. Extending the capabilities of Apache Tomcat with additional enterprise features.

Apache was chosen over heavier application servers like WildFly9, GlassFish10 or Web-
Sphere11 for the following reasons:
Apache has a proven track record of reliability, having been widely used for decades as
a web server. Its long history and extensive community support ensure that any issues

9https://www.wildfly.org/
10https://javaee.github.io/glassfish/
11https://www.ibm.com/products/websphere-application-server

193

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

encountered can be quickly addressed and resolved. Furthermore, Apache is known for
its high performance and ability to handle a large number of concurrent connections,
which makes it suitable for EIS applications that require substantial traffic handling.
The flexibility of Apache is another significant factor in its suitability for building an
EIS back-end. Apache is highly configurable and extensible through modules, which
allows for customization to meet specific business requirements. This flexibility enables
organizations to tailor their server configurations to the unique needs of their enterprise
systems.
Additionally, Apache provides robust security features to protect sensitive enterprise
data. It supports various authentication and authorization mechanisms, as well as SS-
L/TLS encryption for secure data transmission. The active development and mainte-
nance of the software by the Apache Software Foundation ensure that security updates
are continually provided, keeping the server up to date with the latest security practices.

7.5.2 Persistence Management in MontiGem-Based Applications

A core element of information systems is the simultaneous writing and reading of a
shared database. For this we need a management layer that detects and resolves conflicts
between read and write operations. For the MontiGem architecture, we have chosen the
Hibernate framework.
Hibernate [Kin21] is an open-source Object-Relational Mapping (ORM) framework for
Java applications. It provides a powerful and flexible persistence API for managing
the persistence and retrieval of Java objects to and from relational databases. The core
functionality of Hibernate revolves around mapping Java objects (also known as entities)
to database tables and converting between object-oriented and relational data types.
Hibernate was chosen for the following reasons:

1. Simplified database interaction: Hibernate abstracts the low-level details of
database interaction, allowing developers to focus on the business logic without
worrying about writing complex SQL queries for basic CRUD (Create, Read, Up-
date, and Delete) operations. Within MontiGem we use generated DAOs (cf.
Section 7.3.1) to provide these operations to the developer.

2. Database independence: Hibernate provides a level of abstraction that makes
it easier to switch between different relational database management systems
(RDBMS) without having to change the application code. Although there is the
option to switch RDBMS the major versions of MontiGem were only developed
with MySQL and PostgreSQL. There have been theses evaluating MontiGem with
other DBMS such as Neo4J and GraphDB.

3. Improved performance: Hibernate offers various performance optimization tech-
niques like caching, lazy loading, and batch fetching, which can significantly im-

194

7.5 Server Run Time Environment

prove the performance of data access operations. Especially in later full-size real-
world applications such as MaCoCo these optimizations yielded high-performance
improvements. However, the generator had to be updated to make use of these
features. Newer architectures of the generator make heavy use of lazy loading and
batch fetching.

4. Extensibility and customization: Hibernate allows developers to extend and cus-
tomize its functionality to suit their application requirements. For example, you
can define custom data types or provide custom SQL queries for specific opera-
tions. Within MontiGem we use custom data types in order to optimize loading
times and to load data directly into a Dataclass-DTO (cf. Section 7.3.1) if possible.

5. Transaction management: Hibernate integrates with Java transaction APIs (such
as JTA) to provide a robust and consistent transaction management system for
applications. Within the generated DAOs we use these transactions in order to
prevent conflicts and inconsistencies within the database.

We use Hibernate to simplify data persistence in their Java applications, reduce boiler-
plate code, and improve overall maintainability and scalability. Hibernate was chosen
as a persistence API in the early stages of MontiGem-development. A few experiments
with further APIs were performed but did not indicate any advantage that would justify
a switch away from Hibernate.

7.5.3 Deploying MontiGem-Based Applications with Docker

Docker [Hyk23] is an open-source platform that simplifies the process of developing,
packaging, and deploying applications using lightweight, portable containers. These
containers ensure that an application runs consistently across different environments by
bundling the application along with its dependencies, libraries, and runtime environment.
Docker addresses the ”it works on my machine” problem, which occurs when an ap-
plication works well in a developer’s local environment but faces issues when deployed
elsewhere. By providing a consistent environment, Docker reduces the chances of en-
countering configuration or dependency-related issues.
As we try to maximise to potential number of use cases and MontiGem is expected to
be deployed in a large variety of environments. Docker was chosen as a deployment
platform.
Here’s an overview of the key components of a Docker setup:

• Docker images: A Docker image is a template that contains the application, its
dependencies, runtime environment, and other required configurations. Images are
built from a set of instructions written in a Dockerfile. Docker images can be
stored in a public or private registry, like Docker Hub, for easy sharing and reuse.
MontiGem uses four docker images as shown in Figure 7.21.

195

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

Figure 7.21: Docker Containers used in a typical MontiGem setup.

• Dockerfile: A Dockerfile is a script that contains instructions to build a Docker
image. It specifies the base image, application code, dependencies, environment
variables, and other configurations required to create the image. Developers can
write a Dockerfile to define the desired state of their application environment.

• Docker engine: The Docker engine is the core component responsible for creating,
running, and managing containers. It’s installed on the host machine and com-
municates with the Docker daemon, which executes the commands and manages
container life cycle operations. In order to deploy a MontiGem-based application
the docker engine is the only element that needs to be installed, all remaining
dependencies are provided within the container.

• Docker containers: A Docker container is a running instance of a Docker image.
When a user runs an image, the Docker engine creates a container from that image,
providing an isolated environment for the application. Containers can be started,
stopped, and removed using Docker commands. MontiGem uses this aspect to
redeploy parts of the application while keeping the persistence layer running. Indi-
vidual components such as the Client can be updated without stopping or restarting
the Server.

In summary, Docker works by using containerization to bundle an application and its
dependencies into a portable unit. It provides tools and features to manage the entire

196

7.5 Server Run Time Environment

container life cycle, from building and storing images to running and scaling containers.
This makes it easier to develop, deploy, and maintain applications consistently across
various environments.
Figure 7.21 shows the container used in a Deployed MontiGem-Application. There are
four kinds of containers. A container for the Apache HTTP Server (1), a container
for the back-end server (2), and two containers for databases. One contains a generic
database (3) that stores data relevant to the complete system and (4) contains databases
for individual users or groups of users (instances) in which data specific to that users are
stored.

7.5.4 Command API

MontiGem implements the command pattern [HH13]. Instead of implementing one API
for every command it can receive, MontiGem implements one API that handles any
command. A manager (CommandManager) handles the incoming commands and delegates
to the respective command classes that process the input.

Services

The command service is an interface to external applications and the main means of
communication for clients. The application back end is waiting for new commands and
executes them. MontiGem implements two types of services, the CommandRESTService
and the WebSocketService.
Both Services have the following in common (cf. Figure 7.12):

1. Each service receives JSON formatted string messages, which are expected to be
serialized commands (list of commands),

2. The service attempts to deserialize and validate the commands, upon failure a
error response (ErrorDTO) is returned to the sender.

3. The commands are passed on to the command manager which itself delegates to
the corresponding command classes

4. Results from the command classes are returned to the Command manager which
itself returns the answer back to the client.

In the event of an error, there can be different resolution strategies depending on the
connection logic.
The CommandRESTService provides one endpoint for all commands. Commands re-
ceived on this endpoint are collected by the command manager. The commands are
processed sequentially. The results of the executed commands are collected and sent
back to the client. Finally, the connection is closed. The server does not keep an open

197

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

session with the clients. It only receives the command and executes it according to its
access control and the implemented business logic.
A REST connection always exists between one client and the server. If a command
encounters an error, like when a necessary object isn’t found in the database, then none
of the subsequent commands in that list will run. Instead, an error message will be sent
back. This approach is used because commands often rely on one another. If one fails,
the next might not work properly.
The WebSocketService allows for a multitude of different executors, one of them is
the CommandManager to execute commands. A WebSocket connection is opened be-
tween one client and the server. The client has to open the connection and provides a
messageType which defines what kind of messages should be processed for this connection.
The connection can be held open as long as the client or server need to communicate
and is not closed upon a server response by default. With WebSockets, the server can
also initiate messages to a client, if the connection is still open. In a REST connec-
tion, the server only can respond. As the connection is kept with exactly one client,
the server knows which client has which connections and can send a message to specific
clients. This asynchronous communication allows for the use of paging (sending data in
iterations instead of one large transmission) in the execution of commands and enables
the broadcasting of commands, e.g. for notifications from one user to another. This is
useful if a certain event occurs and requires the attention of multiple users.

7.5.5 Security

As MontiGem is used not only in a test-case and proof-of-concept environment (research
software with TRL 3) but also in industry and real-world scenarios (published software
with TRL 9), we have to take into account the security of the generated application. The
implemented access control (cf. Section 6.5.1) must be supported by an architecture that
enforces the rules set by the access policy and ensures data privacy for sensitive data. AS
MontiGem has been deployed in multiple projects [BGK+23b] containing sensitive data,
the system has been improved over time to meet those security aspects. The following
aspects were considered when developing MontiGem:
Secure Design: Security was considered from the beginning of the software development
process. Designing the generator to produce target code with security in mind helped
to prevent vulnerabilities and establish a generated secure foundation for the software.
Permission checks, database restrictions, and user session management are part of the
generated code.
Secure Coding Practices: Developers must follow secure coding guidelines and best prac-
tices to prevent vulnerabilities such as buffer overflows, SQL injection, and cross-site
scripting (XSS). This includes proper input validation, output encoding, and error han-
dling. As large parts are generated, the developers tend to follow the secure predefined
patterns provided by the generator [GMN+20].

198

7.5 Server Run Time Environment

Authentication and Authorization: Implementing robust authentication and authoriza-
tion mechanisms helps ensure that only authorized users can access specific resources or
perform certain actions within the software. The used back-end server Apache TomEE
provides both Authentication and Authorization as mentioned above, within MontiGem
we use the Shiro12 framework in order to manage access control for individual users.
Data Protection: Ensuring that sensitive data is protected both in transit and at rest
is crucial. This can be achieved through encryption, hashing, and secure storage tech-
niques. Within MontiGem, databases are encrypted and common security measures
such as password encryption are implemented, as the architecture had to be validated
by multiple data protection officers in order to comply with German data protection
regulations.
Monitoring and Logging: Implementing monitoring and logging capabilities help to de-
tect and respond to security incidents more efficiently. This includes tracking user ac-
tivities, system events, and potential attacks. Although MontiGem supports in-depth
logging, the developer has to ensure that corresponding monitoring tools are configured.
Real-world applications generated with MontiGem used Icinga to monitor performance,
availability, and unusual behavior.
Secure Deployment: Ensuring the secure deployment of software includes following best
practices in server hardening, network configuration, and access control. Similarly to
monitoring, MontiGem does not provide a deployment mechanism, the security of this
aspect is up to the developer who configures the deployment for the specific use case. In
multiple projects, MontiGem was deployed either via Jenkins or with GitLab runners.

Using Shiro in Generated Information Systems

Most of the aspects defined above are realized with the Shiro framework. The Apache
Shiro framework, often just called Shiro, is a free security tool for Java applications.
Its primary goal is to help developers manage various security elements, such as user
authentication, permissions, session tracking, and encryption. Because of its versatility,
Shiro fits seamlessly into a variety of platforms — from web to mobile apps, and even
standalone environments.
Shiro was chosen for its following capabilities:
Authentication: Shiro boasts a dynamic authentication system. Developers can easily
confirm user identities by comparing their given credentials, such as usernames and
passwords, with a set data source. This could be a database or an LDAP server.
Authorization: With Shiro, it is simpler to oversee which parts of the application users
can access. This is done by checking user roles, permissions, or other attributes, ensuring
that resources are accessible only to authorized users.
Session Management: Shiro has an extensive session management feature. It is adaptable
to various application types, supporting both stateful and stateless sessions. In addition,

12https://shiro.apache.org/

199

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

its transparent clustering is perfect for applications that need to scale.
Cryptography: Shiro has native support for many cryptographic tasks, covering hashing,
encryption, and decryption. It is crucial for the secure storage of delicate data and
safeguarding app communications.
Integration: Incorporating Shiro with other Java tools and frameworks is straightfor-
ward. It is compatible with many, including Spring, Java EE, and different web app
servers.

Permission Management in MontiGem

Figure 7.22: Data structure managing the permissions in MontiGem

The permission management and access control in MontiGem is based on the Shiro
architecture: A user can be assigned to one or multiple roles. A role can have one or
more Permissions and have one or more ObjectClasses. Thus, a user is granted a Role
that gives him Permissions for specific ObjectClasses as shown in Figure 7.22.

Role×Operation× Class

The enumeration Permission defines the operation that we wish to control; these are the
typical CRUD operations but can be also extended to control more specific functions,
such as a data import or a conversion of an object. Although almost all operations can
be reduced to CRUD, having additional operations is useful to enable differentiation
between specific operations, e.g. it might be necessary to permit a user to change one
parameter x of an object but deny him changing any other parameter, both operations
would be an ’UPDATE’, but by introducing a specific permission changeX we can grant
a Role for this use case. The ObjectClass represents one or many classes that can be
targeted by roles. Typically a Role is granted to perform an operation on a group of

200

7.5 Server Run Time Environment

classes: An account might have a budget, and that budget can have multiple bookings.
It is infeasible to define permissions for each class directly, and thus we cluster all related
classes. In case we want to check if a user has permission to update a booking, we check
if he has permission to update the ObjectClass Account.
Let us take a look at an example. Within MontiGem we could define the following role:
AccountReader: The Role contains the permission READ and the ObjectClass Account. If
an account is loaded from the database, we can check if the current user has the read-
permission for accounts, if this is the case, for example, because the user was granted
the role AccountReader, then we proceed with sending the data, otherwise we can send
an error or a notification.

201

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

7.6 Client Run Time Environment

In the previous Section, we took a look at the RTE of the server, in this Section, we will
present the RTE of the client.

7.6.1 Apache HTTP

Apache HTTP Server13, commonly referred to as Apache, is a widely used open-source
web server software that was first released in 1995. It is developed and maintained
by the Apache Software Foundation (ASF). Apache HTTP Server is designed to serve
static and dynamic web content over HTTP and HTTPS protocols, and can be highly
customized through a modular architecture that allows the addition of various features
and extensions.
The primary difference between Apache HTTP Server and Apache TomEE lies in their
purpose and functionality: Apache HTTP Server is a general-purpose web server, de-
signed for serving static and dynamic web content. It is not inherently tied to any
specific programming language or framework, and it can be used with various server-
side technologies like PHP, Python, or Perl. Apache TomEE is specifically built for Java
EE applications, providing a server environment that integrates a variety of Java-based
technologies and APIs. This makes it more suitable for Java developers who need a
lightweight Java EE server for their applications. Within the MontiGem-framework the
TomEE Server is used to set up the back end and manage the business logic of the Appli-
cation (Application layer cf. Figure 7.3). The HTTP server is used to provide the HTML
and TS files to the client that are interpreted by the end-user browser (Presentation layer
cf. Figure 7.3).

7.6.2 Usage of Angular in the MontiGem Client

Angular14 is a popular open source JavaScript-based framework developed and main-
tained by Google, designed to build modern, scalable, and dynamic web applications.
Angular is particularly useful for developing single-page applications (SPAs), where users
can interact with the application without needing to reload the entire page. The frame-
work has evolved over the years, with AngularJS being the first version, followed by
Angular 2+ (referred to simply as Angular).
Angular was chosen for its component-based architecture, making it easy to structure
and maintain code by dividing application logic into reusable and modular components.
Each component consists of a template (HTML), a class (TypeScript), and metadata
(annotations) which define the behavior and appearance of the component.

13https://httpd.apache.org/
14https://angular.io/

202

7.7 Modifying Generated Code

The code we generated is mapped to Angular. Therefore, we use some of its key artifacts
to generate dynamic target code:

• Modules: Angular modules, also known as NgModules, are used to group related
components, directives, and services together. They provide a way to organize and
encapsulate code, making it easier to maintain and reuse. The root module, called
AppModule, is the entry point for an Angular application, and additional feature
modules can be created to organize related functionality. MontiGem generates one
module for each page.

• Components: Components are the building blocks of an Angular application, re-
sponsible for defining a part of the user interface and managing its behavior. Mon-
tiGem uses predefined components as page elements that are displayed in the UI.

• Directives: Directives are used to add behavior to HTML elements or manipulate
the DOM without writing JavaScript directly. There are three types of directives
in Angular: component directives (components), attribute directives (to change
the appearance or behavior of an element), and structural directives (to modify
the DOM structure by adding or removing elements). MontiGem uses directives
to hide and show elements in the UI via conditions (See Section 5.1)

• Services: Services are used to encapsulate reusable logic and data that can be
shared across multiple components. They are typically implemented as classes with
a specific purpose and can be injected into components using Angular’s dependency
injection system. MontiGem services are used to implement the command API
within the client.

• Routing: The Angular Router is a powerful routing library that enables navigation
between different views and components within an application while maintaining
a clean URL structure. The routing configuration is usually defined in a separate
module called AppRoutingModule. MontiGem uses the Angular router to navigate
between the generated pages.

7.7 Modifying Generated Code

A distinctive feature of MontiCore is its embrace of the TOP-Mechanism [HKR21], which
facilitates the composition and reuse of language components, as well as the extension
and adaptation of generated source code. Through the TOP mechanism, the generated
source code can be refined step by step.
A MontiCore-based generator such as MontiGem supports the TOP-Mechanism for any
target language that supports inheritance. A class, for example, MyClass generated by
MontiGem can be modified by the developer by adding the same class MyClass to the

203

Chapter 7 Generator Framework for Enterprise Management:
MontiGem

handwritten code directory. MontiGem will detect the class as already present and
generate a class with the new name MyClassTOP. The developer can extend the new class
and thus overwrite any aspect he wants to modify.
A great benefit of this approach is its robustness against model changes. Modifying
the generator to generate additional attributes, methods, or classes will not undo the
changes of the developer as they only target specific elements of the class and do not
replace the class as a whole.
Note that the TOP-Mechanism can not be applied to the HTML code and GUI-models as
both languages do not support inheritance. The modification of GUI-models is discussed
in Section 6.7.

204

Chapter 8

Case Study: Management Cockpit for
Controlling: MaCoCo

The methodology presented in Chapter 2 targets not only the development of
prototypes and research software (TRL 3), but also aims for an architecture that can
transition into a full-size real-world system (TRL 9). This chapter serves as a
demonstration that MontiGem is capable of producing an application that can
transition to a full-size real-world system (cf. RQ1.3: How to allow developers to
incrementally transform the application from a prototype to a full-sized real-world
system ?).

Contents

8.1 Motivation for MaCoCo . 206

8.2 The MaCoCo Use Case . 207

8.3 Requirements at MaCoCo . 211

8.3.1 Technical Requirements . 212

8.4 Implementing a Model-Driven Real-World Application 212

8.4.1 Modeling Financial Management within MaCoCo 218

8.4.2 Modeling Staff and Human Resources within MaCoCo 225

8.4.3 Modeling Projects and Time Tracking within MaCoCo 227

8.5 Extending MontiGem to Generate MaCoCo 230

8.5.1 Used Domain-Specific languages 230

8.5.2 MaCoCo-Specific Extensions 232

8.6 Lessons Learned from the MaCoCo Project 233

Model-driven development of real-world systems opens up a new multitude of challenges
[Sel03]. The software has to adhere to much higher standards in performance, user
experience, and stability. Whereas research software often targets the optimization and
analysis of one very specific aspect, real-world applications have to be sophisticated in
a large variety of features. Use cases can not be implemented at a high level but rather
have to cover every interaction a user might perform, and have to cover any errors that

205

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

might occur. This leads to a tremendously larger software complexity and challenges
the developer of the application. As a consequence, it challenges the developer of the
generator framework as well.
In the following, we will introduce the MaCoCo use case. MaCoCo is a web application
that was developed using the MontiGem-framework. At the time of writing, the domain
model for MaCoCo defines around 150 classes. Additional 600 classes define DTOs and
commands. 60 GUI-models define the user interfaces of the application, resulting in
about 1.000.000 lines of code (cf. Table 8.1). The application manages more than 200
databases and serves about 200 users per day (cf. Figure 8.1). This proves that the
approach is capable of transitioning from a prototype to a full-size application with an
active user base.

Language Type Lines of Code

Java Generated 600454
Java Handwritten 204037
HTML Generated 45468
HTML Handwritten 7181
TypeScript Generated 171408
TypeScript Handwritten 76166
CD4A Handwritten 4471
GUIDSL v1 Handwritten 12922

Total w/o Models 1104714

Table 8.1: Lines of Code of MaCoCo in Different Programming Languages

8.1 Motivation for MaCoCo

Similar to other enterprises Universities are working hard to modernize their manage-
ment and operations through digital transformation [NPAB22]. They are paying par-
ticular attention to updating teaching, research, funding from external sources, and
administrative work. Additionally, German universities became more independent as
the government shifted the financial management to them, in order to decentralize ad-
ministration and improve efficiency. As a result, universities established well-working
accounting and reporting systems. The decentralization leads to new challenges in the
context of digitalization: The central administration of each university is dependent on
obtaining aggregated financial data from all its faculties, chairs and research institutes.
The administration needs to supply financial reports, which include both the profit and
loss statement and the balance sheet. Most central university administrations tackle
these challenges by using a reliable well-established Enterprise Resource Planning Sys-

206

8.2 The MaCoCo Use Case

Figure 8.1: MaCoCo usage 2023. Amounts of Logins per day. Data shows a mean value
of about 200 logins each workday with a strong decline during the weekend.

tem (ERP), such as SAP1. The controlling of chairs and research institutes on the other
hand operate on a different scale. They are developing plans for financial resources,
provided by the administration or third-party funding. The processes surrounding the
spending of financial resources, are heavily regulated and follow numerous guidelines.
Although there are sophisticated software solutions to handle the administrative tasks
of the university administration at the university level, there are little to no tools that
assist the chairs and research institutes to cooperate with the administration in their
management tasks. Thus chairs and institutes have few options: (1) Use commercial
accounting software, that is not adapted to the specific needs of the university domain.
(2) Use spreadsheet software such as Excel or open office, that require the user to develop
the calculations and manage the data themselves. These sheets are error prone as they
are easily modified and do lack classical testing and validation. (3) Develop their own
software solution for financial management. This option is only suitable for large chairs,
as the software must be continuously maintained at high cost.

8.2 The MaCoCo Use Case

We take a closer look at the gaps and challenges presented considering the use case of
RWTH Aachen University. The university was founded in 1870 and consists of 9 facul-
ties. As of 2023, there are RWTH Aachen University 47,269 (Winter Semester 21/22)2

1https://www.sap.com/
2www.rwth-aachen.de/cms/root/Die-RWTH/Profil/ enw/Daten-Fakten/?lidx=1

207

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

students enrolled into one of 170 study programs. The university has 260 institutes and
employs 553 professors. The institute sizes range from a few employees (<10) to more
than 1000 such as at the WZL (Werkzeugmaschienenlabor).
Launched in 2016, the Management Cockpit for Management and Controlling project
was set out to create a comprehensive enterprise information system tailored for RWTH
Aachen University’s chairs. This system was developed to aid in the planning, reviewing,
and overseeing of management processes and cost accounting, streamlining these critical
operations for efficiency and effectiveness. The project is run by a collaboration between
two chairs at RWTH Aachen University: the Chair of Management Accounting3 from
the Faculty of Economics, and the Chair of Software Engineering4 from the Department
of Informatics.
In its initial project definition, MaCoCo was aimed at small and medium-sized chairs
of the university that would encompass a small organizational structure with few work-
flows and simple hierarchies. The MaCoCo project initially focused on the smaller to
medium-sized chairs, however as the project matured larger entities such as subdivisions
of WZL expressed interest in also using the software. Thus, during the development,
larger institutes of the university showed interest and MaCoCo was adapted accordingly.
Large chairs possess more extensive administrative structures and are more oriented
towards specific workflows. These chairs have distinct needs concerning their financial
matters and often employ systems akin to those used by private-sector companies for
accounting and sometimes for workflows. Although the integration of large departments
presented the project with several new challenges that were difficult to solve, the smaller
departments were also able to benefit from the new features. Runtime optimizations and
professionalization of the processes in the system benefited all users.
MaCoCo serves as a great platform to develop and test model-driven methodologies.
Especially aspects such as the generator’s adaptability to changing requirements, its
robustness, and scalability. Additionally, the MaCoCo use case provides a highly de-
tailed scenario the preceding transformers can be implemented for. For example: Both
CD2GUI and LLM4CD have to be able to handle models as large as used in MaCoCo
and the GUI-models produced by CD2GUI must be adaptable enough to match the
complexity of the MaCoCo’s GUI-models.

User Groups

One of the objectives of this thesis is to use model-driven software engineering to bridge
the gap between developers and domain experts. Following this principle, three user
groups were formed to be included in the software engineering process:
Lead Users. Lead users are domain experts of and represent the interests of the average
user of the finished product. The development of a complex system such as MaCoCo

3Chair of Management Accounting: http://www.controlling.rwth-aachen.de/go/id/mgaz
4Chair of Software Engineering’s project page: http://www.se-rwth.de/projects/MaCoCo.php

208

http://www.controlling.rwth-aachen.de/go/id/mgaz
http://www.se-rwth.de/projects/MaCoCo.php

8.2 The MaCoCo Use Case

requires a great deal of expertise in the areas in which the platform is to be used. As
part of the agile development process, potential end users are consulted to develop and
optimize the application iteratively. In order to streamline this process, only a few
individuals are chosen as lead users, representing the group of end users as a whole.
The principle idea behind faculties within a university is to group and separate chairs
based on their research domain. However, this separation also entails differences in the
administrative processes. To cover this diversity the group of users are chosen from
all eight faculties. In addition, the users were picked to cover small and medium-sized
chairs and deaneries as well.

Steering Committee. As MaCoCo offers functionalities that target processes that handle
sensitive data such as staff management, or financial management, the development team
relies on the guidance and oversight of the steering committee to produce a correctly
regulated software product. Each member of the steering committee monitors a specific
aspect of the development process of the application, as they represent rules, values,
or interests of a group of people. The members consist of the university chancellor’s
representative and the head of the department for finances, representing the universi-
ties’ interests in their investment. The two personnel councils and the department head
for personnel represent the rights and values of the employees. Together with the data
protection officer, we ensure the collected personnel data is secure and evaluate potential
analysis and presentation methods for the data. MaCoCo is hosted by the university IT
Center and interfaces with the SAP ERP system for university administration. Conse-
quently, representatives from both the ITC and the SARA project are members of the
steering committee. In addition, the committee includes the head of the ”Organization
and IT” department, the dean and managing director of the faculty for mathematics,
physics, computer science, and natural science, as well as a representative and a professor
from various computer science chairs. In addition, to represent the interests of the lead
users, two of their representatives attend the biannual steering committee meetings.
Custom Feature Users. On top of the basic controlling and management functionali-
ties, the MaCoCo project offers additional features for specific use cases. One of those
regards financial management between a faculty and its institutes, and another one re-
gards additional features to handle large administration bodies (more than 500 users per
institute). The wishes and requirements of these applications must be reconciled with
the requirements of the mentioned groups.
The project aims to support the user in the day-to-day management of their institutes.
Thus the platform had to be developed to incorporate their expertise and competence.
An agile development process was used to include multiple user groups in the model-
driven development process, to ensure development aligned with the end-users’ needs.

209

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

The Software Engineering Process

To tackle the development of an application with such a large group of domain experts, we
used an agile development method with an intensive and iterative requirements elicitation
process that is based on the principles of Scrum [Sch97]. Figure 8.2 shows the iterative
development process used in the MaCoCo project.

Figure 8.2: Agile software development method of the MaCoCo project [NGM+24]

An initial workshop was organized to gather, discuss, and prioritize all relevant require-
ments for the application. The input was clustered and features were defined. Three
main aspects could be derived from the feedback: Finance Management, Staff Man-
agement, and Project Management. As a next step, concrete use cases, integrations,
and corresponding tests are defined, and following scrum a backlog is set up with cor-
responding tickets. As a common practice in software development, these tickets are
closed within development cycles. After the initial definition of requirements, a first pro-
totype and next an initial data-structure model (root class diagram) could be defined,
providing a basis for the generation of the application. The implemented features are
then deployed on a test system where they can be reviewed by the corresponding stake-
holders. Should the system meet all requirements defined in the current iteration a new
version of the system is released, otherwise the feedback is aggregated and prioritized to
be incorporated into the next build.
Figure 8.3 shows the growth of generated code within the MaCoCo project over time.

210

8.3 Requirements at MaCoCo

Figure 8.3: Retrofitting MaCoCo with generated code (adapted from [DGM+21]). Hand-
written implementation is replaced stepwise with generated code and an in-
creasing amount of models.

Starting from a prototypical handwritten web application architecture, a domain-specific
model (CD) was derived. Using this model, basic code for data classes, persistence, and
domain-specific core application code (cf. Section 7.3.1) was generated. Next, further
systematic elements that were generated based on the domain model were identified. The
generator was extended to implement the command pattern and generate data transfer
between server and client (cf. Section 7.3.1). Support of OCL/P-Models was added next
to generate data validation (cf. Section 7.3.4), and finally a specific DSL was developed:
GUIDSL v1 in order to model user interfaces. At the time of writing, 3/4 of the code that
makes up the web application is generated by the MontiGem-framework (cf. Table 8.1).

8.3 Requirements at MaCoCo

The primary features of the software encompass the support of faculties and chairs in
their strategic and operational control and planning, more quality-assured processes, and
improved coordination with the university administration [ANV+18].
The key problems MaCoCo tackles can be listed as

• Replacement of multiple individual management solutions that implement un-
known quality control, with a standardized well-tested system: The majority of
chairs use individual spreadsheet solutions that are prone to errors, tend to have
no documentation, and have to be kept up to date individually.

• Professionalization of controlling processes, and provision of corresponding training
and documentation.

211

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

• Improvement of process transparency while simultaneously improving security: A
software solution can offer a fine-grained access concept, which in turn reduces
the workload of an administrative office by giving individuals the opportunity to
manage their own data (e.g. self-service).

• Standardization of overall processes and thus eased communication between ad-
ministrative entities.

MaCoCo aims to provide institutes with the means to overview, manage and plan with
its resources.

8.3.1 Technical Requirements

MaCoCo is a platform that is being used on a day-to-day basis outside of lab conditions
in the ’real-wold’. Thus additional requirements can be derived that are independent of
the specific use cases of the project, but can be linked to the targeted high technology
readiness level TRL 9:

Req.M1 Data Privacy: As the platform handles very sensitive data, a system has to be
established that allows the restriction of data to only be visible to authorized
personnel. It should be transparent what access the user has to what data at any
point in time.

Req.M2 Uptime: The platform is provided to the user at any time. Thus monitoring has
to be set up to enable faster reaction time to any server issues. A method has to
be established to inform the users of any upcoming downtime of the system.

Req.M3 User Support: The platform has to provide means to support the user while using
the system. This could be provided by direct communication channels (e.g., email,
chat, telephone) or by providing documentation.

Req.M4 Usability:The platform is intended to replace existing solutions, therefore it has
to be implemented with usability in mind. If the platform delivers the required
functions, but not with sufficient usability, it will not be accepted by the users.

Each chair needs its own setup in this system and might introduce new requirements at
their setup over time due to different outside factors. Agile software development helps
to quickly meet these changing needs and the model-driven methodology used in this
project supports their timely realization.

8.4 Implementing a Model-Driven Real-World Application

MaCoCo is realized using the MontiGem-framework (cf. Chapter 7). Thus the applica-
tion can be represented with a three-tier architecture [Eck95] consisting of a presenta-

212

8.4 Implementing a Model-Driven Real-World Application

Figure 8.4: Model driven development of MaCoCo using multiple generators to create a
web application.

tion layer (client) an application layer (server) and a persistence layer (database). The
project was started by implementing a handwritten prototype, outlining the key con-
cepts an scope of the system. Based on the feedback of developers, lead users, and the
steering committee of the project, a generator was developed and used to replace and
extend existing code step by step. Although the development of a generator seems to be
unnecessary extra work, as it only replaces existing code, it brings great benefits in the
later development phases of the project, as code can be modified and extended much
faster [AMN+20]. In order to keep the data modular and to increase security, each chair
has its own database within MaCoCo. Following the MontiGem-approach (Figure 8.4),
a set of models is used to generate the majority of the code [ANV+18].MaCoCo uses
CD4A class diagrams (cf. Section 3.4), GUI-models (cf. Section 5.1) and OCL models
to define the target application.
The controlling management of a chair can be divided into three major aspects: finan-
cial management, staff management and project management. The different aspects are
highly interdependent and interwoven with each other. Within MaCoCo, these aspects
can be seen as different views upon the same management challenge: From a financial
management point of view a bank account has bookings for salaries from multiple em-
ployees that are booked every month, from the view of staff management, the salary of
an employee is financed via multiple specific accounts. From a project management view,
a third-party project allocates funds within one bank account that is used to finance an
employee who is assigned to that project. One of the great benefits MaCoCo provides,
is the system-wide data consistency and transparency over the financial processes. The
user has one tool, that allows him to observe, plan and manage the relevant controlling

213

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

aspects of the chair.
Over the years MaCoCo has gained a lot of complexity. The application comprises more
than 60 pages (Figure 8.5) that manage over 100 persisted classes for multiple databases.

Figure 8.5: Overview of generated pages in MaCoCo and corresponding navigation be-
tween them (July 2022).

The layout and content of the pages, with the exception of the navigation and header
bar, are defined by GUI-models. Figure 8.6 shows a screenshot from MaCoCo. Ma-
CoCo presents the same look and feel as MontiGem due to the similar architecture.
However, through daily use and iterative lead user-driven optimization, the models and
components are more refined and show in general a higher complexity. The MaCoCo
application tends to follow Schneiderman Mantra [Shn96, CCOTF09], implementing (at
least in part) the seven tasks proposed by Schneiderman (cf. Section 6.2), which we
discuss in the following:

Schneidermans Mantra: Overview

One of the principal goals of MaCoCo is to provide the user with an overview of his
managed data. This challenge is met by providing both dashboards and overview pages
(Figure 8.6). The dashboards are used to provide relevant data about different data
types at a glance, whereas overview pages provide insights into the data for one specific
data type.

214

8.4 Implementing a Model-Driven Real-World Application

Figure 8.6: GUIDSL v1 based Account Overview Page. The page is defined using a
fully configured table component (cf. Section 5.1.3) and following the struc-
ture of the Overview Page as provided by CD2GUI (cf. Section 6.2.2). The
corresponding model is shown in Listing A.5

Schneidermans Mantra: Zoom

MaCoCo supports zooming only in part. ’Graphical’ zooming as described in [Shn96]
is supported by default by any current browser, and will only yield a limited gain in
information, as the user can adjust the information density on his screen by zooming
out, but will not see any new information by zooming in. However, MaCoCo also allows
the customization of the fields shown within a table, thus tables can initially show a
reduced overview, if needed the user can display further information, hence ’zooming in’
on specific data points.

Schneidermans Mantra: Filter

In order to permit quick identification of relevant data, tables in MaCoCo support a
simple filtering search mechanism. It allows to search all data within the table and
thus filters out any non-matching results. On several pages ’advanced’ searches were
implemented that allow filtering not only for displayed information but also for specific
context of the displayed data (8.8(b)). E.g. filtering a list of time sheets by the related

215

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

project.

Schneidermans Mantra: Details-On-Demand

The platform provides multiple pages that provide detailed information and context of
specific objects (cf. Figure 8.7, Figure C.3). As MaCoCo focuses on the management of
finance, staff and projects. There are individual pages to manage accounts and budgets,
staff and their contracts, as well as projects and related resources. Each details page
provides the user with options to inspect the object in focus and if needed change its
parameters (e.g. change the account through which a project is billed, or add bookings
to an account).

Figure 8.7: Screenshot of the details page of a project in MaCoCo, giving an overview
of the attributes and linked employees as well as the option to modify the
project.

Schneidermans Mantra: Relate

Relations between objects are rarely visualized within the overview pages, as the usable
screen space is limited. In MaCoCo relations of one specific object are shown within
their configuration and details pages. Depending on the complexity of the related objects
further pages were added. The bank account is strongly related to bookings, invoices, and
further financial flows, thus there is a separate page to inspect these specific relations (cf.
Figure 8.8(a)). The platform provides multiple pages that provide detailed information
and context of specific objects (cf. Figure 8.7).

216

8.4 Implementing a Model-Driven Real-World Application

(a) Further relations to other objects are visualized in separate pages

(b) Extended Filter options, allowing for more advanced searches

Figure 8.8: MaCoCo screenshots (MaCoCo Version 2.13.3, December 2023)

Schneidermans Mantra: History

MaCoCo provides an event history listing changes on the database. However, due to
the complexity of undo mechanisms in a multi-user web application and the lack of user
requests for this feature. It is not yet implemented. The current history feature lets the
user observe precise changes to any data to which he has access.

Schneidermans Mantra: Extract

MaCoCo has several data exports implemented. As a general feature, any data table
can provide its data as a CSV file to the user if not otherwise prohibited. Cases that
are prohibited include sensitive staff data that is regulated by data privacy policies.
Additionally to this export, MaCoCo provides several APIs that provide reports on
specific data sets, as well as PDF exports for time sheets and other printable tables.
As MaCoCo implements the same architecture as MontiGem, it has a very similar look
and feel. Due to its optimization for daily use, there are some additional components and
extensions, compared to MontiGem: Tables in MaCoCo provide a toggle switch to enable
batch processing of table entries. MaCoCo-specific components such as ’BalanceBox’
where added. This specific component is optimized to display one specific value to the
user and is used throughout the platform to differentiate between key values and less
relevant data. MaCoCo also makes use of the context menu in many places to give the
user alternatives to perform his tasks. The context menu is a ’hidden’ menu, but has
the great benefit of providing functionality related to the ’clicked’ element. This less

217

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

intuitive menu was added to MaCoCo to support faster GUI interaction for daily users.
In the following we will take a closer look at the implementation of the three different
aspects of controlling management of a chair: financial management, staff management
and project management. We also take a closer look at the specific model used to define
the application. The complete models can be found at: Listing A.1 and was published
in [GHL+22].

8.4.1 Modeling Financial Management within MaCoCo

As an enterprise resource planner one of the key feature of the platform is financial man-
agement. MaCoCo provides overviews and insights into the current financial situation
of the chair. This includes current bank accounts and planned accounts, predefined and
custom budgets and sub budgets as well as multiple types of billed and planned book-
ings and invoices. The financial situation of a chair is determined by many factors and
external influences. MaCoCo must be able to process the majority of these in order to
enable the user to accurately plan and perform informed decisions on the finances of the
chair.
The finance section provides MaCoCo users with planning, management and control
of financial resources. By aligning the account structure with the project types, it
is possible for chairs and institutes to manage the financial facts of the projects in
individual accounts. Here, the expenditures and revenues within the scope of a project
can be inspected and configured. Thereby the expenditures of a project are represented
via bookings and the revenues via calls for funds, invoices and allocations. The expenses
of a project can be divided into cost categories in MaCoCo by creating budgets and
distributed to individual years. This gives the chairs and institutes an extended overview
of the expenditures and allows for more detailed planning. In addition, chairs and
institutes can see at any time which funds have been spent, which funds are planned
to be spent, and which funds are still available. The combination with the staff area
enables the planning of employee expenditures and funding. The employer debits of the
employees are automatically posted to the respective accounts by the staff administration
in the staff area. With the help of an interface to SAP, the actual values are imported
into the respective accounts. This allows the users to control the expenses accordingly
and to compare them with their planning. Processes such as overhead management
are also automated in MaCoCo. The stored information in the accounts automates the
budget-effective returns of the overheads when creating new revenues. The rights and
roles concept further enables information to be made available to specific user groups in
a targeted manner. This makes information easily and quickly accessible at all levels in
the departments and institutes.

218

8.4 Implementing a Model-Driven Real-World Application

(a) Account-Classes (b) Booking-Classes

Figure 8.9: Excerpt of the MaCoCo data structure model. The diagram above omits all
attributes in order to increase readability. The complete CD is presented at
Listing A.1 and published at [GHL+22]

Single Underlying Model for Finance

Within the architecture of MaCoCo’s financial data model, the FinanceAccount class,
depicted in Figure 8.9(a), holds a central role. Each FinanceAccount may be associated
with a Budget, which itself can encompass several sub-budgets. Additionally, budgets
are capable of containing numerous Bookings, a relationship showcased in Figure 8.9(b).
A noteworthy early development feature was the incorporation of Notes to be attached
to accounts.
To cater to a diverse array of financial use cases within MaCoCo, the FinanceAccount has
been extended into several specialized classes. It has been refined into three distinct sub-
classes under the ExtendedAccount, which offers more detailed account information. The
classes IndustyProject, ThirdPartyFunds, and Other are designed to serve the primary
financial operations of academic chairs and institutes. Additionally, the data model ac-
commodates classes for synchronizing with the SAP financial system and for managing
communication between the faculties and institutes. Accounts sourced from SAP are

219

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

handled within the unique subclass named ExternalAccount.
As the project evolved, the FacultyAccount was added, designed to adhere to the internal
policy of a faculty that limits the proportion of the annual budget chairs can retain at
the year’s end. The dean’s office oversees these accounts to ensure compliance, engaging
with institutes to either spend the remaining funds or provide a rationale for any surplus.
The FacultyAccount thus includes elements for managing such communication, and is
linked to specific institutes to give context for the faculty members, reflecting the multi-
institute interactions of a single faculty.
MaCoCo’s transaction tracking utilizes the Booking objects, with the structure for this
class illustrated in Figure 8.9(b). Originating from the abstract BookingEntry class,
the Booking class is designed to be inclusive of each financial entry, which is invariably
associated with a budget or sub-budget. To meet the varying needs of the application,
the BookingEntry class has been extended variously. To align local accounts with SAP at
the booking level, additional information is stored within the Booking class, and external
data alignments are tracked using the Group class.
Moreover, the financial data framework of MaCoCo is seamlessly integrated with other
sub-domains. Accounts are directly linked to projects (see Section 8.4.3) to stream-
line the referencing of financial information within project contexts. This association is
unidirectional to optimize data retrieval efficiency, as accounts typically hold relevance
within the scope of projects. This integration extends to staff management (detailed in
Section 8.4.2), where accounts serve as financing sources for JobPositions, and budget
allocations for JobAllocations are specified to manage staff-related financial transac-
tions.

Graphical User Interfaces

MaCoCo has 19 pages that focus solely on financial management (Figure 8.5). With the
exception of one page all are modeled with the GUIDSL (Section 5.1). In the following,
we will take a look at a few of the modeled pages.
Finance Overview Dashboard

220

8.4 Implementing a Model-Driven Real-World Application

Figure 8.10: Dashboard showing relevant information about the financial status of the
institute. Top left: Pie-Chart displaying the aggregated budget. Top right:
Aggregated finances for different types of accounts. Bottom left: Account
with more than 85% budget remaining, Bottom right: Accounts with more
than 85% of annual budget remaining. Bottom center (partially occluded
in screenshot) Accounts with negative balance.

The finance dashboard (Figure 8.10) provides the user with a very specific overview
to manage the finances of the chair. Based on user feedback, the dashboard has been
optimized to show mainly accounts that are relevant to the currently logged in user.
Thus, there is no list showing all accounts on this page. As the dashboard is intended to
be used as a starting point, it provides only navigation options to the displayed elements.
This option was chosen to keep loading short and keep from developing multiple editing
pages in parallel.
Account specific pages

221

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

(a) Detailed view for one account, showing balances, budgets and editing options. Tabs in
the top row show various views for the account such as bookings (’Buchungen’) or cash flows
(’Mittelzuweisungen’).

(b) Edit-Form, to create or modify accounts. Here keydata (’Kontodaten’) can be set, such as
’Name’, ’PSP-Element’ or running time ’Laufzeit’. Furthermore budgets and subbudgets are
defined here.

Figure 8.11: Two of the account specific pages for financial management. Further pages
are: ’Bookings’, ’Job assingments’, ’Overheads’, ’Resource Allocation’ and
’Invoices’

222

8.4 Implementing a Model-Driven Real-World Application

Each account has its own details page (cf. Details Page: Section 6.2.3) in MaCoCo (Fig-
ure 8.11(a)). It shows the budgeting over multiple years, the balance type and cash flows
of the account, and offers the possibility to record short notes for this element. Besides
the account detail page, there are many other pages to manage the integration of the
account into the chair processes, such as job assignments and third-party funding. A
very important page is the edit form for the account (Figure8.11(b)). it remains one of
the more challenging user interfaces of the MaCoCo project and is one of the few user
interfaces that isn’t generated. The form enables the user to create or edit accounts,
and all it’s related complex attributes. Since the account is interleaved with many other
objects, the account form contains a lot of logic to ensure that the object to be saved is
valid. In addition, the user is supported early on in his creation process, so that he does
not spend a lot of time in the configuration of an unsavable object. The user is informed
as early as possible about possible inconsistencies.
Account independent pages A user request early on was the option to manage finances
independently form a specific account. Pages were needed, that list all bookings (Fig-
ure 8.12) invoices, resource allocations, calls for funds, and job assignments (cf. Overview
Page: Section 6.2.2). Due to the high quantity of data and a focus on displaying relevant
data as fast as possible, an adjustable filter on the last 30 days was implemented. While
the previous pages focused primarily on individual adjustments, these pages support the
user in the processing of large amounts of data. For this purpose, batch processing was
integrated into the tables. It allows the user to select any number of elements and modify
them in the same way. For example, to move 25 entries from one budget in one account
to another. The user is provided with a tool, that enables him to potentially load all
bookings from the database. As this can take a highly uncomfortable loading time, a
filter option is mandatory to ensure usability. However, the user is overwhelmed when
being prompted with a highly configurable filter, which results from all feature requests
from different use cases. The solution was found in a well-defined default filter: The user
is provided with bookings of the last 30 days. This captures the majority of use cases
and excludes only some rare cases where the user has to look at bookings from the more
distant past. One of the major challenges of the MaCoCo project is to bring together a
large number of very different use cases under a single platform, which is expected to be
intuitive and highly efficient at the same time.

223

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

Figure 8.12: (MaCoCo Screenshot) Page showing the adapted filtering (Collapsible ele-
ment in the header of the table) and batch processing of multiple bookings
at the same time. Multiple lines can be marked and edited via the context
menu.

224

8.4 Implementing a Model-Driven Real-World Application

8.4.2 Modeling Staff and Human Resources within MaCoCo

Figure 8.13: Class Diagram for Staff management within MaCoCo. The complete CD is
presented at Listing A.1 and published at [GHL+22]

With 607.0 million =C volume of third-party funds5 making up 51% of research funding
in 2022 more and more staff in universities are funded externally, therefore leading to
the requirement of more pronounced planning, monitoring, and control of staff financing.
As of February 2024 the budgets managed by MaCoCo amount to a total sum of more
than 2 Billion6 Euro. In the ’Staff management and Human Resources’ area, manage-
ment, planning, and controlling of employees of a chair or institute is originated. Here,
employees can be created and edited. The creation of an employee takes into account
the specifications of an employment relationship at a university. Thus, different occupa-
tional groups can be created, in which employment at a university can take place. It is
also possible to map the general conditions in terms of wages and compensation. Since

5https://www.rwth-aachen.de/cms/root/Die-RWTH/Profil/ enw/Daten-Fakten/?lidx=1
6Sum of all overall budgets without test data as of 11.2.2024: 2.188.286.257,17 EUR

225

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

employees at public universities in the state of North Rhine-Westphalia are employed in
the public sector, the relevant collective bargaining agreement applies to these employ-
ees. This is based on a remuneration table for determining wages. The remuneration
table consists of various remuneration groups and levels in which an employee is clas-
sified depending on the type of employment. This classification can be made for each
employee individually. The contract management of an employee is done by creating
contracts within the employee editing form. The financing of the employee can then be
stored in this contract by means of cost centers and various cost center types. Similarly,
personnel postings are created, taking into account the posting period and the posting
scope. The personnel postings are then booked directly to the respective stored account
and budget. This facilitates the planning of employee financing. Tables of employee
salary payments and financing also serve to support decision-making and transparency
through the management cockpit functionalities.
It is also possible to store absences for employees, e.g. vacations. This is accompanied by
an overview of the available vacation days and the vacation days taken. These absences
are transferred to the timesheet area for plausibility checks so that no working times
can be recorded on them. This reduces the risk of submitting time sheets to funding
agencies that are not true. This is to avoid allegations of grant fraud.
MaCoCo provides several tools for personnel management. As MaCoCo is also a planning
tool, different financing options for employees can be determined here. MaCoCo supports
the user and points out problems in financing. The management of employees presents
new challenges for the developers of the platform. In addition to the typical efficiency
requirements, there are data protection regulations that must be strictly adhered to.
Staff management is strongly linked with finances due to the salaries of the employees
Figure 8.13. We will look at a few of the implemented use cases below.
Employee Overview and Position Overview The MaCoCo platform distinguishes between
employees and the positions in which they are employed. This enables project-specific
planning of funding for specific employees. Through this, especially errors in planning
can be detected early, both in case of over- and underfunding.
Funding An important aspect of financial planning is the coverage of expenses. The
segment funding aims to provide tooling to optimize the cash flows in order to have all
staff expenses covered. Here, different views on the finances are offered: Which accounts
and how they are debited, how employees are financed, and whether positions have
financing (cf. Figure 8.14).
Employee Details The overview pages list staff and provide an easy link to the details
pages for one specific employee. There are four views for each employee. The first is the
detailed employee view, showing key parameters such as the time interval of employment,
kind of employment, and accounts the employee is financed over. The second view is
employee funding, as shown in Figure 8.15(a), which includes cash flows and coverage of
salaries. The third aspect is bookings, which lists all bookings related to the salaries of
the specific employee. Lastly, the absence calendar shows the working time distribution

226

8.4 Implementing a Model-Driven Real-World Application

Figure 8.14: Table in MaCoCo showing a mapping between users and projects for each
month and their respective coverage of funding.

and current requests for leave.
Salaries This segment gives the user an overview of the actual expenses for the personnel
over a certain period of time, i.e. the bookings for the salary and the planned expenses
for the personnel determined by contracts.
Staffing Plan In academia based on research projects and contract negotiations, there
is a limited amount of fixed positions that can be filled with employees. Well-planned
staffing can save the institute a lot of money here, or in contrast, the institute might
give away a lot of money if does not plan carefully. It is provided with the financing for
these positions whether they are filled or not, thus these important views were added in
order to help the user to keep these positions staffed at all times.

8.4.3 Modeling Projects and Time Tracking within MaCoCo

A lot of research by institutes can be financed over third-party-funded projects. These
come with their own requirements, such as custom time sheets. MaCoCo offers tooling
to support the user in keeping track of currently running projects, which employees are
currently working on them, and what resources are planned to be spent on it. Figure 8.5
shows how the pages in MaCoCo are set up to provide an overview based on the use case
the manager has at hand. If the intention is to manage the workload of the employees,
projects can be viewed based on the relation between employees and the expected work-
load for currently running projects. If the manager needs to organize the projects of the
institute, he can also filter by the type of the project and see if there are still third-party
projects that are still pending.

227

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

(a) (MaCoCo Screenshot) Funding of one employee. The (exemplary) employee is financed
to 100% within the shown time interval from Jan 2022 to Dez 2022 over the project ’BMBF
Projekt 1’. The exact bookings and corresponding accounts can be seen in the top table.

(b) (MaCoCo Screenshot) Calender of absences. Shows the planned leave, and remaining
vacation days for one employee.

Figure 8.15: Two of the employee-specific pages for staff management. Further pages
are: ’Overview’ and ’Bookings’

228

8.4 Implementing a Model-Driven Real-World Application

All these overviews lead to specific projects that can be inspected and edited in detail
over a set of views. The time sheets of the employees are kept in the time sheet area of
MaCoCo (Figure 8.16. Here, the working hours can be recorded for a project and the
respective work packages. For this purpose, target hours are calculated for the employees
on the basis of the contracts. With the help of the recorded actual hours, overtime can
be calculated. The time sheet section complies with the requirements of the Minimum
Wage Act. Certain employees are subject to time sheet requirements and must record
their working hours. These working hours must be kept by the employer. This is taken
into account by means of centralized time sheet recording, which can be carried out by
each employee. Furthermore, the time sheets are used to prove the working hours to
the funding bodies. For this purpose, time sheet templates are stored for individual
funding bodies, which take into account the requirements of the funding bodies. For this
reason, the plausibility check is of great importance. The absence times are therefore
automatically transferred from the personnel area to the time sheet. Since in the time
sheet area the hours can be recorded on projects and work packages, the number of
recorded hours on the individual work packages is possible for a project. This makes it
possible to compare the planned effort with the actual effort incurred and to control it
in the event of deviations.

Figure 8.16: Screenshot of a Time sheet as implemented in MaCoCo. The time sheet
indicates, what time was spent on which project. It indicates the work
time, break time, and required time. In addition, time absent (e.g. business
trips) and holidays are visualized. Although being a complex table, it still
provides all default component features such as search and filtering.

229

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

8.5 Extending MontiGem to Generate MaCoCo

MaCoCo uses MontiGem to generate the web application. Throughout its development
MontiGem was iteratively reconfigured, extended, and modified in order to comply with
the demanding requirements of the application. Many of the changes were incorporated
into the development of the generator and now form part of the core of MontiGem. In
the following we will take a closer look at the changes that are primarily focused on the
MaCoCo use case.

8.5.1 Used Domain-Specific languages

As MaCoCo and MontiGem share a common architecture, the DSL CD4A (see. Sec-
tion 3.4) is used similarly. In MaCoCo there are three types of class diagrams: (1) The
Domain model introduced in Section 7.3.1, (2) The View models, as described in Sec-
tion 7.3.2 and (3) the command models (see. Section 7.3.3). Similar to MontiGem the
class diagrams are used to generate domain-dependent artifacts of the persistence layer,
classes to access and move data from the server to the client, and multiple helper classes,
such as validators, commands, and builders. In order to meet the requirements of the
different use cases and the increased need for performance of MaCoCo, the generator in
MaCoCo has been expanded multiple times compared to MontiGem.

Generating Additional Code for Data classes:

Labels Very early on in the project, lead users expressed the wish to have the option of
labeling and managing different objects themselves. As this applies to almost any object
the user interacts with the generator was extended to add a List<String> labels to all
data classes. Allowing the developer to persist any comments or labels to any modeled
class.

Diff MaCoCo is a platform on which many users cooperatively manage their data. A
log that is understandable to the end user is a very useful tool that provides trans-
parency since administrative processes can be quite complex and often span multiple
user roles. Both MaCoCo and MontiGem use classical logging to track errors and debug
information, but this information is too technical to be provided to the end user and
might contain sensitive information. Thus an end user-friendly log is needed, that only
provides information that is relevant and within the restrictions of the user. In order
to provide this log, each class was provided with methods to track any changes to an
instance of that class: List<String> getFullDiff(Object o).

End User-Friendly Designations Another extension to the generator of the domain
class, was the addition of end user-friendly designations for attributes and classes. Many

230

8.5 Extending MontiGem to Generate MaCoCo

classes have technical names that are not meaningful for the end user or do not match the
naming conventions the end user is used to in his day-to-day work. In order to manage
this discrepancy, additional customizable designations were added via the generator that
can be used in any instance the system provides the user with information regarding a
specific class: eg. Error messages or notifications: ”Could not delete ’Bank Account’”.

Generating Additional code for Data Access Objects One of the more significant dif-
ferences between MaCoCo and MontiGem are the performance requirements, especially
when processing large amounts of data. Tests and run-time analyses have shown us
that it is primarily the interface to the database (JPA and Hibernate) and the generic
accessing of the database that slows down processing. For this reason, the generator
was provided with additional methods to enable access to the database using methods
adapted to the current use case.

Lazy Loading There are two prominent loading strategies in web development: lazy
loading and eager loading. Eager loading can have a negative impact on performance if
applied in large data structures. Depending on the data structure significant portions
of the database might be loaded in order to retrieve all objects that are linked directly
or indirectly to the eager-loaded object. In contrast Lazy Loading only loads data that
is relevant to the calculations at hand, thus taking less time and having less impact on
performance. MontiGem provides both approaches in its data access objects (see 7.3.1),
however, there is an option to specify the depth to which an instance of a class and its
linked objects are loaded. Thus either only the instance itself is loaded or all associated
objects are loaded as well. These options suffice for small-sized applications as they do
not have too large databases and data structures. Large applications however will suffer
from a high impact on performance each time the developer is forced to use the eager
loading approach. To mitigate this problem an option was added to define the depth to
which linked objects will be loaded. This enabled the developer to load only the required
objects needed for his use case without loading unnecessary objects. Figure 8.17 shows
the data structure of an bank account object in MaCoCo. The numbers in the dashed
boxes indicate the loading depth that is required to load the linked object. Lazy loading
up to a depth of 1 is equivalent to lazy loading in MontiGem, lazy loading up to a depth
of 2 would return the bank account object together with the linked objects: comment,
TotalBudget and ExternalAccount. Lazy loading up to a depth of 3 is equivalent to
eager loading in MontiGem (in this example),

OCL in MaCoCo

Constraints upon the data structure of MaCoCo can be defined via OCL. The data
structure generator matches the classes defined in both OCL models and class diagrams
and creates validators for both the back-end and front-end.

231

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

Figure 8.17: Example for loading depth applicable in generated lazy loading strategy

OCL-defined constraints are used to apply additional logic in both validators. The
constraints are used in the front end to notify the user about erroneous input before
it is saved and sent to the back end. In the back end, the constraints are used to
prevent erroneous data from being persisted in the database. Using OCL models ensures
consistent handling of data in both the front end and back end.
MaCoCo uses the CDTagging-language (cf. Section 3.5.1) to link constraints to classes
and attributes.

8.5.2 MaCoCo-Specific Extensions

As models defined in GUIDSL v1 can not be extended or modified with custom GUI
components, the only alternative to writing use-case-specific user interfaces by hand is
a corresponding grammar extension. The grammar of GUIDSL v1 is defined modular
in order to enable the extension for specific use cases. Extension for specific use cases
is enabled via an extension of the GUIDSL-grammar. As MaCoCo is one of the larger
use cases that incorporates GUIDSL v1 models, an additional component grammar was
added to incorporate MaCoCo-specific components.
The component grammar GUIDSLMaCoCo contains page elements that were developed
specifically for the MaCoCo use case. The grammar defines the following elements:

• MacocoBalanceBox: Text field, styled to highlight the a current monetary value

• ExcelImport: Page Element that starts an Import Dialog for Excel files.

• CSVImport: Page Element that starts an Import Dialog for CSV files.

MaCoCoBalanceBox

A MaCoCo-specific component grammar was introduced in order to keep page elements
that are very customized for a specific use case separated from other generic page ele-

232

8.6 Lessons Learned from the MaCoCo Project

ments. One example for such a specific component is the MaCoCoBalanceBox as shown in
Listing 8.1. A balance box is defined by a reference to a parameter and a simple title.

1 MacocoBalanceBox implements PageElement =
2 "balances" ref:Reference "{"
3 Box+
4 "}"
5 ;

7 Box = "box" (label:String) "," amount:Reference ("," type:Name&)? ";
";

Listing 8.1: Excerpt of the grammar GUIDSLMacoco defining a balance box page
element

1 balances <bi {
2 box "Remaining Budget", <bewilligungsBudget, primary;
3 box "Planned Expenditure", <expenditure, danger;
4 box "Expenditure", <planBudget, default;
5 box "Total Budget", <restBudget, success;
6 }

Listing 8.2: Excerpt of a GUIDSL v1 model defining the balance box page element shown
in Figure 8.18

Figure 8.18: Example of a balance boxes as used in MaCoCo

8.6 Lessons Learned from the MaCoCo Project

MaCoCo has been in development for a long time, and a lot of the experience gained dur-
ing the development of both the web application and the MontiGem-framework has al-
ready been incorporated into other model-driven projects. As summarized in [BGK+23b]
there are four key lessons we learned from developing MaCoCo with a model-driven ap-
proach:

1. A model-driven approach is beneficial not only in the long term but also at the pro-
totyping stage, especially when basic generation tools and experts in Model-Driven

233

Chapter 8 Case Study: Management Cockpit for Controlling: MaCoCo

Engineering are on hand: The benefits of MDSE are well known and established
[Rum12, Rum17, HKR21]. However, when initially setting up a prototype, ex-
tra effort is needed to implement and establish the generator infrastructure and
build systems. Nevertheless, within the MaCoCo project, this effort paid off as the
system gained additional flexibility that was needed to cope with rapidly changing
requirements. Models could be changed easily resulting in corresponding consistent
changes throughout the target code.

2. To introduce features that impact the entire system, the generator can be extended.
However, for more complex situations, additional Domain-Specific Languages might
be needed: As shown in Figure 8.3 languages were developed in order to increase the
amount of generated code, and increase the benefits of a model-driven approach.
Each model is to a certain degree an abstraction of a system that it describes.
Therefore the domain-specific code we generate based on these models is limited
by this abstraction. Within the MaCoCo use-case, we identified over time multiple
aspects that could be generated without the need to add further details to the root
class diagram e.g., the persistence infrastructure can be generated with the same
model as the command infrastructure by extending the generator. Data validation
however does require a lot more information than basic data structures can provide,
therefore we needed to add support for another DSL.

3. For projects anticipated to undergo further development, it’s crucial to integrate a
generator early on: MaCoCo is a fast-growing complex software project. Keeping
the code quality and structure consistent turned out to be a challenge, especially
in the front end of the application, as the used technology stack and the experience
of each development team member did not always match up. This issue was solved
by introducing the GUIDSL v1 and a corresponding generator infrastructure. The
introduction of such an infrastructure would have been easier in an early stage and
is almost infeasible at the current stage of the software.

4. For a successful transition from the current use case to a general-purpose gener-
ator framework, it’s essential to distinguish between generic and use-case-specific
generator code: After three years of development, the generator already produced
many of the necessary features to create an information system automatically.
However, these features were interwoven with use-case-specific elements of the Ma-
CoCo project. Thus a lot of effort had to be put into the separation of generic
and MaCoCo-related code in order to use the generator framework for other use
cases than MaCoCo. A large portion of the generator had to be refactored, as this
process covered all generated artifacts, including user interfaces, commands, per-
sistence logic, and overall generator usage. Developing the MontiGem-framework
as a generic framework from the beginning would have saved a lot of time and
resources.

234

Chapter 9

Further Applications Studies

The generative approach was used and tested in multiple projects [BGK+23b]. In the
following, we list a few and point out lessons we learned from each project.

Contents

9.1 Agile Data Dev - Data Management for Wind-Turbine Engineering . 235

9.1.1 Evaluation and Lessons Learned 236

9.2 InviDas - Interactive, Visual Data Rooms for Sovereign, Data Protec-
tion Decision-making . 237

9.2.1 Evaluation and Lessons Learned 238

9.3 Ford Pro Tool Tracking Platform 239

9.3.1 Evaluation and Lessons Learned 239

9.4 Usage as a LCDP in Teaching . 241

9.4.1 The A12 LCDP . 241

9.4.2 The Application Modeling Process 241

9.4.3 Results and Lessons Learned 242

9.5 Consulting Use Case . 243

9.6 Fenix / MontiGem 3 . 244

9.1 Agile Data Dev - Data Management for Wind-Turbine
Engineering

The Agile Data Dev (ADD) project aims for quicker market release and enhanced effi-
ciency in wind turbine development. ADD was the first project utilizing a CD2GUI-based
approach (cf. Figure 9.1). The MontiGem-framework was used to create a web-based
information system that served as a central point of information exchange [MNN+22]
for the client. The system was used to store development artifacts, such as CAD files,
configuration parameters of the wind turbines, and corresponding simulation results. By
providing this centralized single point of truth, data could be exchanged more efficient

235

Chapter 9 Further Applications Studies

between employees, replacing previous approaches where engineers stored data on their
individual computers. In addition, the generated application provided functionality to
archive data in accordance with legal requirements, increasing the overall efficiency of
the data management. As this project relies heavily on data entry and storage, it was
as an ideal candidate to serve as a proof of concept for CD2GUI.

Figure 9.1: GUI provided by CD2GUI with MontiGem-framework for the ADD project
showing the details page of a ’PitchConfiguration’ object with ID 22. Next
to the name and the description of the component, linked safety systems and
available safety systems are shown.

9.1.1 Evaluation and Lessons Learned

This particular project benefited greatly from its data-centric approach. We were able
to apply our methodology to quickly deliver a fully functional application prototype and
iteratively improve the application at an early stage, as the majority of the required data
structure was already known.

Need for Extensibility and Customization

Although we were able to provide an approach that created an application to manage
all provided data, the end users required adaptations of specific data fields to be more

236

9.2 InviDas - Interactive, Visual Data Rooms for Sovereign, Data
Protection Decision-making

productive. In addition, further logic was requested besides the basic data retrieval and
entry, which CD2GUI provides by default. To be more flexible for future projects, both
GUIDSL and CD2GUI had to be adapted to introduce adaptability and variability to
the methodology.

Additinal Views for Data Strucrtures

As the project relied heavily on the provided data structure, the client wished for direct
visualization of the used class diagram (single underlying model). Thus a diagram-based
navigation was developed (cf. Section 6.3.2). In addition, the LLM4CD tool also provides
a visual representation of any class diagram created.

Live Prototypes Drive MDE Toolchain Development

While the MontiGem-framewok and CD2GUI could provide a fully functioning proto-
type, the system had to be extended rapidly, to keep up with the client’s feature requests,
pushing the limits of both the generator framework as well as the used DSLs. Based
on the given feedback many extensions were implemented and in addition the gained
expertise was used to develop a new modeling language for user interfaces: GUIDSL v2
(cf. Section 5.2). Hence one of the distinguishing aspects of both languages is the signif-
icantly improved, extensibility and adaptability of GUIDSL v2.

9.2 InviDas - Interactive, Visual Data Rooms for Sovereign,
Data Protection Decision-making

Interactive visual data rooms for sovereign decision finding regarding data protection
(InviDas1). This project (cf. Figure 9.2) focuses on visualizing the privacy policies of
smart wearables and aims to facilitate comparisons between different devices. It receives
funding from the German government through the Bundesminiterium für Bildung und
Forschung (BMBF) and is brought to life by a collaborative effort of software engineers,
human-computer interaction experts, and smart wearable producers.
Software development started after MontiGem has already been in use for various
projects. Consequently, the enhancements made to MontiGem during this time were
primarily centered around resolving minor bugs rather than adding new features. For
instance, issues such as the unnecessary redirection of anonymous users to a login page,
even when a user login was not required to access certain parts of the website, were
addressed. Importantly, these issues were confined to MontiGem’s runtime environment
and did not impact the generator itself.

1https://invidas.gi.de/

237

https://invidas.gi.de/

Chapter 9 Further Applications Studies

Figure 9.2: GUI provided by MontiGem-framework for the Invidas project showing a
user interface for user data entry

9.2.1 Evaluation and Lessons Learned

In contrast to previous projects InviDas aimed to use MontiGem as-is and deploy it
within the project’s use case. The InviDas project had created a web application that
enabled users of smart wearables to easily understand and compare manufacturers’ pri-
vacy policies through data points instead of legal text. This approach was based on
data processing categories derived from analyzing various smart wearable privacy poli-
cies. The platform aimed for manufacturers to directly input their privacy policies. A
significant innovation of the project was the development of a standard privacy policy
model, created by analyzing the privacy policies of seven major smart wearable vendors
in accordance with the GDPR [BCC+22]. This model served as the main development
artifact for the InviDas platform, facilitating the generation of the back-end structure
through MontiGem.

Handwritten extensions to generated code are an imperative feature

Similar to MaCoCo the Invidas use case required several features that were not covered
by the default generated code of the MontiGem-framework. A modification or extension
of the generator was unfeasible as the required modifications for the features would not be
systematic and only occurred in low numbers throughout the target application. Thus,
additional features were primarily added via handwritten extensions to the generated

238

9.3 Ford Pro Tool Tracking Platform

source code (cf. TOP-Mechanism Section 7.7)

Prototyping accelerates communication and thus software development

Translating unstructured data, such as legal texts processed in InviDas, into structured
formats like class diagrams (CD4A) presents significant challenges, especially as often not
all stakeholders are familiar with either legal texts or class diagrams. This necessitates
extensive domain analysis and ongoing communication between the stakeholders and
often results in frequent system modifications, especially in the early stages of complex
projects. Generators like MontiGem prove invaluable in these scenarios, enabling rapid
implementation and deployment of changes to the data model as additional domain
knowledge is acquired over time.

Prototyping helps to identify problems early

In the initial phases of software development, concepts often lack maturity, and their
testability can be challenging, making it difficult to identify and address potential issues
early on. Prototypes serve as a crucial tool in this context, allowing for the testing of
use cases at a very preliminary stage. By doing so, they help to save valuable time that
would otherwise be spent developing these underdeveloped concepts and subsequently
fixing them. This early-stage testing ensures a more efficient use of resources, leading to
a smoother development process and a more robust final product.

9.3 Ford Pro Tool Tracking Platform

In collaboration with Ford Research and Innovation Center Aachen, we successfully
completed a pilot project for Ford Pro, aimed at helping companies monitor their tools
and machinery using Bluetooth, AI, and GPS tracking (cf. Figure 9.3). This system
reminds manufacturers driving the company vehicle if a tool is missing from their ve-
hicle, potentially left behind at a job site, and allows companies to locate and manage
their equipment in real-time. This can result in significant savings, estimated at =C38
per vehicle monthly, and time efficiency, saving workers approximately one hour and
administrators nearly two hours per week.

9.3.1 Evaluation and Lessons Learned

MontiGem was used to generate the corresponding web application. This project intro-
duced new use cases to the generator framework as not only the support for common web
browsers but also support for mobile devices and infotainment systems of the vehicles
were required.

239

Chapter 9 Further Applications Studies

Figure 9.3: Emlpoyee monitoring tracked tools with the MontiGem user interface. The
image shows a still frame from Ford press release: www.youtube.com/watch?
v=ODuvZ6AahzI (accessed 1.12.2023)

Models serve as Effective Communication Aids

The development of the application involved a large variety of stakeholders from different
disciplines. Developing a common understanding of the envisioned application is key to
an efficient development process. Throughout development, the class diagram turned out
to provide an ideal foundation to communicate the current state and upcoming changes
to the application.

Identify changes to the generator architecture early

In our MontiGem-based application, we developed mobile versions for smartphones and
a tablet specifically designed for vehicle use. The tablet version required a substantial re-
design of the user interface to prevent driver distraction, achieved by limiting information
displayed based on the vehicle’s acceleration. However, the application faced challenges
with unreliable mobile connectivity and a less responsive user experience compared to

240

www.youtube.com/watch?v=ODuvZ6AahzI
www.youtube.com/watch?v=ODuvZ6AahzI

9.4 Usage as a LCDP in Teaching

native apps. Consequently, we decided to phase out the web version and transition to
a native Android app in subsequent releases. Identifying these problems early on could
have led us to generate an Android app from the beginning, saving resources and effort
spent on the web version of the application.

9.4 Usage as a LCDP in Teaching

Since the approach described in this work is suitable for demonstrating the reduction
of code to be implemented through the use of model-driven software development, the
approach was also used for teaching. The approach was evaluated in the context of a stu-
dent lab for 14 weeks. Within the lab, the MontiGem-based approach was evaluated next
to an A12-based approach. As both systems are intended to generate web applications
but rely on different DSLs to do so, the lab was used to evaluate modeling methodologies
and the performance of both frameworks. Students had to develop an application for
the same use case with each platform. Half of the students started using A12 the other
half started using the MontiGem-based approach to reduce an experience-based bias.

9.4.1 The A12 LCDP

The enterprise LCDP A12 [mtpG21] is developed by mgm technology partners and used
in customer projects for the application domains insurance, e-commerce and the public
sector. Applications realized with A12 are typically single-page web applications, based
on a client-server architecture. Software development within A12 is divided into two
parallelizable branches.

9.4.2 The Application Modeling Process

The application modeler begins by:

1. Installing modeling tools using the provided installer.

2. Utilizing visual model editors to define domain-specific data and UI models (see
Figure 9.4).

3. Formulating domain-specific constraints using a Domain-Specific Language (DSL).
This generates validation code for runtime data consistency checks.

Given A12’s emphasis on processing forms and documents in enterprise business applica-
tions, these elements are particularly prioritized. In UI models, data models are linked
and mapped to UI components. These components, or widgets (e.g., a data picker),
are orchestrated to render the UI as modeled (cf. [mtpG20]). The engines use both the
validation code and UI models to highlight incorrect entries.

241

Chapter 9 Further Applications Studies

Figure 9.4: basic A12 architecture

The application model dictates the display of UI components, defining both the UI
layout and behavior. For instance, it may specify a tabular data overview on the left
and corresponding record details on the right. Post-modeling, these models are deployed
to the target application via the modeling tool.
In parallel, the application programmer begins with a provided template, serving as the
development starting point. Their primary role involves registering the UI components,
as referenced in the application model, within this template.
MontiGem and A12 share many elements in their architecture as both platforms operate
model-driven and target the generation of a web application: cf. Figure 9.5 and cf.
Figure 9.4.

9.4.3 Results and Lessons Learned

The student lab improved the product maturity, by identifying multiple edge-cases and
by pointing at gaps in its documentation. Each student group developed a running web
application (cf. 9.6(a), 9.6(b)). A follow-up questionnaire showed that the MontiGem-
based approach used within the limited scope of the lab, was able keep up with an LCDP
approach from industry. Students noted little to no drawbacks from using textual models,
but indicated limitations by being constrained, to the limited set of GUI components,
and lack of extensibility of GUIDSL v1. This feedback was considered in the development
of GUIDSL v2. Although mentioning limitations, all students noted that they were able
to develop the intended application, with the exception of minor stylistic elements or
features that would have improved the comfort of using the application.

242

9.5 Consulting Use Case

Figure 9.5: Basic MontiGem Architecture in comparison

9.5 Consulting Use Case

In order to evaluate the produced application prototype, an application was built using
two different methodologies. The targeted application is an information system that
handles document management for a consulting firm, it contains simple data entry and
retrieval, as well as low-level security requirements and a document storage feature that
MontiGem does not provide in its default configuration. An experienced software de-
veloper used both the MontiGem-based approach and a set of commercial frameworks
to build the same application twice. Both applications were presented to stakeholders
of the consulting firm and potential end users in order to evaluate the application. The
usability of the developed applications was evaluated through a user study. Participants
were given tasks to perform using the applications, and their interactions and feedback
were observed and recorded. The study aimed to identify any obstacles or difficulties
faced by the participants while using the applications. The feedback and observations
from the user study were used to assess the usability of the applications.
As expected the results of the user study showed that the custom web application per-
formed better in terms of usability compared to the MontiGEM-based application. Par-
ticipants found the custom application easier to use, were able to navigate it more ef-
fectively, and found it more satisfying to use. They also rated the aesthetics of the user
interface higher in the custom application. However, there were some usability issues
identified in both applications, such as unclear UI elements and a complex navigation
bar in the MontiGEM-based application. Overall, the custom application received better
feedback in terms of usability.

243

Chapter 9 Further Applications Studies

(a) Screenshot of a generated web-
application using the MontiGem-based
Approach

(b) Screenshot of a generated web-application using the
A12-based Approach

Figure 9.6: A web store for tea developed with both A12 and MontiGem.

This result is expected as a MontiGem-based prototype is very likely to have a low TRL-
Level compared to a commercial solution. An interesting aspect of the user study is that
despite the prototype nature of the MontiGem-based application, its evaluation for each
aspect remained above 5 on a scale from 0 to 10 (positive tendency).
The performance of the developed applications was evaluated using multiple methods.
One method was the Lighthouse evaluations, which focused on the frontend’s perfor-
mance. The Lighthouse results measured page loading times using metrics such as Speed
Index (SI) and Largest Contentful Paint (LCP). The custom application received a Light-
house score of 99/100, while the MontiGem-based application received a score of 76/100.
The custom-built version of the application had an LCP of 909 milliseconds on average,
which is considered very good. On the other hand, the MontiGem-based version had an
LCP of 2983 milliseconds on average, which is below the 50th percentile and considered
bad. The Speed Index measurements also showed that the custom version had an av-
erage value of 243 milliseconds (excellent), while the MontiGem version had an average
value of 1803 milliseconds (average). Overall, the custom version performed better in
terms of loading times compared to the MontiGem version.

9.6 Fenix / MontiGem 3

MontiGem has been developed and optimized over multiple years. As a result, a new ver-
sion of a generator (Fenix) was developed using up-to-date frameworks and incorporating
many of the lessons learned from MontiGem 1 (cf. [BGK+23b]).
The architecture of Fenix (cf. Figure 9.7) is similar to MontiGem (cf. Figure 7.1). The
new generator uses GUIDSL v2 and CD4A as input. Similar to MontiGem the generator
produces a complete web application. In contrast to MontiGem Fenix generates Java for

244

9.6 Fenix / MontiGem 3

Question
Model
Driven

Custom

The application was easy to use. 7 8.6
I found my way around the application well. 6.2 8.9
The application was satisfying to use. 5.9 8.8
I liked the application from the aesthetics of the user interface. 6 8.7
The user interface is structured in
such a way that I can easily find my way around it.

5.9 8.6

You need a (short) learning phase to be able to use
the application smoothly and comfortably. With 0 being
no learning phase and 10 being a long learning phase.

5.3 3.1

The loading times of the application were short and pleasant. 7.6 9.4
The overall impression of the application was good. 6.6 9.2

Table 9.1: Average results for all aspects of the user study (Higher is better). Ten users
were provided with both implementations of the application.

the presentation tier, which is transformed into TypeScript. Providing a consistent Java
code base. A key difference between MontiGem and Fenix lies in how the data structure
is shared between the three layers: the presentation layer, the application layer, and
the persistence layer. MontiGem shares the same data structure in the persistence and
application layer. The presentation layer presents a ’view’ of those layers. That can be
either be reduced or extended data structure providing additional parameters e.g. in
case computed values are required for the UI or a reduced data structure in case values
have to be omitted, such as passwords. In the Fenix architecture, the presentation layer
and the application layer share the same data structure. The data structure handled by
the presentation layer is identical to the data structure handled by the application layer
- allowing for better synchronization between multiple clients and the server. However,
not all data within this data structure is persisted thus the data structure from the
persistence layer might differ. Parameters that should not be persisted are defined in
the data structure as derived attributes or classes and often contain computed parameters
and temporary values.
SEHub2 is a platform for software project management, including simple issue manage-
ment and artifact analysis. The application consists of four major Features:

• User Management The application implements both authorization and authen-
tication. User management is supported, adding and removing users as well as
granting roles and permissions.

• Issue Management Issues can be created having a progress status. Each issue can

2https://sehub.demos.se.rwth-aachen.de/gui/Start (last accessed 1.12.2023)

245

https://sehub.demos.se.rwth-aachen.de/gui/Start

Chapter 9 Further Applications Studies

Figure 9.7: Fenix architecture: User Interface (GUI) Generator and Data structure (DS)
generator primarily producing Java and transpiling to TypeScript later

have its own commentary thread that is coupled to user management, enabling the
users to have issue-related discussions.

• Artifact Management SeHub supports artifact analysis, enabling the browsing of
project-related repositories and dynamic visualization of all project-related arti-
facts and their relationships.

• Project Management Projects can be managed by linking issues, comments, and
artifacts to individual projects and providing access management for each.

The application was developed as a proof of concept of the architecture. CD2GUI was
used to provide initial user interfaces and provide a prototype of the concept. In addition,
CD2GUI proved useful to test newly defined user interfaces and set up test data (cf.
Details Page 9.8(a), Overview Page 9.8(b)). As CD2GUI provides all pages necessary
for data entry, it could be used to add and remove data while modeling new interfaces. In
general, the approach operated as intended and provided support in rapidly developing
early prototypes. However, as the application itself, remained in a prototype state, the
capabilities to transition to a real-world application could not be demonstrated in full
within this project.

246

9.6 Fenix / MontiGem 3

(a) Details-Page (b) Overview-Page

Figure 9.8: Pages generated with CD2GUI for the MontiGem 3-Framework

247

Chapter 10

Discussion of the Approach

In the following, we will discuss the approach as a whole and take a closer look at the
individual elements of the toolchain. We will compare the methodology with other
common approaches from the industry such as Low-Code Development systems.

Contents

10.1 Methodology . 249

10.1.1 Using LLMs to transform natural Language into Domain Models 250

10.1.2 Transforming the domain model into GUI-models 250

10.1.3 Generating an Information System 251

10.2 Software Engineering with Low-Code Development Platforms 251

10.2.1 Definition . 251

10.2.2 Mendix . 253

10.2.3 OutSystems . 253

10.3 Software Engineering with Large Language Models 254

10.4 Software Generation with Large Language Models 255

10.5 MontiCore-Based Systems . 256

10.5.1 MontiDEx . 256

10.5.2 MontiWis . 257

10.5.3 MontiTrans . 258

10.6 Technology Readyness of MaCoCo 259

10.1 Methodology

The presented toolchain is assembled by three consecutive transformations: LLM4CD,
CD2GUI, and MontiGem. We will discuss each transformer individually.

249

Chapter 10 Discussion of the Approach

10.1.1 Using LLMs to transform natural Language into Domain Models

Model-driven software development is a powerful paradigm to efficiently design and cre-
ate software. Although it can reduce the development time in the software engineering
process dramatically it also introduces high amounts of computation power making the
entire approach less sustainable [DBK23]. AI-driven Software engineering tackles the
complexity of software development by filling the gap between domain experts and soft-
ware engineers [FR07, FL10]. Though smaller, the gap still exists. Among the challenges
the domain expert has to learn when creating a new model in a new DSL are [BAGB14]:

• Syntax and semantics of the language.

• How to compose the syntax to perform a function.

• Comprehension of syntax written by others.

• Debugging of syntax.

• Modification of a model.

Recognizing this issue, several approaches attempt to use structured text [ENT15] or
natural language [YS22] as input to produce corresponding UMLP diagrams. A survey
from 2021 [AMH21] analyzed 24 tools and methods that use rule-based or statistical
methods to attempt the extraction of UML class diagrams from natural language spec-
ifications. It concludes that there is no tool or method that is able to automatically
generate complex UML class diagrams. For this reason, the usage of language models
was evaluated to tackle this challenge. Next to our own findings (presented in Chap-
ter 4), there is further research investigating the capabilities of LLMs to facilitate the
automatic generation of domain models: [FFK23, CYC+23]. Camara et al. [CTBV23]
assess the capabilities of AI in modeling tasks and conclude that in general, ChatGPT
is capable of producing syntactically correct UMLP models and point out the necessity
to integrate generative AI stronger into model-based software engineering processes.
We can conclude that LLMs are currently among the best options to transform natural
language into a UMLP model.

10.1.2 Transforming the domain model into GUI-models

LLMs are well suited to produce models of generally known modeling languages (cf.
Chapter 4), however, the performance strongly declines in case the LLM is tasked with
the generation of uncommon or not yet published LLMs. As we need to close the gap
between natural language and PSMs for the web application generator, we use the well-
working creation of domain models and transform these into the corresponding user
interface models using the M2M-transformer LLM4CD.

250

10.2 Software Engineering with Low-Code Development Platforms

As we need a consistent set of models for our system the LLM-based approach might
not be the best choice to produce GUI-models directly. All generated overview pages
and details pages should look and feel the same to provide a consistent user experience.
The natural randomness that heuristic approaches introduce in this transformation is in
this case a disadvantage that is hard to avoid.

10.1.3 Generating an Information System

The benefits of model-driven software engineering are well-established [Som11, Rum17,
CFJ+16, Lid11]. Hence the methodology is set up to use MDSE in order to pro-
duce software. The preceding two transformers result from the goal of reducing the
problem implementation gap [FR07] while still remaining model-driven. There are
multiple approaches also using model-driven approaches to generate web applications
[TMN+04, FP00, ADB13, BDLD11]. As we have also published approaches to gener-
ate web applications using our tooling [ANV+18, Rei16], we use and develop for this
methodology DSLs transformers and generators that all are based on the same language
workbench (MontiCore) instead of adopting new DSLs that are based on multiple dif-
ferent language workbenches and technology stacks thus leading to a more complex and
harder to maintain toolchain.

10.2 Software Engineering with Low-Code Development
Platforms

There are several definitions for low-code development platforms (LCDPs), but, in gen-
eral, they have in common the reduction of the need for handwritten source code by
using a form of high-level abstraction to define an application. Taking this into account,
the methodology presented in this thesis and LCDPs share similar goals and solve similar
challenges.

10.2.1 Definition

The evolution of software development over the recent decades has always been accom-
panied by the aspiration to reduce the amount of handcrafted code required to produce
software [DRKdL+22]. In the 1980s, tools like the Fourth Generation programming
language and CASE tools [Mar82] should perform this task. In the 1990s the ’Rapid
Application Development’ emerged [Mar91], and in the 2000s the ’End user Development’
approach [LPKW06]. Up until today, Model-Driven Development(MDE) is a popular
approach to tackle complex implementation problems [MCF03].
The concept of Low-Code was initially introduced in a market analysis conducted by
Forrester in 2014 [RRM+14], in which such platforms were characterized as:

251

Chapter 10 Discussion of the Approach

Definition 11. (Forrester 2014) platforms that enable rapid delivery of business
applications with a minimum of hand-coding and minimal upfront investment in
setup, training, and development. [RRM+14]

Here Forrester refers to LCDPs as a developing methodology that reduces the amount
of required handwritten code, referring to the reduction of implementation as ’low code.’
Since this initial characterization of LCDP, multiple different definitions for the term
occurred. Depending on the context and use case LCDP are defined differently. In 2017
Forrester defines LCDPs as:

Definition 12. (Forrester 2017) products and/or cloud services for application
development that employ visual, declarative techniques instead of programming and
are available to customers at low- or no-cost in money training time to begin, with
costs rising in proportion of the business value of the platforms. [Ho16]

We observe an increased focus on platform aspect and its tooling to not only reduce
the amount of required hand-crafted code, but also an emphasis on visual modeling
[RKL+19]. Similar to Forrester, Gartner identifies platforms that support the devel-
opment of software. In [VID+19] Gartner introduces low-code application platforms
(LCAPs). These are a special case of LCDP that aim to develop enterprise-class ap-
plications, fulfilling requirements such as high performance, scalability, high availability,
security, resource use tracking and API access to and from local and cloud services
[DRKdL+22].

Definition 13. (Gartner 2019) A low-code application platform (LCAP) is an ap-
plication platform that supports rapid application development, one-step deployment,
execution and management using declarative, high-level programming abstractions,
such as model-driven and metadata-based programming languages. They support the
development of user interfaces, business logic, and data services, and improve pro-
ductivity at the expense of portability across vendors, as compared with conventional
application platforms. [VID+19]

Since its discovery, multiple companies have developed and sold LCDPs [RA17]. A
Rymer market analysis identified 13 platforms in 2017, labeling Appian1, Kony2,
Mendix3, OutSystems4 and Salesforce5 as leaders in the segment. With a market valu-
ation of $2 billion for Appian, investments of $360 million in OutSystems and Siemens

1https://appian.com/
2https://www.kony.com/
3https://www.mendix.com/
4https://www.outsystems.com/
5https://www.salesforce.com/

252

10.2 Software Engineering with Low-Code Development Platforms

by Mendix for $730 million, Forrester estimates a global market size for LCDPs of $3.8
billion.
Platforms that require no implementation of source code by the developer in contrast
to a low amount are called No-Code Development Platforms (NCDP) or sometimes also
Zero-Code Development Platforms. NCDPs are designed to meet the basic needs for
the development of a system. The lack of coding can limit the complexity in platform
interactions and thus limit the complexity of the resulting application. NCDPs are
therefore well suited for simple small-scale applications that need a short development
time but lack the adaptability and flexibility that LCDPs provide.

Definition 14. A No-Code Development platform is a Development Platform
(NCDP) for Web-based Applications, that requires no hand-written source code or
any Software development expertise to produce a running Software system. NCDPs
typically provide visual editors to ease the definition of the desired target app.

In addition to LCDPs, multiple NCDP, are being developed and used commercially.
Known platforms are Canva 6, Appsheet7 (Recently aquired by Google) or ClickUp8.
The following LCDPs are commonly used in industry:

10.2.2 Mendix

Mendix is a low-code application development platform that allows users to design, build,
test, and deploy web and mobile applications with minimal manual coding. It provides
a visual development environment, pre-built templates, and drag-and-drop components,
making it accessible to both professional developers and nontechnical users.
Mendix is designed to accelerate the application development process, reducing time to
market while maintaining the ability to create robust, secure, and scalable applications.
It offers features like multi-device support, integration with existing systems, and a
collaborative environment for developers and stakeholders.
Mendix is used across various industries and sectors to develop enterprise applications for
purposes such as process automation, customer engagement, and digital transformation.

10.2.3 OutSystems

OutSystems is a low-code platform that enables users to develop, deploy, and manage
custom enterprise applications rapidly. Its designed to simplify the application devel-
opment process through a visual interface, drag-and-drop components, and pre-built
templates. This approach significantly reduces the amount of manual coding required,
making it accessible to both professional developers and non-technical users.

6https://www.canva.com/
7https://www.appsheet.com/
8https://clickup.com/

253

Chapter 10 Discussion of the Approach

OutSystems offers a wide range of functionalities, including integration with existing
systems, support for multiple devices and platforms, and tools for automating application
life cycle management tasks. It is particularly popular for its ability to create scalable,
secure, and high-performance applications while accelerating development timelines. The
platform is suitable for building various types of applications, such as web, mobile, and
progressive web applications (PWAs), catering to different industries and business needs.
In the context of this work, we will refer to a LCDP as a platform as defined in Definition
12. The MontiGem platform relies on the definition of textual models, rather than
designing the models in a visual editor. The integration of a visual editor was evaluated,
but the increased development effort does not pay off compared to the advantage of
defining models in the platform itself. Textual models can easily edited in the same
development environment, the hand-crafted code is developed in. Thus, although the
platform does not have a visual editing component we still refer to it as a low-code
platform as it still reduces the required hand-written code.

10.3 Software Engineering with Large Language Models

Zhou et al. [HZL+23] give a detailed overview on the current state of LLM-based soft-
ware engineering. Recent advances in the development of neural networks and language
models have led to several potential breakthroughs for software engineering tasks.

• Synthesize complex code [CLS17]

• Summarize source code using neural networks [ZWZ+20]

• Using LLMs to find and repair software vulnerabilities [CTJ+23].

• Repairing JavaScript programs using GPT-2 [LCV22]

• Using ChatGPT as a programming assistant [TLL+23]

Siddiq et al. [SCS23] describe a lightweight framework to generate and evaluate code
snippets for Java and Python. The approach describes a toolchain that uses several
filters and rankings to ensure the quality of the code produced. Although there are several
approaches using language models to support the developer in software engineering tasks,
these approaches have the following challenges in common. The software engineering
domain is a rapidly evolving field, to keep up, language models have to be updated
regularly. A language model will most likely not know any new API definitions or
consider newly discovered security issues in a similar capability to a human developer
[WZK+23]. Language models are statistical models; therefore, the suggestions they
provide are based on the statistical distribution of data the model is trained on. Thus,
the outcome is strongly dependent on a well-chosen input data set and will only provide
the most likely data: For example, it will not choose the best solution, but rather the

254

10.4 Software Generation with Large Language Models

most statistically fitting one used for a given input data set. As the LLM is trained on a
lot of generic source code and is not trained on specifically well-written implementation
the code it will synthesize will also be ’generic’, as LLMs follow the garbage-in-garbage-
out principle [KR18]. On the other hand, LLMs suffer from the out-of-distribution
generalization problem [FGH+23]. The most common programming solution might not
always be the best for a given problem, there is a large quantity of training data with
low likelihood to be chosen, as they were applied only a few times in the training data
as well. [ZKX+23] finds that software engineering data generally follows a long-tailed
distribution, where a small number of classes have a large number of samples, while
many classes have very few samples. This skewed distribution significantly impacts the
effectiveness of LLMs for code, with these models performing between 30% and 254%
worse on infrequent labels compared to frequent labels.
In summary, LLM-based software engineering is an emerging field that undergoes rapid
developments and breakthroughs at the moment. There is not yet an approach that
facilitates the complete development of a complex application based on informal specifi-
cations. There is a need for an approach to more collaborative and integrated software
engineering with LLMs [Lo23].

10.4 Software Generation with Large Language Models

The term generator is used with different meanings in the literature. In the context of
MontiCore-based systems, we follow the architecture explained in the foundation chapter
(cf. Chapter 3). In the context of machine learning, however, the term generator is often
used in a more general sense as a tool that can produce text.
There exist many programming assistants that are often titled as code generators. Some
of the more popular ones are: GitHubs Copilot9, Stack Overflows overflowAI10, Amazons
assistant codewhisperer11, tabnine12 and IntelliJs coding assistant ’AI assistant’13. These
assistants are well suited to serve as pair programmers [WK+23, VZG22] however, they
are not intended to produce software on their own and still require supervision by an
experienced software engineer [FGH+23]. Hence we can not provide a programming
assistant to a domain expert in order to enable him to generate an Information System.

9https://github.com/features/copilot
10https://stackoverflow.blog/2023/07/27/announcing-overflowai
11https://aws.amazon.com/de/codewhisperer
12https://www.tabnine.com/
13https://plugins.jetbrains.com/plugin/22282-ai-assistant

255

https://github.com/features/copilot
https://stackoverflow.blog/2023/07/27/announcing-overflowai
https://aws.amazon.com/de/codewhisperer
https://www.tabnine.com/
https://plugins.jetbrains.com/plugin/22282-ai-assistant

Chapter 10 Discussion of the Approach

10.5 MontiCore-Based Systems

There are already a number of model-driven approaches that use MontiCore. In the
following we look at the common intersections of these projects.

10.5.1 MontiDEx

In his thesis Adaptable Code Generation of Consistent and Customizable Data-Centric
Applications with MontiDEx [Rot17] Roth describes the generator-framework Mon-
tiDEx. Similar to MontiGem it targets data-centric information systems and serves
as a predecessor to it. As such it focuses on similar goals in its design:
MontiDEx uses model-driven development to reduce development costs by processing
platform-independent models as primary artifacts. For the development of the frame-
work, Roth developed and reused existing DSLs such as CD4A and the activity-diagram
DSL: ADJava [Rot17]. He uses these DSLs for high-level abstractions and faces simi-
lar challenges such as the handling of the resulting underspecification while producing
a functioning prototype. Roth tackles these problems by introducing Hot Spots: A
specific code element that can be extended or modified. MontiDEx also supports the
TOP-Mechanism [HKR21, DJR22].
In contrast to MontiGem, MontiDEx does not provide a web application. The MontiDEx
Code Generator (cf. Figure 10.1) generates a desktop client that can communicate with
a hand-written application server, whereas MontiGem generates the complete client and
server architecture. As both approaches are data-centric MontiGem and MontiDEx use
CD4A models as input artifacts, however, MontiDEx uses activity diagrams to define
behavior whereas MontiGem relies on OCL and hand-written implementation of business
logic. MontiGem can process GUI-models in order to define custom user interfaces,
providing the ability to be adapted to a large variety of use cases, whereas MontiDEx
only provides tabular user interfaces and entry masks in order to manage its data. A
realization of MaCoCo would not have been possible with MontiDEx, for a variety of
reasons some of which are:

• Deployment: A native desktop application requires considerations for each plat-
form it runs on. As a browser-based application MaCoCo covers mobile, Windows,
Apple, and Linux systems without additional implementation effort.

• GUI: A considerable amount of resources of a real-world system is invested in
its user interface and the resulting user experience. MontiDEx does not provide
model-driven support to implement these user interfaces.

• Server-Client-Consistency As further described in [GHK+20], a great benefit of the
MontiGem-based approach is the resulting consistency of both server and client. As
both are based on the same data structure, there is no additional effort required to

256

10.5 MontiCore-Based Systems

ensure consistency. In addition, as the client is web-based, no version management
or client-side update is required, as the user always accesses the latest version of
the application. A desktop application would require active updating.

Figure 10.1: Architecture of MontiDEx by Roth [Rot17]

10.5.2 MontiWis

After the development of MontiDEx, Reiß developed a MontiCore-based generator for
Web-based Information Systems [Rei16] (Modellgetriebene generative Entwicklung von
Web-Informationssystemen). The work of Reiß builds upon MontiDex. The generator
framework uses class diagrams (CD4A) and activity diagrams as input and introduces
a new DSL to describe each generated web page, that serves as the direct predecessor
for GUIDSL. As Reiß’ UI-description language works in conjunction with the activity
diagrams, and the IS we develop is a purely data-centric one, GUIDSL had to be newly
developed.

257

Chapter 10 Discussion of the Approach

MontiGem simplifies the development process by omitting activity diagrams from the
generation process and using an architecture that puts a stronger emphasis on well-
defined user interfaces and efficient data management of the system. In addition, Mon-
tiGem relies on popular frameworks such as Angular and Hibernate in order to optimize
performance and reliability. The approach from Reiß relies on three kinds of models
to define the Information system. In this work, we provide a methodology that still is
capable of processing multiple kinds of models but makes the definition of such optional.

10.5.3 MontiTrans

In her thesis [Höl18], Hölldobler developed a framework (MontiTrans) to define trans-
formations for a given DSL. The derived target-DSL specific transformation language
could be used to apply endogenous transformations upon a model of the targeted DSL.
Considering the motivation for CD2GUI, a transformation of models from one DSL to
another, this approach solves many of the challenges CD2GUI had to face, however,
MontiTrans was developed to primarily execute endogenous transformations (input and
output models are based on the same metamodel), whereas CD2GUI provides an exoge-
nous transformation (input and output models are based on different metamodels). The
presented approach from Hölldobler is capable of the following:

• A process to derive a domain-specific transformation language for a given domain-
specific language.

• Support for hand-written adaptation extension of generated transformation lan-
guages.

• Transformation libraries for MontiArc and CD4A models.

Although the MontiTrans approach had the potential to overcome the challenges of the
CD2GUI, there were some reasons not to use the approach: First, the architecture was
developed for an older technology stack and would have required expensive upgrades.
Furthermore, MontiTrans offers a comprehensive and generic solution that was devel-
oped not only for a specific DSL but also for any DSL. This makes the framework much
more complex and heavyweight than necessary at this point. By tailoring a solution
for the transformation from CD4A to GUIDSL, a lot of overhead could be saved and a
lightweight easy-to-maintain tool could be created. Finally, MontiTrans is developed to
transform models within a given DSL (endogenous transformation). Although Monti-
Core could enable MontiTrans to transform from a Model from one DSL to another, this
would entail major code updates, and create a multitude of new challenges that need to
be tackled in order to provide a generic solution.

258

10.6 Technology Readyness of MaCoCo

10.6 Technology Readyness of MaCoCo

In this thesis, we claim that it is possible to create a full-size real-world system with this
approach. For our evaluation, we will take a closer look at TRLs for MaCoCo. According
to the ESA guidelines on TRLs for software development, [G+13, Com14] MaCoCo has
reached the Technology Readiness Level 9:

TRL 1: MATHEMATICAL FORMULATION Expression of a problem and of a concept of
solution.
In the project planning phase of MaCoCo a set of problems were defined that
MaCoCo should address, such as: Financial management, staff management, and
project management (cf. Section 8.1).

TRL 2: ALGORITHM Practical application identified.
A model-driven approach (cf. Chapter 7) was proposed in order to tackle the
problems identified in TRL 1.

TRL 3: PROTOTYPE Main use cases implemented. An initial prototype was developed
and tested with a group of lead users (cf. Section 8.2).

TRL 4: ALPHA version Clear identification of the domain of applicability.
In cooperation with the control committee, MaCoCo was adjusted in order to meet
all requirements of the target domain, such as improved security and data privacy
compliance.

TRL 5: BETA version All use cases and error handling specified.
MaCoCo has robust error handling, logging and monitoring. All initially specified
use cases have been implemented.

TRL 6: Product RELEASE All use cases and error handling implemented. User-
friendliness validated.
In cooperation with lead users the user-friendliness of MaCoCo is constantly vali-
dated and improved.

TRL 7: Early adopter version Validity of solution confirmed within intended application.
Requirements specification validated by the users.
Lead-users accessed MaCoCo on a daily basis and confirmed its operation on a
day-to-day basis. MaCoCo proved that it can be used by early adopters for its
intended purpose as an information system and a controlling tool.

TRL 8: General product Validity of solution confirmed within the intended application.
Requirements specification validated by the users. Feedback by early adopters was
used to refine and complete the product.

259

Chapter 10 Discussion of the Approach

TRL 9: Live product Full process implemented, Maintenance, updates, etc.
MaCoCo is released and published14 [GHK+20, ANV+18]. A complete process is
established governing error handling, maintenance, updates, and data migration, as
well as user support, documentation, and developer onboarding. Note that as part
of data privacy regulation and security, both documentation and the platform itself
are only accessible from within the RWTH Aachen network: macoco.rwth-aachen.
de.

Thus, MaCoCo meets all the requirements of a full-sized real-world application.

14se-rwth.de/projects/MaCoCo

260

macoco.rwth-aachen.de
macoco.rwth-aachen.de
se-rwth.de/projects/MaCoCo

Chapter 11

Conclusion

The following chapter summarizes the findings of this work and discusses the results of
the respective elements of the toolchain.

Contents

11.1 Summary . 261

11.2 Results . 263

11.2.1 Model-Driven Development for Information Systems 263

11.2.2 Using Large Language Models for Model-Driven Development 265

11.2.3 Transforming Domain Models to Application Models 266

11.2.4 Technology Readyness Level of Produced Web applications . . 267

11.2.5 Limitations . 270

11.1 Summary

This thesis makes contributions to the field of Model-Driven Development and web devel-
opment, particularly in the context of integrating language model transformers. It offers
new tools, methodologies, and practical applications, demonstrating the effectiveness of
these innovations through real-world case studies and thorough theoretical exploration:
We can break down the key contributions into the following areas:
Development of a Comprehensive Methodology: The thesis outlines a robust method-
ology focused on Model-Driven Development and web development. It emphasizes the
integration of tools and practices that enhance usability, adaptability, variability, and
real-world applicability.
Introduction of Key Transformers: A significant contribution is the development and
implementation of three primary transformers: LLM4CD, CD2GUI, MontiGem. These
transformers play a crucial role in the transformation process, from natural language to
web application.
Development of New DSLs: One of the contributions is the development of new
(GUIDSL v1, GUIDSL v2) specifically designed for the MontiGem transformer. This

261

Chapter 11 Conclusion

aspect signifies an advancement in the field, tailoring language models to specific needs
in web development.
Validation of Transformers: The thesis validates the effectiveness of the LLM-based
transformer (LLM4CD) through multiple tests, demonstrating its capability in trans-
forming natural language into class diagrams—a significant achievement in bridging the
gap between natural language processing and technical model development.
Functional Scope of Transformers: Detailed exploration of the functional scope, expan-
sion stages, and limitations of the CD2GUI transformer is presented. The work also
discusses the possibilities for extending and modifying both the transformers and the
synthesized models, showing the adaptability and flexibility of the developed tools.
Real-World Application and Case Studies: A pivotal part of the work is the presentation
of the MaCoCo case study, a real-world system used by RWTH Aachen University. This
case study serves as a practical benchmark for validating the methodology. Additionally,
the thesis explores various smaller projects, offering diverse applications and lessons
learned.
Critical Discussion and Engagement with Related Work: The thesis includes a compre-
hensive discussion chapter where related work is examined. This not only contextualizes
the research within the broader field but also provides critical insights and comparative
analysis.
The thesis presented its contributions as follows: In Chapter 1 we introduce the goals and
general motivation for the thesis. In addition, requirements for Usability, Adaptability,
Variability and Transition to Real-World Systems are discussed. Next Chapter 2 presents
the methodology providing an overview of the toolchain and pointing out the three key
transformers used: LLM4CD, CD2GUI, MontiGem. In addition, the corresponding the-
sis structure is presented. Chapter 3 provides foundations of model-driven development
and web development as well as introduces the DSLs re-used in this approach. In Chap-
ter 4 we introduce the first transformer LLM4CD, and evaluate the capabilities of LLMs
to produce models. In the following chapter (Chapter 5), the first transformer is pre-
sented as well as new DSLs developed for MontiGem. In order to validate the LLM-based
transformer, multiple test results on the transformation from natural language to class
diagrams are discussed. Once the first transformer and its target-DSL are presented,
the next transformer can be discussed in Chapter 6. The functional scope of CD2GUI
is presented together with expansion stages and limiting options of the transformer. In
addition, options to extend and modify both the transformer as well as the synthesized
models are shown. Next, the third transformer MontiGem is presented in Chapter 7.
As MontiGem transforms models into a running application, this chapter presents both
the run-time environment of the target application as well as the generated target code.
Having iterated over all transformers of the methodology we present the first case study:
MaCoCo. Chapter 8 provides insight into a full-size real-world system, that is currently
in use by RWTH Aachen University at the time of writing. The system serves as a
benchmark to validate the capabilities of the MontiGem-based methodology. As this

262

11.2 Results

approach was also used in further smaller projects, a selection of different use cases and
the corresponding lessons learned is presented in Chapter 9. The chapter is followed by
Chapter 10, in which the related work is discussed. The thesis is closed by this final
Chapter 11.

11.2 Results

The goal of this thesis was the definition and evaluation of a model-driven method for the
development of a full-size web-based information system. In developing a concept for an
information system generator, we identified three challenges: (1) development of a model-
driven tool that can produce such an application. (2) a tool that can interpret natural
language input and transform it into a formal model and (3) a tool that transforms
the output from one tool to the input the other one needs. Hence we defined three
corresponding research questions (cf. Figure 11.1).

Figure 11.1: Toolchain Overview: Transforming Natural Language into a model, into
models that define an applicaiton and finally into a target system

11.2.1 Model-Driven Development for Information Systems

The first research question introduced in Section 1.2 is defined as follows:

263

Chapter 11 Conclusion

Research Question I
What is the structure of a model-driven approach that can be used to build a full-sized
information system?

We propose a generator architecture in Chapter 7 that is capable of generating an infor-
mation system. The architecture has been validated in multiple use cases presented in
Chapter 8 and Chapter 9.

RQ1.1 What kind of models are needed to define an information system? We have
shown that a prototype of a web-based information system can be defined using informal
specifications, by transforming them into a domain-defining class diagram and deriving
further models from this single underlying model. However, as we also have shown in
Chapter 8, a real-world system such as MaCoCo requires a very precise and intricate
definition, that can not be provided by a class diagram alone. Thus as the transformation
of informal specifications is a very useful tool to rapidly produce a prototype, additional
configurations must be made at least in the form of GUI-models (GUIDSL) and further
class diagrams (CD4A) in order to leave the prototype phase of the application.
There are several approaches to defining an information system. In Section 10.5 we
present model-driven approaches by Roth [Rot17] and Reiß [Rei16] both using data-
centric methodologies to define their systems and define their underlying data structure
using CD4A models, and define processes using activity diagrams (JavaAD). As we follow
the Schneidermann Manta [CC05] (cf. Section 6.2) we use a combination of GUI-models
and class diagrams to define the basis of our system. In addition, the approach allows
for additional models such as tagging with OCL constraints in order to refine the system
and add some validation logic to it. Thus we define our information system based on a
set of CD4A and GUIDSL models, with the option to extend with additional models.

RQ1.2 How to transform a set of models into a running application? Transforming a
set of models into a web information system is a hard challenge. Chapter 7 introduces the
generator that was developed for this task. MontiGem follows the generator architecture
proposed in [HKR21], and uses a set of M2M-transformations and template-based M2T-
generation to produce domain-specific code for both the server and the client. This
code is complimented by a domain-independent handwritten runtime environment. The
resulting code forms the web application as presented in Chapter 8 and [BGK+23a,
ANV+18].

RQ1.3 How to incrementally transform the application from a prototype to a full-
sized real-world system Adaptability was considered throughout the entire methodol-
ogy, leaving the domain expert, the system modeler, and the developer with options to

264

11.2 Results

modify the artifacts that they are provided from previous steps in the generation pro-
cess. The domain expert can iteratively use LLM4CD in order to receive and optimize
the root class diagram. This class diagram can also be merged with further models in
order to ensure the target system contains specific data structures. Next the system
modeler can extend and modify both class diagrams and GUI-models (cf. Section 6.6)
in addition the templates used in the transformer CD2GUI can be exchanged providing
a more systematic approach to configure the GUI-model-output. Finally, the developer
can use the TOP-Mechanism [Rum17] in order to modify generated code. As all mech-
anisms described above are optional and work iteratively, the toolchain presented in the
methodology is capable of both creating a prototype of a web application as well as a
full-size real-world system, as shown in Chapter 8.

11.2.2 Using Large Language Models for Model-Driven Development

Research Question II
To what degree can large language models be used to transform natural language into
a domain model?

In Chapter 4 we present the transformer LLM4CD that tackles the challenge to interpret
and transform natural language into a CD4A model.

RQ2.1 To what degree are LLMs capable of reliably transforming natural language
to a model of a given DSL? We presented the transformer LLM4CD (cf. Chapter 4)
to transform informal specifications into class diagrams that define the domain of the
targeted data-centric application. The transformer relies on LLMs in order to process
the natural language input and therefore can not guarantee a valid model output for
any given input. However, as discussed in Chapter 4, LLM4CD can be configured to
efficiently produce CD4A models, with a success rate of up to 99%.

RQ2.2 How to use LLMs in an iterative process to incrementally create and modify a
domain model? Although the chance of producing a valid CD4A model is high, there
is still a chance, that LLM4CD does not produce a model that meets the requirement
of the user. In this case, the transformer can be used iteratively. Produced models can
be reused as input and modified using the LLM. As showcased in Chapter 4, external
CD4A-models can be used as input and be adapted by LLM4CD.

265

Chapter 11 Conclusion

11.2.3 Transforming Domain Models to Application Models

Research Question III
What methodology is followed to translate platform-independent domain models into
platform-specific models for building an information system?

Having tackled both the model-driven creation of a web-based information system and
the creation of models based on natural language, we still need to provide a solution on
how to transform the natural-language-based models into the models required as input
for the model-driven creation for web-applications. We provide another transformer for
this task: CD2GUI.

RQ3.1 How can we derive models defining user interfaces of a data-centric informa-
tion system for efficient data access? Chapter 6 presents a transformer that derives
user interfaces for a given data structure model. The corresponding GUIDSL models are
based on the principles of Schneiderman [CC05]. The derived user interfaces allow for
efficient access and modification of the persistent data in the system. As demonstrated
in Chapter 9.

RQ3.2 How can we ensure that the M2M transformation integrates seamlessly into
the agile-iterative development process and allows for the customization of the gen-
erated models? The presented methodology provides the domain expert with tooling
to produce a model-driven application by, deriving a set of models from informal specifi-
cations. However, these specifications have to be changeable as well as the models. Thus
we have to ensure that once generated models are changed by a system modeler, the do-
main expert still can change the provided specifications without breaking the system as
long as both changes are not in conflict. Section 6.6 introduces a mechanism similar
to the TOP mechanism that allows the system-modeler to extend and modify synthe-
sized models with handwritten ones. Thus any changes defined by the system modeler,
will not be undone once CD2GUI will synthesize GUI-models in another iteration (cf.
Section 6.7).

Research Question IV
How to ensure adaptability, variability, and usability throughout a generative
toolchain for information systems?

The toolchain we presented in this thesis covers all three aspects of this research question.

266

11.2 Results

RQ4.1 How to ensure adaptability of generated models and target code? Section 6.7
tackles the challenges of adaptability within a model-driven toolchain, and presents
how they are addressed within this toolchain. CD2GUI implements mechanisms to re-
place templates depending on the provided single underlying model. Hence making the
toolchain adapt more flexible to its input, rather than defining one generic user interface
that has to match any use case.

RQ4.2 How to ensure variability of generated models and target code? Section 6.6
presents the elements in this approach that ensure variability, especially in models gen-
erated for the user interfaces. The models generated in this toolchain can be modified
and extended. Especially GUI-models might require additional fine-tuning to meet the
needs of the end user. Hence, models generated by CD2GUI can be modified by a system
modeler. Changes are not lost when the application is regenerated.

RQ4.3 What UI-elements are required to ensure the usability of the generated infor-
mation system? Section 6.2 presents the minimal set of pages and UI-Elements that
are needed to have a reasonable amount of usability for the generated information sys-
tem. The toolchain implements these features presented in these chapters an thus fulfills
the requirements set up by research question IV. The toolchain relies on publications on
user interface definitions, but also uses input from application of the system in the real
world (cf. Chapter 8, Chapter 9) to maximize the usability of the initial prototype and
to ensure the high usability of emerging real-world applications.

11.2.4 Technology Readyness Level of Produced Web applications

The toolchain is intended to produce a prototype that is iteratively transitioned to full-
size software. In the following, we will take a closer look at both a produced prototype
and a finished application.

Evaluating an Unconfigured Prototype

In order to evaluate a MontiGem-based web-application prototype a model-driven ap-
proach was implemented for the digitization of consulting documentation processes. We
analyze the process of developing and deploying the application and its usability and
performance. We compared the model-driven approach to a non-low-code software devel-
opment approach. The evaluation of the resulting applications was based on ISO 25010
attributes, which include functional suitability, compatibility, security, maintainability,
and user experience. MontiGem was compared to a conventional software development
process that included common commercial frameworks such as Tailwind.

267

Chapter 11 Conclusion

Usability As shown in Section 9.5 the usability of an unconfigured prototype is limited.
The initial GUI components might not match the targeted domain and the navigation
through the system might not be optimized to any processes a user might encounter.
However, as we could show in Chapter 8, through iterative extensions, we can increase
usability and produce a running real-world application that is used by a wide group of
users.

Performance The experiments presented in Section 9.5 that handwritten solutions can
be more responsive. However, we could show that the generated applications were per-
formant enough for all generated use cases, and we could show that performance can be
improved over time using our approach (cf. Figure 8.17). Handwritten code has the ad-
vantage that it is individually customized to increase the performance of the application.
A generated prototype has not yet been optimized for this. We allow for optimization
in all generated code an thus have the potential to be as performant as an entirely
handwritten application.

Model-Driven development of Web Applications The developer tasked with using
both approaches to implement the application describes the following limitations of the
model-driven approach:

1. Limited functionality of the GUIDSL v1 compared to HTML and CSS, particu-
larly in the area of input elements. The GUIDSL v1 has a limited set of input
element types, which may not be sufficient for certain applications. Note that the
development of GUIDSL v2 explicitly addressed this drawback (cf. Section 5.2).

2. Difficulty in customizing and modifying the GUIDSL v1. Making changes to the
GUIDSL v1 or generator requires modifications to the underlying DSL and may
be out of the scope of small projects. Note that the development of GUIDSL v2
explicitly addressed this drawback (cf. Section 5.2).

3. Lack of predefined GUI components in the GUIDSL v1 that are specific to the do-
main of the application. This may require finding alternative solutions or creating
custom components.

4. The domain-specific focus of MontiGem, the model-driven framework used in the
user study, resulted in design decisions that may not align with the requirements
of the application. Certain features, such as a public registration functionality and
input element types, were not readily available or required changes to or extensions
of the framework.

5. The limitations of the GUIDSL and model-driven approach were more apparent
in smaller projects with a single target platform. The benefits of the model-driven

268

11.2 Results

approach may be more evident in larger projects that can afford changes to the
DSLs and custom generators.

6. The potential for technology limitations when using a framework like MontiGem.
Implementing certain features, such as offline functionalities or video streaming,
may require different architectures in the front and backend, which may not align
with the technologies utilized by the framework.

Many of the mentioned limitations address a limited number of available components
and the limited flexibility of the modeling languages used. As mentioned in Section 5.2,
the updated version of the DSL is designed to support component libraries and easy
adaptation of used components providing both more flexibility and a greater selection of
components. However, the MontiGem-based approach remains limited to the generation
of web-based information systems.

Technological Readiness of the generated Application

We could show in Section 10.6 and Section 8.3 that the produced application can be
transformed into an application that is used in production (TRL 9).

Generator evaluation (MontiGem)

MontiGem provides the developer with many artifacts for both the front end and back
end, that define a well-structured and very systematic code base. Since this code is
structured very systematically, it is easy to extend and adapt it. By using the generator,
the development process becomes a little bit more complicated, as we have an extra
process step, but with the increasing size of the project, the time cost of this step is
negligible compared to the benefit of the automatically produced code. Projects such
as MaCoCo and ADD have demonstrated the huge benefit of this approach [ANV+18].
Therefore, the extension should not affect the performance of the existing approach and
should only offer further options and additional functions. Consequently, extensions
comply with the following:

• Optionality: The extension should be optional and not force the developer to
specify further models or configurations if he does not want to use this component.

• Simple Build Process: The extension should be easily integrated in the existing
build process and add as little extra build steps as possible.

• Compatability: The extension mechanisms the developer is used to, such as the
TOP-Mechanism should still be possible even with the target code produced by
the plugin.

269

Chapter 11 Conclusion

• Ease of use and Documentation: The barrier to entry for the developer should
be kept as low as possible. Good documentation and ’getting started’ material is
provided.

Following a similar argument as in Section 10.6, we can place the generator at TRL 6.

11.2.5 Limitations

Although the presented methodology is very capable, we have to consider the following
limitations: (1) As the first transformer relies on LLMs, we also inherit limitations based
on this technology. LLM4CD configures and trains an LLM to produce a specific model,
however, based on the input such training can also be undone. Giving instructions (such
as ’Tell me the result of 4 + 4’) instead of specifications as input will most likely result
in an invalid model. This will be detected by the validation step in the process and the
generator will abort. (2) LLMs have a chance to produce invalid results. Although we
can configure LLM4CD to increase the chance of producing a valid model, we can not
guarantee it. As neural nets such as LLMs produce results in a very time-efficient man-
ner, LLM4CD can simply attempt again without any drawbacks to the methodology as
a whole. (3) Handling obligatory associations is an unsolved issue of CD2GUI. Although
we can produce user interfaces to create new objects, CD2GUI does not produce user
interfaces that enable the user to create a new object while already creating one, as
it would be needed for an obligatory bidirectional association. By extension CD2GUI
also does not support the creation of objects that have circular obligatory associations,
as all objects have to be created at the same time to produce a valid database state.
Unidirectional associations can be handled by creating both objects in the correct order.

270

Bibliography

[50101] Software Product Lines: Practices and Patterns. Addison-Wesley Long-
man Publishing Co., Inc., USA, 2001.

[ADB13] José Luis Herrero Agustin and Pablo Carmona Del Barco. A model-
driven approach to develop high performance web applications. Journal
of Systems and Software, 86(12):3013–3023, 2013.

[AKJP05] Mohammed Arif, Dennis Kulonda, Jim Jones, and Michael Proctor. En-
terprise information systems: technology first or process first? Business
Process Management Journal, 2005.

[AMH21] Esra A Abdelnabi, Abdelsalam M Maatuk, and Mohammed Hagal. Gen-
erating uml class diagram from natural language requirements: A survey
of approaches and techniques. In 2021 IEEE 1st International Maghreb
Meeting of the Conference on Sciences and Techniques of Automatic
Control and Computer Engineering MI-STA, pages 288–293. IEEE, 2021.

[AMN+20] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Si-
mon Varga. Enterprise Information Systems in Academia and Practice:
Lessons learned from a MBSE Project. In 40 Years EMISA: Digital
Ecosystems of the Future: Methodology, Techniques and Applications
(EMISA’19), volume P-304 of LNI, pages 59–66. Gesellschaft für Infor-
matik e.V., May 2020.

[And12] Chris Anderson. The model-view-viewmodel (mvvm) design pattern. In
Pro Business Applications with Silverlight 5, pages 461–499. Springer,
2012.

[ANV+18] Kai Adam, Lukas Netz, Simon Varga, Judith Michael, Bernhard Rumpe,
Patricia Heuser, and Peter Letmathe. Model-Based Generation of En-
terprise Information Systems. In Michael Fellmann and Kurt Sand-
kuhl, editors, Enterprise Modeling and Information Systems Architec-
tures (EMISA’18), volume 2097 of CEUR Workshop Proceedings, pages
75–79. CEUR-WS.org, May 2018.

[Arn23] Arnaud Roques. PlantUML, 2023.

271

Bibliography

[BAGB14] Ankica Barǐsic, Vasco Amaral, Miguel Goulão, and Bruno Barroca. Eval-
uating the usability of domain-specific languages. In Software Design and
Development: Concepts, Methodologies, Tools, and Applications, pages
2120–2141. IGI Global, 2014.

[BCC+22] Arvid Butting, Niel Conradie, Jutta Croll, Manuel Fehler, Clemens
Gruber, Dominik Herrmann, Alexander Mertens, Judith Michael, Ver-
ena Nitsch, Saskia Nagel, Sebastian Pütz, Bernhard Rumpe, Elisa-
beth Schauermann, Johannes Schöning, Carolin Stellmacher, and Sabine
Theis. Souveräne digitalrechtliche Entscheidungsfindung hinsichtlich der
Datenpreisgabe bei der Nutzung von Wearables. In Selbstbestimmung,
Privatheit und Datenschutz : Gestaltungsoptionen für einen europäis-
chen Weg, pages 489–508. Springer Fachmedien Wiesbaden, April 2022.

[BCD+03] Mariano Belaunde, Cory Casanave, Desmond DSouza, Keith Duddy,
William El Kaim, Alan Kennedy, William Frank, David Frankel, Randall
Hauch, Stan Hendryx, et al. Mda guide version 1.0. 1, 2003.

[BDC23] Dominik Bork and Giuliano De Carlo. An extended taxonomy of ad-
vanced information visualization and interaction in conceptual modeling.
Data & Knowledge Engineering, 147:102209, 2023.

[BDLD11] Mario Luca Bernardi, Giuseppe Antonio Di Lucca, and Damiano Dis-
tante. A model-driven approach for the fast prototyping of web appli-
cations. In 2011 13th IEEE International Symposium on Web Systems
Evolution (WSE), pages 65–74. IEEE, 2011.

[BDM+24] Nils Baumann, Juan Sebastian Diaz, Judith Michael, Lukas Netz,
Haron Nqiri, Jan Reimer, and Bernhard Rumpe. Combining retrieval-
augmented generation and few-shot learning for model synthesis of un-
common dsls. In Modellierung 2024 Satellite Events, pages 10–18420.
Gesellschaft für Informatik eV, 2024.

[BGK+23a] Constantin Buschhaus, Arkadii Gerasimov, Jörg Christian Kirchhof, Ju-
dith Michael, Lukas Netz, Bernhard Rumpe, and Sebastian Stüber.
Lessons Learned from Applying Model-Driven Engineering in 5 Domains:
The Success Story of the MontiGem Generator Framework. Science of
Computer Programming, 232:103033, October 2023.

[BGK+23b] Constantin Buschhaus, Arkadii Gerasimov, Jörg Christian Kirchhof, Ju-
dith Michael, Lukas Netz, Bernhard Rumpe, and Sebastian Stüber.
Lessons learned from applying model-driven engineering in 5 domains:
The success story of the montigem generator framework. Science of
Computer Programming, page 103033, 2023.

272

Bibliography

[BGRW17] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wort-
mann. Taming the Complexity of Model-Driven Systems Engineering
Projects. In Part of the Grand Challenges in Modeling (GRAND’17)
Workshop, July 2017.

[BGS05] Sven Burmester, Holger Giese, and Wilhelm Schäfer. Model-driven archi-
tecture for hard real-time systems: From platform independent models
to code. In Model Driven Architecture–Foundations and Applications:
First European Conference, ECMDA-FA 2005, Nuremberg, Germany,
November 7-10, 2005. Proceedings 1, pages 25–40. Springer, 2005.

[BJP22] Shraddha Barke, Michael B James, and Nadia Polikarpova. Grounded
copilot: How programmers interact with code-generating models. arXiv
preprint arXiv:2206.15000, 2022.

[BK16] J Scott Brennen and Daniel Kreiss. Digitalization. The international
encyclopedia of communication theory and philosophy, pages 1–11, 2016.

[BKRW17] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.
Architectural Programming with MontiArcAutomaton. In In 12th Inter-
national Conference on Software Engineering Advances (ICSEA 2017),
pages 213–218. IARIA XPS Press, May 2017.

[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[BP20] K Backhaus and T Paulsen. Vom homo oeconomicus zum homo digi-
talis. Marketing Weiterdenken: Zukunftspfade für eine marktorientierte
Unternehmensführung, 2:323–339, 2020.

[BRW16] Vincent Bertram, Bernhard Rumpe, and Michael von Wenckstern. En-
capsulation, Operator Overloading, and Error Class Mechanisms in OCL.
In International Workshop in OCL and Textual Modeling (OCL’16),
pages 17–32. ACM/IEEE, 2016.

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard
Rumpe. Conceptual Model of the Globalization for Domain-Specific Lan-
guages. In Globalizing Domain-Specific Languages, LNCS 9400, pages
7–20. Springer, 2015.

[CBT24] Javier Cámara, Lola Burgueño, and Javier Troya. Towards standarized
benchmarks of llms in software modeling tasks: a conceptual framework.
Software and Systems Modeling, pages 1–10, 2024.

273

Bibliography

[CC05] Brock Craft and Paul Cairns. Beyond guidelines: what can we learn
from the visual information seeking mantra? In Ninth International
Conference on Information Visualisation (IV’05), pages 110–118. IEEE,
2005.

[CCOTF09] Maria Manuela Cruz-Cunha, Eva F Oliveira, Antonio J Tavares, and
Luis G Ferreira. Handbook of research on social dimensions of semantic
technologies and web services. IGI Global, 2009.

[CDDM09] Sven Casteleyn, Florian Daniel, Peter Dolog, and Maristella Matera.
Engineering web applications, volume 30. Springer, 2009.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. ACM Press/Addison-Wesley
Publishing Co., USA, 2000.

[CFJ+16] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard
Rumpe, James Steel, and Didier Vojtisek. Engineering Modeling Lan-
guages: Turning Domain Knowledge into Tools. Chapman & Hall/CRC
Innovations in Software Engineering and Software Development Series,
November 2016.

[CGR23] Benoit Combemale, Jeff Gray, and Bernhard Rumpe. Large lan-
guage models as an ”operating” system for software and systems model-
ing. Journal Software and Systems Modeling (SoSyM), 22(5):1091–1092,
September 2023.

[Cle05] Paul Clements. Software product lines practices and patterns. The SEI
series in software engineering. Addison-Wesley, 4. print. edition, 2005.

[CLS17] Xinyun Chen, Chang Liu, and Dawn Song. Towards synthesiz-
ing complex programs from input-output examples. arXiv preprint
arXiv:1706.01284, 2017.

[CMNR24] Joel Charles, Judith Michael, Lukas Netz, and Bernhard Rumpe. Teach-
ing model-driven low-code development platforms. 2024.

[Com14] European Commission. Technology readiness levels (trl). horizon 2020
work programme 2015. commission decision c (2014) 4995, 2014.

[CTBV23] Javier Cámara, Javier Troya, Lola Burgueño, and Antonio Vallecillo. On
the assessment of generative ai in modeling tasks: an experience report
with chatgpt and uml. Software and Systems Modeling, pages 1–13, 2023.

274

Bibliography

[CTJ+23] Yiannis Charalambous, Norbert Tihanyi, Ridhi Jain, Youcheng Sun, Mo-
hamed Amine Ferrag, and Lucas C Cordeiro. A new era in software
security: Towards self-healing software via large language models and
formal verification. arXiv preprint arXiv:2305.14752, 2023.

[CYC+23] Kua Chen, Yujing Yang, Boqi Chen, Jose Hernandez Lopez, Gunter
Mussbacher, and Daniel Varro. Automated domain modeling with large
language models: A comparative study. In 26th International Con-
ference on Model Driven Engineering Languages and Systems, MOD-
ELS’23, 2023.

[Cza02] Krzysztof Czarnecki. Generative programming: Methods, techniques,
and applications tutorial abstract. In International Conference on Soft-
ware Reuse, pages 351–352. Springer, 2002.

[DAKM20] Bidit L Dey, Wafi Al-Karaghouli, and Syed Sardar Muhammad. Adop-
tion, adaptation, use and impact of information systems during pandemic
time and beyond: Research and managerial implications. Information
Systems Management, 37(4):298–302, 2020.

[DBH18] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. Explainable ar-
tificial intelligence: A survey. In 2018 41st International convention on
information and communication technology, electronics and microelec-
tronics (MIPRO), pages 0210–0215. IEEE, 2018.

[DBK23] Istvan David, Dominik Bork, and Gerti Kappel. Circular systems engi-
neering. arXiv preprint arXiv:2306.17808, 2023.

[DGM+21] Imke Drave, Akradii Gerasimov, Judith Michael, Lukas Netz, Bernhard
Rumpe, and Simon Varga. A Methodology for Retrofitting Generative
Aspects in Existing Applications. Journal of Object Technology (JOT),
20:1–24, November 2021.

[DHM+22] Manuela Dalibor, Malte Heithoff, Judith Michael, Lukas Netz, Jérôme
Pfeiffer, Bernhard Rumpe, Simon Varga, and Andreas Wortmann. Gen-
erating Customized Low-Code Development Platforms for Digital Twins.
Journal of Computer Languages (COLA), 70, June 2022.

[DJR22] Florian Drux, Nico Jansen, and Bernhard Rumpe. A Catalog of Design
Patterns for Compositional Language Engineering. Journal of Object
Technology (JOT), 21(4):4:1–13, October 2022.

[DRKdL+22] Davide Di Ruscio, Dimitris Kolovos, Juan de Lara, Alfonso Pierantonio,
Massimo Tisi, and Manuel Wimmer. Low-code development and model-

275

Bibliography

driven engineering: Two sides of the same coin? Software and Systems
Modeling, 21(2):437–446, 2022.

[DRRS09] Michael Dukaczewski, Dirk Reiss, Bernhard Rumpe, and Mark Stein.
MontiWeb - Modular Development of Web Information Systems. In
Proceedings of the 9th OOPSLA Workshop on Domain-Specific Modeling
(DSM’ 09), Orlando, Florida, USA, October 2009.

[DS02] Paulo Pinheiro Da Silva. Object modelling of interactive systems: the
UMLi approach. The University of Manchester (United Kingdom), 2002.

[Eck95] Wayne W Eckerson. Three tier client/server architecture: Achieving
scalability, performance and efficiency in client server applications. Open
Information Systems, 10(1), 1995.

[Elm90] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–
211, 1990.

[ENT15] Meryem Elallaoui, Khalid Nafil, and Raja Touahni. Automatic gener-
ation of uml sequence diagrams from user stories in scrum process. In
2015 10th international conference on intelligent systems: theories and
applications (SITA), pages 1–6. IEEE, 2015.

[ET12] David W Embley and Bernhard Thalheim. Handbook of conceptual mod-
eling: theory, practice, and research challenges. Springer, 2012.

[FADB+22] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-
Reilly, and James Prather. The robots are coming: Exploring the impli-
cations of openai codex on introductory programming. In Australasian
Computing Education Conference, pages 10–19, 2022.

[FCK+95] David Ferraiolo, Janet Cugini, D Richard Kuhn, et al. Role-based access
control (rbac): Features and motivations. In Proceedings of 11th annual
computer security application conference, pages 241–48, 1995.

[Fel23] Eric Feltgen. Analysis of a model-driven approach to the digitization of
consulting documentation processes, 2023.

[FFK23] Hans-Georg Fill, Peter Fettke, and Julius Köpke. Conceptual model-
ing and large language models: impressions from first experiments with
chatgpt. Enterprise Modelling and Information Systems Architectures
(EMISAJ), 18:1–15, 2023.

[FGH+23] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho
Sengupta, Shin Yoo, and Jie M Zhang. Large language models for

276

Bibliography

software engineering: Survey and open problems. arXiv preprint
arXiv:2310.03533, 2023.

[FL10] Martin Fowler and Domain-Specific Languages. Addison-wesley profes-
sional, 2010.

[Fle79] Rudolf Flesch. How to write plain english. University of Can-
terbury. Available at http://www. mang. canterbury. ac. nz/writ-
ing guide/writing/flesch. shtml.[Retrieved 5 February 2016], 1979.

[Fou22] Apache Software Foundation. Apache tomee, 2022.

[Fow10] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

[FP00] Piero Fraternali and Paolo Paolini. Model-driven development of web
applications: the autoweb system. ACM Transactions on Information
Systems (TOIS), 18(4):323–382, 2000.

[FR07] Robert France and Bernhard Rumpe. Model-driven Development of
Complex Software: A Research Roadmap. Future of Software Engi-
neering (FOSE ’07), pages 37–54, May 2007.

[G+13] ESA TRL Working Group et al. Guidelines for the use of trls in esa
programmes. Technical report, Technical Report ESSB-HB-E-002, Eu-
ropean Space Agency, 2013.

[GHJ+95] Erich Gamma, Richard Helm, Ralph Johnson, Ralph E Johnson, and
John Vlissides. Design patterns: elements of reusable object-oriented
software. Pearson Deutschland GmbH, 1995.

[GHK+20] Arkadii Gerasimov, Patricia Heuser, Holger Ketteniß, Peter Letmathe,
Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Gen-
erated Enterprise Information Systems: MDSE for Maintainable Co-
Development of Frontend and Backend. In Judith Michael and Do-
minik Bork, editors, Companion Proceedings of Modellierung 2020 Short,
Workshop and Tools & Demo Papers, pages 22–30. CEUR Workshop
Proceedings, February 2020.

[GHL+22] Arkadii Gerasimov, Patricia Heuser, Peter Letmathe, Judith Michael,
Lukas Netz, Bernhard Rumpe, Simon Varga, and Galina Volkova. Do-
main Modelling of Financial, Project and Staff Management, April 2022.
Zenodo, https://doi.org/10.5281/zenodo.6422355.

277

Bibliography

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. MontiCore 1.0: Ein Framework zur Erstellung und Verar-
beitung domänspezifischer Sprachen. Informatik-Bericht 2006-04, CFG-
Fakultät, TU Braunschweig, August 2006.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. MontiCore: A Framework for the Development of Textual
Domain Specific Languages. In 30th International Conference on Soft-
ware Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008,
Companion Volume, pages 925–926, 2008.

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe.
Engineering Tagging Languages for DSLs. In Conference on Model
Driven Engineering Languages and Systems (MODELS’15), pages 34–
43. ACM/IEEE, 2015.

[GM01] Athula Ginige and San Murugesan. The essence of web engineering-
managing the diversity and complexity of web application development.
IEEE multimedia, 8(2):22–25, 2001.

[GMN+20] Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe, and
Simon Varga. Continuous Transition from Model-Driven Prototype to
Full-Size Real-World Enterprise Information Systems. In Bonnie An-
derson, Jason Thatcher, and Rayman Meservy, editors, 25th Americas
Conference on Information Systems (AMCIS 2020), AIS Electronic Li-
brary (AISeL), pages 1–10. Association for Information Systems (AIS),
August 2020.

[GMNR21] Arkadii Gerasimov, Judith Michael, Lukas Netz, and Bernhard Rumpe.
Agile Generator-Based GUI Modeling for Information Systems. In Ajan-
tha Dahanayake, Oscar Pastor, and Bernhard Thalheim, editors, Mod-
elling to Program (M2P), pages 113–126. Springer, March 2021.

[GR18] Jeff Gray and Bernhard Rumpe. Agile model-based system develop-
ment. Journal Software and Systems Modeling (SoSyM), 17(4):1053–
1054, 2018.

[Grö10] Hans Grönniger. Systemmodell-basierte Definition objektbasierter Mod-
ellierungssprachen mit semantischen Variationspunkten. In Aachener
Informatik-Berichte, Software Engineering Band 4. Shaker Verlag, 2010.

[GWT+13] Matthias Galster, DannyWeyns, Dan Tofan, Bartosz Michalik, and Paris
Avgeriou. Variability in software systems—a systematic literature re-
view. IEEE Transactions on Software Engineering, 40(3):282–306, 2013.

278

Bibliography

[GWT+14] Matthias Galster, DannyWeyns, Dan Tofan, Bartosz Michalik, and Paris
Avgeriou. Variability in software systems—a systematic literature re-
view. IEEE Transactions on Software Engineering, 40(3):282–306, 2014.

[H+06] Matthew Hause et al. The sysml modelling language. In Fifteenth Eu-
ropean Systems Engineering Conference, volume 9, pages 1–12, 2006.

[HBAA18] Maryum Hamdani, Wasi Haider Butt, Muhammad Waseem Anwar, and
Farooque Azam. A systematic literature review on interaction flow mod-
eling language (ifml). In Proceedings of the 2018 2nd International Con-
ference on Management Engineering, Software Engineering and Service
Sciences, pages 134–138, 2018.

[HH13] John Hunt and John Hunt. Gang of four design patterns. Scala Design
Patterns: Patterns for Practical Reuse and Design, pages 135–136, 2013.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus
Müller, Bernhard Rumpe, and Ina Schaefer. Engineering Delta Modeling
Languages. In Software Product Line Conference (SPLC’13), pages 22–
31. ACM, 2013.

[HJ16] Steven Hirshorn and Sharon Jefferies. Final report of the nasa technology
readiness assessment (tra) study team. Technical report, 2016.

[HJK+23] Malte Heithoff, Nico Jansen, Jörg Christian Kirchhof, Judith Michael,
Florian Rademacher, and Bernhard Rumpe. Deriving Integrated Multi-
Viewpoint Modeling Languages from Heterogeneous Modeling Lan-
guages: An Experience Report. In Proceedings of the 16th ACM SIG-
PLAN International Conference on Software Language Engineering, SLE
2023, page 194â=C“207, Cascais, Portugal, October 2023. Association for
Computing Machinery.

[HKR21] Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe. MontiCore
Language Workbench and Library Handbook: Edition 2021. Aachener
Informatik-Berichte, Software Engineering, Band 48. Shaker Verlag, May
2021.

[HLMSN+15a] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez, B. Rumpe,
S. Völkel, and A. Wortmann. Composition of Heterogeneous Modeling
Languages. Springer International Publishing, 2015.

[HLMSN+15b] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez, S. Völkel,
and A. Wortmann. Integration of Heterogeneous Modeling Languages

279

Bibliography

via Extensible and Composable Language Components. In 3rd Interna-
tional Conference on Model-Driven Engineering and Software Develop-
ment. SciTePress, 2015.

[HM02] Jan Heering and Marjan Mernik. Domain-specific languages for software
engineering. In Proceedings of the 35th Annual Hawaii International
Conference on System Sciences, pages 3649–3650. IEEE, 2002.

[HMPO+08] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen,
and Andreas Svendsen. Adding standardized variability to domain spe-
cific languages. In 2008 12th International Software Product Line Con-
ference, pages 139–148, 2008.

[Ho16] J Hammond and Kony outSystems. The forrester wave™: Mobile low-
code development platforms, q1 2017. Forrester Research, Cambridge,
2016.

[Höl18] Katrin Hölldobler. MontiTrans: Agile, modellgetriebene Entwicklung
von und mit domänenspezifischen, kompositionalen Transformation-
ssprachen. Aachener Informatik-Berichte, Software Engineering, Band
36. Shaker Verlag, December 2018.

[HR17] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Language Work-
bench Edition 2017. Aachener Informatik-Berichte, Software Engineer-
ing, Band 32. Shaker Verlag, December 2017.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolv-
ing Delta-oriented Software Product Line Architectures. In Large-Scale
Complex IT Systems. Development, Operation and Management, 17th
Monterey Workshop 2012, LNCS 7539, pages 183–208. Springer, 2012.

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. System-
atically Deriving Domain-Specific Transformation Languages. In Con-
ference on Model Driven Engineering Languages and Systems (MOD-
ELS’15), pages 136–145. ACM/IEEE, 2015.

[HŠB21] Tjaša Heričko, Boštjan Šumak, and Saša Brdnik. Towards representative
web performance measurements with google lighthouse. In Proceedings
of the 2021 7th Student Computer Science Research Conference, page 39,
2021.

[HSVT21] Johannes Hintsch, Daniel Staegemann, Matthias Volk, and Klaus Tur-
owski. Low-code development platform usage: towards bringing citizen
development and enterprise it into harmony. 2021.

280

Bibliography

[HWDB20] Thomas L Huber, Maike AEWinkler, Jens Dibbern, and Carol V Brown.
The use of prototypes to bridge knowledge boundaries in agile software
development. Information systems journal, 30(2):270–294, 2020.

[Hyk23] Solomon Hykes. Docker, 2023.

[HZL+23] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li,
Xiapu Luo, David Lo, John Grundy, and Haoyu Wang. Large language
models for software engineering: A systematic literature review. arXiv
preprint arXiv:2308.10620, 2023.

[Jac97] Ivar Jacobson. Software reuse architecture process and organization
for business success. Addison-Wesley-Longman, Harlow, England, first
printed edition, 1997.

[JHC21] Matthew D Jones, Scott Hutcheson, and Jorge D Camba. Past, present,
and future barriers to digital transformation in manufacturing: A review.
Journal of Manufacturing Systems, 60:936–948, 2021.

[JP21] Samkit Jain and Pradnya Purandare. Study of the usability testing
of e-commerce applications. In Journal of Physics: Conference Series,
volume 1964, page 042059. IOP Publishing, 2021.

[JR23] Nico Jansen and Bernhard Rumpe. Seamless Code Generator Synchro-
nization in the Composition of Heterogeneous Modeling Languages. In
Proceedings of the 16th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2023, page 163â=C“168, Cascais,
Portugal, October 2023. Association for Computing Machinery.

[KH17] Ratnakar Kumar and Nitasha Hasteer. Evaluating usability of a web
application: A comparative analysis of open-source tools. In 2017 2nd
International Conference on Communication and Electronics Systems
(ICCES), pages 350–354. IEEE, 2017.

[Kin21] Gavin King. Hibernate, 2021.

[KJN19] Achaporn Kwangsawad, Aungkana Jattamart, and Paingruthai Nu-
sawat. The performance evaluation of a website using automated eval-
uation tools. In 2019 4th Technology Innovation Management and En-
gineering Science International Conference (TIMES-iCON), pages 1–5.
IEEE, 2019.

[KR18] Monique F Kilkenny and Kerin M Robinson. Data quality:“garbage in–
garbage out”, 2018.

281

Bibliography

[Kro23] Lukas Kronast. Introducing variability into model-driven user interface
development, 2023.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modu-
lar Development of Textual Domain Specific Languages. In Conference
on Objects, Models, Components, Patterns (TOOLS-Europe’08), LNBIP
11, pages 297–315. Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a
Framework for Compositional Development of Domain Specific Lan-
guages. International Journal on Software Tools for Technology Transfer
(STTT), 12(5):353–372, September 2010.

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-specific modeling: en-
abling full code generation. John Wiley & Sons, 2008.

[LCV22] Márk Lajkó, Viktor Csuvik, and László Vidács. Towards javascript pro-
gram repair with generative pre-trained transformer (gpt-2). In Proceed-
ings of the Third International Workshop on Automated Program Repair,
pages 61–68, 2022.

[Lid11] Stephen W Liddle. Model-driven software development. In Handbook of
Conceptual Modeling: Theory, Practice, and Research Challenges, pages
17–54. Springer, 2011.

[LMPV96] Lila F Laux, Peter R McNally, Michael G Paciello, and Gregg C Van-
derheiden. Designing the world wide web for people with disabilities: a
user centered design approach. In Proceedings of the second annual ACM
conference on Assistive technologies, pages 94–101, 1996.

[Lo23] David Lo. Trustworthy and synergistic artificial intelligence for software
engineering: Vision and roadmaps. arXiv preprint arXiv:2309.04142,
2023.

[Loo17a] M. Look. Unterstützung modellgetriebener, agiler Entwicklung mehrbe-
nutzerfähiger, ubiquitärer Enterprise Applikationen durch Generatoren.
PhD thesis, RWTH Aachen University, Aachen, 2017.

[Loo17b] Markus Look. Modellgetriebene, agile Entwicklung und Evolution
mehrbenutzerfähiger Enterprise Applikationen mit MontiEE. Aachener
Informatik-Berichte, Software Engineering, Band 27. Shaker Verlag,
March 2017.

282

Bibliography

[LPKW06] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. End-
user development: An emerging paradigm. In End user development,
pages 1–8. Springer, 2006.

[LRSS23] Achim Lindt, Bernhard Rumpe, Max Stachon, and Sebastian Stüber.
Cdmerge: Semantically sound merging of class diagrams for software
component integration. Journal of Object Technology, 22(2):2:1–14, July
2023.

[LVM+04] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent
Bouillon, Murielle Florins, and Daniela Trevisan. Usixml: A user in-
terface description language for context-sensitive user interfaces. In Pro-
ceedings of the ACM AVI 2004 Workshop, 2004.

[Mar82] James Martin. Application development without programmers. Prentice
Hall PTR, 1982.

[Mar91] James Martin. Rapid application development. Macmillan Publishing
Co., Inc., 1991.

[MBLK23] Thomas McGill, Oluwaseun Bamgboye, Xiaodong Liu, and Chathu-
ranga Sampath Kalutharage. Towards improving accessibility of web
auditing with google lighthouse. In 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC), pages 1594–1599.
IEEE, 2023.

[MCF03] Stephen J Mellor, Anthony N Clark, and Takao Futagami. Guest editors’
introduction: Model-driven development. IEEE Software, 20(05):14–18,
2003.

[MdS15] Francisco Morais and Alberto Rodrigues da Silva. Assessing the quality
of user-interface modeling languages. In International Conference on En-
terprise Information Systems, volume 2, pages 311–319. SCITEPRESS,
2015.

[MEBF+19] Zoë Meleo-Erwin, Corey Basch, Joseph Fera, Danna Ethan, and Philip
Garcia. Readability of online patient-based information on bariatric
surgery. Health promotion perspectives, 9(2):156, 2019.

[MFBF+22] Silverio Mart́ınez-Fernández, Justus Bogner, Xavier Franch, Marc Oriol,
Julien Siebert, Adam Trendowicz, Anna Maria Vollmer, and Stefan Wag-
ner. Software engineering for ai-based systems: a survey. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 31(2):1–59,
2022.

283

Bibliography

[MIT23] Ariana Martino, Michael Iannelli, and Coleen Truong. Knowledge injec-
tion to counter large language model (llm) hallucination. In European
Semantic Web Conference, pages 182–185. Springer, 2023.

[MLG23] Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt:
Zero-resource black-box hallucination detection for generative large lan-
guage models. arXiv preprint arXiv:2303.08896, 2023.

[MNN+22] Judith Michael, Imke Nachmann, Lukas Netz, Bernhard Rumpe, and Se-
bastian Stüber. Generating Digital Twin Cockpits for Parameter Man-
agement in the Engineering of Wind Turbines. In Modellierung 2022,
pages 33–48. Gesellschaft für Informatik, June 2022.

[MNRV19] Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. To-
wards Privacy-Preserving IoT Systems Using Model Driven Engineer-
ing. In Nicolas Ferry, Antonio Cicchetti, Federico Ciccozzi, Arnor Sol-
berg, Manuel Wimmer, and Andreas Wortmann, editors, Proceedings of
MODELS 2019. Workshop MDE4IoT, pages 595–614. CEUR Workshop
Proceedings, September 2019.

[MSN17] P. Mir Seyed Nayari. MontiCore: Efficient Development of Composed
Modeling Language Essentials. PhD thesis, RWTH Aachen University,
Aachen, 2017.

[MSNRR15a] P. Mir Seyed Nazari, A. Roth, and B. Rumpe. Mixed Generative and
Handcoded Development of Adaptable Data-centric Business Applica-
tions. In Proceedings of the Workshop on Domain-Specific Modeling.
ACM, 2015.

[MSNRR15b] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe.
Mixed Generative and Handcoded Development of Adaptable Data-
centric Business Applications. In Domain-Specific Modeling Workshop
(DSM’15), pages 43–44. ACM, 2015.

[mtpG20] mgm technology partners GmbH. Low code und co-innovation fuer in-
dividuelle enterprise software, 2020.

[mtpG21] mgm technology partners GmbH. Widget showcase, 2021.

[MWLN22] Dang Minh, H Xiang Wang, Y Fen Li, and Tan N Nguyen. Explainable
artificial intelligence: a comprehensive review. Artificial Intelligence Re-
view, pages 1–66, 2022.

284

Bibliography

[NGM+24] Lukas Netz, Arkadii Gerasimov, Judith Michael, Bernhard Rumpe, and
Peter Letmathe. Modeling financial, project and staff management: A
case report from the macoco project. Enterprise Modelling and Infor-
mation Systems Architectures (EMISAJ), 19, 2024.

[NK20] Nguyen Nguyen and Taehong Kim. Toward highly scalable load balanc-
ing in kubernetes clusters. IEEE Communications Magazine, 58(7):78–
83, 2020.

[NMR24a] Lukas Netz, Judith Michael, and Bernhard Rumpe. From natural lan-
guage to web applications: Using large language models for model-driven
software engineering. In Modellierung 2024, pages 179–195. Gesellschaft
für Informatik e.V., Bonn, 2024.

[NMR24b] Lukas Netz, Judith Michael, and Bernhard Rumpe. From natural lan-
guage to web applications: Using large language models for model-driven
software engineering. In Modellierung 2024, pages 179–195. Gesellschaft
für Informatik eV, 2024.

[NPAB22] Olivia D. Negoita, Mirona A. Popescu, Albena Antonova, and Do-
minik Bork. A comparison of business platforms used by smes to
digitalize management activities, 2022. Name - European Commis-
sion; European Union; Copyright - © 2022. This work is published
under http://archive.ceciis.foi.hr/app/index.php/ceciis/archive (the “Li-
cense”). Notwithstanding the ProQuest Terms and Conditions, you may
use this content in accordance with the terms of the License; Zuletzt
aktualisiert - 2022-10-04.

[Obj17] Object Management Group. OMG Unified Modeling Language (OMG
UML), 2017.

[OKH+22] Jaehoon Oh, Sungnyun Kim, Namgyu Ho, Jin-Hwa Kim, Hwanjun Song,
and Se-Young Yun. Understanding cross-domain few-shot learning based
on domain similarity and few-shot difficulty. In Advances in Neural In-
formation Processing Systems, 2022.

[Ope23] OpenAI. Gpt-4 technical report, 2023.

[Ort22] Kai Ortmanns. Generating data structure based forms for data entry in
web information systems, 2022.

[PAA+23] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcad-
inho, Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kran-
thi Kiran GV, et al. Rwkv: Reinventing rnns for the transformer era.
arXiv preprint arXiv:2305.13048, 2023.

285

Bibliography

[PRH21] Niculin Prinz, Christopher Rentrop, and Melanie Huber. Low-code de-
velopment platforms-a literature review. In AMCIS, 2021.

[RA17] J Rymer and Kony Appian. The forrester wave™: Low-code development
platforms for ad&d pros, q4 2017. Cambridge, MA: Forrester Research,
2017.

[RdS14] André Ribeiro and Alberto Rodrigues da Silva. Xis-mobile: A dsl for
mobile applications. In Proceedings of the 29th Annual ACM Symposium
on Applied Computing, pages 1316–1323, 2014.

[Rei16] Dirk Reiß. Modellgetriebene generative Entwicklung von Web-
Informationssystemen. Aachener Informatik-Berichte, Software Engi-
neering, Band 22. Shaker Verlag, May 2016.

[Ren15] David Rensin. Kubernetes. O’Reilly Media, Incorporated, 2015.

[RJW03] Melanie Ruhe, Ross Jeffery, and Isabella Wieczorek. Cost estimation for
web applications. In 25th International Conference on Software Engi-
neering, 2003. Proceedings., pages 285–294. IEEE, 2003.

[RKA12] Faisal Rahutomo, Teruaki Kitasuka, and Masayoshi Aritsugi. Semantic
cosine similarity. In The 7th international student conference on advanced
science and technology ICAST, volume 4, page 1, 2012.

[RKL+19] John R Rymer, Rob Koplowitz, Salesforce Are Leaders, Kony Mendix,
Salesforce are Leaders, GeneXus ServiceNow, Strong Performers, Wave-
Maker MatsSoft, and Thinkwise are Contenders. The forrester wave™:
Low-code development platforms for ad&d professionals, q1 2019. For-
rester Report, Forrester, 2019.

[Rot17] Alexander Roth. Adaptable Code Generation of Consistent and
Customizable Data Centric Applications with MontiDex. Aachener
Informatik-Berichte, Software Engineering, Band 31. Shaker Verlag, De-
cember 2017.

[RR13] Dirk Reiss and Bernhard Rumpe. Using Lightweight Activity Diagrams
for Modeling and Generation of Web Information Systems. In Proceed-
ings 4th International United Information Systems Conference, UNIS-
CON 2012, volume 137 of Lecture Notes in Business Information Pro-
cessing, pages 61–73, Yalta, Ukraine, June 2013. Springer.

[RRM+14] Clay Richardson, JR Rymer, Christopher Mines, Alex Cullen, and Do-
minique Whittaker. New development platforms emerge for customer-

286

Bibliography

facing applications (2014). URL: https://www. forrester. com/re-
port/New+ Development, 52, 2014.

[RRW13] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Mon-
tiArcAutomaton: Modeling Architecture and Behavior of Robotic Sys-
tems. In Conference on Robotics and Automation (ICRA’13), pages
10–12. IEEE, 2013.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Test-
fälle, Refactoring, 2te Auflage. Springer Berlin, Juni 2012.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, May 2017.

[SBLY08] JinGang Shi, YuBin Bao, FangLing Leng, and Ge Yu. Study on log-
based change data capture and handling mechanism in real-time data
warehouse. In 2008 international conference on computer science and
software engineering, volume 4, pages 478–481. IEEE, 2008.

[SC01] Nary Subramanian and Lawrence Chung. Software architecture adapt-
ability: an nfr approach. In Proceedings of the 4th International Work-
shop on Principles of Software Evolution, pages 52–61, 2001.

[Sch97] Ken Schwaber. Scrum development process. In Jeff Sutherland, Cory
Casanave, Joaquin Miller, Philip Patel, and Glenn Hollowell, editors,
Business Object Design and Implementation, pages 117–134, London,
1997. Springer London.

[Sch20] Henri Schildt. The data imperative: How digitalization is reshaping man-
agement, organizing, and work. Oxford University Press, USA, 2020.

[SCS23] Mohammed Latif Siddiq, Beatrice Casey, and Joanna Santos. A
lightweight framework for high-quality code generation. arXiv preprint
arXiv:2307.08220, 2023.

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE software,
20(5):19–25, 2003.

[SFK+00] Ravi Sandhu, David Ferraiolo, Richard Kuhn, et al. The nist model for
role-based access control: towards a unified standard. In ACM workshop
on Role-based access control, volume 10, 2000.

[Shn96] B. Shneiderman. The eyes have it: a task by data type taxonomy for
information visualizations. In Proceedings 1996 IEEE Symposium on
Visual Languages, pages 336–343, 1996.

287

Bibliography

[Sla22] Ivan Slavov. Generating navigation variants for enterprise information
system prototypes, 2022.

[Som11] Ian Sommerville. Software engineering (ed.). America: Pearson Educa-
tion Inc, 2011.

[SS94] Ravi S Sandhu and Pierangela Samarati. Access control: principle and
practice. IEEE communications magazine, 32(9):40–48, 1994.

[ST19] Klaus-Dieter Schewe and Bernhard Thalheim. Design and development
of web information systems. Springer, 2019.

[SVD21] Richard Shin and Benjamin Van Durme. Few-shot semantic parsing with
language models trained on code. arXiv preprint arXiv:2112.08696, 2021.

[TLL+23] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung,
Jacques Klein, and Tegawendé F Bissyandé. Is chatgpt the ultimate
programming assistant–how far is it? arXiv preprint arXiv:2304.11938,
2023.

[TMN+04] Hideki Tai, Kinichi Mitsui, Takashi Nerome, Mari Abe, Kouichi Ono,
and Masahiro Hori. Model-driven development of large-scale web ap-
plications. IBM Journal of Research and Development, 48(5.6):797–809,
2004.

[TMR+23] Nicholas D Thomas, Raegan Mahler, Matthew Rohde, Nicole Segovia,
and Kevin G Shea. Evaluating the readability and quality of online
patient education materials for pediatric acl tears. Journal of Pediatric
Orthopaedics, 43(9):549–554, 2023.

[TWT22] Jakob Trischler and Jessica Westman Trischler. Design for experience–
a public service design approach in the age of digitalization. Public
Management Review, 24(8):1251–1270, 2022.

[USMDAS14] A Ubale Swapnaja, G Modani Dattatray, and S Apte Sulabha. Analysis
of dac mac rbac access control based models for security. International
Journal of Computer Applications, 104(5):6–13, 2014.

[VAT+20] Alvaro Veizaga, Mauricio Alferez, Damiano Torre, Mehrdad Sabet-
zadeh, Lionel Briand, and Elene Pitskhelauri. Leveraging natural-
language requirements for deriving better acceptance criteria from mod-
els. In Proceedings of the 23rd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, MODELS ’20, page
218–228, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

288

Bibliography

[VGBS01] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of
variability in software product lines. In Proceedings Working IEEE/IFIP
Conference on Software Architecture, pages 45–54. IEEE, 2001.

[VID+19] Paul Vincent, Kimihiko Iijima, Mark Driver, Jason Wong, and Yefim
Natis. Magic quadrant for enterprise low-code application platforms.
Gartner report, 2019.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer
Sprachen. Aachener Informatik-Berichte, Software Engineering, Band
9. Shaker Verlag, 2011.

[VZG22] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. Expecta-
tion vs. experience: Evaluating the usability of code generation tools
powered by large language models. In Chi conference on human factors
in computing systems extended abstracts, pages 1–7, 2022.

[WBEJ20] Diana White, River Bond, Joshua Eastes, and Negar Janani. Represent-
ing and interpreting data from playfair. 2020.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformation-
ssprachen. Aachener Informatik-Berichte, Software Engineering, Band
12. Shaker Verlag, 2012.

[WK+23] Tongshuang Wu, Kenneth Koedinger, et al. Is ai the better programming
partner? human-human pair programming vs. human-ai pair program-
ming. arXiv preprint arXiv:2306.05153, 2023.

[WTB+22] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Se-
bastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Don-
ald Metzler, et al. Emergent abilities of large language models. arXiv
preprint arXiv:2206.07682, 2022.

[WZK+23] Martin Weyssow, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui.
On the usage of continual learning for out-of-distribution generalization
in pre-trained language models of code. arXiv preprint arXiv:2305.04106,
2023.

[XL05] Weidong Xia and Gwanhoo Lee. Complexity of information systems
development projects: conceptualization and measurement development.
Journal of management information systems, 22(1):45–83, 2005.

[XX13] Spyros Xanthopoulos and Stelios Xinogalos. A comparative analysis of
cross-platform development approaches for mobile applications. In Pro-

289

Bibliography

ceedings of the 6th Balkan Conference in Informatics, pages 213–220,
2013.

[YS22] Song Yang and Houari Sahraoui. Towards automatically extracting uml
class diagrams from natural language specifications. In Proceedings of the
25th International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, pages 396–403, 2022.

[YYH23] Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online deci-
sion making: Benchmarks and additional opinions. arXiv preprint
arXiv:2306.02224, 2023.

[ZKX+23] Xin Zhou, Kisub Kim, Bowen Xu, Jiakun Liu, DongGyun Han, and
David Lo. The devil is in the tails: How long-tailed code distributions
impact large language models. arXiv preprint arXiv:2309.03567, 2023.

[Zur18] Berne Lausanne Lugano Zurich. Software engineering and architectures.
Master of Science in Engineering, page 424, 2018.

[ZWZ+20] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu.
Retrieval-based neural source code summarization. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
pages 1385–1397, 2020.

290

Appendix A

Code Listings

The following chapter contains selected code listings that are intended to aid in the
understanding of this thesis.
The following table lists the repositories of the primary projects involved in this thesis:

Artefact Chapter Repository

MontiCore Chapter 3 https://github.com/MontiCore/monticore
CD4A Chapter 3 https://git.rwth-aachen.de/monticore/cd4analysis/cd4analysis
Tagging Chapter 3 https://git.rwth-aachen.de/monticore/montigem/cdtagging
LLM4CD Chapter 4 https://git.rwth-aachen.de/se/ai4se
GUIDSL Section 5.1 https://git.rwth-aachen.de/monticore/languages/gui-dsl
CD2GUI Chapter 6 https://git.rwth-aachen.de/monticore/montigem/cd2gui
MaCoCo Chapter 8 https://git.rwth-aachen.de/macoco/implementation
MontiGem Chapter 7 https://git.rwth-aachen.de/monticore/montigem/montigem-gen
UMLP Section 9.6 https://git.rwth-aachen.de/monticore/umlp

A.1 Domain Models

The following CD4A-Models are domain models serving as the single underlying model
for web applications.
The MaCoCo class diagram:

1 /* (c) https://github.com/MontiCore/monticore */
2 /* adapted and customized by (c) MaCoCo, ein RWTH Aachen projekt */

4 package de.macoco.be.domain;

6 import java.time.ZonedDateTime;

8 classdiagram MaCoCo {

10 class Person {
11 String vorname;
12 Optional<String> vorsatzwort;

291

https://github.com/MontiCore/monticore
https://git.rwth-aachen.de/monticore/cd4analysis/cd4analysis
https://git.rwth-aachen.de/monticore/montigem/cdtagging
https://git.rwth-aachen.de/se/ai4se
https://git.rwth-aachen.de/monticore/languages/gui-dsl
https://git.rwth-aachen.de/monticore/montigem/cd2gui
https://git.rwth-aachen.de/macoco/implementation
https://git.rwth-aachen.de/monticore/montigem/montigem-gen
https://git.rwth-aachen.de/monticore/umlp

Appendix A Code Listings

13 String nachname;
14 String kuerzel; // Abgeleitet analog wie bei SAP: 3 Vor- 3

Nachnamenbuchstaben
15 Optional<String> personalnummer;
16 Optional<ZonedDateTime> gebDatum;
17 Optional<ZonedDateTime> beschBeginn;
18 Optional<ZonedDateTime> beschEnde;
19 List<String> kommentar;
20 boolean istAktiv;
21 boolean istStundenzettelpflichtig = false;
22 Optional<ZonedDateTime> stundenzettelpflichtigVon;
23 Optional<ZonedDateTime> stundenzettelpflichtigBis;
24 Optional<Long> ueberStundenUebertrag;
25 boolean darfWochenendarbeiten;

27 Optional<ZonedDateTime> hoechstbeschaeftigungBis;
28 List<String> staatsangehoerigkeiten;
29 Optional<String> telefonnummer;
30 Optional<ZonedDateTime> arbeitserlaubnisBis;
31 boolean extern;
32 Optional<String> titel;
33 Optional<String> rufname;
34 Optional<String> adresse;
35 Optional<String> email;
36 Optional<String> geburtsname;
37 Optional<String> geschlecht;
38 Optional<String> lBVNummer;
39 Optional<ZonedDateTime> entfristung;
40 <<dbColumnDefinition="TEXT">>
41 Optional<String> qualifikationstitel;
42 boolean speicherungGewuenscht = false;
43 <<dbColumnDefinition="TEXT">>
44 Optional<String> urlaubskommentar;
45 Optional<ZonedDateTime> aenderungsdatum;
46 }

48 association [1] Person -> (anstellungsarten) Anstellungsart [*];
49 association [*] Person -> (vorgesetzte) Person [*];
50 association [1] Person -> (notiz) Freitext [0..1];

52 association [1] Person -> (jahresurlaubstage) Jahresurlaub [*];
53 association [1] Person -> (zusatzurlaubstage) Sonderurlaub [*];
54 association [1] Person -> (stundenzettel) Stundenzettel [*];
55 association [1] Person -> (abwesenheiten) Abwesenheit [*];

57 <<nocascade>>
58 association [1] Person -> (user) MacocoUser [0..1];

292

A.1 Domain Models

62 class Anstellungsart {
63 BeschaeftigungsArt beschArt;
64 }

66 association [1] Anstellungsart -> (vertraege) Vertrag [*];
67 association [1] Anstellungsart -> (anstellungsformen) Anstellungsform

[*];

69 enum BeschaeftigungsArt {
70 WiMi("Wissenschaftliche/r Mitarbeiter/in (WiMi)"),
71 HiWi("Hilfskraft (HiWi)"),
72 BTV("Beschaeftigte/r in Technik und Verwaltung (BTV)"),
73 BEAMTE("Beamte/r"),
74 AZUBI("Azubi/ne"),
75 PLAN;
76 }

79 class Vertrag {
80 ZonedDateTime vertragsBeginn;
81 ZonedDateTime vertragsEnde;
82 String vertragsStatus; // Aktiv, Planung, aenderungsvertrag,

Abgelaufen
83 List<String> kommentar;
84 ZahlenWert planUmfang;
85 Optional<Long> arbeitsstundenProWoche; //Stundenzettel
86 boolean kuendigungsschutz;
87 Optional<String> vertragsgrundlage;
88 Optional<String> aktion;
89 Optional<ZonedDateTime> aktionsDatum;
90 }

92 association [1] Vertrag -> (kostenstellen) Kostenstelle [*];

94 class Anstellungsform {
95 boolean erstanstellung;
96 Optional<String> entgeltGruppe; // { TVL-13} Fuer Hiwis: {SHK (

default), WHB, WHK}
97 Optional<String> erfahrungsStufe; // 1- 6 ; sowie Spezialfaelle (TVL

ue+);
98 boolean unbefristet;
99 ZonedDateTime anstellungVon;
100 Optional<ZonedDateTime> anstellungBis;
101 long gehaltCent;
102 boolean istEigenerReferenzwert;
103 List<String> kommentar;
104 Optional<String> berufsgruppe;
105 Optional<String> aktion;
106 Optional<ZonedDateTime> aktionsDatum;
107 }

293

Appendix A Code Listings

109 class Kostenstelle {
110 ZonedDateTime verbuchungsBeginn;
111 ZonedDateTime verbuchungsEnde;
112 KostenstelleBezeichnung bezeichnung;
113 List<String> kommentar;
114 ZahlenWert beschaeftigungsUmfang;
115 boolean buchungenNeuErzeugen;
116 boolean buchungenLoeschen;
117 boolean gesperrt;
118 }

120 enum KostenstelleBezeichnung {
121 NONE(""),
122 AN_INSTITUT("An-Institut"),
123 GMBH("GmbH"),
124 ANDERER_LEHRSTUHL,
125 ANDERES_INSTITUT,
126 VORUEBERGEHEND_ABWESEND("Voruebergehend Abwesend"),
127 ANDERE_FINANZIERUNG;
128 }

130 enum Zuweisungsart {
131 KONTO("Kontenzuweisung"),
132 STELLENZUWEISUNG,
133 PLANSTELLE,
134 SONSTIGES;
135 }

137 association [*] Kostenstelle -> (personalBudget) Budget [0..1];
138 association Kostenstelle -> (stellenzuweisung) Stellenzuweisung [0..1];
139 association Kostenstelle -> (planstelle) Planstelle [0..1];
140 <<nocascade>>
141 association [0..1] Kostenstelle -> (personalBuchungen) Buchung [*];

143 class Planstelle {
144 String bezeichnung;
145 Optional<String> minEntgeltgruppe;
146 Optional<String> minEntgeltstufe;
147 Optional<String> maxEntgeltgruppe;
148 Optional<String> maxEntgeltstufe;
149 Optional<ZonedDateTime> verfuegbarVon;
150 Optional<ZonedDateTime> verfuegbarBis;
151 Optional<String> kommentar;
152 ZahlenWert planUmfang;
153 boolean aktiv;
154 }

156 association Planstelle -> (konto) Konto [0..1];

294

A.1 Domain Models

158 class ZahlenWert {
159 ZahlenTyp zahlenTyp;
160 long wert;
161 }

163 enum ZahlenTyp {EURO, STUNDE, PROZENT, NONE; }

165 abstract class Konto {
166 String name;
167 Optional<String> pspElement;
168 Optional<String> kontotyp; // unterschiedlich je nach Kontoart
169 Optional<ZonedDateTime> sapDatum;
170 Optional<String> internesAktenzeichen;
171 boolean istPlanKonto;
172 boolean istVerbuchungsKonto;
173 boolean istAktiv;
174 Optional<String> vergabeVerordnung;
175 Optional<String> farbe;
176 Optional<ZonedDateTime> aenderungsdatum;
177 /Optional<ZonedDateTime> optStartDatum;
178 /Optional<ZonedDateTime> optEndDatum;
179 /Geschaeftsvorgang gueltigerGeschaeftsvorgang;
180 }

182 <<treatAsBidirectional>>
183 association [1] Konto (konto) -> (gesamtBudget) Budget [0..1];
184 association [1] Konto -> (kommentare) Freitext [*];
185 association [1] Konto -> (notiz) Freitext [0..1];
186 association [1] Konto <-> MailAlert [*];
187 association [1] Konto -> (abgleichsKonto) ExternKonto [0..1];

189 abstract class ErweitertesKonto extends Konto {
190 Optional<ZonedDateTime> startDatum;
191 Optional<ZonedDateTime> endDatum;
192 Optional<ZonedDateTime> bewilligungsDatum; // Bewilligungsdatum

ist im Industrieprojekt nur mandatory, wenn kein Sammelkonto
193 Optional<ZonedDateTime> verlaengertBisDatum;
194 Optional<ZonedDateTime> aufstockungsDatum;
195 Optional<Long> foerderquote;
196 Optional<String> aktenzeichen;
197 Optional<Long> finanzierteKomplettsumme;
198 Optional<String> referenzSponsor;
199 boolean hatProgrammpauschale;
200 }

202 class Drittmittelprojekt extends ErweitertesKonto {
203 }

205 association [*] Drittmittelprojekt -> (fachlicherVerantwortlicher)
Person [*];

295

Appendix A Code Listings

207 class Haushaltskonto extends Konto {
208 Optional<ZonedDateTime> startDatum;
209 Optional<ZonedDateTime> endDatum;
210 }

212 class Industrieprojekt extends ErweitertesKonto {
213 Optional<String> auftraggeber;
214 boolean istSammelkonto;
215 Optional<Long> mehrwertsteuer;
216 }

218 association [*] Industrieprojekt -> (fachlicherVerantwortlicher) Person
[*];

220 class Sonstiges extends ErweitertesKonto {
221 Optional<String> auftraggeber;
222 Geschaeftsvorgang geschaeftsvorgang;
223 Optional<Long> mehrwertsteuer;
224 boolean istSammelkonto;
225 }

227 enum AbrechnungsInterval {
228 GESAMTE_PROJEKTLAUFZEIT("Gesamte Projektlaufzeit"),
229 JAEHRLICH("Jaehrlich"),
230 HALBJAEHRLICH("Halbjaehrlich"),
231 QUARTALSWEISE("Quartalsweise"),
232 MONATLICH("Monatlich");
233 }

235 association [1] Konto -> OrganigrammKonto [*];

237 class OrganigrammKonto {
238 Optional<ZonedDateTime> von;
239 Optional<ZonedDateTime> bis;
240 Optional<ZahlenWert> umfang;
241 }

243 association [*] OrganigrammKonto -> Organigramm [1];

245 class ZeitlicheVerbuchungskontoZuordnung {
246 Optional<Long> programmPauschale;
247 Optional<Long> gemeinkostensatz;
248 Optional<ZonedDateTime> startDate;
249 Optional<ZonedDateTime> endDate;
250 boolean istHauptVerbuchungskonto;
251 }

253 association [1] ErweitertesKonto -> (verbuchungskontoZuordnung)
ZeitlicheVerbuchungskontoZuordnung [*];

296

A.1 Domain Models

254 association [*] ZeitlicheVerbuchungskontoZuordnung -> (verbuchungskonto
) Konto [0..1];

256 class Budget {
257 String typ; // name
258 Optional<ZonedDateTime> startDatum;
259 Optional<ZonedDateTime> endDatum;
260 Optional<String> kommentar;
261 Optional<long> budgetRahmenCent; // wird im Gesamtbudget als

Bewilligungssumme interpretiert
262 Optional<long> eigenAnteilCent;
263 List<long> jahresBudgets;
264 boolean proportionaleVerteilung;
265 boolean forOverheads; // das erste Budget (gesamtBudget.

getUnterbudgets[0])
266 Optional<String> budgetKategorie;
267 /int budgetDepth;
268 }

270 association [*] Budget -> Konto [1];
271 association [0..1] Budget (elternBudget) <-> (unterBudget) Budget [*];
272 association [1] Budget (budget) <-> (buchungseintrag) Buchungseintrag

[*];
273 association [1] Budget (budget) <-> (stellenzuweisung) Stellenzuweisung

[*];
274 <<noOrphanRemoval, noRemoveCascade>>
275 association [0..1] Budget -> Organigramm [0..1];

277 abstract class Buchungseintrag {
278 ZonedDateTime datum;
279 Optional<String> buchungseintragText; // human name: Buchung: "

Buchungstext", Rechnung: "Rechnungsgrund", Mittelabruf: "Anmerkung
", Mittelzuweisung: "Grund"

280 long betragCent; // human name: "Betrag", Rechnung: "Rechnungsbetrag
", Konten mit Programmpauschale: "Rechnungsbetrag (inkl Pauschale)
"

281 boolean istAktiv;
282 Optional<ZonedDateTime> aenderungsdatum;
283 /Geschaeftsvorgang gueltigerGeschaeftsvorgang;
284 /String lfdeNummer;
285 }

287 class Buchung extends Buchungseintrag {
288 ZonedDateTime belegdatum;
289 String zahlungsgrund; //Belegpositionstext
290 Optional<String> kreditorDebitor;
291 List<String> sachkonto;
292 Optional<ZonedDateTime> buchungsdatum;
293 BuchungsStatus status;
294 List<String> belegnummern;

297

Appendix A Code Listings

295 List<String> auftragsnummer;
296 Optional<String> bereich;
297 Optional<String> projekt;
298 Optional<ZonedDateTime> geschaeftsjahr;
299 Optional<Long> steuer;
300 Optional<Long> skonto;
301 Optional<Long> gez_Skonto;
302 Optional<String> erfasser;
303 Optional<String> belegart;
304 Optional<String> referenz;
305 Optional<String> stornonummer;
306 Optional<String> stkz;
307 Optional<ZonedDateTime> erfassungsdatum;
308 Optional<ZonedDateTime> ausgleichsdatum;
309 long betragCentOriginal; // Bei Abweichungen von BetragCent kann nun

eine Absicht ueberprueft werden
310 boolean budgetChangedManually; // s.o.
311 Optional<String> kostenarten;
312 /Optional<Integer> bezugsdatumJahr;
313 }

315 class Rechnungsstellung extends Buchungseintrag {
316 Optional<ZonedDateTime> rechnungsdatum;
317 Optional<String> rechnungsnummer;
318 RechnungsstellungStatus status;
319 List<String> belegnummern;
320 Optional<Long> gemeinkosten;
321 Optional<Long> honorierung;
322 Optional<String> projekt;
323 Optional<String> debitor;
324 Optional<Long> mehrwertsteuer;
325 Optional<ZonedDateTime> zahlungsziel;
326 }

328 class Mittelzuweisung extends Buchungseintrag {
329 Optional<ZonedDateTime> verfallDatum;
330 Optional<String> kennung;
331 MittelzuweisungStatus status;
332 }

334 class Mittelabruf extends Buchungseintrag {
335 ZonedDateTime abrufdatum;
336 MittelabrufStatus status;
337 String zeitraum;
338 Optional<Long> pauschaleManuell; // Praesent, falls die Pauschale

manuell geaendert wurde
339 }

341 class Stellenzuweisung {
342 ZonedDateTime erstellDatum; // aktuelles Datum

298

A.1 Domain Models

343 Optional<ZonedDateTime> startDatum; // Datum, zu welchem die Stelle
beginnt

344 Optional<ZonedDateTime> endDatum; // Datum, zu welchem die Stelle
endet

345 long wert;
346 String kennung;
347 StellenzuweisungStatus status;
348 ZahlenWert stellenumfang;
349 boolean istAktiv;
350 Optional<ZonedDateTime> aenderungsdatum;
351 }

353 enum Geschaeftsvorgang {
354 NONE,
355 MITTELABRUF,
356 ZUWEISUNG,
357 RECHNUNG;
358 }

360 enum BuchungsStatus {
361 EINGEREICHT,
362 SAP("SAP"),
363 SAP_STORNIERT("SAP(Storniert)"),
364 PLANUNG,
365 FEHLERHAFT;
366 }

368 enum RechnungsstellungStatus {
369 OFFENE_RECHNUNG,
370 SAP("SAP"),
371 SAP_STORNIERT("SAP(Storniert)"),
372 PLANUNG;
373 }

375 enum MittelzuweisungStatus {
376 BESCHEID_ERHALTEN ("Bescheid erhalten"),
377 SAP("SAP"),
378 SAP_STORNIERT("SAP(Storniert)"),
379 PLANUNG,
380 FEHLERHAFT;
381 }

383 enum MittelabrufStatus {
384 ABGERUFEN,
385 SAP("SAP"),
386 SAP_STORNIERT("SAP(Storniert)"),
387 PLANUNG;
388 }

390 enum StellenzuweisungStatus {

299

Appendix A Code Listings

391 BESETZT,
392 TEILBESETZT,
393 UNBESETZT,
394 PLANUNG;
395 }

397 enum VertragStatus {
398 AKTIV,
399 PLANUNG,
400 AENDERUNGSVERTRAG("aenderungsvertrag"),
401 ABGELAUFEN;
402 }

404 class SAPVerbindung {
405 SAPverbindungsStatus status;
406 }

408 class Anfrage {
409 String ikz;
410 String bezeichner;
411 boolean letzteAnfrageErfolgreich;
412 }

414 enum SAPverbindungsStatus {
415 VERBUNDEN,
416 GETRENNT,
417 PROBLEM;
418 }

420 enum SAPimportMode {
421 DEFAULT,
422 F1KONTO;
423 }

425 association [1] SAPVerbindung -> (authorizedBy) MacocoUser [*];
426 association [1] MacocoUser -> (anfragen) Anfrage [*];
427 association [1] Anfrage -> (filteredKonten) PSPImportFilter [*];

429 class AbgleichsBuchung extends Buchung {
430 AbgleichsStatus abgleichsStatus;
431 Optional<String> abgleichKommentar;
432 String positionsNummer;
433 boolean deactivated;
434 }

436 enum AbgleichsStatus {
437 ABGESCHLOSSEN, // Der Abgleich dieser Buchung ist

Abgeschlossen
438 TEILWEISE_ABGESCHLOSSEN, // Der Abgleich wurde schon Bearbeitet es

fehlen jedoch Summen

300

A.1 Domain Models

439 ABWEICHEND, // Der Abgleich ist Vollstaendig mit
Abweichenden Summen

440 OFFEN, // Der Abgleich wurde noch nicht gesetzt
441 VORGESCHLAGEN; // Der Abgleich wurde vom System

vorgeschlagen
442 }

444 class AbgleichsGruppe {
445 String bezeichnung;
446 }
447 <<nocascade>>
448 association AbgleichsGruppe -> (buchungen) Buchung [*];
449 <<nocascade>>
450 association AbgleichsGruppe -> (abgleichsBuchungen) AbgleichsBuchung

[*];
451 <<nocascade>>
452 association AbgleichsGruppe -> (konto) Konto [1];

455 class Freitext {
456 Optional<ZonedDateTime> erstellDatum;
457 Optional<ZonedDateTime> bearbeitetDatum;
458 <<dbColumnDefinition="TEXT">>
459 Optional<String> text;
460 }

462 abstract class Projekt {
463 String name;
464 String kuerzel;
465 Optional<Long> minPM;
466 Optional<Long> maxPM;
467 Optional<Long> finanzPM;
468 Optional<ZonedDateTime> laufzeitVon;
469 Optional<ZonedDateTime> laufzeitBis;
470 Optional<String> kommentar;
471 Optional<String> foerdergeberAZ;
472 ProjektStatus status;
473 boolean istAktiv;
474 boolean lockedForStundenzettel; // Das gesamte Projekt ist gesperrt
475 List<ZonedDateTime> lockedMonths; // Stellen die Ausnahme aus der

Lock-Regelung fuer das gesamte Projekt dar
476 Optional<ZonedDateTime> aenderungsdatum;
477 }

479 association [1] Projekt -> Aufwand [*];
480 association [1] Projekt -> Arbeitspaket [*];
481 association [1] Projekt -> Anstellung [*];
482 association [*] Projekt -> Konto [0..1];
483 association [*] Projekt -> (hauptverantwortlich) Person [*];
484 association [1] Projekt -> (notiz) Freitext [0..1];

301

Appendix A Code Listings

486 class Auftragsprojekt extends Projekt {
487 Optional<String> nummer;
488 ProjektTyp typ;
489 Optional<String> regelung;
490 }

492 class Organisation extends Projekt {
493 }

495 class Lehre extends Projekt {
496 Optional<Long> stunden;
497 }

499 class Arbeitspaket {
500 String nummer; // koennte auch 1.1 sein
501 String name;
502 Optional<String> beschreibung;
503 Optional<ZonedDateTime> beginnDatum;
504 Optional<ZonedDateTime> endeDatum;
505 Optional<Long> pMs;
506 Optional<Long> stunden;
507 Optional<ZonedDateTime> aenderungsdatum;
508 }

510 class Aufwand {
511 /long pM;
512 ZahlenWert umfang;
513 ZonedDateTime laufzeitVon;
514 ZonedDateTime laufzeitBis;
515 Optional<ZonedDateTime> aenderungsdatum;
516 }

518 association [*] Aufwand -> Person [0..1];

520 class Anstellung {
521 Optional<String> bezeichnung;
522 ZahlenWert umfang;
523 ZonedDateTime von;
524 ZonedDateTime bis;
525 boolean verfaellt;
526 Optional<Stellentyp> min;
527 Optional<Stellentyp> max;
528 /long pM;
529 BeschaeftigungsArt beschaeftigungsArt;
530 }

532 association [*] Anstellung -> Person [0..1];

534 class Stellentyp {

302

A.1 Domain Models

535 Optional<String> entgeltgruppe;
536 Optional<String> entgeltstufe;
537 }

539 enum ProjektStatus {
540 IN_DEFINITION,
541 BEANTRAGT,
542 GENEHMIGT,
543 ABGELEHNT,
544 LAUFEND,
545 FACHLICH_ABGESCHLOSSEN("Fachlich abgeschlossen"),
546 ENDBERICHT_EINGEREICHT("Endbericht eingereicht"),
547 INPRUEFUNG("In Pruefung"),
548 GEPRUEFT("Geprueft"),
549 ABGERECHNET,
550 ABGESCHLOSSEN,
551 ARCHIVIERT;
552 }

554 enum ProjektArt {
555 AUFTRAG,
556 ORGANISATION,
557 LEHRE,
558 NONE;
559 }

561 enum ProjektTyp {
562 HOHEITLICH,
563 INDUSTRIE,
564 UNIVERSITAET("Universitaet"),
565 SONSTIGE;
566 }

568 enum Vergabeverordnung {
569 VOL_A ("VOL/A"),
570 VOB_A ("VOB/A"),
571 UVGO_NRW ("UVgO NRW"),
572 UVGO_BUND ("UVgO Bund"),
573 NONE (" ");
574 }

576 class Stundenzettel {
577 StundenzettelStatus status;
578 ZonedDateTime zeit;
579 Optional<Long> abgegebenVonUserId;
580 Optional<ZonedDateTime> abgabeDatum;
581 }

583 association [1] Stundenzettel -> (eintraege) StundenzettelEintrag [*];

303

Appendix A Code Listings

585 class StundenzettelEintrag {
586 ZonedDateTime uhrzeitVon;
587 Optional<ZonedDateTime> uhrzeitBis;
588 Optional<String> beschreibung;
589 /long stunden;
590 StundenzettelProjekt pauseOderSonstiges;
591 }

593 association [*] StundenzettelEintrag -> Projekt [0..1];
594 association [*] StundenzettelEintrag -> Arbeitspaket [0..1];

596 class StundenzettelHistorieEintrag {
597 ZonedDateTime bearbeitungsdatum;
598 Optional<Long> editorId;
599 Optional<String> editedBy;
600 String monat;
601 int jahr;
602 String changeOperation;
603 }

605 enum StundenzettelChangeOperation {
606 INVALID,
607 ABGEGEBEN("Abgegeben"),
608 INTERN_GEPRUEFT("Intern Geprueft"),
609 INTERN_ABGESCHLOSSEN("Intern Abgeschlossen");
610 }

612 association [1] Person -> StundenzettelHistorieEintrag [*];

614 class Abwesenheit {
615 Abwesenheitsgrund grund;
616 ZonedDateTime datumVon;
617 ZonedDateTime datumBis;
618 Optional<String> kommentar;
619 Optional<ZonedDateTime> uhrzeitVon;
620 Optional<ZonedDateTime> uhrzeitBis;
621 Optional<Long> minutenProTag;
622 /long tageGesamt;
623 }

625 class Dienstreise extends Abwesenheit {
626 Optional<String> reisenummer;
627 Optional<String> dienstreisegrund;
628 Optional<String> reiseziel;
629 Optional<Long> gesamtkosten;
630 Optional<String> status;
631 Optional<String> statusText;
632 }

634 association [*] Abwesenheit -> Konto [0..1];

304

A.1 Domain Models

636 association [1] Abwesenheit -> UrlaubsGenehmigung [0..1];

638 association [*] Dienstreise -> Budget [0..1];

640 class Arbeitstage {
641 ZonedDateTime guiltigAb;
642 ZonedDateTime guiltigBis;
643 List<Integer> wochenTage; // 0..4 (Montag-Freitag)
644 }

646 association [1] Person -> Arbeitstage [*];

648 class Jahresurlaub {
649 int jahr;
650 long tageAnzahl;
651 Optional<Long> stundenAnzahl;
652 boolean istManuellerEintrag;
653 }

655 class UrlaubsGenehmigung {
656 Optional<ZonedDateTime> beantragt;
657 Optional<ZonedDateTime> genehmigt;
658 Optional<ZonedDateTime> geprueft;
659 Optional<ZonedDateTime> storniert;
660 Urlaubssstatus status;
661 Stornierungsstatus stornierungsStatus;
662 }

664 class Sonderurlaub { // Fuer WZL: Zusatzurlaub umbenennen in
Sonderurlaub und neues Feld anzahl

665 ZonedDateTime datumVon;
666 ZonedDateTime datumBis;
667 long anzahl;
668 }

670 class UrlaubEinstellungen {
671 boolean urlaubsanspruchInStunden;
672 }

674 enum Abwesenheitsgrund {
675 U_URLAUB,
676 D_DIENSTREISE,
677 S_SONSTIGE;
678 }

680 enum Urlaubssstatus {
681 NONE,
682 BEANTRAGT,
683 GEPRUEFT("Geprueft"),

305

Appendix A Code Listings

684 PRUEFUNG_ABGELEHNT("Pruefung abgelehnt"),
685 GENEHMIGT,
686 GENEHMIGUNG_ABGELEHNT;
687 }

689 enum Stornierungsstatus {
690 NONE,
691 VERBOTEN,
692 STORNIERUNGSANTRAG,
693 STORNIERT;
694 }

696 enum Abrechnungsstatus {
697 OFFEN,
698 ABZURECHNEN,
699 ABGERECHNET,
700 STORNIERT;
701 }

703 enum StundenzettelStatus {
704 IN_ERFASSUNG,
705 INTERN_INPRUEFUNG("Intern in Pruefung"),
706 INTERN_ABGESCHLOSSEN,
707 DRITTMITTELABTEILUNG_INPRUEFUNG("Drittmittelabteilung in Pruefung"),
708 DRITTMITTELABTEILUNG_ABGESCHLOSSEN,
709 ENDBERICHT_EINGEREICHT,
710 GEPRUEFT("Geprueft"),
711 FOERDERGEBER_ABGESCHLOSSEN("Foerdergeber abgeschlossen"),
712 ABGESCHLOSSEN;
713 }

715 enum StundenzettelProjekt {
716 PAUSE,
717 SONSTIGE,
718 NONE;
719 }

721 association [*] F1Konto -> (institut) Institut [0..1];

723 class ExternKonto extends Konto {
724 Optional<ZonedDateTime> startDatum;
725 Optional<ZonedDateTime> endDatum;
726 Optional<String> importVermerk;
727 AbgleichType abgleichVerhalten;
728 }

730 enum AbgleichType {
731 IGNORE,
732 MANUEL,
733 AUTO_COPY;

306

A.1 Domain Models

734 }

736 association [*] ExternKonto -> (institut) Institut [0..1];

738 class PSPImportFilter{
739 boolean importThisPSPelement;
740 boolean importBookings;
741 String name;
742 String pspElement;
743 Optional<ZonedDateTime> startDate;
744 }

746 association [*] PSPImportFilter -> (targetPSP) Konto [0..1];

748 //--
749 // Reports

751 class EventReport {
752 ZonedDateTime eventStart;
753 Optional<ZonedDateTime> eventEnd;
754 /EventStatus status;
755 String message;
756 }

758 class EventReportEntry {
759 EventType type;
760 Optional<Long> targetId; // click -> navigate to id
761 Optional<Integer> count;
762 <<dbColumnDefinition="TEXT">>
763 String message; // Zeile 4 Ergebniss Zeile 5
764 EventStatus status;
765 }
766 association [1] EventReport -> (entries) EventReportEntry [*];

768 class ImportReport extends EventReport {
769 }

771 class ImportReportEntry extends EventReportEntry {
772 }

775 class PersonalExportReport extends EventReport {
776 Long dataId;

778 ZonedDateTime datenStart;
779 ZonedDateTime datenEnd;
780 Long countData;
781 /Long countError;
782 EventStatus exportStatus;
783 }

307

Appendix A Code Listings

785 class PersonalExportReportEntry extends EventReportEntry {
786 Optional<String> vorsatzwort;
787 String vorname;
788 String nachname;
789 BeschaeftigungsArt beschaeftigungsArt;
790 ZonedDateTime monat;
791 }

793 enum EventStatus {
794 // Import
795 SUCCESS("erfolgreich"),
796 ERROR("fehlerhaft"),
797 INFO("erfolgreich"), // success + special
798 CREATED("erstellt"),
799 UPDATED("upgedated"),
800 IGNORED("ignoriert"),
801 IN_PROGRESS("in bearbeitung"),

803 // Personal Export
804 SENT("verschickt"),
805 CORRECT("sachlich korrekt");
806 }

808 enum EventType {
809 IMPORT_KONTO("Konten"),
810 IMPORT_BUCHUNG("Buchungs"),
811 IMPORT_PERSON("Personen"),
812 IMPORT_INSTITUT("Instituts"),
813 IMPORT_NUTZER("Nutzer"),
814 IMPORT_VERTRAG("Vertrags"),
815 EXPORT_FINANZEN_KONTO("Konten"),
816 EXPORT_FINANZEN_PLANSTELLE("Planstellen"),
817 EXPORT_FINANZEN_VERTRAG("Vertragabdeckungs");
818 }

820 // Institut
821 <<dbColumn = "unique=true">>
822 class Institut {
823 String institutsKennZiffer;
824 String institutsName;
825 String professorName;
826 boolean lokalInstitut;
827 }

829 // Fachgruppe
830 enum Fachgruppe {
831 MATHEMATIK,
832 INFORMATIK,
833 PHYSIK,

308

A.1 Domain Models

834 CHEMIE,
835 BIOLOGIE;
836 }

838 //SAP-Abschoepfung von Geschaeftsjahr
839 class GeschaeftsjahrSAPAbschoepfung {
840 String fachgruppe;
841 String institutsKennZiffer;
842 String institutsName;
843 String pspElement;
844 long gesamtSAPAbschoepfung;
845 }

847 class SAPAbschoepfung {
848 Long betragCent;
849 ZonedDateTime year;
850 }

852 association [1] GeschaeftsjahrSAPAbschoepfung -> (sapAbschoepfung)
SAPAbschoepfung [*];

855 // Konto
856 class F1Konto extends Haushaltskonto {
857 Optional<ZonedDateTime> startDatum;
858 Optional<ZonedDateTime> endDatum;
859 long originalBudgetCent;
860 long sonstigeZuweisungenCent;
861 long resteCent;
862 long aktuellerKontostandCent;
863 long kontoRahmenCent;
864 KommunikationsStatus kommunikationsStatus;
865 StrafsteuerStatus strafsteuerStatus;
866 long strafsteuerBasisCent;
867 long strafsteuerSAPCent;
868 long strafsteuerCent;
869 long strafsteuerBerechnungsGrundlageCent;
870 }

872 association [1] Buchung -> (begruendung) Begruendung [0..1];

874 class Begruendung {
875 String text;
876 ZonedDateTime erstellung;
877 Optional<ZonedDateTime> letzteBearbeitung;
878 Optional<StrafsteuerGeschaeftsjahr> geschaeftsjahr;
879 }

881 association [1] Begruendung -> (akzeptanz) Akzeptanz [0..1];

309

Appendix A Code Listings

883 class Akzeptanz {
884 Akzeptanzstatus akzeptanzstatus;
885 Optional<long> teilbetragCent;
886 Optional<ZonedDateTime> bearbeitung;
887 boolean istAktiv;
888 Optional<String> kommentar;
889 }

891 enum KommunikationsStatus {
892 KOM_STAT_NO_ACTION_NEEDED, // Kein Handlungsbedarf
893 KOM_STAT_BEGR_FEHLT, // Begruendung fehlt
894 KOM_STAT_ANTW_FEHLT, // Antwort fehlt
895 KOM_STAT_ANTW_CHANGED, // Buchung oder Begruendung wurden

geaendert
896 KOM_STAT_BEGR_CHANGED, // Antwort wurde geaendert
897 KOM_STAT_ANTW_BEGR_CHANGED, // Antwort und Begruendung wurde

geaendert
898 KOM_STAT_ANTW_FEHLT_CHANGED; // Antwort Fehlt, andere Antwort

wurde geaendert
899 }

901 enum StrafsteuerStatus {
902 NONE,
903 SOME,
904 ALL;
905 }

907 enum Akzeptanzstatus {
908 OFFEN,
909 OK,
910 TEILOK,
911 NOTOK;
912 }

914 class StrafsteuerGeschaeftsjahr {
915 ZonedDateTime jahr;
916 boolean current;
917 }

919 class StrafsteuerSperrDatum {
920 ZonedDateTime sperrDatum;
921 }

923 class MacocoUser {
924 <<dbColumn = "unique=true">>
925 String username;
926 Optional<String> encodedPassword;
927 String passwordSaltBase64;
928 ZonedDateTime registrationDate;
929 Optional<String> initials;

310

A.1 Domain Models

930 MacocoUserActivationStatus activated;
931 boolean enabled;
932 <<dbColumn = "unique=true">>
933 String email;
934 boolean authentifiziert;
935 Optional<String> timID;
936 Optional<String> sapAccessToken;
937 Optional<String> sapRefreshToKen;

939 }

941 association [*] MacocoUser -> (institute) Institut [*];

943 enum MacocoUserActivationStatus {
944 AKTIVIERT,
945 MAIL_NICHT_GESENDET("Mail nicht gesendet"),
946 MAIL_FEHLERHAFT("Mail fehlerhaft"),
947 MAIL_GESENDET("Mail gesendet");
948 }

950 // Favoriten
951 class Favorite {
952 String title;
953 String url;
954 }

956 association [1] MacocoUser -> (favorite) Favorite [*];

958 class RoleAssignment {
959 }

961 association [*] RoleAssignment -> (user) MacocoUser [1];
962 association [*] RoleAssignment -> (accessPolicy) AccessPolicy [1];

964 class AccessPolicy {
965 String roleName;
966 Optional<Long> objId;
967 }

969 class GroupedAccessPolicy {
970 String name;
971 }

973 association [*] GroupedAccessPolicy -> (user) MacocoUser [*];
974 association [1] GroupedAccessPolicy -> (policy) AccessPolicy [*];

976 class Frist {
977 String beschreibung;
978 Friststatus status;
979 Fristobjekt fristobjekt;

311

Appendix A Code Listings

980 ZonedDateTime faelligkeitsdatum;
981 Optional<String> notiz;
982 Boolean manuellerEintrag;
983 Long bezugsobjektId;
984 String bezugsobjektName;
985 Optional<ZonedDateTime> aenderungsdatum;
986 }

988 association [*] Frist -> (zuweisung) Person [0..1];

990 association [1] Person -> Frist [*];
991 association [1] Konto -> Frist [*];
992 association [1] Projekt -> Frist [*];
993 association [1] Mittelabruf -> Frist [0..1];
994 association [1] Rechnungsstellung -> Frist [0..1];
995 association [1] Vertrag -> Frist [0..1];
996 association [1] Zulage -> Frist [0..1];

998 enum Friststatus {
999 PLANUNG,

1000 IN_BEARBEITUNG,
1001 ERLEDIGT;
1002 }

1004 enum Fristobjekt {
1005 PERSON,
1006 KONTO,
1007 VERTRAGSVERLAENGERUNG("Vertragsverlaengerung"),
1008 ZULAGE,
1009 RECHNUNG,
1010 MITTELABRUF,
1011 PROJEKT;
1012 }

1014 class DefaultFristen {
1015 ZonedDateTime finanzenStartDatum;
1016 Long finanzenFristinWeeks;
1017 ZonedDateTime personalStartDatum;
1018 Long personalFristinWeeks;
1019 }

1021 class Setting {
1022 String identifier;
1023 }

1025 class InstanzSetting extends Setting {
1026 String value;
1027 }

1029 class UISetting extends Setting {

312

A.1 Domain Models

1030 String seite;
1031 }

1033 association [0..1] MacocoUser -> (setting) UISetting [*];

1035 class FilterSetting extends UISetting {
1036 List<String> filterValues;
1037 }

1039 class TableSetting extends UISetting {
1040 TableIdentifierTyp typ;
1041 boolean zeigeInaktive;
1042 int zeilenLimit;
1043 Optional<String> gruppiereNach;
1044 Optional<String> sortiereNach;
1045 Optional<String> sortiereDir;
1046 boolean isShowColor;
1047 }

1049 association [1] TableSetting -> (spalten) TableSettingSpalten [*];

1051 enum TableIdentifierTyp {
1052 DEFAULT,
1053 USER,
1054 INSTITUT;
1055 }

1057 class TableSettingSpalten {
1058 String name;
1059 boolean istAktiv;
1060 long breite;
1061 }

1063 class ErweiterbareListen{
1064 String bereich;
1065 String feldbezeichnung;
1066 List<String> inhalte;
1067 }

1069 class CardSetting {
1070 String page;
1071 String identifier;
1072 <<dbColumnDefinition="TEXT">>
1073 String configuration;
1074 }

1076 association [*] CardSetting -> (benutzer) MacocoUser [0..1];

1078 class Elternzeit { // WZL
1079 Optional<ZonedDateTime> von;

313

Appendix A Code Listings

1080 Optional<ZonedDateTime> bis;
1081 ZahlenWert umfang;
1082 }

1084 class Nebentaetigkeit { // WZL
1085 Optional<ZonedDateTime> von;
1086 Optional<ZonedDateTime> bis;
1087 ZahlenWert umfang;
1088 Optional<String> arbeitgeber;
1089 Optional<String> taetigkeitsbereich;
1090 }

1092 class Zulage { // WZL
1093 Optional<String> pspelement;
1094 Optional<String> bezeichnung;
1095 ZonedDateTime von;
1096 ZonedDateTime bis;
1097 Long arbeitgeberbrutto;
1098 Long arbeitnehmerbrutto;
1099 }

1101 // WZL
1102 enum Geschlecht { NONE(""), WEIBLICH("weiblich"), MAENNLICH("maennlich"

), DIVERS("divers"); }

1104 // WZL
1105 // -> DataSource
1106 enum Titel { NONE(""), E1("Apl. Prof. Dr.") , E2("B.Sc.") , E3("Dipl.-

Inform.") , E4("Dipl.-Ing."), E5("Dipl.-Ing. (FH)"),
1107 E6("Dipl.-Ing. (RUS)"), E7("Dipl.-Kff.") , E8("Dipl.-Math."), E9("

Dipl.-Phys.") , E10("Dipl.-Wirt. Ing.") , E11("Dr.") , E12("Dr.
phil."),

1108 E13("Dr. rer. nat."), E14("Dr. rer. pol."), E15("Dr.-Ing."), E16("M.A
.") , E17("M.Eng."), E18("M.Sc."), E19("PhD"), E20("Prof. Dr.-Ing.
"); }

1110 // WZL
1111 // -> DataSource
1112 enum Berufsgruppe { NONE(""), E1("Akademischer Direktor"), E2("

Angestellter in der DV"), E3("Auszubildende/r"), E4("Bibl.-
Beschaeftiger"),

1113 E5("Elektriker"), E6("Elektroniker"), E7("Elektrotechniker"), E8("
Fachinformatiker"), E9("Fachinformatiker"), E10("
Industriemechaniker"),

1114 E11("Lagerarbeiter"), E12("Mechaniker"), E13("Meister"), E14("
Praktikant, SV-frei"), E15("Programmierer"), E16("Stud. Hilfskraft
"),

1115 E17("Techn. Beschaeftigter"), E18("Techn. Zeichner"), E19("Techniker"
), E20("Universitaetsprofessor"), E21("Verw. Beschaeftigter"), E22
("Werkstoffpruefer"),

314

A.1 Domain Models

1116 E23("Wiss. Beschaeftigter"), E24("Wiss. Hilfskraft Bachelor"), E25("
Wiss. Hilfskraft Master"); }

1118 // WZL
1119 enum Aktion { NONE(""), ANFRAGE_VERSENDET("Anfrage versendet"),

ERINNERUNG_VERSENDET("Erinnerung versendet"),
1120 ZUR_UNTERSCHRIFT_BEIM_VORGESETZTEN("Zur Unterschrift beim

Vorgesetzten"),
1121 BEI_ZHV_VORGELEGT("Bei ZHV vorgelegt"), VON_ZHV_BESTAETIGT("Von ZHV

bestaetigt"); }

1123 // WZL
1124 // -> DataSource
1125 enum Vertragsgrundlage { NONE(""), E1("sonst. Befristungen (gleicht

Auszubildenden)"), E2("unbefristet"), E3("unbefr. (Beamter aL)"), E4
("14 Abs. 2 TzBfG"),E5("Elternzeitvertretung"), E6("Befristung
SHK"), E7("Mehrbedarf sonstiger"), E8("Mehrb. Forschungspr."),
E9("2(5)Nr.3WZVG MuS-EZ"

1126),
1127 E10("2 WZVG DM (NP)"), E11("2 WZVG KiBetr NP"), E12("WZVG-Postdoc-

Quali."), E13("WZVG-N-Gr._Leiter"), E14("WZVG-Wiss.-Quali NP"),
1128 E15("2 WZVG DM (VP)"),

E16("2 WZVG KiBetr VP"), E17("WZVG-Promotion"), E18("WZVG-sonst.
Wiss-Qual"), E19("Befristung WHB"), E20("Befristung WHK"),

1129 E21("2 (1) S.2 WZVG nPr"), E22("14(1) Nr.2 TzBfG-ueb"), E23("befr.
Arbeitszeitaenderung"), E24("uebernahme nach Ausbildung"); }

1131 association [1] Person -> (elternzeiten) Elternzeit [*]; // WZL
1132 association [1] Person -> (nebentaetigkeiten) Nebentaetigkeit[*]; //

WZL
1133 association [1] Person -> (zulagen) Zulage [*]; // WZL

1135 // WZL Personal Export
1136 class PersonalExportData {
1137 }
1138 association [1] PersonalExportData -> (entries) PersonalExportDataEntry

[*];

1140 class PersonalExportDataEntry {
1141 String personalnummer;
1142 Optional<String> vorsatzwort;
1143 String nachname;
1144 String vorname;
1145 ZonedDateTime von;
1146 ZonedDateTime bis;
1147 String pspElement;
1148 Long prozentsatz;
1149 }

1151 class PersonalExportEinstellungen {

315

Appendix A Code Listings

1152 String pspElement;
1153 List<String> bezeichnungen;
1154 ZonedDateTime startmonat;
1155 ZonedDateTime endmonat;
1156 }

1158 class Organigramm {
1159 boolean istStabstelle;
1160 boolean istAktiv;
1161 String bezeichnung;
1162 }

1164 <<noOrphanRemoval>>
1165 association [0..1] Organigramm (parent) <-> (child) Organigramm [*];

1167 association [1] Organigramm -> (leiter) OrganigrammPersonInfo [*];
1168 association [1] Organigramm -> (stellvertreter) OrganigrammPersonInfo

[*];
1169 association [1] Organigramm -> (mitarbeiter) OrganigrammPersonInfo [*];

1171 class OrganigrammPersonInfo {
1172 Optional<ZonedDateTime> von;
1173 Optional<ZonedDateTime> bis;
1174 Optional<ZahlenWert> umfang;
1175 }

1177 association [*] OrganigrammPersonInfo -> Person [1];

1179 // Druckeinstellungen
1180 class DruckEinstellungenProjekt {
1181 Long projektId;
1182 Integer jahr;
1183 Integer monat;
1184 Optional<String> mittelabrufnummer;
1185 Optional<String> belegnummer;
1186 }

1188 association [1] DruckEinstellungenProjekt -> (
druckEinstellungenPersonen) DruckEinstellungenPerson [*];

1190 class DruckEinstellungenPerson {
1191 Long personId;
1192 Optional<ZahlenWert> stundensatz;
1193 }

1195 class BlacklistedToken {
1196 <<dbColumnDefinition="TEXT">> // have more than 255 characters
1197 String token;
1198 ZonedDateTime addedAt;
1199 ZonedDateTime expiresAt;

316

A.1 Domain Models

1200 }

1202 class RefreshToken {
1203 long userId;
1204 String token;
1205 }

1207 // NotificationCenter
1208 class UserNotification {
1209 UserNotificationType notificationType;
1210 String title;

1212 <<dbColumnDefinition="TEXT">>
1213 String message;
1214 ZonedDateTime timeStamp;

1216 // clickable
1217 Optional<String> link; // fuer Router

1219 boolean seen;
1220 boolean pinned;
1221 }

1223 enum UserNotificationType { SUCCESS, INFO, WARNING, DANGER; }

1225 association [1] MacocoUser -> (notification) UserNotification [*];

1227 class AccessIdentifier {
1228 }

1230 class CommandLog {
1231 ZonedDateTime timestamp;
1232 List<String> diff;
1233 String affectedArea;
1234 String affectedObject;
1235 }

1237 association [1] CommandLog -> (executor) MacocoUser [0..1];
1238 association [1] CommandLog -> (permission) AccessIdentifier [*];
1239 }

Listing A.1: Domain Model of MaCoCo

The Invidas class diagram

1 /* (c) https://github.com/MontiCore/monticore */

3 package de.monticore.montigem.be.domain;

317

Appendix A Code Listings

5 import de.monticore.montigem.rte.be.domain.RTEDomain.*;
6 import de.monticore.montigem.rte.be.dto.IdDTO;
7 import de.monticore.montigem.be.system.policies.Policies.*;
8 import java.time.ZonedDateTime;

10 classdiagram Domain {

12 class Datenschutzerklaerung {
13 String herstellerName;
14 String name;
15 ZonedDateTime erstellDBDatum;
16 ZonedDateTime aenderungsDBDatum;
17 ZonedDateTime gueltigAbDatum;
18 int gueltigAbAlter;
19 String version;
20 String url;
21 String volltext;
22 String aktualisierungen;
23 }

25 association [1] Datenschutzerklaerung -> Gebiet [*];
26 association [1] Datenschutzerklaerung -> Datenverarbeitung [*];
27 association [1] Datenschutzerklaerung -> Datenkategorie [*];
28 association [1] Datenschutzerklaerung -> Dateneintrag [*];

30 /**/
31 * Gebiete
32 /**/

34 class Gebiet {
35 String name;
36 }

38 association [1] Gebiet -> Rechte [*];
39 association [1] Gebiet -> Datenschutzbeauftragter [0..1];
40 association [1] Gebiet -> Verantwortlicher [*];

42 class Datenschutzbeauftragter {
43 String name;
44 String standort;
45 }

47 association [1] Datenschutzbeauftragter -> Kontaktdaten [1];

49 class Verantwortlicher {
50 String name;
51 String standort;
52 }

54 association [1] Verantwortlicher -> Kontaktdaten [1];

318

A.1 Domain Models

55 association [1] Verantwortlicher -> Vertreter [0..1];

57 class Vertreter {
58 String name;
59 }

61 association [1] Vertreter -> Kontaktdaten [1];

63 class Kontaktdaten {
64 String postadresse;
65 List<String> elektrKontakt;
66 }

68 class Rechte {
69 String gesetz;
70 <<dbColumnDefinition="TEXT">>
71 String beschreibung;
72 }

74 class RechteTypAdapter {
75 Rechtetyp rechtetyp;
76 }

78 association [1] Rechte -> Rechtewahrnehmung [*];
79 association [1] Rechte -> RechteTypAdapter [*];

81 class Rechtewahrnehmung {
82 List<String> kontakt;
83 <<dbColumnDefinition="TEXT">>
84 Optional<String> beschreibung;
85 }

87 class Beschwerdewahrnehmung extends Rechtewahrnehmung {
88 Optional<String> kontaktAufsichtsbehoerde;
89 }

91 /**/
92 * Datenverarbeitung allgemein
93 /**/

95 class Datenverarbeitung {
96 Akteur akteur;
97 String szenario;
98 <<dbColumnDefinition="TEXT">>
99 Optional<String> beschreibung;
100 }

102 class AkteurOrtAdapter {
103 AkteurOrt value;
104 }

319

Appendix A Code Listings

106 association [1] Datenverarbeitung -> AkteurOrtAdapter [1..*];
107 association [1] Datenverarbeitung -> Zweck [1..*];

109 class Zweck {
110 <<dbColumnDefinition="TEXT">>
111 Optional<String> beschreibung;
112 Zustimmungsart zustimmungsart;
113 Optional<String> zustimmungsWiderruf; //TODO
114 }

116 association [1] Zweck -> Rechtsgrundlage [1];
117 association [*] Zweck -> Dateneintrag [*];
118 association [*] Zweck -> Datenkategorie [*];

120 class Rechtsgrundlage {
121 Rechtsgrundlagetyp rechtsgrundlageTyp;
122 <<dbColumnDefinition="TEXT">>
123 Optional<String> beschreibung;
124 }

126 class Dateneintrag {
127 String bezeichnung;
128 }

130 class Datenkategorie {
131 String name;
132 }

134 association [*] Dateneintrag -> Datenkategorie [*];
135 association datenkategorien [*] Datenkategorie -> (kategorie)

Datenkategorie [*];

137 association [*] Dateneintrag -> DatenTagAdapter [*];
138 association [*] Datenkategorie -> DatenTagAdapter [*];

140 class DatenTagAdapter {
141 DatenTag value;
142 }

144 /**/
145 * Spezielle Datenverarbeitungsformen
146 /**/

149 class DatenerhebungUndAufbereitung extends Datenverarbeitung {
150 String verarbeitungsform;
151 Zeitpunkt zeitpunkt;
152 }

320

A.1 Domain Models

154 class VerarbeitungsformSingleton {
155 List<String> values;
156 }

158 association [1] DatenerhebungUndAufbereitung ->
AutomatisierteEntscheidungsfindung [*];

160 class AutomatisierteEntscheidungsfindung {
161 String infoUeberLogik;
162 String tragweite;
163 }

165 class InfoUeberLogikSingleton {
166 List<String> values;
167 }

169 class TragweiteSingleton {
170 List<String> values;
171 }

173 /**/

175 class Datenspeicherung extends Datenverarbeitung {
176 Optional<String> speicherDauer;
177 Optional<String> speicherBisEreignis;
178 Optional<String> schutzmassnahme;
179 String speicherLand;
180 }

182 /**/

184 class Datenweitergabe extends Datenverarbeitung {
185 String konkreteEmpfaenger;
186 boolean auftragsdatenverarbeitung;
187 boolean absicht;
188 Optional<String> schutzmassnahme;
189 Zeitpunkt zeitpunkt;
190 }

192 class EmpfaengertypAdapter {
193 Empfaengertyp value;
194 }

196 association [1] Datenweitergabe -> (empfaengerGebiet) EmpfaengerGebiet
[*];

197 association [1] Datenweitergabe -> (empfaengerOrt) AkteurOrtAdapter
[1..*];

198 association [1] Datenweitergabe -> (empfaengerTyp) EmpfaengertypAdapter
[1..*];

321

Appendix A Code Listings

200 abstract class EmpfaengerGebiet { }

202 class EWRLandEmpfaenger extends EmpfaengerGebiet {
203 List<String> laender;
204 }

206 class AngLandEmpfaenger extends EmpfaengerGebiet {
207 }

209 association [1] AngLandEmpfaenger -> (angemessenheitsbeschlussLand)
AngemessenheitsbeschlussLandAdapter [*];

211 class AngemessenheitsbeschlussLandAdapter {
212 AngemessenheitsbeschlussLand value;
213 }

215 class GarantieLandEmpfaenger extends EmpfaengerGebiet {
216 List<String> laender;
217 String garantie;
218 String kopieQuelle;
219 }

222 /***
223 * Enums
224 **/

226 enum DatenTag {
227 GesundheitUndFitness,
228 Standort,
229 Kontaktinformationen,
230 Kennungen, // Passwoerter Nutzername
231 Nutzungsdaten,
232 Diagnose,
233 Finanzinformationen, // Kreditkartennummer etc.?
234 GekaufteArtikel,
235 Benutzerinhalte, // Fotos etc.
236 Suchverlauf,
237 SonstigeDaten;
238 }

240 enum Rechtetyp {
241 AUSKUNFT,
242 EINSCHRAENKUNG_DER_VERARBEITUNG,
243 WIDERSPRUCH_GEGEN_VERARBEITUNG,
244 DATENUEBERTRAGBARKEIT,
245 WIDERRUF_DER_EINWILLIGUNG,
246 BESCHWERDE,
247 BERICHTIGUNG,
248 LOESCHUNG,

322

A.1 Domain Models

249 SONSTIGES;
250 }

252 enum Rechtsgrundlagetyp {
253 EINWILLIGUNG,
254 VERTRAGLICHE_VERPFLICHTUNG,
255 GESETZLICHE_VERPFLICHTUNG,
256 BERECHTIGTES_INTERESSE,
257 ANDERE,
258 NICHT_NOTWENDIG;
259 }

261 enum Empfaengertyp {
262 NUTZER,
263 HERSTELLER,
264 EXTERNE_DATENEMPFAENGER,
265 EXTERNE_FREUNDE,
266 PLATTFORM_FREUNDE,
267 PLATTFORM_NUTZER;
268 }

270 enum AkteurOrt {
271 WEARABLE,
272 APP,
273 WEBSITE,
274 HERSTELLER_INFRASTRUKTUR,
275 DRITTANBIETER_INFRASTRUKTUR;
276 }

278 enum Akteur {
279 NUTZER,
280 HERSTELLER,
281 EXTERNER_DATENBEREITSTELLER,
282 EXTERNER_DATENEMPFAENGER;
283 }

285 enum Zeitpunkt {
286 EINMALIG,
287 KONTINUIERLICH,
288 BEI_AKTIVITAET,
289 KEINE_ANGABE;
290 }

292 enum Zustimmungsart {
293 FREIWILLIG,
294 FUNKTIONSABHAENGIG_VERPFLICHTEND,
295 GRUNDLEGEND_VERPFLICHTEND,
296 KEINE_ANGABE;
297 }

323

Appendix A Code Listings

299 enum AngemessenheitsbeschlussLand {
300 ANDORRA,
301 ARGENTINIEN,
302 KANADA,
303 FAEROER_INSELN,
304 GUERNSEY,
305 ISRAEL,
306 ISLE_OF_MAN,
307 JAPAN,
308 JERSEY,
309 NEUSEELAND,
310 SCHWEIZ,
311 URUGUAY,
312 UK;
313 }

315 class HostSpecificContact {
316 String emailAddress;
317 }

319 class ImpressumInformation {
320 <<dbColumnDefinition="TEXT">>
321 String impressumHTML;
322 }

324 class EigeneDatenschutzerklaerung {
325 <<dbColumnDefinition="TEXT">>
326 String dseHTML;
327 }

329 }

Listing A.2: Domain Model of Invidas

A.2 Freemarker Templates

Several Templates used in CD2GUI to create GUI pages for the web application:
GUI-model-template for a Details-Page in GUIDSL v2 syntax

324

A.2 Freemarker Templates

1 ${tc.signature("domainClass", "name", "domainPackage","attributes","roles
")}

2 <#assign AttributeManager = tc.instantiate("cd2gui.util.AttributeManager"
)>

3 package cd2gui.models;
4 //Data classes
5 import ${domainPackage}.${name};
6 //GUI models
7 import arrange.src.lib.gemcard.GemCard;
8 import arrange.src.lib.gemrow.GemRow;
9 import basic.src.lib.gemtext.GemText;
10 import table.src.lib.gemtable.GemTable;
11 import input.src.lib.gemtextinput.GemTextInput;
12 import table.src.lib.gemtable.TableTypes.TableColumn;
13 page ${name}Details(${name} ${name?lower_case}) {
14 ${name?uncap_first}DetailsCard@GemCard(
15 title = "${name} Details",
16 component = ${name?uncap_first}DetailsRow@GemRow(hAlign = "space-

between", components = [
17 ${name?uncap_first}Id@GemText(value = "Id = " + ${name?

lower_case}.gemId)<#if (attributes?size > 0)>,</#if>
18 <#list attributes as a>
19 <#if AttributeManager.isDerived(a) >
20 ${name?uncap_first}_${a.getName()}@GemText(value = "${a.

getName()} = " + ${name?lower_case}.${a.getName()})
21 <#else >
22 ${name?uncap_first}_${a.getName()}@GemTextInput(
23 labelText = "${a.getName()}",
24 entry = ${name?lower_case}.${a.getName()}
25)
26 </#if><#sep>, </#sep>
27 </#list>
28])
29);
30 ${name?uncap_first}AssociationCard@GemCard(
31 title = "${name} Associations",
32 component = ${name?uncap_first}AssociationRow@GemRow(hAlign = "

space-between", components = [
33 <#list roles as r>
34 ${r.getName()?uncap_first}RoleTable@GemTable(
35 rows = ${name?lower_case}.${r.getName()},
36 columns = [
37 TableColumn("gemId","Id")<#if (AttributeManager.

getAssociationAttributes(r, true)?size > 0)>,</#if
>

38 <#list AttributeManager.getAssociationAttributes(r, true)
as ra>

39 TableColumn("_${ra.getName()?lower_case}","${ra.
getName()?cap_first}")<#sep>, </#sep>

40 </#list>
41]
42)<#sep>, </#sep>
43 </#list>
44])
45);
46 }

Listing A.3: Template defining the details page

325

Appendix A Code Listings

Freemarker Template for GUI-model for overview page
1 <#-- (c) https://github.com/MontiCore/monticore -->
2 ${tc.signature("name", "attributes", "roles", "top", "derivedAttributes",

"notDerivedAttributes","isVersionable")}

4 <#assign astcdClassUtility = tc.instantiate("cd2gui.generator.util.
ASTCDClassUtility")>

5 <#assign associationUtility = tc.instantiate("cd2gui.generator.util.
AssociationUtility")>

6 <#assign attributeUtility = tc.instantiate("cd2gui.generator.util.
AttributeUtility")>

7 <#assign roleUtility = tc.instantiate("cd2gui.generator.util.RoleUtility"
)>

8 <#assign stereotypeUtility = tc.instantiate("cd2gui.generator.util.
StereotypeUtility")>

10 <#include "detail-component-parts/imports.ftl">

12 <#-- If we are not a TOP component/real component, we need the @Component
-->

13 <#include "detail-component-parts/component.ftl">

15 export class ${name}DetailsComponent${top} extends ${name?lower_case?
cap_first}DetailsComponent${top}TOP {

17 protected router: Router;

19 <#include "detail-component-parts/constructor.ftl">

21 <#list attributes as a>
22 <#assign attr=a.getName()>
23 <#if !stereotypeUtility.isNonEditable(a) && !attributeUtility.

isList(a)>
24 ${attr}ListObject
25 </#if>
26 </#list>

28 public ngOnInit() {
29 super.ngOnInit();
30 }

32 <#include "detail-component-parts/association_table_input_filter.ftl">

34 <#include "detail-component-parts/derived_attributes.ftl">

36 <#list notDerivedAttributes as a>
37 <#if !stereotypeUtility.isNonEditable(a) && !attributeUtility.isList(

a)>
38 <#assign attr=a.getName()>
39 public cancelSave_${attr}():void {

326

A.3 GUI-models

40 this.edit_${attr}Mode = false;
41 }

43 <#include "detail-component-parts/edit_save_method.ftl">

45 </#if>
46 </#list>

49 private updateAssociation(): void {
50 let fullDto = new ${name}FullDTO(this.dto);
51 fullDto.id = this.id;
52 <#list roles as role>
53 fullDto.${role.getName()} = this.dto.${role.getName()};
54 </#list>
55 fullDto.update(this.commandManager).then(() => {
56 this.commandManager = new CommandManager(this.

_commandRestService);
57 this.initAllCommands();
58 });
59 this.sendCommands();
60 }

62 //---
63 //---ROLE METHODS--
64 //---

66 <#list roles as role>
67 <#include "detail-component-parts/role_methods.ftl">
68 </#list>

70 <#if isVersionable == true>
71 public release_${name}(): void {
72 this.router.navigateByUrl("dashboard/release/" + this.id)
73 }
74 </#if>
75 }

Listing A.4: Freemarker Template for Overview Page

A.3 GUI-models

GUI-model for a Overview-Page in GUIDSL v1 syntax

1 /* (c) MaCoCo, ein RWTH Aachen projekt */
2 webpage FinanzenOverview(all KontenOverviewProvider provider,

327

Appendix A Code Listings

3 all KontenOverview ko,
4 all BudgetInfo bi,
5 enum Vergabeverordnung vo) {

7 row (r) {
8 balances <bi {
9 box "Gesamtbudget", <gesamtBudget, default;

10 box "Ausgaben", <ausgaben, default;
11 box "Planausgaben", <planBudget, default;
12 box "Restbudget", <restBudget, success;
13 }
14 }

16 column{
17 card "card1" {
18 head{
19 row (stretch) {
20 textoutput {"Ubersicht Konten"}
21 row (r) {
22 button "Zahlungen erfassen"{
23 styleclass:"blue-green-transition"
24 click -> navigateToZahlungen()
25 }
26 button "Konto hinzufugen"{
27 styleclass:"blue-green-transition"
28 click -> addKonto()
29 }
30 helpbutton Wiki "https://macoco.rwth-aachen.de/w/index.php/

Konten%C3%BCbersichtsseite"
31 }
32 }
33 }
34 body{
35 row(50%, spacebelow) {
36 container(220px) {
37 multi dropdown {
38 placeholder: "Kontoart"
39 input: <kontoartFilter
40 }
41 }
42 container(350px) {
43 multi dropdown {
44 placeholder: "Organigrammstufe"
45 input: <organigrammStufeFilter
46 }
47 }
48 container(350px) {
49 multi dropdown {
50 placeholder: "Fachliche Verantwortung"
51 input: <fachlicheVerantwortungFilter

328

A.3 GUI-models

52 }
53 }
54 }
55 datatable "finanzenOverviewDatatable" {
56 references {
57 rowClass: rowClass
58 selected : selected
59 rightClickMenu : contextMenu
60 activeRow: activeRow
61 rowHeight: 29
62 exportname: Uebersicht_Konten
63 }
64 methods {
65 select -> onSelect($event)
66 }
67 conditions {
68 skipNotification
69 groupable
70 }
71 allowBatchMode : Konto istAktiv
72 rows <ko.kontenOverviewEntries {
73 column "PSP-Element"

, < pspElement , 120;
74 column "Name"

, < name , 120;
75 column "Typ"

, < typ , 100;
76 column "Projektart"

, <projektArt , 40;
77 column "Laufzeitbeginn"

, date(< laufzeitBeginn) , 80, hidden;
78 column "Laufzeitende"

, date(< laufzeitEnde) , 80;
79 column "Laufzeit"

, < laufzeitInMonate , 40;
80 column "Gesamtbudget"

, euro(<budget[0].gesamtBudget) , 80;
81 column "Ausgaben"

, euro(<budget[0].ausgaben) , 80;
82 column "Ausgaben Wissenschaftliche Mitarbeiter/innen"

, euro(<budget[0].ausgabenWiMis) , 80, hidden;
83 column "Ausgaben Hilfskrafte"

, euro(<budget[0].ausgabenHiWis) , 80, hidden;
84 column "Verplant"

, euro(<budget[0].planBudget) , 80;
85 column "Saldo"

, euro(<budget[0].restBudget) , 80;
86 column "Einnahmen"

, euro(<einnahmen) , 80, hidden;
87 column "Kontostand"

329

Appendix A Code Listings

, euro(<budget[0].kontostand) , 80, hidden;
88 column "Offene Abgleiche"

, <nichtAbgeglicheneBuchungen , 80;
89 column "Fachliche Verantwortung"

, <fachlicheVerantwortung , 80, hidden;
90 column "Organigrammstufe"

, <organigrammStufe , 80, hidden;
91 column "Vergabeverodnung"

, <vergabeVerordnung , 100, hidden;
92 column "Label"

, < labels , 100;
93 column "anderungsdatum"

, date(< aenderungsdatum) , 100,hidden,
disabled;

94 }
95 }
96 }
97 }
98 }
99 contextmenu "contextMenu" {
100 group {
101 entry if (isSingleSelection() && isAktiv(item)) "Bearbeiten: Neuer

Tab" -> navigateToFormular($event, true)
102 entry if (isSingleSelection() && isAktiv(item)) "Bearbeiten: Hier

offnen" -> navigateToFormular($event, false)
103 entry if (!isInBatchMode() && isAktiv(item)) "Deaktivieren" ->

deactivateAccount($event)
104 entry if (!isInBatchMode()) "Aktivieren" -> activateAccount($event)
105 entry if (!isInBatchMode()) "Loschen" -> deleteKonto($event)
106 entry if (!isInBatchMode()) "Projekt erstellen" -> createProjekt(

$event)
107 }
108 group {
109 entry if (noSelection()) "Sie haben keine Eintrage selektiert!" ->

emptyFunction($event)
110 entry if (!noSelection()) "Neues Konto anlegen" ->

addKontoViaContextMenu()
111 }
112 group if (isSingleSelection()) {
113 entry "Detailansicht: Neuer Tab" -> navigateToDetails($event, true)
114 entry "Detailansicht: Hier offnen" -> navigateToDetails($event,

false)
115 entry "Buchung anlegen: Neuer Tab" -> navigateToBuchungen($event,

true)
116 entry "Buchung anlegen: Hier offnen" -> navigateToBuchungen($event,

false)
117 entry "Overheads: Neuer Tab" -> navigateToOverheads($event, true)
118 entry "Overheads: Hier offnen" -> navigateToOverheads($event, false

)
119 entry getGeschaeftsvorgng(item) + " erfassen" -> navigateToPage(

330

A.3 GUI-models

$event)
120 entry if (isZuweisung(item))"Stellenzuweisung erfassen: Neuer Tab"

-> navigateToStellenzuweisungen($event, true)
121 entry if (isZuweisung(item))"Stellenzuweisung erfassen: Hier offnen

" -> navigateToStellenzuweisungen($event, false)
122 }
123 group {
124 entry if (isBatchSelected()) "Loschen" -> batchDelete($event)
125 entry if (isBatchSelected()) "Aktivieren" -> batchActivate($event)
126 entry if (isBatchSelected()) "Deaktivieren" -> batchDeactivate(

$event)
127 entry if (isBatchSelected()) "Plankonto" -> batchSetPlankonto(

$event)
128 entry if (isBatchSelected()) "Kein Plankonto" ->

batchUnsetPlankonto($event)
129 entry if (isBatchSelected()) "Projekte erstellen" ->

batchCreateProjekt($event)
130 }
131 }

133 }

Listing A.5: GUI-DSL v1 Model for an Overview page in MaCoCo

GUI-model-Output by CD2GUI for a Overview-Page in GUIDSL v2 syntax
1 // ...

3 page personOverview(List<person> person) {
4 // ...
5 personOverviewCard@GemCard(
6 title = "Person Overview",
7 components = [
8 // ...
9 personOverviewRow@GemRow(hAlign = "space-between", components

= [
10 personInstancesTable@GemTable(
11 rows = person,
12 columns = [
13 TableColumn(person.id, "Id"),
14 TableColumn(person.name, "Name")
15 // ...
16]
17]
18)
19])
20);
21 }

Listing A.6: Overview Page in GUIDSL v2 syntax

331

Appendix A Code Listings

A.4 Few-Shot Learning Example Files

We use several models as examples to fine-tune the large language models we use. In
the following we list the models we used as examples:

A.4.1 MontiArc

1 /* (c) https://github.com/MontiCore/monticore */
2 package elevator;

4 component Elevator {

6 port <<sync>> in Boolean req1, req2, req3, req4,
7 <<sync>> out Integer clear;
8 port <<sync>> in Boolean at1, at2, at3, at4,
9 <<sync>> out Boolean open, close, up, down,

10 <<sync>> in Boolean isOpen, isClosed, isObstacle;

12 Controller ctrl;

14 req1 -> ctrl.req1;
15 req2 -> ctrl.req2;
16 req3 -> ctrl.req3;
17 req4 -> ctrl.req4;

19 ctrl.clear -> clear;

21 at1 -> ctrl.at1;
22 at2 -> ctrl.at2;
23 at3 -> ctrl.at3;
24 at4 -> ctrl.at4;

26 isOpen -> door.isOpen;
27 isClosed -> door.isClosed;
28 isObstacle -> door.isObstacle;

30 Door door;

32 door.open -> open;
33 door.close -> close;
34 door.closed -> ctrl.isClosed;

36 Lift lift;

38 lift.up -> up;
39 lift.down -> down;

332

A.4 Few-Shot Learning Example Files

41 ctrl.door -> door.cmd;
42 ctrl.lift -> lift.cmd;

44 }

Listing A.7: Elevator MontiArc Model

1 /* (c) https://github.com/MontiCore/monticore */
2 package bumperbot;

4 component BumperBot {

6 Ultrasonic sensor;
7 Motor leftMotor;
8 Motor rightMotor;
9 BumpControl controller;

10 Timer timer (1000);
11 Logger logger;

13 sensor.distance -> controller.distance;
14 controller.right -> rightMotor.cmd;
15 controller.left -> leftMotor.cmd;
16 controller.timer -> timer.cmd;
17 timer.signal -> controller.signal;
18 controller.speed -> leftMotor.speed;
19 controller.speed -> rightMotor.speed;
20 controller.log -> logger.message;

22 }

Listing A.8: BumperBot MontiArc Model

A.4.2 Sequence Diagrams

1 /* (c) https://github.com/MontiCore/monticore */

3 package examples.correct.lecture;

5 complete sequencediagram example_pretty {

7 complete kupfer912: Auction;
8 bidPol: BiddingPolicy;
9 timePol: TimingPolicy;

333

Appendix A Code Listings

11 a -> b : methodenname(arg);
12 f -> BidMessage bm = new BidMessage(...);

14 class A -> b : trigger test();

16 a -> b : static test() {
17 a -> b : test();
18 b <- a : test();
19 }
20 }

Listing A.9: Example Input for MontiCore sequence diagram syntax.

1 /* (c) https://github.com/MontiCore/monticore */

3 package correct;

5 sequencediagram allGrammarElements {

7 // Interacting objects
8 (c) o: Order;
9 c: Customer;

11 // Offer -> Production
12 o -> c : trigger sendConfirmation();
13 o <- c : return;
14 o -> o : orderParts();
15 assert state == Production;

17 // Production -> Shipping
18 o -> o : trigger shipItems();
19 assert state == Shipping;

21 // Shipping -> Payment
22 o -> c : sendInvoice(sum);
23 o <- c : return;
24 assert state == payment;

26 // Payment -> Complete
27 assert state == complete;
28 o -> Mail m = new Mail();
29 }

Listing A.10: Example Input for MontiCore sequence diagram syntax.

334

A.4 Few-Shot Learning Example Files

1 /* (c) https://github.com/MontiCore/monticore */

3 /*
4 * Example in documentation.
5 */
6 package examples.correct;

8 sequencediagram size {

10 kupfer912:Auction;
11 theo:Person;

13 kupfer912 -> BidMessage bm = new BidMessage(...);
14 let int m = theo.messages.size;
15 kupfer912 -> theo : sendMessage(bm);
16 theo -> kupfer912 : return;
17 assert m + 1 == theo.messages.size;
18 }

Listing A.11: Example Input for MontiCore sequence diagram syntax.

1 /* (c) https://github.com/MontiCore/monticore */

3 /*
4 * Example in documentation.
5 */
6 package examples.correct;

8 sequencediagram bid {

10 kupfer912:Auction;
11 bidPol:BiddingPolicy;
12 timePol:TimingPolicy;
13 theo:Person;

15 kupfer912 -> bidPol : validateBid(bid) {
16 bidPol -> kupfer912 : return BiddingPolicy.OK;
17 }
18 kupfer912 -> timePol : newCurrentClosingTime(kupfer912,bid) {
19 timePol -> kupfer912 : return t;
20 }
21 assert t.timeSec == bid.time.timeSec + extensionTime;
22 let int m = theo.messages.size;
23 kupfer912 -> theo : sendMessage(bm) {
24 theo -> kupfer912 : return;
25 }

335

Appendix A Code Listings

26 assert m + 1 == theo.messages.size;
27 }

Listing A.12: Example Input for MontiCore sequence diagram syntax.

A.4.3 Feature Diagrams

1 /* (c) https://github.com/MontiCore/monticore */
2 package fddiff;

4 featurediagram car1 {
5 car -> engine & locking?;
6 engine -> electric | gas;
7 locking -> keyless ^ phone ^ fingerprint;
8 }

Listing A.13: Example Input for MontiCore feature diagram syntax.

1 /* (c) https://github.com/MontiCore/monticore */
2 package fdvalid;

4 featurediagram PhoneComplex {
5 Phone -> Memory & OS & Camera? & Screen;
6 Memory -> Internal & External?;
7 Internal -> [1..2] of {Small, Medium, Large};
8 OS -> iOS ^ Android;
9 Screen -> Flexible | FullHD;

10 External ? Flexible requires Android : iOS && Android;
11 }

Listing A.14: Example Input for MontiCore feature diagram syntax.

1 /* (c) https://github.com/MontiCore/monticore */
2 package fdvalid;

4 featurediagram CarNavigation {
5 CarNavigation -> Display & GPS & PreinstalledMaps? & Memory;
6 CarNavigation -> VoiceControl ^ TouchControl;
7 Memory -> Small ^ Medium ^ Large;
8 Display -> SmallScreen | LargeScreen;

336

A.4 Few-Shot Learning Example Files

9 PreinstalledMaps -> [1..3] of {Europe, NorthAmerica, SouthAmerica, Asia
, Africa};

10 TouchControl requires LargeScreen;
11 SmallScreen excludes TouchControl;
12 (Europe && NorthAmerica && Asia) requires (Large || Medium);
13 }

Listing A.15: Example Input for MontiCore feature diagram syntax.

1 /* (c) https://github.com/MontiCore/monticore */

3 package fdvalid;

5 featurediagram Phone {

7 Phone -> Memory & OS & Camera? & Screen;
8 Memory -> Internal & External?;
9 Internal -> [1..2] of {Small, Medium, Large};
10 OS -> iOS ^ Android;
11 Screen -> Flexible | FullHD;

13 iOS excludes External;
14 Flexible requires Android;

16 }

Listing A.16: Example Input for MontiCore feature diagram syntax.

A.4.4 Examtask

Exam Task for the modelling of an E-Bike:
Generate a class diagram of an EBike according to these specifications:
The EBike is composed of a frame (made out of steel), a drive system, and a controller.
Two wheels are inserted into each frame. The drive system is composed of a motor.
Each EBike can be connected to a removable battery. The battery has a stored energy
measured in Watt-hours (Wh). The controller can be in one of three states: On, Off,
and Charging. It also controls the battery, if one is connected, and commands the drive
system. The company plans two different variants of the controller, a basic controller,
and an advanced controller. The advanced controller should be able to estimate the next
Date the bike should be inspected for maintenance.

337

Appendix A Code Listings

A.5 CD4A-Models containing Syntax Errors

The following models contain simple syntax errors. The LLM was task to fix these
models based on parser feedback.

1 classdiagram PingPongGame {

3 class PingPongTable {}

5 class Player
6 String name;

8 class Ball {}

10 class PingPongGame {
11 Player player1;
12 Player player2;
13 Ball ball;
14 Referee referee;
15 }

17 association [1] PingPongGame -> (table) PingPongTable [1];
18 association [1] PingPongGame -> (ball) Ball [1];
19 }

Listing A.17: CD4A model defining a class, but leaving out brackets

1 class PingPongGame {

3 class PingPongTable {}

5 class Player {
6 String name;
7 }

9 class Ball {}

11 class PingPongGame {
12 Player player1;
13 Player player2;
14 Ball ball;
15 Referee referee;
16 }

18 association [1] PingPongGame -> (table) PingPongTable [1];
19 association [1] PingPongGame -> (ball) Ball [1];

338

A.5 CD4A-Models containing Syntax Errors

20 }

Listing A.18: CD4A class diagram not starting with the keyword ’classdiagram’.

1 classdiagram PingPongGame {

3 class PingPongTable {}

5 class Player{
6 String name;
7 }

9 class Ball {}

11 class PingPongGame {
12 Player player1;
13 Player player2;
14 Ball ball;
15 Referee referee;
16 }

18 association [1] PingPongGame --|> (table) PingPongTable [1];
19 association [1] PingPongGame --|> (ball) Ball [1];
20 }

Listing A.19: CD4A class diagram using bad notation to denote an association.

1 classdiagram PingPongGame {

3 class PingPongTable {}

5 class Player{
6 String name;
7 }

9 class Ball {}

11 class PingPongGame {
12 Player player;
13 Player player;
14 Ball ball;
15 Referee referee;
16 }

18 association [1] PingPongGame -> (table) PingPongTable [1];

339

Appendix A Code Listings

19 association [1] PingPongGame -> (ball) Ball [1];
20 }

Listing A.20: CD4A class diagram defining two attributes with the same name (’player’).

340

Appendix B

Diagram and Listing Tags

Tag Description

Class Diagram

Class Diagram for Analysis Diagram

Java Source Code

MontiCore Grammar

MontiCore Languages

Table B.1: Explanation of the used tags in listings and figures.

Stereotype Description

«EXT» External elements

«GEN» Generated elements

«HC» Handcoded elements

«RTE» Run-time Environment elements

«RT-IF» Run-time Infrastructure elements

Table B.2: Explanation of the used stereotypes in listings and tags.

341

Appendix C

Screenshots Screenshots of the Management Cockpit for Controlling (MaCoCo). The
screenshots are taken August 2022 of test data (TestDB) on the production system.

Figure C.1: Finance Dashboard showing charts, filtered tables and key performance in-
dicators (cf. CD2GUI Section 6.2.1)

343

Appendix C

Figure C.2: Overview page showing all bank accounts within the system (cf. CD2GUI
Section 6.2.2)

344

Figure C.3: Detailed Staff page (cf. CD2GUI Section 6.2.3)

345

Appendix C

Figure C.4: Detailed Project page (cf. CD2GUI Section 6.2.3)

346

List of Figures

1.1 Cover Image: Zoomed out view on a class diagram of all persisted classes
of the MaCoCo information system. The project will be presented in
detail in Chapter 8 . 1

1.2 Tool chain Overview: Transforming natural language first into Domain
Models, next into Application Models, and finally into a Target System . . 7

2.1 Transforming informal specifications into class diagrams: LLM4CD lever-
ages the NLP capabilities of LLMs to transform continuous text into valid
CD4A syntax. In order to permit the inclusion of preexisting models, a
System Modeler can merge handwritten models with any class diagram
that was produced by the LLM. 21

2.2 Transforming data structure models into user interface models: CD2GUI
provides the necessary user interface needed to create an application. It
can be configured with Custom Templates (cf. Section 6.6.1), and receives
Class CD4A diagrams as input. Within the tool chain, LLM-based CD4A
models can be merged with handwritten ones in a pre-processing step.
CD2GUI produces GUI-models and hand over the merged CD to the
next tool in the tool chain. 22

2.3 Transforming system models to the target system (web application). A
system modeler can contribute additional models, a programmer can add
hand-written code. (Excerpt from Figure 2.4) 23

2.4 Method Overview: Transforming informal specifications into a fully func-
tional web application . 24

2.5 Visualization of a simplified class diagram, produced by LLM4CD based
on the input ”A web store for Books”. 26

3.1 Typical architecture of a web application 28
3.2 Typical architecture of a MontiCore based generator (Adapted from

[HKR21]). 31
3.3 Class diagram describing a university . 33
3.4 Relations between grammars and models of the tagging language (based

on [GLRR15]) . 39

4.1 Except from Figure 2.4 (system architecture): First transformer of three.
Transforming informal specifications into CD4A models. 44

347

List of Figures

4.2 Size comparison of estimated parameter and token size of the currently
largest language models available to the public. 45

4.3 LLM2CD user interface for a domain expert used to provide informal
specifications. 52

4.4 Transforming Natural language into CDs using priming, few-shot learning
with provided examples, and post-processing. Based on [NMR24a] 53

4.5 Visualization of a PlantUML Model extracted from a GTP-4 response.
This model was generated as part of the ’E-Bike’ use case (cf. Figure 4.8) 54

4.6 Interaction with ChatGPT: Creating a CD4A model 56

4.7 Prompts applying few-shot learning to produce a cd4a class diagram . . . 58

4.8 Exam task, describing several specifications for an EBike. 61

4.9 Visualization of the Textual Model extracted from a GTP-4 response.
This model was graded with 8.5/13.5 Points according to the grading
schema of the exam. (cf. Figure 4.8) . 62

4.10 Using GPT-4 to adapt models . 63

4.11 GPT is unable to further debug a model. 66

4.12 User prompt to ChatGPT . 67

4.13 Response from ChatGPT . 68

4.14 Baseline promt . 69

4.15 Promt with synonyms (underlined passages in prompt) 69

4.16 Prompts producing a feature diagram . 72

4.17 PlantUML visualization of the Hydraulic Press use case (Rendered with
https://www.planttext.com/). 73

4.18 Prompts producing a MontiCore sequence diagram 73

4.19 Example of a MontiArc (MA) diagram. It defines the architecture for a
light controller that reacts on the input of a light switch and whether a
door is opened, it returns a corresponding command. 75

4.20 Example of a produced MontiArc model for a hydraulic press (cf. Table 4.10) 76

4.21 Prompt defining a very minimal user interface. 76

5.1 Resulting Web page, based on the GUI-model Listing 5.1 82

5.2 Structure of the component grammars of GUIDSL v1. GUI emblems used
in GUIDSL v1 are grouped within grammars. Use case-specific extensions
can be added by adding another component grammar - see GUIDSLMaCoCo. 83

5.3 An excerpt of a generated user interface showing a pie chart component
(Screenshot from the MaCoCo use case). Note that next to the diagram
itself, a legend with the raw data is produced as well. 87

5.4 Examples of bar charts generated with GUIDSL v1 87

5.5 A data-table-component as used in MaCoCo. Note that the component
does not only provide plain data but also offers a variety of additional
functions to search, filter, and process the shown data. 88

348

https://www.planttext.com/

List of Figures

5.6 Example of an info sign as used in MaCoCo 93

5.7 Example of three buttons as used in MaCoCo 95

5.8 Example of the page element card ”Account Settings” (containing a simple
table) as used in MaCoCo . 97

5.9 Examples of side bar navigation generated with GUIDSL v1 99

5.10 Screenshot of a UI (SEHub) defined by Library components (Button,
TextInput, Column) . 106

5.11 Dashboard showing a card each for the Rooms Seminar Room and Guest
Room. The card content indicates if the room is occupied or not, as defined
by Listing 5.36 . 108

5.12 Grammar relations of a tagging-DSL for CD4A based on Figure 3.4 . . . 111

6.1 Transforming domain models into system models. A system modeler can
add hand-written class diagrams to the domain models. CD2GUI derives
class diagrams into GUI-models. CD2GUI can be configured with custom
templates to add type-specific GUI-model-transformations. 116

6.2 Login pages share a common design pattern, that is typically indepen-
dent from any modeled data structure (username, password and often
optionally a single sign-on interface such as google). 118

6.3 Generated Dashboard page for Person an Employee Class. 120

6.4 Class Diagram used for the examples showing a dashboard page (cf. Fig-
ure 6.3), an overview page (cf. Figure 6.5) and a details page (cf. Figure 6.6).121

6.5 CD2GUI default overview page for all Employee-Objects. 121

6.6 CD2GUI default details page an Employee-Object. Inherited attributes
(e.g. ’name’) are also listed. 123

6.7 MaCoCo screenshot showing the history function of the EIS. The infor-
mation displayed is (1): When an action was performed, (2) a Unique
event-id, and (3) a collapsable description of the action. Additionally, all
actions are searchable . 125

6.8 Visual Representation of the input Class Diagram used as web page navi-
gation. This page is defined by a combination of GUI-Model and generated
SVG File. 126

6.9 The user receives a search interface that can be used to search the entire
database. A click upon a search result navigates to the Details Page
(Section 6.2.3) of the corresponding object. The search can be toggled
to be case-sensitive and supports common features such as quoted search
terms. 127

6.10 Extension of the RTE, and Generator enables the generation of a type
independent domain-specific global search through the entire database,
that the user has access to. 128

6.12 Template nesting of templates used in CD2GUI 128

349

List of Figures

6.11 Overview on CD2GUI as an extension within the MontiGem-framework . 130

6.13 Example of inheritance . 134

6.14 Transitive Closure. Corresponding dialog is shown in Figure 6.15 136

6.15 CD2GUI tackles transitive closure with a dialog, listing all needed at-
tributes. This enables the user to define any object that is linked to the
new object in focus. There is one dialog for each outgoing association of
the new object that is currently being edited. 137

6.16 Role Based Access Control as Defined in [FCK+95, SFK+00] 138

6.17 Role Based Access Control as defined for a system configured by CD2GUI.139

6.18 Generated Role Based Access Control integrated into MontiGem archi-
tecture (cf. Figure 6.11) . 140

6.19 CD2GUI transforming CD4A models to GUI-models. CD2GUI can be
configured to use custom templates (top left) in order to systematically
modify the transformation. 148

6.20 A system modeler can use a configuration template to change the mapping
of templates from default templates to custom ones. 149

6.21 Adaptability for GUI-models . 154

6.22 Adaptability Transformation . 157

6.23 Using the tree structure to change sub-trees and alter the AST of the
GUI-model . 157

7.1 Architecture overview of MontiGem. Parsers that were generated with
MontiCore are used to convert textual models into abstract syntax. Input
AST is transformed for the abstract target implementation and finally
transformed into the target source code of the desired GPL. The generated
code is only a part of the target application, next to the RTE in both server
and client. 162

7.2 Key componentes of a MontiGem-generated application. 163

7.3 Three-tier architecture of MontiGem . 164

7.4 MontiGem generator output nested in RTE and External Libraries. DS
Generator (E) generates data management infrastructure, GUI generator
(D) creates user interfaces, both can be extended with handwritten code
such as (F),(G). The target application is segmented into front end (A),
back end (B), and database (C). 166

7.5 Class diagram defining a simple class for a person. 168

7.6 Relationships between generated components. A data can be accessed
from the front end through multiple classes: An object from the database
is accessed via a DAO, and a DTOLoader transforms the object into a
lightweight DTO. The DTO is wrapped within a command, is serialized
and sent to the client. The client receives the command and deserializes
a DTO, that can be processed and visualized by the UI. 169

350

List of Figures

7.7 Generated data class for Figure 7.5. Data class implements two interfaces
IDomainClass and IDomainObject handling generic operations like merging.170

7.8 Generated data access object PersonDAO for Figure 7.5. The DAO extends
the generic class AbstractDomainDAO, which contains multiple methods to
access the database. 171

7.9 Generated Builder PersonBuilder for Person-Class (cf. Figure 7.5). The
builder can hold the same attributes as the generated data class and pro-
vides chainable setters to set those. Before returning an instance of the
data class, it uses the generated validator to check the input. 173

7.10 Generated Builder PersonValidator for Person-Class Figure 7.5. 174
7.11 (a): Domain Class with associations. (B): DTO, not containing associa-

tions. Instances of a DTO do not contain any information about linked
objects of the corresponding domain object. (c):FullDTO, resolving di-
rect associations with unique database IDs. There is no information stored
about associations of associated objects (PersonFullDTO has no informa-
tion about ’Insurance’ object.) . 176

7.12 Sequence Diagram for the command usage in MontiGem. A command
assembled in the client is sent via the command manager to the back end.
The command is processed at the server before a response is sent to the
client. 177

7.13 Every generated command at the server follows this standardized pro-
cess: A command is executed via the doRun() method. checkContract()
evaluates the well-formedness of the received data. checkPermission()
evaluates whether the current user has permission to run this command.
doAction() contains the logic that should be executed (e.g. CRUD Op-
erations). 179

7.14 Class diagrams of View Model and Domain Model side by side. The
parameters name, shortName and email map to DomainUser, The attribute
institutName maps to Institute. 180

7.15 Not all Models are used to create the same amount of artifacts: Different
components are generated for different groups of input models. 181

7.16 Builders and Checkers are generated by separate generators components. . 183
7.17 Extending a generator (As shown in Figure 3.2) for tagged models. 184
7.18 GUI-generator producing an Angular Component and a corresponding

HTML file with two different template engines, that can be embedded in
the single page application. 188

7.19 Template structure used in the GUI-generator to synthesize Typescript
code for one website. 189

7.20 Artefacts generated by MontiGem for the class diagrams Domain.cd,
Roomdashboard.cd and the GUI models room-dashboard.componentn.gui
and main.navigation.gui. 192

351

List of Figures

7.21 Docker Containers used in a typical MontiGem setup. 196

7.22 Data structure managing the permissions in MontiGem 200

8.1 MaCoCo usage 2023. Amounts of Logins per day. Data shows a mean
value of about 200 logins each workday with a strong decline during the
weekend. 207

8.2 Agile software development method of the MaCoCo project [NGM+24] . . 210

8.3 Retrofitting MaCoCo with generated code (adapted from [DGM+21]).
Handwritten implementation is replaced stepwise with generated code and
an increasing amount of models. 211

8.4 Model driven development of MaCoCo using multiple generators to create
a web application. 213

8.5 Overview of generated pages in MaCoCo and corresponding navigation
between them (July 2022). 214

8.6 GUIDSL v1 based Account Overview Page. The page is defined using
a fully configured table component (cf. Section 5.1.3) and following the
structure of the Overview Page as provided by CD2GUI (cf. Section 6.2.2).
The corresponding model is shown in Listing A.5 215

8.7 Screenshot of the details page of a project in MaCoCo, giving an overview
of the attributes and linked employees as well as the option to modify the
project. 216

8.8 MaCoCo screenshots (MaCoCo Version 2.13.3, December 2023) 217

8.9 Excerpt of the MaCoCo data structure model. The diagram above omits
all attributes in order to increase readability. The complete CD is pre-
sented at Listing A.1 and published at [GHL+22] 219

8.10 Dashboard showing relevant information about the financial status of the
institute. Top left: Pie-Chart displaying the aggregated budget. Top
right: Aggregated finances for different types of accounts. Bottom left:
Account with more than 85% budget remaining, Bottom right: Accounts
with more than 85% of annual budget remaining. Bottom center (partially
occluded in screenshot) Accounts with negative balance. 221

8.11 Two of the account specific pages for financial management. Further pages
are: ’Bookings’, ’Job assingments’, ’Overheads’, ’Resource Allocation’ and
’Invoices’ . 222

8.12 (MaCoCo Screenshot) Page showing the adapted filtering (Collapsible ele-
ment in the header of the table) and batch processing of multiple bookings
at the same time. Multiple lines can be marked and edited via the context
menu. 224

8.13 Class Diagram for Staff management within MaCoCo. The complete CD
is presented at Listing A.1 and published at [GHL+22] 225

352

List of Figures

8.14 Table in MaCoCo showing a mapping between users and projects for each
month and their respective coverage of funding. 227

8.15 Two of the employee-specific pages for staff management. Further pages
are: ’Overview’ and ’Bookings’ . 228

8.16 Screenshot of a Time sheet as implemented in MaCoCo. The time sheet
indicates, what time was spent on which project. It indicates the work
time, break time, and required time. In addition, time absent (e.g. busi-
ness trips) and holidays are visualized. Although being a complex table,
it still provides all default component features such as search and filtering. 229

8.17 Example for loading depth applicable in generated lazy loading strategy . 232
8.18 Example of a balance boxes as used in MaCoCo 233

9.1 GUI provided by CD2GUI with MontiGem-framework for the ADD
project showing the details page of a ’PitchConfiguration’ object with
ID 22. Next to the name and the description of the component, linked
safety systems and available safety systems are shown. 236

9.2 GUI provided by MontiGem-framework for the Invidas project showing a
user interface for user data entry . 238

9.3 Emlpoyee monitoring tracked tools with the MontiGem user interface.
The image shows a still frame from Ford press release: www.youtube.com/
watch?v=ODuvZ6AahzI (accessed 1.12.2023) 240

9.4 basic A12 architecture . 242
9.5 Basic MontiGem Architecture in comparison 243
9.6 A web store for tea developed with both A12 and MontiGem. 244
9.7 Fenix architecture: User Interface (GUI) Generator and Data structure

(DS) generator primarily producing Java and transpiling to TypeScript
later . 246

9.8 Pages generated with CD2GUI for the MontiGem 3-Framework 247

10.1 Architecture of MontiDEx by Roth [Rot17] 257

11.1 Toolchain Overview: Transforming Natural Language into a model, into
models that define an applicaiton and finally into a target system 263

C.1 Finance Dashboard showing charts, filtered tables and key performance
indicators (cf. CD2GUI Section 6.2.1) . 343

C.2 Overview page showing all bank accounts within the system (cf. CD2GUI
Section 6.2.2) . 344

C.3 Detailed Staff page (cf. CD2GUI Section 6.2.3) 345
C.4 Detailed Project page (cf. CD2GUI Section 6.2.3) 346

353

www.youtube.com/watch?v=ODuvZ6AahzI
www.youtube.com/watch?v=ODuvZ6AahzI

Listings

3.1 Basic structure of a CD4A model . 34
3.2 Class definitions within a CD4A model. The classes can be abstract and

extend each other. Interfaces can be implemented. 34
3.3 Interface definition within a CD4A model as shown in Figure 3.3 34
3.4 An example using interfaces to define shapes: Interface extending other

interfaces within a CD4A model . 35
3.5 Deinition of the Degree enumeration as shown in Figure 3.3 35
3.6 Definitions of the classes University and Professor with their attributes

as shown in Figure 3.3 . 36
3.7 Definitions several generic types within CD4A. 36
3.8 Definitions of associations as shown in Figure 3.3 37
3.9 Definitions of associations as shown in Figure 3.3 37
3.10 MontiCore grammar of for the common TagSchema [Loo17b], show-

ing the four common TagTypes: SimpleTagType, ValuedTagType.
EnumeratedTagType and ComplexTagType. 40

3.11 The MontiCore Grammar LTAG
Common [Loo17b] defining common features of

a tag. 41

4.1 Example of a simple class diagram defined in CD4A 46

5.1 Simple Example of a GUI-model, defining a simple Web page with a title
card and a button. The results are shown in Figure 5.1 82

5.2 Production for ’Page’ within GUIDSLCore 84
5.3 Page settings within GUIDSLCore . 84
5.4 Page input definition within GUIDSLCore 85
5.5 Exerpt from GUIDSLCharts definig a PieChart Page element. The pie

chart is filled with data from ’MyClass’ objects. 86
5.6 Example of a GUI model displaying a pie chart 86
5.7 Exerpt from GUIDSLCharts definig a bar chart page element. 87
5.8 Excerpt from GUIDSLTable defining a data table page element. 88
5.9 Excerpt from GUIDSLTable defining method productions of a data table

page element. 89
5.10 Excerpt from GUIDSLTable definig a condition productions of a data

table page element. 90

355

Listings

5.11 Excerpt from GUIDSLTable defining the content productions of a data
table page element. 91

5.12 Excerpt from GUIDSLTable defining the column productions of a data
table page element. 91

5.13 GUI model defining a data table. The table starts with the keyword
datatable, has one method, defining the method that is called upon a
click on a row. Next, conditions of the table are defined, making the
entries clickable (viewable) and deletable finally, the rows are defined by
configuring three columns. 92

5.14 Excerpt of the grammar GUIDSLInOut defining an info sign page element 94
5.15 Example of a GUIDSL v1 model defining the info sign page element shown

in Figure 5.6 . 94
5.16 Excerpt of the grammar GUIDSLInOut defining an button page element . 95
5.17 Excerpt of an GUIDSL v1 model defining an button shown in Figure 5.7 . 95
5.18 Excerpt of the grammar GUIDSLLayout defining an card page element . 96
5.19 Excerpt of a model defining an card page element 96
5.20 Excerpt of the grammar GUIDSLNavigation defining a Navigation. A

Navigation consists of a list of Navigation Items (NavigationItemArray),
each NavigationItem can contain a link (NavigationItemLink) a text to
display (NavigationItemLabel), an Icon (NavigationItemIcon), further
Navigation Items (NavigationItemChildren), and my own conditional
(NavigationItemCondition) . 98

5.21 Excerpt of the GUI model that defines Navigation shown in Figure 5.10 . 98
5.22 Basic GUI-model structure. Each model has a package, can define imports

and defines a page or a component. 101
5.23 Simplified GUIDSL grammar . 102
5.24 GUIComponent definition within GUIDSL v2 grammar 103
5.25 Usage of a GUI component in GUIDSL v2 103
5.26 Definition of a GUI guard expression in GUIDSL v2 grammar 104
5.27 Usage of a GUI guard expression in GUIDSL v2 104
5.28 Definition of a GUI iterate expression in GUIDSL v2 grammar 105
5.29 Example of the iterate, iteratively instantiating a text component in a

GUI, and thus creating a list of rooms. 105
5.30 Button GUI component definition . 106
5.31 Usage of the Button component in a GUI model 106
5.32 TextInput GUI component definition . 107
5.33 Usage of the TextInput component in a GUI model 107
5.34 Column GUI Component Definition . 108
5.35 Usage of the Column component in a GUI model 108
5.36 GUIDSL v2 model defining a simple dashboard showing cards that indi-

cate if a room is occupied or not. 109

356

Listings

5.37 Definition of the RoomInfo component . 110

5.38 Definition of the Card component . 110

5.39 Tag schema for HumanName as used in MontiGem 112

5.40 Tagschema for DBTags, defining additional database configurations as used
in MontiGem . 112

5.41 Example of a simple class. For corresponding class Diagram cf. Figure 7.5 113

5.42 Tags for the class in Listing 5.41, defining names for the attributes of the
class that can be used in user interfaces. 113

6.1 Basic structure of a Freemarker template to create a GUI model in
GUIDSL v2 for a details page. 132

6.2 Corresponding section of the GUI-model for Listing 6.1 132

6.3 Template defining a list of attributes (Listing 6.1 Line 7) 133

6.4 Used tagschema for access control. The used tag definition consists of two
inner tag types: flag and operation . 141

6.5 Tagtype Flag . 142

6.6 Definition Operation Tag. 142

6.7 Tagging the Employee with Operation Tag. The depicted version is the
verbose variant. The current implementation uses the shortened variant
cf. Listing 6.9. 142

6.8 Verbose definition of an Operation Tag . 142

6.9 Tagshema for shorter permission definition. 143

6.10 Complex tag type used in current architecture, grouping multiple permis-
sion options within one tag. 143

6.11 Tag defining what Role is needed with which rights to access an Employee
Object: A user needs the ’HR-Assistant’ Role to either read or update an
Employee object. 143

6.12 GUI-model using ifPermission to define an RBAC-constrained user in-
terface. 144

6.13 Excerpt from the tagschema used to specify how data should be generated
for a given class diagram. 146

6.14 Tags for the ’name’ attribute of the ’Person’ class, setting up a random
creation of a name-surname combination based on two name lists. 146

6.15 Calling a template from within another template using the template man-
ager. 150

6.16 Configuration Template provided to CD2GUI, replacing a template. . . . 150

6.17 The GUIDSL grammar additions . 155

6.18 An example base model in GUI-DSLv2. 155

6.19 An example of a adaptation model for Listing 6.18 156

6.20 Resulting product model based on Listing 6.18 and Listing 6.19 156

6.21 Base model defining two GUI Components 158

357

Listings

6.22 Attempt to replace a component after it was removed. 158

6.23 Replacing component c1 with c3 . 158

6.24 Replacing component c1 with c2 . 158

7.1 Usage of PersonBuilder to create new Person object 173

7.2 Example of an OCL constraint limiting the length of the name attribute
of a person to 50 characters. 174

7.3 Generated validation method for an attribute, without additional valida-
tion defined by an OCL-Model. 174

7.4 Generated DTO-loader method for Person-Class defined in Domain Model
(cf. Figure 7.5). loadDTO will throw an error in case there is no Ob-
ject persisted for the given ID. There are further generated methods
such as findAndLoad() that can handle missing data and will return
Optional.empty(). 176

7.5 Example of an OCL model for the age attribute of Figure 7.7. The Model
contains next to the Constraint itself (Line 3) also Error messages (line
4,5) to display on the User Interface or in Error Logs. 182

7.6 Generated if-clause implementing the constraint check in the back end.
The method returns a message that provides further information to the
user (’Age is not correct ’) on the specific violation and can be sent to the
front end, together with other error messages. 183

7.7 Generated if-clause implementing the constraint check in the front end. . 183

7.8 DBTags.tagshema: Tagschema defining what symbols in the class diagram
can be tagged with which tags to configure database behavior. 185

7.9 HumanTags.tagshema: Tagschema defining what symbols in the class dia-
gram can be tagged with which tags to add another designation. 185

7.10 Example for tags that improve the readability of specific attributes for the
end user. Putting a generic startDate into a Project context and writing
out abbreviations. 186

7.11 Core template used in the GUI-generator that defines the basic structure
of a TypeScript class: Class.ftl(Figure 7.19) 189

7.12 Core template used in the GUI-generator that defines the base of a HTML
File. 190

8.1 Excerpt of the grammar GUIDSLMacoco defining a balance box page
element . 233

8.2 Excerpt of a GUIDSL v1 model defining the balance box page element
shown in Figure 8.18 . 233

A.1 Domain Model of MaCoCo . 291

A.2 Domain Model of Invidas . 317

358

Listings

A.3 Template defining the details page . 325
A.4 Freemarker Template for Overview Page 326
A.5 GUI-DSL v1 Model for an Overview page in MaCoCo 327
A.6 Overview Page in GUIDSL v2 syntax . 331
A.7 Elevator MontiArc Model . 332
A.8 BumperBot MontiArc Model . 333
A.9 Example Input for MontiCore sequence diagram syntax. 333
A.10 Example Input for MontiCore sequence diagram syntax. 334
A.11 Example Input for MontiCore sequence diagram syntax. 335
A.12 Example Input for MontiCore sequence diagram syntax. 335
A.13 Example Input for MontiCore feature diagram syntax. 336
A.14 Example Input for MontiCore feature diagram syntax. 336
A.15 Example Input for MontiCore feature diagram syntax. 336
A.16 Example Input for MontiCore feature diagram syntax. 337
A.17 CD4A model defining a class, but leaving out brackets 338
A.18 CD4A class diagram not starting with the keyword ’classdiagram’. 338
A.19 CD4A class diagram using bad notation to denote an association. 339
A.20 CD4A class diagram defining two attributes with the same name (’player’).339

359

List of Tables

1.1 Technology readiness levels (TRLs) as defined by NASA [Com14] 8

1.2 Technology Readiness Levels (TRLs) [HJ16] 9

1.3 Technology readiness level mapping for building blocks and tools, in the
December 2023 assessment. 10

4.1 Existing Large Language Models [FGH+23] 45

4.2 Different input lengths of selected models 48

4.3 Different input lengths of selected models 53

4.4 Rate of syntactically valid models of different use cases evaluated over N
iterations . 57

4.5 Rate of syntactically valid models generated for the same task (Creating a
CD4A model) using different contexts, evaluated over N iterations. Sim-
ilarity is based on the pairwise average cosine similarity of all generated
models. 58

4.6 Success rate of different use cases evaluated of N iterations. The Cosine
Similarity of models increases with more restrictive use-case descriptions.
’Ping Pong game’ and ’Simple User Interface’ are used as task descriptions
’as-is’. ’Exam Task’ is presented in detail in the Appendix at Section A.4.4. 60

4.7 Returning parser feedback to GPT did not lead to valid models. The
process was iterated until either a valid model was produced or the system
stuck in a loop losing the model (cf. Figure 4.11). There is a high tendency
that further errors were introduced into a invalid model. 66

4.8 Percentage of erroneous feature diagrams, produced with our approach
with both 1-Shot and 2-Shot learning. A feature diagram is erroneous if
the parser detects a syntactical error. We do not cover semantic errors in
this table.GPT-3.5 denotes gpt-3.5-turbo-0613, GPT4 denotes gpt-4-0613. 72

4.9 Percentage of invalid sequence diagrams, produced with our approach with
both 1-Shot and 2-Shot learning. As the creation MontiCore sequence
diagrams is especially susceptible to overtraining (cf. Section 4.3.4), addi-
tional fine-tuning was used to avoid PlantUML syntax. GPT-3.5 denotes
gpt-3.5-turbo-0613, GPT4 denotes gpt-4-0613. 74

361

List of Tables

4.10 Percentage of invalid models produced with LLMs. GPT-3.5 denotes gpt-
3.5-turbo-0613, GPT4 denotes gpt-4-0613.(a) denotes the example arti-
fact ”bumperbot” (cf. Listing A.8) and (b) the ”elevator” example (cf.
Listing A.7) . 75

4.11 Grading schema used for semantic analysis. 77
4.12 Average points scored (cf. Table 4.11) per requirement for the temperature

settings t = {0, 0.2, 0.4, 0.6, 0.8, 1}, whereby the results are rounded to two
decimal places. 77

6.1 Primary templates used to generate an information system using GUI-
DSL v2. In comparison to the approach used with GUI-DSLv1 (cf. Ta-
ble 6.2), the templates are divided in further segments in order to ease
the use of template replacement (cf. Section 6.6.1). 129

6.2 Templates used to generate an information system using GUI-DSL v1.
As GUIDSL v2 supports the nesting of models, we are also able to nest
templates to a higher degree. 131

6.3 Supported class diagram elements by CD2GUI. 1: Only Lists and Op-
tionals are supported, not Generics in general. 159

6.4 List of stereotypes available in CD2GUI, adjusting what elements are
shown in the UI. 159

8.1 Lines of Code of MaCoCo in Different Programming Languages 206

9.1 Average results for all aspects of the user study (Higher is better). Ten
users were provided with both implementations of the application. 245

B.1 Explanation of the used tags in listings and figures. 341
B.2 Explanation of the used stereotypes in listings and tags. 341

362

Glossary

AST An Abstract Syntax Tree is a tree-like data structure representing the hierarchical
structure of source code or a model, capturing its syntax and semantics while
abstracting away from the specific textual representation. 30, 32, 162, 184, 185,
187–189

BPMN Business Process Model and Notation 60

CD Class Diagram xiv, 43, 53, 56, 60, 62, 67, 125, 161, 219, 225, 348, 352

CD2GUI Class Diagram to GUI Model transformer. A tool developed to enable rapid
prototyping of data-centric information systems (c.f. Chapter 6). vii, ix, xiii, 10,
15, 19–25, 115, 116, 118, 121, 123, 127, 128, 130, 133–141, 143, 146–152, 159,
161, 208, 215, 235–237, 246, 247, 249, 258, 261, 262, 265–267, 270, 291, 324, 331,
343–347, 349, 350, 352, 353, 357, 362

CD4A Class Diagram for Analysis xiv, 15, 21, 33–38, 43, 44, 46, 50, 53–58, 60, 64, 67,
80, 100, 111, 112, 135, 137, 140, 148, 183, 184, 206, 230, 239, 244, 256–258, 264,
265, 291, 347–350, 355, 361

ChatGPT ChatGPT is an advanced language model developed by OpenAI, based on
the GPT architecture, designed to generate human-like text and engage in con-
versations by understanding context, providing relevant information, and offering
creative responses, enabling a wide range of applications in areas such as customer
support, content creation, and virtual assistance. 55, 61, 64, 65, 67, 68, 70

CRUD Create, Read, Update, Delete: The four primary access operations for data. 139

DAO A Data Access Object is a design pattern that abstracts and encapsulates data
access and storage operations, providing a consistent interface for interacting with
different data sources, such as databases or APIs 124–126, 167, 171, 172, 175, 179,
193–195, 351

domain expert The Domain Expert, also known as Subject Matter Expert, is a person
that has expert knowledge of a specific domain e.g.: A watchmaker is a domain
expert on watches. 4, 5, 8, 10, 13, 19–21, 24, 25, 44, 52, 53, 64, 208, 210, 250, 255,
348

363

Glossary

DSL A Domain Specific Language is a specialized programming language tailored to a
particular application domain, designed to simplify tasks, improve expressiveness,
and enhance productivity within that specific context. 4, 5, 7, 12, 23, 30, 33, 37,
43, 44, 46, 54, 55, 58, 60, 62, 68, 70, 71, 74, 80–82, 100, 111, 184, 211, 230, 234,
237, 241, 250, 251, 256–258, 262, 265, 268, 269, 349

DTO A Data Transfer Object is a lightweight, serializable object used to encapsulate
and transfer data between different layers or components of a software system 167,
175, 176, 178–180, 195, 206, 351, 358

EIS An Enterprise Information System is a software solution that manages, integrates,
and processes an organization’s data, facilitating decision-making, communication,
and collaboration across various business functions and departments. 124, 125, 194,
349

GUI Graphical User Interface 236, 238, 242, 353

GUIDSL DSL for Graphical User Interfaces xiv, 15, 17, 22, 43, 76, 79–83, 85, 87, 93–95,
97, 99–105, 107, 109, 119, 121, 122, 130–132, 143, 152–155, 187, 206, 211, 215, 220,
232–234, 237, 242, 244, 257, 258, 261, 264, 266, 268, 291, 324, 327, 331, 348, 349,
352, 356–359, 362

HTML Hypertex Markup Language 80, 190, 204, 358

Information System A Data-Centric Information System is a type of information system
primarily focused on the collection, storage, processing, and management of data
as its central asset. In this system, data is treated as a core resource around which
applications, processes, and services are built. The emphasis is on ensuring data
integrity, availability, and accessibility, often utilizing a centralized database or
data repository to support decision-making and operational tasks. 5

LCDP Low Code Development Platform: A software framework that allows rapid ap-
plication development with minimal hand-coding, enabling non-technical users to
create applications through visual interfaces or tooling instead of traditional pro-
gramming methods. xvi, 2, 235, 241, 242, 251–254

LLM A Large Language Model is a type of artificial intelligence model that uses deep
learning techniques to understand natural language, generate human-like text, and
perform a range of language-related tasks, such as language translation, question-
answering, and text summarization. xiv, 2, 5, 7, 21, 24, 43–46, 48, 49, 51–55, 57,
58, 61, 62, 64, 65, 67–71, 73–77, 145, 250, 251, 254, 255, 262, 265, 270, 347, 362

364

Glossary

LLM4CD Large Language Model Based Transformation to Class Diagram. A trans-
former that converts natural language based informal specifications into CD4A
class diagrams (c.f. ??). ix, xiii, 10, 15, 19–21, 25, 26, 70, 127, 161, 208, 237, 249,
250, 261, 262, 265, 270, 291, 347

MaCoCo Management Cockpit for Controlling, is a software solution that provides an
integrated, model-driven approach to manage, monitor, and control complex orga-
nizational processes and systems, enabling efficient decision-making and evaluation.
ix, xvi, xvii, 1, 2, 7, 10, 16, 17, 24, 50, 81, 82, 87, 88, 93, 95, 97, 99, 121, 125, 138,
163, 180, 195, 205–220, 223–227, 229–234, 238, 249, 256, 259, 260, 262, 264, 269,
291, 331, 343, 347–349, 352, 353, 359, 362

MDE Model-Driven Engineering is a software development approach that emphasizes
the use of models, abstractions, and automated tools to design, analyze, and gen-
erate software systems 251

MDSE Model-Driven Software Engineering: An approach to software development that
emphasizes the use of models and automated tools to facilitate the design, analysis,
and generation of software systems. xiv, 38, 43, 71, 73, 75, 77, 234

MontiCore MontiCore is a language workbench that enables the development of domain-
specific languages (DSLs) and supports model-driven engineering (MDE) through
the creation, composition, and processing of textual models, facilitating code gen-
eration and analysis in a modular and extensible framework. xiii, xiv, xvii, 10, 15,
27, 29–33, 38, 43, 51, 54, 60, 64, 66, 71, 73, 74, 81, 82, 102, 149, 156, 162, 184, 203,
249, 251, 255–257, 291, 334–337, 347, 348, 350, 359, 361

MontiGem MontiCore based Generator for Enterprise Management is a comprehensive,
model-driven software engineering framework designed to facilitate the develop-
ment, integration, and maintenance of enterprise management applications through
the use of domain-specific languages, model transformations, and automated code
generation. vii, ix, xiii, xv, xvi, 10, 16, 17, 19, 20, 23, 25, 28, 38, 81, 99, 112, 127,
130, 140, 161–168, 170–180, 182–188, 190–206, 211–214, 217, 230, 231, 233–245,
249, 254, 256, 258, 261, 262, 264, 267–269, 291, 350–353, 357

NCDP No-Code Development Platform 253

OCL Object Contraint Language 23, 181, 231, 256

RBAC Role Based Access Control: See Section 6.5.1 124, 138–141, 143, 144, 151, 357

365

Glossary

root class diagram Within this Work the class Diagram used to derive further gui-
models and class diagrams. It is the central artifact used to generate a web appli-
cation. 21, 23, 120, 123, 124, 128, 140, 150, 151, 167, 210, 234, 265

RTE Run-Time Environment 167, 202

SQL Structured Query Language 80

TRL Technology Readiness Levels (TRLs) are a scale used to assess the maturity of
evolving technologies, ranging from initial concept (TRL 1) to fully operational
and tested systems (TRL 9). 8, 9, 198, 205, 270

UMLP Unified Modeling Language (UML) is a standardized, general-purpose visual
modeling language used in software engineering to represent, analyze, and doc-
ument the structure, behavior, and interactions of software systems, providing a
common notation and set of diagrams that facilitate communication, collaboration,
and understanding among developers, analysts, and stakeholders. 70, 183, 250

366

Related Interesting Work from the SE Group, RWTH Aachen

Related Interesting Work from the SE Group, RWTH Aachen

The following section gives an overview of related work done at the SE Group, RWTH Aachen.
More details can be found on the website www.se-rwth.de/topics/ or in [HMR+19]. The work
presented here mainly has been guided by our mission statement:
Our mission is to define, improve, and industrially apply techniques, concepts, and methods for
innovative and efficient development of software and software-intensive systems, such that high-
quality products can be developed in a shorter period of time and with flexible integration of
changing requirements. Furthermore, we demonstrate the applicability of our results in various
domains and potentially refine these results in a domain specific form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04c]: “Using an
executable, yet abstract and multi-view modeling language for modeling, designing and pro-
gramming still allows to use an agile development process.”, [JWCR18] addresses the question of
how digital and organizational techniques help to cope with the physical distance of developers
and [RRSW17] addresses how to teach agile modeling.
Modeling will increasingly be used in development projects if the benefits become evident early,
e.g with executable UML [Rum02] and tests [Rum03]. In [GKR+06], for example, we concentrate
on the integration of models and ordinary programming code. In [Rum11, Rum12] and [Rum16,
Rum17], the UML/P, a variant of the UML especially designed for programming, refactoring,
and evolution is defined.
The language workbench MontiCore [GKR+06, GKR+08, HKR21] is used to realize the UML/P
[Sch12]. Links to further research, e.g., include a general discussion of how to manage and
evolve models [LRSS10], a precise definition for model composition as well as model languages
[HKR+09], and refactoring in various modeling and programming languages [PR03]. To better
understand the effect of an agile evolving design, we discuss the need for semantic differencing
in [MRR10].
In [FHR08] we describe a set of general requirements for model quality. Finally, [KRV06] discusses
the additional roles and activities necessary in a DSL-based software development project. In
[CEG+14] we discuss how to improve the reliability of adaptivity through models at runtime,
which will allow developers to delay design decisions to runtime adaptation. In [KMA+16] we
have also introduced a classification of ways to reuse modeled software components.

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time consuming
process. Managing the complexity, the size, and the number of artifacts developed and used
during a project together with their complex relationships is not trivial [BGRW17].
To keep track of relevant structures, artifacts, and their relations in order to be able, e.g., to
evolve or adapt models and their implementing code, the artifact model [GHR17, Gre19] was
introduced. [BGRW18] and [HJK+21] explain its applicability in systems engineering based on
MDSE projects and [BHR+18] applies a variant of the artifact model to evolutionary develop-
ment, especially for CPS.
An artifact model is a meta-data structure that explains which kinds of artifacts, namely code

367

Related Interesting Work from the SE Group, RWTH Aachen

files, models, requirements files, etc. exist and how these artifacts are related to each other.
The artifact model, therefore, covers the wide range of human activities during the development
down to fully automated, repeatable build scripts. The artifact model can be used to optimize
parallelization during the development and building, but also to identify deviations of the real
architecture and dependencies from the desired, idealistic architecture, for cost estimations, for
requirements and bug tracing, etc. Results can be measured using metrics or visualized as graphs.

Artificial Intelligence in Software Engineering

MontiAnna is a family of explicit domain specific languages for the concise description of the
architecture of (1) a neural network, (2) its training, and (3) the training data [KNP+19].
We have developed a compositional technique to integrate neural networks into larger software
architectures [KRRW17] as standardized machine learning components [KPRS19]. This enables
the compiler to support the systems engineer by automating the lifecycle of such components
including multiple learning approaches such as supervised learning, reinforcement learning, or
generative adversarial networks.
For analysis of MLOps in an agile development, a software 2.0 artifact model distinguishing
different kinds of artifacts is given in [AKK+21].
According to [MRR11g] the semantic difference between two models are the elements contained
in the semantics of the one model that are not elements in the semantics of the other model.
A smart semantic differencing operator is an automatic procedure for computing diff witnesses
for two given models. Such operators have been defined for Activity Diagrams [MRR11d], Class
Diagrams [MRR11b], Feature Models [DKMR19], Statecharts [DEKR19], and Message-Driven
Component and Connector Architectures [BKRW17, BKRW19]. We also developed a modeling
language-independent method for determining syntactic changes that are responsible for the
existence of semantic differences [KR18a].
We apply logic, knowledge representation, and intelligent reasoning to software engineering to
perform correctness proofs, execute symbolic tests, or find counterexamples using a theorem
prover. We have defined a core theory in [BKR+20], which is based on the core concepts of Broy’s
Focus theory [RR11, BR07], and applied it to challenges in intelligent flight control systems and
assistance systems for air or road traffic management [KRRS19, KMP+21, HRR12].
Intelligent testing strategies have been applied to automotive software engineering [EJK+19,
DGH+19, KMS+18], or more generally in systems engineering [DGH+18]. These methods are
realized for a variant of SysML Activity Diagrams (ADs) and Statecharts.
Machine Learning has been applied to the massive amount of observable data in energy man-
agement for buildings [FLP+11, KLPR12] and city quarters [GLPR15] to optimize operational
efficiency and prevent unneeded CO2 emissions or reduce costs. This creates a structural and
behavioral system theoretical view on cyber-physical systems understandable as essential parts
of digital twins [RW18, BDH+20].

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound
derivate of the UML designed for product and test code generation. [Sch12] describes a flexible
generator for the UML/P, [Hab16] for MontiArc is used in domains such as cars or robotics
[HRR12], and [AMN+20a] for enterprise information systems based on the MontiCore language

368

Related Interesting Work from the SE Group, RWTH Aachen

workbench [KRV10, GKR+06, GKR+08, HKR21].
In [KRV06], we discuss additional roles necessary in a model-based software development project.
[GKR+06, GHK+15, GHK+15a] discuss mechanisms to keep generated and handwritten code
separated. In [Wei12, HRW15, Hoe18], we demonstrate how to systematically derive a trans-
formation language in concrete syntax and, e.g., in [HHR+15, AHRW17] we have applied this
technique successfully for several UML sub-languages and DSLs.
[HNRW16] presents how to generate extensible and statically type-safe visitors. In [NRR16],
we propose the use of symbols for ensuring the validity of generated source code. [GMR+16]
discusses product lines of template-based code generators. We also developed an approach for
engineering reusable language components [HLN+15, HLN+15a].
To understand the implications of executability for UML, we discuss the needs and the advantages
of executable modeling with UML in agile projects in [Rum04c], how to apply UML for testing
in [Rum03], and the advantages and perils of using modeling languages for programming in
[Rum02].

Unified Modeling Language (UML) & the UML-P Tool

Starting with the early identification of challenges for the standardization of the UML in [KER99]
many of our contributions build on the UML/P variant, which is described in the books [Rum16,
Rum17] and is implemented in [Sch12].
Semantic variation points of the UML are discussed in [GR11]. We discuss formal semantics for
UML [BHP+98] and describe UML semantics using the “System Model” [BCGR09], [BCGR09a],
[BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied to define class
diagram semantics [CGR08]. A precisely defined semantics for variations is applied when checking
variants of class diagrams [MRR11e] and object diagrams [MRR11c] or the consistency of both
kinds of diagrams [MRR11f]. We also apply these concepts to activity diagrams [MRR11a] which
allows us to check for semantic differences in activity diagrams [MRR11d]. The basic semantics
for ADs and their semantic variation points are given in [GRR10].
We also discuss how to ensure and identify model quality [FHR08], how models, views, and the
system under development correlate to each other [BGH+98b], and how to use modeling in agile
development projects [Rum04c], [Rum03] and [Rum02].
The question of how to adapt and extend the UML is discussed in [PFR02] describing product
line annotations for UML and more general discussions and insights on how to use meta-modeling
for defining and adapting the UML are included in [EFLR99a], [FEL+98] and [SRVK10].
The UML-P tool was conceptually defined in [Rum16, Rum17, Rum12, Rum11], got the first
realization in [Sch12], and is extended in various ways, such as logically or physically distributed
computation [BKRW17a]. Based on a detailed examination [JPR+22], insights are also trans-
ferred to the SysML 2.

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use than
general-purpose programming languages but need appropriate tooling. The MontiCore language
workbench [GKR+06, KRV10, Kra10, GKR+08, HKR21] allows the specification of an integrated
abstract and concrete syntax format [KRV07b, HKR21] for easy development. New languages
and tools can be defined in modular forms [KRV08, GKR+07, Voe11, HLN+15, HLN+15a,

369

Related Interesting Work from the SE Group, RWTH Aachen

HRW18, BEK+18b, BEK+19, Sch12] and can, thus, easily be reused. We discuss the roles in
software development using domain specific languages already in [KRV06] and elaborate on the
engineering aspect of DSL development in [CFJ+16].
[Wei12, HRW15, Hoe18] present an approach that allows the creation of transformation rules
tailored to an underlying DSL. Variability in DSL definitions has been examined in [GR11,
GMR+16]. [BDL+18] presents a method to derive internal DSLs from grammars. In [BJRW18],
we discuss the translation from grammars to accurate metamodels. Successful applications have
been carried out in the Air Traffic Management [ZPK+11] and television [DHH+20] domains.
Based on the concepts described above, meta modeling, model analyses, and model evolution
have been discussed in [LRSS10] and [SRVK10]. [BJRW18] describes a mapping bridge between
both. DSL quality in [FHR08], instructions for defining views [GHK+07] and [PFR02], guidelines
to define DSLs [KKP+09], and Eclipse-based tooling for DSLs [KRV07a] complete the collection.
A broader discussion on the global integration of DSMLs is given in [CBCR15] as part of
[CCF+15a], and [TAB+21] discusses the compositionality of analysis techniques for models.
The MontiCore language workbench has been successfully applied to a larger number of domains,
resulting in a variety of languages documented, e.g., in [AHRW17, BEH+20, BHR+21, BPR+20,
HHR+15, HJRW20, HMR+19, HRR12, PBI+16, RRW15] and Ph.D. theses like [Ber10, Gre19,
Hab16, Her19, Kus21, Loo17, Pin14, Plo18, Rei16, Rot17, Sch12, Wor16].

Software Language Engineering

For a systematic definition of languages using a composition of reusable and adaptable language
components, we adopt an engineering viewpoint on these techniques. General ideas on how to
engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15a]. As said, the
MontiCore language workbench provides techniques for an integrated definition of languages
[KRV07b, Kra10, KRV10, HR17, HKR21, HRW18, BPR+20, BEK+19].
In [SRVK10] we discuss the possibilities and the challenges of using metamodels for language def-
inition. Modular composition, however, is a core concept to reuse language components like in
MontiCore for the frontend [Voe11, Naz17, KRV08, HLN+15, HLN+15a, HNRW16, HKR21,
BEK+18b, BEK+19] and the backend [RRRW15b, NRR16, GMR+16, HKR21, BEK+18b,
BBC+18]. In [GHK+15, GHK+15a], we discuss the integration of handwritten and generated
object-oriented code. [KRV10] describes the roles in software development using domain specific
languages.
Language derivation is to our belief a promising technique to develop new languages for a specific
purpose, e.g., model transformation, that relies on existing basic languages [HRW18].
How to automatically derive such a transformation language using a concrete syntax of the base
language is described in [HRW15, Wei12] and successfully applied to various DSLs.
We also applied the language derivation technique to tagging languages that decorate a base lan-
guage [GLRR15] and delta languages [HHK+15, HHK+13] that are derived from base languages
to be able to constructively describe differences between model variants usable to build feature
sets.
The derivation of internal DSLs from grammars is discussed in [BDL+18] and a translation of
grammars to accurate metamodels in [BJRW18].

370

Related Interesting Work from the SE Group, RWTH Aachen

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals,
streams of telephone or video data, method invocation, or data structures passed between soft-
ware services.
We use streams, statemachines, and components [BR07] as well as expressive forms of com-
position and refinement [PR99, RW18] for semantics. Furthermore, we built a concrete tooling
infrastructure called MontiArc [HRR10, HRR12] for architecture design and extensions for states
[RRW13c, BKRW17a, RRW14a, Wor16]. In [RRW13], we introduce a code generation framework
for MontiArc. [RRRW15b] describes how the language is composed of individual sublanguages.
MontiArc was extended to describe variability [HRR+11] using deltas [HRRS11, HKR+11] and
evolution on deltas [HRRS12]. Other extensions are concerned with modeling cloud architec-
tures [PR13], security in [HHR+15], and the robotics domain [AHRW17, AHRW17b]. Extension
mechanisms for MontiArc are generally discussed in [BHH+17].
[GHK+07] and [GHK+08] close the gap between the requirements and the logical architecture
and [GKPR08] extends it to model variants.
[MRR14b] provides a precise technique for verifying the consistency of architectural views [Rin14,
MRR13] against a complete architecture to increase reusability. We discuss the synthesis problem
for these views in [MRR14a]. An experience report [MRRW16] and a methodological embedding
[DGH+19] complete the core approach.
Extensions for co-evolution of architecture are discussed in [MMR10], for powerful analyses of
software architecture behavior evolution provided in [BKRW19], techniques for understanding
semantic differences presented in [BKRW17], and modeling techniques to describe dynamic ar-
chitectures shown in [HRR98, HKR+16, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09, TAB+21] motivate the basic mechanisms for modularity and compositionality for
modeling. The mechanisms for distributed systems are shown in [BR07, RW18] and algebraically
grounded in [HKR+07]. Semantic and methodical aspects of model composition [KRV08] led to
the language workbench MontiCore [KRV10, HKR21] that can even be used to develop mod-
eling tools in a compositional form [HKR21, HLN+15, HLN+15a, HNRW16, NRR16, HRW18,
BEK+18b, BEK+19, BPR+20, KRV07b]. A set of DSL design guidelines incorporates reuse
through this form of composition [KKP+09].
[Voe11] examines the composition of context conditions respectively the underlying infrastructure
of the symbol table. Modular editor generation is discussed in [KRV07a]. [RRRW15b] applies
compositionality to robotics control.
[CBCR15] (published in [CCF+15a]) summarizes our approach to composition and remaining
challenges in form of a conceptual model of the “globalized” use of DSLs. As a new form of
decomposition of model information, we have developed the concept of tagging languages in
[GLRR15, MRRW16]. It allows the description of additional information for model elements in
separated documents, facilitates reuse, and allows typing tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision, and
detailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by

371

Related Interesting Work from the SE Group, RWTH Aachen

using mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96, RK96]. An extended
version especially suited for the UML is given in [GRR09], [BCGR09a] and in [BCGR09] its
rationale is discussed. [BCR07a, BCR07b] contain detailed versions that are applied to class
diagrams in [CGR08] or sequence diagrams in [BGH+98a].
To better understand the effect of an evolved design, detection of semantic differencing, as op-
posed to pure syntactical differences, is needed [MRR10]. [MRR11d, MRR11a] encode a part of
the semantics to handle semantic differences of activity diagrams. [MRR11f, MRR11f] compare
class and object diagrams with regard to their semantics. And [BKRW17] compares component
and connector architectures similar to SysML’ block definition diagrams.
In [BR07, RR11], a precise mathematical model for distributed systems based on black-box
behaviors of components is defined and accompanied by automata in [Rum96]. Meta-modeling
semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages for the
description of exemplary object interaction, today called sequence diagram. [BGH+98b] discusses
the relationships between a system, a view, and a complete model in the context of the UML.
[GR11] and [CGR09] discuss general requirements for a framework to describe semantic and
syntactic variations of a modeling language. We apply these to class and object diagrams in
[MRR11f] as well as activity diagrams in [GRR10].
[Rum12] defines the semantics in a variety of code and test case generation, refactoring, and evo-
lution techniques. [LRSS10] discusses the evolution and related issues in greater detail. [RW18]
discusses an elaborated theory for the modeling of underspecification, hierarchical composition,
and refinement that can be practically applied to the development of CPS.
A first encoding of these theories in the Isabelle verification tool is defined in [BKR+20].

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code, they are not initially
correct and need to be changed, evolved, and maintained over time. Model transformation is
therefore essential to effectively deal with models [CFJ+16].
Many concrete model transformation problems are discussed: evolution [LRSS10, MMR10,
Rum04c, MRR10], refinement [PR99, KPR97, PR94], decomposition [PR99, KRW20], synthe-
sis [MRR14a], refactoring [Rum12, PR03], translating models from one language into another
[MRR11e, Rum12], systematic model transformation language development [Wei12, HRW15,
Hoe18, HHR+15], repair of failed model evolution [KR18a].
[Rum04c] describes how comprehensible sets of such transformations support software develop-
ment and maintenance [LRSS10], technologies for evolving models within a language and across
languages, and mapping architecture descriptions to their implementation [MMR10]. Automaton
refinement is discussed in [PR94, KPR97] and refining pipe-and-filter architectures is explained
in [PR99]. This has e.g. been applied for robotics in [AHRW17, AHRW17b].
Refactorings of models are important for model driven engineering as discussed in [PR01, PR03,
Rum12]. [HRRS11, HRR+11, HRRS12] encode these in constructive Delta transformations,
which are defined in derivable Delta languages [HHK+13].
Translation between languages, e.g., from class diagrams into Alloy [MRR11e] allows for com-
paring class diagrams on a semantic level. Similarly, semantic differences of evolved activity
diagrams are identified via techniques from [MRR11d] and for Simulink models in [RSW+15].

372

Related Interesting Work from the SE Group, RWTH Aachen

Variability and Software Product Lines (SPL)

Products often exist in various variants, for example, cars or mobile phones, where one man-
ufacturer develops several products with many similarities but also many variations. Variants
are managed in a Software Product Line (SPL) that captures product commonalities as well as
differences. Feature diagrams describe variability in a top down fashion, e.g., in the automotive
domain [GHK+08, GKPR08] using 150% models. Reducing overhead and associated costs is
discussed in [GRJA12].
Delta modeling is a bottom up technique starting with a small, but complete base variant.
Features are additive, but also can modify the core. A set of commonly applicable deltas
configures a system variant. We discuss the application of this technique to Delta-MontiArc
[HRRS11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only describe special
variability but also temporal variability which allows for using them for software product line
evolution [HRRS12]. [HHK+13, HHK+15] and [HRW15] describe an approach to systematically
derive delta languages.
We also apply variability modeling languages to describe syntactic and semantic variation points,
e.g., in UML for frameworks [PFR02] and generators [GMR+16]. Furthermore, we specified a
systematic way to define variants of modeling languages [CGR09], leverage features for their
compositional reuse [BEK+18b, BEK+19], and applied it as a semantic language refinement on
Statecharts in [GR11].

Digital Twins and Digital Shadows in Engineering and Production

The digital transformation of production changes the life cycle of the design, the production, and
the use of products [BDJ+22]. To support this transformation, we can use Digital Twins (DTs)
and Digital Shadows (DSs). In [DMR+20] we define: ”A digital twin of a system consists of a
set of models of the system, a set of digital shadows, and provides a set of services to use the
data and models purposefully with respect to the original system.”
We have investigated how to synthesize self-adaptive DT architectures with model-driven meth-
ods [BBD+21a] and have applied it e.g. on a digital twin for injection molding [BDH+20]. In
[BDR+21] we investigate the economic implications of digital twin services.
Digital twins also need user interaction and visualization, why we have extended the infrastruc-
ture by generating DT cockpits [DMR+20]. To support the DevOps approach in DT engineering,
we have created a generator for low-code development platforms for digital twins [DHM+22] and
sophisticated tool chains to generate process-aware digital twin cockpits that also include con-
densed forms of event logs [BMR+22].
[BBD+21b] describes a conceptual model for digital shadows covering the purpose, relevant
assets, data, and metadata as well as connections to engineering models. These can be used
during the runtime of a DT, e.g. when using process prediction services within DTs [BHK+21].
Integration challenges for digital twin systems-of-systems [MPRW22] include, e.g., the horizontal
integration of digital twin parts, the composition of DTs for different perspectives, or how to
handle different lifecycle representations of the original system.

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12, BBR20] are complex, distributed systems that control
physical entities. In [RW18], we discuss how an elaborated theory can be practically applied to

373

Related Interesting Work from the SE Group, RWTH Aachen

the development of CPS. Contributions for individual aspects range from requirements [GRJA12],
complete product lines [HRRW12], the improvement of engineering for distributed automotive
systems [HRR12, KRRW17], autonomous driving [BR12b, KKR19], and digital twin develop-
ment [BDH+20] to processes and tools to improve the development as well as the product itself
[BBR07].
In the aviation domain, a modeling language for uncertainty and safety events was developed,
which is of interest to European avionics [ZPK+11]. Optimized [KRS+18a] and domain specific
code generation [AHRW17b], and the extension to product lines of CPS [RSW+15, KRR+16,
RRS+16] are key for CPS.
A component and connector architecture description language (ADL) suitable for the specific
challenges in robotics is discussed in [RRW13c, RRW14a, Wor16, RRSW17, Wor21]. In [RRW12],
we use this language for describing requirements and in [RRW13], we describe a code generation
framework for this language. Monitoring for smart and energy efficient buildings is developed as
an Energy Navigator toolset [KPR12, FPPR12, KLPR12].

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradition of contribut-
ing to systems engineering in automotive [FND+98] and [GHK+08a], which culminated in a new
comprehensive model-driven development process for automotive software [KMS+18, DGH+19].
We leveraged SysML to enable the integrated flow from requirements to implementation to in-
tegration.
To facilitate the modeling of products, resources, and processes in the context of Industry
4.0, we also conceived a multi-level framework for production engineering based on these con-
cepts [BKL+18] and addressed to bridge the gap between functions and the physical product
architecture by modeling mechanical functional architectures in SysML [DRW+20]. For that
purpose, we also did a detailed examination of the upcoming SysML 2.0 standard [JPR+22]
and examined how to extend the SPES/CrEST methodology for a systems engineering approach
[BBR20].
Research within the excellence cluster Internet of Production considers fast decision making
at production time with low latencies using contextual data traces of production systems, also
known as Digital Shadows (DS) [SHH+20]. We have investigated how to derive Digital Twins
(DTs) for injection molding [BDH+20], how to generate interfaces between a cyber-physical
system and its DT [KMR+20], and have proposed model-driven architectures for DT cockpit
engineering [DMR+20].

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using statema-
chines for modeling systems. Our contributions to state based modeling can currently be split
into three parts: (1) understanding how to model object-oriented and distributed software using
statemachines resp. Statecharts [GKR96, BCR07b, BCGR09a, BCGR09], (2) understanding the
refinement [PR94, RK96, Rum96, RW18] and composition [GR95, GKR96, RW18] of statema-
chines, and (3) applying statemachines for modeling systems.
In [Rum96, RW18] constructive transformation rules for refining automata behavior are given

374

Related Interesting Work from the SE Group, RWTH Aachen

and proven correct. This theory is applied to features in [KPR97]. Statemachines are embedded
in the composition and behavioral specification concepts of Focus [GKR96, BR07].
We apply these techniques, e.g., in MontiArcAutomaton [RRW13, RRW14a, RRW13, RW18], in
a robot task modeling language [THR+13], and in building management systems [FLP+11b].

Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational support
for human behavior (2) based on information from previously stored and real-time monitored
structural context and behavior data (3) at the time the person needs or asks for it [HMR+19].
To create them, we follow a model centered architecture approach [MMR+17] which defines
systems as a compound of various connected models. Used languages for their definition include
DSLs for behavior and structure such as the human cognitive modeling language [MM13], goal
modeling languages [MRV20, MRZ21] or UML/P based languages [MNRV19]. [MM15] describes
a process of how languages for assistive systems can be created. MontiGem [AMN+20a] is used
as the underlying generator technology.
We have designed a system included in a sensor floor able to monitor elderlies and analyze impact
patterns for emergency events [LMK+11]. We have investigated the modeling of human contexts
for the active assisted living and smart home domain [MS17] and user-centered privacy-driven
systems in the IoT domain in combination with process mining systems [MKM+19], differential
privacy on event logs of handling and treatment of patients at a hospital [MKB+19], the mark-
up of online manuals for devices [SM18a] and websites [SM20], and solutions for privacy-aware
environments for cloud services [ELR+17] and in IoT manufacturing [MNRV19]. The user-
centered view of the system design allows to track who does what, when, why, where, and how
with personal data, makes information about it available via information services and provides
support using assistive services.

Modeling Robotics Architectures and Tasks

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an
inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineer-
ing of robotics applications requires the composition and the interaction of diverse distributed
software modules. This usually leads to complex monolithic software solutions hardly reusable,
maintainable, and comprehensible, which hampers the broad propagation of robotics applica-
tions.
The MontiArcAutomaton language [RRW12, RRW14a] extends the ADL MontiArc and inte-
grates various implemented behavior modeling languages using MontiCore [RRW13c, RRRW15b,
HKR21] that perfectly fit robotic architectural modeling.
The iserveU modeling framework describes domains, actors, goals, and tasks of service robotics
applications [ABH+16, ABH+17] with declarative models. Goals and tasks are translated into
models of the planning domain definition language (PDDL) and then solved [ABK+17]. Thus,
domain experts focus on describing the domain and its properties only.
The LightRocks [THR+13, BRS+15] framework allows robotics experts and laymen to model
robotic assembly tasks. In [AHRW17, AHRW17b], we define a modular architecture model-
ing method for translating architecture models into modules compatible with different robotics
middleware platforms.

375

Related Interesting Work from the SE Group, RWTH Aachen

Many of the concepts in robotics were derived from automotive software [BBR07, BR12b].

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment, and communication
systems as well as advanced active and passive safety-systems result in complex embedded sys-
tems. As these feature-driven subsystems may be arbitrarily combined by the customer, a huge
amount of distinct variants needs to be managed, developed, and tested. A consistent requirement
management connecting requirements with features in all development phases for the automotive
domain is described in [GRJA12].
The conceptual gap between requirements and the logical architecture of a car is closed in
[GHK+07, GHK+08]. A methodical embedding of the resulting function nets and their quality
assurance using automated testing is given in the SMaRDT method [DGH+19, KMS+18].
[HKM+13] describes a tool for delta modeling for Simulink [HKM+13]. [HRRW12] discusses the
means to extract a well-defined Software Product Line from a set of copy and paste variants.
Potential variants of components in product lines can be identified using similarity analysis
of interfaces [KRR+16], or execute tests to identify similar behavior [RRS+16]. [RSW+15]
describes an approach to using model checking techniques to identify behavioral differences of
Simulink models. In [KKR19], we model dynamic reconfiguration of architectures applied to
cooperating vehicles.
Quality assurance, especially of safety-related functions, is a highly important task. In the Carolo
project [BR12b, BR12], we developed a rigorous test infrastructure for intelligent, sensor-based
functions through fully-automatic simulation [BBR07]. This technique allows a dramatic speedup
in the development and the evolution of autonomous car functionality, and thus enables us to
develop software in an agile way [BR12b].
[MMR10] gives an overview of the state-of-the-art in development and evolution on a more general
level by considering any kind of critical system that relies on architectural descriptions.
MontiSim simulates autonomous and cooperative driving behavior [GKR+17] for testing various
forms of errors as well as spatial distance [FIK+18, KKRZ19]. As tooling infrastructure, the
SSELab storage, versioning, and management services [HKR12] are essential for many projects.

Internet of Things, Industry 4.0 & the MontiThings Tool

The Internet of Things (IoT) requires the development of increasingly complex distributed
systems. The MontiThings ecosystem [KRS+22] provides an end-to-end solution to model-
ing, deploying [KKR+22], and analyzing [KMR21] failure-tolerant [KRS+22] IoT systems and
connecting them to synthesized digital twins [KMR+20]. We have investigated how model-
driven methods can support the development of privacy-aware [ELR+17, HHK+14] cloud sys-
tems [PR13], distributed systems security [HHR+15], privacy-aware process mining [MKM+19],
and distributed robotics applications [RRRW15b].
In the course of Industry 4.0, we have also turned our attention to mechanical or electrical appli-
cations [DRW+20]. We identified the digital representation, integration, and (re-)configuration
of automation systems as primary Industry 4.0 concerns [WCB17]. Using a multi-level modeling
framework, we support machine as a service approaches [BKL+18].

376

Related Interesting Work from the SE Group, RWTH Aachen

Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emis-
sions are important challenges. Thus, energy management in buildings as well as in neighbor-
hoods becomes equally important to efficiently use the generated energy. Within several research
projects, we developed methodologies and solutions for integrating heterogeneous systems at dif-
ferent scales.
During the design phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12,
KPR12] is used for the technical specification of building services already.
We adapted the well-known concept of statemachines to be able to describe different states
of a facility and validate it against the monitored values [FLP+11b]. We show how our data
model, the constraint rules, and the evaluation approach to compare sensor data can be applied
[KLPR12].

Cloud Computing and Services

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for
web-based application and service architectures with high complexity, criticality, and new ap-
plication domains. It promises to enable new business models, facilitate web-based innovations,
and increase the efficiency and cost-effectiveness of web development [KRR14].
Application classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15a], Big
Data, Apps, and Service Ecosystems bring attention to aspects like responsiveness, privacy, and
open platforms. Regardless of the application domain, developers of such systems need robust
methods and efficient, easy-to-use languages and tools [KRS12].
We tackle these challenges by perusing a model-based, generative approach [PR13]. At the core
of this approach are different modeling languages that describe different aspects of a cloud-based
system in a concise and technology-agnostic way. Software architecture and infrastructure models
describe the system and its physical distribution on a large scale.
We apply cloud technology for the services we develop, e.g., the SSELab [HKR12] and the
Energy Navigator [FPPR12, KPR12] but also for our tool demonstrators and our development
platforms. New services, e.g., for collecting data from temperature sensors, cars, etc. are now
easily developed and deployed, e.g., in production or Internet-of-Things environments.
Security aspects and architectures of cloud services for the digital me in a privacy-aware envi-
ronment are addressed in [ELR+17].

Model-Driven Engineering of Information Systems & the MontiGem Tool

Information Systems provide information to different user groups as the main system goal. Using
our experiences in the model-based generation of code with MontiCore [KRV10, HKR21], we
developed several generators for such data-centric information systems.
MontiGem [AMN+20a] is a specific generator framework for data-centric business applications
that uses standard models from UML/P optionally extended by GUI description models as
sources [GMN+20]. While the standard semantics of these modeling languages remains un-
touched, the generator produces a lot of additional functionality around these models. The
generator is designed flexible, modular, and incremental, handwritten and generated code pieces
are well integrated [GHK+15a, NRR15a], tagging of existing models is possible [GLRR15], e.g.,
for the definition of roles and rights or for testing [DGH+18].

377

Related Interesting Work from the SE Group, RWTH Aachen

We are using MontiGem for financial management [GHK+20, ANV+18], for creating digital
twin cockpits [DMR+20], and various industrial projects. MontiGem makes it easier to create
low-code development platforms for digital twins [DHM+22]. When using additional DSLs, we
can develop assistive systems providing user support based on goal models [MRV20], privacy-
preserving information systems using privacy models and purpose trees [MNRV19], and process-
aware digital twin cockpits using BPMN models [BMR+22].
We have also developed an architecture of cloud services for the digital me in a privacy-aware
environment [ELR+17] and a method for retrofitting generative aspects into existing applications
[DGM+21].

378

Related Interesting Work from the SE Group, RWTH Aachen

[ABH+16] Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Model-Driven Separation of Concerns for Service Robotics.
In International Workshop on Domain-Specific Modeling (DSM’16), pages 22–27.
ACM, October 2016.

[ABH+17] Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Jérôme Pfeiffer, Bernhard
Rumpe, and Andreas Wortmann. Modeling Robotics Tasks for Better Separation
of Concerns, Platform-Independence, and Reuse. Aachener Informatik-Berichte,
Software Engineering, Band 28. Shaker Verlag, December 2017.

[ABK+17] Kai Adam, Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wort-
mann. Executing Robot Task Models in Dynamic Environments. In Proceedings
of MODELS 2017. Workshop EXE, CEUR 2019, September 2017.

[AHRW17] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. En-
gineering Robotics Software Architectures with Exchangeable Model Transfor-
mations. In International Conference on Robotic Computing (IRC’17), pages
172–179. IEEE, April 2017.

[AHRW17b] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Mod-
eling Robotics Software Architectures with Modular Model Transformations.
Journal of Software Engineering for Robotics (JOSER), 8(1):3–16, 2017.

[AKK+21] Abdallah Atouani, Jörg Christian Kirchhof, Evgeny Kusmenko, and Bernhard
Rumpe. Artifact and Reference Models for Generative Machine Learning Frame-
works and Build Systems. In Eli Tilevich and Coen De Roover, editors, Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE 21), pages 55–68. ACM, Octo-
ber 2021.

[AMN+20a] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga.
Enterprise Information Systems in Academia and Practice: Lessons learned
from a MBSE Project. In 40 Years EMISA: Digital Ecosystems of the Future:
Methodology, Techniques and Applications (EMISA’19), LNI P-304, pages 59–66.
Gesellschaft für Informatik e.V., May 2020.

[ANV+18] Kai Adam, Lukas Netz, Simon Varga, Judith Michael, Bernhard Rumpe, Patricia
Heuser, and Peter Letmathe. Model-Based Generation of Enterprise Information
Systems. In Michael Fellmann and Kurt Sandkuhl, editors, Enterprise Modeling
and Information Systems Architectures (EMISA’18), CEUR Workshop Proceed-
ings 2097, pages 75–79. CEUR-WS.org, May 2018.

[BBC+18] Inga Blundell, Romain Brette, Thomas A. Cleland, Thomas G. Close, Daniel
Coca, Andrew P. Davison, Sandra Diaz-Pier, Carlos Fernandez Musoles, Padraig
Gleeson, Dan F. M. Goodman, Michael Hines, Michael W. Hopkins, Pramod
Kumbhar, David R. Lester, Bóris Marin, Abigail Morrison, Eric Müller, Thomas
Nowotny, Alexander Peyser, Dimitri Plotnikov, Paul Richmond, Andrew Row-
ley, Bernhard Rumpe, Marcel Stimberg, Alan B. Stokes, Adam Tomkins, Guido
Trensch, Marmaduke Woodman, and Jochen Martin Eppler. Code Generation
in Computational Neuroscience: A Review of Tools and Techniques. Journal
Frontiers in Neuroinformatics, 12, 2018.

379

Related Interesting Work from the SE Group, RWTH Aachen

[BBD+21b] Fabian Becker, Pascal Bibow, Manuela Dalibor, Aymen Gannouni, Viviane
Hahn, Christian Hopmann, Matthias Jarke, Istvan Koren, Moritz Kröger, Jo-
hannes Lipp, Judith Maibaum, Judith Michael, Bernhard Rumpe, Patrick Sapel,
Niklas Schäfer, Georg J. Schmitz, Günther Schuh, and Andreas Wortmann. A
Conceptual Model for Digital Shadows in Industry and its Application. In Aditya
Ghose, Jennifer Horkoff, Vitor E. Silva Souza, Jeffrey Parsons, and Joerg Ever-
mann, editors, Conceptual Modeling, ER 2021, pages 271–281. Springer, October
2021.

[BBD+21a] Tim Bolender, Gereon Bürvenich, Manuela Dalibor, Bernhard Rumpe, and An-
dreas Wortmann. Self-Adaptive Manufacturing with Digital Twins. In 2021 In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pages 156–166. IEEE Computer Society, May 2021.

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems
Engineering Process and Tools for the Development of Autonomous Driving In-
telligence. Journal of Aerospace Computing, Information, and Communication
(JACIC), 4(12):1158–1174, 2007.

[BBR20] Manfred Broy, Wolfgang Böhm, and Bernhard Rumpe. Advanced Systems Engi-
neering - Die Systeme der Zukunft. White paper, fortiss. Forschungsinstitut für
softwareintensive Systeme, Munich, July 2020.

[BCGR09] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Considerations and Rationale for a UML System Model. In K. Lano, editor,
UML 2 Semantics and Applications, pages 43–61. John Wiley & Sons, November
2009.

[BCGR09a] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Definition of the UML System Model. In K. Lano, editor, UML 2 Semantics and
Applications, pages 63–93. John Wiley & Sons, November 2009.

[BCR07a] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU
Munich, Germany, February 2007.

[BCR07b] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 3: The State Machine Model. Technical Report TUM-
I0711, TU Munich, Germany, February 2007.

[BDH+20] Pascal Bibow, Manuela Dalibor, Christian Hopmann, Ben Mainz, Bernhard
Rumpe, David Schmalzing, Mauritius Schmitz, and Andreas Wortmann. Model-
Driven Development of a Digital Twin for Injection Molding. In Schahram Dust-
dar, Eric Yu, Camille Salinesi, Dominique Rieu, and Vik Pant, editors, Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’20),
Lecture Notes in Computer Science 12127, pages 85–100. Springer International
Publishing, June 2020.

[BDJ+22] Philipp Brauner, Manuela Dalibor, Matthias Jarke, Ike Kunze, István Ko-
ren, Gerhard Lakemeyer, Martin Liebenberg, Judith Michael, Jan Pennekamp,
Christoph Quix, Bernhard Rumpe, Wil van der Aalst, Klaus Wehrle, Andreas

380

Related Interesting Work from the SE Group, RWTH Aachen

Wortmann, and Martina Ziefle. A Computer Science Perspective on Digital
Transformation in Production. Journal ACM Transactions on Internet of Things,
3:1–32, February 2022.

[BDL+18] Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe, and An-
dreas Wortmann. Deriving Fluent Internal Domain-specific Languages from
Grammars. In International Conference on Software Language Engineering
(SLE’18), pages 187–199. ACM, 2018.

[BDR+21] Christian Brecher, Manuela Dalibor, Bernhard Rumpe, Katrin Schilling, and An-
dreas Wortmann. An Ecosystem for Digital Shadows in Manufacturing. In 54th
CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0. Elsevier, September
2021.

[BEH+20] Arvid Butting, Robert Eikermann, Katrin Hölldobler, Nico Jansen, Bernhard
Rumpe, and Andreas Wortmann. A Library of Literals, Expressions, Types, and
Statements for Compositional Language Design. Journal of Object Technology
(JOT), 19(3):3:1–16, October 2020.

[BEK+18b] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and An-
dreas Wortmann. Modeling Language Variability with Reusable Language Com-
ponents. In International Conference on Systems and Software Product Line
(SPLC’18). ACM, September 2018.

[BEK+19] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. Systematic Composition of Independent Language Features. Journal
of Systems and Software (JSS), 152:50–69, June 2019.

[Ber10] Christian Berger. Automating Acceptance Tests for Sensor- and Actuator-based
Systems on the Example of Autonomous Vehicles. Aachener Informatik-Berichte,
Software Engineering, Band 6. Shaker Verlag, 2010.

[BGH+97] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schw-
erin. Towards a Precise Semantics for Object-Oriented Modeling Techniques. In
Jan Bosch and Stuart Mitchell, editors, Object-Oriented Technology, ECOOP’97
Workshop Reader, LNCS 1357. Springer Verlag, 1997.

[BGH+98a] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger, Bern-
hard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and Com-
plete Object Interaction Descriptions. Journal Computer Standards & Interfaces,
19(7):335–345, November 1998.

[BGH+98b] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schw-
erin. Systems, Views and Models of UML. In Proceedings of the Unified Model-
ing Language, Technical Aspects and Applications, pages 93–109. Physica Verlag,
Heidelberg, Germany, 1998.

[BGRW17] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wortmann.
Taming the Complexity of Model-Driven Systems Engineering Projects. In Part
of the Grand Challenges in Modeling (GRAND’17) Workshop, July 2017.

381

Related Interesting Work from the SE Group, RWTH Aachen

[BGRW18] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wortmann.
On the Need for Artifact Models in Model-Driven Systems Engineering Projects.
In Martina Seidl and Steffen Zschaler, editors, Software Technologies: Applica-
tions and Foundations, LNCS 10748, pages 146–153. Springer, January 2018.

[BHH+17] Arvid Butting, Arne Haber, Lars Hermerschmidt, Oliver Kautz, Bernhard
Rumpe, and Andreas Wortmann. Systematic Language Extension Mechanisms
for the MontiArc Architecture Description Language. In European Conference
on Modelling Foundations and Applications (ECMFA’17), LNCS 10376, pages
53–70. Springer, July 2017.

[BHK+17] Arvid Butting, Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard
Rumpe, and Andreas Wortmann. A Classification of Dynamic Reconfiguration in
Component and Connector Architecture Description Languages. In Proceedings
of MODELS 2017. Workshop ModComp, CEUR 2019, September 2017.

[BHK+21] Tobias Brockhoff, Malte Heithoff, István Koren, Judith Michael, Jérôme Pfeiffer,
Bernhard Rumpe, Merih Seran Uysal, Wil M. P. van der Aalst, and Andreas
Wortmann. Process Prediction with Digital Twins. In Int. Conf. on Model
Driven Engineering Languages and Systems Companion (MODELS-C), pages
182–187. ACM/IEEE, October 2021.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katha-
rina Spies. Software and System Modeling Based on a Unified Formal Seman-
tics. In Workshop on Requirements Targeting Software and Systems Engineering
(RTSE’97), LNCS 1526, pages 43–68. Springer, 1998.

[BHR+18] Arvid Butting, Steffen Hillemacher, Bernhard Rumpe, David Schmalzing, and
Andreas Wortmann. Shepherding Model Evolution in Model-Driven Develop-
ment. In Joint Proceedings of the Workshops at Modellierung 2018 (MOD-WS
2018), CEUR Workshop Proceedings 2060, pages 67–77. CEUR-WS.org, Febru-
ary 2018.

[BHR+21] Arvid Butting, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann.
Compositional Modelling Languages with Analytics and Construction Infrastruc-
tures Based on Object-Oriented Techniques - The MontiCore Approach. In Hein-
rich, Robert and Duran, Francisco and Talcott, Carolyn and Zschaler, Steffen,
editor, Composing Model-Based Analysis Tools, pages 217–234. Springer, July
2021.

[BJRW18] Arvid Butting, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann. Trans-
lating Grammars to Accurate Metamodels. In International Conference on Soft-
ware Language Engineering (SLE’18), pages 174–186. ACM, 2018.

[BKL+18] Christian Brecher, Evgeny Kusmenko, Achim Lindt, Bernhard Rumpe, Simon
Storms, Stephan Wein, Michael von Wenckstern, and Andreas Wortmann. Multi-
Level Modeling Framework for Machine as a Service Applications Based on Prod-
uct Process Resource Models. In Proceedings of the 2nd International Sympo-
sium on Computer Science and Intelligent Control (ISCSIC’18). ACM, Septem-
ber 2018.

382

Related Interesting Work from the SE Group, RWTH Aachen

[BKR+20] Jens Christoph Bürger, Hendrik Kausch, Deni Raco, Jan Oliver Ringert, Bern-
hard Rumpe, Sebastian Stüber, and Marc Wiartalla. Towards an Isabelle The-
ory for distributed, interactive systems - the untimed case. Aachener Informatik
Berichte, Software Engineering, Band 45. Shaker Verlag, March 2020.

[BKRW17a] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Ar-
chitectural Programming with MontiArcAutomaton. In In 12th International
Conference on Software Engineering Advances (ICSEA 2017), pages 213–218.
IARIA XPS Press, May 2017.

[BKRW17] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Se-
mantic Differencing for Message-Driven Component & Connector Architectures.
In International Conference on Software Architecture (ICSA’17), pages 145–154.
IEEE, April 2017.

[BKRW19] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Con-
tinuously Analyzing Finite, Message-Driven, Time-Synchronous Component &
Connector Systems During Architecture Evolution. Journal of Systems and Soft-
ware (JSS), 149:437–461, March 2019.

[BMR+22] Dorina Bano, Judith Michael, Bernhard Rumpe, Simon Varga, and Matthias
Weske. Process-Aware Digital Twin Cockpit Synthesis from Event Logs. Journal
of Computer Languages (COLA), 70, June 2022.

[BPR+20] Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, and Andreas Wortmann. A
Compositional Framework for Systematic Modeling Language Reuse. In Pro-
ceedings of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, pages 35–46. ACM, October 2020.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3–
18, Februar 2007.

[BR12b] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after
the Urban Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In
Automotive Software Engineering Workshop (ASE’12), pages 789–798, 2012.

[BR12] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Soft-
ware. In C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban
Challenge, pages 243–271. Springer, Germany, 2012.

[BRS+15] Arvid Butting, Bernhard Rumpe, Christoph Schulze, Ulrike Thomas, and An-
dreas Wortmann. Modeling Reusable, Platform-Independent Robot Assembly
Processes. In International Workshop on Domain-Specific Languages and Mod-
els for Robotic Systems (DSLRob 2015), 2015.

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe.
Conceptual Model of the Globalization for Domain-Specific Languages. In Glob-
alizing Domain-Specific Languages, LNCS 9400, pages 7–20. Springer, 2015.

[CCF+15a] Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel,
and Bernhard Rumpe, editors. Globalizing Domain-Specific Languages, LNCS
9400. Springer, 2015.

383

Related Interesting Work from the SE Group, RWTH Aachen

[CEG+14] Betty H.C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Marin Litoiu,
Hausi A. Müller, Patrizio Pelliccione, Anna Perini, Nauman A. Qureshi, Bern-
hard Rumpe, Daniel Schneider, Frank Trollmann, and Norha M. Villegas. Us-
ing Models at Runtime to Address Assurance for Self-Adaptive Systems. In
Nelly Bencomo, Robert France, Betty H.C. Cheng, and Uwe Aßmann, editors,
Models@run.time, LNCS 8378, pages 101–136. Springer International Publishing,
Switzerland, 2014.

[CFJ+16] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe,
James Steel, and Didier Vojtisek. Engineering Modeling Languages: Turning
Domain Knowledge into Tools. Chapman & Hall/CRC Innovations in Software
Engineering and Software Development Series, November 2016.

[CGR08] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model
Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig,
Germany, 2008.

[CGR09] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability
within Modeling Language Definitions. In Conference on Model Driven En-
gineering Languages and Systems (MODELS’09), LNCS 5795, pages 670–684.
Springer, 2009.

[DEKR19] Imke Drave, Robert Eikermann, Oliver Kautz, and Bernhard Rumpe. Semantic
Differencing of Statecharts for Object-oriented Systems. In Slimane Hammoudi,
Luis Ferreira Pires, and Bran Selić, editors, Proceedings of the 7th International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD’19), pages 274–282. SciTePress, February 2019.

[DGH+18] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Matthias
Markthaler, Bernhard Rumpe, and Andreas Wortmann. Model-Based Testing of
Software-Based System Functions. In Conference on Software Engineering and
Advanced Applications (SEAA’18), pages 146–153, August 2018.

[DGH+19] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Evgeny Kus-
menko, Matthias Markthaler, Philipp Orth, Karin Samira Salman, Johannes
Richenhagen, Bernhard Rumpe, Christoph Schulze, Michael Wenckstern, and
Andreas Wortmann. SMArDT modeling for automotive software testing. Jour-
nal on Software: Practice and Experience, 49(2):301–328, February 2019.

[DGM+21] Imke Drave, Akradii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe,
and Simon Varga. A Methodology for Retrofitting Generative Aspects in Existing
Applications. Journal of Object Technology (JOT), 20:1–24, November 2021.

[DHH+20] Imke Drave, Timo Henrich, Katrin Hölldobler, Oliver Kautz, Judith Michael,
and Bernhard Rumpe. Modellierung, Verifikation und Synthese von validen Pla-
nungszuständen für Fernsehausstrahlungen. In Dominik Bork, Dimitris Kara-
giannis, and Heinrich C. Mayr, editors, Modellierung 2020, pages 173–188.
Gesellschaft für Informatik e.V., February 2020.

384

Related Interesting Work from the SE Group, RWTH Aachen

[DHM+22] Manuela Dalibor, Malte Heithoff, Judith Michael, Lukas Netz, Jérôme Pfeif-
fer, Bernhard Rumpe, Simon Varga, and Andreas Wortmann. Generating Cus-
tomized Low-Code Development Platforms for Digital Twins. Journal of Com-
puter Languages (COLA), 70, June 2022.

[DKMR19] Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe. Semantic
Evolution Analysis of Feature Models. In Thorsten Berger, Philippe Collet, Lau-
rence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Jabier Martinez,
Raúl Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Tërnava, Thomas
Thüm, and Tewfik Ziadi, editors, International Systems and Software Product
Line Conference (SPLC’19), pages 245–255. ACM, September 2019.

[DMR+20] Manuela Dalibor, Judith Michael, Bernhard Rumpe, Simon Varga, and Andreas
Wortmann. Towards a Model-Driven Architecture for Interactive Digital Twin
Cockpits. In Gillian Dobbie, Ulrich Frank, Gerti Kappel, Stephen W. Liddle,
and Heinrich C. Mayr, editors, Conceptual Modeling, pages 377–387. Springer
International Publishing, October 2020.

[DRW+20] Imke Drave, Bernhard Rumpe, Andreas Wortmann, Joerg Berroth, Gregor
Hoepfner, Georg Jacobs, Kathrin Spuetz, Thilo Zerwas, Christian Guist, and
Jens Kohl. Modeling Mechanical Functional Architectures in SysML. In Pro-
ceedings of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, pages 79–89. ACM, October 2020.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling
Semantics of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behav-
ioral Specifications of Businesses and Systems, pages 45–60. Kluver Academic
Publisher, 1999.

[EFLR99a] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. The UML as a
Formal Modeling Notation. In J. Bézivin and P.-A. Muller, editors, The Unified
Modeling Language. «UML»’98: Beyond the Notation, LNCS 1618, pages 336–
348. Springer, Germany, 1999.

[EJK+19] Rolf Ebert, Jahir Jolianis, Stefan Kriebel, Matthias Markthaler, Benjamin Pru-
enster, Bernhard Rumpe, and Karin Samira Salman. Applying Product Line
Testing for the Electric Drive System. In Thorsten Berger, Philippe Collet, Lau-
rence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Jabier Martinez,
Raúl Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Tërnava, Thomas
Thüm, and Tewfik Ziadi, editors, International Systems and Software Product
Line Conference (SPLC’19), pages 14–24. ACM, September 2019.

[ELR+17] Robert Eikermann, Markus Look, Alexander Roth, Bernhard Rumpe, and An-
dreas Wortmann. Architecting Cloud Services for the Digital me in a Privacy-
Aware Environment. In Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel,
and Bruce Maxim, editors, Software Architecture for Big Data and the Cloud,
chapter 12, pages 207–226. Elsevier Science & Technology, June 2017.

[FEL+98] Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as a
formal modeling notation. Journal Computer Standards & Interfaces, 19(7):325–
334, November 1998.

385

Related Interesting Work from the SE Group, RWTH Aachen

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indika-
tor für Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5):408–424,
Oktober 2008.

[FIK+18] Christian Frohn, Petyo Ilov, Stefan Kriebel, Evgeny Kusmenko, Bernhard
Rumpe, and Alexander Ryndin. Distributed Simulation of Cooperatively In-
teracting Vehicles. In International Conference on Intelligent Transportation
Systems (ITSC’18), pages 596–601. IEEE, 2018.

[FLP+11] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. Der Energie-Navigator - Performance-Controlling für Gebäude und An-
lagen. Technik am Bau (TAB) - Fachzeitschrift für Technische Gebäudeausrüs-
tung, Seiten 36-41, März 2011.

[FLP+11b] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. State-based Modeling of Buildings and Facilities. In Enhanced Building
Operations Conference (ICEBO’11), 2011.

[FND+98] Max Fuchs, Dieter Nazareth, Dirk Daniel, and Bernhard Rumpe. BMW-ROOM
An Object-Oriented Method for ASCET. In SAE’98, Cobo Center (Detroit,
Michigan, USA), Society of Automotive Engineers, 1998.

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The
Energy Navigator - A Web-Platform for Performance Design and Management.
In Energy Efficiency in Commercial Buildings Conference (IEECB’12), 2012.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard
Rumpe. View-based Modeling of Function Nets. In Object-oriented Modelling of
Embedded Real-Time Systems Workshop (OMER4’07), 2007.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Roth-
hardt, and Bernhard Rumpe. Modelling Automotive Function Nets with Views
for Features, Variants, and Modes. In Proceedings of 4th European Congress
ERTS - Embedded Real Time Software, 2008.

[GHK+08a] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Roth-
hardt, and Bernhard Rumpe. View-Centric Modeling of Automotive Logical
Architectures. In Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteter Systeme IV, Informatik Bericht 2008-02. TU Braun-
schweig, 2008.

[GHK+15] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram
Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk
Reiß, Alexander Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wort-
mann. A Comparison of Mechanisms for Integrating Handwritten and Generated
Code for Object-Oriented Programming Languages. In Model-Driven Engineer-
ing and Software Development Conference (MODELSWARD’15), pages 74–85.
SciTePress, 2015.

[GHK+15a] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram
Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk

386

Related Interesting Work from the SE Group, RWTH Aachen

Reiß, Alexander Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wort-
mann. Integration of Handwritten and Generated Object-Oriented Code. In
Model-Driven Engineering and Software Development, Communications in Com-
puter and Information Science 580, pages 112–132. Springer, 2015.

[GHK+20] Arkadii Gerasimov, Patricia Heuser, Holger Ketteniß, Peter Letmathe, Judith
Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Generated Enterprise
Information Systems: MDSE for Maintainable Co-Development of Frontend and
Backend. In Judith Michael and Dominik Bork, editors, Companion Proceedings
of Modellierung 2020 Short, Workshop and Tools & Demo Papers, pages 22–30.
CEUR Workshop Proceedings, February 2020.

[GHR17] Timo Greifenberg, Steffen Hillemacher, and Bernhard Rumpe. Towards a Sus-
tainable Artifact Model: Artifacts in Generator-Based Model-Driven Projects.
Aachener Informatik-Berichte, Software Engineering, Band 30. Shaker Verlag,
December 2017.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Model-
ing Variants of Automotive Systems using Views. In Modellbasierte Entwicklung
von eingebetteten Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76–89.
TU Braunschweig, 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System
Model with State. Technical Report TUM-I9631, TU Munich, Germany, July
1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore 1.0: Ein Framework zur Erstellung und Verarbeitung domän-
spezifischer Sprachen. Informatik-Bericht 2006-04, CFG-Fakultät, TU Braun-
schweig, August 2006.

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. Textbased Modeling. In 4th International Workshop on Software Lan-
guage Engineering, Nashville, Informatik-Bericht 4/2007. Johannes-Gutenberg-
Universität Mainz, 2007.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore: A Framework for the Development of Textual Domain Spe-
cific Languages. In 30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008, Companion Volume, pages 925–926,
2008.

[GKR+17] Filippo Grazioli, Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and
Michael von Wenckstern. Simulation Framework for Executing Component and
Connector Models of Self-Driving Vehicles. In Proceedings of MODELS 2017.
Workshop EXE, CEUR 2019, September 2017.

[GLPR15] Timo Greifenberg, Markus Look, Claas Pinkernell, and Bernhard Rumpe. En-
ergieeffiziente Städte - Herausforderungen und Lösungen aus Sicht des Software
Engineerings. In Linnhoff-Popien, Claudia and Zaddach, Michael and Grahl,
Andreas, Editor, Marktplätze im Umbruch: Digitale Strategien für Services im

387

Related Interesting Work from the SE Group, RWTH Aachen

Mobilen Internet, Xpert.press, Kapitel 56, Seiten 511-520. Springer Berlin Hei-
delberg, April 2015.

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe. Engi-
neering Tagging Languages for DSLs. In Conference on Model Driven Engineer-
ing Languages and Systems (MODELS’15), pages 34–43. ACM/IEEE, 2015.

[GMN+20] Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon
Varga. Continuous Transition from Model-Driven Prototype to Full-Size Real-
World Enterprise Information Systems. In Bonnie Anderson, Jason Thatcher,
and Rayman Meservy, editors, 25th Americas Conference on Information Sys-
tems (AMCIS 2020), AIS Electronic Library (AISeL), pages 1–10. Association
for Information Systems (AIS), August 2020.

[GMR+16] Timo Greifenberg, Klaus Müller, Alexander Roth, Bernhard Rumpe, Christoph
Schulze, and Andreas Wortmann. Modeling Variability in Template-based Code
Generators for Product Line Engineering. In Modellierung 2016 Conference, LNI
254, pages 141–156. Bonner Köllen Verlag, March 2016.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical
Report TUM-I9533, TU Munich, Germany, October 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In Work-
shop on Modeling, Development and Verification of Adaptive Systems, LNCS
6662, pages 17–32. Springer, 2011.

[Gre19] Timo Greifenberg. Artefaktbasierte Analyse modellgetriebener Softwareentwick-
lungsprojekte. Aachener Informatik-Berichte, Software Engineering, Band 42.
Shaker Verlag, August 2019.

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level
Requirements Management and Complexity Costs in Automotive Development
Projects: A Problem Statement. In Requirements Engineering: Foundation for
Software Quality (REFSQ’12), 2012.

[GRR09] Hans Grönniger, Jan Oliver Ringert, and Bernhard Rumpe. System Model-based
Definition of Modeling Language Semantics. In Proc. of FMOODS/FORTE 2009,
LNCS 5522, Lisbon, Portugal, 2009.

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of
Activity Diagrams with Semantic Variation Points. In Conference on Model
Driven Engineering Languages and Systems (MODELS’10), LNCS 6394, pages
331–345. Springer, 2010.

[Hab16] Arne Haber. MontiArc - Architectural Modeling and Simulation of Interactive
Distributed Systems. Aachener Informatik-Berichte, Software Engineering, Band
24. Shaker Verlag, September 2016.

[Her19] Lars Hermerschmidt. Agile Modellgetriebene Entwicklung von Software Security
& Privacy. Aachener Informatik-Berichte, Software Engineering, Band 41. Shaker
Verlag, June 2019.

388

Related Interesting Work from the SE Group, RWTH Aachen

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller,
Bernhard Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In
Software Product Line Conference (SPLC’13), pages 22–31. ACM, 2013.

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based
Services in the Internet of Things. In Conference on Future Internet of Things
and Cloud (FiCloud’14). IEEE, 2014.

[HHK+15] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller,
Bernhard Rumpe, Ina Schaefer, and Christoph Schulze. Systematic Synthesis of
Delta Modeling Languages. Journal on Software Tools for Technology Transfer
(STTT), 17(5):601–626, October 2015.

[HHK+15a] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. A comprehensive approach to privacy in the cloud-
based Internet of Things. Journal Future Generation Computer Systems, 56:701–
718, 2015.

[HHR+15] Lars Hermerschmidt, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wort-
mann. Generating Domain-Specific Transformation Languages for Component &
Connector Architecture Descriptions. In Workshop on Model-Driven Engineer-
ing for Component-Based Software Systems (ModComp’15), CEUR Workshop
Proceedings 1463, pages 18–23, 2015.

[HJK+21] Steffen Hillemacher, Nicolas Jäckel, Christopher Kugler, Philipp Orth, David
Schmalzing, and Louis Wachtmeister. Artifact-Based Analysis for the Devel-
opment of Collaborative Embedded Systems. In Model-Based Engineering of
Collaborative Embedded Systems, pages 315–331. Springer, January 2021.

[HJRW20] Katrin Hölldobler, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann.
Komposition Domänenspezifischer Sprachen unter Nutzung der MontiCore Lan-
guage Workbench, am Beispiel SysML 2. In Dominik Bork, Dimitris Karagiannis,
and Heinrich C. Mayr, editors, Modellierung 2020, pages 189–190. Gesellschaft
für Informatik e.V., February 2020.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bern-
hard Rumpe, and Ina Schaefer. First-Class Variability Modeling in Mat-
lab/Simulink. In Variability Modelling of Software-intensive Systems Workshop
(VaMoS’13), pages 11–18. ACM, 2013.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. An Algebraic View on the Semantics of Model Composition.
In Conference on Model Driven Architecture - Foundations and Applications
(ECMDA-FA’07), LNCS 4530, pages 99–113. Springer, Germany, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Scaling-Up Model-Based-Development for Large Heterogeneous
Systems with Compositional Modeling. In Conference on Software Engineeering
in Research and Practice (SERP’09), pages 172–176, July 2009.

389

Related Interesting Work from the SE Group, RWTH Aachen

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer.
Delta-oriented Architectural Variability Using MontiCore. In Software Architec-
ture Conference (ECSA’11), pages 6:1–6:10. ACM, 2011.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-
In-Based Framework for Web-Based Project Portals. In Developing Tools as
Plug-Ins Workshop (TOPI’12), pages 61–66. IEEE, 2012.

[HKR+16] Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard Rumpe, and Andreas
Wortmann. Retrofitting Controlled Dynamic Reconfiguration into the Architec-
ture Description Language MontiArcAutomaton. In Software Architecture - 10th
European Conference (ECSA’16), LNCS 9839, pages 175–182. Springer, Decem-
ber 2016.

[HKR21] Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe. MontiCore Language
Workbench and Library Handbook: Edition 2021. Aachener Informatik-Berichte,
Software Engineering, Band 48. Shaker Verlag, May 2021.

[HLN+15a] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. Composition of Het-
erogeneous Modeling Languages. In Model-Driven Engineering and Software De-
velopment, Communications in Computer and Information Science 580, pages
45–66. Springer, 2015.

[HLN+15] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. Integration of Het-
erogeneous Modeling Languages via Extensible and Composable Language Com-
ponents. In Model-Driven Engineering and Software Development Conference
(MODELSWARD’15), pages 19–31. SciTePress, 2015.

[HMR+19] Katrin Hölldobler, Judith Michael, Jan Oliver Ringert, Bernhard Rumpe, and
Andreas Wortmann. Innovations in Model-based Software and Systems Engi-
neering. Journal of Object Technology (JOT), 18(1):1–60, July 2019.

[HNRW16] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas Wort-
mann. Compositional Language Engineering using Generated, Extensible, Static
Type Safe Visitors. In Conference on Modelling Foundations and Applications
(ECMFA), LNCS 9764, pages 67–82. Springer, July 2016.

[Hoe18] Katrin Hölldobler. MontiTrans: Agile, modellgetriebene Entwicklung von und
mit domänenspezifischen, kompositionalen Transformationssprachen. Aachener
Informatik-Berichte, Software Engineering, Band 36. Shaker Verlag, December
2018.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics
of ”Semantics”? IEEE Computer Journal, 37(10):64–72, October 2004.

[HR17] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Language Workbench
Edition 2017. Aachener Informatik-Berichte, Software Engineering, Band 32.
Shaker Verlag, December 2017.

390

Related Interesting Work from the SE Group, RWTH Aachen

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Com-
ponent Interfaces. In Technology of Object-Oriented Languages and Systems
(TOOLS 26), pages 58–70. IEEE, 1998.

[HRR10] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. Towards Architectural
Programming of Embedded Systems. In Tagungsband des Dagstuhl-Workshop
MBEES: Modellbasierte Entwicklung eingebetteterSysteme VI, Informatik-
Bericht 2010-01, pages 13 – 22. fortiss GmbH, Germany, 2010.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der
Linden. Hierarchical Variability Modeling for Software Architectures. In Software
Product Lines Conference (SPLC’11), pages 150–159. IEEE, 2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architec-
tural Modeling of Interactive Distributed and Cyber-Physical Systems. Technical
Report AIB-2012-03, RWTH Aachen University, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling
for Software Architectures. In Tagungsband des Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteterSysteme VII, pages 1 – 10. fortiss GmbH,
2011.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-
oriented Software Product Line Architectures. In Large-Scale Complex IT Sys-
tems. Development, Operation and Management, 17th Monterey Workshop 2012,
LNCS 7539, pages 183–208. Springer, 2012.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung
eines Produktlinienansatzes in die automotive Softwareentwicklung am Beispiel
von Steuergerätesoftware. In Software Engineering Conference (SE’12), LNI 198,
Seiten 181-192, 2012.

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. Systematically De-
riving Domain-Specific Transformation Languages. In Conference on Model
Driven Engineering Languages and Systems (MODELS’15), pages 136–145.
ACM/IEEE, 2015.

[HRW18] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Software Lan-
guage Engineering in the Large: Towards Composing and Deriving Languages.
Journal Computer Languages, Systems & Structures, 54:386–405, 2018.

[JPR+22] Nico Jansen, Jerome Pfeiffer, Bernhard Rumpe, David Schmalzing, and Andreas
Wortmann. The Language of SysML v2 under the Magnifying Glass. Journal of
Object Technology (JOT), 21:1–15, July 2022.

[JWCR18] Rodi Jolak, Andreas Wortmann, Michel Chaudron, and Bernhard Rumpe. Does
Distance Still Matter? Revisiting Collaborative Distributed Software Design.
IEEE Software Journal, 35(6):40–47, 2018.

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ. In
A. Moreira and S. Demeyer, editors, Object-Oriented Technology, ECOOP’99
Workshop Reader, LNCS 1743, Berlin, 1999. Springer Verlag.

391

Related Interesting Work from the SE Group, RWTH Aachen

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Design Guidelines for Domain Specific Languages.
In Domain-Specific Modeling Workshop (DSM’09), Techreport B-108, pages 7–
13. Helsinki School of Economics, October 2009.

[KKR19] Nils Kaminski, Evgeny Kusmenko, and Bernhard Rumpe. Modeling Dynamic
Architectures of Self-Adaptive Cooperative Systems. Journal of Object Technol-
ogy (JOT), 18(2):1–20, July 2019.

[KKR+22] Jörg Christian Kirchhof, Anno Kleiss, Bernhard Rumpe, David Schmalzing,
Philipp Schneider, and Andreas Wortmann. Model-driven Self-adaptive Deploy-
ment of Internet of Things Applications with Automated Modification Proposals.
Journal ACM Transactions on Internet of Things, 3:1–30, November 2022.

[KKRZ19] Jörg Christian Kirchhof, Evgeny Kusmenko, Bernhard Rumpe, and Hengwen
Zhang. Simulation as a Service for Cooperative Vehicles. In Loli Burgueño,
Alexander Pretschner, Sebastian Voss, Michel Chaudron, Jörg Kienzle, Markus
Völter, Sébastien Gérard, Mansooreh Zahedi, Erwan Bousse, Arend Rensink,
Fiona Polack, Gregor Engels, and Gerti Kappel, editors, Proceedings of MODELS
2019. Workshop MASE, pages 28–37. IEEE, September 2019.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Mod-
eling Cyber-Physical Systems: Model-Driven Specification of Energy Efficient
Buildings. In Modelling of the Physical World Workshop (MOTPW’12), pages
2:1–2:6. ACM, October 2012.

[KMA+16] Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle, Nicolas Bel-
loir, Philippe Collet, Benoit Combemale, Julien Deantoni, Jacques Klein, and
Bernhard Rumpe. VCU: The Three Dimensions of Reuse. In Conference on
Software Reuse (ICSR’16), LNCS 9679, pages 122–137. Springer, June 2016.

[KMP+21] Hendrik Kausch, Judith Michael, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe,
and Andreas Schweiger. Model-Based Development and Logical AI for Secure and
Safe Avionics Systems: A Verification Framework for SysML Behavior Specifica-
tions. In Aerospace Europe Conference 2021 (AEC 2021). Council of European
Aerospace Societies (CEAS), November 2021.

[KMR+20] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, and
Andreas Wortmann. Model-driven Digital Twin Construction: Synthesizing the
Integration of Cyber-Physical Systems with Their Information Systems. In Pro-
ceedings of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, pages 90–101. ACM, October 2020.

[KMR21] Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe. Understand-
ing and Improving Model-Driven IoT Systems through Accompanying Digital
Twins. In Eli Tilevich and Coen De Roover, editors, Proceedings of the 20th
ACM SIGPLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE 21), pages 197–209. ACM, October 2021.

[KMS+18] Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo Greifenberg,
Steffen Hillemacher, Bernhard Rumpe, Christoph Schulze, Andreas Wortmann,

392

Related Interesting Work from the SE Group, RWTH Aachen

Philipp Orth, and Johannes Richenhagen. Improving Model-based Testing in
Automotive Software Engineering. In International Conference on Software En-
gineering: Software Engineering in Practice (ICSE’18), pages 172–180. ACM,
June 2018.

[KNP+19] Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard Rumpe,
and Thomas Timmermanns. Modeling and Training of Neural Processing Sys-
tems. In Marouane Kessentini, Tao Yue, Alexander Pretschner, Sebastian Voss,
and Loli Burgueño, editors, Conference on Model Driven Engineering Languages
and Systems (MODELS’19), pages 283–293. IEEE, September 2019.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification
and Refinement with State Transition Diagrams. In Workshop on Feature In-
teractions in Telecommunications Networks and Distributed Systems, pages 284–
297. IOS-Press, 1997.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navi-
gator. In H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von
Forschungssoftware. Tagungsband, Rolduc, 10.-11.11.2011, Aachener Informatik-
Berichte, Software Engineering, Band 14. Shaker Verlag, Aachen, Deutschland,
2012.

[KPRS19] Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Sebastian
Stüber. On the Engineering of AI-Powered Systems. In Lisa O’Conner, editor,
ASE19. Software Engineering Intelligence Workshop (SEI19), pages 126–133.
IEEE, November 2019.

[KR18a] Oliver Kautz and Bernhard Rumpe. On Computing Instructions to Repair Failed
Model Refinements. In Conference on Model Driven Engineering Languages and
Systems (MODELS’18), pages 289–299. ACM, October 2018.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen
im Software-Engineering. Aachener Informatik-Berichte, Software Engineering,
Band 1. Shaker Verlag, März 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathemati-
cal model for distributed information processing systems - SysLab system model.
InWorkshop on Formal Methods for Open Object-based Distributed Systems, IFIP
Advances in Information and Communication Technology, pages 323–338. Chap-
mann & Hall, 1996.

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Comput-
ing. Springer, Schweiz, December 2014.

[KRR+16] Philipp Kehrbusch, Johannes Richenhagen, Bernhard Rumpe, Axel Schloßer, and
Christoph Schulze. Interface-based Similarity Analysis of Software Components
for the Automotive Industry. In International Systems and Software Product
Line Conference (SPLC ’16), pages 99–108. ACM, September 2016.

[KRRS19] Stefan Kriebel, Deni Raco, Bernhard Rumpe, and Sebastian Stüber. Model-
Based Engineering for Avionics: Will Specification and Formal Verification e.g.

393

Related Interesting Work from the SE Group, RWTH Aachen

Based on Broy’s Streams Become Feasible? In Stephan Krusche, Kurt Schnei-
der, Marco Kuhrmann, Robert Heinrich, Reiner Jung, Marco Konersmann, Eric
Schmieders, Steffen Helke, Ina Schaefer, Andreas Vogelsang, Björn Annighöfer,
Andreas Schweiger, Marina Reich, and André van Hoorn, editors, Proceedings of
the Workshops of the Software Engineering Conference. Workshop on Avionics
Systems and Software Engineering (AvioSE’19), CEUR Workshop Proceedings
2308, pages 87–94. CEUR Workshop Proceedings, February 2019.

[KRRW17] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von Wenck-
stern. Modeling Architectures of Cyber-Physical Systems. In European Con-
ference on Modelling Foundations and Applications (ECMFA’17), LNCS 10376,
pages 34–50. Springer, July 2017.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical
Systems - eine Herausforderung für die Automatisierungstechnik? In Proceedings
of Automation 2012, VDI Berichte 2012, Seiten 113-116. VDI Verlag, 2012.

[KRS+18a] Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael von
Wenckstern. Highly-Optimizing and Multi-Target Compiler for Embedded Sys-
tem Models: C++ Compiler Toolchain for the Component and Connector Lan-
guage EmbeddedMontiArc. In Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’18), pages 447 – 457. ACM, October 2018.

[KRS+22] Jörg Christian Kirchhof, Bernhard Rumpe, David Schmalzing, and Andreas
Wortmann. MontiThings: Model-driven Development and Deployment of Reli-
able IoT Applications. Journal of Systems and Software (JSS), 183:1–21, January
2022.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Develop-
ment using Domain Specific Modelling Languages. In Domain-Specific Modeling
Workshop (DSM’06), Technical Report TR-37, pages 150–158. Jyväskylä Uni-
versity, Finland, 2006.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Genera-
tion for Compositional DSLs in Eclipse. In Domain-Specific Modeling Workshop
(DSM’07), Technical Reports TR-38. Jyväskylä University, Finland, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of
Abstract and Concrete Syntax for Textual Languages. In Conference on Model
Driven Engineering Languages and Systems (MODELS’07), LNCS 4735, pages
286–300. Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular De-
velopment of Textual Domain Specific Languages. In Conference on Objects,
Models, Components, Patterns (TOOLS-Europe’08), LNBIP 11, pages 297–315.
Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for
Compositional Development of Domain Specific Languages. International Jour-
nal on Software Tools for Technology Transfer (STTT), 12(5):353–372, Septem-
ber 2010.

394

Related Interesting Work from the SE Group, RWTH Aachen

[KRW20] Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Automated semantics-
preserving parallel decomposition of finite component and connector architec-
tures. Automated Software Engineering Journal, 27:119–151, April 2020.

[Kus21] Evgeny Kusmenko. Model-Driven Development Methodology and Domain-
Specific Languages for the Design of Artificial Intelligence in Cyber-Physical
Systems. Aachener Informatik-Berichte, Software Engineering, Band 49. Shaker
Verlag, November 2021.

[LMK+11] Philipp Leusmann, Christian Möllering, Lars Klack, Kai Kasugai, Bernhard
Rumpe, and Martina Ziefle. Your Floor Knows Where You Are: Sensing and
Acquisition of Movement Data. In Arkady Zaslavsky, Panos K. Chrysanthis,
Dik Lun Lee, Dipanjan Chakraborty, Vana Kalogeraki, Mohamed F. Mokbel,
and Chi-Yin Chow, editors, 12th IEEE International Conference on Mobile Data
Management (Volume 2), pages 61–66. IEEE, June 2011.

[Loo17] Markus Look. Modellgetriebene, agile Entwicklung und Evolution mehrbenutzer-
fähiger Enterprise Applikationen mit MontiEE. Aachener Informatik-Berichte,
Software Engineering, Band 27. Shaker Verlag, March 2017.

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan Sprin-
kle. Model Evolution and Management. In Model-Based Engineering of Embed-
ded Real-Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 241–270.
Springer, 2010.

[MKB+19] Felix Mannhardt, Agnes Koschmider, Nathalie Baracaldo, Matthias Weidlich,
and Judith Michael. Privacy-Preserving Process Mining: Differential Privacy for
Event Logs. Business & Information Systems Engineering, 61(5):1–20, October
2019.

[MKM+19] Judith Michael, Agnes Koschmider, Felix Mannhardt, Nathalie Baracaldo, and
Bernhard Rumpe. User-Centered and Privacy-Driven Process Mining System
Design for IoT. In Cinzia Cappiello and Marcela Ruiz, editors, Proceedings of
CAiSE Forum 2019: Information Systems Engineering in Responsible Informa-
tion Systems, pages 194–206. Springer, June 2019.

[MM13] Judith Michael and Heinrich C. Mayr. Conceptual modeling for ambient assis-
tance. In Conceptual Modeling - ER 2013, LNCS 8217, pages 403–413. Springer,
2013.

[MM15] Judith Michael and Heinrich C. Mayr. Creating a domain specific modelling
method for ambient assistance. In International Conference on Advances in ICT
for Emerging Regions (ICTer2015), pages 119–124. IEEE, 2015.

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture
Descriptions of Critical Systems. IEEE Computer Journal, 43(5):42–48, May
2010.

[MMR+17] Heinrich C. Mayr, Judith Michael, Suneth Ranasinghe, Vladimir A. Shekhovtsov,
and Claudia Steinberger. Model Centered Architecture, pages 85–104. Springer
International Publishing, 2017.

395

Related Interesting Work from the SE Group, RWTH Aachen

[MNRV19] Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Towards
Privacy-Preserving IoT Systems Using Model Driven Engineering. In Nico-
las Ferry, Antonio Cicchetti, Federico Ciccozzi, Arnor Solberg, Manuel Wim-
mer, and Andreas Wortmann, editors, Proceedings of MODELS 2019. Workshop
MDE4IoT, pages 595–614. CEUR Workshop Proceedings, September 2019.

[MPRW22] Judith Michael, Jérôme Pfeiffer, Bernhard Rumpe, and Andreas Wortmann. In-
tegration Challenges for Digital Twin Systems-of-Systems. In 10th IEEE/ACM
International Workshop on Software Engineering for Systems-of-Systems and
Software Ecosystems, pages 9–12. ACM, May 2022.

[MRR10] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for Seman-
tic Model Differencing. In Proceedings Int. Workshop on Models and Evolution
(ME’10), LNCS 6627, pages 194–203. Springer, 2010.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic
Differencing for Activity Diagrams. In Conference on Foundations of Software
Engineering (ESEC/FSE ’11), pages 179–189. ACM, 2011.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Seman-
tics for Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH
Aachen University, Aachen, Germany, July 2011.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Di-
agrams Analysis Using Alloy Revisited. In Conference on Model Driven En-
gineering Languages and Systems (MODELS’11), LNCS 6981, pages 592–607.
Springer, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CDDiff: Semantic
Differencing for Class Diagrams. In Mira Mezini, editor, ECOOP 2011 - Object-
Oriented Programming, pages 230–254. Springer Berlin Heidelberg, 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Dia-
grams. In Object-Oriented Programming Conference (ECOOP’11), LNCS 6813,
pages 281–305. Springer, 2011.

[MRR11f] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Config-
urable Consistency Analysis for Class and Object Diagrams. In Conference on
Model Driven Engineering Languages and Systems (MODELS’11), LNCS 6981,
pages 153–167. Springer, 2011.

[MRR11g] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Summarizing Seman-
tic Model Differences. In Bernhard Schätz, Dirk Deridder, Alfonso Pierantonio,
Jonathan Sprinkle, and Dalila Tamzalit, editors, ME 2011 - Models and Evolu-
tion, October 2011.

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Compo-
nent and Connector Models from Crosscutting Structural Views. In Meyer, B.
and Baresi, L. and Mezini, M., editor, Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE’13), pages 444–454. ACM New York, 2013.

396

Related Interesting Work from the SE Group, RWTH Aachen

[MRR14a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component
and Connector Models from Crosscutting Structural Views (extended abstract).
In Wilhelm Hasselbring and Nils Christian Ehmke, editors, Software Engineering
2014, LNI 227, pages 63–64. Gesellschaft für Informatik, Köllen Druck+Verlag
GmbH, 2014.

[MRR14b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component
and Connector Models against Crosscutting Structural Views. In International
Conference on Software Engineering (ICSE’14), pages 95–105. ACM, 2014.

[MRRW16] Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe, and Michael von Wenck-
stern. Consistent Extra-Functional Properties Tagging for Component and Con-
nector Models. In Workshop on Model-Driven Engineering for Component-Based
Software Systems (ModComp’16), CEUR Workshop Proceedings 1723, pages 19–
24, October 2016.

[MRV20] Judith Michael, Bernhard Rumpe, and Simon Varga. Human behavior, goals and
model-driven software engineering for assistive systems. In Agnes Koschmider,
Judith Michael, and Bernhard Thalheim, editors, Enterprise Modeling and In-
formation Systems Architectures (EMSIA 2020), pages 11–18. CEUR Workshop
Proceedings, June 2020.

[MRZ21] Judith Michael, Bernhard Rumpe, and Lukas Tim Zimmermann. Goal Modeling
and MDSE for Behavior Assistance. In Int. Conf. on Model Driven Engineering
Languages and Systems Companion (MODELS-C), pages 370–379. ACM/IEEE,
October 2021.

[MS17] Judith Michael and Claudia Steinberger. Context modeling for active assistance.
In Cristina Cabanillas, Sergio España, and Siamak Farshidi, editors, Proc. of
the ER Forum 2017 and the ER 2017 Demo Track co-located with the 36th Int.
Conference on Conceptual Modelling (ER 2017), pages 221–234, 2017.

[Naz17] Pedram Mir Seyed Nazari. MontiCore: Efficient Development of Composed Mod-
eling Language Essentials. Aachener Informatik-Berichte, Software Engineering,
Band 29. Shaker Verlag, June 2017.

[NRR15a] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. Mixed Gen-
erative and Handcoded Development of Adaptable Data-centric Business Appli-
cations. In Domain-Specific Modeling Workshop (DSM’15), pages 43–44. ACM,
2015.

[NRR16] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. An Extended
Symbol Table Infrastructure to Manage the Composition of Output-Specific Gen-
erator Information. In Modellierung 2016 Conference, LNI 254, pages 133–140.
Bonner Köllen Verlag, March 2016.

[PR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures
as Interactive Systems. In Model-Driven Engineering for High Performance and
Cloud Computing Workshop, CEUR Workshop Proceedings 1118, pages 15–24,
2013.

397

Related Interesting Work from the SE Group, RWTH Aachen

[PBI+16] Dimitri Plotnikov, Inga Blundell, Tammo Ippen, Jochen Martin Eppler, Abigail
Morrison, and Bernhard Rumpe. NESTML: a modeling language for spiking
neurons. InModellierung 2016 Conference, LNI 254, pages 93–108. Bonner Köllen
Verlag, March 2016.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Anno-
tations with UML-F. In Software Product Lines Conference (SPLC’02), LNCS
2379, pages 188–197. Springer, 2002.

[Pin14] Claas Pinkernell. Energie Navigator: Software-gestützte Optimierung der En-
ergieeffizienz von Gebäuden und technischen Anlagen. Aachener Informatik-
Berichte, Software Engineering, Band 17. Shaker Verlag, 2014.

[Plo18] Dimitri Plotnikov. NESTML - die domänenspezifische Sprache für den NEST-
Simulator neuronaler Netzwerke im Human Brain Project. Aachener Informatik-
Berichte, Software Engineering, Band 33. Shaker Verlag, February 2018.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for
Behaviour Modelling with Automata. In Proceedings of the Industrial Benefit of
Formal Methods (FME’94), LNCS 873, pages 154–174. Springer, 1994.

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architec-
tures. In Congress on Formal Methods in the Development of Computing System
(FM’99), LNCS 1708, pages 96–115. Springer, 1999.

[PR01] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov, H. and Ba-
clavski, K., editor, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa
Bay, Florida, USA, October 15. Northeastern University, 2001.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications.
In Kilov, H. and Baclavski, K., editor, Practical Foundations of Business and
System Specifications, pages 281–297. Kluwer Academic Publishers, 2003.

[Rei16] Dirk Reiß. Modellgetriebene generative Entwicklung von Web-
Informationssystemen. Aachener Informatik-Berichte, Software Engineering,
Band 22. Shaker Verlag, May 2016.

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and Con-
nector Systems. Aachener Informatik-Berichte, Software Engineering, Band 19.
Shaker Verlag, Aachen, Germany, December 2014.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In
B. Harvey and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages
265–286. Kluwer Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes
mathematisches Modell verteilter informationsverarbeitender Systeme - Syslab-
Systemmodell. Technischer Bericht TUM-I9510, TU München, Deutschland,
März 1995.

[Rot17] Alexander Roth. Adaptable Code Generation of Consistent and Customizable
Data Centric Applications with MontiDex. Aachener Informatik-Berichte, Soft-
ware Engineering, Band 31. Shaker Verlag, December 2017.

398

Related Interesting Work from the SE Group, RWTH Aachen

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams, Stream
Processing Functions, and State-Based Stream Processing. International Journal
of Software and Informatics, 2011.

[RRRW15b] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann.
Language and Code Generator Composition for Model-Driven Engineering of
Robotics Component & Connector Systems. Journal of Software Engineering
for Robotics (JOSER), 6(1):33–57, 2015.

[RRS+16] Johannes Richenhagen, Bernhard Rumpe, Axel Schloßer, Christoph Schulze,
Kevin Thissen, and Michael von Wenckstern. Test-driven Semantical Similar-
ity Analysis for Software Product Line Extraction. In International Systems and
Software Product Line Conference (SPLC ’16), pages 174–183. ACM, September
2016.

[RRSW17] Jan Oliver Ringert, Bernhard Rumpe, Christoph Schulze, and Andreas Wort-
mann. Teaching Agile Model-Driven Engineering for Cyber-Physical Systems.
In International Conference on Software Engineering: Software Engineering and
Education Track (ICSE’17), pages 127–136. IEEE, May 2017.

[RRW12] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Requirements
Modeling Language for the Component Behavior of Cyber Physical Robotics
Systems. In Seyff, N. and Koziolek, A., editor, Modelling and Quality in Re-
quirements Engineering: Essays Dedicated to Martin Glinz on the Occasion of
His 60th Birthday, pages 133–146. Monsenstein und Vannerdat, Münster, 2012.

[RRW13] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software
Architecture Structure and Behavior Modeling to Implementations of Cyber-
Physical Systems. In Software Engineering Workshopband (SE’13), LNI 215,
pages 155–170, 2013.

[RRW13c] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAu-
tomaton: Modeling Architecture and Behavior of Robotic Systems. In Conference
on Robotics and Automation (ICRA’13), pages 10–12. IEEE, 2013.

[RRW14a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architecture and
Behavior Modeling of Cyber-Physical Systems with MontiArcAutomaton. Aach-
ener Informatik-Berichte, Software Engineering, Band 20. Shaker Verlag, Decem-
ber 2014.

[RRW15] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Tailoring the
MontiArcAutomaton Component & Connector ADL for Generative Develop-
ment. In MORSE/VAO Workshop on Model-Driven Robot Software Engineering
and View-based Software-Engineering, pages 41–47. ACM, 2015.

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver
Ringert, and Peter Manhart. Behavioral Compatibility of Simulink Models for
Product Line Maintenance and Evolution. In Software Product Line Conference
(SPLC’15), pages 141–150. ACM, 2015.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. Herbert Utz Verlag Wissenschaft, München, Deutschland, 1996.

399

Related Interesting Work from the SE Group, RWTH Aachen

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare?
In T. Clark and J. Warmer, editors, Issues & Trends of Information Technology
Management in Contemporary Associations, Seattle, pages 697–701. Idea Group
Publishing, London, 2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In Sympo-
sium on Formal Methods for Components and Objects (FMCO’02), LNCS 2852,
pages 380–402. Springer, November 2003.

[Rum04c] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical
Innovations of Software and Systems Engineering in the Future (RISSEF’02),
LNCS 2941, pages 297–309. Springer, October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML, 2te Auflage. Springer Berlin, Septem-
ber 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle,
Refactoring, 2te Auflage. Springer Berlin, Juni 2012.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer
International, July 2016.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing, Refac-
toring. Springer International, May 2017.

[RW18] Bernhard Rumpe and Andreas Wortmann. Abstraction and Refinement in Hi-
erarchically Decomposable and Underspecified CPS-Architectures. In Lohstroh,
Marten and Derler, Patricia Sirjani, Marjan, editor, Principles of Modeling: Es-
says Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, LNCS
10760, pages 383–406. Springer, 2018.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der
UML/P. Aachener Informatik-Berichte, Software Engineering, Band 11. Shaker
Verlag, 2012.

[SHH+20] Günther Schuh, Constantin Häfner, Christian Hopmann, Bernhard Rumpe,
Matthias Brockmann, Andreas Wortmann, Judith Maibaum, Manuela Dali-
bor, Pascal Bibow, Patrick Sapel, and Moritz Kröger. Effizientere Produk-
tion mit Digitalen Schatten. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb,
115(special):105–107, April 2020.

[SM18a] Claudia Steinberger and Judith Michael. Towards Cognitive Assisted Living
3.0. In International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops 2018), pages 687–692. IEEE, march 2018.

[SM20] Claudia Steinberger and Judith Michael. Using Semantic Markup to Boost Con-
text Awareness for Assistive Systems. In Smart Assisted Living: Toward An Open
Smart-Home Infrastructure, Computer Communications and Networks, pages
227–246. Springer International Publishing, 2020.

400

Related Interesting Work from the SE Group, RWTH Aachen

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai.
Metamodelling: State of the Art and Research Challenges. In Model-Based Engi-
neering of Embedded Real-Time Systems Workshop (MBEERTS’10), LNCS 6100,
pages 57–76. Springer, 2010.

[TAB+21] Carolyn Talcott, Sofia Ananieva, Kyungmin Bae, Benoit Combemale, Robert
Heinrich, Mark Hills, Narges Khakpour, Ralf Reussner, Bernhard Rumpe, Pa-
trizia Scandurra, and Hans Vangheluwe. Composition of Languages, Models, and
Analyses. In Heinrich, Robert and Duran, Francisco and Talcott, Carolyn and
Zschaler, Steffen, editor, Composing Model-Based Analysis Tools, pages 45–70.
Springer, July 2021.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and An-
dreas Wortmann. A New Skill Based Robot Programming Language Using UM-
L/P Statecharts. In Conference on Robotics and Automation (ICRA’13), pages
461–466. IEEE, 2013.

[Voe11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen.
Aachener Informatik-Berichte, Software Engineering, Band 9. Shaker Verlag,
2011.

[WCB17] Andreas Wortmann, Benoit Combemale, and Olivier Barais. A Systematic Map-
ping Study on Modeling for Industry 4.0. In Conference on Model Driven Engi-
neering Languages and Systems (MODELS’17), pages 281–291. IEEE, September
2017.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen.
Aachener Informatik-Berichte, Software Engineering, Band 12. Shaker Verlag,
2012.

[Wor16] Andreas Wortmann. An Extensible Component & Connector Architecture De-
scription Infrastructure for Multi-Platform Modeling. Aachener Informatik-
Berichte, Software Engineering, Band 25. Shaker Verlag, November 2016.

[Wor21] Andreas Wortmann. Model-Driven Architecture and Behavior of Cyber-Physical
Systems. Aachener Informatik-Berichte, Software Engineering, Band 50. Shaker
Verlag, October 2021.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Ku-
mardev Chatterjee, Andreas Horst, and Bernhard Rumpe. On Demand Data
Analysis and Filtering for Inaccurate Flight Trajectories. In Proceedings of the
SESAR Innovation Days. EUROCONTROL, 2011.

401

Bibliography

402

	Table of Contents
	Introduction
	Motivation and Problem Statement
	Research Questions
	Contribution
	Requirements and Objectives
	Transition to Real-World Systems
	Adaptability
	Variability
	Usability

	Thesis Structure
	Publications

	Model-Driven Method
	Roles
	Transforming Natural Language into a Web Application
	Transformer overview: LLM4CD
	Transformer overview: CD2GUI
	Transformer overview: MontiGem

	Tool Chain Overview

	Foundations
	Web Application Architectures
	Model-Driven Software-Development
	MontiCore
	Overview
	Symbol Table
	Templates
	Reports

	Class Diagram for Analysis
	Model Definition
	Classes, Interfaces and Enumerations
	Attributes and Predefined Data Types
	Associations
	Context Conditions

	Tagging
	Approach
	Common Tag Schema
	Common Tags

	Automated Domain Modeling with Large Lanugage Models
	Large Language Models
	Research Method
	Challenges
	Using proprietary Language Models
	Limited Context Length
	Hallucinations
	Overfitting

	Transforming Informal Specifications to a Structured Model
	Modelling with Large Language Models
	Creation of a CD4A model
	Creating a PlantUML CD
	Evaluating Semantic Correctness
	Iteratively correcting models using an LLM
	Adapting Existing Models

	Limitations
	Using LLM for MDSE
	MontiCore Feature Diagrams
	MontiCore Sequence Diagrams
	MontiArc
	Creating GUIDSL Models

	Defining GUI models for Information Systems
	Defining Graphical User Interfaces with GUIDSL v1
	Core Grammar
	Charts
	Tables
	Input & Output Elements
	Layouting
	Navigation
	Context Conditions

	Defining Graphical User Interfaces with GUIDSL v2
	Distinction with GUIDSL v1
	Basic Structure
	GUIComponent
	GUIGuard
	GUIIterate
	Context Conditions
	Library Components
	Defining a Model in GUIDSL v2

	Tagging in CD-Based Web Application Development
	Tag Schema for CD4A

	GUI-Model Derivation from Class Diagrams
	Research Method
	Schneidermann's Mantra: Some Core Pages
	Dashboard Page
	Class-Overview Page
	Object-Details Page

	Additional Pages for the Web Application
	Change Data Capture
	Navigatable UML Class Diagram
	Global Search

	Architecture
	Template Usage
	Handling Inheritance
	Handling Abstract classes
	Handling Associations
	Handling Generics

	Further Artifacts Derived from Single Underlying Model
	Generated Role Based Access Control
	Generated Test Data

	Modifying Model Generation: Variability
	Template Replacement
	Using Stereotypes to Customize Generation of GUI-Models

	Modifying Generated Models: Adaptability
	Adaptability
	Handwritten GUI-model Extensions
	Adaptability Transformation
	Edge Cases

	Generator Framework for Enterprise Management: MontiGem
	Research Method
	Target Application
	Data Structure Generator
	Domain Model
	View Model
	Command Model
	Constraint Model
	Tagging

	Generator for Graphical User Interfaces
	Generator-Architecture
	Overview of Generated Artefacts

	Server Run Time Environment
	Used Server Architecture in MontiGem-Base Application
	Persistence Management in MontiGem-Based Applications
	Deploying MontiGem-Based Applications with Docker
	Command API
	Security

	Client Run Time Environment
	Apache HTTP
	Usage of Angular in the MontiGem Client

	Modifying Generated Code

	Case Study: Management Cockpit for Controlling: MaCoCo
	Motivation for MaCoCo
	The MaCoCo Use Case
	Requirements at MaCoCo
	Technical Requirements

	Implementing a Model-Driven Real-World Application
	Modeling Financial Management within MaCoCo
	Modeling Staff and Human Resources within MaCoCo
	Modeling Projects and Time Tracking within MaCoCo

	Extending MontiGem to Generate MaCoCo
	Used Domain-Specific languages
	MaCoCo-Specific Extensions

	Lessons Learned from the MaCoCo Project

	Further Applications Studies
	Agile Data Dev - Data Management for Wind-Turbine Engineering
	Evaluation and Lessons Learned

	InviDas - Interactive, Visual Data Rooms for Sovereign, Data Protection Decision-making
	Evaluation and Lessons Learned

	Ford Pro Tool Tracking Platform
	Evaluation and Lessons Learned

	Usage as a LCDP in Teaching
	The A12 LCDP
	The Application Modeling Process
	Results and Lessons Learned

	Consulting Use Case
	Fenix / MontiGem 3

	Discussion of the Approach
	Methodology
	Using LLMs to transform natural Language into Domain Models
	Transforming the domain model into GUI-models
	Generating an Information System

	Software Engineering with Low-Code Development Platforms
	Definition
	Mendix
	OutSystems

	Software Engineering with Large Language Models
	Software Generation with Large Language Models
	MontiCore-Based Systems
	MontiDEx
	MontiWis
	MontiTrans

	Technology Readyness of MaCoCo

	Conclusion
	Summary
	Results
	Model-Driven Development for Information Systems
	Using Large Language Models for Model-Driven Development
	Transforming Domain Models to Application Models
	Technology Readyness Level of Produced Web applications
	Limitations

	Bibliography
	Code Listings
	Domain Models
	Freemarker Templates
	GUI-models
	Few-Shot Learning Example Files
	MontiArc
	Sequence Diagrams
	Feature Diagrams
	Examtask

	CD4A-Models containing Syntax Errors

	Diagram and Listing Tags
	List of Figures
	Listings
	List of Tables
	Glossary

