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Abstract
Model-driven engineering exploits models as first-class artifacts to tackle the complexity

and heterogeneity of large software systems. Such models can be built with domain-specific
languages (DSLs) that enable higher-levels of abstraction and also facilitate separation
of concerns and reuse. Unlike general-purpose languages, a DSL allows specification of
system aspects by using the terminology of the domain. This, in turn, enables domain
experts—who rarely have software engineering skills—to become directly involved in the
development process.

In textual, grammar-based languages, an abstract syntax tree (AST) technically
represents the model within a tool and thus serves as the central artifact for model
processing, e.g., for static analysis or code generation. Deriving the AST directly from
the grammar keeps it consistent with the concrete syntax [KRV07b] and, hence, reduces
maintenance efforts. Thus, the AST greatly depends on the grammar in terms of
both content and structure, leading to two drawbacks: First, since the AST does not
necessarily provide a model’s essential information (e.g., the element a name refers to) in a
straightforward manner, this complexity can hamper the development of tools processing
that model. Second, even small grammar changes can affect the AST that, in turn, may
require dependent tools to be updated.

Moreover, since heterogeneous languages are typically required to specify different
aspects of a software system, another problem is that models of those languages first
have to be integrated before they can be analyzed and synthesized together [DBC+15].
Therefore, each model has to have an interface to enable composition with other models
[HR13]. The composition can include models defined within the same language as well
as models of independent, heterogeneous languages. Again, the AST does not explicitly
exhibit a model’s interface but instead mixes it with other, unessential information.

To address the above issues, this dissertation aims to promote the development of
an additional structure (called ST) which captures (i) information that is essential for
processing models of a language as well as (ii) a language’s interface to enable composition
of models of both the same language and heterogeneous languages. Unlike the (generated)
AST, the ST can also contain information that is not directly defined in the model but
related to it (e.g., all states that are reachable from a specific state of an automaton).
Tools can employ the ST together with the AST to access the relevant information as
needed, which facilitates model processing.

An additional structure, however, requires development effort itself. To further an
efficient and effective development of STs, this dissertation presents a generic infrastructure
with reasonable defaults. Moreover, the infrastructure provides generic concepts and
mechanisms for defining model interfaces (as part of the respective STs) to allow an
efficient composition of heterogeneous models via their interfaces in a non-invasive
way. Thus, the models can be reused in various contexts. Furthermore, based on the



generic infrastructure, methods and patterns for developing language-specific STs are
elaborated. To reduce the amount of handcrafted boilerplate code as well as the number
of programming errors, a generative approach is employed, which produces parts of
the language-specific ST infrastructure and provides ways for efficiently extending and
customizing it. The generated ST targets essential elements of a language which are
unlikely to change.

Ultimately, the proposed ST approach (including its concepts and methods) simplifies
the development of tools for model processing by explicitly providing the essential
information of a model. In addition, the maintenance of such tools will be improved,
since, compared to the AST, the ST is more robust against changes in the grammar.
Finally, the proposed ST approach provides model interfaces more explicitly, thereby
facilitating the composition of models even from heterogeneous languages.



Kurzfassung
In der Modell-getriebenen Softwareentwicklung werden Modelle als Kernartefakte

verwendet, um die Komplexität und Heterogenität von großen Softwaresystemen zu
beherrschen. Dabei können die Modelle mittels Domänen-spezifischer Sprachen (DSLs)
erstellt werden, welche eine höhere Abstraktion ermöglichen und außerdem die Tren-
nung unterschiedlicher Aspekte und deren Wiederverwendung erleichtern. Anders als
Allzweck-Programmiersprachen, können die Systemaspekte mithilfe einer DSL in der
Terminologie der jeweiligen Domänen spezifiziert werden. Auf diese Weise können
Domänenexperten, welche selten Erfahrungen in Softwareentwicklung haben, direkt in
den Entwicklungsprozess involviert werden.

In textuellen, Grammatik-basierten Sprachen wird ein Modell technisch durch einen
abstrakten Syntaxbaum (AST) innerhalb eines Werkzeugs dargestellt. Der AST dient
dabei als zentrales Artefakt für die Modellverarbeitung, zum Beispiel für statische
Analysen oder für die Code-Generierung. Wird der AST direkt aus der Grammatik
generiert, bleibt er konsistent mit der konkreten Syntax [KRV07b] und reduziert so den
Wartungsaufwand. Als Konsequenz ist der AST sowohl inhaltlich als auch strukturell
stark von der Grammatik abhängig, was zwei Nachteile mit sich bringt: Zum einen liefert
der AST die essentiellen Informationen eines Modells (z.B. das Element, welches durch
einen Namen referenziert wird) nicht notwendigerweise in einer gut aufbereiteten Form,
was die Entwicklung von Werkzeugen zur Verarbeitung des Modells erschweren kann.
Zum anderen können sogar kleinere Änderungen an der Grammatik den AST betreffen,
was wiederum eine Anpassung der davon abhängigen Werkzeuge erfordern kann.

Um die verschiedenen Aspekte eines Softwaresystems zu spezifizieren, werden ty-
pischerweise heterogene Sprachen benötigt. Dabei müssen die Modelle dieser Sprachen
erst integriert werden bevor sie gemeinsam analysiert und synthetisiert werden können
[DBC+15]. Dazu muss jedes Modell eine Schnittstelle zur Verfügung stellen, um eine
Komposition mit anderen Modellen zu ermöglichen [HR13]. Eine solche Komposition
kann sowohl Modelle derselben Sprache als auch Modelle aus unabhängigen, heterogenen
Sprachen beinhalten. Der AST ist dafür nur teilweise geeignet, da er die Schnittstelle eines
Modells nicht explizit zur Verfügung stellt, sondern diese mit anderen, unwesentlichen
Informationen vermischt.

Das Ziel dieser Dissertation ist es die Entwicklung einer zusätzlichen Struktur (ST)
voranzutreiben, welche (i) Informationen erfasst, die essentiell für die Verarbeitung von
Modellen einer Sprache sind und (ii) die Schnittstelle einer Sprache zur Verfügung stellt,
um eine Komposition von Modellen aus derselben als auch aus heterogenen Sprachen
zu ermöglichen. Im Gegensatz zum (generierten) AST kann die ST auch Informationen
enthalten, die nicht direkt im Modell definiert diesem aber zugehörig sind (z.B. alle
erreichbaren Zustände, ausgehend von einem bestimmten Zustand eines Automaten).
Um die Verarbeitung von Modellen und somit den Zugriff auf die benötigten relevanten



Informationen zu vereinfachen, kann die ST zusammen mit dem AST von Werkzeugen
verwendet werden.

Des Weiteren präsentiert diese Dissertation eine generische Infrastruktur mit umfang-
reichen Standardimplementierungen, um die effiziente und effektive Entwicklung von STs
zu unterstützen. Die Infrastruktur stellt generische Konzepte und Mechanismen für die
Erstellung von Modellschnittstellen (als Teil der zugehörigen STs) zur Verfügung, um eine
effiziente, nicht-invasive Komposition von heterogenen Modellen über diese Schnittstellen
zu ermöglichen. Somit können die Modelle in verschiedenen Kontexten wiederverwendet
werden. Darüber hinaus werden basierend auf der generischen Infrastruktur Methodiken
und Entwurfsmuster für die Entwicklung von sprachspezifischen STs ausgearbeitet. Um
die Menge von handgeschriebenem Boilerplate Code und auch die Anzahl von Program-
mierfehlern zu reduzieren, wird ein generativer Ansatz angewendet, welcher Teile einer
sprachspezifischen ST generiert und Möglichkeiten bietet diese Teile effizient zu erweitern
und anzupassen. Die generierte ST fokussiert die essentiellen Elemente einer Sprache,
welche selten verändert werden.

Zusammengefasst vereinfacht der in dieser Arbeit vorgestellte Ansatz (mit den Konzepten
und Methodiken) die Entwicklung von Werkzeugen zur Modellverarbeitung, indem die ST
die essentiellen Informationen eines Modells explizit zur Verfügung stellt. Des Weiteren
wird die Wartung solcher Werkzeuge verbessert, da die ST (im Vergleich zum AST)
robuster im Hinblick auf Grammatikänderungen ist. Zusätzlich wird die Komposition von
Modellen aus heterogenen Sprachen vereinfacht, da die ST Modellschnittstellen expliziter
zur Verfügung stellt.
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Abdullah Celik, Peter Damm, Martin Hackenberg, Christoph Hommelsheim, Michael
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ich Euch hiermit etwas zurückgeben konnte. Meinen Geschwistern Misam, Pegah und
Navid Nazari danke ich für ihre endlose Unterstützung auf meinem Lebensweg und für
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Chapter 1

Introduction

Modern software systems are becoming increasingly complex and are pervasive in many
domains, such as energy management, intelligent transportation, smart homes, and
logistics (e.g., [FR07, Com15]). Prominent terms for complex software and software-
intensive systems are cloud-based systems, cyber-physical systems (CPS) [Lee08] and
internet-of-things (IoT) [AIM10]. They demand for distributed systems consisting of
heterogeneous components both physical and logical. Moreover, many stakeholders (e.g.,
domain experts, application developers, user interface designers, etc.) are involved in
the development process of such systems and address issues concerning different phases
ranging from design, implementation to deployment [CCF+15].

Manually managing the complexity and heterogeneity of such systems with general-
purpose languages (GPLs) is onerous and cost-intensive [FR07]. It further requires
solutions that are hardly reusable in different contexts and are limited to specific plat-
forms [KT08]. Model-driven engineering (MDE) [Sch06] tackles the complexity and
heterogeneity of large software systems via dedicated platform-independent models, which
describe various aspects of the system and that way enable separation of concerns. MDE
tools can process those models and transform them to platform-specific target code. This
approach not only facilitates reuse of the models for different contexts and platforms but
also enables each stakeholder to focus on a particular aspect of the system [CCF+15].

To efficiently and effectively process a model, essential information related to it must
be explicitly provided. Furthermore, several (heterogeneous) languages are required to
specify different aspects of a software system [VWH09]. Hence, models of those languages
must be integrated in order to be analyzed and synthesized together [DBC+15]. Therefore,
each model has to provide an explicit interface to enable composition with other models
[HR13]. The composition includes models defined within the same modeling language
(e.g., class diagrams) as well as models of independent, heterogeneous modeling languages
(e.g., class diagrams and statecharts). The latter in particular requires mappings between
the models’ interfaces [Rum13]. Modeling languages can be composed themselves, e.g.,
to enable model parts of a language to be embedded in models of other languages. For
this, each language must exhibit an interface. In this respect, language composition can
be considered as a special kind of model composition [Völ11].

Hence, the aim of this thesis is to support the language engineer (cf. Section 3.8) in
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Chapter 1 Introduction

efficiently developing an infrastructure for capturing (i) information she deems essential
for processing models of the language as well as (ii) model interfaces (determined by
the modeling language’s interface) to enable composition of models of both the same
modeling language and heterogeneous modeling languages.

The remainder of this chapter is structured as follows. Section 1.1 introduces the
context of this thesis and in particular previous work on which this thesis builds on.
Further related work is discussed throughout the respective chapters. Section 1.2 states
the research question of this thesis and outlines the thesis’ main contributions to it.
Finally, Section 1.3 outlines the structure of the current thesis.

1.1 Context of the Thesis

Language workbenches facilitate the development of modeling languages [Fow10]. The
language workbench MontiCore [GKR+06, GKR+08, KRV08b, Kra10, KRV10] has been
developed at the chair of Software Engineering at the RWTH Aachen university. It allows
for an efficient and effective development of grammar-based, textual modeling languages.
In MontiCore the abstract syntax tree (AST)1 of a language is automatically derived
from the grammar in order to keep it consistent with the concrete syntax [KRV07b]. That
way, the AST holds the information (directly) defined in a model and can be employed,
e.g., for code generation.

The AST, however, yields two major limitations. First, the AST highly depends on
the grammar in terms of both content and structure (cf. [Fow10]). Therefore, it does
not necessarily provide a model’s (essential) information including its interface in a
convenient way. Moreover, resulting from its tree-like structure, it does not allow for
references between nodes, e.g., from different subtrees. Therefore, approaches such as
[HM03, VS10, Bet13] offer ways for direct references between AST nodes2. Second, even
small grammar changes can affect the AST that, in turn, may require dependent tools to
be updated.

In order to tackle the above described limitations of an AST and at the same time
provide relevant model information, Völkel employs so-called symbol tables (STs) [Völ11],
where a symbol table consists of generic namespaces and language-specific symbol table
entries (STEs)3. A STE represents a model element and its associated information.

1The AST is a tree representation of a parsed model and omits irrelevant syntactical information, such
as semicolons or opening and closing brackets of a block.

2Older MontiCore versions allowed for simple references between AST nodes [KRV07b]. This feature
has been removed in the current MontiCore version 4 since it, among others, hampers composition of
models of different languages.

3Please note that the term “symbol table” used in [Völ11] goes beyond the classical definition where
a symbol table allows “to find the record for each name quickly and to store or retrieve data from
that record quickly” [ALSU06]. In Section 3.8 we define the term as understood in this thesis (and in
MontiCore).
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1.1 Context of the Thesis

The current thesis builds on lessons learned from the work done in [Völ11]. We follow
Völkel’s approach to introduce an additional structure (i.e., the ST) besides the AST for
the following reasons:

• An additional structure can represent the language’s essence. i.e., its essential model.
This includes essential information of a model such as its interface, which allows
for encapsulating unnecessary information following Parnas’ information hiding
principle [Par71, Par72]. Fowler suggests to always create an essential model (which
he calls semantic model4), among others, for the following reasons (cf. [Fow10]):

– While the AST corresponds to the grammars structure, the essential model can
differ substantially from it (as described above). In particular, the essential
model is rarely a tree.

– The essential model can be employed to test a model’s semantics independently
from the parsing process. In particular, different languages with different
syntaxes can yield the same essential model.

– Basing the code generation on the essential model, decouples it from the
(abstract) syntax tree, and hence, from the grammar. Consequently, grammar
evolution does not impact the code generation process as long as the essential
model remains unchanged.

• The ST can contain information that is not directly defined in the model but
somehow related to it. For example, a ST for a Java class can contain all direct
and indirect supertypes of that class. Another example is a ST for a state of a
statechart. That ST can provide information about all reachable states of the state.
This especially facilitates the processing of the model since all relevant information
is available in a convenient way.

Following a component-based software engineering approach [McI68], Völkel [Völ11]
extended MontiCore with an infrastructure for a compositional development of a modeling
language’s concrete syntax, abstract syntax, symbol table5, and context conditions. While
his approach enables a declarative, generative approach for the concrete syntax as well
as the abstract syntax, it provides a generic infrastructure for ST development with
only little default implementations. However, many languages developed with this
infrastructure (e.g., [HRR+11, HRRS11, HKR+11, Sch12, HRR12, Nes13, RRW13b,
NPR13, HMSNR+15a, HHRW15, MSNR15a]) share many commonalities concerning
their symbol tables, which leads to much repetitive code among these languages. The
following gives an overview of major drawbacks and limitations regarding symbol tables
in [Völ11]:

4We omit the term “semantic model” to avoid confusion with “semantics” as defined in [HR04].
5In the current thesis, we consider the symbol table to be part of the abstract syntax. Section 3.8

elaborates on this.
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Missing link between AST and ST: AST and ST both offer important information
about the processed models. Hence, depending on the task one or both structures
are required. Therefore, they should be linked appropriately in order to allow access
to either one in an easy and efficient way. In [Völ11] this link is only given to a
certain extent.

Handcrafted boilerplate code: STs of different languages share many commonalities,
such as how names are resolved and how models are loaded. The infrastructure
provides reasonable defaults and (explicit) concepts for those commonalities only to
some extent. As a result, much handcrafted boilerplate code exists among the tools
developed with Völkel’s infrastructure, which all require testing and maintenance.
Providing default implementations as part of the generic infrastructure requires
them to be tested and maintained only once, which improves the quality of the ST
and increases its development efficiency.

Lack of methods and patterns: Furthermore, [Völ11] lacks comprehensive methods and
patterns for developing language-specific symbol tables. This, however, is essential
since implementing a ST requires a deep understanding of the underlying concepts.
Moreover, the implementation of a language’s ST can impact its composability
with STs of other languages.

Inconsistency issues: Some model elements span a namespace. A Java class, for example,
defines a namespace in which methods and fields can be defined. In [Völ11] the STE
and its spanned namespace are not linked. In particular, there exists no explicit
concept for a STE that spans a namespace. As a consequence, some information
must be stored redundantly in both. This, however, can lead to inconsistencies
between the STE and its spanned namespace which gives rise to different behavior
depending on which one is used.

Focus on generic instead of specific aspects: Name-based model composition requires
an underlying name resolution mechanism that finds the corresponding model
element. The infrastructure in [Völ11] enables name resolution only via the generic
namespaces, not via the language-specific STEs, emerging from the missing concept
of a STE that spans a namespace mentioned in the previous item. This yields the
drawback that the user of a ST (e.g., a code generator developer) must be aware
of the underlying generic mechanism of the infrastructure, instead of focusing on
specific aspects concerning the concrete language. This, among others, complicates
usage and is more error-prone if used in an unintended manner. Furthermore, the
resolution mechanism enables to compose models of heterogeneous languages by
conducting translations between their elements. Therefore, only a generic usage of
the ST guarantees the functioning of language composition, although the specific
STEs provide the information in a more convenient way.
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Inconvenient usage: Some important features of the ST can only be employed with
additional infrastructure provided by MontiCore. For example, a name resolution
cannot be started from a given namespace alone. Hence, it is not possible—at least
not without helper classes—to pass (parts of) the ST as a self-contained construct
to be used, e.g., for code generation. Instead, the required infrastructure must be
available as well.

1.2 Objectives and Main Results

The main research question of this thesis is:

How can a generative approach support the efficient development of infrastruc-
tures for explicitly providing essential model information and that way facilitate
processing of composed models from different, heterogeneous languages?

The essential information of a model is the same independent of its (syntactical)
representation (cf. [Bro87]) and is determined by the language engineer [HMSNR15b].
In particular, we aim at increasing development efficiency by reducing tedious work that
the language engineer has to conduct manually. For this, we are interested in generated
infrastructures to, among others, reduce the amount of handcrafted boilerplate code,
reduce the error-proneness and that way increase a language’s quality (cf. [VSB+13]).
Following [SV06, KT08] we also aim at reducing the amount of generated code. Ideally,
most of the code is part of a generic framework which not only “keeps the generator
simpler” [KT08] but also increases the understandability and maintainability of the
software. In MDE, heterogeneous languages are needed to specify the different concerns
of a software system (e.g., [VWH09, CDB+14]). However, composing models of such
languages requires additional effort, e.g., adaptation of their interfaces (cf. [Aßm03]).

The main contributions of this thesis are as follows:

• It provides a generic infrastructure called SMI (symbol management infrastructure)
for efficient and effective development of modeling language symbol tables. SMI
is integrated into the language workbench MontiCore. This thesis employs the
idea of STs as in [Völ11] for realizing essential model information including their
interfaces [HR13]. SMI provides reasonable defaults for concepts and mechanisms
of STs that occur in many—block structured and lexically scoped (cf. Chapter 3)—
modeling languages, e.g., [HRR12, Sch12, HMSNR+15a]. That way, it liberates
the ST engineer (i.e., the language engineer) to a large extent from handcrafting
boilerplate code.

• SMI is lightweight in the sense that it allows for developing self-contained STs, which
can be used in a functional manner and without further technical infrastructure.
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• SMI facilitates linking of AST and ST in both directions so that a ST user can
easily choose either one as needed [HMSNR15b].

• SMI provides a generic name resolution mechanism, which can be customized
for language-specific concerns. This mechanism enables name-based composi-
tion of models based on their interfaces (embodied in the STs). Composition of
heterogeneous models additionally requires composition of the respective hetero-
geneous languages in order to make the languages’ interfaces fit each other (i.e.,
adaptation [Aßm03]). The composition can be conducted in a non-invasive way
[HLMSN+15a, HLMSN+15b, HMSNRW16], i.e., the involved languages do not
have to be modified. Instead, glue code is needed (cf. [Aßm03]). This thesis focuses
on the composition of STs (but not the concrete syntax or the AST of the models.
For more information on these, please refer to [Völ11]).

• Several patterns for implementing language-specific STs with SMI are introduced
and their impacts on language composition are discussed.

• Moreover, this thesis presents concepts and methods that allow for keeping generic
(i.e., in SMI) and language-specific (i.e., handcrafted or generated) parts of the
ST consistent by avoiding redundancy between them. This enables ST engineers
to encapsulate the generic infrastructure so that ST users can focus on language-
specific aspects while preserving functioning of language composition. Moreover,
encapsulating the generic infrastructure liberates the user from understanding the
underlying technical concepts and mechanisms.

• Although SMI reduces the amount of handcrafted code by providing reasonable
defaults, it cannot completely eliminate boilerplate code. For example, language-
specific classes still need to be manually created and integrated into the framework.
In this thesis, we tackle this via a generative approach, which only led to a minimal
extension of the MontiCore grammar. This does not only reduce the amount of
handcrafted boilerplate code but also reduces the number of programming errors
and increases the conformance of generated code to coding standards [Rum12].

• Certainly, a full-fledged ST generation is not possible (at least for more complex
languages) since a language’s ST infrastructure highly depends on the language
engineer’s design decisions [HMSNR15b]. Therefore, this thesis presents some
approaches for efficiently extending and customizing the generated code based on
[GHK+15a, GHK+15b] in order to meet language-specific requirements. Further-
more, the generated infrastructure can serve as starting point for the ST engineer
since it, among others, demonstrates how language-specific parts are integrated
into the generic infrastructure. Since the ST is highly language-specific, we do not
introduce a new complex modeling language but instead allow the ST engineer to
customize and extend the (generated) ST via the GPL Java [HMSNR15b].
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1.3 Structure of the Thesis

Currently, SMI is already utilized in the following works (not necessarily by the author
of this thesis):

• NESTML, a modeling language family for spiking neurons [PBI+16]

• MontiArc, an architecture description language [HRR12] (migrated from older
MontiCore versions)

• Java 1.5 for MontiCore [Mul15]

• MontiJava, an extension of Java 1.5 [Mul15]

• Object Constraint Language (OCL) for MontiCore [Cel15]

• CD4Analysis, restricted UML/P class diagrams [Sch12, Rum16]

• UML/P object diagrams [Sch12, Rum16]

• JavaScript for MontiCore [Sie15]

• language family for robotics applications [HMSNR+15a] (migrated from older
MontiCore versions)

• MontiCore grammar language [Kra10] (migrated from older MontiCore versions)

• managing guided and unguided code generator customizations [MSNRR15]

• managing the composition of output-specific generator information [MSNRR16]

• UML activity diagrams [LN16] based on [Rei16]

• tagging language for component and connector models [MRRW16]

Many of the above listed projects have been developed simultaneously with SMI which
enabled to obtain fast feedback and improve SMI in the sense of its understandability for
the language engineers and users, its applicability, and its development effort.

1.3 Structure of the Thesis

This thesis is structured as follows:

Chapter 1 gives an overview of the motivation, the context, and the goals of this thesis.

Chapter 2 describes terms of the model-driven engineering approach and introduces the
MontiCore language workbench, which has been extended with the infrastructure
developed in this thesis.
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Chapter 3 elucidates core concepts and elements of a symbol table (as understood in
the current thesis) and gives for each a clear definition. Furthermore, it describes
the role of the symbol table as (part of) a modeling language’s interface.

Chapter 4 presents the technical infrastructure developed during this thesis. The in-
frastructure provides generic classes for the concepts introduced in Chapter 3.
Furthermore, Chapter 4 discusses several patterns for employing those generic
classes for language-specific symbol tables. Moreover, it gives a naming convention
for language-specific classes.

Chapter 5 presents a method as well as technical classes for building up a symbol table
from a given AST so that the ST can be utilized, e.g., for name resolution (see next
chapter). For this, it employs the technical classes introduced in Chapter 4.

Chapter 6 elaborates the general name resolution process developed in the current thesis
and its respective technical realization (based on Chapter 4). The resolution is
conducted on the symbol table (created as described in Chapter 5) and resolves
symbols, i.e., model elements, among others, via their names. That way, it enables
name-based model composition.

Chapter 7 applies some of the methods and technical classes introduced in the previous
chapters in order to generate (parts of) the language-specific symbol table infras-
tructure based on (marginal) extensions of the MontiCore grammar. It further
describes non-invasive ways for customizing the generated infrastructure.

Chapter 8 describes the extensions of the technical infrastructure (introduced in Chap-
ter 4) required for conducting language composition. Moreover, it describes how
language composition impacts the symbol table creation (cf. Chapter 5) and the
resolution process (cf. Chapter 6). Finally, we present a reference implementation
for the symbol table structure of Java-like languages.

Chapter 9 summarizes the main results of the thesis and outlines research tasks for
future work.
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Chapter 2

Model-Driven Engineering and the
MontiCore Language Workbench

This chapter introduces the model-driven engineering approach (cf. Section 2.1) and
gives an overview of concepts and features of the MontiCore language workbench (cf.
Section 2.2). The infrastructure of the present work extends MontiCore and further
builds on lessons learned from the infrastructure developed by Steven Völkel [Völ11].
Essential parts of Völkel’s work are elucidated throughout the respective chapters and
there compared with the work of this thesis.

2.1 Model-Driven Engineering

Software is increasingly pervasive in many domains such as energy management, health
care, intelligent transportation, smart homes, and logistics. Also, the complexity of
software-intensive systems as well as their (physical and logical) heterogeneity has risen.
The problem-implementation gap, i.e., the “wide conceptual gap between the problem
and the implementation domains” [FR07] impedes the development of such complex
software systems. In particular, this gap arises from the fact that the concepts used to
implement complex software systems (e.g., via general purpose languages, GPLs) are
lower than the concepts of the problem domain leading to the accidental complexity.
Manually overcoming this gap with (traditional) implementation approaches is both
time-consuming and labor-intensive [CCF+15].

Model-driven engineering (MDE)1 aims at narrowing down the problem-implementation
gap and thereby the accidental complexity by utilizing formal models as first-level
development artifacts for, among others, designing, automated analyzing as well as
synthesizing, deploying and maintaining software systems (cf. [Sel03, Sel06]).

The term “model” is not commonly defined in computer science [Sei03, Kü05]. There is,
however, widespread recognition—as in the current thesis—that a model is an abstraction
of the original it denotes by, for example, abstracting from unnecessary details [Rum16]
(cf. [Sta73, HBvB+94, Bal00, BG01, Sei03, Küh06, Sch12]). Furthermore, models define
specific aspects of a software system supporting separation of concerns.

1or Model-driven development (MDD)
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Workbench

Models can be expressed in various types of software languages, such as domain-specific
languages (DSLs) and GPLs. In contrast to GPLs (such as Java and C#), a DSL is
specialized for a designated domain and does not have to be executable. Some popular
DSLs are HTML [HTM] for specifying web documents and SQL [SQL11] for database
management. Throughout this thesis, we use the term modeling language (or solely
language) to refer to any language (DSL or GPL) that is utilized in the context of
modeling. For example, although Java is a GPL it can serve as an action language (cf.
[OMG13]). In this context we consider Java classes as Java models. Multiple models of
different modeling languages can be composed to define the whole software system. This
topic is elucidated in Chapter 8.

In particular, a language consists of concrete syntax, abstract syntax, context conditions
and semantics [HR00, HR04]. The concrete syntax determines the representation of a
language and can be textual or graphical (or a mixture of these) [GKR+07]. Textual
languages typically rely on tools such as ANTLR [PQ95, Par07], SableCC [GH98], and
ASF+SDF [BHD+01] for producing parsers (cf. [Völ11]). In contrast, graphical languages
are built with frameworks such as the Eclipse Graphical Modeling Project (GMP) (or
Eclipse Graphical Modeling Framework, GMF) [www16m, Gro09], Microsoft DSL Tools
[CJKW07], or MetaEdit+ [KLR96, Met16] to provide a graphical notation (e.g., boxes
and lines).

The abstract syntax of a language represents its internal structure consisting of the
essence of that language [CvdBCR15]. It omits semantically irrelevant information, such
as syntactic sugar. The abstract syntax can to some extent be generated from a grammar
definition as, for example, in the MontiCore language workbench (cf. Section 2.2). Some
approaches separate the specification of abstract and concrete syntax to allow that“several
concrete syntaxes can be mapped to one abstract syntax” [HHJ+08]. Alternatively, the
abstract syntax can be specified via meta-models using, for example, the Eclipse Modeling
Framework (EMF) [SBPM09]. In textual languages, the parsed models are represented by
a tree structure called the abstract syntax tree (AST). In the current thesis, the abstract
syntax consists of both the AST and the symbol table (cf. Section 3.8).

Context conditions [HR00] are rules (i.e., boolean predicates) operating on a languages
abstract syntax to statically check its consistency (cf. [ALSU06]). A model is said to be
well-formed if it fulfills all context conditions of its language. Context conditions can also
employ type systems [Car97] for the well-formedness check. For this, attribute grammars
[Knu68] can be applied, especially, to resolve the type of complex expressions.

The semantics determines the meaning of a language and can be specified via mathe-
matical constructs (denotational semantics), abstract machines (operational semantics), or
transformations to an existing language (translational semantics) [Kle07]. Hans Grönniger
[Grö10] presents a framework for semantics of DSLs mapped to a theorem prover.

Code generators play an essential role in MDE as they embody the knowledge for
bridging the problem-implementation gap by transforming “a set of input files to a set
of executable output files” [Sch12]. In particular, two kinds of transformations can be
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distinguished, namely model-to-model (M2M) and model-to-text (M2T) [CH03, CH06].
M2M transforms an input model to an output model typically based on the abstract
syntax (e.g., meta-model), and therefore, requires the abstract syntax of both models. The
input and output models can be specified by the same language or by different languages.
In contrast, M2T transforms the input model to a string output (of a GPL), which does
not have to adhere to a specific abstract syntax. Popular examples are template-based
code generators build on engines such as FreeMarker [www16d] and Velocity [GC03].

MDE has already been successfully applied as in, e.g., [WWM+07, Rai05, KR05, SV06,
VRKS13]. A famous model-driven approach is the Model Driven Architecture (MDA)
[OMG03] of the Object Model Group (OMG). The main idea of MDA is to develop
abstract platform-independent models and successively transform them to more concrete
platform-dependent models. For this, MDA provides three kinds of models, namely a
computation independent model (CIM), a platform independent model (PIM), and the
platform-dependent model (PSM). By applying these, MDA, among others, aims at
increasing the portability and quality of the software system. MDA builds upon several
other standards and specifications of OMG, such as the Unified Modeling Language
(UML) [OMG15c], the Meta Object Facility (MOF) [OMG15b], the XML Metadata
Interchange format (XMI) [OMG15d], and the model transformation language family
QVT [OMG15a].

2.2 The MontiCore Language Workbench

In order to support the development of modeling languages many authors suggest so
called language workbenches (e.g., [Fow10, Gho10, VBD+13]). A language workbench,
among others, aids in specifying a language’s meta-model (or grammar) and also provides
mechanisms for analyzing, manipulating and transforming a language’s models.

This thesis builds on MontiCore, a language workbench for textual DSLs which has been
developed at the chair of Software Engineering at the RWTH Aachen University. Recently,
MontiCore has the version 4. The remainder of this section introduces relevant aspects of
this version (referred to as MontiCore 4 or solely MontiCore). Detailed information about
previous versions and general concepts—which also partly apply to MontiCore 4—can be
found in [GKRS06, GKR+06, KRV07a, KRV07b, KRV08a, KRV08b] as well as in the
PhD theses of Holger Krahn [Kra10], Steven Völkel [Völ11], and Martin Schindler [Sch12].

MontiCore 4 is a lightweight, API-based language workbench developed with Java. It
employs Apache Maven [www16a] for build management. In MontiCore the concrete
syntax of a modeling language is defined via a grammar. The grammar also specifies the
AST which together with the symbol table embodies the abstract syntax of a modeling
language (cf. Section 3.8). Same as previous MontiCore versions, type systems are based
on visitors and Java. Semantics is realized by means of translations (i.e., translational
semantics [Kle07]) to target code via code generators.
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Workbench

In contrast to previous versions, MontiCore can be used (to some extent) in a functional
manner, i.e., all needed arguments are explicitly given when objects are instantiated or
methods are called. Particularly, this means that main components such as parsers and
the generator engine do not rely on implicit infrastructure classes in order to conduct
their specific tasks. As a consequence, MontiCore’s components are modular and easy to
use. While in previous MontiCore versions a DSL tool (i.e., a tool for processing models
of a DSL) is manifested in a technical class (named DSLTool), in MontiCore 4 a DSL
tool exists only conceptually by defining a workflow of processing steps via the provided
API.

Figure 2.1 depicts the general architecture of a DSL tool developed with Monti-
Core. The workflow execution component provides functionality to set and configure the
workflows that have to be executed on the input models, such as parsing and context
checks. The concrete execution order is specified with Groovy [KLK+15, www16f], a
dynamic language developed for the Java platform. The parser transforms the textual
input models to an internal AST structure. The AST (together with the symbol table, cf.
Section 3.8) is the central structure of the model processing. The function library consists
of common functionalities provided by MontiCore’s runtime project2, e.g., for logging and
file handling. Finally, the generator engine (also part of MontiCore’s runtime) produces
artifacts for, e.g., code and reports. It is based on the open source, template-based
FreeMarker engine [www16d].

template

model

code,

report,

etc.

(groovy)

script

workflow

execution

function

library

parser
generator

engine
AST

DSL Tool

CpD

specifies
workflow
execution

input
models

available
workflows

e.g., logging and
context conditions

based on FreeMarker input/output

access/use

Key

Figure 2.1: General architecture of a DSL tool in MontiCore.

2see https://github.com/MontiCore/monticore/tree/master/monticore-runtime

12

https://github.com/MontiCore/monticore/tree/master/monticore-runtime


2.2 The MontiCore Language Workbench

generate(String templateName,

Path file,

ASTNode node,

Object� templateArguments)

GeneratorEngine CD

«RTE»

�Path getOutputDirectory()

boolean isTracing()

GeneratorSetup
� �

* 1

states whether the output
should contain tracing 
information

directory of
generated code

Figure 2.2: The GeneratorEngine class starts the generation process. It can be con-
figured with the GeneratorSetup class.

MontiCore’s generator project3 itself is a DSL tool for processing grammars (as input
models). The typical procedure for processing a MontiCore grammar is as follows:

1. First, some initialization is conducted, e.g., the infrastructure for loading grammars
is initialized.

2. Grammars are loaded and the resulting AST is checked for well-formedness.

3. A parser is generated for each grammar using ANTLR.

4. The grammar AST is transformed to a class diagram AST (CD AST) which then
is decorated with further methods.

5. Then, the CD AST serves as input for generating some parts of the language-
specific infrastructures, i.e., AST classes, the visitor infrastructure, the symbol
table infrastructure, and the context condition infrastructure.

6. Finally, some reports are generated.

This workflow is specified with the Groovy script listed in Appendix C.

2.2.1 Generator Engine

The GeneratorEngine class conducts the M2T transformation in MontiCore. The
applied concepts are based on [Sch12]. As depicted in Figure 2.2, GeneratorEngine
solely provides the method generate which starts the template-based generation with
the template templateName using FreeMarker. The node parameter represents the
model or model element which serves as input. The output is generated into the specified
file. If no absolute path is given, the output will be stored into the file relative
to the outputDirectory configured in GeneratorSetup. The last parameter of
GeneratorEngine, i.e., templateArguments allows for an arbitrary number of

3see https://github.com/MontiCore/monticore/tree/master/monticore-generator
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additional arguments that are passed to the template. The method isTracing of
GeneratorSetup states whether the generated code should contain information that
enables tracing back to the input AST.

2.2.2 MontiCore Grammar

MontiCore provides an extended grammar format based on EBNF which enables specifying
productions for the lexer as well as for the parser. A production consists of a left-hand
side (LHS) and also defines a right-hand side (RHS) except for interface, abstract, and
external productions described below. MontiCore’s grammar specifies both the concrete
and (parts of) the abstract syntax [KRV07b], and therefore produces respective parsers
and AST classes. Additionally, MontiCore allows for grammar as well as production
inheritance.

Lexical Productions

A lexical production is specified by a regular expression. Listing 2.3 defines the Name
production via the keyword token. Lexicals are mapped to strings in the respective
AST node.

MCG
1 token Name =
2 ( ’a’..’z’ | ’A’..’Z’ | ’_’ | ’$’ )
3 ( ’a’..’z’ | ’A’..’Z’ | ’_’ | ’0’..’9’ | ’$’ )*;

Listing 2.3: Lexical production Name of Lexicals grammar.

Terminals

Terminals are atomic elements specified in the RHS of a production between quotation
marks, e.g., "x" in Listing 2.4 (line 2). Terminals are not part of the generated AST
classes since the information is not semantically relevant.

There are, however, two exceptions. First, if the terminal is assigned a name, e.g.,
type:"class", a respective string attribute is generated in the AST. Second, optional
terminals, i.e., in alternatives or marked with ?, between square brackets result in a
boolean attribute in the AST class, e.g., ["initial"]?.

Class Productions

Class productions are the default in MontiCore, and hence, do not require a dedicated
keyword. They are called class productions since they are mapped to AST classes.

14
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MCG
1 // use of terminal and lexical
2 A = "x" Name;
3 // optional nonterminal
4 B = A?;
5 // alternative nonterminals
6 C = D | E;
7 // arbitrary number of nonterminals
8 D = A*;
9 // at least one nonterminal

10 E = A+;
11 // explicit nonterminal name
12 F = z:A?;

Listing 2.4: Examples of atomic nonterminal operators, i.e., ? (optional), |
(alternative), * (any number), and + (at least one).

The LHS of a class production defines the nonterminal’s name NT, leading to an AST
class ASTNT. The RHS defines the production’s body consisting of any combination of
lexicals, terminals and nonterminals. Listing 2.4 gives an overview of the atomic operators
for the RHS. These can be combined to form more complex constructions.

Optional nonterminals (line 4) are specified via ? and result in an optional field of the
(generated) AST node. In this example, the AST node of B, namely ASTB, defines the field
a of type Optional<ASTA>4. The name derived for the field is the nonterminal’s name
in lowercase. Similarly, alternatives specified via | result in optional fields (line 6). Hence,
ASTC contains the fields d and e of type Optional<ASTD> and Optional<ASTE>,
respectively. The * operator allows to specify an arbitrary number of nonterminals (line 8)
and leads to a list in the respective AST node. Hence, ASTD has the field List<ASTA>
a. This also applies for the + operator (line 10) which declares that a nonterminal must
occur at least once. To change a fields name in the AST, MontiCore’s grammar allows to
explicitly specify a nonterminal’s name. For instance, F = z:A? (line 12) leads to the
field Optional<ASTA> z in ASTF. Furthermore, MontiCore 4 introduces the syntax
x:(A || ",")+ which is a shorthand for x:A ("," x:A)*.

Interface, Abstract, and External Productions

MontiCore’s extended grammar format allows for two concepts known from object-oriented
languages, i.e., the definition of interface and abstract productions (or nonterminals).
Figure 2.5 shows an example of an interface nonterminal (left part) and the generated
AST structure (right part). Production I defines an interface nonterminal via the keyword

4see java.util.Optional (since Java 8), https://docs.oracle.com/javase/8/docs/api/java/
util/Optional.html
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interface I;

B implements I = "b";

C implements I = "c";

A = x:I*;

MCG
1

2

3

4

5

6

ASTA
«interface»

ASTI

ASTB ASTC

x

* CD

«GEN»

generates to...

Figure 2.5: Interface nonterminal in MontiCore grammar.

interface (line 1). Same as interfaces in object-oriented languages, the body (i.e.,
the RHS) is omitted, hence, no concrete syntax is defined. The nonterminals B and C
implement I and define their own RHS. Production A uses nonterminal I in its RHS
(line 6), and that way includes all nonterminals implementing I, i.e., B and C.

As it can be seen on the right side of Figure 2.5, the nonterminal hierarchy is reflected
in the class hierarchy of the respective AST nodes. That is, ASTI is an interface and
subtyped by ASTB as well as ASTC.

Similarly, an abstract nonterminal is introduced via the keyword abstract, has
no RHS, but results in an abstract AST node. Other nonterminals can extend it via
extends, e.g., B extends A where A is the abstract nonterminal.

Finally, external nonterminals (marked with external) define extension points that—
in contrast to interface and abstract productions—can only be specified in subgrammars.
For each external nonterminal NT MontiCore produces an AST node interface ASTNTExt.

An external production is similar to a slot as defined in [HHJ+08], i.e., it can be
replaced only once. In contrast, a hook can be replaced several times [HHJ+08], as
non-external productions in MontiCore. Please note that Henriksson et al. use the term
“replace”, resulting from the invasive composition approach which conducts composition
by transformation [Aßm03].

Component Grammar

A component grammar represents an incomplete grammar with designated extension
points (i.e., external, interface, or abstract nonterminals), analogously to abstract classes
in object-oriented languages. It is introduced via the keyword component before the
grammar keyword.

Component grammars are useful for creating a library of tokens and nonterminals.
The Lexicals grammar in MontiCore, for example, defines the token Name, which can
be used by any grammar via inheritance. For component grammars, MontiCore produces
AST classes but no parsers. Parsers are only generated for subgrammars if they are no
component grammars themselves.

As already mentioned, external nonterminals may only be concretized in subgrammars.
Hence, defining an external nonterminal always results in a component grammar. Same
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is true for interface and abstract nonterminals that are not extended within the grammar
they are defined in.

Grammar Composition

MontiCore employs grammar inheritance, among others, for (i) extending a grammar,
e.g., with new productions, and for (ii) conducting grammar embedding, e.g., by binding
an external production. In the current thesis these concepts are of particular interest since
they enable language inheritance and language embedding (cf. Chapter 8), respectively.

k

ggrammar G {

interface A;

B implements A = ...;

C = "c" A;

}

MCG
1

2

3

4

5

6

7

8

9

«interface»

ASTA

ASTB

ASTD

a

1

grammar K

extends G {

D implements A = ...;

}

MCG
1

2

3

4

5

extends grammar G

implements G’s interface
nonterminal A

only an AST class for
the additional nonterminal
D is produced

CD

«GEN»

ASTC

Figure 2.6: Example of grammar inheritance with respective AST classes.

Grammar inheritance allows for reuse and overriding5 of productions of other grammars.
The extending grammar inherits all productions of its supergrammars. Figure 2.6 shows
an example of grammar inheritance. Grammar G defines the interface nonterminal A as
well as the class nonterminals B and C. Grammar K extends G to reuse its nonterminals.
K additionally introduces the nonterminal D which implements A. As it can be seen in
the right part of Figure 2.6, only the AST class ASTD for the additional nonterminal in K
is produced. The AST classes of G are completely reused.

In grammar embedding nonterminals of a grammar are embedded into designated
extension points (e.g., external nonterminals) of another grammar. The former is the
embedded grammar whereas the latter is the host grammar. Technically, MontiCore
conducts grammar embedding via multiple grammar inheritance where a glue grammar
extends both the host and the embedded grammar. In the example shown in Figure 2.7,

5Production overriding can be employed in order to actually restrict the “extended” grammar, resulting
in grammar restriction (cf. [EGR12]).
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G and E are two independent grammars (e.g., specified by different language engineers).
Since G defines the external nonterminal A (line 3), it is a component grammar. The
right part of Figure 2.7 illustrates the emerging AST structure.

The third grammar K is the glue grammar which serves as configuration for embedding
the nonterminal D of grammar E into nonterminal A of grammar G. For this, K inherits
both G and E (line 2). Next, it specifies a production where A is the LHS and D the
RHS (line 4). As it can be seen in the right part of Figure 2.7, the AST class ASTA is
produced for the K grammar and extends the ASTAExt interface generated from the
external nonterminal A of grammar G. Additionally, ASTA contains ASTD of grammar E.

e

ASTD

k

gcomponent

grammar G {

external A;

C = "c" A;

}

MCG
1
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}
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}
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1
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CD
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�

ASTA

Figure 2.7: Example of grammar embedding with respective AST classes.

2.2.3 Generated Parsers

MontiCore uses ANTLR [PQ95, Par13] to generate a parser from a grammar. The parser
provides methods for each nonterminal (i.e., the respective AST node) to enable parsing
of a whole model as well as model parts.

As exemplified in Figure 2.8, the parser GParser is generated from the grammar G.
It provides three parsing methods for each nonterminal enabling different possibilities for
the input, i.e., path to the file name, a Reader6, or the content directly as a string. The
return value is wrapped in an Optional object which is present in case the parsing was
successful.

6see java.io.Reader, https://docs.oracle.com/javase/8/docs/api/java/io/Reader.html
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grammar G {

A = ...

B = ...

}

MCG
1

2

3

4
Optional<ASTA> parseA(String fileName)

Optional<ASTA> parseA(Reader reader)

Optional<ASTA> parseString_A(String content)

�

GParser

same for nonterminal B

parser for all nonterminals
of grammar G

methods for nonterminal A

CD

«GEN»

Figure 2.8: Example of a Generated Parser from a Grammar.

2.2.4 Generated Visitor Infrastructure

Model processing in MontiCore can be conducted by traversing the AST using the Visitor
Pattern [GHJV95]. While previous MontiCore versions follow a generic reflection-based
approach, MontiCore 4 employs a generative approach for producing statically type-safe
visitor interfaces. This section gives a brief overview of MontiCore’s visitor concept. A
detailed introduction and discussion can be found in [HMSNRW16].

MontiCore produces three kinds of visitors for each grammar, namely, a default visitor,
an inheritance visitor, and a delegation visitor. Figure 2.9 shows an example of a default
and an inheritance visitor.

grammar G {

interface A;

B implements A = ...;

}
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handle(ASTA node)
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visit(ASTB node)
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«GEN»

default visitor

Figure 2.9: Example of a default visitor and an inheritance visitor generated from the
grammar.
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Java

«GEN»

1 default void handle(ASTB node) {
2 getRealThis().visit(node);
3 getRealThis().traverse(node);
4 getRealThis().endVisit(node);
5 }

Listing 2.10: handle method of a default visitor. First, the node is visited. Then,
its child nodes are traversed. Finally, the endVisit method is invoked
on the node. The getRealThis method enables reuse of the visitor.

As it can be seen in Figure 2.9, the default visitor GVisitor provides four methods
for each (non-abstract) AST node. The handle method determines the order of the
other three methods, as shown in Listing 2.10. The visit and endVisit methods are
processed before and after a node is traversed, respectively. The traverse method
specifies the traversal strategy of the child nodes which by default is conducted using
a depth-first approach. The getRealThis method invoked in the handle method
(cf. Listing 2.10) is important for visitor reuse and is described below together with
the delegator visitor. Since non-class productions do not specify a RHS, no traverse
method is generated for them.

The default visitor calls the most specific method for each AST node. In order to omit
type introspection, MontiCore simulates double dispatching (cf. [HMSNRW16]). For
this, an interface ASTGNode is generated for each grammar G which solely provides the
accept(GVisitor) method to start the traversal on any visitor of the grammar. Each
AST node of G subtypes ASTGNode.

In order to process supertypes of the AST nodes, MontiCore also produces an inheri-
tance visitor, e.g., GInheritanceVisitor (cf. Figure 2.9). GInheritanceVisitor
subtypes GVisitor and overrides each handle method as shown in Listing 2.11.

Java

«GEN»

1 default void handle(ASTB node) {
2 // calls visit method of ASTA, i.e., ASTB’s super type.
3 getRealThis().visit((ASTA)node);
4 getRealThis().visit(node);
5 getRealThis().traverse(node);
6 getRealThis().endVisit(node);
7 // calls endVisit method of ASTA
8 getRealThis().endVisit((ASTA)node);
9 }

Listing 2.11: handle method of an inheritance visitor. Additionally to the default
visitor, it invokes the visit and endVisit methods of each supertype
of the AST node.
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Besides the methods already called in the respective handle method of GVisitor (cf.
Listing 2.10), the overridden handle method in GInheritanceVisitor additionally
calls the visit (line 3, Listing 2.11) and endVisit (line 8) methods of ASTA, i.e., the
supertype of ASTB.

Visitors for Grammar Inheritance

Visitors of supergrammars can be reused via subclassing. Figure 2.12 shows an example.
The top part depicts the generated visitor infrastructure for the grammars G and K
shown in Figure 2.6 (on page 17). As it can be seen in Figure 2.12, KVisitor extends
GVisitor and solely adds additional methods for ASTD.

Similarly, a concrete visitor of K extends a concrete visitor of G in order to reuse
the defaults for AST nodes of grammar G and implement the additional methods of
KVisitor (bottom part of Figure 2.12).

Please note that GVisitor does not provide a specific visit method for ASTD (since
nonterminal D is introduced in its subgrammar K), and thus, can only handle ASTD nodes
in the more general method visit(ASTA). This, however, can lead to undesired results,
and therefore, AST nodes should only be processed by visitors of their own language (cf.
[HMSNRW16]).

k

ASTD

handle(ASTD node)

visit(ASTD node)

traverse(ASTD node)

endVisit(ASTD node)

«interface»

KVisitor

ConcreteKVisitorConcreteGVisitor

additional
methods
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ASTD

CD

«GEN»

�

g

«interface»

ASTA

ASTB

«interface»

GVisitor

CD
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Figure 2.12: Example of visitor inheritance.

Visitors for Grammar Embedding

MontiCore conducts grammar embedding via multiple inheritance (cf. Section 2.2.2).
Since Java only allows for single inheritance, the respective visitors are reused via
delegation. For this, MontiCore produces a delegator visitor for each grammar.
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Figure 2.13: Example of a concrete delegator visitor.

Figure 2.13 shows the emerged delegator visitor infrastructure for the three grammars
introduced in Figure 2.7 (on page 18). The delegator visitor KDelegatorVisitor
implements KVisitor which itself extends the visitors of K’s supergrammars, i.e.,
GVisitor and EVisitor. Moreover, KDelegatorVisitor delegates to an instance
of either visitor, depending on the AST node to be processed.

For this, it is essential that the visitors make use of MontiCore’s realThis pattern (cf.
[Sch12]). In short, this means the keyword this should be omitted in the visitors, instead
the generated method getRealThis is to be used, as already shown in Listing 2.10 and
Listing 2.11. This allows for managing the handling of a node within the delegator visitor
and also share states between the single (independent) visitors when composing them.

By default, getRealThis points to the current visitor (i.e., this) and is changed in
the setRealThis method of a delegator visitor. The method is implemented in such a
way that it transitively sets the correct realThis reference of the visitors it delegates
to which can be composed themselves.

Listing 2.14 shows the initialization of a concrete delegator visitor of grammar K. The
visitor extends CommonKDelegatorVisitor (not shown in Figure 2.13) which provides
a default implementation of the KDelegatorVisitor interface. The constructor sets
the delegates, that are, the concrete visitors of G and E as well as the concrete visitor of
K in order to handle AST nodes of K. For all these visitors the realThis reference is
set to be the ConcreteKDelegatorVisitor instance.

2.2.5 Generated Context Condition Infrastructure

For each nonterminal NT of a grammar G MontiCore produces an interface named
GASTNTCoCo, as shown in Figure 2.15. The interface provides one check method with
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Java

«HC»

1 public class ConcreteKDelegatorVisitor
2 extends CommonKDelegatorVisitor {
3

4 public ConcreteKVisitor() {
5 setGVisitor(new ConcreteGVisitor());
6 setEVisitor(new ConcreteEVisitor());
7 setKVisitor(new ConcreteKVisitor());
8 }
9 }

Listing 2.14: Configuration of a concrete delegator visitor.

the AST node as its parameter. Concrete context conditions must implement the interface
to define well-formedness checks for the represented model element.

Additionally, the GCoCoChecker class is generated (cf. Figure 2.16) which allows
to group context conditions and process them on respective AST nodes. In order
to register context conditions, it provides a dedicated addCoCo(ASTNT) method for
each nonterminal NT. GCoCoChecker is a visitor (it subtypes GVisitor) and that
way enables to conduct the registered checks on a given ASTNT node via the method
visit(ASTNT). Moreover, being a visitor, GCoCoChecker also allows for checking
AST subtrees. For this, it provides the method checkAll(ASTGNode) which starts
the check with any AST node of the G grammar and continues with its subnodes (using
the visitor’s traverse method).

grammar G {

NT = ...

}

MCG
1
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3

check(ASTNT node)

«interface» 

GASTNTCoCo

enables checking
well-formedness
of ASTNT nodes

check(ASTNT node)
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context condition
for ASTNT node

handcoded

CD
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Figure 2.15: Example of a generated context condition interface for a specific AST node.

2.2.6 Paths in MontiCore

Based on Apache Maven’s standard directory layout [www16a], MontiCore provides
several paths for the input artifacts and an output path for the generated artifacts. The
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Figure 2.16: Generated context condition checker for the grammar shown in Figure 2.15.

following list summarizes these paths. The information in parentheses refers to the default
paths when running MontiCore standalone (e.g., via command line).

Grammar Paths: Paths to input grammars. The default is src/main/grammars (stan-
dalone: grammars).

Handcoded Java Paths: Paths to handwritten Java code. This, above all, enables
efficient integration of handwritten and generated code, as described in Section 7.14.
By default, the path is src/main/java (standalone: java), i.e., the same path
as for the productive code.

Model Paths: Model dependencies are resolved in these paths. By default, it contains
the grammar paths described above.

Template Paths: Paths to templates (i.e., .ftl files) that are to be integrated into the
code generation process. Standardly, it is src/main/resources (standalone:
resources).

Output Path: The path in which the generated code is produced. By default, it is
target/generated-sources/monticore/sourcecode (standalone: tar-
get/sourcecode). For a grammar G in a package p, MontiCore additionally
generates a language’s components in dedicated subdirectories of p/g/, that are:

ast: contains the generated AST classes.

cocos: contains the generated context condition infrastructure.

parser: contains the generated parser infrastructure.

symboltable: contains the generated symbol table infrastructure (cf. Chapter 7).

visitor: contains the generated visitor infrastructure.
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All subdirectories statically depend on _ast. Moreover, _symboltable depends
on _parser and _visitor.

MontiCore provides the class MontiCoreConfiguration which enables access to
the specified paths.

2.2.7 Licensing

MontiCore 4 (including the results of this thesis) is open source and hosted in its own
repository (see [www16j]) in GitHub [www16e]. While the Java code of MontiCore’s
runtime and generator projects is available under the GNU LGPL V3 license [GNU07],
templates and generated code are available under the BSD-3-Clause license [BSD99].

In summary, that means:

• Developers are free to modify and extend the generated code as needed.

• It is not necessary to mention that MontiCore was used, e.g., for generating code.

• It is allowed to use the generated code in closed source and commercial software.

• Only changes that directly concern MontiCore must be published under LGPL.

2.2.8 Related Language Workbenches

The following comparison of language workbenches is partly based on the Language
Workbench Challenge7 [EvdSV+13, EvdSV+15] where a more comprehensive discussion
can be found. Moreover, for a comparison of previous MontiCore versions with other
language workbenches, please refer to [GBU08, PP08, Kra10, Völ11, Sch12].

Same as MontiCore, the language workbenches Xtext, Spoofax, SugarJ, and Rascal
use a textual notation, but, in contrast to MontiCore, all are built on the Eclipse IDE
[www16c]. Xtext [EB10] is EMF-based [SBPM09, www16b] and employs Ecore as its
underlying meta-model8. Same as MontiCore, Xtext is grammar-based and utilizes the
ANTLR parser generator. Also, Xtext’s grammar enables the definition of both the
concrete as well as the abstract syntax. Xtext provides the Java-like language Xtend for
specifying the code generation.

Spoofax [KV10, www16n] is a language workbench for textual languages based on
Eclipse. It exploits several declarative meta-languages such as SDF [Vis97] for defining
context-free grammars and Stratego [BKVV08] for code generation as well as AST
transformation via rewrite rules. SugarJ [ERKO11, www16l] combines some of these
meta-languages together with a type system DSL [LE13] into a base language, which

7see Language Workbench Challenge website http://www.languageworkbenches.net/
8Since recently, Xtext is also available for the IntelliJ IDE (see http://www.xtext.org).
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can be extended via a library-based approach. Sugarclipse [EKR+11] is an IDE for
SugarJ based on Spoofax. Same as Spoofax and SugarJ, Kermeta employs dedicated
meta-languages to specify the different concerns of a language [JBF11, JCB+15]. The
abstract syntax (or meta-model) of a language can be defined with a meta-language that
is based on EMOF [OMG15b]. Another meta-language based on the Object Constraint
Language (OCL) [OMG14] allows the language engineer to define a language’s static
semantics (i.e., a set of well-formedness rules). The dynamic semantics (or behavioral
semantics) is defined via the Kermeta language. In contrast to Spoofax, SugarJ, and
Kermeta, MontiCore specifies semantics (static and dynamic) in Java.

In projectional language workbenches such as MPS [VS10, www16h], Intentional
Domain Workbench [SCC06], Whole [Ric05], and Más [EvdSV+13, Mas16] (following
the trend of cloud-based tools [GR16]) the AST is the central artifact of editing. This
essentially means that neither a grammar nor a parser exists. In contrast, the AST is
manipulated directly and projected onto one or more notations. That way, both textual
as well as graphical (and also tabular) notations can be used. Some language workbenches
do not rely on a single approach. Onion, for example, combines textual parsing with
projectional editing [EvdSV+13].

Graphical language workbenches, such as MetaEdit+ [KLR96, Met16], Microsoft
DSLTools [CJKW07], and GME [LMB+01] focus on the development of graphical mod-
eling languages. AToMPM [SVM+13] is a web-based open-source framework for the
development of graphical languages. A language’s abstract syntax is specified with
a dedicated meta-model whereas models of other meta-models can be linked as well.
AToMPM’s view-based approach allows different users to work collaboratively on the
same model. AToMPM enables each user to utilize her own concrete syntaxes for the
same DSL.

Similar to MontiCore, the workbenches Xtext, Onion and Más rely on GPLs for
specifying other aspects than the abstract syntax (e.g., code generation); Xtext uses
both Java and Xtend, and Onion uses C#. Rascal [KvdSV09, www16k] relies on a single
language which combines several domain-specific features such as grammar definition,
AST traversal, and code generation. Most language workbenches enable code generation
via M2T or M2M (or both). In contrast, the workbench Ensō [vdSCL14] focuses on
model interpretation.

Same as MontiCore, JastAdd [HM03, EH07] employs a context-free grammar (called
abstract grammar) to declaratively specify the syntax of the language. From this, JastAdd
generates Java classes representing the AST and providing methods for manipulating
and accessing (e.g., traversing) it. Nonterminals result in abstract classes (same as
external, interface, and abstract nonterminals in MontiCore) while productions lead to
concrete (sub-)classes. The AST classes can further be augmented via so-called inter-type
declarations which allow for adding additional methods in an aspect-oriented manner
[KHH+01]. That way, JastAdd also adds synthesized and inherited attributes (as well
as equations) [Knu68] to the AST in the form of Java methods. The implementation
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of those methods again is Java-based. In order to prevent unexpected behavior, those
methods must not have any side-effects like mutating the AST node.

The Neverlang framework [VOSC14, VC15] follows a feature-oriented approach for
modular language development. Features are elements of a language (e.g., a while
construct), and can be processed in several evaluation phases, such as type checking and
code generation. A language component provides an implementation for a specific feature,
i.e., for its syntax and related semantics. Since a language component is self-contained, it
can be easily reused in various languages (with similar feature requirements).
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Chapter 3

Concepts and Elements for Symbol
Management

In this thesis, we focus on block structured, lexically scoped (or statically scoped) languages
since “[...] all important programming languages today permit the use of blocks [...]”
[GM10] and “[m]ost languages [...] use static scope” [ALSU06].

Block structured [CL83, ALSU06, Seb08, GM10] means, that the program (within a file)
is structured hierarchically by so-called blocks, which group declarations and statements
[ALSU06]. Algol-60 [BBG+63] was the first block structured language, followed by more
modern languages, such as C [KR88], Java [GJS+14], and C# [ECM06].

In lexically scoped languages the visibility of the defined elements can be determined
“by looking at the program” [ALSU06], hence, before the runtime [Sco09]. In contrast, the
visibility of elements in dynamically scoped languages (such as Logo, bash, PowerShell,
and Emacs lisp) can only be determined when the program executes, i.e., during runtime
[Wat04]. A major advantage of lexically scoped languages is that the well-formedness
can be checked statically, for example, by compilers.

A key concept of software languages is the definition of new elements with names and
their explicit use through these names (cf. [Wat04]). The underlying infrastructure often
is a symbol table, which enables to retrieve information about a specific model element,
called name resolution. According to Neron et al. “the basic concepts of resolution
reappear in similar form across a broad range of lexically-scoped languages” [NTVW15].
However, both the literature as well as the software languages often use different terms
for the same concepts and also same terms for different concepts (sometimes even
inconsistently) [Str00, Völ11]. Hence, the contributions of this chapter are as follows:

1. It introduces features and concepts many block structured, lexically scoped soft-
ware languages have in common, in particular, resulting from experiences gained
from many tools and languages developed with Völkel’s infrastructure [Völ11]
(on top of previous MontiCore versions [Kra10]), such as the UML/P languages
[Sch12, Rum16], JavaScript and TypeScript languages for MontiCore [Nes13], the
RoboTask language family [HMSNR+15a], software categories languages [NN14,
MSNR15a, MSNR15b], as well as MontiArc [HRR12, www16i] and its extensions
MontiArcHV [HRR+11], ∆-MontiArc [HRRS11, HKR+11], MontiArcAutomaton
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[RRW12, RRW13a, RRW13b, RRW14], cloudADL [NPR13], and MontiSecArc
[HHRW15]. The features and concepts also serve as requirements for subsequent
chapters. Although the current thesis introduces common language features by the
example of the general-purpose language (GPL) Java, it mainly focuses on DSL
engineering. A single DSL usually does not need all the features presented in this
thesis. In contrast, Java as a GPL is well known1 and has many relevant features,
such as shadowing, inheritance, packaging, top-level elements (e.g., classes), and
inner elements (e.g., fields).

2. It gives a clear definition for each of those concepts2 as well as

3. a simple graphical notation which then is used throughout this thesis.

Chapter Outline

Since the concepts are partly intertwined, the following Section 3.1 first gives a brief
introduction to the core concepts of a symbol table as understood in the current thesis
by the example of the Java language. Section 3.2 presents different forms of names in
software languages. The subsequent Sections 3.3 – 3.8 define the core concepts and
elements of the symbol table used in the current thesis, such as symbols and scopes. Next,
Section 3.9 presents a simple graphical notation for some of the previously introduced
elements. Section 3.10 defines encapsulated, imported, exported, and forwarded symbols
which determine the reachability of specific model elements. Finally, Section 3.11 gives a
method for finding candidates for symbols and scopes.

3.1 Introductory Example

The excerpt from the java.lang.System3 class (cf. Listing 3.1) defines overall six
elements, called declared entities in Java [GJS+14]:

• the package declaration java.lang (line 1)

• the class declaration System (line 3)

• the field declaration props (line 5)

• the method declaration getProperty (line 7)

• the parameter declaration key (line 7)

• the local variable declaration sm (line 9)

1According to the TIOBE index, Java is the most popular programming language of the years 2015 and
2016 (see http://www.tiobe.com/tiobe_index).

2Some of the definitions are already published in [HLMSN+15a, HMSNR15b].
3see https://docs.oracle.com/javase/8/docs/api/java/lang/System.html
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3.1 Introductory Example

Java

«MODEL»

1 package java.lang;
2 // ...
3 public final class System {
4 // ...
5 private static Properties props;
6 // ...
7 public static String getProperty(String key) {
8 checkKey(key);
9 SecurityManager sm = getSecurityManager();

10 if (sm != null) {
11 sm.checkPropertyAccess(key);
12 }
13 return props.getProperty(key);
14 }
15 // ...
16 }

Listing 3.1: Excerpt from the java.lang.System class.

Each of these entities has a name to be identified and referred to from other parts of
the program. For example, the variable sm is defined in line 9 and used in lines 10 and
11. In contrast, the return expression (line 13) does not have a name, and thus, cannot
be referenced.

Depending on its kind, each entity embodies specific (meta-)information. The class
System, for example, is public and final. Also, it contains the field props (line 5)
and the method getProperty (line 7), which has the return type String and a
parameter key. Furthermore, a program entity may only be defined in dedicated areas.
A package, for instance, may only be declared outside the class body (analogously for
enum or interface). In contrast, fields and methods must be declared within a class body.
We call those areas where the different program entities may be defined scopes. Scopes
affect the visibility of the containing entities. The parameter key (line 9), for example,
is only visible within its enclosing method scope (lines 7–14). Moreover, scopes can
be nested—the method scope is inside the class scope—leading to a hierarchical scope
structure.

The current thesis uses terms from the MDE world. That means, instead of program
entity [CWW80], we write model element (or just element if the meaning is clear). In
textual software languages usually different kinds of model elements can be defined each
containing its specific information. If those elements have a name, we call them named
model elements. In Java, those elements are called declared entities [GJS+14]. Further
synonyms (depending on the kind of language) are named object [GJR79], denotable
object [GM10], named entity [GJR79, CL83], entity [WCW88], declared object [GJR79],
and object [Sco09].
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3.2 Names in Software Languages

Names4 are a crucial part of textual software languages [GM10]. They enable defining
(or declaring) model elements and referring to them. Associating (or binding) a name
to the corresponding element definition is called name resolution (or name binding)
(cf. [GM10, KKWV13, NTVW15]).

Furthermore, expressive names help improving the readability of a model (cf. [Wat04]).
Therefore, some software languages state naming conventions (e.g., [GJS+14]). Also,
names play an essential role when composing models (i.e., name-based model composition)
[Rum13, HR13] (cf. Chapter 6 and Chapter 8).

A model element usually has (at least) two forms of names: a simple name and a
qualified name. The simple name [HLMSN+15a] (or unqualified name [Che05, Völ11],
single identifier [GJS+14]) is directly stated by the developer, such as System (line 3) and
props (line 5) in Listing 3.1 and is unique within the defining scope. The qualified name
[GJR79, ALSU06, Völ11, HLMSN+15a] (or fully qualified name [Che05, NTVW15])
uniquely identifies the entity throughout the system. Often, the qualified name is
a composition of the names of the enclosing elements. For example, the qualified
name of the class System in Listing 3.1 is java.lang.System, whereas java.lang
is the qualified name of its enclosing package and System the class’ simple name.
Analogously, the qualified name of the field props is java.lang.System.props,
with java.lang.System being the qualified name of its enclosing class and props its
simple name5. We use the terms “fully qualified name”, “qualified name”, and “full name”
interchangeably throughout this thesis.

Lastly, a combination of qualified and unqualified names can exist, namely partially
qualified names (or partial names) [Che05, NTVW15]. For example, System.props is
the partially qualified name of the field props in the System class (cf. Listing 3.1).

3.3 Symbols and Symbol Kinds

In order to access information of model elements (e.g., during generation time), their
information is stored in the symbol table (cf. Def. 3.15) where the name is mapped to the
associated information. The whole symbol table entry is called symbol (cf. [Par10, Völ11])
and is defined as follows [HLMSN+15a, HMSNR15b]:

4Following Strachey [Str00], we use the terms “name” and “identifier” interchangeably, in contrast to for
example [ALSU06, GJS+14].

5Please note that a Java field does not have a qualified name [GJS+14]. Instead, referring to
java.lang.System.props evaluates to the type of props, i.e., Properties (determined by
the type system). Hence, information regarding the field (such as modifiers) cannot be retrieved.
However, the language engineer needs those meta-information, for example, to develop well-formedness
checks (cf. Section 3.8).
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Definition 3.1 (Symbol (Definition)). A symbol definition (or short symbol) contains
all essential information about a named model element. It has a specific kind depending
on the model element it denotes. A symbol is defined exactly once.

While a symbol always has exactly one name, a named model element is not necessarily
represented by a symbol. Symbols are stored in a symbol table (cf. Def. 3.15). A symbol
(definition) as defined in Def. 3.1 comprises both the name of a model element and its
associated information, and thus, we do not use the descriptive term “symbol table entry”
as in, for example, [ALSU06] and [Völ11].

In the literature these two aspects, i.e., a name and its associated information, are
usually separated, following the table approach of classical symbol tables which map
a name to its associated information (e.g., [ALSU06, GM10, HR13]). Neron et al., for
example, use the term declaration (or binding occurrence, cf. [Wat04]) that “introduces a
name”[NTVW15] for, e.g., a variable. Similarly, Wolf et al. use the term declaration which
“introduces an entity and associates an identifier (name) with that entity” [WCW88].

A symbol for a Java class, for example, contains information about, among others,
the class’ name, its members (i.e., fields and methods), superclass, and implemented
interfaces. In contrast, a field symbol contains the type and name of the field element.
Consequently, which information a symbol contains depends on its kind, e.g., class or
field (cf. [Völ11]). Symbol kinds are an essential concept in the current thesis and impact
the resolution process (cf. Chapter 6) as well as language composition (cf. Chapter 8).

Definition 3.2 (Symbol Kind). The symbol kind determines which information a symbol
provides.

Besides the information that can be associated with a symbol, the kind enables
distinguishing same-named model elements of different kinds. As an example, a Java
field and a Java method defined in the same class may have the same name whereas
two same-named fields may not exist in the same class. For this, symbol kinds can be
organized hierarchically.

class memberfield is

a subkind

of class

member
field method

Figure 3.2: Symbol kind hierarchy by the example of class members.

Figure 3.2 highlights a simple symbol kind hierarchy (cf. Def. 3.2) by the example of Java
class members. Fields and methods in Java are class members and have some information
in common, e.g., they can be public and static. This information is summarized in the
more abstract class member kind. Further, each has its specific information leading to
the kinds field and method which both are of kind class member. Symbol kind hierarchies
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are not restricted to a single language but can also be applied among different languages.
That way, they increase efficiency of the language composition process (cf. Chapter 8).

Following the term “symbol table entry”, Völkel [Völ11] refers to a symbol kind as
“symbol table entry kind”. Konat et al. introduce so-called namespaces for the “different
kinds of names” [KKWV13] which is to some extend similar to our symbol kind concept.
For instance, a class contains (i.e., “scopes” [KKWV13]) a dedicated namespace for
methods and a dedicated namespace for fields. That way, methods and fields may
be same-named. In contrast to a symbol kind, a namespace in [KKWV13] does not
determine the information associated with the defined names. It rather is a scope (as
in our terminology) for specific kinds of symbols. Finally, Parr [Par10] uses the term
category which states “what kind of thing the symbol is”.

Please note that both Def. 3.1 and Def. 3.2 do not make a statement about the
abstraction level of a symbol or a symbol kind. The reason for this is that the abstraction
level strongly depends on the purpose of a language (cf. essential model in Section 3.8),
and thus, is a design decision of the language engineer [HMSNR15b]. For instance,
dedicated symbols can represent the different Java types, namely class and interface
(analogously enums). This follows from the fact that classes and interfaces in Java share
many commonalities, e.g., consisting of fields and methods and extending supertypes.
Furthermore, in most cases they cannot be distinguished in their usage, e.g., the type of a
field can be a class or an interface without syntactical differences between them. This also
applies for member accessing, e.g., prop.getName() does not (syntactically) indicate
whether the type of prop is an interface or a class. Following from this, instead of
defining two separate symbols, a single symbol can represent both classes and interfaces.
Certainly, there are still differences between classes and interfaces. To name a few, an
interface may not be declared as final and also cannot be instantiated.

Moreover, symbols can represent explicitly defined model elements as well as implicitly
defined ones (cf. [GM10]). Symbols can also provide information that is not directly
defined in the model element they denote but is somehow associated with that model
element (cf. [HMSNR15b]). A symbol for a Java class, for example, can provide a
transitive closure of all its visible methods, i.e., methods it defines itself and those it
inherits from its supertype hierarchy, excluding overridden and private methods. Finally,
a symbol can provide technical information concerning its represented model element,
e.g., output-specific code generator information [MSNRR16].

3.4 Symbol References

A symbol definition can be referenced from different parts of the program. The local
variable sm in Listing 3.1, for example, is defined in line 9 and referred to in lines 10 and
11. The referenced symbol does not need to be in the same model as, for instance, a
superclass in Java, which usually is defined in another file.
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Definition 3.3 (Symbol Reference). A symbol reference consists of the name and the
kind of the used symbol that is defined elsewhere, e.g., in another scope [HMSNR15b].

While there exists exactly one definition of a specific symbol, several references to that
symbol may (co-)exist (cf. [Wat04, Che05]). Same as definitions, a symbol reference
belongs to exactly one scope.

Depending on whether the referenced symbol is defined within the same model or in
another model, we distinguish between two types of references, as defined in Def. 3.4.

Definition 3.4 (Intra-Model- and Inter-Model References). While intra-model references
concern symbols within the same model inter-model references refer to symbols defined in
other models.

The term reference is used for the same concept in [Par10, KKWV13, NTVW15].
Some further terms are use site [KKWV13], and applied occurrence [Wat04, NTVW15].
Similarly, Völkel [Völ11] uses the term “reference” (in German “Referenz”) (but realizes it
differently, cf. Section 4.4.1). Throughout the current thesis, we use the terms “A refers
to B”, “A uses B”, and “A references B” synonymously.

Besides symbol references consisting of the name and the kind of the referenced symbol—
which forms the foundation for name-based model composition—, there also exist more
complex references. In Java, for example, a generic type invocation additionally states
one or more actual type arguments. This information is specific to the generic type
invocation (or reference), not the definition.

Java

List <Integer> xy;

field
name

field definition

field type

referenced
type’s name

actual type
argument

Figure 3.3: Distinction of symbol definition and reference by the example of a Java field.

Figure 3.3 highlights the difference by an example:

• The whole statement represents a field (or variable) definition named xy.

• The type of xy is a List of Integers (set via the generic type invocation
List<Integer>). List is a reference to the same-named generic interface
defined in package java.util.

• Further, the actual type argument is Integer (referring to java.lang.Integer).
Obviously, this information is associated to the generic type invocation and not to
List’s definition since other references can specify different type arguments, e.g.,
List<String> or List<Boolean>.
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Please note that—in contrast to, for example, [GJS+14]—neither the angle brackets of
generics (i.e., < and >) nor the squared brackets of arrays (i.e., [ and ]) are part of a
reference’s name, similar to [Völ11]. This is an essential aspect for the resolution process,
which, among others, is based on the correct name (cf. Chapter 6).

3.5 Scopes

In block structured languages, model elements are defined in specific areas, which
themselves can be nested. In the current thesis, we call those areas scopes (cf. [Par10,
NTVW15]) while other typical names are blocks [GJR79, CWW80, ALSU06, GM10], or
namespaces [Völ11]. We mainly use the term block to refer to the syntactical element
(e.g., between curly brackets) which spans a scope. If a strict distinction is not necessary,
we sometimes use “block” and “scope” interchangeably.

Definition 3.5 (Scopes). A scope holds a collection of symbol definitions (cf. [Par10])
and impacts their visibility (cf. Def. 3.6) [HMSNR15b, HLMSN+15a].

In general, three forms of block structures can be distinguished (cf. [Wat04]):

• Languages with a monolithic block structure (e.g., older versions of Cobol) consist of
only one block, leading to a single (global) scope, in which all symbols are defined.
A major drawback is that symbol names must be unique throughout the whole
program which, among others, impedes finding expressive names.

• An improvement was made by languages with flat block structure, such as Fortran,
where the programs are “partitioned into several non-overlapping blocks” [Wat04].
Consequently, two kinds of variables exist; those that are global to the whole
program and those that are local to the procedures in which they are defined.

• Finally, many modern languages have a nested block structure, where blocks can be
nested within other blocks. This was first introduced in ALGOL-60 [BBG+63] and
adapted in “ALGOL-like languages” [Wat04], such as C [KR88], Ada [Bar98], and
Java [GJS+14]. In the current thesis, we are particularly interested in nested block
structures since they are employed by many modern languages.

As mentioned above, a block (e.g., method block, if block, class block, etc.) spans a new
scope (cf. [Sco09]). Consequently, scopes within a model are structured hierarchically
[GJR79, CWW80, GM10] (in case of nested block structures), resulting in a tree-like
scope graph6 [CWW80, Seb08, HMSNR15b]. Thus, a scope has at most one direct
enclosing scope (or outer scope [GJR79], surrounding scope [CL83], surrounding block

6While the scope structure within a model is a tree, the emerged (logical) scope structure among models
(e.g., when considering superclasses) usually is a non-tree graph (cf. Section 3.10 and Chapter 6).
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[ALSU06], exterior block [GM10], ancestor [CWW80], parent scope [NTVW15]) and
several subscopes (or inner scopes [GJR79], interior blocks [GM10], subsequent scopes
[GJR79, KKWV13], descendant [CWW80]). Since this thesis focuses on lexically scoped
languages, the terms enclosing scope and lexical enclosing scope are used interchangeably
(cf. static parent or static ancestor [Seb08]).

Please note that while a scope can have only one direct lexical enclosing scope it
can have several imported scopes (e.g., scopes of supertypes in Java, cf. Section 3.10).
Throughout this thesis, we always explicitly distinguish between these kinds of scopes.
In contrast, for example, Parr [Par10] refers to both as parent scope, and further uses the
term enclosing scope as in our terminology. Languages with monolithic scopes [Par10]
consist of solely one scope, and hence, are nest-free [CWW80].

In the System class in Listing 3.1 (on page 31), the class scope defined in lines 3 to
16 encloses the method scope (lines 7–14), which itself encloses the if scope (lines 10–12).

Often, a scope (or its spanning block) is syntactically specified via a start and an end
construct [Wat04, ALSU06, GM10, Par10], such as:

• begin...end (e.g., ALGOL-60 [BBG+63], Pascal [Wir71], Ada [Bar98])

• curly brackets {...} (e.g., C [KR88], Java [GJS+14], UML/P languages [Sch12,
Rum16], MontiArc ADL [HRR12])

• round brackets (...) (e.g., Lisp [ABB+66])

• let...in (e.g., Haskell [HF92])

• let...in...end (e.g., ML [MTHM97])

3.5.1 Symbol Visibility

Definition 3.6 (Symbol Visibility). The visibility of a symbol is the logical region where
the symbol is potentially accessible7 by its (simple) name [HLMSN+15a, HMSNR15b] (cf.
[Völ11, GJS+14]).

The field props, for instance, is defined in the class scope (line 5, Listing 3.1), hence,
it is visible within the whole class. In contrast, the local variable sm is defined in the
method, and thus, cannot be accessed from outside the method where it is “out-of-scope”.

The term “scope” is not used uniformly, sometimes even contradictorily. Occasionally,
it is used as a synonym for visibility, e.g., “scope of a (name) declaration” (cf. [ALSU06,
GM10, Völ11, GJS+14]). Clarke et al. use these terms in combination, e.g., “scope of an
entity’s visibility” [CWW80]. Scopes can also be considered from a reference’s viewpoint

7Following Wolf et al. [WCW88], the definition says “potentially accessible” since shadowing (cf. Def. 3.7)
may lead to a visibility hole.
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as, for example, in [EB10, VS10]. That means, given a reference r and a (model) element
e, the scope determines which elements of e are visible for r.

To eliminate name confusion, we use different terms for the area a symbol is defined
in, i.e., its (enclosing) scope (cf. Def. 3.5) and the region in which a symbol is visible, i.e.,
its visibility (cf. Def. 3.6).

Symbols defined in a scope usually are visible in all their direct and indirect subscopes
(cf. open scope [GJR79, CL83, GM10]). However, this does not necessarily hold true for
subscopes defined in another model, e.g., in a subclass (cf. close scope [GJR79, CL83]). In
such a case some kind of export and import mechanism is required. In Java, for example,
a class exports all its non-private members which are imported in its subclasses via
inheritance (cf. Section 3.10). Consequently, the visibility of a symbol is language-specific
(although common approaches exist). It is determined by so-called visibility rules (or
scope rules) [ALSU06, GM10].

3.5.2 Symbol Shadowing

Definition 3.7 (Symbol Shadowing). A symbol can be shadowed by symbols defined in
importing scopes (usually subscopes) [HMSNR15b], and that way, its visibility is restricted.
The shadowing symbol and the shadowed symbol typically are both same-named and of
the same kind (or kind hierarchy).

Some synonyms for shadow are hide [CWW80, Wat04, GM10, NTVW15], redeclare
[CWW80, CL83], and redefine [GJR79].

Shadowing a symbol, leads to so-called visibility holes [GM10] in which the shadowed
symbol is not visible. In Java, a local variable v in a method scope shadows a same-named
field of the class scope. Thus, using the simple name v from within the method refers to
the local variable, but from outside the method (and in the same class) it refers to the
field. In contrast, since a local variable and a method have different kinds, neither can
shadow the other.

A special case of shadowing (or hiding [GJS+14]) is method overriding in languages
such as Java and C#, where methods of superclasses are shadowed by methods that have
the same signature, i.e, they are not only same-named but also have the same formal
parameter declarations.

The Java specification [GJS+14] explicitly distinguishes between shadowing and hiding
of elements. While the former concerns only elements within the same class the latter ref-
erences elements inherited from supertypes. We refer to both using the term “shadowing”.
This is above all, because our generic scope graph does not require a strict distinction
between shadowing and hiding (cf. Chapter 6).
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3.5.3 Shadowing and Visibility Scopes

In some cases, not only the symbol kind and its name determine whether a symbol
shadows another symbol but also the scope in which the (potentially) shadowing symbol
is defined in. For example, the Java if block in Listing 3.1 cannot declare a new variable
sm since its enclosing method already does. In contrast, the getProperty method may
define sm even if a same-named field existed in the enclosing scope System. Therefore,
we distinguish between two types of scopes:

Definition 3.8 (Shadowing and Visibility Scopes). Shadowing scopes (or symbols defined
in them) may shadow symbols that are already defined in their imported scopes (e.g.,
enclosing scopes) whereas visibility scopes may not [HMSNR15b].

Consequently, both the scope structure and the scope type impact the visibility of the
containing symbols (cf. [CWW80, GM10, KKWV13]). In Java, class scopes as well as
method scopes (and artifact scopes, cf. Section 3.5.5) are shadowing scopes. All other
scopes (e.g., spanned by while, if, or for blocks) are visibility scopes.

Other approaches (e.g., [Par10, Völ11, KKWV13, Bet13, NTVW15]) do not introduce
an explicit concept for shadowing scopes and visibility scopes. Instead, the shadowing
ability is related to a symbol (e.g., a local variable) or to a concrete scope type (e.g.,
method scope). However, introducing the explicit concept of shadowing scopes (as in this
thesis) simplifies to ensure that all symbols in a scope “behave uniformly with respect to
name resolution” [NTVW15] since the scope’s shadowing ability concerns all its contained
symbols. In particular, this means, that (i) a symbol is either visible to all or none of
the references in a specific scope, (ii) either all or none of the symbols in a scope can be
referred to from outside of that scope, and (iii) every symbol in a scope can be referred
to from any reference of that scope. Certainly, access modifiers as defined in Section 3.7
can also impact a symbol’s visibility. For example, while a public field is visible from
outside the class scope, a private field is not. However, none of the private fields is visible
from outside, hence, those fields behave the same.

3.5.4 Named and Unnamed Scopes

Scopes defined by named model elements are named themselves, and thus, are called
named scopes (e.g., [CL83, Par10, KKWV13]):

Definition 3.9 (Named and Unnamed Scopes). A scope, which has a name, is called
named scope. Else, it is an unnamed scope.

The class scope in Listing 3.1, for instance, is named "System", same as the class.
Named scopes impact the fully qualified name of a symbol (cf. Section 3.2). For example,
the fully qualified name of the props field (line 5) is java.lang.System.props
while System is the name of props enclosing scope. This also allows to distinguish the
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props field of System from a same-named field of another class. Hence, named scopes
typically are shadowing scopes.

In contrast—following from the observations of named scopes—, unnamed scopes (or
anonymous scopes [KKWV13]) typically are visibility scopes, such as a scope spanned by
an (Java or C#) if block. Although this holds true for many (modern) languages, it is
not always the case. In C, for example, an if block spans a shadowing scope, and hence,
allows to redefine names of its enclosing scope (cf. Section 6.2).

3.5.5 Artifact Scope

In textual languages, models are usually stored in an artifact, e.g., a file [Kra10,
HMSNR15b]. In Java a top-level class is defined in a same-named .java-file. Analogously,
models of the ADL MontiArc [HRR12] as well as models of the UML/P language family
[Sch12, Rum16] are stored in respective files (e.g., .arc, .cd, etc.).

An artifact represents a separate compilation unit, and hence, “can be compiled on
its own” [Wat04]. Following Krahn [Kra10], each artifact contains exactly one (public)
model. Furthermore, an artifact optionally contains import and package information
which concerns all model elements—and hence, the representing symbols—defined in
that artifact. Therefore, those information are defined within the artifact scope.

Definition 3.10 (Artifact Scope (AS)). The artifact scope represents the scope of the
whole artifact (or compilation unit). It is the top scope of all symbols defined in an
artifact and a shadowing scope [HMSNR15b].

Some synonyms for the artifact scope are file scope [Che05, KKWV13] or compilation
unit scope (cf. [Völ11]). The artifact scope plays an important role in the resolving
process, especially for name qualifying and inter-model references, which are elucidated
in Chapter 6.

Neron et al. [NTVW15] explicitly add a package scope to the scope graph and that
way group all classes (or models) of the same package. While this is also possible with
the approach presented in the current thesis, the package information is stated in the
respective artifact scopes which reduces the depth of the scope graph. This also simplifies
the implementation of the resolution process, as presented in Chapter 6.

Same as in our approach, Völkel [Völ11] does not provide an explicit package scope
(namespace in his terminology). However, the package name is not stated in the compila-
tion unit scope (see above) but is rather part of a symbol’s (qualified) name.

3.5.6 Global Scope

Following Neron et al. that “[e]very program has at least one scope, the global or root
scope” [NTVW15], we introduce the concept of the global scope (cf. [Che05, Par10]):
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Definition 3.11 (Global Scope (GS)). The global scope is the root scope of the whole
scope graph incorporating all models. Furthermore, it maintains globally visible symbols
including built-in predefined symbols.

Please note that while the artifact scope is the top scope of a model, the global scope
is the top scope among all models. The global scope’s direct subscopes are artifact scopes.
Further, it contains global types, such as int and boolean in Java. These types—which
are neither defined in an artifact nor belong to a specific package—can be used in every
model without being explicitly imported.

As for artifact scopes, both [Völ11] and [NTVW15] do not introduce an explicit concept
of a global scope but rather allow to reuse the (generic) scopes for this task.

3.6 Scope Spanning Symbols

The name of a (named) scope (as introduced in Section 3.5) is specified by a named model
element which in turn can be represented by a symbol (cf. Def. 3.1). Consequently, those
model elements are represented by both a symbol and a scope. For this, we introduce
the concept of scope spanning symbols:

Definition 3.12 (Scope Spanning Symbols). A symbol that represents a named model
element which also spans8 a scope, is called scope spanning symbol (cf. [HMSNR15b]).

A symbol representing a Java class, for instance, spans a scope to enable field and
method definitions within that scope.

Similarly, Neron et al. [NTVW15] use the term module to describe a scope spanning
symbol. However, instead of making module a first-level concept, they specify three
properties a “construct” (i.e., model element) must own in order to be classified as a
module. These are [NTVW15]:

• having a name

• possessing an associated scope (“spanned scope” in our terminology)

• being importable into other scopes.

The properties listed above also apply to a scope spanning symbol as defined in
Def. 3.12. The last bullet includes the implicit importing of an enclosing scope described
in Section 3.10. A Java method, for example, is considered a scope spanning symbol,
although it (or its local variables) cannot be (explicitly) imported into other scopes.
However, it is (implicitly) imported in its contained subscopes (e.g., if block). Please

8or opens [CL83], introduces [ALSU06]
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note that the symbol itself is only defined in its enclosing scope (cf. Section 3.5), not in
its spanned scope.

While we explicitly distinguish between a symbol and its spanned scope, Parr uses
the term scoped symbol to refer to a “symbol that also plays the role of a scope” [Par10].
However, separating these concepts allows for better reuse as demonstrated in Chapter 7.
Völkel [Völ11] does not (technically) distinguish symbols that span a scope and those
that do not. This results in some inconsistency issues between a symbol and its spanned
scope, as discussed in Section 4.3.

3.7 Access Control Mechanisms

Many software languages provide mechanisms to control the accessibility [ALSU06] of
model elements to enable encapsulation. In Java and C#, for example, the accessibility
can be controlled via access modifiers, such as public (no restriction) and private (restricted
to the current type), which sustain encapsulation [ALSU06]. Similar concepts exist for
other languages, such as MontiArc and UML/P.

Definition 3.13 (Access Modifier). An access modifier restricts a symbol’s visibility for
outside use, i.e., via its qualified name (cf. [GJS+14]), and hence, determines its access
from other symbols.

Some access modifiers have an inclusion relation. For example, if a class may access
protected members of another class, this implies that it can also access public members
of that class. Consequently, the accessibility of the protected modifier includes the
accessibility of the public modifier. In contrast, if a class may access public members,
this does not include protected, package-local, or private members.

Definition 3.14 (Inclusion of Access Modifiers). Given two access modifiers m1 and
m2, m1 includes m2, if access rights to m1 implies access rights to m2.

By this definition we infer that the inclusion relation is reflexive and transitive.

3.8 Symbol Tables

The concepts introduced in the previous sections are realized via a complex data structure
that we call symbol table in this thesis. In the classical sense, a symbol table is a data
structure (typically a hash table) that maps names to the associated information, i.e.,
it allows “to find the record for each name quickly and to store or retrieve data from
that record quickly” [ALSU06]. For example, the name props in Listing 3.1 (line 5) on
page 31 is associated with, among others, the information that it is a field with the type
Properties.
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In the current thesis, the symbol table is only conceptually a table but internally rather
a graph of scopes (cf. Section 3.5). It still serves the goal of mapping a name to its
associated information which is conducted via the scopes containing the symbols. That
way, it also enables name-based linking of AST nodes (cf. [KRV10]).

Additionally, the symbol table in this thesis represents the essence, i.e., the essential
model of a language [HMSNR15b]. According to Fowler [Fow10] an essential model
(which he calls semantic model) “is a representation [...] of the same subject that the
DSL describes” and is “[...] based on what will be done with the information from a DSL
script”. Please note that “what will be done” implies the language engineer’s intention
of how the language should be used. Thus, the essential model can contain information
that is not (syntactically) stated in a model element but related to it, e.g., a collection of
all inherited non-private fields (cf. Section 3.3).

Furthermore, the symbol table can omit irrelevant information to constitute an ab-
straction of the AST (cf. [NTVW15]), which includes (parts of) the language’s interface.
A language interface “is a relevant abstraction for a specific purpose of a provided or
required part of a language [...]” [CvdBCR15]. The interface enables the symbol table
user (see below) to focus on the relevant information of a model. In this regard, the
symbol table shares some characteristics with the notion of a model type which “defines
an interface to manipulate models” [DCB+15] as employed in the Melange framework
(based on [SJ07]). However, unlike model types in Melange, the symbol table does not
primarily aim at enabling substitutability of models (cf. [GCD+12]), although the kind
hierarchy introduced in Section 3.3 enables this to some extend (cf. Chapter 8). Moreover,
a model type is a structural interface “over the abstract syntax of a language” [DCB+15].
The symbol table in this thesis is part of a language’s abstract syntax, which describes
“essential concepts and structure of the sentences without semantically irrelevant concrete
sugar” [CvdBCR15].

In sum, a symbol table in the current thesis is defined as in Def. 3.15 (cf. [ALSU06,
Völ11, HLMSN+15a, HMSNR15b]).

Definition 3.15 (Symbol Table (ST)).

1. The ST is a data structure consisting of a scope graph with an associated collection
of symbols in each scope9. It maps names to essential information about model
elements, represented as symbols. The ST allows to efficiently organize and find,
among others, declarations, types, and implementation details associated with those
model elements.

2. Moreover, the ST enables to efficiently navigate between AST nodes of the considered
model(s).

9Following from this, we sometimes refer to a model’s scope graph and the contained symbols as the
symbol table of that model.
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3. Furthermore, the ST represents the essence of a language, i.e., of its models.
This especially includes the model interfaces constituted by the language interface
(cf. [CvdBCR15]).

Roles

The language engineer (or language developer [KRV06]), among others, defines the syntax
of a language. A language user employs the (abstract) syntax of the language, e.g.,
for code generation (cf. tool developer [KRV06]). Since this thesis focuses on symbol
tables—which are a part of the abstract syntax—we sometimes write symbol table engineer
and symbol table user to refer to a language engineer and a language user, respectively.

3.9 Symbol Table Notation

This section presents a graphical notation for a better illustration of the main symbol
table elements introduced throughout this chapter, i.e., the emerging scope graph with
the different types of scopes, and the contained symbol definitions and symbol references
including the respective symbol kinds. Same as an object diagram, it represents an
instance of a symbol table but allows a clearer and more intuitive representation of the
underlying concepts. Figure 3.4 gives an overview of the graphical elements. The Java
listings only serve for a better understanding of the scope graph and are not further
considered.

Circles represent scopes, e.g., D and if. While the former is a shadowing scope (solid
line), the latter is a visibility scope (dashed line). The circles labeled with GS and AS
embody the global scope and artifact scopes, respectively. Italicized circle names are
used for unnamed scopes, e.g., the if scope. The enclosing-sub relation is illustrated
by lines between the scopes, whereas the visually upper scope depicts the enclosing
scope. The relation between the global scope and the artifact scopes is depicted by two
lines to emphasize that (i) the relation is outside the artifact and that (ii) the resolving
request is multiplied when leaving the artifact since, among others, import statements
are considered as well. This process is discussed in detail in Chapter 6.

Symbol definitions and references are presented by rectangles and rounded shapes,
respectively. Additionally, an optional icon represents the symbol kind, and hence,
symbols with the same icon have the same kind (analogously for symbol references). We
will omit the symbol kind in most examples if an explicit distinction is not necessary.

Lastly, scope spanning symbols can be represented by either circles with a contained
rectangle (e.g., m), or a same-named scope and symbol at the same scope hierarchy
(optionally connected by an arrow), e.g., scope D and symbol D. In general, we will
omit parts of the scope graph that are not important for the topic under discussion,
highlighted by ... (three dots) below the ST flag at the top on the right.
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Figure 3.4: Graphical notation for symbol table elements.

Neron et al. [NTVW15] also use a graphical notation for representing their scope
graph. In contrast to our approach, they mainly aim at depicting possible (name) paths
in the scope graph. This leads to some essential differences compared to our approach,
although some notational elements are the same (e.g., circles and squares):

• Symbol kinds do not exist in the scope graph of [NTVW15].

• Scopes in [NTVW15] are numbered depending on their occurrences order (not
named as in our approach).

• The different positions of names and their references are illustrated in [NTVW15].
That way, a scope in the scope graph sometimes contains the same name several
times using indices like xi, where i is the corresponding position.

• There is no (visual) distinction between shadowing and visibility scopes.

• There is no (visual) distinction between named and unnamed scopes.

• No dedicated notations for a global scope or artifact scopes exist.

• While the scope graph in [NTVW15] is directed—which is important for finding a
valid path—, ours is not. The reason will be clarified in Chapter 6.
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3.10 Encapsulated, Exported, Imported, and Forwarded
Symbols

The (lexical) scope hierarchy (cf. Section 3.5) as well as access modifiers (cf. Section 3.7)
lead to so-called encapsulated, imported, exported, and forwarded symbols [HLMSN+15a]
(cf. symbol table kinds in [Völ11]). In the following, these are introduced by the example
of the class structure presented in Figure 3.5.

The top part of Figure 3.5 shows a class hierarchy with three classes. The emerged
(logical) scope structure is depicted in the bottom part. Class A has the two fields a1
and a2. Since a1 is private, it is only visible within A’s spanned scope (and its subscopes,
if existed). Hence, a1 is encapsulated in scope A (cf. “local variable”, [Wat04]).

Definition 3.16 (Encapsulated Symbol). An encapsulated symbol is only visible within
its enclosing scope and its (lexical) subscopes (if not shadowed by other symbols).

The field a2 is public, and thus, can also be referenced from outside, e.g., by class B.
Hence, A exports a2 for outer usage.

Definition 3.17 (Exported Symbol). An exported symbol can be used from outside its
enclosing scope, among others, depending on its access modifier.

The class B subclasses A. That way, it can additionally access the exported symbol a2
(but not the encapsulated a1 ). Consequently, two symbols are visible within B ’s scope:

C

+ m()

B

+ b

a2 b

A

- a1

+ a2

forwarded
field symbol

importimport

CD

a1 a2

encapsulated
field symbol

exported
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by class A

ba2 m
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imported
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ST

�

m

a2 mb

BA C

Figure 3.5: Encapsulated, exported, imported, and forwarded symbols by the example of
a class hierarchy.
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field b, which is directly (i.e., lexically) defined in B, and field a2 (marked by dashed
lines) defined in class A. Unlike b, a2 is not stored in B ’s scope but only visible in it,
following Def. 3.1 that a symbol is defined exactly once. a2 is said to be imported into B.

Definition 3.18 (Imported Symbol). Scopes can import symbols that are exported (cf.
Def. 3.17) by other scopes. Symbols of lexical enclosing scopes are automatically imported,
even if they are not (explicitly) exported (cf. open scope [GJR79, CL83]).

Based on this definition, we sometimes write “scope S imports scope T” throughout
the thesis, which is an abbreviation for “scope S imports all (visible) exported symbols
of scope T”. Consequently, T is an imported scope of S. Sometimes, inherit is used as
synonym for import (e.g., [GJR79, GM10]).

In Java a class inherits all (visible) methods and fields of its class hierarchy, hence, b
as well as a2 (in Figure 3.5) are visible in class C. The latter is visible since B not only
imports a2, but also exports it. Consequently, B forwards a2.

Definition 3.19 (Forwarded Symbol). A symbol that is both imported and exported is
called a forwarded symbol.

Finally, C ’s spanned scope defines method m and imports (or forwards) b and a2.
Since the scope of method m is a subscope of C ’s scope, it (automatically) imports all
visible symbols of C, i.e., m, b, and a2. That way, the symbols exported by A and B are
transitively imported in m.

Please note that the import relation between m and C exists implicitly via the enclosing-
sub relation of these scopes (cf. open scope [GJR79, CL83]). In other words, since C is
the lexical enclosing scope, m imports (or inherits [GJR79]) all of its symbols including
private ones. In contrast, the import relation between C and B (analogously B and
A) is explicitly stated via the extend relation. Furthermore, a scope usually imports all
(non-shadowed) symbols of its enclosing scope even if they are not exported, whereas a
class scope only imports the exported (or forwarded) symbols of its superclass’ scope (cf.
open and closed scopes [GJR79, CL83]).

Importing a scope is not the same as importing a type with, for example, the Java
import statement which is a private import. Figure 3.6 highlights the difference. In
contrast to Figure 3.5, class B does not extend A but imports it. Consequently, B ’s scope
only imports the symbol representing A (not its field a), as shown in the bottom part of
Figure 3.6. Unlike the previous case, the imported symbol is not exported, and hence, is
not a forwarded symbol. Consequently, A is not visible within C.

Please note that both Figure 3.5 and Figure 3.6 well illustrate the essence (cf. Def. 3.15)
of the depicted classes and their relations, that is, among others:

• How scopes within the same model as well as between different models are related.

• Which symbols are visible in which scopes (although not lexically defined there).
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Figure 3.6: Example of privately imported symbols.

Conceptually, access modifiers lead to different interfaces of a model (cf. [Völ11]), e.g.,
an interface consisting of only public members, and an interface that additionally provides
protected members. Völkel [Völ11] realizes those model interface kinds via separated
symbol table kinds:

Encapsulated symbol tables only contain entries (symbols in our terminology) that are
visible within the enclosing namespace (scope in our terminology). This is quite
similar to our approach.

Imported symbol tables contain entries that are imported from other namespaces (and
not shadowed in the current namespace). The main difference to our approach is
that for each access modifier (e.g., public and protected) Völkel provides a dedicated
imported symbol table. In the current thesis, the different kinds of access modifiers
are explicit concepts belonging to a symbol.

Exported symbol tables contain all entries that are exported, i.e., visible from outside
the namespace. Same as before, for each access modifier a dedicated symbol table
exists. Again, this thesis provides top-level concepts for access modifiers instead.

Forwarded symbol tables contain entries that are both imported and exported. For
example, an inherited non-private Java method is imported from the namespace of
the superclass and also exported, and hence, can be imported by subclasses.

Same as [Par10, VS10, Bet13, KKWV13, NTVW15] we do not introduce additional
containers (e.g., scopes) for separating symbols with different accessibility. Instead, access
modifiers are a top-level concept in the current thesis and explicitly considered during
the resolution process. The advantages are discussed in Chapter 6.
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3.11 Method for Finding Candidates for Symbols and Scopes

As described in Section 3.3, a symbol represents a named model element and its essential
information. Figure 3.7 and the following questions help the language engineer deciding
for which model elements corresponding symbols and/or scopes can be useful.

If the model element has a name, very likely a symbol is required that represents
essential information of that model element. The reason is that in many textual languages
names are used to refer to model elements. Expressive names simplify understanding
the meaning of a model (or model element). Moreover, names can be part of a model’s
interface [Rum13]. If a named model element itself contains named model elements, it is
a candidate for a scope spanning symbol.

After finding candidates for symbols, it has to be determined which ones finally result
in a symbol. For that, the following questions can help:

Q1 Is the model element referred to from within the model by other model elements?

Q2 Can it be referenced by other models?

Q3 Does the model element embody essential information? For example, is it part of
the model’s interface (cf. Section 3.8)?

Q4 Is the model element affected by visibility rules such as shadowing (cf. Def. 3.7)?

If (at least) one of the above questions is answered with “yes”, the model element
should be represented by a symbol (or scope spanning symbol). It is also sufficient if a
question is affirmed depending on the context of the model element. Object-oriented
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required

[named model element][unnamed model element]
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symbol required

[contains named
model elements]

[does not contain
named model
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named model elements]
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Figure 3.7: Method for determining candidates for symbols and scopes.
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languages, for example, provide access modifiers to set the visibility of a method. Hence,
whether a method can be referenced by other models (question Q2), depends on its
access modifier. Nevertheless, a method should be represented by a symbol (even if the
other questions would not apply). This also simplifies the context condition checks which
can make use of the symbol table.

To determine whether a symbol spans a scope, and hence, is a scope spanning symbol,
the following question must be answered with “yes”:

Q5 Does the model element contain model elements that are represented by a symbol?

Question Q5 also helps to find candidates for scopes; an unnamed model element that
contains named model elements (cf. Figure 3.7). Furthermore, some syntactic elements,
such as brackets (cf. Section 3.5), can help to identify candidates for scopes.

Figure 3.7 focuses on determining whether a specific model element should be repre-
sented in the symbol table. The decision is conducted sequentially for each model element.
For this, an approach as depicted in Figure 3.8 can ease the decision process, which is
divided into three phases. In the first phase, symbols are specified by iterating through all
named model elements (questions Q1 - Q4). In the second phase, it is determined which
of those symbols is a scope spanning symbol (question Q5). Finally, for the remaining
model elements it is determined, which of those elements spans a scope. Since in the
previous two phases symbols are identified, in this phase solely model elements have to be
considered which contain model elements that are represented by symbols (question Q5).

[ZH11] present a method for finding the essence of structural models based on UML
class diagrams. The method can be applied to the AST classes (generated from Monti-
Core’s grammar), to help determination of an appropriate symbol table structure (as a
language’s essential model, cf. Def. 3.15).

determine 

symbols1
determine 

scope 

spanning 

symbols

2 determine

scopes3

Figure 3.8: Determining symbols and scopes in three phases.
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Chapter 4

SMI: Symbol Management Infrastructure

This chapter presents the symbol management infrastructure SMI, which has been
developed as part of the MontiCore 4 runtime1 in the context of this thesis. SMI
serves as (name and kind based) integration structure and manager for models (and
model parts) of the same language (cf. Chapter 6) as well as heterogeneous languages
(cf. Chapter 8). Same as the features and concepts discussed in Chapter 3, SMI
results from experiences gained from many tools and languages developed with Völkel’s
infrastructure [Völ11] (on top of previous MontiCore versions [Kra10]), such as the
UML/P languages [Sch12, Rum16], JavaScript and TypeScript languages for MontiCore
[Nes13], the RoboTask language family [HMSNR+15a], software categories languages
[NN14, MSNR15a, MSNR15b], as well as MontiArc [HRR12, www16i] and its extensions
MontiArcHV [HRR+11], ∆-MontiArc [HRRS11, HKR+11], MontiArcAutomaton [RRW12,
RRW13a, RRW13b, RRW14], cloudADL [NPR13], and MontiSecArc [HHRW15].

SMI provides a technical realization of many concepts introduced in Chapter 3, namely,
symbol definitions and their kinds (cf. Section 3.3), symbol references (cf. Section 3.4),
scopes (including the different scope types, cf. Section 3.5), scope spanning symbols
(cf. Section 3.6), and access modifiers (cf. Section 3.7). Figure 4.1 depicts an overview of
the main types involved, leaving out technical details. As it can be seen, SMI provides a
designated type for each of the above mentioned concepts. In addition, a default class (not
shown in Figure 4.1) exists for most of these types, having the same name as the interfaces
with the prefix "Common", such as CommonScope and CommonSymbolReference.

Moreover, this chapter elaborates many patterns which serve as methods for developing
language-specific symbol tables (cf. Section 3.8). Sometimes, the chosen pattern can
determine whether a language-specific symbol table can be (efficiently) composed or
not (cf. Chapter 8). The pattern catalog is based on (i) lessons learned from the
above listed tools developed with previous MontiCore versions as well as (i) experiences
gained from tools developed with SMI and MontiCore 4, such as NESTML [PBI+16],
MontiArc (migrated to MontiCore 4), MontiJava [Mul15], OCL [Cel15], JavaScript
[Sie15], CD4Analysis (a restricted UML/P class diagram language [Sch12, Rum16]), and
object-diagrams.

1see https://github.com/MontiCore/monticore/tree/master/monticore-runtime
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Figure 4.1: Overview of the main technical interfaces for the concepts introduced in
Chapter 3. SMI provides default implementations for each of these interfaces.

This chapter further discusses some design decisions made in SMI not only for enabling
efficient and effective development of language-specific symbol tables but also with respect
to generating them (cf. Chapter 7) as well as composing them with symbol tables of
other languages (cf. Chapter 8).

Since much related work has already been discussed in Chapter 3, the current chapter
mainly focuses on the technical aspects of other works. Language workbenches such as
Xtext [Bet13] and EMFText [HJK+09], for example, are based on the EMF framework
[SBPM09], and hence, rely on its generic infrastructure which sometimes might be too
heavy-weighted for the given task. In contrast, SMI is tailored to the symbol table domain,
and hence, omits aspects not related to it. Parr [Par10] gives a good overview about how to
implement a language application. Although at a first glance our presented infrastructure
is similar to [Par10], it—quite the opposite—is different in many ways. This is, among
others, because Parr focuses on developing single languages while the current thesis
also aims at composing languages, even a-posteriori (cf. [HLMSN+15a, HLMSN+15b]).
The Spoofax language workbench [KV10, www16n] conducts the semantic analysis using
the Stratego program transformation language [Vis01, BKVV08]. For this, the AST
is, among others, “desugared” and “decorated” [KV10]. While the former simplifies the
AST the latter adds additional semantic information to it. The resulting AST can
be considered as the symbol table structure (in combination with the AST) being the
essential model, as presented in the current thesis. However, since Spoofax employs
meta-languages for (declaratively) specifying languages, in contrast to our Java-based
approach, its underlying technical concepts differ fundamentally from those presented
throughout this chapter.
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Chapter Outline

The Sections 4.1, 4.2, 4.3, 4.4, and 4.5 present technical classes for symbols (cf. Def. 3.1)
and their kinds (cf. Def. 3.2), scopes (cf. Def. 3.5), scope spanning symbols (cf. Def. 3.12),
symbol references (cf. Def. 3.3), and access modifiers (cf. Def. 3.13), respectively.
Additionally, each of these sections suggests and discusses several patterns for language-
specific implementations of the presented classes. Next, Section 4.6 introduces the
technical realization of the relation between AST nodes and symbol table elements.
Finally, Section 4.7 suggests some naming conventions for language-specific classes.

4.1 Technical Realization of Symbols and Symbol Kinds

SMI provides dedicated interfaces for symbols (cf. Def. 3.1) as well as symbol kinds (cf.
Def. 3.2). As depicted in Figure 4.2, Symbol’s default implementation is provided by
the abstract class CommonSymbol (see below) while SymbolKind provides its default
implementation via the default modifier newly introduced in Java 8 [GJS+14]. This is
only possible in case the implementation is stateless. Each specific symbol kind must
(directly or indirectly) subtype SymbolKind.
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Figure 4.2: Overview of the Symbol interface, its default implementation
CommonSymbol, and the SymbolKind interface.
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Java

«RTE»

1 public interface SymbolKind {
2

3 default String getName() {
4 return SymbolKind.class.getName();
5 }
6

7 default boolean isKindOf(SymbolKind kind) {
8 return kind.getName().equals(this.getName());
9 }

10

11 default boolean isSame(SymbolKind kind) {
12 return this.isKindOf(kind) && kind.isKindOf(this);
13 }
14 }

Listing 4.3: Default implementations for the methods getName, isKindOf, and
isSame of the SymbolKind interface.

Listing 4.3 presents the default implementation of SymbolKind’s methods:

getName() Returns the name of the symbol kind (lines 3–5, Listing 4.3) which is
required in the isKindOf method. In order to reduce potential name clashes, a
unique name should be used as, for example, the qualified name of the symbol kind
class (line 4, Listing 4.3).

isKindOf(SymbolKind) Enables a symbol kind hierarchy, as described in Section 3.3.
The method checks whether a symbol kind k1 has the kind of a symbol kind k2.
By default, this is true, if k1 and k2 are same-named (line 8, Listing 4.3).

Listing 4.4 demonstrates an implementation of isKindOf for language-specific
kinds. The name comparison (line 2, Listing 4.4) ensures that a symbol kind is a
kind of itself. Additionally, the isKindOf method of the direct supertype (here
SymbolKind) is invoked (line 3), which enables the kind hierarchy.

To avoid that each language-specific symbol kind class has to override the isKindOf
method, Java’s Reflection API2 can be exploited. As shown in Listing 4.5, with
reflection the default implementation of isKindOf can be implemented once and
does not need to be overridden by subtypes. This, however, requires the symbol
kind classes to be in a (technical) class hierarchy.

isSame(SymbolKind) Checks whether two symbol kinds k1 and k2 represent the
same kind, i.e., k1.isKindOf(k2) and k2.isKindOf(k1) (line 12, Listing 4.3).

2see https://docs.oracle.com/javase/tutorial/reflect/
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Java

«LS»

1 public boolean isKindOf(SymbolKind kind) {
2 return kind.getName().equals(this.getName())
3 || SymbolKind.super.isKindOf(kind);
4 }

Listing 4.4: Implementation of SymbolKind’s isKindOf method for language-
specific symbol kinds.

Java

«RTE»

1 public boolean isKindOf(SymbolKind kind) {
2 return
3 kind.getClass().isAssignableFrom(this.getClass());
4 }

Listing 4.5: Implementation of SymbolKind’s isKindOf method via reflection.

Similar to SymbolKind, the Symbol interface depicted in Figure 4.2 is the superin-
terface of all types representing a symbol (cf. Def. 3.1). Figure 4.2 shows some of the
methods provided by Symbol. The methods concern the different sorts of a symbol’s
name (cf. Section 3.2), i.e., the simple (or unqualified) name and the (fully) qualified name.
For these, the Symbol interface provides the methods getName and getFullName,
respectively, and also the method getPackageName to obtain the package name:

getName() Returns the symbol’s unqualified name, e.g., "List".

getFullName() Returns the symbol’s fully qualified name, e.g., "java.util.List".

getPackageName() Returns the symbol’s package name, e.g., "java.util".

While the simple name is directly stated in a symbol s (e.g., "List" in interface
List), the fully qualified name q depends on the context of s, i.e., its enclosing scope
hierarchy, (cf. Section 3.2), and is computed as follows:

1. if q is set (i.e., it is not null), stop, else continue with next step

2. set q := s.name

3. traverse up the enclosing scope(s) ei (for i ∈ {0, 1, 2, ...}) of s beginning with its
direct enclosing scope e0, i.e., i = 0

a) if ei is spanned by a symbol t, set q := t.fullName+ ”.” + q, where + is string
concatenation, and stop (t’s full name is reused).

b) else if ei is a named scope (cf. Def. 3.9), set q := ei.name + ”.” + q.

c) else, i.e., ei is unnamed, stop.

4. finally, if s has a package definition p, set q := p + ”.” + q.
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Java

«RTE»

1 public String getFullName() {
2 if (fullName == null) {
3 fullName = determineFullName();
4 }
5

6 return fullName;
7 }

Listing 4.6: The getFullName method of CommonSymbol class.

The two methods getFullName and determineFullName of the CommonSymbol
class provide default implementations for retrieving the full name. The former solely
conducts the first check (cf. Listing 4.6) and then delegates to the latter, which then
conducts the steps 2.–4.

As it can be seen in Listing 4.6, the full name is only determined (line 3) if it is
not already set (line 2), e.g., via setFullName. If the language engineer needs to
adjust the default behavior, she only has to override the determineFullName method
which serves as hook method [Pre95a]. Alternatively, she can ignore the automatic
computation and solely use getFullName and setFullName as usual accessor and
mutator methods, respectively (ensured by steps 1 and 3a). Both getFullName and
determineFullName concern a symbol’s definition, i.e., all required information is
available. Hence, these methods always succeed.

A symbol’s fully qualified name plays a central role in the resolution process (cf.
Chapter 6). Hence, when customizing the name, it must be ensured that the name is
still consistent with its defining scope hierarchy. For example, a symbol m defined in a
scope e may not have a qualified name x.m which does not match its enclosing scope’s
name. Instead, its qualified name must be e.m (step 3b).

Determining the full name of a symbol depending on its context (i.e., the scope it is
defined in) yields some benefits. Firstly, it is less error-prone (e.g., symbol’s qualified
name must match its enclosing scope’s name) and eases the work of the language engineer
since she does not need to set the full name of each symbol manually. Secondly, when
embedding languages (cf. Section 8.2), the qualified names of embedded model elements
are automatically derived, e.g., a state in a statechart might have a different fully qualified
name than a state embedded in a class.

However, there are two limitations. First, overloaded symbols are same-named. For
example, overloaded Java methods have the same name but differ in their parameters.
Consequently, the qualified name of the getProperty(String) method and the over-
loaded method getProperty(String, String) of the class java.lang.System
both have the qualified name java.lang.System.getProperty3. To handle those

3The Java language specification [GJS+13] states that a “qualified method name can only appear in the
context of a method invocation expression”. Since such an expression includes the argument types,
the corresponding method can be resolved uniquely.
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Figure 4.7: Symbol table entry states as suggested by Völkel [Völ11]. The states, among
others, determine whether getName returns an unqualified name (state
UNQUALIFIED) or a fully qualified name (either state QUALIFIED or FULL).

cases, the symbol resolution mechanism of SMI (cf. Chapter 6) allows to pass further
information (such as formal parameter types) in order to identify a model element. The
second limitation when calculating a symbol’s fully qualified name occurs when one
of its enclosing scopes is unnamed (cf. Def. 3.9), such as an if block in Java. Such
scopes cannot be located by their name, hence, the contained model elements cannot be
referenced. In those cases, the determination of the full name stops (step 3c), and is
same as the simple name (or partially qualified name). This limitation, however, is rather
a feature in most languages where elements in unnamed blocks cannot be referenced (cf.
Chapter 6). Although it is possible to specify artificial names like if1, if2, etc., this is not
recommended since it can lead to undesired behavior which is hard to track especially
when the model changes.

The package name of a symbol—whether top-level or not—is considered to be the
package as declared in its enclosing artifact (cf. Section 3.5.5). For instance, the package
of the (top-level) class java.lang.System and its defined fields is the same, namely
"java.lang" as declared in the artifact scope. Analogously to the full name, the
package name of a symbol is calculated automatically.

Figure 4.7 presents the structure of a symbol table entry (called “symbol” in our
terminology) as suggested by Völkel [Völ11]. Same as the Symbol interface provided
by SMI, STEntry represents the abstract supertype of all symbol table entries. There
are, however, two essential differences to our approach. First, Völkel does not provide a
dedicated type for symbol table entry kinds, such as SymbolKind in the current thesis.
Instead, the kind is a string stated by the getKind method. Although this simplifies
the class structure, it does not allow for (at least not with few effort) defining kind
hierarchies. For example, its not possible to state that a Java class and a C# class both
are of kind "class" and additionally have their own specific kinds "java.class"
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and "csharp.class", respectively. Providing a dedicated type SymbolKind, SMI
nullifies these disadvantages (cf. Section 4.1). The second difference is that a symbol
table entry in [Völ11] has up to three states (cf. Figure 4.7) which, among others,
determine whether the name is unqualified (i.e., UNQUALIFIED) or (fully) qualified (i.e.,
QUALIFIED or FULL). Unlike Symbol in our approach, STEntry provides only one
method for retrieving the name. Depending on the entry’s state, getName returns the
unqualified or qualified name of the entry.

Similar to SMI, the Symbol class in [Par10], among others, provides the information
about a symbol’s name and its enclosing scope. In contrast, it does not explicitly
distinguish between the different forms of names. The most essential difference, however,
is that symbol kinds do not exist explicitly (e.g., as interfaces) in the framework. Hence,
there is neither a (generic) way to search for symbols of specific kinds nor is it possible to
define kind hierarchies, as in the current thesis. The kind hierarchy in [Par10] is rather
an implicit part of the (technical) class hierarchy.

In EMF-based frameworks, such as Xtext [Bet13] and EMFText [HJK+09], the interface
ENamedElement represents a named model element, and thus, is comparable with the
Symbol interface of the current thesis. However, ENamedElement solely provides the
simple name of the model. In order to determine the qualified name usually specific
providers exist (cf. Section 6.11).

MPS [VS10] follows a projectional approach which means that the AST is the core struc-
ture specified by so-called concepts. Moreover, named concepts exist, similar to symbols in
the current thesis (which represent named model elements). Concepts also have the role of
symbol kinds as in our approach, and allow checks such as c.isSubConceptOf(Field)
and c.isExactly(Field) similar to the methods provided by SymbolKind.

After introducing SMI’s technical classes for symbols and symbol kinds, the remainder
of this section suggests some patterns for realizing language-specific symbols and their
kinds and further discusses advantages as well as disadvantages of the patterns.

4.1.1 Patterns for Redundant Information Contained in a Symbol and its
Related AST Node

If a symbol is created from an AST node (which is typically the case, cf. Chapter 5), one
of the three cases occurs (cf. Figure 4.8): (i) the symbol does not provide any information
that its related AST already contains, (ii) the symbol provides the information of its AST
node via delegation, (iii) the symbol provides the information of its AST node without
delegation, and thus, has some redundancy. The following presents patterns for these
cases.
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Figure 4.8: General idea of the patterns (A) Symbol Provides No Information Directly
Contained in Related AST Node (top part), (B) Symbol Provides Information
of Related AST Node Via Delegation (middle part), and (C) Symbol Provides
Information of Its AST Node Without Delegation (bottom part).

(A) Symbol Provides No Information Directly Contained in Related AST Node

As depicted in the top part of Figure 4.8, this pattern strictly separates information of a
symbol and its related AST node. While the AST node contains information directly
specified in the model, the symbol only provides further information that is not directly
stated in the model. The method getAllSuperClasses of JavaClassSymbol (cf.
top part Figure 4.8), for instance, returns all superclasses of a Java class by computing
the transitive closure, derived from the specified information. To enable access to the
AST node’s information, the symbol class must provide a respective public method.

The benefit of this implementation pattern is that it is lightweight and easy to implement.
Moreover, it ensures consistency between a symbol and its AST node by preventing
redundancy between these. However, these benefits come with some major drawbacks.
First, the AST does not always provide the information in a convenient way, resulting
from the fact that its structure is determined by a grammar definition (cf. Section 2.2.2).
Second, it strongly increases the adaption effort for language composition since then not
only the symbol needs to be adapted but also the AST node (cf. Chapter 8). Third,
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in order to reuse the symbol, e.g., via language inheritance (cf. Section 8.4), a subtype
of the AST node is required as well. As a consequence, it enforces two languages with
the same essential model to be in a grammar hierarchy (cf. automaton grammars in
Section 7.3). Finally, this implementation pattern does not allow to build and use the
symbol table independently from the AST (cf. Section 4.6). This case will probably
occur often when dealing with modeling in the large.

(B) Symbol Provides Information of Related AST Node Via Delegation

In this pattern the symbol internally delegates to its related AST node. In contrast to
the previous pattern, the AST node is encapsulated in the symbol which itself provides
the required information. The middle part of Figure 4.8 exemplifies this pattern. As
it can be seen, JavaClassSymbol provides some information that is also part of the
respective AST node ASTClassDeclaration, such as isFinal which delegates to
ast.isFinal().

Similar to the pattern (A) Symbol Provides No Information Directly Contained in
Related AST Node, this pattern ensures consistency between symbol and AST node via
delegation. Furthermore, it enables to abstract from information of the AST node and to
provide only essential information required for the symbol table user in a convenient way.
Moreover, encapsulating the AST node simplifies the adaption effort when composing
languages (cf. Chapter 8) since only the symbol has to be adapted. Same as the previous
case, this pattern requires a subtype of the AST node, and thus, hinders using the symbol
independently from its AST node.

(C) Symbol Provides Information of Its AST Node Without Delegation

The last pattern (bottom part of Figure 4.8) omits the AST node completely4 and provides
each essential information (that is part of the language’s essence) explicitly. That way,
similar to the previous pattern, it hides information of the AST that is not relevant for
the symbol table user. Also, the adaption effort is reduced. Its main advantage over the
two previous patterns is that it strictly separates symbols and AST nodes and enables
using each without the other. This allows to reuse the symbol in other languages without
enforcing a subtype of its AST node. Although the symbol is created mostly based on the
AST (cf. Chapter 5), it does not statically depend on the concrete type of the AST node,
such as ASTClassDeclaration. The drawback of this pattern is that the redundant
information introduced in the symbol increases both development effort and maintenance
effort.

4Please note that this does not include the generic relation between AST nodes and symbols, presented
in Section 4.6.
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Discussion

While the first two presented patterns ensure consistency between a symbol and its
related AST node by construction, the last pattern simplifies reuse and extension because
of (type) independence between these structures. As a consequence, the last pattern (C)
Symbol Provides Information of Its AST Node Without Delegation facilitates (a-posteriori)
language composition (cf. [HLMSN+15a]).

Since the first two patterns are easier and faster to realize, they can be used for rapid
prototyping in an agile process. Subsequently, the third pattern can be applied iteratively
and incrementally. Furthermore, combinations of the patterns are possible. For example,
when combining pattern (B) Symbol Provides Information of Related AST Node Via
Delegation (with optional AST node) and pattern (C) Symbol Provides Information of
Its AST Node Without Delegation allows to retrieve information from the AST node if it
is not locally stored in the symbol table.

4.1.2 Patterns for Symbols Representing Similar Model Elements

Some software languages provide model elements that are similar in many ways. In Java,
for example, classes, interfaces, and enums have a lot in common, e.g., having supertypes,
fields, and modifiers. However, they still yield some differences. Interfaces, for example,
cannot extend a class. Moreover, enums and classes may implement an interface, while
an interface may extend other interfaces.

In those cases, it is not always clear how the corresponding symbol table structure
should look like, for instance, whether each kind of Java type should be represented by its
own symbol or not. For this reason, the current section presents two possible approaches
by the example of Java types and discusses their advantages as well as disadvantages.

(D) Same Symbol Class for Similar Model Elements

The usage of classes, interfaces, and enums in Java is syntactically the same. For example,
when declaring a Java field T f, it is not necessary to know whether T is a class, an
interface, or an enum. Hence, when searching for T, it should be sufficient to state that
it is a Java type named T. The differences between these types are based on the context.
For example, interfaces cannot be instantiated, hence, statements like I i = new I()
are not allowed for them. These cases can be checked by context conditions together with
a type system (cf. Section 2.2). A single symbol class can group the three Java types
as, for example, JavaTypeSymbol depicted in the left part of Figure 4.9. In order to
distinguish between these types, JavaTypeSymbol must provide respective methods,
such as isInterface and isEnum.

The main advantage of this pattern is that the usage of the different types is unified,
and thus, does not need to be distinguished explicitly. This is especially helpful during
the symbol table creation phase where concrete information about a referenced symbol
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Figure 4.9: General idea of the patterns (D) Same Symbol Class for Similar Model
Elements (left part) and (E) Different Symbol Classes for Similar Model
Elements (right part).

is not (yet) available, as discussed in Chapter 5. Another advantage of this pattern is
that the symbol structure is less complex (only one symbol class for three types). This,
among others, reduces the effort for extending a language (cf. Section 8.4).

However, the main disadvantage is that the symbol class which represents similar
model elements must provide an interface with a superset information of all types. For
instance, a class and an enum have a superclass, but an interface does not. Nevertheless,
JavaTypeSymbol must provide the method getSuperClass and, for example, throw
an exception or return an empty value if the represented type is an interface.

(E) Different Symbol Classes for Similar Model Elements

A further possible symbol structure for Java types is employing dedicated symbol classes
for each type, that means, class, interface, and enum. The right part of Figure 4.9
highlights this case. The classes JavaClassSymbol, JavaInterfaceSymbol, and
JavaEnumSymbol represent the corresponding Java types.

The main advantage and disadvantage are conversed to the previous pattern (D)
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Same Symbol Class for Similar Model Elements (cf. Section 4.1.2). That means, this
pattern enables to specify a symbol class that perfectly fits the model element it denotes.
For example, JavaInterfaceSymbol omits the getSuperClass method mentioned
in the previous pattern. However, the usage of the different types is not unified, and
hence, needs to be known during the symbol table creation phase. Furthermore, the
symbol structure becomes more complex. In the Java example shown on the right part
of Figure 4.9, three symbol classes are required, instead of one.

Discussion

Which pattern is appropriate, highly depends on the semantics of the language as well as
how the language engineer intends the symbols to be used by, e.g., generator developers.
The following questions can help to choose the more appropriate pattern:

• Are the different model elements conceptually similar, i.e., do they pro-
vide similar information? A language specification (if exists) can help to answer
this question. The Java language specification [GJS+14], for example, states that a
class declaration is either a normal class declaration or an enum declaration. Also,
the grammar rules are similar; both have a ClassBody. Hence, classes and enums
are conceptually equal.

• Is it possible to (syntactically) distinguish between the usages of the
different model elements? If not, the model elements probably have a lot in
common. As already mentioned, the field declaration T f does not state whether
T is a class, an interface, or an enum.

If the first question can be answered with “yes” and the second with “no”, a unified
symbol class is useful, i.e., pattern (D) Same Symbol Class for Similar Model Elements
(cf. Section 4.1.2). In contrast, if the answers are “no” and “yes”, respectively, dedicated
symbol classes are better suited, i.e., pattern (E) Different Symbol Classes for Similar
Model Elements (cf. Section 4.1.2). Else, a combination of the presented patterns might
sometimes be appropriate. For example, following from the Java language specification
[GJS+14], methods and fields both are class members having some aspects in common,
e.g., both have modifiers and are defined in a class. However, their usage is distin-
guished syntactically, e.g., C.f or C.m(). Hence, both questions above are answered
with “yes”. Therefore, it can be useful to introduce a (abstract) class JavaClassMem-
berSymbol which then is subclassed by the concrete symbols JavaFieldSymbol and
JavaMethodSymbol.

Whether two model elements are similar, however, depends on the language engineer.
In the Java class member example the language engineer might be of the opinion that
fields and methods are not similar at all, and hence, answers the first question with “no”.
As a consequence, pattern (E) Different Symbol Classes for Similar Model Elements (cf.
Section 4.1.2) would apply.
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Figure 4.10: General idea of the patterns (F) Same Symbol Kind for Similar Model
Elements (left part) and (G) Different Symbol Kinds for Similar Model
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4.1.3 Patterns for Symbol Kinds of Similar Model Elements

Same as for symbols, different patterns exist for symbol kinds of similar model elements
(cf. Figure 4.10). The advantages and disadvantages are similar to the ones introduced
in Section 4.1.2. Hence, this section briefly introduces the patterns for symbol kinds of
similar model elements.

(F) Same Symbol Kind for Similar Model Elements

In particular, symbol kinds are employed in the resolution process (cf. Chapter 6) and
for the translation process when composing models (cf. Chapter 8). Consequently, using
one mutual symbol kind for different model elements (left part of Figure 4.10), allows to
easily search for all matching symbols representing the different model elements.

(G) Different Symbol Kinds for Similar Model Elements

In contrast to the previous pattern, separate symbol kinds (right part of Figure 4.10)
enable a more specific resolution and translation process. At the same time, they increase
the complexity of the symbol kind structure and may increase the development effort.

Discussion

In general, (at least) one specific symbol kind should exist for each specific kind of
symbols, and thus, the chosen pattern for symbols determines the appropriate pattern for
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symbol kinds. If, for example, the JavaTypeSymbol class existed (pattern (D) Same
Symbol Class for Similar Model Elements, cf. Section 4.1.2), the corresponding symbol
kind JavaTypeSymbolKind should be created (pattern (F) Same Symbol Kind for
Similar Model Elements). Else, if a dedicated symbol class for each Java type existed
(pattern (E) Different Symbol Classes for Similar Model Elements, cf. Section 4.1.2),
dedicated classes for the corresponding symbol kinds should also exist (pattern (G)
Different Symbol Kinds for Similar Model Elements).

4.1.4 Patterns for Relating a Symbol and Its Kind

After introducing patterns for symbols and symbol kinds separately in Sections 4.1.2 and
4.1.3, this section discusses three patterns for (technically) relating a language-specific
symbol and its kind. The patterns are introduced by the example of Java field symbols.

(H) Separating a Symbol and Its Kind into Different Classes

In Figure 4.11 dedicated classes exist for the Java field symbol and its kind. The
interface of the symbol (i.e., its methods) is stated in the JavaFieldSymbol class.
JavaFieldKind implements SymbolKind’s methods similar to Listing 4.4.

The advantage of this approach is that the symbol and its kind are not mixed up which
simplifies reuse and adaptions, especially when composing languages (cf. Chapter 8).
Furthermore, the symbol kind class can be fully generated as described in Section 7.5
since it only provides implementations for methods of SymbolKind.

The main disadvantage of this pattern is that symbols with the same kind are not
enforced to have the same (subset of) methods. Figure 4.12 shows an example. Both
languages Java and C# have fields with similar concepts such as public and private mod-
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Figure 4.11: General idea of the pattern (H) Separating a Symbol and Its Kind into
Different Classes.
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Figure 4.12: Applying the pattern (H) Separating a Symbol and Its Kind into Different
Classes to a symbol kind hierarchy.

ifiers. Hence, JavaFieldKind as well as CSharpFieldKind implement FieldKind.
But, as it can be seen, the respective symbols provide different methods for the same
information, e.g., isPublic and hasPublicModifier.

(I) Symbol Class Implements Kind Interface

To ensure that symbols of the same kind provide the same interface, the pattern shown
in Figure 4.13 is suitable. Here, JavaFieldKind is an interface instead of a class (cf.
Figure 4.11). Furthermore, it specifies the two methods isPublic and isPrivate.
Symbols of that kind, such as JavaFieldSymbol must implement JavaFieldKind.
That way, it is statically ensured that all implementing symbols provide the same methods.
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Figure 4.13: Example of pattern (I) Symbol Class Implements Kind Interface. The symbol
kind is implemented as an interface and specifies methods each symbol of
that kind must provide.
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Figure 4.14: Applying the pattern (I) Symbol Class Implements Kind Interface to a
symbol kind hierarchy.

Figure 4.14 illustrates how this pattern avoids the drawback of pattern (H) Separating
a Symbol and Its Kind into Different Classes. Since FieldKind specifies the methods
of field kinds, both symbols JavaFieldSymbol and CSharpFieldSymbol provide
exactly the same method signatures. Hence, whenever a FieldKind is requested, any
of these symbols can be used.

This pattern yields some disadvantages itself. First, in contrast to (H) Separating a
Symbol and Its Kind into Different Classes, a symbol kind in this approach cannot be fully
generated (cf. Section 7.5) since it is more complex and its methods are language-specific.
Second, determining the interface of all symbols of a specific kind might be to restrictive
and may hamper the independent engineering of languages.

(J) Same Class For a Symbol and Its Kind

Figure 4.15 demonstrates a third pattern for implementing a symbol and its kind. In
contrast to the previous patterns, symbol and kind are not implemented by separated
classes (or interfaces). Hence, JavaFieldSymbol represents both, a Java field symbol
and its kind. The main advantage of this approach is that it is simple and ensures that
all symbols in a hierarchy have the same kind and provide the same information (same as
the pattern (I) Symbol Class Implements Kind Interface). However, it lacks separation of
concerns which impedes both reuse and the generation process (cf. Chapter 7).

Discussion

In a sum, the first two patterns have a bias towards the last pattern. They simplify
reuse as well as a (partial) generation of the symbol kind (cf. Section 7.5). Furthermore,
they facilitate language composition. Although the last pattern is simple and reduces
complexity (only one class for symbol and its kind), it should only be applied if a later
composition with other languages can be excluded.
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Figure 4.15: General idea of the pattern (J) Same Class For a Symbol and Its Kind.

4.2 Technical Realization of Scopes

Figure 4.16 shows an overview of the technical scope classes for the scope types introduced
in Section 3.5. Scope represents the superinterface of all scopes and, among others,
enables the enclosing-sub relation leading to a graph of scopes (cf. Section 3.5).

While dedicated classes for artifact scopes (cf. Def. 3.10) and the global scope (cf.
Def. 3.11) exist, named and unnamed scopes (cf. Def. 3.9) as well as shadowing and
visibility scopes (cf. Def. 3.8) are realized via Scope’s methods getName and isShad-
owingScope, respectively:

getName() In case the scope is named, this method returns its corresponding name,
else, i.e., if the scope is unnamed the value is absent. A scope that is spanned by a
symbol has the same name as that symbol. This default behavior only applies if
the symbol’s name is not explicitly set via setName (cf. Section 4.2.1).

isShadowingScope() Depending on whether the scope is a shadowing scope or a visibility
scope, this method returns true or false. By default, the scope is a shadowing
scope if it has a name, i.e., getName returns a non-empty value which in particular
is the case for scopes spanned by symbols.

Furthermore, Scope provides the method exportsSymbols which states whether a
scope exports (or forwards) its symbols so that other scopes can explicitly import them
(cf. Section 3.10). Named scopes standardly export their symbols. Chapter 6 discusses
the role of this method during the resolution process.
CommonScope provides implementations for the three methods described above. In

contrast to CommonSymbol (cf. Figure 4.2), CommonScope is not an abstract class.
This is because a scope does not necessarily require language-specific information while a
symbol relies on language-specific information.
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Figure 4.16: Overview of the technical classes for the scope types introduced in Section 3.5,
i.e., named and unnamed scopes, visibility and shadowing scopes, artifact
scopes, and the global scope.

The classes ArtifactScope and GlobalScope represent an artifact scope and
the global scope, respectively. Both classes subclass CommonScope and override some
methods in order to adjust the resolution process. These are discussed together with the
resolution process in Chapter 6.

Similar to our approach, Parr [Par10] provides a Scope interface and its default
implementation BaseScope to access, among others, a scope’s name and its enclosing
scope. Also, a scope starts the symbol resolution. The GlobalScope in [Par10] does
not introduce additional functionality. It mainly differs from other scopes by its name
(i.e., “global”). In contrast, the GlobalScope class of the SMI is essential for inter-
model resolution and model loading (cf. Section 6.7 and Section 6.9). Namespaces in
[Völ11] are language-unspecific and unnamed symbol table containers, represented by the
NameSpace class. There are no subclasses (in the provided infrastructure), e.g., for the
global scope. In Xtext [Bet13] a scope determines which elements of a model (element)
are visible for a specific reference (cf. Section 3.5). A scope provider conducts this task
and returns a list of scopes which, among others, specifies the order to search for the
visible elements. Same as Xtext, a scope in MPS [VS10] focuses on a specific point in
the model and is determined by so-called scope providers.
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4.2.1 MutableScope: Interface for Manipulating a Scope

The Scope interface solely provides methods for accessing a scope’s information, e.g.,
its containing symbols. For symbol table users, such as generator engineers and context
condition engineers, this is sufficient since they do not manipulate the scopes but only
access the contained symbols. However, during the symbol table creation phase (cf.
Chapter 5) the language engineer needs to build up the scope graph and fill it with symbols.
To enable the manipulation of scopes, SMI provides the interface MutableScope, as
depicted in Figure 4.17. This interface provides operations that language engineers
require but usually not language users. Since all scopes first have to be created as
well as initialized before their usage (cf. Chapter 5), all scopes must be subtypes of
MutableScope. Consequently, CommonScope—which serves as default implementation
for scopes—subtypes MutableScope (cf. Figure 4.16).

Using a dedicated interface for manipulating the scope has the advantage that the
Scope interface is not polluted with information that is irrelevant most of the time
(cf. Interface Segregation Principle [Mar02]). Furthermore, separating the read and
write methods improves the tool support for symbol table users. For example, the auto-
completion functionality provided by IDEs such as JetBrains’ IntelliJ IDEA [www16g]
and Eclipse [www16c] will only list methods relevant for accessing information from the
scope. In order to access a scope as an instance of MutableScope, the Scope interface
provides the method getAsMutableScope. This not only obviates the need for type
castings from Scope to MutableScope, but also ensures that each scope is a subtype
of MutableScope.

Figure 4.17 depicts the methods of MutableScope that enable manipulating a scope.
In addition to these methods, MutableScope provides methods that are important for
the (internal) resolution process. Chapter 6 elaborates those methods in detail. The
following describes the default implementations for the presented methods as provided
by CommonScope:
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Figure 4.17: Methods provided by the MutableScope interface for manipulating a scope.
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setName(String) Sets the name of the scope, and thus, disables the default calculation
as described earlier in this section.

add(Symbol) Adds a symbol to the scope. Also, the scope is set as the symbol’s enclosing
scope.

remove(Symbol) Removes the given symbol from the scope and also unsets its enclosing
scope relation.

addSubScope(MutableScope) This method adds a new subscope s to a scope e, if e
does not already contain s. Also, e is set as enclosing scope of s using setEn-
closingScope(MutableScope). That way, the enclosing-sub relation remains
consistent.

removeSubScope(MutableScope) This method removes a subscope s from a scope e
and unsets the enclosing scope of s.

setEnclosingScope(MutableScope) Sets the enclosing scope e of a scope s. Also, s is
added to e as a subscope (if not already contained).

Please note that the last three methods for setting the enclosing-sub relation of scopes
(cf. Section 3.5) require a MutableScope, not solely a Scope. This ensures that the
described manipulations can be conducted. This, as mentioned above, requires that all
scopes are not only a subtype of Scope but also a subtype of MutableScope. Following
from this, each method returning a scope—e.g., the getEnclosingScope method of
the Scope interface—returns a subtype of MutableScope.

While it is useful to employ separate interfaces for accessing and modifying a scope, it
would not be reasonable for symbols. The reason is that scopes can be used completely
generically, like scope.resolve(...), and hence, are declared as Scope s; instead
of, for example, JavaTypeScope s;. That way, it is ensured that methods defined in
MutableScope (and its subtypes) are hidden from the language user. In contrast, a
symbol is strongly language-specific. Thus, a generic declaration like Symbol s; does
not allow to retrieve the required information. Instead a language-specific declaration as
JavaTypeSymbol s; has to be specified.

4.2.2 Scopes as Repositories for Symbols

A repository [Fow03, Eva03] stores elements and provides ways for retrieving them.
Furthermore, elements can be added or removed (if not read-only). An important task of
a repository is to encapsulate how elements are managed and persisted. The client solely
has to request the needed information.

Consequently, a scope in SMI can be considered as a repository for symbols. It allows
to add and remove symbols (via MutableScope) and also to retrieve them (via Scope).
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If a requested symbol is not found in the current scope, the search can be continued in
the enclosing scope until the symbol is found or the root scope is reached [ALSU06] (cf.
Chapter 6). Furthermore, models contained in artifacts are loaded (from the file system),
if necessary. The whole process is completely encapsulated within the scope graph and
hidden from the symbol table user. In this section, the role of a single scope is described
which serves as a basis for the collaboration of scopes elucidated in Chapter 6.

Figure 4.18 shows the conceptual structure of a (Java or C#) class scope, which is a
repository for methods and fields. It contains two method symbols (m1 and m2) and two
field symbols (f1 and f2). A user can request symbols in different ways, for example, by
stating the symbol kind (method) and the name (m1). Also, all symbols of a specific
kind (e.g., all methods) can be obtained.

As depicted in Figure 4.19, the Scope interface provides three methods to obtain the
symbols it contains locally, i.e., not imported from other scopes (cf. Section 3.10). The
first method getLocalSymbols returns a map of all symbols that are defined directly
in the scope. The map groups same-named symbols, i.e., name → {symbols}. In the
example highlighted in Figure 4.18, getLocalSymbols returns all fields and methods.
The second method, resolveLocally(String, SymbolKind), resolves a specific
symbol by its name and kind.

Analogously, resolveLocally(SymbolKind) resolves all symbols with the spec-
ified symbol kind. In contrast to getLocalSymbols, the two resolveLocally
methods make use of so-called resolving filters. Given a collection of symbols, a resolving
filter filters all symbols whose name and kind do match the requested ones.

f1

m1
f2

m2

class scope as
repository for
field symbols and
method symbols

field symbol

method symbol

m1 m2

�

method
scopes

resolve

field f1

resolve
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Figure 4.18: The conceptual structure of a scope which serves as a repository for symbols.
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Figure 4.19: Excerpt from the methods the Scope interface provides for retrieving its
locally defined symbols. For its resolveLocally methods Scope makes
use of resolving filters represented by the same-named interface.

As shown in Figure 4.19, resolving filters are realized by a same-named interface which
defines three methods. Their default behavior provided by CommonResolvingFilter
is as follows:

getTargetKind() Specifies the symbol kind the resolving filter searches for. Symbols
with different kinds are filtered out.

filter(ResolvingInfo, String, Map<String, Collection<Symbol>>) Searches in the
given map of symbols (third parameter) for a symbol with the name specified
in the second parameter and the symbol kind, as specified in getTargetKind.
The symbols locally defined in a scope—retrieved via getLocalSymbols (see
above)—are typically passed as third parameter. The first parameter provides
additional information which is important essentially for adapted resolving (cf.
Section 8.2.2). Symbol kinds are compared via SymbolKind’s isKindOf method
(cf. Section 4.1). If more than one matching symbol is found, a Resolved-
SeveralEntriesException exception is thrown.

filter(ResolvingInfo, Collection<Symbol>) Given a collection of symbols, this method
returns all symbols whose symbol kind match the kind specified in getTargetKind.
Since this method filters the symbols only based on their kind, no map is required as
in the previous method. Again, the first parameter is utilized for adapted resolution.
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Figure 4.20: The default procedure for filtering out symbols via resolving filters.

Please note that while filter(ResolvingInfo, Collection<Symbol>) re-
turns a collection of symbols, the other filter method returns (at most) one symbol.
The reason is that it is quite common that symbols of the same kind (e.g., fields) are
defined in the same scope. In contrast, not many languages allow multiple definitions of
same-named symbols with the same kind within the same scope. Hence, the first filter
method treats those cases as an exception.
CommonResolvingFilter provides the method create(SymbolKind) in order

to easily instantiate a resolving filter for a specific symbol kind. That way, CommonRe-
solvingFilter does not have to be subclassed if only the default behavior is required.
Figure 4.20 illustrates the default filtering process by an example where a method symbol
named "m1" is resolved locally.

The scope first checks whether the resolving filter’s target kind matches the requested
kind, that is, method. If this is the case, the method name "m1" together with all
symbols contained in the scope are passed to the filter method of the resolving filter
which then filters out all unmatched symbols, i.e., symbols that either are not kind of
method or are not named "m1". Put another way, the resolving filter searches for all
method symbols named "m1".

Resolving filters are essential in the SMI. First, they enable kind-based resolution
including kind hierarchies (cf. Chapter 6). That way, among others, same-named symbols
with different kinds can coexist. Depending on the specified kind, the other symbols are
filtered out. Second, resolving filters allow to customize each scope individually, i.e., if no
resolving filter for a specific kind exists, that scope cannot resolve symbols of that kind.
Furthermore, resolving filters enable symbol adaption when composing languages. Their
role in language composition is elucidated in Chapter 8.
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Similar to our approach, the Scope interface in [Par10] provides a resolve method
for resolving a symbol. However, its only parameter is the symbol’s name since symbol
kinds do not exist (explicitly). Consequently, resolving filters are not required. Völkel
[Völ11] provides so-called resolvers for conducting kind-based resolutions. In contrast
to resolving filters as introduced in the current thesis, resolvers are responsible for both
traversing the scope hierarchy and filtering out the symbols. This, however, does not
ensure that all symbols in a scope behave the same regarding their resolution [NTVW15]
(cf. Section 3.5), for example, if different resolvers traverse the scope graph with different
strategies.

4.3 Technical Realization of Scope Spanning Symbols

The ScopeSpanningSymbol interface depicted in Figure 4.21 represents scope spanning
symbols, as defined in Def. 3.12. It extends Symbol and additionally spans a Scope.
While a scope spanning symbol always spans a scope (cardinality 1), a scope is not
necessarily spanned by a symbol (cardinality 0..1). The scope of an if block, for
example, is not spanned by any symbol. The bottom part of Figure 4.21 highlights that
the JavaTypeSymbol (e.g., depicted in Figure 4.9 on page 62) is not only a subtype
of Symbol but also a subtype of ScopeSpanningSymbol. Furthermore, it spans a
JavaTypeScope.
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Figure 4.21: Overview of the ScopeSpanningSymbol interface.

Same as for Symbol, a common class exists for ScopeSpanningSymbol, namely
CommonScopeSpanningSymbol (cf. Figure 4.22), which extends CommonSymbol
and additionally provides the factory method [GHJV95] createSpannedScope. This
method instantiates the spanned scope of the symbol which by default is a named
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Figure 4.22: Implementation of a language-specific scope spanning symbol by the example
of JavaTypeSymbol.

shadowing scope (cf. Section 4.2). In many cases, the generic CommonScope is suffi-
cient since scopes typically behave the same, e.g., manage symbols and resolve names.
However, some scopes require language-specific information. A class scope in Java, for
example, imports the symbols of its enclosing artifact scope (language-unspecific) as
well as (visible) exported symbols (cf. Section 3.10) of its superclass and implemented
interfaces (language-specific). Hence, JavaTypeSymbol overrides createSpanned-
Scope in order to create an JavaTypeScope instance5 (cf. bottom part of Figure 4.22).
Furthermore, setEnclosingScope(MutableScope) sets the enclosing scope of both
the symbol and its spanned scope.

While a scope can be considered as a generic repository for symbols (cf. Section 4.2.2),
its spanning symbol is rather a language-specific view on that scope and enables conducting
more complex requests. It explicitly embodies the model’s interface. Figure 4.23 shows
the conceptual presentation of a symbol and its spanned scope, based on Figure 4.18. The
symbol table user can focus on the spanning symbol, which provides language-specific
information, such as all method symbols defined in the (spanned) class scope. For this,
the spanning symbol delegates to its spanned scope via generic resolving requests like
“get all symbols of kind method”.

Symbols are defined and stored only in their enclosing scope, not in the spanning
symbol itself. Instead, the spanning symbol delegates to its spanned scope. In contrast,
Völkel [Völ11] stores the symbol table entries (“symbols” in our terminology) redundantly
in both the namespaces and the (spanning) symbol table entries. This, above all, follows

5Alternatively, the Factory pattern [GHJV95] can be exploited for creating the spanned scope.
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Figure 4.23: Conceptual structure of a generic scope (cf. Figure 4.18) spanned by a
language-specific symbol. The symbol table user focuses on the language-
specific symbol which delegates to its scope.

from the fact that no explicit concept for namespace spanning symbols exists, hence,
their is no (direct) link between a symbol table entry and its spanned namespace (cf.
Section 3.6). However, this can lead to inconsistencies between them, especially when
composing languages, as discussed in Chapter 8. Consequently, a symbol table user must
be aware of which source (i.e., symbol table entry or its spanned namespace) to use.

To ensure consistency, a scope spanning symbol in the current thesis delegates all
requests to its spanned scope. Listing 4.24 exemplifies this by two methods of JavaType-
Symbol. The method getField (lines 4–7) returns a field symbol by its name. For this,
JavaTypeSymbol solely delegates to its spanned scope using the generic method re-
solveLocally(fieldName, JavaFieldSymbol.KIND) (line 6). Since the generic
aspects are encapsulated, the symbol table user can ignore them and instead focus on the
language-specific method getField. The method getMethods in Listing 4.24 returns
all method symbols defined in the Java type symbol (lines 9–17). Again, JavaType-
Symbol delegates to its spanned scope (line 11). Since JavaMethodSymbol represents
both Java methods and Java constructors (assuming pattern (D) Same Symbol Class for
Similar Model Elements, cf. Section 4.1.2), all constructors are filtered out (lines 14–16).

Please note that while the symbol resolution is conducted generically (line 11, List-
ing 4.24), filtering out constructors is language-specific (lines 14–16). For the former the
default implementations provided by CommonScope are completely reused (including
composition aspects). The language engineer only has to implement the language-specific
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1 public class JavaTypeSymbol
2 extends CommonScopeSpanningSymbol {
3

4 public Optional<JavaFieldSymbol> getField(String fieldName) {
5 return getSpannedScope()
6 .resolveLocally(fieldName, JavaFieldSymbol.KIND);
7 }
8

9 public Collection<JavaMethodSymbol> getMethods() {
10 Collection<JavaMethodSymbol> methodsAndConstructors =
11 getSpannedScope().resolveLocally(JavaMethodSymbol.KIND);
12 // filter out constructors since they have
13 // the same kind as methods.
14 return methodsAndConstructors.stream()
15 .filter(method -> !method.isConstructor())
16 .collect(Collectors.toList());
17 }
18 }

Listing 4.24: Implementation of language-specific methods which retrieve symbols
defined in the spanned scope via its generic resolveLocally method.

aspects manually. Again, the generic parts are hidden from the language user.
Figure 4.25 highlights the differences in usage for starting resolving with the infrastruc-

ture presented in [Völ11] (top part) and as presented in the current thesis (bottom part).
meth in the top part of Figure 4.25 (line 1) is a method entry and methNsp (line 2) its
respective namespace. The resolution starts by invoking the resolve method of the
generic resolver provided by the framework which then delegates to language-specific
resolver clients beginning in methNsp [Völ11]. As it can be seen, meth itself does not
participate in this process (i.e., it is not used in line 2). Consequently, a resolution cannot
be conducted if only meth is available. Therefore, the framework must ensure that both
resolver and methNsp are available. In contrast, since the SMI links a symbol and
its spanned scope (via ScopeSpanningSymbol), it enables symbol resolution without
requiring further information, as shown in the bottom part of Figure 4.25. Here, meth
provides access to its spanned scope which itself starts the resolution via resolve
(line 4). Alternatively meth.getField("f") conducts the resolution, avoiding generic
aspects (e.g., resolve) to be explicitly used (line 5). This is only possible because
getField provides a language-specific interface and delegates to meth’s spanned scope,
same as in Listing 4.24.

Parr [Par10] introduces the abstract class ScopedSymbol which is both a symbol and
a scope. That way, consistency between a symbol and its spanned scope is preserved by
construction. However, one disadvantage is that ScopedSymbol and BaseScope (see
above) have redundant implementations. In the current thesis, SMI explicitly separates
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Figure 4.25: Usage for starting resolution process in [Völ11] (top part) and in the current
thesis (bottom part).

symbols and scopes which simplifies reuse when composing languages and also facilitates
customization of generated symbols and scopes (cf. Section 7.7). In contrast, Parr [Par10]
focuses on implementing single languages (by hand). Xtext [Bet13] does not provide
an explicit concept for elements spanning a scope. However, an ENamedElement (cf.
Section 4.1) that contains other ENamedElements can be considered as such (even
though it has no spanned scope).

4.3.1 Patterns for a Symbol and Its Spanned Scope

This section presents and discusses two patterns for implementing language-specific scope
spanning symbols with SMI; either by using separated classes for the symbol and its
spanned scope or by grouping them into the same class.

(K) Separating Symbol and Its Spanned Scope into Different Classes

Section 4.3 already introduced this pattern based on Figure 4.21 and Figure 4.22, i.e.,
JavaTypeScope and JavaTypeSymbol are both separated into their own classes.
Although this pattern yields the drawback that it requires two classes, it should be
applied for language-specific scope spanning symbols, for the following reasons:

• It explicitly separates the information provided by a symbol and the mechanism to
resolve it (provided by the scope).

• It enables complete reuse of the default implementations provided by CommonScope
and CommonScopeSpanningSymbol via class inheritance.

• It simplifies language inheritance since either class can be extended independently
of the other.

• It facilitates the customization of generated symbols and scopes (cf. Section 7.7).
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(L) Same Class for Symbol and Its Spanned Scope

SMI also allows for realizing a scope spanning symbol as suggested in [Par10] (cf. Fig-
ure 4.26). In this pattern, the same class represents both a symbol and a scope, i.e., it
subtypes the Scope interface as well as the ScopeSpanningSymbol interface. In Fig-
ure 4.26 JavaTypeSymbol extends CommonScopeSpanningSymbol and implements
Scope. Moreover, JavaTypeSymbol delegates to an instance of CommonScope to
reuse the scope part. Alternatively, JavaTypeSymbol can extend CommonScope, im-
plement ScopeSpanningSymbol, and delegate to CommonScopeSpanningSymbol.
JavaTypeSymbol’s createSpannedScope method (and hence, also getSpanned-
Scope) returns the same object but masked as a scope.

While this pattern is sufficient for a single language (as intended by Parr [Par10]), it
hampers language inheritance and customization of generated symbols and scopes (cf.
previous pattern).

de.monticore.symboltable

*

«abstract»

Common

ScopeSpanningSymbol

«interface»

ScopeSpanningSymbol

«interface»
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defines

CD

«RTE»
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CommonScope
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1

1

JavaTypeSymbol

#createSpannedScope()
return this;

Java

1

1

represents both
a type symbol and
its spanned scope

reuse via
delegation

CD

«LS»

(L)

Figure 4.26: General idea of the pattern (L) Same Class for Symbol and Its Spanned
Scope, following Parr [Par10].

4.3.2 Patterns for Symbols Representing a Parameterized Model Element
that Spans a Scope

According to Aho et al. “[a]ll programming languages have a notion of a procedure”
[ALSU06] which includes functions (as in C) and methods (as in Java and C#). In the
current thesis we follow the term “methods” which “can behave like either functions or
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procedures, but are associated with a particular class” [ALSU06]. Several possibilities
exist for representing a method as a symbol and its spanned scope. This is because
methods can define formal parameters as part of their signature as well as local variables
within the method body, as exemplified in Listing 4.27.

Java
1 public final class System {
2 // ...
3 public static String getProperty(String key) {
4 checkKey(key);
5 SecurityManager sm = getSecurityManager();
6 // ...
7 }
8 // ...
9 }

Listing 4.27: Excerpt from method getProperty of class java.lang.System.

The method defines two variables, namely key (line 3) and sm (line 5). The former is
a formal parameter whereas the latter is a local variable of the method. As it can be seen,
the Java language (and many other languages, such as C, C#, and MontiArc [HRR12])
syntactically distinguishes between the definition of a formal parameter and the definition
of a local variable, using round brackets (i.e., (...)) and curly brackets (i.e., {...}),
respectively (cf. Section 3.5). However, this does not necessarily mean that a method
spans two scopes and that the respective symbols are defined in different scopes. This
observation based on the syntax not only applies to methods but to any (named) model
element that spans a scope and further defines a parameter list, for example:

• A generic Java class defines type parameters which are, among others, visible
within the class body [GJS+14].

• Similarly, generic methods define type parameters that can be accessed from within
the method body.

• Configurable component types in MontiArc “define configuration parameters which
represent variables with a certain data type. These parameters are used within the
implementation of a component [...]” [Hab16].

• (Labeled) for-statements [GJS+14] (although usually not represented by a symbol)
enable to define variables within an initialization section and refer to them from
within the statements sections.

In order to simplify the wording, the following subsections introduce and discuss three
patterns by the example of methods but can be applied for any of the above mentioned
cases.
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(M) Method Spanning a Parameter Scope and a Body Scope

Following the syntactical distinction of parameter definitions and local variable definitions,
a method has two separated scopes, i.e., a parameter scope and a method body scope
(cf. [Par10]). The classes ParameterScope and MethodBodyScope represent these
scopes, as depicted in Figure 4.28.

Explicit distinction of the two scopes enables to easily retrieve parameters and local
variables by resolving either in the parameter scope or in the method body scope. However,
if it is not clear whether the requested symbol is a parameter or a local variable, the search
must start in either one and continue in the other one. Hence, ParameterScope is the
enclosing scope of MethodBodyScope (or vice versa). Furthermore, it must be deter-
mined whether methodSymbol.getSpannedScope() returns a ParameterScope
instance or a MethodBodyScope instance. In the former case, i.e., MethodSymbol
spans the ParameterScope, searching for a variable (either parameter or local variable)
starts in the parameter scope and continues in the method body scope (i.e., top-down),
even if the symbol is found (cf. Section 6.2). That way, ambiguous definitions are
recognized. If the symbol is not found, the search continues in the class scope. In the
latter case the search begins in the method body scope and continues in the parameter
scope. Again, if the symbol is still not found, the search continues in the enclosing class
scope. This case is more in line with the bottom-up resolution process which conducts
the search from bottom to top (cf. Section 6.2).

However, the relation between parameter scope and class scope in neither approach is
very intuitive. The subscope of a class scope is rather a method scope than a parameter
scope since a class defines a method and not parameters. Furthermore, although separated,
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Figure 4.28: General idea of the pattern (M) Method Spanning a Parameter Scope and a
Body Scope.
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the parameter scope and the method body scope are logically treated as a single scope
since the search is always conducted in both scopes.

(N) Method Spanning an Intermediate Method Scope

Same as before, the second pattern separates parameter scope and method scope but
additionally introduces an intermediate scope to group these two. As it can be seen in
Figure 4.29, the method symbol spans only one scope in this pattern, i.e., the method
scope. The method scope serves as intermediate scope and groups the parameter scope
and the method body scope. Hence, the distinction between formal parameters and
local variables as in pattern (M) Method Spanning a Parameter Scope and a Body Scope
still exists. The parameter scope and the method body scope are now encapsulated
in the method scope. Listing 4.30 demonstrates the implementation of the methods
getParameters and getVariables of the MethodSymbol class. As it can be seen,
the former delegates to the parameter scope via its spanned scope while the latter
delegates to the method body scope6.

With this pattern the scope structure becomes more complex since it requires three
scope classes. Consequently, same as the pattern (M) Method Spanning a Parameter
Scope and a Body Scope, it is not very intuitive. Moreover, the language engineer must
determine which scope ultimately is the subscope of MethodScope. In Figure 4.29 the
subscope is the if scope. Alternatively, the if scope can be considered as a subscope of
MethodBodyScope which in turn is a subscope of MethodScope. However, none of
these alternatives preserve the scope tree structure discussed below.
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Figure 4.29: General idea of the pattern (N) Method Spanning an Intermediate Method
Scope.

6Please note that this example assumes the pattern (D) Same Symbol Class for Similar Model Elements
(cf. Section 4.1.2), i.e., JavaFieldSymbol represents parameters, local variables, and fields. Since
the symbols are stored in different scopes, there is no need for filtering out any symbols.
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Java

«LS»

1 public Collection<JavaParamSymbol> getParamters() {
2 return getSpannedScope()
3 .getParamScope().resolveLocally(JavaFieldSymbol.KIND);
4 }
5

6 public Collection<JavaVariableSymbol> getVariables() {
7 return getSpannedScope()
8 .getBodyScope().resolveLocally(JavaFieldSymbol.KIND);
9 }

Listing 4.30: Implementation of the pattern (N) Method Spanning an Intermediate
Method Scope.

(O) Method Spanning Only a Method Scope

Finally, the last pattern leads to the least complex scope structure. As presented in
Figure 4.31, there is no more distinction between a scope for formal parameter definitions
and local variable definitions in a method. The method scope unifies a method’s parameter
scope as well as its body scope, following Gabbrielli et al. that a “[b]lock associated with
a procedure [...] corresponds [...] to the body of the procedure itself, extended with the
declarations of formal parameters” [GM10].

One advantage is the simple and intuitive scope structure that emerges. Also, this
conforms to Java’s or C#’s handling of formal parameters and local variables. First, both
can only be used within the method body [GJS+14]. Hence, they are visible within the
same scope (cf. Def. 3.6). Second, a method’s formal parameters and its local variables
may not be same-named, which indicates that they are defined in the same scope.
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scope for both
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Figure 4.31: General idea of the pattern (O) Method Spanning Only a Method Scope.

Consequently, the only reason for separating parameter scope and method body scope
is to distinguish between parameter symbols and local variable symbols. This, however,
can be solved via different symbols (i.e., pattern (E) Different Symbol Classes for Similar
Model Elements, cf. Section 4.1.2) and different symbol kinds (i.e., pattern (G) Different
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Symbol Kinds for Similar Model Elements, cf. Section 4.1.3), as shown in Listing 4.32.
Here, getParameters delegates to the method symbol’s spanned scope in order to
locally resolve the parameter symbols (line 3). Analogously, getVariables resolves
local variable symbols (line 8).

When applying the pattern (D) Same Symbol Class for Similar Model Elements (cf.
Section 4.1.2), the method symbol can help to filter out unmatched symbols, analogously
to Listing 4.24 (on page 78). Alternatively, a resolution via predicates can be conducted
(cf. Section 6.7).

Java

«LS»

1 public Collection<JavaParamSymbol> getParamters() {
2 return
3 getSpannedScope().resolveLocally(JavaParamSymbol.KIND);
4 }
5

6 public Collection<JavaVariableSymbol> getVariables() {
7 return
8 getSpannedScope().resolveLocally(JavaVariableSymbol.KIND);
9 }

Listing 4.32: Example of a method symbol that delegates to its spanned scope in
order to resolve parameters and local variables. This example assumes
patterns (E) Different Symbol Classes for Similar Model Elements
(cf. Section 4.1.2) and (G) Different Symbol Kinds for Similar Model
Elements (cf. Section 4.1.3).

Discussion

The first two patterns presented in this section, i.e., (M) Method Spanning a Parameter
Scope and a Body Scope and (N) Method Spanning an Intermediate Method Scope yield
the advantage that they preserve the syntactic separation of a method’s formal parameters
and its local variables by using separated scopes in the scope graph. This further allows for
applying pattern (D) Same Symbol Class for Similar Model Elements (cf. Section 4.1.2)
without additional filtering since the symbols are stored in different scopes.

However, as mentioned above, parameters and local variables have the same visibility
(cf. Def. 3.6), i.e., both are visible within the method body. Also, parameters and local
variables within the same method may not be same-named. Consequently, they are
(logically) defined in the same scope. The third pattern (O) Method Spanning Only a
Method Scope (cf. Section 4.3.2) best fits this viewpoint, and thus, should be used in order
to emphasize this semantics (cf. Def. 3.15). Furthermore, this pattern simplifies both the
bottom-up resolution starting with the inner most scope (cf. [ALSU06]) as well as the
top-down resolution, as elaborated in Chapter 6. The main drawback of this pattern is
that it requires additional filtering if pattern (D) Same Symbol Class for Similar Model
Elements (cf. Section 4.1.2) is applied (all symbols are stored in method scope).
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4.4 Technical Realization of Symbol References

A symbol reference—as introduced in Section 3.4—is represented by the interface Symbol-
Reference depicted in Figure 4.33. The generic type argument T enables to implement
language-specific references, such as references for field symbols and method symbols.
SymbolReference provides three methods:

isReferencedSymbolLoaded() Checks whether the referenced symbol (i.e., the symbol
definition) is already loaded. This information is, among others, employed to load
the referenced symbol only once.

getReferencedSymbol() Returns the corresponding symbol definition. If required, the
symbol will be loaded first.

existsReferencedSymbol() Checks whether the respective symbol definition exists. For
this, it eventually tries to load the symbol first (via getReferencedSymbol).

CD

«RTE»
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Figure 4.33: Overview of the technical classes for symbol references introduced in Sec-
tion 3.4. SymbolReference is the supertype of all symbol references and
CommonSymbolReference its default implementation.

SymbolReference does not specify how a symbol has to be searched or how it
is loaded. In contrast, the default implementations provided by CommonSymbolRef-
erence highly depend on the symbol resolution and model loading process discussed
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in Chapter 6. Figure 4.33 highlights that CommonSymbolReference needs further
information in order to find the respective symbol definition: the name of the referenced
symbol (referencedName), its kind (referencedKind), and the enclosing scope of
the reference (enclosingScope). The latter serves as starting point for resolving the
symbol definition. Optionally, an access modifier (accessModifier) and a predicate
(predicate) can be passed to further constrain the search.

By default, the symbol resolution only starts on demand (same as [EB10, Völ11]),
by invoking getReferencedSymbol(). Figure 4.34 illustrates the general procedure.
If the symbol definition is already loaded, the symbol will be returned. Else, load-
ReferencedSymbol starts the symbol resolution process by calling the respective
resolve(...) method of the enclosing scope (cf. Section 6.8).

:CommonSymbolReference

getReferencedSymbol()

enclosingScope:Scope

resolvedSymbol

resolvedSymbol

resolve(referencedName,

referencedKind,

accessModifier,

predicate)

ensures that
symbol is loaded
at most once

symbol is fully
searched via
the resolution
mechanism

!isReferencedSymbolLoaded()

isReferencedSymbolLoaded()

SD

�

loadReferencedSymbol()

Figure 4.34: Exemplary procedure conducted by CommonSymbolReference to (lazily)
search for the referenced symbol.

If the symbol still cannot be found (not shown in Figure 4.34), a FailedLoading-
Symbol exception will be thrown since referential integrity is violated: a symbol that
does not exist is referenced. Consequently, the (referencing) model is not well-formed
(or the model path is not set correctly, cf. Section 2.2.6). The default implementation
provided by CommonSymbolReference assumes that the models are well-formed, and
thus, that the symbol definitions exist. Therefore, the non-existence of the symbol is
considered as an exception.
CommonSymbolReference’s existsReferencedSymbol method serves as state-

testing method [Blo08] for checking whether the symbol definition exists to avoid that an
exception is thrown. In order to determine whether a symbol exists, it has to be loaded first.
For this, existsReferencedSymbol delegates to loadReferencedSymbol (same
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as getReferencedSymbol), which ultimately starts the resolution process. To adapt
the default behavior of both methods existsReferencedSymbol and getRefer-
encedSymbol, the language engineer only needs to override loadReferencedSymbol.
The other methods remain unchanged.

Please note that SymbolReference presents both a reference within the same model
(i.e., intra-model reference) and a reference between different models (inter-model refer-
ence), as defined in Def. 3.3. The underlying resolution process automatically determines
the respective symbol definition, and thus, simplifies the work of the language engineer.

To sum up, SymbolReference and its default implementation CommonSymbolRef-
erence encapsulate the symbol definition finding process. That way, neither language
engineers nor language users need to understand this process in detail. Additionally,
the complete resolution and model loading process as described in Chapter 6 are reused
which, among others, include the shadowing and visibility rules of the different symbol
kinds (cf. Section 3.5). It also considers language composition, which is realized based
on the resolution process (cf. Chapter 8).

4.4.1 Patterns for Symbol References

The remainder of this section elaborates three patterns for implementing symbol references
by the example of Java type symbols.

(P) Symbol Reference Using Delegation

A symbol reference can be realized using delegation (cf. [HMSNR15b]). In Figure 4.35
JavaTypeSymbolReference represents the reference of a JavaTypeSymbol. For
this, it implements SymbolReference. To reuse the default behavior implemented
in CommonSymbolReference, JavaTypeSymbolReference can either extend Com-
monSymbolReference (as shown in Figure 4.35) or delegate to it. Furthermore, Java-
TypeSymbolReference is associated with a JavaTypeSymbol. Since the definition
is loaded lazily (see above), the cardinality is 0..1.

This approach has the advantage that the symbol definition and its reference(s) are
separated. That way, reference-specific information, e.g., type arguments, can be stored in
JavaTypeSymbolReference (cf. Section 3.4). Also, it enables to explicitly distinguish
between a definition and a reference by using the corresponding type in the source code.
The main disadvantage of this pattern is that the language user always must be aware of
whether to employ a symbol definition or a reference even if a distinction is not useful
(see next pattern).

(Q) Symbol Reference Using Proxy Pattern

A special case of delegation is applied in the Proxy pattern; a proxy “provides an interface
identical to [s]ubject’s so that a proxy can b[e] substituted for the real subject” [GHJV95].
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Figure 4.35: General idea of the pattern (P) Symbol Reference Using Delegation. Here,
information specific to a symbol definition and reference-specific information
are strictly separated.

Figure 4.36 shows an example. JavaTypeSymbol is the real symbol and JavaType-
SymbolReference its proxy. Since JavaTypeSymbolReference subclasses Java-
TypeSymbol, its interface is identical, thus, it can be substituted for JavaTypeSym-
bol. Moreover, JavaTypeSymbolReference refers to JavaTypeSymbol in order
to forward every request to the real symbol (cf. [GHJV95]), i.e., the symbol definition
[HMSNR15b]. The symbol reference itself solely contains the required information—i.e.,
at least the name and kind of the referenced symbol—for resolving the corresponding
definition. Furthermore, JavaTypeSymbolReference delegates to CommonSymbol-
Reference to conduct the symbol resolution.

This pattern simplifies the symbol table structure for languages where references do
not have additional information. For example, consider a language for automatons
which has states and transitions (cf. Section 7.2). A transition has a source and a
target state, and hence, refers to two states. By using the proxy pattern for state
references, TransitionSymbol can be associated directly with StateSymbol instead
of StateSymbolReference. Although technically instances of StateSymbolRef-
erence are passed to TransitionSymbol, this aspect is hidden from the language
user, in contrast to the previous pattern. The major drawback of this pattern is that the
proxy class must override all methods of the real symbol. This is an error-prone task,
especially if the real symbol (i.e., the symbol definition) changes.
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Figure 4.36: General idea of the pattern (Q) Symbol Reference Using Proxy Pattern
(cf. [GHJV95]). Here, the symbol reference is a symbol itself, which can
be substituted for the symbol definition. For this, the symbol reference
delegates every request to the definition.

(R) Same Class for a Symbol Definition and Its References

Völkel [Völ11] suggests an approach where a symbol definition and the corresponding
symbol references are represented by the same class. Whether the class is a definition or
a reference is determined by the symbol table entry states unqualified, qualified,
and full (cf. Figure 4.7 on page 57). While references are either unqualified or
qualified, definitions are always full. Figure 4.37 shows how the concept of Völkel
can be applied to the current infrastructure.
JavaTypeSymbol represents both the definition and the reference of a Java type,

determined by the method isReference. Reference-specific information (such as
type arguments) is directly bound to JavaTypeSymbol. It is important that both
associations typeArguments and referencedSymbol are only set for references, i.e.,
in case isReference() == true.
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Figure 4.37: General idea of the pattern (R) Same Class for a Symbol Definition and Its
References (cf. [Völ11]). Here, both the symbol definition and its references
are represented by the same class. An additional method (e.g., isRefer-
ence()) is required to distinguish between definitions and references.

Compared to the pattern (Q) Symbol Reference Using Proxy Pattern, the current
pattern is more robust regarding language evolution since only one class has to be main-
tained. However, it yields some crucial drawbacks. First, the class JavaTypeSymbol
is polluted with both symbol definition information and symbol reference information,
which leads to the second disadvantage. Each method must distinguish between being
called for a definition or for a reference. Listing 4.38 highlights this by the example
of JavaTypeSymbol’s getSuperClass method. In case it is called for a reference
(line 2), it delegates to the corresponding symbol definition (line 3). Otherwise, it returns
the superclass (line 6).
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Java

«LS»

1 public Optional<JavaTypeSymbol> getSuperClass() {
2 if (isReference()) {
3 return getReferencedSymbol().getSuperClass();
4 }
5

6 return Optional.ofNullable(superClass);
7 }

Listing 4.38: Implementation of the pattern (R) Same Class for a Symbol
Definition and Its References by the example of JavaTypeSymbol’s
getSuperClass method (cf. [Völ11]).

Discussion

The patterns (P) Symbol Reference Using Delegation and (Q) Symbol Reference Using
Proxy Pattern both separate concerns by separating definitions and references into
different classes. Consequently, the corresponding information is not intertwined as in
pattern (R) Same Class for a Symbol Definition and Its References.

Furthermore, the delegation approach (i.e., pattern (P) Symbol Reference Using
Delegation) enables a clear separation of symbol definitions and references in the source
code by using the corresponding class, e.g., JavaTypeSymbol or JavaTypeSymbol-
Reference. While this is not possible with pattern (R) Same Class for a Symbol
Definition and Its References, the proxy approach (i.e., pattern (Q) Symbol Reference
Using Proxy Pattern) enables this to a certain extent; a reference can be enforced by
stating its class in the source code, e.g., JavaTypeSymbolReference. In contrast, a
symbol definition cannot be enforced since a reference class subclasses the definition class,
and hence, can be used wherever a definition may be used.

Unlike pattern (P) Symbol Reference Using Delegation, the last two patterns yield the
advantage that references can be encapsulated, hence, the language user does not have
to distinguish them from definitions. This is useful for languages where references do not
contain additional information, as in the automaton language presented in Section 7.2.

Finally, in contrast to the other two approaches, the pattern (Q) Symbol Reference
Using Proxy Pattern is based on inheritance (i.e., reference class extends symbol class),
and thus, might lead to additional effort when inheriting the language (cf. Section 8.4)
since Java only enables single inheritance.

To sum up, in general pattern (P) Symbol Reference Using Delegation is recommended
since it not only separates references and definitions explicitly but also is robust against
language changes that only concern the symbol definition. However, if the reference
should be abstracted away, pattern (Q) Symbol Reference Using Proxy Pattern is to be
favored over pattern (R) Same Class for a Symbol Definition and Its References since the
former does not intertwine reference and definition implementations. The latter, however,
facilitates maintenance as only one class exists.
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The Xtext [Bet13] language workbench employs a combination of pattern (P) Symbol
Reference Using Delegation and pattern (Q) Symbol Reference Using Proxy Pattern
for lazy linking. Based on EMF [SBPM09] dedicated classes exist for references and
definitions. However, a reference is not a proxy itself but uses one that ultimately
delegates to the real object.

4.5 Technical Realization of Access Control Mechanisms

Access modifiers—as defined in Def. 3.13—are top-level concepts in SMI, represented by
a dedicated interface. Figure 4.39 depicts the generic type hierarchy of access modifiers.

The interface AccessModifier is the root type of all access modifiers. Its includes
method determines whether the inclusion relation between two access modifiers exists, as
defined in Def. 3.14. The constant ALL_INCLUSION is an access modifier that includes
any other access modifier, and thus, enables to resolve symbols regardless of their specified
access modifier (cf. Chapter 6).

Following the Java language, BasicAccessModifier defines four access modifiers,
namely public, protected, package-local, and private. Listing 4.40 demonstrates the
includes method for the package-local access modifier. As it can be seen, the method
solely checks whether the passed access modifier is either PUBLIC, PROTECTED, or
PACKAGE_LOCAL. Hence, a symbol must be at least package-local in order to be found.

de.monticore.symboltable de.monticore.symboltable.modifiers

AccessModifier ALL_INCLUSION

includes(AccessModifier)

«interface»

AccessModifier

«interface»

Symbol
0..1
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includes all other
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�

Figure 4.39: Overview of the technical classes for access modifiers as introduced in
Section 3.7. The interface AccessModifier is the supertype of all access
modifiers.
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Java

«RTE»

1 @Override
2 public boolean includes(AccessModifier modifier) {
3 return (modifier.equals(PUBLIC)
4 || modifier.equals(PROTECTED)
5 || modifier.equals(PACKAGE_LOCAL));
6 }

Listing 4.40: Implementation of the includes method for the package-local access
modifier of BasicAccessModifier.

An enum is the natural form of implementing access modifiers since they are fixed
within a specific language. However, if language-specific access modifiers are required
and explicitly stated in the source code (e.g., JavaAccessModifier instead of Ac-
cessModifier), using a dedicated class for each modifier can be more suited (e.g.,
JavaPublicModifier, JavaProtectedModifier, etc.). This approach simplifies
language inheritance, where the extending language can add new modifiers via subclassing.

Access modifiers are essential for exporting and importing symbols (cf. Section 3.10).
In Java, for example, a class scope only exports fields and methods that are not private.
Hence, a class scope can only import non-private members of its superclass’ scope. While
this thesis employs access modifiers as top-level concepts, Völkel [Völ11] instead provides
different kinds of symbol tables, as already discussed in Section 3.10. The top part of
Figure 4.41 shows the symbol table architecture as described in [Völ11]. As it can be seen,
it differs from the symbol table architecture of SMI (bottom part of Figure 4.41) in many
ways. Besides the different terminology (i.e., NameSpace and Entry instead of Scope
and Symbol), the entries are not directly contained in the namespaces. Instead, each
namespace can contain up to four different symbol table kinds (namely, encapsulated,
imported, exported, and forwarded, cf. Section 3.10) that in turn contain the entries.

As shown in the bottom part of Figure 4.41, the symbol table infrastructure of SMI
does not provide different types of symbol tables. Instead, each symbol optionally has a
modifier. Moreover, it depends on a scope whether its symbols are exported or not, stated
by the exportsSymbols method (cf. Section 4.2). The resolution mechanism explicitly
considers modifiers (together with their inclusion relation) as well as the exporting ability
of scopes which yields the following advantages over Völkel’s [Völ11] approach:

• It simplifies the infrastructure since solely one scope is required to manage the
symbols having different modifiers. In contrast, the infrastructure in [Völ11] requires
a symbol table kind per modifier type.

• Völkel [Völ11] does not explicitly provide the inclusion relations of modifiers, and
hence, their implementation is more cumbersome then the includes method
shown in Listing 4.40. Technically, this means, for example, that all entries of the
public symbol table kind must also be imported into the other symbol table kinds.
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Figure 4.41: Comparison of Völkel’s [Völ11] symbol table kinds (top part) and SMI’s
access modifiers (bottom part).

• The symbol table engineer is liberated from working with different kinds of symbol
tables, especially during their creation. Section 5.6 discusses this topic.

• It is ensured that all symbols in a scope behave the same regarding their resolution
(cf. Section 3.5). For example, while (non-private) inner classes in Java are exported
(same as fields and methods), classes defined in methods are not (same as formal
parameters and local variables). This behavior is also guaranteed for symbols that
are embedded in scopes of other languages (cf. Section 8.2).

4.6 Technical Relation of AST and Symbol Table

The AST is an internal representation of the (parsed) model. The symbol table—with
its scopes and symbols—usually is an abstraction of the model, and hence, of the AST
(cf. Section 3.8). Depending on the task to be conducted (e.g., code generation or
context conditions checking), either or both are required [HMSNR15b]. For this reason,
SMI enables linking AST nodes with corresponding symbols and scopes, as depicted in
Figure 4.42.

The association between ASTNode and Symbol occurs in case they represent the same
model element, for example, as the classes ASTJavaField and JavaFieldSymbol
both represent a Java field. The association is optional since an AST node does not
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necessarily have a corresponding symbol as, for example, ASTImportStatement, which
represents an import statement. Furthermore, the symbol table is built after the model
is parsed (cf. Chapter 5). Hence, the AST nodes are created before their corresponding
symbols. Analogously, it is also possible to create a symbol (or parts of it) independently
of an AST node (cf. Section 3.8).
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Figure 4.42: Relation between ASTNode, Symbol, and Scope.

In case an AST node is represented by more than one symbol, it can be extended with
a symSymbol field (with getters and setters) for each symbol sym (using MontiCore’s
extension mechanism, cf. Section 7.14). For example, a bidirectional association in a class
diagram can be represented by two symbols: one symbol for the left-to-right association
and another symbol for the right-to-left association. For this, the association AST requires
the fields leftToRightSymbol and rightToLeftSymbol. As described above, the
relation should be optional. The two association symbols are linked to the (same) AST
node via the generic relation shown in Figure 4.42, since each is related to (at most) one
AST node.

Some AST nodes represent model elements that span a scope (e.g., a Java method),
and hence, are linked to the corresponding spanned scope (and vice versa). This relation
is optional since not all model elements span a scope (e.g., a Java field), and not all
scopes are spanned by a model element (e.g., the global scope).

The enclosing scope of an AST node is the scope spanned by its parent node or—if it
is the root node—the global scope. Same as before, the relation is optional since the two
structures can exist independently.

According to Völkel [Völ11], the link between an AST node and the corresponding
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symbol (table entry) should be omitted since it can, among others, hamper language
composition. To avoid this disadvantage but still enable easy access to both structures,
their relation in SMI is optional, hence, the language user must explicitly be aware
that the relation might be missing. Furthermore, the relation is language-unspecific,
i.e., the symbol does not know the explicit type of its corresponding AST node (and
vice versa). Otherwise, not only the symbols would require adaption when composing
languages but also the AST nodes, as already discussed for pattern (A) Symbol Provides
No Information Directly Contained in Related AST Node (cf. Section 4.1.1). Similar to
the relation between AST nodes and scopes in our approach, Völkel [Völ11] associates
AST nodes to namespaces (called “associated namespaces”) and vice versa. Parr [Par10]
links AST nodes to their scope but omits the opposite direction. Same as in our approach,
AST nodes and symbols are linked together in order to get information of either one.
Frameworks based on EMF [SBPM09] (e.g., EMFText [HJK+09] and Xtext [Bet13]) rely
on the Ecore meta-model which specifies the abstract syntax, and thus, no structures
need to be linked. Similarly, frameworks applying a projectional approach, such as MPS
[VS10], focus on the AST only. In contrast, in the current thesis, the abstract syntax
consists of both the AST and the symbol table (cf. Section 3.8) which therefore are
linked.

Attribute grammars [Knu68] allow to declaratively specify attributes for productions of
formal grammars. The value of an attribute is associated with the respective node of the
AST tree and computed in one or more traversals of that tree. Many approaches employ
and extend the classical attribute grammars in order to enable a modular definition of a
language (e.g., [Hed89, VSK89, DC90, FMY92, KW94, MLAŽ99, WMBK02]). Reference
attributed grammars (RAGs) [Hed00] extend the original attribute grammars with
references between AST nodes and are employed in tools, such as Silver [WBGK10],
Kiama [SKV10], ASTER [KSV09], and JastAdd [HM03]. In the following we only discuss
JastAdd since the main ideas among those tools are similar [Hed11].

JastAdd [HM03, EH07] is a meta-compilation system for generating language-based
processors such as compilers and source-code analyzers. It combines RAGs and object-
orientation, in particular, Java. Furthermore, JastAdd enables a modular specification
of different aspects of the language, e.g., name analysis and data flow analysis in an
aspect-oriented manner. Besides simple values (e.g., integer) and composite values (e.g.,
collection), JastAdd allows for reference values linking to other AST nodes. That way
the syntax tree becomes an object-oriented graph model [Hed11]. This is similar to
our approach where the scope graph enriches the AST with, among others, references.
However, JastAdd embeds the symbol table in the AST [Hed11] while in the current
thesis the two structures are (optionally) linked together and can be used independently
from each other. This, above all, allows for defining symbol tables that essentially differ
from the AST structure which is not possible in JastAdd since the AST itself is extended.
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4.7 Naming Conventions

In order to improve the implementation’s readability, language-specific symbol table
classes should adhere to the naming conventions listed in Table 4.43. In short, each
language-specific class name should be suffixed with the component’s name it implements,
e.g., JavaFieldSymbol. As also indicated in Table 4.43, a prefix of the language (e.g.,
“Java”) can help to distinguish between similar components of different languages, for
example, JavaFieldSymbol and CSharpFieldSymbol.

SMI Component Convention Example

Symbol suffix “Symbol” JavaFieldSymbol

SymbolKind
suffix “Kind” or
suffix “SymbolKind”

JavaFieldKind or
JavaFieldSymbolKind

Scope suffix “Scope” JavaTypeScope
ScopeSpanningSymbol suffix “Symbol” JavaTypeSymbol

SymbolReference
suffix “Reference” or
suffix “SymbolReference”

JavaTypeReference or
JavaTypeSymbolReference

Table 4.43: Naming conventions for language-specific implementations of Symbol, Sym-
bolKind, Scope, ScopeSpanningSymbol, and SymbolReference.
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Chapter 5

Building Up Language-Specific Symbol
Tables: Method and Implementation

Chapter 4 introduces the generic and reusable infrastructure SMI that serves as a basis
for implementing language-specific symbol tables. Given that the data structures (classes)
for the symbol table are defined, in this chapter we discuss how to build the symbol
table (objects) for a model. This is because, before the symbol table of a model1

can be used (e.g., to check context conditions) it has to be created first. In classical
compiler construction, this is often conducted by the parser during the analysis phase
[ALSU06, Seb08]. In the current thesis the symbol table creation is explicitly separated
from the parsing process. It is rather based on the AST, and hence, has to be created
after the parsing process. This yields the following benefits:

• It enables to conduct transformations [MCG05] on the AST, e.g., by simplifying it
(cf. “desugaring” [KV10]), after the parsing process. The symbol table then can be
created based on the transformed AST. That way, consistency between these two
structures is ensured by construction.

• Furthermore, the AST is not necessarily created during the parsing process. For
instance, AST providers (cf. Section 6.9.3) hide the AST creation phase, which is
important for integrating the symbol table into an IDE. ASTs created this way
can also serve as input for the symbol table creation.

Figure 5.1 gives an overview of the symbol table creation in this thesis. Given a model’s
AST, the symbol table creator (i) builds up a respective scope graph and (ii) links it
with the corresponding AST nodes. That way, the symbol table, among others, enables
navigating between the AST nodes (cf. [KRV07b]).

Chapter Outline

The remainder of this chapter is structured as follows. Section 5.1 presents SMI’s phases
for building a model’s symbol table from an input AST and compares it with related

1The term “symbol table of a model” refers to the corresponding scope (sub)graph of that model (cf.
Def. 3.15).
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Figure 5.1: Overview of the symbol table creation.

approaches. Next, Section 5.2 gives a method for conducting the presented phases on
model elements, depending on their relation to symbol table elements. Subsequently,
Section 5.3 demonstrates a top-down depth-first approach for realizing the symbol table
creation based on the Visitor pattern [GHJV95] and gives a method for it. In Section 5.4,
the language-specific as well as language-unspecific steps for linking AST nodes and symbol
table elements are discussed. Afterwards, Section 5.5 demonstrates the implementation
of a symbol table creator by the example of a simplified AST structure for Java, following
the previous introduced methods. Finally, Section 5.6 compares the presented approach
with the symbol table creation in previous MontiCore versions as suggested in [Völ11].

5.1 Symbol Table Creation Phases

The symbol table creation consists of the following phases:

P1. Building-up the scope structure In this phase the scope graph of the model is
created (cf. [Völ11]). Usually, it is a scope tree since imported scopes are (logically)
linked in the last phase P5.

P2. Creating symbols and adding them to the enclosing scope In this phase the sym-
bols are created, initialized, and added to the respective enclosing scope.

P3. Creating symbol references and adding them to the referencing symbol Symbol
references (cf. Def. 3.3) are created in this phase. Furthermore, they are added to
the referencing symbol (not to the enclosing scope).
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P4. Linking the AST and the symbol table structures This phase relates symbols and
scopes to the respective AST nodes (and vice versa) which allows to switch between
both structures as needed [HMSNR15b] (cf. Section 4.6).

P5. Loading referenced symbols and models In this final step the referenced symbols
and models are loaded (cf. [Völ11]). Strictly speaking, this phase is not part of the
symbol table creation as it is conducted lazily (cf. Section 6.9).

It is essential to conduct the last phase separately, after all model elements are processed.
Otherwise, cyclic dependencies between models can prevent the creation process from
terminating. Moreover, forward references will not be resolvable at that time if not all
model elements are processed yet.

Although the phases can be performed successively, especially the first four phases are
usually intertwined in the implementation. The main reason is that they are processed
per model element (i.e., AST node), and thus, rely on model-specific information. When
conducting the phases sequentially, this information is (repetitively) required through all
the phases. This means, the AST or parts of it must be traversed for every of these phases
again. In contrast, conducting the phases iteratively as described in the Subsections 5.2.2
and 5.2.3, has the advantage that the AST only needs to be traversed once.

In [Völ11], the symbol table creation consists of overall nine steps. Many of the steps are
conducted sequentially by so-called workflows [GKR+08, Kra10]. The steps three (linking
namespaces of the model), four (qualifying references entries), six (importing symbol
tables), and seven (same as third step) are especially necessary for resolving the symbol
table entries. In SMI this steps are performed dynamically during the resolving process
(cf. Chapter 6), enabled by the modular and functional architecture of MontiCore 4.

Similar to our approach, Parr [Par10] separates the definition from the resolution phase
to, among others, enable forward referencing. The former consists of phases P1, P2, and
P4. The latter resolves the symbol references eagerly, in contrast to P5 of the current
thesis, where the references are resolved lazily. Moreover, Parr does not use any reference
or proxy classes (cf. Section 4.4) but directly links a name to the respective symbol
definition. Consequently, no P3 as in the current thesis exists.

The language workbench Xtext [EB10] enriches the AST with proxies for cross refer-
ences. Same as phase P5 those proxies load the respective definition lazily. However, in
contrast to our approach, the proxies are set during the parsing process.

Spoofax [KV10] provides the meta-language NaBL [KKWV13] in order to specify
name binding rules. The symbol table (or semantic index [KKWV13]) is populated in
three phases, namely an annotation phase, a definition site analysis phase, and a use
site analysis phase. The first phase annotates definitions and uses (i.e., references) with
unique (qualified) URIs which include the namespace (similar to symbol kind in our
approach, cf. Section 3.3) as well as the scopes. This phase corresponds to P1 and
partially to P2 and P3. The definition site analysis phase traverses the AST a second
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time and stores—similar to P2—information associated with definitions in the symbol
table based on the URIs determined in the previous phase. Same as P5, the use site
analysis phase resolves the references and stores the information in the symbol table.

In [SBHWP16] different meta-models for the concrete and the abstract syntax exist.
A transformation language is provided to map concepts of the former to concepts of
the latter, which then is employed for model processing. The transformation language
further allows for specifying name resolution rules in a NaBL-like way. The symbol table
creation in this thesis can be considered as a transformation as well, i.e., from the AST to
the symbol table. Since both structures are part of the abstract syntax (cf. Section 3.8),
the transformation is not from concrete to abstract syntax as in [SBHWP16]. Thus, the
AST and the symbol table can be employed (together) for model processing.

5.2 Method for Processing Model Elements During the
Symbol Table Creation

Since the AST represents the (parsed) model, it (in many cases) serves as input for creating
the symbol table for that model (cf. [Völ11, NTVW15]). Following from Section 4.6
(i.e., Technical Relation of AST and Symbol Table), one of the four cases is true when
processing a model element (i.e., its AST node):

(a) The model element neither spans a scope nor is represented by a symbol.

(b) The model element spans a scope but is not represented by a symbol.

(c) The model element does not span a scope but is represented by a symbol.

(d) The model spans a scope and is also represented by a symbol, i.e., it is represented
by a scope spanning symbol.

The following four subsections demonstrate the processing steps for each of the above
cases during the ST creation. They aim at aiding the symbol table engineer in answering
the question: Given the AST node of a model element, which of the ST phases P1-P4
should be performed on it?

Phase P5 is omitted in the following method since it is conducted lazily after the
model’s symbol table is completely built, and not when processing specific model elements.

5.2.1 Method for Processing a Model Element Not Represented by a
Symbol Table Element

Since model elements of case (a) are neither represented by a scope nor by a symbol,
their corresponding AST nodes are not handled explicitly during ST creation, but rather
are processed in one of the three other cases. If such a model element does not contain
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any relevant information for the symbol table, its AST node will be ignored. A typical
example are expressions in statements like int i = 3 + x. While variable int i can
be represented by a corresponding symbol (cf. Section 5.2.3), its value, i.e., the AST
node of expression 3 + x is not represented in the symbol table (cf. Section 3.11).

Furthermore, model elements of case (a) can be used for initializing parts of the
symbol table, e.g., in the initialize symbol phase of Figure 5.3. A modifier in Java, for
example, is not represented by its own symbol, in contrast to the corresponding class (cf.
Section 5.2.3). Hence, the modifier is set when processing the class (not the modifier).

5.2.2 Method for Processing a Model Element Represented by a Scope

Figure 5.2 depicts a method for processing the AST node of a model element that spans
a scope (case (b)). First, a corresponding scope is created, which then is optionally
initialized with further information (phase P1). Afterwards, the scope is added to
its enclosing scope (if exists), i.e., the enclosing-sub relation is set, as described in
Section 4.2.1. Finally, the scope and the AST node are linked (phase P4) .

Case (b), among others, applies to the root node of a model. In many textual languages
that node spans an artifact scope (cf. Def. 3.10), but does not represent a model element,
and hence, is not represented by its own symbol. The artifact scope is initialized with
the package information and the import statements used in the model (“initialize scope”
activity, Figure 5.2). Its enclosing scope is the global scope (“set enclosing-sub scope
relation” activity). Another example of case (b) is a Java if block, for which solely a
visibility scope is created.
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Figure 5.2: Method for processing a model element that spans a scope.
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5.2.3 Method for Processing a Model Element Represented by a Symbol

Figure 5.3 presents the steps for processing the AST node of a model element that is
represented by a symbol (i.e., case (c)). The process is analogous to the one of case (b).
First, a corresponding symbol is created and optionally initialized (phase P2), which also
includes creating symbol references and adding them to the symbol (phase P3). Next,
the symbol is added to its enclosing scope (if exists), which has been already created
during the process of either case (b) (cf. Section 5.2.2) or case (d) (cf. Section 5.2.4).
Finally, the AST node and the corresponding symbol are linked (phase P4).
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Figure 5.3: Method for processing a model element that is represented by a symbol.

5.2.4 Method for Processing a Model Element Represented by a Symbol
and a Scope

The last case (d) (i.e., the model element is represented by a scope spanning symbol) is
a combination of the two cases (b) and (c). The process is depicted in Figure 5.4. After
a corresponding symbol and its spanned scope are created, they are linked. In short, the
first three steps serve to create a scope spanning symbol and its spanned scope. The
remaining steps are the same as in Figure 5.2 and Figure 5.3, respectively.
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Figure 5.4: Method for processing a model element that is represented by a symbol and
a scope.

5.3 Incremental Creation of a Symbol Table using a
Depth-First Approach

The symbol table can be created incrementally by traversing the AST using a top-down
depth-first approach [ALSU06]. Thus, the parent node is processed before its children.
Consequently, an enclosing scope is created before its subscopes and containing symbols.
This enables to access symbol table information up to the current model element. For
example, when processing a method, its enclosing class has already been processed, and
hence, the corresponding scope can be accessed. The top-down approach allows (at least)
two possible ways for setting the enclosing-sub relations:

• One possibility is to set the relation in the initialization phase of the enclosing
scope. This entails that the child node is also processed in this phase.

• The other option is to process parent and child node independently from each other.
That means, after the processing of the parent node has finished, the processing of
the child begins. Consequently, the enclosing-sub relation must be set when the
child node is processed.

The second case should be favored since it separates the processing of nodes which
simplifies reuse and customization for, among others, language inheritance. Furthermore,
the processing of the child node does not depend on the parent node anymore. This is
especially important for language embedding, where the child node can be reused without
its parent node. Hence, the remainder of this chapter is based on the second approach.
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5.3.1 Stack-based Approach for Conducting a Top-Down Symbol Table
Creation

The scope hierarchy is managed by a stack (cf. [ALSU06, Par10]) where the top element
is the current scope and the underlying scope is its direct enclosing scope. When building
up a symbol table, such a scope stack is used for an incremental creation of the scope
tree. The general process is as follows:

1. Enter scope s: put s on stack. s becomes the current scope. This step occurs only
in cases a scope is spanned, i.e., (b) and (d).

2. Handle inner elements, e.g., add symbols to current scope.

3. Exit scope s: remove s from stack. Enclosing scope of s (if exists) becomes the
current scope. Again, this step occurs only in cases (b) and (d).

Please note that while the creation and initialization of symbols and scopes is a
language-specific task (cf. [NTVW15]), managing the scope stack and adding symbols to
the current scope is language-unspecific. This enables two important aspects. First, the
(generic) stack management can be completely provided by SMI (cf. Section 5.5), and
hence, eases reuse for a specific language. Furthermore, it simplifies language embedding.
Language embedding is discussed in detail in Section 8.2. Here, it is briefly introduced.

In Java, a method may only be defined in a class. Hence, the enclosing scope of a Java
method always is a Java class scope. However, language embedding enables to embed a
language or parts of it into another language. So, if a Java method is embedded in a
C# class, its enclosing scope will become the C# class. Since adding a symbol to its
enclosing scope is language-unspecific, the whole creation process of the Java method
can be reused when building the symbol table for the C# class. The remainder of this
section demonstrates the stack-based and incremental creation of a symbol table by the
example of the Java class presented in Listing 5.5.

Since a top-level Java type is defined in a file, its enclosing scope is an artifact scope
(cf. Def. 3.10), which initially is the current scope (step 0. in Figure 5.6). Class C spans
a scope that starts at line 1 and ends in line 6 of Listing 5.5. When entering the scope
(step 1.), a class symbol is created and added to the current scope, i.e., the artifact scope

Java
1 public class C {
2 public void m() {
3 int v;
4 }
5 private String f;
6 }

Listing 5.5: Example class processed in Figure 5.6.
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(step 1.1 ). Next, the scope of the class is put on the stack, and hence, becomes the
current scope (step 1.2 ). Similarly, the method scope starts at line 2. When entering
the scope (step 2.1 ), a method symbol is added to the class scope (which is the current
scope), and then, the method scope is put on the stack and becomes the current scope
(step 2.2 ). Thereafter, the local variable v (line 3, Listing 5.5) is handled (step 3.). Since
a variable does not span a scope, only its corresponding symbol is added to the current
scope (i.e., the method scope). In line 4, the method scope ends (step 4.), and thus, is
removed from the stack. Consequently, the class scope becomes the current scope again.

Analogous to the local variable v, a symbol for the field f in line 5 is added to the
current scope (step 5 ). Since the class scope is the top element of the stack, f ’s symbol
is added to C ’s spanned scope. Finally, line 6 closes the class scope, thus, the class scope
is removed from the scope stack (step 6 ). As initially (step 0.), the artifact scope again
is the only scope on the stack (but now contains the whole symbol table of class C ).

Please note that the order of the steps is important. For example, the symbol repre-
senting field f must be added to the current scope C (step 5 ) before C is removed from
the stack (step 6.). Otherwise, f would be added to the artifact scope.
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Figure 5.6: Example of a stack-based symbol table creation, which incrementally builds
up a scope graph and the contained symbols of the class in Listing 5.5.
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5.3.2 Method for Technical Realization of a Symbol Table Creator Using
the Visitor Pattern

Technically, traversing the model means traversing its corresponding AST which is
typically conducted by visitors [GHJV95] as already introduced in Section 2.2.4. As
an example, for step 1.1 in Figure 5.6 the method visit(ASTClassDeclaration)
is used, which is invoked every time a class scope is entered. To handle the exiting
of a scope, the endVisit(ASTClassDeclaration) method can be employed. This
method is invoked every time the processing of an AST node ends (steps 4. and 6. in
Figure 5.6).

Figure 5.7 gives a method for deciding whether a visit and an endVisit method
should be implemented for a specific AST node. That means, it helps to answer the
following question: Given the AST node of a model element, which visitor methods (i.e.,
visit and endVisit) should be implemented for it in the symbol table creator? The
implementation should follow the methods given in Section 5.2.

If an AST node represents a model element of case (a), i.e., it is not related to any
symbol table element, neither a visit method nor an endVisit method needs to
be implemented. On the contrary, the cases (b), (c), and (d) each require at least a
visit method based on the general approaches depicted in Figure 5.2, Figure 5.3, and
Figure 5.4, respectively.

Furthermore, if the model element spans a scope (i.e., cases (b) and (d)), the scope is
put on the stack (in order to become the current scope). Consequently, a corresponding
endVisit method should be implemented that removes the scope from the stack when
the processing of the AST node finished.

Section 7.9 demonstrates how the method depicted in Figure 5.7 is used for generating
a language-specific symbol table creator.

5.4 Linking AST Nodes and Symbol Table Elements

Phase P4—that is, linking AST nodes and corresponding symbol table elements—is
conducted in two phases, a language-specific phase and a language-unspecific phase:

P4.1 (language-specific) In the first phase, the link is set for all AST nodes that are
processed directly, i.e., belong to one of the cases (b)-(d) described in the Subsections
5.2.2, 5.2.3, and 5.2.4. Technically, this means that a corresponding (non-empty)
visit method exists (cf. Section 5.5). This phase is language-specific since the
link between the AST node and the symbol table element has to be explicitly stated
and requires language-specific knowledge, for example, that a JavaTypeSymbol
is to be linked with an ASTInterfaceDeclaration. However, linking symbols
and AST nodes via SMI can be conducted generically as described in Section 5.5.
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Figure 5.7: Method for determining which visitor methods in the symbol table creator
are required for a given model element.

P4.2 (language-unspecific) Next, depending on the links set in phase P4.1, the enclos-
ing scope for all remaining AST nodes can be set in a generic way since it does not
rely on any language-specific information but solely on an AST node’s context, i.e.,
its parent node(s) [Völ11]. Figure 5.8 shows the general process for determining the
enclosing scope of a node n. The root AST node is skipped since it has no parent
node. Typically, it is linked to an artifact scope, which is the root of a model’s
scope graph (cf. Section 3.5.5). As a result, its enclosing scope is the global scope.
If n’s parent node p spans a scope, n’s enclosing scope is p’s spanned scope. Else, if
p does not span a scope, n’s enclosing scope is the same as p’s enclosing scope.

It is important that phase P4.2 is conducted after phase P4.1 since the links set in
P4.2 highly depend on links already set in P4.1.

In the following the two phases are illustrated by an example. Figure 5.9 shows a sim-
plified object-diagram for the AST and symbol table of a Java interface declaration. After
phase P4.1, ASTInterfaceDeclaration is linked to its corresponding JavaType-
Symbol and its spanned scope JavaTypeScope2 (case (d), cf. Section 5.2.4). Similarly,
the ASTFieldDeclaration node is linked with the symbol JavaFieldSymbol (case
(c), cf. Section 5.2.3). Additionally, the spanned scope of the interface declaration is
set as enclosing scope of ASTFieldDeclaration. Since ASTPrimitiveModifier
neither is represented by a symbol nor does span a scope (case (a), cf. Section 5.2.1), it
is not linked to any symbol table element in this first phase.

2Pattern (D) Same Symbol Class for Similar Model Elements (cf. Section 4.1.2) is assumed.
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Figure 5.8: Method for linking AST and ST elements in phase P4.2.
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Figure 5.9: Exemplary linking of AST and ST elements during the phase P4.

In the second phase P4.2, the previously set links are utilized to determine the en-
closing scope of the remaining ASTPrimitiveModifier node. Hence, the enclosing
scope of ASTPrimitiveModifier is the spanned scope of its parent node ASTInter-
faceDeclaration (cf. left case in Figure 5.8)

Please note that in contrast to phase P4.2, P4.1 is conducted while processing the
corresponding AST nodes (in the respective visit methods), as described in the previous
section. Alternatively, the linking of AST nodes and symbol table elements (i.e., phase
P4, Section 5.1) can be completely separated from the other symbol table creation steps,
as follows:
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Figure 5.10: Class EnclosingScopeOfNodesInitializer for conducting phase
P4.2 based on method outlined in Figure 5.8.

1. Conducting symbol table creation phases P1, P2, and P3 (cf. Section 5.1) for each
AST node of the model, without setting any links between AST and ST.

2. Linking AST nodes of cases (b), (c), and (d) (cf. Section 5.2) with corresponding
symbol table elements (i.e., phase P4.1).

3. Linking remaining AST nodes with corresponding enclosing scope (i.e., phase P4.2).

This approach separates concerns and allows to easily disable or enable the linking. At
the same time, it introduces redundancy when handling AST nodes of the cases (b)-(d).
First, when the symbol table is created, the language engineer employs the AST nodes to
create the corresponding symbol table elements (phases P1-P3). Second, in the linking
phase P4.1, those AST nodes are linked to the previously created symbols and scopes.
Technically, this means, that besides a visitor for the symbol table creation a second
visitor for the linking is required which implements visit methods for the same AST
nodes. In consequence, an additional traversal of the AST must be conducted.

5.4.1 Technical Realization of Language-Unspecific Linking

SMI provides the EnclosingScopeOfNodesInitializer class which ultimately
performs the (language-unspecific) linking of the remaining AST nodes (i.e., case (a))
in phase P4.2. As depicted in Figure 5.10, EnclosingScopeOfNodesInitializer
implements the CommonVisitor interface provided by MontiCore which, among others,
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has a visit and an endVisit method. The visit method links all remaining
AST nodes to their corresponding enclosing scopes, based on the method depicted in
Figure 5.8. Additionally, EnclosingScopeOfNodesInitializer manages a stack
which contains the current scope as its top element. The endVisit method solely
removes the top element if it finished processing (cf. Section 5.3).

Please note that MontiCore’s AST omits links to parent nodes. The stack, however,
enables to retrieve information associated with the parent nodes, e.g., the enclosing scope.

5.5 Implementing a Language-Specific Symbol Table Creator

SMI provides the interface SymbolTableCreator in order to create language-specific
symbol tables. Its default implementation CommonSymbolTableCreator conducts the
language-unspecific tasks mentioned earlier in this section, i.e., creating the scope tree
(using a stack), adding symbols to the enclosing scope, and linking AST and symbol table
elements. Figure 5.11 highlights the corresponding methods (and their default behavior),
which are:

getFirstCreatedScope() Returns the scope that has been created at first during the
symbol table creation of the current model (or model element). Within a single
language, this is usually the artifact scope (i.e., the root scope of a model). However,
when applying language embedding, the root scope depends upon the embedded
model element.

putOnStack(MutableScope) Puts a scope onto the stack. If the stack was empty, the
added scope is the first created scope (see method getFirstCreatedScope).
Else, the enclosing-sub relation between the newly added scope and the (previously)
top scope is set (cf. set enclosing-sub scope relation, Figure 5.2). The parameter
is of type MutableScope in order to enable to set the enclosing-sub relation (cf.
Section 4.2.1). Additionally, scope-specific resolving filters are set in this method
(see below).

currentScope() Returns the current scope, i.e., the top element of the scope stack. Since
the symbol table is created incrementally (cf. Section 5.3), this method helps to
access the scope that is currently processed.

currentSymbol() If the current scope is spanned by a symbol, this method returns the
spanning symbol.

removeCurrentScope() Removes the current scope from the stack. The next scope on
the stack becomes the new current scope.

addToScope(Symbol) Adds the symbol to the current scope (cf. add symbol to enclosing
scope, Figure 5.3). If no current scope exists, a warning will be issued.
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Figure 5.11: SymbolTableCreator and its default implementation CommonSymbol-
TableCreator, which employs ResolvingConfiguration to configure
the resolving filters of scopes.

setLinkBetweenSymbolAndNode(Symbol, ASTNode) As part of P4.1, this method
links together the symbol and the AST node (cf. link symbol and node, Figure 5.3).
Additionally, the AST node’s enclosing scope is set to be same as the symbol’s
enclosing scope.

addToScopeAndLinkWithNode(Symbol, ASTNode) This method groups the methods
putOnStack, addToScope, and setLinkBetweenSymbolAndNode, in order
to conduct the last two activities of Figure 5.3 and the last three activities of
Figure 5.4 (if the symbol spans a scope), respectively. This ensures that the correct
order is preserved while incrementally building up the symbol table and prevents
inconsistencies resulting from wrong ordering (cf. Section 5.3.1).

setLinkBetweenSpannedScopeAndNode(MutableScope, ASTNode) Sets the relation
between an AST node and its spanned scope (cf. link scope and node, Figure 5.2),
as part of phase P4.1. For this, a mutable scope is required.
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setEnclosingScopeOfNodes(ASTNode) Conducts phase P4.2 for all AST nodes by
executing EnclosingScopeOfNodesInitializer starting from the given root
node (cf. Section 5.4.1).

CommonSymbolTableCreator(ResolvingConfiguration, MutableScope) The first pa-
rameter of this constructor initializes the symbol table creator with a configuration
for resolving filters (see below). The second parameter sets the enclosing scope
of the model (element) whose symbol table is to be created. Since the root scope
within a model typically is an artifact scope (cf. Section 3.5.5), the passed enclosing
scope usually is the global scope (cf. Section 3.5.6). In general, this constructor is
invoked when creating symbol tables within a single language.

CommonSymbolTableCreator(ResolvingConfiguration, Deque<MutableScope>)
Same as for the previous constructor, the first parameter initializes the symbol table
creator with a configuration for resolving filters. The second parameter contains
a stack of (enclosing) scopes. In particular, this stack is required for language
embedding to share the same scope stack among symbol tables of different languages
(cf. Section 8.2).

Please note that CommonSymbolTableCreator manages a stack of mutable scopes
since, among others, the enclosing-sub relation needs to be set (cf. Section 4.2.1).

In addition to the methods above, every symbol table creator must provide (at least)
a method createFromAST with a language-specific AST node as the only parameter.
This will be demonstrated in Section 5.5.

Resolving Configuration

The class ResolvingConfiguration depicted in Figure 5.11 serves as configura-
tion for the resolving filters introduced in Section 5.2. It allows to customize resolv-
ing filters per scope, which determine the resolvable symbols starting from a specific
scope. The customization is managed via the method addFilter(String, Resolv-
ingFilter), which configures the resolving filter for a scope with the given name.
getFilters(String) returns all resolving filters previously set for a scope. If no
specific resolving filters are specified for a scope, it obtains the resolving filters of its
enclosing scope (if exists), or else the default filters set and retrieved via addDefaultFil-
ter(ResolvingFilter) and Set<ResolvingFilter> getDefaultFilters(),
respectively.

The next section demonstrates how the cases presented in Section 5.2 can be im-
plemented with the methods provided by CommonSymbolTableCreator using the
example of a simplified Java AST structure.
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Example of a Language-Specific Symbol Table Creator

Figure 5.12 depicts an excerpt from the (simplified) AST structure of Java. Its root node
is ASTCompilationUnit which contains package information and import statements.
Furthermore, it consists of interface declarations which in turn can define inner interfaces
and field declarations. Both interfaces and fields can have modifiers. Please note that
each AST node subtypes the (generated) interface ASTJavaNode (cf. Section 2.2.4)
which is important for the createFromAST method described below.

Listing 5.13 shows the structure of the symbol table creator for the Java language,
namely JavaSymbolTableCreator. As it can be seen, JavaSymbolTableCreator
extends CommonSymbolTableCreator (line 2) in order to reuse the default implemen-
tations. Also, it implements the (generated) visitor interface JavaVisitor (line 3),
which enables to handle any AST node of the language as needed (cf. Section 2.2.4).

Besides the constructor of its superclass (lines 5–9), JavaSymbolTableCreator
provides the createFromAST method (lines 11–14), which creates the symbol table
starting from any AST node of the Java language (line 12) by using the parameter
type ASTJavaNode. Finally, createFromAST returns the first created scope via
getFirstCreatedScope (line 13). This enables a functional-like usage of the symbol
table creator: given an AST the corresponding symbol table can be constructed via
stCreator.createFromAST(ast).

«interface»

ASTJavaNode

ASTInterfaceDeclaration

String

getPackageDeclaration()

List<String>

getImportDeclarations()

ASTCompilationUnit

String getTypeName()

ASTFieldDeclaration

ASTPrimitiveModifier

*

*
*

*

* inner

CD

«LS»

�

Figure 5.12: Simplified AST structure for Java.
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Java
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1 public class JavaSymbolTableCreator
2 extends CommonSymbolTableCreator
3 implements JavaVisitor {
4

5 public JavaSymbolTableCreator(
6 ResolvingConfiguration resConfig,
7 MutableScope enclosingScope) {
8 super(resConfig, enclosingScope);
9 }

10

11 public Scope createFromAST(ASTJavaNode rootNode) {
12 rootNode.accept(this);
13 return getFirstCreatedScope();
14 }
15

16 //...
17 }

Listing 5.13: Implementation of createFromAST method for JavaSymbolTable-
Creator.

Java

«LS»

1 @Override
2 public void visit(ASTCompilationUnit ast) {
3 //--- activities "create scope" and "initialize scope" ---//
4 String packageName = getPackage(ast.getPackageDeclaration())
5 List<ImportStatement> importStatements =
6 getImports(ast.getImportDeclarations());
7 ArtifactScope artifactScope =
8 new ArtifactScope(packageName, importStatements);
9

10 //--- activity "set enclosing-sub scope relation" ---//
11 putOnStack(artifactScope);
12

13 //--- activity "link scope and node" ---//
14 setLinkBetweenSpannedScopeAndNode(artifactScope, ast);
15 }

Listing 5.14: Implementation of visit method for ASTCompilationUnit.

Implementation for ASTCompilationUnit (Case (b) on Page 103)

In general, an artifact scope is created when processing the root node of a model, which
in the current example is of type ASTCompilationUnit. Listing 5.14 presents the
implementation of the corresponding visit method. Following from Figure 5.2, the
process starts with creating (cf. create scope, Figure 5.2) and initializing (cf. initialize
scope, Figure 5.2) an ArtifactScope (lines 4–8, Listing 5.14). The package information
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as well as the import statements are important for the inter-model resolution processes
and will be elaborated in Section 6.3 and Section 6.4. Next, the newly created artifact
scope is put on the stack (line 11) which (optionally) sets the enclosing-sub relation
(cf. set enclosing-sub scope relation, Figure 5.2). Finally, the artifact scope and its
corresponding AST node are linked together (line 14, cf. link scope and node, Figure 5.2).

The endVisit method of ASTCompilationUnit is invoked when the processing of
all other AST nodes finished. Hence, besides removing the artifact scope from the stack
(line 3, Listing 5.15), the enclosing scope of all remaining AST nodes is set via setEn-
closingScopeOfNodes, that means, phase P4.2 is conducted (cf. Section 5.4.1).

Java

«LS»

1 @Override
2 public void endVisit(ASTCompilationUnit ast) {
3 removeCurrentScope();
4 setEnclosingScopeOfNodes(ast);
5 }

Listing 5.15: Implementation of endVisit method for ASTCompilationUnit.

Implementation for ASTFieldDeclaration (Case (c) on Page 104)

A Java field is represented by a symbol (cf. case (c), Section 5.2) but does not span
a scope, and hence, is processed as described in Section 5.2.3. Listing 5.16 presents
the implementation of the corresponding visit method. First, a JavaFieldSymbol
is instantiated (lines 6–7), following the create symbol activity in Figure 5.3. Since a
JavaFieldSymbol always has a type, it is also initialized with a JavaTypeSymbol-
Reference (lines 4–5). The scope that defines the type reference (here, an interface
scope) is obtained via currentScope(). Next, further initialization is conducted (cf.
initialize symbol, Figure 5.3), e.g., setting the modifiers (line 11). Thereafter, the symbol
is added to its enclosing scope (line 14, cf. add symbol to enclosing scope, Figure 5.3)
and linked to its corresponding AST node (line 17, cf. link symbol and node, Figure 5.3).

As already mentioned, references (e.g., the field’s type reference) should not be resolved
during the symbol table creation (see phase P5), but after the symbol table creator
finished, e.g., in the endVisit of the root AST node ASTCompilationUnit.

Implementation for ASTInterfaceDeclaration (Case (d) on Page 104)

Listing 5.17 shows the processing of ASTInterfaceDeclaration—which is a model
element of case (d) (cf. Section 5.2)—according to the procedure depicted in Figure 5.4.

Since JavaTypeSymbol subclasses CommonScopeSpanningSymbol, the first three
activities of Figure 5.4 (namely, create spanned scope, create symbol, and link symbol and
scope) are already conducted implicitly when instantiating it (line 5).
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1 @Override
2 public void visit(ASTFieldDeclaration ast) {
3 //--- activity "create symbol" ---//
4 JavaTypeSymbolReference typeRef = new JavaTypeSymbolReference
5 (ast.getTypeName(), currentScope().get());
6 JavaFieldSymbol fieldSymbol =
7 new JavaFieldSymbol(ast.getName(), typeRef);
8

9 //--- activity "initialize symbol" ---//
10 // sets modifiers such as public, private, final, static, ...
11 setModifiers(fieldSymbol, ast.getModifiers());
12

13 //--- activity "add symbol to enclosing scope" ---//
14 addToScope(fieldSymbol);
15

16 //--- activity "link symbol and node"
17 setLinkBetweenSymbolAndNode(fieldSymbol, ast);
18 }

Listing 5.16: Implementation of visit method for ASTFieldDeclaration.

Next—given that pattern (D) Same Symbol Class for Similar Model Elements (cf.
Section 4.1.2) is applied3—the symbol is set to be an interface (line 8). Also, it is defined
as abstract (line 11) following the semantics of an interface in Java (cf. essential model,
Def. 3.15) which is always abstract [GJS+14] (although not explicitly stated in the model).

Please note that visit(ASTInterfaceDeclaration) in Listing 5.17 does not
handle an interface’s fields. Instead, these are handled by their own visit method (i.e.,
Listing 5.16), following the top-down approach presented in Section 5.3.

Finally, addToScopeAndLinkWithNode conducts the last three activities of Fig-
ure 5.4, i.e., adding typeSymbol to its enclosing scope, setting the enclosing-sub relation
of typeSymbol’s spanned scope and the enclosing scope, and linking the typeSymbol
and its spanned scope with the ast node (line 22).

By using the top-down symbol table creation approach (cf. Section 5.3), we do not
have to distinguish whether typeSymbol represents a top-level interface or an inner
interface when adding it to its enclosing scope. Since the enclosing scope (whether artifact
scope or a type scope) is already handled, it is the current scope on the stack. Hence,
typeSymbol is added to the correct scope (cf. Figure 5.6). Finally, the endVisit
method for ASTInterfaceDeclaration (not shown here) removes typeSymbol from
the stack via removeCurrentScope().

3In case of pattern (E) Different Symbol Classes for Similar Model Elements (cf. Section 4.1.2),
JavaInterfaceSymbol would be instantiated instead of JavaTypeSymbol. Consequently, further
initialization, such as in line 8 and line 11 (cf. Listing 5.17), would not be required.
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1 @Override
2 public void visit(ASTInterfaceDeclaration ast) {
3 //--- activities "create spanned scope", "create symbol", and
4 // "link symbol and scope" ---//
5 JavaTypeSymbol typeSymbol = new JavaTypeSymbol(ast.getName());
6

7 //--- activity "initialize symbol and scope" ---//
8 typeSymbol.setInterface(true);
9

10 // an interface is always abstract
11 typeSymbol.setAbstract(true);
12

13 // sets further modifiers such as public or package-local
14 setModifiers(typeSymbol, ast.getModifiers());
15

16 // further initialization, such as setting the super types, etc.
17 // ...
18

19 //--- activities "add symbol to enclosing scope",
20 // "set enclosing-sub scope relation", and
21 // "link node with symbol and scope" ---//
22 addToScopeAndLinkWithNode(typeSymbol, ast);
23 }

Listing 5.17: Implementation of visit method for ASTInterfaceDeclaration.

The initialization of the interface’s modifiers (line 14, Listing 5.17) is an example of
case (a). That means, ASTPrimitiveModifier is not related to any ST element but
solely used in order to initialize typeSymbol. According to Figure 5.7, a dedicated
visit(ASTPrimitiveModifier) method is not required.

Exchangeable Instantiation of Symbols

Instantiating the symbols and references directly via the new operator, as done in
the example above, hampers, above all, language inheritance (cf. Section 8.4). It is,
for example, not possible to substitute the instantiation of JavaTypeSymbol (line 5,
Listing 5.17) with an instantiation of a subtype. However, this is essential since the
extending language can add further information to a model element. MontiJava, for
example, extends the Java language and adds new modifiers such as singleton, in
order to specify singleton classes [Mul15]. Since the other properties of a class remain
unchanged, it should be possible to completely reuse the corresponding symbol table
creator of Java and extend it with MontiJava specific information.
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To enable this, any of the patterns Abstract Factory, Factory Method, and Builder as
presented by Gamma et al. [GHJV95] are suited and should be applied for the symbol
table creator of a language. Section 7.9 demonstrates the generation of a symbol table
creator using the Factory Method pattern.

5.6 Comparison to Symbol Table Creation in Previous
MontiCore Versions

Völkel [Völ11] employs dedicated symbol table kinds for the different access modifiers of
a symbol (cf. Section 3.10). Consequently, the symbol table engineer must be aware of
those different kinds when processing an AST node.

Listing 5.18 illustrates an excerpt from the visit(ASTInterfaceDeclaration)
method implemented with previous MontiCore versions based on the symbol table
approach presented in [Völ11]. First, the associated namespace of the node (cf. Section 4.6)
is initialized with (empty) symbol tables for each kind via the init method (line 6,
Listing 5.18). The method is language-specific, and thus, must be implemented for each
language. The instantiation and initialization of the entry (lines 8–13) is similar to
Listing 5.17. Next, the interface entry is added to each exported symbol table of its
enclosing namespace depending on the interface’s modifier (lines 16–22). For example, if
it is protected, the entry is added to each exported symbol table of the kinds public
and protected. Finally, the symbol is added to the stack, which allows for retrieving
the current symbol, same as the currentSymbol method of our approach.

Please note that the lines 16–25 perform a similar task as addToScope (cf. Section 5.5).
However, since in SMI access modifiers are top-level concepts, the symbol table engineer
is liberated from handling different symbol table kinds during the symbol table creation
process. Instead, modifiers are automatically considered during the resolution process (cf.
Chapter 6). Moreover, the inclusion relation of access modifiers (cf. Def. 3.14) enables to
easily filter not included symbols during symbol resolution. Hence, a method, such as
getAllExportedTables in line 17 of Listing 5.18, is not required. This simplifies the
symbol table creation and prevents that wrong symbol table kinds are used.

Furthermore, the storage employed in Listing 5.18 also serves for the qualification
of references. After the symbol table creation, another workflow qualifies all references
contained in storage. This approach yields two disadvantages. First, the symbol
table engineer must be aware of adding references not only to the respective entries
but also to the storage, which can be a typical source of errors. Second, emerging from
the workflow-based architecture of MontiCore before version 4, it is not possible (at
least not with little effort) to create the symbol table in a functional way, as with the
createFromAST method described above. SMI eliminates both problems by (lazily)
qualifying references during the resolution process. This is discussed in Section 6.3.

120



5.6 Comparison to Symbol Table Creation in Previous MontiCore Versions

Java

«LS»

1 public void visit(ASTInterfaceDeclaration node) {
2 // ...
3

4 // Among others, initializes the associated namespace
5 // with the different symbol table kinds.
6 init(node);
7

8 JavaTypeEntry te = createTypeFromNode(node);
9 te.setEntryState(STEntryState.FULL, te);

10 setTypeModifiers(modifier, te);
11

12 te.setInterface(true);
13 te.setAbstract(true);
14

15 // All exported symbol tables of the enclosing namespace.
16 List<SymbolTable> tables =
17 getAllExportedTables(modifier, node.get_Parent());
18

19 // Add entry to each exported symbol table.
20 for (SymbolTable table : tables) {
21 table.addEntry(te);
22 }
23

24 // Similar to addToScope(Symbol)
25 storage.getEntryStack().push(te);
26 }

Listing 5.18: Implementation of visit method for ASTInterfaceDeclaration
based on approach in [Völ11].
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Chapter 6

Symbol Resolution in SMI

Section 3.2 already describes the importance of names in software languages (cf. [GM10]).
They are, among others, used to refer to elements defined elsewhere (cf. Section 3.4). More-
over, a model’s interface (determined by its modeling language’s interface, cf. Section 3.8)
consists of names and associated information [Rum13] and can be employed by other
models. By this means, names enable name-based composition of models [Rum13, HR13].

The underlying process is called name resolution1 which “associates each reference to
its intended declaration(s), according to the semantics of the language” [NTVW15]. A
language’s semantics regarding name resolution specifies, for instance, whether forward
referencing is allowed. This in turn determines whether the exact occurrences (i.e., source
position) of a reference in its enclosing scope is relevant. Furthermore, the scope types
(e.g., shadowing and visibility scopes, cf. Def. 3.8) a language provides, also affect the
name resolution process. Moreover, the binding time is essential. While static binding
takes place before the program is executed, e.g., during compile time, dynamic binding
occurs during run time [Seb08, GM10]. This thesis focuses on static name binding
(cf. Chapter 3).

The goal of this chapter is to present exemplary use cases and general processes for
name resolution based on language features—determined by the language’s semantics—
introduced in Chapter 3, such as symbol shadowing and access control mechanisms.
Moreover, this chapter elucidates how SMI standardly realizes those use cases based
on the technical basis formed by the previous chapters: Chapter 4 presents technical
classes for relevant concepts (such as symbols, symbol references, and scope types) and
Chapter 5 exploits them to build up the scope graph (on which then the name resolution
is conducted). Furthermore, this chapter demonstrates how a language engineer can adapt
the name resolution in order to meet language-specific requirements. Therefore, this
chapter introduces reference implementations that are (at least conceptually) reusable
when developing own resolution strategies.

Same as [Par10, VS10, Völ11, Bet13], the current thesis applies an imperative approach
for defining the strategy of the resolution process. Some approaches use declarative
techniques. Gabriël et al. [KKWV13], for example, developed the meta-language Name

1We use the terms “name resolution”, “name binding”, and “symbol resolution” interchangeably.
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Binding Language (NaBL), which provides first-level name binding concepts for, among
others, name definition and usages, and scoping rules.

The theory our name resolution is based on has a lot in common with the work conducted
by Neron et al. [NTVW15]. In particular, our resolution approach is determined by the
underlying scope graph. A reference can only be resolved to its definition if there exists a
path from the reference to the definition on the scope graph. Please refer to [NTVW15]
(and its extensions [VANT+15a, VANT+15b]) for a comprehensive introduction of the
name resolution theory. Further discussions can be found in Chapter 3. A difference
of our approach to [NTVW15] is that the current thesis mainly focuses on file-based
languages where artifact scopes play an essential role. Therefore, SMI introduces the
explicit concept of an artifact scope (cf. Section 3.5.5). In contrast, Neron et al. do not
treat artifact scopes as top-level concepts (but still provide ways to apply them via a
combination of other concepts). Furthermore, Neron et al. do not explicitly distinguish
between symbol kinds, which is a fundamental concept of the current thesis.

6.1 Overview and Primary Requirements

This section gives an overview of the current thesis’ symbol resolution process by the
example of class java.lang.System2 of the JDK. For reasons of clarity, the excerpt
shown in Listing 3.1 is repeated in Listing 6.1.

Java

«MODEL»

1 package java.lang;
2 // ...
3 public final class System {
4 // ...
5 private static Properties props;
6 // ...
7 public static String getProperty(String key) {
8 checkKey(key);
9 SecurityManager sm = getSecurityManager();

10 if (sm != null) {
11 sm.checkPropertyAccess(key);
12 }
13 return props.getProperty(key);
14 }
15 // ...
16 }

Listing 6.1: Excerpt from the java.lang.System class (as in Listing 3.1).

2see https://docs.oracle.com/javase/8/docs/api/java/lang/System.html
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Considering the System class, it can be distinguished between referenced model
elements (or symbols) that are defined within System and those that are defined in
another artifact (or model). props, for example, is used within the method scope
(line 13). To determine the local variable or field the name props refers to, the search
begins in the method scope (i.e., the innermost scope). Since getProperty does not
define a local variable named props, the search continues in the enclosing class scope
where a matching field is found. Consequently, the name props in getProperty refers
to the same-named field defined in System. In contrast, SecurityManager used as
type for the local variable sm (line 9) is not defined within System but in its own artifact.
Hence, it can neither be found in the method scope nor in the class scope or the enclosing
artifact scope. Thus, the search continues in the global scope (e.g., the class path). Since
SecurityManager is an unqualified name (cf. Section 3.2), its qualified name (i.e.,
java.lang.SecurityManager) has to be determined first. In the current example,
this can be conducted with the help of the package information (line 1). Having the
qualified name, the definition of the SecurityManager class can be easily located.

To summarize, the name resolution starts in the innermost scope and continues with
the enclosing scope until a corresponding symbol definition is found within the artifact.
If the definition is not found in the artifact, the search continues in the global scope
using additional information, such as the package name and the import statements.
This approach is similar to the one Gabbrielli et al. call “static scope rule” or “rule of
nearest scope” [GM10] (also cf. [ALSU06, Seb08, Völ11, KKWV13, NTVW15]) and very
common in many languages (e.g., Java, C#, and MontiArc).

In the current thesis, the search within the model is called intra-model resolution,
outside the model inter-model resolution, both of which are further divided as highlighted
in Figure 6.2. The search from the getProperty (gP) method to the artifact scope is
called bottom-up intra-model resolution since it takes place within the model and traverses
the scope graph bottom-up. Next, the search from the artifact scope of System (Sy) to
the global scope is the bottom-up inter-model resolution since it starts the search outside
the model. After that, the top-down inter-model resolution continues with the artifact
scope of SecurityManager (Se). Lastly, the resolution continues within the artifact
scope of SecurityManager which is called top-down intra-model resolution. Each of
these four phases exploits different information and techniques in order to conduct the
search, as elaborated throughout this chapter.

The following list highlights some major requirements concerning the name resolution.
More detailed features are described by means of examples in the respective sections.

RRQ1 (Reasonable Defaults) SMI’s resolution mechanism should provide reasonable
defaults for the language features introduced throughout this chapter.

RRQ2 (Efficiency of Customization) A language engineer should be able to conduct
customizations of the provided default behavior (cf. RRQ1 ) with little effort in
order to meet language-specific requirements.
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RRQ3 (Same Behavior of Symbols) It is essential that all symbols that are defined in
the same scope also “behave uniformly with respect to name resolution” [NTVW15]
as already discussed in Section 3.5 and throughout Chapter 4. This, among others,
means, that given two scopes S1 and S2, either all symbols of S2 are visible within S1

or none (and vise versa). The resolution mechanism must ensure this. Exceptions
can occur due to access modifiers and symbol shadowing.

RRQ4 (Encapsulating Model Loading in Name Resolution Process) The name
resolution is conducted on the logical scope graph which emerges from physical
artifacts. The logical class name java.lang.System, for example, corresponds
to the physical (relative) path java/lang/System.java. A language user has
to be liberated from the physical aspects and only focus on the logical ones. Hence,
model loading should be a (hidden) part of the resolution process.

ST

�

GS

AS AS

resolve Se

bottom-up
intra-model

resolution

Se

top-down
intra-model
resolution

Sy

gP Key

GS = Global Scope          AS = Artifact Scope

Sy = System                    gP = getProperty

Se = SecurityManager

scope graph for
the System class

Figure 6.2: Overview of the four phases of the resolution process. In particular, the
resolution (i) is conducted within a model (intra-model) or between models
(inter-model) and (ii) traverses the scope graph bottom-up or top-down.

Chapter Outline

The remainder of this chapter is structured as follows. Sections 6.2, 6.3, 6.4, and 6.5
introduce for each phase of the name resolution process examples of some common
language features as well as a general procedure. Next, Section 6.6 illustrates the
resolution process in explicitly imported scopes and the difficulties they entail. Section 6.7
describes how the resolution can be further restricted via additional information, such
as access modifiers. Subsequently, Section 6.8 presents the technical realization of the
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features and concepts introduced in the previous sections. In Section 6.9 the model loading
process and its integration in the resolution process are elucidated. Section 6.10 briefly
demonstrates the configuration possibilities and usage of the resolution. Section 6.11
discusses further related approaches. Finally, Section 6.12 gives some naming conventions
for language-specific implementations of the introduced technical classes.

6.2 Bottom-Up Intra-Model Resolution

In block structured languages (cf. Chapter 3) symbols are resolved starting from the
innermost block to the outermost until a matching definition is found (e.g., [ALSU06,
Seb08, GM10]). Furthermore, in many languages symbols may be shadowed in subscopes
(cf. Section 3.5). For this, the subscope must be a shadowing scope. Figures 6.3, 6.4,
and 6.5 illustrate some simple cases in which symbol shadowing can occur using the
scope graph notation introduced in Section 3.9. In order to simplify understanding, some
figures also depict exemplary Java code from which that scope graph could emerge.

In Figure 6.3 scope C and its subscope m both define a symbol named f. Furthermore,
a reference to a symbol named f exists in m. Since the resolving process starts in the
innermost scope, the first matching symbol is f defined in m. The search ends here
since any symbol in m shadows same-named symbols (with the same kind) defined in its
enclosing scope C.

mf

f

C

f

resolves to

class C {

int f;

void m() {

char f;

f = ...;

}

}

Java
1

2

3

4

5

6

7

8

ST

�shadowing scope

Figure 6.3: Exemplary bottom-up intra-model resolution in a shadowing scope.

The scope structure presented in Figure 6.4 is same as in Figure 6.3 with one crucial
difference: the subscope is a visibility scope. Again, the search begins in the innermost
scope where the symbol f matches. In contrast to the previous case, the resolution
continues in m since the if scope is a visibility scope, and hence, its contained symbols
do not shadow any symbols of m. As a consequence, the resolution result is ambiguous
since both symbols match: f in the if scope and f in the m scope. In Java and C# this
case results in a compilation error.

Lastly, Figure 6.5 shows a combination of the previous two cases. Again, f is defined
in a visibility scope. Furthermore, a same-named symbol is defined in scope C. The
shadowing scope m is in-between the C scope and the if scope. Same as before, f is
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}
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Figure 6.4: Exemplary bottom-up intra-model resolution in a visibility scope.
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Figure 6.5: Exemplary bottom-up intra-model resolution in a visibility scope affected by
the shadowing ability of its enclosing scope.

used in the if scope, hence, the search starts there and the first matching symbol is the f
symbol defined locally. Since the if scope is a visibility scope, the search continues in
m. Although no symbol is directly found in m, the search ends as f is already found
in a subscope of m. This means, the shadowing ability of m also impacts results of its
subscopes. Hence, the symbol f defined in the if scope shadows the same-kindred symbol
f defined in the C scope.

The three examples of symbol shadowing presented in Figures 6.3, 6.4, and 6.5 can be
combined to more complex examples, like a deeper scope hierarchy and more symbols with
different kinds. However, the general resolution process remains the same, as described
next.
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General Process

As it can be seen in Figure 6.6, the bottom-up intra-model resolution process proceeds
within a model (or artifact) and ends if the artifact scope is reached (or a matching
symbol is found). The resolution starts in the innermost scope with the specified criteria
which, among others, include name and kind of the searched symbol. Only symbols
directly contained in that scope are considered (cf. resolve locally, Section 4.2.2). If (at
least) one symbol matches the criteria and the current scope also is a shadowing scope
or if no enclosing scope exists, the resolution stops with the found symbol(s) being the
result (cf. Figure 6.3). If more than one symbol is found, the ambiguity can be handled
(e.g., by throwing an exception, cf. Section 6.8.1).

If the current scope is a visibility scope or does not contain a matching symbol, the
search will continue with the enclosing scope (if one exists), even if a symbol is found (cf.
Figure 6.4). Consequently, the process illustrated in the activity diagram in Figure 6.6
is repeated upwards the scope hierarchy. This enables the case depicted in Figure 6.5,
i.e., that the shadowing ability of a scope also affects its subscopes. Symbols found in
the current scope and those found in its enclosing scope then are unified. Again, in case
several symbols are found, ambiguity handling is required.

Bottom-Up Intra-Model Resolution Process

resolve locally

in current 

scope

[matching symbol(s) found &&
current scope is shadowing scope]

[else]

AD

[enclosing scope exists]

[no enclosing scope exists]

[current scope is 
not artifact scope]

[current scope is
artifact scope]

continue with

Bottom-Up

Intra-Model

Resolution Process

for enclosing scope

continue with

Bottom-Up

Inter-Model

Resolution Process

handle

ambiguity

unify results

unifies symbols
found in the 
current scope
and, e.g., in the
enclosing scope

required if several
symbols are found

Figure 6.6: General process of the bottom-up intra-model resolution. If no symbol is
found, the bottom-up inter-model resolution will continue (cf. Figure 6.8).
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Please note that continuing with the enclosing scope enables automatic symbol import-
ing, thus, symbols become visible in the subscopes (cf. open scope [GJR79, CL83]), as
described in Section 3.10. If the artifact scope (cf. Section 3.5.5) is currently processed,
the inter-model resolution phase will start (cf. Section 6.3). Finally, results of the
inter-model resolution phase are unified with symbols found in the current intra-model
resolution phase. If required, ambiguity is handled.

The bottom-up intra-model resolution process is similar in many frameworks. For
example, [VS10, Par10, Völ11, Bet13] traverse the (scope or AST) hierarchy bottom-
up until a matching element is found. Except for [Völ11], elements of inner nodes
standardly shadow same-named elements of enclosing nodes. In [Völ11], this must be
explicitly specified in a dedicated workflow which is previously conducted (cf. Section 5.1).
In Spoofax [KV10], the shadowing ability is explicitly specified with a NaBL model
[KKWV13].

6.3 Bottom-Up Inter-Model Resolution

If the specified symbol cannot be found within the model (or artifact), the inter-model
resolution begins. For this, the artifact scope (cf. Def. 3.10) as well as the global scope
(cf. Def. 3.11) play a special role. The former is the top scope within a model, and hence,
determines how the resolution continues outside the model. The latter enables searching
in other artifacts.

In contrast to the intra-model resolution, the symbol’s unqualified name is not sufficient
when searching outside the model, instead the fully qualified name is required. Many
languages allow for specifying a symbol’s unqualified name in combination with an import
statement (cf. Section 3.5.5). From these, the fully qualified name is determined first,
which is called name qualification.

In the following, the beginning of the qualification process is introduced by the example
of Figure 6.7. The name qualification ends when a matching symbol is found which,
however, can be in a different resolution phase. The C class refers to D via its simple
name. There exist, among others, three possible fully qualified names for D.

ST
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package p;

import k.*;

class C {

D d;

}

Java
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5

resolve D

C

resolve D resolve p.D

resolve k.D

AS

Figure 6.7: Exemplary bottom-up inter-model resolution including name qualification.
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First, if D is in the same package as the referencing class C, its fully qualified name
is p.D. Second, if it is defined in the (imported) package k.*, k.D is the fully qualified
name. Lastly, D might be a global type (such as int and boolean) or a type defined
in an unnamed package (similar to the default package in Java [GJS+14]). In these
cases the fully qualified name is the same as the simple name (i.e., D). Each of these
different possible names need to be checked. Consequently, the resolution multiplies when
resolving outside the artifact. The global scope conducts a local search (cf. Section 4.2.2)
for each of these fully qualified names and—if no matching symbol is found—continues
with a top-down inter-model resolution (cf. Section 6.4).

General Process

As depicted in Figure 6.8, the artifact scope starts the bottom-up inter-model resolution
process which includes name qualification in case the searched name is unqualified. The
artifact scope determines all potential names of a searched symbol based on the package
and import information. For a simple name S potential names are:

• the simple name S itself (e.g., in case of global symbols),

• imported qualified names (via import statements) that end with the simple name
S, e.g., q.S,

• k.S for each star import k.*, and

• the artifact scope’s package name p as the symbol’s qualifier, i.e., p.S.

The global scope first tries to find global symbols (such as int and boolean in Java)
by locally resolving each of the calculated potential names. If a corresponding symbol
is found, it will be unified with previously found symbols (if any). More precisely, each
symbol matching one of the potential names, is part of the resolution result. If the
global scope does not contain a corresponding symbol, it continues with the top-down
inter-model resolution (cf. Section 6.4). The results (i.e., symbols) of this process then
are unified with the already found results. Finally, if more than one symbol is found after
the resolution request for each potential name finished, the ambiguity will be handled.

While in our approach the name qualification is part of the resolution process, Völkel
[Völ11] separates these two phases. There, name qualification is an explicit phase during
symbol table creation, as already mentioned in Section 5.1. During this phase each
unqualified symbol table entry is replaced by a qualified version (cf. Section 4.1). While
this is ok for sequential processing of single models, it hampers a modular and functional
manipulation of the scope graph since adding a new symbol requires to explicitly conduct
the qualification process.
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Figure 6.8: General process of the bottom-up inter-model resolution including name
qualification. If no symbol is found, the top-down inter-model resolution will
continue (cf. Figure 6.11).

6.4 Top-Down Inter-Model Resolution

The global scope is the root of the scope graph (cf. Def. 3.11), and hence, the bottom-up
resolution process ends if the global scope is reached (and no symbol is locally found).
Instead, the global scope starts the top-down inter-model resolution and continues with
its subscopes which—besides scopes of global types—are artifact scopes. In this process,
the package declarations of the artifact scopes play an important role.

Figure 6.9 shows an example. The classes C and E both are defined in package p,
whereas class D is defined in package k. Consequently, the global scope contains three
artifact scopes. Starting the top-down inter-model resolution for p.E, the search only
continues in artifact scopes declared in package p, namely the artifact scopes of C and E.
Within these artifact scopes the package information is not relevant anymore, hence, it is
omitted. Consequently, the artifact scope continues with the resolution of E instead of
p.E. This last step is part of the top-down intra-model resolution process, as described in
Section 6.5.

While in the example illustrated in Figure 6.9 it is clear which part of the name
embodies the package name (i.e., p), this is not always the case. In Figure 6.10, for
example, a symbol with the qualified name p.q.D.f has to be resolved. Given this qualified
name, the package name is either p.q.D, p.q, or p. If the symbol represents a top-level

132



6.4 Top-Down Inter-Model Resolution

ST

�

GS

AS AS

resolve p.E

AS

package p

package p

package p;

class C {}
Java

1

2

package k;

class D {}
Java

1

2

package p;

class E {}
Java

1

2

resolve Eresolve E

C D E

Figure 6.9: Exemplary top-down inter-model resolution via qualified name consisting of
two parts. In such a case, the first part is the package name and the second
part the symbol’s unqualified name.

element, its package name is p.q.D. Else, if it represents an inner element (e.g., a field or
an inner class), the package name is either p or p.q. The resolution process must consider
all these cases. Consequently, when resolving p.q.D.f, the global scope delegates to each
artifact scope defined in one of the above packages. In Figure 6.10, the class C is defined
in package p, hence, its artifact scope continues the resolution with q.D.f. Analogously,
D ’s artifact scope continues with D.f since its package is p.q. Finally, p.q.D.f resolves to
the field in D (via a top-down intra-model resolution).
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Figure 6.10: Exemplary top-down inter-model resolution via qualified name consisting of
more than two parts. In such a case, several possible package names exist.

General Process

As depicted in Figure 6.11, the top-down inter-model resolution process always starts
with the global scope. It delegates the resolving request to all artifact scopes, which
match the search criteria. This means, the artifact scope’s package name must be a
prefix of the searched qualified name (which always holds true for the default package).
The artifact scope then continues with the top-down intra-model resolution using the
remaining part of the name, i.e., without the package prefix (cf. Section 6.5). Similarly,

133



Chapter 6 Symbol Resolution in SMI

the top-down intra-model resolution is conducted for each subscope of global scope that
is not an artifact scope. Finally, the results of the different resolving processes (i.e., for
each subscope) are unified. If more than one symbol is found, the ambiguity will be
handled.

Other approaches do not provide an explicit inter-model resolution phase, as in our
approach. While in the current thesis the traversal of the scope graph changes (e.g.,
scope name becomes important instead of shadowing ability) other approaches such as
[Völ11, Bet13] allow for programmatically searching in the matching elements in order
to access their inner elements. In NaBL [KKWV13] this is realized via contextual use
sites, which can be specified declaratively.

Top-Down Inter-Model Resolution Process AD

unify results

[more
subscopes]

continue with

Top-Down

Intra-Model

Resolution Process

handle

ambiguity

Subscope Global Scope

[subscope
matches the 

search criteria]

[subscope does 
not match the 
search criteria]

[no more
subscopes]

e.g., artifact scope

Figure 6.11: General process of the top-down inter-model resolution. If no symbol is
found, the top-down intra-model resolution will continue (cf. Figure 6.15).

6.5 Top-Down Intra-Model Resolution

While symbols of enclosing scopes are always visible (if not shadowed) within subscopes
(cf. open scope [CL83, GJR79]), the other way around is not necessarily the case. Instead,
the subscope must export its containing symbols for outside use (cf. Section 3.10).
Furthermore, the scope must be named (cf. Def. 3.9) in order to enable access to its
symbols via partial (or relative) names [GJR79] (cf. Section 3.2).

Figure 6.12 demonstrates the top-down intra-model resolution process by an example.
The outer class C contains the reference D.f which resolves to the field f of the inner
class D. This is the case as the referenced name matches the partial name of the field,
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Figure 6.12: Exemplary top-down intra-model resolution where subscopes are named as
well as export their contained symbols.

i.e., D.f. In order to resolve elements of subscopes, the partial name (or fully qualified
name) must match the names of the respective scopes in the scope graph. Figure 6.13
illustrates this by a more complex example.

Starting the resolution from the enclosing scope of A (not shown in Figure 6.13),
the resolution continues with A since it matches the first name part of the requested
symbol (i.e., A.B.C.E.f ). Within A, the matching name part is omitted, and hence,
A continues with the resolution of B.C.E.f, leading to its subscope B. Similarly, the
resolution continues with C.E.f, and thereafter, with E.f. Finally in scope E, the symbol
f is found. This only works if all scopes on the path to f yield a matching name, which
does not apply to subscope D. Moreover, each subscope on the path must export its
containing symbols (cf. Section 3.10). Otherwise, the resolution cannot proceed, as
described in the following.

exported symbol

B

D

E

f

resolve A.B.C.E.f

resolve B.C.E.f

resolve C.E.f

resolve E.f

resolve f

ST

�

does not match
search criteria

A

C

Figure 6.13: Exemplary top-down intra-model resolution in a complex scope graph. Each
scope on the path to the requested symbol must have a matching name.
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Figure 6.14: Exemplary top-down intra-model resolution in an unnamed scope (left part)
and a named scope that does not export its symbols (right part).

In Figure 6.14 (left part) the local variable v is defined in an if scope which (in Java and
C#) neither is named nor exports its symbols. Hence, there is no possibility for referencing
v from outside the if scope, e.g., in the enclosing method scope. Similarly, in Figure 6.14
(right part), the local variable is defined in a method scope, and hence, only visible from
within the method scope. Otherwise, this could easily lead to ambiguity if methods are
overloaded (i.e., same-named but different parameter types). As a consequence, a method
scope does not export its symbols for outside scopes even though it is named.

In a sum, named scopes by default export their symbols, so that they can be referenced
from outside. However, there are exceptions, such as methods in Java. Unnamed scopes
do not permit access to their contained symbols. The main reason is that they cannot
be referred to unambiguously, which results from the fact that they do not have fully
qualified names (cf. Section 3.2).

General Process

Figure 6.15 illustrates the general process for top-down resolution within a model. The
process starts with a local search in the current scope. If a matching symbol is found,
the resolution ends. Else, if the current scope does not contain any matching symbols,
the resolution continues with each subscope that (i) exports its symbols and also (ii)
matches the search criteria (e.g., its name matches the requested partial name). Resolved
symbols of the different subscopes are unified. Finally, if more than one matching symbol
is found, the ambiguity will be handled.

In contrast to the bottom-up approach presented in Section 6.2, the shadowing ability
of scopes is ignored in the top-down approach since only symbols of enclosing scopes can
be shadowed.

6.6 Resolution in Explicitly Imported Scopes

The previous sections of this chapter mainly focus on tree-like scope structures which
result from the lexical block hierarchy within artifacts (cf. Section 3.5). Since scopes may
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Figure 6.15: General process of the top-down intra-model resolution. The resolution ends
here whether or not a symbol is found.

import other scopes—both from the same artifact or other artifacts—the emerging scope
graph is not necessarily a tree which complicates the resolution process (cf. [NTVW15]).

As stated in Section 3.10, a scope always implicitly imports its enclosing scope. For
example, a method scope in Java imports the symbols defined in its enclosing class
scope. Furthermore, a scope can explicitly import other scopes, e.g., a class scope imports
(non-private and not shadowed) symbols of its superclasses and interfaces. Figure 6.16
shows how the resolution is conducted in such a case. Class C extends class S (line 2,
upper listing) and refers to the field f (line 3, upper listing) of its superclass. The
emerging scope structure is a tree, with the exception that the class scope C imports the
scope S. As a result, C imports two scopes, namely the artifact scope (i.e., the lexical
enclosing scope) and S (i.e., the explicitly imported scope), and thus, has two enclosing
scopes (or, according to Parr [Par10], an enclosing and a parent scope). Therefore, when
resolving field f in C, the process can continue with the artifact scope as well as with the
scope S. In the current example, f is resolved through the path C → S.

In cases where both paths lead to a (different) symbol definition, a rule of priority can
help solving the ambiguity. In Figure 6.17, class C uses the unqualified type D (line 4, top
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Figure 6.16: Exemplary resolution in an explicitly imported scope.

listing in Figure 6.17). Considering its superclass S, D is an inner class defined in S. The
corresponding resolution path is C → S, marked with (a) in the scope graph. Regarding
the import statement p.*, D is the top-level class defined in package p (resulting from
the inter-model resolutions described in Section 6.3 and Section 6.4). In this case, the
resolution path is C → ASC → GS → ASD (marked with (b)), where ASC and ASD

are the artifact scopes of the classes C and D, respectively. Which path has a higher
priority depends on a language’s semantics. In Java, the superclass has a higher priority
than the enclosing artifact scope (cf. [GJS+14]), and hence, D used in C resolves to the
inner class of S, i.e., the resolution path is C → S. Only if D was not defined in S, the
resolution path C → ASC → GS → ASD would be considered.

As described throughout this chapter, if a symbol is not found in the current scope,
the resolution continues with the enclosing scope or the subscopes, depending on whether
the bottom-up (cf. Sections 6.2 and 6.3) or the top-down (cf. Sections 6.4 and 6.5)
resolution is processing. This, however, does not apply when resolving in explicitly
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Figure 6.17: Exemplary resolution where several possible paths exist due to an explicitly
imported scope. The symbol is resolved unambiguously since explicitly
imported scopes have a higher priority than implicitly imported ones.
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Figure 6.18: Exemplary resolution in an explicitly imported scope ignoring its lexical
enclosing scope.

imported scopes [NTVW15]. Figure 6.18 demonstrates this case by an example. Class A
defines two members, namely the field a and the static inner class B3. Class B subclasses
the (top-level) class C and also defines the field b. Finally, class D extends the inner
class B.

The right part of Figure 6.18 highlights the emerged scope graph. From that graph it
follows that D has access to the fields b and c, imported (transitively) from the scopes B
and C, respectively. The corresponding resolution paths started from D are D → B → b
and D → B → C → c. The field a defined in class A is not visible in D since B only
implicitly imports it without exporting it (cf. forwarded symbol Def. 3.19).

In some cases, several resolution paths with the same priority exist. In Figure 6.19,
for example, the class scope C imports its superclass’ scope S and the interface scope I.
Both types define a field f. In Java, elements defined in supertypes have all the same
priority. Hence, it is not possible to unambiguously determine the definition of f used in
C (line 4, top listing in Figure 6.19). Both paths C → S and C → I are valid, but lead
to a different definition of f.

Since resolution in explicitly imported scopes is highly language-specific, SMI does not
provide a default process for it. However, the infrastructure presented in Section 8.5 (and
Appendix D) provides reusable default implementations for Java-like languages.

3Please note that a static inner class in Java may (only) access static members of its enclosing class
[GJS+14]. Hence, in Figure 6.18 the field a (line 2, upper listing) is visible within the inner class B.
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Figure 6.19: Exemplary resolution in several explicitly imported scopes leading to am-
biguous results.

6.7 Resolution Using Additional Information

Besides name and kind, some symbols require additional information in order to be
unambiguously resolved. Overloaded methods, for example, are both same-named and of
the same kind. They are only distinguished by their formal parameters. Hence, those
parameters must be specified in the resolution process. Moreover, if a scope does not
enable forward references (e.g., a Java method scope), the source position of the reference
is important. Then, the resolution process only considers symbols defined (in the model)
before the reference.

Furthermore, access modifiers can impact the resolution process. As an example, in
order to resolve a protected Java field symbol named f, the specified access modifier for
the resolution must be either private, package-local, or protected (or omitted). In contrast,
searching for that symbol via the public modifier, it will not be resolved—although name
and kind match—since public does not include protected (cf. Section 3.7).

An interesting aspect when resolving via access modifiers is the resolution in explicitly
imported scopes, as discussed in Section 6.6. Considering the case depicted in Figure 6.16
(on page 138), the field f is referenced in C. Since f possibly resolves to a field of C,
the resolution can start with a private access modifier in C. The continuation in C ’s
superclass S, however, cannot continue with private but with the protected access modifier.
Furthermore, if C and S are defined in the same package, the resolution can even continue
with the package-local access modifier. That way, private fields defined in S are filtered
out, and hence, only those fields are considered that are package-local, protected, or
public.

The general process for a resolution via additional information is same as the ones
introduced throughout this chapter, with one exception: a symbol matches the search
criteria if (i) its name and kind match (same as before) and also (ii) the additional
information matches (e.g., access modifier or parameter list).
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6.8 Technical Infrastructure for the Resolution Mechanism

The resolution process in SMI highly depends on each single scope of the scope graph,
e.g., whether it is a shadowing or visibility scope, a Java type scope, the global scope, an
artifact scope, etc. To some extend, the scopes are plugged together which results in a
composition of scopes (i.e., the scope graph). For this, the local resolution within a scope
as described in Section 4.2.2 plays a central role. Similar to Parr [Par10] and MPS [VS10]
and different from, among others, Xtext [Bet13], Völkel [Völ11], and Spoofax [KV10],
the resolution process in the current thesis is a composition of local resolution processes.
That way, scopes can be easily reused and plugged into other scope graphs. The scopes
still retain their semantics, e.g., a Java method scope always resolves for parameters as
well as local variables (even if applying pattern (M) Method Spanning a Parameter Scope
and a Body Scope or pattern (N) Method Spanning an Intermediate Method Scope, cf.
Section 4.3.2). This holds for both, a Java method scope in the Java language itself and
a Java method scope that is embedded into another language (cf. Section 8.2).

Technically, the fact that each scope determines how the resolution proceeds next,
enables to refer to a scope in a generic way (e.g., Scope s), i.e., the type of the scope (e.g.,
JavaTypeScope) is not relevant. This yields the advantage that no type introspection
(like scope instanceof JavaTypeScope) is required as in [Völ11, Bet13].
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Figure 6.20: Excerpt from the resolution methods provided by the Scope interface. These
methods start the resolution process.

Figure 6.20, Figure 6.21, and Figure 6.22 highlight the essential methods of the Scope
hierarchy that participate in the resolution process (cf. overview of technical scope classes
in Figure 4.16 on page 69). As mentioned in Section 4.2, the Scope interface first of
all serves the language user, and hence, provides methods for resolving symbols from
the scope graph. In contrast, MutableScope—which extends Scope—is meant for the
language engineer who needs to modify the scope graph (e.g., during the symbol table
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creation, cf. Chapter 5). Furthermore, it provides methods for the internal resolution
process—which is hidden away from the language user—like continuing with the enclosing
scope if no scope was found in the current scope. Finally, the CommonScope is a technical
class that provides reasonable defaults for both Scope and MutableScope (cf. RRQ1 ),
based on the resolution process as described previously in this chapter.

The following gives an overview of Scope’s methods presented in Figure 6.20. These
methods are partially used in several resolution phases and either serve the bottom-
up or the top-down resolution. The methods for the bottom-up resolution phases (cf.
Section 6.2 and Section 6.3) are:

resolve(String, SymbolKind) Starts the bottom-up resolution process with the given
symbol name (first parameter) and kind (second parameter). Depending on the
scope, it starts the intra-model resolution process (cf. Section 6.2) or the inter-
model resolution process (cf. Section 6.3). This method expects only one matching
symbol, and hence, it standardly handles the ambiguity (cf. “handle ambiguity” in
Figure 6.6 and Figure 6.8) by throwing an exception. Classes implementing this
method can choose alternative implementations, e.g., returning the first matching
symbol.

resolve(String, SymbolKind, AccessModifier) Following Section 6.7, the resolution pro-
cess via access modifiers is conducted the same way as without modifiers. Con-
sequently, this method behaves same as resolve(String, SymbolKind) and
additionally filters out symbols with access modifiers that are not included (cf.
Def. 3.14) in the specified modifier (third parameter).

resolve(String, SymbolKind, AccessModifier, Predicate<Symbol>) Besides the three
parameters as in the previous method, this method allows for specifying further
conditions (fourth parameter) the searched symbol must fulfill. This enables, for
example, to specify the parameter list of a method in order to distinguish it from
other overloaded methods (cf. Section 6.7).

Additionally, Scope provides a resolveMany method for each of the above listed
methods, such as resolveMany(String,SymbolKind) (not shown in Figure 6.20).
The only difference is that a resolveMany method always returns a collection of the
resolved symbols, and hence, no exception is thrown. Context conditions (cf. Section 2.2.5)
can employ these methods to check the well-formedness of a model.

Analogously, the methods for the top-down resolution phases (cf. Section 6.5 and
Section 6.4) provided by Scope are:

resolveDown(String, SymbolKind) Starts the top-down resolution process with the
given symbol name (first parameter) and kind (second parameter). Depending
on the scope, it starts the intra-model resolution process (cf. Section 6.5) or the
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inter-model resolution process (cf. Section 6.4). This method expects only one
matching symbol, and hence, it standardly handles the ambiguity (cf. “handle
ambiguity” in Figure 6.11 and Figure 6.15) by throwing an exception. Classes
implementing this method can choose alternative implementations, like returning
the first matching symbol.

resolveDown(String, SymbolKind, AccessModifier) Behaves the same as resolve-
Down(String, SymbolKind) and additionally filters out symbols having access
modifiers that are not included (cf. Def. 3.14) in the specified modifier (third
parameter).

resolveDown(String, SymbolKind, AccessModifier, Predicate<Symbol>)
Besides the three parameters as in the previous method, this method allows for
specifying further conditions (fourth parameter) the searched symbol must fulfill.
This enables, for example, to specify the parameter list of a method in order to
distinguish it from other overloaded methods (cf. Section 6.7).

Similar to the methods of the bottom-up resolution process, for each of the above listed
methods a resolveDownMany method exists which returns a collection of the resolved
symbols and does not throw an exception.

The methods of the Scope interface start the respective resolution process beginning
with the current scope. If the resolution must continue with other scopes (e.g., because
no symbol was found), sometimes information about the resolution process is required.
For example, in Figure 6.5, the resolution ends after the method scope is processed
since a field has already been found in the method’s subscope. Such information is
stored in ResolvingInfo. For this, the MutableScope interface—as highlighted in
Figure 6.21—provides methods which serve the automatic continuation of the resolution
process. These methods are:
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Figure 6.21: Excerpt from the resolution methods provided by the MutableScope in-
terface. These methods continue an already started resolution process.
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resolveMany(ResolvingInfo, ..., Predicate<Symbol>) Same as the method resolve-
Many(String, SymbolKind, AccessModifier, Predicate<Symbol>)
of the Scope interface, this method conducts a bottom-up resolution. It additionally
contains important information for the resolution process (first parameter), such as
whether symbols have already been found and which resolving filters are registered
(cf. Section 4.2.2).

resolveDownMany(ResolvingInfo, ..., Predicate<Symbol>) This method conducts the
top-down resolution process as described for resolveDownMany(String, Sym-
bolKind, AccessModifier, Predicate<Symbol>) and additionally pro-
vides useful information of the resolution process via its first parameter.

continueAsSubScope(ResolvingInfo, ..., Predicate<Symbol>) This method is invoked
on each subscope during the top-down resolution process. Each subscope then deter-
mines itself whether it fulfills the conditions (e.g., exports symbols) for continuing
with the top-down resolution.
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Figure 6.22: Excerpt from the resolution methods provided by the CommonScope class.
These methods serve as hook methods for language-specific customizations.

In addition to the methods of Scope and MutableScope, the CommonScope class
depicted in Figure 6.22 provides some hook methods [Pre95a] that can be overridden by
language-specific scopes to easily customize the resolution process (cf. RRQ2 ). Please
note that this methods are neither part of Scope nor MutableScope since they are
not required as interface between scopes. In other words, they only serve to control
the resolution within the current scope, while methods such as resolve(String,
SymbolKind) are also employed to conduct the resolution process in other scopes.

resolveManyLocally(ResolvingInfo, ..., Predicate<Symbol>) Resolves all matching
symbols locally found in the current scope.
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continueWithEnclosingScope(ResolvingInfo, ..., Predicate<Symbol>) Continues the
bottom-up resolution with the enclosing scope, if method checkIfContinue-
WithEnclosingScope returns true (see next).

checkIfContinueWithEnclosingScope(boolean) Checks whether the resolution should
continue with the enclosing scope, for example, if no symbols are found or the
current scope is no shadowing scope.

checkIfContinueAsSubScope(String, SymbolKind) Checks whether the current scope
should continue as subscope with the top-down resolution. By default, this method
is called in the implementation of MutableScope’s method continueAsSub-
Scope(ResolvingInfo, String, SymbolKind, AccessModifier).

getRemainingNameForResolveDown(String) As described in Sections 6.4 and 6.5, the
top-down resolution continues with a part of the requested symbol name, which is
determined by this method.

Please note that the method descriptions do not distinguish between intra-model and
inter-model resolution since this depends on the scope (type) itself. For example, a
Java class scope conducts an intra-model resolution while the global scope conducts an
inter-model resolution.

The Scope interface provides many similar methods which, for example, only differ
in how ambiguity is handled. While this simplifies the work of the language user, it
can hamper the work of the language engineer since a lot of redundancy exists. For
example, customizing the bottom-up resolution might affect all of the first three methods
of the Scope interface shown in Figure 6.20. However, as presented in the activity
diagrams for the general processes (i.e., Figures 6.6, 6.8, 6.11, and 6.15) the ambiguity
handling is always the last activity, and hence, does not affect the previous process. Also,
resolving via additional information (such as access modifiers, cf. Section 6.7) does not
influence the previous resolution process but rather restricts what “matching symbols”
are. Following from these observations, CommonScope implements the resolution logic
only in its own methods and the methods it inherits from MutableScope. All methods
inherited from Scope delegate to those methods. As a consequence, only a few methods
must be overridden in order to customize the resolution, following the narrow inheritance
interface principle [WGM89, Pre94] (cf. RRQ2 ).

Figure 6.23 shows the call-stack starting with the resolve(String, Symbol-
Kind) method (analogously for resolveDown(String, SymbolKind)). First, re-
solve(String, SymbolKind) delegates to the method resolveMany(String,
SymbolKind) which itself delegates to resolveMany(String, SymbolKind, Ac-
cessModifier) (not shown in Figure 6.23). For this, the ALL_INCLUSION constant
of AccessModifier is employed, which includes any modifier (cf. Section 4.5), and
hence, does not restrict the resolution. Next, resolveMany(String, SymbolKind,
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Figure 6.23: Delegation procedure of the resolution methods as implemented in the
CommonScope class. Method resolveMany(ResolvingInfo, ...,
Predicate<Symbol>) ultimately conducts the resolution process.

AccessModifier, Predicate<Symbol) is called with a predicate that is always
true as fourth parameter. Same as for ALL_INCLUSION, the predicate does not restrict
the resolution (since always true). resolveMany(String, SymbolKind, Access-
Modifier, Predicate<Symbol) then instantiates ResolvingInfo and further
delegates to resolveMany(ResolvingInfo, ..., Predicate<Symbol>) which
ultimately conducts the resolution. The results, i.e., the resolved symbols, are finally
passed to the initially called resolve(String, SymbolKind) method. If more than
one symbol is found, the method throws an exception, else it returns the result. In con-
trast, directly starting the resolution via resolveMany(String, Symbol), returns
all matching symbols.

Besides reducing redundancy throughout the methods and preventing inconsistencies
between them, the delegation approach has the advantage that the language engineer
only has to adjust one method in order to customize the resolution process of a scope for
language-specific needs. The remainder of this section presents technical realizations for
major aspects of the resolution phases.
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6.8.1 Technical Realization of Bottom-Up Intra-Model Resolution

The different resolve(...) as well as resolveMany(...) methods provided by
CommonScope start the bottom-up intra-model resolution. Each of these methods ulti-
mately delegates to resolveMany(ResolvingInfo, ..., Predicate<Symbol>)
(cf. Figure 6.23) which realizes the different activities of the resolution process presented
in Figure 6.6 (on page 129) as shown in Listing 6.24.

Java

«RTE»

1 @Override
2 public <T extends Symbol> Collection<T> resolveMany(
3 ResolvingInfo resInfo, String name, SymbolKind kind,
4 AccessModifier modifier, Predicate<Symbol> predicate) {
5

6 // Resolve symbol locally in the current scope
7 Set<T> resolvedSymbols =
8 resolveManyLocally(resInfo, name, kind, modifier, predicate);
9

10 // Resolve symbol in the enclosing scope
11 Collection<T> resFromEnclosing = continueWithEnclosingScope
12 (resInfo, name, kind, modifier, predicate);
13

14 // Unify results of current scope and its enclosing scope(s)
15 resolvedSymbols.addAll(resFromEnclosing);
16

17 return resolvedSymbols;
18 }

Listing 6.24: Implementation of method resolveMany(ResolvingInfo, ...,
Predicate<Symbol>) of class CommonScope.

1. Local search: First, a local search within the current scope is conducted (lines
7–8, Listing 6.24). This corresponds to the “resolve locally in current scope” activity
depicted in Figure 6.6.

2. Continuation in enclosing scope: Next, the method continueWithEnclos-
ingScope of CommonScope (lines 11–12) eventually continues the resolution with
the enclosing scope. Listing 6.25 shows the implementation of continueWithEn-
closingScope. First, it checks whether the resolution should be continued with
the enclosing scope via checkIfContinueWithEnclosingScope. By default,
this is the case if no symbols have been found so far or the scope is a visibility
scope (line 3, Listing 6.26), which corresponds to the first condition of Figure 6.6.
If the check is true and an enclosing scope exists (lines 6–7 in Listing 6.25, also see
second condition of Figure 6.6), the resolution continues with the enclosing scope
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(lines 8–9). Please note that in contrast to the activity diagram in Figure 6.6 there
is no check whether the current scope is an artifact scope or not. Instead, this is
conducted via polymorphism by invoking its resolveMany(ResolvingInfo,
..., Predicate<Symbol>) method.

3. Unifying results: The last step unifies the symbols resolved in the current scope
and the ones resolved in its enclosing scope (line 15, Listing 6.24). This corresponds
to the “unify results” activity in Figure 6.6.

4. Handle Ambiguity: Finally, if several symbols are resolved, an exception will
be thrown in case the resolution was started via a resolve(...) method (cf.

“handle ambiguity” activity in Figure 6.6).

Java

«RTE»

1 protected
2 <T extends Symbol> Collection<T> continueWithEnclosingScope(
3 ResolvingInfo resInfo, String name, SymbolKind kind,
4 AccessModifier modifier, Predicate<Symbol> predicate) {
5

6 if (checkIfContinueWithEnclosingScope(resInfo.areSymbolsFound())
7 && (getEnclosingScope().isPresent())) {
8 return getEnclosingScope().get()
9 .resolveMany(resInfo, name, kind, modifier, predicate);

10 }
11

12 return Collections.emptySet();
13 }

Listing 6.25: Implementation of method continueWithEnclosingScope of class
CommonScope.

Java

«RTE»

1 protected
2 boolean checkIfContinueWithEnclosingScope(boolean found) {
3 return !(found && isShadowingScope());
4 }

Listing 6.26: Implementation of method checkIfContinueWithEnclosing-
Scope of class CommonScope.

6.8.2 Technical Realization of Bottom-Up Inter-Model Resolution

The artifact scope’s first steps of the inter-model resolution process are the same as
the default for other scopes. The difference begins as soon as the resolution con-
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tinues with the enclosing scope since then the artifact scope starts the bottom-up
inter-model resolution process, as depicted in Figure 6.8 (on page 132). Consequently,
the ArtifactScope class completely reuses the resolveMany(ResolvingInfo,
..., Predicate<Symbol>) method inherited from CommonScope and only over-
rides the method continueWithEnclosingScope(ResolvingInfo, ..., Pred-
icate<Symbol>), as shown in Listing 6.27.

The difference to the continueWithEnclosingScope method of CommonScope
(cf. Listing 6.25) is the for-loop (lines 14–19, Listing 6.27). Here, instead of solely
continuing the resolution with the enclosing scope, the ArtifactScope determines
all potential names of the searched symbol via a QualifiedNamesCalculator (cf.

“determine potential names for searched symbol (...)” activity in Figure 6.8). Its method
calculateQualifiedNames (line 12) considers all possible names discussed in Sec-
tion 6.3. Subsequently, for each of those names the resolveMany(ResolvingInfo,
..., Predicate<Symbol>) method of the enclosing scope (i.e., the global scope) is
invoked (lines 15–17, Listing 6.27). Please note that ArtifactScope does not need
to override checkIfContinueWithEnclosingScope since the criteria are the same
as the default implemented in Listing 6.26. Same holds true for the unification of the
results.

Since the global scope cannot resolve upwards, the GlobalScope class overrides the
resolveMany(ResolvingInfo, ..., Predicate<Symbol>) method in order to
delegate to resolveDownMany(ResolvingInfo, ..., Predicate<Symbol>).
That way, GlobalScope starts the top-down inter-model resolution (cf. “continue with
Top-Down Inter-Model Resolution Process” activity in Figure 6.8). Thanks to the delega-
tions depicted in Figure 6.23, this affects any method in GlobalScope concerning the
bottom-up resolution, e.g., resolve(String, SymbolKind). Listing 6.28 shows an
excerpt from the GlobalScope’s resolveMany method. As it can be seen, resolve-
Many directly starts the top-down process (lines 7–8) by delegating to (CommonScope’s)
method resolveDownMany(ResolvingInfo, ..., Predicate<Symbol>).

6.8.3 Technical Realization of Top-Down Inter-Model Resolution

The global scope is never in the role of a subscope. Therefore, the GlobalScope
class overrides the method checkIfContinueAsSubScope in order to always return
false. As a consequence, invoking continueAsSubScope on the GlobalScope
always results in an empty collection. Furthermore, the global scope can contain scopes
of global symbols as well as artifact scopes. In the former case, the continuation of
the top-down resolution process is the same as described in Section 6.8.4. In the
latter case, however, the search criteria as described in Section 6.4 must be checked.
For this, the ArtifactScope class overrides checkIfContinueAsSubScope and
adjusts the check as described in Section 6.4. Listing 6.29 shows the implementation
of its checkIfContinueAsSubScope method. First, it is checked whether the scope
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Java

«RTE»

1 @Override
2 protected
3 <T extends Symbol> Collection<T> continueWithEnclosingScope(
4 ResolvingInfo resInfo, String name, SymbolKind kind,
5 AccessModifier modifier, Predicate<Symbol> predicate) {
6

7 Collection<T> result = new LinkedHashSet<>();
8 if (checkIfContinueWithEnclosingScope(resInfo.areSymbolsFound())
9 && (getEnclosingScope().isPresent())) {

10

11 Set<String> potentialQualifiedNames = qualifiedNamesCalculator
12 .calculateQualifiedNames(name, packageName, imports);
13

14 for (String qualifiedName : potentialQualifiedNames) {
15 Collection<T> resFromEnclosing = getEnclosingScope().get()
16 .resolveMany(resInfo, qualifiedName,
17 kind, modifier, predicate);
18 result.addAll(resFromEnclosing);
19 }
20 }
21 return result;
22 }

Listing 6.27: Implementation of method continueWithEnclosingScope of class
ArtifactScope.

Java

«RTE»

1 @Override
2 public <T extends Symbol> Collection<T> resolveMany(
3 ResolvingInfo resolvingInfo,
4 String name, SymbolKind kind,
5 AccessModifier modifier, Predicate<Symbol> predicate) {
6

7 Collection<T> resolvedSymbol = resolveDownMany(
8 resolvingInfo, name, kind, modifier, predicate);
9

10 // ...
11

12 return resolvedSymbol;
13 }

Listing 6.28: Excerpt from method resolveMany(ResolvingInfo, ...,
Predicate<Symbol>) of class GlobalScope.
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exports its symbols (line 5, Listing 6.29), which by default holds true for artifact scopes.
Otherwise, the method finishes and returns false (line 34), i.e., the artifact scope will
not continue the resolution.

Java

«RTE»

1 @Override
2 protected boolean checkIfContinueAsSubScope(
3 String name, SymbolKind kind) {
4

5 if(this.exportsSymbols()) {
6 String symbolQualifier = Names.getQualifier(name);
7

8 List<String> symbolQualifierParts =
9 Splitters.DOT.splitToList(symbolQualifier);

10 List<String> packageParts =
11 Splitters.DOT.splitToList(packageName);
12

13 boolean symbolNameStartsWithPackage = true;
14

15 if (packageName.isEmpty()) {
16 // symbol qualifier always contains the
17 // default package (i.e., empty string)
18 symbolNameStartsWithPackage = true;
19 }
20 else if (symbolQualifierParts.size() >= packageParts.size()) {
21 for (int i = 0; i < packageParts.size(); i++) {
22 if (!packageParts.get(i)
23 .equals(symbolQualifierParts.get(i))) {
24 symbolNameStartsWithPackage = false;
25 break;
26 }
27 }
28 }
29 else {
30 symbolNameStartsWithPackage = false;
31 }
32 return symbolNameStartsWithPackage;
33 }
34 return false;
35 }

Listing 6.29: Implementation of method checkIfContinueAsSubScope of class
ArtifactScope.

The artifact scope only continues with the resolution if its package name is a prefix of
the symbol’s qualifier, i.e., the fully qualified name without the symbol’s simple name.
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This always holds true for the default package whose name technically is an empty
string (lines 15–19). For non-default packages, additional checks are required; the helper
class Splitters is employed which creates a list with elements for each part of a dot-
separated name. For "java.lang", for example, a list with the two elements "java"
and "lang" is created. This is done for the symbol’s qualifier (lines 8–9) and the artifact
scope’s package name (10–11) stored in the local variables symbolQualifierParts
and packageParts, respectively. Next, lines 20–28 check (i) that the symbol qualifier’s
name parts are not fewer than the package’s name parts and (ii) that each part in the
package equals the parts in the symbol’s qualifier at the same position. If one of the
conditions is not fulfilled, the variable symbolNameStartsWithPackage is set to
false (lines 24 and 30, Listing 6.29), hence, the artifact scope will not proceed with the
resolution. This check ensures that the resolution continues in cases like presented in
Figure 6.9 and Figure 6.10. ArtifactScope also overrides CommonScope’s method
getRemainingNameForResolveDown to calculate the remaining name of the searched
symbol as described in Section 6.4.

Please note that the GlobalScope does not know the specific types of its subscopes.
This is possible since the subscopes decide themselves when to continue the top-down
resolution by overriding CommonScope’s method checkIfContinueAsSubScope and
eventually the method continueAsSubScope. Finally, the subscope—whether artifact
scope or not—continues with the top-down intra-model resolution via its resolveDown-
Many method as described next.

6.8.4 Technical Realization of Top-Down Intra-Model Resolution

Analogously to Section 6.8.1, the resolveDown(...) and resolveDownMany(...)
methods provided by CommonScope start the top-down intra-model resolution pro-
cess. For this, they delegate to resolveDownMany(ResolvingInfo, ..., Pred-
icate<Symbol>). Listing 6.30 shows CommonScope’s implementation of this method
which realizes the resolution process depicted in Figure 6.15.

1. Local search: First, resolveDownMany conducts a local search (lines 8–9) within
the current scope (cf. “resolve locally in current scope” activity in Figure 6.15).

2. Continuation with subscopes: If no matching symbols are found in the current
scope (first condition in Figure 6.15), the resolution will continue with each subscope
(second condition in Figure 6.15), as stated in lines 11–21 of Listing 6.30. For
this, the continueAsSubScope method of each subscope is invoked (lines 15–16,
Listing 6.30). The subscope first checks whether it fulfills the criteria (third condi-
tion, Figure 6.15) for continuing with the top-down resolution (line 6, Listing 6.31)
which is implemented in method checkIfContinueAsSubScope. The condition
is true if the subscope exports its symbols (line 4, Listing 6.32) and also matches
the naming criteria as described in Section 6.5. Technically, the name must consist
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Java

«RTE»

1 @Override
2 public
3 <T extends Symbol> Collection<T> resolveDownMany(
4 ResolvingInfo resInfo, String name, SymbolKind kind,
5 AccessModifier modifier, Predicate<Symbol> predicate) {
6

7 // Conduct search locally in the current scope
8 Set<T> resolved =
9 resolveManyLocally(resInfo, name, kind, modifier, predicate);

10

11 if (resolved.isEmpty()) {
12 // 2. Continue search in sub scopes and ...
13 for (MutableScope subScope : getSubScopes()) {
14 Collection<T> resolvedFromSub =
15 subScope.continueAsSubScope(resInfo, name, kind,
16 modifier, predicate);
17

18 // 3. ...unify results
19 resolved.addAll(resolvedFromSub);
20 }
21 }
22

23 return resolved;
24 }

Listing 6.30: Implementation of method resolveDownMany(ResolvingInfo,
..., Predicate<Symbol>) of class CommonScope.

of at least two parts p.N (line 7, Listing 6.32). The name of the scope must be
equal to the first part p of the searched name. Only if the subscope matches the
search criteria, it continues the top-down resolution (lines 10–11, Listing 6.31)
with the remaining name, determined by getRemainingNameForResolveDown
(lines 7–8, Listing 6.31).

In a sum, continueAsSubScope implements the third condition as well as the
“continue with Top-Down Intra-Model Resolution Process for subscope” activity
depicted in Figure 6.15.

3. Unifying results: The results of the current scope and the subscopes are itera-
tively unified (cf. “unify results” activity in Figure 6.15) in the for-loop (line 19,
Listing 6.30).

Please note that not the current scope determines whether a subscope matches the
search criteria (cf. third condition in Figure 6.15)—and hence, should continue with the
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Java

«RTE»

1 @Override
2 public <T extends Symbol> Collection<T> continueAsSubScope(
3 ResolvingInfo resInfo, String name, SymbolKind kind,
4 AccessModifier modifier, Predicate<Symbol> predicate) {
5

6 if (checkIfContinueAsSubScope(name, kind)) {
7 String remainingName =
8 getRemainingNameForResolveDown(name);
9

10 return this.resolveDownMany
11 (resInfo, remainingName, kind, modifier, predicate);
12 }
13 return Collections.emptySet();
14 }

Listing 6.31: Implementation of method continueAsSubScope of class
CommonScope.

Java

«RTE»

1 protected boolean checkIfContinueAsSubScope
2 (String name, SymbolKind kind) {
3

4 if(this.exportsSymbols()) {
5 List<String> nameParts = getNameParts(name).toList();
6

7 if (nameParts.size() > 1) {
8 String firstNamePart = nameParts.get(0);
9 return firstNamePart.equals(getName().orElse(""));

10 }
11 }
12 return false;
13 }

Listing 6.32: Implementation of method checkIfContinueAsSubScope of class
CommonScope.

search—but the subscope itself. Otherwise, the current scope would have to know about
the concrete type of its subscopes in order to determine whether they fulfill the search
criteria. This not only requires type introspection but also hampers language embedding
where subscopes of other languages can be embedded into a scope (cf. Section 8.2).
Certainly, the types of those subscopes are unknown in the embedding scope. In contrast,
during the bottom-up resolution (cf. Section 6.8.1) the current scope determines whether
to continue with its enclosing scope, and not the enclosing scope itself. This is because
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the bottom-up resolution depends on the criteria of the current scope (e.g., whether
it is a shadowing scope), and is independent from the (type of the) enclosing scope.
Consequently, this also works for language embedding.

6.8.5 Technical Realization of Resolution in Explicitly Imported Scopes

To distinguish resolving in explicitly imported scopes from resolving in lexical enclos-
ing scope(s) (cf. Section 3.5), the Scope interface provides the method resolve-
Imported(String, SymbolKind, AccessModifier, Predicate<Symbol>).
The default implementation provided by CommonScope only conducts a local search in
the current scope. This is because the resolution in imported scopes is highly language-
specific, as already stated in Section 6.6.

6.9 Model Loading

Up to now, the entire scope graph has always been considered. That means, each model
of the model path is already processed, and hence, in the memory. While this is ok for a
small number of models, it can lead to efficiency issues if a great amount of models exists.
Therefore, SMI standardly loads and processes models on demand, when requested. This
ensures that only models that are used are loaded and all others are not. Figure 6.33
shows an example.

The class C extends the class D. The corresponding scope tree in Figure 6.33 (a)
highlights that only class C is loaded while the file D.java in the model path is not. To
validate C, it, among others, has to be ensured that D exists and is a non-final class.
This requires to load the scope graph of D and add it to the global scope. From then
on, its information can be resolved as usual. The global scope (in combination with the
languages model loader, cf. Section 6.9.3) is responsible for loading (and processing) the
D.java file and building up the corresponding scope graph (cf. Chapter 5, as shown in
Figure 6.33 (b)).
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AS AS

loaded
lazily

class C

extends D {}
Java

1
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C D

GS
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C

(a) (b)

D

.java
class D is defined
in D.java which
is not loaded yet.

Figure 6.33: Example of lazy model loading.
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To efficiently find the physical location that corresponds to a logical name, languages,
such as Java and MontiArc [HRR12], identify a type (Java) or a component (MontiArc)
via the file name. Moreover, packages are identified via (sub-)directories. For example, a
Java class C in a package p is stored in a C.java file in a directory p. When searching for
the logical name p.C the class loader considers the directories of the class path that are
named p. This among others speeds up the search process and also simplifies the manual
search since the logical name can be easily matched to the physical name. In contrast, in
languages like C, the include statement only refers to the file name.

While the Java approach works for top-level elements, only a part of the qualified
name of inner model elements (such as fields and methods in Java) describes the physical
location. For example, a field f of class C in package p, is stored in file p/C.java.
Consequently, the scope graph of the class p.C must be loaded into the global scope.
After that, f can be resolved in p.C. Hence, the logical name p.C.f maps to the physical
name p/C.java instead of p/C/f.java.

Furthermore, some symbol kinds represent both top-level and inner elements. In Java,
top-level classes as well as inner classes exist. Resolving a class p.C.D, does not specify
whether D is a top-level or an inner class (only the Java naming convention may hint to
it). Consequently, the model’s physical location is either p/C/D.java or p/C.java. If
both locations exist, the model cannot be resolved unambiguously. Since inner classes
can contain inner classes themselves, the search can become even deeper.

In a sum, when searching for a top-level symbol via its qualified name n1.n2...nk−1.nk,
the corresponding model’s physical location is n1/n2/.../nk−1/nk.ext, where ext is the
language’s file extension. Hence, the model’s and the symbol’s qualified name are equal.
In contrast, searching for an inner symbol such as an inner class, the model’s location is
n1/n2/.../nk−1.ext, n1/n2/.../nk−2.ext, ..., or n1.ext, depending on whether the enclosing
symbol is a top-level symbol or an inner symbol itself.

6.9.1 General Process

The global scope enables references between models via the top-down inter-model reso-
lution process (cf. Section 6.4). In order to (lazily) load models during resolution, the
default top-down inter-model resolution process is extended. As shown in Figure 6.34,
the model loading process is an integrated part of the resolution process, and thus,
encapsulated from the language user (cf. RRQ4 ).

First, a top-down inter-model resolution is conducted on the scope graph, as described
in Section 6.4, which ends, if one or more matching symbols are found. Otherwise, it is
not clear whether the requested symbol does not exist or whether its containing model is
not loaded yet4. Hence, in the next step, all models that match the naming convention
of the requested symbol (as described above), are loaded and added to the global scope.

4To increase efficiency, the resolution mechanism only tries to load a matching model when it is requested
for the first time.
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Top-Down Inter-Model Resolution Process with Model Loading
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Inter-Model
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Figure 6.34: General process of the top-down inter-model resolution (cf. Figure 6.11)
with model loading.

Finally, another top-down inter-model resolution is conducted and finds the symbol
if its model was loaded in the previous step. Else, no corresponding symbol definition
exists for the specified reference.

6.9.2 Modeling Language Configuration

Figure 6.35 shows the architecture of the types involved in the model loading process.
The GlobalScope initiates the model loading. The ModelPath class provides access
to models stored in files. Besides configuring the resolving filters in the GlobalScope,
ResolvingConfiguration is passed to the ModelLoader in order to build up the
scope graph. For this, ModelLoader obtains the AST from an AstProvider. A Mod-
elingLanguage provides all information and components required to process models
of that specific language. Among others, the GlobalScope utilizes the ModelName-
Calculator and the ModelLoader components of a language. Given a (qualified)
name, the former calculates possible names of the corresponding model. The latter is
responsible for loading models and storing them into the GlobalScope. Furthermore,
GlobalScope can refer to several ModelingLanguages in order to enable language
aggregation (cf. Section 8.3).

The ModelingLanguage interface provides access to language-related functionalities,
such as parsing and symbol table creation. Each language subtypes this interface (or its
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Figure 6.35: Overview of language components provided by the ModelingLanguage
interface.

default implementation CommonModelingLanguage) to enable processing its models.
Besides its file extension, a modeling language must provide the (generated) parser for
its start rule (cf. Section 2.2.3) and its symbol table creator (cf. Section 5.5). The Mod-
elLoader exploits these information to load models of that language (cf. Section 6.9.3).

6.9.3 Model Loader

Figure 6.36 depicts the ModelLoader interface provided by SMI which loads models via
the name mappings presented above. The method loadModelsIntoScope—as imple-
mented in CommonModelLoader—tries to load the models with the specified qualified
name in the model path. For this, the qualified name is mapped to a corresponding
physical file name, including the languages file extension retrieved via ModelingLan-
guage’s getFileExtension method. Additionally, loadModelsIntoScope creates
the scope graph for the found models and adds them to the passed enclosing scope (i.e., the
global scope) which is configured with the ResolvingConfiguration (cf. Section 5.5).
Language-specific model loaders must subclass CommonModelLoader and implement
its abstract method createSymbolTableFromAST. This method is invoked by load-
ModelsIntoScope after the searched model is parsed, i.e., its AST is created which
then can be used to build the respective symbol table (via SymbolTableCreator).
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Figure 6.36: ModelLoader interface and its default implementation CommonModel-
Loader.

6.9.4 AST Provider

In the examples above, the models are stored in files. However, IDEs such as Eclipse hold
the ASTs of the parsed models already in the memory. To enable model loading indepen-
dent of the physical manifestation, SMI provides the interface AstProvider which is
utilized by ModelLoader to retrieve the AST of a model. By default, ModelLoader
exploits the FileBasedAstProvider to conduct the file-based processing, mentioned
above. For usage in Eclipse the EclipseAstProvider class can be employed to reuse
the AST created during Eclipse’s parsing process.

6.9.5 Model Name Calculator

To calculate the possible model names of a symbol as described above, SMI provides the
ModelNameCalculator and its default implementation CommonModelNameCalcu-
lator. The method calculateModelNames determines a set of possible model names
depending on the symbol’s name (first parameter) and kind (second parameter). The
default implementation in CommonModelNameCalculator solely returns the passed
symbol name regardless of the kind, and hence, treats each symbol kind as a top-level
element. If a language allows for the definition of inner elements, a language-specific
ModelNameCalculator must be implemented and override the calculateModel-
Names method. Listing 6.37 demonstrates this by the example of Java symbols.
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Java

«LS»

1 public class JavaModelNameCalculator
2 extends CommonModelNameCalculator {
3

4 @Override
5 public Set<String> calculateModelNames
6 (String name, SymbolKind kind) {
7 if (JavaTypeSymbol.KIND.isKindOf(kind)) {
8 return calculateModelNamesForType(name);
9 }

10 else if (JavaFieldSymbol.KIND.isKindOf(kind)) {
11 return calculateModelNamesForField(name);
12 }
13 else if (JavaMethodSymbol.KIND.isKindOf(kind)) {
14 return calculateModelNamesForMethod(name);
15 }
16 return Collections.emptySet();
17 }
18 // ...
19 }

Listing 6.37: Exemplary implementation of a language-specific model name calculator.

JavaModelNameCalculator extends CommonModelNameCalculator and over-
rides its method calculateModelNames (lines 4–17, Listing 6.37). For each symbol
kind, a method exists that calculates the possible model names depending on this kind
(lines 8, 11, and 14). That way, the model name of p.C is p/C.java or p.java depending
on whether a type kind or a field kind (or method kind) is specified. For other kinds, an
empty set is returned (line 16).

6.10 Example of Usage

To conduct all phases of the name resolution, GlobalScope must be configured appro-
priately which includes registration of all involved languages (cf. language aggregation in
Section 8.3) as well as specification of the model path(s) (cf. Section 2.2.6). Listing 6.38
shows an example of configuring and using the global scope. The global scope (line 4)
is configured with the Java language configuration (line 1, Listing 6.38) and the model
path src/main/models (lines 2–3). As it can be seen, the GlobalScope instance is
assigned to Scope gs since the concrete scope type is not required for the resolution.

After the configuration, the global scope can be exploited for the (inter-model) resolu-
tion. In line 7, the Java type symbol p.E is resolved (assuming the case in Figure 6.9 on
page 133). If the artifact p/E.java is not loaded yet, it will be lazily loaded from the
model path src/main/models via the model loader registered in JavaLanguage.
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Java

«HC»

1 JavaLanguage javaLanguage = new JavaLanguage();
2 ModelPath modelPath =
3 new ModelPath(Paths.get("src/main/models"));
4 Scope gs = new GlobalScope(modelPath, javaLanguage);
5

6 // resolves to class in p/E.java (in the specified model path)
7 gs.resolve("p.E", JavaTypeSymbol.KIND);
8

9 // resolves to field f of class D defined in p/q/D.java
10 Optional<JavaFieldSymbol> fieldSymbol =
11 gs.resolve("p.q.D.f", JavaFieldSymbol.KIND);
12

13 // starts bottom-up intra-model resolution phase
14 fieldSymbol.get().getEnclosingScope()
15 .resolve("T", JavaTypeSymbol.KIND);

Listing 6.38: Exemplary configuration and usage of SMI’s resolution mechanism.

Analogously, the second resolution request (lines 10–11) resolves to the field f in the
class p.q.D (assuming the case in Figure 6.10 on page 133). For this, the model name
calculator (registered in JavaLanguage) determines the possible model names of the
requested field since JavaFieldSymbol.KIND is specified (line 11). The resolved field
symbol is assigned to fieldSymbol (line 10). This allows to start the resolution from
the field’s enclosing scope D (lines 14–15). In contrast to the global scope, D is defined
within an artifact, and hence, its resolve method starts the bottom-up intra-model
resolution phase.

As demonstrated in this example, after a minimal configuration the resolution process
is conducted including name qualification and model loading. The language user does
not have to consider the different resolution phases introduced throughout this chapter.
Instead, a scope’s resolve method completely encapsulates the resolution process and
proceeds with other phases if required.

6.11 Related Work

Many frameworks provide a generic, language-unspecific resolution mechanism and
additionally allow for language-specific customization. They, among others, differ in
their default implementations (if any) and whether they provide explicit concepts to
realize the language features discussed in this chapter. However, none of the frameworks
explicitly provides all four resolution phases as introduced in this chapter. This phases
simplify the complex resolution process by dividing it into smaller parts. Furthermore,
they facilitate easy and efficient customization of the resolution process by allowing the
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language engineer to focus on the respective phases, as elaborated in Sections 6.8 and 6.9.
Our resolution process highly depends on the elements in the scope graph, e.g., whether
a scope is a shadowing or a visibility scope. Those concepts are already introduced and
discussed with related work in Chapters 3 and 4. This section discusses technical details
based on these two chapters.

The meta-language NaBL [KKWV13] integrated in the Spoofax language workbench
[KV10] enables a declarative specification of name resolution as well as language features
such as shadowing, overloading, and imports. In contrast, the current thesis and also
Xtext [Bet13], Völkel [Völ11], Parr [Par10], and MPS [VS10] specify these features
programmatically, e.g., via Java. Since NaBL’s expressiveness is limited to these features,
Stratego [BKVV08] can be exploited for more complex name resolution rules.

NaBL models are generated to Stratego rules which employ Spoofax’s index API. The
API provides lookup methods to retrieve the respective definitions of annotated identifiers
(cf. Section 5.1). Query methods allow for obtaining information associated with those
definitions. Same as the resolveLocally method of the Scope interface in the current
thesis (cf. Section 4.2.2), the Stratego rule index-lookup-one searches for a matching
definition within the (direct) enclosing scope (cf. [KKWV13]). index-lookup employs
index-lookup-one for each enclosing scope until reaching the top-level scope. This
corresponds to our bottom-up resolution phase conducted via the resolve methods
depicted in Figure 6.20. These methods, however, standardly continue with the top-down
resolution phases which include partially qualified names. This corresponds to NaBL’s
index-lookup-all-levels method. The technical methods for symbol resolution
in our approach each returns a symbol (or a collection of symbols) which represents
both a definition and its associated information (cf. Section 3.3 and Section 3.8). In
contrast, in NaBL the resolved definitions are retrieved via one of the lookup rules above
and are passed to, for example, index-get-data to obtain its associated information
stored in the index. NaBL enables (partial) specification of type resolution. That
way, expressions such as method invocations can be resolved to the respective method
definition, including its correct signature. In the current approach the name resolution can
employ the type resolution only programmatically. This corresponds to the approaches
in, e.g., [EB10, Völ11].

In [Völ11], the Resolver class conducts the generic name resolution and employs
specific resolver clients (i.e., the IResolverClient interface) for the language-specific
aspects (cf. discussions in Section 4.2.2 and Section 4.3). A resolver client conducts
all resolution phases (if required) presented in the current thesis for a specific symbol
table entry kind. In contrast, the approach in SMI only requires customization for the
specific phase. Since resolvers in [Völ11] allow for arbitrary specification of the resolution
process, they do not ensure that entries in the namespaces behave uniformly (cf. RRQ3 ).
For example, if resolvers traverse the namespace hierarchy differently this could lead to
different results. Furthermore, since namespaces in [Völ11] are completely generic and
solely serve as containers for symbol tables (cf. Section 4.2), they do not embody any
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information that is relevant for name resolution. For instance, the concept of named
and unnamed namespaces does not exist (cf. Def. 3.9), hence, there is no possibility
to generically traverse the namespace hierarchy top-down as discussed in Section 6.5.
Furthermore, a global namespace (analogously to GlobalScope in SMI) does not exist
explicitly in [Völ11]. Hence, the namespace hierarchies of different models are not part of
a single namespace graph but are rather connected programmatically. Resolution of inner
elements is therefore not possible in a generic way but instead must be implemented for
each specific language.

Same as in our approach, the resolver in [Völ11] facilitates resolving via arbitrary
additional information. However, as described in Section 4.5 access modifiers are no
top-level concepts in [Völ11], and hence, resolution via access modifiers is not provided
in a generic way, as in the current thesis. Since no kind hierarchy exists as in our
approach (cf. Section 4.1), a dedicated resolver is required for each symbol table entry
kind. Similar to our approach, a model loader exists in [Völ11] which, among others,
retrieves the AST of the loaded model. However, it does not include the creation of a
model’s symbol table, as elaborated in Chapter 5. Section 5.1 already mentions that
the symbol table creation process in [Völ11] includes qualifying of referenced entries.
This is conducted via a dedicated workflow resulting from the sequential processing
of models in previous MontiCore versions (cf. [Kra10]). In contrast, in our approach
name qualification is conducted dynamically as part of the resolution process. That way,
SMI frees the language engineer from explicit handling of the whole name qualification
process. Instead, the resolution process is fully reused. The language engineer solely has
to specify a QualifiedNamesCalculator—if the default implementation does not fit
(cf. Section 6.8.2)—which determines possible qualified names depending on import and
package information. Given those potential names, the remaining resolution process tries
to qualify the name considering the whole name resolution semantics of the language
including model loading. In contrast, the infrastructure in [Völ11] requires a so-called
IQualifierClient which provides two qualify methods. The first method qualifies
an entry (having the state UNQUALIFIED, cf. Section 4.1) starting from its enclosing
namespace and only within the model. The second qualify method qualifies the entry
via a ModelNameQualifier which extends the search to include models (using a model
loader). However, since the qualification is based on artifacts (i.e., files), it does not
allow for name qualifying of inner elements in a generic way. Furthermore, loading the
full version of an entry also requires a language-specific implementation using the model
loader. For this, each symbol table entry implements a specific method.

In summary, one major drawback in Völkel’s [Völ11] approach is that name qualification,
name resolution, and loading of full versions of symbol table entries are technically
separated and only make partial use of each other. This does not only complicate the
language development process but also hampers consistency. Additionally, classes such
as STEntry (cf. Section 4.1) are polluted with technical code. As already discussed
in Section 4.3, the resolution in [Völ11] cannot be started with solely a namespace or
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a symbol table entry (in contrast to a scope or a symbol in this thesis). Instead, an
instance of Resolver is required which must be provided by the underlying framework.

Xtext [Bet13] conducts name resolution via its linking and scoping concepts. Linking
binds a reference to its respective definition and for this it employs scoping. As already
discussed in Section 3.5 and Section 4.2, Xtext’s scoping concept differs from the one of
the current thesis. In Xtext, a scope is considered from a reference’s viewpoint containing
a list of (potential) definitions the reference resolves to and is represented by the IScope
interface. IScopes can be nested and standardly are traversed bottom-up and that
way, among others, consider shadowing. Xtext provides the IScopeProvider interface
(which is subtyped for each language) with its method getScope(EObject, ERefer-
ence) which returns an IScope for the reference (second parameter) in a specific context,
e.g., a method declaration (first parameter). The getScope method is very generic and
requires a lot of type introspections in order to implement language-specific scopes (cf.
[Bet13]). Alternatively, Xtext provides the AbstractDeclarativeProvider (and
many others) which facilitates specifying scopes in a declarative way using name con-
ventions based on the Ecore model (emerged from the grammar definition)5. While this
approach allows for efficient development of scopes, it is error-prone when the grammar
changes or the language engineer accidentally states wrong names, resulting from the
fact that reflection is used. In contrast, scopes and symbol references in the current
thesis are typed and incorporate the resolution logic. That way, type introspection is
omitted and the resolution is not affected by changes in the grammar (only the symbol
table creation might be affected, cf. Chapter 5). Xtext’s approach is very flexible since
it enables specifying scoping for specific references in specific contexts. In SMI, this
can be (partially) realized via concrete SymbolReference subtypes (cf. Section 4.4).
The getReferencedSymbol method can be implemented in an arbitrary way, also
considering its context (e.g., the enclosing scope). However, this should be avoided
(if possible) since it may violate RRQ3 . In contrast to our approach, Xtext does not
provide explicit concepts for access modifiers. Instead, language-specific implementations
must consider this (same as [Völ11]). For elements visible in the global scope, Xtext
provides the IGlobalScopeProvider (and its default ImportNamespacesAware-
GlobalScopeProvider).

Similar to Scope in SMI, MPS [VS10] provides a ScopeProvider interface for so-
called inherited scopes which must be implemented by elements (i.e., concepts) that define
other elements. It provides a getScope(kind, child) method which is similar to
Scope’s resolve methods of the current thesis. The child parameter is the child
node from which the resolution request is started (e.g., a reference). getScope returns
a Scope which is a collection of possible definitions of a reference (same as in Xtext
[Bet13]). When ignoring the child parameter the returned Scope in particular consists

5Customization in Xtext is mainly configured via Google’s dependency injection framework Guice
(https://github.com/google/guice).
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of the containing elements, same as Scope in our approach. The default implementation
employs a bottom-up resolution including shadowing. Same as Xtext, MPS provides
many defaults for scope calculation, such as ModelPlusImportedScope which also
considers imported models (similar to resolveImported). Alternatively, MPS allows
for defining scopes directly in the respective reference, i.e., the reference itself calculates
which elements it potentially refers to, similar to SymbolReference in SMI.

The Scope interface in [Par10], among others, provides a resolve(String) method
which enables resolving a symbol with the specified name, similar to our approach
and MPS. As already discussed in Section 4.1, symbol kinds are not distinguished,
hence, cannot be specified for the resolution. Parr [Par10] suggests a dedicated method
resolveMember(String) as resolveImported(...) in SMI, to search within,
e.g., the class hierarchy instead of the enclosing scope tree.

The meta-compilation tool JastAdd [HM03, EH07] employs parameterized attributes
[Hed00, Ekm06]. In particular, the value of a parameterized attribute depends on the
combination of its parameter values. Technically, JastAdd realizes those attributes
via parameterized accessor methods in the AST classes. This, among others, allows
for name resolution, as demonstrated by Hedin [Hed11]. For example, the State
lookup(String) method returns a state depending on the name specified in the
parameter. Name analysis in JastAdd can be realized as an combination of inherited and
synthesized attributes as well as equations. A local resolution, as in the current thesis,
only depends on the information of the current AST node (and eventually its children).
Thus, AST nodes can add the method State localLookup(String) which searches
for a matching state in the AST node itself and its children. In particular, this embodies
both a synthesized and parameterized attribute since its result depends (i) on the passed
parameter value as well as (ii) on its directly defined fields and the ones of its children.
In our approach, the search in the child nodes can imply a top-down resolution. Hence,
State localLookup(String) is similar to SMI’s resolveDown methods. If the
information cannot be found in the current node (and its children) the search needs
to continue with the parent node which, essentially, is the context of the current node
[Hed11]. For this, JastAdd employs inherited attributes. This means, the root node (or
parent node) defines a method State lookup(String) which traverses its children
and searches in them locally, i.e., it calls the children’s localLookup(String) method
described above. Since child nodes inherit this attribute, they can access elements defined
in the enclosing scope. This corresponds to our resolve method. Please note that
although localLookup traverses its child nodes, it is not same as our resolveDown
method. Only the calculation is conducted downwards, however, that way child nodes can
inherit the method which is part of their context. In particular, child nodes can access
information of the parent node which corresponds to our bottom-up resolution. Ekman
[EH06] demonstrates an example of utilizing JastAdd for more complex scope structures
(such as in Java). Bürger et al. [BKWA11] employ JastAdd’s RAGs to formally specify
EMF meta-model semantics, which includes references between meta-classes.
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Moreover, JastAdd exploits so-called collection attributes [Boy96, MEH09], i.e., values
that are composed of contributions distributed in any node of the AST. One special
feature of this is that the contributors populate (declaratively) a collection attribute, not
the attribute itself. That way, for example, all outgoing transitions of a state can be
populated by the respective transition nodes and not by the state node. This feature is
not explicitly supported in the current thesis, but can be realized via AST traversals.

6.12 Naming Conventions

Table 6.39 lists naming conventions for improving the readability of language-specific im-
plementations of ModelingLanguage, ModelLoader, and ModelNameCalculator.
In particular, the name should consist of the (short) language name and the component’s
name, e.g., JavaModelLoader.

SMI Component Convention Example

ModelingLanguage
suffix “Language” or
suffix “ModelingLanguage”

JavaLanguage
JavaModelingLanguage

ModelLoader suffix “ModelLoader” JavaModelLoader
ModelNameCalculator suffix “ModelNameCalculator” JavaModelNameCalculator

Table 6.39: Naming conventions for language-specific implementations of ModelingLan-
guage, ModelLoader, and ModelNameCalculator.
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Chapter 7

Generative Engineering of
Language-Specific Symbol Table
Infrastructures

The generic infrastructure SMI provides default behavior for concepts occurring in many
block structured languages (cf. Chapters 4, 5, and 6). It aims at reducing boilerplate
code by providing reasonable defaults and that way increase efficiency and effectiveness
of symbol table engineering. Still, when developing language-specific symbol tables, there
exists a lot of boilerplate code as well as repetitive work that has to be conducted by
hand, which includes, among others:

• Relating symbols to their specific kind (e.g., implementing the KIND constant).

• Applying the default implementations introduced in the previous chapters for
language-specific components.

• Creating language-specific symbol table components, such as model loaders and
symbol table creators, and integrating them into the generic infrastructure.

Those aspects concern language-specific information, and therefore, cannot be tackled
with generic features of GPLs. Thus, to further improve the efficiency of the symbol table
development process, we apply a model-driven and generative approach (cf. [Rum12,
CE00]) which enables to generate parts of a language-specific infrastructure. Following
Kelly and Tolvanen [KT08], the generated code builds on the generic infrastructure (i.e.,
the domain framework).

7.1 Overview and Primary Requirements

As for the generated parsers and context condition infrastructure (cf. Section 2.2), the
grammar—i.e., its AST and symbol table—serves as input model for the generation of a
language-specific symbol table infrastructure. The participating artifacts are depicted in
Figure 7.1. Given the grammar, the generator produces symbol table components such
as the specific model loader, symbols, and symbol kinds.
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Figure 7.1: Overview of the input and output of the symbol table generator.

In order to improve the symbol table creation, we extended MontiCore’s meta-grammar—
i.e., the grammar for describing grammars [Kra10]—with further (semantic) information.

The symbol table components, such as symbols and symbol table creators, are highly
language-specific. Thus, their full specification would require complex DSL(s) as, for
example, used in Spoofax [KV10]. Since language engineering with MontiCore is mainly
Java-based, and hence, targets tool developers with skills in Java, the generative approach
should not be based on (new) complex DSLs. Instead, the leading requirements are as
follows:

GRQ1 (Effectiveness of Generation) The generator should produce a large part of the
language-specific symbol table infrastructure based on the language’s grammar
extended with marginal additional information.

GRQ2 (Efficiency of Customization) The customization should be conducted with
little effort, i.e., overhead should be reduced.

GRQ3 (Ease of Learning) The customization of the generated symbol table infrastruc-
ture should be specified via handwritten Java code instead of a new complex DSL
(see above).

GRQ4 (Partial Use of Generated Infrastructure) The language engineer should not
be enforced to use the whole generated infrastructure. Instead, she should be able
to reuse required parts and ignore the rest.
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Driven by the above requirements, we enriched MontiCore’s meta-grammar with
additional information (cf. Section 7.3) and extended the MontiCore language workbench
with a generic handwritten extension mechanism which allows to easily adapt and
integrate generated code with handwritten code (cf. Section 7.14).

Benefits

Using the (enriched) grammar with additional information and generating (parts of) the
language-specific symbol table infrastructure yields the following benefits (cf. [DK98,
MHS05, Rum12, VBD+13]):

• It increases efficiency of the symbol table engineer since redundant information is
concentrated at one single place (i.e., the generator) [Rum12].

• It enhances maintainability of the language-specific symbol table components, for
example, when the generic infrastructure evolves. This is especially the case when
using the proxy pattern for symbol references which must, among others, delegate
each method of the Symbol interface to the real symbol (pattern (Q) Symbol
Reference Using Proxy Pattern, cf. Section 4.4.1). Adding new methods to Symbol
requires manually updating all those symbol reference classes. This is aggravated by
the fact that missing delegations cannot be determined statically during compilation
time, and thus, can lead to silent bugs.

A generative approach enables to simply adapt the respective generator which
entails an automatic update of all generated symbol references to fit into the
(updated) infrastructure (cf. Section 7.8).

• It improves the quality since decreasing errors introduced by manually written
code and also ensuring that the code adheres to specific (coding) guidelines, for
example, those discussed throughout Chapter 4 and naming conventions suggested
in Section 4.7 and Section 6.12.

• It further improves readability and understandability of a symbol’s references, e.g.,
that names used in a transition really refer to states (cf. Section 7.2).

Chapter Outline

This chapter introduces the generative approach for developing language-specific sym-
bol tables by the example of a simple automaton language introduced in Section 7.2.
Section 7.3 presents MontiCore’s grammar format enriched with symbol table specific
information. Next, Section 7.4 highlights the architecture of the symbol table generator
and also gives an overview of the (partially and fully) generated symbol table compo-
nents elucidated in the subsequent Sections 7.5 – 7.13. Finally, Section 7.14 illustrates
mechanisms for customizing the generated code and integrating handwritten code.
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7.2 Automaton Example

An automaton model consists of states and transitions (lines 3–4 in Listing 7.2). A state
has a name and can optionally be an initial or a final state (lines 6–8). A transition has
a source state, an input, and a target state (lines 10–11). Furthermore, it has a name,
which can be employed (from within another model) to specify additional information,
such as the transition’s preconditions and actions.

The grammar (and hence the resulting AST structure) does not reveal that a transition
references two states. It solely employs Names. In contrast, the essential model (embodied
by the symbol table structure, cf. Def. 3.15) depicted in Figure 7.3 clarifies the relation
of transitions and states. The AutomatonSymbol represents the whole automaton and
provides two methods to retrieve the containing states and transitions from its spanned
scope. A dedicated AutomatonScope class is not required since the spanned scope
behaves exactly as CommonScope (cf. Section 4.3).

Unlike AutomatonSymbol, StateSymbol and TransitionSymbol do not span
scopes, thus, cannot contain further symbols. Finally, TransitionSymbol refers to its
states. In this example, we employ the proxy pattern approach (i.e., pattern (Q) Symbol
Reference Using Proxy Pattern, cf. Section 4.4.1) for the state symbol reference. This
pattern is well-suited since a state reference does not hold reference-specific information
(such as type arguments). Consequently, TransitionSymbol can directly refer to
StateSymbol (instead of StateSymbolReference). Finally, each symbol has its
own symbol kind, namely AutomatonKind, StateKind, and TransitionKind.

MCG
1 grammar AutomatonDSL_v1 extends Lexicals {
2

3 Automaton =
4 "automaton" Name "{" (State | Transition)* "}";
5

6 State =
7 "state" Name
8 (("<<" ["initial"] ">>" ) | ("<<" ["final"] ">>"))* ";";
9

10 Transition =
11 Name ":" from:Name "-" input:Name ">" to:Name ";";
12 }

Listing 7.2: Grammar of the automaton language.
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Figure 7.3: Symbol table structure of the automaton language.

7.3 Enriching the MontiCore Grammar with Symbol Table
Information

MontiCore’s meta-grammar allows for specifying both the concrete syntax and the
abstract syntax of a language [KRV07b, KRV10]. From this, a generator derives the
corresponding components, such as the parsers and AST classes. The symbol table
generator follows this approach and generates a language’s symbol table infrastructure
(or parts of it) from the grammar.

The grammar typically does not contain all information required for deriving a full-
fledged language-specific symbol table from it. For this reason, we first extended Monti-
Core’s meta-grammar with a simple annotation mechanism (cf. [Fow10]) which in
particular concerns the production rules, such as ClassProd, InterfaceProd, and
AbstractProd as well as the NonTerminal rule (cf. Section 2.2).

Listing 7.4 gives an excerpt from the extended grammar and Listing 7.5 shows an in-
stance of it by the example of the automaton grammar. The InterfaceProd production
(lines 1–4, Listing 7.4) additionally contains the optional nonterminal SymbolDefini-
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MCG
1 InterfaceProd implements ParserProd =
2 "interface" Name SymbolDefinition?
3 ...
4 ;
5

6 NonTerminal implements RuleComponent =
7 (variableName:Name&? "=" | usageName:Name&? ":")?
8 Name ReferencedRule?
9 ...

10 ;
11

12 SymbolDefinition = "@!";
13

14 ReferencedRule = "@" Name;

Listing 7.4: MontiCore grammar extended with symbol table information.

MCG
1 grammar AutomatonDSL extends Lexicals {
2

3 Automaton@! =
4 "automaton" Name "{" (State | Transition)* "}";
5

6 State@! =
7 "state" Name
8 (("<<" ["initial"] ">>" ) | ("<<" ["final"] ">>"))* ";";
9

10 Transition@! =
11 Name ":" from:Name@State "-" input:Name ">" to:Name@State ";";
12 }

Listing 7.5: Grammar for the automaton language enriched with symbol table
information.

tion (line 2) which allows to mark a production as a symbol definition via @! (line 12).
In the automaton example in Section 7.2, dedicated symbols exist for the whole automa-
ton, its states, and its transitions. Thus, we mark the corresponding productions with @!
(lines 3, 6, and 10, Listing 7.5). The annotation does not distinguish between a normal
symbol and a scope spanning symbol. Instead, the generator automatically determines it
(cf. Sections 7.6 and 7.7).

Furthermore, we extended MontiCore grammar’s NonTerminal production to option-
ally contain the name of the rule it (semantically) refers to (line 8, Listing 7.4). For this
the new production ReferencedRule is introduced (line 14, Listing 7.4). A transition
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MCG
1 grammar AltAutomatonDSL extends Lexicals {
2

3 Automaton =
4 "automaton" Name "{"
5 (
6 // state //
7 ("state" stateName:Name
8 (("<<" ["initial"] ">>" ) | ("<<" ["final"] ">>"))*)
9 |

10 // transition //
11 (transName:Name ":"
12 from:Name "-" input:Name ">" to:Name ";")
13 )*
14 "}";
15 }

Listing 7.6: Automaton grammar with only one production.

in the automaton language, for instance, refers to two states, defined via from:Name
and to:Name in the grammar. To specify that the names really refer to a state, we
annotate them with @State (line 11, Listing 7.5). This information is not only useful for
the symbol table but also on the grammar level itself. For example, a context condition
can check that the referred rule (here State) contains a Name nonterminal. Moreover, it
improves understandability of the grammar since the reference is explicitly stated. Hence,
we use the term “referenced rule” instead of “referenced symbol”.

The automaton grammar is designed in such a way that it specifies a dedicated
production rule for each essential model element [HMSNR15b], namely Automaton,
State, and Transition. This not only results in a useful AST structure simplifying its
traversal but also facilitates relating AST nodes to symbol table elements (cf. Section 4.6).
For instance, the AST node ASTState (generated from the production State) can be
related to the symbol StateSymbol.

In contrast, if essential model elements are not specified in a dedicated production
less parts of the symbol table can be generated. Listing 7.6 demonstrates an (extreme)
example of an automaton grammar where the whole model is described in a single
production1. Instead of separating states (lines 7–8) and transitions (lines 11–12) into
their own productions, they are specified within the Automaton production. As a
result, only the AST node ASTAutomaton is generated which is related to the symbols
AutomatonSymbol, StateSymbol, and TransitionSymbol. Please note that the
(handwritten) automaton symbol table as depicted in Figure 7.3 still embodies the essence
of models of the AltAutomatonDSL grammar.

1Certainly, this grammar does not follow the guidelines as described, e.g., in [KKP+09].
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In summary, grammars like in Listing 7.6 should be avoided since they lead to AST
nodes with mixed concerns and also hamper the symbol table generation. Particularly,
essential model elements should be specified with dedicated productions.

Alternative Approaches

Tagging languages (e.g., [GLRR15]), delta modeling (e.g., [CHS10, SSA14]), model
transformation approaches [MCG05], and aspect-oriented programming [KLM+97] enable
to enrich a model with further information without changing its artifact directly. Instead
a dedicated artifact is used which yields the advantage that the original model is not
polluted. However, introducing new artifacts increases the complexity which impedes
both understandability and maintainability of the model (and the additional artifacts).

The grammar extension described above, however, is only marginal, hence, the annota-
tions do not pollute the grammar. Furthermore, annotating nonterminals directly helps
to understand the semantics of a language, e.g., that a specific name refers to a state.

Alternatively, a convention-over-configuration approach can be applied in order to
determine symbols. In Def. 3.1 we, among others, state that a symbol represents a
named model element. Following from this, we can produce a symbol for each production
containing the Name token (defined in the Lexicals grammar Section 2.2.2). While
Automaton and State in Listing 7.2 solely contain Name, the Transition production
additionally has different usages of it, e.g., from:Name and to:Name. If transition
contained only these two usages, this could be an indication that a transition does not
have a name itself but only employs names of its referenced states. Therefore, a transition
would not necessarily need to be represented by a symbol (cf. Section 3.11). To exclude
such cases, we could consider only productions containing Name either without usage
name (i.e., Name) or with the usage name name (i.e., name:Name).

A drawback of this approach is that it can lead to many inappropriate symbols.
For example, the production QualifiedName = Name (|| ".") fulfills the above
criteria, but obviously is not an essential model element (cf. Section 3.3). Moreover, the
approach’s restrictiveness might be a drawback as well; the language engineer cannot
specify further symbols for productions not containing the Name token (even if they
employ another token for defining a name).

Similar to our approach, the language workbench Xtext [EB10] uses the ID terminal to
set the name feature of an element, i.e., name=ID. Analogously to from:Name@State,
Xtext allows to specify the type of the referenced element via from=[State] (which is
a default for from=[State|ID]). From this specification in the grammar, Xtext then
generates the abstract syntax based on the Ecore meta-model [SBPM09].

Projectional approaches as applied in, for example, MPS [VS10] focus on the abstract
syntax and specify references directly on that structure. Consequently, no further
enrichments are required.
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Figure 7.7: Architecture of the symbol table generator. A dedicated generator exists for
each symbol table component introduced throughout Chapters 4, 5, and 6.

7.4 Architecture of the Symbol Table Generator

Figure 7.7 presents the architecture of the symbol table generator. As it can be seen,
for each component of the symbol table infrastructure introduced in Chapters 4, 5, and
6 a specific generator exists, e.g., ModelLoaderGenerator and SymbolGenerator.
Additionally, a common implementation class exists for each of these generators (not
shown in Figure 7.7), e.g., CommonModelLoaderGenerator.
SymbolTableGenerator is the main class and conducts the generation process via

its generate method by delegating to the specific generators. For this it requires the
following arguments:

ASTGrammar astGrammar The AST of the enriched MontiCore grammar.

SymbolTableGeneratorHelper stGenHelper A helper class which provides useful infor-
mation for the generation process. Among others, it ensures that only target
language conformable names are specified. For instance, given the name final—
which is a Java keyword—the helper class changes it to r__final2.

File output The output path for generated code (cf. Section 2.2.6).

2The helper uses an unnatural prefix such as "r__" to prevent clashes with human chosen names
(within the same class).
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IterablePath handcoded The path of the handcoded classes (cf. Section 2.2.6), which is
used to conduct the integration of handwritten and generated code (cf. Section 7.14).

Similarly, each specific generator provides a generate method which requires be-
sides the SymbolTableGeneratorHelper and IterablePath stated above, the
GeneratorEngine (cf. Section 2.2.1) which ultimately conducts the generation and
is configured with the output path of the generated code. Additionally, each generator
needs specific information which is described in the following sections. The generators are
based on the template-based (cf. [CH03, CH06, Fow10]) approach introduced in [Sch12]
and can be customized as shown there. Finally, SymbolTableGeneratorBuilder
builds [GHJV95] an instance of SymbolTableGenerator using the above mentioned
default implementations (unless otherwise stated).

Overview of Generated Symbol Table Components

Although a language’s symbol table (including its essential model) comprises language-
specific aspects, a large part of it still can be generated. Table 7.8 gives an overview of
the generated symbol table components.

As it can be seen, the generator produces each component at least partially (cf. GRQ1 ).
Symbol kinds, model loaders, and resolving filters can even be fully generated when
adhering to the default implementations discussed in previous chapters. Occasionally, the
other symbol table components can be fully generated as well (marked with (x)). This,
above all, depends on whether the grammar covers all information required for specifying
that component. Certainly, this implies that AST and symbol table do not differ much.

The subsequent sections particularize for each symbol table component (i) what its
typical boilerplate code is and (ii) which parts of it can be generated (iii) based on
which information. Two kinds of boilerplate code can be distinguished. First, code that
is required to integrate the symbol table components with the generic infrastructure

ST Component Partially Fully

Symbol Kind x

Symbol x (x)

Scope Spanning Symbol x (x)

Symbol Reference x (x)

Symbol Table Creator x (x)

Model Name Calculator x (x)

Model Loader x

Resolving Filter x

Modeling Language Configuration x

Table 7.8: Partially and fully generated symbol table components.
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SMI. For example, each scope must subclass CommonScope. The respective code (i.e.,
extends CommonScope) is independent from the specific language, and thus, does not
require grammar information. Generating it can serve as starting point and documentation
for the language engineer. The second kind of boilerplate code is language-specific, e.g.,
the class name of each symbol table component depends on information which can be
derived from the grammar (cf. naming conventions in Sections 4.7 and 6.12).

7.5 Generation of Symbol Kinds

The generator produces a dedicated symbol kind class for each symbol, following pattern
(G) Different Symbol Kinds for Similar Model Elements (cf. Section 4.1.3). Furthermore,
it focuses on pattern (H) Separating a Symbol and Its Kind into Different Classes (cf.
Section 4.1.4), where a symbol kind does not contain information specific to a symbol
(and thus can be fully generated).

Boilerplate Code

With regard to the applied patterns mentioned above, each language-specific symbol kind
must (cf. Section 4.1):

1. subtype the SymbolKind interface (i.e., integration with SMI),

2. implement getName to return the kind’s unique name, and

3. implement isKindOf as shown in Listing 4.4 (on page 55).

The other two implementation patterns discussed in Section 4.1.4, i.e., (I) Symbol
Class Implements Kind Interface and (J) Same Class For a Symbol and Its Kind require
symbol specific information, listed in Section 7.6. Moreover, the last pattern results in
one class (instead of two) representing both the symbol and its kind which hampers
customization (cf. Section 7.14).

Generative Approach

Integrating the generated class with SMI (see 1.) does not require language-specific
information. Similarly, the isKindOf method (see 3.) does not require language-
specific information. The remaining point solely requires the symbol kind’s name, e.g.,
StateKind.class.getName() which equals the annotated production’s name (i.e.,
State@! = ...).

In general, we generate for each production Prod marked with @! (cf. Section 7.3) a
symbol kind class ProdKind (cf. [HMSNR15b]). Considering the automaton grammar,
these are AutomatonKind, StateKind, and TransitionKind (resulting from the
nonterminals Automaton, State, and Transition, respectively).
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7.6 Generation of Symbols

For the generation of symbol classes the generator applies patterns (E) Different Symbol
Classes for Similar Model Elements (cf. Section 4.1.2) and (H) Separating a Symbol and
Its Kind into Different Classes (cf. Section 4.1.4). That is, the generator produces a
symbol for each (essential) model element separated from its respective symbol kind class
(cf. Section 7.5).

Since a symbol is highly language-specific and depends on several design decisions of
the language engineer (cf. Section 3.11), it typically cannot be fully generated.

Boilerplate Code

Although symbols are highly language-specific, they still bear some boilerplate code
(cf. Figure 7.9). That is, they:

1. extend the CommonSymbol class (i.e., integration with SMI),

2. provide a respective constructor which internally sets the correct kind, and

3. define a public constant KIND containing an instance of the corresponding symbol
kind.

Generative Approach

The generator needs the following information to generate some language-specific aspects:

• the production name as the symbol’s class name (e.g., StateSymbol) as well as
its constructor (see 2.),

• the production name as type for the symbol’s kind (e.g., StateKind KIND, see 3.),

• nonterminals annotated with @ (e.g., from:Name@State) for setting the asso-
ciations, for example, the from and to associations of TransitionSymbol,
and

• semantically relevant terminals (e.g., ["initial"], cf. Section 2.2.2) as the
symbol’s attributes, for example, the initial field of StateSymbol and the
respective getter and setter methods isInitial and setInitial.

Additionally, the generator must determine whether to produce a normal symbol
or a scope spanning symbol. Considering the automaton grammar in Listing 7.5 on
page 172, the Automaton production (lines 3–4) contains nonterminals for State and
Transition. Since the corresponding State and Transition productions both are
annotated with @!, it follows that an AutomatonSymbol contains StateSymbols and
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TransitionSymbols. Hence, AutomatonSymbol is a scope spanning symbol. The
generation of scope spanning symbols is described in Section 7.7.

In contrast to Automaton, neither the State production nor the Transition
production contains a nonterminal whose production is annotated with @!. Consequently,
StateSymbol and TransitionSymbol are symbols that do not span a scope.

While generating symbol classes reduces manually written boilerplate code, it is not
always optimal to generate these with all information that can be derived from the
grammar. This is because undesired information in a generated class might hamper its
reuse since Java (i.e., the target code) does not allow for removing methods and fields
of a class in a non-invasive way. As an example, while subclasses can override methods
inherited from the superclass, they cannot remove inherited methods.

For this reason, the symbol table generator always produces two classes per symbol
using a naming convention. For each production Prod annotated with @! it generates
a ProdSymbolEMPTY as well as a class ProdSymbol [HMSNR15b]. The first class
does not contain any specific attributes. Its main concern is to fit into the generic
infrastructure, i.e., extend CommonSymbol and provide a KIND. It allows to easily apply
the first implementation pattern presented in Section 4.1.1, that is, the symbol does not
contain any information already contained in the AST node.

The second generated class subclasses ProdSymbolEMPTY and additionally contains
further information directly derived from the grammar (similar to the AST). Finally,
the language engineer can decide—depending on her requirements—which of these two
classes (if any) to reuse.

The StateSymbolEMPTY class in Figure 7.9, for instance, fits into the generic infras-
tructure (e.g., subclasses CommonSymbol) and contains (generated) boilerplate code,
such as the constant KIND. It does not contain any further information concerning a state.
For this purpose, class StateSymbol is generated, which subclasses StateSymbol-
EMPTY and extends it with additional information derived from the State production.
Now, if StateSymbol contains undesired information, the language engineer can ignore
it and instead develop a handwritten class that extends StateSymbolEMPTY and op-
tionally add further language-specific information. That way, the generator transposes
most of the boilerplate code mentioned above. MontiCore ensures that the generated
symbol class does not interfere with the handwritten class (cf. Section 7.14) (GRQ4 ).

In summary, generating two classes for a symbol simplifies reuse for the language
engineer in cases the generated classes do not (completely) fit the requirements. If,
for instance, the generated ProdSymbol class contains some unneeded information,
ProdSymbolEMPTY can still be reused. This, above all, reduces the manually written
boilerplate code (i.e., subclassing CommonSymbol, adding constant KIND, etc.). It also
serves as starting point for the language engineer and demonstrates how to integrate
language-specific symbols into the generic infrastructure. Section 7.14 presents the
different adapting mechanisms for the generated symbol table infrastructure.
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Figure 7.9: Generated symbol classes using the example of transitions and states.

7.7 Generation of Scope Spanning Symbols

For the generation of scope spanning symbols, we apply pattern (K) Separating Symbol
and Its Spanned Scope into Different Classes (cf. Section 4.3.1). Consequently, this pattern
enables adapting the generated symbol and scope classes independently from each other.
In contrast, pattern (L) Same Class for Symbol and Its Spanned Scope (cf. Section 4.3.1)
uses one class for both, and thus, hampers customization. Nevertheless, both patterns
require the same information to be generated and produce similar boilerplate code. Same
as for normal symbols, scope spanning symbols are only partially generated (in most
cases). The remainder of this section focuses on the (preferred) pattern (K) Separating
Symbol and Its Spanned Scope into Different Classes (cf. Section 4.3.1).

Boilerplate Code

Implementing scope spanning symbols includes the same boilerplate code as for symbols (cf.
Section 7.6) with the difference that CommonScopeSpanningSymbol (cf. Section 4.3)
is subclassed (instead of CommonSymbol). Moreover, each scope spanning symbol must:

1. override the (factory) method createSpannedScope of CommonScopeSpan-
ningSymbol if the symbol spans a specific scope (cf. Figure 4.22), and

2. provide methods for retrieving locally defined symbols from the spanned scope.
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Figure 7.10: Generation of scope spanning symbols using the example of automatons.

Generative Approach

As already mentioned in the previous section, the annotated Automaton production
entails the generation of the scope spanning symbol AutomatonSymbol. In general,
an annotated production Prod leads to the generation of a scope spanning symbol if it
contains at least one nonterminal that belongs to an annotated production Prod2 (where
Prod2 can be Prod itself). On the symbol level this means that ProdSymbol contains
Prod2Symbol, and hence, is a scope spanning symbol. The Automaton production, for
example, is annotated and contains a nonterminal of the annotated production State.
Hence, AutomatonSymbol—generated from the Automaton production—is a scope
spanning symbol (cf. Figure 7.10) since it contains StateSymbols.

Generating scope spanning symbols requires:

• all information as for normal symbols, listed in Section 7.6,

• the annotated production’s name to generate a class for the spanned scope, e.g.,
AutomatonScope and instantiating it in the createSpannedScope method of
the spanning symbol (see 1.), and

• names of all annotated productions whose nonterminals are used in order to generate
those methods stated in the second item.
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Java
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1 public class AutomatonSymbol
2 extends AutomatonSymbolEMPTY {
3

4 public AutomatonSymbol(String name) {
5 super(name);
6 }
7

8 @Override
9 protected AutomatonScope createSpannedScope() {

10 return new AutomatonScope();
11 }
12

13 public Collection<TransitionSymbol> getTransitions() {
14 return spannedScope.resolveLocally(TransitionSymbol.KIND);
15 }
16

17 public Collection<StateSymbol> getStates() {
18 return spannedScope.resolveLocally(StateSymbol.KIND);
19 }
20 }

Listing 7.11: Generated AutomatonSymbol class.

As shown in Figure 7.10, same as for State and Transition, two classes are derived
from the annotated production Automaton, namely AutomatonSymbolEMPTY and
its subclass AutomatonSymbol. Unlike the case in Section 7.6, the former extends
CommonScopeSpanningSymbol.

Additionally, AutomatonScope is generated, which is the spanned scope of Automa-
tonSymbol. Therefore, AutomatonSymbol overrides the method createSpanned-
Scope of CommonScopeSpanningSymbol and returns an AutomatonScope (lines 9–
11 in Listing 7.11).

Since a symbol serves as a (language-specific) view of its (generic) spanned scope
(cf. Section 4.3), the methods getTransitions and getStates delegate to Automa-
tonScope in order to retrieve the containing TransitionSymbols and StateSym-
bols, respectively (lines 13–19 in Listing 7.11). That way, the generator ensures that
the guidelines introduced in Section 4.3 are applied.
AutomatonScope behaves exactly as CommonScope, and thus, could be omitted

(cf. Section 7.2). However, it still is generated to simplify customization (if needed) via
the approaches presented in Section 7.14.
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7.8 Generation of Symbol References

Section 4.4 presents three patterns for symbol references whereas the delegation approach
(pattern (P) Symbol Reference Using Delegation) and the proxy approach (pattern (Q)
Symbol Reference Using Proxy Pattern) are preferred. The latter leads to much more
boilerplate code since it delegates each method from the proxy to the real symbol. Hence,
handcrafting it is more tedious and error-prone than the first approach. For this reason,
the generator produces symbol reference classes following the proxy pattern approach to
simplify the work of the language engineer. In cases the engineer prefers the delegation
pattern, she can employ the customization approaches presented in Section 7.14.

Boilerplate Code

Implementing a reference via the proxy pattern produces a lot of boilerplate code since it:

1. implements the SymbolReference interface (cf. Section 4.4),

2. contains an association to CommonSymbolReference (which ultimately links to
the symbol definition),

3. implements all methods of SymbolReference and delegates them to Common-
SymbolReference,

4. overrides all methods inherited from CommonSymbol—and CommonScopeSpan-
ningSymbol in case the referenced symbol spans a scope—and delegates them to
the referenced symbol,

5. extends the class of the real symbol (i.e., the referenced symbol), and

6. overrides all methods specific to the real symbol’s class and delegates them to the
referenced symbol.

Generative Approach

The first four items concern only aspects regarding the generic infrastructure, hence, they
do not rely on any language-specific information. Therefore, the respective code can be
generated independently from the language’s grammar.

In contrast, the last two items require

• the name of the annotated production for the real symbol to set the name of
the reference class (e.g., StateSymbolReference) as well as extending the real
symbol’s class (i.e., extends StateSymbol) (see 5.), and

• information about the terminals and nonterminals as described in Section 7.6 in
order to generate the methods mentioned in item 6.
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Please note that generating symbol references following pattern (R) Same Class for a
Symbol Definition and Its References (cf. Section 4.4.1) requires the same information as
above. In contrast, the delegation approach presented in pattern (P) Symbol Reference
Using Delegation (cf. Section 4.4.1) solely needs the annotated production’s name for
setting the reference class’ name.

If a handcoded class for the real symbol exists (cf. Section 7.6), the generator cannot rely
on the corresponding production anymore when producing methods derived from it (see 6.).
For example, when omitting the isFinal method in the handcoded StateSymbol
(which extends StateSymbolEMPTY), the StateSymbolReference class may not
delegate to that method since it would introduce compilation errors.

As a consequence, methods stated in item 6. are omitted (or at least commented
out) in the generated StateSymbolReference class if StateSymbol is handwritten.
Alternatively, the generator can make use of Java’s parser and symbol table (cf. [Mul15]) in
order to process the handwritten classes and obtain their methods. With this information
the reference class can be generated more precisely (cf. [MSNRR16]).

The generator produces for each symbol a corresponding symbol reference class, regard-
less of whether references of that symbol can exist or not from within the language. In
the automaton language, for example, transitions refer to states. No other references are
possible, i.e., neither transitions nor automatons can be referred to. Still, the generator
produces the classes TransitionSymbolReference and AutomatonSymbolRefer-
ence in case these references are required when composing the automaton language with
other languages. If not needed, they can simply be ignored (cf. Section 7.14).

As stated in Section 7.1, the generative approach improves maintainability for symbol
references applying the proxy pattern (pattern (Q) Symbol Reference Using Proxy Pattern,
cf. Section 4.4.1). It takes over all the boilerplate code that comprises overriding of
Symbol’s (or ScopeSpanningSymbol’s) methods as well as SymbolReference’s
methods. Hence, in case these interfaces evolve, solely the symbol reference generator
must be adapted.

7.9 Generation of Symbol Table Creators

Chapter 5 elaborates the creation of a model’s symbol table (i.e., the scope graph and
its contained symbols) in detail and also gives methods for realizing language-specific
symbol table creators. The symbol table creator generator follows these methods for
producing default implementations and provides options for efficient customization.

Boilerplate Code

A symbol table creator:

1. subtypes the generated language visitor interface (cf. Section 2.2.4),
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2. extends CommonSymbolTableCreator to obtain the default implementations,

3. provides a respective constructor, and

4. implements the createFromAST method with the language-specific root AST
node type (cf. Section 2.2) as its parameter.

Furthermore, each case (especially (b)-(d)) presented in Section 5.2 comes with its
own boilerplate code for which the generator generates respective defaults.

Generative Approach

In order to generate the boilerplate code listed above, the generator mainly requires the
grammar’s name (e.g., AutomatonDSL):

• to set the symbol table creator’s class name (e.g., AutomatonDSLSymbolTable-
Creator) as well as its constructor (see 3.),

• for subtyping the language’s generated visitor (e.g., AutomatonDSLVisitor)
(see 1.), and

• for implementing the createFromAST method with the correct parameter type
(e.g., ASTAutomatonDSLNode) (see 4.).

Item 2. does not require language-specific information. In summary, based on the
grammar’s name the generator can produce the general structure of a language-specific
symbol table creator and integrate it with SMI.

According to the method depicted in Figure 5.7 (on page 109), AST nodes of the cases
(b), (c), or (d) require a dedicated implementation of the visit method in the symbol
table creator class. Moreover, the cases (b) and (d) additionally require an endVisit
method. The generator is aware of the presented method and produces the respective
Java methods. However, it first has to determine (automatically) to which case a specific
AST node belongs3. For this, the generator makes use of the enriched grammar as follows.
First, AST nodes of productions that are not annotated themselves but contain (at least)
one nonterminal of an annotated production, are categorized as case (b). That means,
the AST node (or the respective model element) spans a scope. As an example, assume a
(simplified) production for an if-block like IfBlock = "{" Variable* "}"; where
the production Variable is annotated with @!. IfBlock itself is not represented by a
symbol (since not annotated) but defines variables which are represented by symbols.

3Please note that the three phases for finding candidates for symbol table elements are (implicitly)
applied here (cf. Figure 3.8 on page 50). The first phase (i.e., “determine symbols”) is already realized
via the annotated productions. Based on those annotations, the generator can conduct the other two
phases (i.e., “determine scope spanning symbols” and “determine scopes”).
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1 @Override
2 public void visit(ASTIfBlock ast) {
3 //--- activity "create scope" ---//
4 MutableScope scope = create_IfBlock(ast);
5

6 //--- activity "initialize scope" ---//
7 initialize_IfBlock(scope, ast);
8

9 //--- activity "set enclosing-sub scope relation" ---//
10 putOnStack(scope);
11

12 //--- activity "link scope and node" ---//
13 setLinkBetweenSpannedScopeAndNode(scope, ast);
14 }
15

16 protected MutableScope create_IfBlock(ASTIfBlock ast) {
17 // creates visibility scope
18 return new CommonScope(false);
19 }
20

21 protected void initialize_IfBlock
22 (MutableScope scope, ASTIfBlock ast) {
23 // e.g., scope.setName(ast.getName())
24 }
25

26 @Override
27 public void endVisit(ASTIfBlock ast) {
28 removeCurrentScope();
29 }

Listing 7.12: Generated visit and endVisit methods of the symbol table creator
for model elements that span a scope (following the method depicted in
Figure 5.2 on page 103).

Following the method for a model element that spans a scope (cf. Figure 5.2 and
Figure 5.7), the generator produces the corresponding visit and endVisit methods,
as shown in Listing 7.12. For this, the generator produces a template method [WBJ90,
GHJV95] (with specific hook methods [Pre95a]) which ensures the right order of the
activities suggested by the method for case (b) (cf. Figure 5.2). Furthermore, it produces
two methods create_Prod (i.e., a factory method [GHJV95]) and initialize_Prod
with a default implementation following the first two steps in Figure 5.2, i.e., creating
the scope and initializing it.
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Since an if-block is unnamed (cf. Def. 3.9), a visibility scope (cf. Def. 3.8) is instantiated
(line 18, Listing 7.12) that does not require further initialization (lines 21–24). In
contrast, if the block is named—technically that means the production contains the
terminal Name (e.g., NamedBlock = Name "{" ... "}")—a shadowing scope will
be created instead and is initialized with the respective name (line 23).

The language engineer can customize the creation and initialization of the scope by
simply overriding the methods create_IfBlock and initialize_IfBlock. Typi-
cally, the last two steps in the visit method remain unchanged, i.e., putting the scope
onto the stack and linking it with the AST node.

Finally, the respective endVisit removes the scope from the stack (line 28) and
ensures a correct stack-based approach (cf. Section 5.3.1).

Listing 7.13 presents the visit method generated for AST nodes of case (c) using
the example of ASTTransition. Similar to the previous case, the Template Method
pattern approach ensures that the implementation adheres to the process outlined in
Figure 5.3 (on page 104). Another advantage of this approach is that it simplifies
language inheritance (cf. Section 8.4). That is, the inheriting language can introduce
a subclass of TransitionSymbol which requires further initialization. Consequently,
create_Transition and initialize_Transition must be overridden to return
the subclass and conduct the additional initialization, respectively. For this, the latter can
be completely reused, i.e., super.initialize_Transition(transition, ast).

Please note that initialize_Transition also sets the state references which only
requires the annotated name, e.g., from@State. What remains is only boilerplate code,
and thus, can be fully generated (lines 23–29, Listing 7.13). This case does not require
an endVisit method since no scope is spanned (cf. Figure 5.7).

The generator omits concrete implementations of the create_Prod and initial-
ize_Prod methods if the respective ProdSymbol class is handwritten for the reasons
discussed in Section 7.8.

Finally, the last case (d) is a combination of the previous two cases (cf. Figure 5.4 on
page 105). In addition, the production Automaton is not only represented by a symbol
but also is the start production of the grammar. Consequently, ASTAutomaton is the
root node of an automaton model. Following Figure 5.7 and Section 5.4, phase P4.2 of the
symbol table creation—i.e., language-unspecific linking of AST nodes and symbol table
elements—should be conducted when the symbol table creation of a model finished, i.e.,
the root node has been processed. For this, the generator produces the endVisit method
as shown in Listing 7.14 and starts phase P4.2 via setEnclosingScopeOfNodes in
line 5 (cf. Section 5.5).
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1 @Override
2 public void visit(ASTTransition ast) {
3 //--- activity "create symbol" ---//
4 TransitionSymbol transition = create_Transition(ast);
5

6 //--- activity "initialize symbol" ---//
7 initialize_Transition(transition, ast);
8

9 //--- activity "add symbol to enclosing scope" ---//
10 addToScope(transition);
11

12 //--- activity "link symbol and node"
13 setLinkBetweenSymbolAndNode(transition, ast);
14 }
15

16 protected TransitionSymbol create_Transition(ASTTransition ast) {
17 return new TransitionSymbol(ast.getName());
18 }
19

20 protected void initialize_Transition
21 (TransitionSymbol transition, ASTTransition ast) {
22

23 StateSymbolReference from =
24 new StateSymbolReference(ast.getFrom(), currentScope().get());
25 transition.setFrom(from);
26

27 StateSymbolReference to =
28 new StateSymbolReference(ast.getTo(), currentScope().get());
29 transition.setTo(to);
30 }

Listing 7.13: Generated visit method for model elements that are represented by a
symbol (following the method depicted in Figure 5.3 on page 104).

Java

«GEN»

1 @Override
2 public void endVisit(ASTAutomaton node) {
3 removeCurrentScope();
4 //--- conduct linking phase P4.2 ---//
5 setEnclosingScopeOfNodes(node);
6 }

Listing 7.14: Generated endVisit method for model elements that are represented
by a scope spanning symbol.
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7.10 Generation of Model Name Calculators

The model name calculator determines possible model names from a symbol’s qualified
name depending on the symbol’s kind (cf. Section 6.9.5).

Boilerplate Code

A language-specific model name calculator (cf. Listing 7.15):

1. extends CommonModelNameCalculator (cf. Section 6.9.5), and

2. overrides calculateModelNames in order to handle each symbol kind of the
language.

Java

«GEN»

1 public class AutomatonDSLModelNameCalculator
2 extends CommonModelNameCalculator {
3

4 @Override
5 public Set<String> calculateModelNames
6 (String name, SymbolKind kind) {
7 if (AutomatonSymbol.KIND.isKindOf(kind)) {
8 return calculateModelNamesForAutomaton(name);
9 }

10 else if (StateSymbol.KIND.isKindOf(kind)) {
11 return calculateModelNamesForState(name);
12 }
13 else if (TransitionSymbol.KIND.isKindOf(kind)) {
14 return calculateModelNamesForTransition(name);
15 }
16

17 return Collections.emptySet();
18 }
19

20 protected Set<String>
21 calculateModelNamesForAutomaton(String name) { ... }
22

23 // same for states and transitions...
24 }

Listing 7.15: Generated model name calculator.
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Generative Approach

In order to generate language-specific model name calculators, the following information
is required:

• the grammar’s name as the generated class’ name, e.g., AutomatonDSLModel-
NameCalculator, and

• the name of all symbols (i.e., annotated productions) to generate specific methods
as calculateModelNamesForAutomaton(String) (lines 20–21, Listing 7.15)
to which the calculateModelNames delegates (lines 8, 11, and 14).

By default, a calculateModelNamesFor* method returns a set which only contains
the value of the parameter name. The language engineer can efficiently adapt the
calculation of possible model names for a specific symbol kind by solely overriding the
corresponding hook point method [Pre95a] (cf. Section 7.14).

7.11 Generation of Model Loaders

Each language provides its specific model loader in order to process models of that
language. For this, the model loader only extends CommonModelLoader and implements
the method createSymbolTableFromAST in a schematic way. Consequently, it mainly
consists of boilerplate code (although language-specific information is required).

Boilerplate Code

A concrete model loader:

1. extends CommonModelLoader (cf. Section 6.9.3),

2. implements the method createSymbolTableFromAST inherited from Common-
ModelLoader and sets the root AST node’s type as createSymbolTableFrom-
AST’s first parameter, and

3. calls the (language-specific) symbol table creator within createSymbolTable-
FromAST.

Generative Approach

While the first item concerns generic aspects the other two rely on language-specific
information, that is:

• the name of the start production to determine the name of the top-level AST node
(e.g., ASTAutomaton) (see 2.),
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• the grammar name for determining the name of the symbol table creator class (e.g.,
AutomatonDSLSymbolTableCreator, cf. Section 7.9) (see 3.), and

• the grammar name for setting the model loader’s class name (e.g., Automaton-
DSLModelLoader).

No further information is required for implementing a language-specific model loader
(cf. Section 6.9.3), and thus, it can be completely generated.

7.12 Generation of Resolving Filters

In general, the default implementation for resolving filters, i.e., CommonResolving-
Filter is sufficient, and hence, implementing language-specific resolving filter classes is
not necessary (cf. Section 4.2.2). However, dedicated classes simplify reuse, for example,
when composing languages. Thus, the generator produces a resolving filter class for each
symbol kind.

Boilerplate Code

Resolving filter classes are very small and almost fully consist of boilerplate code (cf.
Listing 7.16), that is:

1. extending CommonResolvingFilter and

2. implementing a constructor which passes the respective symbol kind to its superclass’
constructor.

Generative Approach

The generator only needs the symbol’s name (i.e., the name of the annotated production):

• as the resolving filter’s name, e.g., StateResolvingFilter (line 1, Listing 7.16),

• in order to define its constructor (line 4) (see 2.), and

• to pass the correct symbol kind to its superclass’ constructor, for example, State-
Symbol.KIND (line 5) (see 2.).
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Java

«GEN»

1 public class StateResolvingFilter
2 extends CommonResolvingFilter {
3

4 public StateResolvingFilter() {
5 super(StateSymbol.KIND);
6 }
7 }

Listing 7.16: Generated resolving filter class for states.

7.13 Generation of Modeling Language Configurations

The ModelingLanguage interface serves as a configuration that bundles a language’s
components, such as its parser, symbol table creator, and model loader (cf. Section 6.9.2).
Since we generate each of these components at least partially (cf. Table 7.8 on page 176),
we can also generate the language-specific modeling language class. Figure 7.17 exemplifies
this with the architecture of AutomatonDSLLanguage. As it can be seen, all associated
classes of AutomatonDSLLanguage are (at least) partially generated.

+String getName()

+String getFileExtension()

#AutomatonDSLModelLoader

provideModelLoader()

«abstract»
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Figure 7.17: Overview of generated modeling language class and its associated classes.
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Boilerplate Code

A language-specific modeling language:

1. subtypes CommonModelingLanguage (cf. Section 6.9.2),

2. overrides the respective methods to set the associations shown in Figure 7.17, and

3. overrides provideModelLoader for instantiating the corresponding model loader.

Generative Approach

Again, the first item is not based on language-specific information but integrates the
modeling language into SMI. For the remaining points, the generator requires the
following information:

• the grammar name for setting the modeling language’s class name (e.g., Automa-
tonDSLLanguage),

• the grammar name for determining the name of the parser4, the symbol table
creator (cf. Section 7.9), the model name calculator (cf. Section 7.10), the model
loader (cf. Section 7.11), and to set the return type of the corresponding methods
(e.g., AutomatonDSLModelLoader provideModelLoader()), and

• the name of the productions annotated with @! to initialize the resolving filters, e.g.,
addResolvingFilter(new StateResolvingFilter()) (cf. Section 7.12).

The information left is the language’s name (e.g., “Simplified Automaton Language”)
and its file extension which cannot be obtained from the grammar. As a result, Au-
tomatonDSLLanguage is generated as an abstract class. Additionally, the generator
produces the method initResolvingFilters to initialize language-specific resolving
filters (line 7 and lines 11–15, Listing 7.18). This enables to efficiently customize the
registered resolving filters via method overriding.

Finally, it is important to mention that the generator does not produce the method
provideModelLoader (lines 17–20) in case a handwritten modeling language class
exists. Otherwise, the keyword this (line 19) would yield a compilation error since it
should refer to the handwritten class, not to the generated class.

7.14 Adapting the Generated Classes

Enriching the grammar with few symbol table information allows the generator to produce
large parts of the language-specific symbol table infrastructure (cf. GRQ1 ). While some

4generated by MontiCore’s parser generator (cf. Section 2.2.3)
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1 public abstract class AutomatonDSLLanguage
2 extends CommonModelingLanguage {
3

4 public AutomatonDSLLanguage(String langName, String fileExt) {
5 super(langName, fileExt);
6

7 initResolvingFilters();
8 setModelNameCalculator(new AutomatonDSLModelNameCalculator());
9 }

10

11 protected void initResolvingFilters() {
12 addResolvingFilter(new AutomatonResolvingFilter());
13 addResolvingFilter(new StateResolvingFilter());
14 addResolvingFilter(new TransitionResolvingFilter());
15 }
16

17 @Override
18 protected AutomatonDSLModelLoader provideModelLoader(){
19 return new AutomatonDSLModelLoader(this);
20 }
21

22 ...
23 }

Listing 7.18: Excerpt from the generated AutomatonDSLLanguage class.

classes are completely generated, and thus, ready for use (such as the symbol kinds and
resolving filters), others are partially generated and must be extended (e.g., symbols) (cf.
GRQ3 ). Since the generated defaults do not always fit the requirements, the language
engineer must have the opportunity to efficiently adjust them (cf. GRQ2 ).

The remainder of this section gives a brief description about how the language engineer
can conduct customization of generated code using MontiCore’s integration mechanisms
(cf. [GHK+15b, HMSNR15b]).

MontiCore comes with an integration mechanism (based on the Extended Generation
Gap [GHK+15b]) for handwritten and generated code in order to simplify the process of
customizing generated classes and integrating them with handcoded ones. Furthermore,
the mechanism allows to ignore generated classes without worrying about name clashes
(cf. GRQ4 ). Figure 7.19 demonstrates how it works.

In the example depicted in Figure 7.19 the generator produces the two classes Tran-
sitionSymbol and StateSymbol whereby the former uses the latter, as shown in
the left part. If the language engineer adds a handwritten class StateSymbol in the
same package as the generated one, the names will clash and a compilation error will
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Figure 7.19: Generator is aware of handwritten classes to facilitate integration with
generated code (cf. Extended Generation Gap [GHK+15b]).

occur. Therefore, when (re-)running the generator, it is aware of the handwritten class
StateSymbol and produces a class StateSymbolTOP instead, which can be but need
not be inherited.

All classes that depended on the previously generated StateSymbol automatically
depend on the handwritten StateSymbol without any modification needed since it is
defined in the same package as the generated class. On the one hand, this prevents name
clashing between handwritten and generated code (important for realizing GRQ3 and
GRQ4 ). On the other hand, this mechanism enables efficient integration of handwritten
and generated code (cf. GRQ2 ), following the convention-over-configuration approach.

Overall, the language engineer has the following four options for dealing with the
generated code discussed throughout this chapter [HMSNR15b]:

1. Ideally, the generated language-specific symbol table infrastructure completely
fulfills the requirements, and hence, is ready for use (or at least with very little
effort). This (if at all) applies for languages that are not very complex, such as the
automaton example used throughout this chapter. However, since a symbol table
strongly depends on the language’s semantics as well as the language engineer’s
design decision, it typically cannot be fully generated only with the information
stated in the (annotated) grammar (cf. completeness in [VBD+13]).

2. The language engineer can completely ignore the generated classes and instead
implement the language-specific symbol table from scratch (cf. GRQ4 ). However,
in such a case it is not required to annotate the grammar with symbol table
information.

3. The language engineer can use (parts of) the generated classes as one-shot generation.
That is, she copies generated classes to the handcoded source path and modifies them
as needed. From then on, she can ignore the generated classes as the integration
mechanism prevents name clashing. As a consequence, changes in the grammar
have no affect on the (previously generated) code anymore.
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4. The generated infrastructure (or parts of it) can be customized and extended in a
non-invasive way, using MontiCore’s integration mechanism presented above as well
as integration mechanisms for object-oriented languages discussed in [GHK+15b],
such as the generation gap [Vli98, SV06, Fow10]. Unlike one-shot generation
mentioned in the previous item, those integration mechanisms enable that grammar
and generated code remain consistent.

These four options can be used intertwined for different parts or components of the
symbol table infrastructure. Even if unused, they can serve as documentation and starting
point for the manual implementation. Analogously to tests, they help to understand
the symbol table infrastructure by demonstrating how language-specific classes must be
integrated into the generic infrastructure SMI. Moreover, they illustrate how to adhere
to the guidelines, patterns, and methods elaborated in Chapters 4, 5, and 6.
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Chapter 8

Infrastructure for Language Composition

Several modeling languages can be integrated to specify complex software systems. There-
fore, a mixture of DSLs and GPLs can be employed [CvdBCR15] to describe the different
aspects of the system in an appropriate way. This is referred to as language composition
where “multiple languages [work] together to achieve a common goal” [CvdBCR15].

The MontiWIS framework [RR13, Rei16], for example, provides a language family for
developing web-based information systems in a model-based and generative way. Here,
a page description language allows for specifying static web pages. Activity diagrams
describe the business logic of the system and handle the linking of web pages. For more
sophisticated behavior, Java can be embedded in activity diagrams.

Another example is the MontiArcAutomaton ADL [RRW13b] which extends the
MontiArc ADL [HRR12] and additionally embeds a state-based component behavior
modeling language. To specify data types, the MontiArcAutomaton ADL constitutes a
language family with UML/P class diagrams [Sch12, Rum16].

This chapter focuses on syntactic language composition, and in particular, the com-
position of symbol tables (as part of the abstract syntax, cf. Section 3.8). It is based
on MontiCore’s syntactic composition mechanism (including concrete syntax, abstract
syntax tree, and symbol table) elaborated in [Völ11] (cf. Section 2.2). For semantic
language integration please refer to [GR11].

MontiCore allows for three types of language composition, namely language embedding,
language aggregation, and language inheritance [Völ11, HLMSN+15a]. Language embed-
ding enables a language to embed elements of other languages. In language aggregation
models of heterogeneous languages are composed and interpreted as a whole. Language
inheritance allows to extend or refine a language in sublanguages.

To enable models (or model elements) of a language L2 to refer to models (or model
elements) of a language L1, the composition can be conducted in two ways:

L2
knows−−−−→ L1 (Language L2 knows about L1): In this case, L2 directly uses components

(e.g., symbols or AST nodes) of L1. For example, if the OCL language is developed
with the knowledge of the class diagram language, it can directly refer to its
elements, such as classes and methods.
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L2
knows not−−−−−−→ L1 (Language L2 does not know about L1): This case, among others, occurs

when composing languages that were developed independently from each other (e.g.,
SQL and Java). In those cases, a third (glue) component conducts the language
composition and often translates1 elements of L1 to elements L2 can deal this.

While in the first case L2 is coupled to L1, in the second case both languages are
completely independent. Coupling languages has the advantage that it eases the im-
plementation process; no additional glue artifacts need to be implemented which also
increases development efficiency. However, coupling languages yields some major disad-
vantages. L2 cannot be implemented independently from L1, e.g., by another language
engineer. This complicates (distributed) working in teams. Also, changes in L1 can affect
L2. Furthermore, L1 cannot be exchanged easily, for example, to allow OCL to work
with both class diagrams and object diagrams.

SMI allows for both cases, i.e., L2
knows−−−−→ L1 and L2

knows not−−−−−−→ L1. The remainder of
this chapter mainly focuses on the latter case since it is more complicated and requires
an integration of heterogeneous and independent languages [LNPR+13, HLMSN+15b].

8.1 Overview and Primary Requirements

Figure 8.1 highlights language embedding and language aggregation based on the (generic)
scope graph. In the example, a language L2 (or parts of it) is embedded into a language
L1. Since language embedding results in one monolithic model (or artifact), it only
concerns a subgraph of a model’s symbol table. The resolution mechanism must be
aware of this language switch during the bottom-up (as well as top-down) intra-model
process (cf. Section 6.2). Language aggregation composes the models of heterogeneous
languages by their names and kinds (same as model composition within a single language,
cf. Chapter 6). Hence, models of L1 and L3 in Figure 8.1 remain separated. For this, the
inter-model resolution process must enable access to models of either language and also
handle the language switch. Concerning the scope graph, language inheritance results in
a new (single) language. Consequently, its respective scope graph is same as for a single
language (cf. Chapter 6) and does not require further translations.

Although three different languages are involved, the emerged scope graph depicted
in Figure 8.1 does not differ from the scope graph of a single language, as presented
in, for example, Chapter 6. Only additional translations are required. This emphasizes
the importance of the generic scope graph which allows for composition of models from
heterogeneous languages (cf. Section 4.2.2).

From the general proceeding highlighted in Figure 8.1, we derive the leading require-
ments for the language composition infrastructure:

1Section 8.5 discusses a case where no translation is required for the composition.
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Figure 8.1: Overview of a scope graph resulting from language composition. The scope
graph itself is same as for single languages. In contrast to language inheritance,
language embedding and language aggregation require translations between
elements of the involved languages.

CRQ1 (Reuse) The resolution mechanism introduced in Chapter 6 should be completely
reused for language composition. In particular, there should not exist a second
structure only for language composition. This eases the learning curve for both
symbol table engineers and users since they do not need to learn further concepts2.

CRQ2 (Open for Extension/Closed for Modification) With respect to composition,
each language “should be open for extension, but closed for modification” [Mey88],
following Meyer’s open/closed principle. That means, the composition should only
require additional configuration without modifying existing languages.

CRQ3 (Efficiency of Configuration) Given different languages their composition should
be configured with minor adaptations.

CRQ4 (Composition Without Translation) Composing two languages L1 and L2

where L2 explicitly uses elements of L1 (case L2
knows−−−−→ L1) does not require a

translation from L1’s elements to L2’s elements (see above). This should also apply

2Chapters 4, 5, and 6 already discuss design decisions that enable language composition with SMI.
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for sublanguages of L1. More precisely, once composed with L1, L2 should be
able to employ any element of L1’s sublanguages without translations (additional
configuration might be required).

CRQ5 (Language-Specific Usage) Languages should be composed in an encapsulated
way so that the user of a single language does not need to know about the composi-
tion. This is important for an a-posteriori composition of languages [HLMSN+15a].

Chapter Outline

Sections 8.2, 8.3, and 8.4 (i) introduce language embedding, language aggregation,
and language inheritance, respectively, (ii) elaborate their technical realization via
SMI, and (iii) discuss related approaches. Next, Section 8.5 presents a generic symbol
table infrastructure for Java-like languages. Section 8.6 compares transitive and non-
transitive translations between elements of different languages. Subsequently, Section 8.7
demonstrates a more complex example of language composition. Section 8.8 finally
discusses some alternative classifications of language composition.

8.2 Language Embedding

In language embedding a host language LH embeds elements of (at least) one language
LE , resulting in a new language LHE . Although models of LHE combine elements of
both languages LH and LE in the same artifact, these languages are still developed
independently. This requires the languages to be composed in a non-invasive manner
(cf. CRQ2 ).

Language embedding employs grammar embedding which, as described in Section 2.2.2,
results in a composed AST structure where a (sub-)tree of LE ’s AST is attached to a
node of LH ’s AST [HLMSN+15a, HLMSN+15b]. If the embedded AST nodes represent
essential aspects (cf. Section 3.8), language embedding also includes composition of the
respective ST elements. Figure 8.2 conceptually illustrates the idea.

The left part of Figure 8.2 depicts the AST and the corresponding ST of LH (top)
and LE (bottom). Only the root node and the node Nk of LE are related to elements of
symbol table STE , in contrast to, e.g., Ni. Embedding Ni and Nk in ASTH results in the
composed AST structure depicted on the right part of Figure 8.2. While Ni does not
affect the respective scope graph, embedding Nk leads to the embedding of its related
symbol table element into STH . This thesis particularly focuses on cases like Nk where
AST embedding also yields ST embedding. Please refer to [Völ11] for an elaboration
on AST embedding in MontiCore. A brief summary can be found in Section 2.2.2. To
enable language embedding for the respective symbol tables, we employ SMI’s generic
scope structure, as shown in the remainder of this section.
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Figure 8.2: Conceptual idea of language embedding including embedding of ST elements.

8.2.1 Example

This section demonstrates language embedding by the example of the two independent
languages SQL and Java (cf. [Ora13]). SQL [SQL11] is a language for database manage-
ment. Figure 8.3 shows an example where a SQL statement is embedded in a Java method
(line 3) to request the name of the user with the id uid. The construct sql:[...]
ensures parseability (since Java does not allow such constructs).

For this example we assume that the corresponding SQL table is as shown in Figure 8.3
(bottom part), i.e., the SQL table Users exists and consists of the two columns Name
and UserId. For the mapping between SQL variables and Java parameters a naming
convention is applied. That is, a SQL variable name (e.g., "uid" in line 3) corresponds
to the Java parameter name (e.g., "id" in line 1) with the additional prefix "u".

The glue grammar JavaWithSQL shown in Listing 8.4 conducts grammar-based
embedding of Java and SQL. First, JavaWithSQL extends both grammars (line 1). Next,
it defines the nonterminal JavaSQLExpression which implements JavaExpression
(line 4), i.e., an interface nonterminal of the Java grammar, and assigns the nonterminal
SQLQuery of the SQL grammar to it (line 5).

Given the above mentioned naming conventions between Java parameters and SQL
variables, we can statically check the well-formedness of the embedded SQL statement
based on the parameter id (assuming the SQL table is up-to-date). The SQL variable
uid really refers to the id parameter defined in the enclosing Java method. Please note
that although knowledge of the Java parameter (i.e., JavaParamSymbol) is required
to specify the correct SQL variable, the respective SQL language itself expects a SQL
variable (i.e., SQLVariableSymbol). Consequently, the languages are still separated
technically (cf. Section 8.2.2).
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void run(int id) {

String name =

sql:[SELECT name FROM Users WHERE userId = @uid]);

...

}
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Figure 8.3: Exemplary model for Java with embedded SQL.

MCG
1 grammar JavaWithSQL extends Java, SQL {
2

3 // Enables SQL queries in Java expressions
4 JavaSQLExpression implements JavaExpression =
5 "sql:[" SQLQuery "]";
6 }

Listing 8.4: Glue grammar for Java with embedded SQL.

Figure 8.5 presents the emerging scope graph of the composed model shown in Figure 8.3.
As it can be seen, the scope graph enlightens the essence of the combined model. That is,
the embedded SQL results in a subgraph of the enclosing run method scope. Moreover,
a name used in SQL refers to the respective Java element. Since Java and SQL are two

independent languages (case L2
knows not−−−−−−→ L1), the following problems occur:

• When starting the resolution for SQL variables, e.g., via resolve("uid", SQL-
VariableSymbol.KIND), Java parameters are not considered since they do not
constitute a kind hierarchy with the SQL variables (cf. Section 3.3).

• Even if Java parameters would be considered, e.g., via resolve("uid", Java-
ParamSymbol.KIND), the class JavaParamSymbol is unknown in the SQL
language, and thus, cannot be handled in that language.

In case the SQL language knew about Java parameters (case L2
knows−−−−→ L1), the

complete resolution process elaborated in Chapter 6 could be reused without further
adaptions (cf. CRQ1 ). For this, SQL would have to explicitly use elements of the Java
language which, however, comes with the price of higher coupling between these languages.

The next section elucidates how the above mentioned problems are eliminated with a

translation process during the resolution, especially for case L2
knows not−−−−−−→ L1.
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Figure 8.5: Emerging scope graph of model in Figure 8.3.

8.2.2 Cross-Language Intra-Model Resolution

To enable usages of Java symbols within SQL, a translation from Java parameters to SQL
variables (i.e., JavaParamSymbol to SQLVariableSymbol) is required. Moreover, a
SQL resolution request must be translated to a respective Java resolution request. For
example, resolving a SQL variable must ultimately resolve a Java parameter. In summary,
the following two translations are required (cf. [Völ11]):

Translation of Resolution Request: Symbols are resolved via their name and kind (cf.
Chapter 6). Hence, a translation from a kind k2 of language L2 to a kind
k1 of language L1 is needed, if resolving a symbol of kind k2 should result
in a symbol of kind k1. For the above example this means that requests like
resolve("uid", SQLVariableSymbol.KIND) have to be translated to re-
solve("uid", JavaParamSymbol.KIND). To enable mappings via name con-
vention, the names must be translated as well. For example, resolve("uid",
SQLVariableSymbol.KIND) must be translated to resolve("id", Java-
ParamSymbol.KIND).

Translation of Resolved Symbol: Next, if a symbol of language L1 is found, it has to be
translated to a symbol that language L2 can handle. For example, the SQL language
cannot access JavaParamSymbol directly. Instead, JavaParamSymbol has to
be translated to SQLVariableSymbol, which includes a name translation (i.e.,
"u" + name), e.g., from "id" to "uid" (see below).

Resolving filters—as introduced in Section 4.2.2—play an essential role in realizing the
aforementioned translations. The main task of a resolving filter described so far is, given
a set of symbols, it returns the symbols that yield a matching kind. Consequently, a
symbol can only be resolved if a corresponding resolving filter for its kind is registered. To
enable language embedding (and also language aggregation, cf. Section 8.3), this concept
is extended with adapted resolving filters which conduct the two translations. For this,
SMI provides the interface AdaptedResolvingFilter and its default implementation
CommonAdaptedResolvingFilter, as illustrated in Figure 8.6.
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Figure 8.6: Infrastructure for adapted resolving filters.

Same as regular resolving filters, adapted resolving filters have a target kind which is the
kind of symbols they return. Therefore, AdaptedResolvingFilter extends Resolv-
ingFilter. Additionally, the method getSourceKind specifies the kind of symbols
that are translated to the target kind. Moreover, CommonAdaptedResolvingFilter
provides the factory method [GHJV95] translate as hot spot [Pre95a, Pre95b] for
specifying the translation of the resolved symbol applying the Adapter pattern [GHJV95].

As exemplified in Figure 8.7, JavaParam2SQLVariableAdapter translates a Java-
ParamSymbol to a SQLVariableSymbol. For this, JavaParam2SQLVariable-
Adapter, among others, overrides getName to translate a Java parameter name to a
SQL variable name according to the above mentioned naming convention.

Finally, the filter method of CommonAdaptedResolvingFilter (cf. Figure 8.6)
conducts a translated filtering by delegating to resolving filters (retrieved via the Re-
solvingInfo parameter) whose target kind match the filter’s source kind. filter
also conducts the name translation if necessary, e.g., changing "uid" to "id".

Figure 8.8 demonstrates the translation process by the example of the resolution of the
SQL variable uid (cf. Figure 8.5). The resolution starts within the SQL scope via re-
solve("uid", SQLVariableSymbol.KIND) and proceeds as follows (cf. [Völ11]):
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Figure 8.7: Adapter for translating a Java parameter symbol to a SQL variable symbol.

• It starts a local search in the SQL scope and continues in run’s spanning scope.

• There, it again conducts a local search, considering all resolving filters with target
kind SQLVariableKind. This applies for, among others, JavaParam2SQL-
VariableFilter, hence, filter("uid", symbols) is invoked on it.

• Next, JavaParam2SQLVariableFilter delegates to all resolving filters match-
ing its source kind JavaParamKind, and changes the requested name to "id".

• The regular filter JavaParamFilter then finds the respective parameter symbol
id and returns it to the JavaParam2SQLVariableFilter object.

• JavaParam2SQLVariableFilter finally translates id to a SQLVariableSym-
bol via translate(id) and JavaParam2SQLVariableAdapter.

:JavaParam2SQLVariableFilter :JavaParamFilter

filter(“uid”, symbols)

SD

�

id:JavaParamSymbol

filter(“id”, symbols)

id

translate(id)

uid

:JavaParam2SQLVariableAdapter

create(id)
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translates
SQL variable
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translates SQL variable filtering
to Java parameter filtering

translates Java parameter
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Figure 8.8: Exemplary process for translating a Java parameter symbol to a SQL variable
symbol via resolving filters.
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As shown in the example, the task of JavaParam2SQLVariableFilter is to find
the SQL variable symbol uid by finding the corresponding Java parameter symbol id
(via delegation) and finally adapting it to a SQL variable symbol.

8.2.3 Symbol Table Creator for the Composed Language

Since language embedding allows for composed models that contain (syntactic) elements
of the host language as well as its embedded languages, both the parsing process and the
symbol table creation process must be aware of these different elements when (re-)loading
models from artifacts. Briefly speaking, the parsers and the symbol table creators of the
languages must be composed. In MontiCore, the parser generator is aware of this and
generates a composed parser based on the glue grammar (cf. Section 2.2.2). A symbol
table creator is a visitor that traverses the AST in order to build up the scope graph
(cf. Chapter 5). Technically, this means that a language-specific symbol table creator
must subtype SymbolTableCreator as well as one of the generated language-specific
visitors (cf. Section 2.2.4). Ideally, a language engineer employs the delegator visitor to
reuse each language’s symbol table creator when applying language embedding.

Figure 8.9 demonstrates the symbol table creator architecture of the Java language with
embedded SQL statements. The JavaWithSQLSymbolTableCreator class represents
the symbol table creator and extends CommonSymbolTableCreator. Furthermore, it
implements the generated default visitor JavaWithSQLVisitor which itself extends
the default visitors of the two languages, namely JavaVisitor and SQLVisitor.
That way, JavaWithSQLSymbolTableCreator enables traversing the AST of the
composite language. In order to apply the correct operations on the specific AST
nodes, JavaWithSQLSymbolTableCreator makes use of the delegator visitor which
delegates to JavaSymbolTableCreator or SQLSymbolTableCreator, depending
on the AST node type (cf. Section 2.2.4).

The initialization of the JavaWithSQLDelegatorVisitor takes place in the con-
structor of JavaWithSQLSymbolTableCreator, as shown in Listing 8.10. First, the
symbol table creator of the Java language is created (lines 6–7). By passing the scope-
Stack (inherited from CommonSymbolTableCreator) to the constructor, it is ensured
that all symbol table creators use the same stack. This is important, to enable that
symbols of the SQL language can be added to scopes of the Java language. The algorithm
for building up the symbol table as presented in Section 5.3 remains unchanged. Also, the
functionality provided by CommonSymbolTableCreator as introduced in Section 5.5 is
fully reused. The initialization of SQLSymbolTableCreator is conducted analogously
to JavaSymbolTableCreator (lines 8–9). It is important that both symbol table
creators provide the respective constructor of their superclass, i.e., CommonSymbol-
TableCreator(ResolvingConfiguration, Deque<MutableScope>) (cf. Sec-
tion 5.5). That way, the symbol table creators share the same scope stack, enabling the
stack-based symbol table creation approach presented in Section 5.3.1.
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Figure 8.9: Overview of the symbol table creator structure for Java with embedded SQL.
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1 public JavaWithSQLSymbolTableCreator(
2 ResolvingConfiguration resConfig,
3 MutableScope enclosingScope) {
4 super(resConfig, enclosingScope);
5

6 this.javaSTCreator =
7 new JavaSymbolTableCreator(resConfig, scopeStack);
8 this.sqlSTCreator =
9 new SQLSymbolTableCreator(resConfig, scopeStack);

10

11 visitor = new CommonJavaWithSQLDelegatorVisitor();
12 visitor.set_JavaWithSQLVisitor(this);
13 visitor.set_JavaVisitor(this.javaSTCreator);
14 visitor.set_SQLVisitor(this.sqlSTCreator);
15 }

Listing 8.10: Implementation of a symbol table creator for Java with embedded SQL.

207



Chapter 8 Infrastructure for Language Composition

Finally, an instance of the generated CommonJavaWithSQLDelegatorVisitor
(line 11) is initialized with the symbol table creator of the composite language, i.e., the
JavaWithSQLSymbolTableCreator (line 12), and the symbol table creator of each
single language, i.e., JavaSymbolTableCreator (line 13) and SQLSymbolTableCre-
ator (line 14). For this, each of these symbol table creators has to apply MontiCore’s
realThis pattern (cf. Section 2.2.4), i.e., this must be omitted for shared data (e.g., the
scope stack). Instead, setRealThis and getRealThis are to be used.

Same as for JavaSymbolTableCreator and SQLSymbolTableCreator, Java-
WithSQLSymbolTableCreator must provide the above mentioned constructor (not
shown in Listing 8.10) to enable composition with other symbol table creators.

8.2.4 Language Embedding Configuration

Composing languages via embedding emerges to a new (composite) language. Therefore,
the configuration is similar to the configuration of a single language (cf. Section 6.9.2),
i.e., besides several resolving filters, the new language has, among others, a model name
calculator, a model loader, a (composed) symbol table creator, and a file extension.

SMI provides the class EmbeddingModelingLanguage to configure language em-
bedding. As depicted in Figure 8.11, EmbeddingModelingLanguage subclasses Com-
monModelingLanguage and further provides a host language and several embedded
languages to enable embedding of one or more languages. The bottom part of Figure 8.11
shows the configuration of the Java and SQL example described above. Each language
has its own configuration, i.e., JavaLanguage and SQLLanguage, respectively. Java-
WithSQLLanguage reuses them to configure their composition. By default, the model
name calculator is the same as for the host language since (embedded) inner elements
do not affect the enclosing model’s name (cf. Section 6.9.5). The composed parser
(generated from the grammar, not shown in Figure 8.11) as well as the composed symbol
table creator (i.e., JavaWithSQLSymbolTableCreator, cf. Section 8.2.3) must be
explicitly set in the language configuration. Also, the file ending changes (in most cases),
e.g., javasql can be used instead of java to distinguish between the respective artifacts.

Furthermore, EmbeddingModelingLanguage unifies the resolving filters of the host
language and its embedded languages. Therefore, JavaWithSQLLanguage only needs
to add the adapted resolving filter JavaParam2SQLVariableFilter.

8.2.5 Discussion and Related Work

As already described in the introduction of Section 8.2, language embedding does not
necessarily include symbol table embedding. It rather depends on whether the composed
AST nodes (or nonterminals) embody essential model elements that are represented in
the symbol table. If not, the composed language (i.e., LHE) can neither define symbols
of the embedded language(s) nor use them.
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Figure 8.11: Infrastructure for language embedding.

In case the symbol tables are composed as well, the advantage of separating the generic
scopes from their language-specific spanning symbols becomes apparent (cf. Section 4.3).
The generic scopes allow for storing any kind of symbols including symbols of other lan-
guages (via method add(Symbol) of MutableScope, cf. Section 4.2.1). For example,
SQL variables can be defined in a Java method scope via methodScope.add(sqlVar).
Resolving all Java variables (including local variables and parameters) via method-
Scope.resolveLocally(JavaVariableEntry.KIND) will also return all SQL
variables defined in the method scope if an adapted resolving filter from SQL variables
to Java variables is registered.

Since a (language-specific) symbol delegates to its spanned scope to retrieve the con-
tained symbols (cf. Section 4.3), the translation mechanism discussed in Section 8.2.2
is fully reused, including name qualifying and model loading (cf. CRQ1 ). In the above
example, methodSymbol.getVariables() returns all variables including SQL vari-
ables (adapted to Java variables). Hence, from a language user’s viewpoint no knowledge
about the composition is required (cf. CRQ5 ). This is essential since it ensures that, e.g.,
context conditions employing SMI proceed correctly in the single language as well as in a
composition without the need for modification (cf. CRQ2 ).
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The generic aspect of our approach is similar to Völkel’s [Völ11] where generic names-
paces are composed. However, in [Völ11] namespaces are not spanned by the respective
symbol table entries, i.e., the concept of scope spanning symbols as in our approach does
not explicitly exist as part of the infrastructure (cf. Section 4.3). As a consequence,
accessing information via a symbol table entry can differ from information retrieved via
its (spanned) namespace; the former does not consider translations while the latter does.
Hence, in order to ensure consistency especially when composing languages, the language
user has to rely on the generic namespaces and omit the language-specific symbol table
entries. For example, only a generic access like resolver.resolve("n", "Var",
nsp) includes entry translation, and thus, enables language embedding. In contrast, the
composition infrastructure of the current thesis allows for a language-specific access like
type.getVarByName("n") including the whole symbol translation process. Similar
to namespaces in [Völ11], the generic scopes of SMI enable composition with scopes
of other languages. That way, symbol table creators of the composed languages can
still employ the stack-based approach discussed in Section 5.3 using visitor composition
(cf. Section 2.2.4).

A symbol reference as presented in Section 4.4 (and defined in Def. 3.3) finds its
respective symbol definition by starting the resolution process in its enclosing scope. This
enables the symbol reference to reuse the whole resolution and symbol translation process
as well. Hence, no configuration or glue component is required for symbol references
(cf. CRQ3 ). In contrast, in Völkel’s approach [Völ11] an adapted IQualifiedEn-
tryHandler (cf. Section 4.4) is required which substitutes references with respective
adapters. Furthermore, an IQualifierClient must be implemented for each adapted
symbol table entry in order to qualify it. This, certainly, requires the language engineer to
understand this additional concepts in order to apply them. SMI liberates the language
engineer from these concepts. Instead, the language engineer only must specify the
required translations (e.g., via JavaParam2SQLVariableFilter), SMI then takes
over all the rest. Similar to adapted resolving filters, Völkel’s approach requires adapted
resolvers for translating the symbol table entries.

The approach in this thesis ensures that every symbol in the scope behaves the same
(cf. Sections 3.5.3 and 4.2), even when composing languages. For instance, a SQL variable
defined in a Java method is resolved same as a Java variable defined in that method, i.e.,
starting in the innermost scope, continuing with the class scope, supertypes, and so on
(cf. Chapter 6). The adapted resolving filters do not change the resolution process but
only translate the symbols defined in the scopes. In contrast, a resolver in [Völ11] specifies
(to a high degree) the resolution process of a specific symbol table entry. Therefore,
embedding an entry into a namespace that has a shadowing ability (as shadowing scopes
in this thesis) might not affect the embedded entries, leading to different behavior.

In Xtext [Bet13], language embedding can be conducted as part of language inheritance
(cf. Section 8.4) which, however, requires explicit knowledge of the extended language (case
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L2
knows−−−−→ L1). This is because Xtext does not allow for multiple grammar inheritance,

and hence, it is not possible to employ a glue grammar as in MontiCore (cf. Section 2.2.2).
As a consequence, Xtext does not allow for embedding of two (or more) independent

languages (case L2
knows not−−−−−−→ L1) [VBD+13].

Spoofax [KV10] conducts language embedding similar to the approach presented in
the current thesis. Analogously to a glue grammar (cf. Section 2.2.2), an additional
syntax definition module (defined via SDF [Vis97]) is required which imports the syntax
definition modules of the host language and the embedded languages. Hence, embedding

works for independent languages (case L2
knows not−−−−−−→ L1). The module then defines

new rules where it embeds elements of the embedded language into the host language.
To prevent name clashes of sorts (i.e., terminals and nonterminals), Spoofax allows
for different renaming strategies. Language embedding in Spoofax does not require to
explicitly connect the name bindings of the respective languages. Technically this means,
that no additional NaBL [KKWV13] models need to be created. Instead, the embedded
elements only occur as elements of the host languages. This can require a type mapping
between these elements via Spoofax’s type specification language.

MPS [VS10] realizes language embedding via language inheritance (cf. Section 8.4.4)
in combination with containment relations between concepts and that way enables case

L2
knows not−−−−−−→ L1. More precisely, an additional language extends L1 and adds concepts

of L2 as children of the new subconcepts.
Paul Hudak [Hud98] introduces domain-specific embedded languages (DSELs) which

are expressed with constructs of an existing programming language (such as Haskell
or Java). That means, DSELs reuse both syntax and semantics of the host language
(e.g., cf. [HORM08]), leading to the term pure embedding. In contrast, in this thesis
the embedded DSL exists independently from its host language and comprises its own
syntax and semantics. Fowler refers to this kind of DSL as external DSL and calls DSELs
internal DSLs [Fow10] . External DSLs enable domain-specific error messages which
are not possible with internal DSLs since they are limited to the constructs of the host
language. An advantage of internal DSLs over external DSLs is that they allow for reuse
of the host language’s tool infrastructure, and thus, can (initially) be developed in an
efficient way.

Erdweg et al. [EGR12] omit the notion of language embedding (as used in this thesis)
since it can be realized with other approaches, such as language extension (language
inheritance in our terms, cf. Section 8.4). Instead, they use the term self-extension where
embedding of a language into a host language is specified with the host language itself3.
In other words, the host language provides ways to be embedded with other languages.
For this, Erdweg et al. in particular present string embedding and pure embedding
(i.e., DSELs or internal DSLs). In string embedding the host language embeds another

3Hence, self-extension is a property of a language itself, not of the provided tool, such as MontiCore.
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language using a string representation. In order to process (e.g., parse) those strings, the
embedded language provides an API which the host language employs. Same as pure
embedding, string embedding does not enable static analyses (e.g., context condition
checks) in a proper way. Furthermore, string embedding is error-prone since arbitrary
strings can be used. In contrast to [EGR12], we explicitly separate language embedding

from language inheritance since the latter always considers the case L2
knows−−−−→ L1. The

former, however, also allows for L2
knows not−−−−−−→ L1, and hence, requires additional glue code.

Erdweg et al. further introduce the term language unification where “either language
should be able to interact with [...] the other language” [EGR12]. This corresponds to
our embedding approach (in combination with inheritance) in cases the languages know

about each other, i.e., L2
knows−−−−→ L1 and L1

knows−−−−→ L2.

8.3 Language Aggregation

Language aggregation incorporates name-based model composition [Rum13, HR13] ex-
tended beyond language boundaries. In particular, this means that models of a language
L1 and a language L2 can mutually refer to each other. These languages are said to con-
stitute a language family [Völ11, HLMSN+15a]. In contrast to language embedding, the
models are still managed in different artifacts, facilitating loose coupling [HLMSN+15a].
Same as for single languages the composed models of heterogeneous languages are
interpreted together to describe different aspects of the software system [HLMSN+15a].

As shown in Figure 8.12, language aggregation does not manipulate the models’ ASTs
since the composition is conducted based on names. Hence, the respective ASTs nodes

ASTL1 STL1

ASTL2 STL2

Nk

name-based usage "Nk"

cross-language
inter-model
reference

name of node 

Figure 8.12: Conceptual idea of language aggregation which always includes aggregation
of ST elements.
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only hold names (as strings) of the referred model elements (left part, Figure 8.12). The
names (and hence, the references) are ultimately resolved in the scope graph (right part,
Figure 8.12). Consequently, language aggregation always includes aggregation of the
respective symbol tables. In contrast, no grammar composition is required since elements
of different languages are not intertwined.

8.3.1 Example

A prominent example of language aggregation is the UML language family [OMG15c].
It, among others, defines the object-constraint language (OCL) which enables to specify
constraints for other languages of the family, such as class diagrams (CD) and object
diagrams (OD). In Figure 8.13, for example, the class diagram Library defines a class
Book which itself defines the field edition of type int. The OCL model constrains
the edition field of Book to be at least 1, i.e., the first edition (line 5). For this, it
imports all classes of the class diagram (line 1) and uses its class Book as the invariant’s
context (line 4). Moreover, the invariant defines the variable b of the imported Book
type and employs it to access the edition field of Book (line 5). In summary, the OCL
model refers to symbols (or names) defined locally (e.g., b) and also refers to (imported)
symbols defined in the CD model (e.g., Book). Having access to imported symbols, the
OCL model obtains further information, such as the field edition.

The example shows that the composition of the CD and OCL models is solely conducted
based on names, as mentioned above. That is, the OCL model only knows about the
names defined in the class diagram. These names, however, can be defined in any other
model (e.g., an object diagram) that adheres to this naming. Consequently, the OCL
symbol table can be implemented without (statically) referring to the CD symbol table

(case L2
knows not−−−−−−→ L1).

Figure 8.14 highlights the essence of the model composition via (an excerpt of) the
emerging scope graph. The left subgraph represents the CD model while the right
subgraph represents parts of the OCL model. Please note that (the artifact scope of)
LibraryConstraint privately imports (cf. Section 3.10) the Book class, not the whole
class diagram Library itself, resulting from the import statement Library.*. The
scope graph also highlights where the reference Book ultimately resolves to, i.e., to

classdiagram Library {

class Book {

int edition;

...

}

}

1

2

3

4

5

6

import Library.*;

ocl LibraryConstraint {

context Book b inv:

b.edition >= 1;

}

1

2

3

4

5

6

CD4A OCL

Figure 8.13: Exemplary models for aggregation of CD and OCL.
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Figure 8.14: Emerging scope graph of the models in Figure 8.13. The (sub-)graphs of
the models remain separated.

the same-named class defined in the CD. To this end, it has to be specified to which
symbol kind the reference refers to. If the OCL language explicitly knows about the CD

language (case L2
knows−−−−→ L1), the respective kind (i.e., CDTypeKind) can be directly

utilized in the reference. Consequently, the complete (generic) resolution mechanism
as particularized in Chapter 6 can be reused (cf. CRQ1 ), allowing for models of these
languages to be composed without further translations.

However, to decrease coupling between languages and that way facilitate reuse, the

languages should be kept independent of each other (case L2
knows not−−−−−−→ L1) and composed

afterwards. Thus, the OCL symbol table infrastructure must provide symbols for OCL
types (e.g., OCLTypeSymbol). OCL, though, does not specify types itself but only refers
to types (of other languages). As a result, OCLTypeSymbol is never instantiated but
rather serves as some kind of placeholder. This topic is discussed in Section 8.5.

8.3.2 Cross-Language Inter-Model Resolution

Similar to language embedding, several problems occur when aggregating the (indepen-
dent) languages CD and OCL:

• Starting the resolution via resolve("Book", OCLTypeSymbol.KIND) excludes
CD types (i.e., CDTypeSymbol).

• Finding the respective CD type is not sufficient since it is unknown in the OCL
language.
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• Unlike language embedding, language aggregation concerns several artifacts. Hence,
searching for an OCL type (that should finally lead to a CD type) must also include
(re-)loading of CD models as well as name qualification. This issue also exists in

case L2
knows−−−−→ L1 where OCL explicitly knows about CD.

As described in Section 8.2.2, SMI solves the problems mentioned in the first two items
above via adapted resolving filters. For the OCL and CD example this means that a resolv-
ing filter is required which (i) translates requests like resolve("Book", OCLType-
Symbol.KIND) to resolve("Book", CDTypeSymbol.KIND) and (ii) translates
the resolved CDTypeSymbol to a OCLTypeSymbol via an adapter.

The third issue, i.e., name qualification and (re-)loading of CD models, concerns
the model loading process discussed in Section 6.9. In short, model loading for a sin-
gle language is conducted during the top-down inter-model resolution process where
GlobalScope delegates to the language’s model loader (e.g., CDModelLoader) as
well as model name calculator (e.g., CDModelNameCalculator). The latter calcu-
lates possible model names depending on the symbol’s kind. Hence, invoking calcu-
lateModelNames("Library.Book", OCLTypeSymbol.KIND) on an instance of
CDModelNameCalculator returns an empty collection since the OCL kind is unknown
in CD. Instead, it must be translated to calculateModelNames("Library.Book",
CDTypeSymbol.KIND). SMI realizes this by calculating model names for every possible
symbol kind determined by the registered resolving filters. The following demonstrates
this process for resolving the Book class referenced in the OCL model (cf. Figure 8.13). It
is assumed that the CD model is not loaded yet, and that the resolving filters OCLType-
Filter and CDTypeFilter as well as the adapted resolving filter CD2OCLTypeFilter
are registered in the language family configuration (cf. Section 8.3.4). The resolution
starts via resolve("Book", OCLTypeSymbol.KIND) in the OCL invariant’s scope
and proceeds as follows:

1. First, the (cross-language) intra-model resolution process described in Section 8.2.2
is conducted until it reaches LibraryConstraint’s artifact scope.

2. Then, the artifact scope determines (potential) qualified names for Book (i.e., it
conducts name qualification), namely Book and Library.Book (resulting from
the import statement Library.*).

3. Next, the global scope tries to resolve any of these names. For this, it determines
all symbol kinds that need to be considered. These are:

• Each (sub-)kind of OCLTypeKind for which a respective non-adapting resolv-
ing filter exists, i.e., the filter’s target kind matches. In the current example,
this only holds true for OCLTypeFilter, hence, OCLTypeKind is a possible
kind.
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• Each source kind of the registered adapting resolving filters whose target
kind is kind of OCLTypeKind. In other words, all kinds that can be trans-
lated to the searched OCLTypeKind are considered. Consequently, CDType-
Kind is a possible kind since it can be translated to OCLTypeKind via
CD2OCLTypeFilter.

4. Based on these kinds (i.e., OCLTypeKind and CDTypeKind), the respective model
name calculators determine possible model names. Taking the example of CD-
ModelNameCalculator, it, among others, calculates model names via cal-
culateModelNames("Library.Book", OCLTypeSymbol.KIND) and cal-
culateModelNames("Library.Book", CDTypeSymbol.KIND). While the
former returns an empty collection since the OCL type is unknown within the CD
language, the latter returns "Library" which is (potentially) the name of the
class diagram that defines class "Library.Book".

5. The CD language’s model loader then loads the artifact Library.cd from the
model path and attaches its scope graph to the global scope (cf. Section 6.9).

6. Finally, the class Book is resolved via the (cross-language) top-down intra-model
resolution (cf. Section 6.5) extended with the translation mechanism introduced in
Section 8.2.2.

8.3.3 Symbol Table Creator for the Composed Language

As highlighted in Figure 8.14, the symbol tables of the CD and the OCL models remain
separated. This is different from language embedding where the symbol table elements
of the embedded language are part of the host language’s symbol table (cf. Figure 8.5).
Thus, language aggregation does not require further customization or adaption for the
symbol table creation. It works out-of-the-box, once the configuration is set, as described
in the next section.

8.3.4 Language Aggregation Configuration

In particular, language aggregation only concerns the resolution process. The processing
of the respective models—i.e., parsing and symbol table creation—remains unchanged and
independent of the other languages. Hence, solely a composed configuration of the involved
modeling languages is required. For this, SMI provides the interface ModelingLan-
guageFamily which is illustrated in Figure 8.15. A ModelingLanguageFamily
consists of several ModelingLanguages. The class CommonModelingLanguageFam-
ily provides the default implementation for the ModelingLanguageFamily interface.

In case the referenced language is known (case L2
knows−−−−→ L1), no further configuration is

required (cf. CRQ3 and CRQ4 ). Else, additional (adapted) resolving filters must be added.

216



8.3 Language Aggregation

CD

«RTE»

�

«interface»

ResolvingFilter

«interface»

AdaptedResolvingFilter

«interface»

ModelingLanguageFamily

Common

ModelingLanguageFamily

*

«interface»

ModelingLanguage

*

CD2OCLType

Filter

CDAndOCL

LanguageFamily

CD

Language

OCL

Language

CD2OCLType

Adapter

implements 
SymbolAdapter

conduct translations from
CD types to OCL types

CD

«LS»

�

Figure 8.15: Infrastructure for language aggregation.

The bottom part of Figure 8.15 depicts the configuration for the language aggregation of
the CD language and the OCL language, described in the example above. Besides the
corresponding languages, CD2OCLTypeFilter (and with it CD2OCLTypeAdapter) is
added to the language family to enable translations from CD types to OCL types. Since
these translations concern the aggregation itself, CD2OCLTypeFilter is not added to
a particular language but to the language family. All other components of the CD and
OCL languages are fully reused from CDLanguage and OCLLanguage, respectively
(cf. CRQ2 ).

As elaborated in Section 6.9.2 (on page 157), the GlobalScope class conducts the
model loading process and already considers loading of models from different languages.
That means, GlobalScope tries to load a model for each registered language. List-
ing 8.16 demonstrates how GlobalScope is configured for a language family.

The GlobalScope instance (line 5, Listing 8.16) solely requires the language fam-
ily (line 1) and the model path (line 3). Henceforth, the global scope can be used
same as for single languages to resolve symbols as well as load models of any regis-
tered language. Except for the configuration, nothing changes from a language user’s
viewpoint (cf. CRQ5 ). For example, scope.resolve("Library.Book", OCLType-
Symbol.KIND) returns a symbol of type OCLTypeSymbol, which really is an instance
of CD2OCLTypeAdapter that adapts a CDTypeSymbol.
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Java

«HC»

1 ModelingLanguageFamily family = new CDAndOCLLanguageFamily();
2

3 ModelPath modelPath = new ModelPath(...);
4

5 Scope globalScope = new GlobalScope(modelPath, family);

Listing 8.16: Exemplary configuration of GlobalScope with a language family.

8.3.5 Discussion and Related Work

Language aggregation implies references between models of heterogeneous languages, and
therefore, always concerns the symbol tables of the involved languages. In contrast to
language embedding and language inheritance (cf. Section 8.4) the AST structure is
never affected since references only occur as names.

Same as language embedding, language aggregation fully reuses the generic resolution
mechanism (cf. CRQ1 ), thus, yields the same advantages, i.e., consistency between a
symbol and its spanned scope, enabling the language user to rely on the language-specific
symbols without the need to consider language composition (cf. CRQ5 ). In particular,
name qualification—and with it model loading—is fully reused since it is conducted based
on symbol kinds (cf. Section 6.3). As discussed in Section 8.2.5, this is not the case
in [Völ11] which requires the additional components IQualifiedEntryHandler and
IQualifierClient to adapt the qualification process for the entries.

The configuration in this thesis is similar to [Völ11]: a language family groups the
respective languages and adds translations if required. Same as for language embedding,
the infrastructure in [Völ11] only conducts language aggregation if resolution is started
on the generic namespaces. Please refer to Section 8.2.5 for a discussion on this.

Xtext [Bet13] enables both types of language aggregation, i.e., L2
knows−−−−→ L1 and

L2
knows not−−−−−−→ L1. In contrast to our approach, Xtext specifies aggregation within the

grammar via meta-model imports. In case of L2
knows−−−−→ L1, the grammar of L2 imports

L1’s meta-model. This allows to specify references to L1’s elements via the concept
introduced in Section 7.3. For example, state=Automaton::State|FQN refers to the
State element of the Automaton language via its fully qualified name. The references
ultimately refer to EObjects of the EMF framework [SBPM09]. The imported meta-
model solely has to be registered in the setup of the importing language. Similarly, in
our approach the two languages are configured in a language family. Xtext conducts

language aggregation for case L2
knows not−−−−−−→ L1 via language inheritance in combination

with the aggregation approach for case L2
knows−−−−→ L1. That means, a glue grammar

G3 is required which extends L2’s grammar and imports L1’s meta-model. G3 then
overrides the respective rule(s) of L2 grammar and creates references to elements of L1’s

meta-model, as in case L2
knows−−−−→ L1 described above. Consequently, the meta-model
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emerging from G3 (i.e., the AST) is an extension of L2’s meta-model with references to
L1’s meta-model. In contrast, in the current thesis the ASTs of the different languages
remain separated. Only the symbols are linked together. This, however, is conducted via
translations using resolving filters.

Same as Xtext and the current thesis, Spoofax [KV10] allows for language aggregation

with and without explicit knowledge of the referenced language. In case L2
knows−−−−→ L1,

the referencing language L2’s name binding module only needs to import L1’s name
binding module and specify binding rules as usual (e.g., cf. Chapter 6). This is similar
to our approach, where symbols of L2 can directly refer to symbols of L1, which only
requires the symbol table creator of L2 to consider references to symbols of L1. Spoofax
conducts language aggregation without the knowledge of the referenced language (case

L2
knows not−−−−−−→ L1) similar to language embedding in this thesis. An additional adapter

module for syntax definition imports the two languages and accordingly extends the rules
of the referencing language L2. Moreover, an adapter module for the name binding is
required which imports the name binding module of the referenced language and specifies
references to its elements for the newly added rules of the syntax definition.

Since projectional approaches such as MPS [VS10] focus on direct manipulations of

the AST, language aggregation in case L2
knows−−−−→ L1 is realized via direct references

from concepts (i.e., AST nodes) of L2 to concepts of L1. In case of L2
knows not−−−−−−→ L1, a

glue language is required which extends L2 and extends its concepts with references to
concepts of L1.

8.4 Language Inheritance

In language inheritance a sublanguage LSub extends a superlanguage LSup. For this,

the sublanguage explicitly employs elements of the superlanguage (case L2
knows−−−−→ L1),

while the superlanguage remains unchanged. Language inheritance includes grammar
inheritance (cf. Section 2.2.2) in order to reuse or modify the syntax, enabling incremental
language development [MŽ05]. Depending on the extension, language inheritance can
also include extension of the superlanguage’s symbol table or the methods where symbols
are collected. Figure 8.17 depicts the general concept of language inheritance.

The top part of Figure 8.17 shows the AST structure as well as the symbol table
of the superlanguage LSup. The bottom part depicts the respective structures of the
sublanguage LSub. LSub extends LSup’s AST nodes Nk and Nm via grammar inheritance.
Nk is related to a ST element which therefore is extended as well. Certainly, extending
an AST node does not necessarily require extending the respective ST element as in
Figure 8.17. This rather depends on the changes introduced in the AST node, i.e.,
whether they constitute essential information.
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Figure 8.17: Conceptual idea of language inheritance including extension of ST elements.

Unlike Nk, the node Nm is not related to a ST element. Thus, the ST of LSub is not
affected from it. Lastly, Nk in LSub introduces the new node Nx which represents an
essential element of the language. Hence, it is related to a (new) ST element.

Restricting a language can lead to the removal of an AST node and with it the
respective ST element. For example, a sublanguage of LSup can remove the node Nk—by
overriding the respective production in the grammar—which also removes its related
ST element. Alternatively, a language can be restricted via “extension of the validation
phase” [EGR12], i.e., via context conditions. Following Erdweg et al. [EGR12], we
consider language restriction as a special case of language inheritance (language extension
in terms of [EGR12]) and do not further consider it separately.

8.4.1 Example

MontiJava [Mul15] is a language developed with MontiCore. It is an extension of Java 5
(also developed with MontiCore) both syntactically and semantically. That means:

• The syntax of Java is completely reused and extended with further constructs, such
as the singleton keyword, which declares a class to be a singleton [GHJV95].

• It retains the same semantics for the constructs inherited from Java. Therefore, all
context conditions of Java still apply for MontiJava. Additionally, further context
conditions check the validity of the new constructs, for example, that an interface is
not declared as singleton. To this end, MontiJava’s symbol table elements subclass
the respective elements of Java’s symbol table.
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MCG
1 grammar MontiJava extends Java {
2

3 SingletonModifier implements Modifier = "singleton";
4 ...
5 }

Listing 8.18: Excerpt of MontiJava’s grammar which extends the grammar of Java.

The syntactic extensions are conducted via grammar inheritance (cf. Section 2.2.2),
as shown in Listing 8.18. MontiJava’s grammar extends Java’s grammar (line 1). In
order to add a new modifier, the SingletonModifier rule implements the Modifier
interface rule of Java (line 3).

To provide the new information introduced in MontiJava in the symbol table, the class
MJTypeSymbol is created and extends JavaTypeSymbol with the additional method
isSingleton (cf. Figure 8.19). Analogously, MJTypeKind subclasses JavaTypeKind
and enables (i) including MJTypeSymbols when resolving for JavaTypeKind and (ii)
excluding JavaTypeSymbols when explicitly resolving for MJTypeKind. This is a
major benefit of explicit kind hierarchies, as described in Section 3.3. In contrast,
[Völ11] states symbol kinds using strings which only enable kind hierarchies via explicit
translations (cf. Section 8.4.4). Since MJTypeSymbol extends JavaTypeSymbol,
all algorithms (such as context conditions) based on JavaTypeSymbol can also be
conducted on MJTypeSymbol.

CD

«LS»

�

JavaTypeSymbol

MJTypeSymbol

boolean isSingleton()

JavaTypeKind

MJTypeKind

kind

kind

Figure 8.19: Symbol and kind hierarchy of MontiJava.

8.4.2 Symbol Table Creator for the Composed Language

To initialize the extended symbols with additional information, the symbol table creator
of the superlanguage must be subclassed and customized where needed (cf. Figure 8.20).
Furthermore, the language-specific visitor MJVisitor must be implemented to enable
handling of MontiJava’s specific AST nodes.

To simplify reuse, symbol table creators should follow the implementation as presented
in Section 7.9. That is, the symbol table creator has to provide a dedicated Java method
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for each step of the respective method introduced in Section 5.2. Also, the Abstract
Factory pattern as well as the Builder pattern [GHJV95] help making symbol instantiation
exchangeable (cf. Section 5.5).

CD

«LS»

�

JavaSymbolTableCreator
«interface»

JavaVisitor

MJSymbolTableCreator
«interface»

MJVisitor

Figure 8.20: Visitor and symbol table creator of MontiJava.

8.4.3 Language Inheritance Configuration

Configuring a sublanguage, such as MontiJava, is the same as configuring any single (not
composed) language (cf. Section 6.9.2). Additionally, resolving filters of the superlanguage
must be registered to enable resolving of its symbols. MontiJava, for example, registers
both a resolving filter for MJTypeSymbol and a resolving filter for JavaTypeSymbol.

8.4.4 Discussion and Related Work

Language inheritance does not necessarily affect the symbol table. If, for example,
language L2 extends language L1 only with syntactic sugar, L2 can reuse L1’s symbol
table without further modifications. For instance, extending Java in order to allow the
syntax + class as an alternative to public class does not introduce new (essential)
elements. The class is final and public in either case. Consequently, Java’s type symbol
is sufficient for this extension.

In contrast, if L2 additionally adds essential information, it will require an extension of
L1’s symbol table (for an exception to this rule see below). The CD4Analysis language,
for example, is a restricted CD language of UML/P [Sch12, Rum16], which only allows for
defining classes with fields. Methods do not exist. Extending CD4Analysis with method
signatures in a sublanguage ExtCD4Analysis requires a new symbol ExtCDMethodSym-
bol that represents the newly introduced methods. Additionally, a new type symbol
ExtCDTypeSymbol must extend CDTypeSymbol to allow storing and retrieving of
method symbols, e.g., via type.getMethods(). Finally, ExtCD4Analysis must extend
CD4Analysis’ symbol table creator with handling of method symbols.

If models of L2 can be transformed to respective models of L1 obtaining the same
semantics [ERKO11] (similar to refactorings [Fow99]), there is no need for extending
L1’s symbol table in L2. Certainly, this applies if the transformation(s) can be devel-
oped efficiently, e.g., via transformation languages [MCG05]. MontiJava, for example,
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introduces the class MJTypeSymbol to represent the newly added singleton keyword.
Alternatively, MontiJava classes can be transformed to normal Java classes which im-
plement the Singleton pattern [GHJV95]. That way, the symbol table of Java can be
completely reused. This approach has the benefit that it does not require development
and maintenance of a new symbol table. However, a drawback is that the symbol table
of the superlanguage does not explicitly represent the new concepts of the sublanguage.
In Java, for example, the information that a class is a singleton is only specified implic-
itly (e.g., private constructor and a static getInstance method). Instead, MontiJava
introduces a new type symbol which explicitly contains the new information, e.g., via the
isSingleton method (cf. Section 8.3.1).

The hierarchical kind concept introduced in this thesis (cf. Section 3.3 and Section 4.1)
simplifies language inheritance and increases development efficiency. For instance, the
MontiJava type kind MJTypeKind extends the Java type kind JavaTypeKind. This
enables resolving MontiJava type symbols when searching for Java type symbols, e.g.,
via scope.resolve("T", JavaTypeSymbol.KIND). As a consequence, models of
superlanguages can be fully reused in sublanguages without the need for translations
(cf. CRQ4 ). Section 8.5 describes how this feature can be exploited to define generic
symbol table infrastructures by the example of Java-like languages.

The kind hierarchy is a major difference to the infrastructure in [Völ11] where no
hierarchy between symbol table entry kinds exists (cf. Section 4.1). Consequently,
entries of the superlanguage must be explicitly translated to entries of the sublanguage.
This not only impedes the sublanguage’s configuration but also makes it more error-
prone since the language engineer must be aware of the translations. Furthermore, it
yields the inconsistency drawback already discussed in Sections 8.2.5 and 8.3.5. Same
as [Völ11], SMI excludes symbols of the superlanguage when explicitly searching for
symbols of the sublanguage. For example, resolving MontiJava type symbols, i.e.,
scope.resolve("T", MJTypeSymbol.KIND), excludes Java type symbols.

Same as in the current thesis, language inheritance in Xtext [Bet13] includes grammar

extension and only allows for the case L2
knows−−−−→ L1. Also, L2 models can be used

wherever L1 models are required since the underlying AST nodes (or meta-model) are
subtyped in L2. The same holds true for MPS [KV10] where concepts of the extended
language can be extended by concepts (i.e., subconcepts) of the extending language.

In Spoofax [KV10] no additional mechanism is required in order to conduct language
inheritance. The extensions are defined in additional modules (e.g., for name binding).
Same as in our approach, this is only possible with explicit knowledge of the extended

language (case L2
knows−−−−→ L1).
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8.5 Generic Symbol Table Infrastructure for Java-like
Languages

Different languages can share the same or similar essential information (cf. semantic
model [Fow10]). For those cases, a common symbol table infrastructure is suited which
then can be specialized by concrete languages. Since Java is a prominent language,
SMI provides a generic symbol table infrastructure for Java-like (or object-oriented)
languages, called JST. This infrastructure is, among others, extended by MontiCore’s
Java language (as implemented in [Mul15]) and by CD4Analysis (restricted UML/P CD
[Sch12]). Furthermore, JST serves as reference implementation for languages with similar
concepts. The ADL MontiArc [HRR12], for example, shares some (structural) concepts
similar to object-oriented languages. For instance, component inheritance is similar to
class inheritance. A component can specify type arguments as well. Moreover, ports of
components are akin to Java fields, having a type and a name.

Certainly, there are still major differences between MontiArc and object-oriented
languages. Components, for example, can define a parameter list (analogously to methods)
while classes may not. Also the semantics of a component strongly differs from that of a
class in object-oriented languages. As a consequence, the corresponding symbols should
not be in the same type (or kind) hierarchy. The following elucidates the core aspects
and ideas of JST. Appendix D lists the complete interfaces and their implementations.

Figure 8.21 gives an overview of JST. The interface JTypeSymbol represents Java-
like types4 and applies the pattern (D) Same Symbol Class for Similar Model Elements
(cf. Section 4.1.2), that is, similar model elements such as classes and interfaces are
represented by the same symbol class. It is of kind JTypeKind and provides, among
others, methods to determine which of the two types the symbol ultimately represents,
i.e., isClass and isInterface. Moreover, JTypeSymbol gives information about
the specified modifiers of the type, such as isAbstract and isPublic. Furthermore,
it provides the method getSuperClass for retrieving the respective superclass symbol5.

JST provides the abstract class CommonJTypeSymbol as default implementation for
JTypeSymbol. This class employs type arguments in order to enable the use of specific
symbols for types. For example, CommonJTypeSymbol as depicted in Figure 8.21, defines
formal type arguments for specifying the type of type symbols (T) and type references
(V). Consequently, the return type of the overridden method getSuperClass (inherited
from JTypeSymbol) changes from JTypeSymbolReference to V. This enables type
symbols of a concrete language to specify a specific type reference by binding V. In the
CD4Analysis language, for example, CDTypeSymbol binds V to CDTypeReference to
(statically) ensure that supertypes of a CD type are CD types themselves.

4Analogously, the interfaces JFieldSymbol and JMethodSymbol represent Java-like fields and meth-
ods, respectively (cf. Appendix D).

5In fact, the method wraps its return type in a java.util.Optional object, which, however, is
omitted here for reasons of clarity.
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Figure 8.21: Excerpt of the Java-like symbol table infrastructure JST (cf. Appendix D).

Analogously, binding T to CDTypeSymbol ensures that only CD4Analysis type symbols
are used. Furthermore, CDTypeSymbol employs its specific kind CDTypeKind, which
extends JTypeKind. While the generic class CommonJTypeSymbol is difficult to read
and understand due to the formal type arguments, these arguments are hidden from users
of the CD4Analysis language. This facilitates the use of the language as shown below.
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To enable resolution in supertypes (cf. Section 6.6), CommonJTypeSymbol spans a
CommonJScope which extends CommonScope (not shown in Figure 8.21). As an exam-
ple, if a field that is used in a class cannot be resolved within that class, CommonJScope
tries to resolve it in the respective supertypes which includes the superclass and the
implemented interfaces. If the field still cannot be resolved, the resolution continues in
the class’ enclosing scope (e.g., the artifact scope or an outer type’s scope).

Listing 8.22 demonstrates the usage of JST by the example of CD and Java type symbols.
First, an instance of CDTypeSymbol is defined in a variable of type JTypeSymbol
(line 2) which then is employed to retrieve a reference to the supertype’s symbol (line 3).
The reference is stored in a variable of type JTypeReference (line 3). Similarly, a
JavaTypeSymbol instance (line 6) and a reference to its superclass (line 7) are stored
in variables of type JTypeSymbol and JTypeReference, respectively.

As it can be seen in Listing 8.22, omitting type arguments in the JTypeSymbol
interface simplifies usage and improves readability of the code. Constructs such as
JTypeSymbol<JTypeReference> type are not required to explicitly state that the
reference is of type JTypeReference. In order to still enable use of specific symbols,
as demonstrated in lines 10–11 of Listing 8.22, the default class CommonJTypeSymbol
defines type arguments which are bound by CDTypeSymbol (and JavaTypeSymbol).
Hence, the method getSuperClass can be used in a specific (line 11) or generic (line 3)
way. In particular, the former enables to access language-specific information, among
others, to check well-formedness and conduct code generation. The latter allows to
employ JST as common denominator for languages referring to types, and hence, enables
composition with languages that define those types (e.g., Java and C#). Figure 8.23
demonstrates the general idea.

Any client code (such as a symbol or context condition) can access the symbols defined
in JST (since it is part of SMI). Furthermore, a language’s symbol table infrastructure
can extend JST and add language-specific information. A language referring to symbols

Java

«HC»

1 // generic use of CD symbols
2 JTypeSymbol a = new CDTypeSymbol("A");
3 JTypeReference aSuper = a.getSuperClass();
4

5 // generic use of Java symbols
6 JTypeSymbol b = new JavaTypeSymbol("B");
7 JTypeReference bSuper = b.getSuperClass();
8

9 // specific use of CD symbols (analogously for Java symbols)
10 CDTypeSymbol c = new CDTypeSymbol("C");
11 CDTypeReference cSuper = c.getSuperClass();

Listing 8.22: Usage of JST by the example of CD and Java type symbols.
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Figure 8.23: JST as common denominator. Referring to JST elements includes elements
of its sublanguages.

of JST ultimately refers to symbols of a sublanguage of JST. This yields the advantage

that independent languages (case L2
knows not−−−−−−→ L1) can be composed without the need

for translations (cf. CRQ4 ), i.e., neither adapted resolving filters nor symbol adapters
are required (cf. CRQ3 ). Moreover, placeholder types—as OCLTypeSymbol of the OCL
language (cf. Section 8.3)—can be omitted. Consequently, JST increases the efficiency of
the language engineering process for Java-like symbol tables and reduces redundancy.

The following clarifies the benefits of JST by the example of the CD and OCL com-
position presented in Section 8.3. OCL does not enable type definitions. The language
still introduces the placeholder classes OCLTypeSymbol and OCLTypeReference to
enable type references in an OCL invariant (represented by OCLInvariantSymbol).
To eliminate these placeholder classes, OCLInvariantSymbol employs JST’s interface
JTypeReference, which refers to a JTypeSymbol, as depicted in Figure 8.24.

«interface»

JTypeReference

«interface»

JTypeSymbol

CD

«RTE»

�

CDTypeSymbol

JavaTypeSymbol

CSharpTypeSymbol

OCLInvariantSymbol

ultimately resolves
to one of the 
specific symbols

CD

«LS»

�

Figure 8.24: Exemplary type hierarchy of JST.
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The kind hierarchy (cf. Section 4.1) together with the kind-based resolution (cf.
Chapter 6) allow for utilizing any symbol that is a subkind of JTypeSymbol, such as
CDTypeSymbol, JavaTypeSymbol, and CSharpTypeSymbol (cf. Figure 8.24). As
a result, the composed language does not require further translations. Still, the OCL
language is independent from the other languages since it only relies on the JST as part
of the SMI. In contrast, composing OCL with several object-oriented languages following
the approach in Section 8.3 requires a translation for each of them.

8.6 Non-Transitive versus Transitive Translations

The CommonAdaptedResolvingFilter class introduced in Section 8.2.2 only con-
ducts direct translations. If, for example, a symbol S1 is translated to symbol S2 (i.e.,
S1 → S2) which in turn is translated to S3 (i.e., S2 → S3), this does not imply that S1 is
also translated to S3 (i.e., S1 6→ S3). Technically, CommonAdaptedResolvingFilter
does not delegate to adapted resolving filters. That way, transitivity is excluded.

To enable transitive adapting, SMI provides the class TransitiveAdaptedResolv-
ingFilter which transitively traverses through the translation chain and conducts the
respective adaptions. It is aware of cycles, i.e., S1 → S2 → S3 → S1 and is left associative,
i.e., ((S1 → S2)→ S3).

The top part of Figure 8.25 illustrates the adapter infrastructure for translating a CD
type symbol to a C# type symbol that is translated to a Java type symbol, i.e, CDType→
CSharpType→ JavaType. For each of the translation steps CDType→ CSharpType
and CSharpType→ JavaType a dedicated adapter class exists, i.e., CD2CSharpType-
Adapter and CSharp2JavaTypeAdapter, respectively. Please note that no adapter
for CDType→ JavaType exists, nor are the existing adapters statically related.

The bottom part of Figure 8.25 highlights the left associativity of the transitive
adaption, i.e., ((CDType→ CSharpType)→ JavaType). It further shows that only one
“real” symbol exists, namely :CDTypeSymbol. The other two instances are adapters.

Transitive translation can simplify the language composition process since not every
possible composition needs to be explicitly stated. However, it yields some major issues.
First, it complicates the understanding of the composition. For example, the translations
S1 → S2, S2 → S3, S3 → S4, and S4 → S5 imply, among others, S1 → S3, S2 → S4,
and S3 → S5. Second, the transitive translations might produce unwanted results.
For example, the implicit translation S2 → S4 given above may not be wanted. To
recognize whether unwanted translations emerge, the language engineer has to determine
all possible (implicit) translations. Similar to multiple inheritance in object-oriented
languages, transitive translation also gives rise to the so-called diamond problem. That is,
given the translations S1 → S2, S1 → S3, S3 → S4, and S2 → S4, S1 can be translated
to S4 via S2 (i.e., S1 → S2 → S4) or via S3 (i.e., S1 → S3 → S4). However, the resulting
translated symbols are not necessarily the same which can lead to ambiguous resolutions.

228



8.7 Combinations of Language Compositions

CD

«LS»

CDTypeSymbol CSharpTypeSymbol JavaTypeSymbol

CD2CSharpTypeAdapter CSharp2JavaTypeAdapter

*

1adaptee

*

1adaptee

OD

«LS»

:CD2CSharpTypeAdapter :CSharp2JavaTypeAdapter:CDTypeSymbol

adaptee adaptee

Figure 8.25: Example of transitive adaption.

8.7 Combinations of Language Compositions

Composed languages can be part of a composition themselves (cf. “extension compositions”
[EGR12]). Language inheritance results in a new (composed) language (cf. Section 8.4).
Hence, it can be extended as any other (single) language and also be part of a language
family. The same is true for language embedding, which also results in a new composed
language, but might require additional glue code (e.g., translations between symbols).
Moreover, language inheritance and embedding can be combined as well, e.g., sublanguages
can embed other languages. A language family (emerged from language aggregation) can
be aggregated with further languages. For this, the required translations and languages
only need to be registered in a (new) language family (cf. Section 8.3.4). However, a
language family cannot extend or embed other languages since it consists of multiple
languages.

Figure 8.26 presents a more complex example of language composition using a combi-
nation of language embedding, aggregation, and inheritance. Starting from the inside to
the outside, OCL is embedded in the statechart language SC which itself is embedded in

the Java language. This language composite indirectly (case L2
knows not−−−−−−→ L1) refers to

models of the CD4Analysis language, which has the sublanguage ExtCD4Analysis.

language
embedding

Java

SC

OCL

CD4Analysis

language
aggregation

ExtCD4Analysis

«extends»

«uses»

language
inheritance

Figure 8.26: Example of a combination of language compositions.
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To understand the underlying resolution process for this combination, it is useful to
consider the emerging scope graph. The right part of Figure 8.27 demonstrates the scope
graph for the composed model on the left.

The name f in OCL (line 10) resolves to the field f defined in the outer Java class
(line 4) via a cross-language bottom-up intra-model resolution (cf. Section 8.2.2). This
implies that (i) the resolution of a OCL variable is translated to the resolution of a Java
field and (ii) Java fields are translated to OCL variables.

Furthermore, the OCL invariant refers to the type T (line 9) which ultimately resolves
to the same-named class of the ExtCD4Analysis model. This is conducted by a cross-
language inter-model resolution (cf. Section 8.3.2) (analogously to the previous case).
The translation can be realized either by translating CD4Analysis types to OCL types
or by translating ExtCD4Analysis types to OCL types. The former allows for using
both CD4Analysis and ExtCD4Analysis types since ExtCD4Analysis is a sublanguage of
CD4Analysis. The latter excludes CD4Analysis types and only translates ExtCD4Analysis
types to OCL types (cf. Section 8.5).
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Figure 8.27: Scope graph for an exemplary model of the complex language composition
in Figure 8.26.
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8.8 Alternative Classifications for Language Composition

According to Erdweg et al. [EGR12], language composability “is not a property of
languages themselves” but “a property of language definitions, that is, whether two
definitions work together without changing them”. Those definitions may only be
extended in an object-oriented manner (cf. Open/Closed Principle [Mey88]) or via
adding glue code [Mer13].

Mernik [Mer13] distinguishes between two groups of approaches for language composi-
tion: informal and formal. Approaches of the former group specify a language’s syntax
or semantics (or both) in an informal way (e.g., via a GPL), while approaches in the
latter case exploit formal specifications for both syntax and semantics. The language
workbench Spoofax—as part of the MetaBorg framework [BV04, BdGV06]—applies a
formal approach, among others, via the meta-languages SDF, NaBL and Stratego (see
discussion above). In contrast, the approach presented in this thesis only specifies the
syntax formally (via MontiCore’s grammar specification) but conducts the semantics
programmatically, and thus, is an informal approach according to Mernik [Mer13]. Fur-
ther informal approaches (as presented in [Mer13]) are Metafront [BS02, BS07], JSE
[BP01], Racket [THSAC+11], and SugarJ [ERKO11] (cf. Section 2.2.8) which all exploit
syntax macros [Lea66] in order to translate an (extended) AST to the base language’s
AST during the parsing process. While this allows for language inheritance and language

embedding of case L2
knows−−−−→ L1, it prohibits language aggregation and embedding of

independent languages (case L2
knows not−−−−−−→ L1) as defined in the current thesis. This

is because language aggregation requires two independent languages (or more) whose
models can be interpreted together. The ASTs of these models remain separated. Hence,
a translation to a base language as in syntax macros is not possible (and not required).

Moreover, Mernik [Mer13] presents extensible compilers which exploit an informal
approach for language composition. They provide mechanisms—e.g., mixin classes and
method delegation in Polyglot [NCM03] or via interception of the compilation pipeline in
Helvetia [RDN09]—which allow for language inheritance as well as language embedding
as in this thesis, but not for language aggregation.

Same as in MontiCore, Tatoo [CFR07], component-based LR parsing [WBGM10], and
YAJCo [PFSB10] specify a language’s syntax via formal grammar specifications and also
employ GPLs for an informal implementation of the language’s semantics. Chodarev et al.
[CLPK14] utilize YAJCo to demonstrate an abstract syntax driven approach for language
composition based on object-oriented as well aspect-oriented concepts. In particular,
the abstract syntax is defined with Java and enriched with concrete syntax via Java’s
annotations. The semantics is defined via aspects (cf. [PSKM10]).

Voelter [Voe13] provides a further classification for language composition based on
dependencies between the languages and syntax composition. A language L2 depends on
a language L1 if (i) L2 is developed with knowledge about L1 or (ii) L2 uses syntactic
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elements of L1. From this Voelter derives four kinds of language composition. In
referencing models of language L2 refer to models of L1 via names. Although technically
separated (e.g., in different files), models of L2 are created with explicit knowledge about

models of L2. This corresponds to our language aggregation approach where L2
knows−−−−→ L1.

Similarly, in reuse models of the different languages remain separated. In contrast to
referencing, the models are developed independently which equals language aggregation

where L2
knows not−−−−−−→ L1 as in this thesis. The extension approach denoted by [Voe13]

refers to the same concepts as language inheritance in the current thesis. Furthermore,

embedding corresponds to our embedding approach in case L2
knows not−−−−−−→ L1.
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Chapter 9

Summary and Future Work

In this thesis we aim at supporting the language engineer in efficiently developing
infrastructures that provide essential model information in a straightforward manner to
facilitate model processing and (heterogeneous) model composition. The main results of
our work are briefly summarized in Section 9.1. Finally, in Section 9.2 we suggest some
future work.

9.1 Summary

Explicitly providing essential information associated with a model in an additional
structure has the following advantages. First, it simplifies the development of tools for
model processing (such as code generators) since a model’s information can be easily
accessed. Second, since the essential information includes a model’s interface, it facilitates
composition of models from heterogeneous modeling languages. For this, the interfaces
must be appropriately mapped to each other. Third, an additional structure is coupled
to a language’s grammar more loosely than an abstract syntax tree (AST)—at least in
cases where the AST is fully (or to a large extent) generated from the grammar. As a
consequence, grammar changes do not necessarily affect the additional structure which,
in turn, does not require updating of tools that only employ this structure.

To increase the development efficiency of such a structure—called symbol table in this
thesis—for a specific language, we (i) identified symbol table commonalities among several
languages (cf. Chapter 3), (ii) developed a generic infrastructure as well as patterns and
techniques based on these commonalities (cf. Chapters 4, 5, 6, and 8) and (iii) developed
a generator that employs the generic infrastructure to produce parts of a language’s
symbol table structure (cf. Chapter 7).

In particular, Chapter 3 introduces core concepts and elements of symbol tables, namely,
symbols and their kinds (which represent essential information of a model element), symbol
references, scopes, scope spanning symbols, and access modifiers. Chapter 4 presents the
generic infrastructure for symbol management called SMI which has been integrated into
the MontiCore language workbench. SMI enables an efficient and effective development
of language-specific symbol tables by providing technical realizations with reasonable
defaults based on the concepts and elements introduced in Chapter 3. Furthermore, it
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allows for lightweight, self-contained symbol tables which can be employed with minor
configuration efforts, e.g., for static analysis. Since in MontiCore the symbol table
and the AST together constitute a language’s abstract syntax, SMI facilitates linking
of the symbol table structure with the corresponding AST and that way simplifies
the use of both structures as needed. Moreover, Chapter 4 elaborates patterns for
realizing language-specific symbol table elements and discusses their impact on language
composition.

Before a symbol table can be used, it first has to be built up, e.g., by traversing the
AST and instantiating appropriate scopes and symbols. For this, Chapter 5 employs
SMI’s technical classes and provides techniques for building up language-specific symbol
tables. Next, Chapter 6 demonstrates how to conduct symbol resolution requests on those
built symbol tables. The resolution process is realized in a generic way, so that it not only
allows for a (name-based) composition of models from a single language but also from
heterogeneous languages. In Chapter 7 we exploit some of the methods and technical
classes introduced in the previous chapters for generating parts of a language-specific
symbol table infrastructure. Designated extension points facilitate customization of the
generated code.

SMI provides ways for separating generic aspects (i.e., the scopes) from language-
specific aspects (i.e., the symbols). While a symbol table user (e.g., a code generator
engineer) can focus on the latter to conduct language-specific tasks in a convenient
way, the former enables a non-invasive composition of symbol tables from heterogeneous
languages. To enable this, in Chapter 8 we exploit the generic aspects to extend SMI, its
symbol table creation process, and its symbol resolution process. Finally, we present a
reference implementation for the symbol table structure of Java-like languages (called
JST) which can be easily reused and extended.

Throughout this thesis, we demonstrate the applicability of SMI by the example
of MontiCore’s Java language [Mul15] (based on JST) and an automaton language.
Moreover, SMI is employed in the following projects:

• NESTML, a modeling language family for spiking neurons [PBI+16]

• MontiJava, an extension of MontiCore’s Java language (based on JST) [Mul15]

• MontiArc, an architecture description language [HRR12] (migrated from older
MontiCore versions) which employs JST and constitutes a language family with
MontiCore’s Java language mentioned above

• Object Constraint Language (OCL) for MontiCore [Cel15]

• CD4Analysis, restricted UML/P class diagrams [Sch12, Rum16] based on JST

• UML/P object diagrams [Sch12, Rum16]
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• JavaScript for MontiCore [Sie15]

• language family for robotics applications [HMSNR+15a] (migrated from older
MontiCore versions)

• MontiCore’s grammar language [Kra10] (migrated from older MontiCore versions)

• managing guided and unguided code generator customizations [MSNRR15]

• managing the composition of output-specific generator information [MSNRR16]

• UML activity diagrams [LN16] based on [Rei16]

• tagging language for component and connector models [MRRW16]

Many of the above listed projects have been developed simultaneously with SMI which
enabled to obtain fast feedback and improve SMI in the sense of its understandability for
the language engineers and users, its applicability, and its development effort.

9.2 Recommendation for Future Work

In this thesis both the AST and the symbol table constitute the abstract syntax of a
language. Hence, the same model element can be simultaneously represented by an AST
element as well as a symbol table element. This, however, can lead to inconsistency
issues between the AST and the symbol table, for example, when modifying the AST
via transformation languages [MCG05]. To keep the symbol table consistent with its
corresponding AST, it must be removed and recreated every time the AST changes.
Thus, a potential future investigation could be to examine how the modifications can be
conducted on both structures to ensure consistency by construction.

The generative approach presented in this thesis only required a minor extension of
MontiCore’s grammar language, but allows to generate large parts of a language-specific
symbol table. More sophisticated analyses of the extended grammar in a future work might
help to generate even more parts of the symbol table (although a full-fledged generation
is rarely possible, as discussed throughout this thesis). For example, determining inner
symbols enables to fully generate the model name calculator (cf. Section 6.9.5). Moreover,
possible extensions could be considered to increase the effectiveness of the symbol table
generation. For instance, a language’s configuration sets the file extension for models
of that language. Adding this information, e.g., via a lightweight and simple DSL,
would enable a full generation of the configuration, liberating the language engineer from
handcrafted and repetitive tasks. In this thesis, we intentionally avoid complex DSLs as,
e.g., in [KKWV13] since we target developers with skills in Java, and therefore, provide
designated Java hook points for extension and customization of the generated code.
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Chapter 9 Summary and Future Work

Furthermore, languages in MontiCore can be composed with little glue code, which
so far has to be handcrafted. In cases the symbol tables of the involved languages are
generated to a large extent—which might require the above mentioned extensions—parts
of the glue code for the symbol table composition could be generated as well (cf. [Aßm03]).

Chapter 4 discusses many patterns for implementing language-specific symbol tables.
Our generative approach employs only some of these patterns. To choose the needed
patterns, several generators for the symbol table components could be implemented in a
future work. The symbol table generator (cf. Section 7.4) then could be configured with
the needed component generators.

Finally, code generators systematically translate models to concrete (executable) code.
Several code generators can be employed to generate various parts of a software system,
which then are composed to the whole system. For this, the output of a generator may
depend on the output of others. For example, if a (Java code) generator produces a
factory class [GHJV95] for each generated class, other generators must take this into
account and generate code that employs those factories for object instantiation (instead
of using the new operator). This knowledge about a generator’s output leads to a higher
coupling between generators. Therefore, it could be examined to what extent the symbol
table infrastructure can help to tackle this problem. In [MSNRR16] we demonstrate a first
approach which explicitly stores a generator’s output-specific information in the symbol
table. Other generators can access this information to generate valid code. However, the
approach requires further investigations.
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and Jean-Marc Jézéquel. Melange: A Meta-language for Modular and
Reusable Development of DSLs. In Proceedings of the 2015 ACM SIG-
PLAN International Conference on Software Language Engineering, SLE
2015, pages 25–36, New York, NY, USA, 2015. ACM.

[DK98] Arie van Deursen and Paul Klint. Little Languages: Little Maintenance?
Journal of Software Maintenance: Research and Practice, 10:75–92, 1998.

240



Bibliography

[EB10] Moritz Eysholdt and Heiko Behrens. Xtext: Implement Your Language
Faster Than the Quick and Dirty Way. In Proceedings of the ACM
International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, OOPSLA ’10, pages
307–309, New York, NY, USA, 2010. ACM.

[ECM06] ECMA. ECMA-334: C# Language Specification. Fourth edition, June
2006.

[EGR12] Sebastian Erdweg, Paolo G. Giarrusso, and Tillmann Rendel. Language
Composition Untangled. In Proceedings of the Twelfth Workshop on
Language Descriptions, Tools, and Applications, LDTA ’12, pages 7:1–7:8,
New York, NY, USA, 2012. ACM.
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Appendix A

Index of Abbreviations

AS Artifact Scope
ADL Architecture Description Language
API Application Programming Interface
AST Abstract Syntax Tree
CD Class Diagram
DSEL Domain-Specific Embedded Language
DSL Domain-Specific Language
EBNF Extended Backus-Naur Form
GS Global Scope
GPL General-Purpose Language
HTML HyperText Markup Language
IDE Integrated Development Environment
JST Java-like Symbol Table Infrastructure
LHS Left-Hand Side
MDA Model-Driven Architecture
MDE Model-Driven Engineering
NaBL Name Binding Language
OCL Object Constraint Language
OD Object Diagram
OMG Object Management Group
RHS Right-Hand Side
SC Statechart
SMI Symbol Management Infrastructure
ST Symbol Table
STE Symbol Table Entry
UML Unified Modeling Language
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Appendix B

Diagram and Listing Tags

Stereotype Description

«GEN» Generated language-specific element (i.e., «LS»).

«HC» Handcoded element.

«LS» Language-specific element which is either generated (i.e., «GEN»)
or handcoded (i.e., «HC»).

«METH» Method which describes (partly automated) workflows.

«MODEL» A model is presented (e.g., if Java is used as an action language).

«RTE» Generic element that is part of MontiCore’s (or SMI’s) runtime
environment.

Table B.1: Explanation of the used stereotypes within listings and tags.
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Appendix B Diagram and Listing Tags

Tag Description

AD Activity Diagram

CD Class Diagram1

CD4A Restricted Class Diagram for Analysis

CpD Component Diagram

Groovy Groovy Script

Java Java Source Code

MCG MontiCore Grammar

SC Statechart Diagram

SD Sequence Diagram

ST Symbol Table / Scope Graph

OCL Object Constraint Language

OD Object Diagram

... Tags an incomplete diagram.

Table B.2: Explanation of the used tags in listings and figures.

1CD members are public if not otherwise stated.
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Appendix C

Groovy Script for Specifying Model
Processing Workflows

Groovy1 package de.monticore
2

3 // basic setup and initialization; enabling of reporting
4 initGlobals(_configuration)
5

6 // ############################################################
7 // the first pass processes all input grammars up to
8 // transformation to CD and storage of the resulting CD to disk
9 while (grammarIterator.hasNext()) {

10 input = grammarIterator.next()
11 if (force || !isUpToDate(input)) {
12 cleanUp(input)
13

14 // M2: parse grammar
15 astGrammar = parseGrammar(input)
16

17 if (astGrammar.isPresent()) {
18 astGrammar = astGrammar.get()
19

20 startReportingFor(astGrammar, input)
21

22 // populate symbol table
23 astGrammar = createSymbolsFromAST(symbolTable, astGrammar)
24

25 // execute context conditions
26 runGrammarCoCos(astGrammar, symbolTable)
27

28 // transform grammar AST into Class Diagram AST
29 astClassDiagram = transformAstGrammarToAstCd
30 (glex, astGrammar, symbolTable, handcodedPath)
31

32
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33 astClassDiagramWithST =
34 createSymbolsFromAST(symbolTable, astClassDiagram)
35

36 // write Class Diagram AST to the CD-file (*.cd)
37 storeInCdFile(astClassDiagramWithST, out)
38

39 // generate parser
40 generateParser(astGrammar, symbolTable, handcodedPath, out)
41 generateParserWrappers
42 (astGrammar, symbolTable, handcodedPath, out)
43

44 // store result of the first pass
45 storeCDForGrammar(astGrammar, astClassDiagramWithST)
46 }
47 }
48 }
49 // ############################################################
50

51 // ############################################################
52 // the second pass
53 // do the rest which requires already created CDs of possibly
54 // local super grammars etc.
55 for (astGrammar in getParsedGrammars()) {
56 // make sure to use the right report manager again
57 reportingFor(astGrammar)
58

59 astClassDiagram = getCDOfParsedGrammar(astGrammar)
60

61 // decorate Class Diagram AST
62 decorateCd(glex, astClassDiagram, symbolTable, handcodedPath)
63

64 // generate symbol table
65 generateSymbolTable(astGrammar, symbolTable,
66 astClassDiagram, out, handcodedPath)
67

68 // generate AST classes
69 generate(glex, symbolTable, astClassDiagram, out, templatePath)
70

71 info("Grammar " + astGrammar.getName()
72 + " processed successfully!")
73

74 // flush reporting
75 flushReporting(astGrammar)
76 }

Listing C.1: Groovy script for processing MontiCore grammars.
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Appendix D

Technical Realization of the Java-like
Symbol Table Infrastructure JST

D.1 Technical Realization of Java-like Type Symbols

Java

«RTE»

1 package de.monticore.symboltable.types;
2

3 import java.util.List;
4 import java.util.Optional;
5 import de.monticore.symboltable.ScopeSpanningSymbol;
6 import de.monticore.symboltable.types.references.JTypeReference;
7

8 /**
9 * @author Pedram Mir Seyed Nazari

10 */
11 public interface JTypeSymbol
12 extends TypeSymbol, ScopeSpanningSymbol {
13

14 JTypeSymbolKind KIND = new JTypeSymbolKind();
15

16 boolean isGeneric();
17

18 List<? extends JTypeSymbol> getFormalTypeParameters();
19

20 Optional<? extends JTypeReference<? extends JTypeSymbol>>
21 getSuperClass();
22

23 List<? extends JTypeReference<? extends JTypeSymbol>>
24 getInterfaces();
25

26 List<? extends JTypeReference<? extends JTypeSymbol>>
27 getSuperTypes();
28 List<? extends JFieldSymbol> getFields();
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29

30 Optional<? extends JFieldSymbol> getField(String name);
31

32 List<? extends JMethodSymbol> getMethods();
33

34 Optional<? extends JMethodSymbol> getMethod(String name);
35

36 List<? extends JMethodSymbol> getConstructors();
37

38 List<? extends JTypeSymbol> getInnerTypes();
39

40 Optional<? extends JTypeSymbol> getInnerType(String name);
41

42 /**
43 * @return true, if type is an abstract class or an interface
44 */
45 boolean isAbstract();
46

47 boolean isFinal();
48

49 boolean isInterface();
50

51 boolean isEnum();
52

53 boolean isClass();
54

55 /**
56 * @return true, if this type is an inner type, such as an
57 * inner interface or inner class
58 */
59 boolean isInnerType();
60

61 boolean isPrivate();
62

63 boolean isProtected();
64

65 boolean isPublic();
66

67 /**
68 * @return true, if this type itself is a formal type parameter.
69 */
70 boolean isFormalTypeParameter();
71 }

Listing D.1: The JTypeSymbol interface of JST.
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Java

«RTE»

1 package de.monticore.symboltable.types;
2

3 import com.google.common.collect.ImmutableList;
4 import de.monticore.symboltable.CommonScopeSpanningSymbol;
5 import de.monticore.symboltable.MutableScope;
6 import de.monticore.symboltable.modifiers.BasicAccessModifier;
7 import de.monticore.symboltable.types.references.JTypeReference;
8 import de.se_rwth.commons.logging.Log;
9

10 import java.util.ArrayList;
11 import java.util.Collection;
12 import java.util.List;
13 import java.util.Optional;
14 import java.util.stream.Collectors;
15

16 import static com.google.common.base.Preconditions.checkArgument;
17 import static com.google.common.base.Strings.isNullOrEmpty;
18 import static de.monticore.symboltable.Symbols.
19 sortSymbolsByPosition;
20

21 /**
22 * @author Pedram Mir Seyed Nazari
23 */
24 public abstract class
25 CommonJTypeSymbol <T extends JTypeSymbol,
26 S extends JFieldSymbol,
27 U extends JMethodSymbol,
28 V extends JTypeReference<T>>
29 extends CommonScopeSpanningSymbol implements JTypeSymbol {
30

31 private final JFieldSymbolKind fieldKind;
32 private final JMethodSymbolKind methodKind;
33

34 private V superClass;
35 private final List<V> interfaces = new ArrayList<>();
36

37 private boolean isAbstract = false;
38 private boolean isFinal = false;
39 private boolean isInterface = false;
40 private boolean isEnum = false;
41 private boolean isFormalTypeParameter = false;
42 // e.g., inner interface or inner class
43 private boolean isInnerType = false;
44

45
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46 protected CommonJTypeSymbol(String name,
47 JTypeSymbolKind typeKind,
48 JFieldSymbolKind fieldKind,
49 JMethodSymbolKind methodKind) {
50 super(name, typeKind);
51

52 this.fieldKind = fieldKind;
53 this.methodKind = methodKind;
54 }
55

56 protected CommonJTypeSymbol(String name) {
57 this(name, JTypeSymbol.KIND,
58 JFieldSymbol.KIND, JMethodSymbol.KIND);
59 }
60

61 @Override
62 protected MutableScope createSpannedScope() {
63 return new CommonJTypeScope(Optional.empty());
64 }
65

66 @Override
67 public boolean isGeneric() {
68 return !getFormalTypeParameters().isEmpty();
69 }
70

71 public void addFormalTypeParameter(T formalTypeParameter) {
72 checkArgument(formalTypeParameter.isFormalTypeParameter());
73 getMutableSpannedScope().add(formalTypeParameter);
74 }
75

76 @Override
77 public List<T> getFormalTypeParameters() {
78 final Collection<T> resolvedTypes =
79 getSpannedScope().resolveLocally(T.KIND);
80 return resolvedTypes.stream().filter(T::isFormalTypeParameter)
81 .collect(Collectors.toList());
82 }
83

84 @Override
85 public Optional<V> getSuperClass() {
86 return Optional.ofNullable(superClass);
87 }
88

89 public void setSuperClass(V superClass) {
90 this.superClass = superClass;
91 }
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92

93 @Override
94 public List<V> getInterfaces() {
95 return ImmutableList.copyOf(interfaces);
96 }
97

98 public void addInterface(V superInterface) {
99 this.interfaces.add(Log.errorIfNull(superInterface));

100 }
101

102 @Override
103 public List<V> getSuperTypes() {
104 final List<V> superTypes = new ArrayList<>();
105 if (getSuperClass().isPresent()) {
106 superTypes.add(getSuperClass().get());
107 }
108 superTypes.addAll(getInterfaces());
109 return superTypes;
110 }
111

112 public void addField(S field) {
113 getMutableSpannedScope().add(Log.errorIfNull(field));
114 }
115

116 @Override
117 public List<S> getFields() {
118 return sortSymbolsByPosition(
119 getSpannedScope().resolveLocally(fieldKind));
120 }
121

122 @Override
123 public Optional<S> getField(String name) {
124 return getSpannedScope()
125 .resolveLocally(name, fieldKind);
126 }
127

128 public void addMethod(U method) {
129 checkArgument(!method.isConstructor());
130 getMutableSpannedScope().add(method);
131 }
132

133 @Override
134 public List<U> getMethods() {
135 final Collection<U> resolvedMethods =
136 getSpannedScope().resolveLocally(methodKind);
137
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138 final List<U> methods =
139 sortSymbolsByPosition(resolvedMethods.stream()
140 .filter(method -> !method.isConstructor())
141 .collect(Collectors.toList()));
142

143 return methods;
144 }
145

146 @Override
147 public Optional<U> getMethod(String name) {
148 Optional<U> method = getSpannedScope()
149 .resolveLocally(name, methodKind);
150

151 if (method.isPresent() && !method.get().isConstructor()) {
152 return method;
153 }
154

155 return Optional.empty();
156 }
157

158 public void addConstructor(U constructor) {
159 checkArgument(constructor.isConstructor());
160 getMutableSpannedScope().add(constructor);
161 }
162

163 @Override
164 public List<U> getConstructors() {
165 final Collection<U> resolvedMethods =
166 getSpannedScope().resolveLocally(methodKind);
167

168 final List<U> constructors =
169 sortSymbolsByPosition(resolvedMethods.stream()
170 .filter(U::isConstructor).collect(Collectors.toList()));
171

172 return constructors;
173 }
174

175 public void addInnerType(T innerType) {
176 getMutableSpannedScope().add(innerType);
177 }
178

179 @Override
180 public List<T> getInnerTypes() {
181 return sortSymbolsByPosition(
182 getSpannedScope().resolveLocally(getKind()));
183 }
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184

185 @Override
186 public Optional<T> getInnerType(String name) {
187 return getSpannedScope()
188 .resolveLocally(name, getKind());
189 }
190

191 @Override
192 public boolean isClass() {
193 return !isInterface() && !isEnum();
194 }
195

196 // additional getter and setter methods
197 }

Listing D.2: The CommonJTypeSymbol class of JST provides default
implementations for JTypeSymbol.

275



Appendix D Technical Realization of the Java-like Symbol Table
Infrastructure JST

D.2 Technical Realization of Java-like Field Symbols

Java

«RTE»

1 package de.monticore.symboltable.types;
2

3 import de.monticore.symboltable.Symbol;
4 import de.monticore.symboltable.types.references.JTypeReference;
5

6 /**
7 * @author Pedram Mir Seyed Nazari
8 */
9 public interface JFieldSymbol extends Symbol {

10

11 JFieldSymbolKind KIND = new JFieldSymbolKind();
12

13 JTypeReference<? extends JTypeSymbol> getType();
14

15 boolean isStatic();
16

17 boolean isFinal();
18

19 boolean isParameter();
20

21 boolean isPrivate();
22

23 boolean isProtected();
24

25 boolean isPublic();
26 }

Listing D.3: The JFieldSymbol interface of JST.

Java

«RTE»

1 package de.monticore.symboltable.types;
2

3 import de.monticore.symboltable.CommonSymbol;
4 import de.monticore.symboltable.modifiers.BasicAccessModifier;
5 import de.monticore.symboltable.types.references.JTypeReference;
6

7 /**
8 * @author Pedram Mir Seyed Nazari
9 */

10 public abstract class CommonJFieldSymbol
11 <T extends JTypeReference<? extends JTypeSymbol>>
12 extends CommonSymbol implements JFieldSymbol {
13
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14 private T type;
15

16 private boolean isFinal;
17 private boolean isStatic;
18 private boolean isParameter = false;
19

20 public CommonJFieldSymbol(String name,
21 JFieldSymbolKind kind, T type) {
22 super(name, kind);
23 this.type = type;
24 }
25

26 @Override
27 public T getType() {
28 return type;
29 }
30

31 public void setType(T type) {
32 this.type = type;
33 }
34

35 @Override
36 public boolean isStatic() {
37 return isStatic;
38 }
39

40 @Override
41 public boolean isFinal() {
42 return isFinal;
43 }
44

45 public void setParameter(boolean isParameter) {
46 this.isParameter = isParameter;
47 }
48

49 @Override
50 public boolean isParameter() {
51 return isParameter;
52 }
53

54 public void setPrivate() {
55 setAccessModifier(BasicAccessModifier.PRIVATE);
56 }
57

58 public void setProtected() {
59 setAccessModifier(BasicAccessModifier.PROTECTED);
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60 }
61

62 public void setPublic() {
63 setAccessModifier(BasicAccessModifier.PUBLIC);
64 }
65

66 @Override
67 public boolean isPrivate() {
68 return getAccessModifier()
69 .equals(BasicAccessModifier.PRIVATE);
70 }
71

72 @Override
73 public boolean isProtected() {
74 return getAccessModifier()
75 .equals(BasicAccessModifier.PROTECTED);
76 }
77

78 @Override
79 public boolean isPublic() {
80 return getAccessModifier()
81 .equals(BasicAccessModifier.PUBLIC);
82 }
83

84 // additional setter methods
85 }

Listing D.4: The CommonJFieldSymbol class of JST provides default
implementations for JFieldSymbol.
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D.3 Technical Realization of Java-like Method Symbols

Java

«RTE»

1 package de.monticore.symboltable.types;
2

3 import java.util.List;
4

5 import de.monticore.symboltable.ScopeSpanningSymbol;
6 import de.monticore.symboltable.types.references.JTypeReference;
7

8 /**
9 * @author Pedram Mir Seyed Nazari

10 */
11 public interface JMethodSymbol extends ScopeSpanningSymbol {
12

13 JMethodSymbolKind KIND = new JMethodSymbolKind();
14

15 JTypeReference<? extends JTypeSymbol> getReturnType();
16

17 List<? extends JFieldSymbol> getParameters();
18

19 List<? extends JTypeSymbol> getFormalTypeParameters();
20

21 List<? extends JTypeReference<? extends JTypeSymbol>>
22 getExceptions();
23

24 boolean isAbstract();
25

26 boolean isStatic();
27

28 boolean isConstructor();
29

30 boolean isFinal();
31

32 boolean isEllipsisParameterMethod();
33

34 boolean isPrivate();
35

36 boolean isProtected();
37

38 boolean isPublic();
39 }

Listing D.5: The JMethodSymbol interface of JST.
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Java

«RTE»

1 package de.monticore.symboltable.types;
2

3 import static com.google.common.base.Preconditions.checkArgument;
4 import static de.monticore.symboltable.Symbols.
5 sortSymbolsByPosition;
6

7 import java.util.ArrayList;
8 import java.util.Collection;
9 import java.util.List;

10 import java.util.stream.Collectors;
11

12 import com.google.common.collect.ImmutableList;
13 import de.monticore.symboltable.CommonScopeSpanningSymbol;
14 import de.monticore.symboltable.modifiers.BasicAccessModifier;
15 import de.monticore.symboltable.types.references.JTypeReference;
16 import de.se_rwth.commons.logging.Log;
17

18 /**
19 * @author Pedram Mir Seyed Nazari
20 */
21 public abstract class
22 CommonJMethodSymbol<U extends JTypeSymbol,
23 T extends JTypeReference<? extends U>,
24 S extends JFieldSymbol>
25 extends CommonScopeSpanningSymbol implements JMethodSymbol {
26

27 private boolean isAbstract = false;
28 private boolean isStatic = false;
29 private boolean isFinal = false;
30 private boolean isConstructor = false;
31 private boolean isEllipsisParameterMethod = false;
32

33 private T returnType;
34 private List<T> exceptions = new ArrayList<>();
35

36 public CommonJMethodSymbol(String name,
37 JMethodSymbolKind kind) {
38 super(name, kind);
39 }
40

41 @Override
42 public T getReturnType() {
43 return returnType;
44 }
45
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46 public void setReturnType(T type) {
47 this.returnType = Log.errorIfNull(type);
48 }
49

50 @Override
51 public List<S> getParameters() {
52 final Collection<S> resolvedFields =
53 getSpannedScope().resolveLocally(S.KIND);
54

55 final List<S> parameters =
56 sortSymbolsByPosition(resolvedFields.stream()
57 .filter(S::isParameter).collect(Collectors.toList()));
58

59 return parameters;
60 }
61

62 public void addParameter(S paramType) {
63 checkArgument(paramType.isParameter());
64 getMutableSpannedScope().add(paramType);
65 }
66

67 public void addFormalTypeParameter(U formalTypeParameter) {
68 checkArgument(formalTypeParameter.isFormalTypeParameter());
69 getMutableSpannedScope().add(formalTypeParameter);
70 }
71

72 @Override
73 public List<U> getFormalTypeParameters() {
74 final Collection<U> resolvedTypes =
75 getSpannedScope().resolveLocally(U.KIND);
76

77 return resolvedTypes.stream()
78 .filter(U::isFormalTypeParameter)
79 .collect(Collectors.toList());
80 }
81

82 @Override
83 public List<T> getExceptions() {
84 return ImmutableList.copyOf(exceptions);
85 }
86

87 public void setExceptions(List<T> exceptions) {
88 this.exceptions = exceptions;
89 }
90

91
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92 public void addException(T exception) {
93 this.exceptions.add(exception);
94 }
95

96 public void setAbstract(boolean isAbstract) {
97 this.isAbstract = isAbstract;
98 }
99

100 @Override
101 public boolean isAbstract() {
102 return isAbstract;
103 }
104

105 public void setStatic(boolean isStatic) {
106 this.isStatic = isStatic;
107 }
108

109 @Override
110 public boolean isStatic() {
111 return isStatic;
112 }
113

114 public void setConstructor(boolean isConstructor) {
115 this.isConstructor = isConstructor;
116 }
117

118 @Override
119 public boolean isConstructor() {
120 return isConstructor;
121 }
122

123 @Override
124 public boolean isFinal() {
125 return isFinal;
126 }
127

128 public void setFinal(boolean isFinal) {
129 this.isFinal = isFinal;
130 }
131

132 @Override
133 public boolean isEllipsisParameterMethod() {
134 return isEllipsisParameterMethod;
135 }
136

137
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138 public void setEllipsisParameterMethod (
139 boolean isEllipsisParameterMethod) {
140 this.isEllipsisParameterMethod = isEllipsisParameterMethod;
141 }
142

143 public void setPrivate() {
144 setAccessModifier(BasicAccessModifier.PRIVATE);
145 }
146

147 public void setProtected() {
148 setAccessModifier(BasicAccessModifier.PROTECTED);
149 }
150

151 public void setPublic() {
152 setAccessModifier(BasicAccessModifier.PUBLIC);
153 }
154

155 @Override
156 public boolean isPrivate() {
157 return getAccessModifier()
158 .equals(BasicAccessModifier.PRIVATE);
159 }
160

161 @Override
162 public boolean isProtected() {
163 return getAccessModifier()
164 .equals(BasicAccessModifier.PROTECTED);
165 }
166

167 @Override
168 public boolean isPublic() {
169 return getAccessModifier()
170 .equals(BasicAccessModifier.PUBLIC);
171 }
172

173 }

Listing D.6: The CommonJMethodSymbol class of JST provides default
implementations for JMethodSymbol.
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both kinds of diagrams [MRR11e]. We also apply these concepts to activity diagrams [MRR11b] which
allows us to check for semantic differences of activity diagrams [MRR11a]. The basic semantics for ADs
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Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need
appropriate tooling. The MontiCore language workbench [GKR+06, KRV10, Kra10, GKR+08] allows
the specification of an integrated abstract and concrete syntax format [KRV07b] for easy development.
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be reused. [Wei12] presents a tool that allows to create transformation rules tailored to an underlying DSL.
Variability in DSL definitions has been examined in [GR11]. A successful application has been carried
out in the Air Traffic Management domain [ZPK+11]. Based on the concepts described above, meta
modeling, model analyses and model evolution have been discussed in [LRSS10] and [SRVK10]. DSL
quality [FHR08], instructions for defining views [GHK+07], guidelines to define DSLs [KKP+09] and
Eclipse-based tooling for DSLs [KRV07a] complete the collection.

Software Language Engineering
For a systematic definition of languages using composition of reusable and adaptable language com-
ponents, we adopt an engineering viewpoint on these techniques. General ideas on how to engineer a
language can be found in the GeMoC initiative [CBCR15, CCF+15]. As said, the MontiCore langua-
ge workbench provides techniques for an integrated definition of languages [KRV07b, Kra10, KRV10].
In [SRVK10] we discuss the possibilities and the challenges using metamodels for language definition.
Modular composition, however, is a core concept to reuse language components like in MontiCore for
the frontend [Völ11, KRV08] and the backend [RRRW15]]. Language derivation is to our believe a pro-
mising technique to develop new languages for a specific purpose that rely on existing basic languages.
How to automatically derive such a transformation language using concrete syntax of the base language
is described in [HRW15, Wei12] and successfully applied to various DSLs. We also applied the language
derivation technique to tagging languages that decorate a base language [GLRR15] and delta languages
[HHK+15a, HHK+13], where a delta language is derived from a base language to be able to construc-
tively describe differences between model variants usable to build feature sets.

Modeling Software Architecture & the MontiArc Tool
Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of
telephone or video data, method invocation, or data structures passed between software services. We
use streams, statemachines and components [BR07] as well as expressive forms of composition and re-
finement [PR99] for semantics. Furthermore, we built a concrete tooling infrastructure called MontiArc
[HRR12] for architecture design and extensions for states [RRW13b]. MontiArc was extended to describe
variability [HRR+11] using deltas [HRRS11, HKR+11] and evolution on deltas [HRRS12]. [GHK+07]
and [GHK+08] close the gap between the requirements and the logical architecture and [GKPR08] ex-
tends it to model variants. [MRR14] provides a precise technique to verify consistency of architectural
views [Rin14, MRR13] against a complete architecture in order to increase reusability. Co-evolution of
architecture is discussed in [MMR10] and a modeling technique to describe dynamic architectures is
shown in [HRR98].

Compositionality & Modularity of Models
[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling. The me-
chanisms for distributed systems are shown in [BR07] and algebraically underpinned in [HKR+07]. Se-
mantic and methodical aspects of model composition [KRV08] led to the language workbench MontiCore
[KRV10] that can even be used to develop modeling tools in a compositional form. A set of DSL design



guidelines incorporates reuse through this form of composition [KKP+09]. [Völ11] examines the com-
position of context conditions respectively the underlying infrastructure of the symbol table. Modular
editor generation is discussed in [KRV07a]. [RRRW15] applies compositionality to Robotics control.
[CBCR15] (published in [CCF+15]) summarizes our approach to composition and remaining challenges
in form of a conceptual model of the “globalized” use of DSLs. As a new form of decomposition of mo-
del information we have developed the concept of tagging languages in [GLRR15]. It allows to describe
additional information for model elements in separated documents, facilitates reuse, and allows to type
tags.

Semantics of Modeling Languages
The meaning of semantics and its principles like underspecification, language precision and detailedness
is discussed in [HR04]. We defined a semantic domain called “System Model” by using mathematical
theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version especially suited for the UML
is given in [BCGR09b] and in [BCGR09a] its rationale is discussed. [BCR07a, BCR07b] contain detailed
versions that are applied to class diagrams in [CGR08]. To better understand the effect of an evolved
design, detection of semantic differencing as opposed to pure syntactical differences is needed [MRR10].
[MRR11a, MRR11b] encode a part of the semantics to handle semantic differences of activity diagrams
and [MRR11e] compares class and object diagrams with regard to their semantics. In [BR07], a simpli-
fied mathematical model for distributed systems based on black-box behaviors of components is defined.
Meta-modeling semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages
for the description of an exemplary object interaction, today called sequence diagram. [BGH+98] discus-
ses the relationships between a system, a view and a complete model in the context of the UML. [GR11]
and [CGR09] discuss general requirements for a framework to describe semantic and syntactic variations
of a modeling language. We apply these on class and object diagrams in [MRR11e] as well as activi-
ty diagrams in [GRR10]. [Rum12] defines the semantics in a variety of code and test case generation,
refactoring and evolution techniques. [LRSS10] discusses evolution and related issues in greater detail.

Evolution & Transformation of Models
Models are the central artifact in model driven development, but as code they are not initially correct
and need to be changed, evolved and maintained over time. Model transformation is therefore essential
to effectively deal with models. Many concrete model transformation problems are discussed: evoluti-
on [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactoring [Rum12, PR03], trans-
lating models from one language into another [MRR11c, Rum12] and systematic model transformati-
on language development [Wei12]. [Rum04] describes how comprehensible sets of such transformati-
ons support software development and maintenance [LRSS10], technologies for evolving models wi-
thin a language and across languages, and mapping architecture descriptions to their implementation
[MMR10]. Automaton refinement is discussed in [PR94, KPR97], refining pipe-and-filter architectures is
explained in [PR99]. Refactorings of models are important for model driven engineering as discussed in
[PR01, PR03, Rum12]. Translation between languages, e.g., from class diagrams into Alloy [MRR11c]
allows for comparing class diagrams on a semantic level.

Variability & Software Product Lines (SPL)
Products often exist in various variants, for example cars or mobile phones, where one manufacturer deve-
lops several products with many similarities but also many variations. Variants are managed in a Software
Product Line (SPL) that captures product commonalities as well as differences. Feature diagrams describe



variability in a top down fashion, e.g., in the automotive domain [GHK+08] using 150% models. Redu-
cing overhead and associated costs is discussed in [GRJA12]. Delta modeling is a bottom up technique
starting with a small, but complete base variant. Features are additive, but also can modify the core. A
set of commonly applicable deltas configures a system variant. We discuss the application of this tech-
nique to Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only
describe spacial variability but also temporal variability which allows for using them for software product
line evolution [HRRS12]. [HHK+13] and [HRW15] describe an approach to systematically derive delta
languages. We also apply variability to modeling languages in order to describe syntactic and semantic
variation points, e.g., in UML for frameworks [PFR02]. Furthermore, we specified a systematic way to
define variants of modeling languages [CGR09] and applied this as a semantic language refinement on
Statecharts in [GR11].

Cyber-Physical Systems (CPS)
Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical en-
tities. Contributions for individual aspects range from requirements [GRJA12], complete product lines
[HRRW12], the improvement of engineering for distributed automotive systems [HRR12] and autono-
mous driving [BR12a] to processes and tools to improve the development as well as the product itself
[BBR07]. In the aviation domain, a modeling language for uncertainty and safety events was developed,
which is of interest for the European airspace [ZPK+11]. A component and connector architecture de-
scription language suitable for the specific challenges in robotics is discussed in [RRW13b, RRW14].
Monitoring for smart and energy efficient buildings is developed as Energy Navigator toolset [KPR12,
FPPR12, KLPR12].

State Based Modeling (Automata)
Today, many computer science theories are based on statemachines in various forms including Petri nets
or temporal logics. Software engineering is particularly interested in using statemachines for modeling
systems. Our contributions to state based modeling can currently be split into three parts: (1) under-
standing how to model object-oriented and distributed software using statemachines resp. Statecharts
[GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding the refinement [PR94, RK96, Rum96]
and composition [GR95] of statemachines, and (3) applying statemachines for modeling systems. In
[Rum96] constructive transformation rules for refining automata behavior are given and proven correct.
This theory is applied to features in [KPR97]. Statemachines are embedded in the composition and beha-
vioral specification concepts of Focus [BR07]. We apply these techniques, e.g., in MontiArcAutomaton
[RRW13a, RRW14] as well as in building management systems [FLP+11].

Robotics
Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-
ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics
applications requires composition and interaction of diverse distributed software modules. This usually
leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensible, which
hampers broad propagation of robotics applications. The MontiArcAutomaton language [RRW13a] ex-
tends ADL MontiArc and integrates various implemented behavior modeling languages using Monti-
Core [RRW13b, RRW14, RRRW15] that perfectly fit Robotic architectural modelling. The LightRocks
[THR+13] framework allows robotics experts and laymen to model robotic assembly tasks.



Automotive, Autonomic Driving & Intelligent Driver Assistance
Introducing and connecting sophisticated driver assistance, infotainment and communication systems
as well as advanced active and passive safety-systems result in complex embedded systems. As these
feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct va-
riants needs to be managed, developed and tested. A consistent requirements management that connects
requirements with features in all phases of the development for the automotive domain is described
in [GRJA12]. The conceptual gap between requirements and the logical architecture of a car is clo-
sed in [GHK+07, GHK+08]. [HKM+13] describes a tool for delta modeling for Simulink [HKM+13].
[HRRW12] discusses means to extract a well-defined Software Product Line from a set of copy and
paste variants. [RSW+15] describes an approach to use model checking techniques to identify behavi-
oral differences of Simulink models. Quality assurance, especially of safety-related functions, is a highly
important task. In the Carolo project [BR12a, BR12b], we developed a rigorous test infrastructure for
intelligent, sensor-based functions through fully-automatic simulation [BBR07]. This technique allows a
dramatic speedup in development and evolution of autonomous car functionality, and thus enables us to
develop software in an agile way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in
development and evolution on a more general level by considering any kind of critical system that relies
on architectural descriptions. As tooling infrastructure, the SSElab storage, versioning and management
services [HKR12] are essential for many projects.

Energy Management
In the past years, it became more and more evident that saving energy and reducing CO2 emissions is
an important challenge. Thus, energy management in buildings as well as in neighbourhoods becomes
equally important to efficiently use the generated energy. Within several research projects, we developed
methodologies and solutions for integrating heterogeneous systems at different scales. During the design
phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12, KPR12] is used for tech-
nical specification of building services already. We adapted the well-known concept of statemachines to
be able to describe different states of a facility and to validate it against the monitored values [FLP+11].
We show how our data model, the constraint rules and the evaluation approach to compare sensor data
can be applied [KLPR12].

Cloud Computing & Enterprise Information Systems
The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based
application and service architectures with high complexity, criticality and new application domains. It pro-
mises to enable new business models, to lower the barrier for web-based innovations and to increase the
efficiency and cost-effectiveness of web development [KRR14]. Application classes like Cyber-Physical
Systems and their privacy [HHK+14, HHK+15b], Big Data, App and Service Ecosystems bring atten-
tion to aspects like responsiveness, privacy and open platforms. Regardless of the application domain,
developers of such systems are in need for robust methods and efficient, easy-to-use languages and tools
[KRS12]. We tackle these challenges by perusing a model-based, generative approach [NPR13]. The core
of this approach are different modeling languages that describe different aspects of a cloud-based system
in a concise and technology-agnostic way. Software architecture and infrastructure models describe the
system and its physical distribution on a large scale. We apply cloud technology for the services we
develop, e.g., the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for our tool
demonstrators and our own development platforms. New services, e.g., collecting data from temperature,
cars etc. can now easily be developed.
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