

SAMEM:
A Methodology for the Elicitation and Specification
of Requirements for Agile Model-driven Engineering

of Large Software Solutions

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Dan McKay Matheson,
Master of Science Computer Science

aus Des Moines, Iowa, USA

Berichter: Universitätsprofessor Dr. Bernhard Rumpe
Professor Dr. Michael Goedicke

Tag der mündlichen Prüfung: 18. Januar 2019

[Mat19] D. McKay Matheson:
SAMEM: A Methodology for the Elicitation and Specification of Requirements for Agile Model-driven Engineering of Large Software Solutions.
Shaker Verlag, ISBN 978-3-8440-6518-3. Aachener Informatik-Berichte, Software Engineering, Band 38. Februar 2019.
www.se-rwth.de/publications/

Kurzfassung
Die Software Agile Modeling and Engineering Methodology (SAMEM) ist eine prag-

matische Methodologie zur Entwicklung von Lösungen, die darauf ausgerichtet ist, einen
iterativen und auf Zuwachs bezogenen (incremental) Projektmanagement-Ansatz (agile)
zu kombinieren mit dem Schwerpunkt auf Modellbildung von Projekt-Artefakten (Model-
driven Development oder MDD). Die Modellbildung beginnt bei SAMEM am Anfang des
Projekts mit den Lösungszielen und setzt sich fort in der Implementierungsarbeit. Zur
effektiven und effizienten Kommunikation wird die Verwendung von graphischen oder
visuellen Modellen zur Darstellung der Projekt-Artefakte maximiert Die Entwicklung
der Artefakte erfolgt über viele kurze Zyklen (iterations) und den Aufbau in mehreren
kleinen Schritten (increments).
Der iterative & incremental Ansatz ist eine Technik zur Risikominderung, um durch

eine kurze Feedback-Schleife ein Scheitern des Projekts zu verhindern. Projekte haben
eine Dynamik, die auf der Ansammlung von Entscheidungen und der geleisteten Arbeit
beruht. Die Bereitschaft von Menschen, schlechte Entscheidungen oder mangelhafte
Arbeit zuzugeben, die Arbeit, besonders nach erheblichen Investitionen, zu verwerfen
und neu anzufangen, ist selten. Je umfangreicher die Arbeiten waren, die verworfen
werden, desto schwieriger ist es, erneut anzufangen. Kleine Schritte mit der Überprüfung
der Korrektheit der Arbeit und der Übereinstimmung mit den Projektzielen schaffen
eine Situation, in der möglicherweise nur eine geringe Investition verworfen wird. Kleine
Verwerfungen sind leichter zu akzeptieren und können oft als Designuntersuchungen
gewertet werden.SAMEM wendet den iterative & incremental Ansatz auf allen Ebenen
für die gesamte Lebensdauer des Projekts an.
Modellbildung oder graphische Representationen der Mehrheit der Projekt-Artefakte

ist eine Risikominderung, die inkorrekte Lösung zu erschaffen und die Lösung inkorrekt
zu erstellen. Es ist allgemein bekannt, dass visuelle Gestaltung Information in vielen Sit-
uationen genauer übermitteln kann als Text. Die bekannte Redewendung “Ein Bild sagt
mehr als tausendWorte”, die auch in der kognitiven Psychologieforschung vertreten wird,
ist die Basis für die Hervorhebung der Modellbildung. Die Auswirkungen der Risikomin-
derung auf die Erstellung der inkorrekten Lösung, zumindest aus der Perspektive der
Interessenvertreter, erfolgen durch die verbesserte und effektivere Kommunikation, die
durch die Modellbildung oder graphische Representationen erbracht werden. Ein Beitrag
zu graphischer Repräsentation oder Modellbildung ist die Idee einer Lösungs-Überblick-
Zeichnung (Solution Overview Drawing, SOD), die aus einer Zusammenfassung auf einer
einzigen Seite besteht, indem sie mehrfache Sichtweisen von Anforderungen oder Design-
spezifikationen integriert.
Zur Sicherstellung der Effizienz der Risikominderung der Techniken von iterative &

incremental Projektmanagement und Modellbildung sind zusätzliche Komponenten er-
forderlich. Während SAMEM auf den gesamten Projektprozess anwendbar ist, besteht

i

eine Fokusierung auf die Anfangsphasen des Projekts. Die Motivation zur Fokusierung
auf die Anfangsphasen des Projekts besteht in den allseits bekannten Kosten der Fehler-
behebung im Verlauf des Projekts. Ein weiterer Beitrag dieser Forschung besteht darin,
einen Mechanismus hinzuzufügen, der die iteration & increment Arbeit von dem ur-
sprünglichen Ausdruck der Lösungsmöglichkeiten oder Ziele zur abschlißenden Imple-
mentierung führt. Der leitende Mechanismus durchquert die Abstraktionshierarchie
von den anfänglichen vagen Ideen zur abschließenden Implementierung. Die Durch-
querung ist eine Sammlung von Entscheidungen, wie zum Beispiel die Wahl von einem
Lösungsziel gegenüber einem anderen, von einer Anforderung gegenüber einer anderen,
von einem Lösungs-Architektur-Design gegenüber einem anderen und einer Implemen-
tierungs Technologie gegenüber einer anderen. Die Entscheidungen sind als Projekt-
Artifakte repräsentiert und viele können gut als Modelle oder graphisch dargestellt wer-
den. Der leitende Mechanismus für SAMEM ist das Open Distributed Processing –
Reference Model ISO standard 10746 (RM-ODP).

Ein weiterer Beitrag, der sicherstellen soll, dass die Risikominderung von iterative &
incremental Projektmanagement und Modellbildung effektiv ist, ist eine Gruppe von
engineering Prinzipien, die zur Qualitätsüberprüfung der Arbeit beitragen. Diese Kom-
ponente von SAMEM ist eine Gruppe von Prinzipien, die während des ganzen Projekts
angewendet werden kann zur Prüfung der Entscheidungen und Artifakte auf Richtigkeit
und Qualität. Die Prinzipien sind auch von Nutzen bei der Stimulierung von Innova-
tion durch Erklärungen von Annahmen und infrage stellenden Verhaltensweisen. Die
Prinzipien sind im Hinblick auf Domänunabhängigkeit konzipiert, aber mit Fokus auf
Software zentrierte Lösungen und daher der Name Software Engineering First Principles
(SEFP).

Der Nachweis von SAMEM als effektive Methodologie setzt verschiedene Mittel ein.
Empirischer Beweis, der durch Umfrage unter den Projektteilnehmern ermittelt wurde,
die eine frühe Version von SAMEM in verschiedenen Industrieprojekten über mehrere
Jahre hin einsetzten, ist die wichtigste Stütze. Kognitive Effektivitätsmaßnahmen wer-
den bewertet im Hinblick auf die graphischen Kommunikations-Artifakte von SAMEM.
Eine Bewertung von SAMEM mit der neuen und sich entwickelnden standardmäßi-
gen Software Engineering Method and Theory (SEMAT) liefert einen Vergleich der
Stärken und Unterschiede. Da SAMEM eine praktische und pragmatische Software
Lösungsmethodologie sein soll, wird eine Diskussion über die erreichten geschäftlichen
Vorteile in den Projekten präsentiert.

ii

Abstract
The Software Agile Modeling and Engineering Methodology (SAMEM) is a pragmatic

solution development methodology that focuses on combining an iterative & incremen-
tal project management approach (agile) with an emphasis on the modeling of project
artifacts (Model-driven Development or MDD). The SAMEM starts the modeling at the
beginning of the project with the solution goals and continues through the implemen-
tation work. For effective and efficient communication, the use of graphical or visual
models is maximized for the representation of project artifacts. The development of the
artifacts occurs over many short cycles (iterations) and they are built up in several small
steps (increments).
The iterative & incremental approach is a risk mitigation technique to prevent the

project from going off track via a short feedback loop. Projects have momentum that is
a collection of the decisions and work accomplished. The willingness of people to admit to
poor decisions or poor work, to discard that work especially after significant investment,
and start over is rare. The larger the body of work to be discarded, the harder it is to
restart. Small steps with verification that the work is correct and consistent with the
project goals create a situation where potentially only a small investment is discarded.
Small discards are easier to accept and can often be viewed as design explorations. The
SAMEM applies the iterative & incremental approach at all levels across the complete
project lifetime.
Modeling or graphical representations of the majority of project artifacts is mitigation

against creating the incorrect solution and building the solution incorrectly. It is well
known that visual expression can communicate information more accurately in many
situations versus text. The well-known idiom of “a picture is worth a thousand words,”
which has been supported by cognitive psychology research, is the basis for the modeling
emphasis. The mitigation effects against creating the incorrect solution, at least from the
perspective of the stakeholders, are through the improved and more effective communi-
cation provided by models or graphical representations. One contribution for graphical
representation or modeling is the idea of a Solution Overview Drawing (SOD) that pro-
vides a high-level single-page summary by integrating multiple views of requirements or
design specifications.
To ensure that the mitigation techniques of iterative & incremental project manage-

ment and modeling are effective, additional components are needed. While the SAMEM
is applicable to the entire project process, there is a focus on the initial phases of
the project. The motivation for focusing on the initial project phases are the well-
documented costs of error fixing as the project progresses. Another contribution of this
research is adding a mechanism to guide the iteration & increment work from the initial
expression of the solution opportunities or goals to the final implementation. The guid-
ance mechanism traverses the abstraction hierarchy from the initial vague ideas through
the final implementation. The traversal is a collection of decisions, such as choosing
one solution goal over another, choosing one requirement over another, choosing one
solution architecture design over another, and choosing one implementation technology

iii

over another. The decisions are represented as project artifacts and many can be well
represented as models or graphically. The guidance mechanism for the SAMEM is the
Open Distributed Processing – Reference Model ISO standard 10746 (RM-ODP).

An additional contribution that helps to ensure that the mitigation of iterative &
incremental project management and modeling are effective is a set of engineering prin-
ciples that provide quality guidance of the work. This component of the SAMEM is
a set of principles that can be used throughout the project to examine the decisions
and artifacts for correctness and quality. The principles are also useful in stimulating
innovation by shedding light on assumptions and questioning habits. The principles are
designed with the intention of domain independence, but focused on software centric
solutions, which lead to their label as Software Engineering First Principles (SEFP).

The substantiation of the SAMEM as an effective methodology employs several means.
Empirical evidence gathered through surveys from project members that used an early
version of the SAMEM on multiple projects over several years is the main support.
Cognitive effectiveness measures are evaluated against the graphical communication ar-
tifacts of the SAMEM. An evaluation of the SAMEM with the recent and evolving
standard Software Engineering Method and Theory (SEMAT) provides a comparison of
the strengths and differences. As the SAMEM is intended to be a practical and prag-
matic software solution methodology, a discussion of the business benefits achieved in
the projects is presented.

iv

Acknowledgments
Firstly, I would like to thank my adviser, Prof. Dr. rer. nat. Bernhard Rumpe, for his

help and guidance. He helped focus the research on the methodology. Most important
was his generous offer to become my adviser after the passing of my first Ph.D. adviser,
Prof. Robert France.
I would like to thank my first adviser, the late Prof. Robert France for his encour-

agement to pursue a Ph.D. Prof. France made me realize that I had much to offer from
my industry experiences and the innovations in the practical software engineering I had
developed.
Prof. Michel Chaudron provided very helpful feedback and improvements on the

case study survey questions and format. I learned a great deal through his tutorial on
Empirical Research in Model-based Software Engineering at the Models 2016 conference
in Saint Malo, France.
I have had many colleagues and experiences over the 35 years of industry work

(Hewlett-Packard and Integware) that have contributed in various ways to the views
embodied in the SAMEM. One of the earliest influences was the introduction to Ab-
stract Data Types just after a failed product. The product failure started me asking
questions about avoiding such situations and the waste of effort. Abstract Data Types,
an early version of Objects, offered a possible approach to improved product design.
The work with Ralph Maderholtz in developing an internal training course for our fellow
Hewlett-Packard R&D engineers in Structured Analysis and Structured Design helped
to put me on the path of continuous software engineering improvement. The practice of
analyzing each project at the end in order to make improvements and sustain good prac-
tices was a major influence on the continuous software engineering process improvement
I use.
The cooperation on establishing standards with many people at the Object Manage-

ment Group (OMG) in the late 1990s improved my ability at object-oriented thinking.
Some of the more significant influencers on my object-oriented understanding were Jishnu
Mukerji, Larry Johnson, and Andrew Watson. I started using the UML in 1996 in of
my industry projects for design expressions. My personal use of the UML evolved into
the education of my fellow workers, which further evolved into the realization that the
UML can be used for more than code design, such as requirements specification. There
are many dozens of colleagues that helped refine my understanding of modeling via the
project interactions we had.
I would like to thank my colleagues at Integware who were the first users of the

early version of the SAMEM, the Paper Prototype. Specifically, they helped refine
the graphical presentations for the non-computer oriented customers by questioning
the clarity of some of the UML diagram notations, contributing to a consistent style of
presentation, and providing feedback on transitioning the expression of the requirements
to inputs needed for design, testing, and documentation. The people that contributed
significantly were Rob Ulrich, the project manager, Chris Ridout, a developer, Mike
Hake, a developer, and Susan Tibbetts, a technical writer.

v

Most importantly, I want to thank my wife, Margrit Heuber-Matheson, for her support
throughout the process. She spent many hours helping by proofreading multiple drafts.
As a non-computer person, she offered many wording improvement suggestions.

vi

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 General Solution Direction . 3
1.3 Scope and Targets of the Thesis . 5
1.4 Organization of the Thesis . 5
1.5 Conventions Used . 7

2 Requirements Methodology State of the Art and Practice 9
2.1 Survey of Existing Requirements Methodologies and Processes 10

2.1.1 Rational Unified Process (RUP) Methodology 10
2.1.2 Volere Requirements Process . 16
2.1.3 Software & Systems Requirements Engineering in Practice Book . 19
2.1.4 Requirements in Engineering Projects 22
2.1.5 System Modeling Language . 23
2.1.6 V-Model . 25
2.1.7 Software Engineering Method and Theory 26
2.1.8 Software Process Engineering Metamodel 27

2.2 Survey of Existing Agile Methodologies and Processes 28
2.2.1 Agile Modeling . 28
2.2.2 eXtreme Programming (XP) . 30
2.2.3 SCRUM . 31

2.3 Limitations of Text-based Requirement Formats 32
2.3.1 A Diagram is (Sometimes) Worth 10,000 Words 32
2.3.2 Cognitive Effectiveness of Visual Notations 33
2.3.3 User Requirements Notation . 34
2.3.4 Proposals for Requirements Models 34

2.4 Summary of State of the Practice . 35
2.4.1 Summary of Methodology Goals 36

3 Definition of the Software Agile Modeling and Engineering Methodology 45
3.1 Purpose of the SAMEM . 46

3.1.1 The Secondary SAMEM Purpose is to Enable Innovation 47
3.1.2 Supporting the Engineering Due Diligence Purpose 49

3.2 Software Engineering First Principles . 50
3.2.1 Solution Conceptual Integrity (CI) SEFP 51
3.2.2 Essential and Accidental Complexity (Essential) SEFP 53
3.2.3 Stability to Variability (S2V) SEFP 55

vii

3.2.4 Symmetry of Action (SoA) SEFP 56
3.2.5 Modules (Modules) SEFP . 56
3.2.6 Coupling and Cohesion (C&C) SEFP 57
3.2.7 Patterns (Patterns) SEFP . 58
3.2.8 Optimal Performance (OP) SEFP 59
3.2.9 Change Language (CL) SEFP . 60
3.2.10 Ready-to-Hand (R2H) SEFP . 60
3.2.11 Form Follows Function (FFF) SEFP 61
3.2.12 Summary of Software Engineering First Principles 61

3.3 The SAMEM High-level Structure . 62
3.4 The SAMEM Process . 65
3.5 The SAMEM Methodology Framework . 66

3.5.1 Objective of the Enterprise Viewpoint 69
3.5.2 Objective of the Information Viewpoint 78
3.5.3 Objectives of the Computational (Behavior) Viewpoint 88
3.5.4 Objectives of the Engineering Viewpoint 98
3.5.5 Objective of the Technology Viewpoint 101

3.6 The SAMEM Model Artifacts Component 105
3.7 The SAMEM Tool Component . 105
3.8 Non-functional Requirements Handling . 105

3.8.1 Look & Feel . 106
3.8.2 Usability . 106
3.8.3 Maintainability & Portability . 107
3.8.4 Performance . 107
3.8.5 Reliability . 109
3.8.6 Operational . 109
3.8.7 Security . 110
3.8.8 Legal . 113

4 Applying the SAMEM 115
4.1 Case Study Company Descriptions . 116

4.1.1 CS-1 Company and Project Descriptions 117
4.1.2 CS-2 Company and Project Descriptions 121

4.2 The SAMEM Introduction in the Consulting Company 124
4.2.1 Medical Device Domain Education 125
4.2.2 UML and Modeling Education . 126

4.3 The Experiences in Applying the SAMEM 133
4.3.1 The Controlling Project-level Process 134
4.3.2 Phase 1: Paper Prototype Phase 135
4.3.3 Phase 2: Demo Prototype Phase 136
4.3.4 Phase 3: Conference Room Pilot (CRP) Phase 136
4.3.5 Using RM-ODP . 137

viii

4.4 Lessons Learned . 147
4.4.1 Case Study Lessons Learned . 147
4.4.2 Comparison to Other Lessons Learned Research 157

4.5 Applying the SAMEM Summary . 161

5 Methodology and Process 165
5.1 The SAMEM Process Model (SAMEM-PM) Concepts 165

5.1.1 The Core SAMEM Process Model Concepts 165
5.1.2 The SAMEM Process Model Concepts Mapped to Abstract Objects168
5.1.3 Instance State Guidance . 168
5.1.4 Enabling Project Management . 170

5.2 Applying the SAMEM-PM: Instance Examples 171
5.2.1 Methodology – Phase – Viewpoint Concept Examples 172
5.2.2 Viewpoint – Iteration Concept Examples 173
5.2.3 Iteration – Artifact Concept Examples 174

5.3 An Activity Model Example for the SAMEM-PM Flow 175
5.4 The SAMEM-PM Concepts Summary . 177

6 The Language Used for Information Models in the Projects 179
6.1 The SAMEM-IM Concept Model . 179

6.1.1 The SAMEM-IM Artifact Concept Definition 180
6.1.2 The SAMEM-IM Communication Format Concept Definition . . . 181
6.1.3 The SAMEM-IM Properties Concept Definition 183
6.1.4 The SAMEM-IM External Standard Metamodel Concept Definition183
6.1.5 The SAMEM-IM Status State Concept Definition 183

6.2 Applying the SAMEM Metamodel Composition Concept to UML 184
6.2.1 Composition Extensions for the UML Diagram Definition Specifi-

cation . 185
6.2.2 Composition Extensions for the UML Specification 188

6.3 Information Modeling Summary . 194

7 The SAMEM Evaluation 197
7.1 Empirical Evaluation of Case Study Companies 198

7.1.1 Survey Definition Details . 199
7.1.2 Answers to the Common Questions Merged 204
7.1.3 Unique Survey Questions Response Values 209
7.1.4 Survey Results and SAMEM Goals Evaluation 211
7.1.5 General Opinions from the Case Study Surveys 237

7.2 Other Applications of the SAMEM . 240
7.2.1 Start-up Company for Mobile Application Development 240
7.2.2 Company Specializing in Employee Background Checks 240
7.2.3 Company Creating Safety and Security Solutions for the Oil and

Gas Industry . 242

ix

7.3 Communication Cognitive Effectiveness Measures of the SAMEM Artifacts242
7.3.1 Cognitive Effectiveness Principles and Metrics 243
7.3.2 Cognitive Effectiveness Evaluation of the SOD 244

7.4 The SAMEM Mapping to SEMAT and Essence 245
7.4.1 The Essence Kernel Definition . 245
7.4.2 The SAMEM and SEMAT Comparisons 255

7.5 Consulting Business Success Measures . 260
7.5.1 Team Size . 260
7.5.2 Speed to Requirements . 261
7.5.3 No Requirements Prioritization . 261
7.5.4 Quality of Requirements . 262
7.5.5 Customer Satisfaction . 262
7.5.6 Consulting Company Business Benefits 263

7.6 Threats to Validity . 263
7.6.1 Construct Validity . 263
7.6.2 Internal Validity . 264
7.6.3 External Validity . 264
7.6.4 Reliability . 264

7.7 The SAMEM Evaluation Summary . 265

8 Chapter 8 Conclusions and Future Work 269
8.1 Contributions . 269

8.1.1 Research Questions Addressed . 269
8.1.2 Other Contributions . 272

8.2 Future Work . 273
8.2.1 The SAMEM Improvements . 273
8.2.2 Expand the SAMEM into Other Domains 273
8.2.3 UML Extensions Based on SOD Idea 274
8.2.4 The SAMEM and the SEMAT Integration 274
8.2.5 Tool Possibilities . 274

Bibliography 277

Glossary 285

A Customer Questionnaire 289

B Developer Questionnaire 305

C Customer Response 1 321

D Customer Response 2 327

E Customer Response 3 333

x

F Customer Response 4 337

G Developer Response 1 343

H Developer Response 2 349

I Developer Response 3 355

J Developer Response 4 361

K Curriculum Vitae 367

List of Figures 371

List of Tables 375

xi

Chapter 1

Introduction

The objective of this thesis is the development of a software engineering project method-
ology based on modeling of requirements and an iterative & incremental process that
is an improvement to the more traditional text-based requirements specification using a
sequential, phase-based process. This thesis extends Model-driven Engineering (MDE)
work, the majority of which has been focused on code generation or Domain Specific
Languages (DSL), to a broader approach and applying MDE from the earliest moments
in the solution development process. The ideas of agile code development are extended
to cover the development of all project artifacts during the complete project lifecycle.

In this thesis methodology is defined as a collection of artifacts, tools, and processes
related in a structured way with a general, but adaptable choreography of execution
which is used to create a product or solution. The name for the new methodology is the
Software Agile Modeling and Engineering Methodology (SAMEM).
While the SAMEM covers the entire project process from first contact with the stake-

holders concerned with the problem to be solved through the deployment of a solution,
the focus is on the front-end of the process. The front-end roughly covers establishing
the goals of the solution, the business limits, the organizational boundaries, the elic-
itation of the requirements, and the solution architecture design. As is described in
[Brooks10], the expression of the goals, limits, boundaries, and requirements are often
revised, as this work entails discovery of information, testing of assumptions, and some-
times the invention of novel engineering approaches. Therefore, the boundary between
the front-end and the back-end, which covers design and implementation work, is not
hard and precise. The front-end work can be summarized as the specification of What,
Who, Why, and What Not, while the back-end is summarized by the specification of
How. The SAMEM is focused primarily on the front-end of the project process, but can
be integrated with more prescriptive approaches for the generation of implementations,
e.g. code generation tools.
The primary motivation for focusing the SAMEM on the project front-end comes from

the costs of fixing errors in the solution. The median cost of fixing an error that was
generated in the requirements work and discovered in an in-production solution is 50
times the cost of fixing at the requirement stage [NAS03]. While this thesis does not
claim to eliminate errors, the SAMEM does attempt to minimize the probability of an
error in the initial project work and enable an improved chance of early detection.
As used in this work, the definition of model is a human construct representing some

aspects of reality that enables better understanding and communication of a particular

1

Chapter 1 Introduction

perspective of a problem and/or solution [FM15]. A model allows one to reason about
complex situations and potential solutions. The usefulness of a model is in its abilities
to describe, suggest, explain, predict, and simulate [LS87], [FM15]. A visual model is
one consisting of primarily graphical elements annotated with text as opposed to a pure
text description.

The first thesis hypothesis is that visual modeling of most of the requirements is
possible and superior to a collection of simple text statements. The models are graphical
images in form and images communicate many ideas better than text [LS87], [Mat11].
It is recognized that some requirements, such as simple facts, are expressed better as
textual statements. For the best possible requirements specification a combination of
both is needed. This thesis focuses on understanding the strengths and limits of modeling
requirements within the context of a large project. A large project is defined as at
least 10 engineering-years of effort and this is not a precise measure as projects vary in
complexity. The second thesis hypothesis is that the development of the requirements
specification is best performed in an iterative & incremental process. The value of this
process approach has been demonstrated often by the SCRUM community [Coh10].
The main process idea is that a small step in developing a project artifact (increment) is
taken and immediately followed by verification that the step is correct in direction and
content. Then the next small step is taken (iteration) and so on, constantly building up
the requirements specification.

Brooks [Bro95] formulates the law of the Mythical Man-Month, which states that
adding more people to a project only slows it down, The inter-team communication grows
as n(n-1)/2. Minimizing the team size reduces the effort spent on the team coordination
communication. A third thesis hypothesis is that the accidental complexity [Bro95] in the
nature of the communication can be reduced through careful structuring of the project
process and the process artifacts. If the accidental complexity of the communication
can be reduced, then the potential for needing fewer project developers arises as each
developer is more effective, thus also minimizing Mythical Man-Month impacts.
The methodology described in this thesis is a pragmatic approach to realizing a suc-

cessful solution to the three hypotheses. The SAMEM was developed in a consulting
industry setting and successfully used since 2008 in two major projects with two differ-
ent customers by two separate development teams and produced a total of 18 separate
solutions, which are still in use. For more details on the case study companies and the
projects see Sub-chapter 4.1. In addition, ideas from the SAMEM approach have been
applied in three other companies, which are described in Sub-chapters 7.2.1, 7.2.2, and
7.2.3.

1.1 Problem Statement

This work is targeted at medium to larger projects, with the lower borderline for medium
at about 10 engineering-years of effort. Projects of this size suffer more from Mythical
Man-Month effects and the accidental complexity than accompanies smaller projects
[Bro95]. This thesis attempts to mitigate the accidental complexity of additional com-

2

1.2 General Solution Direction

munication arising from the Mythical Man-Month and the greater volume of information
to be shared in the team. There are a number of problems that remain poorly addressed.

One of the problems is poor requirements specification, which has two major aspects.
One, the requirements are usually expressed in a text format with a one-dimensional
organization [LS87]. This results in the choice of which related requirements are listed
together. The single dimensional organization of text requirements introduces accidental
complexity through the need to jump through the specification in a non-linear manner to
gather all the aspects of a requirements concept. Second, the requirements are often too
granular because of the expressive limitations of text, which results in a long specification.
There is a large semantic and syntactic gap from requirements text to design models.
Another major problem is the transparency of the requirements elicitation process.

Traditionally the process has been a sequential, phase-based process, often because it
was managed in the Microsoft Project™ tool. There are natural iterations in the require-
ments elicitation process that are not easily represented in the Microsoft Project™ tool
[Bro10], [RR99]. There are often too many review cycles because of poorly understood
requirements or inability to remember the whole specification. This results in artificial
convergence by management declaring requirements to be complete, while the reality
is that there exist gaps, contradictions, and errors in the specification. The flow from
requirements elicitation into design is hindered by the regrouping and translation from
text statements to design models.
The problems produce a corresponding set of high-level goals for the thesis:

• Better stakeholder communication with respect to the requirements specification
and project progress.

• Better development team communication.

• Improved overall requirements quality in a more compact format.

• Faster project process.

• Smaller project team size, especially for the development team.

• Compatibility with agile methods for solution (code) development.

1.2 General Solution Direction

The three thesis hypotheses are general in nature and many solutions can appear. One
of the sub-problems is how to proceed through the development project] with effective-
ness [FM15], [Bro10]. Effectiveness means that progress is made at a reasonable pace
without too many false steps and without getting stuck. The evaluation of effectiveness
is a subjective judgment that the customer, the organization paying, and development
team managers make. However, a framework for coordinating the artifacts, tools, and
process can assist in achieving effectiveness. The tools, software engineering principles,

3

Chapter 1 Introduction

Figure 1.1: SAMEM Components.

framework, and process when combined with artifacts that effectively communicate are
the core of the SAMEM. This is illustrated in Figure 1.1.

There are five components in Figure 1.1 that define the SAMEM: 1) Model Artifacts, 2)
Process, 3) Tools, 4) Software Engineering Principles, and 5) Methodology Framework.

• Model Artifacts – the primarily visual or graphical models for the requirements
sometimes with text for clarification, but can also include text artifacts when text is
a better medium for expression. The characteristics of communication effectiveness
and compactness of form are key evaluation criteria. Many of the model artifacts
are based on the Unified Modeling Language (UML) [OMG15b], [BRJ99], [BR05],
[RJB99].

• Process – the ordered work tasks needed to develop the solution. Processes exist
on multiple levels and are nested from high-level guidance to lower-level details.

• Tools – refers to any tool used in the development process by any team member
to create, update, communicate, and manage the model artifacts or the process
itself. The range of tools includes mental tools used by the people, physical tools,
and computer-based tools.

• Software Engineering Principles – are a type of mental tool as they are an
embodiment of best practices that can be applied in many circumstances during
the solution development process. They help assure high quality.

4

1.3 Scope and Targets of the Thesis

• Methodology Framework – is a project organization template (framework) that
structures and coordinates the work, the use of tools in a logical way, and assures
effective progress towards the solution completion.

The body of this thesis explains these components in greater detail along with the
rationales for the decisions. The rationales come in part from other research and from
lessons learned in multiple case studies. In addition to the definitions, the SAMEM
shows how the components interact and work together to achieve the stated goals.

1.3 Scope and Targets of the Thesis
• Research Question 1 (RQ1): Is the visual modeling of the majority of requirements

possible?

• Research Question 2 (RQ2): Is an iterative & incremental (agile) process approach
effective in the elicitation of requirements?

• Research Question 3 (RQ3): Does there appear to be a reduction in the accidental
complexity of team communication with visual models for the requirements and
design?

• Research Question 4 (RQ4): Does visual modeling have a positive effect on the
size (smaller) and clarity (easier to comprehend) of the requirements specification?

• Research Question 5 (RQ5): Does an iterative & incremental full project process
contribute in a positive manner to a faster project process with fewer people?

• Research Question 6 (RQ6): Do iterative & incremental (agile) approaches in
the front-end of a project process more effectively feed into agile development
processes?

The case studies used throughout this thesis come from actual business solutions in
production use in the medical device industry. Details on the case study companies are
in Sub-chapter 4.1. The case studies will provide data to be analyzed and provide a
base of real data for the development of the model and meta-model definitions. Certain
proprietary information under the scope of Non-Disclosure Agreements (NDA) has been
removed or modified, but the examples remain true to the reality of the solution.

1.4 Organization of the Thesis
The thesis is organized as follows:

• Chapter 2: Requirements Methodology State of the Art and Practice
The content of this chapter reviews several other requirements and software engi-
neering methodologies or processes and compares them to the goals for this thesis.

5

Chapter 1 Introduction

The strengths and limitations of each methodology or process are evaluated. From
the evaluations, a set of Goals for the SAMEM is developed which reflect the
strengths and address the limitations.

• Chapter 3: Definition of the Software Agile Modeling and Engineering Methodol-
ogy
The details of the SAMEM components shown in Figure 1.1 are defined with ra-
tionale for the choices and examples. The purposes of the SAMEM, the Software
Engineering First Principles, and non-functional requirements handling are cov-
ered. The design of the SAMEM is related to the Goals defined in Chapter 2.

• Chapter 4: Applying the SAMEM
This chapter contains examples of introducing the SAMEM into a company, ap-
plying the methodology in various commercial situations, process modeling tech-
niques, and additional lessons learned in the real-world case studies. The orga-
nization issues encountered with the introduction and education of the SAMEM
process are typical for any new methodology change.

• Chapter 5: Methodology and Process
A description at a meta-level of a model for the process components of the SAMEM
process flows is contained in this chapter. The purpose of the meta-level is to have
a foundation for adaptation to other domains and on which to build tools. An
example of a project controlling process from the case studies is presented.

• Chapter 6: The Language Used for Information Models in the Projects
This chapter defines a metamodel for information components in the SAMEM.
As with Chapter 5, the metamodel provides a foundation for adaptation and tool
development. A set of extensions to the UML is described based on the SAMEM
innovative information modeling ideas.

• Chapter 7: The SAMEM Evaluation
Evaluation evidence for the SAMEM is provided in this chapter. There are five
dimensions used to evaluate the SAMEM and the threats to the validity of the
work are considered.

• Chapter 8: Conclusions and Future Work
Summarizes the contributions of this thesis and lists additional research to expand
this work to other domains.

• Bibliography

• Glossary
A glossary of terms and acronyms used in the thesis, although terms and acronyms
are also explained on first use within the body of the thesis.

6

1.5 Conventions Used

• Appendix A – B
The questions of the Customer Survey and Developer Survey as screen captures
from SurveyMonkey.

• Appendix D – J
The responses to the Customer Survey and Developer Survey as screen captures
from SurveyMonkey.

• Appendix K
Curriculum Vitae

• List of Figures

• List of Tables

1.5 Conventions Used
Within the thesis several classification marks are used to help identify and correlate the
information. These can appear in the text or in figures and multiple classification marks
can appear together.

Table 1.1: Classification Marks.
Classification Mark Meaning

indicates the information or data is from a case study

is used to indicate a lesson learned from the case studies

RM-ODP Enterprise Viewpoint component

RM-ODP Information Viewpoint component

RM-ODP Computational (Behavior) Viewpoint component

RM-ODP Engineering Viewpoint component

RM-ODP Technology Viewpoint component

7

Chapter 2

Requirements Methodology State of the
Art and Practice

There are several well-known and commonly used approaches and methodologies for
requirements elicitation and management. Some of the methodologies, such as the Ra-
tional Unified Process (RUP) [PK00] and the V-model [V-M16a], [V-M16c], [V-M16b]
also continue on through the whole development process.

The agile processes SCRUM and eXtreme Programming also have requirements elic-
itation approaches, however, the requirements’ needs grew from the coding process.
They, like RUP, also have tasks and work that includes development activities. The
SAMEM proposed covers the complete development process but with emphasis on the
initial project phases.
There are also approaches coming from other research and ideas for improving soft-

ware and systems engineering. The Object Management Group (OMG) has the System
Modeling Language (SysML) [OMG15a], which contains modeling components for re-
quirements. Also within the OMG is the Software Process Engineering Metamodel
(SPEM) [OMG08] standard. Growing from an effort to define a software engineering
theory, there are two sources, Essence – Kernel and Language for Software Engineering
Methods [OMG12b] and Software Engineering Method and Theory (SEMAT) [SEM98].
The last area of existing work evaluated is the form of the requirements artifacts. In

this area the value of text-based versus graphical-based artifacts is compared.
This chapter contains an evaluation of these software engineering and requirements

methodologies and compares them with the objectives of this thesis.
A project is defined as a defined set of work with a start point and end point, which is

limited in time, people, money, and other resources, that produces a product or solution.
The project definition is similar to that defined in [FM15]. The term project at times
might be preceded by a qualifying word producing a term such as development project.
A development project involves development work of some kind to produce a product or
solution.
Product and solution are synonyms which indicate the result of a project. Product is

used when the discussion focuses on the creation of a result that is intended to be sold
multiple times commercially, while solution is used when a project result is built for a
single customer. They will be used somewhat interchangeable throughout this work.

A process is a set of tasks with a defined choreography of execution that produces a
specific result. A development process is therefore the set of work tasks that produces

9

Chapter 2 Requirements Methodology State of the Art and Practice

the solution. A work task in a process could be defined as a process or a sub-process, thus
creating a hierarchy of processes. For example, a project process could be partitioned
into requirements gathering process, a solution development process, and a solution
validation process.
Customer is the generic term for the people or organization paying for the product

or solution. This can include the users who actually use and interact with the solution.
Also included within customer could be the stakeholders. A stakeholder is someone who
in some way is impacted by or concerned with the solution. A regulatory agency that
monitors the business the solution is used in is a type of stakeholder often overlooked.
The customer and the users are the most important stakeholders. In general, stakeholder
will be used throughout this work unless a more specific term is relevant.
Each of the evaluated methodologies and techniques has strengths and limitations. To

ensure that the new methodology is an improvement, the SAMEM goals will be derived
from both the strong points and the limitations. Each methodology goal will have a
unique identifier. Below is an example of the format for the SAMEM goal:

GOAL-0: Example format for a SAMEM goal.

2.1 Survey of Existing Requirements Methodologies and
Processes

Some of the requirements processes have names, such as RUP [PK00] and Volere [RR99].
In other cases a book defines the process, but does not give it a name [FM15], [BPKR09].
There are also open source and standards-based requirements and development method-
ologies efforts typified by Essence [KM] and Software Process Engineering Metamodel
(SPEM) [OMG08]. Many of the existing methodologies were developed to address
project problems, both symptoms and root causes. A symptom is an observed indi-
cator of a problem, such as excessive rework. A root cause is the core deficiency that
causes the problem and might be observed through one or more symptoms. For exam-
ple, excessive rework might have the root cause of poorly formulated requirements which
cause misunderstandings.

2.1.1 Rational Unified Process (RUP) Methodology

The Rational Unified Process (RUP) methodology [PK00] is a software engineering pro-
cess, a process product, and a process framework. The RUP methodology was developed
to address the following software development project symptoms and root causes (from
[PK00]):

1. Symptom – Inaccurate understanding of end-user needs.

2. Symptom – Inability to deal with changing requirements.

3. Symptom – Late discovery of serious project flaws.

10

2.1 Survey of Existing Requirements Methodologies and Processes

4. Symptom – Team members in each other’s way, making it impossible to reconstruct
who changed what, when, where, and why.

5. Root cause – Ad-hoc requirements management.

6. Root cause – Ambiguous and imprecise communication.

7. Root cause – Overwhelming complexity.

8. Root cause – Undetected inconsistencies in requirements, design, and implemen-
tations.

9. Root cause – Failure to attack risk.

The symptoms and root causes that drove the RUP development are in alignment
with the problems cited in Sub-chapter 1.1, although listed at a finer level of detail for
RUP. The above list of symptoms and root causes can be accepted for this work. How
has the RUP methodology addressed these symptoms and root causes and how well has
it addressed them? The symptoms and root causes listed above lead to several SAMEM
goals. Symptom 1, root cause 6, and root cause 8 lead to GOAL-1 . GOAL-2 is the
consequence of addressing symptom 3, root cause 8, and root cause 9. Symptom 2,
symptom 4, root cause 5, root cause 7, and root cause 8 drive the need for GOAL-3 .

GOAL-1: The methodology should provide accurate communication mech-
anisms.
GOAL-2: The methodology should provide project process risk mitigation

mechanisms.
GOAL-3: The methodology should provide traceable artifact evolution.

2.1.1.1 RUP Definition

The organization of the RUP is two-dimensional, see Figure 2.1. The horizontal axis is
time and is divided into four major phases:

1. Inception – the start of the project is where the setting of goals and objectives
including the initial requirements are collected.

2. Elaboration – the gathering, refinement, and verification of the requirements.
The design work is started in this phase and much progress is accomplished.

3. Construction – the creation of the solution, i.e. the coding. The solution creation
can uncover problems that necessitate modifications to the design or corrections to
the requirements. During the construction testing at various levels of abstraction
occurs.

4. Transition – placing the completed solution into production use.

11

Chapter 2 Requirements Methodology State of the Art and Practice

Figure 2.1: RUP Phases and Workflows Organization.

The end of each phase is signified by a milestone. At the milestone evaluations are
performed to determine whether it is appropriate to proceed to the next phase. The
main evaluation is related to the project risk of proceeding with either insufficient or
incorrect information. Within the RUP phase framework, the work can be broken into
pieces and carried through the phases. These pieces become iterations that are used to
build the full solution in steps. In Figure 2.1, the idea of iterations are shown as blocks
with labels such as “Elab #1” or ”Const #2.”

The vertical axis denotes content and is divided into nine workflows for accomplish-
ing work: Business Modeling, Requirements, Analysis & Design, Implementation, Test,
Deployment, Configuration & Change Management, Project Management, and Environ-
ment. Following each workflow is a colored area that spans the RUP phases. The colored
area represents relative amount of effort that is expended on that workflow within a par-
ticular phase. For example, the effort expended for the Business Modeling workflow is at
maximum in the Inception phase, slowly declines during the Elaboration phase, trickles
off to near zero in the Construction phase, and disappears entirely in the Transition
phase. The other workflows have their corresponding higher and lower levels of effort
across the RUP phases. The effort curves in Figure 2.1 reflect general averages and will
vary somewhat from project to project.

The purposes of each of the workflows are:

12

2.1 Survey of Existing Requirements Methodologies and Processes

1. Business Modeling – this workflow collects the business goals for the solution
under consideration.

2. Requirements – the solution requirements are gathered and evaluated in this
workflow.

3. Analysis & Design – the design of the solution and analysis activities determining
correctness are performed in this workflow

4. Implementation – the solution is implemented in the activities associated here.

5. Test – testing of the solution implementation takes place on various levels.

6. Deployment – the completed solution is installed into its execution environment
and made available to the users.

7. Configuration & Change Management – controls the evolution of the artifacts
created in the other workflows and provides traceability.

8. Project Management – contains the tasks for managing the project work, re-
sources, and ensuring the solution is delivered.

9. Environment – in this workflow the creation and maintenance of the solution
development environment takes place.

The RUP is based on an architecture-centric process [PK00] that is driven by model-
ing. The architecture view is the 4+1 view, which consists of the following five views:
Use-Case View (Scenarios), Logical View, Implementation View, Process View, and De-
ployment View. A Use-Case-Driven process is at the core of RUP, Figure 2.2. Use-Cases
are the drivers through the workflows and model artifacts.

13

Chapter 2 Requirements Methodology State of the Art and Practice

Figure 2.2: RUP 4+1 Architecture Model.

2.1.1.2 Strengths of RUP

The similarities in the problems seen in software engineering projects are listed in Sub-
chapter 1.1. Those problems drive solution choices for the SAMEM approach in terms
of artifacts, tools, and processes. Some of those choices are based on current best state-
of-the-practice knowledge.

The first strength is an iterative development approach. A single iteration has pieces
in each of the elaboration, construction, and transition phases producing an executable
release. A collection of iterations is called a cycle. Iterations or cycles are chained
together for the evolutionary development of the solution.

The second strength is the use of modeling. The full complement of UML models
is used throughout the process. There is a strong emphasis on starting with Use-Case
Models in the Business Modeling and refining or transitioning to the other models for
the Analysis & Design phases.

A strong advantage is the idea of a flexible framework to guide the development process
through the phases and across the workflows. The flexibility enters through the iteration
size, the cycle size, and the ordering of modeling activities. These aspects are mostly
part of the Project Management workflow.

The management of the requirements is very important. This includes knowing when a
requirement was created, who wanted the requirement, understanding if the requirement
evolved during the development process, and the ability to trace the requirement to the
design and implementation.

14

2.1 Survey of Existing Requirements Methodologies and Processes

The following goals for the SAMEM are generated in order to maintain the above
listed strengths of the RUP.

GOAL-4: The methodology and artifacts should be compatible with an it-
erative & incremental project process.
GOAL-5: The artifacts should maximize the use of visual models for com-

munication and compactness.
GOAL-6: The methodology should be adaptable to individual project pro-

cess needs.

2.1.1.3 Improvements to RUP

There are several areas in RUP that can be improved. There have been several evalu-
ations and applications of RUP that have uncovered limitations and areas for improve-
ment [AGBA10], [GXX11], [Hir02], [KP02], [KGK07], [NK11], [OCH11], [Tan15], and
[ZHG05].
In the SAMEM there are multiple small iterations within each project phase and a

verification step is integral to each iteration. The iterations in RUP are very coarse,
thereby reducing the verification feedback. This difference also translates to iteration
size. With smaller iterations the corresponding increment for verification is smaller. The
smaller increment means less to verify by the customer, which makes the verification
activity easier to fit into their schedule and a smaller rework effort if the increment has
problems.
A lesson learned from the case studies (Sub-chapter 4.4.1.1) showed that the optimal

amount of material to present in a verification review was time scoped to about one hour
of the stakeholder’s time. As the stakeholder gained experience with the review tasks,
the models, and process, the amount of information that could be effectively reviewed
in an hour grew by as much as 100%. The content density had an influence on the
verification review amount and the coherence of the information, but the rule-of-thumb
developed was about five information units with associated attribute definitions and
state machine or 15 tasks in a business flow. The SAMEM terms Information Unit and
Business Flow are defined in detail in Sub-chapters 3.5.2 and 3.5.1.

In RUP the modeling stays close to the UML, even if it interferes with the customer
communication. Alternative models for communication are not proposed. The RUP
methodology primarily employs Use-Case Models for behavior at the individual action
level, which makes understanding of the overall behavior difficult. In the SAMEM the
modeling forms are adjusted to enhance the communication [Mat11]. When the UML did
not have the appropriate modeling artifacts, new ones were developed. The modeling
details will be described in Chapter 3. The primary goals of the new models are to
effectively have a visual record and communication of the important ideas of the solution.
The RUP process assumes that the design will be “right on paper” before proceed-

ing, which contradicts our case studies experience, the experiences described in Brooks
[Bro10] and experiences described in other requirements engineering process books [RR99],
[BPKR09], [FM15]. The SAMEM looks for stability not completeness in the requirement

15

Chapter 2 Requirements Methodology State of the Art and Practice

artifacts before proceeding to more detailed phases of work such as prototyping.
The following goals for the SAMEM are intended to avoid limitations within the RUP.

GOAL-7: The iterations should be small for project management purposes.
GOAL-8: An iteration should have a verification step of some kind to

assure that the work done is correct.
GOAL-9: Flexibility in the visual model artifacts is necessary for commu-

nication optimization.

2.1.1.4 RUP Methodology Summary

In summary, with respect to the goals of the SAMEM the RUP methodology has some
shortcomings. While it uses iterations similar to agile methods, the iterations are large;
therefore the verification feedback loops are longer. Modeling is used, but it is not
adjusted to maximize communication either with the stakeholders or within the devel-
opment team. Also the modeling is not used to the full extent it could be to create a
more compact form for the requirements specification. It is unclear how the use of RUP
can help to reduce the team size and the resulting Mythical Man-Month impacts.

2.1.2 Volere Requirements Process

The Volere Requirements Process [RR99] focuses on the elicitation and documentation of
requirements. The most important contributions are a set of 27 requirements categories
to ensure that all types of requirements are gathered, a model of the requirement type
inter-relationships, and a documentation format for consistency of representation. The
Volere methodology is limited to requirements.

The content of the requirements format is text-based which is placed in a specific and
consistent format, the requirement card. A useful field on the requirement card is the
Fit Criteria, which is a value that can be measured in the solution via testing to verify
the requirement is met. While the form of the requirements documentation was not used
in the case studies, as it is based on text on 5” x 8” cards, the categories are used. The
categories provided the inspiration for the columns in the Action Transformation Matrix
behavior pattern (see Sub-chapter 3.5.3).

The process part of Volere is centered on the trawling for requirements. Trawling is
the term they use for the elicitation activities of interviewing users and stakeholders. As
each requirement is sifted out from the interview process, it is recorded on a card with a
unique identification. There is a seven-step process defined as a data flow diagram, which
helps to check that all the requirements have been discovered. As part of the trawling
process, there are suggested questions for each category to help elicit the requirements.

2.1.2.1 Strengths in the Volere Methodology

There are several important strengths in the Volere methodology. The main strength is
the list of 27 major categories to ask about in order to elicit requirements. Within the
major categories are sub-categories and sets of example questions to start the elicitation

16

2.1 Survey of Existing Requirements Methodologies and Processes

work. Within the sub-categories are examples of the questioning results. The example
questions and answers provide an excellent training approach for new software engineers.
Some examples of the questions are shown in Table 2.1. The first column in Table 2.1
lists some of the 27 categories and the right column lists a few of the questions.

Table 2.1: Volere Example Questions.
Volere Requirement
Category

Example Questions

Functional and Data 1. What data must be received by the product?
2. What data must be produced by the product?
3. What calculations must be made by the product?
4. What decision must be made by the product?

Look and Feel 1. Should the product conform to an existing standard such
as Microsoft or Apple?
2. Are there existing paper representations that should be
adhered to?
3. Which users should the product interface cater to?
4. What is the domain experience level of the users?

Operational 1. What are the physical conditions of the environment in
which the solution will be used?
2. Will the users have limited interaction abilities because
of protective gear?

Security 1. Which data is sensitive and needs controlled access?
2. Which function invocations should be controlled?
3. Which data have high integrity needs?

The second strength is a standard format to document not just the requirement, but
important related information about the requirement. Some of the related information
is the rationale for the requirement, the originator, the fit criterion, the type of the
requirement (which of the 27 major categories), customer satisfaction, and customer
dissatisfaction. The fit criterion is an objective and testable measure of how well the
requirement is satisfied in the solution. The customer satisfaction and dissatisfaction
rankings reflect how happy the customer will be if the requirement is in the solution
and respectively not in the solution. The related information is helpful in requirement
prioritization activities.
An important and useful concept in the Volere methodology is the Quality Gateway.

The purpose of the quality gateway is to prevent unworthy requirements from becoming
part of the specification. There are a series of tests on the requirement to ensure that
the requirement is complete, accurate, and is implementable. Most of the tests are
performed against the requirement as stated in the standard format.
To preserve the strengths from the Volere methodology, the following goals for the

SAMEM are derived.

17

Chapter 2 Requirements Methodology State of the Art and Practice

GOAL-10: The methodology should ensure completeness.
GOAL-11: The methodology should support the incorporation of state-of-

the-art software engineering results.
GOAL-12: The visual modeling and textual artifacts need to have consis-

tent presentation to optimize communication.

2.1.2.2 Limitations in the Volere Methodology

While the consistent format and the categories offer help in discovering and communi-
cating requirements, there is the limitation of a short textual expression that constrains
the usefulness. A software engineer converting the requirements into a design is still
faced with the reading of many individual requirements and the accidental complexity
of the mental integration into a full picture. Individual requirements are communicated
well, but not the big picture.

The text and small physical format of the cards effectively prohibits any business
process overview requirement from being documented. The Volere methodology does
not have an effective way to connect the many individual requirements into a larger set,
which would communicate a broader solution behavior. Because the cards are small
and uniquely identified, they can be duplicated and placed into multiple groups for
organization. The card grouping is for some requirement correctness and completeness
evaluation activities an improvement over a single text document.

Because the Volere methodology is targeted only at requirements, it tends to support
the sequential, phase-based process approach rather than an iterative & incremental
project process. It is fairly obvious that the small requirements on the Volere cards
could match the creation of SCRUM user stories to start iterations for design and im-
plementation work. On the other hand, the Volere card expression could at times be too
fine-grained for effective SCRUM user stories.

The following repeated SAMEM goal is intended to avoid some of the limitations in
the Volere methodology.

GOAL-5: The artifacts should maximize the use of visual models for com-
munication and compactness.

2.1.2.3 Volere Methodology Summary

In summary, the Volere methodology has most of the communication disadvantages of a
text-based method. A redeeming factor is the additional information collected about the
requirement. The additional information improves the quality of the requirement, but
does not help produce a more compact form. While the individual cards can be arranged
in multiple ways, the complexity of dealing with many physical objects does not scale in
a positive manner. There is the possibility that the individual cards can help with the
transition to SCRUM user stories, but there are possibilities for granularity mismatch.
There are no indications that the Volere methodology helps to speed up a project or
reduce team size.

18

2.1 Survey of Existing Requirements Methodologies and Processes

2.1.3 Software & Systems Requirements Engineering in Practice Book
The book Software & Systems Requirements Engineering in Practice [BPKR09] (Beren-
bach Book) is written from experiences on actual industry projects within Siemens.
While mostly focused on requirements elicitation and management techniques, there are
short forays into the product design activities.
The processes described use modeling in conjunction with requirement expressions,

but for analysis and as a transition between the text-based requirements and the design
models. The process and the examples are centered on the requirements expressed as
text, usually as a single simple sentence. Throughout the book there is a clear separation
between functional requirements and nonfunctional requirements.

2.1.3.1 Strengths in the Berenbach Book

There is a match between the intended use of models in the SAMEM and the work in
the Berenbach Book. That match can be summed up by a quote from the book:
“When using models as part of an engineering process, one of the objectives is to

convey as much information as possible as succinctly as possible.”
An interesting contribution is the Requirements Engineering Artifact Model (REAM).

The REAM is a metamodel for structuring the requirement model artifacts created
during the requirements engineering process. The REAM describes the types of artifacts
and the possible relationships between them. The REAM is used during analysis of
the requirements artifact model to insure correctness and to generate both the text
requirements and some of the high-level design (mostly by heuristic methods).
In Figure 2.3, a REAM example from [BPKR09] is shown. The artifact types are

concrete. The actual requirements artifact model can be verified against the REAM for
completeness. A complete artifact model will have artifacts of every type defined in the
REAM. Verification for consistency is possible by checking the relationships between the
actual requirement artifacts. For each project a specific REAM can be constructed to
match the domain artifacts. The metamodel for the REAM is employed in their process
to verify completeness of requirements and to help communicate the incompleteness to
the stakeholders
There are differences between the artifacts in a requirement engineering model and

a UML Class Model. A UML Class Model has attributes and operations, while a re-
quirement engineering model only has a name and description. A UML Class Model can
have abstract classes, but a requirements artifact model shows real objects which are
connected with a simple association.
Much of the modeling and the elicitation work are driven from Use-Cases. They do

suggest creating scenario diagrams to chain use cases together for a higher-level process
view of the business situation. The scenario diagrams are similar to the UML Sequence
models, but with Use-Case connected to Use-Case, rather than object instance method
call connected to object instance. Figure 2.4 is an example of a use case scenario diagram
from the Berenbach Book [BPKR09]. The scenario technique is good for describing a
transaction type of requirement as it shows the ordered and complete set of actions.

19

Chapter 2 Requirements Methodology State of the Art and Practice

Figure 2.3: REAM Example.

Figure 2.4: Use Case Scenario Example.

20

2.1 Survey of Existing Requirements Methodologies and Processes

There is a strong emphasis on customer communication. Visual techniques such as
models, diagrams, and tables are suggested. These are also used in the Berenbach book
methodology, but they do not provide a framework to help with decisions on when and
how to apply the visual techniques.
The REAM type of model is a goal that should exist in the SAMEM definition.

GOAL-13: A metamodel is needed for the artifacts and process to ensure
a rigorous methodology.

2.1.3.2 Limitations in the Berenbach Book

The use of the REAM metamodel and the requirements artifact models unfortunately
does not extend the idea of modeling to specifying the requirements as models, but only
as text.
The scenario models are a strong part of the process; however, UML Activity Models

are not used. In many of the book examples an activity model would communicate
the control and data flow in more business detail without the need to make design
assumptions about objects. In the scenario diagram in Figure 2.4 there are design
assumptions made such as the existence of an access terminal object.
Because of the text-based requirements expression for both functional and nonfunc-

tional requirements, there is a continued discussion of prioritization and ranking of re-
quirements. The prioritization and ranking action are driven by the requirements en-
gineer, but are the decisions of the stakeholders. Because many requirements are the
suggestions of the stakeholders without limits on the scope, the two filtering actions of
prioritization and ranking must be used to reduce the requirements volume, which take
time and are additional accidental complexity.
The process described in the book utilizes brainstorming as an elicitation technique.

The downside of brainstorming is a plethora of often marginally correct or relevant
requirements. Filtering these requirements out is additional work. Other techniques can
be used to avoid generating marginal requirements, which are part of the SAMEM.
While there are aspects in the Berenbach methodology that clearly improve the quality

of the requirements, there are many processes and actions that increase the quantity and
do not speed up the process. A primary source of increased quantity is the brainstorming
elicitation of requirements. As mentioned earlier, requirements of marginal quality are
generated which take time to evaluate and either improve or remove. The REAM helps
with quality, but is additional modeling work that does not create a more compact
requirement specification.
The process as described in the book is clearly more of a sequential, phase-based

approach. There is no mention of iterative & incremental build-up and verification of
either the analysis model or the text requirements.
The following repeated goal is needed to avoid limitations in the approach described

in the Berenbach book.

GOAL-5: The artifacts should maximize the use of visual models for com-
munication and compactness.

21

Chapter 2 Requirements Methodology State of the Art and Practice

2.1.3.3 Berenbach Book Summary

Relative to the goals of this thesis, the proposals from [BPKR09] address only in part
better stakeholder and development team communication and requirements quality. The
techniques and processes suggested in the book do not help with achieving a more
compact requirements specification, reducing the team size, speeding up the project
process, or compatibility with agile methods.

Although not applied in the case studies associated with this thesis, the Use-Case
scenarios models could be a valuable addition and in some situations provide better
communication than a UML Activity Model.

2.1.4 Requirements in Engineering Projects

In [FM15] an engineering project approach defines the context for requirements elicita-
tion and management methodology (Fernandes Process). While there is a chapter on
software engineering, the tone of the book casts everything in the light of a more gen-
eral engineering project approach. The definition of project (defined in the Chapter 2
introduction) in this book independently matches the definition used by the SAMEM.

2.1.4.1 Strengths of the Fernandes Process

[FM15] contains several engineering process principles that are the same as engineering
principles used in the design of the SAMEM. The first principle is that process flexibility
is needed and results from a feedback mechanism. The assumption in the book is that
an engineering project is started to create a new solution. The rationale for process
flexibility is that in creating a new solution there are unknowns which must be solved.
The task flow and tempo of the project needs to adjust to the discovery of the problems
and to the design needs of the solutions.

The second principle is that a visible balance must exist between the decomposition of
the problem into smaller parts and a view of the solution as a whole. The decomposition
activities explore the nature of the problem. The holistic view of the solution restates
the intent and purpose. Exploration of the details and regular assembly of them are an
important feedback mechanism [Bro10], [Win96], [Pet96].

The problem of communication is recognized. Domain-specific vocabularies and lack
of a translation between them is part of the problem. Establishing a translation is
difficult, because at the beginning the requirements engineer or the stakeholders do not
know what they do not know. The attempts to describe the solution features and intent
often come down to a struggle for the proper words and expressions. There are starting
questions suggested for the elicitation work.

The strength of this book is in the collection of various sources of foundational defini-
tions for projects, engineering, and requirements. The term definitions contained within
this book match term definitions independently developed for the SAMEM, but in many
cases the definitions vocabulary from [FM15] are an improvement.

22

2.1 Survey of Existing Requirements Methodologies and Processes

The strengths in the Fernandes book, which should be maintained, lead to the follow-
ing goals.

GOAL-14: The methodology should support multiple feedback mechanisms.
GOAL-15: The methodology should allow for multiple requirement arti-

facts to match the different communication needs of the different levels of
abstraction needed during the project process.

2.1.4.2 Limitations of the Fernandes Process

The major limitation in [FM15] is the lack of a process or methodology to connect the
definitions into a coherent and workable whole. While there are some small process
snippets here and there throughout the book, they are mostly used in helping to define
a term. For example, there is a five-step process for requirements elicitation as shown in
Figure 2.5. This is the extent of the process depth and is considerably less than provided
by the Volere Methodology [RR99].

Figure 2.5: Fernandes Process Example.

GOAL-16: The methodology project process must ensure that progress to-
wards a solution is accomplished at a reasonable speed.

2.1.4.3 Summary of the Fernandes Process

In general, this book can be described as a survey book. It brings together various
definitions, but there is little on how to turn the definitions into a methodology. There
is nothing in this book that directly addresses any of the goals of this thesis; however,
the book does have improved phrasing of several principles behind the SAMEM. One
founding principle behind the SAMEM was the need to control the level of abstraction
during the project work, but was not optimally stated. The phrase from [FM15] that
states it better is:

“being aware of the abstraction level in which the project is developed is
crucial to control its complexity.”

2.1.5 System Modeling Language

The Object Management Group (OMG) System Modeling Language (SysML) [OMG15a]
is a specification for the modeling of systems consisting of mechanical, electrical, and

23

Chapter 2 Requirements Methodology State of the Art and Practice

software components. Part of the specification covers the modeling of requirements. The
SysML specification reuses part of the Unified Modeling Language (UML) [OMG15b]
specification, modifies definitions, and adds extensions.

2.1.5.1 Definitions from the SysML Specification

The SysML extensions primarily impact UML classes and dependencies. The SysML
extension of View Model and Viewpoint are used to partition the model with respect to
a particular set of concerns from some of the stakeholders. A View Model or View is the
model that represents the Viewpoint. A View conforms to a single Viewpoint.

The SysML includes an extension to the UML Comment called a Rationale. The
Rationale is intended to capture in text the design and other decisions within the model.
Similar to Rationale the SysML extensions have a Problem type of comment. The
Problem is used to capture in text a deficiency, limitation, or failure in one of the model
elements to satisfy a requirement. The third extension of the UML Comment is called
ElementGroup, which is used to group multiple heterogeneous elements by allowing
references from the ElementGroup to multiple elements.

A major portion of the SysML specification is the extension to deal with modeling
requirements. The model supports a text-based requirement. There are additional rela-
tionships to support the creation of requirement hierarchies, reuse of requirements across
projects, subrequirements, and a master-slave requirement. The requirement hierarchies
and subrequirements use the UML namespace containment mechanism. A consequence
of the namespace mechanism is that a new modeling mechanism is needed to support
reuse of common requirements, like regulations, across disjoint projects. The new mech-
anism is the slave requirement, which is a read-only copy of the master requirement.
The refine relationship is used to connect other model elements to a requirement to

further refine its meaning. For example, an Activity Model can refine the meaning of a
requirement by defining a more complex behavior.

2.1.5.2 Limitations of the SysML Specification

There are two major limitations of the SysML specification for supporting a requirements
process. The first is the definition of a requirement as text. As stated in the specification,
this was primarily done to provide compatibility with existing requirements management
tools. While the requirement can be related to other modeling elements, it is at the core
a simple text statement. This means a large number of requirements are needed for a
large system [LS87].
The second major limitation is the use of the UML diagramming notation. Other

research [MvH08] has shown that the simple visual forms of the UML graphical notation
limit communication. There is an extension that shows the text content of several
requirements in a table, which is more compact but rather limited in usefulness.
A minor limitation is maintaining the namespace containment mechanism for require-

ments. By keeping the namespace limitation, another mechanism, a slave requirement,
is introduced, which adds accidental complexity.

24

2.1 Survey of Existing Requirements Methodologies and Processes

2.1.5.3 Summary of the SysML Specification

The SysML specification does little to address the goals of this thesis. As a specification
it is a definitive document rather than a prescriptive document of how to use the mod-
eling artifacts it defines. There are several examples within the specification that give
indications of potential use. The SysML definition can help with the development of a
modeling foundation for the SAMEM.

The next methodology goal preserves the valuable idea from SysML of recording design
decisions with the modeling artifacts.

GOAL-17: The artifact evolution trace should have possibilities for record-
ing the rationale for the artifact improvement.

The following goal arises from preventing the main limitation seen in the SysML
specification of text-based requirements.

GOAL-18: The visual artifacts must not be limited by existing notations
such as UML, alt-hough, when appropriate, existing notations should be pre-
ferred.

2.1.6 V-Model

The V-Model is a term that covers a range of models [V-M16c], [V-M16a], [V-M16b],
Figure 2.6. The purpose of the V-Model is to provide a structure for the planning
and execution of a project. The V-Model can be used across a broad range of projects;
however, a special variant for software engineering was developed, V-ModelSE [V-M16b].

Figure 2.6: V-Model Typical Image.

25

Chapter 2 Requirements Methodology State of the Art and Practice

Many consider the V-Model to be a folded sequential, phase-based project execu-
tion plan. The folding highlights the correspondence between design and development
activities and their associated testing and verification activities.

2.1.6.1 Summary of V-Model

The V-Model is widely considered a project planning model primarily for project man-
agers. It is rigid and the high level of abstraction defeats meaningful and consistent
understanding of project details. It does not address any of the goals for this thesis,
especially compatibility with agile development methods, faster project processes, im-
proved requirements quality, and better communication.

2.1.7 Software Engineering Method and Theory

Software Engineering Method and Theory (SEMAT) is a recent (2009) initiative to im-
prove the discipline of software engineering and make it more rigorous [JEJ12], [SEM98],
[SEM16]. The SEMAT initiative is divided into four related areas of work: the Practice
area, the Education area, the Theory area, and the Community area. The SEMAT work
is supported by and has contributed to an OMG specification: Essence – Kernel and
Language for Software Engineering Methods [OMG12b]. For this comparison SEMAT
and Essence will be looked at as a single effort.

2.1.7.1 Definition of the SEMAT Initiative

The SEMAT initiative is relatively new and therefore it is still developing. For the
purposes of this thesis, the Theory and Practice areas are important. The SEMAT
Theory area has the objective of creating a general theory of software engineering. As
with other theories [JEJ12], the software engineering theory should support good project
decision making by expressing clear rationale for the choice and the objective evaluation
of project alternatives in a predictive manner. There is little content in this area at this
time [SEM98].

The Practice area of SEMAT has the OMG ESSENCE specification [OMG12b] as
an initial realization of practices. There is tool support for the ESSENCE specifica-
tion in the EssWork Practice Workbench [Essb]. The ESSENCE specification defines
a kernel and language which enables the description of software engineering methods
and practices. The definition of methods and practices enables different approaches to
be compared, evaluated, adapted, simulated, and measured for both practitioners and
researchers. The ESSENCE specification consists of a simple layered architecture as
shown in Figure 2.7.

The ESSENCE architecture Method is a composition of practices, which describes
what is actually done in the project. A Practice is a repeatable approach to accomplish-
ing a specific objective. It provides a systematic and verifiable way of addressing the
work. The Essence Kernel has the essential elements of software engineering methods.

26

2.1 Survey of Existing Requirements Methodologies and Processes

Figure 2.7: ESSENCE Four Layer Architecture.

Through the domain-specific Language of Essence, the methods, practices, and kernels
are defined.

2.1.7.2 Summary of the SEMAT

The SEMAT initiative does not aim to define any specific methodologies comparable to
the SAMEM at this time. It does have definitions and a tool with guidelines on how to
define a method or a practice. In the evaluation (Sub-chapter 7.4) the SAMEM will be
compared to the SEMAT and ESSENCE approach. This will provide feedback on the
abilities of ESSENCE and possible improvements to the SAMEM as a contribution to
the SEMAT goals. The goals of the SAMEM are in alignment with the goals of SEMAT.
While the following repeated goal for the methodology is rather generic, it is useful

as a reminder that research is ongoing in improving software engineering and, insofar as
possible, the SAMEM should not prevent new ideas from being incorporated.

GOAL-11: The methodology should support the incorporation of state-of-
the-art software engineering results.

2.1.8 Software Process Engineering Metamodel

The Software Process Engineering Metamodel (SPEM) [OMG08] is an OMG specifi-
cation for a software and systems process engineering metamodel. The SPEM is a
metamodel and a UML 2 profile which reuses many of the other OMG specifications
such as UML 2 [OMG15b], the Meta-Object Facility (MOF) [OMG14b], and the UML
Diagram Definition Specification [OMG12a].

27

Chapter 2 Requirements Methodology State of the Art and Practice

The purpose of the SPEM is to model a wide variety of processes and to avoid exclusion
by having too many features or constraints. The focus is on the modeling of development
projects. The SPEM provides additional information structures needed for modeling
actual development processes beyond the UML Activity Models and Business Process
Model and Notation (BPMN) [BPM16].

2.1.8.1 Summary of the SPEM

The objective of the SPEM specification is to support the creation of metamodels and
models of processes that are beyond the capabilities of the UML Activity Models and
BPMN. The SAMEM in its current form does not need any of the capabilities of the
SPEM specification. The process modeling abilities of the UML Activity Models or
BPMN are sufficient for all the SAMEM needs. With the expansion of the SAMEM to
other domains, it is conceivable that the SPEM capabilities could be needed. However,
an evaluation between using SPEM or SEMAT to extend the SAMEM is required before
making that decision.

2.2 Survey of Existing Agile Methodologies and Processes
In the following evaluations and comparisons the focus will be on the requirements
portion of the agile methodologies and processes. Some small consideration will be
given to the transition from requirements elicitation to design work.

2.2.1 Agile Modeling
Scott Ambler [Amb02] describes approaches to Agile Modeling (AM) in the development
of software solutions. He defines AM as:

”. . . a chaordic, practice-based methodology for effective modeling and
documentation of software-based systems.”

The term chaordic comes from Hock [Hoc99] and is a combination of the chaos of
simple modeling practices and the order inherent in software modeling artifacts. Ambler
claims that there are two primary reasons to model: 1) to understand what should be
built and 2) to aid the communication with the development team and the stakeholders.
His modeling purpose rationale is echoed by [FM15], [BPKR09], [Pet96].

2.2.1.1 Agile Modeling Methodology Description

AM aligns with the Agile Software Development Alliance (www.agilealliance.org) man-
ifesto. The Agile Alliance (AA) values are:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

28

2.2 Survey of Existing Agile Methodologies and Processes

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

There are another 12 principles that the AA promotes and AM accepts but will not
be detailed here. The models that AM creates are “good enough” models. Good enough
models exhibit the following traits:

• Agile models fulfill their purpose – whether the purpose is better understanding
or better communication, that purpose is achieved.

• Agile models are understandable – by the intended audience, so language, form,
and organization all play a role.

• Agile models are sufficiently accurate – the models do not have to be 100% accurate
or complete as long as they are accurate enough for the purpose.

• Agile models are sufficiently consistent – missing details or different words, for
example synonyms, do not necessarily mean crippling inconsistency.

• Agile models are sufficiently detailed – the models have enough detail to meet the
purpose. An application of information hiding according to Parnas [Par72].

• Agile models provide positive value – the benefit of having the model should out-
weigh the cost of producing it.

• Agile models are as simple as possible – this drives toward limiting the detail and
using a clean effective notation.

Ambler in [Amb02] contains many practical examples of applying the AM values, tips
to be effective at agile modeling, and shows a variety of good models. There are several
tips that Ambler mentions that also appear in the SAMEM. Use modeling standards,
such as UML, but do not let following the standard have a negative impact on commu-
nication. Apply patterns gently, which means that there might be an opportunity to use
a pattern, but go slowly as new information can invalidate the pattern.
There are several good ideas from the agile approach that the SAMEM should preserve

and if possible strengthen. The goals immediately listed below are intended to preserve
the good agile ideas.

GOAL-19: The visual models must be good enough to achieve the purpose
within the current context or step of the project process.
GOAL-20: The methodology should have a set of principles that support

adaptation to various domains and provide a checklist for rigor.
GOAL-21: The models used for artifacts in the methodology should support

multiple small iterations.

29

Chapter 2 Requirements Methodology State of the Art and Practice

2.2.1.2 Summary of Agile Modeling

Agile Modeling (AM) supports the same goals as the SAMEM, especially the goals
of better communication, better requirements quality in a more compact form, faster
project process, and compatibility with agile solution (code) development processes.
Both AM and the SAMEM have a set of adaptable principles used to ensure quality
of work, although there are some differences. The SAMEM principles are explained in
Sub-chapter 3.2.

The main difference is that in Agile Modeling a looser, free-form process approach
is taken. AM strives to be non-procedural. In that approach some guidance is lost.
Since the SAMEM is targeted at medium to large projects, a rough roadmap of how
to proceed is provided. A lesson learned from the case studies shows that the project
process roadmap helps with establishing good customer expectations [TFR05].

While Ambler recognizes that models are viable forms for requirements, they can be
taken further than he discusses in his book [Amb02]. Like RUP, AM starts with UML
Use-Case Models as the primary requirements model. The meaning of a UML Use-
Case Model is inherently shallow and needs additional modeling artifacts and/or text to
provide real understanding.

2.2.2 eXtreme Programming (XP)

The agile software development practice called eXtreme Programming (XP) [Bec00],
[XP] takes observed good programming practices to extremes. The origins of XP date
back to the 1990s. XP advocates frequent releases and short development cycles, which
are intended to improve productivity and introduce checkpoints for the customer verifi-
cation of the product. XP is an iterative & incremental development process.

2.2.2.1 XP Definition

XP is described as a software-development discipline that organizes people to be more
productive. For XP the code is the important solution development product. The code
can start simple to communicate the essence of the problem, and then evolve to the
full functionality. Continuous testing is part of the XP discipline, from unit tests that
should be written before the code to frequent system-wide integration tests. Along with
the simple code, a simple design structure that limits dependencies is advocated.

Frequent verbal communication with the customer and common metaphors rather
than documentation is preferred. XP encourages starting with the simplest solution,
then gradually extending it according to the customer’s reviews. The goal is to avoid
building something that is not needed or incorrect in the customer’s eyes. Since code
reading is a type of testing, XP advocates programming in pairs to have the code reading
test happen while the code is being created.

The requirements for XP are expressed as user stories. The user stories form the basis
for the iteration planning activities. A critical aspect of the XP approach is the demand

30

2.2 Survey of Existing Agile Methodologies and Processes

that a customer representative is available at all times to clarify a user story and to
verify that the implementation is functionally correct.

2.2.2.2 Summary of XP

One of the biggest impacts XP has had on software development is the questioning
of the sequential, phase-based project approach. The success of XP and several of its
principles, especially to make frequent small releases, that the project is divided into
iterations, simplicity, that no functionality is added early, and acceptance tests are run
often, were influences on and rationale for the design of the SAMEM.

There are several daily work practices from XP that the SAMEM should support or
allow. The notion of automatic testing as much as possible is important to the goal
of always having working code prototypes. The automatic testing of the requirement
artifacts and design artifacts against the meta-definitions should be possible. The idea
of pair programming, a second set of eyes during the creation activities, should be
compatible with the development of any of the artifacts, not just code. The objective of
pair programming is to prevent errors or mistakes at the earliest stages in the creation
process. Within the budget constraints of the project, these good working practices
should be used.
There are several weaknesses in XP, especially as the project size scales up. The user

story as the requirement cannot handle non-functional requirements easily. In a larger
project there can be several customers, each with their own slightly different views,
and there is often the problem of continuous customer availability. Without continuous
customer availability a means for asynchronous communication is needed, which the
SAMEM provides via models. There is an upper limit to the team size because of the
emphasis on verbal communication and the effects of the Mythical Man-Month [Bro95].
XP does support to a certain extent the thesis goals of a faster project process, com-

patibility with agile code development methods, and smaller team size. It does not
contribute to improved requirements quality in a more compact form, better team com-
munication, and better stakeholder communication.

GOAL-22: The methodology should support frequent small releases of project
deliverables to support verification of progress.

2.2.3 SCRUM

SCRUM is an iterative & incremental agile software development process [Coh10]. It
uses the idea of a sprint, which normally is one week to one month long, to deliver a
potentially shippable increment of the solution. A potentially shippable increment is
integrated, fully tested, end-user documented, and could be shipped to the customer.

2.2.3.1 SCRUM Process Definition

SCRUM uses a sequence of sprints to deliver ever increasing completeness of the solution.
Each sprint is limited by time, usually a minimum of one week to a maximum of one

31

Chapter 2 Requirements Methodology State of the Art and Practice

month in duration. The sprint implements some of the items (requirements) in the
backlog. An item is how the requirements for the solution are collected and documented.
The backlog is the term for the items yet to be implemented. As the customer reviews
the completed sprint deliverable, new items can be added to the backlog, removed from
the backlog, modified, or their priority changed.

The SCRUM process depends on face-to-face communications with minimal written
documentation. Before a new sprint starts, a sprint planning event happens with all
the team members, which takes items from the product backlog and places them in the
sprint backlog of work to be done. The product owner role in SCRUM represents the
stakeholders and writes items, prioritizes them, and adds them to the product backlog.
The developers evaluate the items suggested for the sprint and give estimates of the
duration involved to complete each item. Based on the total effort involved, require-
ments can be added to or removed from a sprint backlog. Each day the team holds a
daily SCRUM (stand-up) meeting to evaluate the progress and possible impediments to
meeting the sprint goal. The scrum master keeps track of the issues, progress, and is
responsible for enabling the developers to complete their work.

The product backlog is the ordered list of items (requirements), which consists of
features, defect fixes, knowledge acquisition, nonfunctional requirements, and anything
else that is needed for a viable product. The requirements are normally in an ordered
story format and define what will be delivered. In many cases the items are user stories,
but can be use cases or anything else that clearly expresses the customer needs. SCRUM
is neutral on requirement techniques and allows multiple expressions of requirements to
be used.

2.2.3.2 Summary of the SCRUM Process

The SCRUM approach does not insist on any particular requirements form or process.
It is requirements neutral. SCRUM is an operation process intended to control and
manage the development steps. It can be used in conjunction with the SAMEM as the
two are disjoint in their areas of focus. The requirements modeling of the SAMEM can
feed into the project backlog items of SCRUM, which fulfills one of the thesis goals.

GOAL-23: The requirements elicitation portion of the methodology should
be consistent with modern implementation best practices.

2.3 Limitations of Text-based Requirement Formats

2.3.1 A Diagram is (Sometimes) Worth 10,000 Words

In the paper by Larkin and Simon [LS87], the cognitive value of a diagram or drawing
over text is explained. The text-based representations are sentential, meaning the ex-
pressions form a sequence corresponding to the sentences in a natural language. In a
diagrammatic representation the expressions correspond to information that is stored at
a particular locus in the diagram including information about related information.

32

2.3 Limitations of Text-based Requirement Formats

The definition of better for a comparison is defined in terms of the informational and
computational equivalence of the representations. Informational equivalence is defined
as all the information in one representation is inferable from the other. Computational
equivalence is defined as informationally equivalent and the inferences drawn from one
representation can be easily drawn from the other. Easily is not a precise term as there
are many dependencies on the forms and organization within the representations, but it
can be assumed for these arguments that the best possible sentential and diagrammatic
representations are available for the computational equivalence comparison.
The human who is operating on a representation to understand it, communicate it, or

refine it invokes three basic components of information processing: search, recognition,
and inference. Searching a sentential structure (text) is done linearly over the list of
items. The search action on a diagram is finding the correct two-dimensional location.
Often searching is not just for one item but several related items. The computational
cost includes finding the additional items. The ease of recognizing the information,
both explicit and implicit, is directly related to the form. When the external form of the
information matches known or internal forms (mental models) that a person has, then the
information is easily recognizable. Once the searching has found the information and it is
recognized, the process of inference can begin. The inference is drawing conclusions from
or producing new information and this work is largely independent of the representation.
The conclusion that Larkin and Simon come to is that the major advantage of a

diagrammatic representation is in the recognition effectiveness. This is especially obvious
when the diagram is used both as a mental model and as external memory, i.e. a
communication mechanism between people. There is also speculation in the paper that
mental images play a role in problem solving.
The reasoning and explanations within [LS87] are the source for an important ra-

tionale for the maximum use of visual models by the SAMEM. The need to have the
models developed jointly with the customer to establish a common visual vocabulary is
supported by this thesis.

2.3.2 Cognitive Effectiveness of Visual Notations
Work by Moody and others [Moo09], [HK99] establishes some of the cognitive effective-
ness criteria for visual notations. In [MvH08] an evaluation of the UML visual notation
is performed and in [MHM10] the visual notation of i*, the goal modeling notation is
done. i* is a goal modeling notation [Yu97], [Yu09], [Yu95].
There are several cognitive measures which allow for the evaluation of the communica-

tion effectiveness of visual notations. These measures are based in cognitive psychology
and are listed in [Moo09]. In the evaluation Sub-chapter 7.3, these measures will be
used to determine the cognitive effectiveness of the pragmatic Solution Overview Draw-
ing (SOD) (defined in Sub-chapter 3.5.1) developed in the various case studies. The
results of the effectiveness evaluation will be drawn on to suggest improvements to the
SAMEM visual notations.
As two of the thesis goals are better communication with the stakeholders and devel-

opment team, the cognitive effectiveness measures provide an objective evaluation. As

33

Chapter 2 Requirements Methodology State of the Art and Practice

pointed out in [LS87], diagrammatic notations provide a more compact form of commu-
nication. The use of cognitive measures to evaluate the models will assure an effective
compact requirements specification form.

GOAL-24: The methodology artifact representations should be consistent
with the best practices of communication as measured through cognitive ef-
fectiveness.

2.3.3 User Requirements Notation

User Requirements Notation (URN) [URN12], [AM11] includes and is an extension to
the i* approach. The URN combines a Goal-Oriented Requirements Language (GRL)
and Use-Case Map (UCM) which uses scenario paths for causal relationships among
responsibilities. There are modeling concepts and graphical notations defined in the
specification. Goal-oriented modeling places the focus on the who and the why for
requirements specification.

The objective of the URN is to specify and perform early evaluation of telecommu-
nication protocols and services. The specification is done at a level that abstracts out
the details of the messages and the component architectures, which allows a simplified
description of services.

Both URN and i* have visual artifacts for some of the needs of requirements modeling
[URN12], [AM11]. However, these notations also have cognitive shortcomings [MHM10].
The conversion from URN to a UML design model is done by hand through a heuristic
algorithm. URN can help with communication goals for some of the requirements and
potentially with a more compact form.

2.3.4 Proposals for Requirements Models

2.3.4.1 Requirements Visual Notation Improvements

In [CGHM13] the results of an empirical study on designing new symbols for the i* nota-
tion are reported. The symbols were designed by novices in the discipline of requirements
engineering rather than experts. The cognitive effectiveness measures of [Moo09] were
used to evaluate the visual notations. There are improved symbols described in the
paper that can be used instead of the standard notation of i* or URN. The paper makes
the claim that the novice users did a better job of creating a more comprehensible set of
visual notations in 25 minutes than the requirements community has in 25 years. The
novices were business and economic students with no knowledge of goal modeling or i*.

The design of the new symbols used the sign production technique developed by
Howell and Fuchs [HF68] to design military intelligence symbols. This technique uses
some members of the target population of end users to design the visual symbols. The
assumption is that the cognitive profile is the same, so that correct interpretation is
high.

The comprehensibility of the new notation is measured through semantic transparency.
Semantic transparency is defined as the meaning of a symbol being apparent from its

34

2.4 Summary of State of the Practice

visual appearance alone. One of the keys to the improvement in visual communication
was avoiding the curse of knowledge [HH08]. The curse of knowledge means that an
expert has difficulty in thinking as a novice because of their greater understanding.

One of the important lessons learned in the case studies (see Sub-chapter 4.4.1.5) was
having flexibility in changing the notation when stakeholder communication suffered.
The refinement of much of the visual notation in the SAMEM is in cooperation with the
stakeholders, who are novice requirement specification users.

GOAL-25: The methodology should allow for the ad-hoc creation of arti-
facts for domain adaption and communication improvements.

2.3.4.2 Requirements Modeling Language

The Requirements Modeling Language (RML) [BC12] is a collection of 22 industry best
practices that have been used in an ad-hoc fashion over many years to visually model
requirements. The focus of the modeling techniques in RML is the capture of business
value and representing the solution from the end-user viewpoint. For the RML approach,
the models are a means to reach the end stage of a list of requirement statements.
The RML models are organized into four categories: objectives models, people models,
systems models, and data models. The RML also includes processes for using the various
models and linking them together.
In addition to the visual models created in the RML methodology, several other im-

portant solution relevant definitions are necessary. The vision of the Product Concept
is needed to form a central pillar for the models. RML recommends compiling a list
of Guiding Principles, which are important characteristics of the solution that should
be maintained. For example, adhering to specific government regulations is a guiding
principle. Success Metrics should be defined for the solution to verify the models and
the final solution to meet the stakeholder’s expectations.
While there are several interesting models and modeling processes described in [BC12],

the book fails to mention and draw contrast to other well-known methodologies, such
as RUP or Volere. The UML is mentioned as not being useful, but at least eight of the
models have direct UML representations. Although not part of the work in this thesis,
the visual models are simple graphical forms like rectangles and circles, which would
have a low cognitive effectiveness score.

2.4 Summary of State of the Practice
There are several well-known software engineering methodologies with requirements elic-
itation and evaluation as part of the complete development approach. Multiple require-
ments engineering approaches only focus on elicitation through talking with the stake-
holders. However, while each supports some subset of the goals of this thesis to one
degree or another, no existing methodology supports them all.
By combining the strengths of effective visual modeling when possible, agile principles,

and filling in the gaps, the thesis goals can be achieved. The largest gap is the lack of a

35

Chapter 2 Requirements Methodology State of the Art and Practice

guiding process that helps progress the project from very abstract work in the beginning
to more concrete work in design and implementation. It is almost universally expressed
in all the other methodologies and approaches that requirements are elicited by talking
with the stakeholders.

But the big question that is left unanswered is: “How do you talk with the stakeholders
to get the requirements?” The core of the SAMEM is directed towards providing a
pragmatic answer to that question.

At the 2013 European Software Engineering Conference a question was asked whether
there was an empirical result that determined if text or visual models were more effective
[GCH13]. The response described in [GCH13] is about a challenge at the 2009 Require-
ment Engineering Conference to have different groups use their modeling techniques to
respond to a fictitious problem. The techniques of i*, URN, text, UML, rich pictures,
information FLOW modeling, and formal methods were tried. The audience observed
how the teams worked, responded to changes, and then voted for the best technique.
The conclusion is that no single modeling technique is best and that questions about
which approaches to use, for what purposes, and how to combine the models remain.
The SAMEM attempts to answer some of these questions.

2.4.1 Summary of Methodology Goals

In Sub-chapter 1.1, the discussion of the software engineering project problems produces
a corresponding set of high-level goals for the thesis. The high-level goals are supported
by the goals defined in this sub-chapter and are restated below for convenience with
unique identifiers.

HL-GOAL-1: Better stakeholder communication with respect to the re-
quirements specification and project progress.

HL-GOAL-2: Better development team communication.

HL-GOAL-3: Improved overall requirements quality in a more compact
format.

HL-GOAL-4: Faster project process.

HL-GOAL-5: Smaller project team size, especially for the development
team.

HL-GOAL-6: Compatibility with agile methods for solution (code) devel-
opment.

In the evaluation of the related work and state of the practice, a number of goals are
identified from either the strengths or the limitations. The methodology goals will be
evaluated against the SAMEM definition in Sub-chapter 7.1.4. The methodology goals
are gathered here.

GOAL-1: The methodology should provide accurate communication mech-
anisms.

36

2.4 Summary of State of the Practice

GOAL-2: The methodology should provide project process risk mitigation
mechanisms.

GOAL-3: The methodology should provide traceable artifact evolution.

GOAL-4: The methodology and artifacts should be compatible with an it-
erative & incremental project process.

GOAL-5: The artifacts should maximize the use of visual models for com-
munication and compactness.

GOAL-6: The methodology should be adaptable to individual project pro-
cess needs.

GOAL-7: The iterations should be small for project management purposes.

GOAL-8: An iteration should have a verification step of some kind to
assure that the work done is correct.

GOAL-9: Flexibility in the visual model artifacts is necessary for commu-
nication optimization.

GOAL-10: The methodology should ensure completeness.

GOAL-11: The methodology should support the incorporation of state-of-
the-art software engineering results.

GOAL-12: The visual modeling and textual artifacts need to have consis-
tent presentation to optimize communication.

GOAL-13: A metamodel is needed for the artifacts and process to ensure
a rigorous methodology.

GOAL-14: The methodology should support multiple feedback mechanisms.

GOAL-15: The methodology should allow for multiple requirement arti-
facts to match the different communication needs of the different levels of
abstraction needed during the project process.

GOAL-16: The methodology project process must ensure that progress to-
wards a solution is accomplished at a reasonable speed.

GOAL-17: The artifact evolution trace should have possibilities for record-
ing the rationale for the artifact improvement.

GOAL-18: The visual artifacts must not be limited by existing notations
such as UML, alt-hough, when appropriate, existing notations should be pre-
ferred.

GOAL-19: The visual models must be good enough to achieve the purpose
within the current context or step of the project process.

GOAL-20: The methodology should have a set of principles that support
adaptation to various domains and provide a checklist for rigor.

37

Chapter 2 Requirements Methodology State of the Art and Practice

GOAL-21: The models used for artifacts in the methodology should support
multiple small iterations.

GOAL-22: The methodology should support frequent small releases of project
deliverables to support verification of progress.

GOAL-23: The requirements elicitation portion of the methodology should
be consistent with modern implementation best practices.

GOAL-24: The methodology artifact representations should be consistent
with the best practices of communication as measured through cognitive ef-
fectiveness.

GOAL-25: The methodology should allow for the ad-hoc creation of arti-
facts for domain adaption and communication improvements.

The relationships between the high-level goals and the goals can be represented graph-
ically using the URN notation [URN12]. The models are specifically the portion of URN
that is derived from i* for modeling of goals and their relationships. In URN terms a
SAMEM goal is a Softgoal, which means that there are not any clear-cut or quantita-
tive criteria for determining that they are achieved. Whether a Softgoal is achieved is
an interpretation of the modeler. URN offers several types of relationships between its
modeling components. For the URN models below only the Contribution relationship is
used with the qualitative contribution value of some positive. Since all the contribution
relationships have the same value, it is not shown in order to keep the images more
readable. Figure 2.8 through Figure 2.13 show the graphical relationship of which goals
support which high-level thesis goals. A goal can contribute to fulfilling more than one
high-level goal. To conserve space, only the goal identifiers are used in the URN images
with keyword descriptions.

38

2.4 Summary of State of the Practice

2.4.1.1 HL-GOAL-1 Relationships to Goals as URN Model

Figure 2.8 shows the goals that at least in part contribute to fulfilling the HL-GOAL-
1 , which is the high-level goal of better stakeholder communication of the requirements
specification and the project progress.

Figure 2.8: URN Goal Model for HL-GOAL-1.

39

Chapter 2 Requirements Methodology State of the Art and Practice

2.4.1.2 HL-GOAL-2 Relationships to Goals as URN Model

In Figure 2.9, the goals that contribute to the achievement of HL-GOAL-2 , which
is better development team communication, are shown. The goals needed for achieving
HL-GOAL-2 are a subset of the goals needed forHL-GOAL-1 . This is not surprising
as both are focused on communication.

Figure 2.9: URN Goal Model for HL-GOAL-2.

40

2.4 Summary of State of the Practice

2.4.1.3 HL-GOAL-3 Relationships to Goals as URN Model

Figure 2.10 lists the goals that contribute to fulfilling theHL-GOAL-3 . This high-level
goal is concerned with improving the overall quality of the requirements specification.

Figure 2.10: URN Goal Model for HL-GOAL-3.

41

Chapter 2 Requirements Methodology State of the Art and Practice

2.4.1.4 HL-GOAL-4 Relationships to Goals as URN Model

The content of Figure 2.11 shows the contributing relationships of the goals to the HL-
GOAL-4 , which is the achieving of a faster project process.

Figure 2.11: URN Goal Model for HL-GOAL-4.

42

2.4 Summary of State of the Practice

2.4.1.5 HL-GOAL-5 Relationships to Goals as URN Model

In Figure 2.12, the goals that impact in a positive manner the high-level goal, HL-
GOAL-5 , of a smaller development team size are shown.

Figure 2.12: URN Goal Model for HL-GOAL-5.

43

Chapter 2 Requirements Methodology State of the Art and Practice

2.4.1.6 HL-GOAL-6 Relationships to Goals as URN Model

The goals that contribute to HL-GOAL-6 , compatibility with agile methods for solu-
tion development, are shown in Figure 2.13.

Figure 2.13: URN Goal Model for HL-GOAL-6.

44

Chapter 3

Definition of the Software Agile Modeling
and Engineering Methodology

This chapter presents the definition of the Software Agile Modeling and Engineering
Methodology (SAMEM). Methodology as defined by the Oxford English Dictionary: a
system of methods used in a particular area of study or activity. According to Wikipedia,
a methodology consists of the following concepts: paradigm, theoretical model, phases,
and qualitative or quantitative techniques. A methodology is a guide to achieving a
goal such as the development of a software solution without specifying a specific set of
actions. The SAMEM is a methodology in the accordance with the above definitions.
The organization of this chapter for the description of the SAMEM is as follows:

• 3.1 Purpose of the SAMEM – defines the goals and objectives of the SAMEM
methodology, including some motivation for the work.

• 3.2 Software Engineering First Principles – describes a set of first principles for
reasoning about the software solution development process to assure high quality.
A first principle is a truism that can act as a metric for evaluation of the solution
artifacts or project process.

• 3.3 The SAMEM High-level Structure – covers the fundamental concepts providing
the foundation for the SAMEM and relationships between the concepts.

• 3.4 The SAMEM Process – is detailed by following the organization of the RM-
ODP viewpoints, which leads from the highest levels of abstraction of the solution
to the lowest levels. Each viewpoint level is accompanied by examples from one of
the case studies.

• 3.5 Non-functional Requirements Handling – describes the relationship of non-
functional requirements to the SAMEM approach, which is focused on the func-
tional requirements, the solution design, and the realization.

There are many examples in this chapter that come from the industry projects where
an early version of the SAMEM was employed. The SAMEM was used for two different
medical device companies, called Case Study 1 (CS-1) and Case Study 2 (CS-2). The case
study companies develop, manufacture, and sell two different sets of products. Where

45

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

appropriate, the designator CS-1 or CS-2 will be used to label examples to indicate the
industry source.

Paradigm as defined in the Oxford English Dictionary: a typical example or pattern of
something. Another definition of paradigm is a distinct set of concepts, thought patterns,
and standards. The recurring idea in the above definitions is the use of patterns. In the
SAMEM, several important paradigms or patterns are used to provide guidance. The
main pattern of guidance is provided by the Open Distributed Processing – Reference
Model (RM-ODP) [ISO98] for systematically progressing from abstract definitions of the
problem to a concrete solution realization. The use of RM-ODP is defined in Sub-chapter
3.4.1 and practical examples of its use are in Sub-chapter 4.3.5. A second pattern used
throughout the SAMEM is of iterative & incremental or agile work cycles [Amb02]. The
application of iterative & incremental techniques is mentioned throughout the thesis,
but the primary description of the practical use is in Sub-chapter 4.3.1.

There are three parts to the theoretical model behind the SAMEM. The first part is a
set of Software Engineering First Principles (SEFP). A SEFP is a rule of truth outside the
methodology against which the aspects of the methodology can be tested to determine
the goodness of the definitions. Examples of the SEFPs used are in Sub-chapter 3.2.
The second and third parts of the theoretical model are respectfully meta-definitions for
the process and artifacts in Chapter 5 and Chapter 6.

The phase aspect of the SAMEM adherence to the definition of a methodology appears
in the project process phases. The project process phases are described in Sub-chapter
4.3. The phases provide a different perspective on the process of moving the project from
the beginning to the end. In the SAMEM, the phases are coarser than the RM-ODP pat-
tern in that several RM-ODP viewpoints fit into one project phase. The project phases
assist in coordinating the iterative & incremental cycles and providing business decisions
milestones for evaluating further investment in the project against likely benefits.

The bulk of this chapter describes the techniques used within the SAMEM. The orga-
nization of this chapter follows the normal use of the RM-ODP paradigm from the most
abstract level of specification in the Enterprise Viewpoint to the most concrete level in
the Technology Viewpoint. Each RM-ODP Viewpoint has its own set of techniques,
sub-processes, and artifacts for expressing the requirements or design information. The
techniques are described and multiple examples from the case studies are given to illus-
trate concrete usage of the techniques. The final major part, Sub-chapter 3.8, describes
how the SAMEM handles important non-functional requirements.

3.1 Purpose of the SAMEM

The primary purpose of the SAMEM is to as effectively as possible achieve success in
creating a software-based solution to a business problem. A key to achieving this purpose
is in the following statement from Brooks [Bro95],

“I will contend that conceptual integrity is the most important considera-
tion in system design.”

46

3.1 Purpose of the SAMEM

With a clear concept statement of the problem to be solved, albeit at a high level
of abstraction, as the starting point and a disciplined refinement to more concrete ex-
pressions of the solution, adherence of the solution to the concept can be achieved and
demonstrated. However, in practice, the concept can become misinterpreted and misun-
derstood by the team members due to the accumulation of accidental complexity during
the requirements elicitation and design activities [Bro95], [Bro10], [Win96], [BPKR09],
[FM15].
All elements of the SAMEM are intended to mitigate the risk of developing the wrong

or sub-optimal solution and against an ineffective project process. A wrong solution does
not fulfill the stakeholders’ goals. The wrong evaluation is not black and white as the
solution could fulfill some of the stakeholders’ goals, but partially fulfill or miss others
which results in a sub-optimal solution. Through the processes and communication
techniques, the SAMEM should clearly express which goals will be completely realized
and which goals might not be fully realized because of technical reasons or because of
project budget limitations. The management of stakeholder expectations is of critical
importance to the perceived success of the project and is reflected in the high-level thesis
goal HL-GOAL-1 .
The SAMEM is constructed as a pragmatic balance among the components of an

iterative & incremental process, light-weight artifacts (visual models) supporting effec-
tive communication, and tools for both project management and artifact creation. The
pragmatism is based on 35 years of software solution development experience by the
author. The author has experience with successful solution development projects and
unsuccessful projects. The key motivating unsuccessful project was the first professional
project the author was involved in, which was the development of a computer-based
drafting product for mechanical engineers. Many instances of the product were sold,
but almost every customer returned the product and demanded their money back. This
experience committed the author to learning, developing, and employing software en-
gineering techniques to mitigate against future such failures. The confirmation of the
pragmatic success of the SAMEM is via the empirical evidence collected in the surveys
of the participants in the case studies (see Sub-chapter 7.1).
The SAMEM uses certain first principles that provide a framework to evaluate the

methodology design choices and allow generalization to other domains. The foundation
of SEFPs helped to make the choices needed to fulfill the definition of a methodology
as given above. Alternatives for the paradigm, processes, and techniques were evaluated
with the principles with the best choices selected. A further benefit to using the SEFPs
is in explaining to the project team members why the SAMEM does things in a certain
manner. See Sub-chapter 3.2 for the SEFP definitions.

3.1.1 The Secondary SAMEM Purpose is to Enable Innovation
A secondary purpose of the SAMEM is not to create methodology barriers to innovation,
but to enable innovation possibilities. The author’s experience with other methodologies
during his years of product development revealed a general lack of support and consid-
eration for innovation. Much of this sub-chapter is from the author’s paper “A Proposal

47

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

of Practices, Processes and Models that Enable Innovation Potential” [Mat17] with ad-
ditions beyond the scope of that paper. Innovation is neither predictable nor guaranteed
within a solution development project. Novel ideas can appear during any level of work,
whether as insight during requirements gathering, in high-level design activities, or in
developing code algorithms. As innovation is a creative action, the SAMEM proposes a
pragmatic collaboration of related practices, processes, and modeling ideas that enable
innovation to potentially happen or at least remove some blocking factors.

3.1.1.1 Innovation Practices Rationale

The practices, as embodied in the SEFPs, are mostly mental techniques for a designer
to use which help to maintain an open mind to solution possibilities. The process ap-
proaches are based on and support progress within a flexible, iterative & incremental
methodology that can respond to new ideas. The modeling technique ideas strive to sup-
port the clear communication of understanding and the evolution of the design through
multiple alternatives.

There are many factors that contribute to establishing an environment where inno-
vation flourishes. In [Pet96] the following statement about engineering is made: “And
though engineering is the art of rearranging the materials and forces of nature, the
immutable laws of nature are forever constraining the engineer as to how those rear-
rangements can or cannot be made.” Software engineering differs because it is, at least
outside of the hardware, independent of the physical laws of nature. However, both
software and physical materials engineers have the same goal of creating a good solution
for their fellow humans.

Are there corresponding “laws of nature” for software engineering design that enable
good design and minimize poor design? There are multiple essays and examples in
[Win96] about bringing design to software and in [Bro10] the idea is repeated that
design is a messy creative process. Messy is a situation that the business manager of the
project tries to avoid, rather predictable project execution is desired. A contradictory
project situation is created from the two competing goals.

Practices are mental or thinking aids to maintaining the thought flexibility and dis-
cipline needed to allow for innovation. A practice is also called a Software Engineering
First Principle (SEFP). The analogy is to physics first principles such as the idea of in-
ertia or the absolute speed of light. The benefits of the SEFPs are to have an evaluation
framework outside of the project. Through an application of an SEFP to the design
alternative, the designer can perhaps judge if the alternative can be improved or a novel
alternative is possible. A discussion of SEFPs or practices is covered in Sub-chapter 3.2.

3.1.1.2 Innovation Processes Rationale

The process used to control and manage the project can either enable or suppress inno-
vation. What are the characteristics that could enable innovation during the project?
An iterative & incremental or agile approach has several features that can enable inno-
vation to occur. The primary feature is the short cycles of work, which allows for change

48

3.1 Purpose of the SAMEM

of direction. Not just during an iteration, but especially at the end there is an ideal
opportunity to review the work using the SEFPs. In [Bro10] the cycle of evaluation of
design alternatives and back to earlier decisions is clearly explained.

When the increments of work are kept small, then the design momentum is kept small.
The main component to the momentum is the personal investment by the team members
in their work. Design momentum interferes with innovation, because people get invested
in a direction and resist admission that the earlier choices were poor [Coh10].
A good project process will provide guidance from an abstract solution design through

a concrete implementation. The Open Distributed Processing – Reference Model, ISO-
10746, (RM-ODP) [ISO98] is one example of a framework that provides abstraction
guidance. The desired guidance feature is an approach that helps to order the questions
to be addressed by importance and overall impact on the solution possibilities. The
RM-ODP standard uses viewpoints to order the abstraction level and therefore the
question importance. The path through the viewpoints, from the Enterprise Viewpoint
(highest abstraction level) to the Technology Viewpoint (lowest abstraction level), is not
a straight line but can be done in an iterative & incremental manner. More detail about
the SAMEM processes are given in Sub-chapters 3.4, 4.3, and 4.4.1.

3.1.1.3 Innovation Modeling Rationale

The modeling of requirements and designs is standard engineering practice. Mechanical
engineers, civil engineers, and building architects use graphical models or drawings as the
primary documentation artifact for their solutions. At times, the engineers will create
physical mock-up models to communicate the ideas. The main reason for this is the
communication density and clarity over text [LS87], [Moo09]. The stories of sketching
the new idea on a napkin during a lunch with colleagues abound.
Creating graphical models of the requirements and the design alternatives to those re-

quirements is an application of change language SEFP. The language change is from text
to graphics. The graphical expression allows for different perspectives to be generated.
The graphical models are often faster to generate, especially in a sketching mode. Fast
exploration of new ideas aids innovation. It is rare that an innovative idea is fully formed
on its first expression. Rather, the innovation happens in multiple refinement steps as
the idea is evaluated against the solution goals, discussed with colleagues, and compared
to alternatives. Equally important is keeping a record of the failures or weaknesses so
that the effort is not duplicated.

3.1.2 Supporting the Engineering Due Diligence Purpose

Sub-chapter 3.1.1.2 describes how the RM-ODP gives guidance in moving through the
project abstraction hierarchy levels from the initial vague ideas to the concrete solution.
The additional engineering benefit of Due Diligence is achieved by employing the
RM-ODP viewpoints. Due diligence is the professional behavior of investigating and
honestly evaluating alternatives to achieve a successful solution. In the academic world,
one appearance of due diligence is in the extent and quality of the references.

49

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

Due diligence in the goals and requirement elicitation work takes many forms. One
form is the interviewing of an appropriate number and variety of stakeholders. The
awareness of legal limitations and requirements impacting the solution is also part of
due diligence. In making a decision to move forward with a project, the knowledge and
understanding of major competitive and complementary products is essential.

In making the design decisions of the RM-ODP Engineering Viewpoint, due diligence
is needed to make effective build or buy business choices. Creating a solution by writing
code from scratch is not always the best business decision. Some of the other choices that
must be evaluated with due diligence are buying an existing product, buying a product
that can be adapted within its range of options or preferences, looking for an open source
product, using a product or products that fulfill part of the solution and creating the
missing capabilities, or creating a new solution from scratch. The due diligence work
involves looking for alternatives and evaluating them with respect to fulfilling the goals
and requirements, the costs versus the benefits, and impacts on the organization.

Due diligence within the RM-ODP Technology Viewpoint is making the best possible
technology decisions, within current limitations and constraints. Some of the decision
areas are programming languages, hardware infrastructure, user interaction devices, net-
working protocols, and development tools. In making the technology decisions with due
diligence, the factors like initial cost, people education, maintenance costs, speed, relia-
bility, and productivity are evaluated against the alternatives.

Each RM-ODP Viewpoint has an associated set of decisions. Some decisions have
large impacts on the solution and some have small impacts. Engineering professionalism
demands that the decisions with the large impacts be made with well executed due
diligence. The earlier a decision is made in the project or in other words at a higher
level RM-ODP Viewpoint or level of abstraction, the more likely it will have a larger
impact. The choice between Python or Java as a programming language is an example
of a large impact decision. An example of a small impact decision is the name of a
variable inside a Java method or using a particular coding standard.

3.2 Software Engineering First Principles

An important goal of the SAMEM is its ability to adapt to various domains. The
SAMEM definition needs to be flexible so that it can evolve, but within a set of guiding
principles that assure a quality solution is created through a reliable process. In addition,
the SAMEM should not block insight into the essence of the problem; rather, it should
facilitate innovation in the design of the solution [Bro95], [Bro10], [Win96]. The SAMEM
is not a blind cookie-cutter approach [Amb02], [Pet96]. The Software Engineering First
Principle (SEFP) idea provides a thought mechanism that allows for flexibility while
providing a touchstone to maintain rigor. The SEFPs are designed to manage the balance
between rigor for quality and completeness, and the flexibility to adapt to unknown
situations. The SEFPs will provide some of the rationale for the SAMEM definition
choices. The intent of the SEFPs is similar to the principles of the Agile Alliance
[Bec00], [Amb02].

50

3.2 Software Engineering First Principles

The SEFPs described here are the practices or principles which either existed before-
hand and were adopted or were formulated from lessons learned during the SAMEM
development. Many of the SAMEM SEFPs relate to the SEMAT theory area and are a
possibility for future work (examined in more detail in Sub-chapter 8.2).

3.2.1 Solution Conceptual Integrity (CI) SEFP
The Solution Conceptual Integrity (CI) SEFP is adapted from ideas in the book
The Mythical Man-Month by Frederick Brooks [Bro95] and describes the difficulties in
building large complex solutions. There are two points he makes that are critical to
having a successful solution:

“The hardest single part of building a software system is deciding precisely
what to build.”

“I will contend that conceptual integrity is the most important consideration
in system design.”

The solution concept encodes the essence of what should be built and conceptual
integrity means to be true to the solution concept. The encoding could be visual or text
or a combination of both, but has the property that all the stakeholders understand
the value that will be created by the solution and agree to the concept. The concept
encoding should be compact and easily represented in order to meet HL-GOAL-1 ,
HL-GOAL-2 , and HL-GOAL-3 .

Communicating and recording “what to build” and the solution concept are the pri-
mary purposes of the requirements specification. This SEFP states that it is critical
to define and establish a concise and clear solution concept. The solution concept is
the highest-level summary of the What To Do and the Why To Do It. The solution
concept is the touchstone of correctness used during the Development Process to ensure
the solution stays on the correct track. It does not cover project management objectives
or other business objectives targets. To support the modeling artifact approach, the
solution concept is a statement of the goals to be achieved in a combination of both
graphical images and text where necessary.
The conceptual integrity of the solution is set in the business goals and requirements.

An important part of the requirements that is often forgotten as people hurry to list
functional requirements is the Goal of the solution. The Goal of the solution is the most
basic statement of what value the solution is trying to satisfy; therefore, it becomes the
touchstone for maintaining the conceptual integrity, but the expansion to more detail
must be consistent with the Goal. The Goal can be a single statement or a small set
of Goal statements, but too many Goal statements lead to confusion of purpose. In
many cases, the Goal is expressed in terms of the business value the solution is intended
to deliver [Amb02], [BPKR09], [FM15]. For simplicity, this thesis will use Goal in a
singular form.
This is also echoed in the Volere Requirements Management Methodology [RR99] in

the first category “The Purpose of the Product.” The SAMEM emphasizes separating

51

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

the world of the solution from the NOT the solution. The Goal needs to be expanded
to more accurately and precisely define the solution.

Establishing the concept or Goal for the solution is the first step in the SAMEM and
as the first step it is the fundamental SEFP. It provides a metric against which the work
can be validated. After each iteration, at a minimum, but also during the iteration in the
execution of the SAMEM the following questions should be asked to detect any drifting
away from the Goal:

• Does this requirement adhere to the Goal?

• How does this requirement help fulfill the Goal?

• As the nature of the business problem and the solution direction are better under-
stood, should the Goal definition be updated?

• Does this solution design proposal adhere to the intent of the Goal or does it go
beyond?

3.2.1.1 Visual Model Example of the Solution Concept or Goal

The Solution Concept or Goal can be expressed either in text or through an image.
Expressing it both ways has advantages, as it helps with clear communication to the
development team and for verification with the stakeholders. In Figure 3.1, the solution
concept from a case study is expressed in text combined with a picture, and the business
value concept is included. Each project will have a different solution concept, although
within a business domain there will be similarities.
The specific solution represented in Figure 3.1 (from Case Study company 2) is de-

signed to support the electronic management of information created and updated during
the design of a new medical device. At the start of the project, the bulk of the product
definition and design information was managed by hand on paper. The management of
the information created during the product design is mandated by the US Food and Drug
Administration (FDA) through regulation 21 CFR §820.30 (Quality System Regulation
– Design Controls).
There are three major components to the solution concept expressed in Figure 3.1.

First (label 1O), the title phrase “Product Definition enables Product Leadership” at
the top of Figure 3.1 expresses the solution Goal of producing the leading product in
their business area. Ideally, the title summarizes the business value according to the
Value-Discipline Model [TW95]. Included in the business Goal is the belief from the
stakeholders and expressed in their words that managing the product definition is key
to creating leading products. Second (label 2O), in the box at the bottom of the figure
the phrase “File it, Find it, Reuse it AND Don’t REDO it!” expresses the business value
objective. The business value is created by not redoing work, i.e. do it right the first
time and reuse it as often as possible. Third (label 3O), includes the arc with the text
“Product Definition Scope” and the jigsaw puzzle image in the middle of Figure 3.1
shows at a high level of abstraction that a product definition consists of many related

52

3.2 Software Engineering First Principles

Figure 3.1: Solution Concept Example.

Information Model (IM) pieces. The jigsaw pieces in the central visual image form only
a part of the total product definition. The limited number of jigsaw pieces was selected
with stakeholder feedback as being both representative and within the project budget.

While there are other ways to represent the idea of solution components that are
different, but equivalent, the jigsaw image or metaphor arose in an early meeting with
the stakeholders from CS-2. Because the jigsaw metaphor resonated with all meeting
participants, it was accepted as the core image. Images such as the jigsaw puzzle cannot
be strictly planned for, but normally arise organically from the initial interactions with
the stakeholders. A visual model such as Figure 3.1 fulfills the thesis goals of a compact
format (HL-GOAL-3) and better communication (HL-GOAL-1).

3.2.2 Essential and Accidental Complexity (Essential) SEFP

The "No Silver Bullets" article by Frederick Brooks [Bro95] introduces the concepts of
the essential complexity and accidental complexity of a solution.

“Second, to see what rate of progress we can expect in software technology,
let us examine its difficulties. Following Aristotle, I divide them into essence

53

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

– the difficulties inherent in the nature of software – and accidents – those
difficulties that today attend its production but are not inherent.”

The purpose of the adopted Essential SEFP is to instill in the design of the SAMEM
and the practice of the SAMEM the habit of asking the following questions often:

• Does this work contribute to the realization of the solution?
– A No answer indicates possible accidental complexity or drift from the solu-

tion concept.

• Is this work done in the most effective manner possible or is there a simpler manner?
– A No answer raises possible accidental complexity factors.

• Is the additional overhead of using the tool less than the amount of work without
the tool?
– A Yes answer indicates a minimum of accidental complexity issues.

• What forms of artifacts minimize the effort to create and maintain while maximiz-
ing the communication effectiveness?
– Not a Yes or No answer, but a regular question used to drive continuous

process improvement. Best asked at the end of an iteration.

• Are things done out of habit that can be eliminated?
– A Yes answer raises the possibility for elimination of accidental complexity

and process improvement.

• Are things accomplished through the use of outdated technology that can be im-
proved?
– A Yes answer raises the possibility for process improvement.

The problems that need to be tackled are often very complex. The complexity comes
from many sources, such as a problem previously not tackled, a very large problem, a
geographically distributed team, the use of new technologies, or poor project processes.
Some of the complexity issues cannot be reduced or eliminated, but some can.

In the context of the SAMEM, the focus is on minimizing the accidental complexity
to generate a requirements specification. The clearer the requirements are stated, the
cleaner the solution design and implementation. The specification of the business re-
quirements of the solution should be a very pure form of the essential complexity of the
business problem; however, the form itself introduces accidental complexity. Establish-
ing the solution concept is part of gaining an understanding of the essential complexity
of the problem. There are other tools, mental and computer-based, in the SAMEM that
help with establishing the essence of the problem and minimizing accidental complexity
in its expression.

This principle helps limit the false and non-essential requirements from the solution
specification. The application of this principle can improve the SAMEM and help when
it is adapted to other domains. The Agile Alliance principle of simplicity is very similar.

54

3.2 Software Engineering First Principles

3.2.3 Stability to Variability (S2V) SEFP

The SEFP of working from Stability to Variability (S2V) helps to identify starting
points for the requirements gathering. Stability is the identification of the one, two, or
small number of aspects about the problem domain that are least likely to change with
respect to a time period much longer than the scope of the project. If a too large number
of aspects are seen as stable, then constraints on innovation can be artificially created.
The identification should be at a higher level of abstraction. For example, in Figure 3.1,
the most stable part of the problem is the information about the product definition. Of
course, there will be variations in the information for different products, but product
information emerged as the most stable through the requirements elicitation process.
With the identification of a stable aspect, it must be understood why that aspect is
more stable than other aspects of the problem domain.
The opposite of stability is variability. The more something is likely to change with

respect to the time period of the project, the more variable it is. The understanding
of why and relative placement of the problem aspects on a scale of stable to variable
provides an indicator of the likely optimal order in which to proceed with the project.
The activities of identifying the most stable and most variable aspects of a problem
domain are an important step in understanding the problem domain.
Product lines or variant products are an example of explicitly applying this SEFP.

The core of the product in a product line set of products is relatively stable, while
the differences are the variability. For example, the stability in a mobile phone line of
products is the capability to make calls, while the variability can be features such as the
amount of memory or the camera resolution.
Progress is shown and confidence in the project is developed when the stable aspects

are addressed first. It is easier to elicit requirements, do design, and develop a prototype
when there is little chance of change. There is a side benefit when the problem is attacked
from stable to variable aspects of creating a perception of reliable and reasonable project
progress.
The solution concept and project Goal will often give a good indication of the more

stable business aspects. A good solution concept will reflect a very stable part of the
business problem, as well as opportunities for improvement. One approach that helps
in identifying a stable aspect is widespread agreement among the stakeholders on that
aspect. The reasons why the information models are stable in Figure 3.1 is that there are
two forces that create the stability: 1) the products themselves using the fact that most
new products are evolutionary, not revolutionary and 2) the FDA or ISO regulations
that specify the information that must be delivered for product approval. Identifying
why an aspect is stable or variable is the task of identifying the business forces that
promote stability for the smooth running of the business or the forces that disrupt for
business responsiveness or innovation.
In other domains other aspects will be more stable. For example, for a company that

produces safety and security solutions for the oil and gas industry, the business process
is the point of greatest stability. The business process consists of four high-level steps: 1)
monitor, 2) detect incidents, 3) assess risk, and 4) suggest response. The more variable

55

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

parts are the monitor data that flow through the process and patterns of failure to be
identified.

3.2.4 Symmetry of Action (SoA) SEFP

The Symmetry of Action (SoA) SEFP is especially useful in both requirements elic-
itation and during design work. Symmetry of Action arose from applying the physics
principle of “for every action there is an equal and opposite reaction.” In a solution, there
are often pairs of actions: do and undo. For example, if a stakeholder talks about cre-
ating information during requirements elicitation, then the symmetric action is deleting
the information. At the design level, if there is a create function, then a delete function
should be considered. Of course, there are domains where information or data is not or
cannot be deleted, but is transformed from a can be used status to a do not use status.
The symmetric action to create becomes obsolete or superseded.

The value of the Symmetry of Action SEFP is in achieving GOAL-10 which is
ensuring completeness. Applying this SEFP is a means to check on the completeness
of the requirements specification that can be used by the developers and explained to
the stakeholder without explicit questioning. The SoA check is used in design review
meetings to evaluate the functional completeness or user interface actions. Iteration &
Increment planning can use SoA to schedule pairs of implementation work and testing
so a more complete prototype is presented to the stakeholder.

3.2.5 Modules (Modules) SEFP

David Parnas [Par72] makes the point that a decomposition of the solution based on in-
formation or decision hiding often provides the better level of development management,
product flexibility, and comprehensibility. The decompositions are called Modules and
are adopted as the Modules SEFP. This is one of the earliest statements of abstraction
and the power of abstraction. Models can be an abstraction of the solution requirements
and the design of the solution.

One of the goals he values is that modules should be capable of being assembled, re-
assembled, and replaced within the completed system. His technique for this is expressed
in the following quote,

“...module is considered to be a responsibility assignment.”

From a requirements perspective, this translates into specifying “what” should happen
or is needed from a business view, while delaying the specification of the “how” it is
accomplished until the design phase. The word object can be substituted for module in
most places.

The idea of modules can be applied to organizing the requirements in terms of the
RM-ODP viewpoints. In the gathering of the data requirements of the solution, specific
implementation possibilities are avoided. For example, in specifying the requirement for
unique identifiers for each data item, a particular format or size definition is postponed

56

3.2 Software Engineering First Principles

until the engineering design work is started. When modules are used in the sense Par-
nas has defined, they can help with design work and implementation planning through
separating the engineering design decision for a relational database and the technology
choice of Oracle™. If the definition of the module is clear enough (Goal-19), the work
of either further detailed definition (design refinement) or the implementation can be
given to another person with minimal communication overhead.

3.2.6 Coupling and Cohesion (C&C) SEFP

When attempting to satisfy the goals of defining modules, the design of how things are
connected and the consequences of the connections are important [Mye75]. The term
cohesion expresses the singularity of purpose of the module. A module with the best
cohesion stands on its own and does one thing, which fulfills the definition from Parnas.
Coupling is used to indicate the closeness of interaction between two modules with no
interaction the best. The leveraged ideas of Coupling & Cohesion form the C&C
SEFP.
Coupling and cohesion are metrics by which the quality of modules can be measured.

A good module will have high cohesion meaning that it stands on its own and clearly does
one thing. A good module will have low coupling meaning that it refers to a relationship
in which one module interacts with another module through a stable interface and does
not need to be concerned with the other module’s internal implementation.
The types for coupling from best (low) to worst (high) are:

• No Coupling – the modules do not communicate with one another.

• Message – the modules are not dependent on each other, instead they use a public
interface to exchange parameter-less messages or events.

• Data – the modules share data through, for example, parameters. Each datum is
an elementary piece, and these are the only data which are shared (e.g. passing
an integer to a function which computes a square root).

• Stamp – the modules share a structure and only use part of it, possibly a different
part (e.g. passing a whole record to a function which only needs one field of it).

• Control – one module controlling the logic of another, by passing it information
on what to do (e.g. passing a what-to-do flag).

• External – occurs when two modules share an externally imposed data format,
communication protocol, or device interface.

• Common – when two modules share the same global data (e.g. a global variable).
Changing the shared resource implies changing all the modules using it.

• Content – one module modifies or relies on the internal working of another module
(e.g. accessing local data of another module).

57

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

The types for cohesion from best (high) to worst (low) are:

• Functional – all parts of the module or class contribute to a single well-defined
task.

• Sequential – the parts of the module are grouped because the output from one
part is the input to another part (e.g. a function which reads data from a file and
processes the data).

• Communicational – parts of the module are grouped because they operate on the
same data (e.g. a module which operates on the same record of information).

• Procedural – parts are grouped because they always follow a certain sequence of
execution (e.g. a function which checks file permissions and then opens the file).

• Temporal – the parts are grouped because they are all processed at a particu-
lar time of program execution (e.g. a function which is called after catching an
exception which closes open files, creates an error log, and notifies the user).

• Logical – the parts are categorized as doing the same thing, even if they are different
by nature (e.g. grouping all I/O handling routines).

• Coincidental – the parts are grouped arbitrarily and have no significant relationship
(e.g. a module of frequently used mathematical functions).

While functional cohesion is considered the most desirable type of cohesion for a soft-
ware module, it may not be achievable. There are cases where communicational cohesion
is the highest level of cohesion that can be attained under the design or programming
language circumstances.

During the requirements gathering process, the information pieces and business pro-
cess actions are discovered in a disjoint manner and must be assembled into a coherent
specification. The concepts of cohesion and coupling guide that assembly process to a
quality and coherent specification. This also applies to the design of the solution from
the requirements. Different combinations of assembling the modules correspond to dif-
ferent design alternatives and coupling and cohesion metrics are one dimension that can
be used to evaluate the alternatives.

3.2.7 Patterns (Patterns) SEFP

Patterns of structure and action are hallmarks of a professional approach to doing work.
The use of patterns, both architectural and transformational, ensures a completeness
and correctness to the establishment of the requirements, design, and ultimately the
solution code. The Patterns SEFP is intended to keep the use and evaluation of good
engineering patterns at the forefront of the solution work.

Patterns can be used to assist in achieving the necessary completeness while deferring
details and as such they can be used to maintain the appropriate level of abstraction.

58

3.2 Software Engineering First Principles

Patterns work well with module design. The lesson for innovation from [AIS+77] is that
there are levels of patterns or patterns within patterns that can be used in designing a so-
lution. For software, there are collections of design patterns available [Fow03], [GHJV95].
In addition, there are the patterns conveyed by the acronyms, such as CRUD (Create,
Read, Update, Delete) and ACID (Atomicity, Consistency, Isolation, Durability) which
can be used to check the completeness of requirements and evaluate designs.
While there are lists of well-known patterns, often an aspect of completeness and

innovation is the discovery of new or domain-specific patterns. Design innovation can
be stimulated by the following questions:

• Can an existing pattern simplify or improve the design?

• Is there a new pattern emerging from the design?

Patterns can be over-used which results in accidental complexity [Bro95]. Just because
a pattern could be applied does not mean it should be. The use of a pattern in the design
should be combined with a rationale that explains the benefit of the pattern and the
context of its use. The rationale is especially useful for future maintenance activities,
which are often done by a person other than the original author and for the training of
less experienced colleagues.

3.2.8 Optimal Performance (OP) SEFP

The SEFP for Optimal Performance (OP) is formulated as the fewest operations on
the fewest pieces of data. This approach to thinking applies from the gathering of re-
quirements to the design of code methods. It helps in discovering the essence. Applying
Optimal Performance SEFP to requirements gathering, the need for collecting tra-
ditional performance requirements is eliminated. In evaluating requirements, the OP
SEFP is used to check whether the requirement is necessary to achieve the solution goal
and is consistent with the solution concept.
In practice, some of the optimal performance SEFP questions are:

• Is this feature or this information essential to achieving the solution concept or
not?

• Is the design of the feature or data as efficient as possible?

• Does the collection of features work in an optimal manner or are transformation-
s/translations involved?

• Has the design been translated into good code?

• Are the best coding practices being used in relation to the life of the solution?

59

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

3.2.9 Change Language (CL) SEFP

An idea that evolved from the author’s experience that helps to discover the essence
of a problem or express the solution concept is stated as change your words to change
your perception to open innovation opportunities. This is the Change Language (CL)
SEFP. Almost every domain has its own set of vocabulary. In some cases, the domain
vocabulary must be used to ensure clear communication. However, when a solution
developer uses alternative expressions and synonyms, opportunities are opened to think
in new directions. This is the mental equivalent of picking an object up and turning it
around in your hands to view all sides.

A co-approach to new words is the communication richness provided by the graphical
expression of the design idea or concept [LS87]. It is possible to articulate the solution
concept graphically [Mat11]. User Requirements Notation (URN) [URN12] and i* [Yu09]
can be used to express the essence of the business value and the goals of the business
organization as an alternative to text. Many aspects of a software design alternative can
be conveyed graphically in Unified Modeling Language (UML) [OMG15b] or a modified
sub-set of UML.
The CL SEFP also stimulates innovation. Through deliberate attempts to express

the solution concept, the requirement, the architecture design, or the technology design
via different words or images, alternatives are revealed.
An example of the CL SEFP is visible in Figure 3.1. The jigsaw puzzle pieces used to

communicate that the solution can be seen as a set of interconnected semi-independent
information units is a simple visual statement. Another example of the CL SEFP is
that the solution in one case study was called the R&D Knowledge Management System
(R&D KMS), rather than using the name of the off-the-shelf product it was implemented
on. The vision of managing the R&D knowledge was more powerful and less limiting
than referring to the Siemens Teamcenter Product Lifecycle Management product, which
was the technology of implementation.

3.2.10 Ready-to-Hand (R2H) SEFP

The term Ready-to-Hand comes from Martin Heidegger in his book Being and Time
which refers to the natural usability of a tool such as a hammer. When there is some
kind of breaking down in using a tool, an unreadiness-to-hand occurs. The R2H SEFP
idea acts to evaluate whether the requirements reflect the concept, the design reflects
the requirements, and the implementation reflects the design. When there is a break-
ing down, then the solution fails to be Ready-to-Hand, this is revealed through the
unnatural use of the solution.
A deeper explanation of Heidegger’s ideas to the design of computers and software

is found in [WF86]. For this thesis, the essence of Ready-to-Hand (R2H) is that it
offers an external criterion for the evaluation of the design of a solution. In this case,
design is used in a very general sense referring to everything from the statement of the
solution concept through the realization. A breakdown is often caused by the presence
of accidental complexity or an unclear expression of the solution essence at some point in

60

3.2 Software Engineering First Principles

the design with its propagation throughout the solution. For example, the inclusion of a
“cool” feature such as pop-up windows that obscure valuable information, but one that
does not help achieve the solution concept. At any point along the process, a breakdown
can occur. The R2H SEFP can generate questions to discover something about the
nature of the breakdown and possible remedies, such as:

• What is unnatural about the current solution design?

• Upon gaining a deeper understanding of the business problem and possible solution
alternatives, is the solution concept still valid?

• Are there requirements that do not support the solution concept?

• Is there a lack of fidelity to the solution concept?

• Are there missing features?

• Does the process and task navigation match the natural business thinking?

• Is the user interface too complex and off-putting?

3.2.11 Form Follows Function (FFF) SEFP
The American architect Louis Sullivan coined the phrase form ever follows function
[Wikipedia]. The phrase is commonly shortened to Form Follows Function (FFF).
The application of the FFF SEFP is as an external check on the artifacts produced by
the SAMEM. As an external check, the features, functions, and capabilities proposed for
the solution in the requirements can be evaluated against achieving the solution concept.
The FFF SEFP can be applied to the engineering design to minimize over-engineering
often caused by addressing marginal error situations that are very unlikely to arise. In
the technology design and implementation, the FFF SEFP is used to evaluate which code
patterns are most useful. Distinguishing between essential and accidental complexity is
helped through the application of the FFF SEFP.
The FFF SEFP is used in the design of the SAMEM. The functions of the SAMEM

are expressed in the high-level goals (HL-GOAL) as listed in Sub-chapter 1.2. The
function of the communication goals HL-GOAL-1 , HL-GOAL-2 , and HL-GOAL-
3 are achieved in large part through the form of visual modeling techniques. The form
of the iterative & incremental process approach helps achieve the function stated in
HL-GOAL-4 .

3.2.12 Summary of Software Engineering First Principles
The Software Engineering First Principles are independent of any particular method-
ology, engineering approach, or technology. They are also independent of solution do-
main. This independence places them outside the problem and solution worlds. Since
the SEFPs are external to the work, they can act as measures of the quality, in the
broadest sense, of the solution and all its components. Below is a list of the SEFPs:

61

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

• Conceptual Integrity (CI)

• Essential versus Accidental Complexity Awareness (Essential)

• Stability to Variability (S2V)

• Symmetry of Action (SoA)

• Modules as defined by Parnas (Modules)

• Coupling and Cohesion Metrics (C&C)

• Patterns (Patterns)

• Optimal Performance (OP)

• Change Language (CL)

• Ready-to-Hand (R2H)

• Form Follows Function (FFF)

The SAMEM is designed to work in conjunction with the SEFPs to meet its design
goals and to produce the highest quality solutions with quality being fitness for use as
judged by the stakeholders.

3.3 The SAMEM High-level Structure
The SAMEM is introduced by a simple view of its architecture. Five major components
make up the essence of the SAMEM: the Processes, the Model Artifacts, the Tools, the
Software Engineering Principles, and the Methodology Framework (see Figure 3.2, same
as Figure 1.1 but repeated for convenience). For both the development of the SAMEM
and the education of the development team and the solution stakeholders, it is useful to
start from a simple model of the SAMEM and build up the definition in logical steps
with the rationale for each step.

Iterative & incremental is the Process style in Figure 3.2. Incremental is defined as
progressing towards a solution in small, controlled, and well-defined steps. An increment
could be eliciting requirements from a specific stakeholder, designing a user interface
screen, writing a set of tests, or implementing a Java class. An iteration is one cycle
of a series where each cycle consists of the same general steps of work and produces a
result. An example of an iteration is: talk with a stakeholder to elicit some requirements,
model the requirements, verify that the requirements are correct, repeat until no more
requirements are found.

An iteration includes a verify step so that each block of work done in an iteration
is correct as far as can be known at that point in the project process before proceeding
with the next block of work. The iterative & incremental process paradigm also applies
to the development of the solution engineering design and the realization of the design.

62

3.3 The SAMEM High-level Structure

The primary rationale for choosing the iterative & incremental process approach with
a verification step is to control project risk. Another rationale for choosing an iterative
& incremental process style is in the proven success at the programming level as seen
in eXtreme Programming [Bec00], [Amb02], SCRUM techniques [Coh10], and general
good engineering practices [Amb02], [Bro10], [FM15], [Pet96], [Win96].

The SEFPs are an essential part of the verification action at the end of an iteration.
Especially early in the project as understanding is developing, the SEFPs of CI, Es-
sential, S2V, CL, and FFF are useful in focusing the work. The focus is achieved by
project team agreement on the artifacts and agreement on the boundaries between what
is in the project and what is outside the project scope.

Figure 3.2: SAMEM Components.

The iterative & incremental process paradigm strongly contributes to meeting the the-
sis goal of HL-GOAL-1 , better stakeholder communication by providing small amounts
of bounded information for review on a frequent basis. The improvement in stakeholder
communication carries over to the goal of HL-GOAL-2 , development team communi-
cation improvement for the same reasons. When the increments are of a reasonable size,
reasonable varies from project to project and with the experience of the people involved,
then achieving the goal of HL-GOAL-4 , faster project processes, is possible. The main
speedup is due to the elimination of long wait times while either the stakeholder reviews
a large body of work or the development team produces something for review. Iterative
& incremental supports the thesis high-level goal of HL-GOAL-6 , compatibility with
agile methods for development. While there are natural iterations due to people finding
a common understanding [Bro10], [Pet96], [Win96], a consequence of small steps is the

63

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

risk reduction of major rework because something incorrect relative to the stakeholder
desires is built.

The choice of an iterative & incremental process paradigm contributes to the fulfill-
ment of the following goals: GOAL-2 , GOAL-3 , GOAL-4 , GOAL-7 , GOAL-14 ,
and GOAL-22 . The reduction in project risk of GOAL-2 comes about through the
small iteration steps which enable frequent checks on the correctness of the work and fa-
cilitates meeting GOAL-7 for project management overview and control purposes. The
GOAL-4 is a design goal based on the successes of SCRUM and Agile techniques. The
iterative & incremental process paradigm supports the related goals, GOAL-14 and
GOAL-22 , which look for multiple feedback possibilities and frequent small releases.
GOAL-3 is indirectly fulfilled through the capability to create traceability information
on the artifact increments from iteration to iteration.
The requirements specification consists of manyModel Artifacts, as shown in Figure

3.2, both visual and text. The ideas of Model-driven Engineering (MDE) [OMG14a],
[Mat02], [Fra03], [FR07], [KWB03], [Whi15] and the power of graphical communication
[LS87], [Moo09] are the rationale for specifying as many requirement artifacts as possible
as visual models. The UML [OMG15b] is chosen as the modelling language starting point
because of its widespread use as a design modeling language. However, the UML is not
intended to be the only visual modeling language. The SAMEM supports the freedom
to invent new and more appropriate models as needed [Amb02], [CGHM13], [BC12],
[Mat09].
The high-level thesis goals strongly related to the Modeling Artifacts are HL-

GOAL-1 , HL-GOAL-2 , and HL-GOAL-3 . The value of HL-GOAL-1 and HL-
GOAL-2 are directly related to the power of visual communication [LS87]. The overall
quality of the requirements specification, HL-GOAL-3 , is related to how compact it is,
which means that it is more readily reviewed and is a result of the higher communication
band width of visual models [LS87], [Moo09].
The visual Modeling Artifacts are connected to the following goals: GOAL-1 ,

GOAL-5 , GOAL-9 , GOAL-12 , GOAL-15 , GOAL-18 , GOAL-19 , GOAL-21 ,
GOAL-24 , and GOAL-25 . The accuracy of visual models for certain specifications is
well known [LS87] which supports achieving GOAL-1 . The goals expressed in GOAL-
5 , GOAL-9 , GOAL-12 , and GOAL-24 all focus on communication effectiveness,
which visual models excel at for many specification needs. GOAL-15 , GOAL-18 ,
GOAL-19 , and GOAL-25 emphasize different aspects of communication flexibility
and there are visual modeling techniques to choose from, including text when it is a
better communication medium. In general, it is faster to create a visual model and get
stakeholder feedback, which supports the faster iterations of GOAL-21 .

TheTool category in Figure 3.2 is broad. It covers computer-based tools used to create
and manage the model artifacts, mental tools to guide the work during an iteration,
and project management tools. The SAMEM does not depend on any particular set of
computer-based tools. Mental tools, practices, and SEFPs used for investigation, design,
and analysis are also an important part of the SAMEM. Of particular importance are
the mental tools of patterns. Patterns happen at all levels of abstraction and help to

64

3.4 The SAMEM Process

bridge abstraction levels by hiding details as Parnas proposes [Par72]. The SAMEM
does not employ any specific project management tools, but a general project process
supporting the SAMEM and used in the case studies will be discussed in Chapter 4.

The Tool category is most closely related to the high-level thesis goals of HL-GOAL-
3 , HL-GOAL-4 , and HL-GOAL-5 . A good set of tools can speed up the project
process as expressed inHL-GOAL-4 . Through the use of good tools, the high-level goal
of HL-GOAL-5 can be achieved as each development team member is more effective
in their work. Good tools help in creating, reviewing, and communicating the more
compact form of the visual models, which help in achieving HL-GOAL-3 .
The specific goals that have a high affinity to the Tool category are GOAL-10 ,

GOAL-11 , GOAL-13 , GOAL-16 , GOAL-17 , GOAL-20 , and GOAL-23 . En-
suring completeness as expressed in GOAL-10 can be assisted by using tools to check
the artifacts. Meeting GOAL-11 and GOAL-23 keeps the SAMEM up-to-date with
the latest tool and software engineering improvements. GOAL-13 is a design goal that
provides the basis for creating and extending tools as the SAMEM evolves over time.
The use of tools can help achieve theGOAL-16 objective of making reasonable progress
by limiting slower manual efforts. GOAL-17 is a requirement on the tools to have the
capabilities to track evolutionary improvements in the artifacts. Meeting GOAL-20 re-
quires that the tools have a range of adaptations or configurations to support a spectrum
of domains.
The Software Engineering Principles &Methodology Framework in the center

of the triangle in Figure 3.2 provides the coordination and integration between the
Process, Tools, andModel Artifacts. While the coordination and integration aspects
can be viewed as a type of accidental complexity, scaling up to a large project requires
the synchronizing of work to avoid chaos.
In the following sub-chapters, the SAMEM details will be explained by following a

typical development project as it proceeds from the higher abstraction levels to finer
details. The details for the rationale, first principles, and lessons learned from the
application on 18 industry projects will be interwoven. Chapter 4 contains more details
about the companies involved in the case studies and the practical application of the
SAMEM.

3.4 The SAMEM Process

The process approach is iterative & incremental throughout the whole project lifecycle.
This means taking a small step forward, whether with requirements, design, or realiza-
tion, and verifying that the small step is correct as soon as possible. The objective is to
minimize the risk of investing time and effort in false work. By ensuring that the project
stays on the correct path toward the solution Goal, the time and effort in completing
the solution is also minimized.
Of the three SAMEM components in Figure 3.2, the Process component is primary.

The Model Artifacts component will be adjusted to support the Process component
and the Tools component will be adjusted to support the Model Artifacts and the

65

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

Process components.
For large projects, a project coordination process is needed to support business due dili-

gence manage the return-on-investment, and support fiscal responsibility. The SAMEM
recognizes the need, but does not mandate any specific approach. In Sub-chapter 4.3.1
an example of the project coordination process used in the case studies is described.

3.5 The SAMEM Methodology Framework
The initial cycles of gathering the requirements and understanding the domain often
seem chaotic and random [Win96], [Amb02]. Others have written about the indirectness
of the design process and the impact of design attempts on requirements [Bro10]. In
order to help tame the chaos and provide some guidance on proceeding, some assistance
is needed. In practice, the question is: How does one do the iterations and make the
incremental steps be forward progress?

A process and mental framework is used to help guide the overall project process. A
framework is defined as a structure for organizing the model artifacts, set of recommen-
dations for the next tasks, and a roadmap for systematically advancing from a simple
high-level statement of the problem to a realization acceptable to the stakeholders. The
primary feature for a requirements methodology framework is the ability to manage the
level of abstraction appropriately during the current stage in the development process.

In Figure 3.2, the SAMEM Methodology Framework component is the Open Dis-
tributed Processing – Reference Model (RM-ODP) [ISO98]. The reason for the selection
of RM-ODP is the systematic progression from abstract expressions of the problem and
solution domain to concrete expressions of the solution realization. It is the systematic
progression that will provide guidance and control to setting the context of work for
the iterations. The RM-ODP is also an ISO standard which implies validity to its ideas
through the ISO standard review process.

In addition to the systematic progression from vague initial idea to complete solu-
tion, the RM-ODP helps achieve due diligence. As discussed in Sub-chapter 3.1.2, due
diligence is a characteristic of professional engineering that implies thoroughness and
quality of work. Not only are the decisions and their associated rationale part of due
diligence, but also an evaluation of the consequences of the decision is included. The
RM-ODP assists in achieving due diligence by the ordering of the work so that the more
important decisions are taken first.

The RM-ODP framework consists of five viewpoints. The viewpoints correspond to
the modularization guidelines from Parnas [Par72]. Each of the viewpoints provides a
different focus for looking at the solution for a specific area of essential understanding.
The five viewpoints are:

• Enterprise Viewpoint: A viewpoint on a system and its environment that fo-
cuses on the purpose, scope, and policies for that system.

• Information Viewpoint: A viewpoint on a system and its environment that
focuses on the semantics of information and information processing.

66

3.5 The SAMEM Methodology Framework

• Computational (Behavior) Viewpoint: A viewpoint on a system and its envi-
ronment which enables distribution through functional decomposition of the sys-
tem into objects which interact at interfaces.

• Engineering Viewpoint: A viewpoint on a system and its environment that fo-
cuses on the mechanisms and functions required to support distributed interaction
between objects in the system.

• Technology Viewpoint: A viewpoint on a system and its environment that
focuses on the choice of technology in that system.

The RM-ODP standard is not blindly followed. Adaptations are made to provide the
flexibility needed for an iterative & incremental approach and a pragmatic project pro-
cess. For example, the Computational Viewpoint definition in the standard is relaxed to
cover the behavior requirements of the solution. At the time of requirements elicitation,
the objects of the system, as referred to in the RM-ODP standard, are unknown. The
spirit of different levels of abstraction described in RM-ODP is used. The viewpoints
help keep the people involved in the project focused on the task at hand. By controlling
the progress from abstract to concrete, the options for innovative solutions are left open.
Jumping to early conclusions or decisions is hindered.
A visual relationship of the viewpoints is shown in Figure 3.3. A similar graphic,

but with customer-specific terminology, was developed to explain RM-ODP concepts
with their usage to both the development team members and to the stakeholders. The
SAMEM organizes the RM-ODP viewpoints into two categories: 1) Requirements in
Business Vocabulary, the Enterprise, Information, and Computational (Behavior) View-
points, and 2) Design Models, the Engineering and Technology Viewpoints. The RM-
ODP categories are used to help control and focus the work at the appropriate level
of abstraction. For example, if a project team member offers an opinion on a specific
database technology and the project is working on behavior requirements, then it is easy
to table the suggestion for later consideration with the rationale that it is inappropriate
at the current time.
As the project moves from the Enterprise Viewpoint through the Technology View-

point, increasingly detailed decisions are made. Each decision is an evolution step from
the abstract to the more concrete and restricts the options at the next level of detail.
For example, while eliciting business information requirements in the Information View-
point, design work of the Engineering Viewpoint is discouraged. However, as Brooks
[Bro10] points out, sometimes a quick jump to more specifics can provide indications of
realization risk or assurances of no realization risk.
The RM-ODP abstraction structure helps guide work through the separation of con-

cepts and their language. The artifacts and communication at the Enterprise, Informa-
tion, and Computational (Behavior) Viewpoints use business concepts and vocabulary.
At the Engineering Viewpoint level, systems architecture concepts are used, such as the
Model-View-Controller pattern, a database for persistent storage, or the Web for the
user interface. The Technology Viewpoint uses the language of specific technologies,
such as Java, HTML5, CSS, etc.

67

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

Figure 3.3: RM-ODP Viewpoint Relationships.

Besides the categorization of the viewpoints and the viewpoint structuring according
to level of abstraction, there are important transition paths involved: 1O, 2O, 3O, 4O, 5O, and
6O. The transition paths shown in Figure 3.3 are the default paths for a normal project
because of the abstraction flow. When the most stable aspect of the solution concept
is information, then path 1O to the Information Viewpoint makes the most sense. If the
process in the solution concept is the most stable aspect, then path 2O to the work in the
Computational (Behavior) Viewpoint is probably a more optimal first refinement step.
Transition path 3O involves applying a pattern to create behavior on the information
artifacts. This pattern is described in more detail in Sub-chapter 3.5.3.
As Figure 3.3 shows, moving from the business concepts to the engineering concepts

through paths 4O or 5O involves design choices about which engineering approaches best
satisfy the requirements. Good engineering work should produce multiple design alter-
natives [Bro10], [Pet96], [Win96]. Refining a high-level engineering design to a specific
set of realization technologies, traversing path 6O, produces artifacts in the Technology
Viewpoint. In the Technology Viewpoint another set of concepts and vocabulary exists.
For example, the engineering design specifies a database (engineering concept) to meet
the information model requirement of persistence (requirements concept), which leads
to the technology design choice for the PostgreSQL product (technology concept), after
considering other products and the business constraints.
The RM-ODP framework helps achieve the thesis goals of better communication by

providing a context for the work being done and the purpose of the associated model
artifacts. While in other methodologies, such as RUP [PK00], Volere [RR99], and Agile
Modeling [Amb02], the communication is focused on the requirements artifacts, the

68

3.5 The SAMEM Methodology Framework

communication about the project status is just as important. The SEMAT approach
has specific components to communicate the project status. Besides the communication
of the artifacts, the abstraction transition shines a light on the rationale for the design
options and choices which enables them to be documented as well. The design rationale
and documentation support the demonstration of due diligence.

The thesis goal of faster project process (HL-Goal-4) is supported by the systematic
but flexible progression through the different types of work involved in the project. The
systematic progression guided by the RM-ODP framework helps to minimize the time
spent in redoing work because a decision was made out of its proper sequence.

3.5.1 Objective of the Enterprise Viewpoint

The objective of the RM-ODP Enterprise Viewpoint is to specify the business purpose
and benefit of the solution to all the people involved. This matches with the idea of
specifying the business Goal and solution concept discussed earlier. The Enterprise
Viewpoint is used at the beginning of the project to keep the discussion focused on
the proper level of abstraction. The proper abstraction level of the questions that are
“What?” and “Why?”, not “How?”.
While the specification of the solution concept and the mantra, as shown in Figure

3.1, is an essential part of the Enterprise Viewpoint, it is not enough. The project
experiences uncovered a communication gap of an overall picture of the solution which
led to the development of the Solution Overview Drawing (SOD). An example of a SOD
is shown in Figure 3.5. The SOD communicates in more detail than the solution concept
the scope of the project and is a visual summary of the requirements. In brief, the SOD
is an assembly of models created during the requirements elicitation activities of the
RM-ODP Information and Computational (Behavior) Viewpoints. The SOD contains
at a high level of abstraction and a somewhat more symbolic representation the essence
of the solution process (behavior) together with the solution information model. The
SOD is incrementally built up through the iterations for requirements elicitation, so that
it provides a conceptual integrity feedback mechanism from the more concrete work of
the Information and Computational (Behavior) Viewpoint to the Enterprise Viewpoint.
In practice, the SOD is used at the start of almost every meeting as the basis for

setting the meeting context and for verification review. Colloquially it was called the
“1-pager” with the stakeholders as it fit on a single 11x17 inch or A3 size paper. In the
industry projects, the SOD became part of the requirements specification. The SOD
examples were reviewed by an FDA auditor 1 and were found to be more helpful in
understanding the intent of the product than corresponding text explanations.
The SOD is an example of the SAMEM fulfilling the following thesis goals through a

novel approach:

• HL-GOAL-1 : better stakeholder communication.
1An FDA auditor is an employee of the FDA that checks a business, usually with respect to a particular

product, for compliance to the regulations.

69

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

• HL-GOAL-3 : requirements in more compact format.

• GOAL-5 : maximize the use of visual models for communication.

• GOAL-9 : flexibility in visual models for communication optimization.

• GOAL-1 : consistent presentation to optimize communication.

• GOAL-18 : visual artifacts must not be limited by existing notations.

• GOAL-19 : visual models must be good enough for the purpose.

3.5.1.1 Examples of Enterprise Viewpoint Model Artifacts

In the case studies, there are two primary visual model types used to document and
communicate the Enterprise Viewpoint. The first model type is for the solution concept.
It embodies the solution concept at the highest level of abstraction. All modeling refine-
ment to greater detail starts with this model. The second model type is an assembly of
more specific models from the Information and Computational (Behavior) Viewpoints,
called the Solution Overview Drawing (SOD). In assembling the SOD, more abstract
representations of information and behavior are included, so that the SOD fits on one
page of size A3 or US 11x17 inch.

Figure 3.1 shows an example of the solution concept model. One important com-
munication characteristic of this model is that it should fit on one page. The puzzle
communicates that the Product Definition is assembled from multiple interconnected
groups of Information Models (IM). The value of this particular image is that it can
be refined while keeping the same format. For example, the Design History IM puzzle
piece from Figure 3.1 shows the next level of refinement as several puzzle pieces with
more detailed information models in Figure 3.4. While keeping an image style through
refinement enhances the communication, at some point the image loses its communica-
tion effectiveness. The images and text details, in Figure 3.4, such as case study specific
jargon of “CRM Library” and “Tox. Library,” are not optimally represented using the
jigsaw puzzle piece metaphor when going to the next level of detail. A more appropriate
format based on the UML for these details is the information unit and is addressed in
Sub-chapter 3.5.3. When a communication style transition takes place, it is often an
indication of an abstraction transition to a more concrete form.

Figure 3.1 provides the first point of agreement with the customer. The objective dur-
ing the project is to stay true to the agreement (CI SEFP). When there are questions or
concerns, the refinements can be traced back to this image for confirmation of direction.

The Solution Overview Drawing (SOD), Research Note example in Figure 3.5, is an
assembly drawing of the primary requirement models done for each Information Model
indicated either in the solution concept model (Figure 3.1) or in a direct refinement
(Figure 3.4). In a large project, there can be multiple SODs. The number of SODs is
dependent on clear communication and a pragmatic division of work. For the complete
solution, there is a set of SODs representing all of the IMs. This is an application of the

70

3.5 The SAMEM Methodology Framework

Figure 3.4: Design History Puzzle Piece Refinement.

modularization ideas from Parnas [Par72] as embodied in the Module SEFP. The SOD
displayed in Figure 3.5 defines the responsibility scope for the module of the Information
Model (IM) of Research Notes as shown in one of the jigsaw puzzle pieces of Figure 3.1.

While the SOD is considered to be part of the Enterprise Viewpoint, it is developed
over time as the Information and Computational Viewpoint models are discovered and
refined. The rationale for considering the SOD as part of the Enterprise Viewpoint is
that it is viewed as an abstract summary of the major requirements.
From stakeholder communication experience, the SOD was designed for a horizontal

or landscape 11x17 inch or A3 sized piece of paper and intended to be printed, it was
referred to as a “1-pager” in the case studies. In Figure 3.5, the SOD image shows the
standard layout that was developed which has been rotated counterclockwise to max-
imize resolution, although the reduction in size will make some text illegible. Higher
resolution images of the components of Figure 3.5 are shown in Figure 3.6, Figure 3.7,
Figure 3.8, and Figure 3.9. Having some open space on the SOD is very useful for stake-
holder review comments. Each SOD has four major components, which are described in
detail and there is a standardized format for each major component to support commu-
nication consistency:

71

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

1. (label 1O)In the upper right corner is an abstraction of the information units and
structures of the Information Model. Across multiple SODs the same colors and
graphical forms are used for communication consistency. The objective is to bal-
ance the limited space with enough detail to communicate the essence of the in-
formation units and structure. Figure 3.6 shows this component in more detail.

2. (label 2O) The upper middle section holds the state machine or machines for the
information units. The state machine describes the transitions from new and
unreliable information to approved and trusted information. Figure 3.7 is a close-
up of the state machines.

3. (label 3O)The upper left corner contains text notes with significant requirements
that are best expressed in text or known constraints. Figure 3.8 shows the notes
in greater detail.

4. (label 4O)The majority of the space on the SOD, the bottom half of the drawing
or more, is for the Business Flow. The details of the Business Flow are explained
in Sub-chapter 3.5.3. If the Business Flow is large, then it is abstracted until it
fits or as a communication alternative several sub-SODs are produced with greater
detail. Figure 3.9 shows the Business Flow at greater resolution.

72

3.5 The SAMEM Methodology Framework

Figure 3.5: SOD Standard Layout Overview Example.
73

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

Figure 3.6: SOD Information Model Section Detail.

Figure 3.6 shows an abstract version of the full information model for the Research
Notes IM, which is used in the SOD. It contains two Research Note Items with one
expanded to illustrate the use of revisioning within the Research Note Item, Research
Note Revision A, and Research Note Revision B. The expanded Research Note Revision
A box also shows the significant business properties, the ones most used for finding a
Research Note, but not all of the business properties. The complete definition of business
properties for an information unit is specified in other artifacts, see Sub-chapter 3.5.2.1
for examples. The Technical Report object and dashed lines connecting it to the Research
Notes indicate that multiple Research Notes might be used as input to create a Technical
Report, which is the subject of a separate IM and a dashed line visual notation is used
to indicate that those items are separate from this model but related. This case study
example illustrates a lesson learned, which is to include additional clarifying text to

74

3.5 The SAMEM Methodology Framework

enhance stakeholder communication. In this example, the large curly bracket character
by the two Experimental Findings boxes attached to Research Note Revision A indicates
that the data could be in a variety of forms such as MS PowerPoint™, MS Excel™, MS
Word™, or some other format. The data format is appropriate to the nature of the
experimental data.

Figure 3.7: SOD State Machine Section Detail.

The two state machines shown in Figure 3.7 are part of the information model, even
though state machines are usually considered behavior. The reason for considering the
state machines as part of the information model is because they show the possible values
for the Status property, or attribute of the Research Note Item, or one of its Revisions.
There is a state machine that changes the status of the Research Note Item to Approved
and a separate state machine for the Research Note Revision.

Figure 3.8: SOD Notes Section Detail.

The Notes section of the SOD, Figure 3.8, normally has a few points in text that clarify
requirements or list restrictions best expressed in text. In some cases, the notes section
will contain questions arising from the review tasks. The contents can vary from SOD

75

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

to SOD instance and will evolve within an SOD as progress is made on the information
models or behavior models.

76

3.5 The SAMEM Methodology Framework

Figure 3.9: SOD Business Flow Section Detail.

77

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

The main Computational (Behavior) Viewpoint component of the SOD is the Business
Flow as shown in Figure 3.9. The Business Flow is a business process model, similar
to or compatible with the UML Activity Model or Business Process Modeling Notation
(BPMN). It describes the lifecycle process for the Research Note information model, from
its creation, the New status, to its finish, the Approved status. In general and relative to
the information model, the Business Flow in the SOD specifies how the business works.
Some of the tasks in the Business Flow are automated in the solution, but some tasks
are not, so that the Business Flow is the complete picture of the tasks, not just the parts
of the automated solution. A complete explanation of the Business Flow Model can be
found in Sub-chapter 3.5.3.

3.5.2 Objective of the Information Viewpoint
The RM-ODP Information Viewpoint holds at a business level the information definitions
for the solution Information Models (IM). In the solution concept model of Figure 3.1,
there are eight different top-level IMs assembled to make up the product definition. There
are actually more than eight for the whole business, but in this case study the scope of
the project was limited to the eight listed in Figure 3.1. Figure 3.4 holds the refinement
of one top-level IM and this is the subject of an Information Viewpoint increment. The
benefit of this viewpoint is in keeping the discussions at the business level and avoiding
computer science data structure like vocabulary during the requirements elicitation work.
Computer science terms such as object, class, tree, linked list, and array were explicitly
avoided. Neutral terms of “information unit” and “information structure” were used in
the case studies, this is a lesson learned on effective communication with non-computer
literate stakeholders. In Sub-chapter 4.1 more detail about the case study companies
and the stakeholder backgrounds is discussed.

UML Class Models provided the initial starting point for the information artifacts.
However, a lesson learned was that the stakeholder communication did not work well
with standard UML artifacts [Moo09], [Mat11]. In brief, the lesson learned was the
visual simplicity of form, line figures, and the associated complexities needed for code
development interfered with the communication. More about this lesson learned is dis-
cussed in Sub-chapter 4.4.1.3. While keeping with the intent of the UML Class Model
paradigm, several of the rules and behaviors are relaxed to achieve effective artifacts. A
simplified Information Unit Model is the replacement for the UML Class Model. Other
researchers have also reached a similar conclusion on UML communication limitations
for non-programmers [Amb02], [BC12].

The Information Unit Model for the SAMEM separates the data aspects from the
behavior on the data, which is the domain of the Computational (Behavior) Viewpoint.
The basic characteristics are attributes for data values, relationships to build parent-
child structures, and relationships between units for other business structures. The
Information Unit Model also includes an associated State Machine Model which describes
the completeness and trustworthiness of the Information Unit Model. In practice, a
newly created Information Unit Model is not complete or fully defined when first created.
The entry of attribute data values or the completing of a structure can take an extended

78

3.5 The SAMEM Methodology Framework

amount of time (days) and involve multiple people.
Stakeholder communication and comprehension is the major impact of creating the

Information Unit Model, which impact the thesis goals of better stakeholder and devel-
opment communication. The second major factor in the design of the Information Unit
Model is artifacts that support the thesis goals of faster projects and a more compact
form for the requirement specification. The specific thesis goals that are supported by
explicitly separating the solution information requirements and representing them as
graphical models are:

• HL-GOAL-1 , better stakeholder communication.

• HL-GOAL-3 , improved requirements quality in more compact format.

• GOAL-1 , accurate communication mechanisms.

• GOAL-3 , traceable artifact evolution.

• GOAL-5 , maximize visual models for communication.

• GOAL-9 , flexibility in visual models for communication.

• GOAL-18 , visual artifacts must not be limited by existing notations.

• GOAL-19 , visual models must be good enough for the purpose.

Rather than specialized tools, Microsoft Office™tools are employed for the initial
creation and updating of the requirements information models. This is a benefit to
communications because stakeholders are familiar with the tools and it impacts the
project speed because the artifacts can be exchanged with the stakeholders via email to
facilitate review.
A more detailed description with a corresponding metamodel is the subject of Chapter

6. For tracking and traceability purposes, each information unit requirement gets a
unique identifier.

3.5.2.1 Information Viewpoint Requirements Model Artifact Examples

The first application of the SAMEM was for manufactured products. The SEFP of “Sta-
bility to Variability” (S2V) directed the team to look at the existing product definition
information as the starting point for developing the Informational Viewpoint artifacts.
This is information in R&D collected during the product design process, information in
manufacturing for product production, and information in end-customer support of the
product. Often the information is scattered over multiple documents in a somewhat dis-
organized manner. The FDA regulations on required information for product approval
were the second helpful source.
The information unit and structure models are assembled over multiple meetings (in-

crements) and each change verified with the stakeholders (iteration). The verification is

79

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

focused on the contribution of the additional information units added during the itera-
tion to achieve the mantra and the consistency with the solution concept. This process
eliminated information previously thought necessary by the stakeholders from the new
product definition.

Figure 3.10: Information Model Example of Basic Information Units.

Figure 3.10 shows an example of the basic information units for a FDA regulatory
submission solution. While there is a great similarity to a UML Class Model, this
version is simpler. There are eight information units: a Project Item (a structure unit),
a Project Revision, a Filing Item (a structure unit), a Filing Revision, a Section Item
(a structure unit), a Section Revision, an Element Item (a leaf unit), and an Element
Revision. The term structure unit indicates that this item can be involved in a parent-
child structure as the ultimate parent or an intermediate parent; an example can be seen
in Figure 3.13. The term leaf unit means that the item is only involved in a structure
as a final child element. The terms Project, Filing, Section, and Element are customer
vocabulary.

The Items and the Revisions form pairs of complete information units. Each Item
can have multiple revisions which track the evolution of that information over time and
approval cycles (see Sub-chapter 3.5.3). The Revisions are ordered in time and are owned
by only one Item. The purpose of the Item is to uniquely identify each separate business
information unit instance, such as a specific FDA regulatory submission project. Each
Item unit has an associated set of revisions to track the evolution of the information unit.
The Revision unit isolates the data that can change multiple times over the course of the
project. The Item and Revision units are examples of the application of modules from
Parnas [Par72]. Within each unit, the major attributes are listed and in this example a

80

3.5 The SAMEM Methodology Framework

method for the major action, although that is not always necessary. These units follow a
data structuring pattern from the OMG Product Data Management Enablers [OMG00]
standard.

In Figure 3.11, an image of the attribute table associated with the Filing item in-
formation unit of Figure 3.10 is shown. Placing this information in a separate table is
a response to a lesson learned that improved the customer communication, which is a
thesis goal. The splitting of the artifact representations, which is contrary to the UML
Class idea, helps the communication by enhancing focus. In Figure 3.10, the focus is on
the number of basic units of information, their differentiation, and any possible struc-
tures. With the table shown in Figure 3.11, the focus is on the attributes or properties
of a single information unit.

Figure 3.11: Information Model Example of Attribute Table.

The example in Figure 3.11 does not list all the attribute rows from the case study, but
does show the columns with the characteristics of the attribute. Some of the attributes
(actual case study names displayed) are user defined for these information units (MOH
Issued Number, Submitted Date, Cleared/Approved Date), and some are application
built-in attributes that match the solution needs (Item ID, Name, Description). The
columns represent the attribute characteristics important for the requirements level.
They are:

• Name – to enable effective searching for information, each attribute within an
information unit has a unique name. When an attribute has the same business

81

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

purpose across multiple information units, the same name value is used for user
interface consistency.

• Type – the data type of the attribute is specified, such as Text, Date, Integer, etc.

• Values – the legal values for the attribute are specified in this column. In some
cases, an attribute will have an initial value assigned on the creation of a new
information unit.

• Description – this contains a business rationale of why the attribute is important.
This column is extremely valuable in minimizing the number of attributes. It
prevented the “wouldn’t it be nice to have“ accumulation of low value attributes.

• Origin – this column is started in the requirements work and completed during
the design activities, usually in the Technology Viewpoint when the out-of-the-box
attributes of the COTS system were examined for possible use. An S indicates
that the system controls the value, while a U indicates that the user enters the
value.

• Standard Search – whether the attribute is part of the standard search or is in
the full search is indicated by a No or Yes entry. The standard search has a small
number of the most used attributes and is designed to fit on a single screen. The
full search has all the attributes and often is multiple screens in size, therefore
requiring the user to scroll. This is a usability criterion that was discovered in
the Demo Prototype Phase feedback and was an improvement feedback to the
requirements elicitation work [Bro10].

• Required – indicates whether this attribute must have a value set in the infor-
mation unit creation step. The goal is to minimize the number of attributes that
need to be set at creation. This is both a usability benefit and a realization that
some attribute values might take months to discover.

In the following figures, three levels of information structure models for an equipment
engineering solution are presented as examples. There is a simple specification in Figure
3.12, a simple project in Figure 3.13, and a large project in Figure 3.14. The figures show
how a basic information building block can be assembled into a more complex structure.
The simple project in Figure 3.13 introduces the information units of Engineering Project
and Engineering Review, which have a parent-child relationship. In Figure 3.14, an
example of sub-projects within a larger project, i.e. structuring of projects is laid out,
but the basic project information unit is the same. The project hierarchy is built up to
match the equipment engineering project complexity.
Figure 3.12 shows an example of an Engineering Spec Item with the most important

four attributes and its first Engineering Spec Revision with its four most important at-
tributes. This case study example in comparison to the case study example in Figure
3.10 shows the need of the visual notations to be flexible enough to optimize commu-
nication with the different stakeholders. A lesson learned is that color in the artifact

82

3.5 The SAMEM Methodology Framework

models varies from group to group. For example, the engineering group found color is
helpful in the communication versus the monochrome visual images in the regulatory
group as shown in Figure 3.10.

Figure 3.12: Information Model for a Single Specification.

Figure 3.13 is an example of a simple Engineering Project structure. There are three
child elements of the Engineering Project Revision, two Engineering Spec items, and
one Engineering Review item with respective revisions. The structure is stored under a
revision which enables Engineering Project revisions to capture the changes in structure.
Figure 3.13 shows the inclusion of useful text explanations with the visual notations.
A more complicated structure from a case study is illustrated in Figure 3.14. In this

example, a common solution is shown where the structural information units that are
used to build the parent-child relations are defined so that they can be either a parent
or a child. The example shows a Main Project with three Sub Projects in the structure.
Each Sub Project is structured similar to the example in Figure 3.13. The Section Items
of Figure 3.10 are also defined in this manner. When presented in the correct way to
the stakeholders, through visual notations, they understood the flexible building block
approach.
Figure 3.15 shows an example of a report produced by the solution. The figure has been

rotated to maximize the size on the page. While some text is barely legible, the intent
is to show how requirements can be gathered and specified in other visual formats. The
requirement source for this report was an existing report. However, in the past the report
was created by hand in a spreadsheet program by reading many documents, emails, and

83

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

Figure 3.13: Information Model Example of a Simple Project Structure.

84

3.5 The SAMEM Methodology Framework

Figure 3.14: Information Model Example of a Complex Structure.

85

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

talking with several people to gather the data, which often resulted in transcription
errors. The existing hand constructed report brought to light several data values that
needed be to added to the Information Model. This is an example of an electronic
solution enabling the automatic production of the report, thereby saving a manager
many days of effort, improving the accuracy and timeliness of the report. The report
was created by traversing the regulatory project information structures and examining
attribute values. The need of producing the report had impact on the information
structures to minimize the generation work.

86

3.5 The SAMEM Methodology Framework

Figure 3.15: Report Example.
87

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

3.5.3 Objectives of the Computational (Behavior) Viewpoint

The official definition of the Computational Viewpoint of RM-ODP [ISO-10746] is stated
as follows:

“A computational specification defines the functional decomposition of an
ODP system into objects which interact at interfaces. In the computational
viewpoint, applications, and ODP functions consist of configurations of in-
teracting computational objects.”

However, for the purposes of the SAMEM and the elicitation of requirements, a mod-
ified definition is more useful. The new definition is focused on the business behavior
needed in the solution; therefore, the change in viewpoint title within the SAMEM is to
Computational (Behavior) Viewpoint. The decomposition into objects, which interact
at interfaces, is left to the design work done in the Engineering Viewpoint or Technology
Viewpoint. The rationale for this shift is to keep engineering and technology decisions
from creeping into the requirement specifications, thereby limiting solution alternatives.
For example, the computational objects can be different depending on the application of
code-level design patterns such as Factory or Observer. These pattern choices are design
decisions, not requirements.

There are two primary approaches to defining the business behavior. The first is to
specify the business process used to create an important part of the information model.
In the SAMEM, the business process is called the Business Flow. The Business Flow
consists of the major business steps or tasks used to create a significant part of the
information model, starting with nothing, then proceeding to the completed business
information. Each Business Flow is specified using business vocabulary, which could be
a combination of the standard business domain vocabulary and company-specific terms.
The tasks are specified without any assumption as to how they will be accomplished.
Perhaps some tasks will be supported by the computer-based solution under develop-
ment, some by existing solutions, and some will remain manual. The Business Flow can
be effectively expressed using UML Activity Models or BPMN.
The second approach is to apply the Create-Retrieve-Update-Delete (CRUD) pattern

on the information model units used within the Business Flow. The CRUD pattern
acts as a completeness check on the tasks in the Business Flow. Each CRUD action
should appear in a Business Flow associated with an information model unit. It is
possible to have more than one Business Flow associated with an information model if
that is how a company views its business processes. In the medical device examples used
here, information is never deleted for regulatory auditing reasons, but rather marked as
obsolete.
The second use of UML Activity Models in the Computational (Behavior) Viewpoint

is the Approval Flow which changes the status or state of the information unit or set of
units. The Approval Flow is represented by a task in the Business Flow and its details
are a level more specific. The important behaviors that are specified in an Approval
Flow are the following: who is responsible, the order of review, and approval tasks.

88

3.5 The SAMEM Methodology Framework

The responsibilities are classified as an expertise Group, or an authority Role, or a
combination of both. For example, a manager (responsibility role) in the analytical
chemistry department (expertise group) is needed to approve. A complementary effect of
the specifying of the Approval Flow requirement model is the creation of an Organization
Model.
The solution Organization Model is considered to be a component of the Computa-

tional (Behavior) Viewpoint. A portion of the Organization Model is discovered and
developed through the definition of the Approval Flows. Another portion is developed
through security analysis of the Business Flow tasks. At each task, the answers to the
following questions will generate contents for the Organization Model:

• Who does this task?

• Who should be prevented from doing this task?

• What access rights do they need to accomplish the task?

• Which actions of the CRUD pattern are involved?

• Who needs notification that the task was accomplished?

• Are there privacy concerns that limit the notifications?

The questions help to discover the requirements concerning the security aspects of
access and authorization on the information and the actions on the information. In
Figure 3.18, Figure 3.20, Figure 3.21, and Figure 3.22 examples of the organization
requirements of access and authorization can be found. The details are collected into
the full Organization Model.
The next part of the behavior requirements specification work is to examine the tasks

in the Business Flow and determine which ones will be done in the solution. This
planning work is accomplished near the end of the behavior modeling and is a transition
activity into the design work of the Engineering Viewpoint. The common reasons that
some tasks will not be supported by the new solution are that an existing tool is in place
or it is a manual task that should stay manual. Once the tasks are identified, a Use Case
is defined at the business behavior level.
The Use Case is the final component of the Computational (Behavior) Viewpoint

collection of models. It is not the UML Use Case, rather it is a list of steps and conditions
in business terms of what work takes place in the Business Flow task. To specify the
Use Case requirements, a common industry template is used.
In some cases User Scenarios are constructed to improve understanding of sections

of the Business Flow. A User Scenario is a small set of Use Cases with additional
information describing the flow from Use Case to Use Case in business terms. In some
situations, a User Scenario is used to describe a common variant to the Business Flow.

There are several mechanisms for displaying the behavior requirements in the Compu-
tational Viewpoint. The rigor behind Business Flow and Approval Flow is provided by

89

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

the UML Activity Model or by BPMN. The other factor is the application of the CRUD
pattern to each information unit from the Information Viewpoint.

Each behavior requirement gets a unique identifier.

3.5.3.1 Examples of the Computational (Behavior) Viewpoint Model Artifacts

An example of the Business Flow is shown in Figure 3.16 (same as Figure 3.9, but re-
peated for convenience). This shows the flow of business tasks in the creation, updating,
and approval of a Research Note. A Research Note is used to capture early product or
technology research in the R&D department. Some of the early research might make it
into a new product, but sometimes the research is not useful for a product at that point
in time. This is a very flexible Business Flow. The revisions of a Research Note are used
to capture the multiple experiments run to investigate a proposition or idea.

Visual notation flexibility is needed for the Business Flow model. In Figure 3.16, the
use of people images or icons in task positions of the flow was useful for the customer
communication. The rationale was that most of the work takes place in laboratories
on various instruments that are often standalone. The scientist or engineer doing the
early product research observes the measurements, does calculations, and records the
experiment results in a report that is attached to the Research Note revision. In other
cases, the visual notation of the BPMN or the UML Activity Model supports good
stakeholder communication.

90

3.5 The SAMEM Methodology Framework

Figure 3.16: Business Flow Behavior Example.

91

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

The focus of the Business Flow in Figure 3.16 is on the ordering of the tasks to
accomplish the business purpose. For each task that will be supported in the new
solution, more requirements details are needed. For communication purposes and project
iteration control, the additional task details are placed in a separate requirements artifact
called a Use Case (see Figure 3.22 for an example). The separation of Business Flow
and Use Case is an example of separating the higher level abstraction decisions of the
Business Flow process definition from the lower level task details. With the separation,
a connection must be established between the Business Flow task and the Use Case.

An example of the Business Flow and Use Case connection is shown graphically in
Figure 3.17. The task of the Business Flow is represented by an icon of a person
acting on the decision to create a new Validation project. The lower part of Figure 3.17
shows an area similar in appearance to the UML Activity Model Swim Lane and labeled
Validation Use Cases and called the Use Case Connection Area. Within the Use Case
Connection Area are rectangles with rounded corners which represent the individual Use
Case Artifacts. Each Use Case Artifact graphical element has the name of the Use Case
and in this example a brief description of the intent. The Business Flow task and the Use
Case are graphically connected with a line, which in this example is a thicker red line.
There can be tasks in a Business Flow that are not part of the automated solution and
therefore will not be connected to a Use Case. Often the unconnected tasks are manual
and there is not any business intent to automate them at the time of the project.
Figure 3.18 shows an example of Approval Flow participants from a CS-1 requirements

specification. The participants are classified according to the responsibility Role they
play in the Approval Flow, such as Subject Matter Expert Reviewer and their area of
expertise as specified in the Group membership, such as Regulatory. During the Tech-
nology Viewpoint work people assignments to roles and groups will be made, but at the
requirements level only roles and groups are needed.

92

3.5 The SAMEM Methodology Framework

Figure 3.17: Business Flow Task Connection to Use Case Example.

Figure 3.18: Approval Participants Table Example.

93

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

In Figure 3.19, an example of an Approval Flow is shown. There are four tasks in this
Approval Flow. The first task checks that the information unit, in this case part of the
regulatory filing structure, has the allowed status to start the approval. The second task
is for one or more Subject Matter Experts (SMEs) to review the information unit for
completeness and correctness. If the SMEs approve, then the information unit moves on,
otherwise the necessary rework takes place. In the third task the management approvals
happen. There are some cases when management approval is not necessary. If any
manager rejects the information unit, then it cycles back for rework.

94

3.5 The SAMEM Methodology Framework

Figure 3.19: Approval Flow Example.

95

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

For each Approval Flow there is a list of potential SMEs by expertise and managers
by authority to choose from. The list is kept in a business Standard Operating Proce-
dure (SOP), which was in existence prior to the automated solution and is maintained
externally to the solution. The SOP is used for other Approval Flows that are not auto-
mated. Without duplicating the SOP information, within the requirements specification
a high-level table of participants is used, see Figure 3.18.

The part of the behavior modeling for the requirements is the Action Transformation
Matrix (ATM). The ATM is the mechanism behind the transition shown by path 3O
from Information Model Artifact to Behavior Model Artifact in Figure 3.3. In Figure
3.20, a full example is given from the regulatory solution. The left most column is the
CRUD framework which organizes the Extended Action column. The Extended Action
column acknowledges that there are variations to creating information and allows for
the expression of the variations for stakeholder and developer communication.

The table entries are references to other places in the requirements specification where
the details of the requirements and/or use cases are listed. See Figure 3.21 for an exam-
ple. Inter-specification references were used extensively to enforce having the definition
in only one location. The entry "N.A." means that action was considered but not appli-
cable on this part of the Information Model. The entry "-" indicates that the cell does
not apply or make sense for the combination of this part of the Information Model and
the action. The OOTB entry means that the out-of-the-box (OOTB) capabilities were
used and is assigned during the transition to design in the Engineering Viewpoint.

Figure 3.20: ATM for the Regulatory Solution Example.

96

3.5 The SAMEM Methodology Framework

Figure 3.21: ATM Reference Specification Example.

Figure 3.22 shows an example of a Use Case. The purpose of the Use Case is to
describe the internal business steps of a Business Flow task at a more specific level of
business detail and to include business constraints. It can take several iteration review
cycles to fill out this form. The work of filling it out is started during a Business Flow
task review when it is decided that the new solution will support the task.

Figure 3.22: ATM Reference Specification Example.

97

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

3.5.4 Objectives of the Engineering Viewpoint

When design work is started in the RM-ODP Engineering Viewpoint, a transition, see
paths 4O and 5Oin Figure 3.3 is made from the business requirements concepts, the lan-
guage, and models of What to build and Why to build, into models of How to build.
Engineering solution concepts are used in this viewpoint and should be modeled. Each
requirement can often be fulfilled by multiple design alternatives. Also a design might
fulfill multiple requirements.

The design activities produce the model artifacts in the Engineering Viewpoint. The
models in this viewpoint are compromises of two major forces: 1) the business needs
defined in the requirements and 2) the realities of the existing or proposed environment.
The existing environment includes, among other things, the current infrastructure (soft-
ware and hardware), project budget limits (money and time), organizational change
resistance, and technical feasibility. Fulfilling some requirements might entail making
changes to the existing environment, such as upgrading server machines, adding net-
working capability, or updating applications. The move to the Engineering Viewpoint
will often expand the set of stakeholders, such as adding the Information Technology
(IT) department people or infrastructure vendors.

The design work involved at this level begins by selecting a sub-set of the requirements
models. The models come from a business information unit or a task in a Business
Flow. The next step, an iteration, is to evaluate the engineering approaches available
and build alternatives that can be objectively evaluated. The selection and evaluation
work can be done in an incremental (select a requirements model, then model design
alternatives) and iterative (evaluate the design alternatives against the requirements
and the environmental constraints) process. A result of the select, design, and evaluate
process is the natural creation of traceability from requirements to design and a record
of the design decisions.

The transition to the Engineering Viewpoint consists, in general, of the following steps
and produces additional information or project artifacts:

1. Select a requirements model.

2. Use existing or create new engineering design options and patterns to build alter-
native design models.

3. Record the design decisions used in developing each alternative design model.

4. Link the design model to the originating requirement model.

5. Evaluate how well each design model alternative fulfills the originating requirement
and whether other requirements are also (partially) fulfilled.

6. Rank the design alternatives on ability to fulfill requirements and fit within con-
straints.

98

3.5 The SAMEM Methodology Framework

7. Through invention and innovation improve the top design alternative by using
other design patterns, combining the strengths of multiple design alternatives,
removing, or reducing constraints.

8. Take the final engineering design into the Technology Viewpoint for the implemen-
tation activities of technology selection, detailed technology design, test creation,
and data creation.

It is not necessary to take all requirements models and move them in lockstep to
Engineering Viewpoint model artifacts. The most critical models can be selected first.
The selection actions are how agility is embodied in the transition to the Engineering
Viewpoint. In a traditional SCRUM-managed project, the customer selects the user
stories to be implemented. In the SAMEM, the customer selects or has input on which
requirement models are designed and implemented first.

3.5.4.1 Engineering Viewpoint Design Work Model Artifact Examples

In the Engineering Viewpoint, the architectural design of the solution is specified. Each
requirement has a corresponding design specification and each design specification has
a unique identifier for traceability. The following examples relate to fulfilling FDA
regulation 21 CFR §820.30, which realizes a Design Input Traceability Matrix (DITM) to
map User Requirements to Design Inputs, Design Inputs to Design Outputs, and Design
Outputs to Design Verifications and Validations with references to supporting evidence.
Figure 3.23 is a quote (CS-1) from the overview section of the design specification with
an important design decision rationale. Specifically, the design rationale relates the use
of OOTB features to fulfill the requirements and the constraints impacting their use.

Figure 3.23: Design Rationale Example.

In Figure 3.24, the class model design in UML is shown with the generalization from
the concrete solution classes to the Teamcenter OOTB starting point classes. The class
model is input to the Teamcenter Domain Specific Language (TDSL) tool used to create

99

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

parts of the solution configuration. Classes with the stereotype «TCUA» are OOTB
abstract classes from the TDSL tool.

Figure 3.24: Design Class Model Example.

The stereotype «Toolkit» identifies the abstract classes that form part of the reusable
toolkit definition and are artifacts from the engineering design activities. The «Toolkit»
class names that begin with “TK” form the reusable base classes of the consulting toolkit.
The «Toolkit» sub-classes with names beginning with “TKMD” for the base classes are
for the medical device domain. It is a foreseen future expansion to have classes for the
pharmaceutical domain to use a naming scheme of “TKPH”. The concrete leaf classes
for the customer specific solution have the «Customer-Extension» stereotype.

The following case study text snippet (CS-1), Figure 3.25, from the DITM design
specification shows the design rationale for realizing the requirement U_DITM_2. Since
an OOTB capability is the basis, some of the user interface behavior is listed. The
rationale section also describes some of the preparation steps needed such as searching
for a DITM to clone. This is an example of fulfilling the mantra of “File It, Find It,
Reuse It AND Don’t REDO It!”.

100

3.5 The SAMEM Methodology Framework

Figure 3.25: Design Rationale for Requirement Realization.

3.5.5 Objective of the Technology Viewpoint

The RM-ODP Technology Viewpoint contains the artifacts of the technology design
work, the realization artifacts, such as configurations, code, and test cases. In contrast
to the Engineering Viewpoint where, for example, a decision for a relational database
is made to support a data persistence requirement, in the Technology Viewpoint the
decision would be for a specific relational database product like Oracle™and a specific
version of the product.
Using the technology decision for an Oracle™database as an example, the following

design and implementation activities are done (the list is an illustrative example and
not necessarily complete):

• Design the schema from the requirement information units.

• Develop the SQL statements to create the database schema.

• Develop the SQL statements to load data.

• Develop the database administrative task processes and scripts.
– Installation.
– Backup.
– Standard data loading.
– Performance benchmarks.

• Develop the database test cases.

• Develop any database behavior action, constraints, and triggers.

101

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

• Design and develop query optimizations.

• Design the database access and permissions structure.

The above list is an unordered mixture of technology design tasks and implementation
tasks. These can easily be set as SCRUM user stories.

The kinds of models contained in the Technology Viewpoint expand from the require-
ments models and engineering design models. There are UML Class models that show
the class names and attributes along with their public or private features. To continue
the benefits of graphical communication, screen captures from the configuration tools
are used in the technology specification. The screen captures of configuration settings
are analogous to code listings.

From a specification perspective, the technology design record should enable a person
versed in the technologies to recreate the realization in the case that the source was lost.
The business project requirement to have a design specification of this detail is often a
typical contractual obligation from the customer.

3.5.5.1 Technology Viewpoint Model Artifact Examples

The examples below are from the case studies. They show different kinds of technology
implementation work. The examples come from a specific application and are configura-
tions in the Siemens Teamcenter Business Modeler Integrated Development Environment
(BMIDE). The BMIDE is the TDSL tool. Other configurations are done through tools
embedded in the running Teamcenter application, for work such as User, Role, & Group
definitions, workflow definitions, query (search) definitions, report definitions, and ac-
cess manager definitions. The intent in these examples is not to educate or evaluate the
Teamcenter application, but to provide examples of visual documentation of detailed
design and implementation artifacts.

The following technology design graphical examples come from the Research Note
solution, which is used to manage early product research experiment data. These images
are screen shots from the BMIDE or other OOTB configuration tools.

Figure 3.26: BMIDE Object Model Implementation Example.

102

3.5 The SAMEM Methodology Framework

Figure 3.26 shows the class inheritance hierarchy from the OOTB Document class,
to the TK_Base class, to the TK_CommonArea class, to the solution specific classes
of CRM (Chemistry Research Method), Exp_Protocol (Experiment Protocol), and RN
(Research Note).

Figure 3.27: Detailed Design Approval Workflow Example.

The screenshot from the Workflow Configuration Editor in Figure 3.27 illustrates the
implementation of one of the approval flows for the Research Note. The tasks “Start,”
“Finish,” and “Path join” are administrative tasks. The approval is accomplished in
task “Review for completeness” and the status attribute is updated to the “Complete”
value in task “Set Complete Status.”
In Figure 3.28, the configuration of a search action is shown. This screenshot comes

from the OOTB tool used to define searches. The attributes of the Research Note
Revision classes are shown in the order of importance as specified by the stakeholders.
Screenshots from some of the configuration tools proved useful in getting partial user
interface feedback before the complete prototype was available.
In Figure 3.29, part of the organization model hierarchy of expertise groups, V –

RnD – Research can be seen. Listed under Research are the authority roles, Approver,
Author, Leader, Manager, and Viewer.

103

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

Figure 3.28: Detailed Design Standard Search Example.

Figure 3.29: Detailed Design Organization Roles & Groups Example.

104

3.6 The SAMEM Model Artifacts Component

3.6 The SAMEM Model Artifacts Component
The SAMEM Model Artifact Component will be described in a distributed manner
via examples, primarily from the case studies. The SAMEM does not prescribe any
specific modeling approach, but rather emphasizes that the Model Artifacts should
fit the domain. In the case studies, the UML was the starting source for the Model
Artifact representations. The majority of the Model Artifact examples are found in
Sub-chapters 3.5.1.1, 3.5.2.1, 3.5.3.1, 3.5.4.1, and 3.5.5.1. In addition modeling lessons
learned are discussed in Sub-chapters 4.4.1.3, 4.4.1.5, and 4.4.1.6.

3.7 The SAMEM Tool Component
The SAMEM Tool Component does not prescribe any specific tool. This is deliberate.
If the SAMEM emphasized any specific Tool, then domain flexibility innovation possi-
bilities, and project effectiveness are compromised. For any particular project, the Tool
choices should be determined by the domain, the Tool state-of-the-art, the communica-
tion needs, project Model Artifact transformations, and the experience of the people,
developers and customers, with a specific set of Tools. Sub-chapter 4.4.1.7 describes the
lessons learned in the area of computer tool flexibility. In addition, the communication
lessons learned (Sub-chapter 4.4.1.3) have some tool choice rationale.

3.8 Non-functional Requirements Handling
The handling of the various non-functional requirements is accomplished in a non-
traditional manner in the SAMEM. The following list of non-functional requirement
areas is a compilation from several sources, each of which has a similar, but slightly
different list [BPKR09], [FM15], [Gli10], [RR99]:

• Look & Feel

• Usability

• Maintainability & Portability

• Performance

• Reliability

• Operational

• Security

• Legal

Each of the non-functional areas listed above is addressed in detail below. In particu-
lar, how the SAMEM handles the specification through visual models and in the context
of an iterative & incremental process.

105

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

3.8.1 Look & Feel

Specific Look & Feel requirements are not usually gathered. Rather, a goal of consistent
user interface style across the solution is desired. The specific details of the Look &
Feel style are often developed through the prototypes which are created and shown to
the stakeholders. The feedback on the Look & Feel causes iterations on the first several
prototypes. A balance between the various demands of the stakeholders is incrementally
achieved.

The biggest area to balance is not between the various domain areas of the stakeholders
but between novice and expert users. Expert users can deal with more data on the
screen, longer lists of functions, and need little process guidance. The opposite is true for
novice users. The Look & Feel non-functional requirement blends into the Usability non-
functional requirement when the knowledge and experience of the user are considered.
There are two exceptions to the normal practice of developing the Look & Feel spec-

ifications. The first is when the product is used in a specific eco-system, such as Mi-
crosoft™, Apple™, or a product line where a user interface style guide exists. While
the requirement to adhere to the style guide is a simple statement, it is possible that
sketches of the user interface are appropriate visual requirement models to direct the
prototype work. The second exception is in the domain of a product depending on an
attractive user interface for success, such as a game or mobile application. From one
standpoint, the two exceptions listed can be seen as constraints in the freedom allowed
for the Look & Feel requirements.

3.8.2 Usability

Usability can have a broad definition with many aspects. Part of Usability is the naviga-
tion through the solution to accomplish the business task. How the data and information
of the system is presented is also a part. The organization of the features and functions
of the system both visually and logically affect Usability. Fitness of the features to the
business tasks has a big impact on Usability. While there can be some psychological
measures of Usability, it is mostly the opinions of the stakeholders that determine if the
solution is reasonably usable or not.

When navigation through the user interface is critical to the success of a solution, such
as a game or mobile application, visual navigation models are appropriate requirements
artifacts. The navigation artifacts, such as Story Boards, Data/Information Display
Mockups, or Functional Hierarchy Layout [BH98], [BC12], [IDF], can be used to plan
and guide the prototype development.
The iterative & incremental process of the SAMEM allows for achieving good Usability

through prototyping. Prototyping can take place on two major levels. At the Engineer-
ing Viewpoint level, paper-based prototypes such as story boards can be created to show
the logical and functional flow through the user interface screens [BC12], [BH98]. Pre-
sentation tools such as Microsoft PowerPoint™can be used to create electronic versions
of the model prototypes, which are easily shared via email or a central repository. In
addition, paper sketches of the screen layouts can be done. The paper prototypes are

106

3.8 Non-functional Requirements Handling

models that are used for the initial solution prototype development.
One or more of user interface paper prototypes can be selected for implementation

prototyping in an iteration. How many paper prototypes are selected for implementation
prototyping will depend on the time scope of the iteration. A key to effectively choosing
a set of user interface models to prototype is to pick related models, such as following
a hierarchy of actions down the chain. Note that the prototyping effort can also be
limited to the visual components while the actual functionality is only stubbed out.
By prototyping the visual components, hard coding simulated data and stubs for the
functionality, the navigation and presentation styles can be evaluated while minimizing
the effort invested. When the solution prototypes are developed, more concrete feedback
on the good aspects and the weak aspects is received. The cost of the improvements can
be estimated and the next iteration can include the selected improvements.

3.8.3 Maintainability & Portability

The SAMEM looks at Maintainability & Portability not as requirements, but as goals
and constraints to be considered during the engineering design. As constraints these two
aspects are viewed in the context of the known or envisioned evolution of the solution
over time. Part of the context is the business evolution or growth and part is the
infrastructure change. Maintainability & Portability are grouped together as they have
very similar goals and often impose the same restrictions on design. In practice, porting
the solution to a new platform is usually viewed as a type of maintenance since platform
improvements are continuously occurring.
Understanding the Maintainability & Portability impacts is enabled through multiple

design alternatives of solution architecture models of the software and hardware. The ini-
tial architecture model will be of the current infrastructure environment. Multiple future
architecture models are created to evaluate different growth or cost options. The mod-
els of the future show both hardware infrastructure patterns and software architecture
patterns. The differences between the initial solution architecture and a future solu-
tion architecture will indicate the components that are least likely to need adaptation,
therefore must be maintained and those components most likely to need adaptation, and
therefore ported. The S2V SEFP is applied in this situation to help define and separate
the maintenance aspects from the portability aspects of the solution design.
The work of establishing the model of the hardware and software architecture com-

ponents likely to remain the same and the components likely to change is work within
the Engineering Viewpoint. The current architecture model and the alternative future
architectures are part of the normal design alternatives that should be created.

3.8.4 Performance

The SAMEM does not have any specific models or techniques for the gathering of Per-
formance requirements. There are several reasons for the apparent lack of Performance
requirement specification.

107

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

The first reason is the application of the SEFP of Optimum Performance (OP), see
Sub-chapter 3.2.8. The OP principle states that: optimum performance is achieved by
manipulating the fewest pieces of data the fewest times. A corollary to the OP SEFP is
that grouping or structuring of related data can minimize the data units. This principle
is applied in all work throughout the whole project. This is shown in the following
illustrative list of examples, which is not a complete list:

• Have the fewest functional requirements specified.

• Have the fewest data structures defined with the fewest attributes.

• Have the shortest, fewest tasks, business processes defined.

• Have the simplest user interface possible.

• Choose the most economical algorithms (balance between speed and space).

• Align the algorithms to minimize data conversions.

• Choose the most efficient compilers.

• Minimize the network traffic.

• Minimize the number of storage accesses and volume of data in each access.

• Use the fastest hardware.

Often when Performance is stated, it is interpreted as the system performance of the
solution [BPKR09], [RR99]. For the SAMEM, Performance means the effectiveness of
the user in accomplishing the business task. In a general sense, the user can be another
application interacting with the new solution. Effectiveness is a combination of how
fast the user can accomplish the task and the quality of that work. If the user must
reenter data or redo actions, then the effectiveness suffers. Effectiveness can be enhanced
by having exactly the features needed, having them arranged in a logical order for the
business task, and presented in an unambiguous manner, therefore the design of the
Human Computer Interface (HCI) has a big impact on effectiveness.
The grouping or structuring of the data can impact the solution performance in several

ways. One impact on the effectiveness is the presentation of the data or information.
Improper grouping or structuring can result in the user needing additional time to locate
the data and interpret it (see Sub-chapter 7.3.1). The internal operations of the solution
can be slowed by poor grouping causing such effects as multiple network transfers or
extra database queries to support a user action.
The system performance supporting the user performance is ensured by good design

and proper selection of the architecture components. It must also be realized that the
hardware is constantly improving in performance with higher clock rates and larger ca-
pacities. Performance possibilities are constantly improving, within the limits of physics,
without any solution design changes.

108

3.8 Non-functional Requirements Handling

The Performance of cyber-physical systems is another matter. The Performance
specification in that domain is a case of ensuring correct behavior often for safety reasons.
The SAMEM has not been applied in the domain of cyber-physical systems and would
need enhancement (see Sub-chapter 8.2.2 for discussion).

3.8.5 Reliability

Reliability is not viewed by the SAMEM as a requirement category. It is a business
goal that could appear in the Enterprise Viewpoint, such as 24/7 availability. The next
appearance of reliability is in the engineering and technology designs. The SAMEM
views a goal at the Enterprise Viewpoint level as creating design constraints at the
Engineering Viewpoint and Technology Viewpoint levels.
If very high reliability is a goal, then the architecture patterns and the components

would be selected based on that goal. For example, if a database is chosen for persistence
within a constraint of 24/7 availability, then a database technology that supports disk
mirroring and automatic failover is used to achieve that high reliability goal.

3.8.6 Operational

Operational concerns of the solution are viewed by the SAMEM similar to Reliability
concerns, which are enterprise business goals, such as 24/7 availability, and design con-
straints at the engineering and technology levels. The primary stakeholders concerned
with Operational needs are the solution administrators in the Information Technology
(IT) department. Some of the administrative concerns are listed below:

• Effort to install the solution for the users.

• Effort to load initial data or migrate existing data.

• Effort to install the behind the scenes supporting infrastructure, like servers.

• Effort to test the solution and any applied updates.

• Effort and frequency to update to a newer version.

• Effort to support the daily workload of users, such as answering questions, in-
stalling new users, loading data, etc.

• Time and resources needed for fault tolerance, such as backups.

• Need to learn new technologies.

• Impact on existing solutions and infrastructure.

• Training and certification efforts for new users.

• Cost for new hardware for users or infrastructure.

109

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

For some of the Operational concerns listed above, business goals can be set in terms
of money, employee time, and number of employees needed, which translate into bud-
geting calculations. Depending on the engineering design alternatives expressed in the
Engineering Viewpoint, cost/benefits trade-offs can be made visible to the stakeholders.

The cost of other Operational concerns can only be determined after engineering and
technology design options are created. For example, training efforts can only be known
after the user interface has been defined. However, the training effort goal might be
one day for an existing domain expert employee. An example of a design constraint
Operational concern is that the solution must work with an existing Web-based user
interface in a Linux-based infrastructure.

In general, the Operational business goals are often best expressed in a text-based fact
statement. At regular intervals during the engineering and technology design tasks, the
Operational goals are used to evaluate the design options. In fact, the Operational goals
are often one of the key selection criteria for choosing one design option over another.

3.8.7 Security

The content of this sub-chapter largely comes from the paper “Building Security Require-
ment Patterns for Increased Effectiveness Early in the Development Process” [MRRH05]
and can be found there in detail.

The handling of Security concerns and requirements within the SAMEM primarily
happen within the Information and Computational (Behavior) Viewpoints. Within some
domains there can be business level goals for security which would appear in the Enter-
prise Viewpoint. The approach of the SAMEM is to use security patterns as described
in earlier work [MRRH05].

Security is too general of a term to be effective in specifying solution goals and elic-
itation of requirements. While specific domains and government situations might have
additional categories, the following list of security concerns covers most commercial soft-
ware situations:

• Identification & authentication

• Authorization and access control

• Data integrity

• Confidentiality or data privacy

• Auditing

• Data authenticity

• Survivability

• Non-repudiation

110

3.8 Non-functional Requirements Handling

The above terms provide a more precise set of words for the expression of requirements
and designs. The Security concerns are not independent of each other. There are
structural relationships, such as depends or usedby, and behavior relationships, such as
conflicts. The relationships can be modeled and then used during requirements elicitation
and design work to check completeness. The Security concern models become patterns
that assist in the evolution of the requirements models to engineering models and design
models.
The Security concerns listed above are refined and through the refinement process

new concepts emerge that were hidden by abstraction. An example from [MRRH05]
is presented to illustrate the emergence of concepts. In Figure 3.30, the refinement of
the Identification & Authentication concern is shown. The Session concept emerges as a
framework in which Identification & Authentication is used.

Figure 3.30: Emerging Security Concepts Example.

The Session concept in Figure 3.30 requires two supporting or secondary concepts
of Identification and Integrity, the identification and the integrity of the session. The
Integrity concept requires the Access Control concept for its completeness.
Just as there are emergent security concepts, there are emergent domain concepts

that appear through refinement. The domain concepts will appear in the requirements
and should be used consistently across the solution. In Figure 3.31 and Figure 3.32 two
examples of emerging domain concepts are shown.

111

Chapter 3 Definition of the Software Agile Modeling and Engineering
Methodology

Figure 3.31: Emerging Domain Concepts from Authorization.

Figure 3.32: Emerging Domain Concepts from Identification.

Figure 3.31 illustrates how the Security concern of Authentication has several pos-
sible engineering refinements. The engineering refinement depends on certain domain
concepts. For example, Access Control List depends on Subjects, Privileges, and Objects.

The refinements in Figure 3.32 show the «applies to» relationship. This is another
type of refinement that produces domain concepts. The Identification security pattern
produces five generic domain concepts. Within a specific industry or problem area, there
can be additional domain concepts.

Specific instances of the domain concepts will appear in the requirement, engineering,
and technology models. The security patterns are helpful as checklists to insure that
important concepts for the solution are not missed.

The SAMEM handles the Security concerns of Authorization or Access Control, Data
Integrity, and Confidentiality through the “who can access,” “when can access,” and
“value range” columns in the ATM behavior artifact. The generic domain concept of
Object appears in the information models of the Information Viewpoint as the informa-
tion unit. Subjects, Groups, and Roles concepts are seen in the organization model.

112

3.8 Non-functional Requirements Handling

3.8.8 Legal
The handling of Legal requirements is difficult because of the variety and the variations
in specificity. The variety is generated by the multiple levels of governmental entities
creating the laws and regulations around the world. The variety is further complicated
by the revisions due to changing political priorities. The variations in specificity arise
from the different domains controlled by the laws and regulations. For example, in the
life sciences domain the results of experiments, used to establish the evidence that the
product fulfills the claims, are expected to satisfy the regulatory standard of “Good
Laboratory Practice” (GLP), however, the expectations for GLP keep improving as
biological science understanding, laboratory techniques, and new equipment become the
norm. The GLP “standard” evolves over time and current best practices are applied
against the current submission for product approval.

The common factor throughout all the various laws and regulations is compliance.
The compliance to the legal requirements must be demonstrated to the satisfaction of
the regulatory bodies or legal entities enforcing the laws and regulations. Two primary
mechanisms to achieve the demonstration of compliance are audit logs and design deci-
sion traceability. The SAMEM uses the Audit Action column of the ATM to record the
requirements for compliance logging. The information in the audit logs will have data
integrity and confidentiality requirements

113

Chapter 4

Applying the SAMEM

This chapter describes the experiences in applying the SAMEM with concrete project
examples. As Frederick Brooks points out in his book the Design of Design [Bro10],
there is a natural iteration of design modification as ideas are evaluated in real-world
situations. The SAMEM is intended to be a pragmatic software engineering methodology
and as such the experiences of applying it in multiple real-world projects generate useful
modifications. While the definition of the SAMEM, as described in Chapter 3, is in large
part driven by the goals described in Sub-chapter 2.4.1, there are definitional aspects
that are the result of lessons learned in multiple industry projects. While the lessons
learned come from these two specific situations, they are expressed in a more general
form to be applicable to other domains. The over 35 years of industry experience of the
author in multiple solution domains is the basis for the generalization.

As the old aphorism goes: “The difference between theory and practice is much greater
in practice than in theory.” Application of the theory of the SAMEM in real industry
projects results in guidance of how to use the SAMEM and achieve success.
The projects stem from a Software Consulting Company (SCC), which specialized in

developing solutions for medical device manufacturers. Two clients provide the Case
Study 1 (CS-1) and Case Study 2 (CS-2) experience data. The solution domain is the
management of product definition information and product design processes as required
by regulatory agencies in order to achieve approval to sell the product.
Sub-chapter 4.1 contains more details about the client companies involved in the case

studies. Specifically, the number of solutions, the size of the project teams, estimates
of the size of the solution, and the time length of the engagement. Certain case study
proprietary information is generalized because of confidentiality restrictions but remains
true to the situation.
A critical project condition for adoption of the SAMEM is the education of the project

people, both developers and stakeholders, in the daily workings of the SAMEM. Sub-
chapter 4.2 describes the experiences in educating the team members involved in the two
case studies in the SAMEM ideas and topics relevant to the business of the case study
companies. The experiences in the education of the project team members highlight the
requirements in transitioning from the academic definition of the SAMEM to a working
understanding. The description of the application and education of the SAMEM flows
from the Enterprise Viewpoint through the Technology Viewpoint.
The SAMEM operates in a real-world environment and as such it must adapt to

various project conditions. Sub-chapter 4.3 discusses the application and adaption of

115

Chapter 4 Applying the SAMEM

the SAMEM in more detail. The SAMEM is designed to work in an iterative & incre-
mental project process environment as described in Figure 1.1 and in Sub-chapter 3.3.
Although the SAMEM is intended to work in various project process environments, a
project process environment designed to support iteration is preferable. The main reason
for preferring an iteration approach is the real-world phenomenon of constant discovery
and increasing understanding as described by Brooks [Bro10]. The project process ef-
fectively used in the case studies is described in Sub-chapter 4.3.1 and provides a basis
for evolution.

Lessons learned and practical adjustments are discussed in Sub-chapter 4.4. Some
of the lessons learned were mentioned in Chapter 3. These have been collected, orga-
nized, and expanded in Sub-chapter 4.4.1. The lessons learned in this research are also
compared to the lessons learned from other research in Sub-chapter 4.4.2. Some of the
lessons learned over the course of the case study projects have been applied to the de-
sign of the SAMEM, while others are subjects for future work. In adapting the SAMEM
to other software domains, the lessons learned can provide guidance in adjusting the
methodology within the constraints of the real world.

4.1 Case Study Company Descriptions

The SAMEM was used for two different medical device companies, called Case Study
1 (CS-1) and Case Study 2 (CS-2). The case study companies develop, manufacture,
and sell two different sets of products. Some details of the companies and the products
cannot be stated because of confidentiality agreements.

All of the medical products must receive authorization from the appropriate Ministry
of Health (MOH) before the products can be sold. In the United States of America
the MOH is the Food and Drug Administration (FDA). The primary regulations con-
trolling the projects developed for CS-1 and CS-2 are contained in The Code of Federal
Regulations Title 21 – Food and Drug (21 CFR).

The class of the medical device has impact on which FDA regulations are applied.
FDA classifies medical devices based on the risks associated with the device. Devices
are classified into one of three categories - Class I, Class II, and Class III.

Class I devices are deemed to be low risk and are therefore subject to the least regu-
latory controls. For example, dental floss is a Class I device.

Class II devices are higher risk devices than Class I and require greater regulatory
controls to provide reasonable assurance of the device’s safety and effectiveness. For
example, condoms or contact lenses are classified as Class II devices.

Class III devices are generally the highest risk devices and are therefore subject to the
highest level of regulatory control. Class III devices must typically be approved by the
FDA before they are marketed. For example, replacement heart valves are considered
Class III devices.

For the company in CS-1, the products are used on the surface of the body and are
intended to correct certain physical limitations; as such they can be easily removed if
there are health or comfort issues for a particular patient, Class II. The products of

116

4.1 Case Study Company Descriptions

company CS-2 are intended to be surgically implanted in the body to repair defective
body parts, Class III.

A key impact on the application of the SAMEM for the case study companies is the
need to adhere to government regulations. The specific impact is the need for the solution
development methodology to generate not only the solution artifacts, but also generate
artifacts about the development process details such as the decisions made, the people
involved, the changes to decisions, and when the decisions were made. The combination
of solution artifacts and process artifacts requires additional formality to the application
of the SAMEM versus other software domains.
As described in Sub-chapter 3.5.5.1, the solutions are based on the Siemens Teamcenter

Product Lifecycle Management commercial application (Teamcenter) as the Technology
Viewpoint design decision. The Teamcenter product provides a strong base of function-
ality and data structures on which to build the above applications. A CS-1 and CS-2
business solution goal was to limit the adaptation of Teamcenter to mechanisms that
are impacted to a minimum extent by product upgrades. Teamcenter has the features
to configure an instance within a defined range of parameters called Configuration.
Occasionally, it was necessary to use the extension abilities of Teamcenter to cre-

ate unique behavior for specific business rules. Teamcenter can be extended through
Customization by linking in complied code containing the new functionality. The code
extension is accomplished through the use of Teamcenter libraries in C++ that were
extended, compiled, and linked via the Microsoft C++ development environment. The
unique behavior was needed most often in the workflows for approval processes. It was
never necessary for either the CS-1 or the CS-2 solution to extend for data modeling or
user interface needs.
The Code columns of Table 4.2 and Table 4.5 hold the lines of code used in customiza-

tions while the other columns hold size estimates for the configuration actions.

4.1.1 CS-1 Company and Project Descriptions
CS-1 was the first company where the SAMEM, in an early version, was used for modeling
requirements and as framework for the project plan. The CS-1 company produces a
device that falls into the FDA classification of Class II (Special Controls). The scope of
the full solution contract consisted of a total of 13 sub-solutions that were developed and
released for production use over the course of approximately four years. The breakdown
of the full solution into the 13 sub-solutions was part of joint strategy work that was
done prior to and independently of the application of the SAMEM to the sub-solution
development. In Table 4.1 the solutions are listed in the order in which they were
developed. As each sub-solution was developed, new lessons were learned and applied
to improving the SAMEM for the next sub-solution project.

117

Chapter 4 Applying the SAMEM

Table 4.1: CS-1 Sub-Solutions.
0 Main This sub-solution, which grew over time, gathered

common or shared requirements, designs, and imple-
mentations that applied to more than one of the other
sub-solutions. The other sub-solutions made refer-
ences to the specifications listed here.

1

Chemical
Research
Methods
(CRM)

The chemical research methods are developed in
R&D for use in production to test for contamination
and leaching effects. These are mostly for product
safety and purity.

2 Toxicology The toxicology sub-solution manages the results of
several types of toxicology tests of the product. The
toxicology tests are concerned with product safety.

3 Design History
File (DHF) The design history file is a collection of documenta-

tion about the design process and is mandated by
FDA regulation 21CFR §820.30. This sub-solution
area provides a place for electronic scans of historical
paper DHF documents.

4 Clinical Studies The clinical studies sub-solution manages the various
clinical studies done to evaluate the effectiveness of
the product in meeting its medical goals.

5 Sterilization There are always improvement ideas for more cost-
effective sterilization methods for the product. This
sub-solution manages those trials and results.

6 Stability The products of CS-1 are based on multiple silicone
hydrogel materials which degrade over time. This
sub-solution area manages the tests for material sta-
bility.

7 Validation All product production processes must be validated
according to FDA regulations. This sub-solution area
manages the validation protocols and reports for in-
clusion in the regulatory filings.

8
Physical
Materials
(MTM)

This sub-solution manages the various material tests
for aspects such as strength, flexibility, and tearing
resistance.

9 Research Notes The research notes sub-solution provides a place to
define experiments and collect results on fundamental
scientific investigations which may or may not lead to
product improvements.

118

4.1 Case Study Company Descriptions

Order Sub-Solution
Name

Description

10

Electronic
Design Input
Traceability

Matrix (eDITM)

The eDITM is a full computer-based support for the
development of the DHF as required by FDA regula-
tion 21 CFR §820.30.

11 Technical
Documents There are many technical reports needed for a regula-

tory filing that do not fall into another category. This
area provides a place for both new documents and the
electronic scans of historical paper documents.

12 Equipment
Engineering The equipment engineering sub-solution holds all the

designs and information associated with the develop-
ment of production equipment and product assembly
lines.

13 Regulatory In this sub-solution all the correspondence and the
submission artifacts sent to a regulatory agency for
product approval are managed.

The approximate sizes of the different sub-solutions of Table 4.1 are shown in Table 4.2.
The classes are the ones defined for the solution through inheritance refinement of the
OOTB classes of Teamcenter. The attribute number is the count of new attributes added
for the solution in addition to the OOTB supplied attributes. The workflows are approval
type workflows related to the state machine progression of the sub-solution classes. The
Other column covers a variety of configuration actions needed to fulfill requirements
and ensure a correctly functioning solution, such as user interface appearance, access
control settings, state machine definitions, icons, localization, list-of-value definitions
for attributes, and integration of Microsoft Office™. Some of the work results in Code-
based customizations and Other-based configuration which produces components that
are reused among the sub-solutions. All of the solution size measures require design and
development effort in the Engineering and Technology Viewpoints.
The important business drivers for CS-1 were to move from a paper-based product

documentation environment to a more efficient electronic-based environment. Work was
being repeated at high cost because reports were lost, incomplete, or untrustworthy. For
example, the cost to redo an unreliable toxicology report for a product material would be
approximately $200,000 and take about six months to complete. For the CS-1 company,
the added time cost to the medical device development project was the bigger issue
as the repeated work was slowing product releases. Since the various domain experts
were redoing work and not working on new products, the company felt that its market
leadership position was being eroded. Good financial practices placed limits on the R&D
budgets for personnel and equipment, so that people could not be arbitrarily thrown at
the issues. The domain experts usually needed to have a Ph.D., M.D., or both degrees
and many years of experience, so that means there is a small pool of people to potentially

119

Chapter 4 Applying the SAMEM

Table 4.2: CS-1 Solution Size Measures.
Sub-Solution Classes Attributes Workflows Group

&
Role

Code
(lines)

Other

Main 12 19 5 11 1420 70
Chemical
Research
Methods
(CRM)

2 19 5 9 0 25

Toxicology 2 26 1 8 320 16
Design
History

File (DHF)
22 12 2 5 600 89

Clinical
Studies 16 23 13 23 500 82

Sterilization 2 32 1 4 0 22
Stability 7 19 8 5 0 51
Validation 8 24 4 6 0 51
Physical
Materials
(MTM)

2 19 2 0 0 7

Research
Notes 2 12 1 6 0 18

Electronic
Design Input
Traceability

Matrix
(eDITM)

30 15 4 2 1500 90

Technical
Documents 2 27 5 3 300 33

Equipment
Engineering 6 11 2 5 150 34

Regulatory 8 21 4 5 150 80

hire.
The work with the CS-1 stakeholders was primarily with groups in the R&D de-

partment. As can be seen from the solution areas in Table 4.1, all are of significance
to product development activities. There was consistent personnel involvement on the
customer side for all 13 sub-solutions in the project management/director roles, which
helped keep the SAMEM and project process education activities to a minimum. How-
ever, for each sub-solution a new set of domain experts were added to the team for

120

4.1 Case Study Company Descriptions

the duration of that specific sub-solution development. The new domain experts were
involved from the requirements elicitation work through the final sub-solution accep-
tance testing and needed education in the SAMEM approach. The consistent customer
management personnel across all the sub-solutions aided in the education of the new
sub-solution experts.

Table 4.3 lists the number of people primarily involved in the CS-1 solution over the
entire project, which lasted four years (2008 – 2011). The number of subject matter
experts listed is of those that were involved to a significant extent. There were more
subject matter experts whose involvement was only for a quick question or two. Adding
all the people up and multiplying by the total project time produces an expenditure
of 268 person-years of effort, which qualifies CS-1 as a large project according to this
thesis.

Table 4.3: CS-1 Participants, Roles & Numbers.
Team Group Number of Members

Consulting Company Developers 10
Customer Management / Directors 11
Customer Subject Matter Experts 46

4.1.2 CS-2 Company and Project Descriptions

The CS-2 company produces Class III products. The project was under the management
of the vice president in charge of process improvement. The three driving forces for CS-
2 were the replacement of an unreliable and outdated electronic solution, the need to
have more product development information in an electronic format to improve sharing,
and improvements to R&D effectiveness. The existing system was unreliable in several
aspects: the software version was no longer supported, it ran on hardware that was no
longer produced or supported, and the software configuration did not support current
business practices. Superficially there are many similarities to the solutions for CS-1
because of compliance to the same FDA regulations. The product and company process
differences generated solution differences.

For the project with CS-2, the solution work was divided into areas called workstreams,
which are similar to the CS-1 sub-solutions in intent. Each company has its own vocab-
ulary. The workstreams were spread across a five-workstream, four-year project plan.
About six months into the project, the Document Management and the Literature Man-
agement System (LMS) Integration Workstreams were combined because the Document
Management workstream is the source for the contents of the LMS. Also, about the
same time (six months into the project) by using the same perspective as the UML gen-
eralization relationship, the Common & Shared Configurations and Code workstream
were created. Half-way through the project (year two), the workstream of Data Migra-
tion was added. The Data Migration need was identified at the start, but planning for
it was delayed until the new information models were defined and some parts of the

121

Chapter 4 Applying the SAMEM

workstreams were deployed.
The merging workstreams and discovery of new project needs deserving to be elevated

to a workstream level of importance is an example of the kind of discovery or dynamic
project behavior that Brooks [Bro10] talks about.

Table 4.4: CS-2 Workstreams.
Order Workstream Name Description

1 Engineering Change Control This supports the mandate of FDA
regulations on rigorous change control of
product specifications as stated in 21
CFR §820.30(i).

2 DHF Management Provides for the electronic management
of the Design History File as mandated
in 21 CFR §820.30.

3 Product Definition (eBOM) Manages the authoritative as-designed
definition of the product in the
Engineering Bill of Materials (eBOM).

4 Document Management Manages many other documents such as
Standard Operating Procedures (SOP)
that can be subject to compliance audits
by a Ministry of Health.

Literature Management
System (LMS) Integration

The LMS system is an in-house
web-based access to PDF versions of
documents that are under the control of
the PLM system. Some of the
information is available on company
external web pages for customers.

5 Data Migration The migration of vetted data from the
existing legacy solution to the new
solution, primarily the Document
Management and LMS systems.

6 Common & Shared
Configurations and Code

Contains common or shared
configurations and code across the other
workstreams, where identical definitions
and behavior are necessary.

The solution sizes for the different workstreams are shown in Table 4.5. The column
definitions are the same as for Table 4.2. A major difference between CS-1 and CS-2 was
the goal of not minimizing the upgrade maintenance of Teamcenter with CS-2. CS-2
put a higher priority on business special rules and application behavior for their specific
needs, which resulted in more code development. Much of the code development was
done by the subcontractors, while the main development team did the configuration.

The Data Migration work is a process of Extract, Transform, and Load (ETL). The

122

4.1 Case Study Company Descriptions

Table 4.5: CS-2 Workstream Size Measures.
Sub-Solution Classes Attributes Workflows Group

&
Role

Code
(lines)

Other

Engineering
Change
Control

4 48 14 (8) 3 1000 23

DHF
Management 4 11 4 4 1600 24

Product
Definition
(eBOM)

22 87 4 8 1200 8

Document
Management

& LMS
88 29 42 1 1200 32

Data
Migration 0 0 0

uses
all

groups
& roles

5000 0

Common &
Shared 0 3 5 20 7000 37

data in the old system is extracted to a neutral format, in this case XML. The old data
XML is transformed into XML that aligns with the new information or data model.
The new or target data model is the combination of the definitions of all the classes
and attributes from the other workstreams. The target data model will have some of
the same classes and attributes, new classes and attributes, and there are deprecated
classes and attributes. For the new attributes, appropriate values must be generated that
are consistent with the original data. The transformed data is checked and verified for
correctness, sometimes by automatic means and sometimes by manual visual inspection.
At an appropriate time in the project, the verified transformed data is loaded into the
new solution instance. The normal case is that the verified transformed data is loaded
in small batches, which form logical information units and the loading is coordinated
with other system deployment or installation activities. The coding effort for the Data
Migration workstream is in the transformation tasks.

Table 4.5 lists the number of people primarily involved in the CS-2 solution over the
entire project, which lasted four and a half years (2011 – 2015). The number of subject
matter experts listed is of those that were involved to a significant extent. There were
more subject matter experts whose involvement was only for a quick question or two,
but these people are not counted as they were only needed for a few specific business

123

Chapter 4 Applying the SAMEM

details. Adding all the people up and multiplying by the total project time produces
an expenditure of 279 person-years of effort, which qualifies CS-2 as a large project
according to this thesis. While the management personnel of CS-2 remained stable, there
was a higher turnover of subject matter experts. The subject matter expert turnover
required repeating the SAMEM education sessions.

Table 4.6: CS-2 Participants, Roles & Numbers.
Team Group Number of Members

Consulting Company Developers 15
Subcontractor Developers (India) 10
Customer Management / Directors 12
Customer Subject Matter Experts 25

4.2 The SAMEM Introduction in the Consulting Company
The introduction of a new methodology, process, or tool faces the inertia of organization
change. This is different for every organization. The development and introduction of
the SAMEM was influenced by the opportunities of a new project situation, the devel-
oper’s knowledge, and practical business constraints. The situation within the consulting
company at the start of the project required the education of the new team members in
an MDE approach, the medical device domain, agile process thinking, the Teamcenter
product selected by the customer, and general software engineering principles. These
real-world constraints impacted the SAMEM definition through lessons learned.

Using the SAMEM is a change, therefore the doubts and fears with new processes and
approaches need to be explained through adequate rationale to ensure acceptance. In
[FM15] the realities of people working in teams on engineering projects are addressed
and the impacts of methodology change on the people. The same realities existed in
the consulting company for the new methodology introduction. While every project
situation has its unique aspects, there are common themes that occur. There are always
new people being added to the team. The new people need to be educated in topics such
as the domain of the project, the thought tools in operation, the process approaches
used, the technology choices with rationale, and project operating procedures. Their
education and acceptance of prior team decisions are critical behaviors necessary for the
new people to be reliable and productive members of the team. These education topics
for the CS-1 and CS-2 projects are discussed in the following sub-chapters along with
impacts on the SAMEM.

The education specifics for the new team members and the customers are presented
in a document format and in a slide presentation format. The two formats were kept in
sync and updated with lessons learned at the end of a significant project milestone. The
following list is a summary of the document format table of contents with explanations:

• Introduction – presenting the high level business rationale for the methodology.

124

4.2 The SAMEM Introduction in the Consulting Company

• An Architect’s Foundation – describing concepts and working ideas a solution
architect needs to keep constantly in mind.

• Design First Principles – an architectural design approach.

• A short bibliography of reference books for the development team.

• PLM Definition for Solution Innovation – sets the approach for using PLM tech-
nologies in a realistic and innovative manner.

• Software Engineering First Principles – detailed list of SEFPs and expanded in
this thesis.

• Action Transformation Matrix (ATM) – introduction and explanation.

• UML Use and Primer – a short introduction to the elements of the UML that will
be used and how they will be used. Not a complete UML introduction.

• Methodologies and Processes – introduction and summary of RM-ODP and the
Volere methodology.

• Putting It All Together – an overview of how the previous material will work
within the confines of a project control process with examples from earlier projects
as illustrations.

4.2.1 Medical Device Domain Education

Only one developer, the technical writer, and the author of this thesis had experience
with the medical device domain at the beginning of the CS-1 project. The education of
the other team members was accomplished using existing materials within the company
and a list of links to web sites previously vetted. The major domain education area
was in the Food and Drug Administration (FDA) regulations (21 CFR) and some of the
internationally accepted regulations (ISO 13485) for medical devices. Only a base-level
of knowledge, mostly terminology, was established before the project was started, so
that the development team members could communicate at a basic level with the stake-
holders. While the regulation terminology is common, the application within specific
medical device companies varies. People picked up more customer-specific information,
both product-specific vocabulary and company internal-jargon as needed. A glossary of
customer-specific terms was provided from the previously executed strategy project and
extended during the course of the solution project.

There were two important reasons for this education investment. First, proper termi-
nology was needed for effective customer communication, which is a major goal (HL-
GOAL-1) of the SAMEM. Second, the solution was subject to audit by the FDA,
therefore it had to be compliant with the regulations in order to be legally used. The
regulatory education had impact on the SAMEM through the creation of artifacts and
process documentation required to pass an FDA audit. More specifically, the solution

125

Chapter 4 Applying the SAMEM

development needed to have traceability from the requirements to design to implementa-
tion. A validation plan with the listed test cases and a report of the validation activities
are needed by the FDA as part of the approval submission package.

The regulatory compliance requirements had impacts on the SAMEM specifics, which
might not be necessary for other solution domains. For example, the SAMEM produces
many different types of documentation for purposes such as stakeholder communication,
distributed team communication (over time and space), and regulatory compliance au-
dits. The SCRUM and Agile approaches advocate the minimization of documentation,
because documentation is viewed as accidental complexity. The addition of the Audit
column to the ATM is an example of an extension to the SAMEM for meeting regulation
compliance.

For this thesis, the business domain education is for the medical device manufacturers.
Some of the specific lessons learned can transfer to other business domains, however,
independent of the specific business domain for applying the SAMEM there will always
be the need for domain education.

4.2.2 UML and Modeling Education

The intent for the SAMEM is to use UML-based models within an agile framework.
The author of this thesis had extensive UML experience through using UML in multiple
industry projects; work on Object Management Group (OMG) standards, and teaching a
graduate-level UML modeling course. A few of the people on the development team had
exposure to the UML, usually through a single semester undergraduate course. Most
members of the development team had no UML experience.

A one-day introduction to UML and modeling for the team was developed and it was
used in the rest of the company. The UML introduction material was combined with
other education material into a document format for reference and a presentation format
for teaching sessions. The introduction focused on class models, activity models, and
state machine models in order to support the SAMEM. The UML course focused on the
definition of the modeling components as given by the UML standard [OMG15b] and
included examples from the author’s previous use of UML in various industry projects.
The introduction was brief, quickly supplemented by actual application with the cus-
tomer and guided by the author. For reference purposes, the book UML Distilled, Third
Edition by Martin Fowler was recommended, as it is short and inexpensive. The pre-
sentation and review of the models with the customer was initially restricted to the
experienced people in the development team, so that explanations of the models would
be clearer and consistent.

The tool selected for internal use by the development team was MagicDraw UML™.
This tool was used for the prototype designs involving the Class Model, Activity Model,
and State Machine Model features. No code generation was done with this tool, as the
Teamcenter product had its own set of tools for configuration and extension through
code.

126

4.2 The SAMEM Introduction in the Consulting Company

4.2.2.1 Process Modeling Techniques

The Business Flow plays a critical role in specifying the behavior requirements of the
solution. There are several pragmatic techniques that increase the effectiveness in de-
veloping the Business Flow. There is a five-tiered hierarchy of decisions that are made
in the process of specifying a Business Flow. The main idea of the five-tiered hierar-
chy developed from the author’s experience, which consists of over 25 years of business
process development in industry, covering over 100 different processes and multiple do-
mains. The second block of experience leading to the five-tiered approach comes from
the author’s team interaction experiences in developing workflow standards in the Work-
Flow Management Coalition (WfMC) and the Object Management Group (OMG). By
generally following the hierarchy, the risk of major re-specification is minimized. The
steps to define the Business Flow are:

1. Establish the process goal.

2. Define the process task graph.

3. Specify the information needed by each task.

4. List the actors needed by each task based on skills, knowledge, and data access.

5. Determine the process administration and auditing data requirements.

A Goal for the process must first be defined in order to verify that the development
is correct. The Goal should be stated in domain business terms. The CI and Essential
SEFPs are useful in establishing the Goal, which must be consistent with the solution
concept.
The second tier of decisions involves defining the graph of tasks in the Business Flow.

The tasks are defined with the assistance of the Modules SEFP. Each task should
accomplish one specific action. The task names are best formulated as a verb-noun pair
of words. The words should be drawn from the business domain and company idiom
vocabulary. As the tasks are reviewed, the task names will often evolve to become more
descriptive and meaningful for the stakeholders.
The tasks are ordered so that the purpose of the Business Flow is accomplished. The

CRUD action pattern can be helpful in guiding the task ordering. For example, before
a task can update an information unit, it must be created. Each Business Flow graph
will have its own unique structure and appearance. To ensure clear communication, the
structure of the graph should evolve naturally. In some cases the Business Flow graph
will be vertically oriented and in other cases horizontally. The number of parallel tasks
and the spans of the rework arcs will influence the structure, until an acceptable image
is agreed upon by all stakeholders.
As the tasks are defined, an estimate of the information or data needs will start to

develop. The clean specification of the information needs of each task comprises the
second tier of decisions. The estimated information is reviewed in the context of the
stable task definition and refined. There are two levels of Business Flow process-relevant

127

Chapter 4 Applying the SAMEM

information to specify. The first level is the information needed to accomplish the
task which consists of input information, additional processing information, and output
information. The input information is the minimum set of data needed to start the
task work. The output information is the data produced by the task. The additional
processing information is any data that can help in accomplishing the task. Any or all
of the information can come from or be written to persistent storage. For any particular
task, any or all of the input, additional, or output information sets can be empty, meaning
no information is needed to accomplish the task. Events or signals are considered a type
of information.

The third level of information to be considered is the Business Flow administrative
information. The administrative information is not necessarily used by any task but
is generated by the enactment of a process instance. The administrative information
is often used for auditing the Business Flow for improvements or compliance. Some
examples of administrative information are task start timestamp, task end timestamp,
the actual user from a set of potential users doing the task, and if the task is part of
a cycle, the number of the iteration through the cycle. In the case of a review task
in a cycle, a business condition could be that a new reviewer is required for each new
iteration, which means that the previous reviewers are additional processing data for the
task.

The fourth tier of decisions covers the specification of the users that are able to ac-
complish the task. The users or set of users are specified either through a skill type or
a business responsible level. Specific people are never named. The skill type will align
with the work to be accomplished in the task and will indicate knowledge areas or work
abilities. Examples of skill type include machinist, chemist, Java programmer, or board
certified cardiologist. The business responsibility level indicates the business authority
needed, such as manager, director, or company officer. The specification of the users,
which can be another computer application, is the result of considering the skills or
responsibilities along with the information access needed to accomplish the task work.
In some cases additional information access must be granted to the user to accomplish
the task.

The last step in specifying the Business Flow is to list the administrative and auditing
data to be collected during the enactment of the process. Compliance traceability needs
will drive part of these specifications. The other major driving factor is the desire for
continuous process improvement by the business. Constraints that must be considered
when collecting process audit data are the privacy laws and worker council agreements
in place.

4.2.2.2 Iterative & Incremental Development Process Education

There was a small amount of experience with the SCRUM and Agile development pro-
cesses [Amb02] and eXtreme programming [Bec00]. Some general education took place
in this area with the focus on the iterative & incremental development approach. Many
of the development team members only had experience in the more traditional waterfall
process method but had heard about Agile techniques. In developing the SAMEM, spe-

128

4.2 The SAMEM Introduction in the Consulting Company

cific techniques and terminology from SCRUM or eXtreme programming were explicitly
avoided, but some general ideas were kept in mind. The consulting company had estab-
lished some development process techniques in earlier projects, but they were centered
on the traditional sequential, phase-based approach. Some of the earlier techniques were
adapted to work in the SAMEM, most importantly the Conference Room Pilot (CRP)
idea (see Sub-chapter 4.3.4).

The “iterative & incremental” terminology is explicitly used in order to allow a nat-
ural discovery of what worked across the whole project lifecycle and to develop a non-
computer vocabulary habit for customer communication. A process blank slate is desired
to allow all the development team members the chance to contribute to answering the
question: What are the natural incremental steps and iteration sizes for the work during
requirements specification, design specification, and realization?

4.2.2.3 COTS Product Education and Constraints

While a lot of general computer and programming knowledge can be reused in a new
customer engagement, there are almost always new technologies to be learned. The use
of the new technologies must also be adapted to the project processes and methodologies.
The impacts to the SAMEM are in the creating of Engineering and Technology Viewpoint
models that communicate the design while being consistent with the target technology.
The Siemens Teamcenter Product Lifecycle Management™(Teamcenter) product was

selected by both of the case study customers through an in-house process. The entire
team attended official Teamcenter training. A couple of the developers and the author
of this thesis went to an advanced training course on the Teamcenter Business Modeler
Integrated Development Environment (BMIDE). The BMIDE can be seen as a Domain
Specific Modeling Language (DSML) tool. The more in-depth knowledge was passed on
to the other development team members that needed it.
The BMIDE is based on the Eclipse tool set and provides a configuration mechanism

for the information model and many of the business behaviors. The configuration values
from the BMIDE are stored in an XML format, then loaded into the Teamcenter reposi-
tory for interpretation at run-time. There are other business behaviors, such as workflow
definitions, access control, user definitions, and property values, that are configured via
tools within Teamcenter during run-time and it is possible to store this information as
external XML files, which can be loaded into another Teamcenter instance. The configu-
ration set is very rich and six of the sub-solutions in CS-1 were realized without creating
any traditional code.
The constraints on the manner in which the configuration mechanisms of Teamcenter

work had an impact on the process and the approaches to modeling requirements and
demo prototype development. Teamcenter and the BMIDE are object-oriented, there-
fore mapped directly onto the revised UML modeling artifacts. Without compromising
the quality, the requirements can be formulated, so that the design expression in the
Teamcenter configuration tools is straightforward. The requirements workflows mostly
mapped directly onto the Teamcenter workflow capabilities, except when a special busi-
ness rule was needed. The special business rules required code extensions that checked

129

Chapter 4 Applying the SAMEM

both values of attributes and information structure integrity. The Teamcenter built-in
object definitions have full CRUD features that map directly to the requirements. For
almost all class extensions, the CRUD Delete operation was hidden for FDA compliance
reasons. The unneeded Delete impacted the SAMEM by modifying the use of the CRUD
pattern to a feature that changed the instance state to Obsolete rather than a Delete.

4.2.2.4 Software Principles Education

A tertiary consulting company objective was to educate and mentor the development
team, so that they could make good choices in the future, for example when a developer
moved into a position of greater responsibility or on to a different project. It was desired
for them to be able to adapt the SAMEM when needed while staying consistent with the
foundation principles. Project working principles were developed that could be applied
beyond the scope of the SAMEM.

This was done through defining a set of Software Engineering First Principles (SEFP)
(see Sub-chapter 3.2 for extended definition and rationale), then showing how they were
used to make the decisions about modeling approaches and the new project process.
The SEFPs are a project and process independent set of quality guidelines which can be
applied in any software solution development situation. During the development process,
the first principles were applied many times for selecting a particular task execution
option. The SEFPs were applied from the definition of the solution concept through
the implementation tasks. While the list of SEFPs will grow in the future with the
application of the SAMEM to other domains, for the SAMEM development and the case
study projects, the checklist of principles is:

• Conceptual Integrity (CI)

• Essential versus Accidental Complexity Awareness (Essential)

• Stability to Variability (S2V)

• Symmetry of Action (SoA)

• Modules as defined by Parnas (Modules)

• Coupling and Cohesion Metrics (C&C)

• Patterns (Patterns)

• Optimal Performance (OP)

• Change Language (CL)

• Ready-to-Hand (R2H)

• Form Follows Function (FFF)

130

4.2 The SAMEM Introduction in the Consulting Company

To a large extent, the set of SEFPs are the result of the author’s experience over 35
years of successful and unsuccessful software projects. Much of the most valuable expe-
rience comes from the interaction with other developers at the conclusion of a project,
when an evaluation of the process was done. The idea of the SEFP approach arose
from the author’s education in Physics and the role first principles play in that domain,
such as inertia and the speed of light as a limit. In the Software Engineering domain,
the primary inspiring examples come from Frederick Brooks [Bro95], [Bro10], and Terry
Winograd [Win96].
The education in the SEFPs consisted of defining and explaining them. During the

course of the CS-1 and CS-2 projects, the author of this thesis as the SAMEM mentor
guided the creation of a project habit to apply the SEFPs. The SEFP application habit
became part of the standard developer review task for all activities, it was viewed as
kind of regression test. At first the author of the thesis would ask which SEFPs should
be considered or applied to the task at hand. The SEFP checklist, similar to a code
style checklist, was applied during the SCRUM-like standup meetings and at iteration
review meetings. An acceptable response is that a particular SEFP did not apply to this
situation with a rationale of why not. For example, if the Pattern SEFP applies, then the
follow-on questions are “Which pattern and why?”. The first principles are mental tools
to be used to help with the proper focus during the full solution development process.
The application of these first principles will be shown in examples later.

4.2.2.5 The SAMEM Consulting Company Introduction Summary

It is difficult to introduce a new software engineering methodology without understanding
the context in which it will be used. The context will impact the processes and artifacts of
the methodology, as well as the approach in introducing the methodology. The SAMEM
has the flexibility to adapt and it was important to involve the users of the SAMEM in
some of the adaptations to ease the organizational change on the development team.
There are aspects of introducing a new methodology that took time to get correct.

The initial assumptions by the author of this thesis and attempts to communicate the
ideas were flawed. One mistake is that an expert in a subject area often assumes that the
benefits of a technique or approach are obvious. This was the case with the benefits of
modeling and the deeper knowledge and experience by the author of this thesis. On the
development team, most of the people were unfamiliar with modeling and uncomfortable
with using models for requirements. Their project history was of using text to express
requirements. The stakeholders had many of the same issues as the development team;
however, the development team had the obligation to explain the models and the value
of models to the stakeholders.
Another aspect of methodology change that was difficult to overcome was in the area

of project management. Most of the people on the development team and the stake-
holders only had experience with a waterfall project process. For the CS-1 project,
there was an assumption that the tasks in the project would be entered into Microsoft
Project™(Project) and that this tool would be used to track progress. It is extra
work (accidental complexity) entering each short iteration into Project and updat-

131

Chapter 4 Applying the SAMEM

ing the task completion. The ability to represent iterations in Project is essentially
nonexistent. This break with tradition was uncomfortable for the management peo-
ple. The compromise reached was to assume that it would take three iterations to
stabilize the requirements definition, although some of the times it took two and other
times it took four or more iterations. For the CS-2 project, the SCRUM tool Jira
(https://www.atlassian.com/software/jira) was used to manage the sprints.

Although there were obstacles to parts of the SAMEM, there was an attitude of
willingness to try to improve the project approach. All of the development people had
bad experiences in one project or another and recognized the issues that the SAMEM is
attempting to improve. On the stakeholder side, most of the people are from the R&D
organization and therefore had a background of trying new processes and a tolerance for
trial and error with new technologies. The overall willingness to try was a factor in the
success, along with developing new project habits.

There were fewer adaptations for the CS-2 group as a history of success from the
CS-1 project existed. The success history was communicated to the CS-2 team through
review of CS-1 artifacts and testimonials from some of the management people in the
CS-1 company. The author of this thesis was the only person common to both companies
and development teams, therefore the bulk of the education activities were done by him.

As employees had little time to learn subjects outside of direct relevance to the current
project, a minimum number of references for the SAMEM were used. Many, but not all
members of the development team pursued additional training in these areas on their
own. The essential points from the references were summarized in a consulting company
technical report and presentation written by the author of this thesis, which formed the
basis for the education. That technical report was a major input to this thesis. The
following references were used for specific purposes (often not the whole book or article,
but a chapter or two):

• [Bro95] – Only the chapters related to conceptual integrity and essential versus
accidental complexity.

• [Fow03] – The ideas of agile development and that modeling can be used.

• [Fow04] – A UML reference for self-study.

• [RM-98] – The whole specification was used for guidance and project organization.

• [Par72] – The whole article was used to move the technical members of the devel-
opment team from thinking in code definitions of objects to modules.

• [TW95] – This provided the ideas of Value-Discipline Model for assistance in de-
veloping the solution concept and expressing the business value.

• [RR99] – The requirements gathering question examples and checklist were used
to educate team members on how to elicit the requirements.

• [Win96] – This book was cited as containing examples of creative design work as
an aspirational objective, but there were no explicit ideas used.

132

4.3 The Experiences in Applying the SAMEM

4.3 The Experiences in Applying the SAMEM

In developing the SAMEM, the key goals are to have small incremental steps from
requirements elicitation through realization, so that it is possible to quickly verify that
the project is on the correct track and show the customer steady progress towards the
solution through small but accumulating deliverables. The value of small steps is a
principle of SCRUM [Coh10]. The small steps are a key to minimizing risk to achieving
a successful solution as evaluated by the stakeholders.

In the cases for CS-1 and CS-2, prior to starting the solution development project
based on the early SAMEM ideas, a separate business strategy project was run with the
customer to establish business goals, constraints, and objectives for the solution. The
work that was done in the business strategy project can easily be considered as part of
the Enterprise Viewpoint.
The work with a new customer begins with a business strategy assessment. The

purpose of the assessment is to understand the customer’s business goals, the current
problems or issues, future product plans, the organization structure, the current informa-
tion processing environment, and to recommend a high-level course of action to improve
the customer’s business. The strategy assessment is not part of this thesis but provides
the initial input as a rough solution concept for the SAMEM.
The inputs to the SAMEM are the goals, business objectives, and project constraints

discovered in the strategy assessment and expressed as a solution big picture. The
SAMEM course of action decomposes the solution big picture into a set of sub-solutions.
The sub-solutions are sized so that they can be delivered in approximately six calendar
months. Each sub-solution delivers a unit of definite value to some part of the business.
After the delivery of each sub-solution, the course of action is evaluated and adjustments
to the order or scope are made to compensate for changing business conditions or to ac-
commodate organizational changes. Experience has shown that a sub-solution should
be realized in about a six-month timeframe in order to balance a unit with significant
business value with keeping the course of action flexible enough for changing business
conditions. The SAMEM must be flexible enough to operate within the business con-
straints of the course of action.
The domain of medical devices falls under the regulation of the Food and Drug Ad-

ministration (FDA) in the U.S. Since the solutions being created managed the medical
device product development, they are required to be validated to the FDA standards.
This means more than just the “code” deliverable. Other required deliverables that the
process needed to support include the requirements specification, the design specifica-
tion, the realization components, the installation process, test cases, and traceability
from requirements to design to realization to test cases. At any time, the FDA could
audit these deliverables. The SAMEM needs to deliver all the pieces that could be
audited.
There are three major components to applying the SAMEM. First is the use of the

Open Distributed Processing – Reference Model (RM-ODP) [RM-98] to provide a men-
tal and project framework guiding requirements elicitation and design activities. The

133

Chapter 4 Applying the SAMEM

second major component is establishing primarily graphical requirements and design
artifacts to facilitate improved communication [Mat11]. The third component is a three-
phase project progression from the requirements elicitation activities to design prototype
evaluation, and finishing with a nearly complete solution called the Conference Room
Pilot (CRP), where the customer does a real-world evaluation. The three-phase project
progression is a risk partitioning and mitigation approach.

The final step is the deployment of the sub-solution into production use. Because the
deployment of the sub-solution must be validated according to FDA rules, the timing
of the deployment must be coordinated with other business activities. In practice, the
SAMEM process ends with the sub-solution ready to be deployed, but in the case studies
the actual deployment task was timed to coordinate with other system maintenance
activities for minimal business disruption.

4.3.1 The Controlling Project-level Process
The use of visual models is an effective way to partition the requirements and the design
into reasonably sized increments to drive the iterations. However, management of the
iterations is also required. Although the SAMEM intrinsically supports iterations, in
practice the frequency and size of the iterations are under the control of a project-level
management process. This sub-chapter describes the project-level process effectively
used in the case studies.

In Figure 4.1, the controlling project-level management process is shown. This is an
overview image used with the case study stakeholders and was supplemented by more
detailed views when needed. The labeled boxes in the upper half show abstract images
of the deliverables for communication and orientation purposes. The lower half has the
high-level iteration cycle flows. The number of iteration cycles is not explicitly specified
but depend on the convergence of the artifacts to a stable form.

The project-level process is split into three major phases of work, each of which has
increasing levels of specification, verification, and confidence. The first phase of the
process, titled Paper Prototype, corresponds to the Enterprise, Information, and Com-
putational (Behavior) Viewpoint work of eliciting requirements. The Demo Prototype is
the second phase which produces demonstration prototypes of some of the requirements
and corresponds to the work done in the Engineering and Technology Viewpoints. The
third phase is the Conference Room Pilot (CRP), which brings several demonstration
prototypes together and is a near final acceptance test by the customer. Within each
phase there would be multiple SCRUM-like iterations to deliver the relevant artifacts.
The design of the process is a compromise between the SCRUM idea of refactoring

and the reality of finite project resources. Some rework takes place, as the development
of the demo prototypes uncovers shortcomings in the requirements and the CRP un-
covers shortcomings in the demo prototype implementations and requirements [Bro10].
However, the goal is to avoid rushing into development with major misunderstandings.
To avoid having to throw away too much work, the project management process has
verification tests with a sign-off by the customer that it is reasonable to proceed to the
next phase. The controlling project-level management process is a constant balancing

134

4.3 The Experiences in Applying the SAMEM

act between the investment in time and money, the business benefits, and the risk of
wasting the investment.

Figure 4.1: Project Management Process Phases.

4.3.2 Phase 1: Paper Prototype Phase

The first project process phase is called the Paper Prototype. It is called the Paper Pro-
totype because the visual model artifacts were created in Microsoft Office™formats like
one would write a document on paper. The use of common computer tools reduces tool
learning time and provides an artifact definition mechanism that all project members,
especially the stakeholders, can use which makes the creation, revising, and review of
the artifact proposals as easy as possible. The Paper Prototype phase contains the main
requirements elicitation work and produces the various graphical and text artifacts for
the enterprise objectives models, information models, and the behavior models.
The paper prototype artifacts need to be fast to create and easy to update. Often

the review takes place by projecting the Business Flow or Information Model onto a
whiteboard and then the projected image is reviewed and improved. When consensus
is achieved, the electronic image is updated. The artifacts are reviewed and refined
until stability emerges. Some artifacts stabilize before others; however, business process
re-engineering takes longer as business objectives and goals are questioned.
As parts of the requirements, mostly expressed as visual models in the paper prototype

form, stabilize, those artifacts proceed to the Demo Prototype phase. It should be noted

135

Chapter 4 Applying the SAMEM

that stability of part of the requirements was not the same as completeness of all of
the requirements. The stable pieces of the requirements can be viewed as SCRUM user
stories.

4.3.3 Phase 2: Demo Prototype Phase

In the Demo Prototype phase, the design and initial implementation work is done and a
demonstration of the possible realization is created. The demonstration is shown to the
customer and feedback on the visual organization of the user interface as well as input
on missing information or incorrect interpretation of the requirements is incorporated
into a new prototype increment for the next iteration.

The Demo Prototype is refined until customer acceptance. The time to create a Demo
Prototype implementation in the case study examples was targeted to fall within a three-
to-five-day timeframe. This is a similar timeframe for SCRUM user story implementation
[Coh10]. This timeframe is consistent with implementation via configuration. In the
cases where code needed to be developed for a special business rule, the timeframe
often increased to several weeks. The demonstration prototype refinement time took, on
average, one week. Often several demonstration prototypes were under construction or
refinement in parallel. The work overlap is possible, because the time spent while the
stakeholders are reviewing one Demo Prototype can be used by the developers to work
on another Demo Prototype.

The management of the Demo Prototype work aligns with the traditional aspects and
approach of SCRUM managed projects.

4.3.4 Phase 3: Conference Room Pilot (CRP) Phase

In the Conference Room Pilot (CRP) phase, the related demonstration prototypes are
brought together. In preparation for the CRP, additional implementation details beyond
the demo prototypes are completed and tested. The additional details include things
like completing error handling, user message refinement, localization, icon refinement,
and minor functional features such as report formatting. At the CRP point, somewhere
between 85-95% of the solution is implemented, is fairly well tested, and is installed in
a test environment.

The customer executes the solution for themselves by going through the Business
Flow simulating real work. This hands-on experience is the last verification and is a
preliminary acceptance test. After the third solution delivery cycle, the SAMEM and
project management process progressed to the point where a punch list of minor technical
corrections takes only a few engineering days to implement. More importantly, after the
third solution delivery for CS-1, there were no major corrections due to incomplete or
misunderstood requirements.

136

4.3 The Experiences in Applying the SAMEM

4.3.5 Using RM-ODP

The RM-ODP serves as a framework to guide the project activities. This is shared
with the customer as well. The five viewpoints (Enterprise, Information, Computational
(Behavior), Engineering, and Technology) are used to keep the conversations focused
on the important questions and topics for the current stage in the development process.
The guidance and focusing aspects provided by the RM-ODP are for the appropriate
level of abstraction in the context of the project management phase. The conversation
focusing aspects are part of the communication accidental complexity removal efforts.
In addition, the conversation focusing aspects also support achieving due diligence in
the project process.

The image in Figure 3.3 communicates the RM-ODP framework both for development
team and customer education. The Enterprise, Information, and Computational View-
points are the critical ones for creating the requirements specification, as they use the
business vocabulary. The artifacts from the Information Viewpoint are transformed into
behaviors using the Action Transformation Pattern, which is explained in Sub-chapter
3.4.1.3. Architectural design activities create the design model artifacts of the Engi-
neering Viewpoint from the requirements. Using the Architectural design artifacts as a
starting point, the detailed design decisions produce the Technology Viewpoint specific
artifacts for the realization. The decisions and artifacts from the Engineering and Tech-
nology Viewpoints are part of the design specification required by the FDA. In a domain
without regulatory requirements such as those imposed by the FDA, the Engineering
and Technology Viewpoint design artifacts can be fewer and simpler.
Figure 3.3 is useful as a different and sometimes more easily understood view of the

project process, as compared to a Gantt or Pert chart. It was found that a copy of Figure
3.3 created with highlights to show the current areas of work was useful as a temporary
introduction image for a meeting. For example (see Figure 4.2), a green background
showed a stable or complete viewpoint, yellow background indicated a viewpoint of
active work, and red background showed a viewpoint that had not been started. In
some cases, a puzzle piece from Figure 3.1 or Figure 3.4 would be mapped onto Figure
3.3 to communicate what was being worked on. The mixing and matching of different
visual models was dynamic and driven by communication needs with the stakeholders.
Each CS-1 and CS-2 solution had a slightly different set of stakeholders and the SAMEM
could adapt to the communication needs from a shared set of visual techniques.
In Figure 4.2, the puzzle pieces with the DHF label indicate that the Information

Model requirements are deemed complete (green background) while the Computational
(Behavior) requirements are in-progress (yellow background). The project status for the
Research Notes (RN) is in-progress (yellow background) for the engineering design work.
The reuse of images in combinations enhances the communication with the customer.
Figure 3.3 or Figure 4.2 helped to explain why a certain requirement appearing state-

ment is not a requirement but a design decision or constraint which assisted in keeping
the requirement specification in a clean state. Clean requirements are something the
FDA looks for in an audit and are interpreted as refinements to intended use, intended
users, and safety. Those three phrases are interpreted in the context of the medical

137

Chapter 4 Applying the SAMEM

Figure 4.2: Project Status Example Mapped to RM-ODP Model.

product and current best practices. Statements in the requirements specification that
reflect a certain solution technology can inhibit passing an audit, especially when the ac-
tual product did not use that technology. The working definition of clean varies between
FDA auditors and is relative to the class of medical device.

4.3.5.1 The Enterprise Viewpoint and the Solution Concept Model

The Enterprise Viewpoint is equated with establishing the solution concept [Bro95].
There is a concept for the entire solution and an initial partitioning of the entire solution
into a set of sub-solutions. The objectives of creating a set of sub-solutions are to
have manageable units for development and to deliver some business value as soon as
possible. A concept is created for each sub-solution, which is called a sub-concept.
The sub-concept is the foundation of the Enterprise Viewpoint for the sub-solution.
For each sub-solution, the sub-concept becomes the starting point for the elicitation of
requirements and the refinement into design alternatives.

138

4.3 The Experiences in Applying the SAMEM

Figure 4.3: Enterprise Viewpoint Solution Concept Model.

Figure 4.3 (same as Figure 3.1 but repeated for convenience) shows an example (from
CS-2) of the entire solution concept model (most abstract) for the Enterprise Viewpoint.
This image is divided into three components:

1. The business goal is at the top as a title, 1O. In this example the business goal is to
have Product Leadership, i.e. build better products than anyone else. The com-
pany (CS-2) believes the key to achieving Product Leadership is through control
of the product definition information and processes.

2. The project mantra is in the box at the bottom, 2O. The project mantra is a
statement of the business benefit of achieving the business goal. By controlling the
product definition, new products will be created as effectively as possible (waste
is reduced).

3. The graphical image of the full business solution concept with the initial sub-
solution partitioning is expressed as a graphical image in the middle, 3O. The
image defines the parts of the business that are considered to be in scope for the
project. Business areas not in the picture are either out of scope or are too minor
to be included at this level of abstraction.

139

Chapter 4 Applying the SAMEM

The major goals of establishing the solution concept model as a single graphical image
are to have a high level summary that all stakeholders can agree to, have a memorable
image for effective communication of the solution essence, and provide a starting point
for graphical refinement in an iterative & incremental process.

Both the business goal, Product Definition enables Product Leadership and the mantra,
File it, Find it, Reuse it AND Don’t REDO it!, are used constantly through the process
as a touchstone to ensure that the conceptual integrity is maintained. As requirements
are gathered in the form of information model artifacts or solution behaviors, they are
constantly questioned relative to the business goal and the mantra.

• Is the information artifact an essential part of the product definition or not?

• Does the behavior directly support the mantra or not?

The solution model is developed from the business priorities listed in the strategy,
which is a separate issue from this thesis. In the case of both CS-1 and CS-2, the primary
business goal is to manage the product definition and the supporting data required by
the FDA. The product definition can be seen as a large information model. Refinement
activities break the product definition down into a set of smaller Information Models
(IM) such as Design History, Research, etc. The ones shown in Figure 4.4 (same as
Figure 3.4 but repeated here for convenience) are the initial smaller IMs considered for
the three-year time scope for the CS-2 project. This single image is easily remembered
by the customer and at a high level of abstraction is a summary that can bring all project
people into agreement or at an early stage expose disagreement.

The visual model in Figure 4.3 enables a graphical starting point for refinement while
establishing context. One of the goals for the SAMEM is to show refinement through
sets of more detailed graphical models, for example Figure 4.3 to Figure 4.4. The chain
of refinement images provides an audit trail of design decisions. In practice, a circle
is drawn around a puzzle piece, an IM in Figure 4.3, and discussions of the benefit of
developing that particular IM as opposed to some other piece are held. When looking
at one of the IMs, a similar but more detailed model, a sub-IM is created, Figure 4.4,
which starts the next set of model refinement actions. At this point, a high level business
problem scope architecture is produced but still at the enterprise level in the RM-ODP
process.

The factor that is often the most important in deciding the realization order of the IMs
or sub-IMs is which group within the organization is most receptive to an improvement.
However, at times the customer management will target an area they think needs help
even if the group is not receptive to an improvement. In a few cases, a certain IM or a
sub-IM refinement produced a foundational component that should be realized sooner
for the supporting benefits to other IMs.

It can take several meetings with the stakeholders to develop a clear and compact
solution concept. In the case of the example in Figure 4.3, it guided the project direction
of CS-2 for over three years and five sub-solution deployments. The use of graphical
expressions of the project definition allows for effective navigation through the fog that

140

4.3 The Experiences in Applying the SAMEM

Figure 4.4: Sub-solution Concept Refinement Model.

exists early in the project. The fog is the consequence of people having a rough qualitative
idea of an improvement possibility, but they are still in the early stages of learning to
express the idea. Brooks [Bro10] discusses this situation at length.

The image of the puzzle is a representation of the modularization ideas from David
Parnas, “...module is considered to be a responsibility assignment” [Par72]. One of
the ways the image in Figure 4.3 is used is to focus a meeting by drawing a circle
around a jigsaw puzzle piece. The puzzle image was repeated to specify more detailed
requirements (see Figure 4.4). By repeating the puzzle piece image and adding details for
the information components of the Design History Information Model, a communication
bridge is created. The repetition of image styles is a great help to communication as
it sets a pattern and allows context to flow down from the highest level of abstraction.
This is a repeated application of the module with information hiding idea as described
by Parnas [Par72]. The stakeholders verify the correctness of highest level of abstraction
in Figure 4.3 and then the next level of modules in Figure 4.4 is verified. The set of these
images define and maintain the solution concept. They are some of the Model Artifacts
as shown in Figure 3.2 and become part of the requirements specification.
Finding the most effective models for the Enterprise Viewpoint is an action of inno-

vation and experimentation. There is not a single answer. However, a process of trying
new communication forms on a select few of the stakeholders can be done. A smaller
audience of open and respected stakeholders will often be easier to try new model forms

141

Chapter 4 Applying the SAMEM

with.

4.3.5.2 The Information Viewpoint Development

One of the first modeling lessons learned is that the standard UML model diagrams
should not be shown to the stakeholders. The feedback came from the reaction, mostly
emotional, by the stakeholders to the UML notations. The standard UML diagrams
are too harsh, have simple lines, no color, and contained unneeded information. The
case study experiences discovered a need for “softer” visual display for the same reasons
that other research has discovered [MvH08]. In addition, the softer visual notations
need to be developed in conjunction with the stakeholders. Sketching model ideas on
a whiteboard is a good way to introduce new notation, even if the notation ideas are
based on some other standards such as the UML. Examples of the new visual display
for the requirements can be seen in Sub-chapters 3.5.2 and 3.5.3.

It is also necessary to reduce the content of the UML diagrams and UML elements
to the essential data needed for pure information modeling. Applying the RM-ODP
framework to the problem helped to discover the essence of new models. The Information
Viewpoint models are based on the UML Class Model ideas but only use some of the
modeling features.

In the case studies, the sub-IM level started with identifying the major business in-
formation units and structures of information. At the Information Viewpoint level, only
business terms are used. The software terms of object, class, or tree are completely
avoided; instead the terms of information unit or unit of information or structure of
information are used. The term document is avoided. The rationale for not using doc-
ument was discovered in the strategy project, because they (CS-1) had created many
documents with diverse and unrelated information, which prevented reuse. In order to
achieve information reuse, the CS-1 project emphasized homogenous and generic units
of information. For example, a Chemical Research Method (CRM) definition should
mention the material type but not any product name or development project name.
For both of the case studies, the starting point is with the information units because

that was the most stable thing in the business environment. The stability was established
by many years of product development and the FDA regulations. Identifying the product
definition information as the most stable component was the application of the SEFP
Stability to Variability, see Sub-chapter 3.2.3.
The behind the scenes thinking of the development team based the idea of the infor-

mation units and the information structures on the UML Class Model capabilities. The
structures of information are called Bill of Information (BOI) due to the customer’s
understanding of their product Bill of Materials (BOM), which is an example of the
Change Language SEFP to improve communication. The terminology was an inten-
tional choice to draw an analogy between the idea of standardized reusable parts in their
product and standardized reusable units of information in the product definition. This
is the embodiment of the mantra: create a unit of information, File it in the repository,
Find it in the repository, determine if it can be Reused in a new product. The repository
for CS-1 became known as the Knowledge Management System (KMS).

142

4.3 The Experiences in Applying the SAMEM

At times it is awkward, but developers need to speak two different languages. There
is the business language that is comfortable for the customers and a more precise lan-
guage for further development purposes. The more precise language is shielded from the
customer.

4.3.5.3 Computational (Behavior) Viewpoint Development

As the information units are identified, the question immediately asked is, “What is
the business process for management of this unit?” The answer to that question starts
the elicitation of the behavior requirements, which belong to the Computational (Be-
havior) Viewpoint. For this use of the RM-ODP framework, the SAMEM redefines the
Computational Viewpoint as the Business Behavior Viewpoint.
The business process of the information unit management is expressed in terms of the

capabilities of the UML Activity Model. For CS-1 and CS-2, the customer seldom had
a clear process definition, so that the requirements elicitation work is often defining and
clearly documenting the process for the first time. This process is called the Business
Flow. In developing the Business Flow, additional information units are often discovered,
existing units modified, and on occasion some are removed. The removal was occasioned
by the realization by the customer that the information is no longer applicable to the
business.
In Figure 3.3, an arrow points from a unit of information in the Information Viewpoint

to a unit of behavior in the Computational Viewpoint. Below the arrow appears the text
“Created by the Action Transformation Pattern.” This demonstrates the application of
the Create, Retrieve, Update, Delete (CRUD) pattern to each information unit. This
pattern is used as a checklist to ensure that the information unit management process
has all the lifecycle actions. The CRUD pattern is extended in two ways. First, the
major actions are specialized, for example Create has sub actions of Create Item, Create
Revision, Create Structure, etc. Second, each action has characteristics suggested by
the Volere Method [RR99], which results in a matrix, the Action Transformation Matrix
(ATM). This matrix acts as a two-dimensional checklist to help make sure all the behav-
ior requirements are addressed. The actual entries in the ATM are references to other
sections of the requirements specification, so that it acts as a 2-dimensional index. See
Figure 3.20 for a full example and Figure 4.5 for a partial example. The rows of actions
and the columns of characteristics are extended as needed for the domain and customer.

143

Chapter 4 Applying the SAMEM

Figure 4.5: Partial Example of an ATM.

4.3.5.4 The Engineering and Technology Viewpoints

Although the scope of this thesis focuses on requirements which correspond to the En-
terprise, Information, and Computational (Behavior) Viewpoints rather than the Engi-
neering and Technology Viewpoints, a brief description of the relationships will be given
to round out the understanding.

The high-level design actions and artifacts are considered the Engineering Viewpoint.
These are documented for the case study companies per FDA regulations. One major
design choice that is made in the Engineering Viewpoint is the “build or buy” deci-
sion. For the case study companies, the decision was to buy Teamcenter, because its
capabilities matched many of the requirement needs. Each requirement is examined in
the light of the engineering architecture possibilities and mapped onto the proper set
of features. The requirements for information units were mapped onto the Teamcenter
built-in types and attributes. The various requirements behaviors (CRUD) were mapped
onto the built-in actions. The mapping actions are the design work and choices made
during the Engineering Viewpoint. The design choices and accompanying rationale are
the contents of the design specification. Examples of design artifacts and rationale from
the case studies are shown in Sub-chapter 3.5.4.1.

The low-level design artifacts are seen as contents of the Technology Viewpoint. The
artifacts here consisted of specific configuration settings for features such as the data

144

4.3 The Experiences in Applying the SAMEM

types with attribute properties, access control, specification of the organization (users,
roles, and groups), user interface layouts, and approval workflows. There are on occasion
behaviors or business rules that cannot be configured but need a C++ code extension for
realization. Examples of the Teamcenter implementation for the case studies are shown
in Sub-chapter 3.5.5.1.

In creating the realization through the Teamcenter tools, sometimes constraints or
limitations would arise that forced the updating of a requirement. For example, the
realization of a requirement might only be possible by extending the Teamcenter prod-
uct through custom code. However, an extension through custom code conflicts with
maintaining an easy update path to a new version of Teamcenter, since the extension
would need updating. These conflicts and compromises are discussed with the customer
and an agreement is reached.

4.3.5.4.1 Engineering Viewpoint Impacts on the SAMEM and Project Process

The design work done at the Engineering Viewpoint level has two major impacts
on the project process flow. The normal project process flow is from high levels of
abstraction in the Enterprise Viewpoint to low levels of abstraction or concreteness in
the Technology Viewpoint; however, discoveries during Engineering Viewpoint work can
cause re-specification of requirements. The re-specification arises through invention,
uncovering of unexpected business constraints, limitations in the engineering needs or
technology, and discovery of requirement mistakes. The re-specification results in cycling
back to the requirements work and making corrections. The re-specification can also
occur when technology limits force an engineering re-design.
The major impact on the SAMEM is a reinforcement of the iterative & incremental

approach, not only for initial development but also for the rework cycles. There is an
additional impact on the artifacts, as the rework cycles are essentially a distribution of
the work over time. The work distribution factor means that the intent of the artifacts
and the reasoning behind them must be available for re-examination and improvement.
Brooks [Bro10] extensively discusses the cycling back to requirements and through

multiple design alternatives. In any high quality design type of work there will be natural
iterations or design cycles as understanding is gained of the consequence of a design choice
and of technology limitations. However, there can also be unnatural iterations, often
referred to as analysis paralysis. The SAMEM needs to support and track the natural
iterations and highlight the unnatural iterations as quickly as possible. The SEFPs are
a mechanism by which light and understanding is focused on the unnatural iterations.
The SEFPs of S2V, SoA, Patterns, and C&C have been shown in practice to be most
useful.
For example, a requirement might call for the long-term persistence of an information

unit. The first design alternative at the Engineering Viewpoint level might be to save the
information in an operating system file. Upon further reflection and taking into account
an engineering pattern such as ACID (Atomicity Consistency Integrity Durability), a
second design using a relational database is developed. When other requirements are

145

Chapter 4 Applying the SAMEM

added, such as structures of information units, then a third design using a COTS PLM
application (such as Teamcenter) is proposed. The designs and alternatives multiply as
the engineers consider groups of requirements and best practices. Tracking is needed to
keep the work organized and effective.

There are different ways the design alternatives can be managed (see patents [Mat04],
[Mat05], [Mat09]). For a start, each design alternative gets a unique identifier for accu-
rate traceability. The design alternative is linked back to the requirements it attempts
to satisfy. Along with the link, an evaluation of the advantages and disadvantages with
respect to the requirements is valuable for evaluation in a design review.

The advantage that the Engineering Viewpoint brings with the design alternatives is
the opportunity for invention and innovation in the solution. The invention could be
small as in the new combination of existing design patterns or the invention could be
large as the creation of the Web through the HTTP protocol and HTML. The SAMEM
allows for the possibility of invention by deliberately separating the focus on what to
build from how to build. The explicit emphasis on short iterative & incremental cycles
assists in the ability to develop multiple design alternatives.

The design work that happens during the Engineering Viewpoint is often referred
to as high-level design. The larger the solution, the more critical it is in design work
to separate the big decisions from the small decisions. The SAMEM supports this by
abstraction and using RM-ODP to help organize the design decision considerations.

4.3.5.4.2 Technology Viewpoint Impacts on the SAMEM

The major impact on the SAMEM of the work that happens in the Technology View-
point is the discovery of incorrectness, incompleteness, and conflicts to the work done in
the other viewpoints. This is a risk that cannot be completely eliminated with a forward-
only process. These discoveries will generate a re-evaluation task in the project process
that will cycle back to an earlier viewpoint. Often the cause is an incorrect assumption
about the features or capabilities of the technology in satisfying a requirement or an
engineering design. Sometimes an incompatibility between system components or com-
ponent versions will arise during the implementation or testing. These incompatibilities
are often not communicated in release notes or other vendor documentation.

When this happens, the traceability from low-level design to high-level design to re-
quirements is crucial to effectively correcting the problem. If a requirement needs to be
adapted, then the ability to explain why the technology will not support the realization
is very important. This is viewed as a type of verification, although the cost is higher
because the failure happened after more effort was spent.

Because the SAMEM is built around fast iterations and small increments, it is possible
to slip a new cycle into the project plan with minimal impact, thereby mitigating the
cost. However, a new iteration will add a cost on the project budget. Good project risk
management planning in the beginning should allow for some of this to happen. The
size of this risk is primarily dependent on the experience of the development team with
the technologies and how hard they are pushing the technology.

146

4.4 Lessons Learned

4.4 Lessons Learned

This sub-chapter summarizes the lessons learned as described earlier and expands the
list with additional learnings. The majority of lessons learned came in the first several
solution projects done for CS-1, but from every project there is some improvement in the
SAMEM methodology. In some cases the improvements are to the process and iteration
management and in other cases in the form of the artifacts. There are lessons learned
that relate to adapting the SAMEM to a domain or project personnel. The lessons
learned are compared with results from other surveys of MDE practices.

4.4.1 Case Study Lessons Learned

There are several unique practices in the project case studies that contributed to the
success of the case study projects. At several places earlier in the thesis, lessons learned
are listed in the context of the case study work. The previously listed lessons are gathered
together and organized in this chapter for summary purposes.

4.4.1.1 Iteration Lessons Learned (ILL)

ILL1 – the verification review time is scoped to about one hour of the stakeholders’
time. It was difficult in the case study companies to schedule longer sessions due to the
primary job responsibilities of the stakeholders, especially with the top subject matter
experts or responsible executives. With advanced scheduling, often several weeks in
advance, longer sessions such as half a day could be set up with multiple stakeholders.
In practice, a review unit consisted of one or two pages of graphical images to check.
This is simple to accomplish and the hour or often less time needed could be effortlessly
worked into the stakeholders’ schedule.
ILL2 – the review content volume had an influence on the verification review time

through the amount and the coherence of the information, but the rule-of-thumb discov-
ered is about five information units with associated attribute definitions (approximately
15 attributes per unit) and state machine or 15 tasks from a Business Flow. In cases
where an information unit had many attributes, over 20, the number of information
units to be reviewed was reduced. If the Business Flow tasks involved more complex
cycles of work, in contrast to a linear progression, then the section size was reduced to
cover the complex cycle portion. The experience and knowledge of the stakeholders had
influence on the size of the review package. There were constant adjustments to fit to
the stakeholders’ abilities and schedule opportunities for review but always with the goal
of one hour maximum of review time.

4.4.1.2 Project Process Lessons Learned (PPLL)

A major concern of the sponsoring stakeholders, a person responsible for the money
being spent, is that reasonable progress is being made. The definition of reasonable
often depends on the software project experience of the sponsoring stakeholders.

147

Chapter 4 Applying the SAMEM

PPLL1 – the case study experiences show that the project process roadmaps help
with establishing positive customer expectations. There are several visual images that
can be included in the category of project process roadmap and were used in the case
study solutions as appropriate to clearly communicate with the stakeholders.

The use of visual models in the SAMEM - as much as possible - helped in the project
progress communication. One example is that two requirements images can be compared
and the differences highlighted. One manner of highlighting used was to draw a border
around a portion of an earlier version to indicate what was worked on in the iteration,
then show the updated version with new specifications. Another mechanism is to show
the new models created during an iteration. Since most of the models can fit on one
page, they are easy for the stakeholders to acknowledge.

Figure 3.1 and its refinement such as Figure 4.4 show the solution area being worked
on. For a more detailed picture of the current work within the information model, the
SOD (example Figure 3.5) is used. The ability to trace from the high-level solution
concept to a specific detailed set of information units to Business Flow tasks is crucial
in establishing a logical and traceable path of what is being worked on.

An example of the first process image is in Figure 4.1, which shows the overall pro-
gression from requirements elicitation to deployment. This image establishes the flow of
work for a solution and provides the basis for explaining the application of the agile-like
iteration approach. It helps to answer the questions: “How is the project work being
carried out?” and “Where in the process is a certain piece of work?”

Combining Figure 3.3 with Figure 4.1, as in Figure 4.2, explains which type of work
was being done. In this case, the type of work relates to the level of abstraction. For
example, is the project in the Enterprise, Information or Computational (Behavior)
Viewpoint with the requirements being gathered or is a Demo Prototype being developed
in the Engineering or Technology Viewpoint?

PPLL2 – the ability to work in a common set of tools that allow images to be combined
is very helpful to accomplishing the communication needed for reporting project progress.

PPLL3 – stacked ATMs are effective as an interface between the Front-end and
Back-end teams. A stacked ATM is an ATM with the cells filled with references to re-
quirements, engineering designs, and technology designs. Front-end is the name applied
to the work done by the primary development team and Back-end is the implementation
work done by an external contracting group, often off-shore. Each cell in the Action
Transformation Pattern Matrix gets a unique identifier. The interface to the Back-end
team is the set of information consisting of a list of ATM cells, the associated requirement
specification sections, and a set of implementation constraints.

PPLL4 – the key lesson learned is that different stakeholders respond best to different
presentations. Some stakeholders are interested in which tasks have been accomplished
and the next set to be accomplished. Other stakeholders need more information to feel
comfortable about the progress, such as the rationale for the task ordering.

148

4.4 Lessons Learned

4.4.1.3 Communication Lessons Learned (CLL)

The high level goals of HL-GOAL-1 and HL-GOAL-2 are focused on communica-
tion. The following pragmatic lessons learned reflect the difficulties of finding a common
communication approach among many people.
CLL1 – the primary lesson on communication is to be open to try different mecha-

nisms. Sometimes hints on what will work can be found during the stakeholder intro-
ductions when they recount their hobby experiences. For example, one stakeholder is
involved with photography as a hobby which indicated a visual orientation. A key to
effective communication is the application of human cognitive psychology limitations.
CLL2 – the discovery and use of neutral terms, standard business terms, or domain-

specific terms especially in the work of the Enterprise, Information, and Computational
(Behavior) Viewpoints is critical. Neutral terms of “information unit” and “information
structure” were used in the case studies, rather than computer science or programming
terms like “object” and “class”. During the Engineering or Technology Viewpoint discus-
sion with the stakeholders, the terms from the requirements could be mapped onto the
computer-specific design artifacts and terms. The mapping provides a vocabulary tran-
sition and traceability for the stakeholders and increases their confidence in the solution
realization.
CLL3 – changing the terminology used in the team from the standard terms, like doc-

ument, brought us to the Bill of Information concept. Deliberately changing terminology
can break mindsets, so that innovation is stimulated through new perspectives.
CLL4 – the solution is built on the Teamcenter PLM product and it was discov-

ered that by not using common PLM terminology or jargon, it was easier to introduce
Teamcenter and new solution concepts to the business users of the system.
CLL5 – an important help is the socialization by the customer business side team

members to other people in the company of the improvements coming in the new solution.
Improvement process drawings were created to show the new customer where they had
important parts to play in the process.

149

Chapter 4 Applying the SAMEM

Figure 4.6: A Stakeholder-developed Image of the Project Process.

CLL6 – it often becomes very valuable to use stakeholder-developed images, not just
from a political relationship standpoint, but because the image has captured a valuable
insight. The value of a stakeholder being involved enough to generate such an image is
very high. At times the stakeholders will develop a visual model (see Figure 4.6 for a
project process example) that helps with communication within their company.

Figure 4.7: Stakeholder Image of Company R&D Environment.

The lesson is that the SAMEM artifacts are not the only source of valuable communi-
cation artifacts about the project process and the solution. The ability to integrate and

150

4.4 Lessons Learned

use stakeholder work for the appropriate viewpoint is critical.
Another example of a stakeholder-generated image is seen in Figure 4.7. This image

was developed internally in the CS-1 company. It was used in an external conference
presentation [SM11]. This image falls into the Enterprise Viewpoint as it describes the
nature of research and development work in the company from an important stake-
holder’s perspective.
CLL7 – case study experience showed that stakeholder consensus happened quickly

on the information units but took longer for the attributes.

4.4.1.4 RM-ODP Framework Lessons Learned (RMLL)

The use of RM-ODP as a framework for the coordination of modeling techniques was
critical. RM-ODP helped with decisions about what concepts to model and which mod-
eling techniques were useful. For the Enterprise Viewpoint, the initial attempts showed
that the UML was inappropriate, so a different approach was developed. For the Infor-
mation and Computational Viewpoints, the UML was appropriate but in a restricted and
simplified graphical form. More details on UML limitations are in Sub-chapter 4.4.1.5.
RMLL1 – RM-ODP is effective in controlling the requirements gathering process

by helping to identify those times when conversation drifted into implementation dis-
cussions. In the domains of the CS-1 and CS-2 companies, the RM-ODP viewpoints
approach worked with Information Viewpoint first, Enterprise Viewpoint second, Com-
putational Viewpoint third, Engineering Viewpoint fourth (start of design work), and
Technology Viewpoint last. Start with what information a group is responsible for creat-
ing. With that agreement in place, the next questions of "What groups do you interact
with?", "What information do they need from you?", and "What information do you
supply to them?" can be addressed. Think of this as a RACI (Responsible Accountable
Consulted Informed) model for information. The information model approach produced
a “what” needs to be done discussion, not a “how” to do it discussion.
RMLL2 – with the agreement on the information model as a basis, the order in which

the information is developed and how it evolves within the Business Flow is relatively
straightforward.
For the problem domain for which PLM is the optimal engineering solution, the focus

on the Information Model first will be most productive in achieving insight to the essence
of the problem. It also makes reaching agreement with the customers easier. Once the
Information Model is in place, the behaviors can be addressed. The PLM maturity
and understanding is similar in most product producing organizations. The information
model first approach was successful. It was easy to get agreement on which information
belongs in the solution and the discussions were constructive as understanding was shared
among the business users. In many cases, it was the first time they had such discussions.
The observation that the process is secondary to the information model was confirmed.
The information model is more stable than the business process, especially as most
companies have continuous process improvement going on.
RMLL3 – one also needs to pay attention to the order in which information is created

and linked together. The linking of information is not a violation of coupling [Mye75] if

151

Chapter 4 Applying the SAMEM

it is a natural occurrence of building the complete information unit. The coupling and
cohesion principles help to draw the boundaries in the partitioning of the implementation
iterations and also help define a boundary for Front-end / Back-end partitioning of work.
Front-end work is done by the main project development team, while Back-end work can
be shipped off-shore or given to a contract organization.

4.4.1.5 UML Modeling Flexibility (MFLL)

While UML models are the foundation of many of the SAMEM modeling approaches,
there are changes needed to improve communication. There are also modeling techniques
needed that go beyond the UML.
MFLL1 – one of the important lessons learned in the case studies was having flexibility

in changing the notation when stakeholder communication suffered. UML was the initial
modeling choice due to its ubiquity. However, the UML visual display was changed when
it interfered with communication and sub-sets of the capabilities were selected when
appropriate. The starting point UML models used in the Information Viewpoint and
Computational (Behavior) Viewpoint are the Class Model, State Model, and Activity
Model.

UML Class Models provided the initial starting point for the information artifacts.
However, one of the first modeling lessons learned was that the stakeholder communi-
cation did not work well with standard UML artifacts [MvH08], [Mat11]. The standard
UML diagrams are too harsh with simple lines and geometric shapes, no color, and
contain unneeded information.
MFLL2 – for non-computer experts there is a need for “softer” visual display for the

same reasons that other research has discovered [MvH08].
Full UML Class Models were difficult for the stakeholders to grasp. The simplicity

of the visual notation leads to confusion and the standard class appearance had many
pieces that were unnecessary for requirement models. A softer UML Class Model is
created through the following changes. Method definitions, which embody a how, do
not come into existence until the design stages and are eliminated from requirements
information models. Only the simple Association relationships are used. Peer-to-peer
relationships, often a reference, and parent-child relationships, the BOI, are the cate-
gories of Associations discussed and documented. Bi-directional navigability is assumed
for all relationships, so those UML decorations are not displayed. Cardinality is shown
on relationships only when important for clear communication. An n-to-m cardinality
is assumed, except of structures where a 1-to-n (parent-child) cardinality is used. Color
is added to the visual notation for the class models to distinguish entities which, as
previously described, were renamed to information unit.
MFLL3 – placing the attribute definition in a separate table is a response to a lesson

learned for improved customer communication. The splitting of the artifact represen-
tations helps the communication by enhancing focus. There is an artifact that shows
the information unit with the relationships between them and an artifact with the at-
tribute details of each information unit shown separately. The two artifacts focus the
conversations on either the validity of the information unit and its relationships or the

152

4.4 Lessons Learned

information unit details. The splitting of artifacts content makes the review content
smaller for each verification step.
MFLL4 – in many cases the stability of the attribute definitions and list did not

happen until the demo prototypes were reviewed and in some cases not until after the
CRP.
MFLL5 – UML Activity Models were the basis of most of the behavior requirements.

Due to a stakeholder suggestion, the UML Activity Model notation was switched to Busi-
ness Process Modeling Notation (BPMN) after the first year of work. For requirements
purposes there is no essential difference in either expressive power or visual notation.
Since Microsoft Visio™has templates for BPMN, this eased some of the documentation
work and the ability of stakeholders to make edits during independent review sessions.
Swim lanes corresponding to user roles are not used for the main Business Flow, be-
cause it is more important to have natural flow of tasks. The use of swim lanes can often
corrupt the essential business task flow by having to visually jump across the page for
the next task. In addition, at the abstraction level of the Business Flow, several user
roles can be involved in a particular task. During refining and verifying the Business
Flow tasks, often temporary and clarifying annotations were added in Visio™to the flow
models. If UML Activity Models were used more strictly, then the clarifying text could
be placed in a UML Note artifact.
MFLL6 – the UML State Model is used virtually unchanged from the semantic as-

pects and diagram notations. Most of the stakeholders, in both CS-1 and CS-2, have
either a strong engineering or scientific background and are familiar with state machines.
It helped that the state machines were often a simple progression from a new information
unit to an approved unit.

153

Chapter 4 Applying the SAMEM

4.4.1.5.1 UML Notation Use Summary

In general, the UML provided a good starting point for modeling, but the essence
needed to be extracted. The essence can be summarized as data and behavior on data.
A factor in extracting the essence is to forget about the object orientation in UML.
For UML Class Models this means seeing them as units of information, in the sense of
modules as Parnas [Par72] describes and replacing the programming language methods
with the behavior ideas of the CRUD pattern.

Sub-chapters 3.5.2.1, 3.5.3.1, 3.5.4.1, and 3.5.5.1 list modeling examples and the rela-
tionships to UML when present. There are parts of the UML not used or specialized for
requirements modeling:

• Use Case Models – not used because the content is too shallow. A UML Use
Case Model has only an Actor name and a Use Case name. The use of only two
names open up many possibilities for misunderstanding. From a business value
perspective, there is too much work for too little value.

• Class Models:
– Generalization – this relationship is for design and is used at that level, not

for requirements.
– Methods – there are no methods at the requirements level other than general

CRUD actions which appear as tasks in the Business Flow and as use case
(example in Figure 3.17) refinement of the task.

– Specific Associations – Qualified and Dependency. From a requirements per-
spective these associations only add complexity, not clarity. Neither of the
concepts exists in requirements, although they can appear at the design level.

– Interfaces – provided or required. The interface concept in UML indicates an
abstract class with no implementation. The requirements information models
reflect concrete business entities. In the design, abstract classes and interface
appear to minimize coding effort via reuse.

– Template Class – at the requirements level template classes for generating
different language implementation are not needed, as the work is at a higher
level of abstraction.

– Association Class – in design and implementation work, association classes
are used to realize a business behavior, however, they are not used for re-
quirements as that concept is unnecessary.

• Component – organization into components is a design activity.

• Composite Structure – these structures are design artifacts.

• Communication Model – not used, because the requirements do not have the de-
tailed objects and messages for the links. There is a certain equivalence between

154

4.4 Lessons Learned

the Communication Model and the Sequence Model. The developers preferred the
Sequence Model.

• Package Model – translated into the Information Models (IM).

• Sequence Models – Sequence models are intended to show how a group of objects
collaborate in some behavior. At the requirements level the objects with their
methods do not exist, but sequence models are used in design activities.

• Deployment Model – not used, result of low-level design activity.

Although many of the UML models are not used for requirement specification pur-
poses, several came into use during various design activities in the Engineering and
Technology Viewpoints. Some Class Model capabilities, such as generalization and exact
association multiplicities, are part of the BMIDE technology design and implementation
work.
In practice, many visual artifacts include additional clarifying text to enhance stake-

holder communication. The notes are added only on stakeholder request. This is similar
to the UML Note capability, but the UML visual notation was not used.

4.4.1.6 New Modeling Notations (NMNLL)

New modeling notations were developed to address areas that currently have no graphical
or modeling standards.
NMNLL1 – although not exactly a new modeling notation, a lesson learned is that

color in the artifact models varies from group to group. For example, the CS-1 engineer-
ing group found color to be helpful in the communication versus the monochrome visual
images in the regulatory group as shown in Figure 3.10.
NMNLL2 – the two new model paradigms are the solution concept model and the

SOD. See definitions in Sub-chapters 3.2.1.1 and 3.5.1. New modeling paradigms were
developed when needed. The most significant area was for the Enterprise Viewpoint.
NMNLL3 – visual models for project process were developed for improved commu-

nication. The RM-ODP framework image, shown in Figure 3.3, is one example. This
figure is also supported by text definitions and objectives for each viewpoint. The other
main example is the Project Process Phases Diagram, shown in Figure 4.1. The project
process phases show iterations in a high project level context.
NMNLL4 – in many cases, rather than using simple text statements, tables created

in Microsoft Word™were the best mechanism to organize and present the requirements,
such as the attribute definitions in Figure 3.11. The tables are compact and easily under-
stood with labels for rows and columns. Tables also provide a consistent representation
with only the most important words in the cells, which emphasizes the importance of
brevity for review speed.

155

Chapter 4 Applying the SAMEM

4.4.1.7 Computer Tool Flexibility (CTLL)

Flexibility in computer-based tools was an important lesson learned.
CTLL1 – for the primary communication with the customer, tools were needed that

they could use, that all team members had, and that allowed for the creation of effective
graphical and text artifacts. The common set of tools is the Microsoft Office™formats.
The Microsoft Office™tools enabled the emailing of the artifacts and review results
back and forth when the development team was not at the stakeholder’s location. The
flexibility in artifact images and organization helped stimulate innovation in the solution
and in the customer’s business processes.

4.4.1.8 Case Study Lessons Learned Summary

Each of the preceding lessons learned has a unique identifier. They are collected and
summarized in Table 4.7 below.

Table 4.7: Lessons Learned Summary.
Iteration Lessons Learned

ILL1 the verification review time is scoped to about one hour of the stake-
holders’ time

ILL2 the review content volume has influence on the verification review time
through the amount and the coherence of the information, but the rule-
of-thumb discovered is about five information units with associated
attribute definitions (approximately 15 attributes per unit) and state
machine or 15 tasks from a business flow

Project Process Lessons Learned
PPLL1 project process roadmaps help with establishing positive customer ex-

pectations
PPLL2 the ability to work in a common set of tools that allow images to be

combined is very helpful to accomplishing the communication needed
for reporting project progress

PPLL3 stacked ATMs are effective as an interface between the Front-end and
Back-end teams to separate work responsibilities

PPLL4 different stakeholders respond best to different project progress presen-
tations

Communication Lessons Learned
CLL1 be open to try different communication and modeling mechanisms
CLL2 the discovery and use of neutral terms, standard business terms, or

domain specific terms especially in the work of the Enterprise, Infor-
mation, and Computational (Behavior) Viewpoints is critical to good
communication

CLL3 changing terminology used in the team from the standard terms can
lead to insights and innovation

156

4.4 Lessons Learned

LL ID Description

CLL4 initially avoid the use of technology jargon until the customers are
comfortable with the concepts

CLL5 socialization by the customer business side team members to others in
the customer company of the improvements coming in the new solution

CLL6 use stakeholder-developed images, not just from a political relationship
standpoint, but because the image captures a valuable insight

CLL7 the communication of requirements artifacts can affect how quickly the
artifacts stabilize

RM-ODP Framework Lessons Learned
RMLL1 control the requirements gathering process by identifying those times

when conversation drifted from the issue at hand
RMLL2 with the agreement on the information model as a basis, the order

in which the information is developed, and how it evolves within the
Business Flow is relatively straightforward

RMLL3 need to pay attention to the order in which information is created and
linked together

UML Modeling Flexibility Lessons Learned
MFLL1 adapt the notation visual or text formats to maximize communication

of the tasks at hand
MFLL2 be prepared to alter standard notation to improve communication
MFLL3 use multiple related artifacts for communication and work task focus
MFLL4 realize that the artifacts might take several weeks and iterations to fully

stabilize as the prototypes and CRP will reveal new understandings
MFLL5 be willing to switch to equivalent modeling notations for stakeholder

relationship maintenance
MFLL6 use existing modeling notations when they work for the team

New Modeling Notations Lessons Learned
NMNLL1 color can help to organize and differentiate artifacts in visual models
NMNLL2 invent new modeling paradigms when beneficial
NMNLL3 visual models for project process status
NMNLL4 use tables to organize data rather than simple statements

Computer Tool Flexibility Lessons Learned
CTLL1 artifact creation tools are needed that all team members have and can

use

4.4.2 Comparison to Other Lessons Learned Research

Other research lists factors that contribute to the success of initiating a MDE practice
and factors that contribute to the failure. The development of both the SAMEM and the
CS-1 case study began before this other research was done. However, research cited in
[HWRK11], [HRW11], and [WHR14] provides a good set of factors by which to evaluate

157

Chapter 4 Applying the SAMEM

the SAMEM as it was used in practice. The experiences of the case studies reported
here do align with the other research.

4.4.2.1 Success Factors for MDE

The lessons learned and success factors to a large extent parallel the assessment work
reported in [HWRK11], [HRW11], and [WHR14]. Their work reported on several success
factors and several failure factors in multiple MDE efforts.

1. Choose a narrow domain.
• CS-1 and CS-2 companies produce medical devices. While there is great

variety in the devices, they all must comply with the same set of regulations.

2. Use DSLs, where appropriate.
• There was no DSL for the requirements specification, but the freedom of using

Microsoft Office™tools for the artifacts enabled innovation and project speed.
• The Teamcenter product includes a DSL facility called the BMIDE.

3. Integrate MDE with other efforts.
• The modeling effort was extended to the whole project, not just the realization

or code generation part.

4. Look for quick wins.
• The quick wins in CS-1 and CS-2 were the visual modeling of most of the

requirements and producing demo prototypes within a few weeks of starting.
• The use of the Business Flow models resulting in fundamental business process

improvements for both case study companies.

5. Know your people (the psychology of MDE).
• On the development team side, the people were picked in part because of their

experience and eagerness to try something new. Some of the people on the
development team were not able to fully work at the abstract thinking levels
that modeling requires. The people that had trouble with modeling naturally
migrated and picked work in the iteration they were more comfortable with.

6. Key business drivers were explicit.
• For the consulting company, the key business drivers are known and are listed

in Sub-chapters 1.1 and 4.2

7. Know the domain.
• The consulting company exclusively specialized in the medical device domain

for many years.

8. Don’t be a software company.

158

4.4 Lessons Learned

• The consulting company delivered more than just code, there were business
strategies and software products as well.

9. Modeling is on the critical path (removes the optional use factor and ensures
modeling needed for project success).

• Modeling was used as much as possible through the whole project process.
There was a great emphasis on modeling and people were required to model
as much as possible.

10. MDE works well for multi-disciplinary systems.
• The CS-1 and CS-2 work was not multi-disciplinary, so this success factor did

not apply.

11. MDE and modeling works well for long-lived products (make MDE and modeling
essential to the long-term success as engineering process documentation value).

• The CS-1 and CS-2 solutions are intended to be in place for years.
• The regulatory compliance factor increases the value of modeling and MDE

beyond the initial solution generation.

12. Modeling and MDE works well when Solution quality is an important requirement
(modeling enables a deeper understanding of the solution and MDE can automate
solution generation which avoids human programming errors).

• The medical device field has high quality standards enforced by regulations
and audits.

13. Management buy-in to the MDE and modeling approach.
• The consulting company and stakeholder management support the new method-

ology, which at that time was called the Paper Prototype Process.

14. Pick the right problem.
• The problem to which the new methodology was applied was a good fit, as

there was a possibility to try new things with a new customer.

15. Team communication is enhanced through models of what to build.
• Team communication was through frequent meetings and explicit focus on

the artifact communication quality.

16. Target Modeling and MDE on areas where informal modeling is already happening
to build upon current trends and reduce organization change opposition.

• The consulting company was using informal modeling for strategy work and
was informally using UML for design work.

17. A methodology and modeling champion is needed to provide education and en-
couragement when team members encounter difficulties.

159

Chapter 4 Applying the SAMEM

• The methodology and modeling champion was the author.

Several of these success factors work together. In the case studies associated with
this thesis, the success factors were seen in the following ways. The factors 5, 13, and
17 worked together through the team education activities. From a consulting business
standpoint, the factors of 1, 3, 4, 6, 7, 8, 9, and 14 were fulfilled and explicitly listed as
business objectives. From a more technical side, the factors 2, 11, 12, 15, and 16 were
satisfied. The only success factor not applicable was 10.

The focus of the research cited in [HWRK11], [HRW11], and [WHR14] was on the use
of MDE as an approach for code generation. The SAMEM extends the MDE concepts
to applying modeling for other project needs, especially requirements specification. The
extension of MDE to earlier phases of the project places the burden on communication
for multiple purposes. Additional success factors to the ones cited above are summarized
in the lessons learned Table 4.7.

4.4.2.2 Failure Factors for MDE

The following list is of important failure factors when using MDE and modeling for the
first time. Only one of these factors applied to the projects of the case studies used in
this thesis.

A Use MDE to cover an entire industry.
• Each case study was a single company, although in the same domain. A

general domain-level solution was not attempted.

B Rely too much on commercial tools.
• This is primarily targeted towards code generation tools and a dependence

that might not match the needs of the domain, so that compromises are made
in favor of the tool and not the solution needs. In the case studies, the tools
were generic visual tools or the Teamcenter specific ones, so that there was
freedom to put the solution needs first.

C Try to generate whole systems.
• This refers to trying to use a model to generate everything. There was never

an attempt to generate a whole solution in the case studies, only specific
sub-solutions were partially automated.

D Don’t understand how gains can be offset elsewhere.
• The project effectiveness gains from using models and MDE do not necessarily

enable corners to be cut elsewhere.

E Expect a return the first time MDE is applied.
• This was expected in CS-1 projects.

160

4.5 Applying the SAMEM Summary

F Obsess about code generation/productivity.
• In both the case studies the focus was on modeling primarily for clear com-

munication.

G Make changes to generated code.
• Neither CS-1 nor CS-2 involved generation of code, so there was no code to

attempt to change.

H Have a strong requirement on efficiency of generated code but use MDE in any
case.

• The focus was on making the organization more efficient by automating man-
ual tasks and removing work that did not add business value.

I Don’t allocate sufficient resources.
• There were enough development team people for all the work without over-

taxing anyone.

J Use MDE as a way to remove your existing human expertise from the development
process.

• The aim of the modeling and MDE approach was on innovative solutions that
brought real value to the customer, not in minimizing the people involved and
their costs.

K Apply MDE at the wrong level of abstraction.
• o This failure factor refers to trying to do the wrong things in a project with

MDE, but in the case studies the focus was on modeling for communication.

L Don’t support developers in MDE.
• The developers were supported with training as needed.

Factor E, expect first time return on investment, was the only one that applied to CS-1.
In CS-2 the experiences of CS-1 provided confidence in the SAMEM approach. Despite
E being a failure factor, the design and planning of the SAMEM along with years of team
member experience mitigated this failure factor. In addition, the consulting company
was willing to change approaches if the SAMEM showed signs of not working.

4.5 Applying the SAMEM Summary
This chapter has covered the experiences and lessons learned from applying the SAMEM,
starting with an early version, in real industry settings. The practical experience and
feedback helped to refine the foundational premises of the SAMEM, but the project
successes support the basic ideas. In Sub-chapter 7.1 the results of a survey of project
participants substantiate the claims.

161

Chapter 4 Applying the SAMEM

The introduction of a new approach, process, or methodology into an organization is
an organization change. Whether the change is successful depends on several factors:

• The business situation or environment around the change.

• The effectiveness of educating the participants.

• The willingness of the participants to try something new.

• The recognition of a situation that can be improved.

• The clarity of the rationale for the change and the proposed changes.

The business situation that the SAMEM was applied to is the management of product
development information for medical device companies (CS-1 and CS-2). One unique
aspect of the medical device development environment is the regulatory requirement
for traceability through the product development process. The traceability requirement
impacted the SAMEM through the additional number of artifacts created and main-
tained. The agile program development approaches of SCRUM [Coh10] and eXtreme
Programming [Bec00] eschew the development of needless documentation. Traditional
agile development believes the code alone is enough, but that is not acceptable for highly
regulated domains such as medical devices. The impact on the SAMEM is to make sure
that adequate documentation can be produced throughout the project process.

The education specifically about the SAMEM concerned both the development teams
and the customer teams. The customer teams already knew their domain, but the de-
velopment team needed education about specific medical domains and the regulatory
requirements. Bringing developers into a new domain will always entail some domain
education. Additional developer-specific education covered the SEFPs, UML and mod-
eling, and the tool technology for the solution development. Both the customers and
developers attended education sessions on the SAMEM project process components of
RM-ODP, iterative & incremental, and the three-phase project structure. The educa-
tion of the developers needed to be more comprehensive, as they needed to guide the
customers through the new process approaches. While this went well in general, there
is some survey feedback on areas for additional improvement (Sub-chapter 7.1.4).

The willingness to try a new process within the customer organizations was mixed. The
research and development (R&D) people had little problem with the new ideas, especially
the graphical expression of the requirements. R&D people are more comfortable with
new and innovative approaches. The quality and regulatory compliance people at the
customer were less comfortable until positive results were achieved. The developers
showed more willingness in large part, because volunteers were sought out. However,
for the CS-1 development team, the author had the authority to force the SAMEM to
be followed with the full support of the management team. For the CS-2 project, the
successes from CS-1 were documented and the developers were quite willing.

The management of the consulting company was very experienced in software solution
development (on average more than 20 years). There was clear recognition that a better

162

4.5 Applying the SAMEM Summary

approach to running a development project was needed and possible. The combination of
agile approaches (iterative & incremental) along with models to improve communication
was supported.

The rationale for the SAMEM was developed by the author of this thesis and is
presented in a document format and presentation format. There are also a set of objects
for the new approach that outline the desired achievements. The objectives are repeated
in the high-level goals for this thesis (Sub-chapters 1.1 and 2.4.1). The description of
the SAMEM (early version) explicitly contains the rationale for the choice.
Through applying the theoretical definition of the SAMEM in multiple industry projects,

additional improvements were made. The SAMEM has proven itself to be a practical
improvement, which is substantiated in Chapter 7.

163

Chapter 5

Methodology and Process

In this chapter, an architectural definition for the process flow components for the
SAMEM is presented. The definition is a set of concepts and relationships between
those concepts [GPHS08], [Jur15]. The concepts represent an organized but not neces-
sarily linear progression from the initial observations with the stakeholders to a successful
solution.

The first purpose of the definition is to ensure completeness of the SAMEM variants
when adaptations are done to fit the SAMEM to a specific problem-solution situation.
The second purpose of the concepts definition is to provide a framework that enables
the business management of a SAMEM instance. The concepts can be checked for
completeness to ensure that there are no missing components and that project artifacts
are structurally sound.
The SAMEM concepts definition is similar to the purpose of the REAM [BPKR09] and

the OMG SysML [OMG15a] standard. It is a set of artifacts with relationships. Each
artifact in a SAMEM instance must map to either a concept of the SAMEM Process
Model (SAMEM-PM) or a concept in the SAMEM Information Model (SAMEM-IM),
which is defined in Chapter 6. In extending the SAMEM to a new domain, the SAMEM-
PM and/or SAMEM-IM are extended for the new concepts.

5.1 The SAMEM Process Model (SAMEM-PM) Concepts
The core SAMEM process concepts are embodied in the ideas of multiple phases that
consist of multiple iterations. Each iteration can produce or revise one or more Arti-
facts. A specialization of a phase is a RM-ODP Viewpoint, which embodies a level of
abstraction. The process definition concepts and their relationships are shown in Figure
5.1 in pseudo-UML Class Model style. The RUP [PK00] and the SEMAT [SEM98] also
have the concepts of ordered phases with multiple iterations.

5.1.1 The Core SAMEM Process Model Concepts
The Methodology concept consists of an ordered set of Phase concepts through a Has re-
lationship. The Phase concept represents the progression of the project process through
a major category of work. A Phase has a business Goal to achieve, which is indicated
by the Goal concept and the Achieve relationship. The rationale for the Phase con-
cept is that the project is a business investment with expected benefits and associated

165

Chapter 5 Methodology and Process

risks. At least at the end of a Phase, good business management will review the costs,
risks, benefits, and degree of Goal fulfillment to determine if moving forward is a re-
sponsible business action, which is business due diligence. The business management
of the project Phases could create additional checkpoints within a Phase to evaluate
progress and project continuation. The additional checkpoints are Sub-Goals, which can
be viewed as a specialization of a Goal.
The Phases are ordered by the Follow-on relationship, which indicates that starting on

the following phase is conditional on some minimum amount of work accomplished in the
preceding phase. There is no requirement that the preceding phase be totally complete
before starting any work in the following phase. As an example, if the preceding phase
is requirements elicitation and the following phase is engineering design, then not all
requirements must be specified before some design work can start.

Figure 5.1: The SAMEM Process Concepts.

A specialization of the Phase concept is the RM-ODP Viewpoint concept as defined
in the RM-ODP. Specifically for the SAMEM, the Phase concept aligns with the RM-
ODP abstraction viewpoints, although other domains can have different Phase concept
mappings. The RM-ODP Viewpoint concept represents an abstraction level. At the
beginning of a project, the abstraction level is high, because the problem is vaguely
understood and many details remain hidden or undecided [Bro10], i.e. the Enterprise
Viewpoint. As the project proceeds through the Phases, the problem is more completely
understood and design decisions are made, which moves the abstraction level to a more
precise position, i.e. Informational Viewpoint (Phase), Engineering Viewpoint (Phase),

166

5.1 The SAMEM Process Model (SAMEM-PM) Concepts

etc.
The ordering of the Phases from an abstract description of the problem to a more

specific expression of the problem/solution provides several benefits to the SAMEM.
The primary benefit from ordering the Phases is guidance on doing the work in the
most effective manner. The ordering separates specifying the “What” from the decisions
specifying the ‘How.” The Goals from the early Phases and the Objectives from the
associated Iterations produce project management Artifacts. The project management
Artifact is available to be communicated, updated, and checked-off as accomplished.
Project introspection for improvement and management purposes is facilitated via the
project management Artifacts.
A Phase has at least one and often several Iterations of work, which are connected

by the Contains relationship. A Successive relationship orders the Iterations. The
ordering of the Iterations allows for development traceability and process improvement
through analysis of the effectiveness of the order of work accomplishment. Through
understanding of the ordering of the work, process weaknesses leading to design or
implementation mistakes can be identified. An Iteration is a bounded and well-defined
unit of work that can be measured in terms of output. Each Iteration has one or more
Objectives, which are defined with the relationship PurposeOf connecting the Iteration
concept with the Objective concept. The work output of the Iteration is some type of
project Artifact, such as plans for the next iteration, requirements, designs, technology
realization (code), or documentation. The Produces relationship connects the possibly
multiple Artifacts to the Iteration. Details of the Artifact possibilities are described in
Chapter 6.
There is no specific limit on the number of Iterations in a Phase; rather, the focus

is on having enough Iteration instances to achieve the Phase Goal or a Sub-Goal. The
Goal of the Phase is partitioned into a smaller number of Iteration Objectives, which
are more manageable and measurable. The partitioning of the Goal concept is defined
by MadeOf relationships to one or more of the Objective concepts. The methodology
Iteration concept is essentially the same as the sprint in the SCRUM approach, while
the Objective is mapped to the SCRUM User Story concept.

In Figure 5.1, the Artifact concept represents a piece of work needed for the solution
development. The Artifact concept in Figure 5.1 is a link to the SAMEM Information
Concepts, which are shown in Figure 6.1 in Chapter 6. An Iteration can produce multiple
Artifacts if needed to satisfy its Objective through the Fulfills relationship; for exam-
ple, several requirements can be produced from a stakeholder interview Iteration. An
Artifact is not necessarily complete and correct upon initial creation but moves toward
completeness and correctness as it is reviewed in additional Iterations.
An Iteration can be devoted to Artifact evaluation and can produce an improved

version. The improved Artifact versions are connected via the Version Predecessor re-
lationship, so that the evolution can be understood. It is possible that upon evaluation
an Artifact is deemed totally incorrect and that it should be removed or given a State
value of Obsolete. Chapter 6 contains a more detailed definition of the methodology
artifacts and the Artifact states. Sub-chapter 5.1.3 describes the process management

167

Chapter 5 Methodology and Process

state concepts.

5.1.2 The SAMEM Process Model Concepts Mapped to Abstract Objects

The Phase, Goal, Iteration, Objective, and Artifact concepts from Figure 5.1 can be
viewed as abstract classes and need realization in corresponding implementing classes.
The implementing classes are the process management Artifacts as mentioned in the
previous sub-chapter. An example of the realization expressed in pseudo-UML is shown
in Figure 5.2. Each of the abstract concepts has a realizing Abstract Class with the
base attributes of Name and Identifier. The Name attribute is for a user-convenient
reference and the Identifier attribute is for a unique system identifier for each instance.
The attributes are deliberately typed as String to allow for the most general range of
values. Further domain-specific refinements are made from the abstract classes in Figure
5.2.

Figure 5.2: Process Concepts Realized as Abstract Objects.

5.1.3 Instance State Guidance

The project management Artifacts of the realizations of Phase, Goal, Iteration, Objective,
and Artifact abstract classes from Figure 5.2 all have an associated State, as shown in
Figure 5.3. Each of the State objects has a Value attribute which has the general type

168

5.1 The SAMEM Process Model (SAMEM-PM) Concepts

of String to be flexible. The project management Artifact state concept is identical to
the SEMAT state concept, as described in Sub-chapter 7.4.1.1 and shown in Figure 7.9.
The PhaseState value indicates the state of completion of the Phase relative to the

related (Achieves) Goal. The Phase is related to its PhaseState via the Completeness
composition relationship. Typical basic state values for a PhaseState are Not Started,
In Progress, and Complete, although specific projects can extend the basic values. The
Compete state applies to achieving all related Goals. Depending on the size of the
project, the time needed to complete the work of a Phase can easily be weeks, if not
months.

Figure 5.3: Process Instance States.

AGoal is connected to itsGoalState through theAchievement composition association.
The GoalState values indicate whether the Goal has been achieved. Typical basic state
values are Not Achieved, Partial Achievement, and Achieved, which can be extended.
The Iteration has an associated IterationState connected by the Accomplished compo-

sition relationship. Typical basic values for the IterationState are Not Started, Started,
In Progress, and Finished. For the Iteration to be in the Finished state, all of the
associated Artifact objects would need to be Approved.
The ObjectiveState is connected via the Fulfilled composition relationship with the

Objective object. Possible values for the ObjectiveState are Not Started, Started, Par-
tially Fulfilled, and Fulfilled. The Not Started and Started values are useful for project
management oversight and control. For example, an Objective that has a state value of
Partially Fulfilled or Fulfilled, implies that the associated Goal GoalState has a value of

169

Chapter 5 Methodology and Process

Partial Achievement. The Objective is Fulfilled when all of the necessary Artifact objects
are Done and the Iteration object is Finished.

The Artifact has an ArtifactState which reflects its trustworthiness, completeness, and
correctness at any point in the project process. Each Artifact is connected to a single
ArtifactState via a Maturity relationship. The ArtifactState value indicates whether the
Artifact can or should be used. For example, a newly created Artifact will have the
ArtifactState value of New and after an Iteration with the Objective of review artifacts,
the ArtifactState value changes to Approved. The SAMEM does not demand any specific
State values, but rather offers the guidance that the State values should reflect the
maturity or trustworthiness of the Artifact object for project use, such as New, Under
Review, and Approved.

5.1.4 Enabling Project Management
As stated earlier, the second purpose of the concepts definition is to provide a framework
that enables the business management of a SAMEM instance. Figure 5.1 shows the set
of the SAMEM process concepts with the relationships between them. Each of the
concepts has an instance type that corresponds to real project Artifacts for the Phases,
Goals (Sub-Goals), Objectives, and Iterations. In a SAMEM-guided project, there are
real Artifacts instances of the Phase definition, the Goals for a Phase, the Iterations
definitions, and the Objectives for an Iteration, which hold the project-created data and
real links between the Artifacts.
The concept definitions allow the project management tools to check on the integrity

of the SAMEM-guided project. Examples of questions that a manager could ask of the
project management artifacts to ensure the project is under control and proceeding as
planned are:

• Does every Phase have at least one Goal?

• Do the planned Phases make logical work order sense?

• Does every Goal have at least one measurable Objective?

• Does every Phase have at least one planned Iteration?

• Will the planned Iteration achieve the Objective?

• Are the Artifacts linked to the Iteration and Objective appropriate?

There are other project management questions that can be asked to control the day-
to-day project progress:

• How many Artifacts have been created?

• How many Artifacts are “Approved?”

• Have all the Goals for a Phase been “Fulfilled?”

170

5.2 Applying the SAMEM-PM: Instance Examples

• How long did it take for the Objectives for an Iteration to be completed?

• How long did it take for a Phase to be completed?

• How long did it take for the project to be completed?

The second set of project management questions requires an extension to the At-
tributes shown in Figure 5.3. In Figure 5.4 below, a UML Class Model shows some of
the attributes needed to answer the second set of questions. Depending on the level of
control desired by the project manager, additional attributes can be created to answer
the management questions. The attribute meanings and their behavior are the same
for all of the Instance classes, so that an abstract class AbstractInstance can be created
through the generalization relationship. For management needs, the attributes of Con-
tent, Date_Created, and Person_Responsible are added to the AbstractInstance class.
Likewise, the AbstractState class provides a generalization of the common attributes of
the State classes. The Change_Date attribute is added to AbstractState for management
purposes.

Figure 5.4: The SAMEM Process Model of Concepts in UML.

5.2 Applying the SAMEM-PM: Instance Examples

The SAMEM-PM provides a framework for the process instances that appear within the
SAMEM definition. This sub-chapter describes some of the possible examples.

171

Chapter 5 Methodology and Process

5.2.1 Methodology – Phase – Viewpoint Concept Examples

In Figure 5.5, an example of instances of the concepts (see Figure 5.2) and their struc-
tural relationships are shown. The primary objectives of concept structuring are project
risk mitigation and due diligence support. The SAMEM is an instance of Methodology.
The SAMEM:Methodology instance has a structure of five RM-ODP Viewpoint instances
labeled: Enterprise, Information, Computational (Behavior), Engineering, and Technol-
ogy. The RM-ODP Viewpoint instances are ordered through the Follow-on relationship
from the highest level of abstraction, which is the Enterprise Viewpoint, to the lowest
level of abstraction, which is the Technology Viewpoint. The Enterprise Viewpoint can
be followed by either the Information or Behavior Viewpoint. The specific Viewpoint,
Information or Behavior, connected by Follow-on relationship from the Enterprise View-
point allows for domain adjustments, such as a domain where information is the primary
driver for requirements or a domain where behavior, such as a business process, is the
primary requirements driver. If the Information Viewpoint instance follows the Enter-
prise Viewpoint, becoming the Second Highest, then the Behavior Viewpoint will become
the Third Highest and will follow the Information Viewpoint and vice versa. The Engi-
neering Viewpoint follows the work done in the Information and Behavior Viewpoints,
which is followed by the Technology Viewpoint.

Figure 5.5: Methodology - Viewpoint Instance Relationship Example.

The rationale for the structure created by the Follow-on relationships in Figure 5.5
is explained in Figure 5.6. The process metamodel shown in Figure 5.2 indicates that
each Phase has an attribute of a Goal. The Phase Goals for the viewpoints are shown
in the ovals within Figure 5.6 rather than as a related class. The alternate graphical

172

5.2 Applying the SAMEM-PM: Instance Examples

form of Figure 5.6 is an application of the Change Language SEFP as a break from the
UML Class Model. Figure 5.6 shows the flow down the hierarchy structure (through
the Follow-on relationships) from the most abstract level of Business Goals to the most
specific level of Technology Design & Implementation Goals.

Figure 5.6: Phase Goal Explanations Example.

The Enterprise Viewpoint instance has the Phase Goal of eliciting and verifying the
Business Goals of the project. Eliciting and verifying the Requirements is the Phase
Goal for both the Information and Behavior Viewpoints. Requirements are defined in the
context of the Business Goals and an important aspect of verifying the Requirements is
to ensure that they are consistent with the Business Goals. The Business Goal discovery
does not need to be complete before Requirements are generated and verified. The Phase
Goal of Engineering Design is the production of solution designs at the engineering level,
which depends on having some Requirements. The Engineering Designs are verified as
to how well the Requirement is fulfilled by the design. The Phase Goal of Technology
Design and Implementation follows from the Engineering Design work, since the choice
of specific technologies depends on Engineering Design decisions.

5.2.2 Viewpoint – Iteration Concept Examples

Figure 5.2 shows that each Phase contains multiple Iterations. The Iterations have finer
grained Objectives that combine to fulfill the Phase Goal. There is some flexibility in how

173

Chapter 5 Methodology and Process

the Iterations work to accommodate adaption to multiple domains. Figure 5.7 shows an
example of a common pattern of Instances from the SAMEM-PM metamodel using the
Phase specialization of Enterprise Viewpoint as the start.

Figure 5.7: Viewpoint, Iteration Instance Example.

The Enterprise Viewpoint has Contains relations to four Iteration instances with the
Objectives of Set Objective, Discovery, Formulate, and Verify. The Set Objective Itera-
tion is a breakdown into smaller units of work of the Phase Goal, which in this example
is to establish the solution Business Goals. The succeeding Iteration, Discovery, covers
the work of discovering what the objective is about, which is often a kind of elicitation
activity. Following the Discovery Iteration work, the knowledge gained is Formulated,
in this case as a Business Goal, and is documented in an Artifact. The Artifact, and
there can be multiple, is the primary input to the Verify Iteration, where the Artifact is
checked against SEFPs and with the appropriate stakeholders.

5.2.3 Iteration – Artifact Concept Examples
There are several new relationships and items shown in Figure 5.7. The major new
relationship is Rework, which is shown as a large dashed line. This relationship acknowl-
edges the possibility that the Artifact Verification Iteration fails one or more of the tests.
Depending on the failure, a new Iteration for the same purpose is done at some point
earlier in the Successive chain. For example, if the Artifact is poorly formulated, which
would be seen through a communication difficulty, then a new version is created with an

174

5.3 An Activity Model Example for the SAMEM-PM Flow

improved formulation. If the Discovery work were poorly done, then the Rework rela-
tionship would go back to that type of work. The Artifact versions are related through
the Revise relationship, which contains the rationale, Rework Correction Reason, for the
new version. The Rework Correction Reason is optional; however, there are domains,
such as Lifesciences, where the regulations require traceability through design improve-
ment decisions. The pattern of Iterations connected by Successive relationships can be
applied to the other Viewpoint instances.

5.3 An Activity Model Example for the SAMEM-PM Flow

The illustrations in Figure 5.2, Figure 5.5, Figure 5.6, and Figure 5.7 describe the com-
ponents or concept artifacts of the SAMEM-PM. The other perspective is the behavior
flow of a project process that results in the creation of the SAMEM-PM artifacts. In
Figure 5.8 ,an example of project process modeled with the UML Activity Model capa-
bilities is shown. This example process is one possible approach which can be used as a
starting point for further refinement and extension.
Figure 5.8 is the project process that describes the basic cycles of working with the

SAMEM Process Concepts at an abstract level. In Sub-chapter 3.5.3, the definition and
purpose of the Business Flow are described. The project process defined in Figure 5.8
is the Business Flow for using the SAMEM and its process concepts.
The project process starts with an initial task of Choose Viewpoint or Phase. The

phases or viewpoints can be adjusted to the project or domain needs, but for this example
the use of RM-ODP viewpoints are assumed, which means that the initial viewpoint is
the RM-ODP Enterprise Viewpoint. With the viewpoint set, the next task is Goal
Elicitation. The output of Goal Elicitation is a number of Business Goals, Phase Goals
for the project, which are gathered from the various stakeholders. The Phase Goals are
incrementally discovered and collected as the work loops through the process, since it is
virtually impossible to know all the Goals of a large project beforehand [Bro10].
As soon as there are a sufficient number of Goals, the Iteration Creation task is initi-

ated. Note that initiation of the Iteration Creation task does not depend on having all
Phase Goals defined and that a sufficient number is determined by the project managers.
The Iteration Creation task creates an Iteration Objective Definition task for each Phase
Goal, which allows a set of Goals to be processed in parallel. The set of Iteration tasks
is shown through the Iteration 1, Iteration 2, and Iteration N symbols. The work of the
Iteration Objective Definition task is to formulate the Phase Goal into smaller, more ac-
curate, and precise representations and then store them as one or more Object Artifacts.
Just as with the Phase Goals, the Objective Artifacts are incrementally discovered and
collected during the process execution.
Upon completion of the definition, the Objective Verification task is started and uses

the corresponding Objective Artifact. The purpose of the Objective Verification task is
to use the appropriate means to check, test, or measure the Objective Artifact to assure
that it is accurate and correct with respect to the current level of abstraction. There are
two main results of the verification activity, at least as far as the detail of this example

175

Chapter 5 Methodology and Process

Figure 5.8: The SAMEM Project Process Example.

176

5.4 The SAMEM-PM Concepts Summary

is concerned, the Objective Artifact is good or it is deficient and requires improvement
resulting in a new version. If a new version is needed, the work of the iteration is
continued. In practice, there are more options, such as discovery that the Objective or
Goal is a mistake and should be completely discarded; however, this level of detail has
been left out for readability.
As Phase Goals and Objective Artifacts are completed, the Review Goal/Objective

Completeness task is initiated. Through three rework arcs, a return to earlier tasks
in the process can occur. The review might come to the conclusion that some new
Objectives have been discovered, resulting in activating a new instance of the Iteration
Creation task via the More Objectives Discovered arc. A second review result is that a
new Phase Goal has been uncovered which causes a new instance of the Goal Elicitation
task via the More Goals Discovered arc. A third review conclusion is that all or enough
of the work of the Phase or Viewpoint is done, so that the next Phase can be started with
a new instance of the Choose Viewpoint or Phase task via the Next Phase/Viewpoint
arc. The final result of the Review Goal/Objective Completeness task is that all work of
the final Phase is complete and the solution is ready for deployment.

It is clear that each task in Figure 5.8 can be partitioned into finer grained tasks for
improved work distribution or parallelization. In practice, there is more additional work
in the management of the two simple artifact objects, Phase Goal and Object Artifact,
than is shown in this simple example process. To keep the example process of Figure
5.8 as readable as possible, swimlanes are also left off, as at this level of abstraction the
task flow is more important than who does the work.

5.4 The SAMEM-PM Concepts Summary
This chapter sets forth the concepts that are the foundation of the SAMEM Process
Model. The base concepts of Phase, Goal, Iteration, Objective, and Artifact along with
the relationships between them enable the verification of the project process. Missing
instances of the base concepts indicate that a breakdown in theMethodology (SAMEM) is
occurring. The project management concerns over breakdowns are important indicators
for poor workmanship or that important tasks are not completed.
The base concepts also enable domain specializations. Figure 5.2 shows a domain

specialization point via the Sub-Goal concept. For example, the CS-1 and CS-2 medical
domain case studies have the Sub-Goal of compliance with the FDA regulation of 21 CFR
§820.30. Other Sub-Goal domain specializations can include user Interface standards,
coding standards, or test coverage.

Independent of the domain specializations, the base SAMEM Process Model concepts
provide the business foundation needed to show due diligence in planning and execution
of the project process.

177

Chapter 6

The Language Used for Information Models
in the Projects

The information model concepts for the SAMEM (SAMEM-IM) are specified in this
chapter. The information concepts are the basis for the Artifacts collected and/or up-
dated during a SAMEM increment. As for the SAMEM-PM described in Chapter 5, the
REAM from [BPKR09] and the OMG SysML [OMG15a] provide analogous ideas for the
SAMEM-IM.
The SAMEM-IM concept definitions provide a context for completeness checks on a

SAMEM instance and a basis for extensions. For this purpose, the techniques of a meta-
definition [GPHS08] are used. The SAMEM Artifact instances produced in a project
process Increment, as described in Chapter 5, will map to a concept in the SAMEM-IM.

An important aspect of the SAMEM-IM is that the Artifact concept has a State related
to it. The State reflects the stability or trustworthiness of the information Artifact on
its progression from newly discovered, through reviewed, and onto approved. The state
machine of the SAMEM-IM is a basic model that can be extended. The State value is the
connection point and gating criterion between the major Phase or Iteration abstraction
levels of the SAMEM-PM. To move forward to the next major investment in work, a set
of information Artifacts should be in the approved or equivalent state.
The information modelArtifacts are used for communication with the stakeholders, the

project team, and as input into a verification tool. This requires that each information
Artifact has one or more communication formats associated with it. Multiple formats
are necessary, for example a graphical format for human communication and perhaps an
XML format for input to a verification tool.

6.1 The SAMEM-IM Concept Model

Figure 6.1 shows the SAMEM-IM model concepts. The core concept consists of the
Artifact. For traceability purposes, each Artifact instance can be related to an Iteration
(see Figure 5.1 and Sub-chapter 5.2.3) which created or modified it through the Produces
relationship. Creating an instance of the Produces relationship is domain dependent; for
example, in the Life Sciences domain regulations require this type of traceability, while
other domains do not. From a software engineering process perspective, having the
Produces relationship can help with project process improvements. Tracing an incorrect

179

Chapter 6 The Language Used for Information Models in the Projects

Artifact to the Iteration that produced it, then to the Objective it Fulfills can help in
analyzing a project process for organization or execution weaknesses.
The Artifact concept is the one that ties together the SAMEM-PM concepts and the

SAMEM-IM concepts. The SAMEM-PM focuses on the process of creating or updating
the Artifact instance (see Figure 5.2, Figure 5.7, and Sub-chapter 5.2.3), while abstract-
ing away the details. The rest of this chapter defines the Artifact concept in detail.

6.1.1 The SAMEM-IM Artifact Concept Definition

The Artifact concept has two self-referencing relationships, Version Predecessor and
Design Evolution. Within the scope of a single Iteration, the Version Predecessor rela-
tionship tracks the improvement and refinement of the Artifact instance after an unsatis-
factory Objective Verification task (see Figure 5.8). The purpose of the Design Evolution
relationship is to relate the different Artifact instances as the idea moves through the
abstraction levels [Dic05], [Col05], [RvdHMRM04]. For example, a Design Evolution
relationship would link a requirement Artifact at higher abstraction level to a design
alternative Artifact which is at a lower abstraction level.

Figure 6.1: The SAMEM-IM Concepts.

180

6.1 The SAMEM-IM Concept Model

6.1.1.1 Another Artifact Model

In [GHR17], a sustainable Artifact Model (AM) tailored for generator-based MDD
projects is described. The Artifacts in the SAMEM-IM are consistent with the AM,
albeit on a more general level. The AM makes restrictions consistent with managing
the generated artifacts, their associated sources, and the complex relationships between
the two. The SAMEM-IM Artifact has two relationships, Design Evolution and Version
Predecessor that can be seen as specializations of the refersTo relationship in Figure 2.1
in [GHR17]. The Artifact abstract class in the AM has specializations for supporting
the generation process, which are unnecessary for the SAMEM-IM.
Another difference that reflects the divergent, but not incompatible purpose is the ori-

entation of the SAMEM-IM towards visual models for human communication in contrast
to the AM emphasis on text for automated tool use. The association of a Status State
to the SAMEM-IM Artifact for project process tracking is another not incompatible
difference.

6.1.2 The SAMEM-IM Communication Format Concept Definition

Related to the Artifact concept by a Views relationship are one or more Communication
Format instances. An Artifact needs to be expressed in at least one format in order for it
to be reviewed or verified. The creation of the Communication Format instance happens
in either the Goal Elicitation task or the Iteration Objective Definition task, as shown
in Figure 5.2. An Artifact can have or participate in multiple Communication Format
instances. A Communication Format instance can be a composition of multiple other
Communication Format instances as represented by the Composition relationship. The
SOD, as described in Sub-chapter 3.5.1.1, is an example of a composition Communication
Format. The Composition relationship has a UML-like Association Class [OMG15b],
called the Composition Attributes. The purpose of the Composition Attributes is to
hold data about how the composition of the formats is structured, for example, relative
locations of each format or the format of separation borders.
In Sub-chapter 3.5.2.1, examples from the Case Studies of various Information Model

Artifacts and their Communication Format can be found. In Figure 3.10 through Figure
3.14 multiple Communication Format examples for Artifacts produced in the Informa-
tion Viewpoint are shown. There are two different formats seen:

• Figure 3.5 is a SOD example of a Communication Format composition. The SOD
consists of a text block, a state machine visual image, an information model visual
image, and a Business Flow visual image composed into one format instance.

• Figure 3.10 shows a visual image of the basic information units for a FDA regula-
tory submission solution along with some of the primary attributes.

• Figure 3.11 is a text table that lists the attribute details for an Information Model.

181

Chapter 6 The Language Used for Information Models in the Projects

• Figure 3.12 shows an example of an Engineering Spec Item with the most important
four attributes and its first Engineering Spec Revision with its four most important
attributes.

• Figure 3.13 is an example of a simple Engineering Project structure. The structure
is the Information Model.

• Figure 3.14 shows where the structural information units that are used to build the
parent-child relations are defined, so that they can be either a parent or a child.
The example displays a Main Project with three Sub-Projects in the structure.

Figure 6.2 shows an example of how the SOD composition is realized at the SAMEM-
IM concept level. There is an Artifact for the complete SOD and four participant
Artifacts that compose the SOD. Each Artifact has a View associated Communication
Format. Through Composition relationships, the Communication Formats of the partic-
ipating SOD Notes, the State Machine, the Information Model, and the Business Flow
are assembled into the Communication Format of the SOD. The Composition Attributes
of each Composition relationship contain the data needed to reliably display the SOD
Communication Format each time it is needed. A tool-independent set of display data
for the Composition Attributes is possible as seen in the Object Management Group
Diagram Definition Specification [OMG12a].

Figure 6.2: The SAMEM-IM Example, SOD Composition.

182

6.1 The SAMEM-IM Concept Model

6.1.3 The SAMEM-IM Properties Concept Definition

Each Artifact has a set of Properties connected through the Describes relationship. The
Properties can and will vary from domain to domain. One set or class of Properties that
will almost always be associated is that used for Artifact management and control. The
management or control properties will usually contain at least the following data and
possibly more:

• Creation date and time – for evolution management.

• Creating user/person – for evolution management and responsibility traceability.

• Last modified date and time – for evolution management.

• Modifying user/person – for evolution management and responsibility traceability.

• Owning user/person – for possible access control.

• Unique identifier – for traceability and instance distinguishability.

• Name in a person-friendly format – for communication.

• Description – for communication.

6.1.4 The SAMEM-IM External Standard Metamodel Concept Definition

There are many modeling possibilities for Artifacts that exist, such as UML [OMG15b],
URN [URN12], SysML [OMG15a], Domain Specific Modeling Language (DSML) (See
[CFJ+17] for examples), and various programming languages, especially object-oriented
ones such as Java or C++. General software modeling languages such as UML and
some DSMLs operate at a higher level of abstraction than programming languages such
as Java [CFJ+17], [Rum17].
When possible, it helps to examine whether an existing modeling paradigm, External

Standard Metamodel, makes sense for a particular problem. There are several advan-
tages for this such as existing knowledge amongst the team members, a well-defined
syntax and semantics for communication clarity, and the availability of tools to support
the generation of the formats. When applicable, a Metamodel Subset of the External
Standard Metamodel might make sense. An example from the case studies is the use of
a subset of the UML Class Model definition for the Information Model units, as shown
in Figure 3.10 and described in Sub-chapter 3.5.2.1. The use of an External Standard
Metamodel can also supply associated Communication Format suggestions.

6.1.5 The SAMEM-IM Status State Concept Definition

The final concept of the SAMEM-IM is the Status State. Each Artifact has a Status
State value, connected by the Maturity relationship, which reflects the confidence or
trust in the accuracy, correctness, completeness, and truth of the Artifact. The set of

183

Chapter 6 The Language Used for Information Models in the Projects

Status State values are organized into a Status State Machine. The Artifact can have
only one Status State value at any point in time.

When there is a need to change Status State value according to the Status State
Machine definition, the Maturity relationship from the Artifact to the current Status
State value is deleted and a new Maturity relationship to the new Status State value is
created. The Artifact moves through the tasks in the SAMEM Project Process Example,
as shown in Figure 5.8. In particular, the Artifact is created in the Iteration Objective
Definition task, then reviewed in the Objective Verification task, and finally a decision
is made as to done or not in the Objective Evaluation task. As the Artifact moves
through the tasks, the Status State value is changed, through redirecting the Maturity
relationship, to show what work has been accomplished on the Artifact. In the simplest
form, the Status State Machine has the value of Exists. An example of a Status State
Machine from the case studies can be seen in Figure 3.7.

6.2 Applying the SAMEM Metamodel Composition Concept
to UML

One of the novel concepts in this research is the idea of the Solution Overview Drawing
(SOD), see Sub-chapter 3.5.1.1, Table 7.3 in Sub-chapter 7.1.2, and for examples: Figure
3.5, Figure 3.6, Figure 3.7, Figure 3.8, and Figure 3.9. The composition of models to
improve the communication of the requirements and the design can be applied to UML
[OMG15b] for similar benefits.
For documentation communication benefits, the Object Management Group Diagram

Definition Specification [OMG12a] can be extended to show multiple model diagrams
together (see Sub-chapter 6.2.1 for an exploration of this idea). By showing multiple
model diagrams on the same drawing, the interrelationships are made explicit versus
requiring the engineer to mentally make the connections. When the engineer must
mentally make the connections, a potential for errors arises. Some of the potential errors
are forgetting a connection or relating the incorrect diagram. These errors can persist
into the design and realization activities. An artifact that shows the explicit relationships
between model diagrams can be reviewed, tested, and verified for correctness.
Extending the concept of the SOD, which is an assembly of related models, to the

UML specification [OMG15b] has several benefits such as enabling new modeling and
code generation possibilities (see Sub-chapter 6.2.2, an initial exploration of this idea).
The extension idea consists of relating models to each other and to relating parts of
models to each other. For example, a behavior specification such as a Sequence Model or
Activity Model can be related to a method in a Class Model, thereby defining the internal
logic or algorithm of the method. With the algorithm specified in a language neutral
format, the models can be used to generate code in a variety of programming languages.
Another example is relating a method to a state machine transition to indicate that the
transition happens during the execution of the method. Such relationships can provide
an additional level of verification of proper solution behavior through the models.
The two UML extensions ideas, diagram and models, are somewhat independent and

184

6.2 Applying the SAMEM Metamodel Composition Concept to UML

each conveys different information. Composing multiple diagrams into a SOD might
only show that there is some relationship, such as they are all views of the design. The
presentation is the common factor. Composing models together is a stronger relationship
and one would expect the model compositions to be potentially visible in an associated
diagram. Just because a feature is defined in a model does not mean that it is rendered
in any diagram.

Full exploration of the UML extension ideas stimulated by the SOD requires research
and analysis beyond the scope of this thesis and is a future research topic.

6.2.1 Composition Extensions for the UML Diagram Definition Specification
As described in Sub-chapters 3.5.1.1 and 6.1.2, the SOD shows the assembly of multiple
visual representations of the requirements in order to improve the communication within
the team. The SOD is a simple assembly of images intended to convey a larger picture
and it is left to the viewer to mentally interpret them. The composition of multiple
images into one is a simple but effective communication improvement. This sub-chapter
explores changes to the UML Diagram Definition specification to extend the UML with
this composition capability.
The Diagram Definition (DD) specification architecture, as applied to UML (Figure

6.3), has two main components, the Diagram Interchange (DI) and Diagram Graphics
(DG). The DG models, figures, and shapes are the same in all tools and are not ex-
changed. The DI models specify that the user-defined data, such as position of nodes
and line routing points, are captured for interchange between tools. There are also some
common elements from a Diagram Common (DC) model. The SOD extensions will im-
pact the DI and DG models. Figure 6.3 also shows an example of the mapping for a
UML Use Case besides the DD architecture components.
The extensions needed to incorporate the SOD concepts will primarily impact the

DI architecture component and to a lesser extent the DG architecture component. To
see the exact impacts, more detailed DD models must be examined. A key goal of the
DD specification is to reuse other specifications as much as possible rather than create
new ones. This can be seen in the use of the MOF [OMG14b] specification. The SOD
extensions will follow this practice. However, the language mapping specifications are
designed to allow for some flexibility, such as in the specialization from the DI and the
mappings to the DG.

185

Chapter 6 The Language Used for Information Models in the Projects

Figure 6.3: OMG Diagram Definition Architecture for UML.

The extensions for the SOD in the DI specification are based on the DI model. From
the Diagram Definition specification, the DI model is shown in Figure 6.4. The Dia-
gramElement abstract class has a containment relationship that allows a hierarchy of
DiagramElement objects to be built. Through generalization relationships the capability
to build a hierarchy of Diagram objects is realized.

In order to create a diagram that is the equivalent of the SOD, as expressed in Figure
6.1, the Composition Attributes relationship class needs to be added to the Diagram
class of Figure 6.4. The resulting new model of the Diagram is the model in Figure 6.5,
note that the focus is on the UML DD Diagram class as that is the only change. The
UML DD Diagram class is extended via a generalization of the SAMEM Drawing class
which brings the Composition_Attributes association class. The Drawing class has the
minimum attribute of Drawing_Size, which will often be expressed as a common paper
size, but that expression is a factor of the implementing tool. Each component of the
drawing is another Drawing with the positioning attribute of Drawing_Location within
the containing composition Drawing. The cardinalities on the Composition_Attributes

186

6.2 Applying the SAMEM Metamodel Composition Concept to UML

Figure 6.4: DI Model from the OMG DD Specification.

relationship ensure that the creation of a Drawing composition is optional.

Figure 6.5: Merging of UML DD and SAMEM-IM Drawing Concepts.

187

Chapter 6 The Language Used for Information Models in the Projects

The purpose of the Drawing object, as shown in Figure 6.1, is for communication,
so that if the drawing is not needed, it does not have to be created. That purpose is
transferred to Figure 6.5. The components used to create a drawing need not exclusively
be UML diagrams but any visual specification that assists in communication. In practice,
a specific UML tool implementation will probably add additional attributes to both the
Drawing class and the Composition_Attributes class for value added extensions.

6.2.2 Composition Extensions for the UML Specification
The composition extension idea from the SAMEM, as embodied in the SOD, can be
applied to the UML specification for benefits beyond the drawing for communication
purposes. Applying the composition idea to the UML is different from the Diagram
Definition. The composition does not result in a Drawing for communication purposes
but rather results in relating models for extending the definition of behavior. When the
composed models are rendered into diagrams and therefore drawings, as described in
Sub-chapter 6.2.1, the Diagram or Drawing will have multiple models composed together.

An example will illustrate the model composition purpose and benefit. The classes
in a UML Class Model have operations as part of the definition, however, algorithmic
behavior of the operations are not defined in the Class Model. For many good reasons,
as pointed out by Parnas [Par72], the implementation should be hidden. However, by
linking a behavior specification to the operation at the right point in the design, the
operation can be verified and the realization (code) can be generated. The behavior can
be specified via an Activity Model, or a Sequence Model, or a combination of both.
In Figure 6.6, the high-level idea of a link between a UML behavior model and an

operation in a Class Model is displayed as an illustration of the concept. The UML
Activity Model is shown as being linked via an Operation Behavior Definition Link to
an Operation in a UML Class. The UML Activity Model defines the behavior logic or
algorithm of the operation execution. Figure 6.6 also illustrates the concept of defining
the operational steps into blocks of pseudo code, which can be translated into a variety
of code languages. For example, Pseudo Code Group 1 could be an internal attribute
or variable declarations and Pseudo Code Group 2 could be initialization actions or
input/read actions.

188

6.2 Applying the SAMEM Metamodel Composition Concept to UML

Figure 6.6: UML Class Operation to Behavior Link Concept.

There are three UML models that define behavior: Activity Models, Sequence Models,
and State Machine Models. Operations in a UML Class Model that do simple calcu-
lations would probably be linked to an Activity Model for the calculation or algorithm
behavior. Operations that provide execution control actions would likely be defined by
a Sequence Model, which shows the order of other operation calls. When the purpose of
an operation is to create or respond to an event, then a link to a State Machine Model
might be appropriate.
The application of the SOD concept to UML models results in linking multiple models

together. This would then require the display of the model diagrams together with the
links displayed to indicate the relationships. This display requirement comes back to the
extension of Diagram Definition Standard as described in Sub-chapter 6.2.1.
Specific enhancements to the UML metamodel, as described in [OMG15b] to accom-

modate the application of the SOD concept as shown in Figure 6.6, need to be gathered
from the various chapters and diagrams in the specification. The starting point is Figure
9.1 from the UML specification which is reproduced in Figure 6.7 for reference.
The key part of the Classifiers Abstract Syntax, as shown in Figure 6.7, is the Feature.

The Feature represents at a high level structural and behavioral characteristics of a
Classifier. Refinement of the Feature leads to the Operation of a Class. The refinement
of the Feature is shown in Figure 6.8 as a BehavioralFeature.

189

Chapter 6 The Language Used for Information Models in the Projects

Figure 6.7: Reproduction of UML 2.5 Figure 9.1 for Reference.

Figure 6.8: Reproduction of UML 2.5 Figure 9.9 for Reference.

An Operation is a BehavioralFeature that may be owned by an Interface, DataType,
or Class. The refinement of BehavioralFeature to Operation is shown in Figure 6.9. The
Operation, as defined in Figure 6.9, is one endpoint of the link needed to fulfill the design
as expressed in Figure 6.6. The other link end is a Behavior.

190

6.2 Applying the SAMEM Metamodel Composition Concept to UML

Figure 6.9: Reproduction of UML 2.5 Figure 9.13 for Reference.

There are three types of Behavior Classifiers defined in UML 2.5 [OMG15b]: StateMa-
chines are defined in Clause 14, Activities are defined in Clause 15, and partially-ordered
Sequences are defined in Clause 17. A subset of the abstract syntax definition for the
Behavior is shown in Figure 6.10.
Although the generalization hierarchy has not been completely shown in Figure 6.9,

the Operation can be traced to the Element concept which is allowed to have multiple
DirectedRelationship connections. The Behavior element in Figure 6.6 also traces back
through generalizations to the Element concept. This means that a new DirectedRela-
tionship can be connected between an Operation and a Behavior. The UML contains a
definition of a Dependency relationship which is a refinement of the DirectedRelationship.
The Dependency relationship contains further refinements, one of which is Realization.
The UML abstract syntax for Dependency is shown in Figure 6.11.

191

Chapter 6 The Language Used for Information Models in the Projects

Figure 6.10: Composite of UML Behavior Subclasses.

Figure 6.11: Reproduction of UML 2.5 Figure 7.17 for Reference.

192

6.2 Applying the SAMEM Metamodel Composition Concept to UML

The Realization relationship appears to fulfill the needs of the concept expressed in
Figure 6.6. However, the definition of the Realization relationship works with sets of
NamedElements, which is more than is needed. Rather than overloading the existing
Dependency object, a new specialization, OperationBehavior, on the same level as De-
pendency is proposed and is shown in Figure 6.12. The OperationBehavior relationship
links an Operation to a single Behavior. A Behavior model can provide the behavior
for multiple Operations, for example searching behavior. Another benefit of having a
specialized relationship is the ability to clearly assign appropriate code generation logic.

Figure 6.12: Operation Behavior Extension to UML.

There are additional improvements to the UML needed to fulfill the linking concept
shown in Figure 6.6 which are extensions to the Notation clauses in the UML specifi-
cation [OMG15b]. The extensions affect the specifications for Activity, Interaction, and
StateMachine. Since Behavior is a subtype of Class and Class is a subtype of Type which
is a subtype of PackageableElement, it is possible to define additional notations which
encapsulate the behaviors and produce a Classifier that can participate in diagrams.
The extensions are shown in Figure 6.13, which is a modification of Figure 6.10.
The UML specification Clause 15.2.4 [OMG15b] defines the notation for Activities.

An explicit notation that encapsulates an Activity model does not exist in the current
specification. The proposal is for a Class-like notation with the ActivityModel name
that can participate in the OperationBehavior relationship. Associated with the Activity
Model is a diagram, consistent with current usage, which has the ActivityModel detailed

193

Chapter 6 The Language Used for Information Models in the Projects

definition.

Figure 6.13: Behavior Models Extension.

The InteractionModel Classifier element in Figure 6.13 provides an explicit container
for the Sequence diagram mode, according to the UML Clause 17.2.4, and an element
with a notation that can be placed in diagrams. The notation for the InteractionModel
is a rectangle with the name of the Interaction.

Clause 14.2.4 in the UML specification [OMG15b] defines the notation for StateMa-
chine behavior. The notation definition is that “StateMachine diagrams specify StateMa-
chines.” The current specification does support a notation for the StateMachine Classifier,
as shown in Figure 6.10.
An explicit notation for the StateMachine Classifier is proposed that is a rectangle

with the StateMachineModel name and is a container for the StateMachine which holds
all Regions, States, and other elements that appear in a StateMachine diagram.

6.3 Information Modeling Summary

A metamodel for the SAMEM Information Model concepts is proposed that allows for
implementation in a variety of software tools, such as construction or analysis tools. The
metamodel provides a basis to checking and extending as new concepts are needed.

194

6.3 Information Modeling Summary

The SOD concept from the SAMEM metamodel has been mapped to extensions for
the UML specification. The SOD concept in its simplest form supports the creation
of drawings that contain multiple viewpoints for improved communication. A more
complex application of the SOD concept is to extend the UML to allow for behavior,
an Operation, to be connected to behavior, UML Behavior Classifier, for an explicit
operational behavior definition. The connection can assist in communicating design
intent in a manner similar to pseudo code and in improved code generation.

195

Chapter 7

The SAMEM Evaluation

The SAMEM will be evaluated along 5 dimensions:

1 empirical surveys of the case study users in multiple real-world projects and their
evaluations of the fulfillment of the SAMEM goals,

2 a discussion of the use of the SAMEM ideas on other projects with some initial
indicators of applicability,

3 the cognitive effectiveness of the modeling ideas in communicating requirements
and the unique SAMEM SOD visual artifact,

4 an analytical comparison with the Software Engineering Method and Theory (SE-
MAT) [SEMAT] standard as to project scope, differences, and similarities,

5 an analytical evaluation against the consulting business success measures of smaller
team, faster project, and improved customer relationship.

There are multiple goals (see Sub-chapter 2.4.1) that the SAMEM is measured against
for success. The primary mechanism for determining whether the SAMEM meets the
goals is through a survey of people that used the SAMEM or an early version of the
SAMEM in actual industry projects. The survey is an empirical evaluation primarily
from the case studies described in Sub-chapter 4.1. The early version of the SAMEM
was called the “Paper Prototype Process.” The term SAMEM shall be used for both
going forward. The Customer’s Survey is targeted to the project stakeholders and their
opinions of the early version of the SAMEM. The Developer’s Survey is targeted towards
the members of the development team and their opinions of how the SAMEM impacted
the development tasks. There are common questions on both surveys with some different
questions respecting the differences in the application of the SAMEM.
In addition to the two customer companies and 18 projects that are evaluated by the

surveys, the SAMEM or an earlier version (Paper Prototype Process) is being applied
in three other companies. At the time of this thesis, the projects are in the beginning
stages and only preliminary results are available.
Since the SAMEM relies heavily on graphical or visual communication mechanisms,

they will be evaluated through cognitive effectiveness measures. Cognitive effectiveness
is a measurement of how easy it is to understand the graphical representations [LS87],
[Moo09]. The use of techniques that help in distinguishing the symbols and conveying

197

Chapter 7 The SAMEM Evaluation

their meanings will be the primary measure. It is expected that improvements will arise
from the cognitive effectiveness evaluations. Cognitive effectiveness was introduced in
Sub-chapter 2.3.2.

The SAMEM and the SEMAT standard will be compared. A goal of the SAMEM
is the ability to adapt to new software engineering ideas as stated in GOAL-11 . The
comparison between the SAMEM and SEMAT will give an indication of the success in
meeting the adaption goal.
HL-GOAL-1 ,HL-GOAL-2 ,HL-GOAL-4 , andHL-GOAL-5 are primarily busi-

ness goals of the SAMEM as opposed to technology goals. The ability of the SAMEM
to be successful in a competitive business environment will be evaluated.
Weaknesses to the evaluation methods and possible threats to the validity of the

conclusions will conclude this chapter. Specific threats to the construct validity, the
internal validity, the external validity, and the reliability will be discussed.

7.1 Empirical Evaluation of Case Study Companies

A survey questionnaire for the Customers (CQ) (see Appendix A) and a survey question-
naire for the Developers (DQ) (see Appendix B) were created and sent to participants
of the case studies and to the SEC company, see Sub-chapter 7.2.3. While there are
common questions between the two surveys, there are differences based on the project
tasks for the two different groups. The commonalities and differences will be discussed
in detail in the following chapters. An early version of the SAMEM was called the
Paper Prototype Process which is the term used in the questionnaires as that is the
language the participants are familiar with. The mechanics of conducting the survey
and gathering the results is handled through the commercial application SurveyMonkey
(https://www.surveymonkey.com/). The survey detailed responses are listed in Ap-
pendix C through Appendix J.
The surveys were sent to thirteen people that used the early version of the SAMEM

methodology (pre-SAMEM) in industrial projects that delivered real solutions. The
Customer Survey was sent to a total of six people on the customer or stakeholder side of
the business. The Developer Survey was sent to seven people that worked in a developer
role of some sort on real-world industrial projects. Many of the developers and customers
worked on the same projects. The customer response rate is 4 of 6 or 66%. The developer
response rate is 4 of 7 or 57%. One Developer Survey was completed by the company
described in Sub-chapter 7.2.3, which means that the response rate from the case study
companies is 3 of 7 or 43%. With such small numbers, the validity of any statistical
calculations is questionable, so simple counts and ratios will be used. The difficulties of
performing empirical evaluations in industry projects are discussed in [WRH+00] and
[SSS08]; however, despite the often lower numbers involved in the surveys or experiments,
there are distinct advantages to having real-world results. The primary benefit of a real-
world experiment is the confidence gained from knowing the idea works in practice, not
just theory. The evaluation of the industry results must be carefully done keeping in
mind possible contamination by unconsidered aspects of the environment.

198

7.1 Empirical Evaluation of Case Study Companies

7.1.1 Survey Definition Details
The survey questions are constructed to address the goals and requirements of the thesis
as stated in Sub-chapter 2.4.1. The survey is designed to evaluate the use of an early
version of the SAMEM during real-world use in multiple case studies [WRH+00], [SSS08],
[OP97]. The viewpoint taken by the author is a combination of Critical Theory and
Pragmatism (see Chapter 11 in [SSS08]). The SAMEM seeks to improve aspects of
requirements work and the transition into design work for medium to large projects
and as such new alternatives to the tools, processes, and artifacts are expected. The
surveys are designed to evaluate the SAMEM requirements as put into practice in the
case studies described in Sub-chapter 4.1. The Customer Survey has 29 questions and
the Developer Survey has 31 questions.
The survey questions are organized into several sections:

• Survey Purpose and Overview – an introduction to the survey and its purpose.

• Overall Paper Prototype Evaluation – contains questions about the overall
evaluation of the Paper Prototype process in relation to the progress and manage-
ment of the project.

• Communication Evaluation – a set of questions focusing on the use of the
graphical representations and models for the communication amongst the project
members. A key aspect of the Paper Prototype Process is the increased use of
visual or graphical representations of the requirements over the more traditional
text-based mechanisms.

• Requirements Quality – contains questions about the hypothesis behind the
Paper Prototype process of using graphical specification techniques to produce a
more compact and higher quality specification.

• Development and Testing Evaluation (only in the Developer survey) – ques-
tions about easing the requirements gathering and specification transition to the
development activities.

• General Paper Prototype Experience – questions about general experience,
other project experiences, and role with the project.

For some questions and for each section, there is the possibility for the respondent
to enter additional explanations or comments. As part of the evaluation, the comments
will be used for evidence. When a comment is used to substantiate a claim, the literal
text unchanged from the respondent is quoted.
There are parts of the SAMEM that affect the work of the customers and the develop-

ers equally. Some questions aim at evaluating the effectiveness of the SAMEM artifacts,
processes, and tools for both groups. The questions collect qualitative data about the
effectiveness (see Chapters 3 and 11 in [SSS08]). The answers reflect the personal ex-
perience of the customers and developers in using the early version of the SAMEM on
real-life projects.

199

Chapter 7 The SAMEM Evaluation

7.1.1.1 Common Questions of the Surveys

The questions that are the same in both surveys are listed in Table 7.1. In some cases
the question number is different because the other survey has additional questions or
the order of questions is changed. It is intentional that the question is formulated the
same for both surveys, the possible answers are the same, and in the same order. There
are 25 questions that are the same on both the surveys.

Table 7.1: Common Survey Questions.
Question Text Customer

Question
Number

Developer
Question
Number

Overall Paper Prototype Evaluation Section
What is your evaluation on the overall effectiveness of
the Paper Prototype process in creating a good solution?
Note: three factors are combined in the answers; please
clarify if another possibility best describes your experi-
ence.

1 1

How do you think the Paper Prototype process approach
of an iterative & incremental solution creation style im-
pacted the project progress?

2 2

How do you evaluate the Paper Prototype process empha-
sis on visual or graphical models for the majority of the
requirements in understanding the requirements versus a
text-based specification?

5 3

How do you evaluate the use of the RM-ODP framework,
Enterprise Viewpoint, Information Viewpoint, Behavior
Viewpoint, etc., by the Paper Prototype on the work of
gathering requirements?

6 4

Communication Evaluation Section
What is your overall evaluation of the communication
through graphical or visual images of the requirements
compared to a text-based specification?

7 5

What is your overall evaluation of the visual mechanism
of the Paper Prototype process “1-pager” drawing in com-
municating the overall purpose of the solution?

8 6

What effect did the “1-pager” have on project iteration
planning?

9 7

What is your opinion on the use of visual images for
the business information units and their relationships or
structure versus text-based descriptions of the solution
business data on achieving an understanding of the spec-
ification?

10 8

200

7.1 Empirical Evaluation of Case Study Companies

Question Text Customer
Question
Number

Developer
Question
Number

Did the 2-level combination of both [level-1] visual images
for the business information units with a [level-2] text
table for the detailed attribute properties (name, type,
default value, description of business purpose, required,
etc.) have an effect on communication and understand-
ing?

11 9

Did the 2-level combination of both [level-1] visual images
for the business information units with a [level-2] text ta-
ble for the detailed attribute properties have an effect
on the process of gathering the information requirements
through separating the identification of the major infor-
mation units from the details of the units?

12 10

Did the state machine models for the business information
unit status values have an effect in understanding the
behavior of the information units over time?

13 11

Did the Business Flow behavior model in a single page
drawing (“1-pager”) have an effect on explaining to oth-
ers the purpose of the solution and in obtaining useful
improvement comments?

15 12

Requirements Quality Section
Do you feel that the visual models of the business infor-
mation and behavior requirements affected the speed of
the review task for correctness and completeness?

16 13

How do you feel that the use of visual models for the re-
quirements affected the clarity of the requirements spec-
ification?

18 14

How do you feel that the use of visual models for the
requirements affected the size of the requirements speci-
fication?

19 15

Do you feel that the Paper Prototype process approach
and organization of requirements via the RM-ODP view-
points had effects on dealing with changes stemming from
requirements clarifications, dealing with design limita-
tions or implementation realities?

20 18

If you have had experience with other requirements gath-
ering processes, how do you rate the incremental & itera-
tive process approach (agile) used in the Paper Prototype
for gathering requirements against the other process?

21 22

201

Chapter 7 The SAMEM Evaluation

Question Text Customer
Question
Number

Developer
Question
Number

Do you feel that the incremental & iterative process ap-
proach (agile) used in the Paper Prototype had an effect
on the partitioning of the work of solution development?

22 23

What effect do models have on the task of the partitioning
of work for an incremental & iterative process (agile) and
explaining why a particular partition plan was chosen?

23 24

General Paper Prototype Experience Section
Relative to your experience with requirements specifica-
tion review, did you find weaknesses or shortcomings with
the Paper Prototype process?

23 26

Relative to your experience with requirements specifica-
tion review, did you find strengths or benefits with the
Paper Prototype process?

25 27

Experience in using the Paper Prototype process (time in
months)?

26 28

Previous experience with software-based solution devel-
opment projects?

27 29

What business role did you primarily fulfill while using
the Paper Prototype process? Checking multiple roles is
valid.

28 30

What is your evaluation of the learning effort needed to
participate in the Paper Prototype process?

29 31

The bulk of the questions are the same for both customers and developers. As will be
seen in the analysis chapter, the differences in answers are related to the differences in
tasks and perspective.

7.1.1.2 Unique Survey Questions

There are some different questions between the surveys, as the customer group and
developer group have different jobs and tasks. The SAMEM must provide support for
the specialized activities of each group. A dash character, “—”, in Table 7.2 indicates
that the question does not appear in the other survey. There are 10 unique questions
between the two surveys.

202

7.1 Empirical Evaluation of Case Study Companies

Table 7.2: Unique Survey Questions.
Question Text Customer

Question
Number

Developer
Question
Number

Overall Paper Prototype Evaluation Section
Did the Paper Prototype process approach of an iterative
& incremental solution creation style establish confidence
in project progress and a sense of reasonable return on
the investment?

3 —

In your experience, did the Paper Prototype process ap-
proach of an iterative & incremental solution creation
style provide manageable organizational change around
the new solution?

4 —

Communication Evaluation Section
For a new solution, did the initial focus on defining the
Business Flow behavior have an effect on gathering re-
quirements?

14 —

Requirements Quality Section
Do you feel that the visual models of the business infor-
mation and behavior requirements affected the accuracy
of the review task for correctness and completeness?

17 —

Development and Testing Evaluation Section
Do you feel that the visual components of the require-
ments specification had effects on completing the solution
design activities?

— 16

Do you feel that the Paper Prototype process approach
and organization of requirements via the abstraction hi-
erarchy of RM-ODP viewpoints had effects on design ac-
tivities?

— 17

Do you feel that the visual components of the require-
ments specification had effects on developing tests?

— 19

Do you feel that the Paper Prototype process approach
and organization of requirements via the RM-ODP view-
points had effects on the management of testing work?

— 20

Do you feel that the Paper Prototype process approach
and organization of requirements via the RM-ODP view-
points had effects on the management of regression test
work via clearer understanding of change impact?

— 21

Does the incremental & iterative process (agile) for re-
quirements gathering cleanly flow into agile design and
implementation work?

— 25

203

Chapter 7 The SAMEM Evaluation

The differences in the sections of Overall Paper Prototype Evaluation, Communica-
tion Evaluation, and Requirements Quality are questions that are more of a business
nature than of a development nature. In the Development and Testing Evaluation sec-
tion, the different questions are related to the transition from requirements specification
understanding to design, development, and testing activities.

7.1.2 Answers to the Common Questions Merged
The 25 common questions results can be merged into a single evaluation. In the first
level of results summarization, comments will be left out. As the survey results are used
to demonstrate achieving the SAMEM requirements in Sub-chapter 7.1.4, both positive
and negative comments will be considered for additional insight.

Most of the questions have an ordinal answer spectrum from positive to negative
with a neutral middle value, for example: Yes, Better; Mostly Better, but with some
limitations; Occasionally Better; Seldom Better; Not Better. The same ordinal scale was
used as often as made sense. In Table 7.3, only the answers selected by any respondent
are shown for that question, even though the ordinal scale is larger. An answer cell
entry in the Answers column will show the answer ordinal value and a fraction of those
answers over all respondents, for example an entry of 5/8 indicates that 5 respondents of
the total of 8 picked that answer value. There are instances of respondents not answering
a question, so the total answers can be less than the total number of respondents.

Table 7.3: Common Questions Answer Merge .
Question Text Cust.

No.
Dev.
No.

Ans 1 Ans 2

Overall Paper Prototype Evaluation Section

What is your evaluation on the overall ef-
fectiveness of the Paper Prototype process
in creating a good solution? Note: three
factors are combined in the answers; please
clarify if another possibility best describes
your experience.

1 1
Very

Effective
7/8

Moderately
Effective

1/8

How do you think the Paper Prototype
process approach of an iterative & incre-
mental solution creation style impacted
the project progress?

2 2
Very

Positive
7/8

Moderately
Positive
1/8

204

7.1 Empirical Evaluation of Case Study Companies

Question Text Cust.
No.

Dev.
No.

Ans 1 Ans 2

How do you evaluate the Paper Proto-
type process emphasis on visual or graphi-
cal models for the majority of the require-
ments in understanding the requirements
versus a text-based specification?

5 3
Yes

Better
7/8

Mostly
Better
1/8

How do you evaluate the use of the RM-
ODP framework, Enterprise Viewpoint,
Information Viewpoint, Behavior View-
point, etc., by the Paper Prototype on the
work of gathering requirements?

6 4
Very

Helpful
5/8

Helpful
Limitations

2/8

205

Chapter 7 The SAMEM Evaluation

Question Text Cust.
No.

Dev.
No.

Ans 1 Ans 2

Communication Evaluation Section

What is your overall evaluation of the com-
munication through graphical or visual im-
ages of the requirements compared to a
text-based specification?

7 5
Very

Effective
8/8

Somewhat
Effective

What is your overall evaluation of the vi-
sual mechanism of the Paper Prototype
process “1-pager” drawing in communicat-
ing the overall purpose of the solution?

8 6
Very

Effective
6/8

Somewhat
Effective

2/8

What effect did the “1-pager” have on
project iteration planning?

9 7
Very

Effective
4/8

Somewhat
Effective

4/8

What is your opinion on the use of visual
images for the business information units
and their relationships or structure ver-
sus text-based descriptions of the solution
business data on achieving an understand-
ing of the specification?

10 8
Yes

Better
7/8

Mostly
Better
1/8

Did the 2-level combination of both [level-
1] visual images for the business informa-
tion units with a [level-2] text table for the
detailed attribute properties (name, type,
default value, description of business pur-
pose, required, etc.) have an effect on com-
munication and understanding?

11 9
Yes

Better
7/8

Mostly
Better
1/8

Did the 2-level combination of both [level-
1] visual images for the business informa-
tion units with a [level-2] text table for the
detailed attribute properties have an effect
on the process of gathering the information
requirements through separating the iden-
tification of the major information units
from the details of the units?

12 10
Yes

Better
5/8

Mostly
Better
1/8

206

7.1 Empirical Evaluation of Case Study Companies

Question Text Cust.
No.

Dev.
No.

Ans 1 Ans 2

Did the state machine models for the busi-
ness information unit status values have an
effect in understanding the behavior of the
information units over time?

13 11
Very

Helpful
4/8

Helpful
Limitations

3/8

Did the Business Flow behavior model in
a single page drawing (“1-pager”) have an
effect on explaining to others the purpose
of the solution and in obtaining useful im-
provement comments?

15 12
Very
Useful
5/8

Useful
Limitations

3/8

Requirements Quality Section

Do you feel that the visual models of the
business information and behavior require-
ments affected the speed of the review
task for correctness and completeness?

16 13
Yes

Better
5/8

Mostly
Better
3/8

How do you feel that the use of visual mod-
els for the requirements affected the clar-
ity of the requirements specification?

18 14
Yes

Better
8/8

Mostly
Better

How do you feel that the use of visual mod-
els for the requirements affected the size
of the requirements specification?

19 15
Yes

Better
7/8

Mostly
Better
1/8

Do you feel that the Paper Prototype pro-
cess approach and organization of require-
ments via the RM-ODP viewpoints had
effects on dealing with changes stemming
from requirements clarifications, dealing
with design limitations or implementation
realities?

20 18
Yes

Better
6/8

Mostly
Better
2/8

If you have had experience with other re-
quirements gathering processes, how do
you rate the incremental & iterative pro-
cess approach (agile) used in the Pa-
per Prototype for gathering requirements
against the other process?

21 22
Yes

Better
7/8

Mostly
Better
1/8

207

Chapter 7 The SAMEM Evaluation

Question Text Cust.
No.

Dev.
No.

Ans 1 Ans 2

Do you feel that the incremental & itera-
tive process approach (agile) used in the
Paper Prototype had an effect on the par-
titioning of the work of solution develop-
ment?

22 23
Yes

Better
8/8

Mostly
Better

What effect do models have on the task of
the partitioning of work for an incremental
& iterative process (agile) and explaining
why a particular partition plan was cho-
sen?

23 24
Yes

Better
4/8

Mostly
Better
4/8

General Paper Prototype Experience Section

Relative to your experience with require-
ments specification review, did you find
weaknesses or shortcomings with the Pa-
per Prototype process?

24 26 Yes
3/8

No
5/8

Relative to your experience with require-
ments specification review, did you find
strengths or benefits with the Paper Pro-
totype process?

25 27 Yes
7/8

No
1/8

Experience in using the Paper Prototype
process (time in months)?

26 28
> 24

months
6/8

12 – 24
months
1/8

Previous experience with software-based
solution development projects?

27 29 0
1/8

2 – 4
1/8

What business role did you primarily fulfill
while using the Paper Prototype process?
Checking multiple roles is valid.

28 30 The respondent spec-
trum will be analyzed
in Table 7.5

What is your evaluation of the learning
effort needed to participate in the Paper
Prototype process?

29 31 Easy
4/8

Medium
4/8

In summary, the answers for the common questions were all on the positive side of
the ordinal scale, although there are comments with suggestions for improvement. The
comments will be addressed in Sub-chapter 7.1.4 in the context of the SAMEM goals
evaluation.

208

7.1 Empirical Evaluation of Case Study Companies

7.1.3 Unique Survey Questions Response Values
In Table 7.4, a summary of the answers to the unique survey questions is presented.
Only the answers selected by any respondent are shown for that question. The answer
cell entry will show the answer and a fraction of those answers over all respondents,
for example an entry of 3/4 indicates that 3 respondents of the total of 4 picked that
question answer. There are instances of respondents not answering a question, so the
total answers can be less than the total number of respondents.

Table 7.4: Unique Survey Questions Response Values.
Question Text Cust.

No.
Dev.
No.

Ans 1 Ans 2

Overall Paper Prototype Evaluation Section

Did the Paper Prototype process approach
of an iterative & incremental solution cre-
ation style establish confidence in project
progress and a sense of reasonable return
on the investment?

3 — Yes
4/4 No

In your experience, did the Paper Proto-
type process approach of an iterative & in-
cremental solution creation style provide
manageable organizational change around
the new solution?

4 — Yes
4/4 No

Communication Evaluation Section

For a new solution, did the initial focus on
defining the Business Flow behavior have
an effect on gathering requirements?

14 —
Very

Helpful
4/4

Helpful
Limitations

Requirements Quality Section

Do you feel that the visual models of the
business information and behavior require-
ments affected the accuracy of the review
task for correctness and completeness?

17 —
Yes

Better
4/4

Mostly
Better

Limitations

209

Chapter 7 The SAMEM Evaluation

Question Text Cust.
No.

Dev.
No.

Ans 1 Ans 2

Development and Testing Evaluation Section

Do you feel that the visual components of
the requirements specification had effects
on completing the solution design activi-
ties?

— 16
Yes

Better
4/4

Mostly
Better

Limitations

Do you feel that the Paper Prototype
process approach and organization of re-
quirements via the abstraction hierarchy
of RM-ODP viewpoints had effects on de-
sign activities?

— 17
Yes

Better
3/4

Mostly
Better

Limitations
1/4

Do you feel that the visual components of
the requirements specification had effects
on developing tests?

— 19
Yes

Better
4/4

Mostly
Better

Limitations

Do you feel that the Paper Prototype pro-
cess approach and organization of require-
ments via the RM-ODP viewpoints had ef-
fects on the management of testing work?

— 20
Yes

Better
2/4

Mostly
Better

Limitations
2/4

Do you feel that the Paper Prototype pro-
cess approach and organization of require-
ments via the RM-ODP viewpoints had ef-
fects on the management of regression test
work via clearer understanding of change
impact?

— 21
Yes

Better
3/4

Mostly
Better

Limitations
1/4

Does the incremental & iterative process
(agile) for requirements gathering cleanly
flow into agile design and implementation
work?

— 25
Yes

Better
4/4

Mostly
Better

Limitations

All answers are on the positive side of the ordinal range. The questions with answers
that ex-pressed some limitation will be discussed in detail in Sub-chapter 7.1.4 in the
context of the SAMEM goals and requirements as outlined in Sub-chapter 2.4.1.

210

7.1 Empirical Evaluation of Case Study Companies

7.1.4 Survey Results and SAMEM Goals Evaluation

The high-level goals are restated below for convenience. Survey responses are used as
evidence that the SAMEM design has fulfilled the high-level goals of the methodology.
There are multiple survey questions that provide the evidence.

When a quote from a respondent comment adds clarification, improvement, or insight,
it will be placed in the corresponding goal rationale. The respondent quotes are used
exactly as entered in the survey response.
The following reference nomenclature is used for the related survey questions:

• To indicate the Customer Survey CS is used.

• To indicate the Developer Survey DS is used.

• The related question is a Q with a number, as in Q1.

• For the common questions, both the Customer Survey question reference and the
Developer Survey question reference will be listed.

• Some survey questions will provide evidence for multiple SAMEM goals.

• For example, the reference CS-Q15 indicates Customer Survey Question 15 as
providing the evidence.

The following nomenclature is used for indicating quote sources:

• To indicate the Customer Response CR is used.

• To indicate the Developer Response DR is used.

• The related response as in 1. The response number reflects the chronological order
of the response, i.e. 1 indicates the first response.

• For example, the reference CR-1 indicates Customer Survey Response 1 as pro-
viding the evidence.

The last four questions of each survey are the same and ask for some respondent
background information. While the surveys are anonymous, the background information
can put the answers and comments into the context of the respondent’s experience. In
Table 7.5, the background data of each respondent is listed.

211

Chapter 7 The SAMEM Evaluation

Table 7.5: Respondent Experience.
Respondent CS-Q26

Paper Pro-
totype
Experience

CS-Q27
Software
Project
Experience

CS-Q28
Primary
Business
Role

CS-Q29 Paper Proto-
type Learning Effort

CR-1 > 24 months > 4 projects
Business/
customer

stakeholder

Easy:
understood the

concepts immediately

CR-2 > 24 months > 4 projects
Business/
customer

stakeholder

Medium:
some concepts were

quick to learn,
while others
took longer

State diagrams
and new acronyms

and words
are a bit of

a learning curve but
should be easy to

grasp by the
average corporate
technology or

business worker.

CR-3 > 24 months 2 —4
projects

Business/
customer

stakeholder

Easy:
understood the

concepts immediately

CR-4 > 24 months none
Business/
customer

stakeholder

Medium:
some concepts were

quick to learn,
while others
took longer

212

7.1 Empirical Evaluation of Case Study Companies

Respondent CS-Q26
Paper Pro-
totype
Experience

CS-Q27
Software
Project
Experience

CS-Q28
Primary
Business
Role

CS-Q29 Paper Proto-
type Learning Effort

DR-1 12 —24
months

> 4 projects

Technical
member of
solution

development
team,

Solution
technology
technical
expert,
Other
(please
specify)

Contributing
team

member
in the

thinking
of the
"team"

Easy:
understood the

concepts immediately
Excepting the basis

in RM-ODP.
Still don’t get that,

but maybe
someone will

take me
aside and explain.

DR-2 > 24 months > 4 projects Project
manager

Medium:
some concepts were

quick to learn,
while others
took longer

DR-3 6 —12
months

> 4 projects

Solution
technology
technical
expert,
Project
manager

Medium:
some concepts were

quick to learn,
while others took longer
Having experience with
RM-ODP is essential

to be effective
in using the paper
prototype process.

213

Chapter 7 The SAMEM Evaluation

Respondent CS-Q26
Paper Pro-
totype
Experience

CS-Q27
Software
Project
Experience

CS-Q28
Primary
Business
Role

CS-Q29 Paper Proto-
type Learning Effort

DR-4 12 —24
months

> 4 projects
Non-technical

member
of solution
development

team,
Requirements

Analyst,
developed
test cases,
Technical
Writer

Easy:
understood the

concepts immediately

In summary, every respondent had significant experience in using the early version
of the SAMEM. All but one customer had significant experience in real-world software
development projects. The learning effort was split between Easy and Medium with the
comments indicating that new concepts need additional or improved explanation.

7.1.4.1 Supporting Evidence and Evaluation for High-level Goals

Each SAMEM high-level goal is evaluated against the evidence gathered through the
surveys. For each high-level goal, a mechanism or set of mechanisms for achieving the
goal is defined. The mechanisms are used to select relevant questions from the surveys.
The evidence for each high-level goal is organized into the areas of Result, Questions,
Ordinal Values Summary, Quotes, Improvements, and Related Detailed Requirements.
A single question can provide evidence for multiple goals.

HL-GOAL-1: Better stakeholder communication with respect to the re-
quirements specification and project progress.

This high-level goal is primarily focused on the customers group of the stakeholders in
the solution, however, there is a developer aspect in the communication of requirements
and design back to the stakeholders for confirmation. The survey questions relative to
indicating that this goal is achieved are common questions in both surveys. Although
the goal is stated as communication to the stakeholders, the reality is that a conversation
takes place between the stakeholders and developers in achieving a common understand-
ing on both sides.

The major mechanisms for achieving this high-level goal are the use of graphical
representations of the solution goals, requirements, and designs, and the use of the RM-

214

7.1 Empirical Evaluation of Case Study Companies

ODP abstraction framework to appropriately direct the team focus during the project
progression.

Result: goal achieved

Questions: CS-Q2/DS-Q2, CS-Q5/DS-Q3, CS-Q7/DS-Q5, CS-Q8/DS-Q6, CS-Q10/DS-
Q8, CS-Q11/DS-Q9, CS-Q12/DS-Q10, CS-Q13/DS-Q11, CS-Q15/DS-Q12, CS-
Q18/DS-Q14, CS-Q24/DS-Q26, and CS-Q25/DS-Q27.

Ordinal Values Summary: Highest: 74/96, Second Highest: 19/96 (relative values
since ranges differ, denominator is the number of questions times the respondents,
or 12 x 8, sometimes a question was not answered, so the sum of the numerators
will not equal the denominator).

Quotes: In addition to the ordinal values picked by the respondents, supporting com-
ments to indicate achieving the goal are listed in Table 7.6.

Table 7.6: HL-GOAL-1 Supporting Survey Quotes.
Question Response Comment

CS-Q13 DS-Q11

CR-2 Additional comments on business information unit
modelling: Once the team resources understood the
state machine model, it was very helpful in the
project definition process.

CR-3 Additional comments on business information unit
modelling: State machine model was not always clear
to some end users.

DR-1 Additional comments on business information unit
modelling: Pictures are better for the business. And
it is a bonus that the models make development eas-
ier.

DR-3 Additional comments on business information unit
modelling: We didn’t successfully use the state ma-
chine models.

215

Chapter 7 The SAMEM Evaluation

Question Response Comment

CS-Q15 DS-Q12

CR-2 Additional comments on the business flow model: Fo-
cus is on the primary flow as it should be. The 1-
pager does help in consolidating solutions as well.

CR-4 Additional comments on the business flow model:
This is an effective tool to explain to upper man-
agement stake-holders.

DR-1 Additional comments on the business flow model: If
you can get the buy-in from the business to model
their flow.

DR-3 Additional comments on the business flow model:
The usefulness depends a bit on who one is commu-
nicating with. There are people that just like things
to be the traditional way.

CS-Q24 DS-Q26

CR-1 Gathering requirements is simply a matter of getting
to the truth about what has to be delivered and in
gaining consensus on the solution. Any means will
do that if the participants are knowledgeable and en-
gaged. With visual graphical approach, it makes the
participants understand what is happening quickly
and facilitate learning as well.

CR-2 I have always had some tables, flows and pictures in
specification so for me it fit with and extended the
model I thought worked well for spec development.

DR-2 The Paper Prototype process is very useful in nail-
ing down many of the requirements, there is still the
need for expressing some of the requirements in a tra-
ditional fashion (e.g., nonfunctional requirements).

DR-3 Modelling takes time and addressing the necessary
RM-ODP views requires experience in modelling to
be successful within the time available. Therefore,
it might be useful to have a paper prototype tool to
support the process.

216

7.1 Empirical Evaluation of Case Study Companies

Question Response Comment

CS-Q25 DS-Q27

CR-2 Easier to digest, manage and handoff to other teams.
CR-3 One major advantage was mapping processes, espe-

cially since most parts of the organization did not
have those and did not have clarity on the extent
of interplay and interactions with other parts of the
organization. Also enabled communication to man-
agement, to ensure all parties were on the same page
before committing resources.

DR-1 A definition to defend.
DR-2 Any tool that can help the user "see" and provide

feedback on the proposed solution with a minimal
time/investment is helpful. The Paper Prototype
process is such a tool that can be effective with cer-
tain types of development efforts.

DR-3 The paper prototype process forces you to think
about the solution in a very concrete manner and
help you visualize what you are building so that you
can easier align between the team members to ensure
they all agree on what it is that we are building.

Improvements or future work: The comments indicate improvements are needed in the
communication of the RM-ODP standard and its application to controlling the
abstraction level of project work. The role of the state machine requires better
communication. A glossary explaining the acronyms and vocabulary for the start
of the project would also be helpful.

Related Detailed Requirements: The related detailed goals are shown in Figure 2.8,
which is in Sub-chapter 2.4.1. The survey question responses provide evidence
of meeting the detailed goals. For convenience Figure 2.8 is reproduced below as
Figure 7.1.

HL-GOAL-2: Better development team communication.

This high-level goal is analogous to HL-GOAL-1 but with focus on communication
within the development team as opposed to communication with the customer stake-
holders. The developer to developer communication covers different subject areas from
the developer to customer communication, such as design and technology alternatives.
The relevant questions are in the Developer Survey with some common questions.
The same mechanisms used for stakeholder communication are applied to the im-

provement in developer team communication. The primary mechanisms are graphical
models and RM-ODP for abstraction management. In addition, architecture and design
patterns supplemented with design facts in text are important.

217

Chapter 7 The SAMEM Evaluation

Figure 7.1: Reproduction of Figure 2.8.

Result: goal achieved

Questions: CS-Q5/DS-Q3, CS-Q6/DS-Q4, CS-Q7/DS-Q5, CS-Q8/DS-Q6, CS-Q10/DS-
Q8, CS-Q11/DS-Q9, CS-Q13/DS-Q11, CS-Q15/DS-Q12, CS-Q18/DS-Q14, CS-
Q20/ DS-Q18, and CS-Q23/DS-Q24.

Ordinal Values Summary: Highest: 37/44, Second Highest: 8/44 (relative values since
ranges differ, denominator is the number of questions times the respondents, or 11
x 4, sometimes a question was not answered, so the sum of the numerators will
not equal the denominator).

Quotes: In addition to the ordinal values picked by the respondents, supporting com-
ments to indicate achieving the goal, if only partially, are listed in Table 7.7.

218

7.1 Empirical Evaluation of Case Study Companies

Table 7.7: HL-GOAL-2 Supporting Survey Quotes.
Question Response Comment

DS-Q4
DR-1 Additional comments on the project management ac-

tivities: It is a model. The Paper Prototype concept
would work with another model, looking abstractly. I
have to admit my ignorance of some of the RM-ODP
concepts, and that would make the Paper Prototype
as proposed a learning curve to implement. Still, I
responded that having a framework is good for the
process because the process needs bones.

DR-3 Additional comments on the project management ac-
tivities: It is hard to set aside enough time to go
through the whole process in practice, so we only
managed to do part of the process, meaning looking
at some of the viewpoints but not all.

DR-4 Additional comments on the project management ac-
tivities: I’m not familiar with the listed tools.

DS-Q11 DR-1 Additional comments on business information unit
modelling: Pictures are better for the business. And
it is a bonus that the models make development eas-
ier.

DR-3 Additional comments on business information unit
modelling: We didn’t successfully use the state ma-
chine models.

DS-Q12 DR-1 Additional comments on the business flow model: If
you can get the buy-in from the business to model
their flow.

DR-3 Additional comments on the business flow model:
The usefulness depends a bit on who one is commu-
nicating with. There are people that just like things
to be the traditional way.

DS-Q18 DR-3 Additional comments on solution design activities:
As we didn´t have time to make use of all the views,
we had some but not complete effect.

Improvements or future work: Some of the comments indicate that more explanation
of and rationale for the RM-ODP framework is needed.

Related Detailed Requirements: The detailed goals related toHL-GOAL-2 are shown
in Figure 2.9, which is in Sub-chapter 2.4.1. Meeting HL-GOAL-2 also means
meeting the detailed goals. For convenience Figure 2.9 is reproduced below as
Figure 7.2.

219

Chapter 7 The SAMEM Evaluation

Figure 7.2: Reproduction of Figure 2.9.

HL-GOAL-3: Improved overall requirements quality in a more compact
format.

Having higher quality requirements is a benefit to both the customers and developers.
Quality in this case means that the requirements have clarity so they are not misun-
derstood, are correct with respect to the solution objectives, and contain no unneeded
specifications.

The compactness of form for the requirements specification yields benefits in having
less to review, less to comprehend, and less to update. A compact form also minimizes
the chance for conflicts, as one does not get lost in the volume of information. There
are different survey questions in both surveys, but also common questions.

The mechanisms that enable improved requirements quality and compactness are the
various graphical models and visual representations, which take less space than text. The

220

7.1 Empirical Evaluation of Case Study Companies

RM-ODP viewpoints help separate true requirements from business goals, engineering
design, and technology choices.

Result: goal achieved

Questions: CS-Q5/DS-Q3, CS-Q6/DS-Q4, CS-Q7/DS-Q5, CS-Q8/DS-Q6, CS-Q10/DS-
Q8, CS-Q11/DS-Q9, CS-Q12/DS-Q10, CS-Q13/DS-Q11, CS-Q14, CS-Q16/DS-
Q13, CS-Q17, CS-Q18/DS-Q14, CS-Q19/DS-Q15, CS-Q21/DS-Q22, and DS-16.

Ordinal Values Summary: Highest: 87/108, Second Highest: 15/108 (relative values
since ranges differ, denominator is the number of questions times the respondents,
or (12 x 8 + 3 x 4), sometimes a question was not answered, so the sum of the
numerators will not equal the denominator).

Quotes: In addition to the ordinal values picked by the respondents, supporting com-
ments to indicate achieving the goal, if only partially, are listed in Table 7.8.

Table 7.8: HL-GOAL-3 Supporting Survey Quotes.
Question Response Comment

CS-Q13 DS-Q11
CR-2 Additional comments on business information unit

modelling: Once the team resources understood the
state machine model, it was very helpful in the
project definition process.

CR-3 Additional comments on business information unit
modelling: State machine model was not always clear
to some end users.

DR-1 Additional comments on business information unit
modelling: Pictures are better for the business. And
it is a bonus that the models make development eas-
ier.

CS-Q19 DS-Q15 CR-2 Additional comments on achieving requirements
quality, correctness and completeness: The specifica-
tions would have been much larger if a textual only
approach was used.

DR-1 Additional comments on achieving requirements
quality, correctness and completeness: I must say
that if images/models made it bigger that would be
acceptable as well.

Improvements or future work: There were not many comments from the respondents
relative to this goal and for which there is an explicit section in each survey. The

221

Chapter 7 The SAMEM Evaluation

ordinal values were mostly the highest with some at the second highest score.

Related Detailed Requirements: The detailed goals supporting HL-GOAL-3 are ful-
filled through the fulfillment of the high-level goal, shown in Figure 2.10, which is
in Sub-chapter 2.4.1. For convenience Figure 2.10 is reproduced below as Figure
7.3.

Figure 7.3: Reproduction of Figure 2.10.

HL-GOAL-4: Faster project process.

TheHL-GOAL-4 is a pragmatic project goal. The benefits of the SAMEM should
reduce the work involved in producing and reviewing requirements. The improvements
in requirements clarity should reduce the accidental complexity and simplify the work of
moving to engineering design and technology implementations. The reduction in work
is intended to speed up the project process.

A faster project process means lower cost for the customer and faster return on their
investment, as the solution becomes usable sooner. The development team benefits by
being able to do more projects in a given time.

222

7.1 Empirical Evaluation of Case Study Companies

The SAMEM mechanisms contributing to a fast project process are a smaller and
clearer requirements specification, the RM-ODP abstraction framework to focus work
on the appropriate areas, and the iterative & incremental approach to limit false work.

Result: goal achieved

Questions: CS-Q1/DS-Q1, CS-Q2/DS-Q2, CS-Q5/DS-Q3, CS-Q9/DS-Q7, CS-Q12/DS-
Q10, CS-Q16/DS-Q13, CS-Q18/DS-Q14, CS-Q21/DS-Q22, CS-Q22/DS-Q23, CS-
Q3, CS-Q17, DS-Q16, DS-Q17, DS-Q18, DS-Q19, DS-Q20, and DS-Q21.

Ordinal Values Summary: Highest: 85/104, Second Highest: 17/104 (relative values
since ranges differ, denominator is the number of questions times the respondents,
or (9 x 8 + 8 x 4), sometimes a question was not answered, so the sum of the
numerators will not equal the denominator).

Quotes: Additional comments from respondents beyond the ordinal evaluation.

Table 7.9: HL-GOAL-4 Supporting Survey Quotes.
Question Response Comment

CS-Q1 DS-Q1

CR-1 Additional comments: I can’t imagine proceeding
without it.

CR-2 Additional comments: I believe the process allows for
a quick verification of the process prior to investing
in technical solutions and adding complex elements.

DR-1 Additional comments on business information unit
modelling: Pictures are better for the business. And
it is a bonus that the models make development eas-
ier.

DR-3 Additional comments: The effectiveness doesn’t nec-
essary have to do with the paper prototype, but
rather the number of people that we had to include
in the process. We are changing the way we deploy
the process in the second iteration by first having a
small group and then taking it to the larger group
once its stable. This way it becomes more manage-
able. We also doing reviews with smaller groups and
rather more review meetings.

DR-4 Additional comments: Paper prototypes were an ef-
fective way to visually communicate how a solution
is intended to work, is a great tool to determine if the
solution meets a customer’s needs, and can be used
to improve or refine a solution.

223

Chapter 7 The SAMEM Evaluation

Question Response Comment
CS-Q5 DS-Q3 CR-3 Allowed agreement that this was what was desired

before extensive investment in program configura-
tion.

CS-Q12 DS-Q10 DR-2 Additional comments on business information unit
modelling: Pictures are better for the business. And
it is a bonus that the models make development eas-
ier.

DS-Q18 DR-3 Additional comments on solution design activities:
As we didn´t have time to make use of all the views,
we had some but not complete effect.

DS-Q21 DR-3 Additional comments on testing activities: As we
didn´t manage to use all views, we didn’t have a
consistent process so we experienced various effect.
Sometimes the discussion got diverted into what to
capture and why, rather than using the information
provided.

CS-Q9 DS-Q7

CR-1 Additional comments on overall graphical represen-
tation use: I don’t want to minimize the total effort
in developing a good project plan.

CR-2 Additional comments on overall graphical represen-
tation use: Enabled a common framework for align-
ment of the team on over-all project direction.

CR-4 Additional comments on overall graphical represen-
tation use: A picture that describes the process is
always a good way to con-firm that all participants
are understanding the transactional processes in the
same way.

DR-1 Additional comments on overall graphical represen-
tation use: It can have various effects on the plan-
ning process depending on the players and how they
understand the 1-pager. It certainly im-proves plan-
ning, but can make the interactions in the meetings
strained depending on how one views 1-page to equal
simple.

DR-3 Additional comments on overall graphical representa-
tion use: We found that its important that the person
presenting the 1-pager have a good way of commu-
nicating it. If not, the discussion ends up focusing
on what the 1-pager is and is showing rather than its
content.

224

7.1 Empirical Evaluation of Case Study Companies

Improvements or future work: In general, the SAMEM helped the process move along,
but in some cases the communication was less than optimal. This implies a better
training of the participants in the process and artifacts about their purposes.

Related Detailed Requirements: The detailed goals supporting HL-GOAL-4 are ful-
filled through the fulfillment of the high-level goal, shown in Figure 2.11, which is
in Sub-chapter 2.4.1. For convenience Figure 2.11 is reproduced below as Figure
7.4.

Figure 7.4: : Reproduction of Figure 2.11.

HL-GOAL-5: Smaller project team size, especially for the development
team.

The rationale behind the high-level goal of a smaller project team size is based on the
Mythical Man-Month observation by Brooks [Bro95]. Minimizing the size of the team,
especially the development team, minimizes the design, implementation, and testing

225

Chapter 7 The SAMEM Evaluation

communication overhead in the project. The goal of a small team size must be balanced
with theHL-GOAL-4 objective of a faster project process. The team can grow without
Mythical Man-Month impacts when there are tasks that are independent and can be
accomplished in parallel with little to no communication.

There are several mechanisms that can help to minimize the development team size
and make the project process more effective. The clarity of the requirements is critical,
especially the understanding of what not to create. Requirements clarity and complete-
ness minimizes communication, which assists in determining possible parallel work. The
RM-ODP viewpoints organize the work so that the effort is directed to the essential
tasks at the optimum time. The iterative & incremental approach allows for smaller
partitions of work that can enable more parallel tasks. Achieving the HL-GOAL-5 is
dependent on the actual planning of the project process; however, the SAMEM tries to
open the possibility to reduce team size when compared to other methodologies.

Result: goal achieved

Questions: CS-Q1/DS-Q1, CS-Q2/DS-Q2, CS-Q9/DS-Q7, CS-Q16/DS-Q13, CS-Q18/DS-
Q14, CS-Q20/DS-Q18, CS-Q22/DS-Q23, CS-Q23/DS-Q24, DS-Q16, and DS-Q17.

Ordinal Values Summary: Highest: 54/72, Second Highest: 16/72 (relative values
since ranges differ, denominator is the number of questions times the respondents,
or (8 x 8 + 2 x 4), sometimes a question was not answered, so the sum of the
numerators will not equal the denominator).

Quotes: For some questions in the surveys clarifying statements were made by the re-
spondents.

226

7.1 Empirical Evaluation of Case Study Companies

Table 7.10: HL-GOAL-5 Supporting Survey Quotes.
Question Response Comment

CS-Q1 DS-Q1

CR-1 Additional comments: I can’t imagine proceeding
without it.

CR-2 Additional comments: I believe the process allows for
a quick verification of the process prior to investing
in technical solutions and adding complex elements.

DR-3 Additional comments: The effectiveness doesn’t nec-
essary have to do with the paper prototype, but
rather the number of people that we had to include
in the process. We are changing the way we deploy
the process in the second iteration by first having a
small group and then taking it to the larger group
once its stable. This way it becomes more manage-
able. We also doing reviews with smaller groups and
rather more review meetings.

DR-4 Additional comments: Paper prototypes were an ef-
fective way to visually communicate how a solution
is intended to work, is a great tool to determine if the
solution meets a customer’s needs, and can be used
to improve or refine a solution.

227

Chapter 7 The SAMEM Evaluation

Question Response Comment
CS-Q20 DS-Q18 DR-3 Additional comments on solution design activities:

As we didn´t have time to make use of all the views,
we had some but not complete effect.

CS-23 DS-Q24 CR-2 Additional comments on the incremental & iterative
process im-pacts: I believe it sets up a smooth tran-
sition to the technical team for delivery. There are
still some opportunities to move along more quickly
with the steps and perhaps even break the process
into smaller components.

CS-Q9 DS-Q7

CR-1 Additional comments on overall graphical represen-
tation use: I don’t want to minimize the total effort
in developing a good project plan.

CR-2 Additional comments on overall graphical represen-
tation use: Enabled a common framework for align-
ment of the team on over-all project direction.

CR-4 Additional comments on overall graphical represen-
tation use: A picture that describes the process is
always a good way to con-firm that all participants
are understanding the transactional processes in the
same way.

DR-1 Additional comments on overall graphical represen-
tation use: It can have various effects on the plan-
ning process depending on the players and how they
understand the 1-pager. It certainly im-proves plan-
ning, but can make the interactions in the meetings
strained depending on how one views 1-page to equal
simple.

DR-3 Additional comments on overall graphical representa-
tion use: We found that its important that the person
presenting the 1-pager have a good way of commu-
nicating it. If not, the discussion ends up focusing
on what the 1-pager is and is showing rather than its
content.

Improvements or future work: Outside of the positive comments, there are comments
that indicate that education about the process and artifacts can be improved.
There are indications that software engineer does not equal software engineer,
which means that people’s various strengths and experiences have an impact on
picking the correct person for a task to ensure success.

Related Detailed Requirements: The detailed goals supporting HL-GOAL-5 are ful-
filled through the fulfillment of the high-level goal, shown in Figure 2.12, which is

228

7.1 Empirical Evaluation of Case Study Companies

in Sub-chapter 2.4.1. For convenience Figure 2.12 is reproduced below as Figure
7.5.

Figure 7.5: Reproduction of Figure 2.12.

HL-GOAL-6: Compatibility with Agile methods for solution (code) devel-
opment.

Agile or iterative & incremental process approaches have been used with great success
at the coding level. The SAMEM extends those successes to include the full project
scope starting with solution concept and requirements. The SCRUM idea of Agile uses
User Stories (in the general sense) to define the work tasks for the people. Compatibility
with Agile methods implies that the requirements and design work can be broken into
User Stories and that the requirements and design artifacts flow into development User
Stories.
The mechanisms that support achieving this goal work in a supporting manner. The

RM-ODP framework guides the separation of the “What” questions at one level of
abstraction from the “How to” questions at the lower level, so that User Stories can
be formed to produce answers. The graphical modeling produces artifacts that can be
partitioned into smaller units with clearer interfaces for expression as User Stories. A

229

Chapter 7 The SAMEM Evaluation

consistent project process approach for the complete project lifecycle creates a common
team work environment.

Although the HL-GOAL-6 is primarily oriented towards developers, stakeholders
are impacted in the development of artifacts that flow into the design work and in
the verification of the implementations produced. The DS-Q25 specifically asks the
developers whether the requirements iterative & incremental work cleanly flows into the
development work and the answer is “Yes Better” by all respondents.

Result: goal achieved

Questions: CS-Q2/DS-Q2, CS-Q9/DS-Q7, CS-Q10/DS-Q8, CS-Q20/DS-Q18, CS-Q22/DS-
Q23, CS-Q23/DS-Q24, CS-Q3, DS-Q16, DS-Q17, DS-Q19, DS-Q20, and DS-Q25.

Ordinal Values Summary: Highest: 60/76, Second Highest: 16/76 (relative values
since ranges differ, denominator is the number of questions times the respondents,
or (6 x 8 + 7 x 4), sometimes a question was not answered, so the sum of the
numerators will not equal the denominator).

Quotes:

Table 7.11: HL-GOAL-6 Supporting Survey Quotes.
Question Response Comment

CS-Q3 DS-Q1
CR-1 In which ways? People could understand what they

were getting very early in the process.
CR-3 In which ways? Improved understanding of project

and establishment of requirements.
DR-1 Additional comments on business information unit

modelling: Pictures are better for the business. And
it is a bonus that the models make development eas-
ier.

CS-Q20 DS-Q18 DR-3 Additional comments on solution design activities:
As we didn´t have time to make use of all the views,
we had some but not complete effect.

CS-23 DS-Q24 CR-2 Additional comments on the incremental & iterative
process im-pacts: I believe it sets up a smooth tran-
sition to the technical team for delivery. There are
still some opportunities to move along more quickly
with the steps and perhaps even break the process
into smaller components.

DS-Q25 DR-1 Additional comments on the incremental & iterative
process im-pacts: This concept (Paper Prototype)
fits cleanly into agile.

230

7.1 Empirical Evaluation of Case Study Companies

Question Response Comment

CS-Q9 DS-Q7

CR-1 Additional comments on overall graphical represen-
tation use: I don’t want to minimize the total effort
in developing a good project plan.

CR-2 Additional comments on overall graphical represen-
tation use: Enabled a common framework for align-
ment of the team on over-all project direction.

CR-4 Additional comments on overall graphical represen-
tation use: A picture that describes the process is
always a good way to con-firm that all participants
are understanding the transactional processes in the
same way.

DR-1 Additional comments on overall graphical represen-
tation use: It can have various effects on the plan-
ning process depending on the players and how they
understand the 1-pager. It certainly im-proves plan-
ning, but can make the interactions in the meetings
strained depending on how one views 1-page to equal
simple.

DR-3 Additional comments on overall graphical representa-
tion use: We found that its important that the person
presenting the 1-pager have a good way of commu-
nicating it. If not, the discussion ends up focusing
on what the 1-pager is and is showing rather than its
content.

Improvements or future work: From the comments and the ordinal answer values, there
are not many improvements to be made on the transitioning to agile style devel-
opment processes.

Related Detailed Requirements: The detailed goals supporting HL-GOAL-6 are ful-
filled through the fulfillment of the high-level goal, shown in Figure 2.13, which is
in Sub-chapter 2.4.1. For convenience Figure 2.13 is reproduced below as Figure
7.6.

231

Chapter 7 The SAMEM Evaluation

Figure 7.6: Reproduction of Figure 2.13.

7.1.4.1.1 Compatibility with Agile Code Development and Code Generation As dis-
cussed in Sub-chapter 4.3.5.4, the SAMEM is not targeted at RM-ODP Engineering and
Technology Viewpoints. These are the areas where the solution architecture decisions
are made, the technology choices are made, and where code development happens. As
discussed in [Rum17], modeling can be used in an agile manner to generate code, tests,
and help with refactoring. The modeling needed to accomplish these types of genera-
tion must be more precise than the modeling described in this thesis for requirements
specification. The precise modeling language for generation is exemplified by UML/P
[Rum16]. Many DSMLs can be candidates as well.

Model transformations can be envisioned that convert the SAMEM-IM and SAMEM-
PM compliant models into initial UML/P artifacts and models. Because there is an
abstraction gap between the SAMEM models and the UML/P, the transformation will
be incomplete. Design decisions at the UML/P level will be needed to complete the
models. The model transformations from the SAMEM to UML/P will generate trace-
ability between the two levels and rules can be defined to support round-trip engineering
in the case that a code generating model indicates a possible requirements weakness.

It is outside the scope of this thesis to pursue the SAMEM to UML/P model trans-
formations in more detail, but it is a topic for future work.

232

7.1 Empirical Evaluation of Case Study Companies

7.1.4.2 Supporting Evidence and Evaluation for Detailed Goals

The detailed SAMEM goals from Sub-chapter 2.4.1 are listed below for convenience.
Following each goal is an explanation of its fulfillment, either through the evidence
collected by the survey of case study participants or through the design of the SAMEM.
There can be multiple survey questions that support the fulfillment of the goal. The
ordinal answer values are listed in either Table 7.3 or Table 7.4 and will not be repeated
here.

GOAL-1: The methodology should provide accurate communication mech-
anisms.

The survey questions CS-Q7/DS-Q5, CS-Q8/DS-Q6, CS-Q18/DS-Q14, and CS-Q17
directly address the fulfillment of this requirement. The answers are overwhelmingly
positive.

GOAL-2: The methodology should provide project process risk mitigation
mechanisms.

The answers to survey questions CS-Q1/DS-Q1, CS-Q2/DS-Q2, CS-Q3, and CS-Q4
are all positive and are related to confidence in completing the project. From a SAMEM
design perspective, the RM-ODP abstraction framework assists in ensuring the most
impactful project questions are addressed first. Several of SEFP guidelines are intended
to reduce project risk. Achieving the professional engineering practice of due diligence
is also supported.

GOAL-3: The methodology should provide traceable artifact evolution.

There are several survey questions that address change management, CS-Q15/DS-Q12,
CS-Q20/DS-Q18, CS-Q4, and DS-Q21. Although all the answers are largely positive,
the management of artifact evolution is more a factor of the tools for storing the various
artifact versions and project policies for controlling updates.

GOAL-4: The methodology and artifacts should be compatible with an it-
erative & incremental project process.

The few survey questions that address this goal in parts are CS-Q12/DS-Q10, CS-
Q23/DS-Q24, and DS-Q25. The graphical nature of the requirements, engineering de-
sign, and technology design artifacts lend themselves to iteration partitioning easier than
text-based representations.

GOAL-5: The artifacts should maximize the use of visual models for com-
munication and compactness.

The primary survey questions that are directed towards the value of graphical artifacts
are CS-Q5/DS-Q3, CS-Q7/DS-Q5, and CS-Q10/DS-Q8. The answers strongly support
the benefits of graphical over textual representations for as many artifacts as possible.

233

Chapter 7 The SAMEM Evaluation

GOAL-6: The methodology should be adaptable to individual project pro-
cess needs.

The adaptability of the SAMEM to project process needs is mostly a factor of general
guidelines within the SAMEM design rather than specific prescriptions. There are three
areas of guidelines: the SEFP, the use of RM-ODP, and the iterative & incremental ap-
proach. The survey questions that investigate the benefits of the RM-ODP and iterative
& incremental aspects are CS-Q2/DS-Q2, CS-Q6/DS-Q4, and CS-Q20/DS-Q18.

GOAL-7: The iterations should be small for project management purposes.

Small iterations have positive consequences for the project control. Small iterations
make it easier to estimate the work effort, enable frequent verification that work is on
track, and show progress towards the project goals. The survey questions that deal with
small iteration consequences are CS-Q2/DS-Q2, CS-Q22/DS-Q23, and CS-Q3.

GOAL-8: An iteration should have a verification step of some kind to
assure that the work done is correct.

The rationale for the verification step as an integral part of an iteration is a SAMEM
design decision. The purpose of the verification step is to ensure that the work stays true
to the solution concept at the highest level, the requirements, and any design decisions.
Passing the verification step is the closure point for an iteration, so that work can
progress to the next task. There are not any survey questions that deal directly with
this goal.

GOAL-9: Flexibility in the visual model artifacts is necessary for commu-
nication optimization.

In order to enable the SAMEM to adapt to different domains, the model artifacts must
adapt to the domain information and behavior needs. The SAMEM definition does not
require any specific modeling forms for communication. In the case studies, a variety of
artifacts were effectively used for communication as reflected in questions CS-Q5/DS-Q3,
CS-Q8/DS-Q6, CS-Q11/DS-Q9, CS-Q13/DS-Q11, and CS-Q15/DS-Q12.

GOAL-10: The methodology should ensure completeness.

Completeness in this sense means that the definitions of the solution and the re-
quirements specification have the necessary and sufficient artifacts to fulfill the solution
concept. It does not mean that definition and specification must be complete before
starting any realization work. The related survey questions are CS-Q1/DS-Q1, CS-Q17,
and DS-Q16.

GOAL-11: The methodology should support the incorporation of state-of-
the-art software engineering results.

234

7.1 Empirical Evaluation of Case Study Companies

The essence to achieving this goal is in avoiding prescriptive mechanisms in the defini-
tion of the SAMEM. This goal is evolutionary in that it means that the SAMEM needs
to be able to incorporate new ideas and practices that arise in the future. The general
guidelines of the SAMEM that assist in meeting this goal are the abstraction framework,
currently the RM-ODP, the list of Software Engineering First Principles, which can be
extended, and the iterative & incremental task style. The key to satisfying this goal is
to design the SAMEM with as few restrictions as possible.

GOAL-12: The visual modeling and textual artifacts need to have consis-
tent presentation to optimize communication.

This goal embodies some good cognitive effectiveness rules. When people need to
relearn the symbols used in the models, then communication suffers from wasted time
and confusion. Several survey questions are about the consistent use of communication
mechanisms for the case studies: CS-Q8/DS-Q6, CS-Q11/DS-Q9, CS-Q12/DS-Q10, CS-
Q18/DS-Q14, and CS-Q29/DS-Q31.

GOAL-13: A metamodel is needed for the artifacts and process to ensure
a rigorous methodology.

With a metamodel for the SAMEM, artifact tools can be constructed. The tools can
be computer-aided design and construction tools for creating and updating the SAMEM
artifacts and computer-aided analysis tools for checking that the artifacts are well-formed
and complete. This is a design goal and there are no empirical evidence questions for
this goal.

GOAL-14: The methodology must support multiple feedback mechanisms.

The survey questions that examine the quality of feedback in the case studies are
CS-Q2/DS-Q2, CS-Q7/DS-Q5, CS-Q10/DS-Q8, CS-Q11/DS-Q9, CS-Q15/DS-Q12, and
CS-Q20/DS-Q18.

GOAL-15: The methodology should allow for multiple requirement arti-
facts to match the different communication needs of the different levels of
abstraction needed during the project process.

In the case studies, several different requirements artifact forms were used. The feed-
back was positive on the questions that evaluated the different forms. The survey ques-
tions are CS-Q8/DS-Q6, CS-Q10/DS-Q8, CS-Q12/DS-Q10, and CS-Q13/DS-Q11.

GOAL-16: The methodology project process must ensure that progress to-
wards a solution is accomplished at a reasonable speed.

It is obvious that reasonable in the statement of this goal is relative to the domain,
the expectations of the stakeholders, and the complexity of the solution scope. On the

235

Chapter 7 The SAMEM Evaluation

basis of the case study survey questions, the answer is yes. The following questions are
pertinent: CS-Q1/DS-Q1, CS-Q22/DS-Q23, CS-Q3, and DS-Q16.

GOAL-17: The artifact evolution trace should have possibilities for record-
ing the rationale for the artifact improvement.

Fulfilling this goal is mostly a matter of having an artifact revision control tool in
place to capture the new version or increment of the artifact and the reason for the new
version. For the case studies, the Apache Subversion (https://subversion.apache.org/)
revision control tool was used. The use of the versioning tool is mostly an aspect of the
specific project management rules. The SAMEM does not mandate any specific rules
one way or the other, but good engineering practices encourage the recording of decisions
and changes.

GOAL-18: The visual artifacts must not be limited by existing notations
such as UML, alt-hough, when appropriate, existing notations should be pre-
ferred.

The domain and the specific solution area within the domain will guide the project
decisions for the artifact forms. There are no specific survey questions for this goal. From
the case studies, examples of extending UML and using non-UML notations are shown
in Sub-chapters 3.5.1.1, 3.5.2.1, 3.5.3.1, 3.5.4.1, and 3.5.5.1 and discussed in 4.4.1.5.1,
and 4.4.1.6.

GOAL-19: The visual models must be good enough to achieve the purpose
within the current context or step of the project process.

The surveys have questions about the effectiveness of the visual models for both the
stakeholders and the developers. The questions that concern the evaluation of the success
of the visual models are CS-Q5/DS-Q3, CS-Q7/DS-Q5, CS-Q8/DS-Q6, CS-Q10/DS-
Q8, CS-Q11/DS-Q9, CS-Q13/DS-Q11, CS-Q15/DS-Q12, CS-Q18/DS-Q14, CS-Q17, and
DS-Q16.

GOAL-20: The methodology should have a set of principles that support
adaptation to various domains and provide a checklist for rigor.

This goal establishes a design constraint on the SAMEM. The Software Engineering
First Principles as defined in Sub-chapter 3.2 are embodiment of the design constraint
specified by this goal.

GOAL-21: The models used for artifacts in the methodology should support
multiple small iterations.

The evidence supporting this goal is indirect from the survey questions, as there were
no direct questions on the fulfillment of this goal. The case studies used small iterations

236

7.1 Empirical Evaluation of Case Study Companies

and visual models as the artifacts. The questions that imply that this goal is fulfilled
are CS-Q2/DS-Q2, CS-Q12/DS-Q10, and DS-Q25.

GOAL-22: The methodology should support frequent small releases of project
deliverables to support verification of progress.

The iterative & incremental approach is the basis for producing frequent small releases.
The survey questions that gathered the empirical evidence that this goal is achieved are
CS-Q2/DS-Q2, CS-Q21/DS-Q22, CS-Q22/DS-Q23, CS-Q3, and DS-Q25.

GOAL-23: The requirements elicitation portion of the methodology should
be consistent with modern implementation best practices.

The main modern implementation practices are those based on Agile and SCRUM
methods. The Developer Survey question DS-Q25 is specifically targeted to provide the
evidence and the answer is 100% yes.

GOAL-24: The methodology artifact representations should be consistent
with the best practices of communication as measured through cognitive ef-
fectiveness.

While there are no questions about the cognitive effectiveness of the visual modeling
techniques, there are questions in the survey about the effectiveness of the communica-
tion. As evidence for meeting this goal, Sub-chapter 7.3 will contain a detailed analysis
of the graphics used and their effectiveness. The survey questions about communication
effectiveness are CS-Q5/DS-Q3, CS-Q7/DS-Q5, CS-Q8/DS-Q6, CS-Q11/DS-Q9, and
CS-Q15/DS-Q12.

GOAL-25: The methodology should allow for the ad-hoc creation of arti-
facts for domain adaption and communication improvements.

The SAMEM does not define or recommend any specific visual modeling mechanisms,
such as UML. The emphasis is on effective communication; as such anything that works
is acceptable. Examples of the survey questions that ask about the effectiveness of
combinations of modeling techniques are CS-Q5/DS-Q3, CS-Q8/DS-Q6, CS-Q11/DS-
Q9, and CS-Q18/DS-Q14. In addition, the case studies with examples of extending
UML and using non-UML notations are shown in Sub-chapters 3.5.1.1, 3.5.2.1, 3.5.3.1,
3.5.4.1, and 3.5.5.1 and discussed in 4.4.1.5.1, and 4.4.1.6.

7.1.5 General Opinions from the Case Study Surveys

Three common questions appear in the case study surveys for an evaluation of the pre-
SAMEMmethodology from an overall perspective, somewhat independent of the solution
domain. The intent of the three overall questions was an evaluation of the methodology

237

Chapter 7 The SAMEM Evaluation

from a step back from the details, since the details can be adjusted for improvements.
The three questions are CS-Q1/DS-Q1, CS-Q24/DS-Q26, and CS-Q25/DS-Q27.

Survey question CS-Q1/DS-Q1 concerns the overall evaluation of the methodology
with respect to the quality of the solution. This can be viewed as a summation of the
positive and negative aspects with the final evaluation being positive. The most positive
answer on the scale is “Very Effective: good solution with a minimum number of people
in a minimum time frame,” which was picked by 87% of the respondents. The second
most positive answer, “Moderately Effective: good solution with a reasonable number
of people in a reasonable time frame,” was picked by the other 13% of the respondents.
Several comments were given by the respondents and are listed below with the answer
value:

• Very Effective: “I can’t imagine proceeding without it.”

• Very Effective: “I believe the process allows for a quick verification of the process
prior to investing in technical solutions and adding complex elements.”

• Moderately Effective: “The effectiveness doesn’t necessary have to do with the
paper prototype, but rather the number of people that we had to include in the
process. We are changing the way we deploy the process in the second iteration by
first having a small group and then taking it to the larger group once it’s stable.
This way it becomes more manageable. We also doing reviews with smaller groups
and rather more review meetings.”

• Very Effective: “Paper prototypes were an effective way to visually communicate
how a solution is intended to work, is a great tool to determine if the solution
meets a customer’s needs, and can be used to improve or refine a solution.”

A general inquiry about any weakness or shortcoming is the purpose of question CS-
Q24/DS-Q26. The possible answers are “Yes,” picked by 38%, or “No,” chosen by 62%,
with space for comments. Comments about weaknesses given by the respondents, when
given, are listed below with the answer value:

• No: “Gathering requirements is simply a matter of getting to the truth about what
has to be delivered and in gaining consensus on the solution. Any means will do
that if the participants are knowledgeable and engaged. With a visual graphical
approach, it makes the participants understand what is happening quickly and
facilitate learning as well.”

• No: “I have always had some tables, flows and pictures in specification so for me
it fit with and extended the model I thought worked well for spec development.”

• Yes: “The Paper Prototype process is very useful in nailing down many of the
requirements, there is still the need for expressing some of the requirements in a
traditional fashion (e.g., nonfunctional requirements).”

238

7.1 Empirical Evaluation of Case Study Companies

• Yes: “Modelling takes time and addressing the necessary RM-ODP views requires
experience in modelling to be successful within the time available. Therefore, it
might be useful to have a paper prototype tool to support the process.”

• Yes: “If the Paper Prototype was not clear, it left too much room for interpreta-
tion by the customer. This could lead to a solution that might not address the
customer’s expectations.”

Survey question CS-Q25/DS-Q27 is the inverse of CS-Q24/DS-Q26 and asks about
strengths and benefits. The choices are “Yes,” picked by 87%, or “No,” selected by 13%,
with space for comments. Comments about strengths given by the respondents, when
given, are listed below with the answer value:

• Yes: “Easier to digest, manage and handoff to other teams.”

• Yes: “One major advantage was mapping processes, especially since most parts
of the organization did not have those and did not have clarity on the extent
of interplay and interactions with other parts of the organization. Also enabled
communication to management, to ensure all parties were on the same page before
committing resources.”

• Yes: “A definition to defend.”

• Yes: “Any tool that can help the user "see" and provide feedback on the proposed
solution with a minimal time/investment is helpful. The Paper Prototype process
is such a tool that can be effective with certain types of development efforts.”

• Yes: “The paper prototype process forces you to think about the solution in a
very concrete manner and help you visualize what you are building so that you
can easier align between the team members to ensure they all agree on what it is
that we are building.”

• Yes: “The Paper Prototype could be used for many purposes: developing test
cases, creating a documentation plan, estimating tasks, developing regression test
cases, and drafting procedures.”

In summary, the early version of the SAMEM, also known as the Paper Prototype
Process, is considered to be an effective project methodology. The major strengths are
bringing the team together with a single vision and stimulating deeper thinking about
the problem and the possible solutions. The weaknesses highlight the need for additional
skills on the team, such as modeling and the addressing of requirements that are not
easily modeled. The requirements not easily modeled, such as the typical non-functional
requirements, are an extension in this thesis over the early version of the SAMEM used
in the case studies.

239

Chapter 7 The SAMEM Evaluation

7.2 Other Applications of the SAMEM

There are three additional uses of the SAMEM currently started as of the date of this
thesis writing. While the project history is very limited, there are statements from
participants that indicate preliminary benefits to using the SAMEM approach.

7.2.1 Start-up Company for Mobile Application Development

The start-up company has an idea for a new social connection application focused on
cellular technology-based mobile device use, i.e. phones and tablets. The initiator (J.L.)
of the idea has significant experience, over 20 years, in running non-software compa-
nies, but no experience in running a software-based project. A mutual acquaintance
introduced the author of this thesis to J.L.

The author had several tutoring sessions with J.L. to explain the SAMEM, which was
then applied with the author leading J.L. through the process. The initial focus was on
the Enterprise Viewpoint to clearly express the idea and value. The second step was
the elicitation of preliminary requirements of the behavior and information models. An
alternative expression of the behavior of the application via the use of storyboards and
user interface sketches is used as compared to the case study companies. The quote from
J.L. below shows high satisfaction with the process and the beginning explorations into
engineering and technology design alternatives.

“Using the Software Agile Modeling and Engineering Methodology (SAMEM)
to produce the architecture for our software development project created dis-
cipline and stability to complete an organized structure as we worked through
RM-ODP viewpoints in a very short period of time. Considering the non-
linear nature of most software projects and the frequent revisions in the agile
or iterative methods, which encompass content and time, SAMEM exceeded
its purpose, created maximum efficiency and definitely limited “momentum”
in the wrong direction. The process quickly identified questions to be ad-
dressed and if outside support or input was needed. Furthermore, the use
of simple visual aids and informality accelerated the ability to produce the
more technical engineering aspects.”

7.2.2 Company Specializing in Employee Background Checks

The Paper Prototype Process (PPP), as the early version of the SAMEM was called,
was introduced in a company that specializes in employee background checks and other
security offerings by a developer that worked on the Case Study 1 (CS-1) solutions. The
CS-1 developer is in the position of Senior Application Developer with the Employee
Background Check (EBC) company.

The motivation for introducing PPP was to mitigate the negative effects and risks
on the current project caused by poor requirements, lack of design activities, and inef-
fective communication. While the EBC company was trying to use agile and SCRUM

240

7.2 Other Applications of the SAMEM

practices, they were failing by their own admittance. The CS-1 developer realized that
the incomplete and textual nature of the requirements used for design communication
was a major cause for the project process problems. The most significant problem was
the rework caused by poor quality user stories. The rework involved re-definition of the
user stories, caused by redefinition of the requirements, redesign, and recoding.

The major component of the PPP that the CS-1 developer introduced was the idea
of modeling the requirements and the design, then using the models to drive the agile
iterations or SCRUM sprints. The introduction took place in the middle of the project,
which is an enhancement to an existing internal solution, as a mitigation and correction
mechanism. The future intentions are to use more components from the PPP or SAMEM
as a standard part of the architectural design for new projects.
Below are two quotes from members of the EBC project team as to the benefits realized

by the PPP and by extension of the SAMEM.

“As a junior developer, I felt the paper prototype process fostered my learn-
ing better than a strictly agile process. I was able to understand all the
components of a project and, in return, contribute in a meaningful way. It
brought forth better collaboration and organization within the team and
more accurate time assessments.”

“As a principal application developer part of my responsibilities have been to
oversee the stability of our system and ensure enhancements are well thought
through. When the agile process was introduced to this IT group we quickly
recognized the “design” phase was lost. It was very difficult to make large
system enhancements or rewrite a major portion of the system because stories
weren’t well defined which left developers and QA to guess at what the
requirements truly were. We were seeing stories roll over and our system
starting to degrade because of not having well defined stories. I am currently
working on a project that took time to put the “design” phase back into
the process. So far this has eliminated confusion within the team because
everyone has participated in the design and fully understands our goals.
This process has also helped define stories in a way that are easier to point,
estimate hours and prepare for planning which gives business a better delivery
date. So far putting the design phase back into the process has shown to be
invaluable.”

Future work within the EBC company on process improvement will be to use more
modeling techniques to define solution architectures and requirements. The goal is to
achieve a better understanding of the product needs to eliminate the miscommunication
that is currently happening. They want to grow the success beyond the current project
to make a companywide improvement.

241

Chapter 7 The SAMEM Evaluation

7.2.3 Company Creating Safety and Security Solutions for the Oil and Gas
Industry

Another company (referred to as SEC in this thesis) that is starting to apply the ideas
of the SAMEM creates software products for safety and security needs for oil and gas
companies. The products address the needs for safety and security on drilling rigs and
in pipelines. There are multiple players in this domain including standardization groups
and government regulatory agencies. The SEC company also sees the use of modeling
as a mechanism to help define and communicate the standards and regulations

The SEC company started to introduce the SAMEM ideas during the middle of an
existing development project, which focused on enhancements to a current product.
The development environment has developers distributed over several continents and
time zones. The earlier development process was a waterfall type. The development
was starting to fracture resulting in developers creating incompatible components. The
incompatibilities were in interface definitions, inconsistencies with the requirements, and
inconsistent coding styles. The incompatibilities created unacceptable rework costs.

The portions of the SAMEM that are most useful in correcting the situation are the
use of models for lighter weight specifications and an iterative & incremental develop-
ment project process. The use of UML-like models for interfaces and defining detailed
design modules are improving the communication among the developers. The interface
incompatibles have essentially disappeared. Moving to a more iterative & incremental
project approach has improved deviations from the requirements through more frequent
checks at the end of the iteration.

Future work in SEC includes the application of more of the SAMEM ideas, especially
with new projects. The possible range of new projects consists of updated versions of
the current products and new products to address safety issues that are not yet covered.

A developer and the project manager jointly took part in the developer survey and
combined their answers into a single response.

7.3 Communication Cognitive Effectiveness Measures of the
SAMEM Artifacts

The high-level goals HL-GOAL-1 and HL-GOAL-2 (see Sub-chapters 1.1 and 2.4.1)
of the thesis are respectively concerned with communication with the customers and the
development team. There are several lower-level goals that are more specific and support
the high-level thesis goals as shown with URN notation in Figure 2.8 and Figure 2.9.
To achieve effective communication, the thesis emphasizes the use of graphical or visual
communication techniques as much as possible, although not exclusively.
The primary measure of the effectiveness is that the participants in the project agree

that the images used for communication are clear, complete with respect to their purpose,
and accurate relative to the project concept [LS87]. Although many actual examples from
the case studies have been presented, these remain descriptive and not prescriptive. The
only mildly prescriptive aspect of the SAMEM is the use of the Solution Overview

242

7.3 Communication Cognitive Effectiveness Measures of the SAMEM
Artifacts

Drawing (SOD) to communicate a larger picture. The question becomes: “What is the
nature of the general guidelines needed to create an effective SOD?”

The communication cognitive effectiveness, as described in Sub-chapter 2.3.2, can
be used to guide the formation of the SOD to maximize its usefulness. The cognitive
effectiveness measures are described in the research from Moody, primarily [MvH08],
but [Moo09] and [MHM10] show the application to UML and i*.

7.3.1 Cognitive Effectiveness Principles and Metrics
Moody [Moo09] lists nine principles that are a prescriptive theory for designing a visual
notation. With each principle, there are a number of more detailed metrics which can
be applied to the notation. All the principles are listed below, but only the relevant
metrics used for the SOD evaluation are included here:

1 Principle of Semiotic Clarity: There Should Be a 1:1 Correspondence between
Semantic Constructs and Graphical Symbols.

2 Principle of Perceptual Discriminability: Different Symbols Should Be Clearly Dis-
tinguishable from Each Other.

3 Principle of Semantic Transparency: Use Visual Representations Whose Appear-
ance Suggests Their Meaning.
a) Semantically Transparent Relationships is the use of spatial arrangements of

visual elements to predispose people toward a particular interpretation of the
relationship among them even before the meaning of the elements is known.

4 Principle of Complexity Management: Include Explicit Mechanisms for Dealing
with Complexity.
a) Modularization is the common way of reducing complexity of large systems

by dividing them into smaller parts or subsystems.
b) Hierarchy (Levels of Abstraction) is one of the most effective ways of orga-

nizing complexity for human comprehension as it allows systems to be repre-
sented at different levels of detail, with complexity manageable at each level.

5 Principle of Cognitive Integration: Include Explicit Mechanisms to Support Inte-
gration of Information from Different Diagrams.
a) Conceptual Integration is a summary (long shot) diagram, which provides a

view of the system as a whole, which acts as an overall cognitive map.

6 Principle of Visual Expressiveness: Use the Full Range and Capacities of Visual
Variables.

7 Principle of Dual Coding: Use Text to Complement Graphics.
a) Annotations can improve understanding of diagrams in the same way that

comments can improve understanding of programs.

243

Chapter 7 The SAMEM Evaluation

8 Principle of Graphic Economy: The Number of Different Graphical Symbols Should
Be Cognitively Manageable.

9 Principle of Cognitive Fit: Use Different Visual Dialects for Different Tasks and
Audiences.

7.3.2 Cognitive Effectiveness Evaluation of the SOD

Some of the cognitive effectiveness principles and metrics are applicable to the SOD
evaluation while some are not. The SOD is not a new visual notation; rather, it is
a new mechanism to organize visual artifact entities for better communication. The
principles and metrics that refer to a specific visual variable such as color or shape do
not apply to the SOD, but may apply to the components assembled into the SOD. The
references to principles and metrics given below use the principle number and metric
letter from the list in Sub-chapter 7.3.1, for example, 3a represents the Principle of
Semantic Transparency and the metric Semantically Transparent Relationships.
The SOD is an assembly of multiple models or visual artifacts that have a specific

relationship to each other and together provide a more complete description, thereby
easing the mental effort of remembering and integrating the models. A characteristic and
lesson learned of the SODs from the case studies is a consistent selection of components
and their layout, see Figure 3.5 where the components are Business Flow, Information
Model, State Machine, and Notes. The choices meet the positive benefits expressed in:

• 3a for using spatial relationships for a consistent SOD layout. The layout was
developed via trial and error during the initial use of the SOD and then used for
all the solutions.

• 4a for modularization through the separation of the SOD into four areas of infor-
mation. The actual model representations in the SOD were dependent on the area
available and the agreed upon abstraction level of the model.

• 4b for hierarchy or levels of abstraction by making the SOD be the top level or
most abstract representation. The Information Model and Business Flow are the
key components and the abstraction level in the SOD is based on communication
effectiveness.

• 5a for conceptual integration through the collection of the major aspects of the
solution behavior, the solution data, and clarifying notes in one visual image. The
single visual image is both memorable and communication effective by eliminating
the need for a person to mentally integrate multiple models.

• 7a for annotations with the intentional inclusion of a Notes section of the SOD for
clarifying remarks. In practice, the Notes section evolved over the requirements
elicitation work from initial lists of open questions to supporting references.

244

7.4 The SAMEM Mapping to SEMAT and Essence

There are several aspects of cognitive effectiveness that are in strong alignment with
the SOD approach. If the visual components that are assembled into the SOD are poorly
done, then the SOD cannot overcome those deficiencies and might reinforce them. While
the Case Study SOD examples consisted of four components, that does not mean that
four components are appropriate for every domain. The SOD can consist of more or less
than four, as long as the communication remains effective as agreed to by all participants.

7.4 The SAMEM Mapping to SEMAT and Essence
As described in Sub-chapter 2.1.7, the SEMAT is a standardization effort to bring some
organization and foundation to software engineering. Software Engineering Method and
Theory (SEMAT) is an initiative to improve the discipline of software engineering and
make it more rigorous [JEJ12], [SEM98], [SEM16]. The SEMAT initiative is divided
into four related areas of work: the Practice area, the Education area, the Theory area,
and the Community area. The SEMAT work is supported by and has contributed to an
OMG specification: Essence – Kernel and Language for Software Engineering Methods
[OMG12b].
As an evaluation point, the SAMEM will be compared to the SEMAT and the Essence

standard. The EssWork tool [Essb], [KM], [Essa] is a tool that is used in a project to
manage the application of the SEMAT. The encoding of the SAMEM into the SEMAT
framework will provide some confirmation that “GOAL-11: The methodology should
support the incorporation of state-of-the-art software engineering results” is achieved.

7.4.1 The Essence Kernel Definition
This sub-chapter will provide a more detailed overview of the SEMAT as a basis for the
comparison. Since many parts of this sub-chapter are definitional in nature, much of
the text and Figure 7.7 through Figure 7.16 are taken directly from the SEMAT Kernel
Quick Reference Guide [KM], [Essa] and sometimes slightly paraphrased. As stated in
the quick reference guide, the Essence Kernel is organized into three discrete areas of
concern, each focusing on a specific aspect of software engineering. These are:

• Customer – This area of concern contains everything to do with the actual use
and exploitation of the software system to be produced.

• Solution – This area of concern contains everything to do with the specification
and development of the software system.

• Endeavor – This area of concern contains everything to do with the team and the
way that they approach their work.

Each area of concern contains a small number of:

• Alphas – representations of the essential elements of the software engineering
endeavor that are relevant to an assessment of the progress and health of the

245

Chapter 7 The SAMEM Evaluation

endeavor. The Alphas provide descriptions of the kind of things that a team
will manage, produce, and use in the process of developing, maintaining, and
supporting software.

• Competencies – representations of the key competencies required to do software
engineering.

• Activity Spaces – representations of the essential things to do. The Activity
Spaces identify and list generic challenges a team faces when developing, main-
taining, and supporting software systems, and the kinds of things that the team
will do to meet them.

7.4.1.1 The SEMAT Alpha Definition and Examples

Alpha is an acronym for anAbstract-Level ProgressHealthAttribute. Figure 7.7 shows
the seven Essence Kernel Alphas and their relationships. Each area of concern in the
Essence Kernel is color-coded to assist in communicating the scope and differentiating
the concern. The relationships between the Alphas show that the information and work
in each Alpha depends on and impacts other Alphas, for example Stakeholders identify
Opportunities. The Alphas are defined as:

• Stakeholders: The people, groups, or organizations who affect or are affected by
a software system. The stakeholders provide the opportunity and are the source
of the requirements and funding for the software system. The team members are
also stakeholders.

• Opportunity: The set of circumstances that makes it appropriate to develop or
change a software system. The opportunity articulates the reason for the creation
of the new, or changed, software system. It represents the team’s shared under-
standing of the stakeholders’ needs, and helps shape the requirements for the new
software system by providing justification for its development.

• Requirements: What the software system must do to address the opportunity
and satisfy the stakeholders. It is important to discover what is needed from the
software system, share this understanding among the stakeholders and the team
members, and use it to drive the development and testing of the new system.

• Software System: A system made up of software, hardware, and data that
provide its primary value by the execution of the software. The primary product
of any software engineering endeavor, a software system can be part of a larger
software, hardware, or business solution.

• Work: Activity involving mental or physical effort done in order to achieve a
result. In the context of software engineering, work is everything that the team
does to meet the goals of producing a software system matching the requirements,
and addressing the opportunity, presented by the stakeholders. The work is guided
by the practices that make up the team’s way-of-working.

246

7.4 The SAMEM Mapping to SEMAT and Essence

• Team: A group of people actively engaged in the development, maintenance,
delivery, or support of a specific software system. One or more teams plan and
perform the work needed to create, update, and/or change the software system.

• Way-of-Working: The tailored set of practices and tools used by a team to
guide and support their work. The team evolves their way of working alongside
their understanding of their mission and their working environment. As their work
proceeds, they continually reflect on their way of working and adapt it as necessary
to their current context.

From the Essence Kernel Quick Reference Guide:

“The Alphas should not be viewed as a physical partitioning of your endeavor
or as just abstract work products. Rather they represent critical indicators
of the things that are most important to monitor and progress.”

Figure 7.7: Essence Kernel Alphas.

Each Alpha is represented by an Alpha Overview Card, a set of Alpha State Cards, and
an Alpha Full Checklist. An overview of the three Alpha artifacts is shown, in Figure
7.8 with details for the set of Stakeholder Alpha Cards. The set of Way of Working

247

Chapter 7 The SAMEM Evaluation

Alpha State Cards is shown in Figure 7.9 and details for the Way of Working Alpha Full
Checklist are shown in Figure 7.10.

The Alpha Overview Card provides a definition of the Alpha, a list of the states, and
a summary of the important check points to fulfill in order to satisfy a state. The Alpha
States make a simple and linear state machine that represents the progression from an
unaddressed Alpha to a complete Alpha. For an Alpha to move to a more completed
State, specific objectives listed in the Alpha Full Checklist must be achieved and agreed
upon by the team. It is possible to regress to a previous State if project circumstances
show that items from the Checklist are no longer fulfilled. The Alpha Full Checklist is a
starting point that can be modified to adapt to different domains or project types (new
product, functionality update, maintenance update, etc.).

Figure 7.8: Alpha Artifact Overview.

The set of Alpha Cards, shown in Figure 7.9, consists of an Alpha Overview Card
and an Alpha State Card for each state. On each Alpha State Card is a summary or
label of the State Checklist Items that should be achieved in order for that state to
be realized or achieved. The Alpha Full Checklist has the summary or label and an
extended explanation of the Checklist Item, see Figure 7.10. The Alpha Checklist Items
are the minimal suggested starting point from the Essence standard, can be modified
or extended to be more domain or project relevant. The Essence standard is defined to
support these adaptions.

248

7.4 The SAMEM Mapping to SEMAT and Essence

Figure 7.9: Way of Working Alpha Overview and State Cards Example.

249

Chapter 7 The SAMEM Evaluation

Figure 7.10: Way of Working Full Checklist Example.

250

7.4 The SAMEM Mapping to SEMAT and Essence

7.4.1.2 The SEMAT Competencies Definition and Examples

The competencies area of the SEMAT provides an overview of the skills needed in each
area. The SEMAT areas are Customer, Solution, and Endeavor. An overview is shown
in Figure 7.11. In the Customer area, the skill competencies are those needed to demon-
strate and communicate an understanding of the business needs and the domain. The
skills needed in the Solution area are the abilities to analyze the requirements and op-
portunities, design and create the solution, and test the solution to verify it meets the
requirements. In the endeavor area, the team has to be able to organize itself and manage
its workload.

Figure 7.11: SEMAT Competencies Overview.

As defined in the standard, each competency has five levels of achievement. The higher
competency levels build upon the lower ones. An individual at Level 2 has all the traits
of an individual at Level 1 as well as the additional traits required at Level 2. Individuals
at levels 1 and 2 have awareness or basic understanding of the knowledge, skills, and
abilities associated with the competency. However, they do not possess the knowledge,
skills, and abilities to perform the competency in difficult or complex situations and
typically can only perform simple routine tasks without direction or other guidance.
Individuals at Level 3 and above have mastered this aspect of their profession. The
levels of competency are organized as a table and shown in Figure 7.12.
There are many factors that drive up the level of competency required on a project,

251

Chapter 7 The SAMEM Evaluation

Figure 7.12: SEMAT Generic Competency Levels Table.

including but not limited to:

• The size and complexity of the work.

• The size and distribution of the team.

• The size, complexity, and diversity of the stakeholder community.

• The novelty of the software system being produced.

• The technical complexity of the software system.

• The levels of risk facing the team.

Each of the areas within the competencies, as shown in Figure 7.11, has additional de-
tails. The generic competency levels listed in Figure 7.12 are refined to specific measures
for each competency area. An example of the specific refinements for Way of Working
is shown in Figure 7.13 and Figure 7.14.

252

7.4 The SAMEM Mapping to SEMAT and Essence

Figure 7.13: SEMAT Leadership Competency Card Example.

Figure 7.14: SEMAT Leadership Competency Goals and Skills Example.

253

Chapter 7 The SAMEM Evaluation

7.4.1.3 The SEMAT Activities Definition and Examples

The SEMAT kernel provides a set of Activity Spaces which complement the Alphas and
provide an Activity-based view of software engineering. Within the Activity Spaces, work
and specific tasks are created and accomplished. The activities that fill the spaces are
derived from the Alpha Checklists and the tasks needed to move the Alphas through the
States. Graphically, the Activity Spaces and Concerns are shown in Figure 7.15, while
Figure 7.16 shows the relationship between Alphas, Activity Spaces, and Competencies.

Figure 7.15: Activity Spaces and Concerns Overview.

Figure 7.16: Alphas, Activity Spaces, and Competencies Relationship.

254

7.4 The SAMEM Mapping to SEMAT and Essence

7.4.2 The SAMEM and SEMAT Comparisons

There are many areas where the SAMEM and the SEMAT have similar goals or have
complementary approaches to the software development process. Although each brings
a different viewpoint to dealing with software engineering projects, both emphasize en-
suring project success. Both approaches provide guidelines but with flexibility designed
into the methodology to enable adapting to multiple domains and project situations.
The flexibility to adapt means that there are limits to detail and specifics defined in
both the SAMEM and the SEMAT. The comparison will thus be focusing on the major
concepts.

7.4.2.1 Framework Concepts Comparisons

The SEMAT framework is structured into three major concerns: Customer, Solution, and
Endeavor, while the SAMEM is structured on the five RM-ODP viewpoints: Enterprise,
Information, Computational (Behavior), Engineering, and Technology. The structuring
has similarities but also different levels of abstraction. The structural comparison is
organized around the RM-ODP viewpoints. In Figure 7.17, the relationships between
the SAMEM and the SEMAT are shown at a high level. The correspondence is not
one-to-one as the SAMEM has the two levels, the three Project Phases (see Sub-chapter
4.3.1) and the RM-ODP Viewpoints, while the SEMAT has three levels, Concern-Alpha-
State. Table 7.12 shows the correspondence at a finer level of granularity.

The RM-ODP Enterprise Viewpoint, as used in the SAMEM, covers the same con-
cerns as the Stakeholder and Opportunity Alphas in the SEMAT Customer concern. In
both approaches, the identification of the goals of the solution, as stated in values to
the stakeholders, are the work objectives. The values (SEMAT Opportunities) will be
business or personal, such as processing an order faster, increasing work quality through
automatic data checking, improving human safety by having cyber-physical entries in
hazardous environments, or the pleasure of an entertaining game. The value of the solu-
tion is only relevant to a specific set of stakeholders. Someone that receives no value from
the solution is by definition not a stakeholder. The explicit separation of Stakeholders
and Opportunities of the SEMAT is an advantage that can be used by the SAMEM in
the Enterprise Viewpoint to be more explicit. Both approaches allow flexibility as to
the expression of the Opportunities or goals and the Stakeholders; however, clarity of
communication is emphasized.
The SAMEM uses the Information and Computational (Behavior) Viewpoints for

the representation of the SEMAT Requirements Alpha in the Solution Concern. The
SAMEM approach has more granularities in the representing of the requirements than
the SEMAT. The splitting of the requirements across the two viewpoints makes inter-
action more explicit and enables elicitation through two opposing but complementary
perspectives. Although both approaches support flexibility in the expression of the
requirements, the SAMEM emphasizes the use of models to maximize effective commu-
nication.
The RM-ODP Engineering Viewpoint corresponds in part to the Software System

255

Chapter 7 The SAMEM Evaluation

Figure 7.17: High Level SAMEM - SEMAT Concept Correspondence.

Alpha of the Solution Concern. Within the SAMEM, the Engineering Viewpoint includes
the various design alternative artifacts and the evaluations of the designs in fulfilling the
requirements. There is a correspondence with the Architecture Selected State for the
Software System Alpha, as shown in the Checklist items for that State. The SAMEM is
more explicit in separating the architectural design activities than the SEMAT.

The SEMAT Software Solution Alpha also includes Checklist items that are done in the
RM-ODP Technology Viewpoint, such as selecting a hardware platform or programming
languages. The examples of hardware platform and programming language selection are
checkpoints for achieving the Architecture Selected State for the Software System Al-
pha (see Figure 7.18 [Essa]). The RM-ODP Engineering and Technology Viewpoints
deliberately separate these design decisions versus the SEMAT. The separation of engi-
neering and technology decisions in the SAMEM allows for finer grained communication
of project progress than the SEMAT states.

The SAMEM does not have the States and Checklists of the SEMAT Alphas; however,
it does have something similar to measure project process. The project process phases, as
outlined in Figure 4.1, perform a similar function to the SEMAT states. The relationships
between the SAMEM project phases and the SEMAT Alphas and States are shown in
Table 7.12. The SEMAT Alpha that is not addressed in Table 7.12 is Work, since that
happens everywhere and is dependent on the specific project management approach.
The SAMEM Project Phase of Initiation is not covered in Figure 4.1, as the business

256

7.4 The SAMEM Mapping to SEMAT and Essence

Figure 7.18: SEMAT Software System Architecture Selected State Checklist.

decision to initiate a project is outside the scope of the SAMEM.

257

Chapter 7 The SAMEM Evaluation

Table 7.12: SAMEM Project Phases and SEMAT Alpha States Mapping.

SAMEM Project Phase SEMAT Alpha and State
Alpha State

Initiation: Not a part of SAMEM
as this work in the consulting com-
pany is done as a separate strategy
project.

Opportunity Identified
Solution Needed

Team Seeded
Formed

Way of Working Principles Established
Foundation Established

Phase 1 – Paper Prototype Covers
Viewpoints: Enterprise Information
Computational (Behavior)

Stakeholders

Recognized
Represented
Involved

In Agreement

Opportunity
Value Established

Viable
Solution Needed

Requirements

Conceived
Bounded
Coherent
Acceptable

Team Collaborating
Performing

Way of Working
In Use
In Place

Working Well
Phase 2 – Demo Prototype Covers
Viewpoints: Engineering Technol-
ogy

Stakeholders In Agreement

Requirements Addressed

Software System

Architecture Selected
Demonstrable

Useable
Ready

Team

Seeded
Formed

Collaborating
Performing

Way of Working
In Use
In Place

Working Well

258

7.4 The SAMEM Mapping to SEMAT and Essence

SAMEM Project Phase SEMAT Alpha and State
Alpha State

Phase 3 – CRP Verification of as-
sembled demo prototypes

Stakeholders
Satisfied for Deployment

Satisfied in Use

Opportunity Addressed

Requirements Addressed
Fulfilled

Software System Operational

Team

Seeded
Formed

Collaborating
Performing

Way of Working
In Use
In Place

Working Well

Within each SAMEM Project Phase, there are multiple iterations. One or more
iterations can be involved in incrementing an Alpha State to the next level of complete-
ness. The SEMAT has Alpha States that correspond to the deployment of the solution,
whereas the SAMEM does not. The reason the SAMEM does not specify the deploy-
ment as part of the project is that the deployment timing is often a business decision
independent of the solution creation. For example, if a solution depends on changes
to existing infrastructure such as a database, then the solution deployment might be
scheduled together with other database updates to minimize business disruption.

7.4.2.2 The SAMEM – SEMAT Comparison Summary

The SAMEM and the SEMAT do not conflict in any fundamental manner. Each ap-
proach has a similar goal of ensuring project success. The variations are in the details
of what is needed to ensure success. While the SEMAT stays independent of the project
process, the SAMEM is based on the agile ideas of iterative & incremental progress which
relate to the Way of Working Alpha. The SEMAT approach can benefit from applying
the abstraction refinement of the RM-ODP to the Software System Alpha. Specifically,
the SEMAT Software System Alpha’s initial State of Architecture Selected covers the
work distributed across the RM-ODP Engineering and Technology Viewpoints, which is
a large granularity mismatch (see Figure 7.18).
The SEMAT ideas of Project Alpha Metrics with States indicating completeness can

be applied to the SAMEM. Specifically, applying the SEMAT State and Checklist to the
SAMEM Project Process Example Activity Model in Sub-chapter 5.3 and Figure 5.8,
will enhance the robustness of several tasks. The completing of the Goal Elicitation task
can be indicated by a SEMAT Opportunities State of Addressed. The decision task of
Completeness Evaluation maps to the SEMAT idea of monitoring the process progress

259

Chapter 7 The SAMEM Evaluation

and is indicated by multiple Alphas in their final or near final State.
There is recent research extending the SEMAT and its associated OMG standard of

ESSENCE [OMG12b], while the SAMEM is primarily the work of a single person. The
research work described in [HSG16] of modeling the dynamic semantics of ESSENCE
as a graph grammar brings a rigor that is currently lacking in the SAMEM. The graph
grammar and graph transformations form the basis for tools for ESSENCE which can
be applied to the SAMEM when it is defined in the SEMAT. Through the ESSENCE
definitions of Alphas, States, and Checklists, visualization tools for monitoring a process
can be created as described in [BSBG17]. On the other hand, the SEMAT and ESSENCE
can be extended with concepts from the SAMEM, such as incorporating the SEFPs into
the Checklists and suggesting sub-Alphas to support the abstraction transition guidance
offered by the RM-ODP.

7.5 Consulting Business Success Measures

The SAMEM is intended to be a pragmatic methodology that benefits the people and or-
ganization using it. The early version of the SAMEM (pre-SAMEM or Paper Prototype)
has been very successful over the course of the two case studies. Some aspects of the suc-
cess are validated by the responses detailed in Sub-chapter 7.1.4. The business success
is measured along several dimensions: team size, speed to requirements closure, qual-
ity of requirements, customer satisfaction, and business benefit of the solution. During
the first four years of use of the pre-SAMEM, a parallel project was running that used
the more traditional project approach of waterfall and text-based requirements. The
solution intent of each project was roughly the same; however, the pre-SAMEM–based
project accomplished more with fewer people. Both projects conducted After Action
Reviews at the end, both internally and with the customer.

7.5.1 Team Size

The development team size of the pre-SAMEM project was smaller by a factor of four.
The smaller team size reduced the team communication overhead as documented by
[Bro95]. The smaller team could afford to send the same people, which covered all
the significant project roles, to meet with the customer, while the larger team needed to
rotate people for visits. Rotating people produced misunderstandings in the development
team, as each person had a partial view of the customer needs. Also, the rotating
team members created a Mythical Man-Month [Bro95] situation with higher inter-team
communication overhead. For the pre-SAMEM project, the major impact was more
consistent communication between the team and customer, which resulted in a better
shared vision of the solution needed (conceptual integrity). This is also supported by
the responses to CS-Q1 and DS-Q1

260

7.5 Consulting Business Success Measures

7.5.2 Speed to Requirements

Speed to requirements closure was much faster for the pre-SAMEM team versus the
traditional team. The pre-SAMEM team would have a fairly stable set of business re-
quirements in about six weeks and sometimes as little as two weeks, while the traditional
team took close to eight months. There were a couple of major factors that influenced
the time to closure.

It was much faster to produce the graphical models; the initial model was often done on
a whiteboard with the customer in a few hours. Once a good relationship was established
and the initial model was developed at a face-to-face meeting, many reviews happened
via web-based meetings or through emailing model artifacts for review.
Another speed factor was the better communication within the modeling team and

with the customer. There was significantly less rework. The models reduced the ambi-
guity that is present in text-based requirements. The traditional text-based approach
had many more rework cycles because requirements were poorly expressed, often as
simple declarative sentences, which demanded that the reviewer mentally combines sev-
eral requirement statements to achieve a complete and hopefully correct understanding
[LS87].
The third speed factor was that models allowed the project to be more agile. The

models enabled easier agreement with the customer on partitioning the solution into
smaller partial solutions when faced with unforeseen schedule or budget constraints.
This was often achieved by going to the graphic of the information model or the behavior
model and drawing a circle around the partial solution. This kind of partitioning is very
difficult to do with many text-based requirements because of the linear structure.
The survey questions CS-Q16 and DS-Q13 directly address this with positive responses

from all participants.

7.5.3 No Requirements Prioritization

One of the goals of modeling requirements rather than using a text-based approach was
the elimination of the wasted time spent prioritizing requirements, then arguing over the
priorities. The author has seen this in multiple past projects and the basic cause was
the undisciplined use of brainstorming to generate possible requirements. The projects
would use the technique of prioritization to filter the requirement candidates rather than
delete obvious bad requirements.
Not a single minute in the case study projects was spent on traditional requirements

prioritization. The model-driven approach with the graphical communication allowed
clear expectation setting with the customer and within the development team.
There were times when the scope of a project was changed to respond to external

changes in budget or competitive business pressures. This was always done within the
scope of the business flow and information model while maintaining the conceptual
integrity.
There are multiple survey questions that cover this through the small size of the

requirements and the associated clarity, such as CS-Q7, DS-Q5, CS-Q10, DS-Q8, CS-

261

Chapter 7 The SAMEM Evaluation

Q18, and DS-Q14.

7.5.4 Quality of Requirements

The quality of requirements produced by modeling was significantly better as indicated
by the positive responses to survey questions CS-Q17, CS-Q18, and DS-Q14. In a
business situation, an important quality metric is the stability of the requirements spec-
ification during implementation and verification. The specifications that used models
were about one-third of the length of text-based specifications. This resulted in more
thorough reviews and the possibility of a wider range of people to be involved in the
reviews. While either approach can produce a high quality requirements specification,
the modeling approach took about 10% of the time in final specification review and
rework compared to the text-based approach.

The stability metric used was the number of issues identified during the Conference
Room Pilot (CRP) verification exercise that were traceable back to a requirement. For
the model-based requirements, the number of issues per project was in the 15 – 20
range. About half of those issues needed to be resolved by process improvements in the
business or resetting the requirements specification because of insight gained during the
CRP [Bro10]. The other issues were resolved by implementation changes that averaged
about one engineering-week of effort. In the traditional project, the CRP issue list was
over 200 and several engineering-months of reimplementation and requirements rewriting
were needed.

7.5.5 Customer Satisfaction

Customer satisfaction with the solutions was about the same. The primary reason for
equal success is the dedication to quality from all participants; however, the pre-SAMEM
project was more efficient. Two aspects of the model-based approach with an iterative &
incremental style garnered special praise. The model-based project had more visibility
into the progress for the solution sponsors; see responses to survey questions CS-Q1,
DS-Q1, CS-Q2, DS-Q2, CS-Q24, DS-Q26, CS-Q25, and DS-Q27. The graphical nature
of the requirements was part of the visibility, but the feedback from the participants on
how fast the project was moving, compared to expectations based on other projects, was
also an important factor.

The graphical nature of the models allowed the creation of the SOD, Figure 3.5. The
SOD is a software engineering solution drawing. It fit easily onto an 11x17 inch page
and contained the essential models. It formed the basis of the start of all the meetings
and customers could show it to colleagues and easily explain what the solution was
going to be. One was posted on the wall of the R&D vice president’s office, which was
most unusual. The survey questions CS-Q8 and CS-Q6 specifically inquire about the
effectiveness of the SOD or 1-pager.

262

7.6 Threats to Validity

7.5.6 Consulting Company Business Benefits

The primary business benefits of modeling were in the earlier delivery of a part of the
solution, which established the ability to deliver value to the customer. Starting with
the information models allowed the easy partitioning of the solution. In looking at a
picture of the solution information components, lines could be drawn around sets of
information units, which became the realization partitioning. The partitioning made it
easy to explain to the customer why a certain realization order was best, as some of the
partitions were foundational. Survey questions that cover this issue are CS-Q1, DS-Q1,
CS-Q9, DS-Q7, CS-Q22, DS-Q23, CS-Q23, and DS-Q24.

Although often difficult to quantify, organization change in response to a business
change is a critical factor of success. An unexpected benefit of the partitioning was
the ability to evaluate whether the groups involved with the partition were more or
less open to change; see survey question CS-Q4. When the flexibility existed, targeting
groups that were more open to improvement in their operating procedures minimized
organization resistance and created examples of success.
The smaller team was a financial benefit to the customer, as it kept the costs down.

This helped with the satisfaction, as the customer felt they got a good return on the
investment; covered by survey question CS-Q3.

7.6 Threats to Validity

The majority of the evidence supporting the effectiveness of the SAMEM comes from two
case studies. As described in [WRH+00], there are four primary threats to the validity
of the case study evidence. These threats are examined in detail below.

7.6.1 Construct Validity

Construct validity is the extent to the degree the operational measures that are studied
represent the subject of this thesis. This ties back to the goals of the thesis as expressed in
Sub-chapter 1.1. The survey mechanism is used to gather the experiences and evaluation
from the people that used the SAMEM. If the respondents to the survey interpreted the
questions in a manner different from the author’s intent, then there can be construct
validity concerns.
There are several mechanisms to mitigate misinterpretation of the survey questions.

The terminology used in the questions is carefully crafted to be the same as used during
the case study projects. Most of the questions clearly have a single objective targeted
toward validation of a single thesis goal; however, questions such as CS-Q1, DS-Q1,
CS-Q24, DS-Q26, CS-Q25, and DS-Q27 ask for a broader opinion across the whole
SAMEM approach. The answer possibilities use a consistent ordinal range from positive
to negative with a neutral middle value. There are several places in the survey for a
respondent to extend the answer with comments.
It is felt that there was no misinterpretation of the survey questions based on the

263

Chapter 7 The SAMEM Evaluation

experience of the respondents with the pre-SAMEM process (see survey questions CS-
Q26 and DS-Q28).

7.6.2 Internal Validity

Internal validity is of concern when casual relationships are examined. The case study
surveys investigate whether the pre-SAMEM project process was effective and more
effective than other approaches used by the respondents. The effectiveness is based on
the respondents’ direct experience in using the pre-SAMEM. There is not a comparison
of the pre-SAMEM to any other methodology such as RUP.

One confounding factor that might have an impact on the internal validity is that
the people involved in the case studies are all exceptionally adept at modeling and agile
software engineering methodologies. However, that is unlikely as each case study involved
a different set of customers, who are non-software people, and different development team
members. The only common person is the author.

7.6.3 External Validity

External validity is concerned with the generalizability of the findings. The case study
companies manufacture physical medical device products. Their industry domain can
be characterized as manufacturing, product development, and highly regulated by gov-
ernment authorities.

In generalizing, another domain can be created by weakening or removing the regu-
latory oversight. The weakening would impact the SAMEM by removing the need to
produce and manage some of the project artifacts. The removal of project process work
does not impact the SAMEM negatively.

An example of generalizing the SAMEM to work in other domains is shown in Sub-
chapter 7.2.1. The domain characteristics for the cellular application development are
software applications, mobile technologies, and critical user interface sensitivity. The
application of the SAMEM in this domain is through the organization of the project
process and the initial emphasis on determining the mobile application goals. Some
of the requirement artifacts are new in comparison to the case study examples. For
example, the criticality of the mobile application user interface demands sketches of the
screen layouts and a function/screen navigation map.

The design of the SAMEM enables generalization through emphasizing best practices
but not requiring specific modeling or visual technologies. The visual or modeling best
practices are epitomized by the pioneering work of Larkin and Simon [LS87] and the
principles and metrics cognitive psychology as described by Moody [Moo09].

7.6.4 Reliability

The reliability of a case study is dependent on the specific researchers. The author of
this thesis is the developer of the SAMEM, guided the case study projects which used
the SAMEM in the role of Solution Architect, and developed the survey questionnaire

264

7.7 The SAMEM Evaluation Summary

for collecting the empirical evidence. As the developer of the SAMEM, the author
has a vested interest in proving the benefits of his work. Steps were taken to ensure
the neutrality of the author in collecting the supporting evidence for the value of the
SAMEM. In the case of the EBC company, as described in Sub-chapter 7.2.2, the early
version of the SAMEM was introduced by a member of the development team from CS-1.

The questionnaire was sent to a well-known professor experienced in empirical software
engineering studies, Prof. Dr. Michel Chaudron, for independent review of the ques-
tion formulations and answer possibilities. Some adjustments were made to question
vocabulary and ordinal answer ranges based on his recommendations.
Several years have passed since the pre-SAMEM or Paper Prototype process was in

use in the case study companies. While the relationships are still positive, there is no
direct contact with or influence on the respondents through daily work contacts. The
respondents were assured that all answers would be anonymous to encourage honesty
and the questionnaire does not have a place for the respondent to enter identifying
information. Due to the small response size, the author can make a reasonable guess
as to the respondent based on their role within the project, but this information is not
used to skew any results.
It is hoped that the time gap provided perspective on the process. The small sample

size makes statistical analysis impossible. The lack of a statistical analysis does jeopar-
dize the ability to generalize the results. However, in order to get an honest evaluation
of the SAMEM, it must be used in real-world industrial projects. The customers need to
be true domain experts that understand the problem complexities that must be modeled
and the business context of the solution.

7.7 The SAMEM Evaluation Summary
The SAMEM is evaluated on five major dimensions:

1 empirical surveys of the case study users in multiple real-world projects and their
evaluation of the fulfillment of the SAMEM goals,

2 a discussion of the use of the SAMEM ideas on other projects with some initial
indicators of applicability,

3 the cognitive effectiveness of the modeling ideas in communicating requirements
and the unique SAMEM SOD visual artifact,

4 an analytical comparison with the Software Engineering Method and Theory (SE-
MAT) [SEM98] standard as to project scope, differences, and similarities,

5 an analytical evaluation against the consulting business success measures of smaller
team, faster project, and improved customer relationship.

The responses to the survey from SAMEM practitioners are overwhelmingly positive.
All the thesis high-level goals are more than fulfilled, but there are opportunities for

265

Chapter 7 The SAMEM Evaluation

improvement, which will be discussed in Chapter 8. Confirmation of the modeling of the
requirements to improve clarity, compactness, communication, and fitness for further
design refinement is validated through the positive answers to the survey questions.
Respondent quotes such as “I can’t imagine proceeding without it” provide additional
assurance that the SAMEM is effective.

The SAMEM is efficient in guiding the project progress forward. The projects made
reasonable progress toward the solution as confirmed by the respondents. The business
management aspects of the SAMEM are as important as the development of the needed
requirements specification and design solutions.

The major area for improvement, as shown by the surveys, is in better explanation
of some of the SAMEM concepts. The rationale for the use of the RM-ODP to guide
the project process through the design abstraction levels needs improvement. Examples
of the different abstraction levels and how to proceed from one to another would help
establish the understanding. The use of state machines in the information model needs
better explanation. People with an engineering or physical science background under-
stand state machines, but case study stakeholders with a biological science, medical, or
business background had more difficulty.

In a manner similar to the case studies, the three other applications of the SAMEM
show indications of success. There is improved communication and understanding within
the team. The purpose and goals of the solution are more clearly stated, thereby focusing
the team. The three smaller projects are still under development and have not employed
the full SAMEM approach, so there is uncertainty on the full benefits.

The cognitive effectiveness of the SOD is positive, but there is room for improvement.
Specifically, some of the components of the SOD as used in the case study companies were
UML-based. It has been shown that the UML graphical artifacts have poor cognitive
effectiveness [MvH08]. While the SEMAT does not specify any modeling artifacts for
communication, the Checklists for the Requirements and Software System Alphas could
be extended with cognitive effectiveness metrics and also applied in the SAMEM.

While basically compatible, the differences in the SAMEM and the SEMAT originate
in the initial goals. The SAMEM focuses on the main solution development process.
In contrast, the SEMAT considers the larger project process from initiation to deploy-
ment. Each methodology can benefit from ideas in the other. The SAMEM can benefit
from including the ideas of States on the artifacts with accompanying Checklists for
completeness. Currently, the SAMEM relies on team consensus that an artifact is com-
plete. The SEMAT can benefit from the greater detail defined in the SAMEM relative
to the Software Solution Alpha. Specifically, the SEMAT improvements can incorpo-
rate the RM-ODP abstraction hierarchy to separate the bundled Checklist items of the
Architecture Selected State in the Software System Alpha.

A software development methodology that does not consider the benefits to a business
has serious deficiencies. Most software is developed with budget and time constraints.
The SAMEM was developed with business constraints in mind and many of the method-
ology goals relate to working effectively within those constraints. Especially within the
case study projects, the SAMEM has demonstrated the needed ability to deliver success

266

7.7 The SAMEM Evaluation Summary

relative to the business constraints, as shown by survey questions CS-Q1, CS-Q2, CS-Q3,
and CS-Q4.

267

Chapter 8

Chapter 8 Conclusions and Future Work

This chapter presents a summary of the contributions of the SAMEM relative to the
research questions stated in Sub-chapter 1.3. Additional contributions of the SAMEM
will be presented. The final sub-chapter will discuss future work that will extend the
SAMEM and strengthen it.

8.1 Contributions
The main contributions of the SAMEM are expressed through addressing of the research
questions. Each research question concerns an improvement in the manner in which a
software-based solution is created. The two general dimensions of improvement are in
more effectively creating a solution by using fewer people over a shorter time period
and reducing risks to creating a poor solution. Beyond the research questions, there are
other contributions that the SAMEM provides to software solution creation.

8.1.1 Research Questions Addressed

The research questions from Sub-chapter 1.3 are restated below, each with a summary
of how well the question was addressed. Table 7.1 and Table 7.2 in Sub-chapters 7.1.2
and 7.1.3 are the survey sources for all the data referenced in the research question
sub-chapters below.

8.1.1.1 RQ1

Research Question 1 (RQ1): Is the visual modeling of the majority of requirements
possible?

The answer is yes.

The contribution is that modeling of requirements versus text-based has a positive
impact. There are several pieces of evidence to support this answer. The following
survey questions relative to requirements modeling all have positive responses: CS-Q5
(7 of 8 Very Effective), CS-Q7 (8 of 8 Very Effective), CS-Q10 (7 of 8 Yes Better, 1 of
8 Mostly Better), CS-Q17 (4 of 4 Yes Better), CS-Q18 (8 of 8 Yes Better), and DS-Q16
(4 of 4 Yes Better).

269

Chapter 8 Chapter 8 Conclusions and Future Work

The invention of the Solution Overview Drawing (SOD), which is a summary or ab-
straction of the requirements, is a larger contribution of this work. The SOD had a
positive impact on the case study projects as supported by the answers to the survey
questions: CS-Q8 (6 of 8 Very Effective, 2 of 8 Somewhat Effective) and CS-Q15 (5 of
8 Very Useful, 3 of 8 Useful with Limitations). The limitations of the SOD arose in the
need to explain the complexity of the drawing to first time viewers.

The existence of many visual examples of requirements from the two case studies is
also proof of satisfying RQ1. The examples of the requirements models can be seen in
the following Sub-chapters: 3.5.1.1, 3.5.2.1, and 3.5.3.1.

8.1.1.2 RQ2

Research Question 2 (RQ2): Is an iterative & incremental (agile) process approach
effective in the elicitation of requirements?

The answer is yes.

The objective of this research question is to examine whether the agile techniques that
have been successful in code development can be extended to requirements elicitation.
The survey questions that support this conclusion are: CS-Q2 (7 of 8 Very Positive, 1
of 8 Moderately Positive) and CS-Q21 (7 of 8 Yes Better, 1 of 8 Mostly Better).

The contribution is that an iterative & incremental (agile) approach can be extended
to other areas in the solution process beyond code development.

8.1.1.3 RQ3

Research Question 3 (RQ3): Does there appear to be a reduction in the accidental
complexity of team communication with visual models for the requirements and design?

The answer is yes.

This research question challenges, in part, the premise of the book The Mythical Man-
Month by Brooks [Bro95], which is that adding people to a project does not necessarily
speed up progress because of the additional communication overhead. While the basic
premise of the Mythical Man-Month is considered to be true, the question arises as to
whether the communication overhead can be reduced via better mechanisms than text.
The SAMEM emphasizes the use of graphical artifacts and models to improve commu-
nication by reducing miscommunication while having a denser medium in comparison
to text-based requirements.
The main supporting evidence is from the following survey questions: CS-Q5 (7 of 8

Yes Better, 1 of 8 Mostly Better), CS-Q7 (8 of 8 Very Effective), CS-Q15 (5 of 8 Yes
Better, 3 of 8 Mostly Better), CS-Q16 (5 of 8 Yes Better, 3 of 8 Mostly Better), and
CS-Q17 (4 of 4 Yes Better).

270

8.1 Contributions

8.1.1.4 RQ4

Research Question 4 (RQ4): Does visual modeling have a positive effect on the size
(smaller) and clarity (easier to comprehend) of the requirements specification?

The answer is yes.

The assumption behind RQ4 is that if the requirements specification can be smaller in
size through the use of visual models, then it will be faster to write, faster to review, and
a smaller team is possible. A smaller team minimizes the Mythical Man-Month impacts
and lowers project costs. Creating and reviewing the requirements faster results in lower
project costs which improve the cost-benefit calculation.
The support is seen in the following survey questions: CS-Q7 (8 of 8 Very Effective),

CS-Q8 (6 of 8 Very Effective, 2 of 8 Somewhat Effective), CS-Q10 (7 of 8 Yes Better,
1 of 8 Mostly Better), CS-Q11 (7 of 8 Yes Better, 1 of 8 Mostly Better), CS-Q15 (5 of
8 Yes Better, 3 of 8 Mostly Better), CS-Q17 (4 of 4 Yes Better), CS-Q18 (8 of 8 Yes
Better), CS-Q19 (7 of 8 Yes Better, 1 of 8 Mostly Better), DS-Q16 (4 of 4 Yes Better),
and DS-Q19 (4 of 4 Yes Better).

8.1.1.5 RQ5

Research Question 5 (RQ5): Does an iterative & incremental full project process con-
tribute in a positive manner to a faster project process with fewer people?

The answer is yes.

The survey questions supporting this conclusion are: CS-Q1 (7 of 8 Very Effective,
1 of 8 Moderately Effective), CS-Q2 (7 of 8 Very Positive, 1 of 8 Moderately Positive),
CS-Q3 (4 of 4 Yes), CS-Q9 (4 of 8 Very Effective, 4 of 8 Somewhat Effective), CS-Q21
(7 of 8 Yes Better, 1 of 8 Mostly Better), CS-Q22 (8 of 8 Yes Better), and CS-Q23 (4 of
8 Yes Better, 4 of 8 Mostly Better).

8.1.1.6 RQ6

Research Question 6 (RQ6): Do iterative & incremental (agile) approaches in the front-
end of a project process more effectively feed into agile development processes?

The answer is yes.

The assumption behind this research question is that it is better to have a consistent
project management style across the entire project. The iterative & incremental code
creation project management style has been used successfully for many years, but there
is little evidence of its use throughout the entire project lifetime.
The supporting survey questions are: CS-Q2 (7 of 8 Very Positive, 1 of 8 Moderately

Positive), CS-Q22 (8 of 8 Yes Better), and DS-Q25 (4 of 4 Yes Better).

271

Chapter 8 Chapter 8 Conclusions and Future Work

8.1.2 Other Contributions

The other significant contributions of this thesis consist of the invention of the Solution
Overview Drawing (SOD), the application of the RM-ODP abstraction framework to
guide the project process, and the establishment of a set of Software Engineering First
Principles (SEFP) as a solution check and to stimulate innovation.

8.1.2.1 Solution Overview Drawing Invention

The SOD is a visual model that communicates the overall intent and scope of the solution
at a high level of abstraction. The purpose of the SOD is to provide a common image of
the solution to establish agreement and initiate project work partitioning. As the SOD
is a summary of the solution, it evolves in an iterative & incremental manner as design
decisions are made over the course of the project. Survey questions that support the
benefit of the SOD are: CS-Q8 (6 of 8 Very Effective, 2 of 8 Somewhat Effective), CS-Q9
(4 of 8 Very Effective, 4 of 8 Somewhat Effective), and CS-Q15 (5 of 8 Very Useful, 3 of
8 Useful with Limitations).

8.1.2.2 Modeling Innovations

Several requirements modeling innovations are a contribution of the SAMEM, such as
the ATM and the Business Flow to Use Case mapping.

The Action Transformation Matrix (ATM) (see Sub-chapter 4.3.5.3) is a compact
model of the CRUD behavior pattern. The ATM acts as both a behavior checklist and a
two-dimensional index to specific requirements. The ATM puts each CRUD behavior in
the context of its business characteristics, such as when it can be invoked, who can invoke
it, pre-conditions to the invocation, post-conditions to the invocation, and necessary data.

The graphical connection of the Business Flow abstraction of behavior to the more
detailed definition of the individual task behavior in a Use Case is a contribution (See
Sub-chapter 3.5.3.1).

8.1.2.3 RM-ODP Integration for Abstraction Guidance

Most of the other methodologies do not explicitly discuss the natural project flow through
refining the solution from general expression of goals at a high level of abstraction to
specific details of the implementation. The RM-ODP provides an abstraction guidance
framework, which provides order to the design questions. The order in which the de-
sign questions are asked is important because of the consequences of the answers. A
contribution of the SAMEM is to explicitly incorporate moving through the abstraction
hierarchy in an orderly manner.

The use of the RM-ODP helps to achieve the professional engineering goal of due dili-
gence. Through guiding the project from high-level abstract expressions of the solution
to detailed expressions, the more impactful questions and decisions are addressed first.

272

8.2 Future Work

8.1.2.4 Software Engineering First Principle Guidance and Checks

The main contribution of the Software Engineering First Principle idea is to have a set
of domain independent metrics by which the solution and the project can be evaluated.
Some of the principles are designed to provide correctness checks on the overall quality
of the solution progress. Quality in this sense is much more than no defects or bugs
in the implementation or code; rather it is also fitness for use and achievement of the
stakeholder goals. Other principles enable or stimulate innovation in the solution design
by questioning assumptions.

8.2 Future Work

There are a number of areas for the future SAMEM work. The areas can be classified
into improvements of the current SAMEM shortcomings, expansion into other domains,
even tighter integration with the SEMAT standard, and tools to support the SAMEM.

8.2.1 The SAMEM Improvements

Comments from the surveys indicate that for some of the team members difficulties
arose in understanding some of the SAMEM concepts. The improvements needed are in
the areas of better explanation of the purpose and definition of the poorly understood
concepts. The concept education will need to be incorporated into introduction material
at the start of a new project. As the concepts come into usage during the project, short
refresher material will be beneficial.

The comments indicate that improved communication of the nature of the RM-ODP
standard and its application to controlling the abstraction level of the project work
is very important. More explanation of and rationale for the RM-ODP framework is
essential.
The role of the state machine requires better communication. This is especially needed

for stakeholders with little to no familiarity with state machines, such as those with
a business background. Stakeholders with an engineering, science, or mathematical
background had little to no difficulty with the state machine concepts and usage.
In general, the SAMEM helped the process move along, but in some cases the commu-

nication was less than optimal. Outside of the positive comments, there are comments
that indicate that education about the process and artifacts can be improved. These
comments imply a better training of the participants in the overall project process and
the artifact purposes.

8.2.2 Expand the SAMEM into Other Domains

The SAMEM has been intensively applied in the domain of software solutions supporting
the medical device industry. As stated in Sub-chapter 7.2, three other examples of the
initial application of the SAMEM are underway. At the time of this thesis, insufficient

273

Chapter 8 Chapter 8 Conclusions and Future Work

data has been collected to determine what improvements and enhancements could be
beneficial. Continued monitoring of these projects is needed.

One area for future investigation is the application of the first principles to another
solution domain. This would verify that the first principles really are first principles of
software engineering and would enable the discovery of other first principles and patterns.

The SAMEM has not been applied in the domain of cyber-physical systems and would
likely need enhancement.

8.2.3 UML Extensions Based on SOD Idea

As indicated in Sub-chapter 6.2, the SOD idea of composing multiple models into a single
image or drawing can be extended to the UML. While some preliminary possibilities were
expressed, there remains work to be done. The extension must be fully compatible with
the UML. The extensions should be optional, so that a particular tool does not have
to implement them to be compliant with the standard. The extensions need to be
implementable in a tool. It is also likely that the initial extension expressions have some
shortcomings.

8.2.4 The SAMEM and the SEMAT Integration

The mapping in Sub-chapter 7.4.2.1 shows that many of the SAMEM SEFPs relate to
the SEMAT theory area. This is also a possibility for future work. The incorporation of
the SEMAT ideas of States describing progress and Checklists into the SAMEM would
be useful. The first area in the SAMEM to apply the States and Checklist ideas would be
the three-phase framework for the general project process. The factoring of the SEMAT
Software Solution Alpha into the finer granularity of the RM-ODP Viewpoints would
combine the strengths of both.

The SAMEM can be strengthened by defining its concepts more rigorously utilizing
the ESSENCE graph grammar work [HSG16]. This would involve the analysis of the
Alphas, States, and Checklists for the aspects that applied to the SAMEM and the
extensions needed to cover SAMEM concepts.

8.2.5 Tool Possibilities

Tools are another area for research and development. A more comprehensive set of mu-
tually supporting software engineering CAD (Computer Aided Design) tools are needed.
The model can be rendered in various formats, individual views can be combined into a
software engineering drawing, and then the model can be passed to a CAE (Computer
Aided Engineering Analysis) tool and later to a CAM (Computer Aided Manufacturing)
tool. The author believes the mindset of a UML editor blocks progress in this area.

To support the CAD, CAE, and CAM tools, a repository other than a simple direc-
tory and file versioning system is needed. The project models and other artifacts have
content and there are relationships between the artifact content components. These two
aspects, content and relationships, need to be stored and versioned independently. The

274

8.2 Future Work

components of the SEMAT, such as the Alphas, States, and Checklists, can be stored
together in the same repository. Relationships between the solution artifacts, such as a
requirement and the Checklist item it satisfies, and the associated State change can be
created and controlled.

The ESSENCE visualization tool described in [BSBG17] could also be extended to
help with the SAMEM process visualization.

8.2.5.1 SAMEM Model to Code Model Transformations

As briefly discussed in Sub-chapter 7.1.4.1.1, there is a possibility of transforming SAMEM-
IM and SAMEM-PM models into initial models in a modeling language such as UML/P
[Rum16]. The UML/P is well-defined. While the SAMEM-IM and SAMEM-PM provide
a starting point for the transformation, it is unknown if they are well-defined enough at
this time to support a robust model transformation process. There is more research to
be done in this area.
To facilitate the possibilities for round-trip engineering, the Alpha, State, and Check-

list concepts from the SEMAT could potentially be employed against the artifacts to
assist in indicating rework needed to a preceding artifact.

275

Bibliography

[AGBA10] Farooque Azam, Hina Gull, Saeeda Bibi and Sameera Amjad. Back
& forth (bnf) software process model. In 2010 Second International
Conference on Computer Engineering and Applications. IEEE, 2010.

[AIS+77] Christopher Alexander, Sara Ishikawa, Murry Silverstein, Max Jacob-
son, Ingrid Fiksdahl-King and Shlomo Angel. A Pattern Language.
Oxford University Press, 1977.

[AM11] Daniel Amyot and Gunter Mussbacher. User requirements notation:
The first ten years, the next ten years. Journal of Software, 6(5):747 –
768, 2011.

[Amb02] Scott W. Ambler. Agile Modeling: Effective Practices for eXtreme Pro-
gramming and the Unified Process. Wiley, 2002.

[BC12] Joy Beatty and Anthony Chen. Visual Models for Software Require-
ments. Microsoft Press, 2012.

[Bec00] Ken Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000.

[BH98] Hugh Beyer and Karen Holtzblatt. Contextual Design. Academic Press,
1998.

[BPKR09] Brian Berenbach, Daniel Paulish, Juergen Kazmeier and Arnold Rudor-
fer. Software & Systems Requirements Engineering: In Practice. Mc-
Graw Hill, 2009.

[BPM16] Business process model and notation (bpmn), version 2.0, last accessed
March 2016.

[BR05] Michael Blaha and James Rumbaugh. Object-Oriented Modeling and
Design with UML. Pearson Prentice Hall, 2005.

[BRJ99] Grady Booch, James Rumbaugh and Ivar Jacobson. The Unified Mod-
eling Language Use Guide. Addison-Wesley, 1999.

[Bro95] Frederick P. Brooks. The Mythical Man-Month Essays on Software En-
gineering. Addison-Wesley, 1995.

277

Bibliography

[Bro10] Frederick P. Brooks. The Design of Design: Essays from a Computer
Scientist. Addison-Wesley, 2010.

[BSBG17] Sebastian Brandt, Michael Striewe, Fabian Beck and Michael Goedicke.
A dashboard for visualizing software engineering processes based on
essence. In 2017 IEEE Working Conference on Software Visualization,,
Seite 134 – 138. IEEE, 2017.

[CFJ+17] Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, Bernhard
Rumpe, Jim Steel and Didier Vojtisek. Engineering Modeling Lan-
guages. CRC Press, 2017.

[CGHM13] Patrice Caire, Nicolas Genon, Patrick Heymans and Daniel L. Moody.
Visual notation design 2.0: Towards user comprehensible requirements
engineering notations. In 21st IEEE Requirements Engineering Confer-
ence, Seite 115 – 124, New York, NY, USA, 2013. IEEE.

[Coh10] Mike Cohn. Succeeding with Agile: Software Development Using
SCRUM. Addison-Wesley, Boston, MA, 2010.

[Col05] Bob Colwell. Complexity in design. IEEE Computer, 38(10):10 – 12,
2005.

[Dic05] Jeremy Dick. Design traceability. IEEE Software, 22(6):14 – 16, 2005.

[Essa] Essence reference guides. last accessed December 2017.

[Essb] Esswork practice workbench. last accessed May 2016.

[FM15] Joao M. Fernandes and Ricardo J. Machado. Requirements in Engineer-
ing Projects. Springer International Publishing, 2015.

[Fow03] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, London, United KIngdom, 2003.

[Fow04] Martin Fowler. UML Distilled. Addison-Wesley, London, United KIng-
dom, third edition Edition, 2004.

[FR07] Robert B. France and Bernhard Rumpe. Model-driven development of
complex software: A research roadmap. In Future of Software Engineer-
ing (FOSE ’07), Seite 37 – 54. IEEE Computer Society, 2007.

[Fra03] David S. Frankel. Model Driven Architecture, Applying MDA to Enter-
prise Computing. Wiley Publishing, 2003.

[GCH13] Olly Gotel and Jane Cleland-Huang. Requirements engineering’s next
top model. IEEE Software, 30(6):24 – 29, 2013.

278

Bibliography

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1995.

[GHR17] Timo Greifenberg, Steffen Hillemacher and Bernhard Rumpe. Towards a
Sustainable Artifact Model: Artifacts in Generator-Based Model-Driven
Projects. Shaker Verlag, Aachen, 2017.

[Gli10] Martin Glinz. Very lightweight requirements modeling. In 18th IEEE
International Requirements Engineering Conference. IEEE, 2010.

[GPHS08] César Gonzáles-Pérez and Brian Henderson-Sellers. Metamodelling for
Software Engineering. John Wiley & Sons,Ltd., 2008.

[GXX11] Fan Guo, Bainan Xia and Fei Xue. Analysis on software processes and
enhancements for rup. 2011.

[HF68] William C. Howell and Alfred H. Fuchs. Population stereotypy in code
design. Organizational Behavior and Human Performance, (3):310 –
339, 1968.

[HH08] Chip Heath and Dan Heath. Made to Stick: Why Some Ideas Take Hold
and Others Come Unstuck. Arrow Books, 2008.

[Hir02] Michael Hirsch. Making rup agile. In OOPSLA, 2002.

[HK99] Jungpil Hahn and Jinwoo Kim. Why are some diagrams easier to work
with? effects of diagrammatic representation on the cognitive inte-
gration process of system analysis and design. ACM Transactions on
Computer-Human Interaction, 6(3):181 – 213, 1999.

[Hoc99] Dee Hock. Birth of the Chaordic Age. Berrett-Koehler Publishers, Inc.,
1999.

[HRW11] John Hutchinson, Mark Rouncefield and Jon Whittle. Model-driven
engineering practices in industry. In ICSE ’11: Proceedings of the 33rd
International Conference on Software Engineering, Seite 633 – 642, New
York, NY, USA, 2011. ACM.

[HSG16] S. Holtappels, M. Striewe and Michael Goedicke. From essence to theory
oriented software engineering. In SOFSEM 2016, Seite 43 – 50, 2016.
LNCS 9587.

[HWRK11] John Hutchinson, Jon Whittle, Mark Rouncefield and Steiner Kristof-
fersen. Empirical assessment of mde in industry. In ICSE ’11: Pro-
ceedings of the 33rd International Conference on Software Engineering,
Seite 471 – 480, New York, NY, USA, 2011. ACM.

279

Bibliography

[IDF] Interaction design foundation. last accessed December 2017.

[ISO98] Open distributed processing - reference model (rm-odp) iso 10746-1,
1998.

[JEJ12] Pontus Johnson, Mathias Ekstedt and Ivar Jacobson. Where’s the the-
ory for software engineering? IEEE Software, September/October:94 –
95, 2012.

[Jur15] Ivan Jureta. The Design of Requirements Modelling Languages. Springer
International Publishing, 2015.

[KGK07] Riaan Klopper, Stefan Gruner and Derrick G. Kourie. Assessment of a
framework to compare software development methodologies. In SAIC-
SIT, 2007.

[KM] Mira Kajko-Mattsson. How can you support your software development
method with essence? last accessed December 2017.

[KP02] Elizabeth A. Kemp and Chris Phillips. The high level design of object-
oriented user interfaces: a review of methods. In ACM SIGCHI, 2002.

[KWB03] Anneke G. Kleppe, Jos B. Warner and Wim Bast. MDA Explained: the
Model Driven Architecture: Practice and Promise. Pearson Education,
Inc, 2003.

[LS87] J. H. Larkin and H. A Simon. Why a diagram is (sometimes) worth ten
thousand words. Cognitive Science, 11(1):36 – 44, 1987.

[Mat02] Dan Matheson. Experiences using mda for enterprise it management.
In Integrate 2002, OMG, 2002.

[Mat04] Dan Matheson. Cad data model with design notes, 2004.

[Mat05] Dan Matheson. Innovation information management model, 2005.

[Mat09] Dan Matheson. Object model for decision and issue tracking, 2009.

[Mat11] Dan Matheson. Modeling requirements: The customer communication.
In 2014 IEEE 5th International Workshop on Requirements Prioritiza-
tion and Communication (RePriCo), Seite 471 – 480, New York, NY,
USA, 2011. IEEE.

[Mat17] Dan Matheson. A proposal of practices, processes and models that
enable innovation potential. In DISE Workshop in ICSE 2017, 2017.

[MHM10] Daniel L. Moody, Patrick Heymans and Raimundas Matulevicius. Vi-
sual syntax does matter: improving the cognitive effectiveness of the
i* visual notation. Requirements Engineering Journal, 15(2):141 – 175,
2010.

280

Bibliography

[Moo09] Daniel L. Moody. The ‘physics’of notations: Toward a scientific basis
for constructing visual notations in software engineering. IEEE Trans-
actions on Software Engineering, 35(6), 2009.

[MRRH05] Dan Matheson, Indraksi Ray, Indrjit Ray and Siv Hilde Houmb. Build-
ing security requirement patterns for increased effectiveness early in the
development process. In SREIS Workshop 13th IEEE International Re-
quirements Engineering Conference. IEEE, 2005.

[MvH08] Daniel L. Moody and J van Hillegersberg. Evaluating the visual syntax
of uml: An analysis of the cognitive effectiveness of the uml family of
diagrams. In 1st International Conference on Software Language Engi-
neering, Seite 16 – 34, Berlin, Germany, 2008. Springer-Verlag. LNCS
5452.

[Mye75] Glenford Myers. Reliable Software through Composite Design. Petrocel-
li/Charter, 1975.

[NAS03] NASA. Error cost escalation through the project life cycle. NASA
Johnson Space Center, 2003.

[NK11] Juan Pablo Napoli and Kalinka Kaloyanova. An integrated approach
for rup, ea, soa and bpm implementation. In International Conference
on Computer Systems and Technologies, 2011.

[OCH11] Jorge A. Osorio, Michel R.V. Chaudron and Werner Heijstek. Mov-
ing from waterfall to iterative development – an empirical evaluation
of advantages, disadvantages and risks of rup. In 37th EUROMICRO
Conference on Software Engineering and Advanced Applications, Seite
453 – 460, 2011.

[OMG00] Object management group product data management enablers specifi-
cation v1.3, 2000. last accessed January 2015.

[OMG08] Object management group software & systems process engineering
metamodel (spem), version 2, 2008. last accessed April 2014.

[OMG12a] Object management group diagram definition specification, version 1.0,
2012. last accessed January 2015.

[OMG12b] Object management group essence - kernel and language for software
engineering methods, version 1.1, 2012. last accessed May 2016.

[OMG14a] Object management group model driven architecture (mda)mda guide
rev. 2.0, 2014. last accessed December 2014.

[OMG14b] Object management group meta object facility core specification version
2.4.2, 2014. last accessed January 2015.

281

Bibliography

[OMG15a] Object management group systems modeling language, version 1.4,
2015. last accessed May 2016.

[OMG15b] Object management group unified modeling language (uml), version 2.5,
2015. last accessed May 2016.

[OP97] Paul Oman and Shari Lawrence Pfleeger. Applying Software Metrics.
IEEE Computer Society Press, 1997.

[Par72] David L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053 – 1058, December
1972.

[Pet96] Henry Petroski. Invention by Design - How Engineers Get From
Thought to Thing. Harvard University Press, 1996.

[PK00] Jr. Philippe Kruchten. The Rational Unified Process: An Introduction.
Addison-Wesley, second edition Edition, 2000.

[RJB99] James Rumbaugh, Ivar Jacobson and Grady Booch. The Unified Mod-
eling Language Reference misc. Addison-Wesley, Boston, MA, 1999.

[RM-98] Iso open distributed processing - reference model (rm-odp). iso 10746-1,
1998.

[RR99] Suzanne Robertson and James Robertson. Mastering the Requirements
Process. Addison-Wesley, Boston, MA, 1999.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods.
Springer International, July 2016.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, May 2017.

[RvdHMRM04] Roshanak Roshandel, Andre van der Hoek, Marija Mikic-Rakic and Ne-
nad Medvidovic. Mae – a system model and environment for managing
architectural evolution. ACM Transactions on Software Engineering
and Methodology, 13(2):240 – 276, 2004.

[SEM98] Software engineering method and theory (semat), 1998.

[SEM16] Wikipedia - software engineering method and theory (semat), last ac-
cessed May 2016.

[SM11] Mark Speer and Dan Matheson. Applying the tcua requirements man-
ager application in a medical device r&d environment. In Siemens PLM
Connection Annual Users Conference, 2011.

282

Bibliography

[SSS08] Forrest Shull, Janice Singer and Dag I. K. Sjóberg. Guide to Advanced
Empirical Software Engineering. Springer, 2008.

[Tan15] Mohsan Tanveer. Agile For Large Scale Projects - A Hybrid Approach.
NSEC, 2015.

[TFR05] Dan Turk, Robert France and Bernhard Rumpe. Assumptions under-
lying agile software development processes. Journal of Database Man-
agement, 16(5):62 – 87, 2005.

[TW95] Michael Treacy and Fred Wiersema. The discipline of market lead-
ers: Choose your customers, narrow your focus, dominate your market.
Addison-Wesley, Boston, MA, 1995.

[URN12] Itu=t z.151 user requirements notation – language definition, 10/2012,
2012.

[V-M16a] V-model, last accessed May 2016.

[V-M16b] V-model software development, last accessed May 2016.

[V-M16c] V-modell xt (extreme tailoring), last accessed May 2016.

[WF86] Terry Winograd and Fernando Flores. Understanding Computers and
Cognition. Addison-Wesley, 1986.

[Whi15] Jon Whittle. Tutorial: How industry uses mde. Models Conference
2015, 2015.

[WHR14] Jon Whittle, John Hutchinson and Mark Rouncefield. The state of
practice in model-driven engineering. IEEE Software, 31(3):79 – 85,
May/June 2014.

[Win96] Terry Winograd. Bringing Design to Software. ACM Press, New York,
NY, USA, 1996.

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell and Anders Wesslén. Experimentation in Software Engineering.
Springer, 2000.

[Yu95] Eric S.-K. Yu. Modelling strategic relationships for process reengineer-
ing. Dissertation, University of Toronto, Canada, 1995.

[Yu97] Eric S.-K. Yu. Towards modeling and reasoning support for early-phase
requirements engineering. In Proceedings of the Third IEEE Interna-
tional Symposium on Requirements Engineering, Seite 226 – 235, 1997.

283

Bibliography

[Yu09] Eric S. Yu. Social modeling and i*. In Alexander T. Borgida, Vinay K.
Chaudhri, Paolo Giorgini and Eric S. Yu, Editoren, Conceptual Model-
ing: Foundations and Applications - Essays in Honor of John Mylopou-
los. Springer, 2009.

[ZHG05] Wolfgang Zuser, Stefan Heil and Thomas. Grechenig. Software quality
development and assurance in rup, msf and xp – a comparative study.
In WoSG, 2005.

284

Glossary
Definition of terms and acronyms used in the thesis.

Agile Software Development —is a project process approach or methodology that ad-
vocates a series of small steps to develop the solution. A key component is constant
contact with the solution customer. It first started with a focus on planning, devel-
oping, and testing code in small pieces as opposed to first doing all the planning,
then all the development, and finally all the testing [Amb02], [Coh10], [TFR05].

Approval Flow —the set of detailed actions and decisions which changes the status, or
state of the information unit, or set of units.

BPMN —Business Process Modeling Notation acronym.

Business Flow —consists of the major business steps or tasks used to create a signifi-
cant part of the information model, starting with nothing and proceeding to the
completed business information.

Cohesion —expresses the singularity of purpose of the module. A module with the best
cohesion stands on its own and does one thing [Mye75].

Computational Equivalence —informationally equivalent and the inferences drawn from
one representation can be easily drawn from the other.

Coupling —indicates the closeness of interaction between two modules with no interac-
tion the best [Mye75].

CRUD —Create-Retrieve-Update-Delete pattern on the information model units used
within the Business Flow. The CRUD pattern acts as a completeness check on the
tasks in the Business Flow. Each CRUD action should appear in a Business Flow
associated with an information model unit.

Customer —is the generic term for the people or organization paying for the product
or solution. This can include the users who actually use and interact with the
solution.

Due Diligence —is the professional behavior of investigating and honestly evaluating
alternatives to achieve a successful solution.

ETL —Extract Transform Load, a common data migration process of extracting the old
data from an existing repository, transforming the data to the new format which
might include setting new data values, and loading the transformed data into the
new repository.

285

Glossary

Fit Criteria —is a value that can be measured in the solution via testing to verify the
requirement is met.

Framework —a structure for organizing the model artifacts, set of recommendations
for the next tasks, and a roadmap for systematically advancing from a simple
high-level statement of the problem to a realization acceptable to the stakeholders.

Incremental —progressing towards a solution in small, controlled, and well-defined
steps.

Informational Equivalence —all the information in one representation is inferable from
the other.

Information Model —the information definitions and partitioning for the solution in
business terms, not computer science terms.

Iteration —one cycle of a series where each cycle consists of the same general steps of
work and produces a result.

Iterative & Incremental —the approach of doing a small amount of work within a
bounded time limit that produces an increment in completeness in some solution
or project artifacts.

Methodology —a collection of artifacts, tools, and processes related in a structured
way with a general, but adaptable choreography of execution and used to create
a product or solution. Methodology as defined by the Oxford English Dictionary:
a system of methods used in a particular area of study or activity. According to
Wikipedia, a methodology consists of the following concepts: paradigm, theoretical
model, phases, and qualitative or quantitative techniques.

Model —a human construct representing some aspects of reality that enables better
understanding and communication of a particular perspective of a problem and/or
solution.

Module —a code unit of implementation, similar to a class in the Java programming
language.

OOTB —Out Of The Box, using the features and capabilities of a commercial applica-
tion as delivered by the vendor without any change.

Paradigm —defined in the Oxford English Dictionary: a typical example or pattern of
something. Another definition of paradigm is a distinct set of concepts, thought
patterns, and standards.

Process —a set of tasks with a defined choreography of execution that produces a
specific result.

Project —a defined set of work with a start point and end point, which is limited in
time, people, money, and other resources, that produces a product or solution.

286

RM-ODP —Open Distributed Processing – Reference Model (RM-ODP), International
Standards Organization (ISO) standard 10746.

Root Cause —the core deficiency that causes the problem and might be observed through
one or more symptoms.

SAMEM —Software Agile Modeling and Engineering Methodology acronym.

SCRUM —an iterative & incremental agile code development process [Cohn10] using
the idea of a sprint, which normally is one week to one month long, to deliver a
potentially shippable increment of the solution.

SEFP —Software Engineering First Principles —a set of first principles for reasoning
about the software solution development process to assure high quality.

SEMAT —Software Engineering Method and Theory acronym.

SOD —Solution Overview Drawing acronym.

Stakeholder —is someone who in some way is impacted by or concerned with the solu-
tion.

SurveyMonkey —a commercial application for doing electronic surveys, used to collect
empirical evidence for the thesis. The application provides for the definition of
the survey questions, their organization, a web link for accessing the survey, the
collection of the responses, and analysis of the responses. www.surveymonkey.com

Symptom —an observed indicator of a problem, such as excessive rework.

Visual Model —a model consisting of primarily graphical elements annotated with text
as opposed to a pure text description.

287

Appendix A

Customer Questionnaire

289

Appendix A Customer Questionnaire

290

291

Appendix A Customer Questionnaire

292

293

Appendix A Customer Questionnaire

294

295

Appendix A Customer Questionnaire

296

297

Appendix A Customer Questionnaire

298

299

Appendix A Customer Questionnaire

300

301

Appendix A Customer Questionnaire

302

303

Appendix B

Developer Questionnaire

305

Appendix B Developer Questionnaire

306

307

Appendix B Developer Questionnaire

308

309

Appendix B Developer Questionnaire

310

311

Appendix B Developer Questionnaire

312

313

Appendix B Developer Questionnaire

314

315

Appendix B Developer Questionnaire

316

317

Appendix B Developer Questionnaire

318

319

Appendix B Developer Questionnaire

320

Appendix C

Customer Response 1

321

Appendix C Customer Response 1

322

323

Appendix C Customer Response 1

324

325

Appendix D

Customer Response 2

327

Appendix D Customer Response 2

328

329

Appendix D Customer Response 2

330

331

Appendix E

Customer Response 3

333

Appendix E Customer Response 3

334

335

Appendix E Customer Response 3

336

Appendix F

Customer Response 4

337

Appendix F Customer Response 4

338

339

Appendix F Customer Response 4

340

341

Appendix G

Developer Response 1

343

Appendix G Developer Response 1

344

345

Appendix G Developer Response 1

346

347

Appendix H

Developer Response 2

349

Appendix H Developer Response 2

350

351

Appendix H Developer Response 2

352

353

Appendix I

Developer Response 3

355

Appendix I Developer Response 3

356

357

Appendix I Developer Response 3

358

359

Appendix J

Developer Response 4

361

Appendix J Developer Response 4

362

363

Appendix J Developer Response 4

364

365

Appendix J Developer Response 4

366

Appendix K

Curriculum Vitae

Name Matheson
Given Names Dan McKay
Birth Date 26. Sep 1950
Birth Place Des Moines, Iowa
Nationality USA

since 2014 Retired

2004 - 2014 Senior Architect, Integware, Inc.
•Architected and delivered 5 PLM business solutions based on the strategy
for Edwards Lifesciences.
•Architected and delivered 13 PLM business solutions based on the strat-
egy for J&J Vision Care.
•Conducted and delivered PLM strategy assessments for J&J Vision Care.
•MatrixOne implementations (10.5, 10.6): integration of external appli-
cations (AdLib, Myriad); developed JPOs and JSPs for custom Bill of
Materials display; development on DHF, NCR and CAPA applications.

1991 - 2004 R&D Engineer and Architect, Hewlett-Packard
•Delivered consulting service (requirements through solution delivery) on
WorkManager PLM for many companies, including TRW, GM, HP, Proton,
Siemens, Samsung and Boeing.
•Delivered consulting (requirements through solution delivery) on Work-
Manager workflow for TRW, GM, EDS, HP, Samsung and Proton. Sam-
sung cut new product development time to one third of pre-workflow and
pre-PDM times.
•Member of the Software Engineering Center of Excellence team at the
HP OpenView division where I delivered training and consulting to world-
wide project teams in requirements management processes (Volere), solu-
tion modeling techniques (RM-ODP & UML), agile development method-
ologies, and enterprise and software patterns.
•Developer and lead engineer on WorkManager PDM, with concentration
on MCAD integration, MCAD data management and business process au-
tomation (workflow).

367

Appendix K Curriculum Vitae

•Designed data models, constructed XML schemas and coded Java on the
OpenView Interconnect integration product, the next generation product
for integrating OpenView into a total customer solution.
•Contributed to the further development of TeleManagement Forum stan-
dards in the areas of Process Management and Standard Data Model, which
are used for telecom interoperability.
•Designed and planned the follow-on products to the Node Sentry IDS
security product. Created a roadmap for a line of products for the man-
agement of security events, guided the technical decisions of the team as
we worked with partners.

•Contributed to the OMG Product Data Management Enablers specifica-
tion and was a member of the PDM Enablers RTF.
•Chair of the Workflow Management Coalition Working Group 5, Adminis-
tration and Auditing: I brought to completion version 1.0, WfMC-TC-1015.
WfMC Fellow.
•Leader of Workflow Management Facility Specification, (V1.0 - V1.2) in
OMG.
•My preliminary work on a Process Definition RFP led to a complete
revision of the state machine based activity modeling ideas of UML 1.2
into a directed cyclic graph approach for UML 2.0.
•Patent: Cad Data Model With Design Notes - 6,718,218
•Patent: Collaboration Session Recording Model - 6,952,660 & 7,184,940
•Patent: Innovation Information Management Model - 6,944,514 &
7,050,872
•Patent: Object Model for Decision and Issue Tracking - 7,574,329

1979 - 1991 R&D Engineer and Architect, Hewlett-Packard GmbH
•Developed several mechanical 2D & 3D CAD products, the original de-
signer of ME10.
•Developer and architect on several OpenView network and system man-
agement products, role of security architect for all HP OpenView products.
•Developer and lead engineer for HP-UX tape and backup commands and
development in the file system portion of the HP-UX kernel.
•Lead engineer on database portion of business software suite for HP-UX.
•Established the first TCP/IP network services for the Böblingen site. I
managed the primary servers, developed material for and taught several
European system administration courses, and authored papers for 2 HP
internal UNIX system administration courses.
•Prepared and presented with a colleague several day-long internal sem-
inars on software engineering methods. The topics included inspections,
structured design, structured analysis and objects.

368

1978 Bachelor of Science Physics, Colorado State University
1981 Master of Science Computer Science, Colorado State University

369

List of Figures

1.1 SAMEM Components . 4

2.1 RUP Phases and Workflows Organization 12
2.2 RUP 4+1 Architecture Model . 14
2.3 REAM Example . 20
2.4 Use Case Scenario Example . 20
2.5 Fernandes Process Example . 23
2.6 V-Model Typical Image . 25
2.7 ESSENCE Four Layer Architecture . 27
2.8 URN Goal Model for HL-GOAL-1 . 39
2.9 URN Goal Model for HL-GOAL-2 . 40
2.10 URN Goal Model for HL-GOAL-3 . 41
2.11 URN Goal Model for HL-GOAL-4 . 42
2.12 URN Goal Model for HL-GOAL-5 . 43
2.13 URN Goal Model for HL-GOAL-6 . 44

3.1 Solution Concept Example . 53
3.2 SAMEM Components . 63
3.3 RM-ODP Viewpoint Relationships . 68
3.4 Design History Puzzle Piece Refinement 71
3.5 SOD Standard Layout Overview Example 73
3.6 SOD Information Model Section Detail . 74
3.7 SOD State Machine Section Detail . 75
3.8 SOD Notes Section Detail . 75
3.9 SOD Business Flow Section Detail . 77
3.10 Information Model Example of Basic Information Units 80
3.11 Information Model Example of Attribute Table 81
3.12 Information Model for a Single Specification 83
3.13 Information Model Example of a Simple Project Structure 84
3.14 Information Model Example of a Complex Structure 85
3.15 Report Example . 87
3.16 Business Flow Behavior Example . 91
3.17 Business Flow Task Connection to Use Case Example 93
3.18 Approval Participants Table Example . 93
3.19 Approval Flow Example . 95
3.20 ATM for the Regulatory Solution Example 96
3.21 ATM Reference Specification Example . 97

371

List of Figures

3.22 ATM Reference Specification Example . 97
3.23 Design Rationale Example . 99
3.24 Design Class Model Example . 100
3.25 Design Rationale for Requirement Realization 101
3.26 BMIDE Object Model Implementation Example 102
3.27 Detailed Design Approval Workflow Example 103
3.28 Detailed Design Standard Search Example 104
3.29 Detailed Design Organization Roles & Groups Example 104
3.30 Emerging Security Concepts Example . 111
3.31 Emerging Domain Concepts from Authorization 112
3.32 Emerging Domain Concepts from Identification 112

4.1 Project Management Process Phases . 135
4.2 Project Status Example Mapped to RM-ODP Model 138
4.3 Enterprise Viewpoint Solution Concept Model 139
4.4 Sub-solution Concept Refinement Model 141
4.5 Partial Example of an ATM . 144
4.6 A Stakeholder-developed Image of the Project Process 150
4.7 Stakeholder Image of Company R&D Environment 150

5.1 The SAMEM Process Concepts . 166
5.2 Process Concepts Realized as Abstract Objects 168
5.3 Process Instance States . 169
5.4 The SAMEM Process Model of Concepts in UML 171
5.5 Methodology - Viewpoint Instance Relationship Example 172
5.6 Phase Goal Explanations Example . 173
5.7 Viewpoint, Iteration Instance Example . 174
5.8 The SAMEM Project Process Example . 176

6.1 The SAMEM-IM Concepts . 180
6.2 The SAMEM-IM Example, SOD Composition 182
6.3 OMG Diagram Definition Architecture for UML 186
6.4 DI Model from the OMG DD Specification 187
6.5 Merging of UML DD and SAMEM-IM Drawing Concepts 187
6.6 UML Class Operation to Behavior Link Concept 189
6.7 Reproduction of UML 2.5 Figure 9.1 for Reference 190
6.8 Reproduction of UML 2.5 Figure 9.9 for Reference 190
6.9 Reproduction of UML 2.5 Figure 9.13 for Reference 191
6.10 Composite of UML Behavior Subclasses 192
6.11 Reproduction of UML 2.5 Figure 7.17 for Reference 192
6.12 Operation Behavior Extension to UML . 193
6.13 Behavior Models Extension . 194

7.1 Reproduction of Figure 2.8 . 218

372

List of Figures

7.2 Reproduction of Figure 2.9 . 220
7.3 Reproduction of Figure 2.10 . 222
7.4 : Reproduction of Figure 2.11 . 225
7.5 Reproduction of Figure 2.12 . 229
7.6 Reproduction of Figure 2.13 . 232
7.7 Essence Kernel Alphas . 247
7.8 Alpha Artifact Overview . 248
7.9 Way of Working Alpha Overview and State Cards Example 249
7.10 Way of Working Full Checklist Example 250
7.11 SEMAT Competencies Overview . 251
7.12 SEMAT Generic Competency Levels Table 252
7.13 SEMAT Leadership Competency Card Example 253
7.14 SEMAT Leadership Competency Goals and Skills Example 253
7.15 Activity Spaces and Concerns Overview 254
7.16 Alphas, Activity Spaces, and Competencies Relationship 254
7.17 High Level SAMEM - SEMAT Concept Correspondence 256
7.18 SEMAT Software System Architecture Selected State Checklist 257

373

List of Tables

1.1 Classification Marks . 7

2.1 Volere Example Questions . 17

4.1 CS-1 Sub-Solutions . 118
4.2 CS-1 Solution Size Measures . 120
4.3 CS-1 Participants, Roles & Numbers . 121
4.4 CS-2 Workstreams . 122
4.5 CS-2 Workstream Size Measures . 123
4.6 CS-2 Participants, Roles & Numbers . 124
4.7 Lessons Learned Summary . 156

7.1 Common Survey Questions . 200
7.2 Unique Survey Questions . 203
7.3 Common Questions Answer Merge . 204
7.4 Unique Survey Questions Response Values 209
7.5 Respondent Experience . 212
7.6 HL-GOAL-1 Supporting Survey Quotes 215
7.7 HL-GOAL-2 Supporting Survey Quotes 219
7.8 HL-GOAL-3 Supporting Survey Quotes 221
7.9 HL-GOAL-4 Supporting Survey Quotes 223
7.10 HL-GOAL-5 Supporting Survey Quotes 227
7.11 HL-GOAL-6 Supporting Survey Quotes 230
7.12 SAMEM Project Phases and SEMAT Alpha States Mapping 258

375

Related Interesting Work from the SE Group, RWTH Aachen

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an exe-
cutable, yet abstract and multi-view modeling language for modeling, designing and programming
still allows to use an agile development process.” Modeling will be used in development projects
much more, if the benefits become evident early, e.g with executable UML [Rum02] and tests
[Rum03]. In [GKRS06], for example, we concentrate on the integration of models and ordinary
programming code. In [Rum12] and [Rum16], the UML/P, a variant of the UML especially
designed for programming, refactoring and evolution, is defined. The language workbench Mon-
tiCore [GKR+06, GKR+08] is used to realize the UML/P [Sch12]. Links to further research, e.g.,
include a general discussion of how to manage and evolve models [LRSS10], a precise definition
for model composition as well as model languages [HKR+09] and refactoring in various model-
ing and programming languages [PR03]. In [FHR08] we describe a set of general requirements
for model quality. Finally [KRV06] discusses the additional roles and activities necessary in a
DSL-based software development project. In [CEG+14] we discuss how to improve reliability of
adaptivity through models at runtime, which will allow developers to delay design decisions to
runtime adaptation.

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound
derivative of the UML designed for product and test code generation. [Sch12] describes a flexi-
ble generator for the UML/P based on the MontiCore language workbench [KRV10, GKR+06,
GKR+08]. In [KRV06], we discuss additional roles necessary in a model-based software devel-
opment project. In [GKRS06] we discuss mechanisms to keep generated and handwritten code
separated. In [Wei12] demonstrate how to systematically derive a transformation language in
concrete syntax. To understand the implications of executability for UML, we discuss needs and
advantages of executable modeling with UML in agile projects in [Rum04], how to apply UML for
testing in [Rum03] and the advantages and perils of using modeling languages for programming
in [Rum02].

377

Related Interesting Work from the SE Group, RWTH Aachen

Unified Modeling Language (UML)
Starting with an early identification of challenges for the standardization of the UML in [KER99]
many of our contributions build on the UML/P variant, which is described in the two books
[Rum16] and [Rum12] implemented in [Sch12]. Semantic variation points of the UML are dis-
cussed in [GR11]. We discuss formal semantics for UML [BHP+98] and describe UML semantics
using the “System Model” [BCGR09a], [BCGR09b], [BCR07b] and [BCR07a]. Semantic vari-
ation points have, e.g., been applied to define class diagram semantics [CGR08]. A precisely
defined semantics for variations is applied, when checking variants of class diagrams [MRR11c]
and objects diagrams [MRR11d] or the consistency of both kinds of diagrams [MRR11e]. We also
apply these concepts to activity diagrams [MRR11b] which allows us to check for semantic differ-
ences of activity diagrams [MRR11a]. The basic semantics for ADs and their semantic variation
points is given in [GRR10]. We also discuss how to ensure and identify model quality [FHR08],
how models, views and the system under development correlate to each other [BGH+98] and how
to use modeling in agile development projects [Rum04], [Rum02]. The question how to adapt
and extend the UML is discussed in [PFR02] describing product line annotations for UML and
more general discussions and insights on how to use meta-modeling for defining and adapting
the UML are included in [EFLR99], [FELR98] and [SRVK10].

Domain Specific Languages (DSLs)
Computer science is about languages. Domain Specific Languages (DSLs) are better to use,
but need appropriate tooling. The MontiCore language workbench [GKR+06, KRV10, Kra10,
GKR+08] allows the specification of an integrated abstract and concrete syntax format [KRV07b]
for easy development. New languages and tools can be defined in modular forms [KRV08,
GKR+07, Völ11] and can, thus, easily be reused. [Wei12] presents a tool that allows to create
transformation rules tailored to an underlying DSL. Variability in DSL definitions has been
examined in [GR11]. A successful application has been carried out in the Air Traffic Management
domain [ZPK+11]. Based on the concepts described above, meta modeling, model analyses
and model evolution have been discussed in [LRSS10] and [SRVK10]. DSL quality [FHR08],
instructions for defining views [GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based
tooling for DSLs [KRV07a] complete the collection.

Software Language Engineering
For a systematic definition of languages using composition of reusable and adaptable language
components, we adopt an engineering viewpoint on these techniques. General ideas on how to
engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15]. As said, the
MontiCore language workbench provides techniques for an integrated definition of languages
[KRV07b, Kra10, KRV10]. In [SRVK10] we discuss the possibilities and the challenges us-
ing metamodels for language definition. Modular composition, however, is a core concept to
reuse language components like in MontiCore for the frontend [Völ11, KRV08] and the back-
end [RRRW15]]. Language derivation is to our believe a promising technique to develop new
languages for a specific purpose that rely on existing basic languages. How to automatically
derive such a transformation language using concrete syntax of the base language is described
in [HRW15, Wei12] and successfully applied to various DSLs. We also applied the language
derivation technique to tagging languages that decorate a base language [GLRR15] and delta
languages [HHK+15a, HHK+13], where a delta language is derived from a base language to be
able to constructively describe differences between model variants usable to build feature sets.

378

Related Interesting Work from the SE Group, RWTH Aachen

Modeling Software Architecture & the MontiArc Tool
Distributed interactive systems communicate via messages on a bus, discrete event signals,
streams of telephone or video data, method invocation, or data structures passed between soft-
ware services. We use streams, statemachines and components [BR07] as well as expressive
forms of composition and refinement [PR99] for semantics. Furthermore, we built a concrete
tooling infrastructure called MontiArc [HRR12] for architecture design and extensions for states
[RRW13b]. MontiArc was extended to describe variability [HRR+11] using deltas [HRRS11, ?]
and evolution on deltas [HRRS12]. [GHK+07] and [GHK+08] close the gap between the re-
quirements and the logical architecture and [GKPR08] extends it to model variants. [MRR14]
provides a precise technique to verify consistency of architectural views [Rin14, MRR13] against
a complete architecture in order to increase reusability. Co-evolution of architecture is discussed
in [MMR10] and a modeling technique to describe dynamic architectures is shown in [HRR98].

Compositionality & Modularity of Models
[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling.
The mechanisms for distributed systems are shown in [BR07] and algebraically underpinned in
[HKR+07]. Semantic and methodical aspects of model composition [KRV08] led to the language
workbench MontiCore [KRV10] that can even be used to develop modeling tools in a composi-
tional form. A set of DSL design guidelines incorporates reuse through this form of composition
[KKP+09]. [Völ11] examines the composition of context conditions respectively the underly-
ing infrastructure of the symbol table. Modular editor generation is discussed in [KRV07a].
[RRRW15] applies compositionality to Robotics control. [CBCR15] (published in [CCF+15])
summarizes our approach to composition and remaining challenges in form of a conceptual model
of the “globalized” use of DSLs. As a new form of decomposition of model information we have
developed the concept of tagging languages in [GLRR15]. It allows to describe additional infor-
mation for model elements in separated documents, facilitates reuse, and allows to type tags.

Semantics of Modeling Languages
The meaning of semantics and its principles like underspecification, language precision and de-
tailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by using
mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version espe-
cially suited for the UML is given in [BCGR09b] and in [BCGR09a] its rationale is discussed.
[BCR07a, BCR07b] contain detailed versions that are applied to class diagrams in [CGR08]. To
better understand the effect of an evolved design, detection of semantic differencing as opposed
to pure syntactical differences is needed [MRR10]. [MRR11a, MRR11b] encode a part of the
semantics to handle semantic differences of activity diagrams and [MRR11e] compares class and
object diagrams with regard to their semantics. In [BR07], a simplified mathematical model
for distributed systems based on black-box behaviors of components is defined. Meta-modeling
semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages for the
description of an exemplary object interaction, today called sequence diagram. [BGH+98] dis-
cusses the relationships between a system, a view and a complete model in the context of the
UML. [GR11] and [CGR09] discuss general requirements for a framework to describe semantic
and syntactic variations of a modeling language. We apply these on class and object diagrams in
[MRR11e] as well as activity diagrams in [GRR10]. [Rum12] defines the semantics in a variety of
code and test case generation, refactoring and evolution techniques. [LRSS10] discusses evolution
and related issues in greater detail.

379

Related Interesting Work from the SE Group, RWTH Aachen

Evolution & Transformation of Models

Models are the central artifact in model driven development, but as code they are not initially
correct and need to be changed, evolved and maintained over time. Model transformation is
therefore essential to effectively deal with models. Many concrete model transformation problems
are discussed: evolution [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], refactor-
ing [Rum12, PR03], translating models from one language into another [MRR11c, Rum12] and
systematic model transformation language development [Wei12]. [Rum04] describes how compre-
hensible sets of such transformations support software development and maintenance [LRSS10],
technologies for evolving models within a language and across languages, and mapping archi-
tecture descriptions to their implementation [MMR10]. Automaton refinement is discussed in
[PR94, KPR97], refining pipe-and-filter architectures is explained in [PR99]. Refactorings of
models are important for model driven engineering as discussed in [PR01, PR03, Rum12]. Trans-
lation between languages, e.g., from class diagrams into Alloy [MRR11c] allows for comparing
class diagrams on a semantic level.

Variability & Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one man-
ufacturer develops several products with many similarities but also many variations. Variants
are managed in a Software Product Line (SPL) that captures product commonalities as well as
differences. Feature diagrams describe variability in a top down fashion, e.g., in the automotive
domain [GHK+08] using 150% models. Reducing overhead and associated costs is discussed in
[GRJA12]. Delta modeling is a bottom up technique starting with a small, but complete base
variant. Features are additive, but also can modify the core. A set of commonly applicable deltas
configures a system variant. We discuss the application of this technique to Delta-MontiArc
[HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only describe spacial
variability but also temporal variability which allows for using them for software product line
evolution [HRRS12]. [HHK+13] and [HRW15] describe an approach to systematically derive
delta languages. We also apply variability to modeling languages in order to describe syntactic
and semantic variation points, e.g., in UML for frameworks [PFR02]. Furthermore, we specified a
systematic way to define variants of modeling languages [CGR09] and applied this as a semantic
language refinement on Statecharts in [GR11].

Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physi-
cal entities. Contributions for individual aspects range from requirements [GRJA12], complete
product lines [HRRW12], the improvement of engineering for distributed automotive systems
[HRR12] and autonomous driving [BR12a] to processes and tools to improve the development as
well as the product itself [BBR07]. In the aviation domain, a modeling language for uncertainty
and safety events was developed, which is of interest for the European airspace [ZPK+11]. A
component and connector architecture description language suitable for the specific challenges in
robotics is discussed in [RRW13b, RRW14]. Monitoring for smart and energy efficient buildings
is developed as Energy Navigator toolset [KPR12, FPPR12, KLPR12].

380

Related Interesting Work from the SE Group, RWTH Aachen

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using statema-
chines for modeling systems. Our contributions to state based modeling can currently be split
into three parts: (1) understanding how to model object-oriented and distributed software using
statemachines resp. Statecharts [GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding
the refinement [PR94, RK96, Rum96] and composition [GR95] of statemachines, and (3) applying
statemachines for modeling systems. In [Rum96] constructive transformation rules for refining
automata behavior are given and proven correct. This theory is applied to features in [KPR97].
Statemachines are embedded in the composition and behavioral specification concepts of Focus
[BR07]. We apply these techniques, e.g., in MontiArcAutomaton [RRW13a, RRW14] as well as
in building management systems [FLP+11].

Robotics

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an
inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineering
of robotics applications requires composition and interaction of diverse distributed software mod-
ules. This usually leads to complex monolithic software solutions hardly reusable, maintainable,
and comprehensible, which hampers broad propagation of robotics applications. The MontiAr-
cAutomaton language [RRW13a] extends ADL MontiArc and integrates various implemented
behavior modeling languages using MontiCore [RRW13b, RRW14, RRRW15] that perfectly fit
Robotic architectural modeling. The LightRocks [THR+13] framework allows robotics experts
and laymen to model robotic assembly tasks.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication
systems as well as advanced active and passive safety-systems result in complex embedded sys-
tems. As these feature-driven subsystems may be arbitrarily combined by the customer, a huge
amount of distinct variants needs to be managed, developed and tested. A consistent require-
ments management that connects requirements with features in all phases of the development
for the automotive domain is described in [GRJA12]. The conceptual gap between requirements
and the logical architecture of a car is closed in [GHK+07, GHK+08]. [HKM+13] describes a tool
for delta modeling for Simulink [HKM+13]. [HRRW12] discusses means to extract a well-defined
Software Product Line from a set of copy and paste variants. [RSW+15] describes an approach
to use model checking techniques to identify behavioral differences of Simulink models. Quality
assurance, especially of safety-related functions, is a highly important task. In the Carolo project
[BR12a, BR12b], we developed a rigorous test infrastructure for intelligent, sensor-based func-
tions through fully-automatic simulation [BBR07]. This technique allows a dramatic speedup
in development and evolution of autonomous car functionality, and thus enables us to develop
software in an agile way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in
development and evolution on a more general level by considering any kind of critical system that
relies on architectural descriptions. As tooling infrastructure, the SSELab storage, versioning
and management services [HKR12] are essential for many projects.

381

Related Interesting Work from the SE Group, RWTH Aachen

Energy Management
In the past years, it became more and more evident that saving energy and reducing CO2
emissions is an important challenge. Thus, energy management in buildings as well as in neigh-
borhoods becomes equally important to efficiently use the generated energy. Within several
research projects, we developed methodologies and solutions for integrating heterogeneous sys-
tems at different scales. During the design phase, the Energy Navigators Active Functional
Specification (AFS) [FPPR12, KPR12] is used for technical specification of building services
already. We adapted the well-known concept of statemachines to be able to describe different
states of a facility and to validate it against the monitored values [FLP+11]. We show how our
data model, the constraint rules and the evaluation approach to compare sensor data can be
applied [KLPR12].

Cloud Computing & Enterprise Information Systems
The paradigm of Cloud Computing is arising out of a convergence of existing technologies for
web-based application and service architectures with high complexity, criticality and new appli-
cation domains. It promises to enable new business models, to lower the barrier for web-based
innovations and to increase the efficiency and cost-effectiveness of web development [KRR14].
Application classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15b], Big
Data, App and Service Ecosystems bring attention to aspects like responsiveness, privacy and
open platforms. Regardless of the application domain, developers of such systems are in need
for robust methods and efficient, easy-to-use languages and tools [KRS12]. We tackle these chal-
lenges by perusing a model-based, generative approach [NPR13]. The core of this approach are
different modeling languages that describe different aspects of a cloud-based system in a concise
and technology-agnostic way. Software architecture and infrastructure models describe the sys-
tem and its physical distribution on a large scale. We apply cloud technology for the services we
develop, e.g., the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for
our tool demonstrators and our own development platforms. New services, e.g., collecting data
from temperature, cars etc. can now easily be developed.

382

Related Interesting Work from the SE Group, RWTH Aachen

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems
Engineering Process and Tools for the Development of Autonomous Driving In-
telligence. Journal of Aerospace Computing, Information, and Communication
(JACIC), 4(12):1158–1174, 2007.

[BCGR09a] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Considerations and Rationale for a UML System Model. In K. Lano, editor, UML
2 Semantics and Applications, pages 43–61. John Wiley & Sons, November 2009.

[BCGR09b] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Definition of the UML System Model. In K. Lano, editor, UML 2 Semantics and
Applications, pages 63–93. John Wiley & Sons, November 2009.

[BCR07a] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU
Munich, Germany, February 2007.

[BCR07b] Manfred Broy, María Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 3: The State Machine Model. Technical Report TUM-I0711,
TU Munich, Germany, February 2007.

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger, Bern-
hard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and Complete
Object Interaction Descriptions. In Object-oriented Behavioral Semantics Workshop
(OOPSLA’97), Technical Report TUM-I9737, Germany, 1997. TU Munich.

[BGH+98] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schwerin.
Systems, Views and Models of UML. In Proceedings of the Unified Modeling Lan-
guage, Technical Aspects and Applications, pages 93–109. Physica Verlag, Heidel-
berg, Germany, 1998.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katharina Spies.
Software and System Modeling Based on a Unified Formal Semantics. In Workshop
on Requirements Targeting Software and Systems Engineering (RTSE’97), LNCS
1526, pages 43–68. Springer, 1998.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3–
18, Februar 2007.

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the
Urban Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In Auto-
motive Software Engineering Workshop (ASE’12), pages 789–798, 2012.

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Software.
In C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban Challenge,
pages 243–271. Springer, Germany, 2012.

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe. Con-
ceptual Model of the Globalization for Domain-Specific Languages. In Globalizing
Domain-Specific Languages, LNCS 9400, pages 7–20. Springer, 2015.

[CCF+15] Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel,
and Bernhard Rumpe, editors. Globalizing Domain-Specific Languages, LNCS 9400.
Springer, 2015.

383

Related Interesting Work from the SE Group, RWTH Aachen

[CEG+14] Betty Cheng, Kerstin Eder, Martin Gogolla, Lars Grunske, Marin Litoiu, Hausi
Müller, Patrizio Pelliccione, Anna Perini, Nauman Qureshi, Bernhard Rumpe,
Daniel Schneider, Frank Trollmann, and Norha Villegas. Using Models at Run-
time to Address Assurance for Self-Adaptive Systems. In Models@run.time, LNCS
8378, pages 101–136. Springer, Germany, 2014.

[CGR08] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model
Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig, Ger-
many, 2008.

[CGR09] María Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability within
Modeling Language Definitions. In Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’09), LNCS 5795, pages 670–684. Springer, 2009.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling
Semantics of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral
Specifications of Businesses and Systems, pages 45–60. Kluver Academic Publisher,
1999.

[FELR98] Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as a for-
mal modeling notation. Computer Standards & Interfaces, 19(7):325–334, November
1998.

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indikator
für Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5):408–424, Okto-
ber 2008.

[FLP+11] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. State-based Modeling of Buildings and Facilities. In Enhanced Building
Operations Conference (ICEBO’11), 2011.

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The
Energy Navigator - A Web-Platform for Performance Design and Management. In
Energy Efficiency in Commercial Buildings Conference(IEECB’12), 2012.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard
Rumpe. View-based Modeling of Function Nets. In Object-oriented Modelling of
Embedded Real-Time Systems Workshop (OMER4’07), 2007.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Rothhardt,
and Bernhard Rumpe. Modelling Automotive Function Nets with Views for Fea-
tures, Variants, and Modes. In Proceedings of 4th European Congress ERTS - Em-
bedded Real Time Software, 2008.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Mod-
eling Variants of Automotive Systems using Views. In Modellbasierte Entwicklung
von eingebetteten Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76–89. TU
Braunschweig, 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System
Model with State. Technical Report TUM-I9631, TU Munich, Germany, July 1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domän-
spezifischer Sprachen. Informatik-Bericht 2006-04, CFG-Fakultät, TU Braun-
schweig, August 2006.

384

Related Interesting Work from the SE Group, RWTH Aachen

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. Textbased Modeling. In 4th International Workshop on Software Lan-
guage Engineering, Nashville, Informatik-Bericht 4/2007. Johannes-Gutenberg-
Universität Mainz, 2007.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore: A Framework for the Development of Textual Domain Specific
Languages. In 30th International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10-18, 2008, Companion Volume, pages 925–926, 2008.

[GKRS06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, and Martin Schindler. Integration
von Modellen in einen codebasierten Softwareentwicklungsprozess. In Modellierung
2006 Conference, LNI 82, Seiten 67–81, 2006.

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe. Engi-
neering Tagging Languages for DSLs. In Conference on Model Driven Engineering
Languages and Systems (MODELS’15), pages 34–43. ACM/IEEE, 2015.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical
Report TUM-I9533, TU Munich, Germany, October 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. InWorkshop
on Modeling, Development and Verification of Adaptive Systems, LNCS 6662, pages
17–32. Springer, 2011.

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level
Requirements Management and Complexity Costs in Automotive Development
Projects: A Problem Statement. In Requirements Engineering: Foundation for
Software Quality (REFSQ’12), 2012.

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of Ac-
tivity Diagrams with Semantic Variation Points. In Conference on Model Driven
Engineering Languages and Systems (MODELS’10), LNCS 6394, pages 331–345.
Springer, 2010.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bern-
hard Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In Software
Product Line Conference (SPLC’13), pages 22–31. ACM, 2013.

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based Ser-
vices in the Internet of Things. In Conference on Future Internet of Things and
Cloud (FiCloud’14). IEEE, 2014.

[HHK+15a] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bern-
hard Rumpe, Ina Schaefer, and Christoph Schulze. Systematic Synthesis of Delta
Modeling Languages. Journal on Software Tools for Technology Transfer (STTT),
17(5):601–626, October 2015.

[HHK+15b] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. A comprehensive approach to privacy in the cloud-
based Internet of Things. Future Generation Computer Systems, 56:701–718, 2015.

385

Related Interesting Work from the SE Group, RWTH Aachen

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bernhard
Rumpe, and Ina Schaefer. First-Class Variability Modeling in Matlab/Simulink. In
Variability Modelling of Software-intensive Systems Workshop (VaMoS’13), pages
11–18. ACM, 2013.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. An Algebraic View on the Semantics of Model Composition. In
Conference on Model Driven Architecture - Foundations and Applications (ECMDA-
FA’07), LNCS 4530, pages 99–113. Springer, Germany, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Scaling-Up Model-Based-Development for Large Heterogeneous Sys-
tems with Compositional Modeling. In Conference on Software Engineeering in
Research and Practice (SERP’09), pages 172–176, July 2009.

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer.
Delta-oriented Architectural Variability Using MontiCore. In Software Architecture
Conference (ECSA’11), pages 6:1–6:10. ACM, 2011.

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-In-
Based Framework for Web-Based Project Portals. In Developing Tools as Plug-Ins
Workshop (TOPI’12), pages 61–66. IEEE, 2012.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of
”Semantics”? IEEE Computer, 37(10):64–72, October 2004.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Compo-
nent Interfaces. In Technology of Object-Oriented Languages and Systems (TOOLS
26), pages 58–70. IEEE, 1998.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der
Linden. Hierarchical Variability Modeling for Software Architectures. In Software
Product Lines Conference (SPLC’11), pages 150–159. IEEE, 2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural
Modeling of Interactive Distributed and Cyber-Physical Systems. Technical Report
AIB-2012-03, RWTH Aachen University, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Model-
ing for Software Architectures. In Tagungsband des Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteterSysteme VII, pages 1 – 10. fortiss GmbH,
2011.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-
oriented Software Product Line Architectures. In Large-Scale Complex IT Systems.
Development, Operation and Management, 17th Monterey Workshop 2012, LNCS
7539, pages 183–208. Springer, 2012.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung
eines Produktlinienansatzes in die automotive Softwareentwicklung am Beispiel von
Steuergerätesoftware. In Software Engineering Conference (SE’12), LNI 198, Seiten
181–192, 2012.

386

Related Interesting Work from the SE Group, RWTH Aachen

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. Systematically Deriv-
ing Domain-Specific Transformation Languages. In Conference on Model Driven
Engineering Languages and Systems (MODELS’15), pages 136–145. ACM/IEEE,
2015.

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ. In A. Mor-
eira and S. Demeyer, editors, Object-Oriented Technology, ECOOP’99 Workshop
Reader, LNCS 1743, Berlin, 1999. Springer Verlag.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. Design Guidelines for Domain Specific Languages. In Domain-
Specific Modeling Workshop (DSM’09), Techreport B-108, pages 7–13. Helsinki
School of Economics, October 2009.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Modeling
Cyber-Physical Systems: Model-Driven Specification of Energy Efficient Buildings.
In Modelling of the Physical World Workshop (MOTPW’12), pages 2:1–2:6. ACM,
October 2012.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification and
Refinement with State Transition Diagrams. InWorkshop on Feature Interactions in
Telecommunications Networks and Distributed Systems, pages 284–297. IOS-Press,
1997.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navigator. In
H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von Forschungssoft-
ware. Tagungsband, Rolduc, 10.-11.11.2011, Aachener Informatik-Berichte, Soft-
ware Engineering, Band 14. Shaker Verlag, Aachen, Deutschland, 2012.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen im
Software-Engineering. Aachener Informatik-Berichte, Software Engineering, Band
1. Shaker Verlag, März 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathematical
model for distributed information processing systems - SysLab system model. In
Workshop on Formal Methods for Open Object-based Distributed Systems, IFIP Ad-
vances in Information and Communication Technology, pages 323–338. Chapmann
& Hall, 1996.

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Computing.
Springer, Schweiz, December 2014.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical Sys-
tems - eine Herausforderung für die Automatisierungstechnik? In Proceedings of
Automation 2012, VDI Berichte 2012, Seiten 113–116. VDI Verlag, 2012.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Development
using Domain Specific Modelling Languages. InDomain-Specific Modeling Workshop
(DSM’06), Technical Report TR-37, pages 150–158. Jyväskylä University, Finland,
2006.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Generation for
Compositional DSLs in Eclipse. In Domain-Specific Modeling Workshop (DSM’07),
Technical Reports TR-38. Jyväskylä University, Finland, 2007.

387

Related Interesting Work from the SE Group, RWTH Aachen

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of Ab-
stract and Concrete Syntax for Textual Languages. In Conference on Model Driven
Engineering Languages and Systems (MODELS’07), LNCS 4735, pages 286–300.
Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular Devel-
opment of Textual Domain Specific Languages. In Conference on Objects, Models,
Components, Patterns (TOOLS-Europe’08), LNBIP 11, pages 297–315. Springer,
2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for
Compositional Development of Domain Specific Languages. International Journal
on Software Tools for Technology Transfer (STTT), 12(5):353–372, September 2010.

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan Sprinkle.
Model Evolution and Management. In Model-Based Engineering of Embedded Real-
Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 241–270. Springer,
2010.

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture
Descriptions of Critical Systems. IEEE Computer, 43(5):42–48, May 2010.

[MRR10] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for Seman-
tic Model Differencing. In Proceedings Int. Workshop on Models and Evolution
(ME’10), LNCS 6627, pages 194–203. Springer, 2010.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic Differ-
encing for Activity Diagrams. In Conference on Foundations of Software Engineer-
ing (ESEC/FSE ’11), pages 179–189. ACM, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Semantics
for Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH Aachen
University, Aachen, Germany, July 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Dia-
grams Analysis Using Alloy Revisited. In Conference on Model Driven Engineering
Languages and Systems (MODELS’11), LNCS 6981, pages 592–607. Springer, 2011.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Diagrams.
In Object-Oriented Programming Conference (ECOOP’11), LNCS 6813, pages 281–
305. Springer, 2011.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Config-
urable Consistency Analysis for Class and Object Diagrams. In Conference on Model
Driven Engineering Languages and Systems (MODELS’11), LNCS 6981, pages 153–
167. Springer, 2011.

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component
and Connector Models from Crosscutting Structural Views. In Meyer, B. and Baresi,
L. and Mezini, M., editor, Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’13), pages 444–454. ACM New York, 2013.

[MRR14] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component and
Connector Models against Crosscutting Structural Views. In Software Engineering
Conference (ICSE’14), pages 95–105. ACM, 2014.

388

Related Interesting Work from the SE Group, RWTH Aachen

[NPR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures as
Interactive Systems. In Model-Driven Engineering for High Performance and Cloud
Computing Workshop, CEUR Workshop Proceedings 1118, pages 15–24, 2013.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Annotations
with UML-F. In Software Product Lines Conference (SPLC’02), LNCS 2379, pages
188–197. Springer, 2002.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for Be-
haviour Modelling with Automata. In Proceedings of the Industrial Benefit of Formal
Methods (FME’94), LNCS 873, pages 154–174. Springer, 1994.

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architectures.
In Congress on Formal Methods in the Development of Computing System (FM’99),
LNCS 1708, pages 96–115. Springer, 1999.

[PR01] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov, H. and Ba-
clavski, K., editor, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa
Bay, Florida, USA, October 15. Northeastern University, 2001.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications. In
Kilov, H. and Baclavski, K., editor, Practical Foundations of Business and System
Specifications, pages 281–297. Kluwer Academic Publishers, 2003.

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and Connector
Systems. Aachener Informatik-Berichte, Software Engineering, Band 19. Shaker
Verlag, 2014.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In
B. Harvey and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages
265–286. Kluwer Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes mathematis-
ches Modell verteilter informationsverarbeitender Systeme - Syslab-Systemmodell.
Technischer Bericht TUM-I9510, TU München, Deutschland, März 1995.

[RRRW15] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann.
Language and Code Generator Composition for Model-Driven Engineering of
Robotics Component & Connector Systems. Journal of Software Engineering for
Robotics (JOSER), 6(1):33–57, 2015.

[RRW13a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software Ar-
chitecture Structure and Behavior Modeling to Implementations of Cyber-Physical
Systems. In Software Engineering Workshopband (SE’13), LNI 215, pages 155–170,
2013.

[RRW13b] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAutoma-
ton: Modeling Architecture and Behavior of Robotic Systems. In Conference on
Robotics and Automation (ICRA’13), pages 10–12. IEEE, 2013.

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architecture and
Behavior Modeling of Cyber-Physical Systems with MontiArcAutomaton. Aachener
Informatik-Berichte, Software Engineering, Band 20. Shaker Verlag, December 2014.

389

Related Interesting Work from the SE Group, RWTH Aachen

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver Ringert,
and Peter Manhart. Behavioral Compatibility of Simulink Models for Product Line
Maintenance and Evolution. In Software Product Line Conference (SPLC’15), pages
141–150. ACM, 2015.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter Sys-
teme. Herbert Utz Verlag Wissenschaft, München, Deutschland, 1996.

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare?
In T. Clark and J. Warmer, editors, Issues & Trends of Information Technology
Management in Contemporary Associations, Seattle, pages 697–701. Idea Group
Publishing, London, 2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In Symposium
on Formal Methods for Components and Objects (FMCO’02), LNCS 2852, pages
380–402. Springer, November 2003.

[Rum04] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical Innova-
tions of Software and Systems Engineering in the Future (RISSEF’02), LNCS 2941,
pages 297–309. Springer, October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML, 2te Auflage. Springer Berlin, September
2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle, Refac-
toring, 2te Auflage. Springer Berlin, Juni 2012.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer
International, July 2016.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UM-
L/P. Aachener Informatik-Berichte, Software Engineering, Band 11. Shaker Verlag,
2012.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai. Meta-
modelling: State of the Art and Research Challenges. InModel-Based Engineering of
Embedded Real-Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 57–76.
Springer, 2010.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and Andreas
Wortmann. A New Skill Based Robot Programming Language Using UML/P Stat-
echarts. In Conference on Robotics and Automation (ICRA’13), pages 461–466.
IEEE, 2013.

[Völ11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen. Aach-
ener Informatik-Berichte, Software Engineering, Band 9. Shaker Verlag, 2011.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen.
Aachener Informatik-Berichte, Software Engineering, Band 12. Shaker Verlag, 2012.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Kumardev
Chatterjee, Andreas Horst, and Bernhard Rumpe. On Demand Data Analysis and
Filtering for Inaccurate Flight Trajectories. In Proceedings of the SESAR Innovation
Days. EUROCONTROL, 2011.

390

