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Abstract

The development of cyber-physical systems poses a multitude of challenges requiring
experts from different fields. Such systems cannot be developed successfully without
the support of appropriate processes, languages, and tools. Model-driven software en-
gineering is an important approach which helps development teams to cope with the
increasing complexity of today’s cyber-physical systems. The aim of this thesis is to de-
velop a model-driven engineering methodology with a particular focus on interconnected
intelligent cyber-physical systems such as cooperative vehicles.

The basis of the proposed methodology is a component-and-connector architecture
description language focusing on the decomposition and integration of cyber-physical
system software. It features a strong, math-oriented type system abstracting away from
the technical realization and incorporating physical units. To facilitate the development
of highly-interconnected self-adaptive systems, the language enables its users to model
component and connector arrays and supports architectural runtime-reconfiguration.
Architectural elements can be altered, added, and removed dynamically upon the occur-
rence of trigger events.

In order to fully cover the development process, the proposed methodology, in addition
to structural modeling, provides means for behavior specification and its seamless inte-
gration into the components of the architecture. A matrix-oriented scripting language
enables the developer to specify algorithms using a syntax close to the mathematical
domain. What is more, a dedicated deep learning modeling language is provided for the
development and training of neural networks as directed acyclic graphs of neuron layers.
The framework supports different learning methods including supervised, reinforcement,
and generative adversarial learning, covering a broad range of applications from image
and natural language processing to decision making and test data generation.

The presented toolchain enables an automated generation of fully functional C++ code
together with the corresponding build and training scripts based on the architectural
models and behavior specifications. Finally, to facilitate the integration and deployment
of the modeled software in distributed environments, we use a tagging approach to model
the middleware and to control a middleware generation toolchain.





Kurzfassung

Die Entwicklung cyber-physischer Systeme stellt eine Vielzahl von Herausforderun-
gen und erfordert Experten aus unterschiedlichen Bereichen. Solche Systeme können
nicht ohne die Unterstützung durch geeignete Prozesse, Sprachen und Tools erfolg-
reich entwickelt werden. Modellgetriebenes Software Engineering stellt einen wichtigen
Ansatz dar, der Entwicklungsteams hilft, die zunehmende Komplexität heutiger cyber-
physischer Systeme zu bewältigen. Das Ziel dieser Arbeit besteht darin, eine modell-
getriebene Engineering-Methodik mit besonderem Fokus auf vernetzte intelligente cyber-
physische Systeme wie kooperative Fahrzeuge zu entwickeln.

Die Grundlage der vorgestellten Methodik bildet eine Komponenten- und Konnektoren-
basierte Architekturbeschreibungssprache zur Dekomposition und Integration von Soft-
ware für cyber-physische Systeme. Diese verfügt über ein starkes statisches, mathema-
tisch orientiertes Typsystem, welches physikalische Einheiten unterstützt und von der
technischen Realisierung abstrahiert. Um die Entwicklung hochvernetzter selbstadap-
tiver Systeme zu erleichtern, ermöglicht die Sprache die Modellierung von Komponenten-
und Konnektorarrays und unterstützt Laufzeit-Rekonfigurationen der Architektur. Ar-
chitekturelemente können dabei ereignisbasiert dynamisch geändert, hinzugefügt und
entfernt werden.

Um den Entwicklungsprozess vollständig abzudecken, bietet die vorgestellte Methodik
neben der strukturellen Modellierung Mittel zur Verhaltensspezifikation und deren naht-
lose Integration in die Komponenten der Architektur. Eine matrixorientierte Skript-
sprache ermöglicht es dem Entwickler, Algorithmen in einer Syntax zu spezifizieren, die
der mathematischen Domäne sehr nahe kommt. Darüber hinaus wird eine dedizierte
Deep-Learning-Modellierungssprache für die Entwicklung und das Training von neu-
ronalen Netzen in Form von azyklischen, aus Neuronenschichten bestehenden Graphen
bereitgestellt. Das Framework unterstützt verschiedene Lernmethoden wie überwachtes,
verstärkendes sowie GAN-basiertes Lernen und deckt damit ein breites Anwendungsspek-
trum von der Bild- und natürlichen Sprachverarbeitung bis hin zur Entscheidungsfindung
und Testdatengenerierung ab.

Auf Basis der Architekturmodelle und Verhaltensspezifikationen erlaubt die vorgestellte
Toolchain eine automatisierte Generierung von voll funktionsfähigem C++-Code zusam-
men mit den entsprechenden Build- und Trainingsskripten. Um die Integration und
Bereitstellung der modellierten Software für verteilte Umgebungen zu erleichtern, ver-
wenden wir schließlich einen Tagging-Ansatz zur Modellierung und Generierung von
Middleware.
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Mein ganz besonderer Dank gilt meiner Mutter Janna. Danke, dass du mir diesen
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Chapter 1

Introduction

1.1 Motivation

In cyber-physical systems (CPSs) physical processes are highly intertwined with software
components [Lee08]. CPSs such as automated vehicles, surgery assisting robots, and
intelligent production plants are becoming more and more pervasive in a multitude of
areas in industry and daily life. The development of such systems poses challenges which
we do not encounter in pure software development or classical mechanical engineering
[LAB+11, YCC+17, PWH+18]. This leads to the necessity of appropriate development
processes, languages and tools helping us to cope with the increasing system complexity.
The heterogeneity and complexity of CPSs requires a multi-paradigm approach allowing
experts from different domains to focus on specific modules while ensuring a seamless
integration thereof. Typical modules indispensable in CPSs include but are not limited
to: sensors and actuators interacting with the environment, detection and situation
understanding components, planners, controllers, and the like. Usually these modules
are part of a feedback loop where software components affect the mechanical system and
the environment, and vice versa. The (de)composition of such systems and the analysis
of their modules’ interaction is an important basis for a successful CPS design [RW18].
For this reason architecture description languages (ADLs) have been particularly popular
in domains like automotive and avionics [WM95, FLV06].

Furthermore, complex behavioral schemes require appropriate means for development
and testing. CPS components need to be able to process large amounts of data and
make intelligent decisions in real-time. Physical processes must be modeled along with
high-performance tensor computations. More and more tasks are delegated to machine
learning algorithms such as deep neural networks [GLSU13, CSKX15], which fundamen-
tally changes the way software is written and thought about.

Obviously, a CPS development process must incorporate ideas and process approaches
from different disciplines, including mechanical, control, and software engineering. The
development approaches of these different worlds are by no means compatible. For in-
stance, while mechanical engineers often deal with geometric models [VR77], e.g. using
Computer-Aided Design (CAD) software such as AutoCAD or CATIA [DJM+19], com-
puter scientists think in abstractions and prefer a logical decomposition, e.g. using the
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unified modeling language (UML) [Rum11b]. While agile development methods have
been successfully adopted in business and web software development, they can be dif-
ficult to implement in other engineering disciplines. A CPS development methodology
must, hence, be able to link the different engineering disciplines while taking the best
from all worlds. The aim of this thesis is to develop a model-driven methodology for the
design of cooperative and intelligent cyber-physical systems.

1.2 Research Questions

The main research question to be answered in this thesis is:

Main Research Question. How can the agile development of artificial intelligence
for cooperating cyber-physical systems be supported by a model-driven engineering
methodology?

Moreover, the main research question can be subdivided into the following partial
research questions:

RQ1 How can the complexity of cooperating cyber-physical systems be handled using
an architecture-centric modeling approach?

RQ2 How can the heterogeneity of cyber-physical system software architectures be han-
dled by a multi-paradigm modeling language family?

RQ3 How can machine learning-based methods be incorporated into cyber-physical soft-
ware architectures within a model-driven engineering life-cycle?

1.3 CPS Basics

1.3.1 Autonomous Driving Architectures

To deliver a well-suited modeling methodology and the required domain-specific lan-
guages (DSLs), we first need to understand the nature of CPS architectures. For this
purpose, we are going to revise architectures from the literature starting with four ex-
amples stemming from the DARPA Urban Challenge 2007. The Tartan Racing team
placed first in the competition with their Boss robotic vehicle architecture [UBB+07].
By abstracting from the technical details, we can reduce the architecture to the follow-
ing main building blocks: the mechanics (including a variety of sensors, actuators and
a controller area network (CAN) bridge), perception and world modeling, mission plan-
ning, motion planning, and behavior generation. The perception and world modeling
part uses signals sampled by the sensors to create a model of the vehicle’s environment
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and to understand what is happening. Having an understanding of the situation, the
mission planner computes or updates a high level route, e.g. a route to the destination.
The behavior generator breaks down this plan into a sequence of driving scenarios. The
motion planning block realizes the driving scenarios by computing concrete trajectories,
which in turn are fed into the vehicle controller. The latter drives the actuators closing
the loop.

Junior, an autonomous vehicle by the University of Standford, placed second in the
DARPA challenge [MBB+08]. The two core component groups are perception and nav-
igation. Perception modules get their inputs from a sensor interface with a multitude
of sensors and are responsible for localization, obstacle tracking, and pose estimation
which resembles the perception module of Tartan. The navigation components unify top
level control, path planning, and actuation control. The results of the latter are fed into
the vehicle interface. A global services block contains further functionality for process
control, logging, and interprocess communication. In case of malfunctioning modules,
the health monitor can emit an emergency stop command.

The Odin robotic vehicle by VictorTango won the third place in the competition
[BBF+08]. Again, the blocks of the architecture can be grouped according to their re-
sponsibilities. The first group contains a series of sensors. Their data is fed into blocks
of the perception group, including the dynamic obstacle predictor, object classification,
localization and road detection. The planning blocks cover several abstractions of gran-
ularity from route to motion planning. Finally, system blocks cover a user interface
and a health monitor. Many blocks are similar to the two other architectures described
above, e.g. the route planner, driving behavior and motion planner of Odin have similar
responsibilities to the blocks mission planning, behavior generation and motion planning
of the Boss vehicle.

Caroline was the best placed team developed by a non-US team [RBL+08, BBB+08].
Its architecture can be broken down into the component groups sensors and data acqui-
sition, sensor data processing, decision making, control, emergency logic, and utilities,
thereby resembling the other architectures introduced above.

Despite the age of the DARPA architectures, the key principles remain mostly un-
changed. The complexity of the architectures can be coped with by breaking down the
system into abstract functional blocks with clear and explicit dataflows. Hierarchical
decomposition can help us to grasp complex modules. The processing relies on inputs
from different, often redundant sensors complementing each other to draw a precise
picture of the environment. The components can be classified into four important func-
tional groups, which need to be present in an autonomous vehicle: perception, planning,
control, and emergency handling. In addition, cooperative vehicles require a commu-
nication module as well as cooperation-specific components such as a platoon manager
[KAE+12]. Modules are kept independent and use the publish/subscribe pattern for
anonymous communication enforcing the low coupling principle: data providers post
messages to uniquely identifiable topics, which can then be subscribed to by other com-
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ponents interested in their content.

1.3.2 Control

An important part of an autonomous system is its control facility. The task of a con-
troller is to execute a given plan in a physical, non-ideal environment with the help
of the system’s actuators by minimizing the error, i.e. the deviation of the measured
from the desired state. In the context of autonomous driving we need to control the
trajectory including the vehicle’s speed and acceleration using steering, throttle, break-
ing, and optionally gear switching. Classical controller systems are based on propor-
tional–integral–derivative (PID) blocks taking the error as the input and computing a
weighted sum of the actual error, its first order derivative, and its integral. This ap-
proach has several drawbacks [Koz16]. For instance, a PID controller only takes the
error signal into account, while ignoring the nature of the controlled system and its envi-
ronment, i.e. the actual source of the error. Furthermore, PID controllers can only react
to measured errors and are not able to prevent the occurrence of errors proactively. To
control real systems, elaborate controller structures consisting of multiple intertwined
PIDs are required, which results in a rising tuning complexity.

Model predictive control (MPC) is a control approach modeling the process explicitly
to predict a system’s behavior depending on a series of actions [CA13]. The control
problem can be formulated as a minimization of the error over the action vector. This
minimization program needs to be solved at runtime in each control step in order to
obtain the next actions.

There are multiple advantages when using the MPC approach. The process is modeled
explicitly. A single MPC controller can handle multivariate control variables including
their interactions. The approach can incorporate constraints such as limits on speed and
acceleration. Furthermore, it takes future steps into account when making a decision.
For instance, a vehicle can start decelerating early if it knows that it is approaching
a sharp turn. MPC is widely used in autonomous systems including self-driving and
cooperative vehicles [KSM+19, KSB+19, KKM+19]. For this reason, a methodology
for the design of cooperative CPSs needs to provide a means for the specification of
optimization problems in a natural way.

1.3.3 Machine Learning in Autonomous Driving

More recent works have shown that functionality needed by autonomous vehicles can be
implemented by means of machine learning techniques. The end-to-end approach trans-
fers all tasks of the autonomous vehicle to a single deep neural network. The approach
dates back to the 1980s, where the ALVINN architecture used a simple neural network
to map sensor inputs to decisions [Pom89]. A more recent convolutional neural network
(CNN)-based approach was demonstrated by NVIDIA [BDTD+16]. It uses camera im-
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ages as the input for a deep CNN consisting of a normalization layer, 5 convolutional
layers, and 3 fully connected layers to compute the steering commands. End-to-end
driving has the drawback of being inflexible as the whole system is a single black box
and does not provide interfaces to embed further code.

Some approaches use deep learning for perception, e.g. object detection in images. For
instance, the KITTI-dataset [GLSU13] is a collection of annotated images captured by
a vehicle camera in different traffic situations. Annotations include: bounding boxes for
objects, the objects’ types, e.g. car, truck, pedestrian, etc., as well as geometrical data.
Further processing of the detected objects to prepare an actuation decision, however, can
still be a complex task. Direct perception tries to tackle this problem by using CNNs to
extract affordance indicators from a given image, which are features actually relevant for
and directly usable by the controller. These indicators include the distance to the vehicle
in front, the distance to the street boundary, the orientation of the vehicle relative to
the track, etc. [CSKX15]. The decision making controller can then be implemented as
conventional code using the affordance indicators extracted by the neural network as
inputs.

1.4 Requirements

The examples given above are just a small excerpt of autonomous system approaches
available in the literature. However, they are representative of some key ideas used in
current practice and research. Based on these ideas we formulate the following high-
level requirements for the model-driven CPS design methodology to be developed in this
thesis. A refinement will be given throughout the following chapters.

(R1) Decomposition and communication: the methodology must enable the design of
CPS architectures. In particular, it must ensure a clear separation of concerns and
allow a hierarchical decomposition. It must make dataflows between components
explicit and allow processing and communication of sensor signals. Furthermore,
it must allow the integration of different technologies used in CPS design such as
computer vision, deep learning, and optimization.

(R2) Architecture dynamics: the methodology must enable the designer to model sys-
tems, which are able to communicate with their environment, react to unforeseen
changes and adapt their architecture if necessary, e.g. to switch between opera-
tional modes or to process data from unknown sources.

(R3) Training architectures: the methodology must enable the developer to integrate
machine learning models as components into the software architecture and provide
means to train such components based on available data or in simulators.
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(R4) Distributed architectures: the methodology must enable the design of distributed
architectures with low coupling between the components, e.g. to deploy software
components on dedicated electronic control units (ECUs). Moreover, it should
support the developer to find viable distribution schemes.

1.5 Thesis Structure

In order to answer the research questions posed above, each of the following chapters
will discuss a part of the developed methodology while keeping the requirements in
mind. Therefore, each chapter defines its own specialized research question and a set of
requirements refining those introduced above. Chapter 2 covers static architecture design
with EmbeddedMontiArc (EMA), a component-and-connector (C&C)-based ADL for
embedded and cyber-physical systems. EMA is the core language of this work allowing
us to decompose CPS models into manageable components. Together with its type
system it serves as a basis for most other concepts of the thesis. In the second part of
the chapter, we discuss MontiMath, a matrix-oriented scripting language, which is used
to describe the behavior of EMA components procedurally. Generation aspects of the
language family are covered at the end of the chapter.

Chapter 3 presents EmbeddedMontiArc Dynamics (EMAD), a conservative language
extension for EMA allowing us to define software architectures with the ability to adapt
themselves at runtime. This is achieved using an event-driven approach, where par-
ticular data inputs or architectural changes can trigger the instantiation or removal of
architectural elements such as ports, components, and connectors.

To create intelligent architectures, which are able to learn from experience, we need
to incorporate a means to make use of machine learning components in our methodol-
ogy. We start Chapter 4 with a brief introduction of the main machine learning topics
relevant for the thesis and present a DSL family for the design of neural networks af-
terwards. While Chapter 4 focuses on a supervised training pipeline, Chapter 5 extends
the framework for reinforcement learning and generative adversarial networks (GANs).

Chapter 6 addresses the need for a modeling technique allowing us to define distributed
architectures. We tackle the problem by using the tagging approach to attach middleware
information to components and ports. The second part of the chapter presents an
unsupervised learning approach deriving component distribution schemes automatically.
The thesis is concluded in Chapter 7.

Each chapter defines a set of requirements to be addressed. Each requirement is
identified by a unique name starting with a capital R followed by another capital letter
related to the chapter and a number, e.g. RE1, RE1.1 being requirements related to
EmbeddedMontiArc, RD1, RD2 being requirements related to dynamics etc.
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The following paragraphs give an overview of how the publications listed above were
used in the context of this dissertation. In [HKK+18, KKRvW18, DGH+19, KSRvW18],
we presented a variant of the model-driven automotive development process SMArDT
as well as related testing and verification methods. An overview of SMArDT will be
given in Section 1.7.5 later in this chapter. While it is not a direct research subject of
this thesis, the methods, languages, and tools discussed throughout the dissertation are
put in context of this process. In particular, the research questions of each chapter are
posed in the context of SMArDT.

[KRRvW17] introduces the basic elements of the EmbeddedMontiArc ADL and the
scripting language MontiMath. [KRSvW18a] presents an efficient generator toolchain
for these languages using algebraic optimizations. An integrated development environ-
ment (IDE) for model-driven development with EmbeddedMontiArc was presented in
[KRRvW18]. EmbeddedMontiArc and MontiMath are discussed and extended in Chap-
ter 2. Furthermore, EmbeddedMontiArc provides the foundations for all other chapters
of this dissertation. For instance, in Chapter 3 a modeling language for architectural
runtime dynamics is developed as a conservative extension of EmbeddedMontiArc. This
extension is based on [KKR19]. In [DDE+17] we introduced the notion of local traffic
systems, which serves as a motivation and a running example in Chapter 3.

A simulative approach for integration testing of autonomous driving models was pre-
sented in [GKR+17]. This approach was further elaborated for spatial simulation sub-
division and hardware emulation in [FIK+18, KKMR19, KKRZ19]. These publications
are the basis of Section 2.6.3. A lightweight simulative approach for EmbeddedMontiArc
teaching purposes was presented in [KRSvW18b].

One of the main contributions of this dissertation is the deep learning framework Mon-
tiAnna discussed in Chapter 4, the foundations of which were presented in [KNP+19].
The integration into the EmbeddedMontiArc language family and the TORCS example,
which are introduced in Section 4.10, are based on [KPRS19]. In [GKR19], we presented
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an extension of MontiAnna for the reinforcement learning domain, which is used as a
basis for Chapter 5. In [BKL+18], we developed a multi-level modeling framework for
agile manufacturing. This publication serves as the preliminary work for the evalua-
tion of MontiAnna for reinforcement learning based on a problem from the forestry 5.0
domain in cooperation with WZL in Section 5.10.2. In [KKRS19] we presented an un-
supervised learning approach for DTC pattern identification supporting the automation
of quality assurance in the automotive domain. This example is used as a motivation
for unsupervised learning in MontiAnna in Section 5.11.

In [HKKR19], we presented a tag-based approach to enrich component models with
middleware information as well as a code generator composition approach for the gen-
eration of target code for multiple middleware platforms. These concepts are the basis
of the first part of Chapter 6.

1.7 Preliminaries

1.7.1 Notation

This section covers the notation used throughout this thesis. N is the set of natural
numbers (including zero). Z, Q, R and C denote the sets of integers, rational, real,
and complex numbers, respectively. Q+ and R+ denote the sets of positive rational and
positive real numbers, respectively. A zero in the subscript adds zero to the respective
set, e.g. R+

0 = R+ ∪ {0} is the set of non-negative real numbers. The symbol used for
the imaginary unit is j, with

j :=
√
−1. (1.1)

The real and imaginary part of a complex number a ∈ C are denoted by <{a} and ={a},
respectively, i.e. a = <{a} + j={a}, where <{a},={a} ∈ R. Custom sets are denoted
by calligraphic capital letters, e.g. A, B. Matrices and random variables are expressed
by capital letters, e.g. A, B. The element in i-th row and j-th column of a matrix A is
denoted by Aij . A separating comma can be used to avoid ambiguities. For instance,
A4,5 is used to refer to the element in the fourth row and fifth column of A. Scalars
and vectors are denoted by lower case letters, e.g. a, b. The i-th element of vector v is
denoted by vi. Vectors are interpreted as column vectors. A row vector can be obtained
by transposing a column vector. Transpose and conjugate transpose of a matrix are
denoted by a superscript T and ∗, respectively, i.e.

A = BT ⇔ ∀i, j : aij = bji (1.2)

and

A = B∗ ⇔ ∀i, j : aij = <(bji)− j=(bji). (1.3)
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The set of all m×n matrices is denoted asMm,n. If m is equal to n, the abbreviation
Mn is used. Hn ⊂ Mn denotes the set of all positive semi-definite Hermitian n × n
matrices.

For an n-dimensional vector x the function diag : Cn → Cn×n is defined as

diag(x) = D with Dij =

{
xi if i = j

0 otherwise.
(1.4)

1n denotes an n-dimensional vector full of ones. In = diag(1n) denotes the identity
matrix of size n× n.

The expectation value of a random variable X is denoted by E [X], i.e. E [X] :=∫
X xpX(x) dx, where X is the support of X and pX is the probability density function

(PDF) of X. If X is a discrete set, i.e. X is a discrete random variable, the integral
reduces to a sum and hence, E[X] =

∑
x∈X xpX(x). The expectation value of g(X) is

given as E [g(X)] =
∫
X g(x)pX(x) dx for continuous and as E [g(X)] =

∑
x∈X g(x)pX(x)

for discrete supports of X.
Variables, types, and keywords are typeset in typewriter font, e.g. int, component,

foo. The abbreviation L.x is used to refer to the x-th line in a listing. L.x-y is used to
refer to a code block delimited by and including the lines x and y. Listings and diagrams
contain a flag in the upper right corner indicating the language or diagram type used.
An overview of the tags used in this thesis is given in Table A.1.

The definition of a signal for this thesis is given as follows.

Definition 1. A signal is a function depending on time. Both the time domain as
well as the co-domain can be continuous or discrete.

In this thesis we only deal with signals, where both time and the co-domain are discrete.
A graph G is defined as a the tuple G = (V, E), where V is the set of nodes and
E ⊆ V × V is the set of edges. The adjacency matrix of a graph G is defined as

A ∈M|V| with Aij =

{
1 if (i, j) ∈ E
0 otherwise.

(1.5)

We distinguish between directed and undirected graphs. An undirected graph has a
symmetric adjacency matrix, i.e. ∀i, j ∈ V : Aij = Aji and (i, j) is the same edge as
(j, i). If the graph is directed, it can have an arbitrary adjacency matrix and (i, j) and
(j, i) denote two distinct edges. In a weighted graph we assign a numeric weight to each
edge using a graph-specific function w : E → R. A weight of zero is equivalent to an
absence of the edge in the graph. The similarity or affinity matrix S ∈M|V| of a graph
G is obtained by setting its entries Sij to the respective edge weights (or to zero if nodes
i and j are not connected). If the weights denote distances, i.e. higher values denote a
smaller similarity, we refer to S as a distance matrix.
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An important class of graphs used in this thesis are directed acyclic graphs (DAGs),
defined as follows:

Definition 2. A DAG is a directed graph G = (V, E) without cycles, i.e. for all
paths (i1, i2), (i2, i3), ..., (ik−2, ik−1), (ik−1, ik), where i1, ..., ik ∈ V and each tuple in
the path is an edge in E, i1 6= ik.

1.7.2 Model-Driven Engineering and Domain Specific Languages

A model is an abstraction of an original. It provides some information about the latter
while leaving out unnecessary details. Understanding and creating complex systems is
only possible with an appropriate model set. This applies to most sciences and fields in-
cluding physics, biology, politics, economy, engineering disciplines, etc. Well-established
modeling tools in computer science include: graphs, finite state machines (FSMs), Petri
nets, and more, enabling a concise description of structure and behavior. More spe-
cific modeling notations have arisen from the field of software engineering, starting from
simple flowcharts in imperative and procedural programming, over the UML for object-
oriented design [Rum11b] to DSLs tailored to particular application domains.

General modeling languages such as the UML have manifested themselves as an in-
dispensable toolset in widely used development processes such as the Rational Unified
Process (RUP) [KK03], Open Unified Process (OpenUP)1, the V-model [BD95] and oth-
ers [BBR07]. While their use was first limited to conceptual phases and documentation
purposes, generative approaches have helped modeling techniques to become an impor-
tant, sometimes even the most important development means in various projects and
disciplines. For instance, class diagrams can be used to generate websites and whole
enterprise information systems [Rot17, GHK+20, GMN+20].

However, DSLs have gained importance in many fields, e.g. in linear TV program
scheduling [DHH+20], as they exhibit multiple advantages when compared with general
purpose programming languages (GPLs) or general purpose modeling languages such
as the UML. First, they allow a concise problem description while hiding a large part
of the complexity. Second, DSL programs often can be read and written by domain
experts without a technical background as the syntax is domain-oriented. Third, DSLs
can evolve much faster as they are used by much smaller groups of people than GPLs.

Many problems require very specific development concepts. For instance, graphical
user interfaces (GUIs) can be described using a descriptive language made just for that
purpose [GMN+20]. In the field of compiler construction, DSLs are used by tools like
ANTLR [Par13] to describe context-free grammars of languages in a syntax resembling
the theoretical notation. In particular, domain-specific modeling techniques are often
applied to the CPS and robotics domain [NHW14] aiming to tackle specific requirements

1https://www.eclipse.org/epf/general/OpenUP.pdf, accessed August 24, 2020
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of this field and accelerating the development while enhancing the reliability and safety of
the product. The availability of parser generators [Par13] and ecosystems for language
development, e.g. the Eclipse Modeling Framework (EMF) [SBMP08], enable a fast
development and adaptation of DSLs and their integration into the targeted development
processes.

Each computer language including DSLs consists of the following components: con-
crete syntax, abstract syntax, context conditions, and semantics [HR00, HR04].

Concrete syntax: the concrete syntax of a language is the textual or graphical syntax
used by a developer to write down a model. It is often defined using a context-free
grammar according to the Chomsky hierarchy [Cho59]. A well-designed concrete
syntax should represent the domain as exactly as possible, be easy to read for the
target audience, and avoid unnecessary generality [KKP+09].

Abstract syntax: the abstract syntax is a tree syntax reducing a model to its essential
content which is used internally, e.g. by the compiler. In particular, the abstract
syntax should be free of irrelevant concrete syntax elements.

Context conditions: context conditions, also referred to as static semantics, are Boolean
predicates constraining the context-free syntax of a language by context-sensitive
rules. Typical context conditions ensure that identifiers are not used before decla-
ration and check the program for type errors. A model is considered well-formed
if the context condition checks were successful.

Semantics: the semantics defines the meaning of a language. There are various ap-
proaches to define the semantics of a language. For instance, operational semantics
maps a valid program to a sequence of computation steps [Plo81]. On the other
hand, axiomatic semantics focuses on theorems and assertions: the meaning of a
command is defined as a sequence of its pre- and post-conditions [Hoa69].

1.7.3 The MontiCore Language Workbench

Textual language engineering is a complex process which requires strong tool support to
be fast, agile, and reliable. The required toolset can be found in a language workbench,
a framework providing functionality needed for language definition, evolution, and com-
position [Fow10]. At the core of such a framework we can often find a lexer and a parser.
The lexer (also referred to as scanner or tokenizer) converts a textual input model into
a token stream. This stream is then processed by the parser according to a context-free
grammar to verify that the model is valid and to derive an internal traversable tree rep-
resentation, e.g. a parse tree or the abstract syntax tree (AST). In addition to parsers,
language workbenches often provide editors, IDE plugins, as well as an infrastructure
for abstract syntax, symbol tables, and context conditions (CoCos). Some examples of
language workbenches are given in the following.
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Xtext [EB10]. Xtext is a textual language workbench, which uses ANTLR [Par13] as
its parser generator in the backend, but provides a lot of additional functionality in-
cluding an EMF [SBMP08] based AST as well as Eclipse editors. Consequently, Xtext
is heavily interwoven with the Eclipse ecosystem2. This has the advantage that lan-
guage developers can reuse analysis and visualization tools operating on EMF-models.
However, restricting the choice to a single IDE can be a disadvantage.

MPS. Meta Programming System (MPS)3 follows the projectional editing approach
where the user interacts with the AST directly. This has the advantage that one does not
need to learn the concrete syntax of a language. The editor shows the user where values
belong. The model can be projected to any appropriate form, e.g. tabular or graphical.
An MPS language consists of several aspects like structure, editor, constraints, etc.

MontiCore [KRV10, HR17]. MontiCore is the language workbench we are going to
work with in this thesis. It is being developed by the Software Engineering chair of the
RWTH Aachen University and comes with a particular focus on language modularity,
extensibility, and composition. These aspects are of high importance, since DSLs need to
be tailored to specific requirements quickly and hence cannot be developed from scratch
every time.

Similar to Xtext, MontiCore uses ANTLR in its backend for lexing and parsing. Mon-
tiCore uses a grammar description language based on the Extended Backus Naur Form
(EBNF) and ANTLR to define the context-free (concrete and abstract) syntax of a
language. The grammar is used to generate a variety of mostly Java-based artifacts in-
cluding the parser and the data structures for the abstract syntax, i.e. the AST classes,
transformations, and the symbol management infrastructure (SMI). The abstract syn-
tax of a MontiCore language is represented by its AST together with the symbol ta-
ble [MSN17]. In contrast to the parse tree provided by ANTLR, the MontiCore AST
does not contain concrete syntax, but truly represents the model structure.

Context-sensitivity can be added to a MontiCore language by defining CoCos. Also,
some context-free restrictions can be expressed more elegantly using CoCos. In Mon-
tiCore CoCos are encapsulated in Java classes. MontiCore generates CoCo interfaces
for the AST node types of a language. To implement a concrete CoCo one has to im-
plement these interfaces. Finally, the CoCo classes need to be instantiated and added
to the CoCo checker of the language. The CoCo checker implements an AST traversal
mechanism based on the visitor design pattern [GHJV95].

The language developer can decide when exactly to run the CoCo checker, e.g. right
after parsing, after the creation of the symbol table (if it is needed by the CoCos), or
after some transformation steps.

2https://www.eclipse.org/, accessed August 20, 2020
3https://www.jetbrains.com/mps/, accessed August 20, 2020
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MontiCore supports different ways of language composition, which we are going to use
heavily in the course of this thesis:

Language aggregation can be used when a concept of the target domain needs to be
described using two or more DSLs. Each DSL has its own syntax and is used to
define independent models in separate artifacts. There is no language composition
on syntactic level. The models of all DSLs are processed independently. How-
ever, elements of the different models can be linked with each other after parsing.
Consequently, inter-model context conditions can ensure the consistency of models
written in different languages. Furthermore, code generators can look up informa-
tion in different models to generate the target code. For instance, we are going
to use language aggregation to use structs, defined in a dedicated struct language,
as types in EmbeddedMontiArc models in Chapter 2. A further application is the
composition of a neural network architecture with a training model in Chapter 4.

Language embedding is similar to language aggregation in the backend, but combines
the concrete syntax of the composed languages instead of leaving each model inde-
pendent. Consequently, a single artifact can contain a model written in different
languages. An important example given in this thesis is the embedding of the be-
havior languages MontiMath and CNNArc into EmbeddedMontiArc in Chapters 2
and 4, respectively.

Language inheritance is similar to the object-oriented inheritance concept. The de-
rived language reuses the elements of the base language, can modify them, or add
new ones. Modifications which do not render base language elements invalid, are
referred to as conservative. If the derived language only contains conservative
modifications, it is referred to as language extension.

MontiCore provides a rich library of component grammars meant to be used as building
blocks when designing new DSLs and GPLs. For instance, MontiCore literals, expres-
sions, système international d’unités (SI) units, and types can be used as components in
new languages out of the box. Some important languages developed in MontiCore are
the UML/P [Rum11a], OCL [MMR+17] and MontiArc [Hab16].

1.7.4 SI Units

To give the reader a better idea of MontiCore’s language components, we are going
to introduce the SI unit language. In various domains including CPSs, we often need
to model physical processes and hence, have to take care of the types of quantities
the variables represent. Checking physical compatibility of variables in computations
and assignments is a cumbersome but important manual task, as most languages and
type systems do not provide automated checks. A common programming pattern is
to append the physical unit as a suffix to a variable’s name to ensure a correct usage
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and interpretation, e.g. double v_kmh = 10; is probably supposed to mean that the
value stored in this variable is to be interpreted as km/h. This can be seen as a manual
version of strict and static typing: the variable’s unit is known at compile time and
cannot be overridden at runtime. However, the compiler does not know anything about
this name-based type system and cannot help developers to avoid logical errors.

MontiCore offers syntax and a type checking facility for physical units. It can be
used optionally when developing a language to build a unit-sensitive type system. The
syntactic part consists of four grammars available in the package de.monticore:

SIUnits.mc4. Contains rules to parse units with optional prefixes as well as compound
units. This includes unit products such as VA, quotients such as km/s, and powers
such as m/sˆ2. The supported SI units are given in Table A.3. Further provided
non-SI units are listed in Table A.2. The supported prefixes are given in Table A.4.
Units and prefixes are fully compliant with the SI Brochure [dPeM19]. Addition-
ally, the prefix µ for milli and the symbol Ω for ohm can be written as u and Ohm,
respectively, if the developer does not want to or cannot use Greek symbols. Note
that non-SI units defined in Table A.2 as well as ◦C, rad and sr cannot be combined
with prefixes. An exception to this rule are liters, denoted by l or L.

SIUnitLiterals.mc4. Extends numeric MontiCore literals to be used in conjunction with
SI units, e.g. 5.0 km. Note that a numeric MontiCore literal can optionally end
with an f or F denoting a floating point literal. Furthermore, l or L can be used
to denote a long literal. This clashes with the SI units l for liter and F for farad.
For this reason, a whitespace is obligatory between the number and the unit if the
unit is l or F. Otherwise l and F are interpreted as long and float, respectively.

SIUnitTypes4Math.mc4. An SI unit can be used as a type. Therefore, the grammar
extends MCBasicTypes, a central MontiCore grammar situated in the package
de.monticore.types and provides an implementation of the MCType interface.
Since such a unit type does not state explicitly what kind of number representation
(int, float, etc.) is to be used, double is assumed implicitly.

SIUnitTypes4Computing.mc4. An extension of SIUnitTypes4Math providing a syn-
tax to define types composed of a numeric type and a unit. The syntax for such a
composed type is defined as SIUnitType4Math "<" MCPrimitiveType ">".
Non-numeric primitive types are excluded by a context condition.

MontiCore’s type checking facility checks the compatibility of units along with the
usual types. A sum of two or more variables is only allowed if the types of all summands
are compatible. The same holds for assignments. Strong typing applies to units, as well.
This means that an assignment cannot change the unit of the target variable, but rather
involves a conversion of the source unit type into the target unit type. Consider the
assignment km<double> length = 10m;. The variable length is statically and
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strongly typed as a double with the unit km. The right hand side (rhs) however is
given in meters. After the assignment, the numerical value of length is 0.01 and the
variable must still be interpreted as km. For statically and strongly typed languages
such conversions can be identified by the code generator. Consequently, information
concerning units can be fully avoided in the generated code. All the generator needs
to do is to look up and insert the necessary conversions. For the example given above,
the (unoptimized) generated C/C++ code would be double length = 0.001*10;.
Here, 0.001 is the conversion factor and 10 is the numeric value of the SI literal.

Sometimes it is necessary to extract the numeric value of a physical quantity expres-
sion. This can be achieved using the function basevalue(.) which takes a unit-
numeric expression as input, converts it to base units, i.e. s, m, kg, A, K, mol, and
cd, and returns the numeric part of the resulting expression. For instance, in base-
value(2dm + 5cm), the argument summands are mapped to the base unit meters
first, which results in 0.2 m + 0.05 m = 0.25 m. Hence, the returned value is 0.25. The
conversion to base units does not always make sense, e.g. if the prefix is very big or very
small. For such cases, the value(.) function can be used instead to convert a given
unit-numeric expression to the value corresponding to the smallest contained prefix. Ob-
viously, this operation always results in an integer value. For instance, value(2dm +
5cm) results in 25, since centi is the smallest prefix of the expression.

1.7.5 Model-Driven Engineering Processes in the Automotive Domain

A successful application of modeling techniques requires a clear underlying methodol-
ogy. We distinguish between model-based and model-driven engineering processes. The
former use models in an informal manner and are meant to support the developers, e.g.
in planning tasks or when writing code manually. In model-driven engineering the role
of models is more crucial. Models are used for all aspects of the engineering process
including code or further model generation, evolution, analyses, visualization, tracing,
etc. The goal of model-driven software engineering (MDSE) is to automate the software
development process and to make it as robust as possible. In this thesis our focus is on
MDSE.

In the automotive industry the development processes need to be compliant with the
ISO26262 norm for functional safety. Therefore, they are often based on the ISO26262
V-model which prescribes systematic testing and validation. To grasp the complexity
of automotive systems, models of appropriate abstraction, e.g. SysML [FMS14, Gro17],
Simulink [Mat16], and LabView [Ins98], are employed to render the system design com-
prehensive and maintainable. However, maintaining a large zoo of models, updating and
adapting them manually is error-prone and time-consuming. An automation or semi-
automation of the engineering process featuring automated derivation of models, code,
and tests is highly desirable. Navigation between models and tracing should prevent in-
consistencies [KKRvW18] between different models as well as between models and code.
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Figure 1.1: An overview of the SMArDT process [HKK+18].
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Inconsistencies in model-driven software and systems engineering can arise quickly. For
instance, if a bug is found or a requirement needs to be changed urgently, it is often
fixed in code without updating the models the code is based on.

The specification method for requirements, design, and test (SMArDT) is a model-
driven automotive development process developed by BMW AG, which aims to tackle
the aforementioned challenges. We present a variant of this process [HKK+18, DGH+19]
in the following. A graphical overview is given in Figure 1.1. Similar to the V-model,
the SMArDT process is composed of several consecutive phases, also referred to as
levels or layers. Each layer defines a development scope and is accompanied by a set of
requirements and test cases. The artifacts of each level are linked to each other enabling
automated validation and transformations which enforces a high level of consistency and
enables agility.

Level 1 of the SMArDT process covers a first description of the product under develop-
ment and shows its properties from a customer’s point of view. The artifacts at
this level contain natural language requirements and the like.

Level 2 deals with the functional specification while omitting technical realization de-
tails. Models at this layer include: activity diagrams (ADs), feature diagrams
(FDs), C&C architectures, etc.

Level 3 develops a technical concept of the system including algorithms and protocols.

Level 4 is the final level which represents the concrete implementation of the software
and the hardware system.

This thesis supports SMArDT using the C&C-based EMA language family together
with integrated behavior description languages, model tagging, and a fully generative
toolchain.

1.7.6 Component & Connector Modeling

Component-based software engineering (CBSE) is a design approach unifying concepts
from different disciplines aiming to build large systems out of self-contained building
blocks, which are often referred to as components [Nin97, KB98]. A central concern
of this thesis is the C&C paradigm, an architecture-centric modeling approach used in
CBSE. The aim of ADLs is to grasp the abstract top level structure of a software or a
system preventing the implementation to diverge from the original specification. The
aim of C&C models is the description of the logical software architecture focusing on
functionality and logical communication [Rin14]. Components are first-level citizens
of a C&C model. Each component encapsulates a piece of functionality. A component’s
interface is defined by a set of typed input and output ports. While input ports receive
data from the outside world to work on, the result of a component’s computation is
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provided through the output ports, making the component reusable as a black box. A
C&C architecture is usually composed of multiple components communicating with each
other. Communication between components is made explicit by connectors, which are
logical communication channels connecting an output port with an input port of another
component. Communication over shared memory and side-effects are generally consid-
ered bad practice. Implicit communication makes C&C models difficult to understand
and undermines testability.

The functionality encapsulated by a component, i.e. its behavior, can be described in
two ways. First, an implementation language can be employed to declare the behavior
explicitly, e.g. a GPL such as C++ or Java or, alternatively, a behavior describing
DSL such as an FSM language. Second, a component can be composed of multiple
subcomponents. Thereby, the ports of the parent component forward and receive their
data to and from their subcomponents.

The C&C paradigm is widely used in engineering domains such as control, automotive,
and avionics. It enables a divide-and-conquer approach to systems design by a hierar-
chical decomposition of a component into more concrete sub-tasks. This makes the
paradigm particularly suited for the design of complex software in large teams: while a
systems engineer or an architect can design the high-level architecture, expert teams can
independently work on their respective submodules. Components can then be integrated
based on the contracts manifested in their interfaces.

C&C models are often executed repeatedly in cycles, e.g. to process the sensor input
of a CPS. The execution semantics of a C&C language can be characterized with respect
to two aspects, the first of them being synchronization. In time-synchronous models
there is a common notion of time. Execution frequencies of a model’s components need
not be equal, but they are in sync. Asynchronous components, on the other hand, are
executed independently without a common clock.

The second important aspects of the semantics of a C&C language is causality. Causal-
ity means that a component can only operate on current and past but not on future
outputs of other components, which is an appropriate assumption for practical systems.
In this context, we speak of strong causality if only past outputs of other components
can be used by a component for its computation. Weak causality allows the usage of the
current outputs of other components, as well [BS12].

While a strongly causal semantics is more appropriate when modeling distributed sys-
tems, since communication between components introduces non-negligible delays, weak
causality is more natural for the development of self-contained systems, where a model
is mapped to a single process.

To give a reader a more tangible idea of C&C languages, we are now going to discuss
a selection of practical representatives of the paradigm. For an extensive overview of
C&C languages, see [KRRvW17, vW20, MT00].
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Simulink: Simulink [Mat16] is a graphical C&C language. The developer can assemble
a software from building blocks from a large library. Custom blocks can be written
in MATLAB, a matrix-based scripting language with a focus on numerical computing.
During an execution cycle, each component is executed exactly once, hence Simulink
is a synchronized language. Having been designed with control engineering in mind,
Simulink components are weakly causal. However delays can be modeled explicitly
using delay components. The order in which the blocks are executed is determined by
the execution order list assigning a priority to each component. For the creation of this
list, Simulink classifies the ports of a component as direct-feedthrough and non-direct-
feedthrough ports. An input port is considered to be direct-feedthrough if its current
value determines at least one of the outputs directly, i.e. the respective output does not
depend on past values of this input port. Components such as adders, multipliers, and
gains use direct-feedthrough ports. Non-direct-feedthrough ports are used in components
such as integrators, delays, and the like.

Simulink arranges the execution priorities such that a component A providing inputs to
a direct-feedthrough port of a component B is executed before B. Components without
direct-feedthrough ports can be placed anywhere in the execution order as long as they
precede the direct-feedthrough ports which they provide inputs to. Therefore, Simulink
schedules the execution of non-feedthrough components at the beginning of the execution
list. EmbeddedMontiArc, the central modeling language family of this thesis is meant
to be compatible with Simulink and hence, adopts parts of its semantics including the
execution order algorithm.

AutoFocus 3: AutoFocus is a specification and development methodology for dis-
tributed embedded systems [AVT+15]. It covers the whole development process from the
requirement definition to the integration phase. The foundations for formal verification
and analysis are based on the FOCUS theory [BS12]. AutoFocus 3 supports runtime
component reconfiguration governed by mode FSMs.

MontiArc: MontiArc is a textual C&C ADL for the design of distributed software sys-
tems [HRR12]. The ADL offers different modes of operation, covering both synchronous
and asynchronous semantics. Due to its distributed systems focus, it assumes strong
causality. However, variants with weak causality also exist [Hab16]. Custom component
implementations can be realized as integrated hand-written Java code or, alternatively,
as an FSM using the automaton DSL in a dedicated implementation block [Wor16]. Sim-
ilar to AutoFocus 3, runtime reconfiguration can be defined using mode FSMs [HKR+16].
MontiArc is a MontiCore-based language. As such it can be extended and composed with
other languages using MontiCore’s language extension and composition mechanisms. For
this reason, we use MontiArc as the basis for EmbeddedMontiArc, one of the central
languages of this thesis, which we are going to discuss in the next chapter. Thereby,
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we adopt a large portion of the MontiArc syntax in EmbeddedMontiArc, extend it, and
compose it with other domain-specific, MontiCore-based languages.
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Chapter 2

EmbeddedMontiArc

In this chapter we are going to introduce the fundamental concepts of the EMA language
family for the design of CPSs [KRRvW17, KRSvW18a]. The concepts presented in this
chapter have been developed in collaboration with Michael von Wenckstern; his contri-
butions, e.g. parts of the formal grammar of the EMA language, have been presented
in his dissertation [vW20]. The research question to be answered in this chapter is the
following:

Research Question 1. How can a C&C-based development methodology support
the design of CPSs at SMArDT levels 2 and 3?

2.1 Requirements

As was outlined in the introduction, CPS architectures are often modeled using archi-
tecture-centric notations and languages making dataflows explicit. To grasp the essence
of such systems enabling separation of concerns, maintainability, the development in large
teams, and composability, we employ the C&C paradigm as introduced in Section 1.7.6.
To tailor a C&C-based methodology to the target domain of cooperative CPSs in the
best possible way, we introduce the following set of requirements:

(RE1) Type system: a DSL for the design of CPS architectures needs a type system,
which is appropriate for the description of different kinds of signals to be processed.

(RE1.1) Abstraction: a truly model-driven methodology needs to represent the
domain as exactly as possible without exhibiting technical realization details.
The type system therefore needs to be abstract and refrain from highly tech-
nical types such as floats and doubles. Instead, it has to provide types used
in mathematics and engineering disciplines.

(RE1.2) Units: the type system must support the developer when dealing with
physical quantities. In particular, the type system must be able to recognize
incompatible unit types at compile-time and automatically convert compati-
ble ones.
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(RE1.3) Matrices: the type system must provide the means to deal with matrices
and vectors as these are often needed in CPS, e.g. to represent complex sensor
data such as images and to perform algebraic operations on them. Matrix and
vector dimensions should be fixed at compile-time and must not be changed
at runtime.

(RE1.4) Algebraic requirements: many operations impose algebraic requirements
on their operands. For instance, matrix addition and multiplication only work
if the operands have compatible shapes; a matrix can only be inverted if none
of its eigenvalues is equal to zero. The static type system must be able to
recognize incompatible operands at compile-time.

(RE2) Architectural modeling: the methodology must enable a dataflow-centric hier-
archical modeling of CPSs.

(RE2.1) Logical modeling: the language family must enable the developer to
model the business logic while hiding technical details.

(RE2.2) Clean components: the language must prohibit dirty components,
i.e. components with side-effects, in order to render the models maintainable
and testable.

(RE3) Behavior specification: the modeling language family must provide domain-ori-
ented means for behavior specification of components. For instance, it should be
possible to write down optimization problems in order to be able to develop MPC
controllers.

(RE4) Code generation: the methodology must provide a generative concept. The gen-
eration toolchain should deliver complete and fully functional executable target
code.

(RE4.1) No mix of generated and manual code: the generated code should
be hidden from the developer. In particular, adding manual code to generated
files should be discouraged.

(RE4.2) Efficiency: the performance of the generated code must be comparable
to a GPL implementation and alternative tools.

2.2 The Data Type System

2.2.1 Primitive Data Types

A central concept of EMA is its abstract data type system. It is based on primitive
types, which can be refined or grouped together, enabling the developer to create new
types tailored to the application. The primitive types are abstract in the sense that they
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are not bound to a specific realization. This is in contrast to most typical type systems,
which prescribe the implementation of their primitive types up to some parameters (for
instance, many languages support floating point types with their representation and
operations based exactly on IEEE754 [IEE08]; however, the length of integer types and
hence the available range can depend on the executing hardware platform). Instead,
EMA types resemble mathematical sets they aim to represent. The basic types are
given in the following:

• N represents the set of positive integers including 0, i.e. N,

• N1 represents the set of positive integers not including 0, i.e. N \ {0},

• Z represents the set of signed integers Z,

• Q represents the set of signed rational numbers Q,

• C represents the set of Gaussian rationals Q[j] = {a+ jb : a, b ∈ Q} ⊂ C,

• B represents the set of Booleans (true and false). For the sake of convenience
the alias Boolean can be used interchangeably.

The types N1, N, Z, Q, and C form a directed compatibility relation, where a type is
compatible with another type if the latter can represent all the elements of the former.
For instance, N is compatible with Z, Q, and C, but not with N1, since the latter does
not include zero. A variable of type N can hence be assigned to variables of types Z,
Q, and C, but not to variables of type N1. Note that these types represent infinite
sets of numbers. Since no technical system can represent arbitrarily large numbers,
using primitive EMA types leads to a model that can only be implemented partially by
definition. Obviously, this does not hold for Booleans (B). The decision how to implement
such types is delegated to the compiler and can depend on the application.

EMA types can be refined by adding a range consisting of a lower and an upper bound
to the primitive type. A bounded type is defined as T(minValue : maxValue),
where T can be any primitive type except B. The bounded type covers a subset of the
primitive type T bounded by minValue and maxValue. minValue and maxValue
must be of type T themselves and their values are included in the bounded type. For
instance, the bounded type N(5:7) represents the set {5, 6, 7}. A type can be bounded
only from one side by using the infinity operator oo as the other bound. For instance,
N(5:oo) is a type covering all integers in {n ∈ N|n ≥ 5}.

Bounded types are still not completely implementable if the base type is Q or C,
as a technical system cannot handle arbitrarily high resolutions for non-integers. To
obtain a completely realizable type, a bounded type needs to be refined by a resolution
or step size. This parameter is written between the minimum and maximum value
of a bounded type, i.e. T(minValue : resolution : maxValue). The refined
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type only contains values of the form minValue+k×resolution satisfying minValue
≤ minValue+k×resolution ≤ maxValue, where k ∈ N. For instance, the type
Q(5:0.5:6.5) represents the set {5.0, 5.5, 6.0, 6.5} Similarly to the lower and the upper
bounds, the step size needs to be of the basic type it is restricting.

Different levels of type refinements can be employed in different phases of a systems en-
gineering process such as SMArDT during the development of a CPS. While unbounded
types can be used at SMArDT layer 2 to develop the logical models, a concretization is
required to proceed to the technical concept in SMArDT layer 3.

2.2.2 Vectors, Matrices and Cubes

In complex technical systems, data is often multidimensional. For this reason, prim-
itive types of EMA can be organized as one-, two- or multidimensional arrays. The
syntax to do so is based on the LATEX syntax for raising a base to a power. To specify
the dimensionality of an array type, we need to append a circumflex followed by a list
of comma-separated integer-valued dimension sizes in curly brackets to the primitive
type’s name: Tˆ{a,b,...}. Each argument initializes the size of the respective ar-
ray dimension. For instance, Qˆ{5} represents the set of all five-dimensional rational
vectors Q5, Zˆ{2,3} represents the set of all integer-valued 2× 3 matrices, and so on.
We refer to one-dimensional arrays as vectors, to two-dimensional arrays as matrices, to
three-dimensional arrays as cubes, and to multidimensional arrays as (n-dimensional)
hypercubes. Thereby, Qˆ{a_1,...,a_n} and Qˆ{a_1,...,a_n,1} are compati-
ble types as they represent isomorphic vector spaces. Hence, Qˆ{a_1,...,a_n} and
Qˆ{a_1,...,a_n,1,1,...,1} are compatible, as well, for arbitrarily many array
dimensions of size 1 after the n-th array dimension. In particular, vectors are inter-
preted as column vectors according to this scheme and can be multiplied with matrices
of compatible sizes, which is in line with MATLAB.

Of course, we can also create arrays, vectors, and hypercubes of bounded types. For
instance, the type N(0:255)ˆ{3,w,h}, is often used to represent images with three
channels, a size of w×h, and a color depth of 8 bit. In contrast to MATLAB, dimensions
are set at compile-time and cannot be changed at runtime. Variables of the aforemen-
tioned matrix type Zˆ{2,3} can only be assigned 2× 3 matrices.

2.2.3 Matrix Properties

In matrix-based signal processing, operations often require the operand to exhibit partic-
ular properties. EMA allows the developer to specify an arbitrarily long list of properties
preceding a matrix type, e.g. prop1, prop2,..., propn Qˆ{n,n}. These prop-
erties can be seen as pre- and post-conditions if applied as predicates to component
ports or variables. The properties supported by the EMA type system are based on the
matrix taxonomy by Horn et al. [HJ90] and are only applicable to square matrices. The
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Figure 2.1: A simplified taxonomy of matrices containing the matrix properties relevant
for the EMA type system based on [HJ90].

following properties are supported:

inv: states that an n×n matrix M ∈Mn is invertible (also referred to as nonsingular),
i.e. ∃N ∈ Mn.NM = MN = In. Equivalent statements are: all eigenvalues of M
are non-zero, det(M) 6= 0.

norm: states that an n × n matrix M ∈ Mn is normal, i.e. MM∗ = M∗M . Normal
matrices are closed under raising to an integer power and, if nonsingular, inversion.

sym: states that an n × n matrix M ∈ Mn is symmetric, i.e. ∀i, j ∈ {1, ..., n} : Mij =
Mji.

herm: states that an n × n matrix M ∈ Mn is Hermitian, i.e. ∀i, j ∈ {1, ..., n} :
Mij = M∗ji. Consequently the elements on the main diagonal are real-valued.
Furthermore, all eigenvalues of M are real. Hermitian matrices are closed under
addition, multiplication by a scalar, raising to an integer power and, if nonsingular,
inversion. Hermitian matrices in the real domain are also symmetric.

skew: states that an n × n matrix M ∈ Mn is skew-hermitian, i.e. ∀i, j ∈ {1, ..., n} :
Mij = −M∗ji. Consequently, the real part of the elements on the main diagonal is
zero, i.e. ∀i ∈ {1, ..., n} : <{Mii} = 0.

diag: states that an n × n matrix M ∈ Mn is diagonal. Only the entries on the main
diagonal are allowed to be non-zero, i.e. ∀i, j ∈ {1, ..., n} : Mij 6= 0 =⇒ i = j.
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Furthermore, if ∀i, j ∈ {1, ..., n} : Mij 6= 0 ⇔ i = j, then M is non-singular.
Diagonal matrices are closed under addition, multiplication by another diagonal
matrix or a scalar, raising to an integer power and, if nonsingular, inversion.

psd: states that an n× n Hermitian matrix M ∈ Hn is positive semidefinite (PSD), i.e.
∀x ∈ Cn : x∗Mx ≥ 0.

pd: states that an n× n Hermitian matrix M ∈ Hn is positive definite (PD), i.e. ∀x ∈
Cn \ {0} : x∗Mx > 0.

nsd: states that an n×n Hermitian matrix M ∈ Hn is negative semidefinite (NSD), i.e.
∀x ∈ Cn : x∗Mx ≤ 0.

nd: states that an n × n Hermitian matrix M ∈ Hn is negative definite (ND), i.e.
∀x ∈ Cn \ {0} : x∗Mx < 0.

indef: states that an n×n Hermitian matrix M ∈ Hn is indefinite, i.e. neither PSD nor
NSD.

Note that all properties are applicable to square matrices only. The square matrix
property itself is not represented by a keyword, as it is implicitly encoded in the matrix
dimensions definition. Furthermore, some matrix properties imply or exclude others,
cf. Figure 2.1. We will discuss how matrix properties are used and derived in algebraic
operations of component behavior implementation in Section 2.4.

The EMA type system is a static and strong type system. This means that the type of
a port or a variable must be explicitly declared and known at compile-time. Furthermore,
the type of a variable is fixed and cannot be changed nor cast throughout the course of
the program. This applies to the primitive base type of a variable, i.e. B, N, Z, Q, and C,
but also to the range and the dimensions of a type. In contrast to other matrix-oriented
languages like MATLAB, the matrix dimensions are known at compile-time and cannot
be changed dynamically. This enables us to perform matrix property checks such as
whether a matrix is square or not at compile-time.

However, in an assignment the target variable or port type can have a wider range
than the source type, i.e. a variable of the type T(minValue1:maxValue1) can be
assigned to another variable of the type T(minValue2:maxValue2) iff minValue1≥
minValue2 and maxValue1≤maxValue2. Defining compatibility for resolutions is
less straightforward and might require different strategies depending on the problem do-
main. Specifying a resolution provides a guarantee that the desired precision is delivered.
However, the internal representation and computations might be of higher precision. A
lower resolution res1 can always be mapped to a higher resolution res2 unambiguously
if res1=n×res2 and if the range boundaries of the higher resolution variable are com-
patible with the resolution of the lower resolution variable, i.e. minValue2=n×res1
and maxValue2=m×res1 for n,m ∈ N.
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struct Location {

Q(-90° : 0.001° : 90°) latitude;

Q(-180° : 0.001° : 180°) longitude;

}
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Struct

Name of the struct type

Primitive components

Figure 2.2: A struct example encapsulating the primitive variables longitude and latitude
into a type named Location.

Assignments of higher resolution variables to lower resolution ones can be tackled
using different strategies, the main two of which are: handling the types as incompatible
at compile-time or rounding combined with a type cast warning. For the rest of this
work we are going to stick with the former variant as it provides the highest degree of
type safety.

2.2.4 SI Units in EmbeddedMontiArc

Since EMA has its own type system and does not use MontiCore’s primitive types, we
need to adapt the syntax of unit types presented in Section 1.7.4. In EMA the unit
of a variable is written as part of the range and resolution definition. For instance,
Q(0m:1dm:1km) is a rational variable representing a length between 0 m and 1 km
with a resolution of 1 dm. If the type has no range, only the unit is given in brackets.
For instance, Q(m) denotes the rangeless rational number type to be interpreted as
meters. Except this syntactic variation, all other aspects of MontiCore’s unit type system
continue to hold. Two variables are only compatible if they represent the same physical
quantity or do not have a unit. Conversions are carried out automatically in assignments
featuring compatible but different units. Tables A.2 to A.4 list the available non-SI units,
SI units, and the prefixes together with their syntax in the appendix.

2.2.5 Structs and Enums

Often, we need to group different pieces of data to create a logical data type. For
instance, a geographical location consists of a longitude and a latitude component. Such
a location data type can be modeled as a two-dimensional vector, e.g. Qˆ2. However, the
readability and maintainability of the resulting models would suffer heavily if we sticked
to this pattern. Given a vector like Qˆ2 location, it is not clear what variables it
consists of. Furthermore, the order of the components in the vector must be known by
the user.

To tackle this challenge, we introduce struct types. Similar to other languages like
C/C++ and MATLAB, a struct bundles named variables into a new data type. An
EMA struct is defined in a separate struct artifact, the MontiCore grammar is provided
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enum Weather {

SUNNY | RAINY | CLOUDY;

}
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Name of the enum type

Allowed values separated by a |

Figure 2.3: An enum example representing different weather conditions.

in the appendix in Listing B.5. A concrete example model representing a geographical
location is given in Figure 2.2. The keyword struct initiates a struct definition followed
by the type name, in this case Location. The body contains a list of typed variables.
These variables can be of a standard EMA type or structs themselves. However, circular
dependencies are forbidden, i.e. the parent struct type must not be used as a field type
in any of its child properties. This is verified using a context condition at compile-
time. Struct types are made available for EMA models and resolved using MontiCore’s
language aggregation feature. A struct member can be accessed using the dot operator.
Given a port or variable Location loc, the latitude component can be accessed as
loc.latitude. In contrast to C structs, an EMA struct type is only compatible
with itself, i.e. two different struct types are incompatible, even if they have the same
structure. The rationale behind this is that EMA, in contrast to C, is a high-level
modeling language. The aim of the type system is to capture the domain and prevent
logical errors by prohibiting implicit type conversions.

Similar to structs, enums are a type extension mechanism, which helps improve main-
tainability and reduce logical errors. An enum is used to represent a categorical type.
Again, enums are defined in separate files and composed with EMA models and structs
using the language aggregation mechanism. The MontiCore grammar of the enum def-
inition language is given in Listing B.6 in the appendix. A concrete example modeling
an enum data type to describe the weather can be found in Figure 2.3. The keyword
enum is followed by the name of the enum type being modeled, which, in this case,
is Weather. The list of possible values is given in the enum body with the elements
separated by a pipe character. In this example, only three types of weather are allowed,
namely, SUNNY, RAINY, and CLOUDY. A variable or a port of type Weather may, thus,
only take one of these three values. Again, an enum type is only compatible with itself.
Variables of different enum types are always incompatible regardless of their structure
and entries’ names. In an EMA model, a concrete value can be specified using the enum
name followed by the dot operator and the desired category, e.g. Weather.SUNNY.

30



2.3 Static Architecture Description

component Main<T, N(0:10) n> (Q param1, N param2,…) {

ports in T A,

in T B,

out T C;

instance Add<T, n> adder(0);

instance Mult<T, n> multiplier(1);

connect A -> adder.A;

connect B -> adder.B;

connect adder.C -> multiplier.A;

connect B -> multiplier.B;

connect multiplier.C -> C;

}
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Figure 2.4: A basic example of an EMA architecture. The component Main contains
two subcomponents Add adder and Mult multiplier.

2.3 Static Architecture Description

2.3.1 Components, Ports and Connectors

EmbeddedMontiArc is a textual ADL implementing the C&C paradigm introduced in
Section 1.7.6. Its syntax is mostly based on the MontiArc ADL [HRR12]. However,
there are several deviations and extensions to consider. We are going to introduce the
concrete syntax based on Figure 2.4. The base grammar of EMA is given in Listing B.7.

Components are first-level citizens in EMA. A component type is defined using the
keyword component followed by a name which can later be used to create instances
of this component type1. For instance, we declare the component type Main in L.1
of Figure 2.4. Optionally, a component type declaration can include a list of generic
parameters in angle brackets and another list of component parameters in round brackets.
While generic parameters are allowed to change a component’s interface, component
parameters can only be used to parameterize a component’s implementation. Depending
on the use case, a generic parameter can be set to a component type, a data type, or
a concrete value. We will see, how the latter can change a component’s interface in
Section 2.3.2.

The syntax for declaring a generic component or data type in a component header
definition is just the parameter name, cf. parameter T in L.1. If the generic parameter is
a concrete value, its name needs to be preceded by its data type, cf. generic parameter
n, which is of type N(2:10) in this example. Component parameters, in contrast to
generic parameters, can only be of a data type. The syntax resembles the definition of

1The component type system is not to be confused with the data type system introduced in Section 2.2.
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function parameters in many languages, where a type is followed by a unique name, cf.
parameters Q param1 and N param2 in L.1.

The body of a component definition is enclosed in curly brackets and contains an
interface and a structure definition. The interface definition is initiated with the keyword
ports and is followed by a port list. A port definition consists of the port kind, which
can be either in or out (EMA ports are strictly unidirectional), a data type, and
a unique port name, cf. L.2-4 in Figure 2.4. A component must have at least one
input and one output port, since a major assumption of EMA is the absolute absence
of side effects. Clean side-effect-free models are crucial for testability, maintainability,
and extensibility. An exception are components outputting a constant or a (possibly
parameterizable) constant sequence. Such components obviously do not need an input
port, but can require a component parameter, which alone defines the output behavior
in every execution step.

Subcomponents are created using the keyword instance followed by the component
type to instantiate and a component instance name, which is unique in the scope. If the
component type to be instantiated has generic and/or component parameters, these have
to be set by providing appropriate arguments in (generic parameters in angle brackets
and component parameters in round brackets). In L.6-7 of Figure 2.4 two components
are instantiated with their generic parameters being set to the type T and the value n.
Furthermore, both subcomponents receive a component parameter in round brackets,
which is 0 in L.6 and 1 in L.7.

To interconnect the subcomponents and to connect them to the parent component
in the first place, we need to create connectors. The source of a connector must be
either an output port of a sibling or subcomponent or an input port of the enclosing
component. Similarly, the target of a connector must be either an input port of a sibling
or subcomponent or an output port of the enclosing component. A connector is created
using the connect keyword followed by the source port, the arrow operator ->, and
a target port. Ports of subcomponents can be referenced by using the subcomponent’s
name and the dot access operator. Connector examples are given in L.9-13.

The EMA ADL is used to describe the logical structure and dataflows of a software
system. It is important to stress that no technical details like communication protocols,
deployment schemes, or platform specifics must be covered in an EMA model. EMA is
a language covering the second (logical) layer of the SMArDT process, cf. Section 1.7.5.
As there is no concrete functionality attached to the components, conventional testing
cannot be applied to such models. However, it is possible to verify that a model fulfills
some desired structural properties, e.g. that two components are connected (omitting
further details such as the connector type). Structural properties can be defined using a
more abstract notation such as C&C views, e.g. EmbeddedMontiView [vW20, BMR+17].

The structure definition is optional and can be replaced by a direct component imple-
mentation, e.g. by using a behavior description language as will be described later. In
standard EMA, the structure, i.e. the subcomponents as well as the connectors between
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component Main<N(2:10) n> {

ports in Q A[n],

in Q B[n],

out Q C[n];

out Q D;

instance Add2 adder[n];

instance Mult2n<2*n> multiplier;

connect A[1:n] -> adder[1:n].firstSummand;

connect B[:] -> adder[:].secondSummand;

connect adder[:].sum -> C[:];

connect A[:] -> multiplier.factors[1:n];

connect B[:] -> multiplier.factors[n+1:2*n];

connect multiplier.product -> D;

}
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Figure 2.5: An EMA architecture example featuring port and component arrays. The
component Main contains n Add2 components, each operating on one of n
operand pairs coming from the port arrays A and B. The Mult2n component
computes the product of 2n operands passed through the port arrays A and
B of the Main component to the port array factors of Mult2n.

them, is fixed at design-time. An extension for structural reconfigurations at runtime
will be discussed in Chapter 3.

2.3.2 Arrays and Connection Patterns

Modeling cooperative systems and agent networks often requires the replication of large
numbers of similar components and the interconnection thereof. EMA enables the de-
signer to create multiple similar components and/or ports by means of arrays. Based
on the array syntax of many languages, an array is created by appending the array size
to the port or component name in brackets. For instance, in Figure 2.5 we define the
input ports A and B as well as the output port C as port arrays of length n. Since, by
changing the number of ports of the enclosing component, the parameter n affects the
interface of Main, it cannot be defined as a normal component parameter, but must be
a generic parameter instead.

In this example we demonstrate two interconnection patterns which are commonly
used when dealing with port and component arrays. In the first one, we instantiate an
array of components to deal with an array of incoming streams. Therefore, we create
n adders of the component type Add2 in L.7, each instance to operate on two scalar
inputs. Now, we need to connect the ports of the two arrays A and B of the parent
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Figure 2.6: Graphical views of the component defined in Figure 2.5. On the lhs, the
elements of two port arrays are connected to target ports of a component
array. On the rhs, a port array is connected to another port array.

component to the respective subcomponents, i.e. A[1] and B[1] should be connected
to adder[1] and so on. This can be done in just one line, cf. L.10, by selecting the
elements 1 to n from the port array A and, similarly, the components 1 to n from the
adder component array. The connect operator connects each source element to the
respective target element based on the index. Since this connection pattern is often
applied to all elements of an array, EMA offers syntactic sugar allowing the developer
to leave out the indices of the first and last elements as is done in L.11. Similarly, the
output of each component in the adder array is connected to a corresponding port in
the target port array C. This structural pattern is depicted graphically in the view on
the left side of Figure 2.6.

Furthermore, we can connect a port array to the port array of a target component, let
this component aggregate the data and output a single result or a constant number of
values. In our example, the port array A is connected element-wise to the first n elements
of the input port array of the multiplier component of type Mult2n in L.14, while
the port array B is connected to the remaining n input ports of multiplier in L.15.
The output of the multiplier component is forwarded to the output port D of the
enclosing component in L.16. This connection pattern is depicted graphically in the view
on the rhs of Figure 2.6.

While the component and port array interconnection syntax is strictly declarative and
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is limited to the interconnection of two layers of components, i.e. to describe a bipartite
graph, more complex architectures and dataflows can be modeled using control flow
constructs known from imperative languages. For instance, the Darwin ADL [MK96]
allows the definition of parameterizable component pipelines by applying a forall
construct to a component array. Such constructs have not been made available in EMA
to maintain the declarative style of the language and to keep the syntax as simple as
possible. Pipelines can be modeled using the dynamics framework of EMA which will
be discussed in Chapter 3.

2.3.3 Execution Semantics

Standard EMA has a synchronous and weakly causal execution semantics, which is
based on the FOCUS theory [BS12] and inspired by Simulink [Mat16]. An EMA model
is executed in cycles. In each cycle, every component is executed exactly once. Once a
component has finished its execution, the computation results are immediately available
at its output ports. We assume that data transmission is lossless and has no delay.
Connectors transmit data instantly, i.e. when a source port of a connector is updated,
the data is replicated immediately to the target port. A component is only allowed
to be executed, once all of its predecessors, i.e. components connected to its input
ports via a connector, have finished execution. The identification of a dataflow-based
execution order is, hence, crucial for a correct realization of the model semantics. A
fixed execution order is established at compile-time and no re-scheduling needs to be
performed at runtime. This is similar to Simulink’s sorted execution order list2. For
the computation of the sorted execution order, Simulink distinguishes between virtual
and non-virtual blocks. Virtual blocks are used for the sake of clarity and are flattened
internally at compile-time, i.e. replaced by their inner structure. Hence, they do not
have an own execution order. Non-virtual blocks on the other hand are treated as black
boxes. They have their own execution order and their subcomponents are executed
according to a separate execution order list. However, defining a block as virtual or non-
virtual has no impact on the semantics as both approaches lead to the same input/output
behavior of a model. In EMA, for the computation of the execution order, components
are considered to be virtual, i.e. the C&C model is flattened at compile-time before
the execution order is computed and before code is generated. Hence, only atomic
components receive an execution order. In EMA, multiple component instances can share
a single execution order id if the execution order of these respective component instances
can be interchanged without affecting the dataflow. This enables the parallelization of
component execution in the generated code.

The flattening operation is a model transformation on the AST and the symbol table,
recursively replacing composite components with their subcomponent structure and for-

2https://de.mathworks.com/help/simulink/ug/controlling-and-displaying-the-sorted-order.html, ac-
cessed February 3, 2020

35



Chapter 2 EmbeddedMontiArc

warding external connectors directly to these subcomponents. The result is a flat EMA
model with only one level of atomic component instances. Since components are scope
spanning symbols with an own visibility, names of subcomponent instances are concate-
nated with the name of the flattened parent component. For instance, if a component
Parent has a subcomponent child, the latter is renamed into Parent_child.

Note that the result of this model transformation does not replace the input model,
but only serves as an intermediate data structure. The user remains completely unaware
of this step and only operates on the hierarchical model which is much easier to grasp.

At runtime all the components are executed sequentially based on the execution order
list in each cycle. A cycle is finished when all components have been executed. The next
cycle is started immediately, when the preceding cycle is finished. The duration of a
cycle is not fixed and only depends on the executing hardware. This duration can vary
from cycle to cycle. However, the definition of a minimum execution time is conceivable
to limit the workload. An upper limit on the execution time can also be necessary in
the context of realtime systems. If a component has not finished its execution within a
given time limit, it would output a default value or a warning instead of the real result.

The absence of a communication delay of one or more execution cycles means that
the semantics of EMA is non-strongly causal, as the input until time t does not nec-
essarily determine the output until time t + 1. However, in EMA the input until time
t completely determines the output until time t rendering the semantics weakly causal
[BS12]. While strong causality is indispensable in asynchronous systems such as web ap-
plications, digital integrated circuit (IC) design or high performance computing (HPC),
we will refrain from using it for our rather abstract and mathematical domain. The
weakly causal semantics of EMA is more natural and efficient when modeling logical
architectures, mathematical algorithms, and dataflows of non-distributed software.

As an example consider the two architectures in Figure 2.7. Both systems have the
same semantics in EMA and can be described mathematically using the equation

Ck = (Ak +Bk)Bk, (2.1)

where k is a sequential index. In contrast, if the system were strongly causal under the
assumption that each subcomponent required n timesteps to compute and communicate
the output, the equations describing Main1 and Main2 would become

Ck = (Ak−n +Bk−n)Bk−n (2.2)

for the left and

Ck = (Ak−2n +Bk−2n)Bk−n (2.3)

for the right model, respectively.
Finding an execution order for linear models, i.e. models without cyclic port depen-

dencies, is straightforward: each component instance is put on the execution list after all
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Figure 2.7: This example shows two C&C architectures Main1 and Main2, which are
semantically equivalent in EMA due to its synchronized and weakly causal
execution model, but which might have different interpretations in a language
with strongly causal semantics.
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Figure 2.8: This example shows an architecture featuring an algebraic loop (Main1) and
its loop-free equivalent synthesized automatically at compile-time (Main2).

component instances its input ports depend on. Consider the component Main2 on the
rhs of Figure 2.7. The subcomponent for multiplication must be executed after the one
for addition because one of its input ports depends on the addition result. The execution
order ids are given at the top right corner of each atomic component in this diagram.

The situation becomes more complex when cycles are present in the model, i.e. when
there is a path from a subcomponent’s output to its own input without a delay, cf.
model on the left of Figure 2.8. Loops where all output ports depend only on the input
ports of the current step (and not on previous steps) are referred to as algebraic loops.
At compile-time, the compiler tries to replace arrangements with algebraic loops to
equivalent loop-free subcomponents. Consider the block model on the left in Figure 2.8
modeling the system equation

x = Ay +Bx (2.4)
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with y being the input and x the output of the system. In this specific case, where the
output is a linear function of itself and the input, the cycle can be removed by solving
for x:

x = Ay +Bx (2.5)

x−Bx = Ay (2.6)

x = (I −B)−1Ay (2.7)

as long as (I −B) is invertible. The pattern is detected by graph traversal when trying
to find the dependencies of the summation component. Thereby, the compiler notices
the circular dependency of its second input port from its output port. A new component
is synthesized according to Equation (2.7). The new, synthesized architecture is depicted
on the rhs of Figure 2.8. It has no loops and the compiler can determine the execution
order based on the dataflow.

If an explicit solution cannot be found, i.e. if the loop does not correspond to a known
(solvable) pattern, it can be solved at runtime using an algebraic solver. Since this
must be done in each timestep and, what is even worse, there is no guarantee that a
solution exists, a runtime solver would not only affect the runtime performance heavily,
but might also lead to unpredictable behavior. This is obviously not a favorable solution,
e.g. in safety-critical realtime systems. For this reason we only allow loops, which can
be transformed into loop-free architectures at compile-time. If no such transformation
can be found, the model is considered invalid.

So why are loops needed at all if they can be formulated as loop-free architectures?
EMA is a specification language, which focuses on the what rather than on the how.
Many technical problems can be formulated elegantly as an algebraic or differential
equation system, while the explicit solution may have a cumbersome and unintuitive
form. What is more, requiring that loops must be solvable at compile-time, loops can be
seen as syntactic sugar for loop-free and hence, FOCUS-compatible models (cf. FOCUS
theory [BS12]).

Obviously, to resolve algebraic loops, knowledge of the component behavior is re-
quired. A means to integrate appropriate behavior models into EMA components will
be discussed in Section 2.4.

For non-algebraic loops, i.e. loops with stateful components, Simulink does not specify
a single correct execution order. To resolve such loops, Simulink introduces the notion of
direct-feedthrough ports. A direct-feedthrough port is an input port the current value of
which determines the current value of at least one output port of the same component.
The execution order is then created using two rules.

First, if a component instance drives a direct-feedthrough port of another component,
it must precede this component in the execution order list. Second, components with
non-direct-feedthrough ports can be put at any position in the execution order list.
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Figure 2.9: The component on the left contains a loop consisting of two non-flattened
components. The model in the middle displays the contents of the Process-
ing subcomponent making obvious that there are no circular dependencies
on port level. The figure on the right shows how the component is seen by
the compiler after the flattening step.

Therefore, such components are put in a non-specified order at the beginning of the
execution list.

This ambiguity is unfavorable for EMA, as we want to keep the language under-
standable and thus the semantics clean, predictable, and reproducible. For this reason,
non-algebraic loops are forbidden in EMA. However, while the scope of Simulink mod-
els often includes both the control algorithm as well as the plant to control, EMA is
meant to design the architecture of the control software only, which excludes feedback
loops. Hence, non-algebraic feedback loops inside of EMA architectures are usually not
required. An exception however is when we need to access some past state of the EMA
model. In such a case we need to use a Delay<T>(Q default) component. It takes a
value of type T as input and outputs it in the following cycle. The default parameter
specifies the output for the first cycle for which there is no previous input. The EMA
scheduler puts all Delay components at the beginning of the execution list, breaking
loops they are part of. Then the scheduler tries to resolve algebraic loops. If there
are still circular dependencies left over after removing dependencies from Delay com-
ponents and resolving algebraic loops, the model is not valid and the compiler delivers
an error. Note that loops which are present in the original model sometimes disappear
during the flattening step. This is the case if there is no pair of input/output ports so
that the output port depends on the input port, and vice versa. An example is shown
in Figure 2.9. The component NonVirtLoopComp on the left contains a loop featur-
ing the two original components, Processing and Feedback. In VirtLoopComp
in the middle, the contents of the Processing component are shown, making obvi-
ous that there is no circular dependency on port level. Flattening this model leads to
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indices are 1-based in 
EMA and MontiMath

N nrows = 2;

N ncols = 3;

N (0 m: 10 km) x = 1 m; 

Q(-oo m: 0.1mm : 10km)^{nrows, ncols} A = [-1, x, 1; x, 2*x, 0];

for c = 1:ncols

for r = 1:nrows

if r == c

A(r,c) = 2;

elseif abs(r-c) == 1

A((r+2)%r,(c*3)%c) = -1;

else

A(r, c) = 0;

end

end

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

MontiMath

2x3 matrix literal

for loop header defining a counter variable r 
and letting it run from 1 to nrows

if clause with a conditional and an 
unconditional alternative

assigning a value to the entry at r-th
row and c-th column of the matrix A

similar to MATLAB, MontiMath uses
the end keyword to delimit blocks

variables are statically and strongly
typed using the EMA type system

Figure 2.10: This listing shows a simple MontiMath example exhibiting the main lan-
guage constructs including variable declarations, matrix literal definitions,
loops and if statements.

FlattenedVirtLoopComp depicted on the right. This version obviously has no loops.

A future EMA extensions should enable modeling differential equation system as com-
ponent loops, as well. For this case special differentiator and integrator components may
be used in addition to arithmetic operations. This will enable the developer to model
complex dynamic systems computing movements of objects, electric flows, and many
other real-life problems. As for algebraic loops, a modeled differential equation should
only be valid if it can be solved and discretized at compile-time.

2.4 MontiMath

2.4.1 Basic Syntax

MontiMath is an imperative language developed for the design and implementation of
math-heavy algorithms. It has been inspired by MATLAB’s matrix-oriented paradigm.
The core grammar of MontiMath is given in Listing B.3. To facilitate comparisons of
the two languages, translations from one language into the other, and vice versa, and to
make MontiMath readable for MATLAB developers, the syntax of MontiMath, including
important function names, has been taken over from MATLAB as far as possible. Built-
in MontiMath functions and operators are side-effect free so that MontiMath code always
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results in clean components. An example showing the basic language constructs is given
in Figure 2.10. However, in contrast to MATLAB, MontiMath uses the EMA types
system, which makes it a statically and strictly typed language similar to EMA itself.
Declaration of a MontiMath variable requires a type definition, which is expressed by
preceding the newly declared variable by an EMA type, e.g. Q(0 Ohm : 1 nOhm :
1 MOhm)ˆ{2,2} impedance. The syntax to define a matrix constant is the same as
in MATLAB, but the literals inside the matrix can be enriched by SI units if needed.
As in MATLAB, a matrix constant is defined in square brackets. Thereby, columns and
rows are separated by commas and semicolons, respectively. The initialization of the
impedance matrix impedance modeling a two-port network can hence be written as
impedance = [10Ohm, 5Ohm; 6Ohm, 8Ohm];. The grammars for matrix literals
and matrix-specific expressions are given in Listing B.1 and Listing B.2, respectively.

To maintain compatibility to MATLAB, MontiMath indices start with 1 as opposed
to most GPLs, where arrays are zero-based. Scalars are treated as 1 × 1 matrices,
but the square brackets can be dropped when defining a scalar literal. Other than in
MATLAB, statements, except conditional statements and loops, need to be terminated
with a semicolon.

MontiMath supports the typical operators needed in many computations including
addition (+), subtraction (-), multiplication (*), division (-), and power (ˆ). If applied
to matrices, these operators perform the corresponding algebraic matrix operation, e.g.
a matrix multiplication. Division by a matrix, e.g. A/X, is semantically equivalent to
multiplying the dividend with the inverse of X, i.e. A/X is equivalent to A*Xˆ-1 or
A*inv(X).

Furthermore, MontiMath supports the Hadamard product or element-wise multipli-
cation (.*), inverse Hadamard product (./), and element-wise power (.ˆ). The standard
power operator (ˆ) does not take matrices as exponents. However, the function exp(x)
representing the mathematical function ex can cope with square matrix-valued x. Then,
the result is an approximation of the Taylor series of the matrix exponential

eX =

∞∑
k=0

1

k!
Xk. (2.8)

The transpose operation for real and the Hermitian transpose operation for complex-
valued matrices can be expressed by appending the apostrophe operator (’) to a matrix
name, e.g. A’. A can be an arbitrarily shaped matrix. The returned result of the
operation is a matrix with swapped dimension sizes, i.e. if the base is of size m× n, the
result is of size n×m. Furthermore, the entries are conjugated in the complex case.

The operators +, -, .*, ./, .ˆ work on arbitrarily sized operand matrices A,B,
but the operands’ dimensions must coincide, i.e. A,B ∈Mm,n,m, n ∈ N. The circumflex
operator ˆ works only for square matrices as a basis and scalar exponents. * works on
any operands A,B as long as the number of columns of the first operand is equal to the
number of rows of the second operand, i.e. A ∈Mm,n, B ∈Mn,l.
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MontiMath supports the standard control flow constructs including for loops and if
clauses, enabling us to write arbitrarily complex algorithms. Again, the syntax is based
on MATLAB.

The composition of a cyclically executed language such as EMA with an implemen-
tation language introduces a problem: in general, a language such as MontiMath is not
aware of the repeated execution and variables are not passed from one cycle to another.
On the other hand, a computation might depend on previous cycles, e.g. in a low pass fil-
ter. To solve this issue, we introduce the static keyword. A variable declared with this
modifier, e.g. static Q cumulativeError, is saved in a cycle-independent scope.
Its value does not get lost when an execution cycle is finished and can be reused in the
next cycle. Alternatively, the problem can be modeled using delay blocks. A variable
which is needed in subsequent execution cycles can be output through an output port,
passed to a delay component, and input into the same component in the next cycle.

2.4.2 Deriving Matrix Properties for Concrete Matrices

Due to the strict type system of MontiMath including matrix dimensions, many errors,
which only occur at runtime in dynamically typed languages, can be caught at compile-
time using CoCos. Given a concrete matrix literal, we can derive its size directly by
counting its rows and columns. First, this needs to be done to ensure that the matrix
is valid, i.e. that each row has the same number of columns. Second, we need to ensure
that the dimensions of the matrix match with the dimensions of the defined variable
type the constant is assigned to. Third, when used in an expression, we need to ensure
that the operands’ dimensions match.

Furthermore, if a matrix or the result of an operation executed on this matrix is to be
assigned to a variable defined with a matrix property list, we first check if the required
properties are compatible. Two properties are compatible iff there is a directed path
between them in Figure 2.1. For instance, the properties psd and skew are mutually
exclusive and a variable definition containing two incompatible properties, e.g. psd
skew Qˆ{2,2} M;, would result in a compile-time error.

After ensuring that the matrix is square, we check the required properties construc-
tively one by one, starting with the most specific ones. However, the Hermitian property
is checked before definiteness, since the latter is defined using the former. The matrix
properties of a matrix M are checked as follows (other implementations are possible):

inv: we compute the determinant. The property holds if det(M) 6= 0.

norm: we compute MM∗ and M∗M . The property holds if the two are equal.

sym: we check element-wise that ∀i ∈ [1, n], j ∈ [i, n] : Mij = Mji.

herm: we check element-wise that ∀i ∈ [1, n], j ∈ [i, n] : Mij = M∗ji.
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%herm(m1,m2,op).

herm(X,Y,' + '):- herm(X), herm(Y).

herm(X,Y,' - '):- herm(X), herm(Y).

herm(X,Y,' * '):- herm(X), scal(Y).

herm(X,Y,' * '):- herm(X), int(Y).

herm(X,Y,' * '):- herm(Y), scal(X).

herm(X,Y,' * '):- herm(Y), int(X).

herm(X,Y,' ^ '):- herm(X), int(Y).

herm(X,'inv'):- herm(X), inv(X).

herm(X,'trans'):- herm(X).

%diag(m1,m2,op).

diag(X,Y,' + '):- diag(X), diag(Y).

diag(X,Y,' - '):- diag(X), diag(Y).

diag(X,Y,' * '):- diag(X), diag(Y).

diag(X,Y,' * '):- diag(X), scal(Y).

diag(X,Y,' * '):- diag(X), int(Y).

diag(X,Y,' * '):- diag(Y), scal(X).

diag(X,Y,' * '):- diag(Y), int(X).

diag(X,Y,' ^ '):- diag(X), int(Y).

diag(X,'inv'):- diag(X), inv(X).

diag(X,'trans'):- diag(X).

…

%conclusionssquare(X):- norm(X).

norm(X):- diag(X); herm(X); skewHerm(X).

herm(X):- pd(X); psd(X); nsd(X); nd(X); indef(X).

psd(X):- pd(X).

nsd(X):- nd(X).
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Figure 2.11: An excerpt of the Prolog rule set for the derivation of matrix properties.

skew: we check element-wise that ∀i ∈ [1, n], j ∈ [i, n] : Mij = −M∗ji.

diag: we check element-wise that ∀i 6= j ∈ [1, n] : Mij = 0.

psd: we first check if the matrix is Hermitian. Then we check if all eigenvalues are
greater than or equal to zero.

pd: we first check if the matrix is Hermitian. Then we check if all eigenvalues are greater
than zero.

nsd: we first check if the matrix is Hermitian. Then we check if all eigenvalues are less
than or equal to zero.
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diag C^{2,2} D1 = [j, 0; 0, 1];

herm C^{2,2} H1 = 5*[2,1;1,2] + D1;

diag herm C^{2,2} D2 = [1, 0; 0, 1];

herm C^{2,2} H2 = 5*[2,1;1,2] + D2;

1

2

3

4

MontiMath

1a) Checking that D1 is diagonal

2a) Result is Hermitian due the rule
herm(X,Y,' * '):- herm(Y), int(X).

3a) Result cannot be proved to be Hermitian due to the lack of
rule herm(X,Y,' + '):- herm(X), diag(Y).
4a) Error message

2b) Result is Hermitian due the rule
herm(X,Y,' + '):- herm(Y), herm(X).

3b) OK

1b) Checking that D1 is diagonal and Hermitian

Figure 2.12: An example of matrix property derivation for operations.

nd: we first check if the matrix is Hermitian. Then we check if all eigenvalues are less
than zero.

indef: we first check if the matrix is Hermitian. Then we check that at least one eigen-
value is greater and at least one is less than zero.

The properties of a matrix are saved in a list attached to the matrix symbol. Before
checking computationally if a property holds, we would first look up the property in the
property list.

Consider the assignment norm diag herm indef Qˆ{2,2} = [0,1;1,0];.
Based on Figure 2.1, we can see that indefiniteness is the most specific property here.
We hence first check whether the matrix is Hermitian. As this is the case, we can
immediately confirm that the matrix is normal, as well, and don’t need to check this
property explicitly. Next, we check that the matrix is indefinite by verifying that it has
both positive and negative eigenvalues which in this example is true with the eigenvalues
being e1 = −1, e2 = 1. Last, we check for the diag property which does not hold, since
we can find off-diagonal non-zero entries. The result is a type check error.
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2.4.3 Deriving Matrix Properties for Operations

While proving the presence or absence of properties for a concrete matrix literal is
straightforward as was discussed in Section 2.4.2, the task gets more involved for ex-
pressions. Operations on matrices can be property preserving, property generating, or
neither. In most cases, no statement can be made. For instance, the sum and the
product of two diagonal matrices is diagonal; the sum of two Hermitian matrices is still
Hermitian, but the product of two Hermitian matrices does not have to be Hermitian.
This leads to an extension of the algebraic type checking facility of EMA and MontiMath
as described in the following.

We encode a rule set for the derivation of matrix properties based on [HJ90] as a Prolog
database. An excerpt is given in Figure 2.11. Further rules are provided in Figures A.1
and A.2 in Appendix A. For each property a corresponding predicate exists. Each
rule states that a property holds after an operation if the operands fulfill the required
properties. For instance, L.2 in Figure 2.11 states that the predicate herm (Hermitian
property) holds for the result of the + operator if the two operands are Hermitian, as
well.

Whenever the lhs of an assignment is a matrix with properties, the rhs undergoes a
sort of symbolic execution on matrix properties using these Prolog rules. Therefore, the
compiler adds all known properties of the matrix variables as facts to the database and
queries it for the desired property.

Consider Figure 2.12 holding a negative example in L.1-2 and a positive one in L.3-
4. In L.1 the matrix variable D1 is initialized with a concrete matrix. The variable is
annotated with the diag property and hence, the rhs needs to be checked for being
diagonal. Since the value of the rhs is known, the compiler uses the rules discussed
in Section 2.4.2 to verify the property. Obviously, the matrix is diagonal and so the
assignment is valid. The compiler caches the properties found for D1 to reuse them later
if needed.

L.2 is an assignment again, but now the matrix variable needs to be Hermitian. Since
the concrete value of D1 can be looked up in the previous line, the compiler can eval-
uate the Hermitian property using the concrete result of the sum. Obviously, it is not
Hermitian as the result contains an imaginary entry on the main diagonal. However, if
the concrete value of D1 were not known, e.g. if it came from a component port, the
compiler needed to execute the sum symbolically. The only rule applicable to our expres-
sion is the one in L.2 of Figure 2.11 stating that the sum of two Hermitian matrices is
Hermitian. Hence, the compiler needs to check if the two summands are Hermitian. For
the first summand the rule in L.6 of Figure 2.11 states that the product of a scalar with
a Hermitian matrix is Hermitian. For the atomic matrix of this product the Hermitian
property has been ensured explicitly and is present in the fact database.

Next, we need to prove that the second summand is Hermitian, as well. Assuming
that we do not have access to the concrete value of D1, the compiler can only be assured
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that D1 is diagonal. Although, theoretically the sum can still be Hermitian, this cannot
be guaranteed and the compiler throws a compile-time error.

The example in L.3-4 of Figure 2.12 is similar with the difference that D2 as opposed
to D1 is declared as diagonal and Hermitian which, again, is verified by checking its
entries. Hence, the compiler can prove that the sum is indeed Hermitian using the rule
in L.2 of Figure 2.11. Note that under the assumption that the compiler had no access
to the concrete value of D2 and if it only knew that D2 were diagonal (but there were no
herm property attached to the symbol), it would still fire a compile-time error although
the sum is actually Hermitian given the concrete value in L.3.

Besides acting as pre- and postconditions, matrix properties can be used by the com-
piler as hints for code optimization:

Memory consumption: due to the fixed dimensions, the compiler knows exactly how
much space it needs for the matrices used in the model. There is no need to
allocate space dynamically.

Dynamic programming: due to the associative property, the order of matrix multiplica-
tions in a chained multiplication expression can be changed. Unless the matrices
are squared, it might be beneficial to do so in order to save operations. The op-
timal order can be found by solving a dynamic program. This can be done at
compile-time, since the dimensions are fixed.

Diagonal matrices: knowing that a matrix is diagonal helps us save space and compu-
tation time. A diagonal Qˆ{n,n} matrix can be saved efficiently as an n-element
vector. Multiplication with a vector has a complexity of O(n) instead of a standard
matrix-vector multiplication complexity of O(n2). Multiplication with an arbitrary
Qˆ{n,n} matrix is reduced to O(n2) compared to the multiplication complex-
ity of O(n2.373) for two arbitrary square matrices using optimized Coppersmith-
Winograd-based algorithms [DS13, Wil11, LG14]. Multiplication with an arbitrary
Qˆ{n,m} or Qˆ{m,n} matrix has a complexity of O(nm) instead of standard
matrix-multiplication complexity of O(mn2). Furthermore, inversion complexity
is reduced from O(n2.373) when using optimized Coppersmith-Winograd-based al-
gorithms to O(n), since we only need to compute a single square root per diagonal
entry. Similarly, the symmetric and Hermitian properties can be used by the com-
piler for optimization, as only one half of the matrix needs to be kept in memory.

2.4.4 EmbeddedMontiArcMath

Although MontiMath is an abstract language with a syntax close to the mathematical
domain, it is used to specify a concrete behavior leaving no room for interpretations.
Consequently, enriching leaf components of an EMA model with a MontiMath behavior
leads to a complete level 3 (technical concept layer) SMArDT model. Model linkage
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component NormalizedLaplacian<N1 n> {

ports in Q^{n,n} A,

out Q^{n,n} L;

implementation Math {

Q^{n,n} D = diag(A * ones(n,1));

L = D^-0.5 * A * D^-0.5;

}

}
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EMAM

EMA with embedded MontiMath
behavior specification

Reading the input port

Writing to the output port

Figure 2.13: An EMAM model embeds a MontiMath script into an EMA component,
thereby leveraging the latter from SMArDT level 2 to SMArDT level 3.

is implemented using the language extension and embedding framework of MontiCore.
Therefore, an EMA component is extended with an implementation block. Such an
implementation block is initiated by the keyword implementation followed by the
name of the language and the actual implementation block delimited by curly brackets,
cf. behavior grammar in Listing B.8. This intermediate grammar extends the EMA
grammar and can be used to embed arbitrary implementation languages. In our con-
crete example, the implementation language is set to MontiMath (or just Math) in the
grammar in Listing B.9. Components with a MontiMath implementation are referred to
as EmbeddedMontiArcMath (EMAM) components. In EMAM components the imple-
mentation keyword is followed by the language name Math. The MontiMath script
is put thereafter in a block delimited by curly brackets, cf. Figure 2.13. It has read-
ing access to the input ports and writing access to the output ports of the EMA host
component. All components featuring an implementation block instead of a subcompo-
nent structure are considered atomic and are not flattened by the compiler, although,
theoretically, each MontiMath command could be mapped to a dedicated component
instance. Interface changes in the EMA model affect the MontiMath model directly,
and vice versa. Hence, it is not possible to have diverging SMArDT level 2 and level 3
models.

2.4.5 Optimization in MontiMath

Many tasks in CPS engineering can be expressed as optimization problems, cf. Sec-
tion 1.3.2. For this reason it is important that a CPS engineering methodology provides
appropriate optimization tools. We tackle this requirement by introducing optimiza-
tion statements in MontiMath. The syntax for optimization problems is defined as an
extension to MontiMath in the grammar in Listing B.4. It is roughly based on CVX-
GEN [MB12] due to its closeness to the mathematical notation. Consider the quadratic
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psd Q^{n,n} A = …

Q^{m,n} B = …

Q^{k,n} C = …

Q^{n} c = …

Q d = …

Q^{m} f = …

Q^{k} h = …

minimize //or: maximize

Q^{n} x;

in

Q val = 0.5 * x‘ * A * x + c‘ * x + d;

subject to

B * x <= f;

C * x == h;

…

end
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Figure 2.14: A MontiMath optimization statement representing a quadratic problem.

problem in Equation (2.9)-Equation (2.11):

min
x

1

2
xTAx+ cTx+ d (2.9)

s.t. Bx � f (2.10)

Cx = h, (2.11)

where x, c ∈ Rn, d ∈ R, f ∈ Rm, h ∈ Rk, A ∈ Mn, B ∈ Mm,n, C ∈ Mk,n, k,m, n ∈
N \ {0}, and � denotes the element-wise less than equal operator. The corresponding
MontiMath syntax to write down this problem is given in Figure 2.14.

The syntax provides dedicated keywords for optimization problems to come as close
as possible to the original mathematical formulation. This is in contrast to GPL-based
application programming interfaces (APIs) offered by solvers like Gurobi3. Such APIs
can be very solver- and host language-specific leading to an unintuitive syntax.

First, we need to make sure that constants used in the optimization problem are
defined beforehand, cf. L.1-7 in Figure 2.14. Although not strictly necessary, we equip
A with the psd property in L.1, guaranteeing that the minimization problem has a
solution. The actual optimization statement is initiated using the keyword minimize
in L.9. Depending on the problem to be solved, the maximize keyword can be used
instead. The keyword is followed by a declaration of the optimization variable. The type
must be numeric, i.e. Booleans, structs, and enums are not allowed. However, it can be

3https://www.gurobi.com, accessed August 19, 2020
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a vector of arbitrary dimensionality. Note that we use Q here as an approximation of R
used in the original formulation.

The objective function follows the in keyword and is given as a single expression. In
our case it is a quadratic function, cf. L.12. It is assigned to the variable Q val, which
contains the optimal value of the objective function after the optimization step. The
argument yielding the optimum can be accessed using the optimization variable x when
the problem is solved.

Optionally, a set of arbitrarily many constraints can be defined next. To do so, a con-
straint block is initiated using the subject to keyword. Each constraint is an equality
or an inequality expression depending on the optimization variable. The optimization
problem is closed using the end keyword, as is done in L.17.

2.4.6 Component Variabilty for Self-Adaptable Systems

CPSs rely heavily on signal processing and control components like filters, transforma-
tions, PID controllers, and others. Usage of such components, however, mostly requires
a reasonable parameterization which is non-trivial in complex systems. Usually, param-
eters of such components are optimized with regard to specific objectives and are highly
dependent on the application. We illustrate the problem by the example of the widely
used PID controller. The task of such a PID block is to control a process variable, e.g.
the velocity of a vehicle, based on a given target function, e.g. a concrete desired velocity
by using the control function

u(t) = KP e(t) +KI

∫ t

0
e(τ)dτ +KD

de(t)

dt
(2.12)

or its discretized version, where e is the measured deviation of the current from the
desired state and u is the control action reacting to this deviation, e.g. the pedal position.
The behavior of the process variable might vary drastically depending on the parameters
KP , KI , KD. A requirement for the tuning of these parameters might be a reasonable
trade-off between stability and fastness of response. Usually, the tuning takes place at

PID Controller (Q P, Q I, Q D)

Q e Q u

PID Controller (Q P, Q I, Q D)

Q e

Q u
Q P

Q I

Q P

EMA EMA

Figure 2.15: A statically parameterized and an extended, runtime-adaptive PID compo-
nent interface.
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component PID(Q P, Q I, Q D) { 

ports

in Q e,

in Q port_P;

in Q port_I;

in Q port_D;

out Q control;

implementation Math {

P = port_P;

I = port_I;

D = port_D;

… //implementation

}

}
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corresponding port and an update assignment
are required

Figure 2.16: The PID component with parameters adaptable through dedicated ports.

design time and the parameters are fixed at compile time. The corresponding component
interface is depicted on the left side of Figure 2.15. It receives the error e through an input
and delivers the action u through an output port. The PID parameters are provided as
component parameters.

However, the operating conditions of a cyber-physical system tend to change in com-
plex environments. It is therefore necessary to re-evaluate and fine-tune the system
parameters on a steady basis. In Simulink the desired parameters of a PID component
can be configured using its settings menu or by calling the built-in function set_-
param(Object, ParameterName, Value). The latter also allows one to program-
matically configure the component, but is not available for code generation and can,
hence, not be used at runtime. In order to enable runtime parameter reconfiguration
the user has to set the parameter source to external, thereby adding new ports to the
component instance, as depicted on the rhs of Figure 2.15. Through these ports the com-
ponent parameters can be adapted at runtime from outside. However, many Simulink
components such as Communications System Toolbox filters do not support external
sources for configuration parameters. What is more, the user interface for changing the
parameter source varies from toolbox to toolbox.

To model runtime reparameterization of signal processing components in EMA, we can
employ the following implementation pattern, thereby obtaining the model in Figure 2.16
which is depicted graphically on the rhs of Figure 2.15:

• Identify the component parameters to be runtime-adaptable in a statically param-
eterizable component, e.g. the PID on the left in Figure 2.15.

• Replicate these parameters as ports.
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component PID(adaptable Q P, adaptable Q I, adaptable Q D) {

ports

in Q e,

out Q control;

implementation Math {

…

e = P*e + I*(e+e_old)*d / 2 + D*(e-e_old)/d;

}

}
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The adaptable keyword adds a port, which can be used
optionally to adapt instantiation parameters

The component parameters P, I, and D are used for the
computation of the component behavior. This behavior can
be updated at runtime by updating P, I, and/or D through
the respective configuration ports.

Figure 2.17: The PID component interface with adaptable parameters defined in Em-
beddedMontiArc.

• Override these component parameters’ values in the component implementation
with the corresponding ports’ inputs (an initial parameterization using component
parameters is indispensable, since the big part of the parameter search needs to be
done at design-time).

This implementation pattern is a repetitive task. Furthermore, if both a statically pa-
rameterized and an adaptive version of a component should be available, the component
needs to be replicated. Mostly, implementation or design patterns arise from the lack
of native language support for solving a specific problem. Consequently, we are able
to tackle the runtime reconfiguration problem by introducing a new language feature in
EMA: the adaptable component parameter modifier.

Component parameters which should potentially be adaptable at runtime are marked
with the adaptable keyword, as is shown in Figure 2.17. On instantiation of a com-
ponent, for each parameter marked with the adaptable modifier, a corresponding
configuration port is created implicitly. Data written to this port is used to override the
respective component parameter value, otherwise the parameter value remains constant.
A configuration port is very similar to an ordinary data port. Nevertheless, it manifests
several semantical differences, thereby increasing the reusability of the component while
reducing the model complexity and improving the efficiency of the generated code.

In an EMA model, each input port has to be an endpoint of a connector which is
checked at compile time using a context condition. This excludes configuration ports
which can remain unconnected. In this case the respective configuration parameter will
keep its original value forever; the port remains invisible for the user and no code related
to this port is generated. It cannot be deduced from the target code that the port
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TuningController

PID(adaptable P,    
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Tuner
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Figure 2.18: The components LegacyController and TunableController depict the static
and the adaptable usage of the same PID component.

actually existed in the model. This ensures that adaptable components can be used in
conventional, non-adaptive systems, where the parameters are bound at compile time,
without having to remove the adaptable modifier. We hence don’t need to maintain two
component variants, an adaptable and a non-adaptable one. Both the adaptive and the
static variant are covered by one model. As a consequence, configuration ports cannot
be used in the implementation block explicitly. Otherwise, the behavior would become
inconsistent if a port were not connected but used by the developer.

Second, if one or more configuration ports have incoming connectors, in each execution
cycle, the behavior phase of the component will be preceded by a reconfiguration phase,
where the configuration parameters will be set to the values at their respective connected
configuration ports.

Legacy components can be upgraded easily by adding the adaptable modifier to
the component parameters of concern. Note that parameter updates only affect future
uses of the parameter of interest in the component behavior implementation, e.g. in
MontiMath. Accessing an adaptive parameter as is done in the MontiMath implemen-
tation in Figure 2.17 will yield the latest update. Furthermore, if a component uses its
adaptable component parameters to initialize adaptable component parameters of its
subcomponents, runtime updates of the parent component’s adaptable parameters will
propagate automatically to the corresponding adaptable parameters of the subcompo-
nent, cf. Figure 2.19. Updating adaptable component parameters at runtime will have
no impact on the decisions taken before the update. In particular, a component’s struc-
ture cannot be changed by updating an adaptable parameter at runtime. For instance,
if a component parameter determines the number of subcomponents in a component ar-
ray, adapting the value of this parameter will not change the number of subcomponents.
Adaptable parameters serve for the tuning of the behavior computations at runtime, not
to change structural properties. If the behavior computation does not depend on the
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component Controller (adaptable Q param1) {

ports in Q meas_error,

out Q control_command;

instance PID pid(param1, 0, 0);

connect meas_error -> pid.e;

connect pid.control -> control_command;

}
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Figure 2.19: The main controller has an adaptable parameter param1. This parameter is
used to initialize the (also adaptable) parameter of the PID subcomponent.
Whenever param1 of the parent component gets updated at runtime, the
update is propagated immediately to the PID subcomponent.

adaptable parameter, updating it will have no effect. A context condition verifies for
EMAM components that adaptable parameters are used in the MontiMath implementa-
tion. Furthermore, in composite components, it is checked for each adaptable parameter
whether it can be propagated to an adaptable parameter of at least one subcomponent.

In practice, a self-adaptive black box system can be realized using adaptive components
combined with evolutionary or other tuning algorithms [HKK+18]. The measured error
is then used as an input to the parameter tuner computing updated parameters and
writing them back to the adaptive ports of the controller (which in turn can distribute
these parameters to its subcomponents). If, furthermore, the controller function as well
as its first derivative are known, gradient descent optimization can be used instead of an
evolutionary search.

As an example of static and adaptable component usage, consider Figure 2.18: the
components LegacyController and TunableController use the very same PID
component in their internal structure. While the LegacyComponent sets the PID pa-
rameters only at instantiation and keeps them static, the TunableController has a
Tuner component, which based on the error signal and, possibly, further inputs com-
putes updates for the PID parameters, which are input into the configuration ports of the
respective adaptable component parameters of the PID component. These configuration
ports are available for optional usage by external components, since the corresponding
component parameters have been declared adaptable.

2.5 Code Generator

Since C++ is a widely used language in the embedded and cyber-physical systems do-
main, we have chosen to use it as the target language for our code generation toolchain.
The absence of a virtual machine or a runtime interpreter in C++ as used by Java or
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Python but also its static type system are a pre-condition for high performance, en-
ergy efficiency, and realtime capability. Hence, choosing C++ supports our efficiency
requirement RE4.2. Nevertheless, the choice of C++ does not exclude the applicability
of EMA to web applications. The generated C++ code can be rendered executable in
web browsers by transpiling it to WebAssembly (WASM)4. A proof-of-concept has been
shown in an experiment, where EMA-based autonomous driving models were translated
to WASM and executed in a web-based simulator [KRSvW18b].

To render EMA models executable without the addition of manual code as demanded
by RE4, a full code generator needs to handle two major concerns: generating the
structure based on the component architecture, referred to as EMA2CPP, and generating
the behavior from MontiMath statements, referred to as MontiMath2CPP. The whole
generator is referred to as EMAM2CPP. Further behavior generators can be added to
support further behavior languages, cf. Chapter 4. This is similar to the code generator
composition approach of MontiArcAutomaton which distinguishes between behavior,
component, and data type generators [RRRW15].

In the generated C++ code, we waive the usage of third-party libraries as far as pos-
sible in order to keep it slim and efficient and to facilitate the distribution of binaries.
There are several exceptions however: for algebraic computations, we use Armadillo, a
high level linear algebra library providing a large set of matrix functions [SC16] (as an al-
ternative GNU Octave [Eat93] was considered as a linear algebra backend, but the library
turned out to be inferior in terms of speed when compared to Armadillo [KRSvW18a]).
For the generation of MontiMath functions related to computer vision (CV), e.g. de-
late(.) and erode(.), we use OpenCV [Bra00]. The Interior Point Optimizer
(Ipopt) solver is used to solve optimization problems at runtime [WB06]. Further third-
party software is used for machine learning and middleware communication, cf. Chap-
ters 4 and 6, but is not essential for the core toolchain described in this chapter.

The structure generation of EMA architectures is straightforward. Each atomic com-
ponent type present in the model after the flattening step is generated as a C++-class.
Ports are generated as variables of the corresponding type. Since EMA has a proprietary
type system, a conversion concept is required which maps EMA types to C++ types.
B represents Booleans and is mapped to the corresponding C++-type bool. Scalar
types, i.e. N, N1, Z, Q, as well as their bounded refinements are mapped to int if the
type contains integers only and double otherwise. Complex numbers are generated as
std::complex<double>.

Dense column vectors, row vectors, matrices, and cubes are generated to the cor-
responding Armadillo types arma::Col<T>, arma::Row<T>, arma::Mat<T>, and
arma::Cube<T>, respectively. Here, T is the representation of the primitive type as
described above, e.g. Qˆ{k,m,n} is generated as Cube<double>(k,m,n), where k,
m, n represent the number of rows, columns, and slices, respectively. Matrices and cubes

4https://webassembly.org/, accessed: October 2020
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defined with the diag predicate are generated as vectors, as well. Hypercubes are not
supported by the generator as they are rarely needed in practical applications, but would
introduce unnecessary complexity.

An init() method is used to initialize the ports with appropriate constructors if nec-
essary. Furthermore, an execute()-method executes the behavior of the component. If
the component consists of subcomponents, the behavior implements the execution order
of the subcomponents by calling the subcomponents’ execute()-methods and copying
the results at output ports to the designated input ports according to the connectors of
the model. The generated code implements the synchronous, weakly causal semantics
as introduced in Section 2.3.3.

The MontiMath2CPP-generator creates C++-code from the MontiMath code inside
the implementation block of the enclosing component. Control flow constructs are
mapped to their C++-counterparts. Armadillo overrides the standard arithmetic op-
erators +, -, *, and /, i.e. we can use these operators in the generator for matrices, as
well. For element-wise multiplication (implemented using the .* operator in MontiMath),
Armadillo offers the % operator.

MontiMath provides a library of built-in functions, many of them for matrix oper-
ations, e.g. det(.), eigval(.). The MontiMath generator maintains a function
registry containing information how to map MontiMath function names to C++-code
and which parameters the functions take. Furthermore, the registry informs the genera-
tor how the result is provided by the target function. While some functions use a return
statement to return the computed result, others make use of out-parameters, i.e. the
function receives a pointer as a parameter indicating where the result should be stored.
However, being a DSL, MontiMath is designed to be consistent and easy-to-read. All
MontiMath function signatures have a return value which can be assigned to a target
variable and there are no pointers, i.e. no output parameters are possible. If a function
uses output parameters in the target language, wrapper code is generated to take this
into account. Whenever a built-in function is used in MontiMath, the generator consults
this registry to ensure that the function is supported, used correctly, and to find out
how to obtain its result in generated code. Most of the built-in functions are realized as
C++ standard library, Armadillo, or OpenCV functions.

However, not all allowed functions used can deal with Armadillo types. For instance,
OpenCV defines its own algebraic types which are incompatible with Armadillo. To
circumvent this incompatibility, the generator needs to insert a conversion mechanisms
when a matrix is passed from an Armadillo-based function to an OpenCV-function,
and vice versa. Armadillo vectors, matrices, and cubes are converted to cv:Mat.
When a cv:Mat structure needs to be converted back to Armadillo, an arma::Row,
arma::Col, arma::Mat, or arma::Cube is used depending on the number of dimen-
sions and their sizes. The impact on the performance due to these type conversions is
yet to be analyzed.

Component arrays are often used to model the application of an algorithm to multiple
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data streams, cf. Section 2.3.2. However, beyond model clarity there is often no actual
reason to actually use several instances of an algorithm. Therefore, if the component
replicated in a component array is stateless, which the compiler is able to check, the
generated code contains only one flyweight instance which is reused for all input streams
for the sake of efficiency. The idea of flyweight generation is borrowed from the object-
oriented flyweight pattern [GHJV95].

The generator is a fully automated conversion of SMArDT level 3 models, i.e. Embed-
dedMontiArc and MontiMath or EMAM, into level 4 code. The resulting code can then
be converted into the final product as required by SMArDT using the also generated
CMake build files. The resulting binary is a library offering an interface consisting of
writing access to the component parameters and the input ports of the system, a read-
ing access to its output ports, as well as an init() and an execute() method. This
library can be shipped as is or integrated into an application using it.

The generation process is a black box with little room for variation. Customizing
this process for different target platforms will be discussed in Chapter 6. Note that
there is no other possibility to define the behavior of a leaf component besides using
an implementation block. In particular, EMA does not provide a way to embed hand-
written code. This is to guarantee a clean design free of side-effects and technical details
in logical components and to keep the generated code always consistent with the model.
While changing the generated code is technically possible, such an approach is highly
discouraged.

2.6 Model-Driven Unit-Testing

2.6.1 The Stream Language

component Abs {

ports

in val, 

out absVal;

implementation Math {

output = abs(input);

}}
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Figure 2.20: The Abs component under test.

Unit testing is a black box quality assurance method applicable to self-contained basic
building blocks and the foundation of test-driven engineering processes. Depending on
the language used, units can be functions (functional programming), objects (object-
oriented programming (OOP)), but also components (C&C). The behavior of an EMAM
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stream TestAbs for Abs {

val: -100 tick -0.1 tick 0.0 tick 0.01 tick 20;

absVal: 100 +/- 0.001 tick 0.1 +/- 0.001 tick 0.0 +/- 0.01

tick 0.01 +/- 0.001 tick 20 +/-0.001; 

}
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Figure 2.21: A stream model testing the Abs component.

component, i.e. its output, depends exclusively on the history of its input ports. Hence,
an EMAM component can be tested easily by providing streams of predefined values at its
input ports and by checking whether the produced output corresponds to the expected
result. The EmbeddedMontiArc stream language enables the test designer to do just
that. Consider the Abs component depicted in Figure 2.20. Assume that this component
is required to compute the absolute value for a given input. It therefore has Q-typed
input and output ports named val and absVal, respectively. The implementation
applies the built-in MontiMath function abs(Q val) to the value at the input port
val and assigns the result to the output port absVal.

To test the component, a stream test is defined in Figure 2.21. L.1 starts the stream
test with the keyword stream followed by the test’s name TestAbs. The component
under test is specified in the same line after the for keyword. If the component does
not reside in the same package as the stream test, the fully qualified name has to be used
here so that it can be resolved via the symbol table. Multiple tests might exist for the
same component. The body of a stream test consists of named streams with values being
separated by the tick keyword and an optional tolerance range (e.g. +/-0.001), cf.
L.2-4. The tick keyword is used instead of a comma or a semicolon to avoid confusions
with element separators in matrices. The stream names correspond to the port names
of the component under test. The semantics of a stream depends on the kind of the
referenced port: for input ports, the given stream values are applied to the respective
port while for an output port, the values computed by the component are compared to
the stream. A stream test is passed when the values at the output ports obtained during
a test run are within the tolerance bounds of the corresponding reference streams.

To ensure consistency, we need to compose EMAM and the stream language using
MontiCore language aggregation. Before test execution, inter-model CoCos verify that
the stream names have corresponding ports in the component under test and that their
types are compatible. If the checks are successful, EMAM2CPP is used to generate
executable code for the component under test as well as test code including the execution
of the component, inputting the given streams into the input ports, and assertions on
output values. The generated code is compiled, executed, and the test result is reported.
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<plugins>

<plugin>

<groupId>de.monticore.lang.monticar.utilities</groupId>

<artifactId>maven-streamtest</artifactId>

<version>0.0.20</version>

<configuration>

<pathMain>./src/main/emam</pathMain>

<pathTest>./src/test/emam</pathTest>

<pathTmpOut>./target/tmp</pathTmpOut>

<generator>MinGW</generator>

</configuration>

<executions>

<execution>

<phase>test</phase>

<goals>

<goal>streamtest-execute</goal>

</goals>

</execution>

</executions>

</plugin>

…

</plugin>
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Figure 2.22: Usage of the streamtest plugin in a Maven-based EmbeddedMontiArc
project.

2.6.2 The Maven Streamtest Plugin

Stream tests can be executed programmatically via the Java interface of the stream
language or by using its command line interface (CLI). However, this is impractical in
large projects. Instead, the build engineer should be able to integrate stream tests into a
generic and automated build process directly. Build systems like Maven and Gradle can
be equipped with new capabilities using plugins. To integrate stream testing into the
Maven lifecycle we developed the maven-streamtest plugin providing the following
three goals:

1. streamtest-generate generates C++ code for all stream tests and the respective
components under test,

2. streamtest-build compiles the generated C++ code to executable stream tests,

3. streamtest-execute executes the compiled streams and outputs a test report;
failed tests have a return value other than zero, letting Maven report a build
failure.
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The integration of the maven-streamtest plugin in a Maven project is accomplished by
adding the plugin tag, as depicted in Figure 2.22 into the Maven pom.xml. The plugin
takes several configuration parameters, cf. L.7-10:

• pathMain is the path where Maven will look for the models under test,

• pathTest is the path where the actual stream tests reside,

• pathTmpOut is a temporary path where the plugin can store its output,

• generator can be set to either MinGW generating MinGW makefiles or to VS2017
creating a Visual Studio C++ project; this feature is only available under Windows.

Now, to embed the streamtest-execute goal into the Maven lifecycle, we need to
add it to the test phase in the project’s pom.xml file using the execution tag, cf. L.14-
19. Note that we did not add the streamtest-generate and streamtest-build
goals to the test phase explicitly. The streamtest-execute plugin executes them
automatically in a Maven preExecution() step if needed. Using the maven-streamtest
plugin, EmbeddedMontiArc regression tests can be executed by a continuous integration
(CI) pipeline in a generic way.

2.6.3 Simulation

While stream tests can be used to test isolated components in a unit test manner,
integration and system tests of a CPS cannot be carried out without an interaction with
the designated target environment. However, testing a possibly immature system with
real hardware in a live environment is costly, dangerous, and slow. For this reason, a
test framework simulating the CPS and its environment is necessary. Such a testing
framework must fulfill a set of requirements in order to enable efficient testing in an
agile process:

Physics engine: a physical model of the CPS and the world it lives in must be simulat-
able. The degree of abstraction must fit the use case. For instance, in macroscopic
large-scale traffic simulations a vehicle can be approximated by a point mass; on the
other hand, crash simulations might require finite element method (FEM)-based
tools to reproduce the deformations of a vehicle body as precisely as possible.

Scenario definition: it must be possible to set up simulative test cases, also referred to
as scenarios. In particular, it must be possible to define the CPS geometry and
hardware, its goals (pass and fail criteria of the scenario) and the environment.

Reproducibility: scenario results must be reproducible. In case of probabilistic set-ups,
e.g. if vehicles are spawned according to a given distribution, sampling must be
controllable by a seed.
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Machine-usable interface: to integrate a simulator into a development process such as
SMArDT, it must be possible to automate its usage, e.g. to employ it in a CI
pipeline. Therefore, it must be possible to set up the simulation, execute it, and
process the results automatically, i.e. without human interaction.

Visualization: it must be possible to visualize problematic parts of a simulation. An
appropriate visualization is crucial for an efficient error analysis and debugging
by the developer. However, it must be decoupled from the simulation process
to enable automation. Visualizing the simulation results should be possible on-
demand. Repeating a visual analysis of the same scenario should not require a
repeated simulation.

Numerous simulation solutions are available targeting a multitude of application do-
mains. SUMO is a microscopic traffic simulator [LBBW+18] for large scenarios. Map
import is possible from OpenStreetMap [HW08], VISSIM [FV10], and other sources. The
simulator API TraCI [WPR+08] makes SUMO easily extensible by allowing a program-
matic simulation control and data retrieval. Multiple simulators like TraNS [PRL+08],
iTETRIS [RMK+13], and Veins [SGD11] use SUMO as a basis and extend it by features
like vehicle to everything (V2X) communication.

VISSIM is a commercial microscopic traffic flow simulator with a wider range of fea-
tures than SUMO including connected vehicles and platooning.

The CARLA simulator focuses on autonomous driving research [DRC+17]. It provides
realistic physics and a detailed 3D-visualization based on the Unreal Engine 4 [San16]
enabling visual perception testing and the application of deep learning to arbitrary sce-
narios.

TORCS [WEG+00, LCL13] is a racing game with a 3D visualization, as well. The
possibility of writing custom pilots and an API providing access to sensors and actuators
makes it suitable for autonomous driving simulation, as well. However, it is limited to
the domain of racing.

Gazebo is a Robot Operating System (ROS)-based solution focusing on the simulation
of custom robots in indoor and outdoor scenarios with an emphasis on physics [KH04,
MSK+12].

OpenDRIVE5 and OpenCRG6 formats are the de-facto standard for the description
of road networks and road surfaces. Universal Robot Description Format (URDF)7 is
an XML-based robot description language and part of the ROS ecosystem [QGC+09].
It allows a precise definition of an isolated robot’s dynamic and kinematic properties.
XML Macros (Xacro)8 is a macro language that enables reusability for URDF models
by providing three main concepts: properties, math expressions, and macros.

5http://www.opendrive.org/, accessed: July 2020
6http://www.opencrg.org/, accessed: July 2020
7http://wiki.ros.org/urdf, accessed: May 2019
8http://wiki.ros.org/xacro, accessed: July 2020
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The CommonRoad project works on the reproducibility of vehicular motion planning
experiments. Therefore, it defines an XML-based scenario description format covering
a formal representation of the road network, static and dynamic obstacles, and the
planning problem of the ego vehicles [AKM17].

GeoScenario is another XML-based scenario description format [QBC19] aiming to
tackle experiment reproducibility. It is built on the OpenStreetMap (OSM) format for
road network definition and provides a metamodel featuring dynamic agents, metrics,
and goals.

Scenario Description Language for Multi-agent Systems (SDLMAS) is a declarative
textual simulation language mainly addressing communication aspects of multi-agent
simulations (MASs) [CSZ09].

Although EMA can be and has been used in conjunction with a variety of simulators,
including SUMO, CARLA, TORCS, and Gazebo, we decided to design a dedicated
simulation as a service (SimaaS) framework named MontiSim [GKR+17, FIK+18] to
fit the requirements of a simulative testing for cooperating vehicles research platform in
the best possible way. While an extensive presentation of MontiSim is out of scope of
this thesis, the remainder of this section will give a brief overview of the main concepts.

MontiSim can be classified as a MAS simulator. Each vehicle is an agent consisting
of a physical model, an EE-architecture, and the software. Each of these three subsys-
tems is exchangeable and individually configurable using a textual vehicle configuration
model. The basic physical model of MontiSim is based on the rigid body approach often
used in 3D-simulations and game engines [BET14]. The vehicle is modeled using ad-
justable parameters like weight, size, and engine power. For more elaborate use cases a
Modelica-based implementation of a vehicle dynamics model of the Chalmers university
was integrated [GF12].

A vehicle is assembled of different components with different purposes and capabilities
such as sensors, actuators, buses, and the hardware executing the driving software. The
components are executed in parallel and exchange data between each other over the
simulated EE infrastructure in order to realize the driving behavior. To test an autopi-
lot model written in EMAM, the component is referenced in the vehicle configuration
file. To render the execution times of the autopilot realistic, a hardware emulator ana-
lyzes the assembler code of the compiled model and estimates the execution times for a
configurable environment with limited memory and computation resources [KKMR19].

A scenario is defined using a proprietary DSL. It allows the test case designer to create
instances of vehicle models and attach goals to them. Goals can include: arriving at one
or several given destinations as well as fulfilling constraints, e.g. with respect to velocity,
acceleration, etc. Furthermore, each vehicle has a core set of implicit goals including
that a vehicle must not collide with other objects and that it needs to comply with the
road traffic regulations. From the software engineering point of view, scenarios are the
test cases while EMAM models are the code to be tested.

Setting up and using complex simulators can be difficult and might require a lot of
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resources. The simulator user should not be responsible for dealing with the technical
details, but should rather be able to use a simulator as a black box. To facilitate
the integration of MontiSim into an automated test process, we pursue the SimaaS
approach. The MontiSim server offers a microservice-based interface, which can be used
by a client to request simulations and obtain the simulation results. The MontiSim server
dispatches the request to available simulator instances. To enable very large simulations,
a simulation scenario can be subdivided spatially. In this case the MontiSim server
reserves multiple subsimulators simulating parts of the scenario [FIK+18, KKRZ19].
When a vehicle leaves the area controlled by a subsimulator, it gets handed over to the
responsible subsimulator instance. The MontiSim server orchestrates the distributed
simulation and aggregates the results while hiding the complexity from the user.
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Chapter 3

Dynamics Aspects of EmbeddedMontiArc

3.1 Cooperative Agents

In Chapter 2 our focus was on static architecture modeling of closed, isolated systems
such as autonomous vehicles using EMA. The elements of a static architecture are fixed at
design time and cannot be altered, removed, or added at runtime. With this approach we
can cover the majority of closed systems such as embedded devices and control software.
However, in practice many kinds of systems like Internet of Things (IoT) applications or
V2X require the ability to restructure or reconfigure parts of their architecture according
to changing goals and requirements at runtime. In autonomous system domains many
instances of intelligent agents share common resources of their environment, e.g. an
urban traffic infrastructure. Their efficiency can hence often be improved drastically
by cooperation. For this reason, we are going to discuss the architectural properties
of cooperative systems and develop an extension for EMA introducing dynamics to
architectural elements such as ports, connectors, and components in this chapter based
on [KKR19].

To understand the requirements of cooperative systems with regard to architectural
modeling, we first need to sharpen the term cooperation. While obeying traffic regula-
tions can already be interpreted as a cooperative behavior, we need to stress here that
this is not a sufficient definition of cooperation in the context of this work, but rather a
prerequisite thereof. Instead, we say that a system of agents is cooperative if the agents
aim to optimize some cost function(s) by explicit information exchange and collabora-
tive planning. In game theory, the notion of the Nash Equilibrium (NE) describes a
non-cooperative solution, where each player (or agent) uses a strategy so that switching
to another strategy would not lead to a gain [Mye13]. The NE is non-cooperative in the
sense that every agent aims to maximize his or her own reward in a competitive setting
and cannot rely on the solutions of other agents. Hence, the NE can be achieved without
communication and cooperation and is often not an optimal solution as can be easily
seen in the prisoner dilemma [RCO65].

The goal of this chapter is to introduce a reconfiguration framework suitable for the
design of agents optimizing the expected reward and exceeding the NE of the system
by means of cooperation. In particular, we want to address the domain of cooperative
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driving with a focus on local traffic systems (LTSs) [DDE+17].

LTSs are ad-hoc or static vehicular application-level networks for cooperative behavior
and trajectory planning in spatially constrained, i.e. local, scenarios. Vehicles can
negotiate and create an ad-hoc LTS if they recognize a relevant situation they want to
solve together. Participants can request to join or leave an LTS upon entering or leaving
the area of interest. What is more, LTSs can be set up statically, e.g. hosted by a
roadside unit (RSU) at an intersection, similar to a traffic light. In the following we give
a brief overview of scenarios, which can be handled by cooperation within a spatially
constrained area without claim of completeness [ECP+16, LMD+19]:

Intersections. The throughput of intersections can be improved if approaching vehicles
can communicate with their peers before arriving. For instance, instead of stop-
ping at the intersection to obey priority rules, vehicles can negotiate individual
velocities. This can also eliminate dead locks at intersections with no traffic lights.

Occluded street segments. Traffic participants that cannot see each other, e.g. due to
to a building or a hilly landscape, can announce themselves to each other and plan
safe trajectories without having to slow down unnecessarily.

Platoons. Vehicles with the same destination can form a platoon to minimize the safety
distance between each other as well as to reduce unnecessary acceleration and
deceleration by sharing sensor data and their plans.

Overtaking maneuvers. When overtaking, the participants, including oncoming traffic,
can negotiate trajectories and velocities to achieve optimal maneuvers.

Priority vehicles. Emergency vehicles and the like can request priority for a street seg-
ment. Vehicles can react to this request early and replan their own trajectories.

The LTS concept organizes cooperative planning and decision making in three layers.
A cooperative vehicle should implement these layers to be able to participate in LTS-
based cooperative traffic systems:

Traffic layer. The traffic layer is a macroscopic layer dealing with the creation and man-
agement of cooperating groups and the negotiation of roles inside an LTS cluster.
This layer contains functionality to look for potential LTS situations based on a
vehicle’s situation understanding.

Maneuver layer. The maneuver layer is responsible for cooperative trajectory planning
and information exchange. Its output are reference trajectories aiming to achieve
the goal of the LTS given by the traffic layer. This layer replaces the trajectory
planner of a non-cooperative autonomous vehicle.
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Control layer. The control layer is a microscopic layer realizing the trajectory assigned
to the vehicle by the maneuver layer. Usually, this layer is not aware of the
cooperation and can be seen as ordinary autonomous vehicle control. However,
centralized control is possible, as well.

The research question to be answered in this chapter is the following:

Research Question 2. How can runtime dynamics be modeled in a C&C-based
development methodology to support the design of cooperating CPSs at SMArDT
levels 2 and 3?

We are going to derive a set of requirements for a dynamic C&C modeling language
applicable to the design of agent-based systems in Section 3.2. Afterwards, we are going
to give an overview of state-of-the-art C&C languages and their means for dynamic
architectural reconfiguration in Section 3.3. The actual concept for an event-triggered
and type-safe runtime reconfiguration dynamics will be discussed in detail in Section 3.4.

3.2 Background & Requirements

Since development processes in the automotive domain such as the V-model or SMArDT
heavily rely on component-based and hierarchical decomposition, it is desirable to con-
tinue using C&C languages for the cooperative vehicle domain. Different forms of dy-
namic ADLs are known in the literature tackling different concerns of architectural
dynamics [BHK+17]. In particular, the choice of appropriate means of architectural
runtime reconfiguration depends on the kind of systems under development and the
application domain. The concepts discussed in this chapter are intended for the LTS
domain introduced above. Our requirements and design decision will hence be based on
the following list of assumptions:

• The agents are instances of compatible types or share a common interface. In
the automotive domain, for instance, agents are equal or similar vehicles or RSUs.
The agents are independent processes with proprietary goals. They are not part
of and do not contribute to the functioning of a bigger system (in contrast to an
aircraft architecture designed using a language like Architecture Analysis & De-
sign Language (AADL), where architectural dynamics is used to model functional
variations of a single but complex system).

• The agents do not know each other by default and there is no communication
between them at the beginning. Furthermore, the total number of agents living in
the system is not known to an agent. Each agent’s knowledge about its peers is
limited to what it perceives through its sensors and communication.
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• The number of agents in the system can vary throughout time. Agents can be
spawned without existing agents to be notified explicitly. In the cooperative vehi-
cles domain, new vehicle instances can come into existence by being manufactured
or by entering the area of interest from outside, e.g. in a sector-based simulation,
cf. Section 2.6.3.

• There is a communication channel which can be used by the agents to send and
receive messages to and from other agents, respectively. This channel can be used
for both directed and broadcast communication. However, since we are dealing
with the application layer, we will not care about lower network protocols in this
work, assuming an end-to-end channel connecting the logical interfaces, e.g. EMA
ports, of two different agents directly.

To be able to model interactions between participants of a dynamically changing traffic
system, the C&C language used needs to support changes in the component structure
and variations of the dataflows at runtime. Such changes can be induced by specific
events, such as the occurrence of a new traffic participant, which the developer should
be able to model with the same language, as well. Based on the assumptions introduced
above we have elicited a list of requirements for a C&C modeling language supporting
dynamic reconfigurations applicable to the domain of cooperating vehicles:

(RD1) Architectural reconfiguration: the architecture modeling language must provide
means to describe structural changes of a system at runtime. This requirement is
fulfilled automatically if all the subrequirements, cf. (RD1.1)-(RD1.3), are satis-
fied.

(RD1.1) Dynamic components: the dynamic ADL must provide means for
the modeling of the runtime instantiation of new components and the re-
moval of obsolete ones. The concept for runtime component instantiation
must cover the creation of new functional components to cope with changing
situations. For instance, a vehicle might need to instantiate a component to
handle a deadlock at an intersection and to deactivate or dispose this com-
ponent afterwards. Furthermore, it must be possible to replicate and remove
components to deal with changing numbers of communication partners. For
instance, an agent might want to model other agents as separate subcom-
ponents. Since the target platform might have limited resources, it must be
possible to constrain component replication.

(RD1.2) Dynamic interfaces: the ADL must provide means for the modeling
of runtime alterations of component interfaces. In particular, it should be
possible to add and remove ports at runtime to serve end points for the
communication with dynamically emerging and vanishing agents. Similarly
to (RD1.1) it should be possible to create new and replicate existing ports.
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Consequently, a mechanism is needed to make the newly created ports usable
by external communication partners. On the other hand, it should only be
possible to remove ports if they are not needed any more. This requirement
does not include changes applied to existing port instances such as alterations
of a port type. Type safety must be guaranteed at any time.

(RD1.3) Dynamic connectors: as a consequence of (RD1.1) and (RD1.2) the
dynamic ADL must provide a way to model runtime creation and disposal
of dataflows by interconnecting new components and ports. Furthermore, it
must be ensured at compile-time that all possible interconnections are valid,
e.g. that a port never becomes the endpoint of two different connectors or
that an input port is never floating. A reconfiguration is valid if its result is
a valid EMA architecture, which can be modeled without dynamics.

(RD2) Internal event-triggerd reconfiguration: it must be possible to model reconfig-
urations of a component as reactions to events visible in the component’s scope. It
should be possible to define events in terms of data observed at the component’s
ports or the ports of its immediate subcomponents. For instance, if the velocity
of a vehicle is written to a corresponding port, it should be possible to change
the driving mode by instantiating a highway component if the value at this port
exceeds a predefined threshold. Furthermore, it should be possible to define events
in terms of architectural changes. A component should be able to react to newly
created ports by instantiating more ports and/or subcomponents and by intercon-
necting them. For instance, when a port is created to communicate with another
vehicle, then a subcomponent for mutual trajectory planning might need to be
instantiated as a reaction.

(RD3) External service-based reconfiguration: in addition to (RD2), it should be pos-
sible for a component (or any other software) to send reconfiguration requests to
other components exhibiting a reconfiguration interface. To preserve the black
box principle of components, the decision whether to accept or reject the request,
however, must remain within the authority of the target component. Such a recon-
figuration interface could be used by an agent to request an input port at another
agent to establish a new communication channel. The reconfiguration interface
should be available not only at model level, but also in the generated code so that
it can be used by external software and legacy code, as well. This would allow a
caller to initiate reconfigurations if the model is generated and used as a library.

(RD4) Black box reconfiguration: it must be strictly ensured that dynamic compo-
nents remain accessible for other components only through their interfaces to
maintain their self-contained and reusable nature. In particular, a component
should not be able to perform or request any architectural changes to the internal
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structure of peer or subcomponents or to peer or subcomponents’ subcomponent
interfaces.

The consequence of excluding invasive component reconfigurations is that (RD3) is
limited to interface reconfiguration requests. This ensures that a dynamic compo-
nent maintains full sovereignty over its internal reconfiguration processes including
implementation details and timing aspects. A further benefit is that no details
about the internal structure of a component need to be known in order to use a
dynamic component and its reconfiguration interface.

(RD5) Reversibility: it must be possible to roll back architectural changes carried out
at runtime. In particular, it must always be possible to get back to any past
architectural state, e.g. if a situation reoccurs or if components have fulfilled their
task and are no longer needed.

3.3 Dynamic ADLs

3.3.1 Brief Overview

ADLs providing runtime dynamics have been studied for decades, resulting in a variety of
approaches, a selection of which we are going to introduce in this section. This selection
aims to cover different classes of dynamics and to analyze languages related to EMA.
We are going to analyze the dynamic reconfiguration features of these languages with
respect to the requirements derived in Section 3.2. A tabular overview of this analysis is
given in Table 3.1. More exhaustive overviews and classifications covering a wider range
of dynamic ADLs are given in [BHK+17, KJKD05].

AADL [FG12]. AADL is an ADL standardized by the Society of Automotive Engineers
(SAE) and originally developed for systems engineering in the avionics domains. In an
AADL model, an architecture incorporates both software and hardware components.
Furthermore, AADL provides analysis and verification tools needed for the quality as-
surance in safety-critical systems. The ecosystem of AADL is based on a single core
language used for both software and hardware components. The language can be ex-
tended by adding user-defined properties and by the concept of language annexes. The
latter can be subdivided in behavior annexes, error-model annexes, ARINC653 annexes
(avionics related patterns) and data-model annexes. Runtime reconfiguration can be
modeled using the concept of modes. A mode is a self-contained architectural configu-
ration. Transitions between modes are governed by a mode FSM where each mode is
represented as a separate state. Different operational states, e.g. of aircrafts or vehicles,
can be represented as modes of an architecture. Furthermore, modes can serve as a mech-
anism for the recovery from component failures. Mode transitions can be propagated
from parent components to their respective subcomponents.
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(RD1) - Runtime reconfiguration p p p
√
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√

p p

(RD1.1) Dynamic component creation − − p
√

p
√

p
√

(RD1.2) Dynamic interface modification − − p
√

−
√
− −

(RD1.3) Dynamic connectors
√ √ √ √ √ √

p
√

(RD2) Internal reconfiguration −
√
−

√ √
−
√

−
(RD3) External reconfiguration ?

√ √ √ √ √ √ √

(RD4) Self-determined reconfiguration −
√ √ √ √

?
√ √

(RD5) Reversibility
√ √

−
√ √ √ √ √

Table 3.1: Comparison of C&C modeling languages supporting runtime dynamics,
√

:
yes, p: partially, −: no, ?: unknown

AutoFocus [AVT+15]. AutoFocus 3 is a framework and a research platform for the
model-driven engineering of embedded and safety-critical systems developed by the for-
tiss GmbH1. It covers important aspects of the targeted development process from the
requirement analysis to integration and provides graphical tooling. The FOCUS the-
ory, where specifications of static and dynamic architectures are represented as predi-
cate logic formulas [BS12, Bro14], serves as a theoretical basis for AutoFocus allowing
strictly formal analysis and verification of both static and dynamic architectures. Similar
to AADL, AutoFocus provides mode-based runtime reconfiguration governed by FSMs
enabling modeling of multiple operational regimes and their transitions.

Darwin [MDEK95]. Darwin is another textual ADL enabling modeling of static and
dynamic distributed software architectures. A formal foundation of Darwin’s operational
semantics is given by the agent-based π-calculus [MPW92]. Components, their services,
and bindings can be mapped to π-calculus agents. In particular, a binding agent is com-
posed with a request agent to create a binding request. Once composed with the service
providing agent, the binding request results in a binding. Dynamic structures can be
realized in Darwin based on two different mechanisms: lazy and direct dynamic instan-
tiation. The former requires all the bindings of the architecture to be defined at design

1https://www.fortiss.org/veroeffentlichungen/software/autofocus-3, accessed September 29, 2020
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time. However, components declared with the keyword dyn are only instantiated once
their provided services are actually accessed by another component. This mechanism
allows for the creation of potentially unbounded component structures such as pipelines
when combined with recursion. However, the evolution of a dynamic architecture still
underlies a fixed pattern declared at design time.

The direct dynamic instantiation mechanism overcomes this constraint and allows the
architecture to evolve in arbitrary ways. This is essentially modeled by binding a required
service to a dynamic instantiation service. The instantiated components are anonymous
and their services can only be accessed by passing service references in messages. The
disadvantage of this approach is that the ADL cannot model bindings with dynamically
created instances explicitly. Consequently the model is not able to capture the evolution
of such a dynamic architecture adequately. Direct multicast communication between
dynamically created groups of components can be realized using abstract services. A
peculiarity of Darwin’s dynamic architectures is that components, once instantiated,
cannot be removed or deactivated any more.

Other ADLs based on the π-calculus are, for instance, LEDA [CPT99] and π-ADL
[Oqu04].

MontiArc [HRR12]. MontiArc is a modeling language targeting the design of dis-
tributed software architectures in domains like IoT. As already discussed, it shares a
large portion of concrete and abstract syntax regarding core language features with
EMA. Although MontiArc was originally developed as a modeling language for static
architectures, an approach retrofitting the language family to support mode-based dy-
namics following the example of AADL and AutoFocus 3 was presented in [HKR+16].
Accordingly, mode transitions are controlled by FSMs. Each transition of the mode FSM
has a source mode, a target mode, and a guard expression which must be fulfilled for
the transition to become activated. Furthermore, the authors distinguish between run-
time component instantiation modeled using the keyword component and activation
modeled by the keyword activate. Components which are instantiated at mode entry
are disposed when the mode is left and the component has become obsolete. Activated
components on the other hand are just deactivated when not needed and retain their
inner state until the mode is entered again.

Real-time Object-Oriented Modeling (ROOM) [SGW94]. The aim of ROOM is to
cover the complete specification of a system in order to prevent architectural decay.
To ensure a reasonable separation of concerns, ROOM is subdivided into two layers:
the schematic layer is a graphical modeling language for the description of high-level
abstract architectural aspects. The detail layer on the other hand is concerned with
implementation details and can be written in a standard GPL. This separation is similar
to EMAM where the structure is described using the EMA ADL while the behavior
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description is done in MontiMath.

ROOM targets explicitly the distributed realtime systems domain with event-driven
or reactive behavior. Message passing is the main means of communication in ROOM.
The language allows the replication of components and ports at runtime for dynamic
architectures such as a PBX system featuring a changing number of participants. As
such, the set of possible runtime architectures is prescribed at compile-time [RSRS99].

Simulink [Mat16]. Simulink is a graphical modeling tool mainly focusing on static
architectures in domains such as control engineering, automotive, CV, and others. The
set of components and connectors is fixed at design time and cannot be extended during
runtime. However, it is possible to turn components on and off as needed based on
external signals. This is modeled using blocks such as Enabled Subsystems, Triggered
Subsystems, and Function-Call Subsystems. This kind of blocks comes with a special port
controlling the activity of the component. For an Enabled Subsystem, the component
is active while the control signal has a positive value. For a Triggered Subsystem the
modeler can choose between three variants: rising signal, falling signal or either. A
Function-Call Subsystem is activated upon a function call. It is possible to configure the
initial and the disabled mode value for the component’s output. Furthermore, there are
three different ways to handle such a component’s state: the state can either be saved or
reset while the component is off; alternatively the state behavior can be inherited from
the parent component.

While it is not possible to design highly dynamic architectures, the method can be
employed to simulate modes. Hence, the designer has to maintain a 150% model con-
taining all the components possibly needed at runtime. Having more than two or three
modes however would lead to models, which are difficult to read and understand.

WRIGHT [ADG98]. The aim of WRIGHT is to deliver an ADL which is able to capture
both dynamic reconfiguration behavior as well as its non-reconfiguration functionality
while maintaining a clear separation of the two concerns. The ADL is based on the com-
municating sequential processes (CSP) formalism [Hoa78] allowing for an event-based
specification of behavior and communication. In WRIGHT dynamic reconfiguration is
based on control events which can be used in the configuration program to initiate a
reconfiguration. The configuration program itself uses a set of reconfiguration actions to
create, delete, connect, and disconnect architectural elements. Being a formal language,
WRIGHT provides verification and consistency checks of architectures and reconfigura-
tions, e.g. ensuring that the components which are part of a reconfiguration actually
exist or that reconfigurations take place only at permitted points of computation.
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3.3.2 Requirements Assessment

Each of the languages presented above carries some concepts of dynamic reconfiguration.
Remarkably, these concepts vary a lot from language to language and are obviously
developed with a particular kind of applications in mind. In the following we analyze if
and how the aforementioned ADLs fulfill our requirements introduced in Section 3.2.

Dynamic components (RD1.1). Component dynamics is supported by all of the stud-
ied languages at least to some limited extent. ROOM and WRIGHT are the only ADLs
providing full support for component instantiation and removal. Darwin supports run-
time component instantiation as well, but lacks the possibility of component removal.
Hence, from our perspective it fulfills (RD1.1) only partially. The mode concept em-
ployed by MontiArc allows for a runtime creation of components according to the mode
description pre-defined at design time. Hence, it can be seen as a restricted variant of
component dynamics. Although AADL and AutoFocus 3 support modes as well, these
languages only allow for a runtime rewiring of connectors and parameter changes and
hence, are not considered to fulfill (RD1.1). Simulink’s enabled subcomponents mechan-
ics can be used to enable and disable components based on signal values at specific ports.
However, all components need to be modeled at design time and remain in the model
all the time. We consider the requirement as partially fulfilled.

Dynamic interfaces (RD1.2). Changing a component’s interface at runtime is a severe
modification affecting both the overall architecture as well as the component’s behavior.
For this reason, means for interface modification are provided by a smaller number of
languages. ROOM’s dynamics model allows the replication of ports to handle many sim-
ilar signals coming from different instances of the same component type, e.g. to model
a changing number of phone connections. In Darwin, services provided by dynamically
created component instances can be offered as services of their respective parent com-
ponents which, in turn, implies an interface modification.

Dynamic connectors (RD1.3). Dynamic connectors is the most common dynamic fea-
ture among the analyzed languages. All candidates are able to rewire their components
at runtime. AADL, AutoFocus and MontiArc modify their components’ interconnec-
tions at mode changes. ROOM replicates connections on demand, e.g. to handle an
increasing number of phone calls. In Darwin bind requests lead to new connectors. In
WRIGHT connectors can be created freely by attaching and detaching ports to and
from one another in the configuration program. Simulink provides the most restrictive
way to model connector dynamics. Dataflows can be altered using switches and similar
components to activate or deactivate connectors based on control signals. This is similar
to Simulink’s way of dealing with component dynamics.
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Internal reconfiguration (RD2). The mode FSM concept of AutoFocus 3 and Mon-
tiArc can be regarded as an internal reconfiguration mechanism. A mode transition is
activated once a condition related to the ports in a component’s scope is met. Similarly,
in Simulink, an architecture is reconfigured using enabled, triggered, and function-call
subsystems based on control signals. Hence, component activations and deactivations
can be derived from port values.

External reconfiguration (RD3). External reconfiguration requests can be imitated by
the means of internal reconfiguration by reinterpreting signals arriving from outside, e.g.
from other components, as reconfiguration requests. Hence, fulfilling (RD2) implies ful-
filling the external reconfiguration requirement (RD3), as well. Darwin and WRIGHT
do not support internally triggered reconfiguration, but provide means for external re-
configuration only.

Self-directed black box reconfiguration (RD4). Self-directed black box reconfigura-
tion enables a black box reuse of dynamic components and is available in all the discussed
languages except AADL. In AADL it is possible to propagate mode changes from parent
components to their children’s mode configurations directly. Hence, a component has
no control over its mode transitions as these might depend on the mode changes of the
enclosing scope.

Reversibility (RD5). In FSM-controlled architecture models, reversibility has to be
modeled explicitly. If it is a desired property, it can be proven by ensuring that each
FSM state is connected with each other state either directly or by a path including
intermediate states. Darwin is the only language prohibiting reversibility by design as
it has no means to remove already instantiated components.

3.4 EmbeddedMontiArc Dynamics

The aim of this section is to introduce the main concepts of an EMA language extension
for dynamic reconfiguration, which we are going to refer to as EMAD. By developing
these concepts our goal was to deviate from the original EMA syntax as little as possible
while ensuring that the requirements presented in Section 3.2 are fully met. In partic-
ular, we wanted to keep the language extension conservative [HR17], guaranteeing that
standard, non-dynamic models can be parsed and generated by EMAD without changes.
The MontiCore grammar of core EMAD is given in the appendix in Listing B.10. The
syntax for reconfiguration conditions is contained in a separate grammar in Listing B.11.
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3.4.1 EMAD Execution Semantics

In Section 2.3.3 we have discussed the synchronous execution semantics of EMA. The
system is executed stepwise. In each step all the subcomponents are executed according
to an execution order determined at compile-time. To enable reconfiguration and to
support dynamically evolving architectures, we adapt the execution semantics of EMA
by extending the reconfiguration phase introduced in Section 2.4.6, which was used to
adapt component parameters.

There is no effective difference whether the reconfiguration phase takes place before
or after the execution phase in an execution cycle, except for the first one. By putting
the reconfiguration phase first, we ensure that a reconfiguration can take place before
the first computation is performed .This can be helpful, if the architecture needs to be
changed before processing data, e.g. if a parameterization requires a specific mode or a
component failure requires a failover reconfiguration.

In the reconfiguration phase, reconfiguration triggers are checked and, if present, the
corresponding reconfigurations are performed. This possibly activates further reconfigu-
ration triggers which are then handled as well, until the reconfiguration queue is empty.

To live up to the requirements (RD2) and (RD3) of Section 3.2, we introduce two
main concepts for runtime reconfiguration in EMAD:

• Data-triggered and

• Service-based reconfiguration.

3.4.2 Data-Triggered Internal Reconfiguration

The simplest way to trigger and model reconfiguration is the data-triggered approach.
Thereby, a reconfiguration is initiated when a signal fulfills a given condition, e.g. a port
value exceeds a predefined threshold. The reconfiguration is executed and maintained as
long as the condition is satisfied. The approach can be easily motivated and illustrated
by non-linear components used in electronics. For instance, a diode is conductive only if
the applied voltage is higher than the threshold voltage; a multiplexer passes the data
signal chosen by a control signal; when a battery electric vehicle (BEV) is connected to
a charging station, the connection is signaled to the charging electronics which reacts by
enabling the charging process as long as the connection signal is active.

To enable modeling data-triggered reconfiguration, we extend the body of an EMA
component definition by a list of reconfiguration blocks. The header of such a reconfig-
uration block contains a condition formulated as a Boolean expression over port values
and architectural properties, which needs to be fulfilled in order to trigger the reconfigu-
ration. The body of the reconfiguration block follows for the most part the same syntax
as the body of a standard non-dynamic component and contains a declarative definition
of the architectural changes to be performed as a response to the triggering event. These
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component BMux4<T>

ports in T inSig[4],

in B ctrSig[2],

out T outSig;

instance BMux2<T> mux2;

connect ctrSig[1] -> mux2.ctrSig;

connect mux2.outSig -> outSig;

@ ctrSig[2]::value() == true {

connect inSig[3]  -> mux2.inSig[1];

connect inSig[4]  -> mux2.inSig[2];

}

@ ctrSig[2]::value() == false {

connect inSig[1]  -> mux2.inSig[1];

connect inSig[2]  -> mux2.inSig[2];

}

}
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Figure 3.1: A multiplexer component choosing two of its inputs to be passed to the inner
multiplexer dependent on a control signal.
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Figure 3.2: The two architectural states of the BMux4 component.
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changes are rolled back as soon as the reconfiguration condition in the reconfiguration
block header ceases to hold.

To illustrate the syntax and the mechanics behind data-triggered reconfiguration, we
introduce a simple multiplexer example in Figure 3.1. The BMux4 component has four
data inputs of a generic type T and two Boolean control inputs. The purpose of the
component is to choose one of the four input signals of the inSig port array based on
the values of the control signals (ctrSig port array) and to forward it to the output
port. The idea is to realize this behavior by altering the connectors corresponding to
the control signal. Therefore, we first choose two of the four data signals (the first two
or the second two ports of the inSig array) based on the value of inSig[1] and then
forward them as well as a further control signal inSig[2] to a subcomponent of type
BMux2, which in turn uses the received control signal inSig[2] to choose one of the
remaining two data signals. Its choice is then output through the parent component’s
output port.

The static connectors of the component are defined in L.8-9 to connect the first control
signal with the inner multiplexer and its output to the output of the parent BMux4. There
are two reconfiguration definitions given in L.11-14 and L.16-19. In L.11 and L.16 the @
symbol denotes the beginning of a reconfiguration condition. The actual reconfiguration
code is a block enclosed in curly brackets following the condition. As can be seen in L.12-
13 and in L.17-18, the configuration code is composed of ordinary connect statements
as we know them from the static EMA syntax. The connections defined in these two
blocks are established and released in the reconfiguration phase at the beginning of an
execution cycle as discussed earlier. In this example, this is used to choose two of the
four incoming inputs to be forwarded to the child component mux2.

A reconfiguration is executed once the condition becomes true and remains active as
long as the condition remains true, i.e. as long as the value at the port ctrSig[1] is
true in L.11 and as long as it is false for L.16. When the condition of an active recon-
figuration goes back to false, the reconfiguration is rolled back, i.e. all the architectural
elements defined in the reconfiguration block are removed (irrespective of whether or not
another reconfiguration becomes active instead). In our example, the two reconfiguration
conditions are mutually exclusive, but their disjunction is always true. Consequently,
exactly one of the two reconfigurations is active at any given point in time. In general,
arbitrarily many reconfigurations (including zero) can be active in parallel. However,
each combination must result in a valid architecture. That is, an input port must not
be the target of more than one connector. Furthermore, under no circumstances an
input port may be floating. This is verified by context conditions at compile-time, the
details are given in Section 3.4.6. Consequently, none of the two reconfigurations can
be removed from the component in the multiplexer example: when no dynamic recon-
figuration is active, only the static part of the architecture is present. In this case, the
inSig ports of mux2 would be floating.

Note that in order to access the value of a port in an EMAD reconfiguration, we use the
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port function value() accessible for each port of the component using the :: operator.
The syntax highlights that we are not trying to use a model element in a conventional
manner (which would require a dot), but want to perform a runtime query related to
a model element instead. The function is available in reconfiguration conditions and
bodies only. If the port we are referring to belongs to a subcomponent, we can access
it by specifying the port’s name preceded by the (subcomponents’) instance name, e.g.
mux2.outSig::value(). Note that a component can only query the values visible
in its scope, i.e. values of its own or of its immediate subcomponents’, but not of its
subsubcomponents’ or the parent component’s ports.

A reconfiguration condition can be an arbitrary Boolean expression. Similarly to other
languages the Boolean OR and the Boolean AND operators are denoted by || and &&,
respectively. For equalities and inequalities we use the following operators: ==, <=, >=,
<, >.

Reconfiguration conditions can be formulated in terms of an expression sequence in or-
der to identify sequence patterns. A value sequence can be notated similarly to an EMA
row vector with the oldest value coming leftmost. To avoid confusions with vector-valued
variables, the tick keyword is used as a separator instead of a comma. For instance, the
condition ctrSig[1]::value() == [true tick false tick false] is evalu-
ated to true at execution cycle n if the following sequence of values was observed: true
at n − 2, false at n − 1, false at n. The type of each expression in the sequence
must be compatible with the corresponding port type. The sequence notation implies
that past values of the underlying port need to be stored at runtime. In this particular
example, in addition to the current value at the ctrSig[1] port, the component needs
to store two of this port’s past values in order to be able to evaluate the reconfiguration
condition in each execution step.

To cover more complex patterns, EMAD offers the following language constructs:

Inequality operators. Each entry in the sequence can be preceded by one of the following
inequality operators: <, >, <=, >=, !=, meaning that the expression evaluates
to true, if the value at the port is less than, greater than, less or equal, greater
or equal, or unequal to the expression provided, e.g. inSig::value()==[>5
tick <=6 tick !=0] becomes active if the value at n− 2 was greater than 5,
the value at n−1 was less or equal to 6, and the current value is not 0. If all values
are preceded by the same operator, we can use it instead of the == operator, e.g.
inSig::value()>[5 tick 6 tick 0].

Variables. Variables can be introduced as placeholders to compare values from different
execution cycles. For instance, inSig::value()==[a tick 2*a] has a place-
holder a, the concrete value of which is irrelevant. The reconfiguration condition
is fulfilled as long as the value at the port keeps doubling in each execution cycle.
Note that we don’t need to specify the type of a, since it is resolved as the type of
the corresponding port inSig. A variable can serve as a placeholder for arbitrary
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values, as well. For instance, b will match any value in inSig::value()==[a
tick b tick 2*a]. The condition is true if the current value is twice as large
as the value two time steps ago, no matter what the value in between was.

Time Shifts. The value(Z n) function can take an integer argument. If the integer
argument is greater or equal to 1, it denotes an absolute execution cycle number
n. For instance, inSig::value(10)==5 is true if the tenth value read at port
inSig was equal to 5. The expression is evaluated to false automatically until
the tenth execution cycle is reached. Then it evaluates to the true value of the
expression and remains an invariant for all future execution cycles. The component
can either store the n-th value or cache the Boolean result of the condition. The
latter is more efficient as long as the number of conditions depending on the n-th
value of a port is relatively small compared to the size of the port type.

If value(Z n) receives a negative argument, i.e. n < 0, the function returns
the value, which was present at the respective port |n| execution cycles ago. For
instance, inSig::value(-2)==5 is evaluated to true if inSig was 5 two exe-
cution cycles ago and is false otherwise. If the value to be compared is a series,
the negative argument refers to the latest point of the series (this implies that it is
not possible to refer to future execution cycles). For instance, inSig::value(-
2)==[5,10] is evaluated to true at execution step m if inSig had a value of 5 at
execution step m+n−1 = m−3 and a value of 10 at execution step m+n = m−2.
To be able to evaluate a condition with a negative n at runtime, the component
needs to store the last |n|+ l − 1 values of the corresponding port, where l is the
length of the sequence to compare against. Regardless of its sign, the parameter n
must be fixed at component instantiation and cannot be changed later on. Other-
wise it would become necessary to save the complete history of the corresponding
port.

Until now, we have been using a graphical representation of EMA models to facilitate
the understanding of the architecture. Given the fact that there is no single represen-
tation of an EMAD model, we need an appropriate extension of the graphical syntax.
Diagrams representing the two reconfigurations of the BMux4 model are depicted in
Figure 3.2. Thereby, we introduce two syntactic elements: first, the reconfiguration con-
dition triggering the reconfiguration is specified in a box under the component’s name.
Second, model elements, which are added in this reconfiguration, are denoted by dashed
figures instead of solid ones. In this example, only connectors are created dynamically at
runtime. Components and ports can be added in a similar way by the means of dynamic
arrays, which will be discussed in Section 3.4.3.

The aim of the example in Figure 3.1 and Figure 3.2 was to introduce the main ideas
behind data-triggered reconfiguration. The exactly same behavior can be achieved with
a mode model with two states. Using a mode FSM for a system with a small number
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of states and state transitions can be favorable as it facilitates a state-centric model
analysis. In cases with many, possibly partially overlapping reconfiguration conditions
and state transitions between all possible states, however, the data-triggered reconfigu-
ration concept presented in this chapter can lead to much more concise models, since we
don’t need to define all possible states explicitly and no transitions need to be modeled
at all. On the other hand, modes are more powerful since reconfigurations can depend
on the current architectural state, which is not possible with our concept. We recom-
mend using modes and data-triggered reconfiguration interchangeably depending on the
requirements and the nature of the modeled system.

3.4.3 Service-Based External Reconfiguration

To enable the creation of more complex, propagating reconfigurations, we introduce a
second way of triggering architectural changes at runtime, the service-based reconfigu-
ration. The idea behind it is to trigger reconfigurations by external architectural change
requests and to propagate such requests from component to component.

We are going to present the concepts of service-based reconfiguration by the example
of a cooperative collision prediction component given in Figure 3.3. The Collision-
System component receives the planned trajectories from other vehicles of an LTS and
checks each of these trajectories for a collision with its own one. Each trajectory is input
into the component through a dedicated port. Furthermore, each pairwise collision check
is executed by a dedicated subcomponent of type CollisionCalculator.

Before we proceed to the discussion of the service-based trigger mechanism, we need
to introduce the concept of dynamic component and port arrays. In Section 2.3.2, static
component and port arrays were introduced, allowing us to model an arbitrary but fixed
number of similar components and ports in a single line of code. In the collision detection
example described here we don’t know at design time, how many traffic participants will
be present in the LTS. Furthermore, the number of peers can change over time. The
concept of dynamic arrays enables us to cope with this modeling challenge by allowing
us to specify a range instead of a fixed number of elements in the array. At runtime the
concrete number of elements in the array can change.

The syntax is based on the range syntax of EMA types: the modeler needs to specify
the minimum and the maximum number of elements inside the square brackets of an
array declaration separated by a colon instead of a single length value. This is done in
L.4 and L.5 of Figure 3.3 to define a dynamic port array and in L.8 to define a dynamic
component array. In the case of port arrays it is obligatory to use the dynamic keyword.
If the component interface contains dynamic port arrays, it is also necessary to mark the
component with the dynamic keyword in the header, cf. L.1 of Figure 3.3. Technically,
the dynamic keyword is not necessary. However, it improves readability by making the
dynamic interface explicit for component users and developers. Furthermore, it prevents
developers from accidentally creating dynamic components. This is in line with abstract
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dynamic component CollisionSystem {  

ports in Trajectory ownTrajectory,

dynamic in StatusMsg otherStatus [0:32],

dynamic in TrajectoryMsg otherTrajectory [0:32],

out CollisionMsg msgOut;

instance CollisionCalculator cc[0:32];

instance CollisionMessageBuilder cmb;

connect cmb.msgOut -> msgOut;

@ otherStatus::connect() && otherTrajectory::connect() { 

connect ownTrajectory -> cc[?].ownTraj;

connect otherStatus[?] -> cc[?].otherStatus;

connect otherTrajectory[?] -> cc[?].otherTraj;

connect cc[?].collisionOut -> cmb.collisionIn[?];

}

/* other modes & connections */ }
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Figure 3.3: Collision system of an autopilot calculating potential collisions with up to 32
other vehicles.

instance CollisionSystem cs;

@ ReconfigurationCondition { 

connect somePort1 -> cs.otherStatus[?];

connect somePort2 -> cs.otherTrajectory[?];

}
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triggers a reconfiguration condition in the CollisionSystem component by 
requesting the two ports otherStatus and otherTrajectory simultaneously

Figure 3.4: The listing shows a valid usage of the reconfiguration service interface of the
CollisionSystem component of Figure 3.3 by a parent component.

instance CollisionSystem cs;

@ ReconfigurationCondition { 

connect somePort1 -> cs.otherStatus[?];

}
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invalid port request results in a compile-time error: the CollisionSystem
component requires otherStatus and otherTrajectory to be requested together

Figure 3.5: The listing leads to a compile-time error since CollisionSystem does not have
a reconfiguration triggered by requesting only the otherStatus port.
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classes in Java, where abstract methods and the class itself have to be defined using the
abstract keyword explicitly. Technically, the presence of a method without a body is
sufficient to infer that the class is abstract.

In case the lower bound of the element count is greater than zero, the minimum number
of elements will be created at instantiation of the component. Once the upper bound of
the elements in an array has been reached, events leading to an instantiation of further
elements are not handled. The availability of free port and/or component slots in an
array can hence be regarded as a further implicit condition of a reconfiguration. Upper
bounds on elements in an array have been introduced with embedded systems in mind
often having very limited resources and strict performance requirements. The upper
bound can be set to infinity by putting oo, similarly to EMA type bounds. However,
since this can have a negative impact on the performance of an overloaded system, this
is not an advisable modeling pattern and results in a warning. A system knowing its
limits can react to an overly high demand in a controlled manner.

In our collision system example, the port arrays otherStatus and otherTrajec-
tory are supposed to receive status and trajectory messages from other cooperative
vehicles in the LTS. The maximum number of connections is limited to 32. On the other
hand, if there are no other vehicles in the network, the port arrays can be empty.

For each connected vehicle, the CollisionSystem component provides an individ-
ual CollisionCalculator component instance. Accordingly, the number of these
instances varies between 0 and 32, as well. At system start up, the minimum number of
components and ports is instantiated, i.e. zero.

The question arises how the free slots in the component and port arrays can be used
and released at runtime. We realize this by introducing a reconfiguration service inter-
face as required by (RD3). This interface allows external components or even external
software to request reconfigurations. More precisely, it allows external clients to request
a port from a dynamic array.

The reconfiguration interface is defined not just by declaring a dynamic port array,
but by the reconfiguration conditions using it, cf. L.13 in Figure 3.3. To query recon-
figuration requests in a reconfiguration condition, we introduce the new port property
connect, which is basically a Boolean flag indicating whether a connect request for
this port has been issued, bundled with an id to avoid confusions with other requests
sent to the same port. Similarly to the value at a port, the connect property can be
queried using the :: operator, i.e. as portName::connect(). A reconfiguration con-
dition can be composed as a conjunction of arbitrarily many connect atoms, i.e. port-
Name1::connect() &&,...,&& portNameN::connect(), where the port names
used must be dynamic port arrays declared in the component’s interface. Disjunctions
and negations of connect atoms are forbidden by a context condition to prevent incon-
sistencies (in a disjunction we do not know at design-time which port(s) will be actually
requested and hence, cannot define meaningful reconfigurations using these ports).

The resulting reconfiguration interface can be used by issuing connect request for all
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the ports required by the reconfiguration condition simultaneously. In our example this
means that, due to the reconfiguration condition in L.13 of Figure 3.3, connections to the
otherStatus and the otherTrajectory port must be requested at once. Such a
request is created in an EMAD model in the reconfiguration body of a parent component
as connect statements targeting the corresponding dynamic port arrays. This is shown
in Figure 3.4, where a component holding an instance of CollisionSystem connects
to the aforementioned port arrays otherStatus and otherTrajectory of the latter
in L.4-5 of its own reconfiguration body.

Note that the reconfiguration bodies of Figure 3.3 and Figure 3.4 are chained: the
reconfiguration of the latter triggers the one of the former. If ReconfigurationCon-
dition in L.3 of Figure 3.4 is a data-driven reconfiguration as discussed in Section 3.4.2,
the chain starts in Figure 3.4. If ReconfigurationCondition defines a reconfigura-
tion interface similar to L.13 in Figure 3.3, it must be triggered from another reconfig-
uration body itself. Hence, arbitrarily long service-based reconfiguration chains can be
initiated by a data-driven reconfiguration.

Note that the reconfiguration request issued by the parent component of the Col-
lisionSystem component in L.4-5 of Figure 3.4 matches the reconfiguration interface
defined in L.13 of Figure 3.3 exactly. This is verified at compile-time by a context con-
dition. An invalid usage of the reconfiguration interface of the CollisionService
component is shown in Figure 3.5. Here we are trying to connect to the otherStatus
port only. However, this is not supported and results in a compile-time error as there is
no such reconfiguration condition in the CollisionSystem component.

To be able to deal with dynamic port and component arrays in reconfiguration de-
scriptions, we need a syntax allowing us to access the newly created elements. To do
so, we introduce the ?-operator. It is used instead of the element number in square
brackets to request and access new elements in a dynamic port or component array, e.g.
myArray[?]. Usage of the operator is restricted to reconfiguration bodies.

An example is given in L.14-17 of the CollisionSystem model in Figure 3.3. In L.14
the ?-operator is used to connect the ownTrajectory port to a new component cc[?].
Since this is the first access to cc[?] in this reconfiguration body, it implicitly triggers
the creation of a new component instance. In contrast, further accesses to cc[?] in
L.15-17 are pure access operations, no implicit instantiation is involved. If the component
type of the component array requires component parameters, the parameter list can be
passed in parenthesis right after the array brackets and before the dot operator, e.g.
cc[?](param1, param2,...).ownTraj.

Since the cc array has a maximum capacity which cannot be exceeded, a further
implicit reconfiguration condition is that the maximum capacity of this array has not
yet been reached. If, however, the array is maxed out, the reconfiguration condition will
evaluate to false and the reconfiguration will thus not be activated.

In this example we only need to add one element to the cc array. If we needed to create
several elements, we would need a syntax to distinguish them. Therefore, the question
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dynamic component DynamicSum { 

port dynamic in Q summands[0:32], 

out Q sum; 

implementation Math { 

Q tmp = 0; 

for i = 1:size(summands)

tmp = tmp + summands(i); 

end 

sum = tmp;

} } 
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Figure 3.6: Adder with 0 to 32 inputs.

mark can be followed by an integer. Then we would use cc[?1], cc[?2],...,
cc[?n] to create and access n different elements. To simplify the syntax, the index can
be dropped for the first element (which is sufficient for the majority of cases). As in
standard EMA, indices start with 1.

The reconfiguration service interface is available not only at modeling level allowing
other components to use it, but also in the generated code. The latter can be used by any
client. For instance, the CollisionSystem component can be generated and compiled
to a library to be deployed as a building block of the vehicle run-time environment
(RTE). The RTE receives a stream of vehicle to vehicle (V2V) messages and redirects
them to the right ports of the CollisionSystem library (each sender is assigned to
one port). If a new LTS participant starts sending, the RTE can request a new port from
the CollisionSystem library by calling a generated request function. The library in
turn checks whether the request is satisfiable. If yes, it provides a new port instance
the RTE can forward messages of the new vehicle to. Otherwise no reconfiguration
is carried out and the library call returns with a NO_SAT error. The client can then
withdraw the request or wait until the dynamic component satisfies the request in a
future reconfiguration cycle.

To facilitate the usage of the generated reconfiguration interface, we generate re-
quest methods allowing the client to require all necessary ports to activate a recon-
figuration with a single function call, e.g. requestOtherStatusAndOtherTrajec-
tory(Port<T1> ∗otherStatus, Port<T2> ∗otherTrajectory), where Port
<T> is a generic class representing an EMA port of type T at C++ level. This way, it
is not possible to create invalid request, e.g. requiring only an otherStatus, but no
otherTrajectory port, when using the generated code as a library.

Figure 3.6 shows an example combining a dynamic interface with a MontiMath im-
plementation. The purpose of the component is to compute a sum of all inputs and to
output the result. This is a typical data aggregation example working on a varying num-
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ber of inputs. The dynamic input port array summands can contain 0 to 32 elements,
i.e. at instantiation the component has no inputs and outputs zero due to the initial
assignment tmp = 0 in L.6. The loop in L.7-9 iterates over all ports in the summands
array and adds each port’s value to the overall sum, which is accumulated in the tmp
variable. In this example, we treat the dynamic port array in a stateless anonymous way.
We iterate over the port array and are only interested in the value present at each avail-
able port without caring about its history. This is the natural way to deal with dynamic
port arrays in MontiMath. Tracking states related to dynamic ports using MontiMath is
possible but highly discouraged. Instead, to track a concrete dynamic port’s history, we
need to replicate a dynamic subcomponent for each dynamic port instance, as was done
in Figure 3.3. This way, each communication partner requiring a port in a dynamic port
array is assigned a dedicated processing subcomponent maintaining the corresponding
state. Each of these dedicated processing subcomponents only sees a single input port
of the dynamic port array it is assigned to instead of the whole port array. This pattern
enforces the separation of concerns and high cohesion principle as the processing related
to each communication partner is clearly encapsulated and limited to the actual logic
(no explicit iterating over the port array is needed in the behavior implementation).

Based on the reconfiguration mechanism described in this section, we can model whole
reconfiguration chains to realize deep or flat reconfigurations. A deep reconfiguration
means that reconfiguration of a parent component triggers reconfigurations in child com-
ponents. A connect to a subcomponent’s port activates this port’s connect flag which
can in turn be used to trigger a reconfiguration in the subcomponent. In the same
way, the subcomponent can trigger reconfigurations in its subcomponents and so on.
When a parent component instantiates a static subcomponent in an EMAD model, it
can connect its output ports immediately, e.g. as is done in L.11 of Figure 3.3. However,
the subcomponent might be dynamic and new output ports might be added through-
out the subcomponent’s reconfiguration procedures. In this case, the parent component
can react to newly created ports of the subcomponent by observing the dynamic ports’
connect flags in the same way as it would observe connect request to its own input
ports. This enables us to create reconfiguration chains propagating downwards into the
hierarchy as well as those coming from the bottom and propagating upwards.

A reconfiguration chain is always performed in one single reconfiguration phase as an
atomic transaction, i.e. if the chain breaks at some point, the whole reconfiguration is
considered infeasible. If a failure occurs after some reconfiguration steps of the chain
have already been carried out, these steps will be rolled back.

As in data-triggered reconfiguration, a reconfiguration remains active as long as the
respective condition is evaluated to true. As was discussed above, whenever a new port
request is issued, the port is created and a connector connected, the port::connect()
property is activated for this port. This flag and hence, the configuration remain ac-
tive until the requesting client removes its connector to the dynamic port. If the client
created the connector as part of an EMAD reconfiguration, it would remove it, when
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the condition of this original reconfiguration ceases to hold. If the client is an external
software, it can use the reconfiguration service interface to roll back a reconfiguration
available in the generated code. Such a rollback would remove all architectural elements
created in the reconfiguration and trigger the rollback of reconfigurations of subcompo-
nents. This way, a reconfiguration chain is rolled back completely. The rollback interface
is not usable explicitly in an EMAD model to prevent arbitrary removals of ports leading
to inconsistencies in an architecture.

The service-based reconfiguration procedure of EMAD models boils down to the fol-
lowing steps:

1. Request: an external component sends a set of connect requests.

2. Reservation: the receiving component checks if the requested ports are available,
i.e. if the corresponding dynamic port arrays do not violate their respective upper
limit constraint. If yes, the component returns references for the new ports, i.e. the
newly allocated array indices, to the requester so that explicit access is possible in
the future. Otherwise, the requester is informed that its request has been rejected.

3. Reconfiguration: in the reconfiguration phase of the component, the reconfigu-
ration bodies of all valid reconfiguration requests, i.e. those complying with a
reconfiguration condition, are realized (L.14-17 in the CollisionSystem exam-
ple). Consequently, the component reacts to the external reconfiguration request
by internal self-modifications.

4. Follow-up requests: possibly, the reconfiguration instructions of the previous step
contain the creation of new ports and/or subcomponents, as well. In this case, the
component becomes a requester itself initiating a follow-up reconfiguration in its
subcomponents or external components.

In our target domain of interconnected vehicles we mostly need the combination of
both data-driven and service-based reconfiguration, which, when used together, can re-
sult in a powerful symbiosis. Reconfigurations which emerge as reactions to environ-
mental changes measured by sensors or to incoming messages can be modeled using
the following pattern: a data-driven event stands at the beginning of an event chain.
The reconfiguration caused by this event requests new components and ports triggering
service-based reconfigurations, which in turn trigger further service-based reconfigura-
tions. As soon as the original trigger vanishes, the reconfiguration chain is rolled back
completely and the architecture returns to its initial state. A data-driven source event
can be based on a sensor measurement (including the vehicle’s antenna receiving mes-
sages from other cooperating traffic participants). A particular measurement value or
the reception of a specific message would trigger a reconfiguration of the controller ar-
chitecture, the internal reconfigurations of which are mostly service-based.
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Figure 3.7: The pipe system component on top shows the structure of an arbitrarily
long pipeline as defined in Figure 3.8. The last (or deepest) link compo-
nent contains only a processing but no more linking subcomponents. Since
EMA flattens hierarchical components, the effective architecture is a simple
pipeline as shown in the bottom model.

An important aspect of EMAD is that there is no explicit way to remove architectural
elements. Instead, elements are removed implicitly, whenever the triggering reconfigu-
ration condition goes back to false. This guarantees that an architecture can always be
put back into its original state as required by (RD5).

A further important property is that all possible reconfigurations are fixed by the
design time model. Component and port replication is limited by an upper dynamic
array size. Consequently, there is only a finite number of possible architectural states at
runtime. This is an important design decision preventing a system to reach unexpected
states and behaviors and facilitating verification.

3.4.4 Modeling Component Pipelines

Until now we have been modeling dynamic reconfigurations which can achieve arbitrarily
hierarchical depths, but no flat chains such as filter pipelines as mentioned in Section 2.3.2
and which is possible using other ADLs such as Darwin [MK96]. Consider a scenario,
where we need to pass a signal through a chain of similar components to process the
desired result. For instance, in order to compute the n-th derivative of an input signal
(with n being an arbitrary but initially unknown integer), we need to pass it through a
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component PipeSystem(N n) {  

ports in Q pipeInput,

in N ctrSig,

out Q pipeResult;

instance Link topLvlLink[0:1];

@ ctrSig::value() == 0 { 

connect pipeInput -> pipeResult;

}

@ ctrSig::value() > 0 {

connect myInData -> topLvlLink [?](ctrSig::value()).linkInput;

//connect myInData -> topLvlLink[?](n).linkInput;

connect topLvlLink[?].linkResult -> pipeResult;    

}

}
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Figure 3.8: The pipe system component uses the link pattern to instantiate an arbitrarily
long (but finite) chain of processing components.

component Link(N n) {  

ports in Q linkInput,

out Q linkResult

instance Proc proc;

instance Link sublink[0:1];

connect linkInput -> proc.dataToBeProcessed;

@ n == 0 { 

connect proc.processingResult -> linkResult;

}

@ n > 0 { 

connect proc.processingResult -> sublink[?](n-1).linkResult;

connect sublink[?].linkResult -> linkResult;    

}

}
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Figure 3.9: The link component consists of a processing subcomponent and, optionally,
a further link component, which in turn contains a further processing com-
ponent and, optionally, a link component, allowing us to create arbitrarily
long processing chains.
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component Proc {  

ports in Q dataToBeProcessed,

out Q processingResult

implementation Math {

processingResult = f(dataToBeProcessed);

}

}
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Figure 3.10: An example processing component to be used in the pipe system, where f
denotes any valid MontiMath program using the data from the input port
and writing a result to the output port.

chain of n derivation blocks. An example is depicted at the bottom of Figure 3.7 where
a pipe system consists of a serial connection of three processing blocks.

While EMA offers the concept of arrays to cope with parallel structures efficiently,
there is no way to define generic serial connections explicitly. However, such architectures
can be modeled using the reconfiguration framework of EMAD. In the following, we are
going to introduce the link component pattern. A link component contains a processing
component and a further, optional link component. The second link component contains
another processing and a link component, which allows us to create arbitrarily long chains
of processing components.

This is illustrated using the pipe system example at the top of Figure 3.7 and in Fig-
ure 3.8. The PipeSystem component receives a data stream through its pipeInput
port and outputs the computation result, which is computed by a chain of subcompo-
nents, through the pipeResult port. The port ctrSig controls the length of the
chain to instantiate. Alternatively we can use a component parameter to control the
chain length. Then the length of the chain cannot be changed after instantiation. The
reconfiguration in L.8-10 specifies that the data input is forwarded to the output directly
if ctrSig is set to zero. If, on the other hand, ctrSig receives a value greater than
zero, the reconfiguration in L.12-16 will be triggered. In this reconfiguration, a subcom-
ponent of type Link is created and added to the component array topLvlLink defined
in L.6, which can hold either one or no instances. Furthermore, the pipeInput port
is connected to the Link input and the output of the Link component is forwarded to
the parent component’s pipeResult port. Note that the value at the ctrSig port is
passed as a parameter to the new Link component created in L.13. L.14 depicts a slight
variation of L.13, where the component parameter n is passed instead of a port value.
In this variant, the pipeline is created at instantiation and cannot be altered afterwards.

The Link model is given in Figure 3.9. It contains a mandatory, i.e. static, pro-
cessing component proc of type Proc, the concrete implementation of which depends
on the application. In addition, the Link component can contain a further, optional
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instance of type Link. This is controlled by the reconfigurations in L.10-12 and L.14-17,
respectively. Note that the reconfiguration conditions depend only on the value of the
component parameter n and are mutually exclusive. Since n cannot change at runtime,
the reconfiguration chosen at instantiation will remain valid for the remaining compo-
nent lifetime. If n>0 evaluates to true, an inner Link instance is created with the
decremented component parameter value n-1. This new inner Link component creates
a further Link subcomponent itself if its component parameter is still greater than 0
and so on. The chain terminates when an instance is created with n=0. For the sake of
completeness an example model for the Proc component with a MontiMath implemen-
tation is given in Figure 3.10. We abstract away from its concrete functionality by using
a placeholder function f(dataToBeProcessed) in L.6. Some examples for linkable
components from the digital signal processing (DSP) domain are numeric integrators
and differentiators, delays, filters, controllers, and the like.

A graphical model of the discussed pipeline system with a chain length of 3 is given
at the top of Figure 3.7. As discussed in Section 2.3.3, EMA flattens the component
hierarchy internally. Hence, the effectively created model is the one at the bottom of
Figure 3.7. Consequently, the overhead of the link pattern as it is visible in the non-
flattened model disappears at runtime. To eliminate the need for the link pattern, EMAD
syntax can be extended by dedicated syntax elements in the future.

3.4.5 Reconfiguration Views and Graphical Notation

Visualizing C&C architectures can often facilitate the work with complex models. How-
ever, grasping all aspects of a dynamic model in a single diagram is difficult. Instead,
we propose to apply an adapted variant of the views concept to graphical C&C mod-
eling in order to obtain meaningful EMAD visualizations. The concept of C&C views
allows us to create abstractions of concrete C&C models bringing out specific aspects of
interest while hiding details which are unnecessary for the understanding of the abstrac-
tion. For instance, views can be used to bring out the hierarchical relation of component
instances without having to model the complete hierarchy or to specify the concrete
types [MMR+17, BMR+17, KKRvW18]. To facilitate the understanding of dynamic
reconfigurations, we introduce the notion of (graphical) reconfiguration views. Thereby,
each reconfiguration is captured in its own view. A reconfiguration view only contains
the actually changing parts and omits showing the static elements of the architecture.
The diagram syntax is mostly the same as for normal C&C diagrams with several ex-
ceptions. First, the condition leading to the reconfiguration shown by the view is found
in a box below the component name. Second, all architectural elements, i.e. ports, com-
ponents, and connectors, created during the reconfiguration are depicted using dashed
lines and boxes. Ports which trigger the reconfiguration are emphasized by an exclama-
tion mark and, optionally, by using another color. Furthermore, if the reconfiguration is
data-triggered, the triggering value should be written in the box representing the port
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CoOpAutopilot
@ platoonMsg::connect && v::value()>0

!

platoonMsg[0:1] PlatoonManager
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CoOpAutopilot
@ platoonManager.platoonMsg::connect

platoonMsg[0:1]

PlatoonManager
platoonMsg[0:1]

v > 0!
!

ports triggering a reconfiguration

architectural elements created at runtime

EMAD EMAD

Figure 3.11: A reconfiguration chain involving input and output ports of the Platoon-
Manager component. An arriving platoon message causes the creation of
new input ports in the diagram on the left. Follow-up reconfigurations in-
side the PlatoonManager result in a new output port and a new outgoing
connector as depicted in the diagram on the right.

or next to it.

Since reconfigurations are mostly executed in chains, it is crucial to group graphical
reconfiguration views so that the chain becomes visible. An example reconfiguration
chain consisting of two reconfigurations is shown in Figure 3.11. In the first reconfigura-
tion, depicted on the left, the CoOpAutopilot component, a controller of a cooperative
vehicle, instantiates a platoon manager when a platoon port is requested and the velocity
is greater than 0. In a second reconfiguration step, an inner component of the platoon
manager requested a new output port and the CoOpAutopilot component reacts by
creating a new connector. The ports triggering the reconfigurations are emphasized
with an exclamation mark. Additionally, the data condition (v>0) is set next to the
corresponding v port. Note that the PlatoonManager component is depicted using a
dashed line in the left view, while it is solid in the view on the rhs. This is because the
component is already there, when the second reconfiguration event is triggered. A big
arrow between the two views stresses the order of reconfigurations. Obviously, a recon-
figuration must have taken place inside the PlatoonManager component to request
the creation of its new output port platoonManager.platoonMsg. This reconfig-
uration (chain) is not part of the depicted sequence as it is not in the scope of the
CoOpAutopilot component and should be visualized in a separate view chain.

3.4.6 Remarks on Architectural Consistency

For static EMA architectures, it is straightforward to verify at compile-time that a model
is consistent. For dynamically changing architectures we need to ensure consistency
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//Declarations

(declare-const a Real)

//Range assertions

(assert (<= a 255))

(assert (>= a 0))

//Event condition satisfiability checks

(push)

(assert (and (> a 0) (< a 127)))

(check-sat)

(pop)

//further checks
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Figure 3.12: An example of generated Z3 code proving condition satisfiability.

using appropriate context conditions for all possible reconfigurations and reconfiguration
sequences. Some of these checks were already mentioned in the discussion of EMAD
concepts. A list of checks performed by the EMAD CoCo checker is given in the following.

Static Context Conditions. We apply context conditions from static EMA to reconfig-
uration block bodies. For instance, each input port of a subcomponent must be fed by
a connector. A subcomponent’s input port cannot be floating. When a subcomponent
is created in a reconfiguration block of an EMAD model, connectors for its input ports
must be created, as well. Otherwise, the behavior of the created subcomponent would
be undefined.

Valid Reconfiguration Requests. For each reconfiguration block of a component re-
questing new ports of a subcomponent, it is checked at compile-time whether the recon-
figuration interface of the subcomponent is fulfilled. This is the case if the requests of the
parent component trigger at least one reconfiguration of the subcomponent. For instance,
if a subcomponent has a reconfiguration condition of the form @ portA::connect()
&& portB::connect(), but the parent component only connects to one of these two
ports, the subcomponent cannot handle the reconfiguration request adequately and the
compiler returns with an error.

To avoid bad usage of the generated code, the generated reconfiguration interface
does not provide functions to request separate ports, but to request all the ports re-
quired to trigger a reconfiguration. For the example given above this would lead to
a single function of the form requestPortAAndPortB(Port<T1> ∗A, Port<T2>
∗B) requesting port A and port B in one shot. Thereby, ∗A and ∗B are out-parameters
used to return the created ports to the client and T1 and T2 are their respective types.
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The actual return value provides information on the success of the reconfiguration.

No Removal. There is no way to explicitly remove architectural elements in a reconfigu-
ration block. Reconfigurations are atomic procedures which get rolled back automatically
if a part of the reconfiguration chain fails or if the condition causing the reconfiguration
is no longer valid. An exception are functions of the form freeXXX() offered by the
dynamic component interface. They is offered as part of the generated C++ code API
and allows an external client to inform the component that it no longer needs some
dynamic input ports and will not provide any more input data. As a consequence the
informed component will roll back the reconfiguration chain which was triggered when
the external client requested the said dynamic ports. For the example given above, the
function freeAAndB() would dispose the ports A and B in one shot and unroll the
reconfiguration once triggered by their creation.

Satisfiable and Replicated Conditions. A reconfiguration condition is a Boolean ex-
pression and hence, might be unsatisfiable. This is checked at compile-time by converting
the reconfiguration condition into a Z3 program and letting the Z3 solver check it for sat-
isfiability [DMB08]. Each port is defined as a variable with an equivalent name in Z3. For
port array accesses, we append the character * to the array name followed by the index,
e.g. a[2] results in a*2. A similar pattern is applied for time series accesses, but in-
stead of an asterisk, an underline is appended. For instance, for a::value()==[false
tick false tick true] we generate three variables a_-2, a_-1, and a.

The Boolean formula is pretty-printed using the Z3 syntax and then checked for satis-
fiability. If the port variables have a range, it is encoded in Z3 as an assertion. Consider
a port a of type Q(0:255) and the reconfiguration condition a::value() > 0 &&
a::value()< 127. This condition leads to the Z3 code snippet given in Figure 3.12.
In L.2 the variable representing port a is declared as a Real. More declarations could
follow here.

L.5-6 assertions constrain the variable to its allowed range. The actual Boolean ex-
pression is printed in L.10. L.11 checks for satisfiability and returns sat or unsat. If
the latter happens, the context condition fails and the model is invalid.

Similarly, we check that there are no reconfigurations triggered by the exactly same
condition. Therefore, we create pairwise checks for all pairs of reconfiguration conditions
of a component. For each resulting pair of Boolean formulas A and B, we check that
A 6= B is satisfiable. If this is not the case, the context condition fails.

Mutual Port Usage. In EMA an input port cannot be accessed by more than one
connector. However, it is legal that two different reconfigurations create connectors
leading to the same input port as long as their conditions are mutually exclusive. A
context condition checks for each pair of reconfigurations of a component whether the
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sets of target ports used in the said reconfigurations are disjoint. If this is not the case,
a Z3 program is generated checking that A ∧ B is not satisfiable if A and B are the
Boolean expressions representing the conditions of the clashing reconfigurations. Recall
the setting of the BMux4 example given in Figure 3.1. Here, we have two reconfigurations,
both targeting mux.inSig[1] and mux.inSig[2]. Therefore, the context condition
needs to check, whether the conditions are mutually exclusive. This is generated to Z3
as the assertion (assert (and (= ctrSig*2 true) (= ctrSig*2 false))).
Since this is obviously unsatisfiable, the model is valid.

This example shows another interesting context condition: we have discussed that it
is forbidden to leave input ports unconnected. In this example mux.inSig[1] and
mux.inSig[2] are not connected in the static part but only in the dynamic reconfig-
uration blocks. To ensure that the ports are never floating, a context condition (having
realized that the port is not connected to in the static part) would look up all recon-
figuration blocks connecting to these ports. Next, it would create a disjunction of the
respective reconfiguration conditions

∨
iAi and check that its negation is unsatisfiable,

i.e. that there is always one condition which is satisfied. Furthermore, static input ports
connected in the static part cannot be used as targets in reconfiguration blocks.

3.5 Conclusion

In this chapter we discussed EMAD, a conservative extension of the inherently static
EMA language enabling the developer to model architectural changes happening at run-
time. Due to the conservative extension property, each valid EMA model is also a valid
EMAD model [HR17].

EMAD introduces an event-based reconfiguration system which can react to data-
driven as well as architectural events. An EMAD component can instantiate ports,
subcomponents, and connectors at runtime as a reaction to a triggered event. Thereby,
it can trigger further events of its subcomponents, enabling the modeler to define complex
reconfiguration chains.

In EMAD, all possible configuration states are implicitly defined at design time, main-
taining the possibility to analyze, predict, and verify the behavior of dynamic components
at design and compile-time. A set of context conditions ensures that reconfigurations
never clash, making the language applicable to safety-critical systems.

In particular, EMAD can be used to model cooperative systems and their dynamically
changing communication channels and processing chains, e.g. in the context of local
traffic systems. Modeling of flat sequential component chains requires the application of
the link pattern. Further syntactical elements can be designed in the future to facilitate
the development of such structures.
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Chapter 4

Modeling Artificial Neural Networks with
MontiAnna

4.1 Deep Learning for Autonomous Systems

In Section 2.4.4, we have discussed how the behavior of EMA components can be de-
scribed using MontiMath. The main paradigm behind MontiMath is procedural im-
perative programming offering common control flow elements such as sequences, loops,
and conditions. Furthermore, a program can be formulated as an optimization problem.
However, many tasks of intelligent autonomous system design including object recogni-
tion, planning, and control can be tackled using machine learning techniques. In this
chapter we will discuss a domain-specific modeling approach for the development and
integration of deep learning components.

The research question to be answered in this chapter is the following:

Research Question 3. How can deep neural network models be designed and in-
tegrated into CPS architectures at SMArDT level 3?

4.1.1 Supervised Machine Learning Foundations

Before diving into the design of a modeling approach, we are going to introduce the
notation and wrap up foundations of the machine learning domain important for our
design decisions. The field of machine learning deals with algorithms learning from
data. There are reams of learning models and algorithms, but, in general, the idea
behind supervised learning can be condensed as follows: given a set of training examples
(x1, y1), ..., (xN , yN ) with (xi, yi) ∈ X × Y, we want to find the best function f ∈ C,
mapping some fixed domain X to a fixed co-domain Y, in a process called training.
Here, C is a function space, i.e. a set of functions. What the best function is in a
particular context is estimated using a loss function L(f(xi), yi), assessing the output
of the function for a given input when the true output is known. The objective of the
training problem is the minimization of the estimated loss over all possible functions in
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C, i.e.

f̂ = arg min
f∈C

E[L], (4.1)

where E denotes the expectation value of a random variable as introduced in Section 1.7.

Based on these considerations, we can fathom out the main aspects of a machine
learning-based system a developer needs to deal with:

1. the function space C,

2. the training procedure,

3. the training data.

In classical programming paradigms, the function space C is the set of all possible
programs we can write in the programming language of our choice and f is a concrete
program, which we need to write manually. In machine learning on the other hand, we
rather let the algorithm try to find an appropriate solution based on data. Many of
today’s computer languages and development tools have not been designed with data-
driven thinking in mind, which leads us to the assumption that a new DSL (or a new
DSL family) might be a favorable approach for the design of machine learning-based
behavior. The aim of this chapter is to develop and evaluate such a language family
focusing on the three aspects listed above. These aspects will be referred to as the three
modeling concerns of machine learning.

4.1.2 Neural Networks

The choice of the function space C is highly dependent on the application, i.e. the dis-
tribution of the data, and therefore requires a lot of expertise, domain understanding,
and experimentation. However, a flexible and extensible framework for a modular com-
position of function spaces is provided by the field of artificial neural networks (ANNs).
ANNs belong to the family of parameterized models, i.e. the function space represented
by a neural network is spanned by a set of parameters, i.e. C = {fθ|θ ∈ RK}, where K
is the number of parameters. The goal of the training for a parameterized model hence
boils down to an optimization over the parameter space, i.e.

θ = arg min
θ

E(L). (4.2)

The main building blocks of a neural network are its neurons, which in turn are
parameterizable functions. The basic neuron model can be formalized as

y = σ
(
wTx

)
, (4.3)
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where w is the vector of neuron parameters and hence, part of the parameter set θ; more
precisely, w are the weights which are applied to the neuron inputs represented by x to
create a weighted sum of the input using a dot product. For simplicity of notation, we
assume that x0 is a constant 1 and hence, the entry w0 is an input-independent bias. σ
is a non-linear, scalar-valued function. By making a neuron non-linear, a composition
of a sufficiently large number of neurons can approximate any function, which makes
neural networks applicable to a large variety of problems. Without the non-linearity, any
composition of neurons boils down to a single linear mapping. A schematic representation
of the neuron model described above is given in Figure 4.1. Further neuron models will
be discussed in the course of this chapter when needed.
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Figure 4.1: The basic neuron model.

A single neuron covers only a relatively simple function space and is of little use
for complex tasks. However, arbitrarily complex function spaces can be modeled by
interconnecting multiple neurons with each other.

Definition 3 (Artificial Neural Network). An artificial neural network is a weighted
DAG G = (V, E , w), where each node v ∈ V represents a neuron and each connection
e ∈ E ⊆ V×V denotes a dataflow from the output of the source neuron to a dedicated
input port of the target neuron. The data of the connection is weighted with the
weight w(e).

Definition 3 is overly general and therefore not tractable in practice. First, it is cumber-
some to describe and understand arbitrarily shaped networks with very large numbers
of neurons. Second, it spans an exploding and difficult to cope with parameter space
complicating the training procedure. Instead of building a neural network out of single
neurons, which can be compared to building an enterprise application using assembler
code, it has proven convenient to think in neuron layers.
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a single neuron

multiple neurons
grouped into a layer

Figure 4.2: The abstraction of layers in artificial neural networks.

Definition 4 (Layered Artificial Neural Network). A layered artificial neural net-
work is a neural network G(L) where each neuron is assigned to exactly one of its L
layers by a mapping l : V → [1, L] and ∀e = (vs, vd) ∈ E : l(vs) < l(vd).

Since neurons belonging to the same layer cannot be connected, G(L) is obviously an
L-partite graph. Combining nodes of each layer into supernodes, enables us to view
a layered neural network as a graph of layers. A layer-oriented view is an important
abstraction in deep learning. While it is difficult to understand the role of a single
neuron in a deep neural network, a layer can be associated with a specific task and a
powerful function space can be assembled using a relatively small number of layers.

Definition 5 (Layer Graph). A layer graph Γ(L) = (VΓ, EΓ) is an abstraction graph
of a layered neural network G(L) = (V, E), where each layer is represented by a single,
abstract supernode, i.e. VΓ = {v|v ⊆ V},

⋃
vi∈VΓ

vi = V, and ∀v1, v2 ∈ VΓ.v1∩v2 = ∅.
Furthermore, an edge between two supernodes e = (v1, v2) ∈ EΓ exists iff there are
two nodes va, vb ∈ V so that va ∈ v1 and vb ∈ v2 and (va, vb) ∈ E.

A sketch of a layer graph is given in Figure 4.2. We introduce the following notation to
facilitate the analysis and implementation of layered networks:

• w[l](n) is the weight vector of the n-th neuron in the l-th layer of the network,

• W [l] is the weight matrix for layer l, with an entry wij representing the weight of
the j-th neuron at its i-th input,

• a[l](n) = σ
(
z[l](n)

)
is the output of the n-th neuron in the l-th layer,
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• a[l] is the vector of all neuron outputs of the l-th layer with a[0] = x, aL = ŷ being
the input and the output prediction of the network, respectively,

• z[l](n) = w[l](n)T a[l−1] is the weighted sum of the inputs of the n-th neuron in the
l-th layer (recall that, for simplicity of notation, we assume for all layers l of a
layered network a[l](0) = 1 to account for the bias parameter).

Defining the shapes of these parameters falls within the scope of the first modeling
concern of machine learning dealing with the function space.

4.1.3 Training of Layered Neural Networks

The aim of the training of a neural network is to optimize the weights of the network
with respect to (w.r.t.) an appropriate loss function. The appropriateness of a loss
function depends on the type of the network output and should reflect the severeness of
the deviation of the predicted output from the ground truth. Prominent loss functions
include the L2 loss applicable to metric outputs and defined as

L2 =
1

2
(y − ŷ)2, (4.4)

where y is the ground truth vector and ŷ the prediction of the network. Furthermore,
the cross-entropy loss is used in classification and is defined as

Lxe := −
N∑
i

yi log (ŷi) , (4.5)

where N is the number of classes, yi is an indicator function being 1 if i is the correct
prediction and 0 otherwise, and ŷi is the probability of class i predicted by the model.

Independent of the concrete loss function, we need to find

arg min
W [1],...,W [L]

E[L], (4.6)

where the expectation is over the training set. In addition, the objective function can
be extended by a regularization term R(W [1], ...,W [L]) in order to restrain the weight
values (with the purpose to prevent overfitting).

The analytical approach to find the optimum of a function is to look for zeros of its
first derivative. Since this is not feasible for the complexity of functions we deal with
in machine learning, iterative gradient descend methods are used to minimize a loss
function [LNC+11]. Starting from a random (or heuristically determined) set of initial
weight parameters, in each step the gradient of the loss is computed w.r.t. the neuron
weights and the weights are updated according to the rule

w := w − λ∇wEL (4.7)
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or a variation thereof. Here ∇wEL = E
(

∂
∂w1

, ..., ∂
∂wN

)
L denotes the gradient of the

expected loss and the expectation is over the underlying data distribution. In practice
the latter is approximated by the training set. The learning rate λ is a hyperparameter,
i.e. a parameter controlling the training process. In contrast to model parameters, e.g.
the weights of a neural network, hyperparameters are not optimized during training.
The training results depend crucially on the choice of the hyperparameters.

We can obtain the first derivative of the loss function w.r.t. a single weight of a neuron
in the last layer by applying the chain rule of calculus as

∂

∂wi
L (y, ŷ) =

∂L
∂ŷ

∂ŷ

∂z

∂z

∂wi
=: ∆wi. (4.8)

Repeating this operation for every weight of the neuron yields the gradient vector
∇wL(y, ŷ). To render this process more tangible, we are going to carry out an ex-
emplary derivation using the L2 loss function and the well-performing rectifier linear
unit (ReLU) function [GBB11] as the neuron’s non-linearity, i.e

L = L2 =
1

2
(y − ŷ)2 (4.9)

and

ŷ = σ(z) = ReLU(z) = max(0, z). (4.10)

Then,

∂L
∂ŷ

= ŷ − y, (4.11)

∂ŷ

∂z
=
∂σ(z)

∂z
=
∂ReLU(z)

∂z
=

{
0, if z ≤ 0

1, otherwise.
(4.12)

and

∂z

∂wi
= xi. (4.13)

Hence,

∂

∂wi
L (y, ŷ) =

{
0, if z ≤ 0

(ŷ − y)xi, otherwise.
(4.14)

In the same manner, the derivative of the loss w.r.t. any other weight or bias of the net-
work can be computed. Thereby, weight gradients of the last neuron layer are computed
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first. The results are reused by the preceding layer, and so on. This process is referred
to as backpropagation.

To obtain the expectation value ∂EL
∂wi

as demanded by Equation (4.7), we need to
average the value of the derivative of the loss function over the whole training set.
However, in practice often only a subset of the training set is sampled and used in each
training step, cf. stochastic gradient descent (SGD) [Bot10].

The second modeling concern of machine learning deals with the construction of a
training algorithm from the ingredients introduced above, including but not limited to
the choice of the

• loss function,

• regularization strategy,

• optimization algorithm,

• validation technique,

• as well as the respective hyperparameters, e.g. the learning rate.

Mostly, the training can be put together from available black box algorithms (such
as backpropagation for the computation of the derivative and SGD for optimization)
and their respective hyperparameters providing a convenient form of reuse and hiding
repetitive details from the user. This way, the developer only needs to provide a param-
eterization.

4.1.4 Deep Network Architectures

We are now going to discuss widespread network architectures, which we will later fall
back on for the design of deep learning driven CPS architectures as well as the evaluation
of our modeling framework.

Multilayer Perceptron

The most basic neural network architecture beyond a single neuron is the multilayer
perceptron (MLP). It is a layered neural network consisting of an input, an output, and
at least one hidden layer. The input and output layers represent the input data and
the predictions, respectively. Each hidden layer receives data from its preceding and
forwards data to the next layer, i.e. the layer graph of an MLP is a linear graph with
a path from the input layer node to the output layer node. MLPs can be used to train
arbitrary functions, provided there is sufficient training data and an appropriate number
of neurons. Although, theoretically applicable to any supervised learning problem, MLPs
can be difficult to train due to their generality. Instead, it can be more convenient to
work with specialized layers tailored to the application domain. MLPs are particularly
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useful in CPSs for decision making based on a (small) set of pre-extracted features, e.g.
if we wanted to control the steering wheel, throttle, and brakes based on the actual
velocity, the distance to the lane markings, the distance to the front car, and the like.

Convolutional Neural Networks

CNNs constitute a family of networks mostly used in fields related to image processing
[LB+95]. The name stems from the introduction of convolutional layers, which are an
important building block in neural image analysis. A convolutional layer receives an
image I(i, j) as its input; for each channel it convolves the image input with the channel
specific kernel Kc(i, j). The result of the convolution operation is the channel output,
formally written as

C(i, j) = I(i, j) ∗K(i, j) =

∞∑
k=−∞

∞∑
l=−∞

I(k, l)K(i− k, j − l). (4.15)

In practice, of course, the convolution is only carried out for a finite area of interest,
i.e. within the image and kernel boundaries. The realization of the convolution can
be further fine-tuned using the parameters padding and stride. By padding the image
with additional values, image boundaries can be treated in a predefined way. The stride
s specifies by how many pixels the filter is moved over the input image. It can be
incorporated into Equation (4.15) by replacing I(k, l)K(i − k, j − l) with I(k, l)K(si −
k, sj − l).

A kernel can be thought of as a feature detector; each channel of a convolutional layer
learns to detect one individual feature. Thereby, each convolutional layer represents
a level of abstraction: while the first layers of a CNN aim at detecting low level fea-
tures such es edges and curves, the subsequent layers detect more elaborate structures
composed of the primitive features they get as input.

Convolutional layers are often followed by a pooling operation. The task of a pooling
layer is to reduce the amount of data output by the previous layer by applying an
aggregation operation, mostly the maximum operator, to neighboring neurons, i.e.

P (i, j) = max
k∈[wi,wi+w−1]
l∈[wj,wj+w−1]

I(k, l) (4.16)

where w is the width and the height of the pooling window.
The convolutional parts of a CNN are often followed by neuron layers similar to the

MLP, also referred to as fully connected or dense layers (in contrast to convolutional
layers where neurons operate on a small receptive field).

In the context of CPSs, CNNs are mostly applied to camera data for object detection,
scene understanding, decision making, etc. Thereby, the neural network can deliver
different levels of abstraction [CSKX15]:
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1. Mediated perception (low level of abstraction): the output of the network describes
the detected objects in the original picture domain, e.g. indicating bounding boxes
for recognized traffic participants.

2. Direct perception (medium level of abstraction): the output of the network de-
scribes features in the problem domain, e.g. the distance to the front vehicle, and
can be thought of as sensor imitation [CSKX15].

3. End-to-end networks (high level of abstraction): an end-to-end network realizes a
full controller outputting control commands based on the images provided by the
cameras and camera-like sensors [BDTD+16].

In the following we introduce a selection of widespread CNN architectures.

AlexNet. AlexNet [KSH12] is a popular CNN architecture consisting of eight layers,
the first five of which are convolutional while the remaining three are fully connected.
AlexNet is sped up by distributing the training over two graphical processing units
(GPUs). Furthermore, it is shown that using the ReLU activation function, the network
learns faster than, e.g. with a tanh activation.

VGG. The VGG architecture [SZ14] is a very deep CNN architecture with up to 19
weight layers. It is based on the AlexNet and adopts concepts such as its ReLU non-
linearity. However, it uses a very small receptive field of the size of 3 × 3 pixels and a
stride of 1. This reduces the number of weights per layer, thus enabling deeper networks
and improving training time.

ResNets. Improving accuracy by adding more and more layers to a CNN leads to
the problem of the vanishing gradient. As has been discussed in Section 4.1.3, the
weight gradient is propagated from the output layer to the earlier layers. By repeated
multiplication of small values, the gradient vanishes hindering training. The aim of
residual networks or ResNets is to counter this problem by introducing residual blocks
[HZRS16a]. Assume that a path of layers implements a function F (x). Then, the
corresponding residual block is given as R(x) = F (x)+x. Forwarding the input x to the
output unchanged on a parallel path is referred to as an identity shortcut connection. In
contrast to the other architectures discussed above, a ResNet cannot be implemented as
a linear layer graph. ResNets can incorporate hundreds or even over a thousand layers
[HZRS16b]. However, while deeper architectures tend to improve the network accuracy,
their training is very slow. This problem is tackled by wide residual networks (WRNs)
which offer a trade-off between width and depth [ZK16].
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Recurrent Neural Networks

Until now we have been discussing pure feedforward networks. However, feedbacks are
indispensable in many applications, particularly if the input is a time series. To tackle
this issue, recurrent neural networks (RNNs) have been introduced. While the neuron
model defined in Equation (4.3) is a stateless function, the idea behind RNNs is to
introduce a feedback taking the neuron’s history into account.

Vanilla RNN. This leads us to the vanilla RNN model defined as

y[t] = σ

(
wT
(

x[t]
y[t− 1]

))
. (4.17)

Note that we introduced a time dependency to the input and output. The square brackets
reflect a discrete time domain, as is common in signal processing applications. Now the
output of the cell depends not only on its input, but also on its previous output. The
neuron model is depicted graphically in Figure 4.3.

�[� − 1]

+�

�[�]

�[�]

	
�
time delay

Figure 4.3: The vanilla RNN cell model.

In training, a single example consists of an input and an output time series. To train
an RNN, backpropagation through time (BPTT) is used, an extension of the backprop-
agation algorithm discussed in Section 4.1.3. Thereby, each RNN cell is unfolded to
”remove” the recurrent connection, c.f. Figure 4.4. The loss for a single example can
then be computed as the average loss for all timesteps. The feedback of the neuron acts
as a memory.

Long short-term memory. While RNNs are capable of capturing relationships between
inputs within a short timespan, they struggle to keep track of long-term dependencies
due to a vanishing or exploding gradient in the BPTT process. This issue is tackled
by the long short-term memory (LSTM) cell, an extension of the discussed RNN cell
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Figure 4.4: An RNN cell unfolded for three timesteps.

[HS97]. Similar to the RNN cell, an LSTM cell depends on its input, the last output
but, in addition, also maintains a state C[t]. The introduction of gates allows the cell
to add and remove information to or from its state. A gate is realized as a Hadamard
product, i.e. point-wise multiplication, of the vector to control with a gate vector whose
entries are in the range between 0=forget and 1=keep. An LSTM cell exhibits three
such gates: the input gate i[t], the output gate o[t], and the forget gate f [t], defined as

i[t] = sig

(
W T
i

(
x[t]

y[t− 1]

)
+ bi

)
(4.18)

o[t] = sig

(
W T
o

(
x[t]

y[t− 1]

)
+ bo

)
(4.19)

f [t] = sig

(
W T
f

(
x[t]

y[t− 1]

)
+ bf

)
, (4.20)

where Wi, Wo, Wf , bi, bo, and bf are the weight matrices and the bias vectors of the
input, output, and forget gates, respectively. Furthermore,

sig(x) =
1

1 + e−x
(4.21)

is the Sigmoid function applied elementwise to its input vector mapping its elements to
]0, 1[. The cell state C[t] is computed as a superposition of the state candidate C̃ when
it passed the input gate and the old cell state when it passed the forget gate. It can be
written as

C[t] = C[t− 1] ◦ f [t] + C̃ ◦ i[t] (4.22)

with

C̃[t] = tanh

(
W T
C

(
x[t]

y[t− 1]

)
+ bC

)
. (4.23)
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The cell’s output is obtained from the state and the input as

y[t] = tanh(C[t]) ◦ o[t]. (4.24)

There are several variants of the described LSTM cell, e.g. adding peepholes, allowing
the gates to look at the cell state [GS00]. A widely used variant is the gate recurrent
unit (GRU) [CVMG+14]. It combines the forget and input gate into one update gate
and merges the cell state with the cell output.

Attention. A major drawback of recurrent network models such as LSTMs is the linear
way a state is propagated through the network. Such networks are bad at capturing
long-range dependencies and cannot be parallelized. Usually, the encoder subnetwork
first converts a given time-series into a fixed-size vector. A second subnetwork uses
this representation to perform a concrete downstream task, e.g. machine translation or
sentence classification. However, due to the short-memory nature of RNNs this approach
fails for long sequences. This problem has been tackled successfully by the attention
mechanism [BCB14]. Thereby, the decoder is not restricted to using a single vector
representation, but has full access to all the intermediate states of the encoder. Thereby,
it estimates the importance of the different states using an attention network.

An important neural network architecture for the processing of time-series is the trans-
former [VSP+17]. It is an attention-based encoder-decoder model, which, furthermore,
refrains from the usage of recurrent neurons. Instead the network uses the attention
mechanism to look at the entire input sequence. In addition to the encoder-decoder
attention, the transformer uses self-attention to let the encoder and the decoder attend
to their own sequences, respectively. A further benefit of abolishing recurrent neuron
models is the possibility to parallelize sequence processing networks. State-of-the-art
language models such as BERT [DCLT18] and GPT-3 [RWC+19, BMR+20] are based
on the transformer architecture.

4.2 Requirements of a Deep Learning Modeling Framework for
Cyber-Physical Systems

We are now ready to develop a modeling methodology for the discussed domain of
machine learning with a particular focus on deep neural networks. In particular, we will
aim at concepts allowing us to model and train the discussed architectures and neuron
types and to cover deep learning applications from the CPS domain. Our target audience
are industrial users without much emphasis on machine learning research, who need to
design neural networks from known building blocks and integrate them quickly into large
systems. This means that we are going to prioritize usability over flexibility.

Based on the analysis of the domain, we have elicited a set of requirements for a
model-driven engineering methodology for artificial intelligence (AI)-powered embedded
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and cyber-physical systems. These requirements will help us assess the existing GPL-
and DSL-based frameworks in Section 4.3 and Section 4.4, respectively. Furthermore,
they serve as the basis for our solution, which is the main contribution of this chapter. We
distinguish between requirements for the deep learning language(s) and the integration
methodology, denoted as RL and RM, respectively.

(RL1) Appropriate domain representation: we expect from a deep learning language
or framework that it has an intuitive representation of the domain concepts and
is aware of their semantics. Central concepts of the majority of today’s network
architectures are neuron layers and layer connections. Such concepts should be
offered by a deep learning language as first-level citizens and/or syntactic elements.
The developer should not be obliged to construct them from lower level concepts.

(RL2) Domain specific pragmatics: it should not be necessary to make obvious infor-
mation explicit in unambiguous contexts. The framework should rather be able
to infer as many details as possible. For instance, in many cases the number of
neurons in a layer depends on the output of the preceding layer. Although, this
information can be inferred automatically, many frameworks require it as explicit
parameters. Making the layer size explicit, however, is a problem, as it needs to
be updated manually whenever a change occurs in one of the preceding layers.

(RL3) Reusability and modularity: structural patterns can often be found in all kinds
of neural networks. For this reason, a neural network modeling language should
provide an adequate modularity concept. For instance, a means for layer compo-
sition should enable the developer to group several layers into a new custom layer
type; network parameterization should enable the adaptation of single layers but
also of whole networks to a specific problem without having to change their internal
structure. Furthermore, syntactic sugar can be used to facilitate layer stacking, a
widely used pattern denoting a successive repetition of the same layer type (with
possibly changing parameters).

(RL4) Separation of concerns: deep network engineering consists of several orthogonal
concerns, namely the architecture definition, where the structure of the network is
defined; network training, where the neuron weights are optimized based on a given
training set and which can include validation and model-selection; the training data
including its technical realization, preprocessing, and access; the intended network
execution in the final system. A deep learning framework must separate these
concerns clearly, e.g. the structural model must not contain any information on
the training. Exchanging one concern should not affect the others.

(RM1) Neural component integrity: to be able to integrate neural networks in complex
software, e.g. in the field of robotics, a neural network needs to exhibit a stan-
dardized interface, possibly accessible through a middleware such as ROS. The
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interface should enable easy integration with other components as well as integrity
checks, e.g. making sure that the neural network is compatible with the image
format provided by an upstream camera.

(RM2) AI awareness: the engineering methodology must be aware of the neural net-
work components present in the system under development. The compiler should
know where to find training data and when to train or retrain individual net-
works. Unnecessary training needs to be avoided as far as possible. These aspects
should not require human supervision, but must be fully automated instead. The
developers should focus on design and not on the deep learning lifecycle.

(RM3) Platform independence: a modeling language should describe a neural network
architecture and its training independent of the underlying implementation. Mod-
els should be reusable across different platforms.

Since the deep learning domain is highly active, new algorithms and features are
added to the toolset of an AI engineer on a daily basis. However, often latest
developments are only available in a small number of frameworks. A generative
approach should hence be able to target different backends and have the ability to
exchange the backend without considerable effort.

4.3 Overview of Deep Learning Frameworks

The field of deep learning has been moving fast since its revival due to the steadily
increasing computational resources. Due to the gaining popularity of the domain, many
frameworks facilitating the development, training, and deployment of neural networks
have been proposed. In this section we give a brief introduction of the widely used
solutions. The gained insights will contribute to the design of a deep learning language
family in the following sections.

A condensed overview of the most important framework features is provided in Ta-
ble 4.1. Mainly, we differentiate between low level or general purpose frameworks regard-
ing a neural network as a graph of matrix or tensor operations and high level frameworks
incorporating domain aspects such as network layers into their domain description.

Keep in mind that our analysis focuses on the frameworks’ frontends and usability.
Therefore, we omit a detailed discussion of the frameworks’ performance and refer the
reader to the corresponding benchmarks [SWXC16].

Theano. Theano [ARAA+16] is a low-level general purpose framework operating on
symbolic mathematical expressions. It is written in Python and uses Compute Unified
Device Architecture (CUDA). The latter ensures a high performance.

In Theano a mathematical expression is represented by a static computation graph.
Such a computation graph is a bipartite DAG with two types of nodes: variable and
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Table 4.1: Comparison of established deep learning frameworks and languages,
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apply nodes. The former represent data, while the latter denote mathematical opera-
tions. A variable node usually holds a matrix or a higher order tensor with statically
typed elements, e.g. as float32 or int64. Variable nodes can represent the provided
graph inputs as well as the computed outputs and intermediate results. The syntax
for mathematical expressions is similar to the Python library NumPy [WCV11]. The
framework computes gradients of such expressions by means of symbolic differentiation.

Being a low-level framework, Theano’s focus is on the mathematical aspects of neural
networks rather than on a high-level domain-specific modeling. Hence, it violates our
language requirements at least partially. Neural networks are assembled from low level
operations, which can be a tedious and error-prone task. This makes it more of a
framework for an academic audience rather than for industrial applications. Finding
errors in a static computational graph is difficult: a problem occurs only when the graph
is actually executed and not while it is assembled. Hence, error messages do not provide
a reference to the erroneous construction code. Theano does not maintain a C/C++
API which can be a disadvantage in productive systems.

Torch and PyTorch. Torch is a framework for scientific computing and machine learn-
ing offering a Lua interface [CKF11, CBM02]. The core functionality is implemented in
C and CUDA, ensuring high performance. Torch, in contrast to Theano, represents neu-
ral networks as dynamic computation graphs facilitating network debugging [LHHN17].
A dynamic computation graph is executed while it is built and can, hence, be debugged
line by line. Furthermore, such graphs allow the usage of imperative statements and
control structures during the construction and execution of the network. The network
architecture can be changed at runtime. Torch offers a dedicated neural network library
torch.nn providing the necessary building blocks to build neural networks as acyclic
computation graphs. A network has a forward function computing the output for a
given input and a backward function calculating the gradient for each parameter using
automatic differentiation. A network can be built either in a sequential or a functional
way. In a sequential definition a graph is defined as a list of layers, while in a functional
definition each layer gets its input as a parameter. PyTorch is a Python implementation
of Torch maintained by Facebook.

TensorFlow. Similar to Theano, TensorFlow [ABC+16], as its name suggests, is a low-
level computing framework with a focus on tensor processing. It uses static computa-
tion graphs, as well, allowing for symbolic differentiation of arbitrary math expressions.
Therefore, it suffers from the same disadvantages related to static graphs such as tedious
debugging and a complex API. To benefit from the advantages of dynamic computation
graphs such as eager execution, a more efficient handling of input data with changing
structure and dynamic batching have been added to the framework by libraries such as
TensorFlow Fold and Eager. TensorFlow 2 incorporates dynamic computation graphs
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and eager execution as a core feature. TensorFlow is often used in conjunction with the
higher level library Keras, which is tailored to the deep learning domain and therefore
easier to use (see details below).

Caffe & Caffe2. Caffe is a C++ framework developed by the Berkeley Vision and
Learning Center (BVLC) [JSD+14] for the design of CNNs with a focus on the reusability
and deployment of pretrained models. The possibility to share network architectures and
trained state-of-the-art networks contributed to the framework’s popularity. Providing
interfaces for C++, Python, MATLAB, as well as command line tools for training and
prediction, Caffe models are highly portable. In Caffe neural networks are assembled
from layers and stored in prototxt files. Four different model types exist: a network
description for training, the network architecture for deployment, the hyperparameter
configuration, as well as the stored dataset mean. The latter is computed automatically
by Caffe for the sake of dataset normalization. Caffe requires two separate descriptions
of the same neural network, since the model used in training needs to provide additional
information, e.g. the name of the dataset, the initialization parameters of the layers as
well as the loss function to be used. This model separation supports the separation of
concerns principle as required in (RL4).

Caffe can be used in conjunction with different high performance databases such as
LevelDB [GD11], LMDB, or HDF5 [FHK+11]. As a layer-based framework Caffe aims
to represent the CNN domain as naturally as possible, thereby fulfilling (RL1). However
this comes with the drawback that, unlike Theano and Torch, it does not provide a simple
way to create custom layers or loss functions using low-level math operations. Another
severe disadvantage of the prototxt format is the lack of reusability concepts and domain-
specific pragmatics. In terms of lines of code, Caffe performs by far the worst among the
discussed frameworks, as each layer has to be added to the network explicitly. Therefore,
Caffe fails to fulfill the requirements (RL2) and (RL3). This makes the construction and
maintenance of large networks such as the ResNet [HZRS16a] particularly tedious.

The successor, Caffe2, has abandoned the rather domain-specific, layer-centric pro-
totxt format to replace it by a Python interface introducing the concept of operators.
The operators can be employed to define new layers or low-level math operations making
Caffe2 more of a general purpose framework, similar to Theano, Torch, and TensorFlow.
Caffe2 is now a part of PyTorch.

Apache MXNet / Gluon. Similarly to Theano and TensorFlow, MXNet [CLL+15]
models a neural network as a static computation graph. Training is performed by means
of automatic differentiation on symbolic functions. Furthermore, the autograd package
enables automatic differentiation on NDArray operation graphs using the eager execution
principle. MXNet runs on all major operating systems and offers APIs for multiple
languages. MXNet comes with a set of predefined loss functions which are combined
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with the prediction output in the output layer. Furthermore, a developer can create
custom ones as symbolic expressions.

MXNet serializes the network in two separate files: a JSON description of the actual
network architecture and a binary file holding the network’s trained weights. MXNet
models can be deployed in production software using the C++-based prediction API.
The API provides functions to load pretrained models and to execute the neural net-
work for a given input. MXNet can package the complete prediction library as a single
file including all the necessary dependencies. This is particularly convenient for neural
network deployment in mobile and embedded systems. MXNet provides two interfaces:
the original Symbol API provides a rather low-level access to the framework and works
with static computation graphs exclusively. The newer Gluon API can be used to define
both dynamic and static computation graphs. Thereby, the user can debug the network
using a dynamic computation graph and hybridize it later on into a static computation
graph to accelerate the execution of the final model.

Keras. Keras1 is a high-level Python library aiming to provide an easy-to-use deep
learning API. It does not provide its own backend. Instead it used to offer a variety
of backends including Theano, TensorFlow, CNTK [SA16], and MXNet, thereby imple-
menting the platform independence requirement (RM3). However, Keras 2.3.0 is the last
major multi-backend release and is to be superseded by TensoFlow Keras (tf.keras).

Keras offers a layer-oriented API. Similar to Torch, a network can be constructed
either as a sequential list of layers or as a functional model, where each layer obtains its
input, e.g. the output of a preceding layer, as an argument. The latter variant enables
the definition of complex networks. A Keras network architecture can be serialized as
JSON or YAML. Trained weights are stored in an HDF5 database.

4.4 Machine Learning Modeling Frameworks

So far we have been discussing widely used frameworks for GPLs. In this section we are
going to look at domain-specific modeling alternatives.

MATLAB Neural Network Toolbox. Having been designed as a matrix-processing
language, MATLAB [Mat16] seems to provide a strong basis for the deep learning domain
which it covers in a dedicated Deep Learning Toolbox (formerly Neural Network Toolbox)
[DB09]. A neural network can be defined as a list of layers, similar to the sequential mode
of Torch or Keras. Each layer can be assigned a name as an optional parameter if the
layer needs to be referred to later on (which is a rather peculiar syntactic way of name
declaration). Based on this list, the layergraph function then creates a static layer
DAG of the neural network. To create a non-sequential architecture, e.g. a ResNet,

1https://keras.io/
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additional layers can be added to the network using the addLayers function. To
incorporate the newly created layers into the layer DAG or to add connections between
existing ones, the connectLayers function can be used, taking a layer graph as well
as the names of the source and target layers as its arguments. The trainNetwork
function trains the network according to the supplied training data and options. Since
the Neural Network Toolbox did not support symbolic differentiation, it was necessary
to implement both the forward and the backward functions for custom layers or loss
functions. The Deep Learning Toolbox can derive the backward function for a custom
layer automatically using automatic differentiation if it consists of dlarray objects
exclusively. Otherwise a custom backward function needs to be provided.

Due to the possibility of altering the network structure as described above, the toolbox
supports a wide variety of linear and non-linear network architectures including recurrent
or dynamic neural networks. Furthermore, a library provides pretrained state-of-the-art
networks out of the box. If needed, these predefined networks can be adapted to new
tasks by individual retraining. Computationally expensive training tasks can be run on
one or multiple GPUs using MATLAB’s GPU-coder.

Since MATLAB code can be used to implement the behavior of Simulink components,
neural networks can be encapsulated easily and used as blocks in C&C architectures, as
is required by (RM1). However, the compiler is not able to enforce a clear encapsulation
of neural networks, due to its ignorance of what a neural network is. Hence, neural
network code can be intermingled with unrelated procedural code. In other words, there
is a lack of AI awareness as required by (RM2). This hinders an automated lifecycle
management, e.g. knowing how and when to train and retrain the neural networks of a
large system. Hence, the developer needs to take care of the training phase explicitly.

IBM SPSS Neural Networks. IBM’s SPSS Neural Networks2 is an extension to SPSS
[MS17], a statistical analysis software, providing neural network development tools to
SPSS users. SPSS supports two types of neural networks: MLPs and radial basis func-
tion (RBF) networks. The developer sets up the network by choosing from one of these
two types and selecting columns from an SPSS dataset to be used as inputs and outputs,
respectively. Further parameters, e.g. the minimum and maximum number of neurons
in the hidden layers, can be set using a menu. SPSS then sets up and trains the network
automatically, i.e. the user does not have to define the network architecture explicitly.
The ease of use comes with the drawback of being restricted to a small class of sim-
ple networks with little possibilities for experimentation and research. Image, acoustic
signal, and natural language processing are out of scope.

2https://www.ibm.com/us-en/marketplace/spss-neural-networks, accessed December 10, 2019
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RapidMiner. RapidMiner3 is a graphical C&C-based modeling tool for machine learn-
ing and data mining. The developer composes a system from blocks representing com-
plete algorithms and by interconnecting these blocks with each other. RapidMiner offers
a large library of learning models including neural networks. Neural network parameters
related to both architecture and training can be set using a menu. In particular, the
architecture of the neural network can be adapted using the hidden_layers list pa-
rameter, where each layer can be assigned an individual number of neurons. Hence, the
developer has full control over the layers and their sizes, but is restricted to fully con-
nected architectures, i.e. each node of a layer is connected to each node of the subsequent
layer. More complex architectures can be realized using the DL4J extension.

Azure Machine Learning Studio. Azure Machine Learning Studio4 is a cloud-based
platform for data analysis and machine learning. The developer can define an experiment
by choosing blocks from a built-in library and interconnecting them in a graphical editor.
Hence, Azure Machine Learning Studio can be considered a graphical C&C tool. The
predefined blocks provide functionality for all stages of an experiment, including data
preparation, training, and prediction. Azure Machine Learning Studio provides different
machine learning models including multi-class neural networks. Similar to IBM SPSS
Neural Networks, the developer does not need to assemble the network architecture
manually, but has rather to provide a set of parameters through a menu, e.g. the
number of hidden neurons and the learning rate, to set up the neural network. Hence,
the graphical platform comes with similar restrictions with regard to modeling of neural
network architectures. However, the developer can provide models written in a GPL
such as Python or R in order to insert any kind of manually written code. Furthermore,
Microsoft offers Net#, a neural network specification language which can be used to
customize the architecture of a neural network module.

Net# Neural Network Specification Language. Net#5 is a purely textual neural
network specification description language developed by Microsoft with a focus on deep
layered neural networks. Azure allows the definition of custom components specified in
Net# alongside normal components. A Net# specification model consists of layers and
their connections. The developer can define arbitrarily many hidden layers and customize
parameters such as the number of nodes and the activation function for each of them.
The number of nodes in the input and output layers can be determined automatically
from the context using the keyword auto, i.e. the shape of the input layer is set to
the shape of the input data and the shape of the output layer depends on the problem

3https://rapidminer.com/, accessed December 10, 2019
4https://studio.azureml.net/, accessed December 10, 2019
5https://docs.microsoft.com/en-us/azure/machine-learning/studio/azure-ml-netsharp-reference-guide,

accessed December 10, 2019
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input Data auto;

hidden {

H1 [29,29] from Data all;

Conv1 [5, 13, 13] from H1 convolve {

InputShape = [29, 29];

KernelShape = [ 5,  5];

Stride = [4, 4];

}

}

output Result [2] from Conv1 all;
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Figure 4.5: Neural network architecture defined in Net# [KPRS19].

type (one output neuron for regression, two output neurons for two-class-classification,
etc.). If auto is used in the context of a hidden layer, its shape will be initialized from a
corresponding constant parameter. To repeat a layer in the architecture, multiple layers
have to be defined manually.

The resulting graph must be acyclic. Apart from that there are no restrictions on
layer connections. A layer can be connected to multiple other layers enabling DAG
architectures such as ResNets.

There are multiple configuration options, how the nodes of two layers can be connected.
While the full connection mode connects each neuron of the source layer with each neuron
of the destination layer, filters can be defined using predicates to describe customized
connection patterns, e.g. to connect source neurons to target neurons of the same row
of a two-dimensional neuron matrix. The predicate of such a filtered connection is a
Boolean expression taking the indices of two nodes and connecting them iff it evaluates
to true. Furthermore, convolutional, pooling, and response normalization
connection bundles enable the definition of CNNs using Net#.

Being a textual DSL, Net# is the closest solution in terms of syntax to the neural
network architecture description language to be presented in Section 4.7. Therefore,
an example of a simple Net# architecture is given in Figure 4.5. The network has one
input layer named Data, the two hidden layers H1 and Conv1 and one output layer
Result. The number of nodes in the input layer is derived automatically as specified
using the auto keyword. Layer H1 contains 29× 29 = 841 nodes which are arranged as
a two-dimensional array. The second hidden layer is a convolutional layer named Conv1
containing 5× 13× 13 = 845 nodes. Further configuration parameters are set in L.5-7.
All layers are connected in series using the from keyword. Input and output shapes of
the convolutional layer need to be specified explicitly, but could be derived automatically
instead by looking at the preceding layer, the kernel shape, and the stride.

Net# can only be configured with the predefined parameters, e.g. there are ten dif-
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ferent activation functions and it is not possible to add custom ones. This restricts the
usability of Net# for elaborate use cases.

DIANNE. Dianne is a graphical modeling tool for the design of artificial neural net-
works [DCBL+18]. While SPSS and Azure Machine Learning Studio operate on the
abstraction level of neural networks, i.e. a neural network is a black box, in DIANNE
neural networks can be composed from modules representing neuron layers and related
low level operations, e.g. non-linearities. As such, the modeling domain is more similar
to Net# and the GPL frameworks presented in Section 4.3. Modules from a library can
be added to the neural network by drag-and-drop. Then, they need to be interconnected
with each other to define the dataflow. Parameters of single modules (or layers) can be
set using context menus. Similarly, the hyperparameters needed to train the network,
e.g. the learning rate and the loss function, are set up in a dedicated menu. DIANNE
provides learning strategies for different types of neural networks, including generative
architectures such as GANs. DIANNE provides a runtime which enables distributed de-
velopment and deployment of neural networks. The user can control which modules to
execute on which device. Providing a high level of abstraction and focusing on usability
it has an application-oriented target audience similar to us.

4.5 The MontiAnna Framework

The frameworks and languages presented in Sections 4.3 and 4.4 provide powerful means
to develop deep learning applications and cover our requirements introduced in Sec-
tion 4.2 at least partially. However, multiple software engineering related issues remain
unsolved. Most frameworks are used through APIs in GPLs. Consequently, they are
bound to the syntax of the host languages which were not designed with deep learning
in mind. For instance, layer stacking and composition, concepts substantial for a clean
neural network design, need to be realized using the host language, e.g. Python. Domain-
specific deep learning modeling languages exist, as well, e.g. Caffe, Net#, and Dianne.
These solutions often tend to suffer from limited expressiveness. For instance, there is no
elegant way to instantiate many similar layers in Caffe, which leads to vast amounts of
code necessary to define very deep architectures such as the ResNet152 network. What
is more, modeling elaborate RNNs and applying advanced learning strategies such as
reinforcement learning or generative approaches is out of scope of these solutions.

While syntactic nuances are rather a matter of comfort, a more severe issue, partic-
ularly in GPL-based frameworks, is posed by the fact that the compiler or interpreter
is unaware of neural networks. This leads to several consequences for the software en-
gineering process. First, avoidable boilerplate code managing the lifecycle of a neural
network needs to be written, e.g. code related to loading data, storing the results etc.
Second, not being first-level citizens in the host language, neural networks cannot be

116



4.6 An Overview of Modeling Languages

clearly separated from other code parts. What is more, different concerns of a neural
network itself, e.g. training and architecture, are not well-separated, either.

Software engineers need to handle the integration of neural networks into large sys-
tems manually, which includes tasks such as when to train and to retrain them. The
automation of the machine learning lifecycle is highly desirable. The discussed model-
driven solutions provide a higher degree of automation and require less boilerplate code,
but are often limited in terms of expressiveness.

The contribution of this chapter is the introduction of MontiAnna, a deep learning
modeling framework for textual neural network specification and design, enabling us to
model the architecture of a very deep layered network such as the ResNet152 [HZRS16a]
in no more than 31 lines of MontiAnna code, to embed it into a larger EMA architecture
with little effort, and to define the training procedure using a concise notation [KNP+19,
KPRS19].

The prefix Monti in MontiAnna highlights that the language family is based on the
MontiCore language workbench [HR17, MSN17]. The acronym Anna stands for Artificial
Neural Network Architectures. Here, the term architectures refers to both the neural
architecture of a single neural network as well as to software architectures built from
AI components, since we will use MontiAnna as an implementation language for EMA
[KRRvW17, KRSvW18a] to embed neural networks into larger architectures.

4.6 An Overview of Modeling Languages

An overview of the MontiAnna framework is given in Figure 4.6. It is organized in
six layers which can be understood as parts of the modeling framework, the compiler
toolchain, and the generated artifacts. A short overview is given now.

The top layer in Figure 4.6 represents the layer through which a developer commu-
nicates with the framework. It enables the developer to model the architecture, the
training, and the training dataset of a deep artificial neural network independently. To
tackle the three modeling concerns of machine learning, identified in Section 4.1.1 as
accurately as possible, we decided to use a dedicated DSL for each of them.

Network architecture description language. The central language of the MontiAnna
framework is the neural network architecture description language CNNArc6. The pur-
pose of this language is to describe the structure of an ANN in terms of neuron layers and
connections or connection patterns between these layers defining the dataflows. What
is more, the network architecture language provides means to assign specialized tasks
to specific neuron layers, e.g. making them compute a particular activation function or

6The name CNNArc stems from the original starting point of designing convolutional neural networks.
However, in the meanwhile the language was extended and evaluated on a variety of other network
classes and is application-agnostic.
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Figure 4.6: Overview of the MontiAnna framework layers [KNP+19].

share weights according to a given pattern. However, it neither specifies how to obtain
the neuron weights nor where to get the data from. As such the network architecture
modeling language of MontiAnna is a layer graph description language according to
Definition 5. We will discuss it in detail in Section 4.7.

Network training. The dedicated training language CNNTrain serves the purpose of
declaring the strategy to be used to find appropriate weights for a given network architec-
ture. Such a strategy can be understood as a composition of optimization algorithms and
the parameterization thereof as discussed in Section 4.1.3. The training model is defined
as a separate artifact with the intent to keep all models concise, loosely coupled, and
exchangeable. For instance, a developer can reengineer or replace the training strategy
without touching the neural network architecture. We are going to discuss CNNTrain
in detail in Section 4.9.

Dataset model. To conduct the training for a neural network architecture, a machine
learning framework needs to know where the data is stored and how to retrieve it. For
instance, there are multiple widespread high performance database solutions such as
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HDF5 [FHK+11], LevelDB [GD11], and LMDB7, which can be used to hold the training
data. When using a GPL, database-specific code needs to be written to interact with
the database.

Furthermore, it might be necessary to use multiple datasets, a particular subset of
the available dataset only, or to even skip training if the available data has already been
learned. Loading a dataset or switching from one database type to another should not
require any boilerplate code to be written or rewritten.

In our approach all information regarding the dataset is captured in a declarative
dataset model, which, again, is decoupled from the architecture and the training models
and, thus, can be exchanged independently. We do not define a dedicated DSL, but use
the tagging approach instead [GLRR15]. This is particularly convenient if we need to
deal with multiple neural networks in a single software architecture as will be shown in
Section 4.10.2. Note that the dataset model is not to be confused with a data model
capturing types of a system and their relations, e.g. a UML class diagram [Rum17].

4.6.1 The Compiler Toolchain

The compiler toolchain consists of two layers: first, it composes the three independently
defined models and performs context condition checks ensuring that the obtained com-
posed model is valid. Then, this composed model is passed to a code generator. To
generate the required neural network functionality, MontiAnna makes heavy use of ex-
isting frameworks discussed in Section 4.4, hence benefiting from their optimizations,
but hiding them from the developer. As can be seen in Figure 4.6, MontiAnna provides
generators for several different backends. New generators can be added by extending an
abstract generator and providing the corresponding templates. The generated artifacts,
again, can be classified according to their tasks.

In addition to context conditions performed on the composed model, the concrete
code generator conducts feature checks, ensuring that it can handle all the functionality
required by the model. This comprises architectural elements such as layers and graph
operations as well as training related aspects such as optimization techniques and the
corresponding hyperparameters. Such feature checks are necessary since code generators
may be maintained with different effort, by different teams, or for different purposes.
Furthermore, a target framework can provide exclusive functionality. Such exclusive
functionality can only be used in conjunction with the respective code generator.

Whenever we want to add a new language feature to MontiAnna, we need to make
it available in the syntax, i.e. at modeling level. Furthermore, we have to extend the
code generators so that they can deal with this feature. Finally, we need to register the
feature in the supporting code generators so that they are aware of their capability to
generate it. This means in turn that the models defined using the MontiAnna DSLs are
completely decoupled from the compiler in terms of features.

7http://www.lmdb.tech/doc/, accessed October 12, 2020
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4.6.2 The Generated Artifacts

As soon as the generator chosen by the modeler has ensured that it is capable of gen-
erating the composed model, artifacts for neural network instantiation and training are
generated. Furthermore, the generator provides CMake build scripts to facilitate the
dependency management and the compilation of the generated code. Manual changes to
the created artifacts or the inclusion of hand-written GPL code are neither needed nor
desirable. We are going to discuss the main artifacts in the following paragraphs.

Network Creator. The NetworkCreator is an intermediate artifact, i.e. it is not used
in the final system. Its purpose is to assemble the neural network defined in the neural
network architecture model using the chosen target framework, e.g. MXNet Gluon.

Although our generator toolchain is supposed to deliver C++ code in order to be
compatible with the generated code of EMAM2CPP, the EmbeddedMontiArc and Mon-
tiMath generator, we have decided to use Python as the target language for our inter-
mediate artifacts. The reason for this decision is that Python APIs are often better
documented, have larger communities and in some cases even provide more functional-
ity than their C++ equivalents. Thus, network creation and training are performed in
Python while only a small amount of code dealing with loading and execution of the
final model is actually generated as C++.

Network Trainer. The NetworkTrainer is another intermediate Python module. Its
content, primarily determined by the training and the dataset models introduced above,
includes the training algorithm, its hyperparameters, as well as code to access the train-
ing data. The module performs the training for the neural network assembled by the
NetworkCreator and outputs a serialized representation thereof (the Network Pa-
rameters box in the bottommost layer in Figure 4.6). The latter can then be loaded
by another application to be used for its designated purpose, e.g. hand-written digit
detection.

Network API. To embed the trained neural network module into a software architecture
without having to deal with its internal structure, e.g. to implement the behavior of
an EMA component, the MontiAnna framework generates a C++ API providing an
execution interface as well as an implementation to load and execute the neural network.
This artifact can either be used as source code in other software or it can be compiled
to an executable by using the provided CMake build files or a C++ compiler.
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architecture Alexnet(N img_height=224, N img_width=224, 

N img_channels=3, N classes=10){ 

input Z(0:255)^{img_channels, img_height, img_width} image;

output Q(0:1)^{classes} predictions; 

/*Remainder of the network body*/

}
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Figure 4.7: Definition of a stand-alone network of type Alexnet (based on the influential
Alexnet CNN [KSH12]) and its interface.

4.7 Modeling Feedforward Neural Architectures with CNNArc

4.7.1 Defining a Stand-Alone Network

MontiAnna can be used as a stand-alone framework. In this case the developer models
and trains a single isolated neural network without integrating it in a larger software
architecture at once. This mode is best used for experimentation or rapid prototyping.
In Section 4.10 we will discuss how to obtain a reusable neural network component or
to integrate it in a larger EMA software architecture directly.

A stand-alone CNNArc network model is defined in an artifact with a .cnna extension
as shown in Figure 4.7. The MontiCore grammar of the CNNArc language is given in the
appendix in Listing B.12. The header of the network architecture is initiated with the
keyword architecture followed by its name and a list of arbitrarily many architecture
model parameters (not to be confused with hyperparameters which are defined in a
corresponding CNNTrain model as discussed in Section 4.9 or network parameters which
are the result of the network training step, cf. Section 4.10.3).

The body starts with the declaration of input and output neuron layers. These layers
serve as the interfaces of the neural network and are defined using the input and
output keywords followed by the type and a name. Type and shape of the input and
output layers must conform to the type and shape of the training examples and labels,
respectively.

In the remainder of the body, these special layers can be referenced by name, e.g.
to connect them to a neural network. Note that multiple input and output layers may
exist. For instance, image style transfer networks receive a content and a style image
as inputs. The desired output is the content image enriched with stylistic details of the
style image [GEB16].
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4.7.2 Modeling Layers and Networks

As discussed in Sections 4.3 and 4.4, neural networks can be analyzed and modeled
using different levels of abstractions. The appropriate level of abstraction depends on
the complexity of the network but also on the problem to be solved. While very small
networks can be composed of single neurons, this approach is not feasible for real world
problems. Instead, large neural networks can be thought of as layer graphs or as tensor
operations. The latter approach is very powerful and well-suited for experimentation
and research, but rather cumbersome to use for typical, well-understood neural network
applications and everyday problems. Since our aim is to provide a modeling technique
targeting designers of industrial systems, we decided to develop a high-level layer-based
language. The language enables the modeler to construct a neural network as a graph
of layer instances.

Definition 6 (Layer Instance). A layer instance is a concrete occurrence of an
array of similar neurons with all hyperparameters such as the number of neurons,
activation function parameters, etc. set.

A layer instance can be added as a node to a layer graph, cf. Definition 5. Practical
applications reuse typical kinds of neuron layers, such as convolutional, fully connected,
pooling layers and the like. To facilitate the creation of layer instances it is therefore
helpful to define a library of parameterizable layer instance templates, hereinafter re-
ferred to as layer classes.

Definition 7 (Layer Class). A layer class is a blueprint for a layer instance in-
cluding the behavior, interfaces, and, optionally, a set of instantiation and learnable
parameters of the represented neuron model.

Layer instances are the processing, side-effect free components of a layer graph with
their abstract behavior determined by the respective layer classes. The concrete behavior
is obtained during training by adapting the learnable parameters.

In the following we present a selection of important layer classes available in Mon-
tiAnna out of the box. This overview includes the parameters needed to instantiate
a layer, the connection pattern denoting how many neurons of the previous layer are
connected to a single neuron of the layer under consideration as well as the function
performed by each neuron. For the parameter types we use the EMA type system as
introduced in Section 2.2. Parameters can be passed as literals or as expressions of the
corresponding type. However, in contrast to component or function parameters, which
are evaluated at instantiation and at invocation time, respectively, layer parameters, be-
ing a specific kind of hyperparameters, are bound and hence must be known at training
time, when the network is constructed for training, and cannot be altered thereafter.
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FullyConnected. The fully connected layer class is the basic building block of most
ANNs, including MLPs, CNNs, and RNNs. In some layer-based deep learning frame-
works and APIs, e.g. in MXNet Gluon and Keras, such a construct is also referred to as
a dense layer.

• Parameter: N(1,∞) units denotes the number of neurons in the layer instance
and hence, its number of outputs.

• Connection pattern: all neurons of the preceding layer instance are connected
to each neuron of the layer instance, hence the name.

• Function: performs the linear part of the basic neuron model given in Equa-
tion (4.3), i.e. z = wTx, where x0 = 1 and w0 is the bias. The weights w need to
be learned. The non-linearity can be implemented by connecting a FullyCon-
nected layer instance to a non-linearity layer, cf. Sigmoid below and further
non-linearities in Appendix B.1. Note that this is in contrast to high-level frame-
works and APIs such as Keras and MXNet Gluon, where the activation function is
passed as a parameter to the dense layer. Our decision to treat the non-linearity
as a first-level entity provides more flexibility, reusability, and extensibility. Fur-
thermore, it enforces the layer modeling paradigm of the DSL.

Sigmoid. The Sigmoid layer is a non-linearity layer, mostly used after a FullyCon-
nected layer.

• Parameters: none.

• Connection pattern: each neuron of the preceding layer is connected to exactly
one neuron of the Sigmoid layer, i.e. the number of neurons and hence, both input
and output are derived from the preceding layer automatically. This will be referred
to as the 1-to-1 pattern in the following. A FullyConnected layer followed by
a Sigmoid layer realizes the basic neuron model as defined in Equation (4.3).

• Function: σ(x) = sig(x) = 1
1+e−t .

Softmax. Softmax is a special non-linearity which is mostly used at the output of a
multi-class neural network. Its purpose is to normalize the outputs for each class to a
probability distribution, i.e. the sum of all outputs must be one, while maintaining the
ratios.

• Parameters: none.

• Connection pattern: similar to the other non-linearity layers, but the denom-
inator of the Softmax function, i.e. the sum of all neurons’ inputs of the layer,
needs to be computed once and broadcast to all neurons.
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• Function: σ(x)i = exi∑
j e

xj .

Convolutional. The convolutional layer is the central layer class for CNNs.

• Connection pattern: each neuron maps a group of spatially related input neu-
rons to an output. However, each neuron of the input layer can be used as input
for multiple neurons.

• Function: performs a convolution of the input with one or multiple filters, cf.
Equation (4.15). The filter matrices are learned during training. However, the
concrete finite realization is controlled by the parameters described in the following.

• Parameters:

N^2 kernel: the size of the trainable kernel to convolve the input with.

N^2 stride: the number of neurons by which the filter is moved in each step
of the convolution. The bigger the stride, the smaller the size of the resulting
convolution output.

Padding padding: In contrast to the theoretical definition of the convolution
where the sums are from −∞ to +∞, the practical implementation operates
only on the finite input and filter matrices. To keep the information at the
matrix borders, new border neurons can be added, which is referred to as
padding. Furthermore, padding allows the output to take the same size as
the input. The padding parameter can be set to one of the three following
values. "valid" is the default option meaning that no padding will be
applied, i.e. only the valid area of the input will be used. "same" adds a
frame of zeros around the original input matrix (zero-padding) so that the
shape of the obtained convolution result is equal to the shape of the input
matrix divided by the stride. Finally, "no_loss" is another zero-padding
variant which adds a minimum number of zeros so that no entries of the input
matrix are discarded. If the stride parameter is set to one, "no_loss" is
equivalent to "valid".

N channels: the number of filters to be applied independently. This parameter
spans a new dimension of the layer output.

The layer classes listed above represent the basic building blocks for the design of
CNNs. Further layer classes will be introduced in the course of this chapter when needed.
More layer classes are documented in Appendix B.1. An up-to-date overview of all sup-
ported layer classes is given in the documentation of the reference implementation8.
Layer classes can be instantiated anywhere in the body of a CNNArc model by using the

8https://github.com/MontiCore/EmbeddedMontiArc/tree/master/languages/CNNArchLang
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layer Convolutional(kernel=(7,7), channels=3, stride=(2,2)) conv1;

layer Relu() relu1;

1

2

CNNArc

layer class name layer instance nameinstance parameters

Figure 4.8: Named layer instantiation example.

image -> conv1 -> relu1 -> predictions;1

CNNArc

sequential data flow operator

Figure 4.9: Graph expression example with layer instances chained using the sequential
dataflow operator.

layer keyword followed by the layer class name to instantiate, a list of instance param-
eters, and a unique name of the layer instance. The instantiation statement is concluded
with a semicolon. An example instantiating a Convolutional and a Relu layer is
shown in Figure 4.8. As is common in most computer languages, two layer instances
cannot have the same name, which is checked in a corresponding context condition. Fur-
thermore, layer instance names must be declared before they can be referenced. Note
that the layer parameter padding is not set explicitly for the Convolutional layer.
In this case, the default ("valid") is used.

As can be seen in the case of the Relu layer in Figure 4.8, layers with no parameters
must have an empty parameter list, i.e. the brackets are mandatory. The same holds if
the modeler intends to use the default parameters of the layer class. This is consistent
with constructor calls in object-oriented languages, e.g. Java.

Instantiating layers does not add them to the layer graph representing the neural
network. The layer graph is constructed using graph expressions interconnecting layer
instances by means of connect operators. The first connect operator we are going to
introduce is the sequential dataflow operator denoted as ->. It creates a unidirectional
connection from its left to the right operand, i.e. the output of the layer instance on the
left is passed to the layer instance on the right in the forward pass of the neural network.
A graph expression can be arbitrarily long. An example graph expression is shown in
Figure 4.9.

Note that the sequential dataflow operator has the same syntax as the EMA connec-
tor. In fact, if we regard a layer instance as a component instance and its inputs and
ouputs as ports, the two operators are very similar. The CNNArc operator, however,
has an additional property: the dataflow direction is reverted during training to perform
backpropagation. Such a reversion is strictly forbidden in EMA. Hence, the sequen-
tial dataflow operator of CNNArc is a variant of an EMA connector with controlled
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image -> conv1 -> relu1;

relu1 -> predictions;

1

2

CNNArc

Figure 4.10: A neural network represented as two graph expressions.

image -> Convolutional(kernel=(7,7), channels=3, stride=(2,2))

-> Relu() -> … -> predictions;

1

2

CNNArc

input layer anonymous instantiation

output layer

Figure 4.11: Anonymous layer instantiation example.

reversibility.
A neural network does not need to be built as a single graph expression. The CNNArc

model body can contain several graph expressions. If multiple graph expressions are
present in the model, the compiler will create a single graph internally, e.g. the model
given in Figure 4.10 is equivalent to the one in Figure 4.9. The two graph expressions
are joined using the relu1 layer instance as it is present in both expressions.

Combining graph expressions as described above enables us to create arbitrary layer
graphs. However, we restrict the allowed set of graphs to the set of all DAGs. Cycles
are not allowed. Furthermore, there must be a path from the input to the output layer.
Nodes from which the output layer cannot be reached are pruned. Nodes which are
not reachable from the input layer are pruned, as well, if they have no data generating
predecessor, e.g. a constant layer.

Since in feedforward architectures each layer instance is used exactly once, instanti-
ating and naming layers before building the graph is often unnecessary. Therefore, we
introduce the concept of anonymous layer instantiation. Instead of using names of layer
instances in a graph expression, we can indicate the layer classes instead as is shown in
Figure 4.11. A corresponding layer instance is created and included into the graph at
the desired location. A large number of networks are fully or at least partially linear
and hence, can be modeled using this syntactic sugar. The resulting CNNArc models
are more concise and well readable.

To facilitate the definition of layer graphs with parallel dataflows, we introduce our
second connect operator, the parallelization operator |. It splits the operands into
separate independent processing pipelines taking the same input (layer instances that
do not take an input ignore this). A processing pipeline can be left empty denoting
a skip connection, e.g. in a residual block of a ResNet. The parallelization operator
provides a concise syntax to define short parallel dataflows, mostly used in combination
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with anonymous layer instantiation. Long parallel pipelines are better modeled using
partial graphs with named interface layers.

To model more than two parallel processing pipelines, the operator can be used suc-
cessively. However, the sequential dataflow operator has a higher priority than the
parallelization operator. Therefore, it is necessary to group multiple parallelization op-
erators using parenthesis. For instance, let m1,...,m4 be layer instances, then the
expression (m1 | m2->m3 | m4)-> creates three parallel processing pipelines, which
are combined in a single parallelization block. The output of such a parallelization block
is a single list of the outputs of each pipeline. This list of data streams can be aggregated
into a single stream either by using a merge layer, e.g. Concatenate or Add, or the
selection layer Get. On the other hand, we can subdivide a layer’s output into multiple
parts using the Split layer. These layers, needed to create more complex graphs, are
introduced in the following.

Concatenate. This layer class is used to concatenate an arbitrary number of input
streams into a single stream along a given dimensions. The shapes of the input streams
must be equal except the dimension along which to concatenate. In CNNs this layer
is mostly used to concatenate multiple channels. Hence, the width and height of all
input images must be equal and the number of channels of the output is the sum of the
numbers of channels of all input streams. The layer takes an optional parameter N dim
denoting the dimension along which to concatenate (default is 1).

Add. Aggregates multiple input streams into one output stream by elementwise addi-
tion. The shapes of all inputs must be identical. The output shape is equal to the input
shapes. Similar layer classes for other arithmetic operations such as Sub, Mult, and
Div for subtraction, multiplication, and division, respectively, are conceivable, as well.

Split. This layer class can be considered as the opposite of Concatenate. It does
not change the input data in any way, but subdivides it into multiple partitions along
one dimension and outputs a list of streams. In CNNs subdivision mostly takes place
alongside the channel dimension. Hence, in the output height and width remain un-
changed, while the number of channels per stream is bc/nc in the first n − 1 partitions
and bc/nc + c mod n in the last partition, where c is the number of channels in the
input stream and n is the number of partitions to create. N n is an optional parameter
denoting the number of partitions to create (default is 2). N dim is a further optional
parameter denoting the dimension along which to split the input.

Get. The Get layer class is to be used in conjunction with a Split layer and a par-
allelization operator. Its purpose is to select the partition to be used in the subsequent
layer instances. The layer parameter N n denotes the partition to select. CNNArc
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Split(n=2) ->    

(

[0] -> … | [1] -> …    

) 

-> Concatenate()

1
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CNNArc

splits the input in 
two partitions

selects the first
partition

concatenates the two
output streams

selects the second
partition

Figure 4.12: A split-parallelization-get pattern example.

offers a dedicated syntax which can be used instead of the usual anonymous instantia-
tion/usage syntax. Thereby, the developer can refer to a particular partition by writing
its index into square brackets, i.e. [index]. An example of a split-parallelization-get
pattern instance is given in Figure 4.12.

The CNNArc layer library includes more layer classes, which can be useful for defining
neural networks, e.g. ImgResize, Dot, Repeat, Squeeze, ReduceSum, Expand-
Dims, BroadcastMultiply, SwapAxes, BroadcastAdd, and Reshape. Listing all
of them is out of scope. A more complete overview can be found in the code documen-
tation of the reference implementation as mentioned above.

4.7.3 Code Reuse in CNNArc

Deep neural networks often exhibit highly repetitive structures. Therefore, easy-to-use
reuse mechanisms are crucial in a neural network DSL. While the concept of layers
provides a reuse mechanism for neurons making deep networks controllable in the first
place, in this section we are going to introduce layer level reuse mechanisms of CNNArc,
further facilitating network design and validation.

Layer Stacking and Structural Parameters. In deep neural networks we often want to
create sequences of equal or similar layer instances. To allow concise modeling of such
layer stacks, we introduce the concept of structural arguments. Structural arguments can
be passed to any layer in addition to normal parameters. MontiAnna supports three dif-
ferent structural arguments: the two data flow operators -> and | as well as the question
mark ?. The former two operators can be assigned an integer expression larger than one
(the expression is evaluated at training time and cannot be changed afterwards). Doing
so is equivalent to chaining the respective layer that many times. Figure 4.13 depicts
two equivalent subnetworks, the first one being defined using a structural operator. The
way of chaining layer instances using structural arguments is not only convenient, but
also easy to use since the developer can associate the syntax with the dataflow operators.

The third structural argument is used to make layer instances optional. In contrast
to the first two structural arguments, it takes a Boolean expression. Whenever used, a
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FullyConnected(units=10, ->=5);

FullyConnected(units=10) ->

FullyConnected(units=10) ->

FullyConnected(units=10) ->

FullyConnected(units=10) ->

FullyConnected(units=10);
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layer stack defined by
means of a structural
argument

layer stack defined by
chaining layer instances

Figure 4.13: Two alternative definitions of the same layer stack consisting of five suc-
cessive fully connected layers having 10 neurons each. The first definition
makes use of a structural parameter, while the second one does not.

architecture MLP(B two_layers){ 

input Q(0:10)^{10} in1;

output Q(0:1)^{10} predictions; 

in1 -> FullyConnected(units=10) -> 

FullyConnected(units=10, ?=two_layers) -> predictions;

}
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parameter
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Figure 4.14: The MLP network modeled in this listing can have either one or two hidden
layers depending on the value of two_layers.

layer instance is only created and added to the layer graph if this structural argument
is evaluated to true. This feature is particularly helpful to model variability in neural
networks and automate model selection, e.g. by binding the question mark argument to
a model parameter as is shown in Figure 4.14.

Argument Sequences. While structural parameters as introduced above are a handy
way to instantiate and connect many layers with a small number of lines of code, they
often turn out to be inflexible as they require each layer instance to take the exact same
set of arguments. We can overcome this problem by introducing argument sequences.
Instead of providing a single expression for a layer argument, we can chain the arguments
using the usual dataflow operators -> and | to instantiate a layer class multiple times
using different sets of arguments. This is illustrated in L.1 of Figure 4.15. The corre-
sponding layer stack modeled without argument sequences is given in L.3-7 below. If
the layer class expects multiple arguments, all argument lists must have the same length
and the same operator sequence. Alternatively, we can pass single-valued arguments
alongside argument lists. In this case the single-valued argument will be replicated for
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FullyConnected(units=[10->20->25->10|5]);

FullyConnected(units=10) ->

FullyConnected(units=20) ->

FullyConnected(units=25) ->

FullyConnected(units=10) |

FullyConnected(units=5);
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layer stack defined using
an argument sequence

layer stack defined by
chaining layer instances

Figure 4.15: The definition of five fully connected layers with different numbers of units
with and without an argument sequence.

each instance of the layer stack.

Layer Groups. Often combinations of particular layers reoccur in a deep neural network
or even across different architectures. Therefore, defining custom reusable layer groups
or layer subgraphs from existing layer classes without having to implement their behavior
or the backward path is an indispensable feature of our language. Such a reusable layer
graph can be defined using the def keyword in a CNNArc model followed by a name, a
list of parameters, and a body delimited by curly brackets.

The body contains a layer graph definition using the standard syntax as used to define
the main layer DAG. The chosen name can then be used as a layer class name to create
new layer instances. Since the parameters of the newly defined layer class are passed
to existing layers, it is not necessary to specify parameter types. They are inferred
automatically from the context. If the type is ambiguous, i.e. a parameter is used
in different, incompatible contexts, the compiler will throw a type error. Similarly to
predefined layers, default values can be assigned to custom layer parameters.

A layer defined in a def block must have exactly one input and one output layer. In
contrast to a full architecture, the input and output layers do not have to be declared as
such explicitly. Other models can import the architecture containing the layer definition
and use it without instantiating the enclosing network.

The combined usage of the three code reuse techniques introduced in this section is
illustrated in Figure 4.16 modeling the ResNet152 neural network [HZRS16a]. Having
only 31 lines of code, the model is very short compared to ResNet152 definitions in
other languages, which may consist of up to hundreds or even thousands lines of code.
However, the usage of too much syntactic salt might render the model difficult to read.
A slightly longer but probably better readable version omitting the use of argument
sequences is therefore given in Figure 4.17. A modeler needs to weigh up readability
against compactness. The decision which modeling variant to use might depend on
personal preferences. Hence, it is important that the language provides a choice.
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architecture ResNet152(N1 channels=3, N1 height=224, 

N1 width=224, N1 classes=1000){

def input Z(0:255)^{channels, height, width} image;

def output Q(0:1)^{classes} predictions;

image ->

conv(kernel=7, channels=64, stride=2) ->

Pooling(pool_type="max", kernel=(3,3), stride=(2,2)) ->

resLayer(channels=[64->64->128->128->256->256->512->512],              

stride=[1->1->2->1->2->1->2->1], 

skipConv=[true->false->true->false->true->false->true->false], 

->=[1->2->1->7->1->35->1->2]) ->

GlobalPooling(pool_type="avg") ->

FullyConnected(units=classes) ->

Softmax() ->

predictions;

def conv(channels, kernel=1, stride=1, act=true){

Convolution(kernel=(kernel,kernel),channels=channels, 

stride=(stride,stride)) ->

BatchNorm() ->

Relu(?=act);}

def resLayer(channels, stride=1, skipConv=false){

conv(kernel=[1->3->1|1], channels=

[channels->channels->4*channels|4*channels], 

stride=[stride->1->1|stride], act=[true->true->false|false], 

?=[true->true->true|skipConv]) -> 

Add() -> 

Relu(); 

}}
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Figure 4.16: The ResNet152 modeled in CNNArc using structural parameters, argument
sequences, and custom layer definitions.
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architecture ResNet152(N1 channels=3, N1 height=224, N1 width=224, 

N1 classes=1000){

def input Z(0:255)^{channels, height, width} image;

def output Q(0:1)^{classes} predictions;

image ->

conv(kernel=7, channels=64, stride=2) ->

Pooling(pool_type="max", kernel=(3,3), stride=(2,2)) ->

resLayer(channels=64, addSkipConv=true) ->

resLayer(channels=64, ->=2) ->

resLayer(channels=128, stride=2, addSkipConv=true) ->

resLayer(channels=128, ->=7) ->

resLayer(channels=256, stride=2, addSkipConv=true) ->

resLayer(channels=256, ->=35) ->

resLayer(channels=512, stride=2, addSkipConv=true) ->

resLayer(channels=512, ->=2) ->

GlobalPooling(pool_type="avg") ->

FullyConnected(units=classes) ->

Softmax() ->

predictions;

def conv(channels, kernel=1, stride=1, act=true){

Convolution(kernel=(kernel,kernel),channels=channels,

stride=(stride,stride)) ->

BatchNorm() ->

Relu(?=act);}

def resLayer(channels, stride=1, addSkipConv=false){

(

conv(kernel=1, channels=channels, stride=stride) ->

conv(kernel=3, channels=channels) ->

conv(kernel=1, channels=4*channels, act=false)

|

conv(channels=4*channels, stride=stride, act=false, ? = addSkipConv)

) ->

Add() -> 

Relu(); 

}}
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Figure 4.17: ResNet152 model equivalent to the one in Figure 4.16 but defined without
argument sequences and therefore a better readability.
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component FullyConnected<N previousDim, N units> 

(Q^{previousDims, units} W, Q^{units} b) { 

ports in Q^{previousDim} layerInput,

out Q^{units} activations; 

implementation Math {

activations = W'*layerInput + b;

}

}
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component ReLU<N previousDim> { 

ports in Q^{previousDim} layerInput,

out Q^{previousDim} activations; 

implementation Math {

activations = max(0,layerInput);

}

}
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Figure 4.18: An example showing how MontiMath could be used to implement custom
layers for MontiAnna networks.

To define completely new layer classes that cannot be built from existing ones in a
def block, we need to provide templates for the backends we wish to support and reg-
ister the layer in the corresponding generators. Often the desired layers already have
corresponding counterparts in the target framework. This is the case for a large part
of the layer classes presented above. In some cases the existing target framework con-
structs need to be adapted only slightly to achieve the desired layer functionality, e.g.
by modifying the layer parameters or adding a preprocessing step. If, however, a new
layer cannot be built from available target framework constructs, it is desirable to model
the functionality using an appropriate DSL instead of writing templates for Python code
generation. In future work, MontiMath could be evaluated as a layer implementation
language to enable layer extensions within the language family. MontiMath seems to be
well suited for this purpose due to its matrix-oriented approach, since neuron layers can
often be modeled efficiently as matrix operations. Figure 4.18 shows exemplarily how
the FullyConnected and the ReLU layer could possibly be implemented as EMAM
components. The generic component parameter N previousDim is introduced to hold
the number of dimensions of the previous layer’s output. In the case of the Fully-
Connected layer, the additional generic parameter N units defines the number of
neurons in the layer. The component parameters are used to specify the trainable net-
work layer parameters, in this case the weight matrix Qˆ{previousDims, units} W
and the bias vector Qˆ{units} b. The actual computations are given as MontiMath
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code in the implementation parts of the components. The matrix operations provided
by MontiMath enable us to implement both layers in just one line. To make this layer
development and integration approach functional, we need to enable automatic differen-
tiation (AD) on MontiMath code or on the generated code so that the backward path can
be derived from the forward path implementation automatically. AD is a family of tech-
niques for efficiently and accurately evaluating derivatives of numeric functions expressed
as computer programs [BPRS18]. It is widely used in machine learning frameworks to
compute the backward path for training [PGC+17]. Alternatively, we can require the
layer developer to provide a backward path explicitly, which however is not a convenient
solution.

4.8 Modeling Recurrent Neural Networks

4.8.1 Basic Concepts

In many applications, the data a network works on exhibits a sequential nature. In such
cases, looking at isolated snapshots of an input signal independently does not lead to the
desired results. Interdependencies between the samples of a signal need to be modeled,
as well. For instance, the meaning of a single word in a sentence can heavily depend
on the context. What is more, input and output sequences can be of arbitrary lengths.
Hence, processing each word independently, e.g. to translate a sentence, will likely yield
imprecise results.

As discussed in Section 4.1.4, specific neuron models such as LSTM and GRU cells
have been developed for neural sequence processing. These neuron models cannot be
modeled adequately by the means presented in the previous sections only. Therefore,
we introduce the new layer classes representing RNN-based neuron models as well as
further layer classes which are essential for RNNs.

RNN. The RNN layer class represents the basic RNN neuron model as introduced in
Section 4.1.4. The activation function is set to tanh by default. In contrast to the
FullyConnected layer, the modeler does not have to append a non-linearity explicitly
as a stand-alone layer. This goes in line with other deep learning frameworks such as
Keras and MXNet Gluon and makes the layer class consistent with the other RNN-based
neuron models like LSTMs and GRU, where several non-linearities are applied inside the
model and hence, cannot be modeled as a subsequent layer. Furthermore, extracting the
non-linearity of the RNN class into an explicit layer would lead to an unnecessarily
complex neuron interface.

• Parameters:

N(1,∞) units denotes the number of neurons in the layer instance.
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N(1,∞) layers denotes the number of layers to instantiate. The default is 1.

B bidirectional makes the RNN bidirectional if set to true. It is set to false
by default.

• Function: performs the RNN function given in Equation (4.17) for each layer
with the input being the output of the previous layer. The weights w need to be
learned.

• Connection pattern: consumes and processes an input sequence stepwise.

LSTM. The LSTM layer class represents the LSTM model as introduced in Section 4.1.4.
The interface corresponds to the one of the RNN class.

GRU. The GRU layer class represents the GRU model as introduced in Section 4.1.4.
The interface corresponds to the one of the RNN class.

To feed words or sentences into neurons, we need to find an adequate numerical rep-
resentation of words first. The simplest way is to map each word of a vocabulary to a
single integer. However, mathematical operations such as a distance cannot be defined
on such a representation in a meaningful way. This can be overcome by using a high-
dimensional embedding. Layer classes creating a high-dimensional encoding include the
OneHot and the Embedding layers and are discussed in Appendix B.1.

4.8.2 Modeling an Encoder-Decoder Network

We are now going to introduce the syntactic elements required in RNN modeling based
on the encoder-decoder architecture. Encoder-decoder architectures are sequence-to-
sequence models where an input sequence is mapped to a target sequence. The example
we are going to use deals with automated machine translation, where an input sentence
is mapped to an output sentence in the target language [CvMBB14]. The source and
target sentences can be of arbitrary length and the length of the target sentence may
differ from the length of the source sentence. This problem is tackled by mapping the
input sentence to some intermediate representation. This mapping is performed by the
encoder RNN, e.g. consisting of LSTM or GRU cells. The output of the last step of
this RNN is input into the decoder RNN whose task is to find the best output sequence
corresponding to this intermediate, fixed-size representation word by word. This happens
in the process of unrolling.

A graphical representation of the unrolled encoder-decoder network is provided in
Figure 4.19. Each replication is depicted as a rectangle with the corresponding discrete
timestep index included for the decoder RNN. <SOS> and <EOS> denote the start
and end of sequence symbols, respectively, used to model the beginning end the end of
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t = 1 t = 2 t = 3

Ich bin<EOS>

<SOS> I am <EOS>
Encoder

Decoder

Figure 4.19: RNN encoder-decoder model example [KNP+19].

architecture RNNencdec<N1 max_length=50, N1 vocab_size=30000, 

N1 hidden_size=1000> {

def input N(0:vocab_size-1)^{max_length} source;

def output N(0:vocab_size-1)^{max_length} target;

layer LSTM(units=hidden_size) encoder;

source ->

Embedding(output_dim=hidden_size) ->

encoder;

layer LSTM(units=hidden_size) decoder;

1 -> target[0];

encoder.state -> decoder.state;

timed<t> GreedySearch(size=max_length) {

target[t-1] ->

Embedding(output_dim=hidden_size)

decoder ->

FullyConnected(units=vocab_size) ->

Softmax() ->

Argmax(dim=0) ->

target[t]

};

}
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Figure 4.20: MontiAnna model of the RNN encoder-decoder network [KNP+19].
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a sentence. In our example the encoder-decoder network translates the German input
sentence ”Ich bin” to the English equivalent sentence ”I am”.

The architecture definition of the discussed encoder-decoder machine translation model
is given in Figure 4.20. The network input is a vector where each element represents
the word at the respective position in the sentence as a natural number. The range
of the allowed values is bounded by the vocabulary size, i.e. (0:vocab_size - 1).
The vector dimensionality represents the maximum length of a sentence, but the actual
sentence can be shorter. The output of the network has a similar structure. Often,
the actual length of the output sentence differs from the length of the input sentence.
Restrictions on maximum sentence length are imposed by the EMA type system, which
prohibits dynamically sized data types in order to guarantee upper bounds on resource
usage. This limitation can be overcome easily by extending the EMA type system by
dynamic collection types.

The internals of the network do not work on the sentence representation described
above. The problem with this representation is that the distance between two different
words depends on the chosen concrete encoding, e.g. if the words house, water,
book are encoded by the numbers 1, 2, 3, respectively, the similarity of house and
water is higher than the similarity of house and book. To eliminate this problem, we use
the Embedding layer type, cf. Appendix B.1, mapping each word to a fixed-size vector.
Hence, the sentence vector is transformed to a sentence matrix, where one dimension
represents the word features and the second one the position of the word in the sentence.
The Embedding layer is used twice in our encoder-decoder model: first it maps the input
layer source to the input of the encoder in L.9 of Figure 4.20; furthermore, it maps the
word at the target port of the previous timestep in the same way to be reused by the
decoder, cf. L.18-20 of Figure 4.20.

While at first sight the model resembles feedforward architecture models, there are
several peculiarities to pay attention to. While in feedforward networks, we relied on
anonymous layer instantiation most of the time, this modeling principle is not sufficiently
expressive for RNNs; in order to define temporal interdependencies in our network,
we need to access a layer instance multiple times. In our encoder-decoder example,
the encoder and decoder LSTMs are instantiated as named layers in L.6 and L.12 of
Figure 4.20, respectively.

So far we have been working with implicit layer port access. Each layer class, including
the basic non-recurrent model, has at least the two ports input and output. As our
aim is to keep the language as simple and pragmatic as possible, by default we refer to a
layer’s output signal if it is the left operand and to its input if it is the right operand of
a connect operator. Recall that LSTM and GRU cells differ from standard feedforward
neurons by an inner state or a memory maintained and adapted throughout the course
of a recognition task.

When dealing with such cells, we will need to access specific properties of a neuron
explicitly. Hence, a more complex neuron model leads to a more complex interface which
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cannot be addressed implicitly any more. In the style of object oriented programming, we
introduce the access operator ”.”to retrieve a specific property of a neuron layer and refer
to this access mode as explicit access. Thereby, layer1 -> layer2 is semantically
equivalent to layer1.output -> layer2.input. Explicit access is more important
for working with the inner state of a neuron cell such as an LSTM. While, so far, we have
introduced the properties input and output for feedforward neurons and, additionally,
a state property for RNNs, other neuron models can, of course, provide even more
complex interfaces.

The encoder-decoder network consists of multiple subnetwork expressions. The first
of these subnetworks is defined in L.8-10 of Figure 4.20 and represents the encoder.
The aim of the simple subnetwork in L.15 of Figure 4.20 is to transfer the result of
the encoder to the decoder. Note that we use explicit access here to forward the inner
state of the encoder to the inner state of the decoder by writing encoder.state ->
decoder.state.

Furthermore, the decoder is executed in several steps to produce an output sequence
until an <EOS> symbol marking the end of the sequence is generated or until the max-
imum output sequence length is reached. In each step the current output needs to be
provided as input for the following decoding step. The modeling language hence needs to
provide a syntax to access the neuron’s input, output, and state from different points in
time. In particular, we need to be able to specify relative time dependencies, rather than
access absolute points in time, e.g. to specify that the input of a neuron is the output
of another neuron delayed by a fixed number of timesteps. For this reason we introduce
the concept of timed graphs, which is particularly important for time series processing.
In a timed graph a layer instance can be replicated for each timestep. In the layer graph,
timed replications can be thought of as independent layer nodes. However, if the layer
has trainable weights, they are shared across all timed replications. Connections can be
created between nodes related to different points in time. To declare a time variable
for a subnetwork, we use the timed modifier followed by the name of the time variable
in angle brackets, e.g. <t> in L.17 of Figure 4.20. The subnetwork which is executed
stepwise and is ought to use the time variable is enclosed in a block marked by curly
brackets following the timed modifier. Restricting the time variable to a dedicated
scope is a conscious decision: first, we hinder accidental usage of the time variable out-
side the timed subnetwork; second, the timed subnetwork is highlighted appropriately,
making the architecture well readable (graphical representations of encoder-decoder ar-
chitectures also separate the decoder from the encoder clearly, e.g. in the Transformer
architecture paper [VSP+17]).

The time variable t does not take an actual value, but is rather used to describe
relative temporal interdependencies. Inputs, outputs, and other layer properties can
now be accessed with a temporal argument in square brackets, cf. L.18 and L.24 of
Figure 4.20, which we refer to as timed access. In L.18 of Figure 4.20, we access the
network output of the last timestep, denoted by target[t-1] to be input into the
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Embedding layer. The result of the subnetwork is fed into the current version of the
target layer, denoted by target[t]. Hence, the subnetwork inside the timed block
seems to form a cycle where the input and the output are both represented by the
target layer with a delay of one timestep. To keep the model clean and pragmatic, we
interpret the absence of a temporal argument as a reference to the current timestep, i.e.
target is equivalent to target[t]. The temporal argument enables an abstract and
concise modeling of temporal interdependencies.

When an RNN is unrolled during prediction, the goal is to find an output sequence
with the highest probability. This is similar to non-recurrent classification tasks, where
we end up with a Softmax layer representing the probabilities of each possible label.
Applying an Argmax to the result, we finally obtain the best label. In recurrent tasks
however, taking the output with the highest probability in each step does not necessarily
lead to the sequence with the highest probability at the end. Theoretically, we need to
unroll the network for all possible output sequences to be able to identify the best one
at the end. This, however, is impossible, as the length of an output sequence, e.g. a
translated sentence, is unbounded. Limiting the output sequence length to a finite integer
n still does not allow for an exhaustive search due to the vast search space. A vocabulary
of |V | = 1000 ≈ 210 words would require testing 210n combinations, which, even for short
sentences of a maximum length of n = 10, would yield 2100 ≈ 1030 combinations. For
this reason, unrolling RNNs requires search strategies drastically reducing the number
of combinations. This is often done using the beam search algorithm in RNNs. In each
step, it takes only the w best sequence candidates, where w is a hyperparameter referred
to as the beam width. In the subsequent step it generates w|V | new candidates by
appending all possible words to each sequence and again chooses the top w ones to be
passed to the next step.

The search algorithm is specified after the timed modifier, cf. L.17 in Figure 4.20.
For instance, the BeamSearch strategy takes the parameters N1 size bounding the
maximum sentence length and N1 width being the beam width. The GreedySearch
is essentially a BeamSearch with the width parameter set to 1. It is provided as a
distinct algorithm for the sake of convenience. The search runs from 1 to size.

The question arises, how the network behaves if there is no previous timestep to read
from, i.e. at t=1. target[0] is set in the untimed part of the network, cf. L.14 of
Figure 4.20. This is solved using an invariant network allowing us to write a constant
to a particular property. We initialize target[0] with the value of 1, which, in our
case, represents the start of sentence symbol <SOS>. Hence, the value of target[0]
is not computed explicitly using the timed subnetwork. Similarly, the initial state of the
decoder is set from outside the timed block in L.15 of Figure 4.20. Note that although
we have introduced a loop in the layer graph by making the target layer the input and
the output layer of the graph expression in L.18-24 of Figure 4.20, the unrolled graph
still remains a DAG. Hence, we maintain our constraint that the layer graph must be a
DAG, cf. Section 4.7.2.
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In the last few years, RNN-based models have been steadily replaced by attention-
based large memory networks, e.g. the transformer and its descendants such as BERT
and GPT [VSP+17, DCLT18, BMR+20]. Modeling such networks is similar to the
approach described in this section and requires the same language elements. The required
layer classes are provided by MontiAnna and include DotProductSelfAttention and
large memory layers such as EpisodicMemory and LargeMemory, which are based
on [dMdRKY19, LSR+19].

4.9 Modeling Training

The previous sections have focused on the first modeling concern of machine learning,
namely architectural modeling. In this section we shift the focus to the training model,
which is another essential part of a machine learning system. The aim of the training is
to find an appropriate set of parameters or, in the context of neural networks, neuron
weights before the module is used. As was described in the beginning of this chapter,
the parameter search in deep learning is usually an optimization problem, which can be
approximated using numerical iterative algorithms. Our goal is to provide popular train-
ing algorithms covering a large part of all deep learning programs as black box libraries.
The developer should not need to reimplement these well understood algorithms. The
only thing which needs to be done is to specify the training procedure by choosing the
algorithms to use and setting their respective hyperparameters, cf. Section 4.1.3 for
more details on network training algorithms.

To comply with the separation of concerns requirement (RL4), a dedicated training
model is used to set up the training. This model is only expected to choose the algo-
rithms to be used and set their hyperparameters, hence a simple configuration language
is sufficient to describe the training. The training description language CNNTrain de-
veloped for MontiAnna resembles the JSON format and other similar data description
languages. However, there are some syntactic differences and semantic constraints.

As most MontiCore models, a CNNTrain model has a package it belongs to, which is
defined using the package keyword followed by the fully qualified package name. The
header starts with the keyword configuration followed by the model name. The
body is enclosed by curly brackets. In the body, the training parameters are set in an
arbitrary order. The name of a parameter to be set is followed by a colon and the desired
value.

Our training language only allows a predefined set of parameters and forbids combi-
nations of mutually exclusive parameters. The correctness of a model is verified against
the CNNTrain schema. Since MontiAnna is the only context in which the language is
used, no dedicated schema language was developed. Instead, the training schema is im-
plemented by the means of context conditions. However, a schema language should be
added in the future to help making the allowed combinations of parameters and their
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package de.monticore.dl; 

configuration Alexnet {

num_epoch:1,

batch_size:64,

normalize:true,

optimizer:adam{

learning_rate:0.01,

learning_rate_decay:0.8,

weight_decay:0.01 },

seed:12345}
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Figure 4.21: A simple training model example written in CNNTrain.

types explicit and easier to maintain and to extend.
The training language reuses the EMA type system. Each allowed parameter is linked

with a corresponding type which is checked by the schema, as well. The syntax for
scalar literals and matrices is the same as in MontiMath. In addition to that, CNNTrain
uses the type String for string-valued parameters and nested types similar to EMA
structs for complex properties. Similar to many other languages a string is enclosed in
quotation marks. A major difference to JSON is that a nested parameter is composed
of an enum-like value followed by a set of subparameters listed in a block enclosed in
curly brackets. For instance, if we want to set the optimization algorithm, we set the
respective parameter by choosing one of the available optimizers, e.g. optimizer:
adam. However, this specific optimizer requires its specific set of hyperparameters.
These hyperparameters can be set in the nested block (or are set to their default values).
This makes adam both a value (of type enum), since it represents a concrete algorithm,
and a type, since it defines its own hyperparameters (other optimizers, e.g. sgd or
rmsprop, might require other parameters). This is similar to the notion of clabjects,
which are entities combining properties of classes and objects in object-oriented multi-
level modeling [HSGP05].

In the following we provide a list of important hyperparameters supported by CN-
NTrain. Each parameter is preceded by its type and can have a default value assigned
to it. We are not going to dive into the details of each parameter as these are common in
the machine learning domain and do not contribute to the understanding of the modeling
methodology.

N1 num epoch = 1. The number of epochs to be trained.

N1 batch size = 1. The number of example used in each training step.

B normalize = false. If this is set to true, the data will be normalized before training.
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enum loss. This parameter is used to set the loss function for the training. The available
loss function options include: L1 (l1), L2 (l2), cross-entropy (cross_entropy),
softmax cross-entropy (softmax_cross_entropy), endpoint error (EPE) for
optical flow [ZLNH17] (epe), Sigmoid cross-entropy (sigmoid_cross_entropy),
and the Huber loss (huber).

nested optimizer. Sets the optimizer to be used. Supported optimizers are SGD (sgd),
Adam [KB14] (adam) and its variant decoupling weight decay [LH17] (adamw),
RmsProp (rmsprop), Adagrad [DHS11] (adagrad), Nesterov Accelerated Gradi-
ent (NAG) [Nes83] (nag), and AdaDelta [Zei12] (adadelta) . Each optimizer can
be parameterized with general loss parameters including, but not limited to: learn-
ing rate (Q learning_rate), learning rate decay policy (enum learning_-
rate_policy supporting the decay functions fixed, step, exp, inv, poly,
sigmoid), Q learning_rate_decay, etc. Furthermore, specialized parame-
ters can be available depending on the concrete loss, e.g. Q momentum for SGD,
Q beta1 and Q beta2 for Adam, Q epsilon for Adam, AdaGrad, RmsProp,
and AdaDelta.

enum context. An enum defining whether the GPU or central processing unit (CPU) is
used for training (allowed enum values are gpu and cpu). GPU training requires a
CUDA compatible graphics card and a backend, e.g. MXNet, compiled for CUDA
(MontiAnna itself does not have to be compiled for CUDA usage in a particular
way).

nested eval metric. Sets the evaluation metric for the trained network. Allowed values
are listed below (cf. Appendix B.2 for more alternatives):

accuracy: percentage of the correctly classified examples

bleu: bilingual evaluation understudy (BLEU) is a metric for the domain
of machine translation of natural languages [PRWZ02]. The subparameter N1ˆn
exclude can be used to exclude symbols from the evaluation, e.g. special symbols
such as start and end of sentence. The dimensionality n does not have to be
specified explicitly, but is deduced from the given vector.

Z seed. A seed controlling stochastic algorithms can be used to ensure reproducibility.

A CNNTrain model for the training of an Alexnet architecture is given in Figure 4.21.
It sets the number of training epochs to 1 and the batch size to 64. Normalization is
activated in L.6. The optimizer algorithm is set to Adam [KB14], which in turn requires
its own set of hyperparameters: the learning rate, its decay, and the weight decay. Other
optimizers might require a completely different or an overlapping set of hyperparameters.

Note that the training model is underspecified and therefore exhibits a non-deterministic
semantics. For instance, the training model abstains from defining the concrete sequence
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of the training examples to be drawn during a stochastic optimization procedure such as
SGD. To ensure reproducibility, a seed controlling random variables can be set, cf. L.11.

The training language as it is presented here is fully declarative and uses aliases to
describe the desired functionality, e.g. we use the alias l1 to reference the L1 loss
function defined as L1 =

∑
i |yi − ŷi|, where the sum is over the given batch of examples,

yi is the true label of example i and ŷi is the corresponding prediction. When more loss
functions beyond the provided set are required, new aliases need to be implemented in the
backend. To enhance extensibility and facilitate experimentation with new functions and
function variants, future work includes the integration of expressions into the training
language and/or the usage of external MontiMath scripts.

For instance, we could model the L1 loss as loss = sum(abs(label, predic-
tion)), where sum(.) is over the training batch and hence, adapted to the domain-
specific context; label is part of the context as well and refers to the true label of a train-
ing example and prediction references an output layer of the network architecture. If
the implementation of the function is encapsulated in a separate EMA component which
is referenced from the training model, e.g. loss = de.monticore.losses.L1, the
component needs to exhibit a to be defined interface to receive the context.

In addition to the loss function, different other aspects such as the optimizer, decay
functions, etc. can be modeled in this way.

4.9.1 The Composed Model

The semantics of a neural architecture model is a parameterizable family of functions
fw(x) that can be learned. Composing the architectural model with the training and
the dataset model yields a concrete function binding the parameters w.

Although the three modeling subdomains are orthogonal, only together they represent
a neural processing system. Therefore, we need to merge them into a single composed
model before we can generate the actual application code. The composition is realized
on the AST and the symbol table using MontiCore’s language aggregation mechanism,
i.e. there is no need to create a concrete syntax for this purpose. All models are stored
in independent files, but are linked to each other after parsing. The resulting composed
model serves as a basis for complex inter-model context conditions and code generation.
For instance, we need to check whether each neural network component is assigned a
valid training configuration.

If not specified otherwise, we assume that a network model uses a training model
of the same fully qualified name. This of course requires that a dedicated training
model is defined for each network which is contradictory to reuse principles in software
engineering. For this reason, the developer can explicitly reference a custom training
model for a neural network in a tag model as will be shown in Figure 4.24. The realization
details will be discussed in Section 4.10.2.

The composed model undergoes context conditions checking whether the training
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model is compatible with the network architecture. For instance, the loss function speci-
fied in the training model must be applicable to the network output. A concrete example
is the cross-entropy loss. The cross-entropy loss is a measure for the distance of proba-
bility distributions. It is often used in classification tasks where the network output is
a probability for each possible class. To use the cross-entropy loss, the network hence
must output a vector of probabilities, i.e. values between 0 and 1 summing up to 1.
This must be ensured by using a Softmax as the last layer in the network architecture.
Otherwise, a context condition will raise an error.

Another example is the usage of the F1 evaluation metric. Since it is only applicable to
binary classification models, we need to check that the output layer of the network is one-
dimensional. Hence, inter-model context conditions ensure that the employed training
algorithm and the underlying network architecture are compatible on a semantic level.
Once the composed model is assembled and validated, it is passed to the code generator.

4.10 EmbeddedMontiArcDL

Our goal is a holistic model-driven engineering (MDE) approach allowing the devel-
oper to tackle the heterogeneous problems arising in CPS applications using appropriate
paradigms. In particular, we want to be able to design the software architecture includ-
ing its typed dataflows using the EmbeddedMontiArc ADL. Furthermore, we should be
able to model the behavior of an atomic component in an appropriate way: while it
makes sense to model signal processing components such as filters and controllers using
MontiMath, recognition and detection tasks can often be solved efficiently using a neural
network.

Therefore, we are going to extend the EMAM language family to support Mon-
tiAnna as an alternative behavior modeling language. In the following, we will refer
to the newly created language family as EmbeddedMontiArc Deep Learning (EMADL).
EMADL is constructed using the language composition principles language extension,
language aggregation, and language embedding of the language workbench MontiCore
[HR17, MSN17]. The MontiCore grammar of the EMADL language is given in the ap-
pendix in Listing B.13. A graphical overview of the EMADL language family and the
respective generators is depicted in Figure 4.22. The end user only works with the com-
posed EMADL language and the corresponding compiler EMADL2CPP. The latter does
not generate code itself. Instead, it analyses the EMADL model and delegates parts
of it to the responsible subgenerators, i.e. EMA2CPP to generate architectural code
and connectors, MontiMath2CPP for MontiMath statements and an implementation of
MontiAnna2X for neural network architectures.
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Figure 4.22: An overview of the EmbeddedMontiArcDL modeling language family: lan-
guages and code generators are depicted as purple and pink boxes, respec-
tively [KPRS19].

4.10.1 CNNArc as Implementation Language for EmbeddedMontiArc
Components

To implement the behavior of an EMADL component as a neural network, the devel-
oper has to set the component’s implementation language to CNN instead of Math, cf.
Figure 4.23. The corresponding MontiCore grammar is given in Listing B.13. A com-
ponent’s behavior cannot be modeled using both MontiMath and MontiAnna concepts
at the same time. This is a conscious design decision aiming to enable neural networks
to be trained and reused as black box components in large systems and to leverage the
separation of concerns principle.

In contrast to MontiMath, where a single artifact can contain the whole model, a single
MontiAnna model consists of multiple artifacts, namely the neural network architecture,
the training model, and the dataset model. We only embed the architectural code into
the implementation block of a component as we consider it the most representative
part of a neural network. The training model is stored in a separate artifact and can
be related to the corresponding EMADL component by name, i.e. for a MontiAnna
component the compiler will try to resolve a training model of the same fully qualified
name. The dataset model is a separate tag model possibly containing information for
multiple components, cf. Section 4.10.2.

The definition of a MontiAnna neural network model inside a neural implementation
block omits an architecture header including the parameter list as well as the defi-
nition of input and output layers as given in Figure 4.7. Only the actual layer graph has
to be defined in the implementation body. The neural network architecture obtains its
parameters from the encapsulating EMADL component. Layer names undefined in the
architecture are looked up in the component’s port list.

From an abstract mathematical point of view, both EMA and MontiAnna are ma-
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component Alexnet<N img_height=224, N img_width=224, 

N img_channels=3, N classes=10>{ 

ports in Z(0:255)^{img_channels, img_height, img_width} image,

out Q(0:1)^{classes} predictions; 

implementation CNN {

/*Network body*/

}

}
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Figure 4.23: Definition of an EMADL component with a MontiAnna neural network
implementation.

trix processing languages, which facilitates the integration in the design domain. An
EMA matrix is mapped directly to a MontiAnna input layer of the corresponding shape.
However, the integration of the two languages has consequences in the generator do-
main. While EMA uses Armadillo’s types Col<type>, Row<type>, Mat<type>,
Cube<type>, the C++ APIs of common deep learning frameworks expect a simple
(multi-dimensional) array as input. Therefore, EMADL2CPP provides a translation li-
brary (CNNTranslator.h), which is used by the generated code at runtime to adapt
the data types when entering and leaving CNNArc components.

4.10.2 Modeling the Dataset

To provide information about the dataset to be used, we employ the tagging mechanism
of EMA [vW20] based on [GLRR15, Loo17]. It is designed to enrich symbols of a
referenced model with additional information (or tags) conforming to a tag schema. For
instance, the tagging approach can be used to add extra-functional properties to C&C
models [MRRW16].

In the scope of the EMADL language family, we use tagging for two purposes: first,
to capture concrete, implementation specific details mostly used by the generator and,
second, to link model artifacts if not possible otherwise. The tag schema which we
apply in the context of neural network components is given in Figure 4.24. It consists
of a single tag type declared as Training. It has two obligatory and one optional
entries. path is a string indicating the location of the training database to be used.
format specifies the format of the database and hence, determines how data access
is generated by EMADL2CPP for the respective training data. Our implementation
currently supports HDF5 and LMDB. Furthermore, by setting the optional variable
training, the tag model can override the fully qualified name of the training model to
be resolved for individual components. This enables the reuse of a single training model
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tagschema TrainingDataToEmadlTagSchema {

tagtype Training for EMAComponentSymbol,

EMAComponentInstanceSymbol {

path = ${path:String},

format = ${format:[HDF5 | LMDB],

(training = ${name:String})?}

}; 

}
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Figure 4.24: Tag schema defining the training data and optionally a CNNTrain model
reference for a deep learning component.

for multiple neural networks of an EMADL software architecture and across projects.

Note that two kinds of symbols can be enriched with a Training tag. If an EMA-
ComponentSymbol is tagged, the tag data will apply to all instances of the correspond-
ing component type. Consequently, sharing the same training configuration and training
data, all instances of this component type will become identical. Hence, training is per-
formed only once and the trained parameters are shared by all instances of the neural
net. Moreover, if the output of a neural network depends only on the current input, only
one flyweight instance needs to be created and can be reused for all component instances
of the respective type. For now, this is the case for all architectures discussed above,
including RNNs. In the scope of the EMA execution model, in each execution cycle an
RNN component receives a full sequence as input and unrolls the network to obtain a
full output sequence. Having limited the maximum length of the output to the dimen-
sionality of the output port, we constrain not only the required memory consumption
but also the network execution time per EMA cycle.

If, on the other hand, the Training tag is applied to an EMAComponentInstance-
Symbol, the configuration is only applied to this particular instance. Other instances
of the same component type remain untouched. Tags applied to component instances
have a higher priority than tags applied to component types.

4.10.3 The MNISTCalculator Example

To illustrate the EMADL concepts in a system with multiple deep learning and Monti-
Math components, we are going to introduce the MNISTCalculator, a toy application
for arithmetic operations on handwritten digits. The top level architecture including an
exemplary dataflow is depicted in Figure 4.25, the textual EMADL model is given in
Figure 4.26. The input port array image expects five 28 × 28 grayscale images. The
first two pairs of digits constitute the two operands while the fifth (in the middle in
Figure 4.25) represents the desired operator. The images are fed into individual detector
components depicted in purple to highlight that they are implemented in MontiAnna,
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Figure 4.25: Component-and-connector architecture of an extended MNISTCalcula-
tor [KNP+19].

component MNISTCalculator { 

ports in Z(0:255)^{1,28,28} image[5],

out Q(-9801:9801) result; 

instance Detector<10> digitPredictor[4];

instance Detector<4> operatorPredictor;

instance ComposeNumber composer[2];

instance Operation operation;

instance Argmax<10> digit[4];

instance Argmax<4> op;

connect image[1:4] -> digitPredictor[:].data;

connect image[5] -> operatorPredictor.data;

connect digitPredictor[1:4].softmax -> digit[1:4].values;

connect operatorPredictor.softmax -> op.values;

connect digit[1:2].result -> composer[1].numbers[:];

connect digit[3:4].result -> composer[2].numbers[:];

connect op.result -> operation.operator;

connect composer[1].composed -> operation.operand[1];

connect composer[2].composed -> operation.operand[2];}
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Figure 4.26: Textual EMADL representation of the MNISTCalculator architecture de-
picted in Figure 4.25.
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component Detector<Z(2:oo) classes = 10>{ 

ports in Z(0:255)^{1, 28, 28} data, 

out Q(0:1)^{classes} softmax; 

implementation CNN 

{ 

def conv(channels, kernel=1, stride=1){

Convolution(kernel=(kernel,kernel),channels=channels) ->

Relu() -> 

Pooling(pool_type="max", kernel=(2,2), stride=(stride,stride)) 

} 

data -> 

conv(kernel=5, channels=20, stride=2) ->

conv(kernel=5, channels=50, stride=2) ->

FullyConnected(units=500) -> 

Relu() -> 

Dropout() -> 

FullyConnected(units=classes) -> 

Softmax() -> 

softmax; 

} } 
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Figure 4.27: Detector component for the MNISTCalculator.

cf. Figure 4.27. The other components are implemented using MontiMath to compose
the single digits to operands and to carry out the chosen operation.

Obviously, the kind of data the Detector component instances work on is the same
for the digit detectors and structurally similar to the data processed by the operator
detector. Hence, it makes sense to reuse the same CNN for both tasks, e.g. an AlexNet
or a ResNet. Furthermore, we can assume that both tasks can be trained using the
same training model. However, while the four digit detector instances should share the
same training data, e.g. the MNIST database [LC10] for handwritten digit recognition,
the operator detector should be obviously trained on another dataset. This is modeled
by the dataset tag model which is given in Figure 4.28. Note that the tag model is
compliant with the TrainingDataToEmadlSchema schema defined in Figure 4.24.

The first Training tag defined in L.4-8 is applied to the component type Detector,
letting all instances of this type use the dataset information of this tag. The data path
is set to "/home/se/mnistdata" and the format is HDF5. The fully qualified name
of the referenced training model is de.rwth.se.MyTraining. The second Train-
ing tag is applied to the particular component instance operatorPredictor of the
MNISTCalculator model. While the training model and the data format remain the
same, the data path is set to "/home/se/operatordata".
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conforms to TrainingDataToEmadlTagSchema

tags TrainingTags {

tag Detector with Training = {

datapath = "/home/se/mnistdata",

dataformat = HDF5,

training = de.rwth.se.MyTraining;

}

tag MNISTCalculator.operatorPredictor with Training = {

datapath = "/home/se/operatordata",

dataformat = HDF5,

training = de.rwth.se.MyTraining;

}

}
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Figure 4.28: Tag model providing information regarding the data and the training con-
figuration to be used for the training of the detector components.

When a model such as the MNISTCalculator is compiled for the first time, the
EMADL generator delegates the generation of the different components to the respec-
tive subgenerators. For MontiAnna components the training phase is executed after a
successful generation. However, network training is not always necessary. First, the
EMADL generator does not retrain MontiAnna components of the same type if their
training configuration, i.e. the attached tags and the training models, are identical.
In the MNISTCalculator, we have a Detector component array with four identi-
cal networks using the same training configuration. The training is executed once and
the weights are reused by all four component instances. At runtime only one flyweight
instance representing the four digit detectors is created.

Second, after training, the framework stores a metadata file including the creation date
of the database used in the repository of the respective model. Whenever generation of
the model is requested, the generator checks if a trained network artifact is available. If
yes, it checks whether the database used has changed by comparing its actual metadata
with the stored metadata file. If this is not the case and the model artifacts have
not changed either, the generation of the NetworkCreator and NetworkTrainer
are skipped and the network API reuses the old serialized network. For now, changes
to model artifacts are checked based on the modification date and file comparisons.
In future work, semantic differencing operators can be designed and implemented for
neural network and training configuration models based on [Kau21] to further improve
this process.

This is a basis for the automation of the development process for machine learning-
based systems. Now, the system designer can handle neural network components in
the same way as all other components and does not have to continuously keep track of
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Figure 4.29: The deep direct perception-based architecture of a racing vehicle controller
for TORCS [KPRS19].

their states. The lifecycle of such components is fully controlled by EMADL, training
is performed automatically and unnecessary retraining is avoided. Furthermore, this
approach enables the definition of neural network artifacts including training data and
the trained weights as versionable archives, which can be deployed and reused as de-
pendencies in build management systems such as Maven and Gradle. Another approach
for handling the machine learning lifecycle is provided by the MLflow development plat-
form [ZCD+18]. It facilitates the tracking of experiments and the underlying config-
uration and enables reusability by providing formats for packaging code, models, and
data.

4.10.4 Modeling a Direct Perception Autonomous Vehicle Controller

A more complex example related to the domain of autonomous vehicles was modeled
using EMADL by Svetlana Pavlitskaya in her master thesis and published in [KPRS19].
The goal was to develop an autopilot for The Open Racing Car Simulator (TORCS)
following the deep direct perception approach as introduced in [CSKX15].

As described in Section 1.3.3, the goal of the direct perception approach is to use a
CNN to extract features out of camera images, which can then be used by a conventional
controller to compute the driving commands. A graphical overview of the EMADL
architecture is given in Figure 4.29 [KPRS19]. Again, the CNN component of type
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component Dpnet <N img_height=210, N img_width=280,    

N img_channels=3, N classes=14>{ 

ports in Z(0:255)^{img_channels, img_height, img_width} image,

out Q(0:1)^{classes} predictions; 

implementation CNN {

def conv(kernel, channels, hasPool=true, convStride=(1,1)) {

Convolution(kernel=kernel, channels=channels, 

stride=convStride) ->

Relu() ->

Pooling(pool_type="max", kernel=(3,3), stride=(2,2), 

?=hasPool)

}

def fc(){

FullyConnected(units=4096) ->

Relu() ->

Dropout()

}

image ->

conv(kernel=(11,11), channels=96, convStride=(4,4)) -> 

conv(kernel=(5,5), channels=256, convStride=(4,4)) ->

conv(kernel=(3,3), channels=384, hasPool=false) ->

conv(kernel=(3,3), channels=384, hasPool=false) ->

conv(kernel=(3,3), channels=256) ->

fc() ->

fc() ->

FullyConnected(units=256) ->

Relu() ->

Dropout() ->

FullyConnected(units=14, no_bias=true) ->

predictions;

} }
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Figure 4.30: The direct perception CNN for the extraction of affordance indicators in
TORCS [KPRS19].
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training Dpnet(…) { 

num_epoch : 100,

batch_size : 64,

eval_metric : mse,

context : gpu,

load_checkpoint : true,

normalize : true,

optimizer : sgd {

learning_rate : 0.01

learning_rate_decay : 0.9

step_size : 8000

}

}
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Figure 4.31: The training model of the DPNet component [KPRS19].

DPNet is depicted in purple to highlight that it is a neural processing component. All
other components are implemented using MontiMath.

Based on [CSKX15], the architecture of the DPNet is a variant of the AlexNet [KSH12]
featuring the following modifications: first, there are no local response normalization
(Lrn) layers; second, two further fully connected layers with 256 and 14 units, respec-
tively, are introduced. Furthermore, a sigmoid layer is added after the last fully connected
layer of the network constraining the output to the range [0, 1]. However, due to our
observations that the sigmoid layer slowed down convergence significantly, we decided
to remove it in our model. The reason for this might be that without squashing the
output to a relatively small range, larger deviations from the ground truth lead to larger
gradients. Furthermore, when using a sigmoid layer, large errors might actually learn
more slowly due to the saturation of the sigmoid function.

The code of the DPNet component is given in Figure 4.30. The input port image of
the wrapping EMADL header is used as the input layer of the network in L.21. Similarly,
predictions, the last layer of the network, is linked to the corresponding output port
of the component.

The network structure is built in L.21-33 and is completely linear, i.e. the sequential
operator -> is sufficient to model the layer DAG. Unsurprisingly, convolutional layers are
the main building block of the architecture. Moreover, we employ fully connected, ReLU
activation, and pooling layers. A Dropout layer is included for regularization purposes
in L.18 and L.31. The two custom layer classes conv and fc are defined in L.8-14 and
L.15-19, respectively. Without these two definitions, the model would be much more
repetitive. Using default parameters for the conv layers instantiated in L.22-26 further
enhances model reusability. We therefore restrain from using parameter sequences to
squash the conv instantiation.

The training model for the DPNet component is given in Figure 4.31. The hyper-
parameters are largely based on the original paper [CSKX15]. Since, in contrast to
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other applications discussed so far, the DPNet is used to predict features in a continuous
space, the mean squared error (MSE) function is used to assess the error. The network is
trained for 100 epochs with a batch size of 64. The optimizer is set to SGD. The learning
rate is set to 0.01 and is scheduled to decrease by the factor 0.9 every 8000 steps.

The DPNet works with normalized data. Hence, we have to rescale the predictions by
inverting the original normalization in the Denormalizer component. The obtained
denormalized affordance indicators are then written into an Affordance struct. Due
to the noisy nature of the affordance indicators predicted by the DPNet, a denoising
component is necessary in our architecture. We apply the widely used Kalman filtering
to smoothen the signals. Since we need to filter multiple streams independently, we
encapsulate the required filter components into a KalmanFilterBank.

The task of the Localization component is to estimate the number of lanes based
on the distance between the outer left and right lane markings. This information as
well as the affordance indicators themselves and the speed of the vehicle are input into
the DriverController, which in turn generates an appropriate driving behavior. The
AffordanceToVector component is a helper component converting the Affordance
struct to a 14-dimensional vector, which is then connected to one of the main component’s
output ports for analysis and evaluation reasons.

The DriverController applies the corresponding control algorithm of the Deep-
Driving project [CSKX15] to obtain the actuator commands for accelerating, braking,
and steering based on the current speed, distance to the lane markings, and presence
of the other cars in the currently occupied and neighboring lanes. The controller tries
to keep the vehicle in the middle of the lane using the distance to the lane markings
extracted by the DPNet. If another car is detected in front of the ego vehicle and a free
lane is available, a lane change is initiated.

The acceleration command is set to a positive (normalized) value in the range (0, 1]
if the car drives more slowly than the predefined maximum velocity. Accordingly, the
vehicle will brake if its velocity exceeds this limit. Braking and acceleration are also
affected by the presence of other vehicles in front. The ego vehicle tries to maintain a
minimum distance of 20 m to the front vehicle. Furthermore, the vehicle slows down in
curves based on the steering history.

Internally, the DriverController uses a first in, first out Buffer holding past
steering commands, lane change states, as well as lane change timers for several execution
cycles. Up to five of the past steering commands are used to compute the deceleration in
long turns. To avoid deceleration during lane changes, a corresponding lane change flag
is set to inform the controller that the steering is not due to a turn. To be able to specify
the kind of lane change being performed, we introduce the LaneChange enumeration
taking the self-describing values NO_CHANGE, TO_LEFT, TO_RIGHT, IN_RIGHT, and
IN_LEFT. Lane changing timers are used to render smooth lane change maneuvers.

To evaluate the EMADL toolchain, the architecture was generated and trained using
the MXNet deep learning backend. To make sure that the logic of the architecture is
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correct, we first tested it without the neural network component by providing ground
truth affordance indicators to the model directly. Once the vehicle was able to cope with a
variety of situations including following a track, overtaking and following other vehicles,
we replaced the ground truth input by the neural network extracting the affordance
indicators from the camera images. For training of the DPNet, we used the materials
provided by the authors of [CSKX15]9. Thereby, 387.851 samples were used to train and
96.963 to validate the network, each containing a camera image and the 14 corresponding
affordance indicators as its label. After 140.000 iterations we achieved an MSE of 0.05
on the validation set. The trained model was used successfully to control a TORCS
vehicle. A demonstration is available in the video channel of the Software Engineering
department of the RWTH Aachen University10. The communication of the presented
autopilot with TORCS [WEG+00] was modeled using the middleware tagging approach
which will be presented in Chapter 6. Thereby, the whole development process of this
AI-driven CPS controller including training, integration, and deployment was conducted
in a model-driven manner without the need for hand-written GPL code.

9http://deepdriving.cs.princeton.edu/, accessed October 29, 2020
10https://youtu.be/hfICK4f-hR4, accessed October 29, 2020
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Chapter 5

Modeling Deep Reinforcement Learning
Architectures

Until now we have discussed how MontiAnna can be used to model supervised learning
systems. While supervised learning has been successfully employed for tasks relevant for
this thesis, its major drawback is that it relies heavily on labeled data. Gathering such
data is time consuming, expensive, and not always feasible. Reinforcement learning is a
subdomain of machine learning which does not require a labeled dataset to be provided
for training. The field is of particular interest for behavioral training and hence, for
CPSs. For instance, it can be used to teach a system to move in a specific environment
using its sensors and actuators. An agent such as a self-driving vehicle controller aims to
learn an appropriate policy by maximizing a reward function in a series of experiments.

In this chapter we are going to discuss how MontiAnna can be used for the design,
training, and integration of deep reinforcement learning systems based on [GKR19]. In
contrast to supervised deep learning, a deep reinforcement learning system requires mul-
tiple components, which play different roles throughout the training process: in addition
to the actors we actually want to train, we need critic networks, reward functions, and
environments. The compiler needs to instantiate and interconnect these components in
the different phases of the system’s lifecycle, which cannot be achieved by the means of
the EMA component model discussed so far.

The research question to be answered in this chapter is the following:

Research Question 4. How can different training approaches such as reinforce-
ment and adversarial learning be modeled and used at SMArDT level 3?

5.1 Foundations of Deep Reinforcement Learning

In this section we are going to introduce the terminology and basic concepts of the field
needed to understand and design a deep reinforcement learning modeling methodology.
The environment and the agent are two central concepts present in all kinds of rein-
forcement learning (RL) systems. The agent is the trainable part of the system trying
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to learn a behavior policy to achieve some given goal in an environment. Therefore,
the agent senses the state s and performs an action a according to its policy π. As
a response, the environment and the state of the agent are updated. In the training
phase the environment computes a reward measuring the quality of the action based on
the new state. The agent’s behavior is learned by exploring the action space to find
action sequences maximizing the expected reward in a series of experiments. Thereby,
the policy can be used in the training phase explicitly, which is referred to as on-policy
learning. Algorithms ignoring the policy while learning are classified as off-policy. An
important function used in various RL algorithms for learning is the action-value Q(s, a)
estimating the overall expected reward if the agent is in state s and performs action a.

In contrast to supervised learning algorithms, in RL the agent does not learn from
existing labeled data and there is no correct action or ground truth for a given state.
Although in general RL is applicable to continuous time systems [Doy00], we will discuss
discrete time systems exclusively, which is in line with EMA semantics and the nature
of digital cyber-physical systems. The state and action spaces of a set-up can be either
discrete or continuous. Combinations of discrete action with continuous state spaces,
and vice versa, are possible, as well.

An important concern of RL is the balance between exploration and exploitation
during the learning process. If the agent chooses an action according to the highest
estimated reward, it exploits its knowledge. Otherwise, it explores the action space to
gather information and learn to make better choices. ε-greedy strategy can be applied to
discrete action spaces. In this strategy, the agent acts greedily, but with a probability
of ε it chooses a random action. For problems with a continuous action space, we can
add exploration noise to the action chosen by the policy instead. Stochastic models such
as the Ornstein-Uhlenbeck (OU) process [UO30] or Gaussian noise are suitable for this
purpose.

Although RL does not inherently depend on deep learning methods, neural networks
have been successfully applied in RL. Alpha Zero is a prominent example of deep RL
systems defeating human world champions in complex board games such as chess and
go [SHS+17]. Since the focus of MontiAnna is the model-driven development of neural
systems, we are going to restrict the further discussion to deep RL algorithms. In
particular, MontiAnna supports two standard deep RL algorithms: the deep Q-Network
(DQN) approach [MKS+13] and deep deterministic policy gradient (DDPG) [LHP+15].
Furthermore, twin-delayed DDPG (TD3) [FvHM18] is offered as an extension of DDPG.
This way, MontiAnna covers learning problems with discrete and continuous state and
action spaces. The concept of the modeling framework is suitable for the integration of
further state-of-the-art algorithms.

DQN. Q-learning is an off-policy approach applicable to problems with discrete action
and state spaces. The idea of Q-learning is to iteratively learn a reward table storing the
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rewards for all possible combinations of state-action pairs [Wat89]. However, memorizing
such a table is not feasible for large problems. DQN tackles this challenge by using a
neural network to learn the Q-function [MKS+13]. The neural network receives the
state vector as its input and outputs a Q-value for each possible action. This makes the
algorithm suitable for continuous state spaces, as well. The architecture of the network
can be chosen arbitrarily to suit the problem.

In the training phase, the network is not trained after each exploration step. Instead,
DQN employs a technique called experience replay [Lin93] separating exploration from
learning. After each exploration step in the environment, the obtained transition (state,
action, reward, next-state) is saved in an intermediate buffer. After a predefined num-
ber of updates a minibatch is drawn randomly from this buffer and used to train the
Q-network. This allows the algorithm to reuse the same transitions multiple times with-
out having to explore them again. Furthermore, drawing training examples randomly
decorrelates the training data preventing the network from overfitting.

In each step the agent inputs the current state into the Q-network and looks for the
output neuron with the highest Q-value. Then it executes the action associated with
this neuron, i.e. the action is determined as

a(s) = arg max
a

Q(s, a). (5.1)

Variations of DQN can be applied to problems with continuous action spaces, as well
[GLSL16].

DDPG. DDPG is a reinforcement learning algorithm applicable to continuous action
spaces exclusively. It combines DQN, deterministic policy gradient (DPG) [SLH+14],
and actor-critic methods. Given a continuous action space, the maximization problem
in Equation (5.1) cannot be solved by evaluating the Q-function for all possible actions.
Solving the problem analytically in each step would be an overly expensive task. DDPG
learns both a concrete policy π(s) and an action-value function Q(s, a). The policy
and the Q-function approximators are referred to as the actor and the critic networks,
respectively. Both approximators are modeled as neural networks. While the critic
network is trained similarly to DQN, the actor network is trained using the critic so
that the policy maximizes Q(s, π(s)). Once training is finished only the actor network
is required. The critic network is, hence, not part of the logical software architecture.

5.2 Requirements

The general requirements for a deep learning methodology presented in Section 4.2 con-
tinue to hold for RL-based systems. However, due to the particular nature of such
systems, we have elicited an additional set of RL-specific requirements.
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(RRL1) Reinforcement Learning Algorithms: as discussed in Section 5.1 various deep
RL algorithms exist. The choice of the right RL algorithm depends on the problem
to be solved. A versatile deep RL framework should provide the possibility to
specify the learning algorithm to be used explicitly without having to deal with
its implementation details. Furthermore, the developer should be able to set the
hyperparameters of the chosen approach freely to tailor the solution to the problem
adequately.

(RRL2) Network roles: as we have outlined for DQN and DDPG, deep RL employs
neural networks as function approximators. Hence, the user should be able to
model the architectures of these neural networks individually to fit the RL task to
solve. What is more, various RL algorithms such as DDPG make use of multiple
neural networks, each having a dedicated purpose. Therefore, the developer should
be able to assign roles to the networks, e.g. the actor and critic roles when using
DDPG.

(RRL3) Environment integration: RL can only be conducted by letting the agent in-
teract with a preferably simulated target environment. This environment might
not be explicitly designed for the interaction with an RL agent. A modeling frame-
work must provide the means to describe the environment interface. Based on this
description, the compiler should be able to realize the coupling between the agent
and the environment. Thereby, the interface and the behavior of the environment
must remain time-invariant from the modeler’s view.

5.3 Related Work

Similarly to supervised learning problems, RL-based systems can be realized using an
appropriate framework. General-purpose deep learning frameworks such as Tensor-
Flow [ABC+16], Theano [ARAA+16] or MXNet [CLL+15] can be used to model and
train the required function approximators. However, the functionality around the neu-
ral network, e.g. the exploration strategy, the communication with the environment, and
the interaction between the actor and the critic need to be implemented from scratch.
A developer needs a profound understanding of RL algorithms in order to be able to use
them. For this reason, more specialized frameworks tailored to the RL domain have been
developed. In contrast to generic solutions such as TensorFlow, RL frameworks provide
RL functionality such as predefined agents out-of-the-box. In the following paragraphs
we are going to discuss a selection of popular approaches.

OpenAI Baselines. OpenAI Baselines [DHK+17] is a Python-based RL framework
built on top of TensorFlow. It offers open-source implementations of various RL al-
gorithms including DQN and DDPG as well as predefined neural network architectures.
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python -m baselines.run --alg=deepq --env=CartPole-v0\

--num_timesteps=10000 --network=mlp --num_layers=2\

--num_hidden=64 --activation=tf.tanh --save_path=cp_deepq

1

2

3

bash

Figure 5.1: Setting up a training in OpenAI Baselines using its CLI.

According to the authors, the intention of OpenAI Baselines is to make RL research
reproducible and to provide a basis for further developments. Researchers can use the
provided libraries and adapt them to experiment with new ideas. Furthermore, OpenAI
Gym [BCP+16] offers a set of playground environments useful for learning, experimenta-
tion, and model comparison. The user can control the training by selecting an OpenAI
Gym environment and the algorithm to be used via the CLI. Figure 5.1 shows how an
MLP agent can be trained by using DQN in a CartPole environment. Being more focused
on RL research, the framework targets advanced and experimenting users requiring a lot
of flexibility.

DeepMind TensorFlow Reinforcement Learning (TRFL). TRFL [Lim18] is a Python-
based library using TensorFlow as its deep learning backend. Its focus is not on out-of-
the-box implementations, instead the framework provides components for the realization
of RL algorithms. In particular, its main approach is to regard and encapsulate RL up-
date rules as loss functions. The user has to model the neural network architecture in
pure TensorFlow, but can apply RL specific loss functions, e.g. trfl.qlearning(.)
to perform Q-learning. Hence, the framework can be classified as an intermediate solu-
tion between general-purpose deep learning and specialized RL frameworks. The user
needs an understanding of the applied algorithms. In contrast to OpenAI Baselines,
TRFL does not provide predefined environments. The communication between the agent
and the environment needs to be developed manually.

Tensorforce. Like TRFL and OpenAI Baselines, Tensorforce [KSF17, SKE+18] relies
on TensorFlow as its deep learning backend. However, it is rather a high-level framework
with a focus on practical systems. It provides predefined agents and further modules.
Furthermore, the framework defines clear interfaces for agents and environments, facil-
itating reusability and assembly of RL systems. Agents are provided for a variety of
well-established RL algorithms such as DDPG or DQN. Moreover, the user is able to
set up the RL system by passing a set of parameters to the agent’s constructor. These
parameters describe aspects concerning the system itself, e.g. the state and the action
space, the network architecture, but also the exploration and the training phase as well as
the corresponding hyperparameters. The network architecture can be auto-configured
based on the information about the state and the action spaces when using the Au-
toNetwork class. On the other hand, the user still has a high degree of configurability.
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from tensorforce.agents import DQNAgent

from tensorforce.execution import Runner

from tensorforce.contrib.openai_gym import OpenAIGym

q_network = [{’type’: ’dense’, ’size’: 64, ’activation’: ’tanh’},

{’type’: ’dense’, ’size’: 64, ’activation’: ’tanh’},]

agent = DQNAgent(states={’type’: ’float’, ’shape’: (4,)},

actions={’type’: ’int’, ’shape’: (2,)},    

network=q_network, memory={’type’: ’replay’, ’capacity’: 

10000}, 

step_optimizer={’type’: ’adam’, ’learning_rate’: 0.001},

states_preprocessing={’type’: ’divide’, ’scale’: 10})

environment = OpenAIGym(’CartPole-v0’)

runner = Runner(agent=agent, environment=environment)

runner.run(episodes=1000)

runner.close()
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Figure 5.2: Setting up and training a DQN agent using Tensorforce.

For instance, it is possible to set the network depth or to add an LSTM as the last layer.
Alternatively, it is possible to assemble custom network architectures from a library of
available layer classes. This can be accomplished by creating a Python list of layer
specifications if the network has a standard sequential architecture. For more complex
networks consisting of multiple sequential layer-stacks, it is possible to create a list of
lists of layers, as well. Both the network and the agent can be defined as JSON-files
instead of Python.

Tensorforce supports a variety of environments to choose from, including the previously
discussed OpenAI Gym but also VizDoom [KWR+16], Deepmind Lab [BLT+16], the
Arcade Learning Environment (ALE) [BNVB13], etc. Furthermore, it is possible to
create and integrate custom environments by implementing the environment interface
including methods such as reset, execution of an action, and retrieval of the specifications
of the state and action spaces.

The training is carried out by a runner object which expects an agent and an environ-
ment on instantiation. Training can be sped up by using a parallel runner. Tensorforce
can accelerate the exploration part of RL by running independent simulations in par-
allel [RK19]. Being a high-level framework, Tensorforce is supposed to be easier to use
than the previously discussed alternatives, since the user does not need to have a deep
knowledge regarding the internals of the used RL algorithms.

An example setting up and training a DQN agent in the CartPole environment of
OpenAI Gym is given in Figure 5.2. After importing the required modules in L.1-
3, the Q-network (q_network) is defined as a list of two layers in L.4-5. The agent is
instantiated as a DQNAgent in L.6-11. Thereby, the state space is set as four-dimensional
and float-typed, whereas the action space is set to be two-dimensional and int-typed.
The network parameter is bound to the previously defined q_network object. Further
parameters regarding the memory, the optimization algorithm, and the preprocessing are
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DQNAgent.gamma = 0.99

DQNAgent.update_period = 4

tf.train.RMSPropOptimizer.learning_rate = 0.00025

tf.train.RMSPropOptimizer.decay = 0.95

atari_lib.create_atari_environment.game_name = 'Pong'

create_agent.agent_name = 'dqn'

Runner.num_iterations = 200

Runner.training_steps = 250000

WrappedReplayBuffer.replay_capacity = 1000000

WrappedReplayBuffer.batch_size = 32
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Figure 5.3: Excerpt of a Google Dopamine gin configuration to train a DQN agent in
the Atari Pong environment.

set, as well. The CartPole environment of OpenAI Gym is instantiated in L.12. Finally,
the runner is instantiated with the agent and the environment as its parameters, run,
and closed in L.13-15.

Google Dopamine. Like Tensorforce, Google’s Dopamine [CMG+18] is a high-level out-
of-the-box Python framework providing predefined agents. According to the developers,
the focus is on fast prototyping and experimentation. The training of an agent is defined
declaratively in a gin configuration file1, similarly to the Tensorforce way of defining the
agent using JSON. In the gin file the user can specify the agent type, the optimization
strategy as well as the environment and the corresponding hyperparameters. An example
of a gin training configuration is given in Figure 5.3. It sets up a DQN agent and trains it
in the Pong environment of ALE. Custom agents can be implemented from scratch or by
subclassing one of the available agents. However, there is no common agent superclass
or interface. In its first version Dopamine was designed to be used in conjunction with
ALE. Dopamine 2 introduced support for general discrete-domain Gym environments.

Mathworks Reinforcement Learning Toolbox. The Reinforcement Learning Toolbox
by Mathworks2 offers RL functionality for MATLAB/Simulink users enabling the block-
based development of RL systems. The toolbox provides a series of predefined agents in-
cluding DQN and DDPG, but custom ones can be created by subclassing the rl.agent.
CustomAgent class. An agent block exhibits an interface with the input ports obser-
vation, reward, and isdone and the output ports action and cumulative reward. Neural
networks representing policy and value functions can be assembled using the graphical
Deep Network Designer app, but it is also possible to import Open Neural Network
Exchange (ONNX)3 models created using other frameworks.

1https://github.com/google/gin-config
2https://www.mathworks.com/products/reinforcement-learning.html, accessed October 14, 2020
3https://onnx.ai/, accessed January 20, 2020
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Custom environment blocks can be created by implementing the observation, ac-
tion, and reward functionality required by the environment interface. Predefined MAT-
LAB/Simulink environments are provided, as well. What is more, external environments
can be integrated by using an external language interface, a distributed protocol such as
ROS, or functional mockup units (FMUs). An agent can be trained using the train(.)
function which takes the agent, environment, and a configuration object holding hyper-
parameters as its arguments.

5.4 Modeling Reinforcement Learning

The discussed frameworks employ different approaches including white box and black
box solutions to cover the needs of different user groups. All of these frameworks except
MATLAB/Simulink are meant to be used with Python as host GPL and TensorFlow
as deep learning backend. Integrating agents into larger software architectures is not
in the scope of these frameworks and hence, may require additional development ef-
fort. In the following we are going to extend the applicability of the supervised learning
oriented MontiAnna framework to reinforcement learning tasks. Thereby, we maintain
the model-driven and generative paradigm of component-based development for CPS
design. Furthermore, in contrast to many of the presented frameworks requiring a pro-
found understanding of the used algorithms, the RL language extension for MontiAnna
should enable the designer to use RL algorithms as a black box. Similarly to supervised
learning, RL algorithms and hyperparameters should be set up in a declarative way.

To maintain a link to the CPS domain, the methodology will be explained by means
of a TORCS [WEG+00] racing controller. In particular, our goal is to replace the
MontiMath-based controller component (DriverController) presented in Figure 4.29
in Section 4.10.4 with a MontiAnna component trained using RL. The continuous state
space of the vehicle is given as S ⊆ Q29 and is a subset of the state space provided by
the TORCS competition server interface [LCL13]. It includes information on velocity,
track axis angle, as well as data from 20 range finder sensors returning the distance
to the edges of the track. The action space A = [−1, 1]3 is continuous, as well. Its
three dimensions represent the steering wheel, the throttle, and the braking pedal of the
vehicle in this very order. Thereby the steering wheel values of -1 and 1 represent the
steering wheel fully turned to the right and left, respectively. For the pedals, -1 and 1
represent a released and a fully pressed pedal, respectively.

5.5 Modeling the Function Approximators

Since the action space is continuous, we are going to use the DDPG algorithm to train
the agent. As discussed in Section 5.1, DDPG needs an actor and a critic network for the
training procedure. The two network components are given in Figures 5.4 and 5.5. We
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package torcs.agent.network;

component TorcsActor {

ports in Qˆ{29} state,

out Q(-1:1)ˆ{3} action;

implementation CNN {

state ->

FullyConnected(units=300) ->

Relu() ->

FullyConnected(units=600) ->

Relu() ->

FullyConnected(units=3) ->

Tanh() ->

action; } }
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Figure 5.4: EMADL component of the TORCS actor based on [GKR19]. The implemen-
tation is described using the MontiAnna architecture language CNNArc.

package torcs.agent.network;

component TorcsCritic {

ports in Qˆ{29} state,

in  Q(-1:1)ˆ{3} action,

out Q qvalue;

implementation CNN {

(

state ->

FullyConnected(units=300) ->

Relu() ->

FullyConnected(units=600)

|

action ->

FullyConnected(units=600)

)->

Add() ->

FullyConnected(units=600) ->

Relu() ->

FullyConnected(units=1) ->

qvalue;}}
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Figure 5.5: EMADL component of the TORCS critic based on [GKR19]. The implemen-
tation is described using the MontiAnna architecture language CNNArc.
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can model these two networks using the standard network description syntax of Mon-
tiAnna, since these networks are structurally equivalent to the ones used for supervised
learning problems. If DQN or any other RL algorithm is used to train the agent, the
function approximator for the actor can be modeled in a similar way as in this example,
but no critic might be needed.

The actor model in Figure 5.4 is an MLP with three fully connected layers instantiated
in L.8, L.10, and L.12 and consisting of 300, 600, and 3 neurons, respectively. The
activation function is set to ReLU for the first two layers in L.9 and L.11 while Tanh is
used at the output in L.13. The network is supposed to take the state vector sent by the
environment, which is TORCS in our case, as its input in L.7 and to produce an action
vector to be output in L.14.

The aim of the critic model in Figure 5.5 is to approximate the Q-function. Hence, it
has two input ports according to the signature of the Q-function described in Section 5.1,
namely state and action. Note that although most of the neural networks we have
dealt with so far exhibited exactly one input and one output, MontiAnna can handle
interfaces with more than two ports, as well. While this is a common pattern in RL,
some supervised learning architectures make use of multiple input and output ports,
as well, cf. the FlowNet [DFI+15] architecture in Figure A.3, a CNN for optical flow
estimation.

The two inputs flow through two separate layer pipelines. The path for the state
vector is given in L.9-12 while the action vector is processed in L.14-15. The two paths
are merged using an Add layer in L.17 which sums the two inputs elementwise. The rest
of the network is a serial path defined in L.18-21 outputting the Q-value (qvalue) at
the end. Since the Q-value is a scalar, the last neuron layer, defined in line 20, contains
only one neuron and has no non-linearity.

Now having defined the critic and actor components, a new challenge arises, which
we have not encountered in C&C modeling so far: we only need one of the components
in our final productive system, namely the actor taking the state as input and deciding
what to do based thereon. The final runtime system architecture is given in the upper
part of Figure 5.6. For the sake of simplicity we omit the direct perception part. Instead
we assume that our system receives sensor data as inputs instead of a camera image.
Furthermore, we abstain from filtering the noisy sensor inputs.

The critic, on the other hand, is only required at training time and is not part of the
runtime architecture. To cope with this issue, we are going to introduce the notion of
roles for components. While role modeling has been mostly studied for object-oriented
structures [Ste00, KLG+14] which are more dynamic than C&C models by nature, we
can reuse at least some of the concepts for our purpose. In particular, a component role
consists of a role interface and the definition of its relationships to other roles in specific
contexts. In contrast to object-oriented modeling, we abstain from dynamic properties
of roles such as the ability of acquiring and abandoning roles dynamically. General role
modeling for components could be realized with the help of C&C views [BMR+17] by
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DDPG<T, U extends Q^{N}>()
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Environment
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Figure 5.6: The upper part of the figure depicts the top level runtime C&C model of the
DDPG-based TORCS controller. The filled ports highlight the reinforcement
learning interface. The connections between them are generated based on the
middleware tagging approach, which will be presented in Chapter 6. The
training reference architecture of the DDPG algorithm is depicted in the
bottom part and contains a critic, a reward, an environment, and a trainer
component, which are thrown away at runtime.
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providing component interfaces and interconnections for different contexts, e.g. compile-
time and runtime, and by mapping component instances to roles. This, however, is not
in the scope of this thesis. Instead we are going to use predefined roles for the usage
in actor-critic methods, e.g. the actor, the critic, and the reward role. Furthermore, we
are going to use the predefined contexts training time and runtime. The architecture for
the runtime context is defined as usual in EMADL, cf. upper part of Figure 5.6. In the
training context, additionally critic, environment, and reward components are used to
train the actor. The training time architecture of an RL system trained with the DDPG
algorithm is depicted in the lower part of Figure 5.6. The environment is exchangeable
between the training and the runtime phases. Critic and reward components, on the
other hand, are thrown away after training time. The training time model in Figure 5.6
can be thought of as a reference architecture. The reference training architecture is fixed
for a given training algorithm and defines the roles required for the algorithm to function
as subcomponents.

The port types in the role definitions are kept generic and are adapted to the ap-
plication. In our TORCS example, the state type T is Qˆ{29} and the action type
U is Q(-1:1)ˆ{3}. The generic type parameters of the roles are bound by providing
concrete component types for the corresponding roles as is done for the actor and critic
roles in Figures 5.4 and 5.5. Assigning roles to components is in the scope of the follow-
ing section. Note that the training reference architecture is a conceptual model. It can
serve to generate stubs and interfaces as well as to check for consistency, e.g. whether
the state type of the actor is the same as the one of the critic. However, in contrast to
(runtime-oriented) EMADL models, we do not generate fully functional code out of the
reference training architecture. The generator developer needs to provide templates for
training code generation complying with the interfaces of the reference architecture.

5.6 Modeling the Training

As discussed in Section 4.9, training is modeled using the declarative language CNNTrain
and we continue to employ this concept for RL, as well. However, we obviously need to
extend the language by a set of new parameters. Furthermore, we will use CNNTrain to
assign roles to EMADL components.

5.6.1 General Reinforcement Learning Parameters

In the following, we give a brief overview of general RL parameters applicable to all RL
algorithms.

enum learning method=supervised. In Chapter 4 we were dealing with supervised learn-
ing exclusively. Hence, this learning method was assumed implicitly. However,
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since we need to discriminate between different learning methods now, we intro-
duce an explicit learning method parameter. The allowed values are supervised
for supervised learning, reinforcement for RL, and gan for generative adver-
sarial networks, cf. Section 5.9. To keep old models valid, we use supervised as
default. The parameters introduced below are only allowed if the learning method
is set to reinforcement.

enum rl algorithm. This parameter needs to be set in order to choose a concrete RL
algorithm for training. The allowed values are dqn-algorithm for DQN, ddpg-
algorithm for DDPG, and td3-algorithm for TD3. If the parameter is not
set explicitly, dqn-algorithm is used as default. Each algorithm comes with its
own individual parameters which are introduced in Appendices B.3.2 and B.3.3.

N1 num episodes=50. An episode is a full simulation from the beginning to the final
state. An RL agent is usually trained in multiple episodes. The num_episodes
parameter is typed as an integer and specifies the number of episodes to be trained.
The default value is 50.

N1 num max steps=99999. This integer-valued parameter sets the number of steps
within an episodes before the environment is forced to reset the state, e.g. to avoid
the agent being stuck forever. The default value of this parameter is 99.999.

Q(0,1) discount factor=0.99. The discount factor γ is a hyperparameter weighting fu-
ture rewards for an update step. It is a rational between 0 and 1. A reward r
which occurs n steps from the current step is considered as rγn. The default value
is γ = 0.99

Q target score. The target score is an optional Q-typed parameter. If set, training will
be stopped when the average score of the last 100 episodes reaches the parameter
value.

EMADLComponent reward function. The reward function parameter expects the fully
qualified name of the EMADL component used to calculate the reward. The ref-
erenced reward component must exhibit an interface consisting of two input ports
and one output port: an arbitrarily typed state input port depending on the ap-
plication, a Boolean input port isTerminal which expects to receive a true signal
if the current state is a terminal one, as well as a Q-typed output port reward,
through which the reward for the current state is output. The chosen component
type is used by the generated training system, even if it has not been instantiated
in the main EMADL model being generated. An isolated instance is created and
connected to the environment automatically to play the reward role. Alternatively,
an external ROS-based reward service can be used by setting the reward_topic
of the ros_interface (see below).
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nested environment. The environment parameter is essential to connect the agent to
the environment. The parameter is required and can be set to ros_interface
or to gym. In either case more information needs to be provided through further
nested configuration parameters. The details are given below.

gym. This option allows us to train the agent with one of the existing OpenAI
Gym environments. It has the following configuration parameter:

String name. The gym.name parameter is typed as string and denotes the
name of the OpenAI Gym environment to be used. The code generator
will produce code to instantiate the chosen environment and to connect
the agent to it.

ros interface. Setting the environment to ros_interface lets the agent and
the environment communicate via ROS. This enables us to use any external
program as the training environment as long as it supports our ROS-based
training interface. The user can map this interface to arbitrary ROS topics
with the help of the following configuration parameters:

String state topic=“/state”. The parameter is used to define the name of
the ROS topic to which the current state of the environment is published.
The default value is set to “/state”.

String action topic=“/action”. The parameter is used to define the name
of the ROS topic to which the agent publishes the chosen actions. The
default value is set to “/action”.

String reset topic=“/reset”. The parameter is used to define the name of
the ROS topic which can be used by the training algorithm to reset the
environment. The default value is set to “/reset”.

String terminal state topic=“/terminal”. The parameter is used to define
the name of the ROS topic to which the environment writes that the last
state was a terminal state. The default value is set to “/terminal”.

String reward topic. The parameter is used to define the name of the ROS
topic to which the environment publishes the reward. This topic is re-
quired if no EMADL component for the reward, cf. reward_function
parameter above, is provided by the user. If neither is set, an error will
be issued.

The following additional parameters are only available for DDPG and TD3.

EMADLComponent critic. This parameter is required when DDPG or TD3 is used.
It expects the fully qualified name of the EMADL component encapsulating the
critic network. Similarly to the reward component, the chosen component type
for the critic is used by the generated training system, even if it has not been
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instantiated in the main EMADL model being generated. An isolated instance is
created automatically to play the critic role.

Q soft target update rate=0.001. Represents the interpolation factor τ of the critic
and actor target network. This hyperparameter controls the update of the target
network weights according to Wtarget := (1−τ)Wtarget+τW . Based on [LHP+15],
the default value is set to 0.001.

nested actor optimizer. Sets the optimizer for the actor network training. More in-
formation and the available optimizer configuration parameters are given in Sec-
tion 4.9.

nested critic optimizer. Sets the optimizer for the critic network training. More in-
formation and the available optimizer configuration parameters are given in Sec-
tion 4.9.

A complete overview of CNNTrain parameters for reinforcement learning applications
is out of scope of this section. Information on parameters concerning the replay memory,
exploration strategy, etc. can be found in Appendix B.3.1.

As was demonstrated in this section, linking the different roles for the training phase
is done via the CNNTrain model. The concrete linkage implementation is not visible to
the modeler and is restricted to supported training algorithms. The approach is easy to
use and exploits the component-based idea of EMA. Introducing a metalayer to model
the learning architecture including the roles and their relationships using EMA and/or
process-oriented modeling techniques has the potential to improve the extensibility of
MontiAnna, to facilitate experimentation with new learning algorithms, and to automate
the creation of context conditions in future work.

5.6.2 The TORCS Training Model

Figure 5.7 shows a CNNTrain model for the TORCS actor of Figure 5.4. In L.4 we spec-
ify that the component is trained using reinforcement learning by setting the learn-
ing_method parameter to reinforcement making the new parameters discussed
earlier in this chapter available. As already mentioned, due to the continuous action
space, we are going to apply the DDPG algorithm for this use case, which we spec-
ify in L.5. Due to this choice, the component the training model is attached to, i.e.
torcs.agent.network.TorcsActor in our example, becomes the actor automati-
cally.

To assign the critic role to our critic component torcs.agent.network.
TorcsCritic modeled in Figure 5.5 and hence, let the trainer use it during training
according to the reference training architecture of Figure 5.6, we use its fully classified
name for the critic parameter in L.6. This parameter is required due to the critics
role defined in the reference training architecture of the DDPG algorithm. Note that
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package torcs.agent.network;

configuration TorcsActor {

context : gpu

learning_method : reinforcement

rl_algorithm: ddpg-algorithm

critic: torcs.agent.network.TorcsCritic

environment : ros_interface {

state_topic : "/torcs/state"

terminal_state_topic : "/torcs/terminal"

action_topic : "/torcs/step"

reset_topic : "/torcs/reset"

}

reward_function: torcs.agent.network.Reward

num_episodes : 3000

discount_factor : 0.99

num_max_steps : 900000

training_interval : 1

start_training_at: 0

evaluation_samples: 50

soft_target_update_rate: 0.001

snapshot_interval : 150

replay_memory : buffer{

memory_size : 120000

sample_size : 32

}

strategy : ornstein_uhlenbeck{

epsilon : 1.0

epsilon_decay_method: linear

epsilon_decay_start: 10

epsilon_decay : 0.0001

min_epsilon : 0.0001

theta: (0.6, 1.0, 1.0)

mu: (0.0, 0.0, -1.2)

sigma: (0.3, 0.2, 0.05)

}

actor_optimizer: adam { learning_rate : 0.0001 }

critic_optimizer: adam { learning_rate : 0.001 }  

target_score : 100000}
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Figure 5.7: Configuration of the TORCS actor training modeled using the training lan-
guage of MontiAnna based on [GKR19].
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the critic component is instantiated implicitly and must not be part of the runtime
architecture depicted in the upper part of Figure 5.6. The same holds for the reward
component.

Furthermore, we configure all necessary hyperparameters, e.g. the number of episodes
to train in L.14, the discount factor in L.15, as well as DDPG related parameters such as
the target update rate in L.20. The optional parameter target_score is set in L.38
and serves as a stopping criterion for the training. Once the average reward of the last
100 episodes is equal to or greater than the target score, the training is finished. The
parameter snapshot_interval used in L.21 lets the trainer save the weights of the
agent once per 150 episodes. By default, if snapshot_interval is not set explicitly,
the weights are only stored when the training is finished.

For the replay memory, we use the operation mode buffer as introduced in [MKS+13,
Lin93], which stores state-action-reward pairs in a buffer. The memory size and the sam-
ple size are set using the respective nested parameters in L.23 and L.24. Alternatively,
we could have used the online mode which does not use a replay memory at all or the
combined mode. The latter is an implementation of a replay memory variant intro-
duced in [ZS17] where only the last state-action-reward pair is added to the minibatch.

The operation mode of the exploration strategy is set in L.26-35 of the training model.
The framework supports the ε-greedy strategy for discrete action spaces and the OU
process as well as Gaussian noise for continuous problems. Independent of the operation
mode used, the modeler is able to set the randomness or noise level for the action selection
through the parameter epsilon, cf. L.27. Since the action choice should become more
and more robust throughout training, we set up a linear decay of epsilon after the tenth
period by 0.0001 per episode in L.28-30. This linear reduction is stopped, when the
minimal allowed value of 0.0001 as defined in L.31 is reached. Each strategy requires a
set of specific parameters to set up the noise. For instance, we initialize the parameters
theta, mu, and sigma controlling the OU process in L.32-34. Note that since in our
example the action space is three-dimensional, the generated noise and hence, the noise
parameters are three-dimensional, as well. This is why each of the parameters set in
L.32-34 is a three-dimensional array modeling individual values for steering, braking,
and acceleration.

5.6.3 Reward Function

A central concept of RL is the reward function assessing the performance of the agent
throughout learning. It can be provided by the environment directly, which is often the
case for playground environments such as OpenAI Gym designed with RL in mind. If
this is the case, the reward can be received through the environment interface after each
action. However, if the simulator used is not designed explicitly for RL and, thus, does
not offer a reward function out of the box or if a customized reward function is required,
an external reward function needs to be made available to the training algorithm.
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package torcs.agent.network;

component Reward {

ports in Q^{29} state,

in  B isTerminal,

out Q reward;

implementation Math {

Q speedX = state(22);

Q angle = state(1);

Q trackPos = state(21);

reward = speedX * cos(angle);

if abs(trackPos) > 1.0

reward = -20;

end } }
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Figure 5.8: EMADL component with a MontiMath implementation encapsulating an
exemplary reward function for the TORCS agent training based on [GKR19].

Sticking to the component-centric approach of EMA and MontiAnna, we have decided
to let designers encapsulate reward functions as EMA components. Since the reward
function is usually a mathematical operation on the state space, MontiMath turns out
to be an appropriate language for the concrete implementation. The reward component
obviously plays a special role in an RL model. Similar to critic components it is only
needed at training time. To make it usable by the trainer, it needs to comply with a
predefined reward interface. In MontiAnna, the reward interface requires two inputs.
The first input named state receives the current state of the environment. The type
of this port is not prescribed by the framework, but depends on the application or
the simulator used. The second input is a Boolean flag named isTerminal indicating
whether the last received state is a terminal state. This port is optional and the compiler
will emit a warning if it is declared but not used in the implementation. The reward
component must exhibit a single output port named reward, which is interpreted as
the reward for the last action. Its type must be compatible with Q, i.e. it can also be a
subset such as Z(-1:1).

Figure 5.8 shows the EMADL component encapsulating the reward algorithm used to
train our TORCS agent. Conforming with the state space of TORCS, it has a state input
typed as Qˆ{29}. The reward type is not constrained, i.e. typed as Q. The MontiMath
implementation of the reward function is given in L.7-14. For the sake of convenience,
the variables of interest for the computation of the reward function are extracted from
the state vector and assigned to local variables with meaningful names in L.8-10. In
this concrete example we require the speed of the vehicle, its angle to the track axis,
as well as the normalized distance between the car and the track axis w.r.t. the track
width. Since we want our vehicle to drive as fast as possible and to exhibit the least
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possible deviation from the track, we reward high velocities and a low angle to the track
by multiplying the speed with the cosine of the vehicle’s angle in L.11. This means, on
the other hand, that we penalize the agent for increasing angles and low speeds. What
is more, leaving the track leads to a hard penalty of −20 in L.13. This is the case if the
absolute value of the normalized distance to the track axis is greater than 1, which is
checked in L.12.

As was mentioned above, the overall RL model and training infrastructure needs
to be aware of the reward component, although it is not part of the runtime agent
C&C model. We accomplish this similarly to the integration of the critic component
by referencing the fully qualified component name in the training model. For the re-
ward this is done in L.13 of Figure 5.7 setting the parameter reward_function to
torcs.agent.network.Reward.

At training time, the state vector is passed to the specified reward component after
each step in order to retrieve a numeric reward. If needed, the reward component can be
instantiated and connected inside the agent’s runtime architecture, as well. The modeler
does not have to model a reward component if the reward can be provided by an external
source, e.g. the environment. In this case, instead of setting the reward_function pa-
rameter to an EMADL component, the developer can assign a ROS topic to the training
parameter environment.ros_interface.reward_topic in the CNNTrain model.

5.7 Environment

The environment is a central building block of any RL application. In the training
phase the agent is trained by submitting its actions to the environment, assessing the
resulting state changes using a reward function and by updating the agent according to
the training algorithm. The final, trained model can then be used in the same or a similar
environment for its actual purpose. The environment can be realized as an EMADL
component implementing the required interface. In this case the developer needs to
set the environment parameter to the fully qualified name of the component in the
CNNTrain model. Through its interface the environment component has to provide the
following data:

T state. The current state of the environment. The type is generic and mostly a rational
feature vector or matrix depending on the application.

Boolean isTerminal. A Boolean flag indicating whether a terminal state has been reached.

Q reward. An optional port representing the reward for the last action. It is only used
if no explicit reward component has been provided by the modeler as described
in Section 5.6.3. If this port is not present, the designer must model an explicit
reward function and provide it as an EMADL component.
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Furthermore, the environment component must be able to consume the following data
through its input ports:

U action. Represents the action information sent by the agent in each step. In discrete
action spaces, U is an enum or integer-based type, while it can be a rational vector
for continuous problems. After sending an action message, the actor expects a
response from the environment, serving the next state, the terminal information
and a reward.

Boolean reset. A simulated environment should offer a reset port. If it receives a
Boolean true, the environment undertakes a clean restart. As a response, the
environment should emit its initial state, a terminal flag set to false and, option-
ally, a reward.

In the training phase, our toolchain will use the environment component in a syn-
chronous, blocking manner, i.e. the trainer will wait for the actor to produce an action,
forward this action to the environment, execute one step and forward the state back to
the actor to produce the next action. This is different from asynchronous environments,
e.g. the real world, where environment and training advance independently.

Mostly however, instead of defining an own environment in an EMADL component,
we rather want to integrate an existing external software to train an agent, e.g. TORCS.
Furthermore, an agent is often trained in a simulated environment to speed up training,
to reduce costs, and for safety reasons, but is intended for a final deployment in a real
CPS. For this reason, it is crucial to maintain a loose coupling to the environment and
to be able to exchange it whenever needed. We realize this requirement by integrating
environments through the publish/subscribe pattern. In particular, we employ the ROS
middleware in our implementation [QGC+09]. Any application can be employed as a
training or execution environment for MontiAnna if it provides a ROS interface using
ROS topics, which can be mapped to the component interface described above. In this
case, the environment needs to be set to ros_interface in the CNNTrain model.

The concrete ROS topic names used by the external simulator can differ from the port
names listed above. A mapping is defined in the CNNTrain file by setting the follow-
ing nested topic parameters for the ros_interface: state_topic, terminal_-
state_topic, action_topic, reset_topic, and, optionally, reward_topic. If
a simulator does not support ROS out of the box, it can be made compatible with the
MontiAnna framework by providing a ROS adapter.

The usage of a ROS interface is modeled in L.7-12 of Figure 5.7 in the context of our
TORCS example. After setting the environment to have a ROS interface in L.7, the
names of the state, terminal, action, and reset topics are set in L.8-11. This information
is used at training time to connect the trainer with the environment.

The final, trained system can then be connected with any other environment using
the middleware tagging approach, which will be discussed in Chapter 6. The concrete
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Figure 5.9: Generated artifacts: the left side shows the artifact architecture during the
training. The right side is the artifact architecture at the execution time of
the model [GKR19].

middleware is not fixed by design. While ROS was chosen for the reference implementa-
tion due to its wide usage in the domain, any other publish/subscribe middleware could
be employed, as well. Note that in contrast to the synchronous environment execution
described for EMADL environments, external simulators might run asynchronously, i.e.
without waiting for new action messages to arrive. This means that they might provide
more state and reward messages than the trainer can handle. This can degrade the
training quality drastically if not taken into account.

As a third way of environment integration, we provide built-in environments of OpenAI
Gym, which can be used by setting the environment parameter to gym with a nested
string-typed parameter name identifying the concrete environment. Some examples are:
“BipedalWalker-v2”, “CartPole-v0”, and “RoboschoolHalfCheetah-v1”.
Further built-in environments can be added easily to the toolchain as long as they are
compatible to the Python interface of OpenAI Gym environments.

5.8 Code Generation

The generation of RL models is inherently different from supervised learning models.
Therefore, the EMADL code generator uses a dedicated RL generation pipeline to gen-
erate and train a fully functional RL system from an EMADL model. This generation
mode is activated by setting the parameter learning_method to reinforcement in
the training model as is done in L.4 of Figure 5.7.

First of all, the reinforcement learning pipeline comes along with a set of RL specific
context conditions which need to be checked in addition to the standard MontiAnna
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context conditions. Of particular interest are context conditions on the training model
as well as the composed architecture ensuring a meaningful algorithm set-up and the
conformity of the role component interfaces. A selection of context conditions is listed
in the following:

Reward integration. As discussed, the reward for an action can be computed by an
explicitly provided EMADL component or obtained from a remote application
through a middleware. This context condition ensures that a CNNTrain model
defines exactly one reward source.

Actor/critic conformance. For actor/critic algorithms such as DDPG, the context con-
dition ensures that a critic component is provided in the training model and that
the referenced component exists. Furthermore, the context condition ensures that
the types and dimensions of the state and action ports of the critic component
correspond to those of the actor.

Problem domain typing. This context condition ensures that the types of the action
and the state spaces are compatible with the chosen RL algorithm. DQN can only
be used for discrete action spaces; DDPG can only be used for continuous action
spaces.

Exploration strategy. The exploration strategy must be suited for the chosen action
space. If the action space has a continuous type, e.g. in the case of DDPG and
TD3, the exploration strategy must be either OU or Gaussian noise. Otherwise,
i.e. if the type of the action space is discrete, the exploration strategy has to be
ε-greedy.

Fixed target network. If DQN is used and use_fixed_target_network is set to
true, this context condition ensures that the corresponding target weights update
interval, i.e. the property target_network_update_interval, is set as well.

If all context conditions are successful, a fully functional solution including the train-
ing scripts and the final deliverable code is created. The target software architecture
including the generated artifacts is depicted in Figure 5.9. The figure separates training
related artifacts on the lhs from the runtime artifacts on the rhs. As in the supervised
learning pipeline, the training program is generated as Python code using the chosen
deep learning backend. The evaluation of this pipeline was mostly conducted using
MXNet Gluon.

The RLTrainer module is the entry point for the training phase; it creates the neural
networks modeled in MontiAnna and maintains a parameter store realized as a Python
dictionary holding the parameters and values of the training model.

The created neural networks as well as the training parameters are passed to the
Agent module encapsulating the actual, executable RL training algorithm to be applied.
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This agent module interacts with the environment in the course of the training phase in
order to exchange states and actions. If an explicit reward component is referenced in the
training model, EMADL2CPP generates C++ code for this model using its EMAM2CPP
subgenerator. This code is then compiled to an executable. To integrate it into the
Python-based trainer, it is wrapped and instantiated by a Python-based reward wrapper
module providing access to the reward interface. This enables the trainer to pass states
to the reward component and to receive its reward values.

Furthermore, the training system keeps track of training related information such as
the actor loss and the average reward. Once training is finished, the learned weight
parameters of the neural network are serialized to a file which can be loaded by the
predictor of the final executable model, i.e. the TorcsActor on the rhs of Figure 5.9.
At this point the target architecture, here represented by the Master component, is
ready to be deployed and executed. Further statistical information about the training
process is saved for analysis and tuning in a separate report.

5.9 Modeling Generative Adversarial Networks

In this section we are going to introduce another generation and training pipeline pro-
vided by MontiAnna to design and process GANs. Although GANs are not directly
related to RL, the two areas share the commonality that at training time a helper net-
work is used. Therefore, we are going to reuse the component role concept introduced
in this chapter to integrate critic networks and rewards into an RL training procedure
for GANs. The basic idea behind the GAN concept is to train a generator network to
produce data according to some training distribution. To do so, the generator is trained
in an interaction with an adversary network, the discriminator. While the goal of the
discriminator is to be able to decide correctly whether a given example is real or fake,
the aim of the generator is to be able to create examples which cannot be distinguished
from real data by the discriminator [GPAM+14]. GANs can be employed to enrich
sparse datasets by additional artificial but genuinely looking data. In software engineer-
ing this technique can potentially be used for test data generation and augmentation.
The GAN concept has already been applied to automotive problems such as the recovery
of blurred road markings [LLH+19], the generation of cyclist images [ZHL+19], as well
as for the post-processing of aerial photos to obtain map images [IZZE17]. Hence, we
consider GANs as an important tool for modern software engineering processes, partic-
ularly in the area of testing and simulation. The GAN pipeline of MontiAnna has been
evaluated primarily on the family of deep convolutional generative adversarial networks
(DCGANs) producing image data and where both the generator and discriminator are
CNNs [RMC15].

The GAN training pipeline can be selected in the training model by setting the learn-
ing method accordingly as learning_method=gan. Similarly to the reinforcement
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learning pipeline the GAN pipeline supports the standard supervised learning parame-
ters in the training model, but adds additional GAN-specific parameters. In particular,
this includes the configuration of the discriminator network, which, similar to a critic
network in the RL pipeline, is only necessary during training:

EMADLComponent discriminator name. The fully qualified name of the EMADL com-
ponent encapsulating the discriminator network. This component is only used
during the training phase.

nested discriminator optimizer. This parameter is derived from the supervised learning
parameter optimizer and has the same type, but is related to the optimization
algorithm of the discriminator network.

enum discriminator loss. This parameter is derived from the supervised learning param-
eter loss and has the same type, but specifies the loss function of the discriminator
network.

The discriminator component has to provide a valid discriminator interface exposing
two input ports: the port T data takes the output of the generator as its input, where
T is the corresponding, application-specific data type; another input port U target_-
label takes the label which was used to create the data by the generator network.
It can have an arbitrary numeric type U, e.g. a ten-dimensional vector in the case of
handwritten-digit generation or a whole image for image-to-image mappings. Further-
more, a discriminator network is expected to have an output telling whether the given
image is genuine or not. 0 represents a false and 1 a genuine example. As is common
in classification tasks, the discriminator outputs a value between 0 and 1, which can be
interpreted as the probability of the given example being genuine.

The bottom line is that the role-based approach can be used to implement different
training pipelines. However, the more pipeline variability is needed, the more complex-
ity is introduced in the generator, the training configuration, and the context conditions
and the more desirable a pipeline modeling approach gets. A schema language could,
furthermore, facilitate the configuration parameter management of the CNNTrain lan-
guage, e.g. by providing a modeling means to specify which parameters can be combined
and which are mutually exclusive.

5.10 Evaluation

5.10.1 TORCS and Open AI Gym

The evaluation of the RL modeling extension and the corresponding generation and train-
ing pipeline were mainly evaluated using the running example of this chapter, where an
agent was modeled and trained to control a TORCS vehicle using the DDPG algorithm.

180



5.10 Evaluation

package torcs.agent.network;

component TorcsCritic {

ports in Qˆ{29} state,

in Q(-1:1)ˆ{3} action,

out Q(-oo:oo)ˆ{1} qvalue;

implementation CNN {

(state | action)->

Concatenate() ->

FullyConnected(units=300) ->

Relu() ->

FullyConnected(units=600) ->

Relu() ->

FullyConnected(units=1) ->

qvalue; } }
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Figure 5.10: EMADL component of the TD3 critic for the TORCS reinforcement learning
model.

While the result is similar to the one of Section 4.10.4, the RL approach did not require
any labeled data. The agent was trained solely by exploring the action space in the sim-
ulator. For training we used Gym-TORCS4, a python wrapper for TORCS exhibiting
an OpenAI-Gym-like interface. To make Gym-TORCS compatible with the ROS-based
training interface of MontiAnna, we developed a ROS adapter for a ROS-based data
exchange. This way the code generated from our machine learning models using the RL
pipeline can be used for training and execution without any adaptations or inclusion
of hand-written GPL code. The models of the actor and the critic network as well as
the training configuration and the reward were given as examples in the course of this
chapter, cf. Figures 5.4, 5.5, 5.7 and 5.8. In addition to DDPG, which turned out to
perform poor for this example, an agent was trained using TD3. For TD3 training,
the critic model differs slightly and is given in Figure 5.10. What is more, the value of
the parameter rl_algorithm needs to be changed to td3-algorithm in L.5 of the
CNNTrain model in Figure 5.7.

We used the CG track 2 with a length of 3185.83 m for training and the CG Speedway
number 1 with a length of 2057.56 m for evaluation, cf. Figure 5.11. The DDPG variant
had to be trained for 3500 episodes to achieve rewards of up to 100.000-150.000. What
sounds like a large number, was not enough to control the vehicle correctly for more
than a few seconds. The better performing TD3-based agent achieved rewards of over
500.000 after less than 2000 episodes while able to drive collision-free for multiple laps
on both the training and the evaluation maps.

4https://github.com/ugo-nama-kun/gym torcs, accessed March 01, 2021
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Figure 5.11: The racing tracks used for training (top) and evaluation (bottom) of the
TORCS agent. Copied from the TORCS racing board website http://
www.berniw.org/trb/tracks/tracklist.php, accessed April 26,
2021.

In addition to the TORCS experiment, agents for the OpenAI Gym environments5,
namely, CartPole, Lander (discrete and continuous), Pendulum, HalfCheetah, Bipedal
Walker, and Atari Pong were modeled and trained successfully by Nicola Gatto in his
master thesis using the presented methodology. Due to the similarity of the used neural
networks we omit the presentation of the individual models. The training results (average
rewards) are wrapped up in Figure B.1 in the appendix and are comparable with the
ones provided by OpenAI. These experiments show that the presented methodology
is applicable to reinforcement learning and can operate with a wide range of training
environments.
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Figure 5.12: An example map of the CTL forestry simulator by WZL.

5.10.2 Decision Making in Forestry 5.0

A further evaluation of MontiAnna for reinforcement learning was conducted in the
industry 5.0 or, more specifically, the forestry 5.0 domain in collaboration with Stephan
Wein from the Werkzeugmaschinenlabor (WZL) of the RWTH Aachen University. While
the applications described above use RL to train low-level controllers, in this example our
goal was to obtain a more abstract decision making network dealing with job planning
tasks for cut-to-length logging (CTL), thereby optimizing economical and ecological
performance indicators. CTL is the predominant harvesting system in Europe, where a
harvester fells and cuts trees into logs that are stored on the ground until a forwarder
picks them up and carries them to the landing sites [Rin11]. Causes of logging trail
damage in forestry were discussed in [Hil14]. Soil compaction can be caused by heavy
machinery moving over the logging trails. The severity of compaction depends on the
machinery weight, but also on changing soil properties such as moisture. This needs
to be taken into account in the planning process to avoid or at least reduce possible
damages.

WZL provided a simulator for this work enabling us to simulate the CTL process as
well as the caused soil compaction. In the simulation, a harvester first fells the trees

5https://gym.openai.com/envs/, accessed March 1, 2021
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and cuts them into logs of a certain length. Afterwards, a forwarder transports these
logs to a wood pile associated with the corresponding job. The agent trained in this
evaluation was meant to control the forwarder, not the harvester, i.e. it was dealing
with the transportation part exclusively. Over the course of an episode the simulator
increases the supply of the felling sites in random intervals to imitate a continuous felling
of new trees. The simulated environment consists of a virtual representation of a forest
and a forwarder that can be controlled by the agent. The forest is modeled as a 32× 32
grid map, where each cell represents one of the following partition types: forest, road,
logging trail, felling site, or wood pile. An example map is given in Figure 5.12. The map
is fixed at the beginning of an episode. Each episode consists of two phases. First, the
agent has to choose a finite number of jobs from a list provided by the simulator and to
decide, where to put the wood piles for these jobs. In the second phase, the agent carries
out the selected jobs by delivering logs to their associated wood piles. To finish a job, the
required number of logs of a given wood type and length need to be delivered. At each
felling site exactly one type of wood and a fixed log length are available. Environmental
damages can be estimated by the agent based on the logging trail properties, which are
also provided by the simulator. As an additional constraint, each job has a deadline.
Exceeding a deadline leads to additional fines. Once all jobs are completed, the episode
is over and the next episode is started.

The simulator accepts six different types of actions, which we are going to discuss in
the following:

Job selection (phase 1). The simulator presents the job offers as an 8 × N matrix,
where N is the total number of available jobs. Each job offer contains 8 properties
including the required log length and type, the pile coordinates (x and y), the total
demand, offered reward, the deadline, as well as the penalty for missing the latter.
To select jobs the agent needs to send an indicator array, where a 0 represents a
declined and a 1 an accepted job.

Pile placement (phase 1). Once the agent has chosen the jobs, it will assign pile posi-
tions to them. Wood piles may only be placed in unused parts of the forest, e.g.
the piles cannot be placed on a road. What is more, the piles need to be accessible
by a road so that the forwarder is able to reach them.

Forwarder movement (phase 2). The remaining actions are available in the second
phase of an episode. To move a forwarder the agent needs to specify a desti-
nation. The simulator then checks if it is actually reachable, computes a path
using the A* algorithm and updates the forwarder position. Thereby, it records
the time taken as well as the fines for caused logging trail damage.

Loading wood (phase 2). The forwarder can specify the number of logs it wants to
load. The simulator then checks, whether the forwarder is actually at a felling
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package forestrl.agent.networks;

component ForestActor {

ports

in Q^{488} state,

out Q(-1:1)^{63} action;

implementation CNN {
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FullyConnected(units=400) ->
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package forestrl.agent.networks;

component ForestCritic {

ports

in Q^{488} state,

in Q(-1,1)^{63} action,

out Q qvalue;

implementation CNN {

(state | action)->

Concatenate() ->

FullyConnected(units=400) ->
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Figure 5.13: Actor and critic networks of the forestry 5.0 agent.
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configuration ForestActor { 

context: cpu

learning_method: reinforcement

rl_algorithm: td3-algorithm 

critic: forestrl.singlestep.agent.networks.forestCritic

environment: ros_interface { 

state_topic: "/preprocessor/state" 

terminal_state_topic: "/sim/terminal" 

reward_topic: "/sim/reward" 

action_topic: "/postprocessor/action" 

reset_topic: "/sim/reset" } 

discount_factor: 0.7 

policy_noise: 0.2 

noise_clip: 0.5 

policy_delay: 2 

num_episodes: 1 

start_training_at: 1 

num_max_steps: 10000 

training_interval: 1 

snapshot_interval: 50 

evaluation_samples: 5 

soft_target_update_rate: 0.005 

replay_memory: buffer{ memory_size : 100000 

sample_size : 100 } 

strategy : gaussian { epsilon : 1.0 

min_epsilon : 0.05    

epsilon_decay_method: linear   

epsilon_decay_start: 500 

epsilon_decay : 0.005 

epsilon_decay_per_step: false

noise_variance : 0.1 } 

actor_optimizer : sgd { learning_rate : 0.002 } 

critic_optimizer : sgd { learning_rate : 0.0005 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

CNNTrain

Figure 5.14: Training configuration of the forestry 5.0 agent.
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site, whether the felling site has enough supply, and whether the forwarder’s bunk
capacity is sufficient for the requested load. If at least one of these checks fails,
the action is ignored. Loading consumes time. The time needed to finish the
action depends on the number of logs to be loaded as well as the crane capacity of
the forwarder specifying how many logs the crane can load onto the bunk of the
forwarder at once.

Unloading wood (phase 2). Similarly to loading wood, the forwarder can unload wood
by specifying the amount to unload. The simulator checks whether the forwarder
is at a wood pile, whether the loaded wood type and log length match those of
the pile, and whether the number of logs to unload does not exceed the number of
loaded logs. If the action is valid, the simulator will update the number of logs on
the bunk of the forwarder and advance the time in the same way as for loading.

Waiting (phase 2). The forwarder can remain idle for a specified amount of time.

Once an action has been submitted and executed, the simulator checks for missed
deadlines, updates the trail and supply information and, finally, returns an updated
state, a reward, as well as a Boolean flag indicating whether the new state is a terminal
state.

The actor and critic networks are given in Figure 5.13. For the actor, we use three
fully connected layers followed by ReLU and tanh activation functions, respectively.
The structure of the critic is similar, but it omits the final tanh layer and outputs only
one scalar Q-value. The agent is trained using the TD3 algorithm. For both networks
we use the SGD optimizer. The connection with the simulator is realized using the
ROS interface. The corresponding training configuration including all hyperparameters
is given in Figure 5.14. To asses the quality of the agent, the total monetary reward
consisting of rewards for finishing jobs and penalties for missed deadlines and the soil
damage caused to the logging trails is identified as the main performance indicator.
We implement the reward function for an action as the total monetary reward added
after a simulation step. Although time is not explicitly present in this definition, it is
still represented through the missed deadline fines. The training results are depicted in
Figure B.2. The agent was evaluated against a randomly acting and a simple rule-based
agent. While the trained agent is on par with the rule-based agent when we compare the
total monetary reward, it outperforms the rule-based agent with regard to money-to-time
ratio, which is 6.23 for the RL agent and 5.53 for the rule-based agent in our experiment.
Needless to say, both agents outperform the randomly acting agent clearly with regard
to both measures (money and money-to-time ratio). Further tuning of hyperparameters
and more complex networks with more layers and/or neurons per layer can probably
further improve the quality of the agent.
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5.11 Conclusion and Future work

In Chapters 4 and 5 we have introduced the MontiAnna language family and discussed
how it is integrated with the EMA language family. It has been shown that the Mon-
tiAnna framework can be used to model neural processing components for the usage in
CPSs including supervised learning, reinforcement learning, and generative adversarial
networks. To cover these three training types, MontiAnna provides three independent
generation and training pipelines. However, there is no difference at syntax level, the
modeler uses the same modeling language family for all types of networks, which means
that models can be reused easily. The differences are hidden in the actual, generated
training process and the context conditions ensuring that the training set-up is seman-
tically correct.

The differences in structure of the generated training processes for the three supported
training pipelines are hidden in the code templates of the generator. Adapting a training
pipeline therefore requires adapting the respective templates. This is easy to manage
for a small number of training pipelines. However, if the demand for training pipeline
variability grows, models capturing the steps and dependencies of the training process
explicitly will become inevitable and hence are subject of future work. C&C model-
ing could then be used to define formal reference architectures explicitly capturing the
dataflows between the training components and to generate context conditions auto-
matically, e.g. checking whether the actor and the critic networks are compatible. More
elaborate pipelines should be captured by training workflow models, e.g. if multiple nets
have to be trained in a specific order or if they provide data for each other.

The MontiAnna framework has been evaluated on a variety of different ANN architec-
tures and architectural styles ranging from simple MLP architectures and widely used
CNNs such as AlexNet and the VGG16 to recurrent networks including encoder-decoder
models with and without attention as well as mixes of convolutional and recurrent archi-
tectures. The three training pipelines have been applied successfully to tackle objection
detection, control, natural language translation, segmentation, and test data generation
tasks using supervised, reinforcement, and adversarial learning.

Embedding MontiAnna into the component-based language family EMA makes artifi-
cial neural networks first level citizens in a software architecture enabling us to automate
the training process and data management. Avoiding unnecessary retraining and being
able to package and publish weights enhances the reusability of compiler results.

For now, the MontiAnna framework is mainly focused on deep ANNs. Other learning
techniques such as support vector machines (SVMs), decision trees, Bayesian methods,
and clustering are not covered by MontiAnna. However, deep learning is not appropriate
for many learning tasks. For instance, learning of error patterns from diagnosis trouble
codes (DTCs) in the automotive domain can be handled using unsupervised methods
such as spectral clustering [KKRS19]. An extension of MontiAnna by further supervised
and unsupervised learning techniques is therefore highly desirable and subject of further

188



5.11 Conclusion and Future work

research. A combination of deep learning with such techniques is desirable as well, e.g.
using SVMs in the last layer of a neural network [Tan13].
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Chapter 6

Modeling Distributed Architectures

6.1 The Need for Distributed Systems

So far we have been dealing with holistic EMA architectures, which are meant to be
executed as a single program on a target device. Communication between subcompo-
nents can therefore be realized in the target language as standard function calls, which
is computationally very cheap and efficient. In practice however, CPS architectures are
often highly distributed. Different parts of the system are developed by dedicated ex-
pert teams and are deployed on multiple computation nodes connected by a network. A
smooth communication is then best realized using a middleware. A middleware not only
abstracts away from the technical nature of the underlying network protocols, thereby
facilitating the implementation of the distributed communication, but also ensures a low
coupling between components.

In this chapter, we are going to discuss how middleware aspects can be modeled in
the scope of the EMA language family, partially based on [HKKR19]. In particular, we
pursue the following goals:

• Integrating EMA models with external third party components such as sensors,
actuators, simulators, and the like. In this case only ports at the system border
need middleware capabilities. Ports of subcomponents can still be realized using
standard function calls.

• Using EMA to model distributed systems whose subcomponents need to run in
separate processes, e.g. on different ECUs of a vehicle, communicating via a mid-
dleware.

• Automating deployment scheme searches optimizing the partitioning of large mod-
els with respect to some cost function and a set of given constraints. For instance,
if an EMA model has to be deployed on multiple ECUs, the subcomponents need
to be assigned to these ECUs so that the amount of necessary communication is
minimized.

The research questions to be answered in this chapter are the following:
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Research Question 5. How can middleware communication be modeled in a C&C-
based development methodology at SMArDT level 3?

Research Question 6. How can the distribution of components be automated at
SMArDT levels 3 and 4?

6.2 Existing Approaches for Middleware Integration

Given the tremendous necessity of middleware, most methodologies for cyber-physical
system design support some kind of middleware modeling. In the following, we are going
to discuss several relevant approaches:

Simulink. In Simulink [Mat16] all kinds of network communication, including middle-
ware, are modeled using dedicated blocks providing the functionality. For instance, ROS
communication is provided by the Robotics System Toolbox. The developer needs to
use the Blank Message block to define empty messages. These messages can then be
modified using bus assignments. Publishing and subscribing to ROS topics is realized
via the Publish and Subscribe blocks, respectively. This approach has a major draw-
back: developers can mix up middleware aspects with business logic, thereby creating
dirty models with side effects. Such models violate the separation of concerns principle
and are difficult to maintain and to test. In the simplest case, where only the bound-
ary ports need to exchange data via a middleware, this can be avoided by using the
wrapper pattern, i.e. the logical component is wrapped by an infrastructure component
connecting the ports of the former to Publish/Subscribe blocks. However, the situation
becomes more intricate if middleware communication is deeply intertwined with logical
components inside the model. This is referred to as code scattering and tangling and
can make it difficult to exchange a middleware configuration. Furthermore, middleware
contamination can hinder black box testing of logical components.

This can get particularly painful in layered development processes with multiple ab-
straction levels such as SMArDT: each development stage might require a specific quality
assurance strategy for the abstraction level under consideration, e.g. model in the loop
(MiL), software in the loop (SiL), and hardware in the loop (HiL) testing. Furthermore,
different aspects of a model might need to be tested in different simulators. Model in-
tegration might therefore vary between development stages. The same may hold for
different product variants, e.g. if variants of a CPS use different operating systems or
hardware. Hence, if middleware aspects are highly intertwined with the logical model,
the maintenance of a series of integration scheme variants will require unbearable efforts.
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Platform-based Design. Another component-based modeling approach from the do-
main of embedded systems focusing on the orthogonalization of concerns is platform-
based design (PBD) [KNRSV00]. A platform is a layer of abstraction hiding its imple-
mentation details from layers using it; a design is organized as a stack of layers and their
mappings. Each platform is composed of behavior and communication model compo-
nents. The latter can be used to model middleware aspects. Hence, similar to Simulink,
communication components can lead to a middleware contamination of behavioral mod-
els.

In PBD multiple components of a platform can solve the same problem and can
therefore be interchangeable. The selection of the best alternative is performed au-
tomatically using search space exploration according to specified constraints. Such a
selection is called a platform instance and is used to generate code for the system. If
a standard platform with different middleware communication components is created,
a user can exchange the middleware by changing a single constraint, leading to the de-
sired platform instance without touching behavior-related parts of the model. Metro
II [DDM+07, BDD+09] is a framework designed for PBD. It contains a code generator
targeting C++, an integrated simulator, and tools for formal verification.

MontiArcAutomaton. MontiArcAutomaton [Wor16] is a language family for C&C
modeling. Due to its relation to MontiArc it has a syntax very similar to EMA. How-
ever, it exhibits differences in its semantics and targets the Java ecosystem, including
the type system and generated code. The behavior of a MontiArcAutomaton component
can be modeled as an automaton or be implemented directly as hand-written code in
Java [AHRW17]. MontiArcAutomaton focuses on logical aspects of a system, as well.
The models are completely free of middleware aspects. To employ MontiArcAutoma-
ton in the robotics domain, the authors propose a generator concept, which flattens
the component hierarchy and realizes the remaining components as ROS nodes and the
connectors as ROS topics in the target language. This leads to fully distributed architec-
tures, where each component can run in an independent process. The approach is very
easy to use as the modeler does not have to model the middleware at all. On the other
hand, hiding the complexity comes with the drawback that the developer is not able to
define custom middleware schemes. It is not possible to select a subset of ports to be
generated as ROS nodes or to map different topic names to each other. Furthermore, the
integration of multiple middleware solutions in one model is not covered by the proposed
concept.

RobotML. RobotML is an EMF-based [SBMP08] graphical modeling framework for
the robotics domain providing code generation for a variety of robotics platforms, e.g.
OROCOS-RTT and RTMaps [DKS+12]. The designer starts with a platform-independent
model (PIM) describing the functionality of the system and omitting technical details.
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component IntersectionController(N n) {

ports in Time timeCutoff,

in Trajectory trajectory[n],

in Boolean isActive,

out Boolean stop[n];

instance SingleSetCompare compare;

instance TrajectoryCollision trajCollision[n*(n-1)/2];

instance CollisionToStop collisionToStop;

connect trajectory[:] -> compare.trajectoryIn[:];

connect timeCutoff -> trajCollision[:].timeCutoff;

connect collisionToStop.stop[:] -> stop[:];

/* further connections */ }
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Figure 6.1: EMA definition of an intersection controller component receiving trajectories
from nearby vehicles, checking for potential collisions and sending stop signals
to endangered vehicles [HKKR19].

Afterwards, a deployment-platform model (DPM) needs to be created. It contains ad-
vices for the code generation toolchain concerning the middleware and simulators to use.
The code generation toolchain consists of several subgenerators supporting a variety of
robotic middleware solutions and simulators. Hence, to exchange the middleware, the
developer does not have to touch the PIM.

6.3 Running Example and Use Cases.

Consider the EMA model in Figure 6.1 and the corresponding graphical diagram in
Figure 6.2 (ignore the different port representations of the latter for now). The model
captures a simple collision warning system which might be deployed at an RSU or in the
manager of an LTS to support automated cooperative driving [DDE+17]. Its purpose
is to warn vehicles with a possible collision ahead. Each traffic participant provides its
planned trajectory as input to the model and expects a feedback either confirming the
trajectory or instructing it to adapt the trajectory. For each vehicle in the network,
the model provides a trajectory input port to receive the respective trajectory and
a stop output port to send the feedback.

In this model we work with a fixed number of traffic participants n for the sake
of simplicity. A scenario for n=2 vehicles approaching an intersection is sketched in
Figure 6.3. A dynamic version, where the number of traffic participants can change over
time, can be realized using EMAD constructs.

Internally, the SingleSetCompare component creates all possible x = n(n − 1)/2
pairs of trajectories and forwards each pair to a dedicated instance of a Trajecto-
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untagged EMA-Port
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EMA-Port with complete ROS tag

. . .
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Figure 6.2: Intersection controller model with middleware tags attached to its ports
[HKKR19].

collision

ahead

vehicle A

vehicle B

Figure 6.3: Two vehicles approaching an intersection. The planned trajectories are de-
picted as circles.
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ryCollision component. The latter checks whether the two input trajectories collide
and outputs the result. The CollisionToStop component takes the results of the x
TrajectoryCollision components and maps them to n stop ports.

Obviously, traffic participants are distributed agents and have to provide their trajec-
tory data over some network protocol or middleware before it can be fed into the outer
ports of the intersection controller. Such an integration of a black box EMA component
with remote (third party) software is the first use case of our tagging approach. It leaves
the internals of an EMA component untouched. For the realization, we only need to
provide some kind of wrappers or adapters to exchange data between the filled black
ports of the model in Figure 6.2 and a network.

As a second use case, we might need to deploy the modeled components as a dis-
tributed system, e.g. if the application we are modeling consists of multiple loosely
connected parts deployable on a distributed hardware platform such as an automotive
or a robotics system featuring an ECU network. Of course, this can be achieved by
modeling independent EMA systems or agents for each target ECU and interconnect-
ing them using the first use case approach described above. However, by doing so, we
would loose the advantages of an explicit architecture definition such as integrity and
consistency checking on the distributed system level. Instead, it is much more desir-
able and practical to use EMA not only to model the agents, but also to capture the
distributed top tier architecture of the overall system including the interaction between
the agents. In this case the generator needs to produce several independently deployable
artifacts running in separate processes and communicating via middleware instead of one
black box system. The connectors should then be interpreted as middleware connections
instead of simple function calls.

The question arises whether the synchronous execution order semantics of standard
EMA as discussed in Section 2.3.3 is still a good fit for this use case. It might slow down
the execution of a distributed system significantly due to delays in the communication
network. Therefore, asynchronous parallelizing execution modes should be considered
for this use case.

6.4 Requirements

To extend the EMA framework with middleware modeling functionality covering the two
use cases discussed in the running example section, we derive a set of requirements for
the modeling language as well as the underlying code generation toolchain:

(RC1) Middleware-agnostic modeling: logical EMA models must remain free of techni-
cal aspects including middleware. Middleware models must be defined as separate
artifacts ensuring a clear separation of concerns and avoiding model scattering and
tangling. The aim of this requirement is to ensure model reusability in different
environments as well as independence of the technical realization.
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(RC2) Middleware-agnostic core code generation: the EMA architecture and behav-
ior code generators must not produce code related to technical aspects such as
middleware communication to ensure a clear separation of middleware and core
EMA generation concerns.

(RC3) Minimization: as middleware communication is expensive, it must not be used
unless required explicitly or implicitly by the model. Dataflows not eligible for
middleware communication must use the standard tightly coupled and synchronous
communication pattern in the generated code, e.g. based on function calls as offered
by the EMA code generator.

(RC4) Semantics invariance: EMA has an efficient compile-time scheduling mechanism
and a synchronous weakly causal execution semantics which must remain preserved
for non-distributed parts of the system in order to keep obtaining highly-optimized
generated code.

(RC5) Middleware coupling: the integration of multiple middleware solutions in a sin-
gle model must be possible, i.e. each input port should be capable of receiving data
from an individually configured middleware source. Furthermore, each output port
must be able to send data to arbitrarily many different middleware networks.

(RC6) Modeling distributed systems: it should be possible to use EMA to design a
distributed system, i.e. given a single EMA model it should be possible to declare
a distribution and communication scheme for its subcomponents.

(RC7) Build infrastructure: generating code using the EMA core code generator cou-
pled with arbitrarily many middleware generators will probably result in a complex
project and dependency structure. To ensure out-of-the-box usage, in addition to
the actual code artifacts, the generator system must be able to generate a build
infrastructure taking care of all project dependencies.

6.5 Tagging-Based Middleware Modeling

We have several possibilities to design a middleware modeling extension for EMA. First,
by providing middleware component libraries similar to the Simulink Robotics Toolbox,
middleware connections could be modeled as normal EMA components. Such a solution
would lead to scattering and tangling, i.e. a single aspect is distributed across the whole
model and each component polluted with middleware becomes unnecessarily complex.
Modularity, reuse and testability are highly constrained.

Second, EMA could be extended by new language constructs to cover middleware con-
nectivity. For instance, a port declaration could be extended with a modifier, optionally
parameterized with the middleware to use. This solution has the potential to enhance
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readability compared to using middleware components, since middleware information
present in a model could be seen at one glance in the interface definition. Scattering and
tangling are barely reduced in such an approach and the solution still suffers from bad
modularity and variability support while making the language more complex.

A modular solution can only be achieved by capturing technical communication and
middleware aspects in a dedicated model type which is clearly separated from the logical
model. Furthermore, it is desirable to be able to compose the logical model with the
middleware model, e.g. to enable navigation from a port symbol directly to its optional
middleware information to facilitate model analysis and code generation. Instead of
developing a dedicated DSL, we reuse the tagging mechanism of EMA. The main idea
is to enrich ports with middleware related tags, which can be used as advices by the
code generator to produce the corresponding communication code. These tags may
include the type of middleware or protocol to use as well as further technical, possibly
platform-dependent details1.

By applying the tagging concept to our problem, we benefit from the following useful
properties:

• All middleware information related to an EMA model is gathered in one textual
model; a developer can quickly get an overview of all ports communicating via a
middleware.

• The tagging mechanism ensures that a tagged element exists and is of correct type.

• All middleware information is attached directly to the symbol table of the tagged
EMA model and is, hence, easy to find.

Since each middleware follows its own specific communication pattern in combination
with proprietary parameters, we need to define a tag type for each supported middleware
in a tag schema. In this work we focus on publisher/subscriber middleware employed in
various application domains from robotics and IoT to automotive. The idea behind this
communication pattern is that senders, instead of sending messages to the designated
recipients directly, publish messages to topics. Receivers can subscribe to topics they
are interested in to receive the messages. The communication is usually realized over a
message broker known to all participants. The broker manages the participants of the
network and forwards messages to their subscribers. Hence, communication participants
do not need to know each other, which ensures a low coupling and a high degree of
extensibility. Prominent examples of publisher/subscriber middleware are ROS in the
robotics domain [QGC+09], Message Queuing Telemetry Transport (MQTT) for IoT
applications [BG14, Nai17], MQTT-S for wireless sensor networks (WSNs) [HTSC08]

1Recall that we also used the tagging mechanism in Section 4.10.2 to model the technical aspects of
the training dataset for an EMADL component, which are mainly relevant for the code generation,
as well.
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tagschema MiddlewareToEmamTagSchema {

tagtype RosConnection {

(topicName = (${topicName:String}, 

topicType =  ${topicType:String}) 

(, msgField = ${msgField:String})?)? 

} for PortInst, ComponentInst ; 

tagtype MqttConnection {

(topicName = ${topicName:String})?

} for PortInst, ComponentInst ; 

}
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Figure 6.4: Tag schema defining the middleware tag structure for EMA component in-
stances and ports.

and Scalable Service-Oriented Middleware for IP (SOME/IP) [SSG+15, HPHC16] as well
as OpenDaVinci [Ber10, Ber16] in the automotive domain. The middleware modeling
and generation concept discussed in this chapter can be applied to any such frameworks.

We define the tag schema for the modeling of middleware-based communication in
Figure 6.4. The schema contains two separate tags for ROS and MQTT. Consider the
definition of the first tag type named RosConnection in L.2-6. The syntax of the
tag is defined in L.3-5. Special characters are interpreted as MontiCore syntax. A $
initiates a placeholder for the actual data to be input by the user and the accepted data
type for this entry. In a RosConnection tag, the whole body is optional due to the
outer parentheses group followed by a ?. Furthermore, the entry msgField is optional
if topicName and topicType are given. The for keyword in L.6 specifies which
symbol kinds this tag type can be applied to. In this case it is applicable to port and
to component instances. By tagging a port instance with such a tag, we indicate that
the communication of this port is realized through ROS. Alternatively, we can apply
the tag to a component instance. In this case all ports of the tagged component will
communicate through the middleware. In both cases, the middleware communication is
parameterized using the three parameters mentioned above. The topicName parameter
sets the topic the tagged port will listen to (in the case of an input port) or to which
it will publish its data (in the case of an output port). The topic type can be set to
one of the predefined ROS message types or a composed type (similar to struct types
in C/C++). Since ROS and EMA have different type systems, a conversion concept is
necessary. However, we can reuse the conversion table used by the EMAM2CPP code
generator, cf. Section 2.5, since ROS types have a straightforward mapping to C++
types. Furthermore, a message field (msgField) can be specified. If the topic type is
a struct-like composed type, but the receiver is only interested in a specific field, it can
access it by setting the msgField parameter. Graphically, we depict tags with topic
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conforms to MiddlewareToEmamTagSchema

tags RosTags {

tag intersectionController.timeCutoff with RosConnection =

{topic = (name=/timeCutoff, type=struct_msgs/Time)};

tag intersectionController.isActive with RosConnection =

{topic = (name=/isActive, type=struct_msgs/Boolean)};

tag intersectionController.collisionToStop.activeIn with

RosConnection;

tag intersectionController.compare.outA[1] with RosConnection;

[…]}
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Figure 6.5: Tag model for the running example [HKKR19].

and type information set explicitly by filling the ports these tags are attached to black
in the EMA diagram, cf. Figure 6.2.

Note that all middleware parameters are optional. In the case of an empty tag, the
parameters are derived from the tagged EMA ports. If the tagged port is a port of
the main component, the topic name can be derived from its name directly, no matter
whether it is an input or an output port. If we have an output port connected to one
or multiple input ports inside a model tagged with empty middleware tags, a unique
topic name is derived from the output port’s name. All receivers then listen to this
topic. The type is derived from the port’s type if the middleware supports typing, e.g.
ROS. Tags without middleware information are depicted as striped ports, cf. Figure 6.2.
As mentioned above, instead of tagging each port individually, it is also possible to
tag component instances. This is interpreted as tagging all (outer) ports of the tagged
instance with empty tags. Obviously, tagging a component with topic information makes
no sense and is therefore forbidden by a context condition. The ROS tag model for the
intersection system of Figure 6.2 is given in Figure 6.5.

As long as we only tag the outer ports of a model, it can be generated as a black
box according to our first use case. Assume that we need to model a distributed system
as demanded by the second use case. To do so, we can tag subcomponent ports with
middleware tags, as well. Consider the striped ports in Figure 6.2, i.e. these ports have
middleware tags attached, but no topic names and types were specified. These ports
belong to subcomponents of the model, but due to the fact that the connectors need
to be realized using a middleware, it becomes possible to generate them as independent
applications. Components which are only connected through middleware tagged ports
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Figure 6.6: True deployment scheme of the intersection controller with two separately
deployable components.

can reside in two different target applications.

Consequently, the SingleSetCompare component should run in its own process as
it only communicates via middleware. The other subcomponents of the intersection
controller on the other hand can be combined into a single independently deployable
executable since they do not communicate via middleware. The two desired separately
deployable models are shown in Figure 6.6. The activity needed to obtain these separated
deployment models is an automatic preprocessing step of the overall generation process,
which we refer to as slicing. For each deployment model or slice, an independent code
generation process is used. This allows us to model a distributed system in one EMA
model as required by (RC6).

As can be seen in the tag schema in Figure 6.4, the tag type MqttConnection can
be used to model MQTT connections. In contrast to the ROS tag type, the MQTT tag
type allows only one parameter, the topic name. The data is sent as a char stream and
there is no further typing.
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Note that an output port can be tagged with multiple middleware tags of different
types. This means that the port will have a dedicated adapter to the infrastructure of
each tagged middleware type, thereby allowing (and requiring) it to publish its data into
the respective middleware networks simultaneously at runtime, e.g. ROS and MQTT.
The choice of the middleware solutions to be used is fixed at compile-time by the tag
model and cannot be changed at runtime.

Given that the C&C model and the middleware model, i.e. the tag model, reside in
two separate files, cf. Figure 6.1 and Figure 6.5, the tagging approach fully supports the
middleware-agnostic modeling requirement (RC1). The logical models remain untouched
by the middleware information. Nevertheless, the tagging mechanism ensures that the
tagged element names are actually present in the target model.

6.6 Code Generator Composition

Obviously, the EMADL code generation toolchain needs to be extended to support
middleware tagging as presented above. To maintain a clean separation of concerns
and extensibility, a modular and extensible generator composition approach is required,
allowing us to keep the core EMADL generator middleware-agnostic. Middleware aspects
need to be generated by dedicated middleware code generators. Furthermore, it should
be easy to add new middleware generators to the toolchain.

Luckily, middleware code generators can work independently and do not have to know
about each other. The only interface which is needed to glue the generated artifacts
together is the way how ports are represented in target code by the core EMA generator
so that the middleware generators can interact with them.

We tackle the composition problem with a variant of the commonly used bridge pat-
tern [GHJV95], which is referred to as the star-bridge (or *-bridge) pattern. In the
bridge pattern, several concrete implementations might exist, but only one is active at
runtime. The star-bridge on the other hand has a list of implementations and all of them
are used whenever the implementation is called.

A class diagram representing the star-bridge-based generator composition mechanism
is shown in Figure 6.7. In our use case, the abstraction of the bridge is the Main-
Generator. This class provides methods to manage the implementations as well as a
generate(.) method to call them in a loop. The concrete class Coordina-
tingGenerator is the actual implementation of the bridge abstraction containing the
skeleton algorithm for the generation of the EMA project together with the middleware.
Additionally, this class generates code for the orchestration of all artifacts at runtime.
For each EMA component, it calls its own generate(ECIS comp) method which in
turn delegates the generation to the implementation objects of the bridge. Each such
implementation object needs to implement the GeneratorImpl interface containing
a generate(ECIS comp) method. Note that the core C++-generator implementing
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Figure 6.7: Overview of the generator coupling architecture [HKKR19].

GeneratorImpl is treated in the same way as the middleware generators.

While the core code generator produces the actual component code, the middleware
generators generate middleware adapters for these components according to the infor-
mation in the middleware tags. Given that the C&C and the middleware generators
are completely independent of each other, the coupling approach obviously satisfies the
middleware-agnostic generation requirement (RC2).

The class diagram of the generated code is depicted in Figure 6.8. Each middleware
generator produces an adapter which is responsible for the middleware communication of
the ports tagged in Figure 6.5. Such an adapter implements the IAdapter interface re-
quiring the methods init(.) and publish(), which can be called by the coordinator
controlling the model execution and communication.

On instantiation, each middleware adapter is initialized with a reference to the adaptee,
i.e. the object representing the component instance to be adapted. The middleware
adapter joins the middleware network, e.g. by subscribing to all relevant ROS topics for
input ports. A middleware-specific callback function is triggered by the middleware as
soon as new data becomes available. After reception this callback function forwards the
data to the targeted input ports of the EMA component instance. At the end of each
execution cycle the coordinator triggers the adapter’s publish() method which then
collects data from the output ports of the component instance it represents and sends it
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Figure 6.8: Overview of the generated C++ code [HKKR19].

to the corresponding middleware topics.

Each output port can be tagged with multiple middleware tags. In this case the
coordinator instantiates multiple adapters enabling a component instance to send its data
through different middleware networks. This fulfills the middleware coupling requirement
(RC5). Note that for an input port, a tag counts as an incoming connector. According
to the rule that an EMA input port can only have one incoming connector, an input
port can only have one middleware tag attached.

Recall that the generation process described in this section is applied to each slice
of the model independently and might even use tailored variants of the generator de-
pending on the middleware types used by the respective slices. Inside each slice, the
communication is generated as standard C++ function calls according to the EMA se-
mantics as described in Section 2.3.3 and Section 2.5 sticking to the synchronous and
weakly causal execution model, which supports (RC3) and (RC4). Applying the same
execution model to the distributed communication, however, is infeasible. Bottlenecks in
the communication network would slow down the execution as each slice would need to
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Figure 6.9: Setting in which a fast sender serves a slow receiver with and without buffer-
ing.

wait for the slowest component. What is more, sensors provide measurement data with
different frequencies; control tasks need to run with a higher frequency than planning
tasks. A synchronous execution model would hinder quick reactions in safety-critical
situations, e.g. if a sensor detects an obstacle in front of a self-driving vehicle, but the
controller cannot process this input because another component is still computing the
gear shift.

This leads to the decision to refrain from a synchronization between the distributed
model slices and switch to an asynchronous execution mode, where each model slice
is controlled by its own coordinator and can run at its own pace without waiting for
external inputs from the middleware (recall that inside a model slice the synchronous
model continues to hold). The EMA language as introduced in Chapter 2 assumes
perfect communication with no latencies and losses. Hence, there is no need to wait
for messages and there is exactly one message at each input port when a component is
executed. Message queues are not possible by design. This is different in an asynchronous
execution model with distributed components and we need to extend our understanding
of an EMA port. Therefore, we introduce the following assumptions: a port always
holds exactly one message; there is no buffer and hence, no message queues are possible.
What is more, an incoming message overrides the message currently present at the port
even if the latter has not been processed yet. On the other hand, a message is cached
and remains accessible until it is overridden by a successor message. This has two
implications. First, a component always operates on the latest message.

Second, if the pace of incoming messages is not the same as the execution frequency of
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the processing component, messages might get skipped or processed multiple times. The
rationale behind this seemingly unintuitive design decision is described in the following.
As discussed in Chapter 1, the fundamental structure of a cyber-physical system con-
sists of sensors capturing the environment, the control software operating on the sensor
signals, and the actuators. If the control software is slower than the sensors, it is still
crucial that it operates on the most up-to-date information. Older sensor inputs, even if
they have not been processed yet, do not represent the current state of the environment
and are, hence, obsolete. Processing buffered inputs first would introduce an unnecessary
delay letting the controller operate in the past. This is illustrated in Figure 6.9.

At the top of the figure, two identical timelines divided into execution steps of a
message source, which is sending messages with a frequency fS , are shown. Below these
two timelines, the processing timelines of a non-buffering receiver (left) and a buffering
receiver with a buffer size of three messages (right) are depicted. The slow receiver has
an execution frequency fR = 1

4fS , but this ratio can vary arbitrarily. Execution cycles
of the receiver are depicted as rectangles with the message ids being processed in the
respective execution steps. There is no synchronization between the execution cycles of
the sender and the receiver. Source messages which are never processed by the receiver
are labeled with an X in the sender’s timeline. While the non-buffering receiver always
uses the latest available message (e.g. the latest sensor sample), the buffering receiver
introduces a processing delay which is equal to the buffer size. Since the buffer size is
finite, message loss cannot be avoided completely, the lost messages are just distributed
differently. An infinite (or very large) buffer size would lead to a linearly increasing delay
between the production of a message by the source and its processing by the receiver.

On the other hand, if the processing component is faster than some of the sensors, it
will take the last available sensor inputs as still valid. Consider a situation, where an
optical sensor has detected an obstacle in front of the vehicle, but the velocity sensor
has not provided an update yet. The last sample provided by the velocity sensor was
a measurement of 50 km/h. It makes sense to reuse this value instead of waiting for
the next update while approaching the obstacle – in the distributed setting there is no
guarantee when the next sensor measurement will arrive.

The propagation of a signal throughout a distributed EMA network is illustrated in
Figure 6.10. The top plot shows a true physical signal, e.g. a vehicle’s velocity. In
the second plot, a digital sensor samples this signal and forwards the measurements to
another component, e.g. a controller. For the sake of simplicity, the measurements are
shown as ideal, i.e. without a measurement error or delay. The third plot shows the
value present at the target port of the receiver component. This is a piecewise constant
function, which is sampled by the receiver whenever it is executed. The samples seen by
the receiver are depicted in the bottommost plot: while the value 47 is sampled twice by
the receiver (at 0.3 and 0.5), the rise of the signal to 52 is ignored as the component is not
executed in the respective timespan. As long as the execution frequency of the receiver is
high enough for a flawless functioning of the overall system, losing signal samples is not a
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Figure 6.10: The four plots show an exemplary propagation of a signal through a
middleware-based EMA component network.
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problem. The original signal cannot be sampled with arbitrarily high precision anyway.
A minimum execution frequency for each model slice needs to be found by system tests
and physical modeling.

DSP systems often use zero-stuffing instead of processing the same input multiple
times when upsampling a signal. This can be achieved with the proposed scheme by
letting a component reset its input ports to zero when it has finished an execution cycle.
Consequently, the component will read zeros at these ports until a new update is received
from the source.

If processing a message twice is not appropriate in the modeled system, it can be
prevented by extending each message by a unique id and letting the receiver check this id
before starting the actual computation. If message loss is not tolerable, synchronization
can be mimicked by implementing a corresponding protocol on EMA level, i.e. a sender
would wait for a response by the receiver before sending the next message. Again this
can be accomplished by using unique message ids. A cleaner solution is to extend the
synchronous EMA semantics as introduced in Section 2.3.3 for distributed systems and
to provide it as an alternative operation mode. Such an approach is not in the scope of
this thesis, but might be useful to extend the applicability of EMA to further domains,
e.g. web and business applications.

A further possible operation mode is the event-triggered component execution. A
component’s behavior is executed as a reaction to an incoming message. As long as
no new messages are present, a component remains idle. Since messages rarely arrive
synchronously, the component is able but does not have to use the cached old values of
the other ports.

A generated ROS adapter example implementing the asynchronous semantics as de-
scribed above is given in Figure 6.11 for the IntersectionController component.
In L.1 the header of the adapted component is included. The init(.) method is called
once at startup by the coordinator and receives a pointer to the adaptee object, which
is shared between all of its adapters and the coordinator. Furthermore, for each input
port a ROS subscriber and for each output port a ROS publisher is initialized. L.14-19
show the publish method of the adapter. It is called by the coordinator in each execution
cycle after the component logic has been executed; it reads the value of each output port
and publishes it to the respective ROS topic using a dedicated publisher object.

While there is only a single publish method for all output ports, a dedicated callback
is available for each input port. For instance, a callback for the isActive port is given
in L.20-22. The respective subscriber has a reference to this callback function and calls
it whenever new data arrives. The received message is unpacked and assigned to the
target port.

Figure 6.12 shows an overview of the generated project structure, the contained ar-
tifacts, as well as the responsible generators. Here, SynthesizedComponent is the
name of the model slice based on Figure 6.6. The SingleSetCompare slice would
lead to a similar generator output. Note that only those middleware adapters are gen-
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#include "IntersectionController.h"

[...] /* other includes*/ 

class IntersectionControllerRosAdapter : public IAdapter{

IntersectionController* controller;

ros::Subscriber isActiveSubscriber;

ros::Publisher stopPublisher;

[...]

public:

void init(IntersectionController* comp){

controller = comp;

/*init publishers, subscribers and start ROS thread*/

[...]

}

void publish(){

struct_msgs::Boolean tmpMsg = 

msgFromStructBoolean(controller->stop[1]);

stop1Publisher.publish(tmpMsg);

[...]

}

void isActiveCallback(struct_msgs::Boolean& msg){

controller->isActive = structFromMsgBoolean(msg);

} [...] };
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Figure 6.11: Generated ROS adapter for the IntersectionController component.

Generator Generated files

CoordinatingGenerator ├── CMakeLists.txt
├── coordinator
│ ├── CMakeLists.txt
│ ├── SynthesizedComponentCoordinator.cpp
│ └── IAdapter.h

GeneratorCpp ├── cpp
│ ├── CMakeLists.txt
│ └── SynthesizedComponent.h

GeneratorMqtt ├── mqtt
│ ├── CMakeLists.txt
│ └── SynthesizedComponentMqttAdapter.h

GeneratorRosCpp └── roscpp
│   ├── CMakeLists.txt
│   └── SynthesizedComponentRosAdapter.h

GeneratorRos2Cpp └── ros2cpp
├── CMakeLists.txt
└── SynthesizedComponentRos2Adapter.h

Figure 6.12: Overview of the generated project structure and artifacts.
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Figure 6.13: Crash rate over network delay and drop rate [HKKR19].

erated, which are actually required by the tag model. MQTT and ROS2 adapters are
not needed according to the tag model in Figure 6.5, but are mentioned here to stress
the multi-platform capability of the approach.

As can be seen in Figure 6.12, each generator delivers its own CMakeLists.txt
file. Furthermore, to glue the project together, the coordinating generator produces
a CMakeLists.txt at top level. This build file can be used by the developer to
finally build the whole project in one go. This approach covers the build infrastructure
requirement (RC7).

6.7 Evaluation

To demonstrate the presented toolchain, we have integrated our running example model
with the ROS-based CoInCar simulator of the DFG SPP1835 program on cooperatively
interacting vehicles [NPLS18]. Our goal was to ensure that the middleware coupling ap-
proach is feasible by verifying that the intersection controller and tagging model compile
to a ROS-based system, which is in fact capable of preventing collisions at an intersection
in a series of simulations under non-ideal communication conditions.

In our test scenario, two vehicles approach an intersection as depicted in Figure 6.3.
Fifty configurations of this scenario with the starting positions varying by up to ±10 m in
the direction of the respective lane and starting velocities equally distributed between 18
and 33 km/h were defined. A total of 49 pairs of network delay between 0 and 1.5 s and
message drop chance of 0 to 100% were applied to each of these starting configurations.
The vehicles have no intelligence except starting to decelerate upon a signal from the
intersection controller. The collision rate is recorded to evaluate the system performance.
The experiment was set up and conducted by Alexander Hellwig in his bachelor’s thesis.
The results are depicted in Figure 6.13. The sampled collision probability is plotted

210



6.8 Automating Model Slicing for Distributed Deployment

over the network delay and drop rate. As can be seen, for delays of up to 250 ms and
package drop rates of up to 30% the controller is able to prevent collisions completely in
our experiment. An increase of the drop rate up to 80% while the delay is kept below
250 ms still results in a low collision rate of below 4%. Once the drop rate surpasses
the threshold of approximately 85%, the crash rate increases significantly – when no or
almost no messages come through, collisions cannot be avoided. As long as the drop rate
remains below this threshold, the collision rate is almost a linear function of the delay.

We can summarize that the toolchain supports the developer by providing all neces-
sary code and build files out of the box. Thanks to the separation of concerns prin-
ciple, the logical model can be reused in another simulator by exchanging or adapting
the tag model. The presented middleware modeling approach was used in a variety
of EMA projects in conjunction with different simulators including Gazebo [KH04],
TORCS [WEG+00, LCL13], Carla [DRC+17], and others.

6.8 Automating Model Slicing for Distributed Deployment

6.8.1 Motivation

In the course of this chapter, we have introduced the notion of model slicing, which can be
used to subdivide an EMA model into several stand-alone parts. This is accomplished by
manual port tagging, i.e. the modeler must provide the information on how the logical
model is transformed into a set of deployment models. Manually analyzing a model,
deciding how to deploy it, and tag its subcomponents accordingly might seem to be a
straightforward task for small models featuring only a few components.

However, real world architectures consist of hundreds or thousands of components,
cf. the Daimler advanced driver assistance system (ADAS) models used in [BMR+17].
What is more, a deployment scheme needs to take into account various constraints such
as binding a specific software component to a specific ECU. In addition, the resulting
configuration should be efficient with regard to certain criteria. For instance, it is de-
sirable to keep the required amount of communication and the latencies between the
distributed nodes as low as possible.

A manual analysis of how to split up a logical model and the maintenance of the
corresponding middleware tagging model is, hence, a tedious and error-prone task leading
to suboptimal results concerning the optimization goals with high probability. It is
therefore our goal to replace this manual procedure by an automated toolchain building
on top of the EMA compiler and the middleware tagging toolchain.

The question we aim to answer in this section is: how can the derivation of final,
deployable artifacts from the functional architecture be completely automated by an
appropriate toolchain? The input of the toolchain should consist of a functional archi-
tecture (defined as an EMA model in our case), a description of the target environment,
e.g. on how many computation nodes the architecture should be deployed, as well as
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information about the target architecture for the compiler. No user feedback should be
required for the generation and compilation of the final artifacts.

6.8.2 Component Clustering

A natural way to subdivide an architecture into several parts is to analyze its top level
structure. Recall the intersection controller model in Figure 6.2 and let n = 2. Then the
architecture consists of three subcomponents in total: SingleSetCompare, Colli-
sionToStop, and one TrajectoryCollision instance. If our aim were to deploy
it on three distributed computing nodes, the naive approach would be to deploy each
of the three components on its own node. However, this strategy might turn out to be
suboptimal, e.g. if the connectors between these components carried much more data
than connectors inside the respective components or if the computational burden were
distributed highly unequally between the three components.

To address this problem, model flattening as described in Section 2.3.3 is carried out
before identifying a suitable slicing scheme. Having only one granularity level consisting
of small basic blocks enables us to find the most flexible boundaries.

We are going to tackle the partitioning problem by employing unsupervised learning
techniques, also referred to as clustering. In unsupervised learning there are different
ways to handle the data. We can map the domain elements to be clustered into some
metric space with a distance function and perform the clustering in that space. For
instance, we could map each component of our model to an n-dimensional vector space
and use the Euclidean distance as a basis for clustering. Algorithms like k-means/k-
means++ [AV07] or Mean Shift [Che95] require such an explicit representation as they
need to create new points in the data space, e.g. updated cluster centers.

However, finding an appropriate representation with a meaningful distance function
for software components seems fallacious. Fortunately, various clustering algorithms
exist which are meant to operate on an adjacency matrix, where each entry represents
the similarity (or alternatively the distance) of two instances of the dataset. In such
a case the distances or adjacencies can be looked up and don’t have to be computed
during the course of the clustering procedure. This saves us from the need to find an
explicit high-dimensional embedding for component models in a vector space as well as
a meaningful similarity function. All we need to do is to find a mapping from the set
of (flattened) C&C models to the set of adjacency matrices (or, equivalently, the set of
undirected weighted graphs).

Given a flattened C&C model, we use the following injective transformation to con-
struct a corresponding graph G = (V, E , w) with V and E ⊆ V × V being the nodes
and the edges of the graph, respectively, and w : E → R+

0 being a function assigning a
non-negative weight to each edge of the graph:

1. We set V = C, i.e. each component instance of the input model is represented by
a node in G.
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2. We insert an undirected edge e ∈ V × V between two nodes of the graph iff there
is at least one connector between the two corresponding components in the C&C
model.

3. For each edge e ∈ E we look up all the connectors in the original C&C model and
sum up their costs, e.g. by estimating the total data rate transmitted over these
connectors based on the ports’ data types.

4. Finally, we set the edge weights w(e) to be this total cost. Alternative definitions
of the edge weights are possible, e.g. based on latencies, and highly depend on the
use case.

5. In some cases, structural deployment constraints need to be incorporated. This
will be discussed in Section 6.8.4

Having mapped our C&C model to a graph, we have a huge arsenal of graph processing
and analysis techniques at our disposal enabling an easy integration into MDSE and
visualization tools. Of particular interest for this work are graph-based clustering or
unsupervised learning techniques. These techniques enable us to find disjoint graph
partitions. A partition, also referred to as a cluster, can be interpreted as a set of graph
nodes corresponding to components to be deployed on the same execution node, e.g. an
ECU.

Hence, components belonging to the same cluster can be run in a single process and
share the same memory. Intuitively, we want to find a deployment scheme, so that most
of the communication takes place inside a cluster, since it can be realized by simple
function calls, while inter-cluster communication, i.e. expensive middleware communi-
cation, should be kept at minimum. In graph terminology this means that we would like
to minimize the weights of edges connecting nodes of different clusters while trying to
distribute the components in a fair way to achieve a balanced utilization of computing
resources. Hence, we need to avoid naive solutions deploying all components on a single
computing node and thereby having no middleware connections at all.

The desired partitioning can theoretically be found by minimizing a graph cut function
such as the RatioCut :

RatioCut(A1, ...,Ak) :=
1

2

k∑
i=1

W
(
Ai,Ai

)
|Ai|

, (6.1)

where Ai are disjoint node sets with ∪ki=1Ai = V; W (A,B) denotes the sum of edge
weights connecting nodes from the two node sets A and B. Here, A := V \A denotes the
set containing all nodes of V not contained in A. k is the number of clusters we want to
obtain.

In most clustering applications the number of clusters is unknown and needs to be
estimated using computationally intense algorithms, e.g. the Silhouette method [Rou87].
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Figure 6.14: Clustering software components for deployment.

In our context however, the number of desired clusters k is inherent as it is given by
the number of heterogeneous ECUs we want to deploy our CPS software on (in a hard-
ware/software codesign scenario where the software architecture is known, but a hard-
ware architecture still needs to be found, estimating the number of clusters using such
methods might still be appropriate).

Intuitively, minimizing the RatioCut corresponds to finding a clustering which avoids
inter-cluster connections while trying to maintain a reasonably large number of nodes
in each cluster. Minimizing the RatioCut function however is an NP-hard problem and
hence infeasible for a large number of components. Fortunately, it has been shown
that unnormalized spectral clustering yields a fair approximation of the RatioCut min-
imization problem and has a complexity of O

(
|V|3

)
[NJW02, VL07]. The algorithm is

described in the following.
Based on the graph weights, a symmetric graph similarity matrix W is constructed,

with the entry Wij = Wji representing the weight of the edge connecting the nodes i and
j. This is depicted in Figure 6.14 for a graph representing a simple software architecture
featuring six components. For the actual clustering we need to obtain a matrix known
as the graph Laplacian, which is defined as

L := D −W, (6.2)

where

D := diag (W1) (6.3)

is a diagonal degree matrix. Note that the values on the diagonal of W do not affect L.
Therefore, we can set them to zero without loss of generality, i.e. we can omit loop edges.
The first k eigenvectors of L form a low-dimensional representation of the data which
we cluster using the k-means algorithm, optionally using a k-means++ initialization to
avoid degenerate solutions [AV07]. In the example given in Figure 6.14 we set k = 2 to
deploy our six components on two different ECUs.

The result is a cluster indicator vector assigning each component to an ECU. Nodes
assigned to the same cluster share the same color in the graph and the corresponding
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similarity matrix in Figure 6.14. Each cluster forms a stand-alone model slice. The
EMA compiler is run separately on each slice to obtain an independent executable for
each ECU as discussed in Section 6.5.

For ports receiving or sending data from or to another cluster, the toolchain auto-
matically generates middleware tags for the desired middleware (evaluated for ROS in
the reference implementation). Consequently, all the necessary middleware adapters
are generated and don’t need to be specified by the developer explicitly. All type and
middleware information is inferred from the EMA model as mentioned in Section 6.5.

6.8.3 Weights

For the proof-of-concept we use the data rate, i.e. the number of bytes transmitted in
each cycle, to define the graph weights. If all components are executed and transmit data
with the same frequency, the data load transmitted between two components per cycle
can be estimated as the sum of the connector type sizes. We assume a static size typing
with B, Z, Q, and C being generated as boolean (1 Byte), int (4 Bytes), double (8
Bytes), and two doubles (16 Bytes), respectively. This scheme however highly depends
on the code generator used since EMA types are abstract. A Z variable with a range
from 0 to 1000 can be represented as an int in target code, while very large numbers
might need to be generated using several longs. For this reason, the generator should
offer an interface, through which it can indicate how many bytes a given abstract type
will require at runtime. A more general weight construction process should hence consult
the code generator to estimate the expected data rates.

6.8.4 Encorporating Structural Constraints

Until now, we have discussed how to get a clustering, which optimizes communication
costs while trying to achieve a fair workload distribution. Another important aspect in
embedded systems design is that data is produced by a multitude of different, specialized
sensors. To reduce latencies or to fulfill timing constraints, much of the data needs to
be processed locally, near the sensor. This means that we need to be able to enforce our
toolchain to deploy particular computations using a fixed ECU assignment. To achieve
this, we have constrained spectral clustering approaches at our disposal enabling us to
formalize such requirements [WD10, WQD14]. In constrained spectral clustering, the
optimization problem of spectral clustering is extended by a symmetric constraint matrix
Q encoding colocation constraints as must-link (ML) and cannot-link (CL) constraints.
The choice Qij = Qji = 1 means that nodes i and j must be assigned to the same
cluster while Qij = Qji = −1 means that an assignment of i and j to the same cluster
is forbidden. If no supervision is available for i and j, the entry is zero.

To define a constraint matrix, the user needs to be able to mark components with the
id of the target ECU. This can be accomplished using tagging, as well. Thereby, instead
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of tagging ports for middleware code generation, we now tag components with ECU ids.
If a component can be deployed on one of a series of ECUs, it can be tagged with a list
of ECU ids instead of a single id.

In the flattening process, ECU tags of composed components are propagated auto-
matically to their subcomponents. Hence, it is sufficient to tag the image detection
component to be deployed at the image processing ECU – all of its subcomponents will
inherit this parameterization.

Constraint tagging requires minor changes in our graph creation procedure. For each
ECU id explicitly mentioned in the deployment tag model, we create an additional node
in the graph G. All such nodes corresponding to an ECU instead of a software component
are pair-wise marked with a cannot-link (CL) constraint in the constraint matrix Q by
setting the respective entries to −1. Next, all nodes representing a software component
and tagged with exactly one ECU id obtain a must-link (ML) constraint with respect to
the node representing the tagged ECU id. If a software component is tagged with a list of
possible ECUs, this is realized in the constraint matrix as cannot-link constraints to all
other available ECUs, i.e. those which are not present in the tagged list. The clustering
result fulfills the deployment constraints while still aiming to minimize communication
overhead.

6.8.5 Related Work on Automated Deployment

In AIRES [WMS04] the software architecture is modeled as a weighted directed graph
which is referred to as the structural model. It consists of nodes representing components
with known resource consumption and edges representing connectors connecting output
ports to input ports. The resource consumption is subdivided into the computation,
communication, and memory consumption. Computation and memory consumption are
assigned to nodes, while communication costs are the edge weights.

The target platform is modeled as a weighted graph, as well. The nodes of this
graph represent computation and memory resources. The graph is undirected, since
the communication infrastructure is modeled as a shared communication link for all de-
vices. Resource availability functions assign computation, memory, and communication
resources to the computation nodes and the communication link, respectively. An in-
formed branch-and-bound algorithm with a competence function and a forward checking
mechanism is then used to partition the structural model so that each partition can be
allocated to the computational nodes of the platform model with sufficient resources.
The algorithm aims to optimize the competence function, which is defined as a weighted
combination of the normalized computation, memory, and communication consumption.
The latter is used in our work, as well.

In our approach, different constraints can be combined by redefining the edge weights
of the initial graph as long as these weights can be interpreted as component similarities.
This restriction implies that our clustering-based approach does not allow constraints

216



6.8 Automating Model Slicing for Distributed Deployment

on the resources of single components such as memory or computational resource con-
sumption. The concrete implementation of informed branch-and-bound allows for colo-
cation constraints (must-link and cannot-link) to be ensured, which can be solved by the
means of constrained spectral clustering in our approach. A difference between the two
approaches is that our solution does not require an explicit model of the target platform
(except the number of target ECUs). Therefore, it can be used in an earlier stage of
development as well as in hardware/software codesign.

A model-driven allocation engineering approach is proposed by Pohlmann and Hüwe
[PH19]. The system under development consists of a component model and a plat-
form model. Again, the goal is to map the component model to the ECUs of the
hardware model under certain constraints. The two models are defined using Mecha-
tronicUML [BDG+14]. Constraints are specified using a DSL incorporating the Object
Constraint Language (OCL) and the Viatra Query Language (VQL) [BURV11] for graph
querying. The tuples returned by a query can be used for colocation of components, to
bind components to a specific ECU, to constrain the memory usage, etc. The query re-
sults are transformed into an integer linear program (ILP) from which a valid allocation
scheme can be calculated using existing ILP solvers.

In contrast to our approach, resource limitations of ECUs, as well as the resource
consumption of components can be modeled. The resulting ILP guarantees that a gen-
erated allocation scheme violates no constraints, but, in contrast to our clustering-based
approach, it will not optimize for the resulting costs (e.g. inter-ECU communication).
Since a model of the target hardware is needed to create the ILP, this algorithm can
only be used for fixed hardware architectures. The approach presented in this chapter
can be used earlier in the development process and inform the choice of hardware, e.g.
with respect to memory and communication bandwidth.

Moser and Mostaghim propose an approach based on a bi-objective optimization
problem formulation to find component deployment schemes for fixed vehicular ECU-
platforms [MM10]. The hardware architecture is modeled using a set of parameters
including ECU capacities, their processing speed, and failure rate. Furthermore, the
communication infrastructure is characterized by the data rates, delays, and the relia-
bility of the preferred buses.

The two optimization goals are reliability of data communications and communication
overhead. The search space is reduced drastically by three types of constraints. The
memory constraint ensures that the capacity of an ECU is not exceeded. The location
constraint is employed to restrict the set of possible target ECUs for a given component.
The colocation constraint can be used to forbid two components to be deployed on the
same ECU. The constrained optimization problem is solved using NSGA-II [DAPM00],
an improved version of the non-dominated sorting genetic algorithm (NSGA). A repair
algorithm eliminates infeasible solutions.
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6.9 Conclusion and Future Work

In this chapter we presented a tag-based approach for the distribution of EMA models
and their integration with third-party software such as simulators and testing frame-
works. The approach enforces the separation of concerns principle with regard to logics
and communication. To keep the code generation process adaptable and maintainable,
a modular generator composition approach is used. New middleware generators can be
added by implementing the required interfaces. Future work includes the support for
further execution modes, e.g. the fully synchronous regime, as well as the integration of
more middleware solutions and paradigms not based on the publish/subscribe pattern.

Furthermore, we presented an automated approach deciding how to distribute the
components of an EMA model so that the distribution costs, e.g. the required commu-
nication overhead, are minimized. Without human supervision the toolchain is able to
create a distribution model, subdivide the system accordingly into multiple independent
parts, add appropriate middleware adapters and compile the result for the chosen target
platform. Supervision can be added to define deployment constraints, e.g. to bind soft-
ware components to particular ECUs. Future work comprises the integration of further
constraint types, e.g. dealing with limited ECU capacities, but also the development of
mechanisms for redundant deployment, robustness, and failover.
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Chapter 7

Conclusion

The development of CPSs is a complex process requiring experts from different fields. It
must be supported by a cross-paradigm model-driven engineering methodology to cope
with interdisciplinary challenges and ensure consistency.

An overview of how the methodology developed in this thesis can support the auto-
motive SMArDT process is given in Figure 7.1. It has been shown in this thesis that the
nature of CPSs can be represented very well using dataflow-centric modeling techniques.
For this reason, the C&C modeling paradigm is the core of the developed method-
ology. However, components and connectors alone are not sufficient for an adequate
architectural modeling. A type system tailored to the domain and featuring abstract
mathematical types, physical units, and matrices has proven to be indispensable.

In early phases of the process, the top level architecture is designed using the EMA
ADL, cf. level 2 of SMArDT in Figure 7.1. To enable dynamic architectural changes
at runtime, EMAD, an event-based reconfiguration language for EMA, was designed.
Using EMAD, components, ports, and connectors can be created on demand enabling
the developer to model cooperative and self-adaptable CPSs.

The logical architecture serves as a basis for the development of the technical concept
at SMArDT level 3. High-level components can be hierarchically refined or – if no
further refinement is desirable – their behavior can be modeled using existing library
blocks or one of the two available behavior modeling languages of the EMADL language
family. Many of the required computations throughout all relevant parts of a CPS
depend on matrix processing. The matrix-oriented scripting language MontiMath is
therefore a central element for behavior specification. Furthermore, it can be used to
model optimization problems often occurring in control tasks of CPSs.

In cases, where a manual behavior specification is tedious, components can sometimes
be learned based on data. Despite machine learning being a fast-paced field chang-
ing from day to day, in many practical scenarios solutions can be composed of existing
learning models. An efficient application of machine learning to industrial problems re-
quires domain-oriented modeling techniques focusing on simplicity and reuse rather than
research-oriented algorithmic freedom. To tackle this challenge, a second behavior mod-
eling language, the practice-oriented deep learning framework MontiAnna was designed.
Making MontiAnna a stand-alone modeling language instead of extending MontiMath
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Figure 7.1: EMA in the SMArDT process.

with a deep learning library is an important design decision. It enables the code gener-
ator to distinguish between standard and trainable code, thereby offering opportunities
for the automation of deep software engineering.

With its focus on existing technology, MontiAnna does not target low level deep learn-
ing research with experimentation on completely new neuron models and training meth-
ods. Instead, it has proven to be very efficient for the composition of deep artificial
neural networks as layer graphs from common building blocks due to its DAG-oriented
domain-specific syntax and a simple training configuration language. MontiAnna has
been evaluated successfully on a series of state-of-the-art neural networks from fields
including image processing, object detection, decision making, data generation, and ma-
chine translation. Such networks can be used in sensor signal processing, planning, and
decision making of CPSs.

Quality assurance is a central part of development processes such as SMArDT. Each
development phase might require a specific Q/A strategy. In our methodology, high-level
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architectural models cannot be tested conventionally, since there is no functionality at
this point, but structural properties can be verified against a structural specification,
e.g. EmbeddedMontiView models. Technical concept models, where components are
enriched with MontiMath or MontiAnna specifications, can be tested in a unit test
manner using the EMA stream testing language to assert that expected output streams
are generated by a model under test for given inputs. Furthermore, a simulator can
be used as a validation framework to evaluate the desired model behavior in complex
situations with a virtual environment in the loop.

The ability to deploy models in a distributed network of computation nodes is a crucial
feature of a CPS development methodology. It is particularly important to separate the
technical communication details from the pure logical models. In this thesis a tagging-
based approach was used to attach communication-related parameters to EMA models.
This solution facilitates the reuse of logical models in different hardware and network
settings and when using different testing frameworks. To further support the process,
an optional unsupervised learning step can be used to split and tag large models au-
tomatically. The tag models enable a transition from a level 3 technical model to the
level 4 hardware/software realization of SMArDT. Again, simulations can be used for
the quality assurance of the final product.

In this way, the presented methodology supports a CPS development process such as
SMArDT from an early conceptual phase to the final deployable product.
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[WPR+08] Axel Wegener, Micha l Piórkowski, Maxim Raya, Horst Hellbrück, Stefan
Fischer, and Jean-Pierre Hubaux. TraCI: An Interface for Coupling Road
Traffic and Network Simulators. In Proceedings of the 11th Communica-
tions and Networking Simulation Symposium, CNS ’08, pages 155–163,
New York, NY, USA, 2008. ACM. 2.6.3

[WQD14] Xiang Wang, Buyue Qian, and Ian Davidson. On constrained spectral
clustering and its applications. Data Mining and Knowledge Discovery,
28(1):1–30, 2014. 6.8.4

[XBK+15] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and
tell: Neural image caption generation with visual attention. In Interna-
tional conference on machine learning, pages 2048–2057, 2015. A.4, B.4

[YCC+17] Guang-Zhong Yang, James Cambias, Kevin Cleary, Eric Daimler, James
Drake, Pierre E. Dupont, Nobuhiko Hata, Peter Kazanzides, Sylvain Mar-
tel, Rajni V. Patel, et al. Medical robotics—regulatory, ethical, and le-
gal considerations for increasing levels of autonomy. Science Robotics,
2(4):8638, 2017. 1.1

[ZCD+18] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann
Hong, Andy Konwinski, Siddharth Murching, Tomas Nykodym, Paul
Ogilvie, Mani Parkhe, et al. Accelerating the machine learning lifecy-
cle with mlflow. IEEE Data Eng. Bull., 41(4):39–45, 2018. 4.10.3

[Zei12] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012. 4.9

[ZHL+19] Miankuan Zhu, Lei Han, Fujian Liang, Chaoxing Xi, Lei Wu, and Zutao
Zhang. A novel vehicle open door safety system based on cyclist detection
using fisheye camera and improved deep convolutional generative adver-
sarial nets. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages
2195–2201. IEEE, 2019. 5.9

[ZK16] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv
preprint arXiv:1605.07146, 2016. 4.1.4

[ZLNH17] Yi Zhu, Zhenzhong Lan, Shawn Newsam, and Alexander G. Hauptmann.
Guided optical flow learning. arXiv preprint arXiv:1702.02295, 2017. 4.9

248



Bibliography

[ZS17] Shangtong Zhang and Richard S. Sutton. A deeper look at experience
replay. CoRR, abs/1712.01275, 2017. 5.6.2

249





Appendix A

Diagrams and Listings

Tag Description

bash bash script

C++ C++ Code

CD Class Diagram

CNNArc MontiAnna Architecture (CNNArc)

CNNTrain MontiAnna Training Configuration (CNNTrain)

EMA EmbeddedMontiArc

EMAD EmbeddedMontiArc Dynamics

EMAM EmbeddedMontiArc with MontiMath

EMADL EmbeddedMontiArc with MontiMath and Deep Learning

Enum EmbeddedMontiArc enumeration

gin Google Dopamine gin configuration

Maven Maven Build Script

Net# Net# neural network definition

MontiMath MontiMath

Prolog Prolog

Python Python

Stream EmbeddedMontiArc stream test

Struct EmbeddedMontiArc structure
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Appendix A Diagrams and Listings

Tag Model EmbeddedMontiArc tag model

Tag Schema EmbeddedMontiArc tag schema

Z3 Z3 program

Table A.1: Explanation of the used flags in listings and figures.
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U
n
it

S
y
n
ta

x

Q
u

an
ti

ty
minute min time

hour h time

day d time

hectare ha area

ton t mass

litre l, L volume

astronomical unit au length

neper Np logarithmic ratio quantity

bel B logarithmic ratio quantity

decibel dB logarithmic ratio quantity

electronvolt eV energy

dalton Da mass

Table A.2: Accepted non-SI units [dPeM19].
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Appendix A Diagrams and Listings

U
n
it

S
y
n
ta

x

Q
u

a
n
ti

ty

meter m length

gram g mass

second s time

ampere A electric current

kelvin K temperature

mole mol amount of substance

candela cd luminous intensity

hertz Hz frequency

newton N force

pascal Pa pressure

joule J energy

watt W power

coulomb C electric charge

volt V voltage

farad F capacitance

ohm Ω, Ohm resistance

siemens S electrical conductance

weber Wb magnetic flux

tesla T magnetic flux density

henry H inductance

degree Celsius ◦C temperature

lumen lm luminous flux

lux lx illuminance

becquerel Bq radioactivity

gray Gy absorbed dose

sievert Sv equivalent dose

katal kat catalytic activity

radian rad plane angle

steradian sr solid angle

Table A.3: Base and derived units of the SI system [dPeM19].
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P
re

fi
x

S
y
n
ta

x

F
a
ct

or

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deca da 101

deci d 10−1

centi c 10−2

milli m 10−3

micro µ, u 10−6

nano n 10−9

pico p 10−12

femto f 10−15

atto a 10−18

zepto z 10−21

yocto y 10−24

Table A.4: SI unit prefixes [dPeM19].
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Appendix A Diagrams and Listings

%psd(m1,m2,op).

psd(X,Y,' + '):- psd(X), psd(Y).

psd(X,Y,' - '):- psd(X), nsd(Y).

psd(X,Y,' * '):- psd(X), scal+(Y).

psd(X,Y,' * '):- psd(X), int+(Y).

psd(X,Y,' * '):- psd(Y), scal+(X).

psd(X,Y,' * '):- psd(Y), int+(X).

psd(X,Y,' + '):- diag(X), pos(X), diag(Y), pos(Y).

psd(X,Y,' - '):- diag(X), pos(X), diag(Y), neg(Y).

psd(X,Y,' * '):- diag(X), pos(X), diag(Y), pos(Y).

psd(X,Y,' * '):- diag(X), neg(X), diag(Y), neg(Y).

%pd(m1,m2,op).

pd(X,Y,' + '):- pd(X), pd(Y).

pd(X,Y,' - '):- pd(X), nsd(Y).

pd(X,Y,' * '):- pd(X), scal+(Y).

pd(X,Y,' * '):- pd(X), int+(Y).

pd(X,Y,' * '):- pd(Y), scal+(X).

pd(X,Y,' * '):- pd(Y), int+(X).

%nsd(m1,m2,op).

nsd(X,Y,' + '):- nsd(X), nsd(Y).

nsd(X,Y,' - '):- nsd(X), psd(Y).

nsd(X,Y,' * '):- nsd(X), scal+(Y).

nsd(X,Y,' * '):- nsd(X), int+(Y).

nsd(X,Y,' * '):- nsd(Y), scal+(X).

nsd(X,Y,' * '):- nsd(Y), int+(X).

%inv(m1,m2,op).

inv(X):- pd(X).

inv(X):- nd(X).).

inv(X,'inv'):- inv(X)
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Figure A.1: Prolog rules for the derivation of matrix properties (PSD, PD, NSD, invert-
ible).
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%nd(m1,m2,op).

nd(X,Y,' + '):- nd(X), nd(Y).

nd(X,Y,' - '):- nd(X), psd(Y).

nd(X,Y,' * '):- nd(X), scal+(Y).

nd(X,Y,' * '):- nd(X), int+(Y).

nd(X,Y,' * '):- nd(Y), scal+(X).

nd(X,Y,' * '):- nd(Y), int+(X).

%norm(m1,m2, * ).

norm(X,Y,' * '):- norm(X), scal(Y).

norm(X,Y,' * '):- norm(X), int(Y).

norm(X,Y,' * '):- norm(Y), scal(X).

norm(X,Y,' * '):- norm(Y), int(X).

norm(X,Y,' ^ '):- norm(X), int(Y).

norm(X,Y,' + '):- herm(X), herm(Y).

norm(X,Y,' - '):- herm(X), herm(Y).

norm(X,'inv'):- herm(X), inv(X).

norm(X,'trans'):- herm(X).

%skewHerm(m1,m2,op).

skewHerm(X,Y,' + '):- skewHerm(X), skewHerm(Y).

skewHerm(X,Y,' - '):- skewHerm(X), skewHerm(Y).

skewHerm(X,Y,' * '):- skewHerm(X), scal(Y).

skewHerm(X,Y,' * '):- skewHerm(X), int(Y).

skewHerm(X,Y,' * '):- skewHerm(Y), scal(X).

skewHerm(X,Y,' * '):- skewHerm(Y), int(X).

skewHerm(X,'inv'):- skewHerm(X), inv(X).

skewHerm(X,'trans'):- skewHerm(X).
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Figure A.2: Prolog rules for the derivation of matrix properties (ND, normal, skew Her-
mitian).
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Appendix A Diagrams and Listings

component FlowNet{    

ports in Q(0:255)^{3, 384, 512} data_0,

in Q(0:255)^{3, 384, 512} data_1,          

out Q(-oo:oo)^{2, 96, 128} target_0,  

out Q(-oo:oo)^{2, 48, 64} target_1,  

out Q(-oo:oo)^{2, 24, 32} target_2,          

out Q(-oo:oo)^{2, 12, 16} target_3,          

out Q(-oo:oo)^{2, 6, 8} target_4;    

implementation CNN {

def conv(channels, kernel=3, stride=2, pad="same"){ 

Convolution(kernel=(kernel,kernel), stride=(stride,stride), 

channels=channels, padding=pad) -> Relu()}

(data_0 | data_1) -> Concatenate() -> 

conv(channels=64, kernel=7, stride=2, pad="same") ->       

conv(channels=128, kernel=5, stride=2, pad="same") -> 

( conv(channels=256, kernel=5, stride=2, pad="same") -> //3           

conv(channels=256, kernel=3, stride=1, pad="same") -> //3_

(conv(channels=512, kernel=3, stride=2, pad="same") -> //4        

conv(channels=512, kernel=3, stride=1, pad="same") -> //4_1

( conv(channels=512, kernel=3, stride=2, pad="same") -> //5  

conv(channels=512, kernel=3, stride=1, pad="same") -> //5_1

( conv(channels=1024, kernel=3, stride=2, pad="same") -> //6                        

conv(channels=1024, kernel=3, stride=1, pad="same") -> //6_1                        

( UpConvolution(channels=512, kernel=(4,4), stride=(2,2), padding="same") ->                             

Relu() | Convolution(kernel=(3,3), stride=(1,1), channels=2, padding="same") -> ( 

target_4 | 

UpConvolution(kernel=(4,4), stride=(2,2), channels=2, padding="same")                         

) -> [1]) -> Concatenate()|[0] ) -> Concatenate() -> 

(UpConvolution(channels=256, kernel=(4,4), stride=(2,2), padding="same") ->                         

Relu() |Convolution(kernel=(3,3), stride=(1,1), channels=2, padding="same") ->                        

( target_3 |  

UpConvolution(kernel=(4,4), stride=(2,2), channels=2, padding="same")                        

) -> [1]) -> Concatenate() | [0]) -> Concatenate() -> 

(UpConvolution(channels=128, kernel=(4,4), stride=(2,2), padding="same") ->                     

Relu()|Convolution(kernel=(3,3), stride=(1,1), channels=2, padding="same") ->                    

( target_2 | 

UpConvolution(kernel=(4,4), stride=(2,2), channels=2, padding="same")                    

) ->[1]) -> Concatenate() | [0]) -> Concatenate() -> 

(UpConvolution(channels=64, kernel=(4,4), stride=(2,2), padding="same") ->                 

Relu() | 

Convolution(kernel=(3,3), stride=(1,1), channels=2, padding="same") ->                

(target_1 | UpConvolution(kernel=(4,4), stride=(2,2), channels=2, padding="same")                

) -> [1]) -> Concatenate() | [0]) -> Concatenate() ->

Convolution(kernel=(3,3), stride=(1,1), channels=2, padding="same") ->        

target_0;}}
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Figure A.3: FlowNet [DFI+15] modeled in EMADL by Julian Steinsberger-Dührßen dur-
ing his lab work.
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package showAttendTell;

component ShowAttendTell {

ports in Z(-oo:oo)ˆ{64,2048} data,

in Z(0:255)ˆ{3,224,224} images,

out Z(0:37758)ˆ{1} target[25];

implementation CNN{

layer LSTM(units=512) decoder;

layer FullyConnected(units = 256) features;

layer FullyConnected(units = 1, flatten=false) attention;

0 -> target[0];

images ->

Convolution(kernel=(7,7), channels=128, stride=(7,7)) ->

Convolution(kernel=(4,4), channels=128, stride=(4,4)) ->

Reshape(shape=(64, 128)) -> features;

timed <t> GreedySearch(max_length=25){

(((features.output -> FullyConnected(units=512, flatten=false)

|

decoder.state[0] -> FullyConnected(units=512, flatten=false))->

BroadcastAdd() -> Tanh() -> FullyConnected(units=1, flatten=false)->

Softmax(axis=0) -> attention | features.output) ->

BroadcastMultiply() -> ReduceSum(axis=0) -> ExpandDims(axis=0)

|

target[t-1] -> Embedding(output_dim=256)) -> 

Concatenate(axis=1) -> decoder -> FullyConnected(units=37758) ->

Tanh() -> Dropout(p=0.25) -> Softmax() -> ArgMax() ->

target[t]}; 

} 

}
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Figure A.4: The Show, Attend and Tell network architecture [XBK+15] modeled in CN-
NArc by Christian Fuß in his master thesis. The aim of the network is to
generate textual descriptions for given images. To do so the architecture
combines convolutional layers for image processing, attention, and RNNs.
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Tanh. The Tanh is a non-linearity often used for binary classification as it provides a
sign preserving mapping.

• Parameters: none.

• Connection pattern: 1-to-1.

• Function: σ(x) = tanh(x) = 1− 2
e2x+1

.
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1

x

tanh(x)

Relu. The ReLU is a widely used activation function, which maps the input to itself
for positive values and to zero otherwise.

• Parameters: none.

• Connection pattern: 1-to-1.

• Function: σ(x) = max(0, x).
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LeakyRelu. A variant of the ReLU layer, where inputs less than zero are assigned
a small slope greater than zero. Consequently, inactive neurons can have a non-zero
gradient.

• Parameter: Q epsilon is a coefficient controlling the slope of the leaky part of
the ReLU.

• Connection pattern: 1-to-1.

• Function: σ(x) =

{
x if x ≥ 0

εx else.
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Pooling. Pooling is another important operation in the context of CNNs. It is a data
reduction technique mostly applied after a Convolutional layer.

• Parameters: the Pooling layer takes the same sliding window parameters as
the Convolutional layer, i.e. N^2 kernel, N stride, and Padding padding.
Furthermore, the layer supports the Pool_type pool_type parameter, cf. func-
tion.

• Connection pattern: Same as for the convolutional layer.

• Function: Similarly to a Convolutional layer the Pooling function can be thought
of as a sliding window. However, the Pooling layer has no weights to be learned.
Instead, it outputs a single scalar per sliding step by applying a fixed aggregation
function to the data inside the window. There are two supported operation modes
controlled by the parameter Pool_type pool_type: "max" outputs the biggest
value present inside the window. "average" computes and outputs the arithmetic
mean.

GlobalPooling. Global pooling is similar to standard pooling, but it has no sliding
window. Instead it applies the aggregation operation to the whole input matrix at once.

Lrn. The Lrn layer class implements local response normalization (LRN), a lateral in-
hibition technique [KSH12]. Its purpose is to emphasize the most excited neurons and
dampen their relatively weaker neighborhood activations. The output of the normal-
ization operation has the same shape as the input. The layer has no weights to be
learned.

• Parameters: the layer function is controlled by the hyperparameters presented in
the original paper, namely Q alpha, Q beta, Q k, and Q n. They can be tuned
with the help of a validation set.

• Connection pattern: 1-to-1.

BatchNorm. Batch normalization is another normalization technique [IS15] and is
available in MontiAnna though the BatchNorm layer class. It subtracts the minibatch
mean of the layer output it is applied to and divides it by the minibatch standard de-
viation. Batch normalization helps stabilizing and accelerating the training and has a
regularization effect.

Dropout. Dropout is a regularization technique temporarily removing a random se-
lection of neurons from a neural network in each learning step [HSK+12, SHK+14].
Dropout regularization can be applied to a layer instance by appending a Dropout layer.
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This layer introduces randomness into the model and might hence lead to irreproducible
results. To ensure reproducibility a seed can be used, cf. Section 4.9.

• Parameters: Q(0:1) rate represents the dropout rate controlling the ratio of
neurons to be dropped out at each step.

• Connection pattern: 1-to-1.

OneHot. One-hot encoding represents categorical data in a vector space. Each category
is mapped to a unique vector where exactly one entry is 1, whereas all the remaining
entries are zero. The distance between two arbitrary, non-equal one-hot vectors is a
constant. A further advantage is that the encoding does not need to be learned. However,
spanning a dedicated dimension for each category, the one-hot representation is highly
inefficient, particularly for large vocabularies. Furthermore, it cannot represent semantic
similarities between categories. This is a drawback for language processing as words can
have different degrees of similarity, ranging from being synonyms, describing realizations
of the same concept, e.g. colors, or being completely unrelated. The OneHot layer class
can be used to map a scalar input to a one-hot vector.

• Parameter: N(1:∞) size denotes the dimensionality of the one-hot vector.
This parameter can be omitted. Then the compiler would try to deduce the ex-
pected output dimensionality from the subsequent layers.

• Function: creates an Nˆsize vector with a 1 at the index equal to the scalar
input of the layer and zeros otherwise.

Embedding. The layer class Embedding provides a more sophisticated high-dimensional
encoding of a vocabulary tackling the drawbacks of one-hot encoding. It aims to model
semantic similarity by mapping words, which tend to occur together, to similar vectors,
whereas vectors representing unrelated words are farther apart.

• Parameters:

N(1:∞) input_dim is the size of the vocabulary to be mapped.

N(1:∞) output_dim is the dimensionality of the feature space. Note that the
feature space can have a lower dimensionality than one-hot encoding.

• Function: looks up a feature vector as a row in an embedding matrix given a
scalar index as input. The embedding matrix is a learnable parameter.
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Argmax. While the loss function is usually computed using the output of the Softmax
layer of a neural network, the end user is mostly interested in the concrete result rather
than the probability distribution. Similarly, in RNNs the feedback used by an RNN cell
needs to be the actual result of the last step. This can be accomplished by placing an
Argmax layer instance at the output of the network. This layer can only be used as the
last layer in a network and is ignored during the computation of the loss function in the
training phase.

• Function: arg maxi(xi), where x is the input vector and xi is the i-th element.

• Parameters: none.

B.2 CNNTrain Evaluation Metrics

f1. the F1 score is defined as

F1 := 2
precision · recall
precision+ recall

, (B.1)

where

precision :=
TP

TP + FP
(B.2)

and

recall :=
TP

TP + FN
(B.3)

with TP , FP , and FN being the true positives, false positives, and false neg-
atives, respectively. The score is only applicable to a binary classification func-
tion. An inter-model context condition ensures that the neural network has a
one-dimensional output.

mae. represents the mean absolute error (MAE) defined as

MAE :=

∑N
i=1 ‖yi − ŷi‖

N
, (B.4)

where N is the number of samples. yi and ŷi are the ground truth and the predicted
labels of i-th sample, respectively.

mse. represents the MSE defined as

MSE :=

∑N
i=1 (yi − ŷi)2

N
, (B.5)

where N is the number of samples. yi and ŷi are the ground truth and the predicted
labels of i-th sample, respectively.
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perplexity. an information theoretic evaluation measure indicating how well a probability
distribution predicts a sample. It is defined as

perplexity := exp

(
− 1

N

N∑
i=1

log q (xi)

)
, (B.6)

where N is the number of samples and q(xi) is the probability for the ground truth
label of the sample xi predicted by the model under evaluation.

rmse. represents the root mean squared error (RMSE) defined as

RMSE :=

√∑N
i=1 (yi − ŷi)2

N
, (B.7)

where N is the number of samples. yi and ŷi are the ground truth and the predicted
labels of i-th sample, respectively.

top k accuracy. similar to accuracy, but prediction is considered as correct as long as
the true label is in the top k predictions, with k set using the subparameter N1
top_k. If top_k = 1, top_k_accuracy is equal to accuracy.

B.3 CNNTrain for Reinforcement Learning

B.3.1 General Reinforcement Learning Parameters

N1 training interval=1. The parameter is a positive integer specifying the number of
steps between two trainings. The default value is 1 meaning that the agent is
trained after each single step.

N start training at=0. This integer-valued parameter determines in which episode the
training of the network starts.

N1 evaluation samples. This integer-valued parameter determines the number of sam-
ple games for evaluating the network.

nested replay memory. The parameter determines the operation mode of the replay
memory. We can choose between the variants listed in the following.

nested buffer. This is the default replay memory mode introduced in [MKS+13,
Lin93]. A circular buffer is used to store the state-action-reward-next-state
transitions. For training, a batch is sampled from the buffer. This mode has
the following additional configuration parameters:
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N1 memory size. The integer-valued parameter determines the size of the
replay buffer. When the number of elements inside the buffer reaches the
size limit, the buffer starts to overwrite the first elements as is typical for
circular buffers.

N1 sample size. Size of the batch sampled for each training step. The pa-
rameter is typed as a positive integer.

online. With this option no buffer is used. The update step of the neural network
is carried out based on the last transition only.

combined. This option is a combination of the two variants buffer and online.
A sample from the buffer as well as the last transition are used together for
each training step. The configuration parameters for combined are the same
as for buffer.

nested strategy. This parameter determines the exploration and exploitation strategy
of the agent during training. The developer can choose from the following options:

nested epsgreedy. This option represents the ε-greedy strategy. Thereby, the
highest Q-value is chosen with probability 1−ε. Otherwise, i.e. with probabil-
ity ε, a discrete uniform distribution is used to sample a random action from
the action space. This strategy is only applicable to discrete action spaces.
The strategy needs to be configured using the following parameters:

Q(0:1) epsilon. The probability of choosing a random action.

enum epsilon decay method. This parameter defines the strategy to decrease
epsilon throughout exploration. It can be set to linear for a linear de-
crease or no for no decrease.

N1 epsilon decay start. This integer-valued parameter determines the episode
after which the decrease of epsilon sets in according to epsilon_de-
cay_method. Until that episode no decrease takes place.

Q(0:1) epsilon decay. The epsilon decay parameter is a rational value be-
tween 0 and 1 used to control the linear decay function. If the decay
method is set to linear, the epsilon value will be reduced by this parame-
ter’s value after each episode, but only starting with the episode number
epsilon_decay_start.

Q(0:1) min epsilon. The value of epsilon is not reduced below the value of
this parameter.

Boolean epsilon decay per step=false. If this parameter is set to true, the
decay will be performed after each step. Otherwise, the decay will be
executed after each episode only.
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nested ornstein uhlenbeck. With this strategy correlated noise is drawn from an
OU process [UO30] and added to the action selected by the current policy
network [LHP+15]. This strategy is only applicable to continuous action
spaces. The OU process can be controlled by the following parameters:

Qˆ{n} mu. This parameter represents the mean reversion level µ of the OU
process generating the noise to be added to the action output. It has
to have the same dimensionality as the action vector output of the actor
network.

Q theta. This parameter represents the mean reversion speed of the OU pro-
cess generating the noise to be added to the action output. It controls
how strong the noise is pulled towards the parameter µ.

Q sigma. This parameter determines the weight of randomness in the noise
generation. The higher the value of this parameter is, the stronger the
random component of the process.

gaussian. This strategy is an alternative to the OU noise for continuous problems.
It produces uncorrelated Gaussian noise and adds it to the current policy
action. It is refined using the following configuration parameters:

Qˆ{n} mu=0. This parameter represents the expectation value of the Gaus-
sian random variable added to the action output. It has to have the same
dimensionality as the action vector output of the actor network. It is set
to a zero vector by default.

Qˆ{n,n} cov=eye(n). This parameter represents the covariance matrix of
the Gaussian random variable added to the action output. It is set to an
identity matrix by default.

B.3.2 DQN Exclusive Parameters

In this section we introduce the training parameters available in CNNTrain for DQN,
i.e. if rl_algorithm=dqn-algorithm.

enum loss. This parameter is used to set the loss function for the training of the Q-
network. For more information and the available configuration values, cf. Sec-
tion 4.9.

Boolean use fixed target network=false. This Boolean parameter determines, whether
an additional target network with fixed parameters should be used to estimate the
targets for the update step of the Q-function. false is the default value, i.e. no
such network is used.

N1 target network update interval. This integer-valued parameter is required if use_-
fixed_target_network is set to true. Every fixed number of steps the weights
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of the Q-network are copied to the target weights. The value of target_net-
work_update_interval determines the number of steps between two updates
of the target network’s weights.

Boolean use double dqn. If this Boolean parameter is set to true, the Double DQN
algorithm [VHGS16] is used to train the Q-function.

nested optimizer. This parameter is used to select the update function for the training
of the Q-network weights. The available alternatives include SGD, the Adam opti-
mizer, RMSprop1, AdaGrad, NAG2, and AdaDelta represented by the values sgd,
adam, rmsprop, adagrad, nag, and adadelta, respectively, cf. Section 4.9 for
more information.

B.3.3 TD3 Exclusive Parameters

In the following we introduce the training parameters available in CNNTrain for TD3,
i.e. if rl_algorithm=td3-algorithm.

Qˆ{n} policy noise. This parameter is a rational vector determining the standard de-
viation of the random variable added to the actions predicted by the target actor
network as noise when calculating the targets.

Qˆ{n} noise clip. This parameter is a rational vector determining the maximum abso-
lute values for the elements of the policy noise.

N1 policy delay. This integer-valued parameter determines after how many steps the
actor network is updated.

1https://www.cs.toronto.edu/˜tijmen/csc321/slides/lecture slides lec6.pdf, accessed February 19, 2020
2https://jlmelville.github.io/mize/nesterov.html, accessed on February 19, 2020
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B.3.4 Training Results
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Figure B.1: The average reward over the last 100 episodes during training for Ope-
nAI Gym and TORCS experiments using MontiAnna models conducted by
Nicola Gatto in his master’s thesis.
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random agent

rule-based agent

Figure B.2: Training results of the MontiAnna-based forestry 5.0 agent compared to a
randomly acting and a rule-based agent. The experiments were conducted
by Sascha Dewes in his bachelor’s thesis.

B.4 MontiCore 5 Grammars

The following grammars are taken from the internal EmbeddedMontiArc Gitlab reposi-
tory of the Software Engineering department of the RWTH Aachen University. Some of
the following grammars have been co-developed with Michael von Wenckstern. Further-
more, grammars may contain contributions by others, in particular bachelor and master
students supervised by the author of this dissertation.

1 /* (c) https://github.com/MontiCore/monticore */
2

3 package de.monticore.lang;
4

5 component grammar Matrix extends de.monticore.ExpressionsBasis {
6 MathMatrixValueExplicitExpression implements Expression<220> =
7 "[" (MathMatrixAccessExpression || ";")* "]";
8 MathMatrixAccessExpression =
9 MathMatrixAccess (","? MathMatrixAccess)*;

10 MathMatrixAccess =
11 doubleDot:":" | Expression;
12 MathVectorExpression implements Expression<210> =
13 start:Expression ":" ( steps:Expression ":")?
14 end:Expression ;}

Listing B.1: MontiCore 5 grammar for matrix literals (co-developed with Michael von
Wenckstern [vW20]).
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1 /* (c) https://github.com/MontiCore/monticore */
2

3 package de.monticore.lang;
4

5 component grammar MatrixExpressions extends de.monticore.
ExpressionsBasis {

6 //Arithmetic expressions for matrices
7 MathArithmeticMatrixLeftDivideExpression implements
8 Expression<160> = Expression "\\" Expression;
9

10 MathArithmeticMatrixTransposeExpression implements
11 Expression<270> = Expression ".\’";
12

13 MathArithmeticMatrixComplexTransposeExpression implements
14 Expression<270> = Expression "\’";
15

16 MathArithmeticMatrixEEPowExpression implements
17 Expression<290> = Expression ".^" Expression;
18

19 MathArithmeticMatrixEEMultExpression implements
20 Expression<280> = Expression "." "*" Expression;
21

22 MathArithmeticMatrixEERightDivideExpression implements
23 Expression<250> = Expression "./" Expression;
24

25 MathArithmeticMatrixEELeftDivideExpression implements
26 Expression<250> = Expression ".\\" Expression;
27 }

Listing B.2: MontiCore 5 grammar for matrix expressions (co-developed with Michael
von Wenckstern [vW20]).

1 /* (c) https://github.com/MontiCore/monticore */
2

3

4 grammar Math extends de.monticore.NumberUnit,
5 de.monticore.AssignmentExpressions,
6 de.monticore.CommonExpressions,
7 de.monticore.lang.Matrix,
8 de.monticore.lang.MatrixExpressions,
9 de.monticore.lang.monticar.Types2 {

10

11 MathCompilationUnit =
12 ("package" package:QualifiedName ";")?
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13 (ImportStatement)*
14 MathScript;
15

16 interface Statement;
17

18 symbol scope MathScript =
19 "script" Name statements:Statement* "end";
20

21 MathDottedNameExpression implements Expression<300> =
22 Name "." Name;
23

24 MathMatrixNameExpression implements Expression<300> =
25 Name "(" MathMatrixAccessExpression ")";
26

27 //Boolean expressions
28 MathTrueExpression implements Expression<240> =
29 "true";
30 MathFalseExpression implements Expression<240> =
31 "false";
32

33 //for loop
34 MathForLoopExpression implements Statement =
35 "for" head:MathForLoopHead body:Statement* "end";
36

37 MathForLoopHead =
38 Name "=" (NameExpression | Expression);
39

40 //if and else conditions
41 MathIfStatement implements Statement =
42 MathIfExpression MathElseIfExpression*
43 MathElseExpression? "end";
44

45 MathIfStatementShort implements Statement =
46 Expression "?" trueCase:Statement* ":"
47 falseCase:Statement*;
48

49 MathIfExpression =
50 "if" condition:Expression body:Statement* ;
51

52 MathElseIfExpression =
53 "elseif" condition:Expression body:Statement* ;
54

55 MathElseExpression =
56 "else" body:Statement* ;
57

58 MathDeclarationStatement implements Statement =
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59 type:AssignmentType Name ";";
60

61 MathAssignmentDeclarationStatement implements Statement =
62 type:AssignmentType
63 Name MathAssignmentOperator
64 (Expression) ";";
65

66 MathAssignmentStatement implements Statement =
67 (Name | MathMatrixNameExpression |
68 MathDottedNameExpression) MathAssignmentOperator
69 (Expression) ";";
70

71 MathAssignmentOperator =
72 operator:"=" | operator:"+=" | operator:"-=" |
73 operator:"*=" | operator:"/=";
74

75 //Assignments
76 AssignmentType =
77 matrixProperty:Name* ElementType dimension:Dimension?;
78

79 //Expression for all Numbers with units
80 NumberExpression implements Expression<291> =
81 NumberWithUnit;
82

83 NameExpression implements Expression<295> =
84 Name;
85

86 MathArithmeticPowerOfExpression implements Expression <190> =
87 leftExpression:Expression operator:"^"
88 rightExpression:Expression;
89

90 IncSuffixExpression implements Expression <220>, Statement =
91 Expression "++" ";" ;
92

93 DecSuffixExpression implements Expression <220>, Statement =
94 Expression "--" ";" ;
95

96 // remove incompatible expressions
97 BinaryXorExpression implements Expression <110> =
98 "----- will not be used ---- this removes BinaryXorExpression";
99 }

Listing B.3: MontiCore 5 grammar of the MontiMath language (co-developed with
Michael von Wenckstern [vW20]).
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1 /* (c) https://github.com/MontiCore/monticore */
2

3 package de.monticore.lang;
4

5

6 grammar MathOpt extends de.monticore.lang.Math
7 { MathOptCompilationUnit = MathCompilationUnit;
8

9 enum OptimizationType =
10 minimization: "minimize" | maximization: "maximize";
11

12 OptimizationCompareOperator =
13 operator:"==" | operator:"<=" | operator:">=";
14 OptimizationVariableDeclaration =
15 type:AssignmentType? Name;
16 OptimizationSimpleCondition =
17 left:Expression operator:OptimizationCompareOperator
18 right:Expression ";";
19 OptimizationBoundsCondition =
20 lower:Expression "<=" expr:Expression "<="
21 upper:Expression ";";
22 OptimizationCondition =
23 (simpleCondition:OptimizationSimpleCondition |
24 boundedCondition:OptimizationBoundsCondition |
25 forLoopCondition:OptimizationForLoop);
26 OptimizationForLoop = "for" head:MathForLoopHead
27 body:OptimizationCondition+ "end";
28

29 OptimizationObjectiveValue = type:ElementType Name "=";
30

31 OptimizationStatement implements Statement =
32 optimizationType:OptimizationType
33 ("<" stepSize:Expression ">")?
34 optimizationVariable:OptimizationVariableDeclaration
35 ("," optimizationVariable:
36 OptimizationVariableDeclaration)* ";"
37 "in" objectiveValue:OptimizationObjectiveValue?
38 objectiveFunction:Expression ";"
39 "subject to" independentDeclaration:
40 MathAssignmentDeclarationStatement*
41 constraint:OptimizationCondition*
42 "end"; }

Listing B.4: MontiCore 5 grammar of the MathOpt optimization extention for
MontiMath.
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1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore.lang.monticar;
3

4 /**
5 * Grammar for Struct.
6 */
7 grammar Struct extends de.monticore.lang.monticar.Types2 {
8 StructCompilationUnit =
9 ("package" package:(Name& || ".")+ ";")?

10 (ImportStatement)*
11 Struct;
12

13 symbol scope Struct implements Type =
14 "struct" Name "{" StructFieldDefinition+ "}";
15

16 symbol StructFieldDefinition =
17 Type Name ";";
18 }

Listing B.5: MontiCore 5 grammar of the Struct language for EMA.

1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore.lang.monticar;
3

4 /**
5 * Grammar for Enum.
6 */
7 grammar Enum extends de.monticore.lang.monticar.Types2 {
8 EnumLangCompilationUnit =
9 ("package" package:(Name& || ".")+ ";")?

10 EnumDeclaration;
11

12 symbol scope EnumDeclaration implements Type =
13 "enum" Name "{"
14 (EnumConstantDeclaration || "|")+ ";"
15 "}";
16

17 symbol EnumConstantDeclaration =
18 Name;
19 }

Listing B.6: MontiCore 5 grammar of the Enum language for EMA.

276



B.4 MontiCore 5 Grammars

1 /* (c) https://github.com/MontiCore/monticore */
2

3 package de.monticore.lang.embeddedmontiarc;
4

5 /**
6 * Grammar for EmbeddedMontiArc.
7 *
8 */
9 grammar EmbeddedMontiArc extends de.monticore.lang.monticar.

Common2 {
10

11 /** ASTEMACompilationUnit represents the complete component
12 * @attribute package The package declaration of this

component
13 * @attribute importStatements List of imported elements
14 * @attribute Component the root component of the component
15 */
16 EMACompilationUnit =
17 ("package" package:(Name& || ".")+ ";")?
18 (ImportStatement )*
19 Component;
20

21

22 /* ======================================================*/
23 /* ===== Modified but based on old ARCD Grammar =========*/
24 /* ======================================================*/
25

26 /**
27 * A component may contain arbitrarily many Elements.
28 * This interface may be used as an extension point to
29 * enrich components with further elements.
30 */
31 interface Element;
32

33

34 /**
35 * A component is a unit of computation or a data store.
36 * The size of a component may scale from a single
37 * procedure to a whole application. A component may be
38 * either decomposed to subcomponents or is atomic.
39 *
40 * @attribute name type name of this component
41 * @attribute head is used to set generic types, a
42 * configuration and a parent component
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43 * @attribute instanceName if this optional name is given,
44 * a subcomponent is automatically created that
45 * instantiates this inner component type. This is only
46 * allowed for inner component definitions.
47 * @attribute body contains the architectural elements
48 * inherited by this component
49 * A components head is used to define generic type
50 * parameters that may be used as port types in the
51 * component, to define configuration parameters that may
52 * be used to configure the component, and to set the
53 * parent component of this component.
54 *
55 * @attribute genericTypeParameters a list of type
56 * parameters that may be used as port types in the
57 * component
58 * @attribute parameters a list of Parameters that
59 * define a configurable component. If a configurable
60 * component is referenced, these parameters have to be
61 * set.
62 * @attribute superComponent the type of the super
63 * component
64 */
65

66 symbol scope Component implements Element =
67 ComponentModifier* "component" (["interface"])? Name
68 genericTypeParameters:TypeParameters2?
69 ( "(" (Parameter || ",")+ ")" )?
70 ("implements" superComponent:ReferenceType)?
71 body:ComponentBody;
72

73 interface ComponentModifier;
74

75 VirtModifier implements ComponentModifier =
76 VIRTUAL;
77 enum VIRTUAL =
78 "virtual" | VIRTUAL:"virt" | "nonvirtual" |
79 NONVIRTUAL:"non-virt";
80

81 DFModifier implements ComponentModifier =
82 DIRECTFEEDTHROUGH;
83 enum DIRECTFEEDTHROUGH =
84 DF:"direct feedthrough" | "df" |
85 NONDF:"nondirect feedthrough" | NONDF:"non-df";
86

87

88 /**
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89 * The body contains architectural elements of
90 * this component.
91 *
92 * @attribute elements list of architectural elements
93 */
94 ComponentBody =
95 ("{"
96 Element*
97 "}" );
98

99 /**
100 * An Interface defines an interface of a component
101 * containing in- and outgoing ports.
102 * @attribute ports a list of ports that are contained in
103 * this interface
104 */
105 Interface implements Element =
106 ("port"|"ports")
107 ports:(Port || ",")+ ";" ;
108

109 /**a
110 * An incoming port is used to receive messages, an
111 * outgoing port is used to send messages of a specific
112 * type. Ports can now also be specified as an array.
113 *
114 * @attribute incoming true, if this is an incoming port
115 * @attribute outgoing true, if this is an outgoing port
116 * @attribute type the message type of this port
117 * @attribute name an optional name of this port
118 */
119 /**might support auto type adding based on last previous type
120 * declaration later on
121 */
122 Port =
123 AdaptableKeyword? (incoming:["in"] | outgoing:["out"])
124 Type (Name? | Name ( "[" UnitNumberResolution "]" )?) ;
125

126

127 /**
128 * A subcomponent is used to create one or more instances
129 * of another component. This way the hierarchical
130 * structure of a component is defined.
131 * @attribute type the type of the instantiated component
132 * @attribute arguments list of configuration parameters
133 * that are to be set, if the instantiated component is
134 * configurable.

279



Appendix B Further Documentation

135 * @attribute instances list of instances that should be
136 * created
137 */
138 SubComponent implements Element =
139 "instance"
140 type:ReferenceType
141 ("(" arguments:(Expression || ",")+ ")" )?
142 ("{" (PortInitial || ",")+ "}")?
143 instances:(SubComponentInstance || ",")+ ";" ;
144

145

146 /**
147 * A subcomponent instance binds the name of an instance
148 * with an optional list of simple connectors used to
149 * connect this instance with other subcomponents/ports.
150 * It does also support component arrays.
151 * Simple connectors directly connect outgoing ports of the
152 * corresponding subcomponent declaration with one or
153 * more target ports.
154 *
155 * @attribute name the name of this instance
156 * @attribute connectors list of simple connectors
157 */
158

159 SubComponentInstance =
160 Name
161 ("[" UnitNumberResolution "]")?;
162

163 PortInitial =
164 Name ( "[" UnitNumberResolution "]" )?
165 "(" "t=0" ")"
166 (guess:["~"])? "="
167 Expression;
168

169 /**
170 * port1
171 * port1[2]
172 * port1[:]
173 * sub1.port1
174 * sub1[2].port1[3]
175 * sub1.*
176 * sub1[2].*
177 */
178 QualifiedNameWithArrayAndStar = QualifiedNameWithArray DotStar?;
179 DotStar = "." {noSpace()}? "*";
180 /**
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181 * A connector connects one source port with one or many
182 * target ports.
183 *
184 * @attribute source source port or component instance
185 * name
186 * @attribute targets a list of target ports or component
187 * instance names
188 */
189 Connector implements Element=
190 "connect" (source:QualifiedNameWithArrayAndStar |
191 boolLiteral:BooleanLiteral |
192 stringLiteral:StringLiteral|
193 UnitNumberResolution) "->"
194 targets:ConnectorTargets ";" ;
195

196 ConnectorTargets = ["#"] | // route symbol terminates inputs
197 (QualifiedNameWithArrayAndStar || "," )+;
198 }

Listing B.7: MontiCore 5 grammar of the EmbeddedMontiArc ADL (co-developed with
Michael von Wenckstern [vW20]).

1 /* (c) https://github.com/MontiCore/monticore */
2

3 package de.monticore.lang.embeddedmontiarc;
4

5

6 component grammar EmbeddedMontiArcBehavior extends
7 de.monticore.lang.embeddedmontiarc.EmbeddedMontiArc{
8

9 /**
10 * External to embed languages that allow implementing
11 * component behavior.
12 */
13 external BehaviorEmbedding;
14 external BehaviorName;
15

16 BehaviorImplementation implements Element =
17 "implementation" BehaviorName
18 "{" behavior:BehaviorEmbedding "}";
19 }

Listing B.8: MontiCore 5 grammar of EmbeddedMontiArcBehavior enabling the
integration of implementation languages into EMA components (co-
developed with Michael von Wenckstern [vW20]).
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1 /* (c) https://github.com/MontiCore/monticore */
2

3 package de.monticore.lang.embeddedmontiarc;
4

5 grammar EmbeddedMontiArcMath extends
6 de.monticore.lang.embeddedmontiarcdynamic.

EmbeddedMontiArcDynamic,
7 de.monticore.lang.embeddedmontiarc.EmbeddedMontiArcBehavior,
8 de.monticore.lang.MathOpt {
9 start EMACompilationUnit;

10 BehaviorEmbedding = Statement+;
11 BehaviorName = name:"Math"; }

Listing B.9: MontiCore 5 grammar of EmbeddedMontiArcMath (co-developed with
Michael von Wenckstern [vW20]).

1 /* (c) https://github.com/MontiCore/monticore */
2

3 package de.monticore.lang.embeddedmontiarcdynamic;
4

5 grammar EmbeddedMontiArcDynamic extends
6 de.monticore.lang.embeddedmontiarcdynamic.Event,
7 de.monticore.lang.embeddedmontiarc.EmbeddedMontiArc,
8 de.monticore.lang.monticar.Common2{
9

10 start EMACompilationUnit;
11

12 DynamicModifier implements ComponentModifier = "dynamic";
13

14

15 // Handler for events
16 scope EventHandler implements Element =
17 (EventReferenceExpression | "@" Expression) "{"
18 body:Element*
19 "}" ;
20

21 // Dynamic Port(s) [isDynamic is new]
22 //
23 Port =
24 (dynamic:["dynamic"])?
25 AdaptableKeyword? (incoming:["in"] | outgoing:["out"])
26 Type (Name? | Name ( "[" UnitNumberResolution
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27 (":" dynamicNumberOfPorts:UnitNumberResolution)? "]" )?);
28

29

30 // Dynamic SubComponent(s)
31

32 // SubComponentInstance extension
33 // Dynamic number
34 SubComponentInstance =
35 Name
36 ("[" UnitNumberResolution (":"
37 dynamicNumberOfInstances:UnitNumberResolution)? "]")?;
38

39 ArrayAccess = ("[" ( intLiteral:UnitNumberResolution |
40 [":"] |
41 lowerbound:UnitNumberResolution ":"
42 upperbound:UnitNumberResolution |
43 dynamicNewPort:["?"]
44 dynamicElementIndex:NumericLiteral? ) "]" );
45 }

Listing B.10: MontiCore 5 grammar of EmbeddedMontiArc Dynamics.

1 /* (c) https://github.com/MontiCore/monticore */
2

3 package de.monticore.lang.embeddedmontiarcdynamic;
4

5 grammar Event extends de.monticore.CommonExpressions,
6 de.monticore.lang.monticar.Types2,
7 de.monticore.lang.monticar.Common2,
8 de.monticore.NumberUnit {
9

10 EventCompilationUnit =
11 ("package" package:(Name& || ".")+ ";")?
12 ComponentEvent;
13

14 symbol scope ComponentEvent =
15 "event" Name
16 genericTypeParameters:TypeParameters2?
17 ( "(" (Parameter || ",")+ ")" )?
18 ("for" forComponent:ReferenceType)?
19 "{"
20 condition:Expression
21 "}";
22

23 PortResolutionDeclaration implements
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24 ResolutionDeclaration = "Port" "<" type:Type ">" Name;
25

26 EventReferenceExpression implements Expression <200> =
27 "@" type:ReferenceType?
28 "(" arguments:(PortValue || ",")* ")";
29

30 //Boolean expressions
31 TrueExpression =
32 "true";
33 FalseExpression =
34 "false";
35

36 // Port Expressions
37 PortExpression implements Expression <200> =
38 portName:QualifiedNameWithArray
39 "::" (PortExpressionContent);
40

41 interface PortExpressionContent;
42 interface Operator;
43

44 LTOp implements Operator = "<";
45 GTOp implements Operator = ">";
46 LTEOp implements Operator = "<=";
47 GTEOp implements Operator = ">=";
48 EOp implements Operator = "==";
49 UEOp implements Operator = "!=";
50

51 PortExpressionValue implements PortExpressionContent =
52 "value" "(" Expression? ")" operator:Operator
53 (PortValue | PortValueList);
54 PortExpressionConnect implements PortExpressionContent =
55 "connect";
56 PortExpressionFree implements PortExpressionContent = "free";
57

58 // Definitions for Port Expressions
59 PortValue = PortSingleValue | PortArrayValue;
60 PortValueList = "[" ( PortValue || "tick")+ "]";
61

62 PortSingleValue = NumberWithPrecision | NumberRange | CTV;
63 PortArrayValue = "[" (PortArrayValueContent |
64 PortArrayValueMatrixContent) "]" ;
65

66 PortArrayValueContent = ( PortSingleValue || ",")+ ;
67 PortArrayValueMatrixContent = PortArrayValueContent
68 ( ";" | PortArrayValueContent )+ ;
69
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70 ValueInput = NumberWithUnit | NameWithArray |
71 TrueExpression | FalseExpression;
72

73 NumberWithPrecision = ValueInput
74 ("+" "/" "-" precision:ValueInput)? ;
75 NumberRange = "(" lowerBound:ValueInput ":"
76 upperBound:ValueInput ")";
77

78 ast CompareToValue =
79 method public ASTValueInput getCompare(){}
80 method public String getOperator(){};
81

82 interface CompareToValue;
83

84 CompareToValueGreater implements CompareToValue =
85 operator:">" compare:ValueInput ;
86 CompareToValueGreaterEquals implements CompareToValue =
87 operator:">=" compare:ValueInput ;
88 CompareToValueLower implements CompareToValue =
89 operator:"<" compare:ValueInput ;
90 CompareToValueLowerEquals implements CompareToValue =
91 operator:"<=" compare:ValueInput ;
92 CompareToValueNotEquals implements CompareToValue =
93 operator:"!=" compare:ValueInput ;
94

95 CTV = (CompareToValueGreater | CompareToValueGreaterEquals |
96 CompareToValueLower | CompareToValueLowerEquals |
97 CompareToValueNotEquals);
98 }

Listing B.11: MontiCore 5 grammar of the event definition language (reconfiguration
conditions) for EmbeddedMontiArc Dynamics.

1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore.lang.monticar;
3

4 grammar CNNArch extends de.monticore.CommonExpressions,
5 de.monticore.lang.Math,
6 de.monticore.lang.monticar.Common2 {
7

8

9 /* =================================*/
10 /* ========== PRODUCTIONS ==========*/
11 /* =================================*/
12
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13 /* ========== Declarations =========*/
14

15 /**
16 The complete file.
17 Use nonterminal Architecture for embedding in another
18 language (e.g. EmbeddedMontiArc)
19 */
20 symbol scope CNNArchCompilationUnit =
21 ("package" package:(Name& || ".")+ ";")?
22 "architecture"
23 name:Name
24 ( "(" (ArchitectureParameter || ",")* ")" )? "{"
25 ioDeclarations:IODeclaration*
26 Architecture
27 "}";
28

29 LayerDeclaration = "def"
30 Name "("
31 parameters:(LayerParameter || ",")* ")" "{"
32 body:Stream "}";
33

34 IODeclaration = "def"
35 (in:"input" | out:"output")
36 type:ArchType
37 Name
38 (ArrayDeclaration)?;
39

40

41 /* ============== Type =============*/
42

43 /**
44 Similar to EmbeddedMontiArc port types.
45 ArchType and Shape are not used if the Architecture is
46 integrated into EmbeddedMontiArc
47 */
48 ArchType = ElementType "^" Shape;
49

50 Shape = "{" dimensions:(ArchSimpleExpression || ",")* "}";
51

52

53 /* ========= Architecture =========*/
54

55 /**
56 Defines the architecture of the neural network.
57 This NT is used for integration in EmbeddedMontiArc.
58 @attribute methodDeclaration*
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59 A list of new layers which can be used
60 in the architecture.
61 @attribute body
62 The architecture of the neural network.
63 */
64 Architecture = methodDeclaration:LayerDeclaration*
65 instructions:(Instruction || ";")+ ";";
66

67 Instruction = (LayerVariableDeclaration | NetworkInstruction);
68

69 LayerVariableDeclaration = "layer" Layer Name;
70

71 interface NetworkInstruction;
72

73 StreamInstruction implements NetworkInstruction = body:Stream;
74

75 UnrollInstruction implements NetworkInstruction =
76 "timed" "<" timeParameter:TimeParameter ">"
77 Name "(" arguments:(ArchArgument || ",")* ")"
78 "{" body:Stream "}";
79

80 Stream = elements:(ArchitectureElement || "->")+;
81

82 interface ArchitectureElement;
83

84 Variable implements ArchitectureElement =
85 Name ("." (member:"output" | member:Name))?
86 ("[" index:ArchSimpleExpression "]")?;
87

88 Constant implements ArchitectureElement =
89 ArchSimpleExpression;
90

91 Layer implements ArchitectureElement =
92 Name "(" arguments:(ArchArgument || ",")* ")";
93

94

95 ParallelBlock implements ArchitectureElement =
96 "("
97 groups:Stream "|"
98 groups:(Stream || "|")+ ")";
99

100 ArrayAccessLayer implements ArchitectureElement =
101 "[" index:ArchSimpleExpression "]";
102

103 /* ====== Variables/Arguments ======*/
104
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105 interface ArchParameter;
106

107 ArchitectureParameter implements ArchParameter =
108 Name ("=" default:ArchSimpleExpression)? ;
109

110 LayerParameter implements ArchParameter =
111 Name ("=" default:ArchSimpleExpression)? ;
112

113 TimeParameter implements ArchParameter =
114 Name ("=" default:ArchSimpleExpression)? ;
115

116 interface ArchArgument;
117

118 ArchParameterArgument implements ArchArgument =
119 Name "=" rhs:ArchExpression ;
120

121 ArchSpecialArgument implements ArchArgument =
122 (serial:"->" | parallel:"|" | conditional:"?") "="
123 rhs:ArchExpression ;
124

125

126 /* ======= Value Expressions =======*/
127

128 /**
129 Expression used for method arguments.
130 */
131 ArchExpression = (expression:ArchSimpleExpression |
132 sequence:ArchValueSequence);
133

134 interface ArchValueSequence;
135

136 ArchParallelSequence implements ArchValueSequence =
137 "[" parallelValues:(ArchSerialSequence || "|")+ "]";
138

139 ArchSerialSequence = serialValues:(ArchSimpleExpression ||
140 "->")*;
141

142 ArchValueRange implements ArchValueSequence =
143 "[" start:ArchSimpleExpression
144 (serial:"->" | parallel:"|")
145 ".."
146 (serial2:"->" | parallel2:"|")
147 end:ArchSimpleExpression "]";
148 /**
149 Expressions for parameter and variable values.
150 */
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151 ArchSimpleExpression =
152 (arithmeticExpression:ArchArithmeticExpression
153 | booleanExpression:ArchBooleanExpression
154 | tupleExpression:TupleExpression
155 | string:StringLiteral);
156

157 interface ArchMathExpression extends Expression;
158 interface ArchArithmeticExpression extends ArchMathExpression;
159 interface ArchBooleanExpression extends ArchMathExpression;
160

161 ArchSimpleArithmeticExpression implements
162 ArchArithmeticExpression =
163 (NumberExpression
164 | NameExpression
165 | MathDottedNameExpression
166 | MathAssignmentDeclarationStatement
167 | MathAssignmentStatement);
168

169 ArchComplexArithmeticExpression implements
170 ArchArithmeticExpression =
171 leftExpression:ArchMathExpression
172 ( operator:"*"
173 | operator:"/"
174 | operator:"%"
175 | operator:"^"
176 | operator:"+"
177 | operator:"-"
178 )
179 rightExpression:ArchMathExpression;
180

181 TupleExpression = "(" expressions:ArchArithmeticExpression ","
182 expressions:(ArchArithmeticExpression || ",")* ")";
183

184 ArchSimpleBooleanExpression implements
185 ArchBooleanExpression = (BooleanExpression
186 | BooleanNotExpression
187 | LogicalNotExpression);
188

189 ArchComplexBooleanExpression implements
190 ArchBooleanExpression = leftExpression:ArchMathExpression
191 ( operator:"=="
192 operator:"!="
193 operator:"&&"
194 | operator:"||"
195 )
196 rightExpression:ArchMathExpression;
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197

198 ArchBracketExpression implements ArchMathExpression,
199 ArchBooleanExpression,
200 ArchArithmeticExpression = "(" ArchMathExpression ")";
201

202 ArchPreMinusExpression implements ArchMathExpression,
203 ArchBooleanExpression,
204 ArchArithmeticExpression = "-" ArchMathExpression ;
205

206

207 /* =================================*/
208 /* ============ ASTRULES ===========*/
209 /* =================================*/
210

211 ast ArchParameter = method String getName(){};
212

213 ast ArchSpecialArgument =
214 method public String getName(){return "";};
215 //Override is necessary
216

217 ast ArchArgument = method String getName(){}
218 method ASTArchExpression getRhs(){};
219

220 }

Listing B.12: MontiCore 5 grammar of the CNNArc language.

1 /* (c) https://github.com/MontiCore/monticore */
2

3 package de.monticore.lang.monticar;
4

5 grammar EMADL extends
6 de.monticore.lang.embeddedmontiarc.EmbeddedMontiArcMath,
7 de.monticore.lang.monticar.CNNArch {
8

9 start EMACompilationUnit;
10

11 BehaviorEmbedding = Architecture | Statement+;
12

13 BehaviorName = name:"CNN" | name:"Math";
14 }

Listing B.13: MontiCore 5 grammar of EmbeddedMontiArcDL.
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Related Interesting Work from the SE Group, RWTH Aachen

The following section gives an overview on related work done at the SE Group, RWTH Aachen.
More details can be found on the website https://www.se-rwth.de/topics/ or in [HMR+19].
The work presented here mainly has been guided by our mission statement:

Our mission is to define, improve, and industrially apply techniques, concepts, and methods
for innovative and efficient development of software and software-intensive systems, such that
high-quality products can be developed in a shorter period of time and with flexible integration
of changing requirements. Furthermore, we demonstrate the applicability of our results in various
domains and potentially refine these results in a domain specific form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an
executable, yet abstract and multi-view modeling language for modeling, designing and pro-
gramming still allows to use an agile development process.”, [JWCR18] addresses the question
how digital and organizational techniques help to cope with physical distance of developers and
[RRSW17] addresses how to teach agile modeling. Modeling will increasingly be used in devel-
opment projects, if the benefits become evident early, e.g with executable UML [Rum02] and
tests [Rum03]. In [GKRS06], for example, we concentrate on the integration of models and
ordinary programming code. In [Rum12] and [Rum16], the UML/P, a variant of the UML espe-
cially designed for programming, refactoring and evolution, is defined. The language workbench
MontiCore [GKR+06, GKR+08, HR17] is used to realize the UML/P [Sch12]. Links to further
research, e.g., include a general discussion of how to manage and evolve models [LRSS10], a
precise definition for model composition as well as model languages [HKR+09] and refactoring in
various modeling and programming languages [PR03]. In [FHR08] we describe a set of general
requirements for model quality. Finally, [KRV06] discusses the additional roles and activities
necessary in a DSL-based software development project. In [CEG+14] we discuss how to im-
prove the reliability of adaptivity through models at runtime, which will allow developers to
delay design decisions to runtime adaptation.

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time consuming
process. Managing the complexity, size, and number of the artifacts developed and used during
a project together with their complex relationships is not trivial [BGRW17]. To keep track of
relevant structures, artifacts, and their relations in order to be able e.g. to evolve or adapt models
and their implementing code, the artifact model [GHR17] was introduced. [BGRW18] explains
its applicability in systems engineering based on MDSE projects.

An artifact model basically is a meta-data structure that explains which kinds of artifacts,
namely code files, models, requirements files, etc. exist and how these artifacts are related
to each other. The artifact model therefore covers the wide range of human activities during
the development down to fully automated, repeatable build scripts. The artifact model can
be used to optimize parallelization during the development and building, but also to identify
deviations of the real architecture and dependencies from the desired, idealistic architecture, for
cost estimations, for requirements and bug tracing, etc. Results can be measured using metrics
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or visualized as graphs.

Artificial Intelligence in Software Engineering

MontiAnna is a family of explicit domain specific languages for the concise description of the
architecture of (1) a neural network, (2) its training, and (3) the training data [KNP+19]. We
have developed a compositional technique to integrate neural networks into larger software ar-
chitectures [KRRvW17] as standardized machine learning components [KPRS19]. This enables
the compiler to support the systems engineer by automating the lifecycle of such components
including multiple learning approaches such as supervised learning, reinforcement learning, or
generative adversarial networks [AKKR21]. According to [MRR11g] the semantic difference be-
tween two models are the elements contained in the semantics of the one model that are not
elements in the semantics of the other model. A smart semantic differencing operator is an
automatic procedure for computing diff witnesses for two given models. Smart semantic differ-
encing operators have been defined for Activity Diagrams [MRR11a], Class Diagrams [MRR11d],
Feature Models [DKMR19], Statecharts [DEKR19], and Message-Driven Component and Con-
nector Architectures [BKRW17, BKRW19]. We also developed a modeling language-independent
method for determining syntactic changes that are responsible for the existence of semantic dif-
ferences [KR18].

We apply logic, knowledge representation and intelligent reasoning to software engineering
to perform correctness proofs, execute symbolic tests or find counterexamples using a theorem
prover. And we have applied it to challenges in intelligent flight control systems and assis-
tance systems for air or road traffic management [KRRS19, HRR12] and based it on the core
ideas of Broy’s Focus theory [RR11, BR07]. Intelligent testing strategies have been applied to
automotive software engineering [EJK+19, DGH+19, KMS+18], or more generally in systems
engineering [DGH+18]. These methods are realized for a variant of SysML Activity Diagrams
and Statecharts.

Machine Learning has been applied to the massive amount of observable data in energy man-
agement for buildings [FLP+11a, KLPR12] and city quarters [GLPR15] to optimize the operation
efficiency and prevent unneeded CO2 emissions or reduce costs. This creates a structural and
behavioral system theoretical view on cyber-physical systems understandable as essential parts
of digital twins [RW18, BDH+20].

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound
derivate of the UML designed for product and test code generation. [Sch12] describes a flexi-
ble generator for the UML/P based on the MontiCore language workbench [KRV10, GKR+06,
GKR+08, HR17]. In [KRV06], we discuss additional roles necessary in a model-based software de-
velopment project. [GKRS06, GHK+15a] discuss mechanisms to keep generated and handwritten
code separated. In [Wei12], we demonstrate how to systematically derive a transformation lan-
guage in concrete syntax. [HMSNRW16] presents how to generate extensible and statically type-
safe visitors. In [MSNRR16], we propose the use of symbols for ensuring the validity of generated
source code. [GMR+16] discusses product lines of template-based code generators. We also devel-
oped an approach for engineering reusable language components [HLMSN+15b, HLMSN+15a].
To understand the implications of executability for UML, we discuss needs and advantages of
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executable modeling with UML in agile projects in [Rum04], how to apply UML for testing
in [Rum03], and the advantages and perils of using modeling languages for programming in
[Rum02].

Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in [KER99]
many of our contributions build on the UML/P variant, which is described in the books [Rum16,
Rum17] respectively [Rum12, Rum13] and is implemented in [Sch12]. Semantic variation points
of the UML are discussed in [GR11]. We discuss formal semantics for UML [BHP+98] and
describe UML semantics using the “System Model” [BCGR09a], [BCGR09b], [BCR07b] and
[BCR07a]. Semantic variation points have, e.g., been applied to define class diagram semantics
[CGR08]. A precisely defined semantics for variations is applied, when checking variants of class
diagrams [MRR11c] and objects diagrams [MRR11e] or the consistency of both kinds of diagrams
[MRR11f]. We also apply these concepts to activity diagrams [MRR11b] which allows us to check
for semantic differences of activity diagrams [MRR11a]. The basic semantics for ADs and their
semantic variation points is given in [GRR10]. We also discuss how to ensure and identify model
quality [FHR08], how models, views and the system under development correlate to each other
[BGH+98], and how to use modeling in agile development projects [Rum04], [Rum02]. The
question how to adapt and extend the UML is discussed in [PFR02] describing product line
annotations for UML and more general discussions and insights on how to use meta-modeling
for defining and adapting the UML are included in [EFLR99], [FELR98] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use,
but need appropriate tooling. The MontiCore language workbench [GKR+06, KRV10, Kra10,
GKR+08, HR17] allows the specification of an integrated abstract and concrete syntax format
[KRV07b, HR17] for easy development. New languages and tools can be defined in modular forms
[KRV08, GKR+07, Völ11, HLMSN+15b, HLMSN+15a, HRW18, BEK+18a, BEK+18b, BEK+19]
and can, thus, easily be reused. We discuss the roles in software development using domain
specific languages in [KRV14]. [Wei12] presents a tool that allows to create transformation rules
tailored to an underlying DSL. Variability in DSL definitions has been examined in [GR11,
GMR+16]. [BDL+18] presents a method to derive internal DSLs from grammars. In [BJRW18],
we discuss the translation from grammars to accurate metamodels. Successful applications have
been carried out in the Air Traffic Management [ZPK+11] and television [DHH+20] domains.
Based on the concepts described above, meta modeling, model analyses and model evolution have
been discussed in [LRSS10] and [SRVK10]. DSL quality [FHR08], instructions for defining views
[GHK+07], guidelines to define DSLs [KKP+09] and Eclipse-based tooling for DSLs [KRV07a]
complete the collection.

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable language
components, we adopt an engineering viewpoint on these techniques. General ideas on how to
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engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15] and the concern-
oriented language development approach [CKM+18]. As said, the MontiCore language work-
bench provides techniques for an integrated definition of languages [KRV07b, Kra10, KRV10,
HR17, HRW18, BEK+19]. In [SRVK10] we discuss the possibilities and the challenges us-
ing metamodels for language definition. Modular composition, however, is a core concept to
reuse language components like in MontiCore for the frontend [Völ11, KRV08, HLMSN+15b,
HLMSN+15a, HMSNRW16, HR17, BEK+18a, BEK+18b, BEK+19] and the backend [RRRW15,
MSNRR16, GMR+16, HR17, BEK+18b]. In [GHK+15b, GHK+15a], we discuss the integration
of handwritten and generated object-oriented code. [KRV14] describes the roles in software de-
velopment using domain specific languages. Language derivation is to our believe a promising
technique to develop new languages for a specific purpose that rely on existing basic languages
[HRW18]. How to automatically derive such a transformation language using concrete syntax of
the base language is described in [HRW15, Wei12] and successfully applied to various DSLs. We
also applied the language derivation technique to tagging languages that decorate a base language
[GLRR15] and delta languages [HHK+15a, HHK+13], where a delta language is derived from a
base language to be able to constructively describe differences between model variants usable to
build feature sets. The derivation of internal DSLs from grammars is discussd in [BDL+18] and
a translation of grammars to accurate metamodels in [BJRW18].

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals,
streams of telephone or video data, method invocation, or data structures passed between soft-
ware services. We use streams, statemachines and components [BR07] as well as expressive forms
of composition and refinement [PR99, RW18] for semantics. Furthermore, we built a concrete
tooling infrastructure called MontiArc [HRR12] for architecture design and extensions for states
[RRW13b]. In [RRW13a], we introduce a code generation framework for MontiArc. MontiArc
was extended to describe variability [HRR+11] using deltas [HRRS11, HKR+11] and evolu-
tion on deltas [HRRS12]. Other extensions are concerned with modeling cloud architectures
[NPR13] and with the robotics domain [AHRW17a, AHRW17b]. [GHK+07] and [GHK+08a]
close the gap between the requirements and the logical architecture and [GKPR08] extends it
to model variants. [MRR14b] provides a precise technique to verify consistency of architec-
tural views [Rin14, MRR13] against a complete architecture in order to increase reusability. We
discuss the synthesis problem for these views in [MRR14a]. Co-evolution of architecture is dis-
cussed in [MMR10] and modeling techniques to describe dynamic architectures are shown in
[HRR98, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09] motivates the basic mechanisms for modularity and compositionality for modeling.
The mechanisms for distributed systems are shown in [BR07, RW18] and algebraically under-
pinned in [HKR+07]. Semantic and methodical aspects of model composition [KRV08] led to the
language workbench MontiCore [KRV10, HR17] that can even be used to develop modeling tools
in a compositional form [HR17, HLMSN+15b, HLMSN+15a, HMSNRW16, MSNRR16, HRW18,
BEK+18a, BEK+18b, BEK+19]. A set of DSL design guidelines incorporates reuse through this
form of composition [KKP+09]. [Völ11] examines the composition of context conditions respec-

302



Related Interesting Work from the SE Group, RWTH Aachen

tively the underlying infrastructure of the symbol table. Modular editor generation is discussed
in [KRV07a]. [RRRW15] applies compositionality to Robotics control. [CBCR15] (published
in [CCF+15]) summarizes our approach to composition and remaining challenges in form of a
conceptual model of the “globalized” use of DSLs. As a new form of decomposition of model
information we have developed the concept of tagging languages in [GLRR15]. It allows to de-
scribe additional information for model elements in separated documents, facilitates reuse, and
allows to type tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and de-
tailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by using
mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96]. An extended version espe-
cially suited for the UML is given in [BCGR09b] and in [BCGR09a] its rationale is discussed.
[BCR07a, BCR07b] contain detailed versions that are applied to class diagrams in [CGR08]. To
better understand the effect of an evolved design, detection of semantic differencing as opposed
to pure syntactical differences is needed [MRR10]. [MRR11a, MRR11b] encode a part of the
semantics to handle semantic differences of activity diagrams and [MRR11f, MRR11f] compare
class and object diagrams with regard to their semantics. In [BR07], a simplified mathematical
model for distributed systems based on black-box behaviors of components is defined. Meta-
modeling semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages
for the description of an exemplary object interaction, today called sequence diagram. [BGH+98]
discusses the relationships between a system, a view and a complete model in the context of the
UML. [GR11] and [CGR09] discuss general requirements for a framework to describe semantic
and syntactic variations of a modeling language. We apply these on class and object diagrams in
[MRR11f] as well as activity diagrams in [GRR10]. [Rum12] defines the semantics in a variety of
code and test case generation, refactoring and evolution techniques. [LRSS10] discusses evolution
and related issues in greater detail. [RW18] discusses an elaborated theory for the modeling of
underspecification, hierarchical composition, and refinement that can be practically applied for
the development of CPS.

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code they are not initially
correct and need to be changed, evolved and maintained over time. Model transformation is there-
fore essential to effectively deal with models. Many concrete model transformation problems are
discussed: evolution [LRSS10, MMR10, Rum04], refinement [PR99, KPR97, PR94], decomposi-
tion [PR99, KRW20], synthesis [MRR14a], refactoring [Rum12, PR03], translating models from
one language into another [MRR11c, Rum12], and systematic model transformation language
development [Wei12]. [Rum04] describes how comprehensible sets of such transformations sup-
port software development and maintenance [LRSS10], technologies for evolving models within
a language and across languages, and mapping architecture descriptions to their implementa-
tion [MMR10]. Automaton refinement is discussed in [PR94, KPR97], refining pipe-and-filter
architectures is explained in [PR99]. Refactorings of models are important for model driven en-
gineering as discussed in [PR01, PR03, Rum12]. Translation between languages, e.g., from class
diagrams into Alloy [MRR11c] allows for comparing class diagrams on a semantic level.
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Variability and Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one man-
ufacturer develops several products with many similarities but also many variations. Variants
are managed in a Software Product Line (SPL) that captures product commonalities as well
as differences. Feature diagrams describe variability in a top down fashion, e.g., in the au-
tomotive domain [GHK+08a] using 150% models. Reducing overhead and associated costs is
discussed in [GRJA12]. Delta modeling is a bottom up technique starting with a small, but
complete base variant. Features are additive, but also can modify the core. A set of commonly
applicable deltas configures a system variant. We discuss the application of this technique to
Delta-MontiArc [HRR+11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only
describe spacial variability but also temporal variability which allows for using them for software
product line evolution [HRRS12]. [HHK+13] and [HRW15] describe an approach to systemati-
cally derive delta languages. We also apply variability modeling languages in order to describe
syntactic and semantic variation points, e.g., in UML for frameworks [PFR02] and generators
[GMR+16]. Furthermore, we specified a systematic way to define variants of modeling languages
[CGR09], leverage features for compositional reuse [BEK+18b], and applied it as a semantic
language refinement on Statecharts in [GR11].

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physi-
cal entities. In [RW18], we discuss how an elaborated theory can be practically applied for the
development of CPS. Contributions for individual aspects range from requirements [GRJA12],
complete product lines [HRRW12], the improvement of engineering for distributed automotive
systems [HRR12], autonomous driving [BR12a, KKR19], and digital twin development [BDH+20]
to processes and tools to improve the development as well as the product itself [BBR07]. In the
aviation domain, a modeling language for uncertainty and safety events was developed, which is of
interest for the European airspace [ZPK+11]. A component and connector architecture descrip-
tion language suitable for the specific challenges in robotics is discussed in [RRW13b, RRW14]. In
[RRW13a], we describe a code generation framework for this language. Monitoring for smart and
energy efficient buildings is developed as Energy Navigator toolset [KPR12, FPPR12, KLPR12].

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradition on con-
tributing to systems engineering in automotive [GHK+08b], which culminated in a new com-
prehensive model-driven development process for automotive software [KMS+18, DGH+19]. We
leveraged SysML to enable the integrated flow from requirements to implementation to inte-
gration. To facilitate modeling of products, resources, and processes in the context of Industry
4.0, we also conceived a multi-level framework for machining based on these concepts [BKL+18].
Research within the excellence cluster Internet of Production considers fast decision making
at production time with low latencies using contextual data traces of production systems, also
known as Digital Shadows (DS) [SHH+20]. We have investigated how to derive Digital Twins
(DTs) for injection molding [BDH+20], how to generate interfaces between a cyber-physical
system and its DT [KMR+20] and have proposed model-driven architectures for DT cockpit
engineering [DMR+20].
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State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using statema-
chines for modeling systems. Our contributions to state based modeling can currently be split
into three parts: (1) understanding how to model object-oriented and distributed software using
statemachines resp. Statecharts [GKR96, BCR07b, BCGR09b, BCGR09a], (2) understanding
the refinement [PR94, RK96, Rum96, RW18] and composition [GR95, GKR96, RW18] of statema-
chines, and (3) applying statemachines for modeling systems. In [Rum96, RW18] constructive
transformation rules for refining automata behavior are given and proven correct. This theory is
applied to features in [KPR97]. Statemachines are embedded in the composition and behavioral
specification concepts of Focus [GKR96, BR07]. We apply these techniques, e.g., in MontiAr-
cAutomaton [RRW13a, RRW14, RRW13a, RW18] as well as in building management systems
[FLP+11b].

Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational support
for human behaviour (2) based on information from previously stored and real-time monitored
structural context and behaviour data (3) at the time the person needs or asks for it [HMR+19].
To create them, we follow a model centered architecture approach [MMR+17] which defines
systems as a compound of various connected models. Used languages for their definition include
DSLs for behavior and structure such as the human cognitive modeling language [MM13], goal
modeling languages [MRV20] or UML/P based languages [MNRV19]. [MM15] describes a process
how languages for assistive systems can be created.

We have designed a system included in a sensor floor able to monitor elderlies and analyze
impact patterns for emergency events [LMK+11]. We have investigated the modeling of human
contexts for the active assisted living and smart home domain [MS17] and user-centered privacy-
driven systems in the IoT domain in combination with process mining systems [MKM+19],
differential privacy on event logs of handling and treatment of patients at a hospital [MKB+19],
the mark-up of online manuals for devices [SM18] and websites [SM20], and solutions for privacy-
aware environments for cloud services [ELR+17] and in IoT manufacturing [MNRV19]. The user-
centered view on the system design allows to track who does what, when, why, where and how
with personal data, makes information about it available via information services and provides
support using assistive services.

Modelling Robotics Architectures and Tasks

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an
inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineer-
ing of robotics applications requires composition and interaction of diverse distributed software
modules. This usually leads to complex monolithic software solutions hardly reusable, main-
tainable, and comprehensible, which hampers broad propagation of robotics applications. The
MontiArcAutomaton language [RRW13a] extends the ADL MontiArc and integrates various im-
plemented behavior modeling languages using MontiCore [RRW13b, RRW14, RRRW15, HR17]
that perfectly fit robotic architectural modeling. The LightRocks [THR+13] framework allows
robotics experts and laymen to model robotic assembly tasks. In [AHRW17a, AHRW17b], we
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define a modular architecture modeling method for translating architecture models into modules
compatible to different robotics middleware platforms.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication
systems as well as advanced active and passive safety-systems result in complex embedded sys-
tems. As these feature-driven subsystems may be arbitrarily combined by the customer, a huge
amount of distinct variants needs to be managed, developed and tested. A consistent require-
ments management that connects requirements with features in all phases of the development for
the automotive domain is described in [GRJA12]. The conceptual gap between requirements and
the logical architecture of a car is closed in [GHK+07, GHK+08a]. [HKM+13] describes a tool
for delta modeling for Simulink [HKM+13]. [HRRW12] discusses means to extract a well-defined
Software Product Line from a set of copy and paste variants. [RSW+15] describes an approach to
use model checking techniques to identify behavioral differences of Simulink models. In [KKR19],
we introduce a framework for modeling the dynamic reconfiguration of component and connector
architectures and apply it to the domain of cooperating vehicles. Quality assurance, especially
of safety-related functions, is a highly important task. In the Carolo project [BR12a, BR12b],
we developed a rigorous test infrastructure for intelligent, sensor-based functions through fully-
automatic simulation [BBR07]. This technique allows a dramatic speedup in development and
evolution of autonomous car functionality, and thus enables us to develop software in an agile
way [BR12a]. [MMR10] gives an overview of the current state-of-the-art in development and
evolution on a more general level by considering any kind of critical system that relies on archi-
tectural descriptions. As tooling infrastructure, the SSElab storage, versioning and management
services [HKR12] are essential for many projects.

Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2
emissions is an important challenge. Thus, energy management in buildings as well as in neigh-
bourhoods becomes equally important to efficiently use the generated energy. Within several
research projects, we developed methodologies and solutions for integrating heterogeneous sys-
tems at different scales. During the design phase, the Energy Navigators Active Functional
Specification (AFS) [FPPR12, KPR12] is used for technical specification of building services
already. We adapted the well-known concept of statemachines to be able to describe different
states of a facility and to validate it against the monitored values [FLP+11b]. We show how our
data model, the constraint rules, and the evaluation approach to compare sensor data can be
applied [KLPR12].

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for
web-based application and service architectures with high complexity, criticality, and new appli-
cation domains. It promises to enable new business models, to lower the barrier for web-based
innovations and to increase the efficiency and cost-effectiveness of web development [KRR14].
Application classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15b], Big
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Data, App, and Service Ecosystems bring attention to aspects like responsiveness, privacy and
open platforms. Regardless of the application domain, developers of such systems are in need
for robust methods and efficient, easy-to-use languages and tools [KRS12]. We tackle these chal-
lenges by perusing a model-based, generative approach [NPR13]. The core of this approach are
different modeling languages that describe different aspects of a cloud-based system in a concise
and technology-agnostic way. Software architecture and infrastructure models describe the sys-
tem and its physical distribution on a large scale. We apply cloud technology for the services we
develop, e.g., the SSELab [HKR12] and the Energy Navigator [FPPR12, KPR12] but also for
our tool demonstrators and our own development platforms. New services, e.g., collecting data
from temperature, cars etc. can now easily be developed.

Model-Driven Engineering of Information Systems

Information Systems provide information to different user groups as main system goal. Using
our experiences in the model-based generation of code with MontiCore [KRV10, HR17], we de-
veloped several generators for such data-centric information systems. MontiGem [AMN+20] is
a specific generator framework for data-centric business applications that uses standard models
from UML/P optionally extended by GUI description models as sources [GMN+20]. While the
standard semantics of these modeling languages remains untouched, the generator produces a
lot of additional functionality around these models. The generator is designed flexible, modular
and incremental, handwritten and generated code pieces are well integrated [GHK+15a], tag-
ging of existing models is possible [GLRR15], e.g., for the definition of roles and rights or for
testing [DGH+18].
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Seiten 36-41, März 2011. B.4

[FLP+11b] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. State-based Modeling of Buildings and Facilities. In Enhanced Building
Operations Conference (ICEBO’11), 2011. B.4, B.4

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The
Energy Navigator - A Web-Platform for Performance Design and Management. In
Energy Efficiency in Commercial Buildings Conference(IEECB’12), 2012. B.4, B.4,
B.4

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard
Rumpe. View-based Modeling of Function Nets. In Object-oriented Modelling of
Embedded Real-Time Systems Workshop (OMER4’07), 2007. B.4, B.4, B.4
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[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore: A Framework for the Development of Textual Domain Specific
Languages. In 30th International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10-18, 2008, Companion Volume, pages 925–926, 2008. B.4,
B.4, B.4
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Rumpe, and Klaus Wehrle. A comprehensive approach to privacy in the cloud-
based Internet of Things. Future Generation Computer Systems, 56:701–718, 2015.
B.4

314



Related Interesting Work from the SE Group, RWTH Aachen

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bernhard
Rumpe, and Ina Schaefer. First-Class Variability Modeling in Matlab/Simulink. In
Variability Modelling of Software-intensive Systems Workshop (VaMoS’13), pages
11–18. ACM, 2013. B.4, B.4

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. An Algebraic View on the Semantics of Model Composition. In
Conference on Model Driven Architecture - Foundations and Applications (ECMDA-
FA’07), LNCS 4530, pages 99–113. Springer, Germany, 2007. B.4

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Scaling-Up Model-Based-Development for Large Heterogeneous Sys-
tems with Compositional Modeling. In Conference on Software Engineeering in
Research and Practice (SERP’09), pages 172–176, July 2009. B.4, B.4

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer.
Delta-oriented Architectural Variability Using MontiCore. In Software Architecture
Conference (ECSA’11), pages 6:1–6:10. ACM, 2011. B.4

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-In-
Based Framework for Web-Based Project Portals. In Developing Tools as Plug-Ins
Workshop (TOPI’12), pages 61–66. IEEE, 2012. B.4, B.4

[HLMSN+15a] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. Composition of Hetero-
geneous Modeling Languages. In Model-Driven Engineering and Software Devel-
opment, Communications in Computer and Information Science 580, pages 45–66.
Springer, 2015. B.4, B.4, B.4, B.4

[HLMSN+15b] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. Integration of Hetero-
geneous Modeling Languages via Extensible and Composable Language Compo-
nents. In Model-Driven Engineering and Software Development Conference (MOD-
ELSWARD’15), pages 19–31. SciTePress, 2015. B.4, B.4, B.4, B.4

[HMR+19] Katrin Hölldobler, Judith Michael, Jan Oliver Ringert, Bernhard Rumpe, and An-
dreas Wortmann. Innovations in Model-based Software and Systems Engineering.
The Journal of Object Technology, 18(1):1–60, July 2019. B.4, B.4

[HMSNRW16] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas Wort-
mann. Compositional Language Engineering using Generated, Extensible, Static
Type Safe Visitors. In Conference on Modelling Foundations and Applications
(ECMFA), LNCS 9764, pages 67–82. Springer, July 2016. B.4, B.4, B.4

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of
”Semantics”? IEEE Computer, 37(10):64–72, October 2004. B.4

[HR17] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Language Workbench Edition
2017. Aachener Informatik-Berichte, Software Engineering, Band 32. Shaker Verlag,
December 2017. B.4, B.4, B.4, B.4, B.4, B.4, B.4

315



Related Interesting Work from the SE Group, RWTH Aachen

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Compo-
nent Interfaces. In Technology of Object-Oriented Languages and Systems (TOOLS
26), pages 58–70. IEEE, 1998. B.4

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der
Linden. Hierarchical Variability Modeling for Software Architectures. In Software
Product Lines Conference (SPLC’11), pages 150–159. IEEE, 2011. B.4, B.4

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architectural
Modeling of Interactive Distributed and Cyber-Physical Systems. Technical Report
AIB-2012-03, RWTH Aachen University, February 2012. B.4, B.4, B.4

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling
for Software Architectures. In Tagungsband des Dagstuhl-Workshop MBEES: Mod-
ellbasierte Entwicklung eingebetteterSysteme VII, pages 1 – 10. fortiss GmbH, 2011.
B.4

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-
oriented Software Product Line Architectures. In Large-Scale Complex IT Systems.
Development, Operation and Management, 17th Monterey Workshop 2012, LNCS
7539, pages 183–208. Springer, 2012. B.4, B.4

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung
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