
Jörg Christian Kirchhof

Model-Driven Development,
Deployment, and Analysis of
Internet of Things Applications

MontiThings

Aachener Informatik-Berichte,
Software Engineering Band 54

Hrsg: Prof. Dr. rer. nat. Bernhard Rumpe

Model-Driven Development, Deployment, and
Analysis of Internet of Things Applications

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

M.Sc. RWTH
Jörg Christian Kirchhof
aus Hilden, Deutschland

Berichter: Universitätsprofessor Dr. rer. nat. Bernhard Rumpe
Universitätsprofessor Mag. Dr. Manuel Wimmer

Tag der mündlichen Prüfung: 11. November 2022

D 82 (Diss. RWTH Aachen University, 2022)

[Kir23] J. C. Kirchhof:
Model-Driven Development, Deployment, and Analysis of Internet of Things Applications.
Aachener Informatik-Berichte, Software Engineering, Band 54, ISBN 978-3-8440-8960-8, Shaker Verlag, Februar 2023.
www.se-rwth.de/publications/

Eidesstattliche Erklärung

I, Jörg Christian Kirchhof erklärt hiermit, dass diese Dissertation und die darin dar-
gelegten Inhalte die eigenen sind und selbstständig, als Ergebnis der eigenen originären
Forschung, generiert wurden. Hiermit erkläre ich an Eides statt

1. Diese Arbeit wurde vollständig oder größtenteils in der Phase als Doktorand dieser
Fakultät und Universität angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor für einen akademischen Ab-
schluss oder eine andere Qualifikation an dieser oder einer anderen Institution
verwendet wurde, wurde dies klar angezeigt;

3. Wenn immer andere eigene- oder Veröffentlichungen Dritter herangezogen wurden,
wurden diese klar benannt;

4. Wenn aus anderen eigenen- oder Veröffentlichungen Dritter zitiert wurde, wurde
stets die Quelle hierfür angegeben. Diese Dissertation ist vollständig meine eigene
Arbeit, mit der Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstützung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen
basiert, wurde von mir klar gekennzeichnet, was von anderen und was von mir
selbst erarbeitet wurde;

7. Ein Teil oder Teile dieser Arbeit wurden zuvor veröffentlicht und zwar in:

[BKK+22] Arvid Butting, Jörg Christian Kirchhof, Anno Kleiss, Judith Micha-
el, Radoslav Orlov, and Bernhard Rumpe. Model-Driven IoT App
Stores: Deploying Customizable Software Products to Heterogeneous
Devices. In Proceedings of the 21th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences
(GPCE 22), pages 108–121. ACM, December 2022

[KKR+22a] Jörg Christian Kirchhof, Anno Kleiss, Bernhard Rumpe, David
Schmalzing, Philipp Schneider, and Andreas Wortmann. Model-
driven Self-adaptive Deployment of Internet of Things Applications
with Automated Modification Proposals. ACM Transactions on
Internet of Things, 3(4), 2022

[KKR+22b] Jörg Christian Kirchhof, Evgeny Kusmenko, Jonas Ritz, Bernhard
Rumpe, Armin Moin, Atta Badii, Stephan Günnemann, and Mohar-
ram Challenger. MDE for Machine Learning-Enabled Software Sy-
stems: A Case Study and Comparison of MontiAnna & ML-Quadrat.

In Proceedings of the 25th International Conference on Model Dri-
ven Engineering Languages and Systems: Companion Proceedings,
MODELS ’22, page 380–387, New York, NY, USA, October 2022.
ACM.

[KMM+22] Jörg Christian Kirchhof, Lukas Malcher, Judith Michael, Bernhard
Rumpe, and Andreas Wortmann. Web-Based Tracing for Model-
Driven Applications. In Proceedings of the 48th Euromicro Con-
ference Series on Software Engineering and Advanced Applications
(SEAA’22). In Press, 2022

[KKM+22] Jörg Christian Kirchhof, Anno Kleiss, Judith Michael, Bernhard
Rumpe, and Andreas Wortmann. Efficiently Engineering IoT Ar-
chitecture Languages—An Experience Report (Poster). STAF 2022
Workshop Proceedings: 10th International Workshop on Bidirec-
tional Transformations (BX 2022), 2nd International Workshop on
Foundations and Practice of Visual Modeling (FPVM 2022) and 2nd
International Workshop on MDE for Smart IoT Systems (MeSS 2022)
(co-located with Software Technologies: Applications and Foundati-
ons federation of conferences (STAF 2022)), July 2022

[HKK+22] Mattis Hoppe, Jörg Christian Kirchhof, Evgeny Kusmenko, Chan
Yong Lee, and Bernhard Rumpe. Agent-Based Autonomous Vehicle
Simulation with Hardware Emulation in the Loop. In 2022 IEEE
Intelligent Vehicles Symposium (IV), pages 16–21, 2022

[KRSW22] Jörg Christian Kirchhof, Bernhard Rumpe, David Schmalzing, and
Andreas Wortmann. MontiThings: Model-driven Development and
Deployment of Reliable IoT Applications. Journal of Systems and
Software, 183:111087, January 2022

[KMR21] Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe. Un-
derstanding and Improving Model-Driven IoT Systems through Ac-
companying Digital Twins. In Eli Tilevich and Coen De Roover,
editors, Proceedings of the 20th ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences (GP-
CE ’21), pages 197–209. ACM SIGPLAN, October 2021

[AKKR21] Abdallah Atouani, Jörg Christian Kirchhof, Evgeny Kusmenko, and
Bernhard Rumpe. Artifact and Reference Models for Generative Ma-
chine Learning Frameworks and Build Systems. In Eli Tilevich and
Coen De Roover, editors, Proceedings of the 20th ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experiences (GPCE ’21), pages 55–68. ACM SIGPLAN, October
2021

[KNS+21] Jörg Christian Kirchhof, Michael Nieke, Ina Schaefer, David Schmal-
zing, and Michael Schulze. Variant and Product Line Co-Evolution,
pages 333–351. Springer, January 2021

[KMR+20b] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Si-
mon Varga, and Andreas Wortmann. Model-driven Digital Twin
Construction: Synthesizing the Integration of Cyber-Physical
Systems with Their Information Systems. In Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, pages 90–101. ACM, October 2020

[KSGW20] Jörg Christian Kirchhof, Martin Serror, René Glebke, and Klaus
Wehrle. Improving MAC Protocols for Wireless Industrial Networks
via Packet Prioritization and Cooperation. In Proceedings of the 21st
International Symposium on A World of Wireless, Mobile and Multi-
media Networks (WoWMoM). Workshop CCNCPS., pages 367–372.
IEEE, August 2020

[KMR20a] Jörg Christian Kirchhof, Judith Michael, and Bernhard Rumpe.
Softwarequalität in Energieprojekten, pages 273–279. Fraunhofer
IRB Verlag, Stuttgart, July 2020

[KRSW20] Jörg Christian Kirchhof, Bernhard Rumpe, David Schmalzing,
and Andreas Wortmann. Structurally Evolving Component-Port-
Connector Architectures of Centrally Controlled Systems. In
Maxime Cordy, Mathieu Acher, Danilo Beuche, and Gunter Saake,
editors, International Working Conference on Variability Modelling
of Software-Intensive Systems. ACM, February 2020

[KKRZ19] Jörg Christian Kirchhof, Evgeny Kusmenko, Bernhard Rumpe, and
Hengwen Zhang. Simulation as a Service for Cooperative Vehic-
les. In Loli Burgueño, Alexander Pretschner, Sebastian Voss, Michel
Chaudron, Jörg Kienzle, Markus Völter, Sébastien Gérard, Man-
sooreh Zahedi, Erwan Bousse, Arend Rensink, Fiona Polack, Gregor
Engels, and Gerti Kappel, editors, Proceedings of MODELS 2019.
Workshop MASE, pages 28–37. IEEE, September 2019

[KKMR19] Jörg Christian Kirchhof, Evgeny Kusmenko, Jean Meurice, and
Bernhard Rumpe. Simulation of Model Execution for Embedded
Systems. In Loli Burgueño, Alexander Pretschner, Sebastian Voss,
Michel Chaudron, Jörg Kienzle, Markus Völter, Sébastien Gérard,
Mansooreh Zahedi, Erwan Bousse, Arend Rensink, Fiona Polack,
Gregor Engels, and Gerti Kappel, editors, Proceedings of MODELS
2019. Workshop MLE, pages 331–338. IEEE, September 2019

[SKS+17] Martin Serror, Jörg Christian Kirchhof, Mirko Stoffers, Klaus Wehr-
le, and James Gross. Code-Transparent Discrete Event Simulation
for Time-Accurate Wireless Prototyping. In Proceedings of the 2017
ACM SIGSIM Conference on Principles of Advanced Discrete Si-
mulation, SIGSIM-PADS ’17, pages 161–172, New York, NY, USA,
2017. Association for Computing Machinery

Aachen, 11. Januar 2023

Jörg Christian Kirchhof

Abstract

The Internet of Things (IoT) describes the idea of connecting objects equipped with
sensors and actuators to each other and to the Internet. IoT applications are complex to
develop for a variety of reasons, including the heterogeneity of the IoT devices, diverse
software stacks, the fact that IoT applications are usually distributed applications, and
the fragility of the hardware and network connection. Model-driven methods promise to
make the complex development of IoT applications manageable by raising the level of
abstraction. Related work has proposed a variety of component and connector (C&C)
architecture description languages (ADLs) for developing IoT applications. However,
these mainly focus on the early development phases and largely neglect reliability aspects.

Accordingly, this work focuses on the model-driven engineering of IoT applications
throughout their lifecycle. We present MontiThings, an ecosystem for model-driven IoT
applications. Based on existing approaches, the MontiThings ecosystem specifies an
IoT-focused C&C ADL using the MontiCore language workbench. MontiThings aims at
offering an ecosystem that covers the lifecycle of IoT applications starting from the first
architecture concepts up to the eventual deployment of the application and its analysis
during runtime. At all stages of this process, MontiThings offers reliability mechanisms
that can help developers to specify resilient applications.

For design activities, MontiThings provides a C&C language integrated with
international system of units (SI) units and the object constraint language (OCL)
usable to detect exceptional situations at operating time. Furthermore, MontiThings
offers an integration method for hardware drivers that provides a clear separation of
concerns and, thus, enables components to be reused and tested independently of their
hardware integration. A generator translates the C&C architecture models to C++
code. Based on a tagging language, the IoT components can be integrated with syn-
thesized digital twins. When deploying applications, MontiThings’ requirements-based
deployment method is able to not only calculate a distribution of components to IoT
devices but can also actively propose changes to the user should their requirements
be unfulfillable. If devices fail at runtime, MontiThings can automatically adapt the
deployment to the changed situation (if possible within the requirements) and restore
the previous software state of failed devices. To understand unforeseen situations that
may arise at runtime, MontiThings provides developers with model-driven analysis
services. Overall, MontiThings demonstrates an end-to-end model-driven approach for
designing IoT applications.

Kurzfassung

Das Internet der Dinge (IoT) beschreibt die Idee, mit Sensoren und Aktuatoren aus-
gestattete Gegenstände untereinander und mit dem Internet zu verbinden. Die Ent-
wicklung von IoT-Anwendungen ist aus verschiedenen Gründen komplex. Dazu gehören
die Heterogenität der IoT-Geräte, die Tatsache, dass es sich bei IoT-Anwendungen nor-
malerweise um verteilte Anwendungen handelt, und die Fehleranfälligkeit der Hardware
und der Netzwerkverbindung. Modellgetriebene Methoden versprechen, die komplexe
Entwicklung von IoT-Anwendungen durch die Anhebung des Abstraktionsniveaus hand-
habbar zu machen. In verwandten Arbeiten wurde eine Vielzahl von Komponenten-
und-Konnektor (C&C) Architekturbeschreibungssprachen (ADLs) zur Entwicklung von
IoT-Anwendungen vorgestellt. Diese konzentrieren sich jedoch hauptsächlich auf die
frühen Entwicklungsphasen und vernachlässigen weitgehend Zuverlässigkeitsaspekte.

Dementsprechend konzentriert sich diese Arbeit auf die modellgetriebene Entwicklung
von IoT-Anwendungen über ihren gesamten Lebenszyklus hinweg. Wir stellen Monti-
Things vor, ein Ökosystem zur modellgetriebenen Entwicklung von IoT-Anwendungen.
Basierend auf bestehenden Ansätzen spezifiziert das MontiThings-Ökosystem eine IoT-
fokussierte C&C ADL unter Verwendung der MontiCore Language Workbench. Mon-
tiThings zielt darauf ab, ein Ökosystem anzubieten, das den Lebenszyklus von IoT-
Anwendungen abdeckt, angefangen bei den ersten Architekturkonzepten bis hin zur Be-
reitstellung der Anwendung und der Analyse der Anwendung während der Laufzeit. In
allen Phasen dieses Prozesses bietet MontiThings dabei Zuverlässigkeitsmechanismen,
die den Entwicklern helfen können, robuste Anwendungen zu spezifizieren.

Für Designaktivitäten bietet MontiThings eine C&C-Sprache, die das internationale
Einheitensystem (SI) und die Object Constraint Language (OCL) integriert, um Ausnah-
mesituationen zur Laufzeit zu erkennen. Außerdem bietet MontiThings eine Integrati-
onsmethode für Hardwaretreiber, die eine klare Trennung von Zuständigkeiten und somit
die Wiederverwendung und das Testen von Komponenten unabhängig von ihrer Hard-
wareintegration ermöglicht. Ein Generator übersetzt die C&C-Architekturmodelle in
C++-Code. Basierend auf einer Tagging-Sprache können die IoT-Komponenten mit syn-
thetisierten digitalen Zwillingen integriert werden. Beim Deployment von Anwendungen
ist die anforderungsbasierte Deployment-Methode von MontiThings in der Lage, nicht
nur eine Verteilung der Komponenten auf die IoT-Geräte zu berechnen, sondern dem
Nutzer auch aktiv Änderungen vorzuschlagen, sollten seine Anforderungen nicht erfüll-
bar sein. Fallen Geräte zur Laufzeit aus, kann MontiThings das Deployment automatisch
an die geänderte Situation anpassen (sofern es im Rahmen der Anforderungen möglich
ist) und den vorherigen Softwarestand der ausgefallenen Geräte wiederherstellen. Zum
Verständnis unvorhergesehener Situationen zur Laufzeit stellt MontiThings Entwicklern
modellgestriebene Analysedienste zur Verfügung. Insgesamt demonstriert MontiThings
eine durchgängig modellgetriebene Methode zur Entwicklung von IoT-Anwendungen.

Danksagung

Viele Menschen haben mich auf dem Weg zu meiner Promotion begleitet bei denen
ich mich an dieser Stelle bedanken möchte.

An erster Stelle möchte ich mich gerne bei meinem Doktorvater Prof. Dr. Bernhard
Rumpe bedanken. Zum einen bedanke ich mich für die konstruktiven wissenschaftli-
chen Diskussionen, durch die ich stets nochmal einen anderen Blickwinkel auf die Dinge
erhalten habe, und zum anderen auch für die Möglichkeit mich in den Projekten mit
Ford weiterzuentwickeln. Insbesondere bin ich dankbar für die Freiheit, immer an den
Themen arbeiten zu dürfen, die mich am meisten interessieren.

Ich danke Prof. Mag. Dr. Manuel Wimmer für die Zweitbegutachtung dieser Arbeit.
Darüber hinaus möchte ich mich bei Prof. Dr. Erika Ábrahám für die Bereitschaft
bedanken, meine theoretische mündliche Prüfung abzunehmen, sowie bei Prof. Dr.-Ing.
Stefan Kowalewski für die Übernahme des Vorsitzes meiner Prüfungskommission.

Insbesondere möchte ich mich auch bei den zahlreichen Kolleginnen und Kollegen am
Lehrstuhl für Software Engineering für erfolgreiche und angenehme Zusammenarbeit be-
danken. Durch euch wurde die Zeit meiner Promotion zu einer schönen Zeit, die mir
auf ewig in Erinnerung bleiben wird. Ich danke Jun.-Prof. Dr. Andreas Wortmann, Dr.
Evgeny Kusmenko und Dr. Judith Michael dafür, dass sie mir über die Jahre hinweg
immer Mentoren waren und mich in allen Fragen des akademischen Arbeitens beraten
haben. Ich danke David Schmalzing für die angenehme Büropartnerschaft und für die
Pflege und Weiterentwicklung von MontiArc ohne das diese Arbeit nicht so möglich ge-
wesen wäre. Simon Varga und Robert Eikermann danke ich dafür, dass sie mich als IT
Admin aufgenommen haben. Insbesondere danke ich Simon Varga auch für die tolle Zu-
sammenarbeit bei MontiGem und für die tollen Gespräche, wenn wir abends mal wieder
als einige der letzten im Büro waren. Ich danke Arkadii Gerasimov, Lukas Netz, Galina
Volkova und Kai Adam für die Hilfe bei der Benutzung von MontiGem. Bei Dr. Arvid
Butting, Nico Jansen und Niklas Dienstknecht möchte ich mich für die Hilfe bei den
MontiCore Versionsumzügen bedanken. Mein besonderer Dank gilt Sylvia Gunder und
Sonja Müßigbrodt dafür, dass sie mich über die Jahre stets in allen organisatorischen
Fragen unterstützt haben und jede noch so unüberwindbar scheinende administrative
Hürde zu meistern wussten und dafür, dass sie mir bei der Bestellung von gefühlten drei
Millionen Kleinteilen unterstützt haben, die ich für diese Arbeit und meine Projekte
benötigte. Bei Deni Raco bedanke ich mich für die Organisation der unterhaltsamen
Pokerabende. Desweiteren bedanke ich mich bei Daoud Ali, Vassily Aliseyko, Vincent
Bertram, Miriam Boß, Jonas Böcker, Marita Breuer, Joel Charles, Manuela Dalibor,
Florian Drux, Christoph Engels, Dr. Arne Haber, Malte Heithoff, Alexander Hellwig,
Steffen Hillemacher, Hendrik Kausch, Dr. Marco Konersmann, Achim Lindt, Daniel
Maibach, Dr. Matthias Markthaler, Joshua Mingers, Imke Nachmann, Mathias Pfeiffer,
Nina Pichler, Manuel Pützer, Jonas Ritz, Dr. Christoph Schulze, Brian Sinkovec, Max

Stachon, Sebastian Stüber, Louis Wachtmeister, und Dr. Michael von Wenckstern. Bei
meinen Hiwis Anno Kleiss, Julian Ruiz und Daniel von Mirbach und meinem Auszubil-
denden Julius Gummersbach bedanke ich mich dafür, dass sie mich bei der technischen
Umsetzung dieser Arbeit unterstützt haben.

Außerdem möchte ich mich bei dem Team im Ford Research and Innovation Center
bestehend aus Dr. Marcel Grein, Detlef Kuck, Nicole Eikelenberg, Jeroen Lem, Turgay
Aslandere, Moritz Martinius, Alexandra Holz, Roy Hendrikx, Mark Gijbels, Abhinav
Dhake und Walter Pijls bedanken durch die ich zum einen spannende Projekte bearbei-
ten durfte als auch wertvolle Einblicke in die Industrie erhalten habe. Ich danke Alice
Minet vom Lehrstuhl für Marketing für die gute Zusammenarbeit bei diesen Projek-
ten. Insbesondere danke ich auch den Mitarbeitern der DSA Daten- und Systemtechnik
GmbH für die Unterstützung in technischen Fragen. Dr. Ansgar Schleicher danke ich
für die gute Zusammenarbeit bei der Abhaltung der Vorlesung Der digitale Lebenszyklus
von Fahrzeugen als Teil des Internet of Things (IoT).

Mein Dank gilt außerdem meinen ehemaligen Betreuern Dr. Martin Serror, René
Glebke und Dr. Mirko Stoffers am COMSYS dafür, dass sie mir die Grundlagen des
wissenschaftlichen Arbeitens (und Schreibens!) beigebracht haben.

Außerdem danke ich meinen Freunden für die unterhaltsamen Abende durch die
wir auch mal von Promotionen und Arbeit abschalten konnten. Von ganzem Herzen
danke ich außerdem meinen Eltern und meinem Bruder dafür, dass sie mich nicht nur
während der Promotion durch alle Phasen meines Lebens hinweg immer unterstützt
haben. Ohne euch wäre mir diese Promotion nicht möglich gewesen.

Aachen, November 2022
Jörg Christian Kirchhof

Contents

I Prologue 1

1 Introduction 3
1.1 Motivation . 3

1.2 Goal, Approach, and Main Contributions 5

1.3 Thesis Organization . 7

1.4 Publications . 8

2 Background 13
2.1 Internet of Things (IoT) . 13

2.2 Cloud Computing and Digital Twins in the Context of IoT 17

2.3 Model-Driven Software Engineering and Domain-Specific Languages . . . 19

2.4 MontiCore . 20

2.5 Software Architecture and Architecture Description Languages 23

2.6 MontiArc . 25

3 Scope of the Thesis 29
3.1 Vision and Assumptions . 29

3.2 Lifecycle and Development Process of IoT Applications 32

3.3 What Do IoT Projects Need? . 35

3.4 Challenges . 35

3.5 Research Questions . 37

3.6 Requirements . 39

3.7 What Is Out of Scope? . 42

3.8 Method at a Glance . 43

3.9 Running Use Case: Smart Home . 48

II The MontiThings Ecosystem for Model-Driven IoT Applications 49

4 C&C-based IoT Application Development 51
4.1 Research Questions . 51

4.2 MontiThings Language . 51

4.2.1 Component Definition and Instantiation 53

xv

4.2.2 Type System . 56

4.2.3 Timing . 58

4.2.4 Behavior Description . 59

4.2.5 OCL . 63

4.2.6 Sensor and Actuator Access . 66

4.2.7 Dynamic Reconfiguration . 68

4.3 Language Integration . 72

4.3.1 Integration With Class Diagrams 72

4.3.2 Configuration Language . 73

4.3.3 Sequence Diagram Test Specification 78

4.4 Discussion . 79

5 Code Generation 85
5.1 Methodology and Tool Infrastructure . 85

5.2 Run-time Environment (RTE) . 88

5.2.1 Components and Event-Handling 89

5.2.2 Ports and Communication Technologies / Protocols 90

5.3 Generated Code Structure . 96

5.3.1 Architecture Partitioning and Setup Information Exchange 98

5.3.2 Generated CLIs . 100

5.3.3 Generated Scripts and Compilation 102

5.3.4 Supporting Different Target Platforms 103

5.3.5 Test Case Generation . 103

5.4 Discussion . 104

6 Deployment and Integration of C&C-based IoT Applications 109
6.1 Research Questions . 109

6.2 Development and Deployment Processes 110

6.3 Requirement-based Deployment . 113

6.3.1 Deployment Workflow . 113

6.3.2 Deployment System Overview . 116

6.3.3 Prolog Code Generation . 120

6.4 Feature-based Deployment . 126

6.5 Model-driven App Store Concept . 129

6.6 Integration with Model-driven Information Systems: Synthesizing Digital
Twins . 130

6.7 Discussion . 137

7 Execution and Runtime Analysis of C&C-based IoT Applications 145
7.1 Research Questions . 145

7.2 Methodical Considerations . 146

7.3 Fault Tolerance . 149

7.4 Tracing Behavior and Filtering Logs . 151

7.5 Transformation-based Record and Replay 155

7.6 Discussion . 159

III Evaluation and Conclusion 165

8 Experiments 167
8.1 Case Study 1: Smart Home and Smart Hotel 167

8.2 Case Study 2: Fire Alarm Digital Twin 173

8.3 Case Study 3: HVAC Reproduction . 176

8.4 Performance Evaluation: Transformation-based Replayer 180

8.5 Performance Evaluation: Log Tracing . 182

8.6 Student Lab: Autonomous Driving . 185

8.7 Student Lab: Fischertechnik . 187

8.8 Discussion . 189

9 Conclusion and Future Research Directions 191

Bibliography 195

A Acronyms 215

B Selected Grammars from the MontiVerse 217
B.1 ArcBasis (MontiArc) . 217

B.2 Class Diagrams . 221

B.3 MCCommonStatements . 227

B.4 MCCommonLiterals . 229

B.5 OCL Expressions . 235

B.6 Set Expressions . 240

B.7 SI Units . 243

C MontiThings Grammars 253
C.1 Behavior . 253

C.2 Error Handling . 255

C.3 Set Definitions . 256

C.4 MontiThings Main Grammar . 257

C.5 Configuration . 259

D Open Source Software Used In RTE 263

E Models of the HVAC Case Study 265

F Diagram and Listing Tags 269

List of Definitions 271

List of Figures 273

Listings 279

List of Tables 281

Related Interesting Work from the SE Group, RWTH Aachen 283

Part I

Prologue

1

Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) promises to turn our world into a substantially more digital
one by connecting everyday objects with each other and with the Internet. Thereby,
the IoT creates new opportunities in many domains, including smart homes, smart
cities, health care, retail, agriculture, security and surveillance, logistics, and Industry
4.0 [DeF21, TM17a, TGPH20, MSPC12, AIM10]. By 2026, Ericsson expects 26.9 billion
IoT connections [www20]. Due to their heterogeneity and size, the development of such
systems is becoming increasingly complex.

Due to their lack of abstraction, traditional general-purpose languages are not well
suited to meet the challenges of future IoT applications. The development of IoT
is fundamentally different from the development of traditional applications [TM17a],
e.g., smartphone apps, because it forces developers to take new kinds of program-
ming problems into account. This includes, for example, multi-device programming
of decentralized devices [TM17a, MHF17], programming for heterogeneous target de-
vices [MHF17, MSPC12], and self-adaptation of software [CS16, MSPC12]. The chal-
lenges and relevance of IoT development are underlined by the fact that all major cloud
providers, i.e., Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Plat-
form (GCP), started offering specialized IoT software as a service solutions in recent
years. While some “past software engineering techniques can be harnessed and adapted
to the challenges [...], new approaches to standard software engineering techniques are
also needed” [LCFT17]. Most prominently, Google has discontinued Android Things, its
attempt to create a general operating system for the IoT, after less than three years1.
Model-based development promises to make the complexity of IoT application develop-
ment manageable [MHF17] by raising the level of abstraction. Consequently, the future
of IoT is expected to be model-based [SKS18].

Related work suggests that model-based IoT applications shall be defined using
component and connector (C&C) architecture description languages (ADLs), as

1Ars Technica: “Google kills Android Things, its IoT OS, in January”, 17.12.2020. [On-
line]. Available: https://arstechnica.com/gadgets/2020/12/google-kills-android-
things-its-iot-os-in-january/ Last accessed: 11.01.2022

3

https://arstechnica.com/gadgets/2020/12/google-kills-android-things-its-iot-os-in-january/
https://arstechnica.com/gadgets/2020/12/google-kills-android-things-its-iot-os-in-january/

Chapter 1 Introduction

many popular approaches from both industry and academia use component-based
architecture models. Examples include ThingML [HFMH16, MHF17], Ericsson’s
Calvin [AP17, PA15, PA17], CapeCode [BJK+18], and Node-RED2. Existing domain-
specific languages (DSLs) for IoT applications, however, suffer from a lack of abstraction
(e.g., Eclipse Mita3), a limited focus on development that disregards challenges occur-
ring later in the lifecycle of IoT applications (e.g., CapeCode), or a lack of separation
of concerns leading to models that are hard to understand for non-experts because
they contain low-level code fragments (e.g., ThingML). In general, “[m]odel-driven
development remains mostly not adopted in IoT development at this stage” [DRF22].

As IoT applications are often based on a large number of devices that are some-
times operated under harsh environmental conditions, IoT applications are prone to
various types of failures. These failures range from erroneous sensor readings [MNZC20,
KMMN16, FG08] to unexpectedly failing devices [TM17a, MSPC12] to network failures
that can disconnect groups of devices at once. Thus, reliability is an important aspect
of developing IoT systems [MNZC20, HLR17, TM17a, Sta14, MSPC12] to enable them
to cope with various types of failures. Related work on model-based IoT application
development does not take this problem into account sufficiently and focuses mostly on
superficial methods such as collecting logs (e.g., [MF19]). Overall, “IoT system reliability
is something that will need to be addressed comprehensively in order for the technology
to fully mature” [MNZC20].

Additionally, there is a lack of research on IoT deployment. Currently, IoT applications
are usually distributed as a bundle consisting of a piece of hardware and pre-installed
software by the same vendor. Future IoT applications are expected to be distributable in
app stores similar to today’s smartphone app stores [BSS+17, MM12], thus decoupling
hardware and software vendors. Current deployment methods will no longer be sufficient
as “IoT applications and services will have to be deployed over an existing IoT hardware
infrastructure” [Zam17] that is not necessarily from the vendor that sells the software.
Related academic work focuses mostly on rule-based approaches (e.g., Calvin) or the
technical aspects of the deployment, i.e., copying software to the IoT devices (e.g.,
GeneSIS [FN19, FNS+19, FNS+20]). Similarly, commercial products by cloud providers
are usually based on grouping devices based on certain properties. Moreover, deployment
also needs to take into account that new stakeholders, e.g., the person managing the
IoT devices, may want to influence the deployment of the software to fit their needs.
[Zam17] outlines abstractions for IoT software, including stakeholders. Related work,
however, does not yet take such new stakeholders into account. Overall, IoT deployment
is considered to be “still in its infancy” [NFE+19] and new deployment methods are
needed to one day reach the vision of an IoT app store.

2Node-RED project website. [Online]. Available: https://nodered.org/ Last accessed: 11.01.2022
3Eclipse Mita project website. [Online]. Available: https://www.eclipse.org/mita/ Last ac-

cessed 11.01.2022

4

https://nodered.org/
https://www.eclipse.org/mita/

1.2 Goal, Approach, and Main Contributions

1.2 Goal, Approach, and Main Contributions

Overall, this thesis contributes to answering the unanswered question of whether“model-
driven engineering (MDE) [can] play a key role in the future of IoT” [BCPP20]. As
discussed above, related work does not sufficiently address aspects such as reliability
and is mostly focused on generating software in early development stages. Furthermore,
the deployment of IoT applications in future IoT app stores is still an open challenge since
stakeholders such as device owners are not adequately integrated into the deployment
process. This leads us to the following question:

Main Research Question:
How to develop and deploy failure resilient model-driven IoT applications and analyze
their generated behavior?

To answer this question, we present MontiThings, an ecosystem for model-driven IoT
applications. Based on the existing approaches, the MontiThings ecosystem specifies
an IoT-focused C&C ADL using the MontiCore [HKR21] language workbench. A code
generator can generate C++ code from MontiThings models. This code can then be
packaged as container images and be deployed to IoT devices based on sets of require-
ments that can be defined by both the application developers and the device owners.
This includes, in particular, integration aspects to connect the IoT application to the
hardware of the IoT devices, e.g., sensors and actuators, and external services such as
digital twins. In particular, we examine how MontiGem, a tool for the model-driven
development of information systems, can be utilized to create digital twins of IoT com-
ponents and how automatic synchronization can be established between the (generated)
information system and the IoT devices. During run-time, the deployed application
may interact with various services that provide, e.g., failure tolerance or error analysis.
Thereby, MontiThings aims at offering an ecosystem that covers the lifecycle of IoT ap-
plications starting from the first architecture concepts up to the eventual deployment of
the application. At all stages of the process, MontiThings offers resiliency mechanisms
that can help developers to specify reliable applications. As developers are usually not
used to handling IoT-specific problems [TM17a, LCFT17], e.g., device failures, this the-
sis especially examines reliability mechanisms that the code generator and deployment
system can automatically add to the (generated) application without being explicitly
specified by the developers.

Consequently, the main contributions of this thesis are:

• a (non-exhaustive) set of requirements of model-driven ecosystems for IoT appli-
cations in the context of the vision of creating future IoT app stores

5

Chapter 1 Introduction

• the MontiThings C&C ADL for creating IoT applications that offers an IoT-focused
behavior language, OCL-based error-detection, and a strong type system incorpo-
rating international system of units (SI)

• a configuration language for integrating MontiThings with different hardware plat-
forms

• a sequence diagram-based language for specifying tests of MontiThings models

• a code generator producing C++ code from MontiThings models and scripts to
package and deploy the generated code

• an run-time environment (RTE) for IoT applications that supports different com-
munication technologies and deployment styles

• an automated requirement-based deployment process for IoT applications based
on existing continuous integration (CI) infrastructures such as GitLab and GitHub
utilizing code generation and Prolog to take different stakeholders into account and
propose changes if the requirements are unfulfillable

• a workflow for integrating MontiThings-based IoT applications with accompanying
MontiGem-based information systems

• a tagging-based integration between MontiThings-based IoT applications and class
diagrams used in MontiGem-based information systems that separates the business
logic of both systems from integration aspects

• model-to-model transformations for synthesizing digital twin synchronization ser-
vices using the tagging-based integration of MontiThings and class diagrams to
keep MontiThings and MontiGem applications synchronized

• methods for automatically handling temporary or permanent failures of IoT devices
and restoring the state of failed software components in case of permanent failures

• an analysis service for tracing the behavior of MontiThings applications at runtime
and filtering relevant log messages from large lists of available log messages

• a service for recording the behavior of MontiThings applications including envi-
ronmental influences such as sensor readings or network delays

• model-to-model transformations for reproducing the behavior of MontiThings ap-
plications including environmental influences

• a workflow for integrating the reproduction-based analysis of IoT applications into
iterative development processes

6

1.3 Thesis Organization

• multiple case studies that evaluate MontiThings in multiple smart home scenarios

• performance measurements for the prototypical implementations of MontiThings’
analysis services

• summaries of the experiences of using MontiThings in student labs to teach entry-
level developers model-driven IoT development

1.3 Thesis Organization

The following chapters will present the MontiThings ecosystem for model-driven devel-
opment and deployment of IoT applications. The chapters are structured as follows:

Chapter 2 presents background knowledge necessary for understanding this thesis such
as an overview of the IoT, MontiCore, and MontiArc;

Chapter 3 gives an overview of the vision this thesis is based on, defines the scope of
the thesis (and what is explicitly out of scope), explains research questions, and
introduces the smart home as a running use case;

Chapter 4 presents the MontiThings language for specifying IoT applications and its
integration with auxiliary languages, i.e., a class diagram language, a configuration
language, a test case definition language;

Chapter 5 explains the C++ code generator and run-time environment of MontiThings;

Chapter 6 introduces MontiThings’ deployment algorithm based on the generation of
Prolog code that is able of proposing to buy new hardware and relaxing require-
ments. Moreover, this chapter shows MontiThings’ integration with digital twins
synthesized from tagging models;

Chapter 7 describes MontiThings’ error handling and analysis techniques at run-time;

Chapter 8 evaluates MontiThings using numerous case studies, performance measure-
ments, and student labs;

Chapter 9 concludes this thesis and gives an outlook on future work.

Throughout this thesis, we will often refer back to the challenges, requirements, and
research questions introduced in Chapter 3. In order not to affect the readability of the
text too much, abbreviations are shown in parentheses and in bold font for this purpose
(Example: (TC3)).

7

Chapter 1 Introduction

1.4 Publications

This thesis is the result of several years of research. Some of the results have therefore
already been published in various contexts prior to this thesis. Accordingly, some of
the results, figures, data and other content from this this thesis have been published
at conferences and in journals or are currently in press or preparation. This section
provides an overview of these publications.

• [BKK+22] discusses a concept of how to utilize model-driven development in fu-
ture IoT app stores to create customizable applications without a tight coupling
of hardware and software. The description of MontiThings’ utilization of feature
diagrams (Sec. 6.4) and the app store concept (Sec. 6.5) are based on this paper
and the explanation of the hardware access (Sec. 4.2.6, Sec. 5.2.2) is an extended
version of the description in this paper. Further, the explanation of class diagrams,
object diagrams, and object constraint language (OCL) to check if an IoT device
fulfills technical requirements (cf. Sec. 6.3.3) is based on this paper. The research
problem and concepts were designed by the author of this thesis. The usage of fea-
ture diagrams was conceptualized in collaboration with Arvid Butting. Radoslav
Orlov provided a prototypical implementation of the feature diagram integration
as part of [Orl22]. Anno Kleiss provided a prototype implementation of the Prolog
generator for checking which devices are able to execute which software. The case
study is a joined effort of the authors.

• [KKR+22a] presents the requirements-based self-adaptive deployment of Monti-
Things. Unlike related work, our approach is also capable of making modification
proposals in case the requirements are not fulfillable. Sec. 3.9, Sec. 6.3, Sec. 4.2.7,
and Sec. 8.1 are mainly based on this paper. The research problem of offering
modification proposals was defined in discussions between Bernhard Rumpe and
the author of this thesis. The concepts were mainly developed by the author of
this thesis and their prototypical implementation were mainly done by Philipp
Schneider as part of [Sch21], the author of this thesis, and a student workshop
supervised by the author of this thesis. The concept for dynamic architectures
resulted from discussions between the author of this thesis, Bernhard Rumpe, and
David Schmalzing. The smart hotel case study was planned by the author of this
thesis and carried out by Philipp Schneider, Anno Kleiss, and the author of this
thesis.

• [KMM+22] discusses a method for integrating web-based behavior tracing into
behavior-focussed DSLs. A concrete implementation in MontiThings serves as an
evaluation. Sec. 7.4 and Sec. 8.5 are mainly based on this paper. The main research
problem and concept was developed by the author of this thesis and detailed in
collaboration with Lukas Malcher. The generalization of the concepts beyond

8

1.4 Publications

the scope of MontiThings was developed in discussion between the author of this
thesis, Andreas Wortmann, and Judith Michael. The prototypical implementation
for MontiThings was realized Lukas Malcher as part of [Mal21].

• [KKM+22] gives a short overview of MontiThings as a MontiCore-based C&C
language. It contains a highly condensed overview of the contents of Chapter 4.

• [KRSW22] gives an overview of the MontiThings ecosystem as a whole, including
the development and the deployment process. Especially, this publication focuses
on how to handle error situations. Besides serving as a basis for Chapter 4, Chap-
ter 5, and Chapter 6, especially Sec. 4.2.6, Sec. 4.3.1, and Sec. 7.3 are strongly
based on this paper. The research problem, concepts, and discussion were mainly
provided by the author of this thesis. Over the years, all authors have contributed
to the design of MontiThings through numerous discussions. The case studies were
designed by the author of this thesis. The author of this thesis carried out the mod-
elling and deployment case studies, David Schmalzing carried out the scalability
evaluation.

• [KMR21] describes a method for understanding (especially hardware-related) er-
rors in MontiThings applications by recording data during the execution of the
system, transforming the models to replay the recorded data, and then analyzing
the application generated from the transformed models. Sec. 7.2, Sec. 7.5, Sec. 8.3,
and Sec. 8.4 are mainly based on this paper. The research problem and general
concept were designed by the author of this thesis. As part of his thesis [Mal21],
Lukas Malcher provided a prototypical implementation. The concepts were de-
tailed in a joint effort. The evaluation was designed in a joint effort and carried
out by Lukas Malcher.

• [KMR+20b] presents a tagging-based method for synthesizing digital twins from
C&C architecture models and class diagrams that describe the data structure of
a generated information system. By applying model-to-model transformations
we add the necessary infrastructure to the models that keep them synchronized.
Sec. 6.6 and Sec. 8.2 are mainly based on this paper. The author of this thesis
contributed the definition of the research problem, the main concepts, and design
of the case study. Simon Varga conceptualized the data processing in MontiGem.

The author of this thesis is the main author of all aforementioned papers. Furthermore,
the following publications have been published in the context of collaborations with other
scientists, which, however, are not or only insignificantly related to the present work.

• [KKR+22b] compares two model-driven frameworks for machine learning, Mon-
tiAnna and ML2.

9

Chapter 1 Introduction

• [HKK+22] extends the hardware emulator presented in [KKMR19] by a memory
model to increase the accuracy of the emulation.

• [AKKR21] introduces an artifact model and a toolchain for incorporating machine
learning models into C&C-based development processes. The artifact model was
also conceptually applied to MontiThingsDL [Zha20]. The implementation was,
however, based on EmbeddedMontiArc.

• [KNS+21] describes the results of the CrESt project4 on how to co-evolve artifacts
in a product line.

• [KSGW20] analyzes the effects of different prioritization and cooperation mecha-
nisms on media access control (MAC) protocols using network simulations. As a
result, we provide guidelines for network protocol developers.

• [KMR20a] describes approaches to ensure software quality with a focus on projects
in the energy sector.

• [KRSW20] introduces a method for differencing MontiArc C&C architectures based
on their structures that connect the component instances.

• [KKRZ19] presents a simulation-as-a-service concept for model-driven applications
with a focus on automated driving simulations.

• [KKMR19] proposes a hardware emulator for model-driven embedded applications.

• [SKS+17] presents a code-transparent network simulator for the wireless open ac-
cess research platform (WARP). The simulation also allows WARP applications to
be examined using traditional debugging tools such as gdb. As a result, multiple
bugs in the WARP were found, reported, and fixed.

Lastly, it is worth noting that multiple bachelor and master theses have been carried
out in the context of MontiThings. Each of them was supervised or co-supervised by the
author of this thesis and hence the research problems and most of the concepts developed
in these theses were created or strongly influenced by the author of the thesis at hand.
Accordingly, parts of the results in this thesis were previously also described in these
theses. For most of these theses, parts of the code created during these theses ended up
in the present version of MontiThings.

• [Für20] provided the first prototype of MontiThings. This first version relied on
C++ code within the models and a static deployment mechanism from a prior
thesis. Most of these concepts were removed later. The general idea of modeling

4Project website. [Online]. https://crest.in.tum.de/. Last accessed: 13.10.2021

10

https://crest.in.tum.de/

1.4 Publications

the hardware access within ports and having outsourcing hardware access to stan-
dalone applications was kept. These concepts were later extended by an overriding
mechanism and reworked to make these ports transparent in the models.

• [Häu20] implemented a fault tolerance mechanism based on replaying messages.
The general concept was already developed by the author of the thesis at hand
before the start of the thesis. [Häu20] provided a scalable implementation for
these concepts based on the replication of infrastructure elements, Apache Kafka,
and a cloud provider.

• [Zha20] integrated Deep Learning based on MontiAnna [GKR19, KNP+19,
KPRS19] components into MontiThings.

• [Kre20] provided an implementation for the digital twin synthesization described
in [KMR+20b]. The concepts described in [KMR+20b] were already finished - but
not published - before the start of the thesis presented in [Kre20]. Julian Krebber
implemented a prototype and implemented the case study in Sec. 8.2 based on the
electrical setup from [Für20].

• [Kle21] implemented a MontiCore-based variant of the OCL/P [Rum16, Rum17]
and integrated it into MontiThings. Furthermore, an existing language component
for SI units was integrated into MontiThings’ type system.

• [Mal21] provided communication via the OpenDDS framework, record-and-replay
of applications, and a log tracing mechanism. Parts of the results were also pub-
lished in [KMR21] and [KMM+22]. The case study and performance measurements
in Sec. 8.3, Sec. 8.4, and Sec. 8.5 were planned and analyzed in collaboration with
Lukas Malcher. They were carried out by Lukas Malcher.

• [Sti21] enabled components to be controlled via MontiGem applications by inte-
grating MQTT and GUI components for MontiThings components into MontiGem.

• [Sch21] rewrote the deployment manager to be more extendable, provided a web
application for setting deployment rules, and extended the Prolog deployment gen-
erator. First versions of these tools were developed before the start of the thesis
during a student lab supervised by the author of the thesis at hand. Parts of the
results were published as part of [KKR+22a].

• [Sas22] examined methods of integrating multiple independent MontiThings ap-
plications with each other. Furthermore, the connection with external connectors
was extended by offering a management system that coordinates the hardware ac-
cess between multiple components that might want to access the same hardware
resources.

11

Chapter 1 Introduction

• [Orl22] extended the deployment system with a feature diagram-based tool for
selecting desired features from an end-user point of view. This further raised the
level of abstraction compared to solely basing the deployment on the architecture
models. Parts of the results are part of [BKK+22].

• [Rui22] extended the digital twin tagging concept from [Kre20] to enable a more
customized synchronization and provided a method for integrating external (cloud)
services into MontiThings based on OpenAPI specifications of the external services
by generating components from OpenAPI specifications.

The author of this thesis also supervised numerous theses outside the context of Mon-
tiThings that are not described here because the results are not used in this thesis.

12

Chapter 2

Background

This thesis investigates the model-driven software engineering (MDSE) of IoT applica-
tions. This chapter introduces the necessary foundations and definitions for understand-
ing this thesis. Sec. 2.1 generally introduces the IoT and the engineering challenges it
poses. Since this thesis takes a model-driven approach, Sec. 2.3 briefly outlines the ba-
sics of MDE and domain-specific (modeling) languages. Sec. 2.4 introduces the language
workbench MontiCore which is used to technically implement all languages presented
in this thesis. Since the MontiThings language presented in this thesis is an architec-
tural language, Sec. 2.5 explains the basics of software architectures and ADLs. Finally,
Sec. 2.6 gives a brief overview of MontiArc, which serves as the foundation for Monti-
Things. For most of the topics discussed here, much more detailed introductions also
exist, which are beyond the scope of this chapter. The respective sections provide refer-
ences to further reading for interested readers.

2.1 Internet of Things (IoT)

Broadly speaking, the IoT describes the idea of connecting of everyday objects (“things”)
to the Internet and thus form a network of interacting things that provides high-level
functionalities. By equipping these interconnected everyday objects with sensors and
actuators, it becomes possible to offer users services that react to and influence the
system’s environment. Prominent application domains include smart home applications.
For example, in a smart home, a rain sensor can detect that it is starting to rain and
close the windows in response.

The application domains of the IoT are very broad and range from smart homes to
industrial applications, e.g. in the area of health or agriculture, to infrastructure projects
in the area of smart cities [PHPH19, GVM+17]. In addition, the IoT presents technical
challenges in many areas (both software and hardware related), ranging from establish-
ing connectivity to specifying application logic. The wide dispersion of applications and
technical challenges makes it challenging to find a definition for the IoT that covers
all relevant aspects. Accordingly, there is currently a lack of a common understanding
of how exactly the IoT is defined [ASD19, RLC+20]. [AIM10] proposes to distinguish

13

Chapter 2 Background

between a“thing-oriented”, a“semantic-oriented”1, and an“Internet-oriented”vision sep-
arating the different engineering aspects of designing IoT applications. Many attempts
of defining the IoT also focus on certain technical aspects of the devices or applications.
For example, [MSPC12] concentrates on the ability to identify things, connect them, and
have them interact.

Since there is no universally accepted definition of IoT systems [DeF21], it is impossible
to select one without possibly neglecting or misbalancing relevant aspects. This thesis is
about software engineering of IoT systems. We, therefore, define the term “IoT system”
from a software engineering perspective and select a set of characteristics mentioned in
many other definitions that significantly influence software engineering.

Sensing Capabilities IoT systems have the ability to perceive properties of their environ-
ment through sensors. Sensors can sense a variety of different physical quantities
and exist in different levels of complexity. Simple sensors convert only one mea-
sured value into a specific electrical voltage. More complex sensors, for example,
record camera images and make them available in digital form.

Actuation Capabilities Actuators enable IoT systems to influence their environment.
Similar to sensors, actuators exist in various degrees of complexity. In particu-
lar, from our software engineering point of view, we also consider hardware that
presents information to the user of the system as actuators. This may include,
for example, displays, LEDs, or speakers. Although these elements do not usually
directly influence the environment, they can influence the behavior of users and
thus indirectly influence the environment.

Distributed System While in some cases individual devices are also categorized as IoT,
IoT systems often consist of multiple devices interacting with each other. Among
other things, the interaction of multiple devices allows IoT systems to perceive and
influence the environment also in a spatially distributed manner. Many use cases,
e.g., smart cities, can only be realized by such interaction of several devices.

Heterogeneity For many sensors and actuators, there are often only software libraries
that support only certain platforms (e.g., Arduino) and/or programming lan-
guages. This complicates combining multiple sensors and actuators in a system.
Furthermore, the types of devices used in IoT projects range from microcontrollers
with only a few kilobytes of memory (e.g., ATmega328P) to cloud services with
virtually unlimited resources [MSPC12].

Connectivity To interact with each other, devices in IoT systems must support some
form of connectivity. It has become apparent that classic protocols such as TCP

1Semantic in this context refers to “issues related to how to represent, store, interconnect, search, and
organize information generated by the IoT” [AIM10]. This is in contrast to the understanding of
semantics in the context of language engineering presented in [HR04].

14

2.1 Internet of Things (IoT)

or UDP are unsuitable for some IoT projects [SYDZ16], e.g., when energy con-
sumption constraints apply. To cope with the requirements of IoT devices, new
communication protocols are needed, e.g., Narrowband IoT or LoRaWAN. Such
low-level communication aspects are out of the scope of this thesis. Nevertheless,
the ability to communicate is an important characteristic of devices in IoT systems.

A sharp distinction between systems that may be categorized as IoT and those that
may not is not possible. The characteristics mentioned here should help to classify a
given system on the spectrum of possible systems, in order to be able to decide in the
individual case whether one would like to classify the system under IoT. In doing so,
we acknowledge that there is a “gray area” of systems about which no definite statement
can be made.

Of course, in addition to the characterizing features of IoT systems, there are a vari-
ety of requirements and challenges. For example, the sheer mass of IoT connections—
Ericsson expects 26.9 billion IoT connections in 2026 [www20]—imposes scalability re-
quirements. A more detailed discussion of these challenges can be found, for example,
in [AIM10, MSPC12]. Taivalsaari and Mikkonen provide a (non-exhaustive) list of seven
aspects in which the software engineering of IoT applications differs from the software
engineering of traditional applications [TM17a]:

1. “IoT devices are almost always part of a larger system”

2. “IoT systems never sleep”, i.e., “IoT systems usually shouldn’t or can’t be shut
down in their entirety”

3. “IoT systems are more like cattle than pets”, i.e., they “must be managed en masse
instead of receiving personal attention and care”

4. “IoT devices are often embedded in our surroundings such that they’re physically
invisible and unreachable”

5. “IoT systems are highly heterogeneous”

6. “IoT systems tend to have weak connectivity, with intermittent and often unreliable
network connections”

7. “IoT system topologies can be highly dynamic and ephemeral”

These aspects undoubtedly complicate the software development of IoT systems.
Therefore, methods to systematically address the challenges arising from these aspects
are needed.

The heterogeneous and dynamic nature of IoT systems means that the operation of an
application no longer involves just the developer and the user. It is expected that future
software will be more customizable to customer needs. From a software engineering

15

Chapter 2 Background

point of view, this increased customer influence results in new roles for the stakeholders
involved in the development process. In this thesis, we will use adapted and renamed
versions of the stakeholders defined in [Zam17]:

Definition 1 ((IoT) Developer). (IoT) Developers are the product owners of an IoT
system. They design (parts of) the system and its functionality or hardware and
specify the requirements to the environment in which an application can be executed.

This definition of IoT developers is based on the definition of “global managers”
of [Zam17]. Note that the global manager in the definition of [Zam17] is seen mainly
as a system owner in the sense of device owners2. In this thesis, we understand global
managers as hardware or software vendors. Thus, we do not consider them to have ac-
cess to the infrastructure at runtime. When they sell their products through physical or
virtual stores, they relinquish their direct control over the particular instances of their
products. Accordingly, we use a different definition for global managers in this thesis.

Definition 2 (Device Owner). Device owners “are the owners of, or delegates (per-
manent or temporary) given control over, a portion of the IoT system. They’re
empowered to enforce local control and policies on that portion.” [Zam17]

In [Zam17], this role is called “local manager”. They can choose where to place devices
and are responsible for their maintenance. While they can choose which software should
be executed on their IoT devices, they do not design the software themselves. Especially,
they are not expected to be (software) engineers. They may, however, specify certain
requirements or policies on the software to adapt it to their needs within the boundaries
specified by the IoT developers.

Definition 3 (User). “[U]sers are persons or groups that have limited access to the
overall configuration of the IoT applications and services. That is, they can’t impose
policies on the IoT but nevertheless are entitled to exploit its services.” [Zam17]

2Original definition: “[...] global managers are the owners of an IoT system and infrastructure or are
delegates empowered to exert control over and establish policies regarding the configuration and
functioning of its applications and services.” [Zam17]

16

2.2 Cloud Computing and Digital Twins in the Context of IoT

Users are the end-users of IoT systems. They interact directly with the IoT devices’
physical or virtual user interfaces to achieve a goal. These interactions include, for
example, pressing buttons, listening to speaker output, triggering a motion sensor by
walking by, or using a mobile app to influence the system. In certain cases, users may
also be device owners of a system. For example, if a fire alarm system is installed in a
smart home, the residents may be both the device owners and users of their IoT devices.
In contrast, if the same fire alarm system is installed in an office building, the janitor of
the building might be the device owner and the employees might be the users.

2.2 Cloud Computing and Digital Twins in the Context of IoT

Today, many IoT applications are “cloud-centric” [TM17a]. Cloud providers, in gen-
eral, provide numerous infrastructure and software solutions as-a-service, i.e., without
requiring maintenance from the users. These as-a-service solutions exist at different lev-
els of abstraction, ranging from infrastructure such as storage and virtual machines to
fully managed software solutions such as machine learning predictions based on models
trained by the cloud provider to fulfill tasks such as face recognition. The level of ab-
straction of the service offering usually also determines the amount of maintenance the
customers have to do themselves. For example, when using infrastructure-as-a-service
virtual machines, where the content is managed by the user but the hardware the virtual
machine runs on is maintained by the cloud provider. Most of these services feature a
payment model, where the customers are billed based on their usage of the service. In
extreme cases of serverless functions, this can go as far as billing milliseconds of CPU
usage.

All major cloud providers, i.e., AWS, Microsoft Azure, and Google Cloud Platform
(GCP), also provide specialized IoT services. The most basic service offered by all of
them3 consists of a registry for managing IoT devices and enabling them to securely
connect to the cloud to send sensor data to the cloud. Besides these basic services, some
cloud providers also offer solutions for certain IoT use cases, including the deployment
of software (updates) or analyzing streams of events.

The general architecture of today’s IoT applications utilizing the cloud looks as fol-
lows [TM17a] (Fig. 2.1): Very low-powered IoT devices that have no direct Internet
connection connect to higher-powered IoT devices in their surrounding, the so-called
gateways. In addition to sending their own data to the cloud, these gateways also for-
ward the data of the low-powered devices to the cloud. In the cloud, this data is stored
and further processed. The exact choice of storage and processing depends on the use
case of the IoT application. For example, if the data is mostly stored for archival pur-
poses, the cost can often be reduced by storing it in cheap storage with long access
times. Processing the data can include, e.g., visualizing it or classifying it using machine

3AWS and GCP call this service IoT Core, Azure calls it IoT Hub.

17

Chapter 2 Background

IoTArchitecture

IoT Devices Gateways Cloud Apps / Visualization

Sensor data
and actuation

Sensor data
and actuation

App data and
push notifications

Figure 2.1: Common architecture of IoT applications as identified by [TM17a] (simplified
and redrawn from [TM17a]).

learning. If necessary for the use case, apps and other user interfaces connect to the
cloud instead of connecting directly to the IoT devices.

Apart from the basic connectivity, many cloud providers also offer more far-reaching
IoT services. An important service for IoT applications are connections to digital twins.
Unfortunately, there is no commonly agreed-on definition of digital twins [KMR+20b,
EBC+22]. In this thesis, we will use the definition developed by our chair for the Internet
of Production, an alliance of over 200 scientists from various domains:

Definition 4 (Digital Twin). “A digital twin (DT) of a system consists of a set of
models of the system, a set of contextual data traces and/or their aggregation and
abstraction collected from a system, and a set of services that allow using the data
and models purposefully with respect to the original system.” [KMR+20b]4

In contrast, to many other definitions, this definition also takes model-driven develop-
ment into account. From the point of view of cloud providers, digital twins often contain
a synchronization aspect: The IoT devices in these cases have a virtual counterpart in
the cloud that is synchronized with the real IoT devices. The digital representation
then also acts as a stand-in for the real device while the real device is offline, e.g., to
save energy. Once the real device comes back online, it is synchronized with its digital
representation.

Digital twins are, however, not limited to synchronization tasks as the above definition
shows. Synchronization is only one of many popular services a digital twin can offer.

4While this exact wording was cited from this publication that the author of this thesis was involved
in, the author of this thesis does not claim to have invented this definition. It was developed as part
of the Internet of Production, as also mentioned in [KMR+20b]. Variants of this definition can be
found in [BDH+20] and [EBC+22]. A similar definition by the Internet of Production for the closely
related concept of “digital shadows” can be found in [BDJ+22].

18

2.3 Model-Driven Software Engineering and Domain-Specific Languages

Other services include for example simulation and analysis of the system for, e.g., offering
predictive maintenance.

2.3 Model-Driven Software Engineering and Domain-Specific
Languages

Trends such as the IoT are presenting software development with new challenges. In
addition, the development of more and more specialized software, e.g., in the area of
legal tech or healthcare, also requires developers to have extensive knowledge outside
of software development. Overall, the increasing complexity of software development
requires an increase in the level of abstraction.

Such an increase in the level of abstraction can be achieved by using models [HT06].
According to Stachowiak [Sta73] models have three main characteristics: Representation,
reduction, and pragmatism. These three characteristics mean that a model is modeled
from an original (representation), does not represent all the characteristics of the orig-
inal (reduction), and that the model was created for some purpose (pragmatism). In
MDSE processes, models are central development artifacts [Rum16, Rum17]. Especially,
the models are used among other things to generate (parts of the) code of the soft-
ware [Sel03]. This way, models increase the level of abstraction similar to how today’s
programming languages increase the level of abstraction compared to writing machine-
specific instructions [Sel03].

To generate code from models, the models must be machine-readable. Therefore,
models are created with modeling languages that specify the syntax and semantics
of the models. The syntax does not necessarily have to be textual, but can also be
graphical. Prominent examples of families of modeling languages are UML [Obj17] and
SysML [Obj19]. UML and SysML define widely used model types in software develop-
ment, such as class diagrams or activity diagrams.

Neither UML nor SysML are tailored to any particular domain and mainly address
technical experts. Software developers are in many cases not domain experts of the do-
main for which they develop software. Domain experts, in turn, are rarely also software
experts. This leads to a “conceptual gap” [FR07]. Models can enable domain experts
to make their domain knowledge available through models in an abstract yet structured
way, they can have more influence on the software without having to become software
experts themselves. By using the models created by domain experts for code generation,
domain experts without in-depth software knowledge get more involved in the software
development process, including in terms of design. So-called DSLs are (modeling) lan-
guages tailored to a specific domain.

In order to facilitate use by domain experts, the syntax of DSLs is often based on
the conventions of domain experts. For example, a language for implementing con-
tractual requirements in the creation of television program schedules may borrow from

19

Chapter 2 Background

the natural language used in contract texts [DHH+20]. Another example that originated
outside the software development community are guitar tabulators shown in Listing 2.15.

Tab
1 e|-0-----1------3-----3-12-----------1---3--0------|
2 B|-1-1---1-1----0-0-3----9-9-10-12---1---0--1------|
3 G|-0--2--2--2---0--------9---9-------2---0--0------|
4 D|-2---2-3---3--0--------9-----------3---0--2------|
5 A|-3-----3------2-------11-----------3---2--3------|
6 E|-------1------3-------12-0---------1---3---------|

Listing 2.1: A guitar tab specifying how to play music on a guitar.

Each line of the tab represents a string of the guitar with the letter at the start of the
line indicating the tuning of the string. The numbers indicate the fret in which a string
must be pressed. Guitarists use these tabs to tell each other how to play a particular
song. In their simplest form, tabs are machine-readable and can be used, for example,
to create playable music files. However, in addition to the simple form shown here, there
are countless special notations for notating other playing techniques. This example il-
lustrates how a DSL can be oriented to the respective domain or is even (co-)defined by
the domain experts themselves.

A special form of languages are tagging languages. Tagging languages “logically
[add] information to the tagged DSL model while technically keeping the artifacts sepa-
rated” [GLRR15]. In other words, tagging models refer to elements of an already existing
model and extend it with additional information. Tagging languages can be used for, e.g.,
connecting models to different middlewares [HKKR19], adding communication informa-
tion to models [DJK+19], or adding extra-functional properties to models [MRRW16].

2.4 MontiCore

MontiCore [HR17, HKR21]6 is a language workbench, i.e., it can be used to define DSLs
and create the necessary infrastructure to process models of the language. This section
gives only a brief and superficial introduction to MontiCore. For a more detailed de-
scription of how it works, please refer to [HR17, HKR21]. The infrastructure provided
by MontiCore contains, e.g., parsers, abstract syntax trees (ASTs), and symbol tables.

Fig. 2.2 gives an overview of code generators developed using MontiCore. Overall,
MontiCore first reads in a (set of) models and creates an AST for them. Control scripts
defined using Maven or Gradle provide additional information to MontiCore, such as in
which folders to search for models. The AST created from the models can optionally
be transformed into a representation that is easier to use in the following steps. In the

5The syntax was taken from UltimateGuitar.com. [Online]. Last accessed: 23.05.2021. https://
www.ultimate-guitar.com/lessons/for_beginners/guitar_tabs_template.html

6This section on MontiCore is largely based on [HR17, HKR21]. The information in this section and
parts of the text and figures have been adapted or taken from there.

20

https://www.ultimate-guitar.com/lessons/for_beginners/guitar_tabs_template.html
https://www.ultimate-guitar.com/lessons/for_beginners/guitar_tabs_template.html

2.4 MontiCore

Transform Generate

templates

models

Function

library

Output

AST

Template

Engine

Code,

Reports,

etc

Model

loader

control-

script

Workflow

execution

Input

AST

Read

Figure 2.2: Architecture of (code) generators developed using MontiCore (adapted
from [HR17, HKR21]).

last step, (code) templates can be used to create the desired output artifacts from the
models. The remainder of this section goes into more detail about this process.

The key component of any language is the grammar. The grammar specifies the
context-free syntax rules according to which the models of the language are formed.
The syntax of the grammars itself is based on the extended Backus-Naur form (EBNF).
Grammars mainly consist of terminals, i.e., fixed character strings, and non-terminals,
which are composed of other terminals and non-terminals. Similar to object-oriented
languages, MontiCore offers interface non-terminals and allows extending non-terminals.
Interface non-terminals can be used as placeholders that can be implemented by multiple
non-terminals. Extending a non-terminal introduces an alternative for that non-terminal.
Listing 2.2 demonstrates how to define the if-then-else construct known from many
programming languages.

MCG
1 IfStatement implements MCStatement =
2 "if" "(" condition:Expression ")"
3 thenStatement:MCStatement
4 ("else" elseStatement:MCStatement)?
5 ;

Listing 2.2: A non-terminal defining an If-Then-Else statement (taken from MontiCore’s
MCCommonStatements).

IfStatement defines a non-terminal that implements the interface MCStatement.
MCStatement is an interface non-terminal that acts as a placeholder for most other
statements of the language. As the IfStatement implements MCStatement, it can

21

Chapter 2 Background

be used in all places, where an MCStatement can be present. The non-terminal def-
inition starts with two terminals: "if" and "(". The fact that they are defined as
two separate terminals allows the user to place an arbitrary number of spaces or line
breaks between the terminals. This rule is enabled if a grammar extends MCBasics,
which is the case for most grammars. The terminal for the opening parenthesis is fol-
lowed by a reference to Expression. References to other non-terminals can be named,
here using condition:, to resolve name clashes when the same non-terminal should be
referenced multiple times within the same non-terminal definition. Expression, like
MCStatement, is an interface non-terminal acting as a placeholder for possibly a large
number of different expressions that could be used here in the model. After the terminal
for the closing parenthesis, the thenStatement specifies the MCStatement acting as
the then part of the if-then-else construct. Lastly, an optional else part concludes the
non-terminal definition. The question mark declares the else-terminal and the elseS-
tatement in the parenthesis is optional. For each non-terminal X, MontiCore generates
a Java class called ASTX, where X is replaced by the non-terminal’s name. This class
offers the necessary methods to access the values of the parsed models.

As mentioned above, MontiCore’s grammars are context-free. Context conditions
(CoCos) enable further restricting the allowed models of the language. For every non-
terminal N of grammar G, MontiCore generates a Java interface called LASTXCoCo,
where L and G are replaced by the name of the non-terminal and grammar, respectively.
These interfaces offer a check method that takes an object of the corresponding AST
class as its only argument. MontiCore expects this method to be implemented by the
language designers using hand-written Java code.

If model elements have a name that is referenced by other model elements, using the
AST would be cumbersome. Symbol tables solve this problem by keeping a lookup table
over AST objects. This allows the corresponding AST object to be found for a given
name in a given scope. The details of this mechanism can be found in [HR17].

Overall, MontiCore generates a large amount of infrastructure for languages. However,
since the generated code by its nature always looks very similar, there may be situations
where the language developer is unsatisfied with the generated Java classes. To solve
this problem, MontiCore uses the so-called TOP mechanism. The developer creates a
class with the exact same name as the class that MontiCore would generate. MontiCore
then discovers during the generation of the Java code that the class that should actually
be generated already exists and generates a class with the postfix TOP instead. The
handwritten class can then inherit from this TOP-class. This way it is possible for the
developer to overwrite only the unwanted methods or add new methods without having
to also have the code that can be generated by MontiCore in the handwritten class.

Once MontiCore has parsed the models, and optionally transformed the input AST, it
can generate code, reports, or other artifacts from the models. To do so, the developers
have to provide templates that specify how MontiCore’s internal representation of the
model can be transformed into the desired output artifacts. MontiCore uses Apache

22

2.5 Software Architecture and Architecture Description Languages

Freemarker7 for this generation step. Developers can provide Freemarker templates to
MontiCore that will be used to generate the output artifacts. In this regard, Monti-
Core offers a template controller infrastructure that can help developers to, e.g., replace
specific templates with other templates or provide arguments to templates.

2.5 Software Architecture and Architecture Description
Languages

The more complex software systems are, the higher the potential savings that can be
achieved by reusing already existing software. Parallel to the increase in the level of
abstraction, new languages have also always increased the degree of reuse over the last
decades. After procedural programming languages enabled the reuse of individual code
blocks in the form of functions, object-oriented languages offer the possibility of bundling
data structures and functionality into classes and thus making them reusable as a whole.
With the steadily increasing complexity of software systems, the need for reuse is also
increasing and the focus is gradually shifting towards architecture. On the architecture
level, components, which usually consist of many classes, are wired together in a way
that the desired functionality is achieved. According to [Sie04], the following definition
of software architecture is widely accepted:

Definition 5 (Software Architecture). “The software architecture of a program or com-
puting system is the structure or structures of the system, which comprise software
components, the externally visible properties of those components, and the relation-
ships among them.” [BCK98]8

In this regard, component shall informally be defined as follows:

Definition 6 (Component). “A [component] is a physical encapsulation of related
services according to a published specification.” [Bro10]

In summary, architectures describe systems by interconnecting abstract functional
blocks (the components). The description of these architectures can be done using mod-
els, which are created with so-called ADLs. A special style of ADLs are C&C ADLs.

7Project website. [Online]. Last checked: 23.05.2021. https://freemarker.apache.org/
8In later editions of the book, the authors chose a more abstract definition: “The software architecture

of a system is the set of structures needed to reason about the system, which comprise software
elements, relations among them, and properties of both.” [BCK12]

23

https://freemarker.apache.org/

Chapter 2 Background

In a broader sense, C&C is also a modelling paradigm that can be used independently
of ADLs [Kus21]. C&C architectures describe systems using components that exchange
data via ports connected through connectors. Hierarchically composed components can
thus provide their functionality by reusing other components and connecting their ports
with said connectors. Given that software projects and the expectations of their stake-
holders are sometimes very different, “it is clear that an ideal and general purpose [ADL]
is not likely to exist” [MLM+13]. Accordingly, over the years, a variety of ADLs have
evolved, such as AADL [FGH06], Acme [GMW10], ROOM [SGME92, Sel96], and Mon-
tiArc [Hab16, HRR12]. More extensive surveys and comparisons of ADLs can be found,
e.g., in [MT00, Cle96].

With regard to the context of this thesis, there are also numerous domain-specific
ADLs focused specifically on the development of IoT applications. Prominent examples
include ThingML [HFMH16, MHF17], Calvin (including its extension Kappa) [AP17,
PA15, PA17], FRASAD [NTBG15], and CapeCode [BJK+18]. As outlined in Sec. 2.1,
the development of IoT systems presents developers with numerous tasks, such as access-
ing sensors or providing communication, that arise from the inherent characteristics of
IoT systems. IoT-focused ADLs usually try to separate the different concerns of devel-
oping IoT applications and provide RTEs offering common functionality such as commu-
nication between components. Abstracting from these problems and handling them in a
standardized way is especially important since average web developers are believed not
to be “well equipped to cope with the challenges of IoT system development” [TM17a].
Some model-driven frameworks for the development of IoT applications also focus on
particular challenges such as integrating machine learning (ThingML+ [MRG18]), self-
adaption (MDE4IoT [CS16] and SysML4IoT [HLR17]), or logging [MF19]. A more
extensive survey on MDE in the context of IoT applications can be found in [WMW18].

Overall, there is an emerging trend in architecture development, encouraged by cloud
providers, to make parts of a system available in an independently deployable form.

Definition 7 (Microservice). “Microservices are small applications with a single re-
sponsibility that can be deployed, scaled, and tested independently” [LSCPE18]

It is worth emphasizing that microservices need to be distinguished from components.
Both components and microservices have the goal of making (partial) functionalities of
a software maintainable and reusable independently of each other. Unlike microservices,
however, components are not necessarily deployed in an independent manner. This in-
dependent deployability allows the microservices to scale. Cloud providers like AWS and
Microsoft Azure offer their customers virtually unlimited resources—provided there is
sufficient funding. By using microservices, much-requested application parts can be dy-
namically instantiated to match the current user traffic. This independent deployability

24

2.6 MontiArc

is usually achieved through containers. As Docker is arguably one of the most widely
used container technologies and will also be used in this thesis, we adopt their definitions
of containers and container images:

Definition 8 (Container). “A container is a standard unit of software that packages
up code and all its dependencies so the application runs quickly and reliably from one
computing environment to another.” [wwwa]

Definition 9 (Container Image). “A Docker container image is a lightweight, stan-
dalone, executable package of software that includes everything needed to run an
application: code, runtime, system tools, system libraries, and settings.” [wwwa]

In other words, an image is a template that can be used to create the actual executed
containers; similar to the relationship between classes and objects instantiated from them
in object-oriented programming. Future IoT applications are expected to be built on
such container technologies [TM17a]. In this regard, projects such as Balena9 (formerly
Resin) already offer (Docker) container engines and other infrastructure tailored to the
needs of IoT projects.

2.6 MontiArc

MontiArc10 is a MontiCore-based ADL for the simulation [Hab16] and verifica-
tion [vW20, KPRR20] of distributed systems. MontiArc describes systems as C&C
architectures and has been applied in numerous domains including robotics [ABH+17],
automotive [BMR+17], and avionics [KRRS19]. At its core, MontiArc thus uses com-
ponents whose ports are connected via connectors to specify the data flow of a system.
MontiArc’s ports are typed and directed, i.e., they are either incoming or outgoing.
The types used by ports can either be primitive data types (such as Boolean, String,
or Integer) or be more complex types defined in class diagrams. The necessary class
diagrams for this can be modeled using MontiCore’s class diagrams for analysis (CD4A)

9Balena Website. [Online]. Last accessed: 03. June 2021. Available: https://www.balena.io/
10The MontiArc tool infrastructure [HRR12, RRW13, Hab16, Wor16, BKRW17a] has been described in

many previously published articles. The description in this section is in part based on the descriptions
in [KMR+20b, KRSW22].

25

https://www.balena.io/

Chapter 2 Background

«interface»
LightSensor
light

MontiArcSmartHome

SmartHome

MontiArc

«interface»
Camera<T>
doorCam

«interface»
Microphone
mic

SpeechRecog
speechRec

SmartAssistant
assistant

LightBulb
bedroomLight

DoorLock
lock

FireExtinguisher
fex

FaceDetection
faceDet

embedded automaton
(specifies component behavior)

atomic component
(does not contain subcomponents)

directed
connector

composed component type definition
(contains subcomponents)

port
(directed, typed)

Face

subcomponent
type name

subcomponent
instance name

LightState

Recording

Brightness

Command

Boolean

Cmd

DataStore
store

Image

Query

Result

Figure 2.3: An example for MontiArc’s graphical syntax (taken from [KMR+20b]).

language11. One of the main outputs of MontiArc is generated Java code that can be
used to simulate the specified architecture.

Fig. 2.3 gives an overview of MontiArc’s graphical syntax taken from [KMR+20b].
This exemplary smart home component consists of a SmartHome component, that con-
tains instances of other components as subcomponents. Components that define their
behavior by instantiating and connecting subcomponents are called composed compo-
nents. In contrast, atomic components do not contain subcomponents and use other
means of defining their behavior, e.g., automata. To avoid name conflicts, subcompo-
nents can have instance names. If no explicit instance name is defined, the instance name
is automatically set to the component’s type name with a lowercase first letter. Compo-
nent types can also have generic parameters. For example, the Camera component has
a generic parameter T. Similar to Java, generic parameters can be used to enable a more
flexible reuse of components in other contexts. Interface components [Wor16] provide
means of replacing the implementation of components. This is similar to the interfaces
from Java that can be implemented by multiple classes. Shortly before code generation,
interface components are replaced by regular components. The exact replacement is
defined by bindings, i.e., configuration files [Wor16]. This can be used, e.g., to support

11CD4Analysis Project website. [Online]. Last accessed: 06. June 2021. Available: https://github.
com/MontiCore/cd4analysis.

26

https://github.com/MontiCore/cd4analysis
https://github.com/MontiCore/cd4analysis

2.6 MontiArc

MA
1 component SmartHome {
2 Microphone mic;
3 SpeechRecog speechRec;
4 // ... more subcomponents ...
5

6 mic.record -> speechRec.voiceRecording;
7 // ... more connectors ...
8 }
9

10 component Microphone {
11 port out Recording record;
12

13 // ... behavior specification ...
14 }

Listing 2.3: Excerpt of the textual representation of the MontiArc architecture
in Fig. 2.3.

different technical target platforms [Wor16]. In addition to the graphical syntax, Monti-
Arc also offers a textual syntax. In fact, the graphical syntax exists only for improving
understandability but only the textual syntax is used to write the models read in by
MontiArc. Listing 2.3 shows an excerpt of the textual representation12 of the example
from Fig. 2.3.

MontiArc’s semantics is based on the FOCUS calculus [BS01]. The FOCUS calcu-
lus [BS01, Bro10, RR11] understands components as stream processing functions.

Definition 10 (Stream). “A stream is a finite or infinite sequence of elements of a
given set.” [Bro10].

Streams describe the communication history of components [Bro10]. In MontiArc
this means that the history of messages exchanged between two ports, i.e., connectors,
can be described using streams [Hab16]. Streams exist in both untimed and timed vari-
ants [BS01, Bro10], as well as continuous and dense time [Bro01]. Timed streams include
not only the messages exchanged but also ticks (denoted as “

√
”). Ticks are special mes-

sages that represent time progress. A special case of timed streams are time-synchronous
streams in which there is exactly one message between two ticks. The special message ⊥
denotes the absence of a message. The stream processing functions that MontiArc’s com-

12The concrete textual syntax has been changed since its original definition in [Hab16]. This thesis uses
the (stable) syntax definition of MontiArc 7.

27

Chapter 2 Background

ponents represent map sets of (incoming) streams to sets of (outgoing) streams. More
extensive introductions to the FOCUS calculus can be found in [BS01, RR11]. The ad-
vantage of basing MontiArc on this formal foundation is that it has enabled analyses
such as semantic differencing [BKRW17b] and refinement analysis [RW18].

Over the past few years, numerous extensions for MontiArc have been developed, in-
cluding an automaton behavior specification [Wor16, BKRW17a], support for dynamic
reconfiguration [HKR+16], and variability [BEK+18]. A notable MontiArc-variant called
EmbeddedMontiArc (EMA) focuses on modeling embedded systems [KRRvW18] and es-
pecially the simulation of cooperative driving [FIK+18, KKRZ19]. EMA also includes
the necessary modeling techniques to define the behavior of components using deep learn-
ing [GKR19]. This thesis is mainly based on the standard MontiArc but borrows some
concepts such as tagging ports with communication technology [HKKR19] from Mon-
tiArc’s extensions, e.g., EmbeddedMontiArc [KRRvW18, KRSvW18, KPRS19], where
appropriate.

28

Chapter 3

Scope of the Thesis

This chapter gives an overview of the scope of this thesis, i.e., its assumptions, research
questions, requirements, methodic, and more. We expect interested readers to come back
later to this chapter to lookup certain details, e.g., a certain assumption, while reading
the remainder of this thesis. To make such lookups more efficient, this chapter defines
identifiers (such as “(RQ1)”) that are used throughout this thesis to refer to parts of this
chapter. Sec. 3.1, Sec. 3.2, and Sec. 3.8 give a high-level overview of this thesis.

3.1 Vision and Assumptions

Today, IoT applications often strongly couple hardware and software prod-
ucts [BKK+22]. Manufacturers usually sell hardware for specific software that is
tailored to it. The hardware can then only be used with the hardware manufacturer’s
software. Conversely, this also makes the hardware dependent on the software. Manu-
facturers are able to render hardware that has already been sold unusable by disabling
associated software functionality. They thus have far-reaching leverage to persuade
customers to pay money for the hardware they have already paid for, e.g., in form of
a subscription. In other cases, manufacturers also decide to make hardware unusable
without any alternative options for the user because it no longer fits their own business
strategies1.

In such situations, users are at the mercy of individual manufacturers and functioning
hardware becomes electronic waste, which is neither desirable from a sustainability nor
a customer perspective. Like [AMMK19], for the future, we, therefore, envision that
hardware and software can be sold more independently of each other. Installing new
software on devices with operational hardware could avoid electronic waste for devices
that would otherwise have to be recycled once the software becomes obsolete due to
the tight coupling of hardware and software [DSF21]. We believe that a few platforms
will emerge that enable IoT software to be sold in a kind of app store independent of
the hardware. A similar trend has already occurred in the smartphone market, where

1Klint Finley. Nest’s Hub Shutdown Proves You’re Crazy to Buy Into the Internet of Things. In
Wired.com. [Online]. Last accessed: 11.06.2021. Available: https://www.wired.com/2016/04/
nests-hub-shutdown-proves-youre-crazy-buy-internet-things/.

29

https://www.wired.com/2016/04/nests-hub-shutdown-proves-youre-crazy-buy-internet-things/
https://www.wired.com/2016/04/nests-hub-shutdown-proves-youre-crazy-buy-internet-things/

Chapter 3 Scope of the Thesis

various hardware manufacturers sell smartphones for the Android operating system and
software manufacturers that are independent of them then sell apps that are largely
independent of the hardware [BKK+22]. First standardization efforts such as Apple
HomeKit or Matter2 indicate that a similar movement as in the smartphone market will
also take place for the smart homes sector (as a special case of the IoT). The vision of
such a marketplace is shared by, e.g., [BSS+17], [MM12] and [AMMK19], which propose
architectures for such a marketplace. Similar to the smartphone market, the authors
of [BSS+17] expect multiple marketplaces to emerge.

Such a decoupling of hardware and software also has significant implications for soft-
ware development. While software today is strongly tailored to specific hardware, a
higher level of abstraction will be necessary in the future to achieve this decoupling. As
stated in Chapter 2, model-based or -driven software development is a promising way to
achieve such an abstraction. Unsurprisingly, there are already several model-based and
-driven frameworks focused on IoT application development, e.g., ThingML [HFMH16,
MHF17], Calvin [AP17, PA15, PA17], and FRASAD [NTBG15]. However, these are
usually limited to the specification of components, the generation of code, and the de-
ployment of code. For these largely solved issues, this thesis will, thus, be inspired by
existing research results. Challenges that arise later in the lifecycle of IoT applications
(cf. Sec. 3.2), such as reliability in the context of unreliable hardware or the connection
with digital twins, are mostly disregarded by existing work and left to the developer.

A key component of our vision is the integration of IoT applications into informa-
tion systems. With the help of information systems, users can view data, be actively
notified about particular data by the information system, and influence the (IoT) ap-
plication. We follow a holistic model-driven approach, in which the information system
is also developed using model-driven methodologies. However, this methodology for the
development of information systems is not part of this work. We rely on the MontiGem
framework for the model-driven development of information systems. MontiGem is fur-
ther described, e.g., in [AMN+20, GHK+20, ANV+18]. In this work, only the integration
with MontiGem is discussed where applicable.

The main focus of this work is the (model-driven) development of IoT applications on
the application layer. As outlined in Sec. 2.1, the development of IoT systems comes with
a variety of challenges in a wide range of areas. Therefore, we will make assumptions
in this work through which it is possible to abstract from some technical and network
aspects of development for very resource-constrained systems. With regard to the rapidly
increasing computing power of computers, we assume that these assumptions can be
met by many IoT devices in the near future. Many popular single-board computers that
are also frequently used in IoT applications, such as the Raspberry Pi, already meet

2Matter Project Website. [Online]. Last accessed: 11.06.2021. Available: https://
buildwithmatter.com/

30

https://buildwithmatter.com/
https://buildwithmatter.com/

3.1 Vision and Assumptions

these requirements today. As a result of this vision, we formulate a set of technical
assumptions (TAs):

(TA1) Containerization. IoT devices shall have the capability to execute (Docker) con-
tainers. [KKR+22a, BKK+22] Taivalsaari and Mikkonen [TM17a] expect future
IoT applications to be built on container technologies. We think this vision is
realistic, as the 2022 IoT & Edge Developer Survey [Ecl22] by the Eclipse foun-
dation states that container images (49 %), virtual images (31 %), native binary
(27 %), and script files (22 %) are the “top edge computing artifacts deployed for
IoT solutions”, with a notable increase in the percentage of container images com-
pared to 2021 (30 %). Because of the high adoption rate in cloud applications and
the associated high chance of being widely used in future IoT applications as well,
we chose Docker containers in this work. As mentioned in Sec. 2.5, companies
like Balena already offer IoT-focused Docker engines for this purpose. This as-
sumption helps us abstract away from the technical details of copying software to
IoT devices when deploying applications. For research focused on more technical
aspects of deploying IoT applications, we refer interested readers to the research
of the GeneSIS project [FN19, FNS+19, FNS+20].

(TA2) Linux. IoT devices shall have a Linux-based operating system. [KKR+22a] With
respect to assuming Docker support, we continue to assume that IoT devices use
Linux as their operating system. According to the Eclipse foundation’s 2022 IoT
& Edge Developer Survey [Ecl22], Linux is the most used operating system (43 %)
for constrained devices, followed by FreeRTOS (22 %), not using an operating
system (19 %), and Mbed OS (10 %). Considering that this thesis is essentially
presenting a research prototype and that support for multiple operating systems
is mainly interesting from a product perspective than from a research perspective,
we believe this assumption is justified.

(TA3) Internet access. IoT devices shall have Internet access. [KKR+22a] In some IoT
applications, not all IoT devices have direct Internet access. Instead, these de-
vices are only capable of local communication, for example via Bluetooth. In
these cases, so-called gateways are used that communicate locally with the IoT
devices and enable the exchange of information between the devices and the In-
ternet [TM17a, TM18]. Since this work does not focus on the network aspects of
IoT applications, we abstract from this problem. We believe that this assumption
is realistic as new network technologies such as LTE-M, NB-IoT, and 5G3 pro-
vide Internet access to more and more devices. This belief is shared by [TM17b],
which states that “next generation network technologies [...] will allow direct,
energy-efficient data transfer from devices to the cloud, thus bypassing the need
for gateway devices”.

3A comparison of these technologies can be found, e.g., in [KADAS19]

31

Chapter 3 Scope of the Thesis

(TA4) C++11 Support. IoT devices shall support the C++11 standard and its standard
library. The Eclipse foundation’s 2022 IoT & Edge Developer Survey [Ecl22]
states that C/C++ are the most popular programming languages for constrained
devices. Therefore, the tool presented here, MontiThings, also uses C++. As
a compromise between a certain up-to-dateness and support for older devices,
we have chosen the C++11 standard. In particular, we also assume that the
standard library is supported. This is not always the case for very low-power
devices, e.g., Arduino Uno. In light of the fact that we are targeting future more
powerful devices and assume support for container technologies, we consider this
assumption to be justified. Especially for devices running Linux, this is normally
the case.

Overall, these assumptions are comparable to the requirements for devices execut-
ing the AWS IoT Greengrass Core of AWS’s IoT Greengrass Service for deploying IoT
applications to devices4.

3.2 Lifecycle and Development Process of IoT Applications

The lifecycle of IoT applications can be described using a variant of the MAPE-
K [KC03] loop. The MAPE-K loop describes the autonomic system elements using the
phases monitor, analyze, plan, and execute, which share common knowledge [KC03].
In [TGPH20], the IoT “data life cycle” is described using a similar loop with the phases
“Capture, Communicate, Analyse and Act (C2A2)”. Capture and communicate refer to
the generation and forwarding of (sensor) data. The analyze and act phases evaluate
the data and initiate any necessary actions. In contrast to MAPE-K, however, the
C2A2 loop has a more technical focus, where the authors also assign a layer of the
architecture to each phase.

In contrast to this data-focused lifecycle, [ROL18] presents separate lifecycles for the
IoT devices, services, and applications. Their device lifecycle consists of the following
phases: (Re)construction, Production, Installation and commissioning, Update, Opera-
tion, Decommissioning [ROL18]. This lifecycle includes hardware-specific phases such as
the production of the devices, which are not considered in this work. In comparison, their
IoT services/application lifecycle takes a more software-oriented view, consisting of the
following phases: (Re)construction, Deployment, Execution, Reconfiguration, and Ter-
mination [ROL18]. A whitepaper by Lantronix takes a similar but less detailed approach
and identifies the following phases: Design, Deploy, Manage, Decommission [Lan]. In
conclusion, many lifecycles for IoT systems separate development from deployment and
include an execution phase and an end-of-life phase.

4Setting up AWS IoT Greengrass core devices. [Online]. Last accessed: 25.08.2021.
Available: https://docs.aws.amazon.com/greengrass/v2/developerguide/setting-
up.html#greengrass-v2-requirements

32

https://docs.aws.amazon.com/greengrass/v2/developerguide/setting-up.html#greengrass-v2-requirements
https://docs.aws.amazon.com/greengrass/v2/developerguide/setting-up.html#greengrass-v2-requirements

3.2 Lifecycle and Development Process of IoT Applications

IoTLifecycle

Development Deployment

Termination

Operation

SC

Setup /
Integration Idle Compute

Transformation /
Generation

event
triggered

completed
computation

unresolvable
failure

disconnected

Io
T

Ap
p.

Co
m

pu
ta

ti
on

 n
od

e(
s)

In
fo

rm
at

io
n

Sy
st

em
(s

)

Development /
Deployment Execution

Information
Exchange

completed

next development iteration

next development iteration

Figure 3.1: Lifecycle of model-driven IoT systems.

Fig. 3.1 presents the lifecycle for model-driven IoT systems which we are going to
follow in this thesis. It is conceptually based on the already existing lifecycles above, but
tailored to model-driven development. The lifecycle separates three different concerns:
1) the development and deployment of the IoT application 2) the operation of the IoT
devices 3) the operation of related information systems.

The life of IoT applications starts with a development phase. During this phase,
developers, after eliciting requirements in collaboration with customers, create models
and code that specify the system. The models created in this phase can then be used in
the next step to generate code. In some cases it makes sense to transform the models
before generation, e.g. to add additional functionality or to combine different models.
In the final step, the applications are deployed to the computation nodes. Computation
nodes in this context refer to instances of (parts of) the generated code. Often, the
generated code will be executed by IoT devices but IoT systems may also utilize, e.g.,
cloud systems. This deployment is not necessarily performed by the same developers
who created the application. If a deployment has special requirements, these can be

33

Chapter 3 Scope of the Thesis

better specified by people who know the environment in which the application is to be
executed better than the developers. For example, in smart building management, it
may be desired not to provide smoke detector functionality in a particular room such as
the kitchen to prevent false-positive alarms. This is in accordance with [Zam17], which
distinguishes between global manager and local manager.

The computation nodes start their operation with a setup and integration phase.
During this phase, primarily, connections to communication partners are established.
In the following, the devices process incoming messages in an event-based manner: Ini-
tially, the devices are idle. Whenever an event is triggered, the device processes this
event and switches back to idle mode. The assumption that devices use event-based
processing is based on the fact that many popular model-driven frameworks such as
ThingML [HFMH16, MHF17] and Calvin [AP17, PA15, PA17], as well as IoT-focused
programming languages like Eclipse Mita [wwwb], use event-based processing. Event in
this context is not further specified can refer to a variety of different situations including,
e.g., reception of a message, expiration of a (potentially periodic) timer, or a new sensor
measurement.

Following the “IoT systems never sleep” characteristic from [TM17a] (cf. Sec. 2.1),
individual computation nodes can reach a termination phase, but there is no such phase
on the level of the IoT application as a whole. Instead, an IoT application will be
implicitly terminated, once all its computing nodes are terminated. In our software-
oriented lifecycle, the termination phase can be reached in cases of unresolvable failures.
However, given the circumstances in which IoT devices are used, external influences can
also remove computation nodes from the system. This includes, for example, when the
battery of a battery-powered device can no longer supply power or (in extreme cases)
when a device is physically destroyed. In these cases, however, the devices usually do
not go through a coordinated termination phase but are just removed from the system.
Similar to the separation between the lifecycle of the IoT devices and the IoT services
in [ROL18], this lifecycle does not make any claims about the lifecycle of the IoT devices.
Especially, the physical IoT devices may also be deployed before the software is deployed.

In parallel with the IoT application, our lifecycle includes the operation of one or
more information systems. These information systems can, e.g., be traditional web-
based dashboards that present the IoT devices’ sensor data to users. The information
system may also process data and may, especially, also include digital twins or control
part(s) of the computation nodes. Their lifecycle is not discussed in detail in this thesis,
as the (model-driven) development of information systems is not part of this thesis.
It is, however, important to notice that the lifecycle of these information systems is
independent of the lifecycle of the IoT application. This implies that digital parts of
the IoT system may exist before the IoT devices are deployed, or that the information
system continues to use the IoT systems data even after the last IoT device has already
been removed from the system.

34

3.3 What Do IoT Projects Need?

3.3 What Do IoT Projects Need?

According to an analysis of the 30 most-starred IoT projects on GitHub, “IoT projects
[...] exhibit a more balanced distribution of primary languages, with the most popular
languages being C, C++, Java, Python, and JavaScript” [CDRS20] The 2020 IoT De-
veloper Survey by the Eclipse Foundation supports this claiming that C, C++, Java,
Python, and JavaScript “dominate the IoT space” [Ecl20], where C and C++ are popu-
lar on constrained devices while Java and Python are popular on gateway nodes and in
the cloud. Further, the survey found that “HTTP/ HTTPS (51 %), MQTT (41 %), and
TCP/IP (33 %)” are the leading communication protocols [Ecl20].

One of the implications of a 2013 survey among 48 practitioners [MLM+13] was that
ADLs need to be both easy enough to understand so that they can be used for commu-
nication with stakeholders and formal enough to use them for automated tasks. Another
implication was that practitioners “do not require technical features for verification, code
generation or the like”. Based on the answers to different questions the authors state
that“The need for code generation seems to be case- or project-specific”. Since we do not
know all of the respondents’ specific answers, we can only speculate about the reasons
for this perceived lack of need for code generation. The authors cite one respondent who
states that “architecture description [is] on a too high level”. Based on this and the fact
the respondents mostly used general-purpose ADLs like architecture analysis & design
language (AADL) [FGH06] and ArchiMate [Lt04], we assume this perceived lack of need
originates from a lack of experience with useful generators. The success of projects like
MATLAB Simulink [Mat21] shows that there is a need for code generation. We believe
the heterogeneous and communicative nature of IoT projects will increase the need for
code generation in IoT projects.

Furthermore, a 2020 survey among 433 practitioners [RLC+20] found that “reliabil-
ity, availability, performance, scalability, and security” are the most relevant quality
attributes for IoT applications. Comparing this survey to the existing IoT ADLs like
ThingML [HFMH16, MHF17] and Calvin [AP17, PA15, PA17], we especially see a need
for further taking reliability into account when designing components. While formal
ADLs like MontiArc often focus on analyses, reliability has not been a focus of IoT-
focused ADLs.

3.4 Challenges

There are several challenges to consider when modeling and developing IoT systems. We
distinguish here between technical challenges, i.e., challenges that arise directly from the
hardware used, and modeling challenges, i.e., challenges that complicate the modeling
of these systems. First, we address technical challenges:

35

Chapter 3 Scope of the Thesis

(TC1) Heterogeneous platforms [BKK+22, KKR+22a, KMR+20b]. The devices used
in an IoT system are often very heterogeneous [AP17, HFMH16]. Some of the
devices have only very limited computing power, while others offer almost un-
limited performance as a cloud system. In addition, the available hardware also
differs considerably. Not every sensor and every actuator is available on every
device. And even between sensors of the same type from different manufacturers,
for example two different weight sensors, there can be major differences. This
heterogeneity complicates software development in that not every software com-
ponent can be deployed on every device and the same software functionality may
need to be adapted if it is to be executed by different devices.

(TC2) Intermittent connectivity [KRSW22, KMR21]. IoT devices are very often oper-
ated via wireless networks. The 2022 IoT & Edge Developer Survey [Ecl22] by
the Eclipse foundation names WiFi (36 %), Ethernet (29 %), Cellular (LTE, 4G,
5G, etc) (22 %), and Bluetooth/Bluetooth Smart (20 %) as most used connectiv-
ity protocols. In wireless networks, connectivity can be affected by a variety of
factors. In addition to the conventional radio communication problems such as
attenuation, reflection, refraction, or crosstalk, the mobility of IoT devices can
also cause the network to be abandoned under certain circumstances. A simple
example of this mobility issue is a car connected to the Internet driving through
a dead zone. Consequently, “many devices may have intermittent connectivity
and may thus be unreachable or offline for extended periods of time” [TM17b].

(TC3) Unreliable hardware [KRSW22, KMR21]. IoT devices perceive and interact with
their environment. The sensors and actuators required for this often show signs
of wear over time. Therefore, sensors may provide incorrect values [MNZC20,
KMMN16, FG08]. Errors can appear, e.g., in the form of a constant offset, drift,
temporary failure to provide values, trimmed values (outside a specified interval),
outliers, or noise [JCO17]. In addition, IoT devices can also fail completely.
Reasons for this can be a flat battery or an interrupted network connection. Since
IoT systems often rely on the interaction of many devices, a permanent failure
of the network connection effectively means that the device cannot continue to
perform its service. In conclusion, it cannot be safely assumed that the installed
hardware will always function correctly.

Besides these technical challenges, there are also some modeling challenges that affect
the modeling of IoT systems:

(MC1) Separation of concerns [KRSW22]. While a sensible separation of concerns is
of course necessary in any software development project, this challenge becomes
even more important in IoT projects. Typically, an IoT project involves stake-
holders with different educational backgrounds and goals. Besides software de-
velopers, IoT projects often involve domain experts, user experience experts, and

36

3.5 Research Questions

hardware developers. Even within software development, individual developers
have different areas of expertise. For example, some developers may be primarily
concerned with the user interface, while others are involved with the low-level
development of embedded systems. Because the various experts usually have
only limited knowledge of each other’s areas, a sensible separation of concerns is
necessary.

(MC2) Behavior specification. IoT projects often use the same programming languages
that are also widely used for classical software projects [TM17a] although they
differ from classic projects in many aspects. Using languages that are not de-
signed for use in the IoT context, consequently, sometimes results in hard-to-
understand or unmaintainable code. As an example, Taivalsaari and Mikko-
nen mention the “callback hell” that occurs when many asynchronous event-
handling JavaScript calls are connected [TM17a]. The description of behavior,
often driven by external events, timeouts, and error handling, requires new pro-
gramming and modeling languages.

(MC3) Structural dynamics [KKR+22a]. In many cases, IoT systems are not designed
(or sold) as complete systems. Instead, the system must be able to handle new
hardware being added to the system at runtime. A prominent example of this
are smart home systems where users rarely equip a house completely in one
step. Instead, users are progressively buying new devices such as smart lights or
speakers that expand the overall functionality of the smart home. In contrast,
devices can of course also break and thus fall out of the system (cf. (TC3)). This
means that at the time of initial deployment, the hardware of the system has
not yet been finalized. When modeling IoT systems, these dynamics must be
taken into account in the form of dynamic changes of the component structure
and connectivity.

3.5 Research Questions

This section outlines the research questions addressed in this thesis. The first two re-
search questions serve as a mantle for all other research questions in this thesis:

(RQ1) How to specify C&C-based IoT applications?

This rather general question has already been addressed by various related works.
However, these works usually focus only on a specific aspect (e.g., Calvin [AP17, PA15,
PA17] on deployment) or neglect later phases of the development cycle of IoT applica-
tions. This work, in contrast, provides a framework that addresses later phases of the
lifecycle in particular. For the earlier development phases, this work builds heavily on
existing insights from other work.

37

Chapter 3 Scope of the Thesis

(RQ2) How to deploy C&C-based IoT applications to heterogeneous targets?

(RQ3) How to connect C&C-based IoT applications to target devices?

In order to bring software to the devices of an IoT system, it must first be decided
which devices execute which parts of the software. Depending on the target system, the
software must be adapted to the respective target system. The fact that there may be
a discrepancy between the user’s requirements and the available hardware also needs to
be taken into account when deploying the software. It may also be necessary to make
changes after the initial deployment, for example, when new devices are added to the
system or devices are removed from the system. (RQ2) addresses these deployment chal-
lenges. Nevertheless, low-level technical challenges related to deployment (e.g., copying
scripts to IoT devices) are out of scope here (TA1). In our vision, IoT devices will
be sold in the future independent of the particular software components they execute.
Accordingly, in a second step after deployment, software components must connect to
the devices they are deployed on. In particular, it also implies that the specific sensors
and actuators and the code that accesses them cannot be assumed to be known at de-
sign time. (RQ3) examines how a connection to such independent IoT devices can be
achieved.

(RQ4) How to reliably address malfunctioning hardware in C&C-based IoT applications?

Since it cannot be assumed that the hardware will always function as expected (TC3),
an IoT application must be able to detect and deal with such deviations from the ex-
pected behavior. In naive approaches, excessive error handling leads to a situation where
the business logic is difficult to follow [TM17a]. Therefore, a sensible separation of con-
cerns must be ensured (MC1).

(RQ5) How to handle device failures in C&C-based IoT applications?

In more severe cases of error, hardware may not only behave incorrectly, but devices
may fail completely. However, the failure of individual IoT devices should not lead to
the failure of an entire IoT system if the functionality can be provided by other devices.
It must be taken into account that devices can fail either temporarily (e.g., in the event
of a temporary network failure) or permanently (e.g., in the event of a hardware defect).
This question deals with how these types of errors can be addressed in an automated
way.

(RQ6) How to integrate C&C-based IoT applications with accompanying model-driven
information systems?

(RQ7) How to connect C&C-based IoT applications to their digital twins?

38

3.6 Requirements

IoT systems are often accompanied by information systems that are used, among other
things, to display information about the system to users, or to let users influence the
IoT system. If developers want to connect IoT devices with classic cloud systems, it is
usually necessary to include a library from the cloud provider. At various points in the
code, information is sent to the cloud or accepted by the cloud with this library. Due
to the fact that C&C architectures use clearly defined communication interfaces, there
is the potential to automate parts of this. (RQ7) explores how C&C-based IoT systems
can be interconnected while reducing manual efforts. Digital twins are an increasingly
important part of such information systems. In abstract terms, digital twins provide “an
always in sync digital model” [TJSW18] of the real devices. Thus, if the state of the real
system changes, the state of the digital twin changes likewise and vice versa.

(RQ8) How to monitor and analyze the execution of C&C-based IoT applications?

Over the last few years, iterative development processes have gained substantial pop-
ularity [HSG18]. When developing IoT systems iteratively, it is necessary to be able to
observe the behavior of prototypes of the system to be developed. However, reproduc-
ing and simulating error situations under laboratory conditions is difficult. The reason
for this is that IoT systems can be affected by a variety of external influences. Some
of these, such as a network failure, are not necessarily visible in models that abstract
from such details and are thus hard to detect. This question, therefore, investigates how
(prototypes of) IoT systems can be observed and analyzed.

3.6 Requirements

Following the challenges in designing a model-driven IoT framework, this section names
concrete requirements for designing model-driven IoT frameworks. For each requirement,
we also provide the rationale for why the requirement exists.

(R1) Integration of sensors/actuators [KRSW22]. Sensors and actuators are an integral
part of IoT applications. Accordingly, a modeling framework for IoT applications
must provide a way to incorporate such hardware.

(R2) Executable behavior definition. As with non-IoT applications, it must be possible
to specify the behavior of the application. In the case of IoT applications, the be-
havior usually consists of the interaction of many different devices and components,
which together result in the behavior of the application.

(R3) Integration of previously existing as well as handwritten code [KRSW22]. In most
cases, controlling sensors and actuators requires the use of a sensor-/actuator-
specific library. While more primitive sensors may only apply a value to a digital

39

Chapter 3 Scope of the Thesis

input pin, more integrated sensors can require compliance with complex commu-
nication protocols. The manufacturers usually offer libraries for accessing their
hardware. To be practically usable, IoT frameworks must enable such libraries to
be integrated into the applications. These libraries are often only made available in
a specific programming language. To avoid being limited in the choice of sensors,
the IoT framework must therefore offer the possibility of integrating libraries from
different programming languages.

(R4) Separation of logical and technical architecture [KRSW22]. IoT frameworks should
separate the logical aspects of the specification from the technical aspects (MC1).
This increases the reusability of the models, as IoT applications are used on het-
erogeneous platforms (TC1).

(R5) Error handling [KRSW22]. Alas, sensors sometimes provide incorrect measure-
ments (TC3). IoT frameworks should foster handling erroneous inputs and behav-
ior. This reduces the risk of an error propagating through large parts of the system
and then leading to errors in other parts of the system that are difficult to track
and may be more serious.

(R6) Partitioning of software components. Even though the logical architecture ab-
stracts from the concrete IoT devices, an IoT application must ultimately be
executed on IoT devices. Therefore, it is important that a code generator in a
model-driven IoT framework does not produce a single monolithic executable, but
rather a composite of multiple executables. While we assume in this thesis that
the devices used have some performance capability (cf. (TA1), (TA2)), care must
be taken not to split an application too small in order to reduce the overhead
associated with the split.

(R7) Rule-based deployment [KKR+22a]. Before the application can be executed, the
corresponding application parts must be deployed to the various target devices.
Since IoT devices “are more like cattle that must be managed en masse instead
[of] receiving personal attention and care” [TM17a], such a deployment cannot
be assumed to be done manually. Instead, the system must be provided a set of
rules specifying which parts of the software shall be executed by which devices
(cf. [AP17]).

(R8) Reacting to deployment changes [KKR+22a]. In contrast to more traditional sys-
tems, e.g., web servers, the hardware of IoT systems is often not final at the time of
initial deployment. For example, consider a smart home application. Many users
do not equip their entire home with IoT devices in a single purchase. Instead, only
a handful of devices are installed at first and then later supplemented by more
and more devices. To support such hardware growth, the IoT framework must be
able to respond to a change in available hardware. Conversely, the equipment can

40

3.6 Requirements

also fail. Again, the IoT framework must be able to handle the change in available
hardware.

(R9) Failure handling [KKR+22a, KRSW22].If there are dependencies among the IoT
devices, the failure of a device cannot simply be accepted. Instead, the IoT frame-
work must offer appropriate strategies to adequately respond to failure. A dis-
tinction must be made here between temporary failures and permanent failures.
Particularly in the case of mobile devices, temporary failures can also be caused by
cellular dead spots that can cut off IoT devices from the network. Short-term tem-
porary failures can usually be bridged by caching. In contrast, permanent failures
may require other mechanisms.

(R10) Automatic connection to digital twins [KMR+20b]. Digital twins have taken on
an increasingly important role in IoT projects in recent years. Digital twins offer,
in abstract terms, “an always in sync digital model” [TJSW18] of the real devices.
Major cloud providers such as Microsoft Azure5 or Amazon’s AWS6 accordingly
already provide means for creating such digital twins as part of their IoT suites.
Model-driven IoT frameworks should, therefore, address the challenge of integrat-
ing the resulting applications with such digital twins.

(R11) Tracing of system behavior [KMM+22]. Once an IoT application has been deployed
to real devices outside of a controlled laboratory setup, it is often difficult to
understand why it behaves as it does. One reason for this is the often large number
of different sensor values and relationships between the application parts. A manual
analysis of logs of the devices is possible but very time-consuming. Thus, IoT
frameworks should facilitate the analysis of a running IoT system.

(R12) Reproduction of system behavior [KMR21]. Another challenge in analyzing IoT
systems is that problems encountered by real systems are sometimes difficult to
replicate under laboratory conditions. Due to the often large number of sensors, it
is difficult to recreate error situations. Therefore, to facilitate debugging, an IoT
framework should provide ways to retrospectively reproduce the behavior of IoT
applications on real devices.

5Azure Digital Twins. [Online]. Last accessed: 18.07.2021. Available: https://azure.microsoft.
com/en-us/services/digital-twins/

6AWS IoT Device Shadow service. [Online]. Last accessed: 18.07.2021. Available: https://docs.
aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html

41

https://azure.microsoft.com/en-us/services/digital-twins/
https://azure.microsoft.com/en-us/services/digital-twins/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html

Chapter 3 Scope of the Thesis

3.7 What Is Out of Scope?

As mentioned, the development of IoT systems involves many aspects of many different
domains. It is impossible to cover all these aspects in a single thesis. This section clarifies
which aspects of IoT systems are explicitly not the focus of this work.

Electronics design. Since IoT systems use sensors and actuators to interact with their
environment, it is undeniable that the fabrication and wiring of these sensors can be
part of the development of IoT systems. However, this work deals exclusively with
the creation of software in the context of the development of IoT systems. Of course,
connecting the software to the hardware takes on a crucial role in this thesis. For this, we
use off-the-shelf hardware components. We often rely on the Grove platform7. The Grove
platform offers hundreds of different sensors and actuators for the rapid prototyping of
IoT systems. These sensors can be connected via a standard cable to, e.g., a Raspberry
Pi. Even if the resulting hardware prototypes are of course not ready for the market,
this enables us to test the integration of various hardware components without having
to design the hardware ourselves from scratch.

Network protocols. The MontiThings framework being developed in this work largely
operates on the application layer of the ISO/OSI model [Tan11]. MontiThings compo-
nents let the user abstract from network communications to focus entirely on application
logic. Of course, it is necessary that data is actually transmitted over a network in the
end. However, MontiThings does not provide its own protocols and procedures for this
but instead uses widely used communication frameworks such as message queue telemetry
transport (MQTT). One advantage of using well-known communication frameworks—
besides reducing implementation workload—is that it makes MontiThings potentially
easier to integrate with external ecosystems. Note: The author of this thesis was in-
volved in communication-related research ([KSGW20, SKS+17]), but it is not used in
this thesis.

Security. There is hardly any application that is not exposed to certain security risks.
Attacks can take place at all levels of an application: from compromised passwords to
transceivers that interfere with radio transmissions. Because of the wide range, it is al-
most impossible to claim that a system is “secure”. In particular, it is hardly possible to
predict which new attack vectors will become relevant in the future. From a security per-
spective, the use of a model-driven platform brings both advantages and disadvantages.
On the one hand, developers have to write less code manually. This results in fewer risks
for manual implementation errors. However, if the platform itself has an error, in the

7Grove Project Website. [Online]. Last accessed: 25.07.2021. Available: https://www.
seeedstudio.com/grove.html

42

https://www.seeedstudio.com/grove.html
https://www.seeedstudio.com/grove.html

3.8 Method at a Glance

Glance2

Freemarker
templates

models

Function
library

Output
AST

C++ CodeModel
loader

control-
script

Workflow
execution

Input
AST

MontiThings

handwritten
C++ code

User Input MontiThings
Output

Scripts,
Dockerfiles,
…

Generator

Figure 3.2: High-level overview of MontiThings’ code generation. Figure conceptually
based on [HR17, HKR21].

worst case all applications built on the platform are vulnerable. MontiThings is primar-
ily designed for evaluation purposes in a scientific context. Accordingly, MontiThings
relies on the devices used being secured according to the usual standards (firewall, strong
Wi-Fi password, etc.). However, MontiThings itself does not take any additional secu-
rity measures such as additional encryption of the data exchanged by components. We
consider the use of standard communication protocols to be particularly advantageous
because these frameworks, due to their widespread use, are much better examined for
their security risks than MontiThings can be. It also allows MontiThings to benefit from
any future security improvements to these protocols. Nevertheless, we clearly point out
that MontiThings has not been subjected to any in-depth security audits. Should Mon-
tiThings be considered for large-scale commercial deployments, we recommend doing
extensive security analyses prior to deployment.

3.8 Method at a Glance

This thesis presents the MontiThings framework for the model-driven development and
deployment of IoT applications. The process of developing MontiThings applications
consists of the following steps. Fig. 3.2 and Fig. 3.3 provide a high-level overview of the
code generation process.

43

Chapter 3 Scope of the Thesis

Conclusion3-1

Execute System

Specification /

Implementation

{…}

Integration /

Generation

Monitor / Analyze

System
Deployment

IoT

Developer

Package

Container

Registry

Generate

Component

Target
CodeTarget

Code
C++

Component

Target
CodeTarget

Code
C++

Component

Target
CodeTarget

CodeC++

Generate

Prolog

Plan

Deployment
Configuration

Webapp

Record &

Replayer

Monitor

system

Log Tracing

Webapp Interact with

devices

Device

Owner
User

Set deployment

requirements

Develop

artifacts

Analyze

system

Figure 3.3: High-level overview of iterative development cycle using MontiThings.

1. Develop C&C models that describe the high-level logical architecture of the system.
The components shall be independent of concrete hardware. MontiThings offers a
MontiArc-based (cf. Sec. 2.6) C&C language for this purpose.

2. Connect the hardware-independent components created in the previous step to the
hardware offered by the system. MontiThings offers mechanisms to fill ports with
code that accesses hardware. Further, a configuration language allows configuring
a component’s ports for different platforms. For example, a Raspberry Pi might
give access to a movement sensor via general-purpose input/output (GPIO) pins
while an automotive system accessing a similar piece of hardware might use the
controller area network (CAN) bus instead.

3. Configure the generator and generate C++ code using the C&C models and config-
uration. The generator configuration allows users to en- or disable certain features
of the generator. For example, the user can decide to generate a single standalone
application for easier testing on the developer’s computer instead of generating a
distributed application. After the generation, the generated code can be compiled
and packaged into Docker images using the scripts provided by the generator.

4. The components of the IoT application communicate with several services during
their execution. For example, a message broker like MQTT can be used to allow
components to communicate and a deployment manager decides which device shall

44

3.8 Method at a Glance

execute which components. These services need to be started before the application
is deployed.

5. A device owner can decide rules to adjust the deployment strategies to their needs.
For example, a device owner might require a fire detection component to be exe-
cuted in each room of a building. Once the device owner is satisfied with the deploy-
ment suggested by MontiThings, the MontiThings’ deployment system transfers
the Docker images to the devices and starts the application. The deployment sys-
tem will adapt its decisions as required by the device owner’s rules if devices fail
or get added to the system.

6. During the execution of the system, developers can choose to interact with the
system using services connected to the application. For example, they can use a
log tracing tool (Sec. 7.4) to inspect the application and find the causes of errors.

IoT systems are often developed iteratively. Particularly in the early, experiment-
heavy stages of development, some steps of the development cycle can be skipped. For
example, automated deployment is more relevant in later stages of development and can
be replaced by a manual deployment in early stages.

Based on the insights gained while developing MontiThings and multiple IoT applica-
tions using MontiThings, we advise IoT developers to consider the following recommen-
dations when designing IoT frameworks and applications:

• Clearly separate the execution of the hardware control from the execution of the
application logic. Such a separation offers the possibility to draw an abstraction
layer between the application and the hardware. Model-driven frameworks without
a clear separation, such as ThingML8, often pollute the models with hardware-
specific logic such as refresh rates, analog-to-digital conversion, and the like. This
hardware dependency makes the models less reusable, even if there are only small
differences such as connecting the same sensor to a different digital input port of
the device. Moreover, it simplifies the parallel development of hard- and software.
If the hardware control software is separated from the application logic, it can be
easily replaced by mocks. Thus, it is possible to develop software even before the
hardware development is completed.

• Design for the presence of hardware, but allow to reuse components in different
contexts. MontiThings puts hardware-specific code in ports instead of the compo-
nents. If a port with hardware-specific behavior is connected to another port, this
connection overrides using the hardware-specific code. This is similar to the inher-
itance mechanism of object-oriented programming, where a subclass can override

8Example for a hardware-specific model from the ThingML GitHub project. [Online]. Last ac-
cessed: 25.07.2021. Available: https://github.com/TelluIoT/ThingML/blob/master/org.
thingml.samples/src/main/thingml/samples/_arduino/LM335Sensor.thingml

45

https://github.com/TelluIoT/ThingML/blob/master/org.thingml.samples/src/main/thingml/samples/_arduino/LM335Sensor.thingml
https://github.com/TelluIoT/ThingML/blob/master/org.thingml.samples/src/main/thingml/samples/_arduino/LM335Sensor.thingml

Chapter 3 Scope of the Thesis

the methods of its superclass. By allowing to override the use of hardware-specific
code, components are easier to reuse. It also advocates testing components by
creating wrapper components that contain mock components that mimic the in-
teraction with the hardware.

• Do not include handwritten code or technical details in models. In an early version
of MontiThings, we followed the steps of ThingML and allowed to include hand-
written C++ code in models. ThingML uses custom annotations for this purpose
such as @c_header "#include <EEPROM.h>" [KRSW22]. This problem of
ThingML has also been identified in [DRF22] as leaky abstractions. An important
disadvantage of this approach is that it makes the models less accessible to users
without a deep level of understanding of both the generator and the generator’s tar-
get general purpose programming language (GPL). Instead, we advocate a clear
separation of models and handwritten code. We recommend MontiCore’s TOP
mechanism [HKR21] for this purpose. Similarly, other technical aspects such as IP
addresses should not be part of the model. In an early version, MontiThings al-
lowed to name IP addresses of communication partners in the models. This tightly
bound the models to a single deployment. Instead, we advocate using a separate
configuration that can be read in by the generated code shortly before executing
an application or using mechanisms that do not require such configurations in the
first place. In the case of IP addresses of communication partners, for example,
this could be a central entity to which all components connect and which informs
them about their communication partners.

• Enable device owners to set deployment rules. As mentioned above, [Zam17] sep-
arates global, local managers, and users. Each has different areas of expertise
and wants to apply different policies. Similarly, MontiThings uses the distinction
between IoT developers and device owners in deployment. The clear separation
between hardware and software enables device owners to rules such as wanting
to have a fire detector in each room of a smart home after MontiThings’ code
generator has already been executed.

• Design for unreliability. IoT systems often rely on unreliable hardware (TC3). This
requires designing model-driven IoT platforms to consider failures at each step of
executing an application. This includes, e.g., offering mechanisms to cope with
erroneous sensor values or failing devices. Moreover, it requires a high degree of
dynamism. Traditionally, “continuous” techniques such as continuous integration
or continuous deployment are triggered by source code changes. In IoT systems,
devices can fail and new devices get added to the system. These changes in the sys-
tem’s hardware require the software to adapt itself triggered by hardware changes.
Such continuous deployment has already been explored, e.g., by GeneSIS [FNS+20].

46

3.9 Running Use Case: Smart Home

MotivatingExample

KITCHEN

BATHROOM

BEDROOM

OFFICE

LIVING
ROOM

CORRIDOR

Legend

Smart
Light Bulb

Movement
Sensor

Fire
Alarm

KITCHEN

BATHROOM

BEDROOM

OFFICE

LIVING
ROOM

CORRIDOR

Device
Failure

Smart
SpeakerThermometer

Time progress

Figure 3.4: A smart home at different points of its lifetime. Some devices fail and new
devices get added to the system. Figure taken from [KKR+22a].

MontiThings picks this idea up and extends it with a Prolog-based reasoner that
decides which devices shall execute which pieces of software.

• Design for incompleteness. Many IoT systems are rolled out gradually. IoT sys-
tems often consist of a minimal configuration to which additional devices can be
added. For example, in a smart home, initially, only the traditional lamps could be
replaced by smart lights, and only later, given that the users are satisfied with the
system, are other components such as motion sensors for automatic control of the
lamps added. Designing for incompleteness requires that the system can react to
the addition of new devices (R8). Besides integrating new devices into the system,
IoT developers shall also consider how to integrate “things” that are currently not
equipped with the system’s hardware. For example, in a fleet management system,
users could decide to evaluate the system with only three of their twenty cars be-
fore they buy the hardware for all twenty cars. Developers should consider offering
a method to manually manage the non-equipped vehicles, for example, through a
smartphone app.

47

Chapter 3 Scope of the Thesis

3.9 Running Use Case: Smart Home

Smart homes are amongst the most popular domains for IoT applications [Ecl20,
RLC+20]. Although recent surveys suggest a slowly declining interest [Ecl20], it is still
one of the most relevant domains. Compared to other domains like smart agriculture,
the smart home requires less domain knowledge from the readers of this thesis to follow
the examples. Hence, we will choose a smart home as our application domain whenever
we demonstrate MontiThings in this thesis.

The smart home consists of IoT devices that the residents of the smart home place
in their home to fulfill some overall functionality. For example, smart homes often
contain lighting systems that control the home’s light bulbs or smart speakers (e.g.,
Amazon Echo, Apple Homepod) that enable users to control the smart home using voice
commands. Today, these IoT devices often strongly couple hardware and software, i.e.,
each piece of hardware is shipped with vendor-specific software. Besides supporting a
number of standards proposed mostly by smartphone manufacturers (e.g., Apple Home),
there is often little to no interaction between the devices of different manufacturers.
Standardization initiatives like Matter hope to change this in the future but are still
in the early stages. As mentioned earlier, visions for future IoT applications include
the distribution of IoT applications via app stores. Such distribution models will likely
require the software to integrate with hardware from other vendors.

Unfortunately, many IoT devices are not built to last forever (TC3). Moreover, many
users do not buy all hardware available for their home at once but instead start with
only a few devices and then buy new devices later to augment their existing system. As
a result of these two influences, the hardware available in a smart home often changes
during the lifetime of the application. Fig. 3.4 gives an example of such a smart home
where devices fail over the lifetime of the devices and new devices get added. The software
needs to be able to adapt to such changes in the available hardware. In this example,
a movement sensor and a light bulb failed. The system can try to fix this situation by,
e.g., redeploying parts of the software to other devices that provide hardware similar to
the failed devices. If the application was stateful, the system can also try to recover the
state of the failed software on the new device.

In less severe cases of failure, sensors might also not fail completely but output wrong
values. Smart home systems need to detect such cases and try to limit their impact on
the overall system. As smart homes are distributed systems, which are inherently hard
to debug, it is crucial that the development tools for smart home developers, and IoT
developers in general, offer appropriate error analysis functionalities.

In the following chapters, we will use numerous applications from the smart home
domain to demonstrate MontiThings.

48

Part II

The MontiThings Ecosystem for
Model-Driven IoT Applications

49

Chapter 4

C&C-based IoT Application Development

The core of MontiThings is a C&C architecture description language that describes
the logical functionality of IoT applications. This chapter introduces the MontiThings
language and its integration with associated languages such as class diagrams and the
configuration language. Models written using the MontiThings language will be used in
the next chapter to generate (distributed) IoT applications.

4.1 Research Questions

Overall, this chapter mostly addresses the general question of how to specify C&C-
based IoT applications (RQ1). Multiple other languages for the development of IoT
applications have already been proposed by related work. This includes both C&C-based
ADLs, e.g., ThingML [HFMH16, MHF17], Calvin (including its extension Kappa) [AP17,
PA15, PA17], as well as IoT “programming” languages, e.g., Eclipse Mita [wwwb]. Each
of these languages has its individual strength and weaknesses. MontiThings reuses and
adapts some of their concepts and extends them with new concepts to fix weaknesses
not addressed by any of them. Overall, the MontiThings language aims to answer the
research question:

How to design a modeling language for the specification of distributed IoT applications?

In the course of answering this question, modeling challenges (MC1) - (MC3) need to
be addressed. As the main goal of MontiThings models is to be used as input for a code
generator, this chapter also addresses hardware access (RQ3). As the target hardware
is unreliable (TC3), MontiThings facilitates using error handling mechanisms. Thereby,
this chapter contributes to handling malfunctioning (RQ4) and failing (RQ5) devices.
Further, connecting to heterogeneous platforms (TC1) is addressed by the configuration
language.

4.2 MontiThings Language

The MontiThings C&C ADL is based mainly on the MontiArc ADL (cf. Sec. 2.6) because
MontiArc already offers a C&C ADL built on a solid semantic foundation and enables us

51

Chapter 4 C&C-based IoT Application Development

MontiThingsTeaser

component FireAlarm {
HeatDetector heat;
SmokeDetector smoke;
FireDetector fd;
Alarm alarm;
Sprinkler spr;

heat.temperature -> fd.temp;
smoke.hasDetected -> fd.smoke;
fd.warn -> alarm.isOn;
fd.extinguish -> spr.isOn;

}

1
2
3
4
5
6
7
8
9

10
11
12

MontiThings

HeatDetector
heat

FireAlarm

SmokeDetector
smoke

FireDetector
fd

Alarm
alarm

Sprinkler
spr

component FireDetector {
port in boolean smoke,

in °C temp,
out boolean extinguish, warn;

statechart {
initial state NoFire ; state Evacuate ; state Extinguish ;

NoFire -> Evacuate [smoke || temp > 60 °C] / { warn = true; } ;
Evacuate -> Extinguish [smoke] / { extinguish = true; } ;
Extinguish, Evacuate -> NoFire [!smoke && temp < 40 °C] /
{ warn = false; extinguish = false; };

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Port
(directed, typed)

Connector
(directed)

Composed component
(contains subcomponents)

Atomic component
(does not contain subcomponents)

Subcomponent
type name

Subcomponent
instance name

Statechart
(specifies component

behavior)

Port
(black fill indicates
communication with
external system)

config SmokeDetector for RASPBERRY {
gasValue {
include = ”MQ2Include.ftl";
provide = ”MQ2Provide.ftl";
every 500ms;

}
requires {
hardware: ”MQ2"; // gas sensor

}
}

1
2
3
4
5
6
7
8
9

10

Reference to port name
(complements port with additional

technical information; shown as
black fill in graphical syntax)

MTCFG

Platform name
(different platforms may

configure port differently)

Figure 4.1: A teaser of the graphical and textual syntax of MontiThings. The con-
structs in this figure are explained throughout this chapter. Figure adapted
from [KKR+22a].

52

4.2 MontiThings LanguageLanguageOverview

OCL Project

OCL

OCLExpressions

OptionalOperators

SetExpressions

MontiCore Project
MCCommonStatements

MontiThings

MontiArc Project

MontiArc
ArcBasis

…

SI Units Project

SIUnitTypes4Computing

SIUnitLiterals
…

MCCommonLiterals

CD4A Project

CD4Analysis
type usage

only

MCL

Figure 4.2: Overview of MontiThings’ relation to languages of the MontiVerse. Figure
taken from [KKM+22].

to reuse MontiCore’s large language catalogue [KKM+22]. Consequently, MontiThings’
concrete and abstract syntax are very similar to the concrete and abstract syntax of
MontiArc. Extensions tailor MontiThings to its IoT use case. Fig. 4.1 demonstrates the
MontiThings language. Additionally, MontiThings uses various other languages of the
MontiVerse, i.e., languages offered by the MontiCore project. Fig. 4.2 gives an overview
of the relation between the MontiThings grammar and other grammars of the Monti-
Verse project. Transitive relations are omitted for readability. MontiCore’s MCCommon-
Statements and MCCommonLiterals provide a lightweight Java-like language used
by MontiThings as one way to specify behavior (Sec. 4.2.4). Besides, MontiThings can
also use the MontiVerse’s statechart language that is integrated into MontiArc. The
SIUnitTypes4Computing and SIUnitLiterals extend MontiThings’ type system
with support for SI units. Like MontiArc, MontiThings can also use class diagrams
modeled using the CD4Analysis language. Using parts of the OCL/P language, Mon-
tiThings facilitates specifying pre- and postconditions to catch errors, caused especially
by malfunctioning hardware, as early as possible (RQ4). A selection of MontiVerse gram-
mars used by MontiThings can be found in Appendix B. An overview of MontiThings’
grammars can be found in Appendix C.

4.2.1 Component Definition and Instantiation

Components define the main building blocks of MontiThings. Components consist of an
interface, parameters, behavior, pre- and postconditions, subcomponents, and a state.

53

Chapter 4 C&C-based IoT Application Development

MT
1 component Sink {
2 port in int value;
3 }

Listing 4.1: Definition of a component type Sink with a single incoming port of type
int named value.

MT
1 component Source (int startValue) {
2 port out int value;
3

4 int lastValue = startValue;
5 }

Listing 4.2: Definition of a component type Source with a parameter of type int named
startValue, a single outgoing port of type int named value, and a state
variable of type int named lastValue.

The interface consists of incoming and outgoing ports defining the inputs and outputs
of components. We make a further distinction between atomic components, which do
not contain subcomponents, and composed components, which define their behavior by
instantiating and connecting subcomponents [Hab16]1. However, an interface description
of a component does not reveal whether it is atomic. Atomicity is encapsulated and thus
irrelevant from the users’ perspective.

The example in Listing 4.1 shows the definition of an atomic component type Sink
that consumes values of type int. The Sink contains a single incoming port for con-
suming values. Just like classes in object-oriented languages, components may define
variables. To avoid a possible source of undefined behavior, variables are required to be
initialized when they are defined. By defining a parameter in parenthesis after the com-
ponent type’s name, components can also accept arguments from the components that
instantiate them. These parameters can be used like constants within the component.
As shown in Listing 4.2, a parameter can be used to initialize a variable similar to how
member variables in classes of object-oriented languages are often initialized using the
arguments passed to the constructor.

Neither Source nor Sink define a behavior within the model. Their behavior is, thus,
underspecified. At the language level, this is allowed. The code generator, however,
will require developers to provide a behavior description for every component. If a
component shall explicitly not have a behavior, the component needs to be declared as
an interface component using the corresponding keyword. The idea of using behavior-

1Some publications on MontiArc also call components with subcomponents decomposed components.
Besides the name, there is no difference between composed and decomposed components.

54

4.2 MontiThings Language

MT
1 interface component MathOperation {
2 port in int x;
3 port out int y;
4 }

Listing 4.3: Definition of an interface component type MathOperation. Interface
components have no behavior.

MT
1 component Calc<T extends MathOperation> {
2 port in int x;
3 port out int y;
4

5 T t;
6

7 x -> t.x;
8 t.y -> y;
9 }

Listing 4.4: Definition of a generic component type Calc. The argument passed to the
type parameter T must conform to the interface of MathOperation.

less components for specification is also present in many other C&C languages. For
example, Calvin [AP17, PA15, PA17] uses a similar concept which they call shadow
actor. We adopt the definition from [Wor16]:

Definition 11 (Interface Component). “An interface component is a component with-
out subcomponents, behavior model, or component behavior implementation refer-
ence.” [Wor16]

Interface components in MontiThings serve a similar purpose as interfaces in Java.
Note, however, that [Wor16] used interface components to switch between implemen-
tations for different technical platforms. In contrast, all MontiThings components are
platform-independent. Like in MontiArcAutomaton, MontiThings’ interface components
are declared using the interface keyword, as shown in Listing 4.3.

The main purpose of interface components is to serve as placeholders in generic com-
ponents, i.e., components that accept other component types as arguments, as shown
in Listing 4.4. Type parameters are defined in angle brackets. The name of the type
parameter, T in this example, must be followed by the keyword extends and the name
of an interface component type. On instantiation of this component, a CoCo checks that

55

Chapter 4 C&C-based IoT Application Development

MT
1 component Example {
2 Source source (1);
3 Calc<Doubler> c;
4 Sink sink;
5

6 source.value -> c.x;
7 c.y -> sink.value;
8 }

Listing 4.5: Definition of a composed component type Example.

the interface of the component type provided for T has the same ports as the interface
component. Since the Calc component knows that T conforms to MathOperation, it
can instantiate T and connect its ports. The instantiation is specified in line 5 of List-
ing 4.4. Instantiations start with the component type name followed by an instance
name. The instance name can be used to refer to that component instance within the
instantiating component. We call the instance subcomponent and the instantiating com-
ponent the enclosing component :

Definition 12 (Subcomponent). A subcomponent “instantiate[s] a component type
definition as an element of another component type definition” [Hab16].

Definition 13 (Enclosing Component). The enclosing component (type) of a compo-
nent instance is the component that contains this instance as one of its subcompo-
nents.

Composed components contain other (atomic or composed) components to define their
own behavior. Using the arrow operator (->), composed components can connect ports
with each other (see lines 6-7 in Listing 4.5).

4.2.2 Type System

MontiThings’ type system differentiates component types from the types of variables and
messages sent via ports. The components’ type system was already described in [Hab16]
and in the previous section. MontiThings’ type system for variables and messages builds
upon the primitive types known from Java or C++. Table 4.1 summarizes these primitive
types. Developers can define application specific data types using class diagrams. For

56

4.2 MontiThings Language

Data type Range [Bre07] Description

byte [−128, 127] 8-bit signed integer
int [−231, 231 − 1] 32-bit signed integer
long [−263, 263 − 1] 64-bit signed integer
float [−3.4× 1038, 3.4× 1038] 32-bit IEEE 754 floating point number
double [−1.8× 10308, 1.8× 10308] 64-bit IEEE 754 floating point number
boolean {true,false} Truth value, i.e., either true or false
char N/A a single 16-bit Unicode character
String N/A text that can contain multiple characters

Table 4.1: Primitive data types of MontiThings.

MT
1 component Source (m/s startSpeed) {
2 port out km/h value;
3

4 km/h lastValue = startSpeed;
5 }

Listing 4.6: Definition of a component type Source that uses SI units.

this, MontiThings uses the CD4Analysis language. The integration with class diagrams
is described in more detail in Sec. 4.3.1.

Additionally, MontiThings also extends the SI units language from the MontiVerse.
Therefore, it is also possible to use SI units as normal types. For example, we can adapt
our Source component from the previous section to use a velocity value.

The example also shows that SI values with different SI unit types can be combined
in the same expression. Assigning startSpeed of type m/s to lastValue of type
km/h could be a source of potential errors in traditional programming languages. If
both values are implemented using the same primitive type, e.g., int, developers might
not be aware that they refer to different SI unit types and forget to convert them to
the same SI unit. Since MontiThings is aware of the SI unit, it handles all necessary
conversions automatically. The only requirement is that types of values that are to be
calculated together must be compatible with each other, i.e., there must be a formula
for converting the types into each other. For example, adding m/s to km/h is possible,
but adding m/s to dB is forbidden. This also holds for ports of components. As long as
the types of the ports are compatible, MontiThings will automatically take care of the
necessary conversions. In the generated code, SI units are treated as double values,
unless specified otherwise in the model (by overriding its type using the kg/s<int>
notation).

57

Chapter 4 C&C-based IoT Application Development

4.2.3 Timing

Because MontiThings generates code for real systems (as opposed to a simulation),
MontiThings uses strongly causal event-based time semantics. Components execute their
behavior whenever they receive a message on at least one of their ports. Developers can
control this behavior by bundling ports so that messages on multiple ports are required
in order to trigger a calculation. The execution of the behavior has run-to-completion
semantics, i.e., the execution of the previous behavior always needs to finish before the
next execution may start. This is chosen to avoid hard-to-analyze concurrency problems
for developers when messages are received on ports while the current execution is still
running. Strongly causal means components may only depend on past messages but not
on future messages [BS01, Hab16].

Conceptually, each MontiArc or MontiThings component can be specified by a stream
processing function from the FOCUS calculus [BS01]. The FOCUS calculus defines three
different timing modes: untimed, timed, and time-synchronous. MontiThings’ timing is
similar to the timed mode of FOCUS. Timed streams contain ticks that represent time
progress [BS01]. FOCUS represents time progress with ticks because it is intended for
simulation and the simulation controls the time progress. Since MontiThings generates
code for real systems where time progress is real, ticks in MontiThings do not exist
explicitly in implementation. The ticks exist only in the specification framework behind
MontiThings and are only used to understand the semantics of MontiThings models.
In this sense, each MontiThings port can be specified by a timed stream of messages.
In the implementation, the ports only exchange messages as time progresses naturally.
Conceptually, MontiThings uses ticks with a high enough frequency so that there is
always at most one message between two ticks. Using the tm operator from [BS01], where
tm(s, j) is defined as the “time interval of s in which the jth message in s occurs” [BS01],
we can denote this as:

∀i, j ∈ N : i < j =⇒ tm(s, i) < tm(s, j)

We also assume that the execution of a computational operation on real systems always
has some delay. From a technical point of view, it is very unlikely, that a component
receives two messages at exactly the same time at the same port. With simultaneous
media accesses the messages on the medium usually interfere with each other. Therefore,
medium access control protocols ensure that simultaneous access to a shared medium
is prevented. However, especially in wireless communication, these protocols cannot
prevent all simultaneous accesses, e.g., in the hidden station problem [Tan11]. By using
multiple processors (or processor cores) together with multiple Ethernet cables (for wired
communication) or multiple antennas it is possible to receive two messages at exactly
the same time. MontiThings, thus, needs to define how to handle the situation that two
messages reach the same incoming port at exactly the same time.

58

4.2 MontiThings Language

MT
1 component LowPassFilter (int threshold, int defaultValue) {
2 port in int givenValue;
3 port out int filteredValue;
4

5 behavior givenValue {
6 if (givenValue > threshold) filteredValue = defaultValue;
7 else filteredValue = givenValue;
8 }
9 }

Listing 4.7: Definition of a component type LowPassFilter that replaces messages
higher than a threshold with a default value.

This problem does not exist in MontiArc because developers are only allowed to con-
nect a single connector to each incoming port. If developers want to connect multiple
outgoing ports to the same incoming port, they, thus, have to define a new component
with multiple incoming ports that merges the messages into a single stream. Monti-
Things allows multiple connectors to be connected to an incoming port. This can lead
to situations where multiple messages reach the port at exactly the same time. In this
case, we assume that a merger component exists that resolves this conflict. This compo-
nent has an incoming port for each of the connectors connected to the incoming port in
question and one outgoing port that outputs a stream that merges the streams from all
of its incoming ports. Its behavior, i.e., the strategy by which the streams will be merged
is underspecified. Note that this merger component exists in the conceptual framework
behind MontiThings to model the merging technically realized by the infrastructure.
In practice, it is up to the communication library to decide how to sort simultaneous
messages. Messages that cannot be processed immediately because other message are
still being processed are buffered until the component finishes processing the messages
that were scheduled for earlier processing.

4.2.4 Behavior Description

MontiThings offers four ways of describing the behavior of a component:

1. By instantiating and connecting subcomponents

2. Using a lightweight IoT-focused Java-like language

3. Using Statecharts (SCs)

4. Using handwritten C++ code2

2This uses the generation gap pattern [Fow10]

59

Chapter 4 C&C-based IoT Application Development

MT
1 component Source {
2 port out int value;
3

4 int lastValue = 0;
5

6 every 1s {
7 value = lastValue++;
8 after 500ms {
9 log ("Source: " + value);

10 }
11 }
12 }

Listing 4.8: Definition of a component Source with a periodic behavior.

The first method was already shown in Listing 4.5. The lightweight Java-like behavior
description language uses MontiCore’s MCCommonStatements. This Java-like language
provides Java’s most important programming constructs such as if conditions, loops,
or function calls. The example in Listing 4.7 defines the behavior of a component using
this language.

Between the behavior keyword in line 5 and the opening curly brace, developers
may reference an arbitrary number of comma-separated incoming ports. These groups of
ports are very similar to ParameterSets from unified modeling language (UML) activity
diagrams [Obj17, clause 16.3.4.5]. The behavior will be executed when a message can
be consumed on each of the referenced ports. If no port is referenced, the behavior will
be executed when a message arrives on any port. Within the behavior, developers may
only access the ports which were mentioned after the behavior keyword. Outgoing
ports are write-only. As soon as a value is written to an outgoing port the message
will be sent immediately without waiting for the behavior block to finish executing.
Therefore, x=1; x=1 sends two messages and, thus, differs from x=1. It is possible to
define multiple behaviors for multiple ports, but the groups of ports mentioned after the
behavior keyword may not be subsets of one another.

A second form enables developers to trigger a cyclic execution of a component. For
this, developers use the every keyword followed by a time duration and a block of code
that shall be executed periodically (Listing 4.8). This concept is also present in Eclipse
Mita [wwwb], an IoT-focused C-like programming language. Given that IoT devices
may have resource-constraint hardware and behavior blocks may contain complex code,
the execution may finish after the specified interval. In this case, MontiThings will log
a warning and continue with the next execution directly after the preceding execution
finishes.

60

4.2 MontiThings Language

MT
1 component Example {
2 Loop loop;
3 loop.output -> loop.input;
4 }
5

6 component Loop {
7 port in int input;
8 port out int output;
9

10 init {
11 output = 0;
12 }
13

14 behavior input {
15 log("Input: " + input);
16 after 1s {
17 output = input + 1;
18 }
19 }
20 }

Listing 4.9: A component that sends messages to itself in an endless loop.

Using the after keyword, a block of code can be delayed. In contrast to calling a de-
lay function which effectively puts the program to sleep, as known from, e.g., Arduino,
the after block delays a block of code asynchronously. This means that the code block
of the after statement is executed after the specified delay, but code below the block of
the after statement is executed immediately. The time until the execution of the after
block is always measured from the time the execution reaches the after statement, as
opposed to the time the behavior was started. For example, log("a"); after 500ms
{log("b");} after 200ms {log("c");} log("d"); would print adcb.

There is third a variant of behavior called init. The init behavior is executed only
on the first message on the referenced port(s). If the init behavior does not reference
any ports, it is executed immediately when starting the component before processing
any message. This is similar to the setup() function from Arduino. The idea behind
this is to enable developers to initialize sensors or actuators that might be connected
to the component. For example, if you consider a weight sensor, these weight sensors
often have no clearly defined zero. Therefore, many scales automatically set the current
weight as zero when being turned on. This is called the tare weight. Using the init such
initialization functionalities can also be achieved in MontiThings. It is also possible to
combine init, behavior, and every in the same component. For example, developers
can create an endless loop if a component sends messages to itself, as shown in Listing 4.9.

61

Chapter 4 C&C-based IoT Application Development

MT
1 component LightBulb {
2 port in String command;
3 port out boolean lightSwitch;
4

5 statechart {
6 initial state Off ;
7 state On ;
8

9 Off -> On [command == "on"] / {
10 lightSwitch = true;
11 };
12 On -> Off [command == "off"] / {
13 lightSwitch = false;
14 };
15 }
16 }

Listing 4.10: A component for a smart light bulb that turns on or off based on voice
commands from the user.

In time-synchronous MontiArc, such self-loops are forbidden because components
could send messages to themselves that need to be processed in the same time slice
as the message that triggered the computation. More generally, feedback loops require a
delay in the loop [RR11]. As MontiThings does not allow components to output messages
in the same time slice that triggered the computation, such self-loops are automatically
delayed, because MontiThings conceptually always ensures a delay. This delay is not an
artificially added delay, but exists naturally because the execution of computing oper-
ations always requires processing time. Therefore, components cannot instantaneously
use their own output as input in a feedback loop.

The third option to define the behavior of components is by using statecharts. For
this purpose, MontiThings uses the MontiVerse’s statechart language. In the example
in Listing 4.10, a (very simple) smart light bulb is controlled via voice commands from
the user. How the voice commands are converted into text is irrelevant for this example,
but usually, a different component would make use of a third-party service like Microsoft
Azure’s Speech to Text or AWS’s Amazon Transcribe service for this purpose. Initially,
the light is off. If the voice command is "on" the light bulb is turned on by sending
a message on the lightSwitch port. Similarly, if the voice command is "off" the
light bulb is turned off. If the voice command refers to the current state, the component
ignores the command.

62

4.2 MontiThings Language

MT
1 component RunningSum {
2 port in int input;
3 port out int result;
4

5 int cumulativeSum = 0;
6

7 pre input >= input@pre;
8 catch { input = 0; }
9

10 behavior input {
11 cumulativeSum += input;
12 result = cumulativeSum;
13 }
14

15 post cumulativeSum == cumulativeSum@pre + input;
16 }

Listing 4.11: A component that calculates a running sum and for monotonically
increasing values.

4.2.5 OCL

As MontiThings is an IoT-focused language, there are usually lots of error checks required
to get the application to execute reliably (TC3). Studies suggest that a higher assertion
density in code leads to lowered fault density [KNB06, CDO+15]3. Nevertheless, an
analysis of GitHub projects showed that assertions are used “often sparingly” [CDO+15].
Thus, MontiThings aims to make it easy to specify assertions in components. To do
so, MontiThings also incorporates expressions from a programming-focused adaption of
the OCL [Obj14] called OCL/P [Rum17]. These expressions enable developers to define
pre- and postconditions for the behavior without cluttering the business logic inside the
behavior blocks. Components evaluate preconditions after receiving a message on a port
and before executing the corresponding behavior for this message. Postconditions are
evaluated after requesting to send a message on an ongoing port and the message is
sent only if the postcondition evaluates to true. Additionally, postconditions are also
evaluated after the component’s behavior finishes to ensure the component is in a valid
state before processing the next message.

Preconditions enable developers to detect hardware errors before they are processed
further by the system and corresponding subsequent errors make the actual cause of the
error more difficult to detect. Similarly, developers can also use it to safeguard compo-

3A study of industrial telecom systems could not link the number of assertions and defects [CHS+17].
The expressiveness of this result is, however, limited by the fact that only two industrial telecom
systems were analyzed.

63

Chapter 4 C&C-based IoT Application Development

MT
1 component FilterPrimes {
2 port in int i;
3 port out int o;
4

5 behavior i {
6 if (!exists x in {2 .. i-1}: i % x == 0) {
7 o = i;
8 }
9 }

10 }

Listing 4.12: A component that takes an integer and only forwards it if it is a prime
number.

nents against inputs that do not conform to the component’s specification. Preconditions
thus take on a role similar to that of context conditions in language development: While
the data type of a port assures the basic structure of the data, preconditions can specify
additional conditions, such as that the stream of messages on an incoming port con-
sists of monotonically increasing values (line 7 in Listing 4.11). Such conditions about
the sequence of the data cannot be specified by the data type alone. Postconditions,
on the other hand, can be used similarly to assert statements of C/C++ and ensure
that the stream of outgoing messages meets the component’s specification. Thereby,
postconditions can prevent error propagation in case of implementation errors. If pre-
and postconditions depend on values from the past, they will only be evaluated if all
these values are present. A condition like the example above for checking monotonically
increasing values, which refers to a value from the previous execution, would thus be
considered the first time during the second execution.

When a pre- or postcondition is violated, MontiThings offers two possible coping
strategies. First, developers can specify a catch-block after the pre- or postcondition
(line 8 in Listing 4.11). Similar to a catch statement in Java, this block of code
will be executed if the pre- or postcondition is violated. Conceptually, conditions with
a catch statement act as components upstream (i.e., before the incoming ports) or
downstream (i.e., behind the outgoing ports) of the actual component that only forward
messages if the conditions are not violated. Developers can use this block to specify
how the component shall handle the situation, e.g., by using a sensible default value
instead of the actual value. If no catch-block is provided, MontiThings will stop the
corresponding component and log the current state and the violated condition. This type
of error behavior is called fail fast [Sho04]. By immediately stopping the component if it
deviates from its specification, MontiThings prevents error propagation that would lead
to even harder to detect errors later or in other components.

64

4.2 MontiThings Language

The example in Listing 4.11 shows how pre- and postconditions can ensure that a
RunningSum component only runs on monotonically increasing values. The pre state-
ment specifies that the message on the input port has to be at least the value of the
previous message on the port (line 7 in Listing 4.11). The @pre keyword also refers to
the state before the execution of the most recent computation (line 15 in Listing 4.11).
If used on a port in a precondition, it accordingly refers to the message processed by the
previous computation. In case the input message is not at least as high as the previous
input, the component will overwrite the input message with zero, thereby leaving the
state unchanged. The postcondition (line 15 in Listing 4.11) ensures that the state of
the component changed according to the specification during the computation, i.e., that
the cumulativeSum variable is increased by the value of the input message.

For IoT systems, programming with time is very important. Therefore, MontiThings
offers an extension to the @pre notation from OCL. The @ago can be attached to
ports and variables to refer to their value a certain period of time ago. For example,
cumulativeSum@ago(2s) would refer to the value the cumulativeSum variable had
two seconds ago. For memory management reasons (cf. Sec. 5.3), only constant time
durations can be used in @ago expressions. As components are strongly causal and,
thus, cannot look into the future, negative time values in the @ago expression are not
allowed.

Aside from pre- and postcondition, OCL expressions can also be used like normal
boolean expressions in other behavior blocks (Listing 4.12). This can be useful especially
for OCL expressions using sets because it enables developers to efficiently write up the
intent of calculations that would otherwise be implemented in loops. For example, this
can be used to specify a component that filters prime numbers, i.e., discards all incoming
messages that are not prime numbers, and forwards the messages that refer to prime
numbers. Using OCL, the fact that a number is a prime number can be directly specified
by using the fact that for each prime number, there exists no number between two and
the number itself minus one that divides it without a remainder.

The last option to specify component behavior is to use handwritten C++ code.
Using MontiCore’s TOP mechanism [HKR21], users can override any code file generated
by MontiThings. Therefore, it is also possible to provide the implementation for a
component using handwritten C++ code. Developers who want to provide such C++
code need to provide a file with the name CompImpl.cpp where Comp is replaced by
the component’s name. In this file, they implement a compute() method provided by
generated CompImplTOP class. In this method, developers can access the component’s
interface and state. We recommend only using handwritten C++ code if the behavior
language cannot be used. For example, if a component wants to access a third-party
service like a cloud service provided by, e.g., Microsoft Azure or AWS. Such cloud
services usually provide dedicated (C++) APIs that cannot be accessed in MontiThings’
behavior language. As the API is inaccessible in MontiThings, it may be necessary to
access these services by using handwritten C++ code.

65

Chapter 4 C&C-based IoT Application Development

ExternalConnectors

Smoke
Sensor

FireExtinguisher

Fire
Detector

MontiThings

Temp.
(∘C)

C++

Temperature
Sensor Py

CO2
(PPM)

Sprinkler Py

Siren Java

external
connector

MontiThings communicates
via ports with external
system components

External connectors
may use different
development
approaches

Boolean
(On/Off)

Boolean
(On/Off)

System boundary

Figure 4.3: MontiThings’ system boundary is at the hardware access. External services
can be used to access sensors, actuators, and other hardware via ports.4

4.2.6 Sensor and Actuator Access

An important part of IoT applications is the integration with sensors and actuators, or
more generally, hardware. IoT devices are very heterogeneous (TC1) and accessing the
same kind of sensor, e.g., a temperature sensor, may need to be implemented differently
for different platforms. MontiThings’ vision is to decouple the development of hardware
and software (Sec. 3.1). The software components generated using MontiThings are to
be deployed on general-purpose hardware that is not necessarily provided by the same
vendor as the software. Therefore, MontiThings’ decouples the hardware access from
the specification of the software. This general idea of decoupling external software from
the IoT application is in line with the approach proposed in [AMMK19] that, however,
is not related to a modeling language.

Fig. 4.3 shows how MontiThings components may connect to external hardware such
as sensors and actuators. As MontiThings’ system boundary lies at the hardware access
of a component, this communication with external services is done via ports (shown with
black filling in Fig. 4.3). MontiThings expects that the devices on which the generated
components are deployed will offer small services, called external connectors, via which
components can access the hardware. Conceptually, these external connectors have the
role of drivers. Using a configuration language (Sec. 4.3.2), developers can further specify
what this connection looks like.

Compared to other IoT languages like ThingML [HFMH16, MHF17] and
Calvin [AP17, PA15, PA17], this approach provides the advantage, that the ex-
ternal connectors can be implemented in different languages than MontiThings’ target
language C++. From our experience with dozens of sensors and actuators for the Rasp-
berry Pi platform, most of them provide either drivers for Python or C/C++. Without

4This figure has been used as part of various lectures of our chair, e.g., the Model-based Systems
Engineering lecture.

66

4.2 MontiThings Language

this mechanism, the Python-based drivers would require developers to either adapt
them to C/C++ or to use a different piece of hardware. By enabling the integration
of software written in different languages, MontiThings offers more flexibility in the
choice of hardware. CapeCode’s [BJK+18] accessor pattern is similar in that it tries to
integrate third-party software into the architecture. The accessor pattern uses a special
component that has the purpose of accessing the hardware and making it available
to the rest of the architecture. MontiThings on the other hand uses ports instead of
components to access hardware. By using ports instead of components, the hardware
access happens via clearly defined interfaces and can be checked, e.g., using pre- and
postconditions as described in Sec. 4.2.5.

In many applications, however, the hardware access does not only happen at the out-
ermost component but also at components deeper in the component hierarchy. Directly
accessing the hardware there with an unconnected port would, however, be in violation
of FOCUS. Therefore, MontiThings offers an automatic transformation that can add and
connect unconnected ports to the interfaces of the components that instantiate them.
Using this mechanism, developers can use hardware access in components deep within
the hierarchy, while developers who want to use FOCUS-based verification tools like
MontiBelle [KPRR20] can still get a consistent architecture.

It is important to note here that while we draw ports that could access sensors
with a black filling in the graphical models, these ports are indistinguishable from nor-
mal ports in the textual model. Indicating in the model that a port access hardware
would limit the composability of this component. This is in contrast to approaches like
ROOM [SGME92, Sel96] and UML modeling and analysis of real-time and embedded
systems (MARTE) [Sel08] that distinguish between ports that connect components and
ports that connect to underlying infrastructure5. Instead, MontiThings uses a priority
mechanism similar to inheritance from object-oriented languages. If a port is uncon-
nected and developers provide a configuration that enables it to access hardware, this
port will access said hardware. If instead, the port is connected to another port in the
architecture, the port is treated as a regular port while ignoring all hardware-related
configurations. Conceptually, this means that the component that instantiates a sub-
component has the power to override its subcomponent’s decision to access hardware by
connecting the port to another port.

Especially, this also enables developers to use components that are supposed to access
hardware in test environments where the component is connected to components that
provide test data or validate outputs of the system under test. Also, this makes it easy
to use mock components instead of real hardware in the early stages of the development
where the hardware might not even have been developed. Later once the real hardware

5In ROOM’s and MARTE’s layered architecture service access points and service provision point con-
nect different layers of the architecture.

67

Chapter 4 C&C-based IoT Application Development

DynamicsConcept

MT

Environment

DeploymentManager

Hardware
Changes

Dynamics
Manager

Application

(Outermost
Component)

Component

Dynamically
instantiated

«concept»

CoComponent

Figure 4.4: Conceptual overview of MontiThings’ dynamics. The environment informs
the deployment manager about hardware changes. As a result, the dynamics
manager may choose to instantiate components. Their interface is given
to the outermost component of the application modeled by the developers.
Figure adapted from [KKR+22a].

exists, these mock components can be removed. Compared to other IoT languages,
MontiThings components are, thus, more flexible to reuse.

4.2.7 Dynamic Reconfiguration

IoT systems are often dynamic (MC3), i.e., need to handle component instances joining
and leaving during the runtime of the system. A special characteristic is that the system
itself does not decide when dynamic changes occur. Instead, the changes are triggered by
hardware being added to the system or hardware failing or being removed deliberately.
The system thus needs to be able to react to new software components being instan-
tiated or removed as a result of hardware changes. How the system determines which
software components to instantiate based on the available hardware is further discussed
in Chapter 6.

Conceptually, MontiThings handles such dynamics by enabling components to ex-
change their interfaces via ports and connect to or disconnect from interfaces received
via ports. Intuitively, the concept behind this is similar to two people exchanging busi-
ness cards containing their contact information. Components do not always have to give
out their entire interface, just as business cards do not necessarily contain all possible
ways to reach a person (for example omitting the private cell phone number). By imple-
menting an interface component that references only parts of the component’s interface,

68

4.2 MontiThings Language

developers can specify the ports to be exchanged. Once one receives the business card
of the other, the person receiving the business card can contact the person to whom
the business card belongs. Consequently, the components whose interface a component
receives do not become subcomponents of this component, even if it connects to it. The
component that receives (parts of) an interface of another component has no possibility
to delete this component. Also, the component that receives the interface of another
component has no guarantees that this component will stay available forever. If a dy-
namically instantiated component becomes unavailable this can lead to two situations:
If the removed component is connected to an incoming port of another component, this
component will no longer receive messages on this port. If the removed component is
connected to an outgoing port of another component, this component can still send
messages on its outgoing port but they will not be received by the removed component.
This is equivalent to connecting the port to an empty “Sink” component that discards
all incoming messages.

Fig. 4.4 gives a conceptual overview of how MontiThings implements this concept.
The Application, i.e., the outermost component provided by the developers is conceptu-
ally instantiated by a DeploymentManager component. This DeploymentManager gets
informed about hardware changes by the Environment. Hardware changes include all
modifications to the technical infrastructure, e.g., adding devices, removing devices, or
failing sensors. Based on this information, the DynamicsManager may choose to instan-
tiate components or remove component instances it previously instantiated.

The DynamicsManager is the only component that can instantiate components. The
reason for this is that MontiThings’ goal is to react to hardware changes that can not be
prescribed by the software. Accordingly, the MontiThings language does not offer means
to instantiate components (no new operator). As the DynamicsManager is the only
component that is explicitly allowed to instantiate components, its code is handwritten
so that it can instantiate components despite the language not offering a way to do so.
Chapter 6 describes in more detail how the Deployment- and DynamicsManager decide
which components to instantiate. To summarize, the global and local managers define
technical requirements of components and additional rules they want the deployment to
fulfill. The dynamics manager then uses a Prolog-based code generator to find suitable
deployments or make suggestions if no deployment can fulfill all rules.

For each of the instantiated components, the DynamicsManager provides the interface
of the instantiated component (its “business card”) to the application (CoComponent in
Fig. 4.4). How this interface is integrated into the component hierarchy by connecting to
it is determined by the application, i.e., by the specification provided by the developers.
For the dynamic reconfiguration, developers are allowed to also add a behavior to
composed components. The behavior of composed components may also use the syntax
of connectors (->) as a statement to connect to the received interfaces. Similarly, a
disconnect statement (-/>) enables developers to remove the connection to an interface
if the application is informed that the component no longer exists. Thereby, developers

69

Chapter 4 C&C-based IoT Application Development

DynamicsExample2

SmartSpeaker

Microphone

Speaker

MontiThings

CoMicrophone

CD

Connector created
at run time

Automatically created
interfaces of component

(“business card”)

CoAudioProvider

AudioProviderCoAudioProvider

At runtime, SmartSpeaker
receives the information that a
AudioProvider component exists

port in
CoAudioProvider input;

behavior input {
input -> speaker.in;

}

1
2
3
4
5
6

…
MT

Figure 4.5: Example for using dynamic reconfiguration: A smart speaker gets connected
to a microphone at runtime. Figure conceptually based on [KKR+22a].

can reduce wasting network resources by stopping to send messages to components that
no longer exist. To prevent developers from introducing a behavior to composed compo-
nents that is unrelated to reconfiguration, the behavior blocks of composed components
are not allowed to send messages on the outgoing ports of the composed component
or send messages to subcomponents. The only exception to this rule is that composed
components are allowed to forward the received component interfaces to their subcom-
ponents.

Fig. 4.5 gives an example of this dynamic reconfiguration using a smart speaker, e.g.,
Apple Homepod or Amazon Alexa. In this example, the microphone is only added dy-
namically at runtime, so that it can also be provided, e.g., by the microphone of a nearby
smartphone. The SmartSpeaker component only knows that it wants to connect to
an abstract AudioProvider component and accepts a CoAudioProvider object ac-
cordingly (lines 1-2 in the code excerpt in Fig. 4.5). The microphone component that
is to be dynamically connected at runtime extends this AudioProvider component.
Accordingly, CoMicrophone also extends CoAudioProvider and is thus accepted
by SmartSpeaker. If the SmartSpeaker component receives a CoAudioProvider

70

4.2 MontiThings Language

object on its input port, it creates a new connector to its speaker subcomponent (lines
4-6 in the code excerpt in Fig. 4.5).

Dynamic reconfiguration is also considered by other IoT-focused C&C ADLs.
Calvin [AP17, PA15, PA17] uses a similar mechanism for dynamics where components
are instantiated based on rules. Unlike MontiThings, however, Calvin does not explicitly
inform components about the appearance or disappearance of components. Instead,
they only start sending messages on the same channels that might already exist and be
also in use by other copies of the same component instance. Effectively, this restricts
Calvin to allowing multiple instances of components within the predefined architecture.
MontiThings offers a more expressive form of dynamics where components can also
create new connections at runtime and composed components are aware of their
subcomponents’ new connectors by explicitly creating them.

CapeCode [BJK+18] offers a concept called accessors. Accessors act as proxies for
hardware accesses or, more general, external services that shall be integrated into the
C&C architecture. Accessors can also be sent via ports, including their source code.
Thereby, receiving components are able to execute the received code. In contrast, Mon-
tiThings does not allow components to modify their behavior specification at runtime.
Instantiating components in MontiThings is only needed to adapt to changes to the un-
derlying hardware infrastructure. MontiThings’ mechanism of only connecting to the
new software components works similarly to using a received accessor as the behav-
ior specification of an existing component. However, by not modifying the behavior
of existing components, MontiThings makes it explicit that the connection to this new
component is volatile because the hardware that triggered the new behavior is not guar-
anteed to exist forever. Since CapeCode uses JavaScript, it can also add completely
new behavior at runtime. While technically MontiThings’ implementation would allow
instantiating components of component types unknown at design time6, MontiThings
does not allow this. We think adding behavior specifications that were unknown at de-
sign time can make the overall business logic harder to understand and in some cases
introduce security issues.

MDE4IoT [CS16] is a language-independent framework that considers dynamics with
a focus on self-adaption. Since MDE4IoT is language-independent, it provides no specific
mechanisms for dynamics. Its street light example treats dynamics only in the sense of
a re-allocation of failed software components to new hardware components.

6For example, when using MQTT as a message broker (cf. Chapter 5), this could be achieved by
instantiating new a Docker container containing software that first connects to the MQTT broker
and then starts sending MontiThings-compatible messages.

71

Chapter 4 C&C-based IoT Application Development

enum Color { Red, Green, Blue, Yellow; }1

CD4A…
class diagram
(incomplete view)

Color convert (uint_8 element);
uint8_t convert (Color element);

Cd4aAdapter4

C++

Java

CD4A

PortComponent
Impl-File

CD4A

Port

C++

Component
Impl-File

ColorDiagramAdapter Serialize /
Deserialize

to JSON

enum Color { Red, Green, Blue, Yellow; }1

CD4A…
class diagram
(incomplete view)

Cpp { from <cinttypes> import uint8_t as Color; }1
AdapterC++ types

Figure 4.6: Adapters can specify that class diagram types shall be converted to a type of
a target language to facilitate the integration with hand-written code. Figure
taken from [KRSW22].

4.3 Language Integration

The MontiThings ecosystem consists of more languages than the ADL. This section
describes their purpose and integration with the MontiThings ADL. Another standalone
language for integrating MontiThings with digital twins is described in Sec. 6.6.

4.3.1 Integration With Class Diagrams

Class diagrams enable developers to specify the data types components exchange via
ports. For this purpose, MontiThings uses the CD4Code language, a variant of the
CD4Analysis language of the MontiVerse. As MontiCore’s symbol tables can be serial-
ized into a standardized JSON format, MontiThings and the CD4Code project are inde-
pendent of each other. MontiThings imports the serialized symbol tables from CD4Code
models and thus makes the types defined by CD4Code models available to MontiThings’
type system. To not require developers to work with tools of different languages and
know the order in which to process models, MontiThings’ generator and command line
tool can also automatically serialize CD4Code files.

72

4.3 Language Integration

However, in some situations it is not appropriate to require developers to use generated
classes, even if they can be customized using the TOP mechanism. Libraries of the target
language (C++) build on types supplied by the language in addition to self-defined
types. If developers want to use libraries, they must convert the generated classes thus
into other types. To systematize this process MontiThings offers an adapter language.
The principle of this language is shown in Fig. 4.6. The adapter language is a tagging
language (cf. Sec. 2.3) that can be used to assign types of a target language to types
defined in class diagrams. One can specify for a class diagram type which type of the
target language it corresponds to and which package / header is necessary to import
this type. These statements of the adapter language are based on the import statements
of Python. For instance, the example in Fig. 4.6 specifies that the enum Color in
the target language C++ could also correspond to the type uint8_t and that to use
uint8_t the <cinttypes> header must be imported.

For each class diagram that has an adapter, the generator creates an adapter class
(here: ColorDiagramAdapter) that declares two convert methods for each adapted
type. One of the methods converts from the class diagram type to the target language
type, the other provides the reverse direction. These methods must be implemented by
the developer via TOP mechanism. The generator then uses these methods to provide
the converted types to the developer of the handwritten code in addition to the class
diagram types, and to receive the converted types from the developer. For example,
using the adapter in Fig. 4.6, each port of type Color could also be assigned a value
of type uint8_t. MontiThings then takes care of converting the objects back to class
diagram types before forwarding them to other model elements (e.g., ports) or even other
systems such as MontiGem.

4.3.2 Configuration Language

The main purpose of MontiThings is to create distributed IoT applications. Generating
code for such applications may, however, require the generator to adapt the components
to different hardware platforms. As such technical information is independent of the
business logic and data flow described in the C&C architecture, such information can
be added to components via a configuration language. This configuration language is
implemented as a tagging language for the ADL.

The configuration language has the following capabilities:

1. Tag ports of the component with Freemarker templates. These templates contain
C++ code that defines how to access hardware.

2. Tag ports with an MQTT topic. As an alternative to Freemarker templates, this
topic will be used to communicate with an external connector that provides hard-
ware access (Sec. 4.2.6).

73

Chapter 4 C&C-based IoT Application Development

3. Tag ports with their pull frequency. Some hardware may provide continuous inputs,
e.g., a voltage level. This frequency defines at which rate to discretize the values
of these ports and create an event.

4. Tag components with their technical requirements. If components require external
hardware, e.g., a specific sensor, not every component can be deployed to every
device. Chapter 6 further discusses how MontiThings uses this information to
calculate which component shall be deployed to which device.

5. Prevent the automatic splitting of composed components into different binary par-
titions. Normally, MontiThings will generate code so that all component instances
are executed in single binaries (cf. Chapter 5), as this gives maximum flexibility
for deployment. This behavior can be undesirable for some components. This is
the case, e.g., if all subcomponents of a component are required to be executed
on the same device (e.g., all robot arms of a robot shall be deployed to the same
device) or if deploying the subcomponents independently would create unnecessary
communication overhead (e.g., if a subcomponent only adds two values).

These functionalities may differ for different hardware platforms. For example, if a
component is deployed to a device with a VL53L0X laser distance sensor7 accessed via
the I2C bus, it may require different code than the same component being deployed
to a device with an ultrasonic distance sensor accessed via a digital port. By enabling
developers to configure components for different platforms, MontiThings accounts for
this heterogeneity (TC1).

The configuration of Freemarker templates provides five different hook points8 for
every port: include, init, body, provide, and consume. The include hook point can be
used to specify a template that consists of C++ include statements for including the
necessary headers needed by the implementation of the hardware access. MontiThings
generator will include these headers at the beginning of all files that use the other four
hook points. The code in the init hook point will be executed at the start of the
application. This is offered because some sensors and actuators require certain setups to
be performed before they can be accessed or make useful measurements. For example,
the WiringPi Library9, a popular library for accessing the GPIO pins of Raspberry Pis,
requires the function wiringPiSetup () to be called before the library can be used.
The provide hook point needs to be filled with the code for providing a message to the
architecture, e.g., a sensor value. To do so, developers are required to call the this-
>setNextValue(myValue) exactly once in the template, where myValue refers to

7VL53L0X data sheet. [Online]. Available: https://www.st.com/resource/en/datasheet/
vl53l0x.pdf Last accessed: 29.01.2022

8More information on MontiCore’s hook point mechanism for Freemarker templates can be found
in [HKR21].

9Wiring Pi Library. [Online]. Available: http://wiringpi.com/. Last accessed: 07.11.2021

74

https://www.st.com/resource/en/datasheet/vl53l0x.pdf
https://www.st.com/resource/en/datasheet/vl53l0x.pdf
http://wiringpi.com/

4.3 Language Integration

MTCFG
1 config Scale for RASPBERRY {
2 weightLeft {
3 include = "HX711Include.ftl";
4 provide = "HX711Provide.ftl" (3, 4);
5 every 500ms;
6 }
7

8 weightRight {
9 include = "HX711Include.ftl";

10 provide = "HX711Provide.ftl" (5, 6);
11 every 500ms;
12 }
13

14 display {
15 mqtt = "oled-message";
16 }
17

18 separate none;
19

20 requires {
21 hardware: "HX711"; // weight sensor
22 hx711_count: 2;
23 hardware: "SSD1315"; // oled display
24 }
25 }

Listing 4.13: Configuration file for a scale component. Two weight sensors provide values
via Freemarker templates on the weightLeft and weightRight ports.
An OLED display receives messages via an MQTT topic.

the new value. Conversely, the consume hook point needs to be filled with the code for
processing a message given by the architecture, e.g., a command to an actuator. In this
template, developers can access a variable called nextVal to access the message to be
processed. The body hook point enables developers to specify code that will be placed
in the body of hardware accessing classes. This can be beneficial for providing low-
level helper functions such as bit shifts, that are only relevant to the hardware access
and, thus, shall not become part of the architecture models that specify the business
logic (MC1).

Listing 4.13 gives an example for configuring a component that implements a kitchen
scale using MontiThings’ configuration language. The corresponding component con-
tains two incoming ports (weightLeft and weightRight) and one outgoing port
(display). The two incoming ports shall be connected to HX711 load cell amplifiers,
which we can consider as weight sensors for this example. The outgoing port shall be

75

Chapter 4 C&C-based IoT Application Development

connected to an OLED display that shows the current weight placed on the scale. The
first line specifies that this configuration of the Scale component applies to the RASP-
BERRY platform, i.e., Raspberry Pis. Configurations for other platforms would likely
include different templates tailored to the specific platform. Lines 2–12 specify access-
ing the load cells. One important detail to notice here is that the provide template is
given two arguments. This enables developers to reuse templates for different hardware
configurations. In this case, we have two instances of the same load cell. Both of them,
in general, can be accessed using the same code. However, they will necessarily be con-
nected to different GPIO pins. Using the arguments, developers can reuse the same code
template and set the pin numbers to the ones provided to the template. MontiThings
uses MontiCore’s GlobalExtensionManagement to set global variables the corresponding
values which developers can retrieve inside the template. Moreover, the two incoming
ports get assigned a pull frequency of 500 ms in lines 5 and 11. This causes MontiThings
to request a new value every 500 ms using the code in the provide template.

The display in lines 14–16 is configured to use an MQTT topic. Whenever the com-
ponent sends a new message on this port, a message will be published to the specified
topic of an MQTT broker running locally on the device that executes the component.
External connectors (cf. Sec. 4.2.6) can use this message to further access the requested
hardware. In this example, this message would include a message to be displayed on
the OLED display. Since it makes no sense to place the two weight sensors on different
devices, line 18 specifies that all subcomponents of the Scale component need to be de-
ployed to the same device. Technically, this causes MontiThings to create a single binary
for the Scale component and all of its subcomponents.

Lastly, lines 20–24 specify the technical requirements of the Scale component. Devices
executing this component are required to have both HX711 and SSD1315 devices because
that is the hardware the code templates are written against. Furthermore, there need to
be at least two HX711 sensors present on the device. The configuration language does
not restrict developers in the naming of further technical requirements. For example,
developers could also choose to specify color: "green" to only deploy the software
to green devices. Whichever requirements are specified here, however, need to be fulfilled
by the devices in their configuration (Chapter 6).

Configuration mechanisms like the one presented in this section can also be found in
many other ADLs: MontiArcAutomaton [Wor16] uses interface components for tailor-
ing components to different platforms. The architecture uses only platform-independent
interface components. Using a binding, i.e., a mapping from platform-independent in-
terface components to platform-dependent components, the interface components are
replaced shortly before generating code. A downside of this approach is that it may lead
to a high degree of code duplication and, thus, low maintainability if platform-specific
components only differ in a few details. ThingML mostly allows to mix platform-
specific details and platform-independent logic using annotations for different target

76

4.3 Language Integration

SequenceDiagrams

FireAlarm

Fire
Detector
fdSmoke

Detector

Heat
Detector

MT

:FireAlarm

3,8 V

32 °C
false

true

SD4C

true
OCL

constraint

Message
exchange

smoke temp alarm

fd:FireDetector
in1 in2 alarm

:SmokeDet.
voltage isFire

:HeatDet.
temp isFire

true

fd.fireState == true

delay 2s

Max
delay

Port

Component
instance

Message

Figure 4.7: Sequence diagram specifying a white box test of a fire detector. The graphical
syntax of placing ports below components is taken from [HNPR13].

languages (e.g., @c_byte_size "1" @c_type "uint8_t"10) and platforms (e.g.,
@pim "Arduino" @platform "arduino"11). Such annotations, however, make the
models harder to understand for non-experts. ThingML configurations provide means
for instantiating and connecting components for different use cases. Eclipse Mita offers
a platform description language12. This language describes the capabilities of a certain
platform. Developers are expected to provide an appropriate generator for each such

10Full code example: https://github.com/TelluIoT/ThingML/blob/master/org.thingml.
samples/src/main/thingml/hardware/arduino/arduino.thingml. Last accessed:
04.11.2021.

11Full code example: https://github.com/TelluIoT/ThingML/blob/master/org.thingml.
samples/src/main/thingml/hardware/arduino/_arduino/arduino.thingml. Last ac-
cessed: 04.11.2021.

12Eclipse Mita Documentation. [Online]. Available: https://www.eclipse.org/mita/
platforms/integratorsguide/. Last accessed: 04.11.2021

77

https://github.com/TelluIoT/ThingML/blob/master/org.thingml.samples/src/main/thingml/hardware/arduino/arduino.thingml
https://github.com/TelluIoT/ThingML/blob/master/org.thingml.samples/src/main/thingml/hardware/arduino/arduino.thingml
https://github.com/TelluIoT/ThingML/blob/master/org.thingml.samples/src/main/thingml/hardware/arduino/_arduino/arduino.thingml
https://github.com/TelluIoT/ThingML/blob/master/org.thingml.samples/src/main/thingml/hardware/arduino/_arduino/arduino.thingml
https://www.eclipse.org/mita/platforms/integratorsguide/
https://www.eclipse.org/mita/platforms/integratorsguide/

Chapter 4 C&C-based IoT Application Development

SD4C
1 testdiagram ShouldAlarmOnHighSmoke for FireAlarm {
2 -> inPort : 3.8V;
3 inPort -> smokeDetector.voltage : 3.8V;
4 smokeDetector.isFire -> fd.in1 : true;
5

6 delay 2s;
7

8 fd.alarm -> alarm : true;
9 temp -> heatDetector.temp : 32◦C;

10 heatDetector.isFire -> fd.alarm : false;
11

12 assert fd.fireState == true;
13

14 fd.alarm -> alarm : true;
15 }

Listing 4.14: Textual representation of the test specification from Fig. 4.7.

platform. Compared to this approach, MontiThings is more easily extendible, as devel-
opers can provide their own implementation for specific sensors without having to adapt
a generator.

4.3.3 Sequence Diagram Test Specification

An important aspect of creating reliable applications is testing them before they are
released. MontiArc already provides a stream test language for black-box testing of
components [Hab16]. However, for white-box tests, MontiArc requires users to write
test code against the generated code [Hab16]. MontiThings fills this gap with its
SD4ComponentTesting language, an extension of the MontiVerse’s sequence diagram
language13. The idea of using sequence diagrams as test specifications has also been
briefly proposed in [HNPR13]. The SD4ComponentTesting language extends this idea,
e.g., with delays and a more expressive type system including SI units. The generation
of test code from these models is described in Sec. 5.3.5.

Fig. 4.7 shows a graphical example of how the SD4ComponentTesting, SD4C for short,
can be used to specify a test scenario. Each component instance is represented by a
box at the top of the diagram. Below these boxes, smaller boxes are placed for the
ports of these components. Message exchange can be specified between the ports by
means of a horizontal arrow. The message content is written to the arrow. Message
exchange between ports that are not connected in the architecture model cannot be
fulfilled by the architecture and is therefore prohibited by a CoCo. A rounded box with

13Sequence Diagram Langauge. [Online]. Available: https://github.com/monticore/sequence-
diagram. Last accessed: 07.11.2021

78

https://github.com/monticore/sequence-diagram
https://github.com/monticore/sequence-diagram

4.4 Discussion

an hourglass denotes a delay. The test thus expects all message exchanges before the
delay to be finished after the delay. Additionally, diamond-shaped boxes can be used
to denote assertions using (OCL) expressions. In this example, a smoke sensor is read
out with a value of 3.8 V. The smoke detector derives from this value that there is a
fire and informs the smoke detector that forwards this information after at most 2 s to
its enclosing component. Shortly after that, a heat detector reports a temperature of
32 ◦C. However, since the smoke detector reported a fire, the state of the fire detector
remains unchanged, which is assured by an assertion. The fire detector then reaffirms
its enclosing component that there still is a fire.

The textual representation of this example is shown in Listing 4.14. The textual
specification first defines a name for the test specification and the component to which
this test specification applies. Message exchanges are denoted by an arrow (->). The
sending port is in front of the arrow, one or more comma-separated receiving ports are
behind it. The message content is at the end of a statement after a colon. Incoming
ports of the component to which the test applies may receive values without an explicit
sender. In this case, the messages are test input provided by the test environment.
Similarly, outgoing ports of the component for which the test is specified do not need
to specify a receiver. The test environment will then ensure that the port gets the
specified value. Delay statements (line 6) can specify a delay using SI units. Assert
statements (line 12) can specify assertions using (OCL) expressions. For the test case to
be fulfilled, all message exchanges need to be executed in the order specified by the test
case specification. If a message exchange is either not executed or with a different value
than specified, the test case is considered a failure. Also, if an assertion is violated, the
test case fails.

4.4 Discussion

MontiThings features a clear separation of concerns. This is especially visible when
separating technical aspects of IoT applications from the business logic of the application.
For example, the ThingML language uses annotations in the models to control certain
aspects of the code generation for its target languages. This includes annotations like
@c_type "const char*" that control how the generator should map model elements
to types of the target language [KRSW22]. In contrast, MontiThings models do not
contain any C++ code.

In early versions of MontiThings [Für20], MontiThings also contained technical infor-
mation in the models. This included, e.g., communication specific information such as
IP addresses of communication partners. This, however, made the models dependent on
a specific target infrastructure. Therefore, we decided against using such information
in the models. Instead, it is up to the code generator and the run-time environment to
establish communication between the devices.

79

Chapter 4 C&C-based IoT Application Development

To still be able to specify some technical information about the components, Monti-
Things uses a configuration language, i.e., a tagging language, that is separate from the
modeling language of the components (see Sec. 4.3.2). This configuration language also
does not include technical code, e.g., C++, but only enables developers to specify which
code shall be used. This information can be customized for different platforms. Besides
not polluting the component models with technical information, this method has mainly
two advantages: 1. It enables technical developers to implement technical aspects of the
code, i.e., sensor drivers, largely independent of the component. For example, they can
also implement the drivers without knowing already which components’ ports will use
the driver. Similarly, the component can also be developed without the need for the
drivers to already exist. 2. By not being able to directly access the component from the
driver, we prevent developers from writing component-dependent drivers. This facili-
tates reusing the technical code across different components. Similarly, it also facilitates
reusing the components in different contexts. As the technical code is based on C++,
it is possible to reuse already existing drivers. Often, the Freemarker templates used
by MontiThings only contain wrappers for already existing driver libraries by hardware
vendors. The Freemarker templates then only specify how to read out or write single val-
ues. The reusability of components is further facilitated by the inheritance-like override
mechanism for ports that are tagged with Freemarker templates (cf. Sec. 4.2.6).

Tagging ports of components to connect them to different middlewares has already
been proposed by [HKKR19]. Their work specifies to which topics a certain port shall
connect. Similar to our approach, component models are agnostic of the middleware.
Their work did, however, not specify user-provided Freemarker templates. Therefore,
users are limited to the middlewares provided out of the box or need to extend the
generator themselves. Similarly, developers who use the IoT language Eclipse Mita
need to write a new generator when they want to include a new platform. By enabling
users to tag model elements with Freemarker templates, users can effectively extend the
generator without having to modify the generator’s code or, in extreme cases, write their
own generator. This is, naturally, limited by the hook points offered by MontiThings.
Adding new hook points requires modifying the generator.

Overall, MontiThings enables connecting to external software using every language
that supports MQTT and can format its messages in the JSON format MontiThings
uses to serialize messages. Besides C++ (via Freemarker templates), MontiThings also
offers an adapter for Python. By supporting both C++ and Python, MontiThings
already supports large parts of the available IoT sensor and actuator drivers with only
minimal efforts for writing a wrapper. By making the connectors to such sensors not only
independent from the component on a code level but also on a binary level, these external
connectors can be started and stopped independently of the components. This supports
our vision of an IoT app store, where each IoT device provides access to certain hardware
capabilities out-of-the-box that IoT applications can connect to. In other words, the
separation between components and technical code can go as far as letting other vendors

80

4.4 Discussion

provide the connectors to the hardware. Using MQTT as a shared protocol, neither
the configuration files nor the generator need to know the programming language the
external connectors are programmed in. The disadvantage of this level of flexibility is
that fewer checks can be performed at generation time. For example, if the format of
the messages sent by the external connector does not match the format expected by
the component (e.g., integer vs. string content), the component will detect this kind of
misconfiguration only at runtime and inform the developers of the component.

Besides automatically detecting misconfigurations at runtime, MontiThings also offers
mechanisms to enable developers to specify how to detect programming or modeling
errors at runtime using pre- and postconditions using OCL expressions. While this
enables MontiThings to detect low-level errors, there are also types of errors MontiThings
cannot detect [KRSW22]. MontiThings does not feature an in-depth anomaly detection
as desired by future IoT systems [MNZC20]. Such anomaly detections go beyond the
scope of this thesis but could be added as a service (cf. step 6 in Sec. 3.8). Especially,
MontiThings offers no mechanisms for detecting anomalies that might be caused by
security issues (cf. Sec. 3.7). Furthermore, while MontiThings enables developers to
inspect the data exchanged between external connectors and the components, it does
not enable developers to detect problems with the hardware itself without polluting the
business logic as components are abstracted from the devices they are executed on. For
example, developers can not check if the central processing unit (CPU) load is high or
the storage is filling up. Also, developers cannot detect problems that go beyond the
scope of a single component. Overall, we recommend that error handling should be done
at different stages of the development. While simple error checks like MontiThings’ pre-
and postconditions can be within the model, other problems such as device failures can
be handled better at different stages of the development/deployment. Some techniques
for this will be presented in the following chapters.

Since MontiThings components are not aware of the IoT device they are executed on,
the MontiThings language does not offer mechanisms for controlling the device. This
includes, e.g., setting the device to sleep mode. For dependent on battery power (that
do not use any other energy harvesting techniques), going into a sleep mode is crucial
for reaching a long battery life. Of course, IoT devices in MontiThings applications can
go to sleep modes. For example, the DSA vehicle connectivity gateway (VCG), which is
one of MontiThings’ target platforms, can go into sleep mode after a specified number
of seconds if it is not connected to an external power supply. This behavior is similar to
uninterruptible power supply (UPS) shields offered for the Raspberry Pi14. MontiThings
components can bridge such outages (the mechanisms for bridging temporary failures are
discussed in the following chapters). However, one potential extension of the language
would enable modelers to take energy into consideration. For example, the components

14Joy-IT StromPi 3 product website. [Online]. Available: https://joy-it.net/en/products/rb-
strompi3. Last accessed: 09.01.2022

81

https://joy-it.net/en/products/rb-strompi3
https://joy-it.net/en/products/rb-strompi3

Chapter 4 C&C-based IoT Application Development

could inform the IoT device that executes them when they are in a good situation to
go into sleep mode or when to avoid going into sleep mode. Further priority mecha-
nisms could enable developers to specify how important a component is for the overall
system. Managing energy is, however, currently out of the scope of MontiThings. Such
mechanisms ideally would not be strict but enable the IoT devices to make informed
decisions based on both the components’ information and the devices’ state, e.g., left
battery power. In combination with managing the deployment (cf. Chapter 6), such
mechanisms could then be used to implement functionalities similar to predictive main-
tenance. For example, an IoT device could inform the system that it wants a different
device to execute one of its components because the component is important and the
device expects to run out of power soon.

Table 4.2 compares MontiThings’ ADL to other IoT-focused languages. It uses the
following criteria:

Language Type classifies what type of language is examined. Language Families like
UML contain multiple languages.

Base Language If the language is directly based on another language or is strongly
influenced by other languages, this language is indicated here.

Target/HWC Language Tells to which language models of the examined language can
be compiled. This is usually also the language in which hand-written code can be
provided (if hand-written code can be provided at all).

Type System examines whether the language uses a static or dynamic type system.
Static type systems check types at compile time, dynamic type systems do so at
run time.

Language Features Checks whether languages offer 1. OCL expressions, 2. SI units in
the type system, 3. SCs, and 4. exception handling.

Compared to other IoT languages like ThingML, Calvin, or Eclipse Mita, MontiThings
provides a powerful type system and behavior specification. By including SI units in
the type system and automatically converting between them, MontiThings makes the
intent of SI unit types more explicit. In contrast, other languages usually specify SI
types using their encoding format or value, e.g., string or double. By making SI
units part of the type system, MontiThings can detect errors at design time that other
languages cannot find, e.g., an illegal conversion between km/h and kg. By including the
OCL expressions and set expressions, MontiThings’ behavior language goes beyond the
capabilities of many other (programming or modeling) languages. This expressiveness of
MontiThings is mainly made possible by the integration of languages of the MontiVerse

82

4.4 Discussion

Table 4.2: Overview of related IoT modeling methods. = fulfilled, G# = partly fulfilled,
= not fulfilled.

Lang-
uage
Type

Base
Language

Target/
HWC

Language

Type
System

Language
Features

IoT Language
OCL SI

Units
SCs Excep.

Hand.

Arduino Prog.
Lang.

C/C++ C++ Static # # #

AutoIoT
[NCM+20]

JSON JSON Python Dynamic # # # #

CapeCode
[BJK+18]

C&C
ADL

Ptolemy II
[Pto14]

JavaScript Static1 # G# 2 3

Ericsson
Calvin [AP17]

C&C
ADL

N/A Python Dynamic # # # #

Eclipse Mita Prog.
Lang.

JavaScript,
Typescript,
Java, Swift,
Go

C Static # # #

FRASAD
[NTBG15]

Rules
DSL

N/A C unclear4 # # # #

MDE4IoT
[CS16]

UML (f)UML/
ALF/
MARTE

C++
[CCS15]

Static # 5 5

Node-RED C&C
ADL

N/A JavaScript Dynamic # # #

SysML4IoT
[CPD16]

Lang.
Fam.

SysML N/A Static # # 6

STS4IoT
[PBS+22]

UML
Prof.

UML C7 Static G# 8 # # #

ThingML
[HFMH16,
MHF17]

C&C
ADL

N/A Java,
JavaScript,
C, Go

Static # # #

MontiThings
(this thesis)

C&C
ADL

MontiArc C++9 Static G# 10

1 The authors of Ptolemy II consider it to be statically typed, because “types are checked just prior to
execution of a model” [Pto14].

2 Units are part of the expression system. Using the InUnitsOf actor, developers can convert between
units [Pto14].

3 Uses an implicit port named error
4 The generated C code is statically typed. It is unclear what type system the “rule interpreter” uses.
5 Because MDE4IoT enables developers to use MARTE.
6 Because SysML offers SI units and statecharts
7 Only for devices using the “Simple Embedded Operating System” by LIMOS
8 Not part of the code generator. Code for OCL expressions has to be hand-written.
9 For external connectors, every language that support MQTT can be integrated. MontiThings explic-

itly supports Python for external connectors.
10 MontiThings has pre- and postconditions that can be handled if violated. Moreover, developers can

use try/catch statements handwritten C++ code. However, MontiThings statement language does
not offer exception handling to encourage developers to separate error handling from business logic.

83

Chapter 4 C&C-based IoT Application Development

language library15. By offering a wide variety of behavior definition methods ranging
from high-level statecharts to low-level C++ code, developers can choose the appropriate
level of abstraction for each component.

Overall, the expressiveness of the MontiThings language enables the language to de-
tect many errors at design time. MontiThings also enforces several rules that are mainly
usage conventions of the language. For example, MontiThings enforces that each com-
ponent is defined in its own file16. The grammar of the MontiThings language could, of
course, be easily extended to allow multiple component definitions in the same file but
we think this would lead to harder-to-maintain projects as components because compo-
nents cannot be found by their file name and once a component shall be reused, it has to
be moved to its own file anyways to avoid copy-paste reuse. The disadvantage, however,
is that MontiThings can feel frustrating for new developers. Compared to languages
such as Python, that do not check many errors at design time, e.g., not checking illegal
type conversions, developers are likely to face a large number of error messages when
first starting to work with MontiThings which can feel frustrating. Also, combining
multiple languages (MontiThings components, class diagrams, configurations) can feel
overwhelming at first. As a result, compared to Python or Arduino, writing “quick and
dirty” applications is harder. We argue that the steep learning curve is justified by the
long-term advantages of adhering to good practices.

Overall, MontiThings shows what a modeling language for IoT applications can look
like. Compared to existing languages, MontiThings offers a stronger type system, dif-
ferent levels of abstraction for behavior specification, and a clear separation of concerns.
Concepts like the inheritance-like override mechanism for ports also facilitate reusability.
The following chapter presents the technical aspects of the MontiThings language, i.e.,
its code generation capabilities.

15This includes both language components that were (co-)developed by the author of this thesis, e.g.,
OCL, and languages that the author of this thesis was not involved in and that were developed
independently of MontiThings, e.g., SI units.

16As pointed out by [JBD21], using file-level modularity instead of a single file can improve tool per-
formance (e.g., saving and loading operations), supports collaboration between modelers, and “facili-
tate[s] MDD-specific activities such as model comparison and incremental code generation” [JBD21].

84

Chapter 5

Code Generation

The development of IoT systems involves many repetitive and error-prone programming
tasks. This includes, for example, establishing communication between IoT devices.
MontiThings can free developers from many such tasks by generating code that can be
used to execute the models specified using the MontiThings language. This chapter
presents the code generator, the RTE of the generated applications, and the structure of
the generated artifacts in more detail. Unlike MontiArc, MontiThings does not generate
code for simulations but prototypes of distributed applications that can be executed on
real IoT devices. Such distributed applications consist of multiple binaries that may be
deployed to different devices (Chapter 6) and interact with each other via some form
of network. For this purpose, MontiThings generates C++ code and scripts to cross-
compile the code and package it as container images to make it easily deployable.

5.1 Methodology and Tool Infrastructure

MontiThings uses code generation to create concrete prototypes of IoT applications from
models. The models operate at a substantially higher level of abstraction than general-
purpose programming languages such as C++, Java or Python. By raising the level
of abstraction, the code generator aims at supporting developers by relieving them of
repetitive implementation tasks. As described in the previous chapter, these models take
into account different aspects, from the description of the business logic (MontiThings
models), to the data structures (class diagrams), to associated tagging languages that
supplement the models with additional information such as synchronization specifica-
tions for digital twins (cf. Sec. 6.6).

Fig. 5.1 gives an overview of MontiThings’ model-driven methodology for creating dis-
tributed applications. At design time, developers create various platform-independent
artifacts. These mainly include the MontiThings architecture models explained in the
previous chapter. These MontiThings models can be integrated with other models (cf.
Sec. 4.3): Class diagrams can be used for specifying the data types exchanged by ports.
Tagging models can be used for further adapting the generated code to the developers’
needs on a model-specific level. For example, tagging can be used to instruct pre-
generation model-to-model transformations to enrich the models with additional func-

85

Chapter 5 Code Generation

G
lance1

platform
-independent

platform
-dependent

…
Platform

 X

Specification /
Im

plem
entation

Application Layer
Service Layer

Deploym
ent

M
anager

M
essage

Broker

Other Services
Other Services

Other Services

System

Execution
Integration /
Generation

Input (platform
-specific)

Design Tim
e

Generation Tim
e

Runtim
e

M
ontiThings

Class Diagram

Handw
ritten

Code

Tagging
connect a.b

--> c.d

HW
C

{…}
M
T

CD
Tags

Lib

10100
1101010
0011000

Integrator /
Generator

M
odel-to-
M

odel
Transform

ation

M
odel-to-Text

C++ Generation

HW
C

{…}
Lib

10100
1101010
0011000

{…}

Runtim
e

Environm
ent

Target
Code

Target
Code«extends»

Com
ponent

Target
Code

Target
Code

C++

Com
ponent

Target
Code

Target
Code

C++

Com
ponent

Target
Code

Target
Code

Com
piler

Application
Containers

Containerize

Application
Code

C++

C++

Platform
 A

HW
C

{…}
Lib

10100
1101010
0011000

F
igu

re
5.1:

M
eth

o
d

ology
of

d
ev

elop
in

g
IoT

ap
p
lication

s
u

sin
g

M
on

tiT
h

in
g
s.

F
igu

re
taken

from
[K

R
S
W

22].

86

5.1 Methodology and Tool Infrastructure

tionality, e.g., model elements can be created that automatically synchronize with a
digital twin.

To customize generation for specific target platforms, developers can also create
platform-specific artifacts at design time. If developers target specific target platforms,
the code for interacting with the target platform may need to be very specific for
said target platform. The specifics of the target platforms cannot be predicted by
the generator. Therefore, developers can provide the generator with libraries and
handwritten code for each target platform. For example, on a Raspberry Pi the GPIO
pins might be accessed using the Arduino-like WiringPi library while when using the
DSA VCG1, developers use the diagnostic data cache (DDC)2 instead.

All of these models and code files are provided as input to the generator at generation
time (top center of Fig. 5.1). Depending on its configuration, the code generator can
apply model-to-model transformations before generating C++ code from the models.
Such transformations can, e.g., be used to create variants of the architecture that can
be used to replay a recorded run of the application (cf. Sec. 7.5). Using a set of Apache
Freemarker templates, the code generator executes a model-to-text C++ generation. For
each component, multiple C++ files are generated that build upon the RTE’s code. This
generation and the RTE are described in more detail in the following sections. For ease
of use, MontiThings also offers build scripts for this purpose.The binaries created from
the code can also be packaged in Docker images to make the deployment easier. This
step can also automatically be performed by the scripts generated by MontiThings. The
resulting application containers can optionally be uploaded to a standard Docker image
registry to make them available to the IoT devices. The Docker containers instantiated
from these images will then communicate via one of the supported network protocols.
The default network protocol is MQTT.

To make the compilation easier for developers, MontiThings also provides the
toolchains for compiling the code as two Docker images, montithings/mtcmake
and montithings/mtcmakedds. The latter is significantly larger and shall only
be used when the generator is configured to use DDS for communication. Using these
images, developers can use MontiThings with Docker being the only dependency to the
developer’s computer.

At runtime, the IoT devices may communicate with various services. For example, the
Deployment Manager decides which devices shall instantiate which components (Chap-
ter 6). Other services include, e.g., a synchronization with MontiGem-based digital
twins Sec. 6.6, a recording module used for creating replays of the architecture execu-
tion (Sec. 7.5), or a live debugger (Sec. 7.4).

1DSA VCG product website. [Online]. Available: https://www.dsa.de/en/solutions/
products/vehicle-connectivity-gateway/. Last accessed: 11.11.2021

2The DDC is, essentially, a key-value store that can be used to access various hardware functionalities
and configurations.

87

https://www.dsa.de/en/solutions/products/vehicle-connectivity-gateway/
https://www.dsa.de/en/solutions/products/vehicle-connectivity-gateway/

Chapter 5 Code Generation

RTE-CD

InOutPort

MultiPort
1 1

inport outport

Port
*
managed
Ports

MQTTPort

DDSPort

WSPort

CD
«RTE»

CD
«gen»

…

…

*

*in

out

SensorPortSensorPortSensorPort

SensorPortSensorPortActuatorPort

MessageAcceptor

MessageProvider

IComponent

IComputable

UniqueElement

XInterface

EventSource

EventObserver
*observers

MQTTUserMQTTClient
* users

(X being the component
type’s name)

Message<T>

0..1
dataProvider

PortLinkCoX *

Message<T> is
usually used as

type argument for
MessageProvider/

-Acceptor

XImpl

XComponent

Figure 5.2: Overview of MontiThings’ RTE. Figure is an extended version of the
overview from [KRSW22].

5.2 Run-time Environment (RTE)

The runtime environment provides functionalities that are the same for all target plat-
forms. This includes in particular implementations for the basic functions of each com-
ponent, such as communication via ports. Fig. 5.2 gives an overview of MontiThings’
RTE. The UniqueElement3 provides a C++ equivalent of Java’s Object base class.

3To make this chapter easier to read and to use as a reference manual for the RTE, class names are
printed in bold at the place where they are explained in the text.

88

5.2 Run-time Environment (RTE)

It contains a single protected attribute uuid and a public getter for this attribute.
Thereby, it assigns an identity to all classes that inherit from it.

5.2.1 Components and Event-Handling

IComponent provides four methods that shall be implemented by the specific class
generated for each component type: setup, init, start, and compute. The setup
method is called before the component can be executed. It is responsible for setting
up connectors of subcomponents, configuring the network connections of ports (if nec-
essary), and announcing to other components that a new component instance will join
the architecture. The last part is necessary because the order in which the binaries are
started on the different devices cannot be guaranteed in a distributed application without
much overhead. If a composed component is started before (some of) its subcomponents
are started, the composed component will in response to this announcement of a new
subcomponent need to ensure the connectors of the new subcomponent get established
on the network. The init method is called before the component can start its normal
event-based operation. It can be used for sending initial messages (Sec. 4.2.4). The
start method is called to start threads with which the component will execute cyclic
behavior (e.g., from every blocks). The compute method of a component is the en-
try point for executing the behavior when a new message is received. It first ensures
that no two behaviors are being executed concurrently within a component, to avoid
race conditions in the behavior blocks. Then, it checks that all preconditions are met
and saves the current state of the component so that it can be referred to by @pre
expressions (Sec. 4.2.5). It then calls the behavior implemented by the corresponding
IComputable subclass.

The IComputable contains two methods: getInitialValues and compute. The
getInitialValues method can be used to send out initial messages on the compo-
nent’s outgoing ports. The compute method contains the event-based behavior of the
component that will be executed in response to incoming messages. It can be considered
an application of the strategy pattern [GHJV95], where the generator implements this
interface in a class that contains the actual behavior of the component.

The internal event-based control flow of every component is using the observer pat-
tern [GHJV95] implemented by the EventSource, the EventObserver, and their
subclasses. The EventSource offers two methods attach and detach, each of which
takes an EventObserver object as an argument. These methods are used to add and
remove objects from the set of observers that shall be notified when an event hap-
pens. The notify method triggers calling the observers. Optionally, the notify method
takes an argument that suppresses informing a specific observer. This can be used to
avoid notifying an observer that created the event itself. The EventObserver only
contains a single untyped method onEvent that is called by the notify method of
an EventSource. Classes implementing the EventObserver interface need to imple-

89

Chapter 5 Code Generation

ment this method to specify how to react to events. For example, components will call
their compute method when they get notified about a new message.

The RTE contains two EventSources: The MessageProvider and MessageAc-
ceptor. The MessageAcceptor provides a method setNextValue to accept a new
message. Setting a new message will trigger an event in all implementations of this class.
Like its counterpart, the MessageProvider can be used to access received messages.
Its hasValue method is used for checking if the MessageProvider has an unpro-
cessed message. The getCurrentValue will return the next message (or an empty
optional if there is no message) and remove that message from the queue of unpro-
cessed messages. MessageProviders keep track of which receiver already processed
which messages. This enables MessageAcceptors instantiated on devices with dif-
ferent computing powers to process messages at different speeds (TC1) and to bridge
outages of components (TC2). The Message class is a wrapper for messages exchanged
by MessageProviders and MessageProviders. It enables the serialization of the
message into a JSON format that can be exchanged via a network.

5.2.2 Ports and Communication Technologies / Protocols

The base class for every port is the Port class. Ports inherit the functionality to send
and receive messages from the MessageAcceptor and MessageProvider classes and
the functionality to create events from the EventSource class4. Besides, each Port
may also have a dataProvider. The dataProvider is another port that provides
messages to this port. Since the device executing a component instance may fail at any
time, both the incoming port and the outgoing port of each connector have a message
buffer. The buffer in the outgoing ports is needed to bridge outages of the receiving port.
The buffer in the incoming ports is needed to buffer messages while the processing of the
previous messages is still running. As the outgoing and incoming ports may be located
on different devices, this functionality cannot be implemented using a single buffer. The
updateMessageSource method of each port is used to transfer the messages from
the dataProvider to the port calling this method. This data transfer is triggered by
the event that a new message is available. While a component is offline, it may miss
the event that its data provider has new messages available. Therefore, a port will also
query its data provider, e.g., when it has no messages available but is requested by the
architecture to provide the current message. Without querying the data provider, the
hasValue and getCurrentValue would in some cases incorrectly answer that no
message is available because the data transfer from the dataProvider to the queried
port has not yet been executed.

4Components only observe the events of their incoming ports to trigger their behavior. Nevertheless, it
makes sense that no distinction is made here between incoming and outgoing ports because in other
contexts the events of outgoing ports may also be relevant. For example, in the case of test cases,
spy objects may also be interested in the events of outgoing ports (cf. Sec. 5.3.5).

90

5.2 Run-time Environment (RTE)

InOutPort

OD

:BluetoothPort

:InOutPort

inport:MultiPort outport:MultiPort

:MQTTPort

:DDSPort

:Port

:BluetoothPort

:MQTTPort

:DDSPort

:Port

:MQTTPort

Other IoT
device

Other IoT
device

:BluetoothPort

Network
Communication

Network
Communication

Figure 5.3: InOutPorts forward messages and can translate between different commu-
nication technologies. In this case a message is received via Bluetooth and
forwarded via MQTT. MultiPorts defer the decision which communication
technology to use to runtime by providing multiple alternative implementa-
tions for the same port. The BluetoothPort is only shown for better
understanding and not part of the RTE.

The Port class is the basic extension point for implementing different communication
technologies or for communicating with external connectors (Fig. 4.3). MontiThings
RTE itself offers three main communication technologies implemented by subclassing
the Port class: The MQTTPort for communication using MQTT, the DDSPort for us-
ing the OpenDDS implementation of the OMG data distribution service (DDS) [Obj15]
standard, and the WSPort for communication using web sockets. Fig. 5.2 shows ex-
emplary for MQTT how technology-dependent subclasses of the Port class act as a
facade [GHJV95] to hide away the more complex access to the different technologies
from the rest of the RTE. Here, the MQTTUser and MQTTClient provide wrappers
for initializing and accessing an MQTT communication library. Similarly, the generated
can contain different port types for accessing sensors and actuators, called SensorPort
and ActuatorPort in Fig. 5.2, using the developer-provided code templates.

A MultiPort is a wrapper for multiple ports acting as one port. Its purpose is to
enable multiple ports to connect to the same port using different communication tech-
nologies (Fig. 5.3). This means that it is not necessary to determine at design time
which communication technology is available at runtime or offers the best communica-
tion conditions. If several communication technologies are supported by the hardware,

91

Chapter 5 Code Generation
PortStructure

MontiThings

Models

Port structure in generated code

B

C
A

:InOutPort

inport:MultiPort outport:MultiPort

:Port :Port

:InOutPort

inport:MultiPort outport:MultiPort

:Port

:MQTTPort

:Port

B

C

Partitioning

B

C

A

:InOutPort

inport:MultiPort outport:MultiPort

:Port :Port

:MQTTPortA

Figure 5.4: Example for the object structure created when connecting ports.

an automatic fallback mechanism could also prevent failures5. For example, in the event
of a Bluetooth channel interference, the system could automatically switch to cellular
communication (which, unlike Bluetooth, uses guaranteed frequency ranges). For ex-
ample, the same port could be connected to a port of a component within the same
binary and to the port of a different component instance executed on a different device.
Sending messages between the first pair of ports can be implemented most efficiently
by just copying the messages in RAM without involving any networks communication.
The second pair of ports, however, needs to serialize the message and send it via some
kind of network protocol and technology, e.g., MQTT over Ethernet. Since different
communication technologies are realized using different subclasses of the Port class,
MultiPort bundles multiple ports in a single class. Besides two additional methods

5Note that such an extension is possible but not implemented by MontiThings.

92

5.2 Run-time Environment (RTE)

for adding and removing ports to the set of managed ports, the MultiPort offers the
same interface as a regular port. Semantically, a MultiPort has data available if any
of its managed ports has data available. If data is sent using a MultiPort, it will be
sent on all managed ports.

The InOutPort enables components to receive and forward data. It consists of two
MultiPorts, one representing the input and one representing the output. This is nec-
essary for composed components that forward data to their subcomponents using ports.
In each of the two MultiPorts, the InOutPort automatically adds an instance of the
normal Port class so that internal communication is always possible. InOutPorts use
MultiPorts to support increased flexibility in choosing communication technologies
and even allowing to switch communication technologies at runtime. This way a com-
posed component can act as an adapter between communication technologies (Fig. 5.3),
e.g., forward messages received via an MQTTPort to a component using a DDSPort.
While ports allow only one data provider, the InOutPort also uses a MultiPort on
the input side. This is done to enable a seamless transition between communication
technologies at runtime in case components fail. For example, the component containing
the data-providing port may first be deployed to a device that uses DDS for communi-
cation. Later, this device fails (TC3) and the deployment manager needs to restore this
component to a different device using a different communication protocol, e.g., MQTT.
In this scenario, the MultiPort on the input side can offer different technology-specific
instances of subclasses of the Port class to enable a seamless transition between two
communication technologies. In principle, switching between communication technolo-
gies could also be realized using only a single Port instance that is replaced as the
communication technology changes. However, if the component has not yet processed
all messages in the buffer of that port when the communication technology switch hap-
pens, this will lead to data loss. MontiThings’ solution with using multiple input ports,
even though only one is active at each given point in time, prevents such data losses.

Fig. 5.4 shows this structure with an example. Component A sends data to both B
and C. We assume that partitioning (cf. Sec. 5.3.1) combines A and B in the same binary
and C in a separate binary. Since there is a connector between A and C in this case that
crosses the boundary of two binaries, A has an instance of both the normal port and the
MQTTPort in its outgoing MultiPort. This enables A to communicate directly with
B internally as well as with C via MQTT. Using MQTTPorts exclusively would create
unnecessary communication overhead between A and B. If A now receives a message
from the component on the (normal) port of its inport, this is forwarded to both ports
in the outport via the InOutPort. The Port and the MQTTPort instances of the
outport then forward the messages to B and C. Thus, A exchanged messages with
B and C using different communication techniques. There, the incoming messages are
received by the respective ports in the inports and forwarded to the (normal) port
of their outports. These ports in the outports generate events that cause B and C
to process the messages. If instead we assume that all components are partitioned into

93

Chapter 5 Code Generation

SensorAccess

IoT Device

Smoke
Sensor

FireExtinguisher

Fire
Detector

Temp.
(∘C)

C++

Temperature
Sensor Python

CO2
(PPM)

Sprinkler C

Siren Java

Boolean
(On/Off)

Boolean
(On/Off)

Handwritten by
device developer Generated by MontiThings

Message Broker
(for message exchange between application and hardware drivers)

Technical communicationLogical communicationLegend:

Hardware
Access Manager

Figure 5.5: Communication with independently executed external ports uses local mes-
sage broker (cf. Fig. 4.3). The hardware access manager connects the archi-
tecture to external ports. Figure taken from [BKK+22].

the same binary, the MQTTPorts would not exist. In this case, both B and C would be
connected to the same instance of the (normal) port of A’s outport. The port therefore
keeps track of which of its recipients have already received which messages. If one of the
receiving components is not able to receive incoming messages from A immediately, it
would receive the next message as soon as it is ready again, regardless of which messages
have already been received by other components that receive messages from the same
outgoing port of A.

In the case of external ports that are not generated directly into the component via the
Freemarker templates (cf. Sec. 4.3.2) but are executed independently on the IoT devices,
communication is carried out via a local message broker. Fig. 5.5 depicts this situation.
The component in this case uses regular MQTTPorts for communication with the external
ports. A hardware access manager assigns ports to the component on demand to match
its requirements. The hardware access manager can ensure that no multiple assignment
takes place. For example, this prevents the same actuator from receiving commands
from several components without the knowledge of the individual components. In the
case of sensors, on the other hand, it can make sense to have several components process
the values of the same sensor if no other sensor is available. For example, it may make
sense to have multiple components process the values from a single GPS receiver while in
the case of a bathroom scale with four weight sensors, the measurements from all sensors
should be used instead of using sensors multiple times. Once the assignment of external
ports to ports of the architecture is done, communication takes place without involving

94

5.2 Run-time Environment (RTE)
GeneratedCode-CD4

*

*in

out

CD
«gen»…

XComponent XImpl

(X being the component type’s name)

XInterface

XState

(N being a
consecutive number)

*

*

pre

post

1

1

1
SensorPortSensorPortSensorPort

SensorPortSensorPortActuatorPort

1

CD
«RTE»…

…TOP…TOP…TOP Every generated file can be extended
using MontiCore’s TOP mechanism

XInput

XResult

CoX

XPreconditionN

XPostcondition

XPostconditionN

XPrecondition

InOutPort

MultiPort
1 1

inport outport

Port
0..1 *
data

Provider
managed
Ports

0..1

data
Provider

IComputable

IComponent

Figure 5.6: Overview of the C++ code MontiThings generates from architecture models.
Figure is an extended version from [KRSW22].

the hardware access manager. The components send heartbeat messages to the hardware
access manager at regular intervals to prove that they are still using the hardware. If
a component fails and accordingly does not send any more heartbeat messages, the
hardware access manager has the possibility to reassign the access to the hardware.
This way, no hardware remains unused forever because a component has failed.

The PortLink class is generated for each port but is not directly linked to a port. It
contains the necessary information to connect to a port using a specific communication
technology (Sec. 4.2.7). It can be subclassed to include the information needed by future
communication technologies. In its current implementation, it contains a topic name.
This topic can then be used to subscribe to the messages of the port using, e.g., MQTT.
This class will be used by the types automatically created for each component (CoX) as
will be explained in Sec. 5.3.

95

Chapter 5 Code Generation

5.3 Generated Code Structure

Of course, not all functionalities of a component can be covered by using the identical
code of the RTE. The information given to MontiThings about the models requires
code that fits the individual models. This includes, for example, the behavior of the
respective component. MontiThings’ Code Generator therefore allows to generate code
customized to the models, which in turn builds on the RTE. Fig. 5.6 gives an overview
of the code MontiThings generates from the architecture models. For each component,
MontiThings generates a class that is named like the component followed by the word
component (XComponent in Fig. 5.6). It implements the IComponent interface de-
scribed in the previous section. This class is responsible for initializing the component
and for coordinating between the other classes generated for that component.

Each component also has a state object (XState). The state class is responsible for
managing all variables of a component. This is useful for implementing @pre expressions;
before a computation starts, the generated compute method will save the current state.
Furthermore, the state can also be serialized, stored, and, when necessary, restored.
If @ago expressions are used, the state class automatically stores all changes to all
variables referenced by these @ago expressions. If a statement refers to a previous
value, MontiThings retrieves the value with the latest timestamp that is at least as old
as requested by the @ago statement. For example, if a variable changed one, two, and
three seconds ago and the value from 1.5 s is requested, MontiThings will choose the
value from two seconds ago. It does so because the value from one second ago is not
older than the requested period of time and the value from three seconds ago is older
than the value with the timestamp from two seconds ago. By using this strategy and
only storing variables when their value changes, MontiThings uses the minimal amount
of memory required to be able to resolve these @ago expressions. Values that are older
than the highest @ago statement are discarded to save memory. By encapsulating the
component’s variables into a single class, MontiThings ensures that the component’s
variables are only accessed through their getters and setters and, thus, modifications to
the variables can be tracked to reference them in @ago expressions.

Similarly, the XInput and XResult classes wrap a set of incoming and outgoing mes-
sages. It is, however, important to notice that while these classes are similar to the classes
defined in MontiArcAutomaton, they serve a different purpose in MontiThings. In Mon-
tiArcAutomaton, the implementation of a component cannot directly access ports but
only process messages by accessing an XInput object and send messages by returning
an XResult object. This is possible, as MontiArcAutomaton uses a time-synchronous
semantics, where every component may only process and send at most one message per
port. In contrast, MontiThings uses event-based semantics, where components may send
multiple messages on the same port in the same computation. Therefore, MontiThings
components may directly access the components interface. The XInput and XResult
classes exist in MontiThings so that a set of messages can be easily passed to pre- and

96

5.3 Generated Code Structure

postconditions. Whenever the code generator encounters a statement that would result
in sending a message on an outgoing port, it will generate three statements: 1. Create
a result object with the messages that shall be sent, 2. Check the postconditions using
said result object, and 3. Actually send the messages if the postconditions are fulfilled.
This way, it is possible to ensure that the postconditions are fulfilled without actually
passing messages to a port that would not fulfill the postconditions.

The components refer to pre- and postconditions using the XPrecondition and
XPostcondition interfaces. The difference between the pre- and postcondition classes
is that only the postconditions’ methods get passed a result object because preconditions
are checked before executing the computation of a component, i.e., before any message
can be sent. Overall, the pre- and postconditions offer six methods. 1. check returns a
boolean that indicates whether the condition is violated or not 2. toString returns a
pretty-printed string representation of the pre- or postcondition 3. logError creates an
error message telling the user which condition failed and under which conditions, i.e., it
also logs the current state, incoming messages, and, in case of a postcondition, outgoing
messages 4. isCatched return a boolean indicating whether the pre- or postcondition
include a catch block that could resolve violated pre- or postconditions 5. resolve
tries to resolve a violated pre- or postcondition by executing the code generated from the
catch block of that condition 6. apply uses all of the above methods to apply a pre- or
postcondition by checking if it is violated and if so trying to resolve it or logging an error.
Specific pre- and postconditions are implemented using the XPreconditionN and
XPostconditionN classes (N being a consecutive number). They extend the general
pre- and postcondition classes and implement the isCatched, check and resolve
methods according to the specific condition.

The actual behavior of a component is implemented using the XImpl class. This
class implements the IComputable interface described in the previous section. If a
component has a behavior that is specified in the model, i.e., uses MontiThings’ Java-
like behavior language or statecharts (Sec. 4.2.4), then the code generator will fill the
compute method with C++ code according to that specification. For the Java-like
behavior language, this means essentially pretty-printing the code while replacing cer-
tain constructs. During this pretty-printing process, MontiThings will translate certain
constructs from the behavior language that do not normally exist in Java or C++.
When referring to time, MontiThings replaces all references to SI units with uses of the
chrono library from the C++ standard library. Thereby, MontiThings models can use
different time units in, e.g., @ago statements, while the chrono library takes care of
performing the necessary conversions. For OCL expressions, MontiThings mostly uti-
lizes lambda expressions to realize more complex expressions such as exists, forall,
or let-in. Since lambda expressions are normal expressions in C++, this makes it
possible to pretty-print the lambda expression in all places where the OCL expression is
used. Logical implication and equivalence are translated to their representations using
¬,∧,∨ that have corresponding operators in C++ (!, &&, ||). For set expressions,

97

Chapter 5 Code Generation

MontiThings mostly converts the set expressions into an equivalent expression without
actually building the set. For example, checking whether a ∈ {1 : 100000} (written as a
in {1..100000}) can be solved in O(1), if it is implemented as if (a >= 1 && a
<= 100000). In contrast, creating a set with 100000 entries (or, in general, n entries)
and then checking if it contains a would be in O(n). Unions and intersections can be
interpreted as || and && in these if statements. References to variables and ports are
replaced by calls to the appropriate getter and setter methods.

The ports of the component are grouped by the XInterface class. For ports that
access a sensor or actuator, MontiThings will generate classes shown as SensorPort
and ActuatorPort port in Fig. 5.6. These ports create threads that will execute the
code given by the developer-provided Freemarker templates as described in Sec. 4.3.2.

To support dynamic reconfiguration, MontiThings generates a type that can be con-
sidered the “business card” of the component, i.e., it includes all information necessary
to connect to a component instance (Sec. 4.2.7). This class is called Co followed by the
name of the (interface) component type (shown as CoX in Fig. 5.6). It contains port
link objects for all ports of the component. If the component implements interfaces, the
CoX will inherit from the CoX class of these interfaces.

5.3.1 Architecture Partitioning and Setup Information Exchange

Naturally, a distributed system requires multiple systems each executing parts of the
system’s software to interact. Therefore, MontiThings is able to generate multiple bina-
ries from the C&C models provided by the developers. This process of deciding which
components shall be executed in independent binaries is called partitioning in Monti-
Things. By default, MontiThings will generate one binary per component to give the
device owner maximum flexibility in later deploying the application. Using the config-
uration language, this partitioning can be restricted by selecting components that shall
not be split Sec. 4.3.2. Overall, MontiThings will create a standalone binary for each
component except for those that are both exclusively used as subcomponents of unsplit
components and can also not be used by any connector that uses a dynamically received
component interface. If a component could be used dynamically anywhere, we need to
have a binary for that component to be able to instantiate it dynamically.

For the support of different processor architecture, the code generated by MontiThings
can be cross-compiled using, e.g., DockCross6 for cross-compiling the binaries only or
Docker Buildx7 for creating multi-platform images. For more specialized platforms,
e.g., the DSA VCG, it is of course also possible to use the individual cross-compiling
toolchains of the vendor. For this, MontiThings requires the toolchain to be CMake

6DockCross GitHub project. [Online]. Available: https://github.com/dockcross/dockcross.
Last accessed: 27.11.2021

7Docker Buildx Documentation. [Online]. Available: https://docs.docker.com/buildx/
working-with-buildx. Last accessed: 27.11.2021

98

https://github.com/dockcross/dockcross
https://docs.docker.com/buildx/working-with-buildx
https://docs.docker.com/buildx/working-with-buildx

5.3 Generated Code Structure

Example

Source Sink

MontiThings

Example Source Sink

Models

Container
Images

Containers

ex:Example ex.source:Source ex.sink:Sink

component instance

“ex.source” is requested to start

configuration component instance

“ex.sink” is requested to start

configuration

comp. inst. “ex.source” is ready

connectors
comp. inst. “ex.sink” is ready

connectors

messages exchanged via ports

Figure 5.7: Partitioning an architecture into different container images and setting up
the component instances started from these container images.

compatible and support the C++11 standard library (TA4). Any of MontiThings ex-
ternal dependencies can be cross-compiled from their sources using the Conan package
manager8. For this, MontiThings generates a conanfile.txt based on the selected
generator configuration.

8Conan project website. [Online]. Available: https://conan.io/. Last accessed: 27.11.2021

99

https://conan.io/

Chapter 5 Code Generation

Fig. 5.7 shows an example of how an architecture is partitioned and how the result-
ing containers are connected to each other. Three independent container images are
created from the three component types Example, Source and Sink. At runtime, these
container images are started as containers, with the outermost component being given
the instance name ex and the subcomponents being assigned names derived from it.
When a component instance is started, it announces itself to the other components and
thereby asks its enclosing component for a configuration. Announcing the request to
start a component is a broadcast. Since the components run on independent devices
it is not guaranteed that the subcomponents are started after their enclosing compo-
nents. If the enclosing component is started after one or more of its subcomponents,
the subcomponents receive the announcement of their enclosing component and repeat
their own announcement. This enables the enclosing component that was not ready
at the time of the initial announcement to respond. The configuration with which the
enclosing component answers contains the component parameters of the subcomponent
instance and, if required, conversion factors for ports that use SI units. The conversion
factors are necessary when two ports are connected whose SI unit types are compatible
but different, e.g., m/s and km/h. As soon as the setup of the component is started
(setup method from the RTE, cf. Sec. 5.2) with this configuration, the component re-
quests its connectors from the enclosing component. Once the connectors are set up, the
subcomponents can communicate directly via ports with each other.

5.3.2 Generated CLIs

Some parameters of a component shall not be fixed at design or generation time. There-
fore, MontiThings generates a command line interface (CLI) for each generated compo-
nent. The CLI can be used to pass arguments to a component instance when starting
it. The CLI’s parameters can also be passed when starting a Docker container. This
enables the automated deployment manager to adapt component instances to its needs
(cf. Chapter 6).

The generated CLI consists of the following parameters:

n, name This string parameter sets the instance name of the component. It is the only
required parameter. If a component has subcomponents, their instance names
will be derived from this argument, i.e., appended with dots between the name
components. For example, the subcomponent einstein of a component newton
will be called newton.einstein.

muteTimestamps A switch to suppress timestamps in log files. The primary use case
for this is creating log files that can be compared against an expected output in
test cases. Having timestamps in such test cases would create different log files for
the same execution and thus require additional effort for removing the time stamps
in test cases.

100

5.3 Generated Code Structure

muteRecorder Suppresses all log messages from the optional recording module (cf.
Sec. 7.5). This switch is only available if the recording module was enabled in
the generator configuration.

monochrome Normally, MontiThings log files will be colored using PS1. In some cases,
this may be unwanted. This switch can make all log messages monochrome.

printConnectStr If enabled, the log file will contain a message that can be sent via a
port to dynamically connect to or disconnect from the component (Sec. 4.2.7). If a
component implements interface components, this parameter will also be available
for each implemented interface component by appending the name of the generated
type to the printConnectStr switch. For ease of use during testing, by default
the printed string will be in a format that can be copied and pasted in terminal
windows, i.e., using escaped quotation marks.

pretty If enabled, all printConnectStr messages will be pretty-printed. This makes
them easier to read as a human but harder to reuse as a computer.

Based on the selected communication technology, further communication technology-
dependent can be available. For MQTT, the following parameters will be added.

muteMQTT If enabled, this switch will suppress all log messages from MQTT ports,
e.g., notifications of connecting to a broker, or subscribing to a topic.

brokerHostname This parameter can be used to specify the hostname of the MQTT
broker to which the component shall connect. By default, this will be localhost.
For a distributed deployment, this argument shall be filled with the IP or domain
name system (DNS) name of an MQTT broker, e.g., broker.hivemq.com.

brokerPort Sets the (network) port on which to connect to the MQTT broker. By
default, this parameter is set to the standard MQTT port: 1883.

localHostname This parameter can be used to override localhost in the generated
code. In some instances, the localhost DNS name will not be available. For
example, when executing the component in a Docker container, users may need to
use host.docker.internal instead of localhost.

When communicating using DDS, the following CLI parameters are added:

muteDDS If enabled, this switch will suppress all log messages from DDS ports.

DCPSConfigFile Can be used to override the DDS configuration file. By default, dcp-
sconfig.ini is used. This (generated) configuration file contains information
such as the utilized transport layer protocol (TCP).

101

Chapter 5 Code Generation

DCPSInfoRepo Can be used to set the hostname and port of the DCPSInfoRepo. The
DCPSInfoRepo is a (centralized) discovery service that the devices use to find each
other. For details, refer to the OpenDDS developer’s guide9.

5.3.3 Generated Scripts and Compilation

The generated code can be compiled using standard C++11 compilers (TA4). For ease of
use, MontiThings also generates various scripts that can be used to build, package, and
execute the generated C++ code using CMake and Ninja as build tools. The build.sh
script calls CMake and Ninja to compile the generated sources. Optionally, it can be
used with the Conan package manager to also receive and, if necessary, build all libraries
MontiThings’ generated code relies on. As mentioned above, if the binary is supposed
to be executed on a different target system, it may be required to call the build.sh
script using DockCross to cross-compile the code. After building the source code, the
binaries can be executed. In the case of a distributed application (partitioning mode not
set to off), this means that the user has to start a potentially large number of binaries.
To simplify this, MontiThings offers a run.sh script that will automatically start all
components. Their output will be redirected to a file named after like the component’s
instance name with the file extension .log. Thereby, users can use standard (Linux)
command line tools like tail, head, or cat to inspect the output of the components.
To stop the components, the kill.sh script can be used.

When using Docker, the binaries need to also be packaged into container images. For
this purpose, MontiThings generates dockerBuild.sh, dockerRun.sh, docker-
Stop.sh, and dockerKill.sh scripts that behave like the non-Docker variants of
these scripts. The dockerStop.sh is a variant of the dockerKill.sh script that
gracefully stops the containers instead of killing them. As the container identifiers are
not known at generation time, the dockerStop.sh and dockerKill.sh scripts are
not generated by the Freemarker generator. Instead, the Freemarker generates (Bash)
code into the dockerRun.sh script that generates the dockerStop.sh and dock-
erKill.sh scripts whenever the dockerRun.sh script is executed.

To build the images, MontiThings offers images including the complete compiler
toolchain and all C++ dependencies (called montithings/mtcmake). When using
DDS for communication, a separate base image is used (called montithings/mtc-
makedds). The reason for using a separate image is that the DDS image is significantly
larger. Thus by providing a separate image, the required download size can often be
decreased. These base images are provided for both x86 and ARM processor architec-
tures. This way, the docker images can even be created on machines where MontiThings

9OpenDDS Developer’s Guide. [Online]. Available: https://download.objectcomputing.com/
OpenDDS/OpenDDS-latest.pdf. Last accessed: 28.11.2021

102

https://download.objectcomputing.com/OpenDDS/OpenDDS-latest.pdf
https://download.objectcomputing.com/OpenDDS/OpenDDS-latest.pdf

5.3 Generated Code Structure

was not installed, e.g., in CI pipelines. As recommended by Docker as a best practice10,
MontiThings generated Dockerfile use a multi-stage build. During the first stage, the
generated code is compiled using the mtcmake image. In the following stages, Linux
Alpine-based containers are created for each component type. In each of the generated
images, the libgcc and libstdc++ are installed (TA4). If MQTT is used, additionally
mosquitto-libs++ is installed. Lastly, the compiled binaries are added to the image.
By adding the containers after installing the libraries, the Docker runtime can cache the
first layers of the image between all images. This reduces the disk space required to
execute an additional component. In environments where the images are supposed to
be deployed to a heterogeneous infrastructure (TC1), the generated Docker file shall be
built as a multi-arch image using docker buildx and all required target platforms.

5.3.4 Supporting Different Target Platforms

IoT devices can be very different from one another (TC1). One aspect of this is that
not all target devices may be capable of executing the same software. For the low-
level hardware-accessing code, this can be managed by providing different Freemarker
templates for different platforms (cf. Sec. 4.3.2). Regarding the operating system, Mon-
tiThings will adapt its build scripts to use, e.g., certain cross-compilers, for different
platforms. In general, the overall support for the operating system has to be provided
by extending the generator so that it adapts the build scripts to this platform, i.e., set-
ting the appropriate CMake toolchain and linking libraries differently if necessary, while
support for application-specific hardware has to be provided by the developers. This is
different from Eclipse Mita [wwwb] where accessing the platforms’ hardware is also part
of the generator. As IoT projects are characterized by using sensors and other hardware,
we considered this approach to be too inflexible.

5.3.5 Test Case Generation

As explained in Sec. 4.3.3, MontiThings includes a test case generator. The generated
test code is based on of the most popular C++ test frameworks: GoogleTest. In the
constructor, the test class instantiates the classes generated for the component under
test. Using its generated getter methods, it further creates variables that are used by
the rest of the generated test code to conveniently access subcomponents, Impl classes,
and State classes.

The test cases follow the given-when-then pattern [Fow19]11. Thus, each every test
case starts by setting up the environment, followed by phases for acting on input and

10Best practices for writing Dockerfiles. [Online]. Available: https://docs.docker.com/develop/
develop-images/dockerfile_best-practices/. Last accessed: 28.11.2021

11Robert C. Martin’s “Clean Code” calls this pattern the “build-operate-check” pattern [Mar08]. Some-
times it is also called “arrange-act-assert” or “setup-exercise-verify” [Fow19].

103

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Chapter 5 Code Generation

evaluating whether the output matches the expectations. There are multiple when- and
then-phases if the component is supposed to process multiple inputs.

Given For all ports (including incoming ports!), the generator creates a spy class. The
task of the spy class is to record all messages of a port to make them available to the
test case. For this, the spy class implements the EventObserver interface from the
RTE. Using this interface, it subscribes to all events from its accompanying port.

When For every message that is given to the component under test, i.e., for each con-
nection of the sequence diagram that does not have a source, the generator sends a
message to the outermost component. All further communication between subcompo-
nents then has to be handled by that component.

Then If a connection in the sequence diagram has both a source and a target, the test
case generator will generate an assertion that accesses the spy objects of the ports to
check that the requested message is both sent and received. Unlike the simulation-based
MontiArc, MontiThings may replace connections using communication technologies such
as MQTT. By checking both the dispatch of the message as well as the reception at
the incoming port, the generated test cases can detect communication-related errors,
e.g., components that are not correctly connected to the MQTT broker. If a connection
in the sequence diagram has no target, only the dispatch of the message is asserted.
For assert statements within the sequence diagram, the test case generator reuses the
pretty-printer from MontiThings’ Java-like behavior language. It was, however, slightly
adapted to use the spy objects instead of the actual port when accessing messages of a
port. Delays are implemented directly by adding a delay to the test case. As the test
case does not control the time as a simulator does in MontiArc, MontiThings’ test cases
cannot skip delays and only adjust the global clock.

5.4 Discussion

Using Docker containers for deploying individual components matches the development
concepts of C&C architectures. As each component is a black box, it can be deployed
independently of other components. In fact, using containers reduces the risk for certain
bad practices like implementing certain aspects of “dirty components” [Hab16], i.e., com-
ponents that open communication channels to other components without using ports,
e.g., by accessing a shared file. As containers run isolated from each other, the com-
ponents cannot create shared files or open (network) ports that are accessed by other
components. In many cases, such interactions also would not make sense as developers
do not know at design time which devices a component will be deployed to. This pre-
vention mechanism is, however, superficial and can be bypassed, e.g., by placing shared

104

5.4 Discussion

files on an external storage provider such as an AWS S3 blob storage. As already shown
by projects like balena (and the balenaEngine), Docker containers can also be used
in real-world projects, although the container engine ideally needs to implement some
IoT-specific techniques to, e.g., cope with intermittent connectivity12. The size of the
produced Docker images could further be reduced by using distroless images. However,
since this approach makes the images harder to debug due to the missing tools, while
only providing a few megabytes advantage, we decided against using a distroless image
as a base image.

A disadvantage of Docker containers is that they require a certain amount of hardware
resources. Thus, targeting very low-powered devices like the Arduino Uno or an Espressif
ESP32 is not possible with Docker containers. Overall, low-powered devices, alas, lack
common standards that would make it possible to run the same software on most low-
powered devices. An additional problem in supporting such low-powered devices is that
their compilers often do not support the full C++ standard library. Additionally, their
program memory is often very limited, so loading multiple libraries is sometimes a prob-
lem. As a result, the generator is based on a number of technical assumptions (Sec. 3.1)
to limit the development effort.

An important aspect of implementing the communication was moving away from IP-
based identifiers of communication partners and towards topic-based identifiers. Espe-
cially, MontiThings uses MQTT and DDS. The underlying communication protocols,
of course, can still handle communication using IP-based protocols. Managing the raw
IP addresses, however, introduces too much complexity in the generator. Especially, in
IoT use cases the IP address may often not stay the same over extended periods of time.
Reasons for this include, for example, deploying an IoT device in a cellular network
where multiple devices may share the same IP address and the IP address may also be
changed by the network provider. MontiThings is tested against multiple MQTT bro-
kers (Eclipse Mosquitto, HiveMQ, and EMQX). Related work found EMQX to provide
a higher throughput than HiveMQ and HiveMQ for high reliability, i.e., less message
loss [KGR20]. Since both EMQX and HiveMQ can be horizontally scaled [KGR20],
MontiThings by default uses HiveMQ as a central broker and Eclipse Mosquitto as a
local broker because of its lightweight implementation. However, these choices are not
binding on developers.

While MontiThings offers both centralized communication via an MQTT broker and
peer-to-peer communication via DDS, we, in general, recommend centralized communi-
cation. Other IoT languages, such as Calvin, use peer-to-peer communication exclusively.
This is often accompanied by a registry of devices and their IP addresses to enable the

12This and other problems addressed by balenaEngine to meet IoT requirements can be found on
the project website. [Online]. Available: https://www.balena.io/engine/ Last accessed:
09.01.2022

105

https://www.balena.io/engine/

Chapter 5 Code Generation

device to find each other13. When using DDS, MontiThings uses a similar registry (pro-
vided by the OpenDDS library; called DCPSInfoRepo). Such registries are needed to go
beyond the scope of a single broadcast domain, i.e., often subnet in the case of using
raw IP addresses. Overall, we made the experience that centralized communication has
fewer problems than peer-to-peer-based communication for IoT applications. Besides
having a central access point for all devices, it can also avoid problems with firewalls
and network address translation (NAT) gateways. For example, opening a connection
to a device in a mobile network may be impossible even when knowing the IP address
because the cellular provider may use said firewalls and NAT in their network which
prevents such connections. If, however, the connection is established by the IoT de-
vice itself, e.g., by connecting to a central broker, such communication is usually not
a problem. In general, we recommend using MQTT over (Open)DDS for IoT projects.
The OpenDDS library is much more complex compared to MQTT. This includes both
programming and compiling the code. Since MQTT is more widely supported, it is also
easier to integrate MQTT ports with other technologies.

Overall, the generator’s configurations make the generator very flexible. The parti-
tioning modes (Sec. 5.3.1) are especially useful during the development of components.
Even if a component is intended to be deployed in a distributed fashion, preventing
the partitioning (and thus much of the communication) can help to find errors, as it is
easier to debug a single application than a distributed application consisting of multiple
independent binaries. The disadvantage of the high number of configurations is that
they make templates more complex by introducing if-statements in the templates that
only include certain code for certain generator configurations. While this complexity can
be hidden using hook points, hook points make it harder to understand exactly which
templates are included by a certain template. Compared to early versions of the gener-
ator, the maintainability of the templates increased notably by standardizing the folder
structure and file names and reducing the size of templates. Our structure requires a
single folder for each generated file that is named after the generated file. For generated
C++ files, this folder contains a template for the header (.h-file), the implementation
(.cpp-file), and the content of the implementation. The content of the implementation
is separated from the implementation file so that it can be added to the header file
for generic classes. A methods subfolder contains a single template for each generated
method. Moreover, a folder of templates may offer a hooks folder containing templates
that are intended to be included by other templates. For example, such hooks could
define include statements for the generated class or instantiating a member variable us-
ing the generated class. By using such hook templates, small changes such as adding a

13For example, Calvin uses its own registry based on a distributed hash table. Calvin Registry Documen-
tation. [Online]. Available: https://github.com/EricssonResearch/calvin-base/wiki/
Configuration#registry. Last accessed: 08.01.2022

106

https://github.com/EricssonResearch/calvin-base/wiki/Configuration#registry
https://github.com/EricssonResearch/calvin-base/wiki/Configuration#registry

5.4 Discussion

parameter to the constructor or changing the class’s name do not require modifying all
templates that use the generated class.

Unlike MontiArc, MontiThings generates code that is supposed to be executed as a
distributed application on sometimes unreliable devices. Therefore, compared to Mon-
tiArc’s simulation-focused code, the RTE classes used to provide ports differ noticeably
from the structure in [Hab16, Wor16] because they need to take various communication
aspects into account. The port structure of the RTE has the advantage of making it easy
to support different communication technologies and access to hardware. By allowing
multiple port instances to be included in MultiPorts, it became possible to also accept
multiple (communication) technologies and translate between them. The InOutPort
that combines incoming and outgoing ports is MontiThings’ counterpart of MontiArc’s
IForwardPort [Hab16], that handles such translations. The MessageProvider and
MessageAcceptor of the RTE are, essentially, renamed variants of the IOutPort
and IInPort interfaces from [Hab16]. One reason to differentiate between outgoing
and incoming ports in [Hab16] was also to save unnecessary objects, e.g., buffers. In
MontiThings, however, these buffers are necessary to protect against the (temporary)
failure of communication partners at various points. Since MontiArc generates a simu-
lation unlike MontiThings, such failure situations do not occur there. Conceptually, the
structure of the generated code is similar to the structure of the generated code from
MontiArcAutomaton [Wor16]. The IComponent and IComputable interfaces14 were
taken over from [Wor16].

An open challenge is still the integration of cloud technologies in the generator. While
MontiThings components can, of course, be deployed to virtual machines in the cloud15,
such deployments do not take full advantage of the capabilities of cloud providers. By
generating serverless functions, it would be possible to also use a pay-per-use billing
method for the generated code. The main reason why MontiThings does not support this
is a lack of standardization between cloud providers. Furthermore, the libraries offered
by cloud providers to access their services are not guaranteed to be stable. Moreover,
it would be desirable to integrate MontiThings with more external services, e.g., for
machine learning using pre-trained models offered by a cloud provider. In general, we
see interesting opportunities in the combination of code generation with infrastructure
as code languages, e.g., Terraform16.

14There are actually no interfaces in C++. Interfaces are implemented as classes containing pure virtual
methods. For easier comprehensibility, we will call them interfaces even though they are technically
realized as abstract classes.

15In this regard, MontiThings also offers an installer for Amazon Linux so that it can be deployed to
EC2 instances easily

16Terraform website. [Online]. Available: https://www.terraform.io/ Last accessed: 09.01.2022

107

https://www.terraform.io/

Chapter 6

Deployment and Integration of C&C-based
IoT Applications

IoT applications are often distributed across multiple devices. The distribution process,
including the decision-making of which device is supposed to execute which software,
is called deployment. IoT applications have to handle heterogeneous devices (TC1)
and unreliable hardware (TC3) which are usually not a consideration when deploying
software to traditional server or cloud environments. Thus, the process of deploying IoT
applications comes with different requirements and challenges. This chapter discusses
how to solve these deployment challenges. Furthermore, IoT applications may not be
limited to low-powered devices attached to “things”, but include information systems
and digital twins that enable the interaction with users (cf. Sec. 3.2). Accordingly, this
chapter also describes how IoT applications and model-driven information systems can
be connected (semi-)automatically.

6.1 Research Questions

This chapter mainly answers the question of how to deploy C&C-based IoT applica-
tions (RQ2). Since IoT devices are often prone to failure (TC3), part of this is that the
deployment needs to adapt to failing devices (RQ5). Compared to traditional deploy-
ment approaches that model the deployment of the software for each device individually,
IoT devices “must be managed en masse instead [of] receiving personal attention and
care” [TM17a] Previous works such as Calvin [AP17, PA15, PA17] suggest that a rule-
based approach is beneficial for deploying IoT systems. MontiThings builds upon these
results and further examines deploying IoT software based on rules (R7). Especially,
MontiThings also examines handling unfulfillable rules by proposing changes to rules
and infrastructure to device owners.

The connection to information systems (RQ6) and, especially, their digital twins (RQ7)
is also examined. This connection between IoT systems and their digital twins has not
received a large focus in research. Many commercial cloud providers offer solutions for
building digital twins of IoT systems, e.g., (Microsoft) Azure Digital Twins, (Amazon)
AWS Device Shadows, or the Arduino IoT Cloud. These solutions require developers

109

Chapter 6 Deployment and Integration of C&C-based IoT Applications

Container Registry

Deployment Manager IoT DeviceIoT DeviceIoT Device

Container EngineDe
pl

oy
m

en
t

En
gi

ne

de
vi

ce
ca

pa
bi

lit
ie

s
im

ag
es

 to
ex

ec
ut

e

component requirements

Generate
Prolog code

Calculate
deployment

Prolog

a(b) :-
true.Deployment Rules

?

Integration / Generation

System Execution

Repository

HWC

{…}
Monti
Things CD Tagging Library

10100
1101010
0011000
1010110

Continuous Integration Pipeline

Target
CodeTarget
CodeGPL

Code

Generate
GPL code

Compile /
Container

DeploymentProcess

Figure 6.1: High-level overview of MontiThings’ deployment process. Figure taken
from [KRSW22].

to manually adapt their code to include the digital twin framework. In this thesis, we
examine how to leverage model-driven engineering to automatically create connections
to information systems and digital twins [KMR+20b]. Automating this process removes
the chance for developers to make mistakes, e.g., when needing to set the same MQTT
topics in multiple files across multiple applications.

6.2 Development and Deployment Processes

MontiThings’ deployment process is built around deploying containers including parts
of the software. This decision was made because future IoT applications are expected to
use a “universal, containerized application-deployment-and-execution model” [TM17a].
Businesses like Balena with their IoT-focused (Docker) container engine balenaEngine
show that deploying (Docker) containers to IoT devices is a viable approach. Fur-
thermore, the components of C&C ADLs are independent black boxes. Accordingly,
deploying components using containers is a natural choice, as the container images can
also be viewed as independent deployment units. By focussing on containers, the results
of our deployment research also become better transferrable to other languages as the
deployment can be applied largely independently of the MontiThings language.

Fig. 6.1 shows an overview of the deployment workflow. In the upper part of the figure,
the various models of the application are first pushed into an online repository such as
GitHub or GitLab. This triggers a CI pipeline that generates code from these models,
compiles the code, and packages it in (Docker) container images. These images can
be stored in a container registry. Major platforms like GitHub or GitLab also provide

110

6.2 Development and Deployment Processes

P
ro
ce
ss
O
ve
rv
ie
w
Fa
nc
y

IoT Development DTIS Development

us
es

re
us

es

Ba
ck

en
d

De
ve

lo
pe

r
Fr

on
te

nd

De
ve

lo
pe

r

Sy
st

em

In
te

gr
at

io
n

Tr
an

sfo
rm

at
io

n
&

 G
en

er
at

io
n

Integrated Product Models

Di
gi

ta
l T

w
in

In
fo

rm
at

io
n

Sy
st

em

Ta
rg
et

Co
de

Ta
rg
et

Co
de

Ta
rg

et
Co

de

Ge
ne

ra
te

d
GP

L C
od

e

Pr
od

uc
t

In
te
gr
at
io
n

Ge
ne

ra
to
r

Ge
ne

ra
to
r

Cy
be

r-P
hy

s.
Sy

st
em

Ta
rg
et

Co
de

Ta
rg
et

Co
de

Ta
rg

et
Co

de
M

od
el

-to
-M

od
el

Tr
an

sfo
rm

at
io

n

M
od

el
-to

-T
ex

t
Ge

ne
ra

tio
n

Ar
ch

ite
ct

Co
m

po
ne

nt

De
ve

lo
pe

r

In
te

gr
at

or

Ge
ne

ra
te

d
GP

L C
od

e

F
ig

u
re

6.
2:

W
o
rk

fl
ow

fo
r

th
e

d
ev

el
o
p
m

en
t

of
in

te
gr

at
ed

Io
T

sy
st

em
s

an
d

in
fo

rm
at

io
n

sy
st

em
s.

B
ot

h
th

e
Io

T
sy

st
em

a
n
d

th
e

d
ig

it
al

tw
in

in
fo

rm
a
ti

on
sy

st
em

(D
T

IS
)

ar
e

d
ev

el
op

ed
u

si
n

g
m

o
d

el
-d

ri
ve

n
d

ev
el

op
m

en
t.

F
ig

u
re

a
d
ap

te
d

fr
om

[K
M

R
+

2
0b

].

111

Chapter 6 Deployment and Integration of C&C-based IoT Applications

such registries together with the code repositories. Another result of the CI pipeline is
also that the code generator creates an overview of the technical requirements of the
individual container images. In MontiThings, these can easily be extracted from the
configuration language (Sec. 4.3.2).

The lower part of the image shows how these images are then deployed to the IoT
devices. First, device owners define a set of local rules. These rules set their prefer-
ences of which devices shall (not) execute which parts of the software. For example, one
rule could be never to deploy camera recording software in the bedroom. A deployment
manager acquires these requirements together with information about the infrastruc-
ture, i.e., which devices are available with which capabilities, and the requirements of
the components. This information is used to generate Prolog code that calculates which
devices are supposed to execute which software. The deployment manager utilizes Pro-
log for calculating deployments because Prolog’s backtracking-based evaluation strategy
makes it possible to find alternative solutions in case some solutions are rejected by the
device owners. After the deployment is calculated successfully, the deployment manager
sends commands to the IoT devices that tell them which containers to execute. The IoT
devices then download them from the container registry. Sec. 6.3 discusses this workflow
in more detail.

While the workflow for the deployment is largely independent of the MontiThings
language, integrating IoT applications with information systems requires changes to the
behavior of both systems and is, thus, tighter integrated with the languages used for
modeling these systems. Fig. 6.2 gives an overview of the workflow for creating an IoT
application that is integrated with a DTIS [KMR+20b]. A DTIS is an information system
that manages a digital twin and provides graphical user interfaces (GUIs) to its users.
These GUIs enable the users to monitor and control the digital twin. Our workflow for
creating an IoT system and integrating it with a DTIS starts by first developing both
systems. While it is not required to do so, the development of the IoT application (¬)
starts by developing a set of MontiThings components independent of a specific IoT
application. These can then be used by an architect, whom we also refer to as IoT
developers, to create the architecture of an application. The DTIS development ()
using the MontiGem toolchain for enterprise information systems consists of creating
class diagrams to model the data structure and GUI models for specifying the user
interface. MontiGem uses the class diagrams to generate database schemas and various
Java classes that facilitate access to the databases created from this schema. Moreover,
MontiGem uses the GUI models to generate a user interface. For this, MontiGem can
take advantage of numerous off-the-shelf GUI components such as tables, pie charts, or
bar charts.

After both systems are modeled, an integrator who knows both systems uses a tagging
language to connect them (®). This tagging language connects ports from the Monti-
Things models to attributes of the class diagrams of the DTIS. Using this information,
model-to-model transformations for both systems can add the necessary infrastructure

112

6.3 Requirement-based Deployment

to synchronize the IoT application and the DTIS with each other (¯). After applying
the transformations, the code generators can produce GPL code as usual. This process
of integrating IoT applications is described in more detail in Sec. 6.6.

6.3 Requirement-based Deployment

As explained in Sec. 6.1, our deployment method is based on the idea that IoT should
not be managed individually. Therefore, we base the deployment on the requirements-
based deployment Calvin [AP17, PA15, PA17]. In Calvin, each component may have
a set of requirements. Adversely, every device has a set of properties1, i.e., hardware
capabilities or location. By matching the requirements against the device properties,
Calvin decides whether a device shall execute a specific component. The idea of let-
ting device manufacturers define the capabilities of their devices is also used by cloud
providers. For example, Microsoft Azure’s IoT Plug and Play2 uses a JavaScript object
notation (JSON)-based “Digital Twins Definition Language” for this purpose.

MontiThings extends this approach and in doing so tries to solve a number of open
challenges of this approach:

1. There is a lack of separation of concerns in this approach (MC1). The IoT develop-
ers who specify the software components should not be required to have knowledge
about the infrastructure their application is deployed to. The device owner likely
has a number of requirements that cannot be specified by the IoT developers due
to their lack of knowledge about the infrastructure.

2. Since no device has global knowledge about the system in Calvin, the decision of
whether to deploy a component to a device cannot refer to the global knowledge
about the deployment. For example, it is not possible to specify that a maximum
of (or at least) five devices shall execute a component since no device knows all
other devices. This limits the expressiveness of the requirements.

3. In cases where requirements cannot be fulfilled by the system, the system should
ideally be able to propose modifications. Of course, such modification proposals
have to include human consent before being applied.

6.3.1 Deployment Workflow

The workflow for developing and deploying the software of IoT applications is outlined
in Fig. 6.3. At design time, IoT developers create a set of (MontiThings) components and

1The authors of Calvin refer to them as “capabilities” [AP17]. However, since the capabilities also
include the location or name of a device, we refer to them as properties.

2What is IoT Plug and Play? [Online]. Available: https://docs.microsoft.com/en-us/azure/
iot-develop/overview-iot-plug-and-play Last accessed: 15.01.2022

113

https://docs.microsoft.com/en-us/azure/iot-develop/overview-iot-plug-and-play
https://docs.microsoft.com/en-us/azure/iot-develop/overview-iot-plug-and-play

Chapter 6 Deployment and Integration of C&C-based IoT Applications

DeploymentAD

IoT
Developer CI / CD Device

Owner
Deployment

Manager

Model
Components

Validate
Models

Generate Code

Compile

Package

invalid

Define Local
Requirements

Validate
Deployment

Propose
Modifications

Decide on
Deployment

Deploy to
IoT Devices

Decide on
Proposal

request other proposal

reject

re
je

ct
accept

accept

Specify Techn.
Requirements

Implement
Handwritten Code

valid

AD

in
va

lid

valid

Design Time Generation Time Runtime

Figure 6.3: Workflow of developing and deploying software for IoT applications. Figure
taken from [KKR+22a].

connect them in an architecture model. Components may also be tagged with technical
requirements.

Definition 14 (Technical Requirement). A technical requirement is a key-value pair
of a property type and a property value. Each device can either fulfill a technical
requirement or not.

For example, a technical requirement would be that a device possesses a “DHT22”
(value) “sensor” (type) for measuring temperature. This makes the requirements flexible
enough that they can be used as an extension point for more complex ontologies like the
one proposed in [CAF21]. Such ontologies are, however, often project-specific. Thus,
MontiThings does not assume the usage of one specific ontology but instead leaves it to
the IoT developer to decide if an ontology (and which ontology) may be beneficial in
their specific projects. Additionally, components may be accompanied by handwritten
code, as explained in Sec. 4.2.4.

Once the architecture is modeled, the artifacts get passed to a CI / continuous de-
ployment (CD) pipeline that validates the models. In case the models are invalid, the

114

6.3 Requirement-based Deployment

pipeline will result in an error message and the IoT developer has to fix the models. If
they are valid, the pipeline triggers the code generation, compiles the code, and packages
the binaries in (Docker) container images that can be provided in a container registry (cf.
Chapter 5). If the application was to be deployed via an app store (cf. Chapter 3), these
container images and technical requirements would be required information to deploy
the applications.

Next, the device owner may define a set of local requirements. Local requirements differ
from technical requirements in that they do not make statements about the technical
properties of a device. In other words, technical requirements define which devices can
execute a component, and local requirements define which devices should execute a
component. As device owners have in-depth knowledge about the infrastructure they
manage, they can make decisions about the infrastructure that the IoT developer cannot
take. For example, a device owner could define a rule that prevents camera applications
to be deployed in the bedroom. Besides such privacy-related requirements that restrict
the deployment, device owners can also request the deployment of certain components in
specific locations. For example, device owners could require a fire alarm to be deployed
in every bedroom of a smart home to comply with their country’s laws.

Definition 15 (Local Requirement). A local requirement is a predicate logic formula
over the sets of components, clients, and locations.

Accordingly, the above example could also be expressed as

∀Room r ∃Device d ∃FireAlarmComp c [B(r)→ [L(d, r) ∧D(c, d)]], 3

where r is a room, d is a device, c is a fire alarm component, B is a unary predicate
telling whether a room is a bedroom, L is a binary predicate determining whether a
device is in a certain room, and D is a binary relation telling whether a component is
deployed onto a device. As this example demonstrates, this notation may require a lot of
relations (and mathematical syntax) to be understood by the user. Since device owners
are not expected to have a background in mathematical logic, we decided to restrict the
types of local requirements to a set of commonly used requirement types and make them
easy to input via a web frontend. In addition, this limitation has considerably reduced
the implementation effort for our prototype. This is in contrast to IoT deployment
approaches like the one presented in [SDF+20], that directly specify similar constraints
using a mathematical notation. Our deployment algorithm supports the following four
kinds of local requirements:

3We use ∀X x as a shorthand notation for ∀xX(x) (and similarly ∃Y y for ∃yY (y)).

115

Chapter 6 Deployment and Integration of C&C-based IoT Applications

1. A component shall (not) be deployed at a specific location,

2. A location requires a (minimum, maximum, or exact) number of components to
be deployed there,

3. A component requires a certain number of components (optionally in a similar
location, i.e., the same room, floor, or building).

4. Two components may not be deployed to the same device, and

Locations in these local requirements can of course still be used with quantors, i.e., exists
(∃) and for all (∀). This removes the need for device owners to express requirements
that apply to all or any room, floor, or building more directly compared to setting up
rules for each individual room, floor, or building.

Defining these local requirements is a very dynamic process dependent on the infras-
tructure. The current state of each device, e.g., the availability of certain sensors, may
not be known to the device owner, since IoT devices are managed “en masse” [TM17a].
Unlike when specifying models where their validity depends only on information expected
to be possessed by the modeler, we expect a higher chance of making errors when defin-
ing such local requirements. Thus, MontiThings provides an interactive web application
for defining these local requirements4.

After specifying the local requirements, the deployment manager tries to find a de-
ployment fulfilling all requirements. To do so, the deployment manager utilizes a Prolog
code generator that is explained in Sec. 6.3.3. If all requirements can be fulfilled, the
software can be deployed immediately. In the contrary case that the local requirements
cannot be fulfilled, the deployment manager can propose a set of modifications to the
device owner. Such proposals can include modifications to the local requirements, i.e.,
relaxing the requirements, or the purchase and installation of new hardware. The device
owners then have to decide if they want to accept the proposals. If so, the proposed
modifications are applied and the software can be deployed. If, however, the device
owner does not want to accept the proposal, there are two options: The device owners
either request a different proposal or they reject the deployment completely and cannot
deploy the software.

6.3.2 Deployment System Overview

Fig. 6.4 gives an overview of the components of MontiThings’ deployment system. As al-
ready described in Sec. 6.2, the IoT developers upload their code to an online model/code
repository such as GitHub or GitLab. This triggers a CI / CD pipeline that generates
code from these models and packages them as (Docker) container images. Ideally, these
images are built as multi-arch images so that they can be used on devices with different

4Screenshots can be found in Sec. 8.1.

116

6.3 Requirement-based Deployment

DeploymentComponents

Prolog
Generator

Model / Code
Repository

CI / CD
(Pipeline)

Deployment
Manager

IoT
Developer

IoT Device

Platf.-Spec.
Component
Implementation

Platf.-Spec.
Component
Implementation

Platform-Spec.
Component
Container

Device
Specification

Deployment
Web Application

Device
Owner

Deployment
Client

Component
Container
Registry

Target
Provider

User

Legend
A B Dataflow from

component A to B
Role A interacts
with component BBA

Figure 6.4: Overview of the components of the deployment system. Figure taken
from [KKR+22a].

architectures ((TC1), cf. Sec. 5.3.3). These images are then uploaded to a component
container registry. IoT devices can later send requests to the container registry to pull
these containers from the registry. This part of the workflow is similar to normal GitOps
workflows for the continuous deployment of (microservice) applications. Keeping the
part of the development which involves the IoT developers, i.e., the developers, similar
to their existing workflow, the workflow likely becomes easier for them to adopt.

Device owners specify their requirements using a deployment web application. More-
over, they can manage their IoT devices and issue requests to the deployment manager.
They can request to validate a deployment, accept or reject a modification proposal,
deploy an application (after successful validation only), or stop an already deployed ap-
plication. The deployment manager is the central component for coordinating the com-
munication between the device owner (via the web application), the Prolog generator
that calculates the deployments and modification proposals, and the target providers
that abstract from the communication with the actual IoT devices. The deployment
manager works in an event-based mode of operation, i.e., calculating new deployments
is triggered either by receiving a request from the web application or by getting notified
about infrastructure changes by one of the target providers. The Prolog generator pro-
vides two services to the deployment manager. The first service takes a set of facts from
the deployment manager and generates a Prolog file from them that encodes these facts
as Prolog facts. The Prolog generator is described in more detail in Sec. 6.3.3. The sec-

117

Chapter 6 Deployment and Integration of C&C-based IoT Applications

StatesIoTClient3

Config

id

Location

building
floor
room

Distribution

id

Component

*

Heartbeat Deployment
Request

command

«enum»
Type

Start
Stop

1

Heartbeat
Request

Capability

name

1

*

CD

e.g. docker-
compose.yml

Deployment Client

Starting

Idle

Running

Stopping

Deployment
Request

(start)

SC

Deployment
Succeded

Deployment
Request
(stop)

Deployment
Stopped

Deployment
Request (start)

Deployment
Failed

/ Heartbeat Heartbeat Request /
Status

Deployment
Request Heartbeat Heartbeat

Request Config

Initializing

/ Config

Target Provider

Initialize

SC

Client Watchdog

For every deployment client

Config /
new Client Watchdog()

ConfigHeart-
beat

Distri-
bution

Heartbeat
Request

Deployment
Request

Distribution /
Deployment

Request

Online Offline
timeout

Heartbeat

Idle

Heartbeat

/ Heartbeat Request

Figure 6.5: Interaction between the target providers and deployment clients. Figure
taken from [KKR+22a].

ond service takes a set of requirements and generates Prolog queries from them that can
be used to calculate which devices are supposed to execute which (MontiThings) compo-
nents or request a modification if that is impossible. The deployment manager uses these
two services to generate code and evaluates the queries of this code to calculate a valid
deployment or modification proposals. If the result is a set of modification proposals,
they will be forwarded to the web application and presented to the device owner. If a
valid deployment is supposed to be deployed to the IoT devices the deployment manager
informs the target providers to execute the deployment.

Target providers abstract from the actual communication with the IoT devices. Each
IoT device executes a deployment client for this purpose that will interact with one
target provider to execute its requests. This interaction is detailed in Fig. 6.5. The

118

6.3 Requirement-based Deployment

target provider starts in an initialization state where it sets up connections to, e.g., an
MQTT broker that enables it to communicate with the deployment manager. When all
connections are initialized, target providers request a heartbeat message from all of their
clients and go into an idle state. In this idle state, the target provider waits for new
clients to register and for the deployment manager to send new distributions that the
target provider is supposed to apply. Clients register with a target provider by sending
their configuration to the target provider. The config contains properties of the client,
including a unique identifier, the client’s location, and the capabilities of its device,
i.e., available hardware or software. The clients read this information from a device
specification file that is located on each device. Once a client registers with a target
provider, the target provider starts tracking its state. As long as the client sends regular
heartbeat messages to the target provider (by default: at least every 20 s), the target
provider considers the client online. If the client did not send a heartbeat for the timeout
period, the client is considered offline. Offline clients are ignored for deployments.

The deployment manager may request a deployment by sending a distribution to the
target providers. Distributions are multimaps that map each client to a set of components
it is supposed to execute. Upon receiving such a distribution, the target provider sends
deployment requests to each client. These deployment requests contain the command
the client is supposed to execute to deploy the components. For example, a deployment
request may include a (generated) docker-compose.yml file.

The deployment client has five states:

1. In the initialization state, the client sets up its network connection to the target
provider. Once the connection is established, it registers at the target provider by
sending it its config. The config is sent as a retained (MQTT) message to handle
situations where the client goes online before the target provider.

2. After the initialization, the client enters an idle state. In this state, it will wait for
the target provider to send its deployment requests.

3. As soon as the client receives a deployment request, it enters a starting phase. In
this phase, the necessary container images are downloaded and then started. If
the deployment fails, e.g., because the component is not available for the client’s
system architecture, it will reenter the idle state. If the deployment succeeds, it
enters the running state.

4. In the running state, the components are executed as requested by the target
provider. This state is only left if the target provider requests to either execute
different components or stop the deployment. In the former case, the client goes
back into the starting state with the new deployment request. In the latter case,
the client enters the stopping state.

119

Chapter 6 Deployment and Integration of C&C-based IoT Applications

5. In the stopping state, the container images are stopped. After this is completed,
the client reenters the idle state.

During all of these states, the clients will send heartbeat messages to the target provider
to indicate they are still available even if they do not execute any components currently.
Also, the clients will answer any requests for heartbeat messages with a heartbeat mes-
sage. Note that the states of the clients are very similar to the states of Docker contain-
ers. This is because the main task of the clients is to manage the execution of (Docker)
containers.

Overall, the target provider/deployment client structure is applied to four different
technical systems: 1. Docker Compose, 2. Kubernetes, 3. GeneSIS [FN19, FNS+19,
FNS+20], a research project funded by the European Commission, and 4. Microsoft
Azure IoT Hub. For Docker Compose, we implemented our own client using Python that
handles the communication with the target provider and calls docker compose using
the docker-compose.yml files it receives from the target provider. For Kubernetes,
the configuration is attached to the devices using Labels, i.e., key-value pairs managed by
Kubernetes. While Kubernetes (i.e., k8s) normally incurs considerable overhead, there
are low-powered IoT-focused implementations such as k3s, MicroK8s, or KubeEdge for
using Kubernetes on IoT devices [Kay20, XSXH18]. For GeneSIS, we used their web
interface for registering the devices. However, we cannot utilize their Docker executor
and instead have to use the SSH executor. Using the device_type attribute, we tag
the devices with the information normally provided via the device specification file. The
reason for not using the Docker executor despite deploying Docker containers is that the
Docker executor has several restrictions such as not allowing to access private container
registries. For non-public projects, which we expect the most commercial applications
of future IoT app stores to be, GeneSIS’ Docker executor is, thus, currently not suitable
for use without modifications. These limitations may, however, be removed in future
iterations of the project, as they are not related to their concept. For the Microsoft
Azure IoT Hub, we collect the devices from the IoT hub. The devices are tagged with
their sensors and capabilities. For each device, we generate a “deployment manifest”5

and apply it using the IoT Hub. This manifest specifies which components a device is
supposed to execute.

6.3.3 Prolog Code Generation

For the algorithm that calculates which device is supposed to execute which components,
we use Prolog. Prolog was chosen because of its evaluation strategy: Since Prolog uses
backtracking, it can not only decide whether a certain distribution of components to

5Microsoft Azure Docs: “Learn how to deploy modules and establish routes in IoT Edge”
[Online]. Available: https://docs.microsoft.com/en-us/azure/iot-edge/module-
composition?view=iotedge-2020-11 Last accessed: 14.02.2022

120

https://docs.microsoft.com/en-us/azure/iot-edge/module-composition?view=iotedge-2020-11
https://docs.microsoft.com/en-us/azure/iot-edge/module-composition?view=iotedge-2020-11

6.3 Requirement-based Deployment

PrologDeployment

property("device", 1, "firedetector_b1_f1_off6").
property("has_hardware", "smokesensor", "firedetector_b1_f1_off6").
property("has_hardware", "pirsensor", "firedetector_b1_f1_off6").
property("location", "building1", "firedetector_b1_f1_off6").
property("location", "floor1", "firedetector_b1_f1_off6").
% ...further facts...

1
2
3
4
5
6

Fact kind Fact content Client ID

get_distribution_FireDetector(FireDetector) :-
% Get online devices
get_available_devices(AllDevices),
include(property("state","online"),

AllDevices,OnlineDevices),

% Find devices fulfilling hardware requirements
include(property("has_hardware","pirsensor"),

OnlineDevices, DevicesHW1),
include(property("has_hardware","smokesensor"),

OnlineDevices, DevicesHW2),

% Find devices that have all required hardware
apply_conjunction([DevicesHW1, DevicesHW2],

Candidates),

% Requirement: at least one device on floor 1
check_gte(property("location", "floor1"),

1, Candidates),

% Bind result to target variable
Candidates = FireDetector.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Prolog
«gen»

Device state
changes

Update
facts.pl

Evaluate
query.pl

Activity Diagram

Generate docker-
compose.yml

Notify
devices

x-iot-manager:
type: docker-compose

version: '3.7'

services:
firedetector:
container: firedetector
image: x.com/firedetector
networks:
- internal
ports:
- 5555:1337
- 5556:8080
x-iot-manager:
context:
ip: 137.226.168.144

... other components ...

networks:
internal:
driver: bridge

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

…
YAML
«gen»

Prolog
«gen»…

Figure 6.6: Workflow how the deployment manager utilizes Prolog and Docker Compose
for deploying software to an IoT device. Figure adapted from [KRSW22].

devices fulfills all requirements, it will not stop to search for a solution once it encounters
a statement that evaluates to false. Instead, it will continue to search for other solutions
to fill all of its free variables with values that make the query evaluate to true. Thus,
Prolog is the ideal choice for making modification proposals in the Process of finding out
which device shall execute which components.

Before starting the Prolog generator, the deployment manager will apply two trans-
formations to remove all quantors from requirements. Each exists-quantor is removed
by replacing it with an anonymous variable. Thereby, Prolog is allowed to set these

121

Chapter 6 Deployment and Integration of C&C-based IoT Applications

PrologAD1

Get all clients

Filter for online clients

Filter for clients that fulfill
unnegotiable requirements

Apply negotiable
requirements

AD

(a) High-level
workflow

PrologAD2b

Is the requirement fulfilled?

Currently planned too many
instances of the software

component?

There are too few
components planned.

Propose to buy hardware
fulfilling unneg. requirements

Can the requirement be
further relaxed?

Relax the requirement

[No]

[Yes]

[No]

[Yes]

[Rejected]

[Proposal
accepted]

[Yes]

[No]

Drop component instances
and check if other

requirements still hold

[Yes]

Are there other
components that could be

dropped instead?

[Not holding]

[No]

(Success)

(Backtrack)

(Success)

(Success)

[Yes]
(Backtrack)

AD

Activity diagram

(
is_fulfilled(x) ;
(
\+is_fulfilled(x),
is_fulfilled_proposal1(x),
proposal = proposal1

) ;
% try other proposals

)

1
2
3
4
5
6
7
8
9

Prolog
«pseudo»

Relaxing requirements

(b) Process of applying a single requirement to a component. If
ending in a “backtrack”, Prolog will apply its backtracking evaluation

strategy to find a different trace leading to a “success”.

Figure 6.7: Activity diagram of how the generated Prolog code calculates which to which
devices a component shall be deployed. Figure taken from [KKR+22a].

variables to any value. Each forall-quantor is removed by instantiating a requirement
for every possible value and connecting them in a conjunction (i.e., a logical “and”).
For example, if there are three bedrooms A, B, and C, the requirement to have a fire
alarm in each bedroom would be transformed to “room A requires a fire alarm and room
B requires a fire alarm and room C requires a fire alarm”. By transforming these re-
quirements to individual requirements, Prolog can offer to relax these requirements to
fulfill every instance of a requirement but a few select instances instead of rejecting the
requirement altogether if it is unfulfillable.

After these transformations, the generator can be used to generate Prolog code. As
already mentioned in Sec. 6.3.2, the Prolog generator offers to generate two files: The

122

6.3 Requirement-based Deployment

PrologDeviceMatching

OCL

OD

CD

vl53l0x:DistanceSensor

:Accuracy
percent = 97

manufacturer = "ST"
versionNo = "2"
partNo = "VL53L0X"

:Range
min = 2
max = 2000

:Latency
millisecs = 30

Sensor

Accuracy
int percent

String manufacturer
String versionNo
String partNo

Range
int min
int max

Latency
int millisecs

DistanceSensor

exists DistanceSensor sensor:
let max = sensor.range.max;

min = sensor.range.min
in max > min

implies max - min > 1000 &&
sensor.accuracy.percent > 90

1
2
3
4
5
6

% Facts (from object diagram)
deviceType(vL53L0X, "DistanceSensor").
manufacturer(vL53L0X, "ST").
versionNo(vL53L0X, "2").
partNo(vL53L0X, "VL53L0X").
latency__millisecs(vL53L0X, 30).
accuracy__percent(vL53L0X, 97).
range__min(vL53L0X, 2).
range__max(vL53L0X, 2000).

% Ensure __Sensor variable uses a single object
range__min(__Sensor, Sensor__range__min),
range__max(__Sensor, Sensor__range__max),
accuracy__percent(__Sensor, Sensor__accuracy__percent),
% Note: Latency is irrelevant for OCL expression
instanceOf(__Sensor, "DistanceSensor"),

% Evaluate properties of hardware attributes
(
Max is Sensor__range__max,
Min is Sensor__range__min,
(
\+ Max > Min ;
(
Max - Min > 1000,
Sensor__accuracy__percent > 90

)
)

).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Prolog
«gen»

Figure 6.8: Example of IoT app store-based specification of technical requirements. The
app store provides a hardware ontology as class diagram. Device develop-
ers associate each IoT with an object diagram that specifies its hardware.
IoT application developers define the components’ requirements using OCL.
Prolog code generated from the object diagrams and OCL expressions checks
whether a device can execute a component. Figure adapted from [BKK+22].

first file contains facts about the infrastructure, the second file contains the queries that
calculate the deployment. The queries depend on the facts from the first file. Fig. 6.6
shows how the deployment manager uses both of these files to generate code and then
calculate a deployment.

For generating the facts, Prolog takes the configurations and current states of the
components as reported by the target providers as input. They are converted directly
into Prolog facts, using a Prolog fact called property. A property consists of a fact
kind, a fact content, and a client identifier (cf. Fig. 6.6). If a client is able to execute a
component, the fact kinds and contents need to include all key-value pairs required by
technical requirements.

For generating the queries that calculate which clients are supposed to execute a com-
ponent, Prolog takes all components with their requirements as input. By referencing
the property facts from the other generated Prolog file, Prolog can base its decisions
on the current information about the infrastructure. By separating the facts from the

123

Chapter 6 Deployment and Integration of C&C-based IoT Applications

requirements the overhead for regenerating Prolog code can be reduced. If the infor-
mation about the available clients is updated by the clients, only the facts need to be
regenerated. If requirements are modified by the device owner, only the queries need
to be regenerated. To prevent the Prolog algorithm from making unnecessarily moving
components to other devices, i.e., modifying the distribution of components to clients
when it is not required, the algorithm can be initialized with an existing distribution as
a starting point. In this case, it will only modify the distribution when the existing dis-
tribution does not fulfill the requirements. Fig. 6.7 details how Prolog generates queries
from the information about the components. In essence, Prolog generates a query for
each component. On a high level, this query works by first filtering all devices for the
devices that are considered online by the target providers (Fig. 6.7(a)). Then, the gener-
ated code further filters this set of devices for the devices that fulfill the non-negotiable,
i.e., technical, requirements. Using this set of devices that can technically execute the
component, Prolog then tries to find a set of devices that fulfills all local requirements.

For IoT app stores, this process can be improved using class diagrams, object dia-
grams, and OCL [BKK+22]. Fig. 6.8 gives an example of this. A class diagram provided
by the IoT app store serves as a hardware ontology that describes what kind of prop-
erties which piece of hardware has. In the example, a sensor has a manufacturer, a
version number, and a part number. Further, distance sensors are sensors that also have
a range, accuracy and latency. For each specific IoT device, the device developer pro-
vides an object diagram in accordance with the app store’s class diagram. In commercial
implementations of app stores, this could be required by device certifications, as they
already exist for currently sold devices, e.g., “Works with Apple HomeKit”. The object
diagram specifies the concrete hardware of the device, e.g., sensors or actuators. The IoT
application developer specifies the technical requirements of each component using OCL
expressions. These expressions define which hardware a device needs to possess to be able
to execute the component. Using OCL these requirements can be more complex than
the requirements referring to property statements. Similar to the property-based
approach, the Prolog generator takes both the object diagram and the OCL expressions
and converts them into facts and queries. The object diagram is converted into Prolog
facts. As Prolog is not object-oriented, the object diagrams are flattened in this process.
The OCL expressions are translated to Prolog using a pretty-printer based on the Visitor
pattern [GHJV95] as provided by MontiCore [HKR21] that traverses the AST of the ex-
pression. While doing so, the pretty-printer replaces operators and constructs from the
OCL using equivalent Prolog constructs, e.g., replacing A implies B with \+ A ;
B. For variable assignments as in exists-expressions, the generator creates free Prolog
variables and ensures that all attributes of the object represented by this variable belong
to the same variable. Using the instanceOf expression together with the device-
Type fact, the generated code ensures that the inheritance hierarchy of the original class
diagram is kept, i.e., a free variable representing an object may also match a subclass
of the requested class as per Liskov’s substitution principle [Lis87]. In case the device is

124

6.3 Requirement-based Deployment

able to execute the software component, Prolog is able to find a solution to the query.
Otherwise, Prolog will fail to find a solution. While this approach is more complicated
than the property-based approach, it further decouples device and software developers
and enables greater flexibility in choosing hardware, i.e., enables developers to specify
requirements to the hardware without naming the required hardware. In practice, the
app store also needs to enforce standards, e.g., on the drivers of the hardware to enable
software components to access the hardware in a standardized way.

The process of trying to find a set of devices that fulfill all local requirements is shown
in Fig. 6.7(b). For each local requirement, Prolog first checks if the requirement is already
fulfilled by the set of clients that Prolog currently plans to execute the component on
(¬). If this is the case, Prolog can stop any further evaluation and continue with the
next requirement. In case the requirement is not fulfilled, Prolog differentiates between
cases where there are too many instances of the component planned and cases where
Prolog planned too few instances to fulfill the requirement (). If there are too few,
Prolog proposes to buy new hardware that fulfills the requirements (®). In case the
device owner discards this proposal, Prolog will check if the violated requirement can be
further relaxed (±) and if so propose to relax the requirement (²). If Prolog planned to
many components in step , Prolog tries to remove some of the components and tests
if this leads to a violation of the previously validated requirements. At first sight, this
procedure might seem unnecessary, as there is a separate query for each component type.
However, since local requirements may also specify, e.g., incompatibilities preventing two
components from being executed by the same client, removing one particular instance of
a component and adding an instance on a different client may enable Prolog to fulfill the
requirement. In case Prolog cannot fulfill one of the previously checked requirements,
Prolog will continue to apply its backtracking strategy to find a different set of component
instances that could be dropped (°; Yes-path). If Prolog does not succeed by removing
component instances (°; No-path), it will continue by trying to relax requirements as
explained above (±, ²).

The strategy for relaxing requirements of different forms is set by the code generator.
In general, applying a modification works by allowing Prolog to accept that requirement
is not fulfilled (line 4 of the Pseudocode in Fig. 6.7(b)), but expecting Prolog to accept
a proposed change in return for not fulfilling the requirement (line 5) and keeping track
of the used proposals (line 6). This can be continued for as many requirements as
needed. It is also possible to completely reject a requirement by using True instead of
a proposal. The strategy set by the code generator is to generally count away from the
target number of component instances requested by the requirement. For requirements
that request “at least n” instances, this means proposing n − 1, n − 2, . . . , 0 component
instances. For requirements that request “at most n” instances, this means proposing
n+ 1, n+ 2, . . . , |C| component instances, where C is the set of compatible and available
clients. In this prototypical implementation, our Prolog generator does not account for
instantiating a component multiple times on the same client.

125

Chapter 6 Deployment and Integration of C&C-based IoT Applications

FeatureDiagrams2

TempSensor
temp

FireExtinguisher

FireExtinguisherController
fex

Sprinkler
spr

SmokeSensor
smoke

Alarm
al

MontiThings

Smoke
DetectionSprinkler

Fire
Extinguisher

FD

Alarm
System

Heat
Detection

Figure 6.9: A fire extinguisher application for a smart home. IoT developers tag features
with the component instances that implement them. Tagging is shown using
the dashed arrows. Device owners can choose a feature configuration without
knowing which components are required to implement the feature. Figure
taken from [BKK+22].

To increase usability and not flood the device owner with a lot of proposals that lead
to a failure later in the process even if accepted, Prolog will always assume the device
owner accepts all proposals. Then, after Prolog found a set of proposals that could be
used to create a valid deployment, the web application will present all of the necessary
proposals to the device owner as a set of proposals. This is the reason why Prolog keeps
track of the used proposals (line 6 in Fig. 6.7(b)). The device owner can then choose to
accept the set of proposals or reject it. In case the device owner rejects the proposals, this
will trigger the backtracking indicated by the “failure”-final nodes in Fig. 6.7(b). Prolog
will then continue to propose different sets of proposals as already explained in Fig. 6.3.

6.4 Feature-based Deployment

Up to this point, the deployment process expected the device owner to have extensive
knowledge of the software to be deployed. By utilizing the feature diagram language
from the MontiVerse in combination with a tagging, it is possible to raise the level
of abstraction for the device owner. For this, one needs to consider the MontiThings
architecture a 150 % model. 150 % models contain all variants of a system within a
single model. This approach of combining architecture models with feature diagrams
has already been used successfully in the automotive domain [GHK+08, GKPR08].

The IoT developers, who have the knowledge of what distinct features their system
shall offer, tag each feature with the components required to execute this feature. By

126

6.4 Feature-based Deployment

CD

FireDetector

int carbonMonox

int temperature

Sound

File audio

String codec

Speaker

Bool on

int volume

String serial

Sprinkler

Bool on

Date nextService

** 1

1

(a) A class diagram describing the data
structure of an information system.

TempSensor
temperature

FireExtinguisher

FireExtinguisherController
fex

Sprinkler
sprinkler

SmokeSensor
smoke

Alarm
alarm

MT

(b) A MontiThings model describing the
architecture of an IoT application.

Figure 6.10: Models of a fire extinguishing application. The information system and the
IoT system can be connected by connecting attributes of the class diagram
to ports within the architecture. Figure taken from [KMR+20b].

selecting a set of features in a feature configuration, device owners implicitly decide which
components are needed to execute the system that offers all of the features they request.
They do so without knowing the underlying tagging model, thus operating a higher level
of abstraction. Fig. 6.9 shows an example of how a feature diagram can be used in
combination with such a tagging model to connect a feature diagram to a MontiThings
architecture.

This feature configuration can be used to generate a set of local requirements. These
local requirements, as explained in Sec. 6.3, can then be used to generate Prolog code
that checks if the architecture can be deployed to the available set of devices. In a
similar manner to how the Prolog generator makes modification proposals, it is also
possible to find, e.g., the maximum configuration that could be deployed to guide the
device owner. For this, the feature diagram tool from the MontiVerse’s feature diagram
language can be used to first calculate a sorted list of the configurations by their size
(disregarding available devices). Note that the valid feature configurations form only a
partial order, i.e., there may be multiple configurations of the same size. The generated
Prolog code then checks, if (one of) the largest configuration can be deployed using the
available device. If not, it will continue by checking the next smaller configuration in
the list. Once a deployable configuration is found, this can be communicated to the
user. Similarly, by generating local rules from the feature configurations, it can also be
possible to tell the user which additional hardware would be necessary to make a certain
feature deployable.

127

Chapter 6 Deployment and Integration of C&C-based IoT Applications

Application Execution

Application DevelopmentIoT Device Dev.

IoT App Store

AppStore

Repository
CI/CD Pipeline

(O
nline)

Editor

M
ontiThings

Edge

Validate M
odels

C
om

pile

G
enerate C

ode

M
2M

 Trafos

[invalid]

[valid]

ClassDiagram

instantiated per app

app-independent

A

B

C

D

E

H
ardw

are
O

ntology

C
ontainer

R
egistry

pull

Low
-C

ode
C

onfiguration Platform

Feature Diag.

Cloud

Package

IoT Device

push

M
essage Broker

D
evice

Registry
D

igital Tw
in

(Services)

D
eploym

ent
M

anager
M

onitoring

IoT App
Developer

Enduser
Device
O

w
ner

conforms
to

configure
app

interact

develop
m

odels

IoT Device
Developer

C
ontainer Engine

App C
ont. 1

App C
ont. n

M
essage Broker

H
W

 D
river 1

H
ardw

are Access M
anager

H
W

 D
river m

… …

m
odify

requires
hardware

F
ig

u
re

6
.11:

O
verv

iew
of

th
e

ap
p

store
con

cep
t.

A
p
p
lication

d
evelop

m
en

t
an

d
d
ev

ice
d
evelop

m
en

t
are

d
ecou

p
led

from
each

o
th

er.
B

y
sp

ecify
in

g
a

h
ard

w
are

on
tology,

th
e

ap
p

store
en

su
res

com
p
atib

ility
b

etw
een

softw
are

a
n
d

h
ard

w
a
re.

F
igu

re
tak

en
from

[B
K

K
+

22].

128

6.5 Model-driven App Store Concept

6.5 Model-driven App Store Concept

The development techniques shown in the previous sections and chapters converge into
an app store concept that decouples hardware and software development. Fig. 6.11
provides an overview of this concept.

Application development is carried out by the IoT app developers, who use Monti-
Things to specify an application and upload it to a repository. In particular, they also
specify the technical requirements of the components (cf. Sec. 6.3.3) and, with the help
of a feature diagram, the high-level features of the application (cf. Sec. 6.4). The speci-
fication of the technical requirements of the components takes place in the form of OCL
expressions (cf. Sec. 6.3.3). The specification of high-level features is optional and only
serves to facilitate the configuration of the application. Code generators use the uploaded
models to create a set of container images that are uploaded to a registry provided by the
app store. From there, the IoT devices can download them again when the application
is deployed. In addition to the image registry, the app store offers the web application
with which device owners can configure their IoT applications (cf. Sec. 6.3.2).

In addition, the app store provides a hardware ontology in the form of a class dia-
gram. This class diagram specifies which hardware is supported by the app store. In
particular, the hardware can be grouped by subclassing so that, for example, a DHT22
sensor represents a special kind of temperature sensor, which in turn represents a spe-
cial type of sensor. This class diagram provides a common basis for the development
of hardware and software. IoT app developers write the OCL expressions that specify
the technical requirements of their components against this class diagram. Similarly,
IoT device developers specify the properties of their devices based on this class diagram.
For this purpose, they create an object diagram for each IoT device that represents its
properties. In particular, a certain flexibility can be maintained by this approach. For
example, an IoT application developer can issue a request that requires a temperature
sensor that can detect temperature values between 5 °C and 30 °C without requiring a
specific sensor.

Matching the properties specified in the object diagram, the IoT device developers
develop hardware drivers. These drivers connect to the Hardware Access Manger and
enable the components of the application to access the sensors and actuators of the
device (cf. Sec. 5.2.2). When a container is deployed, it requests access to the required
sensors and actuators via the Hardware Access Manager. In addition to a message
broker, via which drivers and components communicate with each other, the IoT devices
contain a container engine with the help of which the containers of the IoT application
are executed.

From the perspective of device owners and end users, the procedure is no different from
the procedure described in the previous sections: The device owners use a web application
to specify the deployment of their IoT applications there, whereupon a deployment is
calculated using generated Prolog and counterproposals are made if necessary.

129

Chapter 6 Deployment and Integration of C&C-based IoT Applications

6.6 Integration with Model-driven Information Systems:
Synthesizing Digital Twins

As explained in Fig. 6.1, some IoT applications are required to be connected to a dig-
ital twin. This section discusses how model-driven IoT applications and model-driven
information systems can be developed in an integrated fashion to synthesize such digi-
tal twins using a tagging language that connects their models (Sec. 6.6). The resulting
system keeps the IoT application and the information system synchronized.

As described in Sec. 6.2, our process for developing an IoT application that is inte-
grated with a MontiGem information system via a digital twin starts by first developing
both systems. The resulting class diagrams and MontiThings architectures can then
be connected using a tagging language. Fig. 6.10 gives a motivating example using
a fire extinguisher application from a smart home. MontiGem uses the class diagram
(Fig. 6.10(a)) to generate a MySQL database schema. This application is modeled to be
similar to Google’s Nest Protect6 fire alarm.

Now that the models are developed, the task of the integrator is to identify which
ports of the MontiThings architecture shall be synchronized to which attributes of the
class diagram. Our mechanism synchronizes ports with attributes of the class diagram
because ports and attributes are the model elements that hold the actual data that is
used within the system. Such a connection can be either one-directional or bi-directional,
i.e., only inform one of the two systems about the data of the other or enable both
systems to synchronize to changes of the other system. For example, the integrator
wants to synchronize the carbonMonox attribute of the FireDetector class in the
class diagram to the outgoing port. Thus, whenever a message is sent via the (outgoing)
port of the SmokeSensor component, the information system needs to be informed
so that it can update its database value for the carbonMonox attribute in the class
diagram.

This digital twin synchronization mechanism can also be used in combination with
underspecification. In the fire extinguishing example, the Alarm component has two
ports that are not connected. These two ports are thought for telling the Alarm com-
ponent at which volume to playback the alarm sound and which sound file to play as an
alarm. The latter is necessary for more modern fire alarms like the Google Nest Protect
that not only can play uncomfortably loud siren sounds but also, e.g., read out text
messages in case a fire is detected. Under normal circumstances, these two unconnected
ports would never receive any value. Thus, this model would be considered invalid by
a context condition. If, however, a connection to a digital twin is defined on these two
ports, this situation can be corrected. In this situation, values to these ports could also
be provided by sending messages from the information system to the unconnected port.

6Nest Protect Product Website. [Online]. Available: https://store.google.com/product/
nest_protect_2nd_gen_specs Last checked: 12.12.2021

130

https://store.google.com/product/nest_protect_2nd_gen_specs
https://store.google.com/product/nest_protect_2nd_gen_specs

6.6 Integration with Model-driven Information Systems: Synthesizing
Digital Twins

TaggingExample2

// Objects of the Sound and Speaker classes serve as
// digital twins for CPS devices that use the value of
// Speaker.serial as identifier
identify Sound by attr Speaker.serial
identify Speaker by attr Speaker.serial

// Automatically create and link a digital twin when
// a device first connects to the IS
auto identify FireDetector

// Send data from the CPS architecture to the IS
connect port smoke.value

--> attr FireDetector.carbonMonox

connect port temperature.value
--> attr FireDetector.temperature

// Send data from the IS to the CPS architecture
connect attr Sprinkler.on --> port sprinkler.on
connect attr Speaker.on --> port alarm.on
connect attr Speaker.volume --> port alarm.volume

connect attr Speaker.sound.audio --> port alarm.sound

1
2
3
4
5

6
7
8

9
10
11

12
13

14
15
16
17

18

Tagging Model

class from
domain model

class name from domain model.

architecture component instance outgoing port

class from domain model.
Same as before or reach-
able via to-1-association.

attribute of the class
before the dot. Stores

device identifier.

class name from domain model attribute name

“Use messages from
temperatureSensor‘s
port ‘value‘ to update
the temperature
attribute of the
FireDetector class“

“If ‘Speaker.volume‘ changes, inject the new value into alarm‘s ‘volume‘ port“

class name from
domain model

(association +)
attribute

component
instance

port

Figure 6.12: Example of the tagging language that connects the class diagram and the
MontiThings model from Fig. 6.10. Figure taken from [KMR+20b].

131

Chapter 6 Deployment and Integration of C&C-based IoT Applications

The case of connecting to incoming ports can also be applied to already connected
incoming ports. For example, the integrator could also decide to synchronize the on
attribute of the Speaker class with the incoming port of the alarm component. In
this case, whenever the on attribute is changed in the database the architecture needs
to be informed about this change by sending a message to this port. This synchroniza-
tion enables users of the information system to trigger a test alarm by setting the on
attribute in the database. Then the alarm component would receive the value set by
the user and turn on or off the alarm accordingly. This case, however, requires more
synchronization logic to resolve conflicts between values set by the information system
and the components that might send values to that port.

Overall, this leaves us with three cases to handle digital twin synthesization:

1. Sending values from an outgoing port to the information system,

2. Receiving values from the information system at an unconnected incoming port
(underspecification), and

3. Receiving values from the information system at an already connected incoming
port.

Fig. 6.12 shows an example of tagging language for connecting the IoT system and the
information system. Besides making the connections between the ports and attributes,
an important task of the tagging model is to specify to which IoT device instances of
a class shall be attributed. This is important if a system consists of more than one
instance of a component/class. In this case, the information system needs to know to
which device it needs to send data in case it is updated. Vice versa, the information
system needs to know which database entry to update if a message is received from an
IoT device. For this purpose, the tagging language offers the identify keyword. This
keyword can be used in two ways: In the manual case, the integrator may specify that a
device identifies itself using an attribute from the class diagram when sending an update
for an object. This attribute can belong to the same class as the updated object or come
from an object that is connected to the updated object using a to-one, i.e., a unique,
association.

This manual identification is shown in lines 4 (to-one association) and 5 (same class),
respectively. The second method of matching component instances to objects is to use an
automatic connection. In this case, the digital twin will automatically create a new object
of the according class in the database once an IoT device first communicates with the
information system. When automatically creating a new object, the information system
will identify the IoT device using an implicitly created attribute and a unique identifier
of the IoT client included in all messages from the IoT device to the information system,
e.g., its MAC address (cf. the id attribute in the config of Fig. 6.5). At first glance,
the mode for manual identification of IoT devices may seem unnecessary. It is, however,

132

6.6 Integration with Model-driven Information Systems: Synthesizing
Digital TwinsM2MArcHierarchic2

Actuator

MT

Controller

Sensor Actuator

Controller

Sensor

Sender

Receivercase (2)
(underspec.)

MT

Transceiver MUX

Injector

Transceiver

Receiver

Sender

model-to-model
transformation

case (1)
case (3)

Figure 6.13: Model-to-model transformations for keeping adding synchronization ele-
ments to MontiThings models. Elements created by model-to-model trans-
formations are shown in bold. Figure adapted from [KMR+20b].

important to note that the automatic mode prevents the users of the information system
to add IoT devices to the system before they first connect to the system. In some
scenarios, users might, however, want to create the digital twin before the devices are
connected or even produced. These cases are covered by manual identification.

Lines 9 - 13 show how to send data from the IoT system to the information system
by connecting an outgoing port of the MontiThings architecture to an attribute of the
class diagram. In this example, the carbonMonox and temperature attributes from
the FireDetector class will be updated using the outgoing ports of the smoke and
temperature components. The inverse case of updating the IoT system using data
from the information system is shown in lines 14 - 18. Here, the sprinkler and alarm
components are updated using the attributes of the Sprinkler, Speaker, and Sound
classes. Note that attribute can also use the attributes of objects associated with it using
a to-one association.

Model-to-model transformations use the information in this tagging model to extend
both the class diagram and the MontiThings model with elements that keep the data
synchronized between the information system and the IoT system generated from these
models. Fig. 6.13 shows the three model-to-model transformations that are used to
extend the MontiThings models. These three transformations each address one of the
cases listed above. If an outgoing port is tagged to be synchronized to a database entry
of the information system, the transformation instantiates a new Sender component to
the architecture. This Sender component has a single input port that has the same

133

Chapter 6 Deployment and Integration of C&C-based IoT Applications

Receiver<T>

Data

Deserializer<T>

«interface»

NetworkReceiver

MT

T

String

Sender<T>

Data

Serializer<T>

«interface»

NetworkSender

MT

T

String

Transceiver<T>

Sender<T>

Receiver<T>

MT

T

T

Figure 6.14: Generic components for exchanging data with the information system. Gen-
erated elements are shown in bold. Figure adapted from [KMR+20b].

type as the tagged outgoing port. For this purpose, the Sender component has a
generic type parameter that is used to specify the type of the port. The port of the
Sender component is connected to the tagged port. Internally, whenever the Sender
component receives a message from the tagged port, it serializes the message into a
JSON representation and then sends the serialized message to the information system
(Fig. 6.14).

The second case of tagging an unconnected incoming port is handled inversely to the
first case: The model-to-model transformation creates a Receiver component. Inter-
nally, this component is connected to the information system and may receive messages
from the information system (Fig. 6.14). The information system will do so when the
entry in the database that corresponds to the tagged port is updated. When the Re-
ceiver component receives a message from the information system, it deserializes it
and forwards it on its outgoing port. The outgoing port’s type is determined by the
generic type parameter of the Receiver component. The model-to-model transfor-
mation connects this outgoing port to the tagged (unconnected) port. Thus, whenever
the according database entry is updated, the tagged port will receive a message via the
Receiver component.

The third case of tagging an already connected incoming port is more intricate to solve
than the other two cases. In this case, the transformation needs to ensure that both the
component that was already connected to the tagged port and the information system
can send messages to the tagged port. The transformation replaces the already existing
connector with an Injector component that has an incoming and an outgoing port.
Their types are determined by the generic parameter of the component. The incoming
port of the Injector component is connected to the port the tagged port was connected
to before replacing the connector. The outgoing port is connected to the tagged port.

134

6.6 Integration with Model-driven Information Systems: Synthesizing
Digital TwinsTwinDomainEndpoint

Domain CD

Sound
File audio
String codec

Speaker
Bool on
Int volume
String serial

* 1

1

Adapter CD

Endpoint
String cpsConnect
String cpsId

0..1

0..1

object
connections

SoundAudioAdapter

SpeakerVolumeAdapter

…Adapter

…
adapter for
each tagging

Adapter
*1

connects
to CPS

Figure 6.15: Extension of the information system’s class diagrams to synchronize with
the IoT system. Elements created by model-to-model trans- formations are
shown in bold. Figure taken from [KMR+20b].

Internally, the Injector component consists of a Transceiver component, that
combines a Sender and a Receiver component, and a multiplexer (MUX) component.
The Transceiver ensures that messages coming from the port the tagged port was
already connected to are forwarded to the information system. It also receives messages
from the information system that are forwarded to the tagged port. Having both the
information system and a component of the IoT system act as a data provider for the
tagged port can, however, lead to various problems. The most serious problem arises
when the information system and the component disagree on which message to send to
the tagged port. In this case, they may immediately override the decision of each other by
sending another message. This problem is, for example, visible in the Arduino IoT Cloud.
The Arduino IoT cloud enables users to set variables of the Arduino using a web interface.
However, if the Arduino itself also continuously updates the variable’s value, any value set
by the user in the web interface may be immediately overwritten. This effectively makes
the web interface useless in these cases. To solve this situation, MontiThings uses the
MUX component. The MUX component gives the web interfaces messages precedence over
the messages coming from the other components of the architecture. The information
system can cancel its priority by sending an empty message. Since the messages are still
sent to the information system, the information system is aware of the mismatch between
the user-set value and the values sent by the IoT system to the tagged port. This allows
the information system to present this information in an appropriate way to the user
and give the user control on how to resolve the conflict. Overall, we expect giving the
user the control a better solution than automatically overwriting user-set values without

135

Chapter 6 Deployment and Integration of C&C-based IoT Applications

AD

act Object Retrieval

TwinAdapterRuntimeGem

Find Object

Load Object

ObjectInfo

Connect

ObjectInfo
Find Adapter

Adapter
name

Create Adapter Create Object

Object
Info

Adapter
Info

ObjectInfo

ObjectInfo
[Adapter exists] [Adapter inexistent]

Figure 6.16: Process of retrieving an object from the information system’s database
in response to receiving a message from the IoT system. Figure taken
from [KMR+20b].

notice. In our fire alarm example, this behavior can for example be used to trigger a
test alarm. Even though the sensors would indicate to turn the alarm off immediately,
the user can force the alarm to stay on for a defined period of time and then choose to
revert to automatic alarm triggering.

Now that we have shown the adaptions to the MontiThings models, we discuss the
adaptions to the information system. Fig. 6.15 shows the adaptions to the information
system’s class diagram. The domain class diagram refers to the classes specified manually
by the developers, the adapter class diagram contains the classes created automatically
base on the tagging. The Endpoint class keeps track of (network) connections to IoT
systems. Its cpsConnect attribute connects the information that tells the information
system how to send data to the corresponding IoT device. In the simplest case, this
might be a socket, i.e., an Internet Protocol (IP) address and port number. Other
implementations may, however, choose to set this variable differently according to their
communication protocols, e.g., to an MQTT topic. The cpsId attribute contains the
identifier sent by the IoT system with each message (cf. Fig. 6.12 lines 1-8), e.g., its
MAC address or serial number.

At first sight, the cpsConnect and cpsId attributes may seem redundant as the cp-
sConnect attribute in some cases can also be used to identify the device. However, it

136

6.7 Discussion

is necessary to have both the cpsConnect and cpsId attributes. First of all, the value
of the cpsConnect may be unknown at design time. This is the case if, for example,
the IoT devices use dynamically assigned IP addresses. Secondly, the cpsConnect at-
tribute may not necessarily be unique. For example, if multiple IoT devices are deployed
behind a NAT gateway, multiple devices might share the same IP address. Moreover, the
cpsConnect attribute may change over the IoT system’s lifetime. For example, if the
IoT device is for example connected using a cellular network it usually does not have a
static IP. If the same device connects again using a different cpsConnect information
but the same cpsId, the information system could use this information to update the
cpsConnect attribute.

Besides handling the network connection, the Endpoint class also keeps track of the
instances of the Adapter class associated with the IoT device. Each instance of an
adapter can be connected to an object from the domain class diagram, and therefore,
an entry in the database. The generator creates subclasses of the adapter class for all
tagged attributes. Using the adapter, it is known which database exactly is associated
with a specific port in case there are multiple instances of a class in the domain class
diagram. The adapter also creates a message and sends it to the corresponding IoT
device when the object is updated. For establishing a connection to the IoT device, it
uses the Endpoint.

The activity diagram in Fig. 6.16 shows the process of accessing the database using
the adapters. After retrieving the info which object shall be retrieved from the database,
the information system searches for a corresponding adapter. In case the adapter exists,
it can be used to load the object, which ends the object retrieval. In case the adapter
does not exist, this means that the information system is asked to resolve an object that
doesn’t yet exist in the database. This situation is caused if an attribute is tagged to be
identified automatically and a previously unseen port tries to connect to the information
system. In this case, the information system creates both the object in the database and
the adapter and connects them with each other. The newly created adapter can then be
used to retrieve the object from the database.

6.7 Discussion

Overall, this chapter showed how model-driven development can support the deploy-
ment (RQ2) and integration with digital twins (RQ7) of IoT applications. Especially,
we showed how code generation and Prolog can be combined for making modification
proposals. Compared to the other solutions MontiThings offers the most end-to-end
solution for model-driven IoT application development and deployment. By utilizing
Prolog, MontiThings is the only system that can offer modification proposals for deploy-
ment rules. Using feature diagrams, this deployment procedure can be further abstracted
to hide architecture-level knowledge from device owners who might not be technical ex-

137

Chapter 6 Deployment and Integration of C&C-based IoT Applications

perts but still want to deploy a certain set of features (MC1). Since IoT devices need
to be managed “en masse” [TM17a], these are important steps in making large IoT
deployments more user-friendly.

Table 6.1 gives an overview of how MontiThings compares to other solutions from
both academia and industry. It evaluates related work based on the following criteria:

Modeling Language Does the tool offer a modeling language for specifying the behavior
of the IoT application?

Code Generator Does the tool offer a code generator for its modeling language? Fulfill-
ing this category naturally requires that the Modeling Language category is also
fulfilled.

Automated Deployment Does the tool offer an automated deployment, i.e., tools to
automatically transfer software to IoT devices and an algorithm for deciding which
devices shall execute which software?

Dynamic Self-Adaptation Is the tool able to adapt the deployment automatically to
changes in the infrastructure, i.e., new or failing devices? This can also be fulfilled
independently of the dynamic deployment if the tool offers means for the developers
to specify how to react in case of an infrastructure modification.

Rule-based Deployment Does the tool enable developers to specify rules or require-
ments that specify which devices shall execute which software? Note that this can
only be fulfilled by tools that offer an automated deployment.

Modification Proposals (Rules) Is the tool capable of offering modification proposals to
the rules of a rule-based deployment if not all rules can be fulfilled? This category
can only be fulfilled by tools that offer a rule-based deployment.

Modification Proposals (Infrastructure) Is the tool capable of proposing modifications
to the infrastructure that would allow fulfilling all rules in case not all user-defined
rules can be fulfilled. This, of course, requires that the tool offers a rule-based
deployment.

Automated Digital Twin Does the tool automatically provide the necessary software to
keep the IoT devices and their accompanying information system synchronized?

Without question, the offerings from commercial cloud providers like AWS or Microsoft
Azure are more mature than MontiThings’ implementation, a research prototype, can
be with the limited time and resources of a dissertation. Especially, all cloud providers
provide security concepts that are largely out of the scope of this thesis (cf. Sec. 3.7).
They typically work by offering connection strings for each IoT device, i.e., generating
a string for each device that acts as an application programming interface (API) key

138

6.7 Discussion

Table 6.1: Overview of related IoT modeling and deployment approaches. = fulfilled,
G# = partly fulfilled, # = not fulfilled. Table and annotations largely taken
from [KKR+22a].

M
o
d
el

in
g

L
an

gu
ag

e

C
o
d
e

G
en

er
at

o
r

A
u
to

m
at

ed
D

ep
lo

y
m

en
t

D
y
n
.

S
el

f-
A

d
ap

ta
ti

o
n

R
u
le

-b
as

ed
D

ep
lo

y
m

en
t

M
o
d
ifi

ca
ti

on
P

ro
p

o
sa

ls

A
u
to

m
at

ed
D

ig
it

al
T

w
in

IoT Tool
Rules Infrastr.

Arduino IoT Cloud # # # # # # #
AWS Greengrass # # G# 1 # # # 2

Azure IoT # # G# 1 # # # 2

balenaCloud # # G# 1 # # # #
CapeCode [BJK+18] # 3 4 # # # #
Ericsson Calvin [AP17] G# 5 # # #
DIANE [VSID15] # G# # # #
Distributed Node-RED
[GBLL15]

 # # # # # #

Eclipse Mita # # # # # #
Foggy [YMLL17] # # G# 1 # # #
GeneSIS [FNS+20] # 6 # 6 G# 2 G# 7 # # #
Google Cloud Platform # # # # # # # #
JFrog Connect # # # # # #
MARTE + CONTREP
[MVH17]

 # # # # # #

MDE4IoT [CS16] 8 G# 2 G# 8 # # #
OpenTOSCA [BEK+16] # # # #
ThingML [HFMH16, MHF17] # G# 10 # # # #
MontiThings (this thesis)
1 Only deployment is adapted. Integrating dynamically instantiated components into the system is up

to the developers.
2 Both Azure and AWS offer digital twin services. However, they require the developers to manually

react to updates or provide updates, e.g., by subscribing to a set of MQTT topics used by the cloud
provider.

3 “An accessor can be dynamically downloaded and instantiated” [BJK+18], but CapeCode does not
include an automatic deployment algorithm.

4 Because accessors can take accessors as input and instantiate them.
5 Calvin can generate JSON from CalvinScript. The actors are implemented using handwritten Python

code.
6 The GeneSIS modeling language defines deployment/orchestration. It does not define application

logic.
7 GeneSIS can ensure devices have certain capabilities (regarding security and hardware). It does,

however, not have a reasoner for defining requirements similar to our local requirements.
8 Does not use a custom IoT-focused language but UML profiles and action language for foundational

UML (ALF) [CCS15, CS16].
9 Uses MARTE to specify the requirements of the devices. It does, however, not have the means for

specifying requirements about the system as a whole like our local requirements.
10 ThingML has “dynamic sessions” [MHF17] for handling joining or leaving nodes. It does, however,

not actively instantiate nodes to use available devices. ThingML can be used dynamically using
GeneSIS: “ThingML code can be dynamically migrated from one device and platform” [FNS+19].

139

Chapter 6 Deployment and Integration of C&C-based IoT Applications

authenticating the IoT device. Additionally, they usually offer means to encrypt data.
Moreover, some of them provide support for a wide variety of hardware platforms (TC1).
For example, Amazon’s AWS-focused implementation of FreeRTOS offers support for a
large number of low-powered devices, and balena offers images for its balenaOS for a
large number of higher-powered devices. While MontiThings offers the necessary scripts
for creating multi-arch container images, the support for different platforms of the com-
mercial tools is arguably better than MontiThings’. As the main purpose of the reference
implementation of MontiThings is to act as a tool for research, we have to make some
assumptions about the IoT devices that are used as deployment targets (cf. Sec. 3.1).

Concerning the deployment itself, MontiThings offers a more expressive means for
defining deployment rules. Cloud providers usually either provide no rule system at all,
e.g., balena, or only a grouping mechanism that enables deploying a particular software
to a certain set of devices. These groups can also be dynamic7, i.e., define membership
of the group based on attributes of the device. This is similar to the matching of
requirements and capabilities done by MontiThings. However, MontiThings deployment
rules are far more expressive and enable, e.g., expressing that certain pieces of software
are incompatible with each other or that a piece of software requires a different piece of
software to be executed by a device in the same room. MontiThings DevOps that uses a
repository, CI pipeline, and container registry is aligned with those of the major vendors,
like GitHub or GitLab. This is similar to balenaCloud which uses the same pipeline for
preparing the deployment of software to IoT devices. Compared to major cloud providers
and MontiThings, balena’s deployment strategy is, however, relatively limited. Usually,
balena expects all IoT devices to execute the same (set of) containers. This can somewhat
be circumvented by creating multiple repositories where each contains the software for
one group of devices. It is, however, considerably less expressive than MontiThings.

A special case of cloud providers is the Arduino IoT cloud. Their offer is custom-
tailored to devices supporting the IoT platform and having internet access. For these
devices, e.g., the Arduino Nano 33 IoT, the Arduino IoT Cloud offers an online editor to
write Arduino sketches, i.e., the small script-like C++ programs executed by Arduino
devices. As part of this, developers can add simple GUI elements, such as sliders, to
primitives. After deploying the sketch to the Arduino, these GUI elements can show the
current value of the variable and can also be used to set the value. However, unlike Mon-
tiThings, the Arduino IoT cloud provides no mechanisms to prevent the Arduino from
immediately overwriting user-set values. Hence, the possibilities to actually influence
the system are limited if the sketch was not developed with digital twins in mind.

Besides the commercial approaches, numerous academic DSLs for IoT applications
have been developed over the past decade. The most widely known are probably
ThingML and Calvin. ThingML itself does not offer a deployment mechanism. Calvin

7AWS Dynamic Thing Groups Documentation. [Online]. Available: https://docs.aws.amazon.
com/iot/latest/developerguide/dynamic-thing-groups.html Last accessed: 26.12.2021

140

https://docs.aws.amazon.com/iot/latest/developerguide/dynamic-thing-groups.html
https://docs.aws.amazon.com/iot/latest/developerguide/dynamic-thing-groups.html

6.7 Discussion

offers a requirement-capability-based deployment algorithm like MontiThings. Unlike
MontiThings, Calvin uses a distributed deployment approach where no device knows
the whole network of devices. As no device has global knowledge about the state of the
deployment, their deployment is naturally limited to rules that each device can evaluate
for itself. For example, devices can evaluate a rule that states that a certain component
shall be deployed to devices in a certain room by comparing their own location against
this room. Rules like deploying two components in the same room or deploying a certain
number of component instances, however, cannot be expressed as no device has the nec-
essary knowledge to evaluate such rules. As MontiThings uses a centralized deployment,
its deployment rules are more expressive. Moreover, MontiThings offers modification
proposals that are not provided by Calvin. The price for this centralized deployment
is that developers need to provide some infrastructure such as a server to run the de-
ployment web application. Using infrastructure as code scripts, like those provided by
Terraform, comes down to developers needing access to a cloud provider. Since all major
cloud providers provide high availability, especially compared to IoT devices, we do not
consider using a centralized infrastructure a major drawback.

GeneSIS is another academic deployment approach. GeneSIS provides a modeling
language for specifying the deployment. Compared to MontiThings they focus more on
low-powered devices, e.g., devices that are not able to execute containers. They do,
however, not provide a reasoner to calculate which devices shall execute what software.
Instead, their algorithm focuses on reaching a state specified by the deployment models.
Since GeneSIS does not provide a reasoner, we considered MontiThings’ deployment
algorithm a natural addition to GeneSIS. As described in Sec. 6.3.2, we thus provided
a target provider implementation for GeneSIS that deploys MontiThings components
using GeneSIS.

Overall, MontiThings provides a deployment algorithm that is tailored to the highly
dynamic nature of networks of IoT devices. Using its requirement-based deployment, it
is possible to also cover different infrastructures of different instantiations of the same
IoT application. This makes MontiThings’ deployment algorithm also especially useful
for future app stores (cf. Sec. 3.1) of IoT applications, where different users likely have
very different infrastructures. It is capable of adapting to changing infrastructures, i.e.,
failing and new devices (RQ5), and, thus, also of moving to different infrastructures
(cf. Sec. 8.1). In some IoT cases, however, this algorithm is not the best choice. If
the infrastructure is very static and usually set up by experts that do a precise analysis
of which device shall execute which software, i.e., in Industry 4.0 scenarios, developers
likely will prefer a manual deployment strategy.

By utilizing feature diagrams, MontiThings can raise the level of abstraction to avoid
the need for device owners to know the details of the software architecture. Furthermore,
by treating the architecture as a 150 % model, it becomes possible to provide software
alternatives for unavailable hardware. For example, if smart-home-owners want to track
the contents of their refrigerator but do not own a smart fridge, one alternative would

141

Chapter 6 Deployment and Integration of C&C-based IoT Applications

be to provide an app that enables them to manually track the contents of their fridge.
A drawback of the feature diagram approach is, however, that the evaluation strategy
to find, e.g., the largest set of deployable features is inefficient because it may have to
test a large number of feature configurations before finding a valid solution.

A further drawback of the Prolog-based deployment calculation is that the results of
the deployment are sometimes not what a human would expect from the deployment.
For example, if a requirement asks to deploy a particular component on at least five
devices, Prolog will stop after deploying the software to exactly five devices unless other
requirements require a higher number. Human operators might, however, expect their
components to be deployed to as many devices as possible but only wish to be notified
when the algorithm cannot find at least five devices to deploy the software to. To
cover such cases, we introduced quantors (EVERY and ANY) to enable a more natural
specification of rules.

Moreover, Prolog’s evaluation strategy would normally propose a large number of very
similar modification proposals. For example, if the device owner rejects the proposal to
relax rule A, Prolog might still propose to relax rules A and B. MontiThings can filter
modification proposals that are supersets of already rejected modification proposals.
However, this only hides them in the GUI but cannot chance Prolog’s evaluation strategy.
Thus, the calculation of the next proposal might take some time depending on the
number of rules to be evaluated.

Currently, MontiThings does not include the workload of the IoT devices. In some
cases, devices may have requirements to get guarantees to use a certain amount of
resources exclusively. For example, users might not want fire detector devices to execute
software that could increase their workload so high that they can no longer execute their
main functionality of detecting fires. While it is possible to solve this to some degree using
MontiThings’ incompatibility requirements8, other approaches like MARTE can handle
such precise allocations better than MontiThings. Future work thus should address the
question of how to combine approaches that can provide resource guarantees while still
being able to handle the large and highly dynamic infrastructures of IoT systems.

Regarding the model-driven development of digital twins, MontiThings answers the
questions of how to automatically connect IoT devices to accompanying information
systems (RQ6) by synthesizing digital twins (RQ7). Compared to other commercial
and academic approaches, our method separates the connection to the twin from the
development of the IoT system’s business logic (MC1). As the information system
and the IoT system are built independently of one another in our methodology, an
explicit integration step is needed. This integration step requires expertise from both
the information system developers and the IoT system developers. This makes this step
non-trivial for complex systems. Compared to other solutions from, e.g., cloud providers,

8To do so, device owners would specify that the fire detector is incompatible with every other component.
Therefore, it would never share a device with other components.

142

6.7 Discussion

it is, however, abstracted to a modeling level instead of having to consider the digital twin
connection during the development of the business logic. By using a tagging model that
is aware of both the data structure and the IoT application, hard-to-find configuration
errors such as inconsistent MQTT topic names can be avoided.

Since the technical realization of our information systems is built on MontiGem which
is a Java application, our solution naturally does not scale as well as the IoT data ingress
solutions from cloud providers that can usually handle thousands of messages per second.
Since our concept is, however, not bound to MontiGem, future realizations could transfer
our concept to connect to the IoT solutions of cloud providers instead of MontiGem.

143

Chapter 7

Execution and Runtime Analysis of
C&C-based IoT Applications

The previous chapters mainly focused on design-time aspects and the initial setup and
integration of IoT applications. In contrast, this chapter focuses on the execution of IoT
applications. As IoT devices often use unreliable hardware (TC3), IoT applications may
be impacted by various error situations ranging from unreliable sensor outputs to failing
devices. This chapter presents methods to analyze and handle such error situations.

7.1 Research Questions

Having to cope with unreliable hardware is a major challenge when developing IoT sys-
tems (TC3). Not taking failures into account when developing an IoT system may lead to
unreliable systems and, thus, unexpected behavior. This chapter addresses this challenge
on multiple levels: The most obvious (and severe) kind of failure is often the complete
failure of a device. This problem is addressed by (RQ5) and (R9). Previous chapters
already showed how to handle failing devices from a deployment perspective, i.e., by
detecting the failure via missing heartbeat messages and then rerunning deployment al-
gorithms to find an alternative deployment. The device that replaces the failed device
has however none of the data that the failed device had. This problem is addressed
in Sec. 7.3.

Another class of errors is hardware components that do not behave as expected. Han-
dling malfunctioning hardware is addressed by (RQ4). Sec. 4.2.5 already showed how
incorporating the OCL in the language can offer mechanisms to specify, and thus detect,
deviations from the expected behavior. Given the complexity of IoT systems with a
multitude of sensors, actuators, unreliable network connections, and other components
that may fail, it is, however, unlikely that developers foresee all possible error situations
at design time. Thus, methods for analyzing errors within a running system are needed.
This is addressed by (RQ8). Especially, we present two methods for effectively tracing
the system’s behavior (Sec. 7.4, (R11)) and reproducing the behavior in a controlled
environment without the IoT devices (Sec. 7.5, (R12)).

145

Chapter 7 Execution and Runtime Analysis of C&C-based IoT
Applications

ReplayMotivatingExample

LawnWatering
MontiThings

Moisture
Sensor

Irrigation
Controller

Sprinkler
leftSprinkler

Movement
Sensor

Sprinkler
rightSprinkler

Sprinkler
centerSprinkler

Watering
Scheduler

internal clock is wrong

high network delaysensor failure

network disturbed

Bool

Moisture
Level

Bool

Bool

Cmd

Figure 7.1: Motivating example for MontiThings’ error analysis. Figure taken
from [KMR21].

7.2 Methodical Considerations

As shown in Fig. 5.1, the executed MontiThings application may rely on various services
that are provided in a service layer separate from the actual application. Conceptually,
these services can be considered part of the run-time environment. They are, however,
executed on centralized infrastructure instead of IoT devices to make them independent
of the failure of individual devices and utilize the higher network bandwidth, storage,
and computing power of servers or cloud systems.

Each of the methods presented in this chapter constitutes such a service. The gen-
erator is aware of each of these services. Thus, for each service, the generator can be
configured to either enable or disable the service. If enabled, the generator includes the
service-specific templates in the generation and, in some cases, executes some additional
preprocessing steps such as model-to-model transformations.

From the developers’ point of view, they develop their models like they would when
not using any of the services presented in this chapter. Fig. 7.1 motivates that even
models that contain no inherent errors can lead to unexpected behavior when deployed
on IoT devices. In this example, the lawn watering application of a smart home behaves
unexpectedly due to various errors that are out of control of the model, e.g., failed sensors
producing wrong values, disturbed network connections, or incorrectly set clocks. If not
prevented by additional checks, the errors produced by such unreliable hardware can
easily propagate to other parts of the system. When the error finally becomes apparent

146

7.2 Methodical Considerations

R
ep
la
yC
on
ce
pt

System Execution
Artifacts

Roles and Tools

De
ve
lo
pe

r
Ge

ne
ra
to
r/

Co
m
pi
le
r

De
vi
ce

Tr
an

sf
or
m
.

En
gi
ne

cr
ea

te
s

*

* ge
ne

ra
te

s

Pa
ck

ag
ed

Ex
ec

ut
ab

le

Ar
ch

ite
ct

ur
e

M
od

el

ex
ec

ut
es

m
on

ito
rs

Sy
st

em
 T

ra
ce

re
co

rd
s

*

Re
pl
ay

*

*

Reproduction
Artifacts

R
ep

ro
du

ct
io

n
M

od
el

R
ep

ro
du

ct
io

n
Ex

ec
ut

ab
le

1

an
al

yz
es

is
ba

se
d

on

ge
ne

ra
te

s

*

Re
co
rd
er

*

ex
ec

ut
es 1

ge
ne

ra
te

s

us
es

As
In

pu
t

us
es

As
In

pu
t

us
es

As
In

pu
t

us
es

As
In

pu
t

F
ig

u
re

7.
2:

O
ve

rv
ie

w
o
f

M
o
n
ti

T
h

in
gs

’
tr

an
sf

or
m

at
io

n
-b

as
ed

re
p
la

y.
F

ig
u

re
ta

ke
n

fr
om

[K
M

R
2
1]

.

147

Chapter 7 Execution and Runtime Analysis of C&C-based IoT
Applications

to the end-user, the cause of the error may be hard to track down. Thus, developers
need methods to inspect IoT systems.

Traditionally, developers need to inspect a large number of logs collected from each
device, compare these logs to their models and code to then come to an answer as to
why the system behaved unexpectedly. Related work on C&C IoT applications proposed
automatically generating such logs by tagging the elements in the model that shall be
logged and then centrally collecting the logs [MF19]. However, the sheer amount of logs
generated by IoT systems can make this process very time-consuming. Moreover, since
developers have to manually decide what to log at design time, the logs may also lack
the necessary information for finding the cause of the error.

To mitigate this problem, our method for understanding the behavior of C&C appli-
cations filters the logs to the relevant information needed to trace a particular state of
the application [KMM+22]. To remove irrelevant log messages, the tracing tool takes
the architecture models into account, as the architecture contains the information to
which other components a component may pass data. Secondly, we offer a method for
recording the system’s behavior and replaying it in a controlled environment [KMR21].
This gives developers the possibility to, e.g., set breakpoints using the analysis tools
they are used to from the development of non-distributed systems.

For the developers, activating most of these services works by setting a switch in the
generator configuration. As described above, this will cause the generator to add the
necessary code to the generated code that enables the IoT application to communicate
with the services. The services themselves are standalone applications that can be started
independently, e.g., using Docker containers. For tracing the application while it’s being
executed, developers then only have to connect to the web application provided by the
service. In the case of reproducing the behavior, two generation steps are necessary.
Fig. 7.2 shows the process for reproducing the behavior using our method. It consists of
the following steps:

Step ¬: The developers write the MontiThings architecture models like they normally
would when not intending to reproduce the behavior.

Step : Next the developers generate (C++) code from the models using MontiThings’
code generator. Developers configure the generator to activate the recording mod-
ule. The generator will inject a recording module into each port that connects the
ports to a central recording module.

Step ®: The IoT devices execute the generated code. During this execution, a central
recording module captures the initial state of the components and all following
communication between the components. This includes not only the exchanged
messages but also metadata such as the delay between sending and receiving a
message. The recording module saves the recording data into system traces, i.e.,
a JSON file containing the information about the data exchange.

148

7.3 Fault Tolerance

Step ¯: After recording the necessary data, the models are adapted using a set of model-
to-model transformations (cf. Sec. 7.5). As a result, a reproduction model that can
be used to reproduce the recorded system’s behavior is created. To do so, the
recorded messages, sensor data, and the like are reproduced by components gener-
ated from the system traces and added using the model-to-model transformations.

Step °: Using the code generator, developers can generate (C++) code from the re-
production model. This time, the generator is configured for reproduction, i.e., it
does not unnecessarily add the recording modules. The generated code is not de-
pendent on any sensors, actuators, or networks. It is used to create a reproduction
executable.

Step ±: The developers can execute and analyze the reproduction executable on their
own computer. They can use standard analysis tools like gdb, Valgrind, or
others to inspect the application’s behavior.

7.3 Fault Tolerance

It is important to differentiate between temporary and permanent failures when trying
to mitigate failures (R9). Temporary failures are usually caused by IoT devices entering
battery-saving mode or by a lost network connection. For example, if IoT devices are
connected to the Internet using a cellular connection, they might lose this connection
when entering a dead zone. MontiThings bridges such temporary failures by using a
central and highly available message broker, i.e., an MQTT broker. Such message brokers
can cache messages while the intended receiver is not disconnected from the network.
Thereby, communication partners do not need to know if their communication partners
are available. The IoT devices only need to know that they can reach the central message
broker. Once the temporarily disconnected IoT device comes back online, it can receive
the messages sent to it while it was offline. This caching mechanism is also known as
the device shadow pattern [RBF+16]. This strategy is also used by AWS as part of their
device shadow service.

For brokerless communication, e.g., using DDS, this strategy, however, cannot be ap-
plied. Therefore, MontiThings ports store the information which communication part-
ner has already received which messages. This enables the IoT devices to perform local
caching for offline communication partners. Once the communication partner comes back
online and requests the next message from the port, the port does not return the newest
message but the oldest message that the respective communication partner has not yet
processed. By using this form of caching, the ports effectively implement a distributed
variant of the above device shadow pattern.

In more severe cases of failure, IoT devices may be unable to come back online. This
usually happens if the IoT device gets (partly) destroyed or its memory gets corrupted.

149

Chapter 7 Execution and Runtime Analysis of C&C-based IoT
Applications

FailureConcept

Component fails

Controller

current state

Message Broker

Replace component

Controller

Replay messages before
failure (recover state)

Controller

Reconnect output to
the rest of the system

Controller

Figure 7.3: MontiThings’ failure recovery process. If a component fails, the system re-
plays messages received by the failed component to restore the state of the
failed component. Figure taken from [KRSW22].

For example, if Raspberry Pis do not use a UPS, they are often not shut down correctly
before losing their power supply. This may corrupt the Linux system on their SD card
and prevent it from booting in the future. As described in Chapter 6, our deployment
manager can automatically detect such permanent failures and trigger a redeployment.
Without further steps, the component that replaces the failed component does, however,
always start from a clean state. Any data that the failed component stored is lost. While
this is not a problem for stateless components, losing the state of stateful components
may impact the overall function of the IoT application.

To mitigate this problem, MontiThings offers a failure recovery service. This service
listens to all messages that components exchange via their ports and stores them. Since
the state of components only depends on the messages they exchange via their ports,
the stored messages can be used to restore the state of a component. When stateful
components are started, they will first request the failure recovery service to start a
failure recovery. The component only starts from a clean state if the failure recovery
service does not have data about the component. Fig. 7.3 shows the workflow of this
failure recovery procedure.

Step ¬: First, an already existing component instance fails (permanently). The reason
for the failure is irrelevant for the failure recovery. Before failing, the component
had a certain state (marked with green filling).

Step : After detecting the failure, the deployment manager replaces the failed com-
ponent with a new component instance on a different device. Right after the
instantiation, the new component is in its initial state, which might be different
from the state of the failed component.

Step ®: The failure recovery service replays all messages that the failed component
received before the failure. This restores the state of the failed component. To

150

7.4 Tracing Behavior and Filtering Logs

not confuse other components with the messages the new component tries to send
by calling its compute method during the failure recovery, the failure recovery
happens before the outgoing ports of the component are connected. Thus, the
component simply discards all outgoing messages during the failure recovery.

Step ¯: After the state has been restored, the outgoing ports of the component get
connected and the component starts processing regular messages that might have
been sent by other components since the failure.

This procedure has two major drawbacks: The first drawback is that it requires the
new component to process all messages the failed component received since it was started.
Thus, this procedure has a complexity of O(n), where n represents the number of mes-
sages. Given the usually limited computing power of IoT devices, this makes the failure
recovery very slow. Secondly, the compute function of the component might depend on
non-deterministic factors such as drawing a random number. In these cases, replaying
old messages might lead to a different state.

To solve these two problems, components also explicitly serialize their current state
and send it to the failure recovery service. If components save their state every m
messages (m being a constant number), the complexity of the replay is reduced to O(1),
since only the (constant number of) messages the component received since last saving
its state have to be replayed. Besides reducing the computational complexity, storing the
state explicitly likewise also reduces the memory needed by the failure recovery service to
O(1), since all messages prior to the latest saved state can be discarded. Furthermore, by
saving the state explicitly, the component also saves all prior non-deterministic influences
on the current state.

7.4 Tracing Behavior and Filtering Logs

Analyzing a large amount of very detailed jobs can be a very time-consuming task for
developers who want to find out why their application behaved in a certain way. To
mitigate this situation, MontiThings offers a web-based tracing service. This service
connects to IoT devices and collects their logs. To help find the cause of each particular
behavior in large logs, the service can filter the log messages based on its knowledge
about the architecture.

When enabling the log tracing tool in the generator, the generator adds recording
modules to each component that collect the logs of that component. Also, it generates
the necessary code to enable the components to interact with the tracing service to
process the developer’s requests. Conceptually, the main task of the log tracing service
is to present a filtered version of the log messages that shows only the relevant information
for what state of the application the user is currently interested in.

151

Chapter 7 Execution and Runtime Analysis of C&C-based IoT
Applications

MontiThingsTracing2

ComponentA

OutputLog

InputLog 1
- LogEntry 1
- LogEntry 2
- …
- LogEntry i

InputLog 2
- LogEntry 1
- LogEntry 2
- …
- LogEntry j

47

23

25

ComponentB

OutputLog

InputLog 1
- LogEntry 1
- LogEntry 2
- …
- LogEntry k

A new input
starts a new
InputLog group

Trace data exchanged with messages
adds a reference to the OutputLog group

Grouping is done
independently
from ports

component ComponentA {
port in int x, y;
behavior x {
// ...
log ("Temp: " + x)
// ...

}
}

1
2
3
4
5
6
7
8

MT
…

2022-08-31 8:02:47 Temp: 23

2022-08-31 8:02:48 Temp Average: 23
2022-08-31 8:02:50 Temp Average: 24
2022-08-31 8:02:54 Temp Average: 245
2022-08-31 8:02:58 Temp Average: 190

Developer: “What caused this sudden increase?”

2022-08-31 8:02:49 Temp: 25
2022-08-31 8:02:53 Temp: 689
2022-08-31 8:02:57 Temp: 24

Figure 7.4: Concept of bundling logs for tracing. Figure taken from [KMM+22] and
based on [Mal21].

To do so, the log tracing service groups log messages in a way that it can set log
messages in relation to each other. This is based on two facts about connectors: If a
component provides messages to another component, it may influence its log messages.
If, however, two components cannot send messages to each other—not even indirectly
via other components—they cannot influence each others’ state.

Fig. 7.4 shows how the tracing tool creates two kinds of groups of log messages: Input-
Logs and OutputLogs. InputLogs group the log messages happening between processing
two sets of incoming messages. In contrast, OutputLogs group the messages between two
messages sent on outgoing ports. More precisely, OutputLogs do not refer to the actual
log messages but to the InputLog groups that contain them. An InputLog is created each
time the component processes a new message on one of its ports. If multiple messages
are processed simultaneously, they belong to the same InputLog. Both InputLogs and
OutputLogs contain lists of logs or groups of logs.

152

7.4 Tracing Behavior and Filtering Logs

F
ig

u
re

7
.5

:
G

U
I

o
f

th
e

w
eb

-b
as

ed
lo

g
tr

ac
in

g
to

ol
.

F
ig

u
re

ta
ke

n
fr

om
[M

al
21

].

153

Chapter 7 Execution and Runtime Analysis of C&C-based IoT
Applications

To further relate the log groups to each other, each log group has a unique identifier.
When a component sends a message on one of its ports, it includes the identifier of
the respective OutputLog. Thereby, the receiving component can add this identifier as
a predecessor to the InputLog created for this log message. Note that the actual log
messages are not exchanged. The logs are not merged again until later in the log tracing
service. This is done to save network bandwidth by preventing the IoT devices from
exchanging (and locally storing) logs that might never be requested.

As discussed earlier, the log messages created by the developers might not contain all
the necessary information to inspect the state of a component. To solve this problem,
the components do not only store their log messages but also their internal state and
the content of incoming and outgoing messages. This enables developers to inspect even
information that they did not actively log during the execution.

Fig. 7.5 shows the GUI of the log tracing service. The GUI consists of a sidebar
that contains the fully-qualified names of all component instances (¬). If the user clicks
on one of the component instances, the log tracing service connects to the respective
component instance and requests its logs. The logs are then presented in section of
the GUI. The two-column colored bar on the left of the log message indicates which logs
belong together. The left part of the bar indicates messages that belong to the same
output message, the right part does the same for incoming messages. If the user clicks
on one of the log messages, the tracing service generates the little component-like image
in the right section of the GUI (®-°).

Conceptually, this image can be thought of as the equivalent of an object diagram when
compared to a class diagram. This image shows the current state of the architecture
at the time of the log message. Initially, this image only shows the currently selected
component instance (®) and its direct predecessors, i.e., the component instances it
directly receives messages from. By clicking on the predecessor, the logging service will
show the log messages that belonged to the corresponding OutputLog. In the image, it
will also show the predecessor(s) of the clicked predecessor. If the clicked predecessor
was a composed component, it will also reveal its subcomponents by clicking on the
component (¯). The currently selected component instance is shown with a blue border
(°). In some cases, our logic for filtering logs might be considered insufficient by the
developer. To solve this, we allow the developers to optionally also show log messages
that the tracing service classified as unrelated.

The general idea of instrumenting models with monitoring or logging functionality has
already been proposed by, e.g., [HBJD20]. However, they do not focus on relating the
logs and filtering them to make them more understandable.

154

7.5 Transformation-based Record and Replay

NonDeterminism

template <typename A>
A nd(A value)
{
if (isRecording)
{
storage[index] = value;

}
else if (isReplaying)
{
value = storage[index].get<A>();

}

index++;
return value;

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

C++

time_t timer = nd(time(NULL));1 C++

Usage example:

Figure 7.6: Handling non-determinism using the nd function. The results of non-
deterministic function calls are stored while recording the system’s execu-
tions. If the system is replayed the actual results of the function call get
replaced by the recorded results. Figure taken from [KMR21].

7.5 Transformation-based Record and Replay

As explained above, IoT applications may fail even if the models do not contain any
inherent errors. Such failures can be caused by hardware (TC3) or network issues (TC2),
e.g., a sensor that produces wrong values. If not detected and handled by assertions,
such errors can lead to hard-to-trace errors in other parts of the application.

To understand such errors that are not directly visible in the model, MontiThings
offers a record-and-replay approach. Recording and replaying system executions is a well-
known approach for debugging distributed systems [LLPZ07, KSJ00, GASS06]. Using
model-driven development, MontiThings can (partly) automate adding the necessary
modules to the models. Thus, MontiThings keeps the business logic and the record-and-
replay related model elements and code mostly independent (MC1). The only exception
to this is explicitly marking non-deterministic function calls.

The general workflow of recording and reproducing the behavior of IoT applications
has already been described in Sec. 7.2. If the code generator is set to recording mode, it
adds a recording module into each port. These modules inform the central recording ser-
vice about message exchanges, i.e., sent or received messages. Additionally, the recording

155

Chapter 7 Execution and Runtime Analysis of C&C-based IoT
Applications M2MSensor

Sensor
Consumer

model-to-model transformation

Sensor
Consumer

Sensor
Mock

Replays recorded
sensor data

Port is filled
with raw

sensor data

MontiThings
«real system»

MontiThings
«reproduction»

(a) Sensor data is provided via a mock component that replays the recorded sensor data.
M2MActuator

Actuator
Controller

model-to-model transformation

SinkActuator
Controller

Accepts and ignores
incoming data

Port accesses
actuator

MontiThings
«real system»

MontiThings
«reproduction»

(b) Requests to actuators are forwarded to a Sink that discards all messages.
M2MNetwork

ReceiverSender

MontiThings

model-to-model transformation

«real system»

ReceiverSender

NetworkChannel

MontiThings
«reproduction»

(c) Connectors are replaced by a NetworkChannel component that replays network properties such as
transmission delay derived from the recorded metadata.

M2MComputation3

Computation
Delay

MontiThings
«reproduction»

model-to-model transformation

MontiThings
«real system»

ComputationWrapper
Computation Processes incoming

messages

(d) Atomic components are wrapped in a new component. This component contains a delay that
reproduces the computation delay on the device where it was originally executed.

Figure 7.7: Model-to-model transformations for transforming the original models into
the reproduction model. Figure taken from [KMR21].

156

7.5 Transformation-based Record and Replay

service records metadata such as the time between sending and receiving a message. To
be able to reproduce the behavior of the applications correctly, the recording service
also needs to be aware of non-deterministic effects on the execution. If non-deterministic
effects were not recorded, the reproduction might behave differently than the original
system. For example, if the original system draws a random number during its execution
and the actually drawn number is not recorded, the reproduction might draw a different
random number.

We consider anything as non-deterministic that might lead to a different result if
executed at a later time or by a different device. This includes, for example, reading a
file from the file system, using random numbers, and accessing the current timestamp.
To make the recorder aware of such non-deterministic function calls, developers have to
mark them by wrapping them using the nd function (Fig. 7.6). The nd function is a
generic function that is aware of the fact that the system is recorded or replayed. If the
system is currently in recording mode, the nd function stores the results of the function
call it wraps and then returns the result of the wrapped function call. If, in contrast,
the system is in replay mode, the nd function accesses the previously recorded values
and returns the recorded value instead of the actual result of the function call.

Another important non-deterministic influence on the IoT application is the interac-
tion with sensors and actuators. In MontiThings, this interaction happens via ports.
Unlike non-deterministic function calls in handwritten code, these ports provide a clear
interface that is known on the model level. Thus, the recording and reproduction of
the usage of these ports can be handled automatically without requiring manual mark-
ers, like the nd function, from the developers. For recording their values, ports that
interact with the environment are recorded using the same recording module that is also
injected by the generator in all ports that are used for the communication between two
ports. When the IoT application shall be replayed, the models are first transformed
using model-to-model transformations (step ¯ of Fig. 7.2). Fig. 7.7 gives an overview of
these transformations.

If a port is used to receive values from a sensor, or, more generally speaking, an
external connector (cf. Sec. 4.2.6), the transformation adds a new mock component to
the system that replays the values collected while recording the system (Fig. 7.7(a)). For
this, the transformation uses the system traces recorded of the system that contain all
sensor values. To do so, the transformation can utilize MontiThings’ priority mechanism
(cf. Sec. 4.2.6). By connecting a component to the port, that port automatically takes
precedence over the values that might possibly be provided by a real sensor on the system
that executes the reproduction. If, in contrast, the port is used to communicate with
an actuator, the port is connected to a mock component that just discards all incoming
messages (Fig. 7.7(b)). If an actuator has an influence on the environment that is
relevant to the IoT application, this influence is captured by sensors. For example, if a
radiator heats a room, the IoT application only becomes aware of this effect if it uses a
temperature sensor to measure the temperature in that room. In case the actuator has

157

Chapter 7 Execution and Runtime Analysis of C&C-based IoT
Applications

an effect on the devices that execute the IoT application, e.g., by destroying one of the
devices, this effect will be captured by recording the (in this case infinite) network delay.
Thus, the actual effects of controlling an actuator can be ignored in the reproduction.

The transformations also utilize the metadata captured by the recorder, i.e., the times-
tamps between receiving and sending a message. For reproducing transmission delays,
message losses, and other effects of the network, the transformations replace connectors
between two components with a network channel component that replays these effects
(Fig. 7.7(c)). For this, it uses the delays between sending and receiving a message. The
component added by the transformation forwards all messages it receives on its incoming
port on its outgoing port after a delay. The delay is determined by the recorded system
traces. To factor out the delay for the transmission between the recording module on the
IoT devices and the central recorder, the recorded uses the round-trip time that it can
measure from sending and receiving acknowledgments for the messages exchanged with
the recording modules. Thereby, the clock of the recorder can also act as a single point
of truth instead of having to rely on the IoT devices’ clocks to be perfectly synchronized.

The time needed for executing the compute function of atomic components is cal-
culated similarly to the network delay. To calculate the delay, the transformation uses
the time between receiving a message on a port and sending a message on that same
component. Using this delay information, the transformation wraps the original compo-
nent in a new composed component that also includes a Delay component (Fig. 7.7(d)).
This Delay component adds a delay if the computation was executed too faster on the
developers’ computer than on the IoT device. Note that this uses the assumption that
the developer’s computer does not execute the component slower than the original IoT
device. Since the wrapper component has the same interface as the original atomic
component, it can replace the original component in the models.

Since all components are independently executed in the reproduction, there can also
be non-deterministic effects caused by the operating system’s scheduler: If two messages
arrive (almost) simultaneously at a component, the scheduler might choose to change
the order of the computation. For an accurate reproduction, changing the order of
messages may, however, introduce various problems leading to a different execution. To
mitigate this problem, the transformations use what we call determinism spacings (DSs).
Essentially, DSs take events that are very close together and increase the temporal
distance between them by introducing an artificial delay. This delay is not carried over to
subsequent events but only affects the events that are close together. By introducing this
delay, the transformation discourages the operating system’s scheduler from swapping
the order of the events. The exact value of the necessary DS depends on the specific
computer and operating system. In our evaluations, we could see that even a DS of
5 ms can drastically improve the accuracy of the order of the replayed events. Of course,
adding DSs makes the timing of the reproduction less accurate. Overall, DSs trade
a slightly less temporal reproduction for a strongly more accurate reproduction of the
order of events.

158

7.6 Discussion

ReplayDigitalTwin3

Capturing
traces of

sensor data

Capturing
data traces

of measured
network delay

Reproducing
sensor values

Digital Twin

Reproducing
network delay

Mocking
actuators

Capturing data
traces concerning
computation delays

Further decomposed to
reproduce computation delays

and non-deterministic calls

Sensors Actuators

Figure 7.8: Relation between the IoT system and the digital twin used for the replay.
Figure taken from [KMR21].

Fig. 7.8 shows the relationship between the original system and the reproduction.
Our reproduction consists of a set of MontiThings C&C models of the system, a set
of data traces used for applying the transformations, and the services to reproduce the
system’s behavior in order to analyze it. Thus, the reproduction of the original execution
constitutes a digital twin.

7.6 Discussion

This chapter presented various ways for analyzing and handling errors in the execution
of IoT applications. These approaches relied on recording data about the system during
the execution and then using this data to provide services. Thereby, the approaches
in this chapter are closely related to the development of digital twins that also rely on
digital shadows, i.e., data about the system, to provide additional services. In particular,
we used the recorded data to restore the state of failed components, inspect currently
running components, and reproduce the behavior of IoT systems.

By restoring the state of components, in combination with automatically redeploying
them (cf. Chapter 6), we addressed research question (RQ5). Our failure handling
procedure can solve the problem of restoring the state in O(1) if the state is also regularly
stored [KRSW22]. The advantage of replaying messages in addition to only restoring a

159

Chapter 7 Execution and Runtime Analysis of C&C-based IoT
Applications

state is that also the state changes since the last backup can be restored. Technically,
our service is, however, a research prototype that does not scale well. In [Häu20], we
examined in a bachelor thesis how the architecture of the failure handling could be
improved to be more scalable. One of the results was that the MQTT broker can be a
bottleneck if it is not horizontally scalable. For commercial implementations, it could
also be worth examining the combination of our failure handling with the automatic
failover strategies of cloud providers. For example, by setting up an auto-scaling group1,
virtual machines can automatically be replaced if they become unresponsive. Thereby, a
completely automatic failover strategy could be achieved for clients that do not require
access to sensors, actuators, or other location-bound hardware:

1. An IoT client fails permanently

2. The health check of the cloud provider notices the failure and replaces the virtual
machine

3. The deployment manager also notices the failure. It redeploys the software to the
new virtual machine that replaces the failed machine

4. Our failure handling service restores the state of the failed machine

Our failover strategy does, however, rely on the assumption, that failures are not
caused by the business logic, e.g., hardware failures or a corrupted file system. If the
fault is instead caused by the business logic, the failure handling service will restore the
component that replaces the failed component into the same state, which is likely to
result in a fault again shortly thereafter. To handle such problems, it would be possible
to not restore the component’s state if restoring it has failed a certain number of times.
We did not implement such a policy as this could have an impact on the business logic,
as the communication partners of the failed component may not expect it to lose its state
without notice. Handling such situations within the component would also be possible
but violate (MC1).

This chapter also presented tools for analyzing the execution of IoT systems that
address (RQ8) and (partly) also (RQ4). By not only collecting the logs of IoT devices
but filtering them to analyze the causes of particular log messages, we reduce the number
of log messages a developer has to inspect and, thus, the time it takes to analyze logs.
Storing the log messages on the IoT devices is, however, not an approach that is viable
for long-running executions, because IoT devices usually only have a very limited amount
of storage available. A more feasible approach for a commercial implementation would
be to introduce some form of Linux’s logrotate2, where compressed old logs are regularly
uploaded to an online blob storage instead of being stored locally.

1AWS Auto Scaling groups documentation. [Online]. Available: https://docs.aws.amazon.com/
autoscaling/ec2/userguide/AutoScalingGroup.html Last accessed: 30.12.2021

2logrotate(8) - Linux man page. [Online]. Available: https://linux.die.net/man/8/logrotate.
Last accessed: 30.12.2021

160

https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://linux.die.net/man/8/logrotate

7.6 Discussion

Likewise, the record and replay approach is only feasible for recording a limited amount
of time. Even though the system traces are not stored on the IoT devices for extended
periods of time, the developers still have to analyze the reproduction. Debugging the
reproduction inherently gets more time-consuming as the duration of the reproduction
is increased. To mitigate this situation, the recoding service can also be dynamically
attached and detached from the system. As the recoding service captures the initial
state of the components upon being attached to the system, it can also reproduce such
partly executions. Such a strategy, however, only works if the developers already know
when to expect a failure. If, for example, the sprinklers of a lawn irrigation system always
wrongly turn on every Monday at 8 a.m., it might be possible to attach a recorder during
this time. If errors happen at random times, it is necessary to record the system for
extended periods of time. Dynamically attaching the recorder does, however, of course
not provide any explanations as to how the IoT system got into the state it was in when
the recording started.

An advantage of our record-and-replay approach is that it includes all components of
the original system. This enables developers to ask what if? -questions of the system
within certain boundaries [KMR21]. In other words, they are enabled to change details
of their implementation and then execute the system under the same conditions as the
conditions under which the original system failed. This is, of course, only possible within
the limits of the recoded data. For example, changing the interface of a component to
use an additional sensor is not possible as there is no recorded data for the additional
sensor. Moreover, the more the components in the reproduction deviate from the original
components, the less valid the reproduction becomes. For example, if a change in the
model leads to a radiator being turned on correctly, this will not be reflected by the
(recorded) sensor data of a temperature sensor close to the radiator. If developers are
aware of these limitations, being able to ask such what if? -questions can still facilitate
analyzing the system.

The probe effect [Gai86] threatens the validity of the reproduction [KMR21]. In other
words, by observing the system, the recording modules might influence the system’s
behavior. For example, be causing additional load on the network, delays might be
increased when using the recording module. This effect can make the reproduced system
behave differently than the original system.

Furthermore, the reproduction can also be distorted if the assumption that the de-
veloper’s computer executes the components faster than the original IoT device is not
met [KMR21]. In this case, the additional delay might cause other parts of the system
to behave differently from their original behavior, e.g., if a component measures the
time between receiving two messages. To measure accurate delay times, the record-and-
replay tool is only implemented using DDS and not using MQTT. The reason for this is
that DDS uses peer-to-peer-based communication whereas MQTT uses a central broker.
Any round-trip-time measurements would, thus, be influenced by the delay induced by
the message broker and the network delay between the components, recording service,

161

Chapter 7 Execution and Runtime Analysis of C&C-based IoT
Applications

and message broker. Furthermore, as visible from two theses [Häu20, Mal21], we advise
turning off Nagle’s algorithm for network measurements. Since Nagle’s algorithm may
delay the transmission of small packets, it may also delay sending acknowledgment mes-
sages between the recording modules and the recording service. This distorts the delay
measurements used for reproducing the network delay.

As mentioned above, MontiThings is also not the first tool to use a record-and-replay
approach. Instead, this approach has been chosen specifically because related work sug-
gested it [LLPZ07, KSJ00, GASS06]. One of the most notable implementations of the
record-and-replay approach is ROSbags3. ROSbags provides record-and-replay function-
ality for the robot operating system (ROS) [Kou16, QCG+09]. Their approach mainly
differs from our approach by not being model-driven. Technically, their implementation
is also based on DDS but does not include the network delay in the calculation [KMR21].
While this is usually not a problem for robots that are operated in a shared network, this
can be a problem for IoT systems that often have to work with unreliable (sometimes
cellular) network connections that can lead to variable network delays [KMR21].

Other IoT modeling languages, such as ThingML [HFMH16, MHF17] or Calvin [AP17,
PA15, PA17], usually do not provide comparable failover and analysis tools. ThingML
provides a tagging language for selecting model elements for which logs shall be produced
and collected [MF19]. In contrast to MontiThings’ tracing tool, ThingML does, how-
ever, not include a way of effectively presenting these logs to developers. As ThingML’s
logging is also based on a C&C modeling language, we think it could be extended by our
approach. More generally, since our analysis tools only rely on the most common mod-
eling elements of C&C languages, i.e., ports and components, and many IoT languages
are C&C languages, we think our approach is well transferrable to many other tools.
The technical realization of course needs to be adapted to their individual programming
languages and communication protocols.

It is worth mentioning, that there are still open questions with regard to the analysis
of IoT systems at runtime. For example, digital twins of the IoT system could also be
utilized to execute simulations to make predictions about the future of the system. One
special case of this is predictive maintenance. If, for example, the frequency at which
sensors produce unreliable values increases, this might indicate that the sensor should be
replaced. For this, more advanced anomaly detection algorithms than what MontiThings
offers might be needed [MNZC20], since MontiThings mechanisms are mostly focused on
single components. By examining the messages of all components in the system, more
advanced algorithms might be able to predict failures that cannot be detected with the
limited black-box point of view of a component. Furthermore, while MontiThings is able
to handle failures, it does not offer means to analyze the effects of a certain component
failing. MontiThings can, as explained in this thesis, handle the failure of components

3Project website. [Online]. Available: https://github.com/ros2/rosbag2. Last accessed:
30.12.2021

162

https://github.com/ros2/rosbag2

7.6 Discussion

and could, of course, also dry run a deployment on a simulated infrastructure. It does,
however, not analyze the effects the failure might have on the business logic. If the
effects are severe and the system is safety-critical, e.g., the traffic lights of a smart city,
developers might need more advanced failure handling mechanisms that offer some kind
of redundancy for a more seamless failover.

163

Part III

Evaluation and Conclusion

165

Chapter 8

Experiments

In this chapter, MontiThings is evaluated in case studies and performance evaluations.
Additionally, we describe our experiences from using MontiThings in student labs with
student developers that (mostly) did not use MontiThings before the lab. The case
studies are built around the running example of a smart home application and show
various aspects of MontiThings discussed throughout this thesis. In contrast, the student
labs also show MontiThings being applied to other use cases, i.e., industrial IoT and
autonomous driving. Furthermore, by inspecting the artifacts created by the students,
we gain information on how inexperienced developers use MontiThings.

8.1 Case Study 1: Smart Home and Smart Hotel

This section demonstrates MontiThings deployment capabilities using a smart home and
smart hotel case study. The smart hotel use case is inspired by the running example
in [Zam17]. After modeling a smart home application and deploying it to a smart home,
the residents of the smart home decide to visit a hotel. As hotel guests, they also act
as (temporary) device owners and thus may deploy their smart home application to the
hotel’s infrastructure.

Fig. 8.1 shows the architecture of the smart home application. Overall, the application
consists of a TV, an heating, ventilation, and air conditioning (HVAC), a smart assistant
(such as Amazon Alexa or Apple Siri), an radio-frequency identification (RFID)-based
door lock, and smart light bulbs. As implementing a large number of hardware drivers
is not the focus of this case study, the ports that access external connectors only exist
configuration-wise, i.e., the project does not include code to control, for example, an
actual TV. Instead, the components contain code that mimics the behavior of these
hardware components, e.g., by generating temperature values instead of reading out an
actual sensor. A case study with real sensors and actuators can be found in Sec. 8.2.

According to our development process (cf. Fig. 5.1, Fig. 6.4), the development starts
with the IoT developer creating the models and accompanying handwritten code. These
artifacts are uploaded to a central repository. For this case study, we chose GitLab as
our central repository, since GitLab offers a Git repository, a CI pipeline, and a container

167

Chapter 8 Experiments

CaseStudySmartHotel

MontiThings

TV

Receiver

Display Speaker

AverageTemp
temperature

HVAC

AirQuality
aq

Temperature
Controller

ctrl

Fan
ceilingFan

Window
window

SmartAssistant

Activate Speech
Recognition Processor Speaker

SmartLightRFID
Doorlock

SmartHome

Figure 8.1: MontiThings architecture of the Smart Home / Hotel application. Figure
taken from [KKR+22a].

registry together. It is, however, not required to choose GitLab. Many vendors, e.g.,
GitHub, provide a similar bundle of services.

Pushing the artifacts to the GitLab repository triggers GitLab’s CI pipeline. This
pipeline uses the models to generate code using MontiThings’ code generator. The
generated code is then cross-compiled and packaged in a Docker image. For cross-
compilation, we used Docker buildx as described in Sec. 5.3.4. More specifically, the CI
pipeline is configured to cross-compile for linux/amd64, linux/arm64, linux/arm/v7, and
linux/arm/v6. The resulting multi-arch container image is then pushed to the container
registry of the GitLab project. Now that the images are available in the image registry,
the IoT devices are able to download and execute the images.

We used a total of ten Raspberry Pi 4 Model B devices in this case study. Seven of
these devices were deployed in Aachen, Germany. These devices represent the smart

168

8.1 Case Study 1: Smart Home and Smart Hotel

Location
Device

Main
Purpose

Capabilities
Room Building

Pi1 TV speaker, display, tvReceiver Living
Room

Smart
Home,
Aachen,
Germany

Pi2 HVAC sensorAirQuality, actuatorWindow,
actuatorFan

Living
Room

Pi3 Smart As-
sistant

microphone, speaker Bedroom

Pi4 Bedroom
Light

light Bedroom

Pi5 Bathroom
Light

light Bathroom

Pi6 Livingroom
Controller

sensorRFID, light, actuatorLock,
sensorTemperature

Living
Room

Pi7 Soundbar speaker Living
Room

Pi8 Hotelroom
Controller

light, sensorRFID, actuatorLock Bedroom
Smart
Hotel,
Stuttgart,
Germany

Pi9 TV speaker, display, microphone, tvRe-
ceiver

Bedroom

Pi10 HVAC sensorTemperature, sensorAirQual-
ity, actuatorWindow, actuatorFan

Bathroom

Table 8.1: Overview of the devices used in the case study. All devices are Raspberry Pi
4 Model B.

home. The other three devices were deployed in Stuttgart, Germany1. They represent
the smart hotel. All of the devices executed the IoT client software for docker-compose
deployments. An overview of the configuration of all IoT devices is given in 8.1.

After logging into the deployment web application, the device owner registers the
target provider for the devices in Aachen. The devices then show up on the device
management page. Moreover, the device owner registers the application to be deployed
by uploading the deployment-info.json file generated by the CI pipeline. This
file tells the deployment web application which Docker images belong to which Monti-
Things component and which technical requirements each of them has. For example,
the Speaker component can only be deployed to devices with the speaker capabil-

1The devices in Stuttgart were provided by the Institute for Control Engineering of Machine Tools and
Manufacturing Units (ISW), University of Stuttgart.

169

Chapter 8 Experiments

Figure 8.2: Screenshot of the deployment web application for entering location require-
ments. Labels in the screenshot were translated from the original German
web application to English. Unnecessary website elements were removed to
save space. Figure taken from [KKR+22a].

ity. Now the device owners can set local requirements that express their wishes for the
deployment. The device owner chooses the following rules:

• Deploy at least one smart light to every building, floor, and room;

• Deploy exactly one HVAC (including all of its subcomponents) to every building
in any room and floor;

• Deploy exactly one TV (including all of its subcomponents) to any building, floor,
and room;

• Deploy a smart assistant (including all of its subcomponents) to every building in
any room and floor;

• Deploy exactly one SmartHome component (the outermost component) per build-
ing.

170

8.1 Case Study 1: Smart Home and Smart Hotel

Figure 8.3: Screenshot of the deployment web application suggesting to buy a new de-
vice with a sensorRFID and actuatorLock capability and placing it in
the living room. Labels in the screenshot were translated from the original
German web application to English. Figure taken from [KKR+22a].

Fig. 8.2 shows a screenshot of the MontiGem web application the device owner used to
input these rules. The five tabs except the Control tab represent the four types of local
requirements from Sec. 6.3.1. Implicitly, the deployment web application also adds rules
that make each composed component depend on its subcomponents, i.e., the deployment
manager is not allowed to deploy only some of the subcomponents of a subcomponent.

Next, the deployment can be validated. Given the devices in Aachen, the deployment
would be satisfiable. To force the deployment manager to make modification proposals,
we deactivate device Pi6 by stopping its client software. Pi6 is the only device in Aachen
that provides the capabilities for deploying the RFID door lock. Thus, it is not possible
to deploy the application without Pi6. The target provider notices the change and marks
the device as offline. Since it is offline, it can no longer be used to deploy software.

The device owner now chooses to validate the deployment. This causes the deployment
manager to generate Prolog code from the requirements. Additionally, it generates code
from the information about the IoT clients as reported by the target provider. The
generated code is then executed and its results are parsed by the deployment manager.
The deployment web application informs the device owner that the validation failed but
that there are modification proposals that could fix the problem. The device owner is
then led to a page that shows the proposals (Fig. 8.3). As Pi6 is missing, the deployment
manager suggests buying a new IoT device that has the sensorRFID and actuatorLock

171

Chapter 8 Experiments

capabilities and deploying it in the Livingroom. The device owner follows this advice
by starting the IoT client software on Pi6. The deployment is now valid and can be
deployed to the IoT devices.

Requesting the deployment web application to deploy the application causes the de-
ployment manager to forward the calculated distribution, i.e., the mapping which client
shall execute which containers, to the target providers. The target provider generates a
docker-compose.yml for each IoT client and forwards them to the IoT clients. The
clients use the docker-compose file to pull the necessary containers and start executing
them. This completes the deployment.

The algorithm chose to deploy the components as follows:

Pi1 runs the display and receiver subcomponents of the TV;

Pi2 executes the aq, window, and ceilingFan subcomponents of the HVAC;

Pi3 runs the speaker and activate subcomponents of the smart assistant;

Pi4, Pi5 each execute a smart light component;

Pi6 the RFID door lock and the temperature subcomponent of the HVAC. Addition-
ally, it executes all components without technical requirements;

Pi7 runs the speaker subcomponent of the TV.

IoT devices are, alas, prone to failure (TC3). To simulate the failure of a device, we
now stop the IoT client software on Pi7, the soundbar. The target provider detects
that Pi7 is no longer sending heartbeat messages. Therefore, it marks Pi7 as offline
and informs the deployment manager about the change. The deployment manager uses
the Prolog generator to regenerate the Prolog code that contains the facts about the
system. Executing the generated Prolog code leads to the decision to redeploy the TV’s
speaker subcomponent to Pi1. It informs the target provider that executes the change.
This whole process happens without any user interaction.

Now, the smart home resident decides to visit a hotel. As outlined in [Zam17], the
hotel guest could be considered the device owner in this scenario. During the journey,
the smart home resident disables the smart home software in his home to save energy.
This is done by stopping the deployment and removing the target provider.

The hotel is, however, not as well-equipped as the smart home. Accordingly, the
deployment cannot be fulfilled because it is not possible to fulfill the rule that a smart
light shall be deployed to every room since the hotel’s bathroom does not contain a
smart light bulb. First, the deployment manager suggests buying a new smart light and
putting it into the bathroom. As the device owners’ stay at the hotel is only temporary,
the device owner does not want to buy hardware for the hotel. The device owner rejects
the proposal. The deployment manager then calculates a different proposal. This time it

172

8.2 Case Study 2: Fire Alarm Digital Twin

suggests relaxing the rule to put a smart light in every room. The device owner accepts
the proposal and the following distribution gets deployed:

Pi8 executed the RFID door lock and a smart light;

Pi9 ran the TV’s subcomponents and the smart assistant’s speaker and activate
subcomponent;

Pi10 executed the HVAC and its subcomponents and all other components without
technical dependencies.

Even though the hotel room does not have dedicated hardware to execute a smart
assistant, the hotel room’s TV can take over this task because it has a microphone and
a speaker. Deploying the software from his smart home enables the device owner to skip
the check-in process in the hotel. As the door lock of the hotel room already runs the
device owner’s software, the RFID card from the smart home can also be used in the
hotel.

Overall, this case study shows how MontiThings’ deployment system can be used
to dynamically adapt an application to the available hardware. A drawback of the
deployment is that by default the deployment algorithm will choose one of the devices
and assign all components that have no technical requirements to it. This leads to
unbalanced load distribution. To mitigate this, one should request components without
technical requirements to be deployed to a virtual machine in the cloud or any similar
system without practical hardware limitations. This can be achieved using e.g. whitelist
rules that only allow those components to be deployed at the cloud location.

8.2 Case Study 2: Fire Alarm Digital Twin

In this case study, we present a smart fire alarm and connect it to its digital twin in
form of a MontiGem information system. Conceptually, the motivation for this use case
is the Google Nest Protect2. The Nest Protect is an IoT fire alarm that is connected
to an information system that can, e.g., be used to monitor and control the device. In
addition to its main functionality, the Nest Protect also contains extra functionality like
being able to serve as a light bulb at night. This case study, however, focuses on its
main functionality as a fire alarm that is connected to a DTIS.

According to our process (cf. Fig. 6.2), the developers start by first developing an IoT
system and a DTIS. As a result, they receive the models shown in Fig. 6.10, which the
integrator connects using the tagging in Fig. 6.12. The architecture models are based on

2Google Nest Protect Product Website. [Online]. Available: https://store.google.com/us/
product/nest_protect_2nd_gen Last accessed: 31.12.2021

173

https://store.google.com/us/product/nest_protect_2nd_gen
https://store.google.com/us/product/nest_protect_2nd_gen

Chapter 8 Experiments

TempSensor
temperature

MontiThings

FireExtinguisherController
fex

Sprinkler
sprinkler

SmokeSensor
smoke

Alarm
alarm

Receiver
volumeReceiver

Receiver
soundReceiver

Sender
temperatureSender

Sender
carbonMonoxSender

Transceiver
trans

Injector
alarmOnInjector

MUX

mux

Transceiver
trans

Injector
sprinklerOnInjector

MUX
mux

(a) Result of applying the model-to-model transformations to the MontiThings architecture.

Sender

temperatureSender

Sender

carbonMonoxSender

Injector

sprinklerOnInjector

Injector

alarmOnInjector

Receiver

volumeReceiver

Receiver

soundReceiver

Database

Frontend

IoT Architecture

(MontiThings)

Digital Twin Information System

(MontiGem)

Command

Backend

Temperature

Adapter

CarbonMonox

Adapter

SprinklerOn

Adapter

AlarmOn

Adapter

Volume

Adapter

Sound

Adapter

Preexisting

Backend

Command

Endpoint

(b) Adaptions of the MontiGem information system and its relation to the IoT system.

Figure 8.4: Result of applying the model-to-model transformations to the IoT and infor-
mation system. Elements created by model-to-model trans- formations are
shown in bold. Figure adapted from [KMR+20b].

174

8.2 Case Study 2: Fire Alarm Digital Twin

(a) A device connected to a buzzer, i.e., an
acoustic alarm, and a gas sensor.

(b) A device connected to a temperature sensor.

Figure 8.5: Electronic setup of the Raspberry Pis. Each of the GPIO extension boards
is connected to a Raspberry Pi 4 Model B. Figure taken from [Für20].

the architecture of the fire management in [MECL10]. Before executing the code genera-
tor, the developers execute the model-to-model transformations for adding the necessary
components and classes for keeping the architecture and the DTIS synchronized. The
resulting models are shown in Fig. 8.4.

All of the MontiThings components from the original components still exist in the
transformed architecture. The Sender and Receiver components handle the com-
munication with MontiGem. The two Injector components replaced the connectors
between the FireExtinguisherController and the Sprinkler and Alarm com-
ponents. Their transceiver components contain Sender and Receiver components
that handle the communication with MontiGem. On the MontiGem side, adapter classes
handle updating and accessing the database. The adapters communicate with the gener-
ated MontiThings components via the Endpoint that handles the network connection
to the IoT devices.

Technically, we deployed the MontiThings components to three Raspberry Pi 4 Model
B. Their technical setup is shown in Fig. 8.5. Two of the Raspberry Pis were each
connected to a buzzer and a gas sensor (Fig. 8.5(a)). The remaining Raspberry Pi
(Fig. 8.5(b)) was connected to a temperature sensor. We did not connect a Sprinkler
device to the Raspberry Pis to prevent damage to our lab. Instead, the Sprinkler

175

Chapter 8 Experiments

components only log a message. As soon as the temperature sensor detects a high
temperature or one of the gas sensors detects a high level of gas, the fex triggers the
Alarm components.

We simulate a fire by holding a lighter close to the sensors. Accordingly, all buzzers
are triggered. To trigger a test alarm, the user logs into the MontiGem web application.
There they can choose to turn on the alarm of each device by sending it a message of
the value true. Additionally, they also specify to override any values coming directly
from the IoT devices. Thereby, they prevent the fex from directly turning off the alarm
again because the sensors do not detect a fire.

Overall, the case study shows that our tagging can be used to connect and control mul-
tiple IoT devices and create digital twins for the architecture that are automatically syn-
chronized with a web application. By specifying the connection to digital twin in its own
(tagging) model, the business logic of the models is not polluted with communication- or
synchronization-related code (MC1). Moving it to a separate model does, however, not
remove the need for knowing both the MontiThings and MontiGem models at some point
to create these connections. Thus, creating these connections remains a complex task.
By removing the need for manually implementing such synchronizations, our method
does, however, remove the chance of making programming mistakes here.

8.3 Case Study 3: HVAC Reproduction

In this section, we demonstrate MontiThings’ capability of reproducing the behavior of
IoT applications. For this, we implemented an HVAC application. Compared to the
HVAC component of Fig. 8.1, the HVAC application in this section has a larger number
of external ports and overall more complex logic. From an abstract viewpoint, this HVAC
application consists of a radiator and a window that control the temperature of the room
by turning the radiator on or off and opening or closing the window. The decision on
how to control these actuators is influenced by a thermostat that has a display with
buttons to enable the user to set a target temperature. The thermostat is modeled after
a Rock und Roll UT522 thermostat3. Additionally, the decision takes the air quality and
weather forecast into account. Overall, this application is designed to make the decision
on how to control the radiator and window hard-to-understand by making it depend on
various different influences. For example, the window state could be changed for one of
the following reasons:

• a low air quality indicates the window should be opened to let in fresh air,

• if the weather forecast predicts rainy or stormy conditions, the window is closed
to prevent it from raining in,

3Rock und Roll UT522 manual. [Online, German]. Available: https://rockundroll.de/media/
pdf_dateien/UT522vorabversion_Horst_Rock_GmbH.pdf Last accessed: 10.01.2022

176

https://rockundroll.de/media/pdf_dateien/UT522vorabversion_Horst_Rock_GmbH.pdf
https://rockundroll.de/media/pdf_dateien/UT522vorabversion_Horst_Rock_GmbH.pdf

8.3 Case Study 3: HVAC Reproduction

HVAC

Thermostat

display

button

temperature

VoiceCtrl

SmartHome

Controller

Window

Heater
radiator

temperature

Air

Conditioner

voiceInput

temperature airQualityLevel

MontiThings

desired

Temp

cmd

desired

Temp

cmd

statecmd

weather

Forecast

opening

State

opening

State

Figure 8.6: Outermost component of the HVAC application. Figure taken
from [KMR21].

• if the temperature is too high, the window can be opened to lower the temperature,

• the user issues a voice command with a smart assistant to open or close the window,

• a timer automatically closes the window at certain times of day.

The outermost component of the architecture of this HVAC application is shown
in Fig. 8.6. Overall, the architecture consisted of 15 component types. A more detailed
overview of the models can be found in Appendix E.

The goal of this case study is to demonstrate that MontiThings can produce accurate
reproductions. This requires us to have a ground truth of how the system is supposed to
behave in the reproduction that we can compare the reproduction against. We cannot use
the recorded data for this because the recorded data can already be flawed by mistakes in

177

Chapter 8 Experiments

Scenario
File Simulation Runner

Parses events
window_chaos.csv

configure thermostat
1,ThermostatButton,BTN_SET_ECO_TMP
1,ThermostatDesiredTemperature,20
2,ThermostatButton,BTN_SET_COMF_TMP
2,ThermostatDesiredTemperature,25
3,ThermostatButton,BTN_ENABLE_COMF

decrease air quality at some point
10,AirQualityLevel,45

1,Temperature, 20
2,Temperature, 22
3,Temperature, 21
4,Temperature, 20
5,Temperature, 21
6,Temperature, 22
temperature misreading
7,Temperature,1
8,Temperature, 22

open windows via voice control
12,VoiceControllerInput,open windows
...

Tempera-
ture.log

Air-
Quality.log

External
Ports

Application

Incoming
ports observe

new lines

Appends lines in
corresponding files
at given time steps

Outgoing
Ports append

new lines

Window-
State.log

Weather-
State.log

Thermos-
tatBtn.log

Figure 8.7: Concept of running MontiThings in a simulation. A scenario describes how
the sensors are supposed to behave. A simulation runner forwards this in-
formation to the application via shared files. Figure taken from [Mal21].

the recording. Therefore, we decided to connect the generated MontiThings application
to a simulator instead of real hardware. The conceptual overview of this simulation is
shown in Fig. 8.7. An additional advantage of using a predefined scenario is that the
scenario can be designed to make the software experience hard-to-reproduce situations by
using, e.g., simultaneous events or erroneous sensor values. Moreover, having a specified
scenario makes the experiment reproducible.

The simulator works by creating a scenario file (window_chaos.csv) that specifies
which values each sensor is expected to produce at which point in (simulation) time. A
simulation runner, an application-independent from MontiThings, parses this scenario
specification and writes the specified values to shared files at the specified time in the
simulation. The ports of the MontiThings application read these shared files and forward
their contents to the rest of the architecture. To control the network delay, we executed
all Docker containers of the application on a single machine. During the execution of
the application, we collect logs of the events. We use these logs to compare the original
execution against the reproduction. Using these logs, we can validate if the events of the
original execution also happened in the reproduction in the same order. Additionally,
we define a criterion for when we consider a reproduction to (not) be perfect:

178

8.3 Case Study 3: HVAC Reproduction

00s 05s 10s 15s 20s 25s 30s

Recording

Replaying

(a) An equal replay. The lines between the recording and replay are almost perpendicular.

00s 05s 10s 15s 20s 25s 30s

Recording

Replaying

(b) A non-equal replay. Multiple events of the original execution are not present in the replay.

Figure 8.8: Visualization of the accuracy of the replay. Each event is represented by a
circle on the timeline. The events of the original execution are connected to
their replayed version in the reproduction. The more accurate the temporal
reproduction, the less skewed the lines. If there is no corresponding event in
the reproduction, the circle has a red fill. Figure taken from [KMR21].

Definition 16 ((Non-)Equal Replay). An equal replay is a reproduction in which all
messages on all streams are equal (i.e., including the order of the messages) to the
streams in the original execution. A non-equal replay is a reproduction in which at
least one message on one stream is different or at a different position of the stream.

Fig. 8.8 uses the event data logged during the executions of the application and its
replay to visualize the difference between an equal and a non-equal replay. Each event is
represented by a circle. If an event is replayed, it is connected to the original instance of
the event with a line; otherwise, the circle representing the event has a red fill. A more
accurate reproduction has less skew in the lines and fewer red circles. For example, at
about second 24, there is a red circle in Fig. 8.8(b). This was caused by two events being
incorrectly swapped in the replay causing the heater to not be turned on at second 24.

As explained in Sec. 7.5, the correctness of the reproduction depends on the configu-
ration of the DS. The operating system’s scheduler might incorrectly change the order
of two events that are very close together. DSs can mitigate this effect by putting two

179

Chapter 8 Experiments

Determinism Spacing (DS) disabled 1 ms 3 ms 5 ms

non-equal replays 49 % 15 % 5 % 0 %
avg. latency error 1.9 ms 2.6 ms 2.5 ms 3.0 ms
median latency error 1.2 ms 1.5 ms 1.5 ms 2.0 ms
standard deviation σ 2.4 ms 3.5 ms 3.3 ms 3.2 ms

Table 8.2: Influence of DSs on the accuracy of the order of messages and timing. Table
taken from [KMR21].

events that are close together further apart without affecting subsequent events. The
simulation was performed by a virtual machine with 8 cores of AMD Ryzen 2600X,
10GB of RAM, and Ubuntu 20.04 as its operating system. The DS was configured to
be either turned off, 1 ms, 3 ms, or 5 ms. For every configuration of the DS, we executed
100 simulations with different random seeds. Table 8.2 shows the results of this sim-
ulation. Without DSs, almost half (49 %) of the reproductions were non-equal to the
original execution. By setting the DS to 5 ms all 100 runs of the simulation produced
an equal replay. Note, that the DS only applies to events that are very close together.
Therefore, the average and median latency error, i.e., the inaccuracy in reproducing the
original system’s timing, only slightly increases when increasing the DS. As already
mentioned, DSs trade a slightly less accurate timing reproduction for a considerably
improved accuracy in the reproduction of the streams.

Overall, this case study showed that our model-to-model transformation-base replayer
system can reproduce the behavior of IoT applications. Further, it showed that DSs
can reduce the number of non-equal replays. The exact configuration of the DS depends
on the developer’s computer, i.e., its hardware and operating system. Because not all
events need to be handled by DSs, the timing inaccuracy introduced by the DSs only
has a slight effect on the overall inaccuracy.

8.4 Performance Evaluation: Transformation-based Replayer

After showing the general feasibility of the transformation-based replayer, we now eval-
uate the overhead introduced by using the replayer. We evaluate the overhead in terms
of processing (CPU), memory (RAM), and network traffic. To evaluate it we construct
an architecture specifically designed to be scaled. It consists of a Source and a Sink
component. The Source component produces numbers that it forwards on its outgoing
port. The Sink component in return accepts values on its incoming port and logs them.
Between them, there is a variable number of hops, i.e., components with one incoming
and one outgoing port that simply forwards the messages they receive. For each mea-

180

8.4 Performance Evaluation: Transformation-based Replayer

1 5 9 13 17 21 25

Number of hops [1]

20

30

40

T
ot
a
l
C
P
U

ti
m
e
[s
]

with recording

without recording

(a) CPU overhead of recording the execution of an IoT application.

1 5 9 13 17 21 25

Number of hops [1]

0.5

1.0

1.5

2.0

M
ax

m
em

or
y
u
sa
ge

[G
B
]

with recording

without recording

(b) Memory overhead of recording the execution of an IoT application.

0 5 10 15 20 25

Number of hops [1]

0.00

5.00

10.00

N
et

w
or

k
tr

affi
c

[M
B

]

With recording

Without recording

(c) Network overhead of recording the execution of an IoT application.

Figure 8.9: Performance results of of executing the recorder. Figure taken
from [KMR21].

181

Chapter 8 Experiments

surement, the Source produces 100 messages that it sends to the Sink via the variable
number of hops. We capture the resource utilization using Google’s cAdvisor4.

Fig. 8.9(a) shows that our method causes a noticeable overhead. This is mostly caused
by the required parsing of JSON messages. Additionally, the communication with the
recorder caused a high number of network library calls. Fig. 8.9(b) shows that our
recording causes a small overhead for recording. This is expected because of the addi-
tional recording modules that are added to each port. The overhead in terms of network
traffic is shown in Fig. 8.9(c). Recording causes a significant overhead that is mostly
caused by our usage of vector clocks. The vector clocks require each component to keep a
clock value for every other component. Hence, it scales with O(n2); adding a component
(here: hop) increases the size of every other vector clock.

We expect that the practical effects of this can be limited by compressing the messages
exchanged with the recorder. Furthermore, the overall size of the network traffic is still
a low number of megabytes distributed among (up to) 27 components, i.e., 25 hops and
the Source and Sink component. The CPU and memory usage scales linearly. Overall,
we conclude that our approach is feasible for recording the behavior of IoT applications
for a limited amount of time.

8.5 Performance Evaluation: Log Tracing

For the performance evaluation of the log tracing, we used the architecture already
presented in the HVAC case study in Sec. 8.3. We recorded both the CPU and memory
overhead for using tracing. In contrast to the previous performance evaluation, the
network overhead was not recorded. Because the logged data is only transmitted when
actually requested by the web application, the network traffic overhead depends strongly
on the number of requests and the actually requested data. For example, requesting the
logs of a component with twenty connections to other components that has to process
messages every 100 ms is more expensive than requesting the logs of a component that
barely processes any messages. Overall, the simulation was performed 100 times. 50
times, the tracing was disabled, the other 50 times, the tracing was enabled. The data
about the resource usage was captured using Google’s cAdvisor.

Fig. 8.10 shows the results of the performance evaluation. Each combination of line
color and style represents a different component instance. The consumption is shown
as a running average value of the 9 last values. The zeroth second in the plots refers
to the second when the simulation started. The components were started before the
simulation started. This was done so that the initial setup of the components does
not influence the measurement. Overall, enabling the log tracing does not noticeably
increase the CPU usage. This is expected as the data structures for keeping the logs

4cAdvisor project website. [Online]. Available: https://github.com/google/cadvisor. Last
accessed: 03.01.2022

182

https://github.com/google/cadvisor

8.5 Performance Evaluation: Log Tracing

0 10 20 30 40 50 60 70

Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
P
U

ti
m
e
[n
s]

×107 Tracing disabled

0 10 20 30 40 50 60 70

Time [s]

Tracing enabled
window

airConditioner.wc

airConditioner.aqa

airConditioner

heater.evaluator

heater.poller

heater

thermostat.ts

thermostat.arbiter

thermostat.modeTimer

thermostat.ui

thermostat

homeCtrl

voiceCtrl

(a) CPU usage overhead.

0 10 20 30 40 50 60 70

Time [s]

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

T
ot
a
l
M
em

or
y
U
sa
ge

[M
B
]

Tracing disabled

0 10 20 30 40 50 60 70

Time [s]

Tracing enabled
window

airConditioner.wc

airConditioner.aqa

airConditioner

heater.evaluator

heater.poller

heater

thermostat.ts

thermostat.arbiter

thermostat.modeTimer

thermostat.ui

thermostat

homeCtrl

voiceCtrl

(b) Memory footprint overhead.

(c) Legend. Each color/line type represents a different component instance.

Figure 8.10: Performance results of executing an IoT application with and without log
tracing. Figure taken from. Figure taken from [KMM+22].

183

Chapter 8 Experiments

only need to be stored. This does not require a large amount of processing besides the
processing that is already required for the logging that is done regardless of whether
the logs are stored. The difference between the three groups of components visible in
the plots comes from the frequency of their execution. Some components called their
compute method every second, while other components called their compute method
every 500 ms. Accordingly, the components that call their compute method less often
have a lower CPU consumption. The components with close to zero CPU consumption
are composed components that do not execute a computation themselves. Instead, they
only forward messages to their subcomponents.

The memory consumption is increased by a constant factor of about 0.5 MB for the
tracing module itself. As the execution goes on the traced architecture also consumes
more memory compared to the execution without tracing for storing the logs. This
is visible, for example in the (non-dashed) dark green and orange lines, i.e., the two
component instances with the highest memory consumption. While the higher memory
consumption is mostly irrelevant for higher-powered IoT devices like a Raspberry Pi that
is often equipped with microSD cards offering 32 GB or more, it can be a problem for
low-powered devices. In these scenarios, the logs should, ideally, not be stored on the
IoT devices for extended periods of time. Instead, the logs could be uploaded to a blob
storage or database in the cloud. This, however, would cause a larger network traffic
overhead regardless of whether the logs are ever accessed. In case neither storing the
data nor uploading the (compressed) data is an option, the IoT devices will need to use
a variant of Linux’s logrotate, where only the most recent logs are kept. A disadvantage
of this is that throwing away logs can make it impossible to analyze errors whose cause
is only documented by these older logs.

Besides showing the overhead induced by the log tracing, the measurements with
disabled log tracing also show MontiThings’ general CPU and memory consumption.
Even when executed as a container like in this evaluation, MontiThings usually has a
low memory footprint of only a few megabytes. MontiThings also advises the operating
system to schedule other threads while it is not actively processing messages (e.g., using
std::this_thread::yield) to not waste processing resources. Overall, this leads
to low processing requirements that enable devices like the Raspberry Pi to run a large
number of MontiThings components simultaneously. It is, however, important to note
that very low-powered devices are often out of scope because their compilers sometimes
may not support the full C++ standard library (TA4).

184

8.6 Student Lab: Autonomous Driving

8.6 Student Lab: Autonomous Driving

In the winter semester 2020/21 we5 conducted a student lab on autonomous driving.
Overall, 26 students were tasked with developing autonomous driving software. The
software was supposed to be executed on three DSA VCG devices that were connected
using the CAN bus. By connecting the VCGs to a driving simulator, the students were
able to control the simulator’s cars using the software executed on the VCGs.

One of three groups consisting of eight students (one of which had prior experience
with MontiThings) was supposed to develop the autonomous driving software using
MontiThings. At the beginning of the semester, all students received an introduction to
MontiThings. As part of this introduction, they had to build an architecture for calcu-
lating prime numbers. This allowed us to evaluate 1. how students, i.e., inexperienced
developers, use MontiThings and 2. how well MontiThings fits distributed applications
beyond its IoT focus. It is, however, important to note that the results of this student
lab can only give a rough impression of how these two questions might be answered
because of 1. the low number of students, 2. the student’s lack of experience and thus
their lower success chances of using MontiThings in a non-IoT domain, 3. the lack of a
formal user survey. We specifically did not conduct a formal user survey because the
low number of participants would not have allowed us to draw meaningful conclusions.
Moreover, as we had to grade the students at the end of the semester, even a positive
evaluation of MontiThings could have been caused by the students thinking that the
user study may influence their grades. By inspecting the artifacts they created during
the lab, we could, however, perceive how the students used MontiThings.

We made the following observations:

• The students’ architecture consisted of about 43 component types across three
packages. The exact number cannot be determined since the students created
numerous branches for proposing modifications to each other. Each package was
intended to be deployed to one VCG. Some of the components are duplicated from
other packages.

• The students created C++ code unrelated to any component and placed them in
the folder intended for hand-written code. When we asked the students why they
did this, they answered that they wanted to use specific C++ constructs that they
felt they were not able to create using class diagrams and MontiThings. Most
notably, the students built a generic class for vectors and defined several functions
on these vectors. As the MontiVerse’s class diagrams do not offer generics, the
students could not build such a class using the class diagrams. Furthermore, the
students specified numerous constants and functions, e.g., π or a conversion from

5The lab was conducted in collaboration with my colleagues Evgeny Kusmenko and Sebastian Stüber
who supervised the groups that did not use MontiThings.

185

Chapter 8 Experiments

radians to degrees. It would, of course, have been possible to specify such a function
using a MontiThings component. We assume that students are less likely to build
components for data structures built using C++ because that would have required
them to create a new independent file. We base this on the fact that their C++
files often not only contained a single class but many unrelated pieces of code.
MontiThings, in contrast, enforces a structured way of organizing files (MC1),
e.g., by only allowing one component definition per file.

• The students generally realized communication using handwritten C++ code. For
example, they created C++ files not related to any component for using the CAN
bus and exchanging data with the simulator. We assume this is the case because
such code is usually strongly based on existing C++ code, e.g., linux/can.h.
These files were then referenced by the handwritten implementation of compo-
nents. For example, a CANDoubleSink component referenced their CAN bus
implementation to send messages. We assume the students did this to avoid code
duplication between the implementation files of components.

• Many components were either very complex, e.g., had over 20 subcomponents or
about 10 ports, or very simple, i.e., had only one port.

• In some cases, the business logic and the technical aspects of the realization cannot
be strictly separated. For example, the students assigned CAN IDs to components
within the business logic, i.e., in MontiThings components. As the CAN ID is not
only an arbitrary message ID but also specifies the priority of the messages based
on the CAN MAC protocol, business logic and technical aspects are intertwined.

• Even though it is not required by the language, students generally tried to give
MontiThings components a certain structure. Mostly, the ports are defined at
the beginning of the file. The rest of the file is often either a list of subcom-
ponents followed by a list of connectors or groups of subcomponents followed by
their connectors. Similarly, the handwritten C++ code written for MontiThings
components was also often well-structured. We attribute this to the fact that Mon-
tiThings enforces certain good practices, e.g., it is not possible to write definitions
of two components in one file. In the long term, avoiding bad practices has the
potential of making the applications more maintainable.

Overall, the students successfully completed their task of building an autonomous
driving application using MontiThings. They realized multiple driving scenarios such as
keeping the safety distance if a car in front of the controlled car brakes. Furthermore,
they realized some tasks which went beyond our scope of the lab, e.g., testing their
car on a map of the Hockenheimring racing track. In conclusion, the lab demonstrates
that MontiThings can also be used outside the IoT domain for building distributed
applications. For applications that rely heavily on existing C++ code, however, the

186

8.7 Student Lab: Fischertechnik
euzungNormaleKr

Ruhezustand

abrikF

Figure 8.11: Map of the Fischertechnik setup. This figure was created by the lab’s stu-
dents. Thin black lines represent the road the robots drive on. Blue circles
are intersections, red squares are idle positions of the robots. Thick red
lines next to the road represent Fischertechnik machines.

benefits of MontiThings over using only C++ presumably only show once the application
reaches a certain level of complexity. While this student lab is certainly far from a large-
scale industrial user study, the artifacts created by the students gave some interesting
insights on how inexperienced developers use MontiThings.

8.7 Student Lab: Fischertechnik

In the winter semester 2021/22 we6 conducted another student lab with a focus on
industry 4.0. For this lab, 16 students had to build an automated yogurt factory. The
setup consisted of Fischertechnik machines representing the machines of a smart factory
and several robot cars representing the robots in a factory. Two groups controlling
the Fischertechnik machines and LEGO robots worked using MontiArc. The other two
groups used MontiThings for controlling Raspberry Pi-based cars and additional sensors
for the factory’s machines connected to further Raspberry Pis. Overall, seven students
worked with MontiThings, one of whom had prior experience with MontiThings. All
teams needed to exchanged data across language and goal boundaries to build the yogurt
factory.

Fig. 8.11 shows a map of the factory created by the students. The Fischertechnik
devices stood next to a network of roads. The roads were drawn on the floor using black
tape. This enabled the cars to follow the black lines on the ground. The task of the cars

6The lab was conducted in collaboration with my colleague David Schmalzing who supervised the
groups that did not use MontiThings.

187

Chapter 8 Experiments

was to transport containers of yogurt between the factory’s machines so that it could be
further processed.

Like in the previous student lab, we inspected the artifacts created by the students and
asked them about certain design choices to gain insights on how inexperienced developers
use MontiThings. We gained the following insights:

• In the initial weeks, the students were tasked with calculating prime numbers to
get to know MontiThings. The intended solution was to model a variant of the
sieve of Eratosthenes. Some of the students, however, found creative solutions.
For example, one student used MontiThings’s set expressions in combination with
OCL constraints to filter prime numbers from a set of integers.

• One group had many problems using MontiThings (and C++ in general). For
example, they needed help when the C++ compiler reported a missing semicolon.
The missing semicolon was caused by a C++ Freemarker template provided by the
students that did not include this semicolon. As MontiThings does not inspect the
content of the user-provided templates, the error was carried over to the generated
code. Apparently, the students were not able to conclude that this error might have
been caused by their template. Other errors included using parentheses instead
of curly braces for C++’s list initialization and returning a value in a function
without a return value. We expect such errors could, however, be avoided by better
tool support, e.g., by showing errors in the C++ code directly in the template
instead of somewhere in the generated code. The fact that MontiThings is a
research prototype, where similar errors cannot be ruled out completely, probably
contributed to the students giving up on trying to find the error relatively quickly
and blaming MontiThings instead. Moreover, C++ is not part of the normal
computer science curriculum at RWTH Aachen University probably contributed
to their difficulty in debugging.

• One student said towards the end of the course (translated to English): “I did
not really understand why we had to use [MontiThings].” The student was from
a group that built the software to control cars using MontiThings. As all of their
components were executed by the same device, they did not benefit from gener-
ating, e.g., a communication infrastructure, as the same functionality could have
been implemented using a monolithic Python script. This suggests that there tends
to be little benefit from model-driven development in small non-distributed IoT
projects, as much of the development effort is focused on hardware connectivity
rather than business logic. While the students in this lab used MontiThings, we
suspect that this effect would also be seen in other languages such as Calvin or
ThingML, since the students mainly used the basic features of the language that
are similarly implemented in the other languages.

188

8.8 Discussion

• Components used to access sensors or actuators were mostly just empty shells. The
main functionality of these components took place in the attached Python / C++
files. Students reported that they missed the wide range of libraries in MontiThings
to access, for example, the front two digits of a number. The MontiThings behavior
language was mainly used in controller components that did not directly access
hardware or the operating system. In these components, the data usually already
existed in the desired form and was then used to make decisions. For example,
they used MontiThings’ behavior language to implement their line-following and
collision-avoidance algorithms.

• Students reported in their final presentation that they felt their project was too
small to benefit from model-driven development (in general, not just related to
MontiThings). Accordingly, there had been few opportunities to reuse components.

• In their final presentation, the students reported that modeling led to (translated
into English): “a clearer program and process structure.” They kept this opinion
after confirmation by the department head, Prof. Rumpe, that they were not
forced to say this and could revise their opinion again.

• Overall, students did not pay much attention to reliability of their software. For
example, no pre- or postconditions were used. When data types were used that
could have been expressed as SI units, primitive data types such as int and dou-
ble were used instead. When asked why there was no safeguarding against, for
example, incorrect sensor values, the response was that the students had not ob-
served any incorrect sensor values and therefore did not think it was necessary to
safeguard. This is in line with the statements [TM17a], which attest developers a
lack of experience in dealing with IoT projects if they are not used to developing
mission-critical distributed systems.

8.8 Discussion

In this section, we evaluated MontiThings using case studies, performance measurements,
and student labs. The case studies showed that MontiThings can be used for develop-
ing and deploying IoT applications including the connection to digital twins. All of the
case studies are small-scale examples. MontiThings has not yet been evaluated against
large-scale deployments comprising thousands of IoT devices. Our results from the de-
ployment of the smart home/hotel case study suggest that such large-scale deployments
would require the generated Prolog code to be more efficient. Currently, the Prolog
backtracking mechanism checks a lot of solutions that might lead to a valid deployment
but are undesired from a user experience point of view. For example, if the device owners
already rejected buying a piece of hardware, they will not accept buying the same piece

189

Chapter 8 Experiments

of hardware and additionally relaxing one of their requirements. As Prolog’s backtrack-
ing will test each combination of a rejected proposal with other proposals, its worst-case
complexity is O(2n), where n is the number of possible options for proposals. While our
software auto-rejects such unwanted proposals for better user interaction, they still have
to be calculated. This is feasible for small-scale deployments like the one presented in
our smart home. Large-scale deployments, however, would require the generated Prolog
code to handle rejected proposals more efficiently.

Our student labs revealed that the concept of external connectors is not intuitive to
understand for entry-level developers. Most students seem to view sensors and hardware
access as components. As a result, they often develop components that have no other
purpose than connecting an external connector to a normal port. For example, this
could be a TemperatureSensor component that accesses a temperature sensor using
an incoming port with an external connector and then forwards all incoming values on
an outgoing port. We assume that the maintainability, testability, and flexibility benefits
of using external connectors only show in larger projects that are deployed to various
infrastructures. Providing only one set of devices to students tempts them to write
their software only for that exact set of devices and ignore all other devices that may
exist. Likewise, the students rarely used pre- and postconditions. This is consistent
with the challenges stated by [TM17a] that developers of mobile apps and other more
traditional software are not aware of the challenges of developing IoT applications and,
thus, underestimate tasks like error handling.

As DSLs are usually not known to new developers, they always involve a certain
learning curve. While the basic concepts of MontiThings, i.e., C&C architectures, are
usually easy to understand for most students, more complex topics that possibly involve
multiple DSLs, e.g., defining a new data type using a class diagram and using it as the
type of a port, usually require more explanation. By making our behavior specifications
similar to programming languages already known by students, i.e., Java, we flatten the
learning curve. However, currently, the lack of tool support can lead to a frustrating
experience of using MontiThings. Multiple students complained that they always had
to rerun the generator only to see an error message. Once they fixed the error they had
to run the generator again until all errors are fixed. Modern development tools usually
provide such error messages inline and directly while typing. While such tool support
can make improve the experience of using a language, developing such tools was out of
the scope of this thesis.

190

Chapter 9

Conclusion and Future Research Directions

The development of IoT applications is complex due to, e.g., their distributed nature,
heterogeneous target devices, and error-proneness hardware. Model-based development
promises to make the complexity of IoT application development manageable [MHF17]
by raising the level of abstraction. Related work proposed several C&C ADL for de-
veloping IoT applications. These, however, have various limitations such as a lack of
separation of concerns. In this thesis, we presented the MontiThings ecosystem for
the model-driven development and deployment of IoT applications. Compared to re-
lated work, MontiThings provides advantages such as failure-handling capabilities and
a requirements-based deployment method that can propose modifications in case of un-
fulfillable requirements.

Fig. 9.1 gives a simplified overview of the MontiThings ecosystem. The roles of the
ecosystem are based on [Zam17]. IoT developers are responsible for developing the
application, device owners own the IoT devices and might have requirements for the
software deployment, and users interact with the IoT devices and (optionally) infor-
mation systems that enable them to achieve the IoT applications purpose. The IoT
developers specify IoT applications using MontiThings architectural models for defin-
ing the behavior and class diagrams for describing data structures. Handwritten code
may be used to integrate with existing libraries or to access hardware. Additionally, a
model-driven information system can be developed using the MontiGem framework as
described in [AMN+20, GHK+20, ANV+18]. The information system and IoT applica-
tion can be combined using a tagging language to synthesize digital twins of the IoT
application and keep the systems synchronized.

After uploading the artifacts to a development platform such as GitLab or GitHub, a
CI pipeline processes the artifacts to create deployable packages. Then, model-to-model
transformations are applied and model-to-text generation creates C++ code from the
models. This code is integrated with a runtime environment providing core functionality
such as communication. The generated code is (cross-)compiled and packaged as con-
tainer images for further distribution. Using an information system, the device owner
specifies requirements for the deployment. Based on these requirements, the deployment
manager decides which software to deploy to which devices by generating and evaluating
Prolog code corresponding to the requirements. The devices pull the container images

191

Chapter 9 Conclusion and Future Research Directions

GlanceConclusion3

Specification /
Implementation

System
Execution

Integration /
Generation

Integrator /
Generator

Model-to-
Model

Transformation

Model-to-Text
C++ Generation

Runtime
Environment

Target
CodeTarget

Code

«extends»

Component

Target
CodeTarget

CodeC++

Component

Target
CodeTarget

CodeC++

Component

Target
CodeTarget

Code

Compiler

Application
Containers

Containerize

Application
Code

C++

C++MontiThings

Class Diagram

Handwritten
Code

Tagging
connect a.b --> c.d

{…}

Feature Diag. GUI Model

Log Tracing
Webapp

Application
Layer

Digital Twin
Webapp

Record &
Replayer Deployment

Config. Webapp

Message
Broker

Failure
Handling

Deployment
Manager

Other ServicesOther ServicesOther Services /
Webapps

IoT
Developer

Device
Owner User

Service Layer

Figure 9.1: High-level overview of the MontiThings ecosystem. Figure adapted
from [KRSW22].

from a container registry and start their execution. During this execution, they can be
combined with various services, e.g., digital twins, failure recovery, or a recorder that
observes their behavior for analysis purposes. Users can influence the application during
runtime by either interacting with the IoT devices, e.g., by pressing a button, or via
information systems that may control (parts of) the IoT application.

While MontiThings already provides a feature-rich ecosystem, we envision the follow-
ing directions for future research:

Integration with cloud systems MontiThings is focused on the software executed by
IoT devices. While cloud resources can be integrated, e.g., by using virtual ma-
chines to execute components or accessing cloud services via handwritten code,
this integration requires manual work to set up these cloud resources and integrate

192

them with the IoT system. Using Infrastructure-as-Code languages such as Ter-
raform, the code generator could also automatically deploy the needed resources
and integrate them with the IoT system. In future IoT app stores, this could also
give the device owner more control over the cloud resources compared to using
cloud services that the IoT developers provide for all instances of an application.

User-specified behavior Currently, the behavior of the system is mostly defined by the
IoT developer. Since IoT systems can be highly user-specific, users could also be
enabled to specify parts of the behavior. In commercial systems, such user-specified
behavior is often based on a rules engine that users can utilize to specify behavior
using a lightweight scripting language (cf. Apple Siri Shortcuts). To lower the
entry barrier, vendors often offer a graphical editor. An overview of existing work
can be found in [DRF22] as end-user development.

Plug-and-play interoperability Much research has been conducted on engineering single
IoT applications. Future use cases like smart cities will require a high degree of
interoperability between different systems. Some authors thus envision systems
that can be combined similar to putting LEGO bricks together [DeF21, PA15]. This
degree of interoperability, however, requires a higher degree of standardization and
analyses checking the compatibility of software components (not only syntactically
but also semantically).

Standardization IoT development is hampered by a lack of standardization [DRF22].
This lack of standardization includes many aspects of the development including
1. communication (including data exchange formats), 2. accessing sensors, actu-
ators, and other hardware, 3. interacting with low-powered microcontrollers, and
4. accessing cloud resources. While the standards themselves have to be provided
by large industrial alliances of relevant vendors, academia can contribute by, e.g.,
providing requirements, analyses, or proposals of individual aspects for such stan-
dards.

Energy efficiency Application energy efficiency is often ignored by model-driven IoT
frameworks. While energy efficiency is not an issue in a lab where all devices
are connected to a power source, energy efficiency is an important consideration
in real-world setups as many devices are battery-powered. MontiThings provides
mechanisms for bridging temporary outages that can be caused by, e.g., entering
battery-saving modes. Future IoT DSLs may, however, need to give developers
more precise control over power management. However, the lack of such power
management features in code generators is also caused by the lack of standards.

Explainability IoT applications often depend on a large number of influences such as
sensor readings. This can make their behavior incomprehensible to developers and

193

Chapter 9 Conclusion and Future Research Directions

users. MontiThings aims to make IoT applications easier for developers to un-
derstand by providing a reproduction service and a tracing service that can filter
irrelevant log messages. Future research may seek to also provide natural lan-
guage explanations for application behavior. The explainability problem is further
exacerbated by the ever-expanding use of machine learning.

Overall, this thesis aims to contribute to the goal of distributing IoT applications via
future smartphone-like app stores [BSS+17]. To this end, we have shown how model-
driven IoT applications can be deployed and integrated with IoT devices that are not
necessarily fully known at the time of development, but are only specified via interfaces to
sensors or actuators. We have outlined how non-technically trained domain experts can
be involved in the deployment process to adapt the deployment to their needs. For this
purpose, we presented a requirement-based deployment method that is able to propose
modifications to the domain experts. This allows IoT applications distributed through
app stores to be adapted to the different infrastructures of their customers. Using a
variety of analytics and resilience methods, MontiThings also addresses handling the
error-proneness of IoT devices deployed under harsh environmental conditions.

194

Bibliography

[ABH+17] Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Jérôme Pfeiffer,
Bernhard Rumpe, and Andreas Wortmann. Modeling Robotics Tasks for
Better Separation of Concerns, Platform-Independence, and Reuse. Aach-
ener Informatik-Berichte, Software Engineering, Band 28. Shaker Verlag,
December 2017.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things:
A survey. Computer Networks, 54(15):2787–2805, 2010.

[AKKR21] Abdallah Atouani, Jörg Christian Kirchhof, Evgeny Kusmenko, and Bern-
hard Rumpe. Artifact and Reference Models for Generative Machine Learn-
ing Frameworks and Build Systems. In Eli Tilevich and Coen De Roover,
editors, Proceedings of the 20th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences (GPCE ’21), pages
55–68. ACM SIGPLAN, October 2021.

[AMMK19] Shabir Ahmad, Faisal Mehmood, Asif Mehmood, and DoHyeun Kim. De-
sign and Implementation of Decoupled IoT Application Store: A Novel
Prototype for Virtual Objects Sharing and Discovery. Electronics, 8(3),
2019.

[AMN+20] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon
Varga. Enterprise Information Systems in Academia and Practice: Lessons
learned from a MBSE Project. In 40 Years EMISA: Digital Ecosystems of
the Future: Methodology, Techniques and Applications (EMISA’19), vol-
ume P-304 of LNI, pages 59–66. Gesellschaft für Informatik e.V., May
2020.

[ANV+18] Kai Adam, Lukas Netz, Simon Varga, Judith Michael, Bernhard Rumpe,
Patricia Heuser, and Peter Letmathe. Model-Based Generation of En-
terprise Information Systems. In Michael Fellmann and Kurt Sand-
kuhl, editors, Enterprise Modeling and Information Systems Architectures
(EMISA’18), volume 2097 of CEUR Workshop Proceedings, pages 75–79.
CEUR-WS.org, May 2018.

195

Bibliography

[AP17] Ola Angelsmark and Per Persson. Requirement-Based Deployment of Ap-
plications in Calvin. In Ivana Podnar Žarko, Arne Broering, Sergios Sour-
sos, and Martin Serrano, editors, Interoperability and Open-Source Solu-
tions for the Internet of Things, pages 72–87, Cham, 2017. Springer Inter-
national Publishing.

[ASD19] Fahed Alkhabbas, Romina Spalazzese, and Paul Davidsson. Characterizing
Internet of Things Systems through Taxonomies: A Systematic Mapping
Study. Internet of Things, 7:100084, 2019.

[BCK98] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Longman Publishing Co., Inc., USA, 1998.

[BCK12] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Professional, 3rd edition, 2012.

[BCPP20] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pieran-
tonio. Grand challenges in model-driven engineering: an analysis of the
state of the research. Software and Systems Modeling, 19(1):5–13, 2020.

[BDH+20] Pascal Bibow, Manuela Dalibor, Christian Hopmann, Ben Mainz, Bern-
hard Rumpe, David Schmalzing, Mauritius Schmitz, and Andreas Wort-
mann. Model-Driven Development of a Digital Twin for Injection Molding.
In Schahram Dustdar, Eric Yu, Camille Salinesi, Dominique Rieu, and Vik
Pant, editors, International Conference on Advanced Information Systems
Engineering (CAiSE’20), volume 12127 of Lecture Notes in Computer Sci-
ence, pages 85–100. Springer International Publishing, June 2020.

[BDJ+22] Philipp Brauner, Manuela Dalibor, Matthias Jarke, Ike Kunze, István Ko-
ren, Gerhard Lakemeyer, Martin Liebenberg, Judith Michael, Jan Pen-
nekamp, Christoph Quix, Bernhard Rumpe, Wil van der Aalst, Klaus
Wehrle, Andreas Wortmann, and Martina Ziefle. A Computer Science Per-
spective on Digital Transformation in Production. ACM Trans. Internet
Things, 3(2), feb 2022.

[BEK+16] Uwe Breitenbücher, Christian Endres, Kálmán Képes, Oliver Kopp, Frank
Leymann, Sebastian Wagner, Johannes Wettinger, and Michael Zimmer-
mann. The OpenTOSCA Ecosystem – Concepts & Tools. European Space
project on Smart Systems, Big Data, Future, Internet - Towards Serving
the Grand Societal Challenges - Volume 1: EPS Rome 2016, 2016.

[BEK+18] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Controlled and Extensible Variability of Concrete
and Abstract Syntax with Independent Language Features. In Proceedings

196

Bibliography

of the 12th International Workshop on Variability Modelling of Software-
Intensive Systems (VAMOS’18), pages 75–82. ACM, January 2018.

[BJK+18] Christopher Brooks, Chadlia Jerad, Hokeun Kim, Edward A. Lee, Marten
Lohstroh, Victor Nouvelletz, Beth Osyk, and Matt Weber. A Compo-
nent Architecture for the Internet of Things. Proceedings of the IEEE,
106(9):1527–1542, September 2018.

[BKK+22] Arvid Butting, Jörg Christian Kirchhof, Anno Kleiss, Judith Michael, Ra-
doslav Orlov, and Bernhard Rumpe. Model-Driven IoT App Stores: De-
ploying Customizable Software Products to Heterogeneous Devices. In Pro-
ceedings of the 21th ACM SIGPLAN International Conference on Genera-
tive Programming: Concepts and Experiences (GPCE 22), pages 108–121.
ACM, December 2022.

[BKRW17a] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.
Architectural Programming with MontiArcAutomaton. In In 12th Interna-
tional Conference on Software Engineering Advances (ICSEA 2017), pages
213–218. IARIA XPS Press, May 2017.

[BKRW17b] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann.
Semantic Differencing for Message-Driven Component & Connector Archi-
tectures. In International Conference on Software Architecture (ICSA’17),
pages 145–154. IEEE, April 2017.

[BMR+17] Vincent Bertram, Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe, and
Michael von Wenckstern. Component and Connector Views in Practice: An
Experience Report. In Conference on Model Driven Engineering Languages
and Systems (MODELS’17), pages 167–177. IEEE, September 2017.

[Bre07] Ulrich Breymann. C++ Einführung und Professionelle Programmierung.
Carl Hanser Verlag München Wien, 9 edition, 2007.

[Bro01] Manfred Broy. Refinement of time. Theoretical Computer Science,
253(1):3–26, 2001. ARTS 97.

[Bro10] Manfred Broy. A Logical Basis for Component-Oriented Software and Sys-
tems Engineering. The Computer Journal, 53(10):1758–1782, 2010.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Inter-
active Systems. Focus on Streams, Interfaces and Refinement. Springer
Heidelberg, 2001.

197

Bibliography

[BSS+17] Arne Bröring, Stefan Schmid, Corina-Kim Schindhelm, Abdelmajid Khelil,
Sebastian Käbisch, Denis Kramer, Danh Le Phuoc, Jelena Mitic, Darko
Anicic, and Ernest Teniente. Enabling IoT Ecosystems through Platform
Interoperability. IEEE Software, 34(1):54–61, 2017.

[CAF21] Angel Cañete, Mercedes Amor, and Lidia Fuentes. Supporting IoT appli-
cations deployment on edge-based infrastructures using multi-layer feature
models. Journal of Systems and Software, page 111086, 2021.

[CCS15] Federico Ciccozzi, Antonio Cicchetti, and Mikael Sjödin. On the Gen-
eration of Full-Fledged Code from UML Profiles and ALF for Complex
Systems. In 12th International Conference on Information Technology -
New Generations, pages 81–88, 2015.

[CDO+15] Casey Casalnuovo, Prem Devanbu, Abilio Oliveira, Vladimir Filkov, and
Baishakhi Ray. Assert Use in GitHub Projects. In IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages 755–
766, 2015.

[CDRS20] Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz. How is Open Source
Software Development Different in Popular IoT Projects? IEEE Access,
8:28337–28348, 2020.

[CHS+17] Steve Counsell, Tracy Hall, Thomas Shippey, David Bowes, Amjed Tahir,
and Stephen MacDonell. Assert Use and Defectiveness in Industrial Code.
In IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pages 20–23, 2017.

[Cle96] Paul C. Clements. A Survey of Architecture Description Languages. In
Proceedings of the 8th International Workshop on Software Specification
and Design, pages 16–25, 1996.

[CPD16] Bruno Costa, Paulo F. Pires, and Flávia C. Delicato. Modeling IoT Ap-
plications with SysML4IoT. In 42th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 157–164, 2016.

[CS16] Federico Ciccozzi and Romina Spalazzese. MDE4IoT: Supporting the In-
ternet of Things with Model-Driven Engineering. In 10th International
Symposium on Intelligent and Distributed Computing, October 2016.

[DeF21] Joanna DeFranco. 12 Flavors of IoT. Computer, 54(10):133–137, 2021.

[DHH+20] Imke Drave, Timo Henrich, Katrin Hölldobler, Oliver Kautz, Judith
Michael, and Bernhard Rumpe. Modellierung, Verifikation und Synthese

198

Bibliography

von validen Planungszuständen für Fernsehausstrahlungen. In Dominik
Bork, Dimitris Karagiannis, and Heinrich C. Mayr, editors, Modellierung
2020, pages 173–188. Gesellschaft für Informatik e.V., February 2020.

[DJK+19] Manuela Dalibor, Nico Jansen, Jörg Christian Kirchhof, Bernhard Rumpe,
David Schmalzing, and Andreas Wortmann. Tagging Model Properties for
Flexible Communication. In Nicolas Ferry, Antonio Cicchetti, Federico Ci-
ccozzi, Arnor Solberg, Manuel Wimmer, and Andreas Wortmann, editors,
Proceedings of MODELS 2019. Workshop MDE4IoT, pages 39–46. CEUR
Workshop Proceedings, September 2019.

[DRF22] João Pedro Dias, André Restivo, and Hugo Sereno Ferreira. Designing and
constructing internet-of-Things systems: An overview of the ecosystem.
Internet of Things, 19:100529, 2022.

[DSF21] Rustem Dautov, Hui Song, and Nicolas Ferry. Towards a Sustainable IoT
with Last-Mile Software Deployment. In IEEE Symposium on Computers
and Communications (ISCC), pages 1–6, 2021.

[EBC+22] Romina Eramo, Francis Bordeleau, Benoit Combemale, Mark van den
Brand, Manuel Wimmer, and Andreas Wortmann. Conceptualizing Digital
Twins. IEEE Software, 39(2):39–46, 2022.

[Ecl20] Eclipse Foundation. IoT Developer Survey 2020. [Online]. Avail-
able: https://outreach.eclipse.foundation/eclipse-iot-
developer-survey-2020. Last accessed: 20.06.2021, October 2020.

[Ecl22] Eclipse Foundation. IoT & Edge Developer Survey Report. [Online].
Available: https://outreach.eclipse.foundation/iot-edge-
developer-survey-2022. Last accessed: 16.10.2022, September 2022.

[FG08] Conny Franke and Michael Gertz. Detection and Exploration of Outlier
Regions in Sensor Data Streams. In IEEE International Conference on
Data Mining Workshops, pages 375–384, 2008.

[FGH06] Peter Feiler, David Gluch, and John Hudak. The Architecture Analysis &
Design Language (AADL): An Introduction. Technical Report CMU/SEI-
2006-TN-011, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 2006.

[FIK+18] Christian Frohn, Petyo Ilov, Stefan Kriebel, Evgeny Kusmenko, Bernhard
Rumpe, and Alexander Ryndin. Distributed Simulation of Cooperatively
Interacting Vehicles. In International Conference on Intelligent Transporta-
tion Systems (ITSC’18), pages 596–601. IEEE, 2018.

199

https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020
https://outreach.eclipse.foundation/iot-edge-developer-survey-2022
https://outreach.eclipse.foundation/iot-edge-developer-survey-2022

Bibliography

[FN19] Nicolas Ferry and Phu H. Nguyen. Towards Model-Based Continuous De-
ployment of Secure IoT Systems. In ACM/IEEE 22nd International Con-
ference on Model Driven Engineering Languages and Systems Companion
(MODELS-C), pages 613–618, 2019.

[FNS+19] Nicolas Ferry, Phu Nguyen, Hui Song, Pierre-Emmanuel Novac, Stéphane
Lavirotte, Jean-Yves Tigli, and Arnor Solberg. GeneSIS: Continuous Or-
chestration and Deployment of Smart IoT Systems. In IEEE 43rd Annual
Computer Software and Applications Conference (COMPSAC), volume 1,
pages 870–875, 2019.

[FNS+20] Nicolas Ferry, Phu H. Nguyen, Hui Song, Erkuden Rios, Eider Iturbe, Satur
Martinez, and Angel Rego. Continuous Deployment of Trustworthy Smart
IoT Systems. Journal of Object Technology, 19:16:1–23, 2020.

[Fow10] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional,
1st edition, 2010.

[Fow19] Martin Fowler. Refactoring: Improving the Design of Existing Code. A
Martin Fowler signature book. Addison-Wesley, 2019.

[FR07] Robert France and Bernhard Rumpe. Model-driven Development of Com-
plex Software: A Research Roadmap. Future of Software Engineering
(FOSE ’07), pages 37–54, May 2007.

[Für20] Joshua Christian Fürste. Model-Driven Development and Deployment of
Distributed Internet of Things Applications. Master Thesis. RWTH Aachen
University. Software Engineering Group., January 2020.

[Gai86] Jason Gait. A Probe Effect in Concurrent Programs. Software: Practice
and Experience, 16(3):225–233, March 1986.

[GASS06] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay
debugging for distributed applications. In Proceedings of the Annual Con-
ference on USENIX ’06 Annual Technical Conference, ATEC ’06, page 27,
USA, 2006. USENIX Association.

[GBLL15] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C.M. Leung.
Developing IoT applications in the Fog: A Distributed Dataflow approach.
Proceedings - 2015 5th International Conference on the Internet of Things,
IoT 2015, pages 155–162, 2015.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

200

Bibliography

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz
Rothhardt, and Bernhard Rumpe. Modelling Automotive Function Nets
with Views for Features, Variants, and Modes. In Proceedings of 4th Eu-
ropean Congress ERTS - Embedded Real Time Software, 2008.

[GHK+20] Arkadii Gerasimov, Patricia Heuser, Holger Ketteniß, Peter Letmathe, Ju-
dith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Generated
Enterprise Information Systems: MDSE for Maintainable Co-Development
of Frontend and Backend. In Judith Michael and Dominik Bork, editors,
Companion Proceedings of Modellierung 2020 Short, Workshop and Tools
& Demo Papers, pages 22–30. CEUR Workshop Proceedings, February
2020.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe.
Modeling Variants of Automotive Systems using Views. In Modellbasierte
Entwicklung von eingebetteten Fahrzeugfunktionen, Informatik Bericht
2008-01, pages 76–89. TU Braunschweig, 2008.

[GKR19] Nicola Gatto, Evgeny Kusmenko, and Bernhard Rumpe. Modeling Deep
Reinforcement Learning Based Architectures for Cyber-Physical Systems.
In Loli Burgueño, Alexander Pretschner, Sebastian Voss, Michel Chaudron,
Jörg Kienzle, Markus Völter, Sébastien Gérard, Mansooreh Zahedi, Erwan
Bousse, Arend Rensink, Fiona Polack, Gregor Engels, and Gerti Kappel,
editors, Proceedings of MODELS 2019. Workshop MDE Intelligence, pages
196–202, September 2019.

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe.
Engineering Tagging Languages for DSLs. In Conference on Model
Driven Engineering Languages and Systems (MODELS’15), pages 34–43.
ACM/IEEE, 2015.

[GMW10] David Garlan, Robert Monroe, and David Wile. Acme: An Architecture
Description Interchange Language. In CASCON First Decade High Impact
Papers, CASCON ’10, pages 159–173, USA, 2010. IBM Corp.

[GVM+17] Gordana Gardašević, Mladen Veletić, Neboǰsa Maletić, Dragan Vasiljević,
Igor Radusinović, Slavica Tomović, and Milutin Radonjić. The IoT Ar-
chitectural Framework, Design Issues and Application Domains. Wireless
Personal Communications, 92(1):127–148, 2017.

[Hab16] Arne Haber. MontiArc - Architectural Modeling and Simulation of Inter-
active Distributed Systems. Aachener Informatik-Berichte, Software Engi-
neering, Band 24. Shaker Verlag, September 2016.

201

Bibliography

[Häu20] Jan Häusler. Fehlertolerante, modellgetriebene IoT-Architekturen mittels
zuverlässigem Message Broking. Bachelor Thesis. RWTH Aachen Univer-
sity. Software Engineering Group., September 2020.

[HBJD20] Nicolas Hili, Mojtaba Bagherzadeh, Karim Jahed, and Juergen Dingel. A
model-based architecture for interactive run-time monitoring. Software and
Systems Modeling, 19(4):959–981, 2020.

[HFMH16] Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa.
ThingML: A Language and Code Generation Framework for Heterogeneous
Targets. In Proceedings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems, MODELS ’16, pages
125–135, New York, NY, USA, 2016. ACM.

[HKK+22] Mattis Hoppe, Jörg Christian Kirchhof, Evgeny Kusmenko, Chan Yong
Lee, and Bernhard Rumpe. Agent-Based Autonomous Vehicle Simulation
with Hardware Emulation in the Loop. In 2022 IEEE Intelligent Vehicles
Symposium (IV), pages 16–21, 2022.

[HKKR19] Alexander Hellwig, Stefan Kriebel, Evgeny Kusmenko, and Bernhard
Rumpe. Component-based Integration of Interconnected Vehicle Archi-
tectures. In 30th Intelligent Vehicles Symposium (IV’19). Workshop on
Cooperative Interactive Vehicles, pages 146–151. IEEE, June 2019.

[HKR+16] Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard Rumpe, and
Andreas Wortmann. Retrofitting Controlled Dynamic Reconfiguration
into the Architecture Description Language MontiArcAutomaton. In Soft-
ware Architecture - 10th European Conference (ECSA’16), volume 9839 of
LNCS, pages 175–182. Springer, December 2016.

[HKR21] Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe. MontiCore
Language Workbench and Library Handbook: Edition 2021. Aachener
Informatik-Berichte, Software Engineering, Band 48. Shaker Verlag, May
2021.

[HLR17] Mahmoud Hussein, Shuai Li, and Ansgar Radermacher. Model-driven De-
velopment of Adaptive IoT Systems. In Proceedings of MODELS 2017.
Workshop ModComp, volume 2019, pages 17–23, Austin, United States,
September 2017. CEUR.

[HNPR13] Lars Hermerschmidt, Antonio Navarro Perez, and Bernhard Rumpe. A
Model-based Software Development Kit for the SensorCloud Platform. In
Workshop Wissenschaftliche Ergebnisse der Trusted Cloud Initiative, pages
125–140. Springer, Schweiz, 2013.

202

Bibliography

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the
Semantics of ”Semantics”? IEEE Computer, 37(10):64–72, October 2004.

[HR17] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Language Work-
bench Edition 2017. Aachener Informatik-Berichte, Software Engineering,
Band 32. Shaker Verlag, December 2017.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Archi-
tectural Modeling of Interactive Distributed and Cyber-Physical Systems.
Technical Report AIB-2012-03, RWTH Aachen University, February 2012.

[HSG18] Rashina Hoda, Norsaremah Salleh, and John Grundy. The Rise and Evo-
lution of Agile Software Development. IEEE Software, 35(5):58–63, 2018.

[HT06] Brent Hailpern and Peri Tarr. Model-driven development: The good, the
bad, and the ugly. IBM Systems Journal, 45(3):451–461, 2006.

[JBD21] Karim Jahed, Mojtaba Bagherzadeh, and Juergen Dingel. On the benefits
of file-level modularity for EMF models. Software and Systems Modeling,
20(1):267–286, 2021.

[JCO17] Gonçalo Jesus, António Casimiro, and Anabela Oliveira. A Survey on Data
Quality for Dependable Monitoring in Wireless Sensor Networks. Sensors,
17(9), 2017.

[KADAS19] Ala’ Khalifeh, Khaled Aldahdouh Aldahdouh, Khalid A. Darabkh, and
Waleed Al-Sit. A Survey of 5G Emerging Wireless Technologies Featuring
LoRaWAN, Sigfox, NB-IoT and LTE-M. In International Conference on
Wireless Communications Signal Processing and Networking (WiSPNET),
pages 561–566, 2019.

[Kay20] Paridhika Kayal. Kubernetes in Fog Computing: Feasibility Demonstra-
tion, Limitations and Improvement Scope : Invited Paper. In IEEE 6th
World Forum on Internet of Things (WF-IoT), pages 1–6, 2020.

[KC03] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Com-
puting. Computer, 36(1):41–50, 2003.

[KGR20] Heiko Koziolek, Sten Grüner, and Julius Rückert. A Comparison of MQTT
Brokers for Distributed IoT Edge Computing. In Anton Jansen, Ivano
Malavolta, Henry Muccini, Ipek Ozkaya, and Olaf Zimmermann, editors,
Software Architecture, pages 352–368, Cham, 2020. Springer International
Publishing.

203

Bibliography

[KKM+22] Jörg Christian Kirchhof, Anno Kleiss, Judith Michael, Bernhard Rumpe,
and Andreas Wortmann. Efficiently Engineering IoT Architecture
Languages—An Experience Report (Poster). STAF 2022 Workshop Pro-
ceedings: 10th International Workshop on Bidirectional Transformations
(BX 2022), 2nd International Workshop on Foundations and Practice of Vi-
sual Modeling (FPVM 2022) and 2nd International Workshop on MDE for
Smart IoT Systems (MeSS 2022) (co-located with Software Technologies:
Applications and Foundations federation of conferences (STAF 2022)), July
2022.

[KKMR19] Jörg Christian Kirchhof, Evgeny Kusmenko, Jean Meurice, and Bern-
hard Rumpe. Simulation of Model Execution for Embedded Systems. In
Loli Burgueño, Alexander Pretschner, Sebastian Voss, Michel Chaudron,
Jörg Kienzle, Markus Völter, Sébastien Gérard, Mansooreh Zahedi, Erwan
Bousse, Arend Rensink, Fiona Polack, Gregor Engels, and Gerti Kappel,
editors, Proceedings of MODELS 2019. Workshop MLE, pages 331–338.
IEEE, September 2019.

[KKR+22a] Jörg Christian Kirchhof, Anno Kleiss, Bernhard Rumpe, David Schmalz-
ing, Philipp Schneider, and Andreas Wortmann. Model-driven Self-
adaptive Deployment of Internet of Things Applications with Automated
Modification Proposals. ACM Transactions on Internet of Things, 3(4),
2022.

[KKR+22b] Jörg Christian Kirchhof, Evgeny Kusmenko, Jonas Ritz, Bernhard Rumpe,
Armin Moin, Atta Badii, Stephan Günnemann, and Moharram Challenger.
MDE for Machine Learning-Enabled Software Systems: A Case Study and
Comparison of MontiAnna & ML-Quadrat. In Proceedings of the 25th In-
ternational Conference on Model Driven Engineering Languages and Sys-
tems: Companion Proceedings, MODELS ’22, pages 380–387, New York,
NY, USA, October 2022. ACM.

[KKRZ19] Jörg Christian Kirchhof, Evgeny Kusmenko, Bernhard Rumpe, and Heng-
wen Zhang. Simulation as a Service for Cooperative Vehicles. In Loli Bur-
gueño, Alexander Pretschner, Sebastian Voss, Michel Chaudron, Jörg Kien-
zle, Markus Völter, Sébastien Gérard, Mansooreh Zahedi, Erwan Bousse,
Arend Rensink, Fiona Polack, Gregor Engels, and Gerti Kappel, edi-
tors, Proceedings of MODELS 2019. Workshop MASE, pages 28–37. IEEE,
September 2019.

[Kle21] Anno Kleiss. Using OCL/P to Improve the Reliability of Model-Driven In-
ternet of Things Applications. Bachelor Thesis. RWTH Aachen University.
Software Engineering Group., March 2021.

204

Bibliography

[KMM+22] Jörg Christian Kirchhof, Lukas Malcher, Judith Michael, Bernhard Rumpe,
and Andreas Wortmann. Web-Based Tracing for Model-Driven Applica-
tions. In Proceedings of the 48th Euromicro Conference Series on Software
Engineering and Advanced Applications (SEAA’22). In Press, 2022.

[KMMN16] Aimad Karkouch, Hajar Mousannif, Hassan Al Moatassime, and Thomas
Noel. A model-driven architecture-based data quality management frame-
work for the internet of Things. In 2nd International Conference on Cloud
Computing Technologies and Applications (CloudTech), pages 252–259,
2016.

[KMR20a] Jörg Christian Kirchhof, Judith Michael, and Bernhard Rumpe. Soft-
warequalität in Energieprojekten, pages 273–279. Fraunhofer IRB Verlag,
Stuttgart, July 2020.

[KMR+20b] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga,
and Andreas Wortmann. Model-driven Digital Twin Construction: Synthe-
sizing the Integration of Cyber-Physical Systems with Their Information
Systems. In Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, pages 90–101. ACM,
October 2020.

[KMR21] Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe. Under-
standing and Improving Model-Driven IoT Systems through Accompany-
ing Digital Twins. In Eli Tilevich and Coen De Roover, editors, Proceedings
of the 20th ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences (GPCE ’21), pages 197–209. ACM
SIGPLAN, October 2021.

[KNB06] Gunnar Kudrjavets, Nachiappan Nagappan, and Thomas Ball. Assessing
the Relationship between Software Assertions and Faults: An Empirical
Investigation. In 17th International Symposium on Software Reliability
Engineering, pages 204–212, 2006.

[KNP+19] Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard
Rumpe, and Thomas Timmermanns. Modeling and Training of Neural Pro-
cessing Systems. In Marouane Kessentini, Tao Yue, Alexander Pretschner,
Sebastian Voss, and Loli Burgueño, editors, Conference on Model Driven
Engineering Languages and Systems (MODELS’19), pages 283–293. IEEE,
September 2019.

[KNS+21] Jörg Christian Kirchhof, Michael Nieke, Ina Schaefer, David Schmalzing,
and Michael Schulze. Variant and Product Line Co-Evolution, pages 333–
351. Springer, January 2021.

205

Bibliography

[Kou16] Anis Koubaa. Robot Operating System (ROS): The Complete Reference
(Volume 1). Springer Publishing Company, Incorporated, 1st edition, 2016.

[KPRR20] Hendrik Kausch, Mathias Pfeiffer, Deni Raco, and Bernhard Rumpe. Mon-
tiBelle - Toolbox for a Model-Based Development and Verification of Dis-
tributed Critical Systems for Compliance with Functional Safety. In AIAA
Scitech 2020 Forum. American Institute of Aeronautics and Astronautics,
January 2020.

[KPRS19] Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Sebastian
Stüber. On the Engineering of AI-Powered Systems. In Lisa O’Conner, ed-
itor, ASE’19. Software Engineering Intelligence Workshop (SEI’19), pages
126–133. IEEE, November 2019.

[Kre20] Julian Jérôme Krebber. Generierung von Schnittstellen zwischen Informa-
tionssystemen und Cyber-Physischen Systemen zur Entwicklung digitaler
Zwillinge. Bachelor Thesis. RWTH Aachen University. Software Engineer-
ing Group., April 2020.

[KRRS19] Stefan Kriebel, Deni Raco, Bernhard Rumpe, and Sebastian Stüber.
Model-Based Engineering for Avionics: Will Specification and Formal Ver-
ification e.g. Based on Broy’s Streams Become Feasible? In Stephan Kr-
usche, Kurt Schneider, Marco Kuhrmann, Robert Heinrich, Reiner Jung,
Marco Konersmann, Eric Schmieders, Steffen Helke, Ina Schaefer, Andreas
Vogelsang, Björn Annighöfer, Andreas Schweiger, Marina Reich, and André
van Hoorn, editors, Proceedings of the Workshops of the Software Engineer-
ing Conference. Workshop on Avionics Systems and Software Engineering
(AvioSE’19), volume 2308 of CEUR Workshop Proceedings, pages 87–94.
CEUR Workshop Proceedings, February 2019.

[KRRvW18] Evgeny Kusmenko, Jean-Marc Ronck, Bernhard Rumpe, and Michael
von Wenckstern. EmbeddedMontiArc: Textual Modeling Alternative to
Simulink. In Proceedings of MODELS 2018. Workshop EXE, October 2018.

[KRSvW18] Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael von
Wenckstern. Highly-Optimizing and Multi-Target Compiler for Embedded
System Models: C++ Compiler Toolchain for the Component and Con-
nector Language EmbeddedMontiArc. In Conference on Model Driven En-
gineering Languages and Systems (MODELS’18), pages 447 – 457. ACM,
October 2018.

[KRSW20] Jörg Christian Kirchhof, Bernhard Rumpe, David Schmalzing, and An-
dreas Wortmann. Structurally Evolving Component-Port-Connector Ar-
chitectures of Centrally Controlled Systems. In Maxime Cordy, Mathieu

206

Bibliography

Acher, Danilo Beuche, and Gunter Saake, editors, International Working
Conference on Variability Modelling of Software-Intensive Systems. ACM,
February 2020.

[KRSW22] Jörg Christian Kirchhof, Bernhard Rumpe, David Schmalzing, and An-
dreas Wortmann. MontiThings: Model-driven Development and Deploy-
ment of Reliable IoT Applications. Journal of Systems and Software,
183:111087, January 2022.

[KSGW20] Jörg Christian Kirchhof, Martin Serror, René Glebke, and Klaus Wehrle.
Improving MAC Protocols for Wireless Industrial Networks via Packet Pri-
oritization and Cooperation. In Proceedings of the 21st International Sym-
posium on A World of Wireless, Mobile and Multimedia Networks (WoW-
MoM). Workshop CCNCPS., pages 367–372. IEEE, August 2020.

[KSJ00] R. Konuru, H. Srinivasan, and Jong-Deok Choi. Deterministic replay of
distributed java applications. In Proceedings 14th International Parallel
and Distributed Processing Symposium. IPDPS 2000, pages 219–227, 2000.

[Kus21] Evgeny Kusmenko. Model-Driven Development Methodology and Domain-
Specific Languages for the Design of Artificial Intelligence in Cyber-
Physical Systems. Aachener Informatik-Berichte, Software Engineering,
Band 49. Shaker Verlag, November 2021.

[Lan] Lantronix, Inc. Product Life Cycle In The Age Of IoT. [Online]. Avail-
able: https://cdn.lantronix.com/wp-content/uploads/pdf/
Product_Life_Cycle_in_the_Age_of_IoT_Final_04-1.pdf.

[LCFT17] Xabier Larrucea, Annie Combelles, John Favaro, and Kunal Taneja. Soft-
ware Engineering for the Internet of Things. IEEE Software, 34(1):24–28,
Jan 2017.

[Lis87] Barbara Liskov. Keynote Address - Data Abstraction and Hierarchy. In
Addendum to the Proceedings on Object-Oriented Programming Systems,
Languages and Applications (Addendum), OOPSLA ’87, pages 17–34, New
York, NY, USA, 1987. Association for Computing Machinery.

[LLPZ07] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. WiDS Checker:
Combating Bugs in Distributed Systems. In Proceedings of the 4th USENIX
Conference on Networked Systems Design & Implementation, NSDI’07,
page 19, USA, 2007. USENIX Association.

[LSCPE18] Xabier Larrucea, Izaskun Santamaria, Ricardo Colomo-Palacios, and
Christof Ebert. Microservices. IEEE Software, 35(3):96–100, 2018.

207

https://cdn.lantronix.com/wp-content/uploads/pdf/Product_Life_Cycle_in_the_Age_of_IoT_Final_04-1.pdf
https://cdn.lantronix.com/wp-content/uploads/pdf/Product_Life_Cycle_in_the_Age_of_IoT_Final_04-1.pdf

Bibliography

[Lt04] Marc Lankhorst and the ArchiMate team. ArchiMate Language Primer,
Version 1.0. Technical Report TI/RS/2004/024, Telematica Instituut,
2004.

[Mal21] Lukas Malcher. Reconstructing the Behavior of Cyber-Physical Systems
through Digital Shadows and Deterministic Replay in Component & Con-
nector Architectures. Master Thesis. RWTH Aachen University. Software
Engineering Group., August 2021.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsman-
ship. Robert C. Martin Series. Pearson Education, 2008.

[Mat21] Simulink® User’s Guide, R2021b. Technical report, The MathWorks, Inc.,
2021.

[MECL10] Julien Mercadal, Quentin Enard, Charles Consel, and Nicolas Loriant. A
domain-specific approach to architecturing error handling in pervasive com-
puting. SIGPLAN Not., 45(10):47–61, oct 2010.

[MF19] Brice Morin and Nicolas Ferry. Model-Based, Platform-Independent Log-
ging for Heterogeneous Targets. In ACM/IEEE 22nd International Con-
ference on Model Driven Engineering Languages and Systems (MODELS),
pages 172–182, 2019.

[MHF17] Brice Morin, Nicolas Harrand, and Franck Fleurey. Model-Based Software
Engineering to Tame the IoT Jungle. IEEE Software, 34(1):30–36, January
2017.

[MLM+13] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and
Antony Tang. What Industry Needs from Architectural Languages: A
Survey. IEEE Transactions on Software Engineering, 39(6):869–891, 2013.

[MM12] Dejan Munjin and Jean-Henry Morin. Toward Internet of Things Applica-
tion Markets. In IEEE International Conference on Green Computing and
Communications, pages 156–162, 2012.

[MNZC20] Samuel J. Moore, Chris D. Nugent, Shuai Zhang, and Ian Cleland. IoT
reliability: a review leading to 5 key research directions. CCF Transactions
on Pervasive Computing and Interaction, 2(3):147–163, 2020.

[MRG18] Armin Moin, Stephan Rössler, and Stephan Günnemann. ThingML+ Aug-
menting Model-Driven Software Engineering for the Internet of Things with
Machine Learning. In Proceedings of MODELS 2018. Workshop MDE4IoT,
pages 521–523. CEUR Workshop Proceedings, October 2018.

208

Bibliography

[MRRW16] Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe, and Michael von
Wenckstern. Consistent Extra-Functional Properties Tagging for Compo-
nent and Connector Models. In Workshop on Model-Driven Engineering
for Component-Based Software Systems (ModComp’16), volume 1723 of
CEUR Workshop Proceedings, pages 19–24, October 2016.

[MSPC12] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich
Chlamtac. Internet of things: Vision, applications and research challenges.
Ad Hoc Networks, 10(7):1497 – 1516, 2012.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classification and Compar-
ison Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 26(1):70–93, 2000.

[MVH17] Frédéric Mallet, Eugenio Villar, and Fernando Herrera. MARTE for CPS
and CPSoS. Cyber-Physical System Design from an Architecture Analysis
Viewpoint, pages 81–108, 2017.

[NCM+20] Thiago Nepomuceno, Tiago Carneiro, Paulo Henrique Maia, Muhammad
Adnan, Thalyson Nepomuceno, and Alexander Martin. AutoIoT: A Frame-
work Based on User-Driven MDE for Generating IoT Applications, pages
719–728. Association for Computing Machinery, New York, NY, USA,
2020.

[NFE+19] Phu Nguyen, Nicolas Ferry, Gencer Erdogan, Hui Song, Stéphane Lavi-
rotte, Jean-Yves Tigli, and Arnor Solberg. Advances in Deployment and
Orchestration Approaches for IoT - A Systematic Review. In IEEE Inter-
national Congress on Internet of Things (ICIOT), pages 53–60, 2019.

[NTBG15] Xuan Thang Nguyen, Huu Tam Tran, Harun Baraki, and Kurt Geihs.
FRASAD: A framework for model-driven IoT Application Development.
In IEEE 2nd World Forum on Internet of Things (WF-IoT), pages 387–
392, December 2015.

[Obj14] Object Management Group. Object Constraint Language (Version 2.4),
February 2014.

[Obj15] Object Management Group (OMG). Data Distribution Service (DDS), Ver-
sion 1.4. [Online]. Available: https://www.omg.org/spec/DDS/1.4/PDF
Last accessed: 21.03.2021, 2015.

[Obj17] Object Management Group. Unified Modeling Language Specification
(Version 2.5.1), December 2017.

209

Bibliography

[Obj19] Object Management Group. OMG System Modeling Language Specifica-
tion (Version 1.6), December 2019.

[Orl22] Radoslav Orlov. Feature-based Deployment of IoT Applications in Monti-
Things. Bachelor Thesis. RWTH Aachen University. Software Engineering
Group., May 2022.

[PA15] Per Persson and Ola Angelsmark. Calvin – Merging Cloud and IoT. Pro-
cedia Computer Science, 52:210 – 217, 2015. 6th International Conference
on Ambient Systems, Networks and Technologies (ANT 2015).

[PA17] Per Persson and Ola Angelsmark. Kappa: Serverless iot deployment. In
Proceedings of the 2nd International Workshop on Serverless Computing,
WoSC ’17, pages 16–21, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[PBS+22] Julian Eduardo Plazas, Sandro Bimonte, Michel Schneider, Christophe
de Vaulx, Pietro Battistoni, Monica Sebillo, and Juan Carlos Corrales.
Sense, transform & send for the Internet of Things (STS4IoT): UML pro-
file for data-centric IoT applications. Data & Knowledge Engineering, page
101971, 2022.

[PHPH19] Yusuf Perwej, Kashiful Haq, Firoj Parwej, and Mumdouh M. Mohamed
Hassan. The Internet of Things (IoT) and its Application Domains. Inter-
national Journal of Computer Applications, 182(49):36–49, Apr 2019.

[Pto14] Claudius Ptolemaeus, editor. System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org, 2014.

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an open-source
Robot Operating System. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[RBF+16] Lukas Reinfurt, Uwe Breitenbücher, Michael Falkenthal, Frank Leymann,
and Andreas Riegg. Internet of Things Patterns. In Proceedings of the
21st European Conference on Pattern Languages of Programs (EuroPLoP).
ACM, 2016.

[RLC+20] Gianna Reggio, Maurizio Leotta, Maura Cerioli, Romina Spalazzese, and
Fahed Alkhabbas. What are IoT systems for real? An experts’ survey on
software engineering aspects. Internet of Things, 12:100313, 2020.

210

Bibliography

[ROL18] Leila Fatmasari Rahman, Tanir Ozcelebi, and Johan Lukkien. Understand-
ing IoT Systems: A Life Cycle Approach. Procedia Computer Science,
130:1057–1062, 2018. The 9th International Conference on Ambient Sys-
tems, Networks and Technologies (ANT 2018) / The 8th International
Conference on Sustainable Energy Information Technology (SEIT-2018) /
Affiliated Workshops.

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams,
Stream Processing Functions, and State-Based Stream Processing. Inter-
national Journal of Software and Informatics, 2011.

[RRW13] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArc-
Automaton: Modeling Architecture and Behavior of Robotic Systems. In
Conference on Robotics and Automation (ICRA’13), pages 10–12. IEEE,
2013.

[Rui22] Julian Jérôme Ruiz. Model-Driven Digital Twin Plugins: Interfacing In-
formation Systems, IoT Devices, and External Services. Master Thesis.
RWTH Aachen University. Software Engineering Group., November 2022.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods.
Springer International, July 2016.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, May 2017.

[RW18] Bernhard Rumpe and Andreas Wortmann. Abstraction and Refinement
in Hierarchically Decomposable and Underspecified CPS-Architectures. In
Lohstroh, Marten and Derler, Patricia Sirjani, Marjan, editor, Principles
of Modeling: Essays Dedicated to Edward A. Lee on the Occasion of His
60th Birthday, LNCS 10760, pages 383–406. Springer, 2018.

[Sas22] Maya Sastges. Integrating Model-Driven IoT Applications with their Envi-
ronment. Master Thesis. RWTH Aachen University. Software Engineering
Group., January 2022.

[Sch21] Philipp Schneider. Orchestrierung modellgetriebener IoT-Anwendungen
durch generierte Informationssysteme. Bachelor Thesis. RWTH Aachen
University. Software Engineering Group., September 2021.

[SDF+20] Hui Song, Rustem Dautov, Nicolas Ferry, Arnor Solberg, and Franck
Fleurey. Model-Based Fleet Deployment of Edge Computing Applications.
In Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS ’20, pages 132–142,
New York, NY, USA, 2020. Association for Computing Machinery.

211

Bibliography

[Sel96] Bran Selic. Tutorial: Real-Time Object-Oriented Modeling (ROOM). In
Proceedings Real-Time Technology and Applications, pages 214–217, 1996.

[Sel03] Bran Selic. The Pragmatics of Model-Driven Development. IEEE Software,
20(5):19–25, 2003.

[Sel08] Bran Selic. Accounting for platform effects in the design of real-time soft-
ware using model-based methods. IBM Systems Journal, 47(2):309–320,
2008.

[SGME92] Bran Selic, Garth Gullekson, Jim McGee, and Ian Engelberg. ROOM: An
Object-Oriented Methodology for Developing Real-Time Systems. In Pro-
ceedings of the Fifth International Workshop on Computer-Aided Software
Engineering, pages 230–240, 1992.

[Sho04] Jim Shore. Fail Fast. IEEE Software, 21(5):21–25, 2004.

[Sie04] Johannes Siedersleben. Moderne Softwarearchitektur - Umsichtig planen,
robust bauen mit Quasar. dpunkt.verlag, 1st edition, 2004.

[SKS+17] Martin Serror, Jörg Christian Kirchhof, Mirko Stoffers, Klaus Wehrle,
and James Gross. Code-Transparent Discrete Event Simulation for Time-
Accurate Wireless Prototyping. In Proceedings of the 2017 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation, SIGSIM-PADS
’17, pages 161–172, New York, NY, USA, 2017. Association for Computing
Machinery.

[SKS18] Joshua E. Siegel, Sumeet Kumar, and Sanjay E. Sarma. The future internet
of things: Secure, efficient, and model-based. IEEE Internet of Things
Journal, 5(4):2386–2398, 2018.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer Verlag, Wien,
New York, 1973.

[Sta14] John A. Stankovic. Research Directions for the Internet of Things. IEEE
Internet of Things Journal, 1(1):3–9, 2014.

[Sti21] Lukas Stief. Steuerung digitaler Komponenten für Internet-of-Things-
Anwendungen mit Hilfe grafischer Benutzeroberflächen. Bachelor Thesis.
RWTH Aachen University. Software Engineering Group., September 2021.

[SYDZ16] Wentao Shang, Yingdi Yu, Ralph Droms, and Lixia Zhang. Challenges in
IoT Networking via TCP/IP Architecture. NDN Technical Report NDN-
0038, 2016.

212

Bibliography

[Tan11] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, Vrije Univer-
sity, Amsterdam, The Netherlands, 5th edition, 2011.

[TGPH20] Sergio Trilles, Alberto González-Pérez, and Joaqúın Huerta. An IoT Plat-
form Based on Microservices and Serverless Paradigms for Smart Farming
Purposes. Sensors, 20(8), 2020.

[TJSW18] Behrang Ashtari Talkhestani, Nasser Jazdi, Wolfgang Schlögl, and Michael
Weyrich. A concept in synchronization of virtual production system with
real factory based on anchor-point method. Procedia CIRP, 67:13–17, 2018.

[TM17a] Antero Taivalsaari and Tommi Mikkonen. A Roadmap to the Pro-
grammable World: Software Challenges in the IoT Era. IEEE Software,
34(1):72–80, Jan 2017.

[TM17b] Antero Taivalsaari and Tommi Mikkonen. Beyond the Next 700 IoT Plat-
forms. In IEEE International Conference on Systems, Man, and Cybernet-
ics (SMC), pages 3529–3534, Oct 2017.

[TM18] Antero Taivalsaari and Tommi Mikkonen. On the development of IoT
systems. In Third International Conference on Fog and Mobile Edge Com-
puting (FMEC), pages 13–19, April 2018.

[VSID15] Michael Vögler, Johannes M. Schleicher, Christian Inzinger, and Schahram
Dustdar. DIANE - Dynamic IoT Application Deployment. In 2015 IEEE
International Conference on Mobile Services, pages 298–305, 2015.

[vW20] Michael von Wenckstern. Verification of Structural and Extra Functional
Properties in Component and Connector Models for Embedded and Cyber
Physical Systems. Aachener Informatik-Berichte, Software Engineering,
Band 44. Shaker Verlag, March 2020.

[WMW18] Sabine Wolny, Alexandra Mazak, and Bernhard Wally. An Initial Map-
ping Study on MDE4IoT. In Proceedings of MODELS 2018. Workshop
MDE4IoT, pages 524–529. CEUR Workshop Proceedings, October 2018.

[Wor16] Andreas Wortmann. An Extensible Component & Connector Archi-
tecture Description Infrastructure for Multi-Platform Modeling. Aach-
ener Informatik-Berichte, Software Engineering, Band 25. Shaker Verlag,
November 2016.

[wwwa] docker.com - What is a Container? . [Online]. Available: https://www.
docker.com/resources/what-container.

213

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container

Bibliography

[wwwb] Eclipse Mita Project Website. [Online]. Available: https://www.
eclipse.org/mita/. Last accessed: 16.06.2021.

[www20] Ericsson Mobility Report November 2020. [Online]. Available: https:
//www.ericsson.com/4adc87/assets/local/mobility-
report/documents/2020/november-2020-ericsson-
mobility-report.pdf, November 2020.

[XSXH18] Ying Xiong, Yulin Sun, Li Xing, and Ying Huang. Extend Cloud to Edge
with KubeEdge. In IEEE/ACM Symposium on Edge Computing (SEC),
pages 373–377, 2018.

[YMLL17] Emre Yigitoglu, Mohamed Mohamed, Ling Liu, and Heiko Ludwig. Foggy:
A framework for continuous automated iot application deployment in fog
computing. In 2017 IEEE International Conference on AI Mobile Services
(AIMS), pages 38–45, 2017.

[Zam17] Franco Zambonelli. Key Abstractions for IoT-Oriented Software Engineer-
ing. IEEE Software, 34(1):38–45, 2017.

[Zha20] Han Zhang. Integration of Deep Learning into Internet of Things Appli-
cations. Bachelor Thesis. RWTH Aachen University. Software Engineering
Group., September 2020.

214

https://www.eclipse.org/mita/
https://www.eclipse.org/mita/
https://www.ericsson.com/4adc87/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf
https://www.ericsson.com/4adc87/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf
https://www.ericsson.com/4adc87/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf
https://www.ericsson.com/4adc87/assets/local/mobility-report/documents/2020/november-2020-ericsson-mobility-report.pdf

Appendix A

Acronyms

AADL architecture analysis & design language 35

ADL architecture description language . 3

ALF action language for foundational UML 139

API application programming interface . 138

AST abstract syntax tree . 20

AWS Amazon Web Services . 3

CAN controller area network . 44

C&C component and connector . 3

CD continuous deployment . 114

C2A2 Capture, Communicate, Analyse and Act 32

CD4A class diagrams for analysis . 25

CI continuous integration . 6

CPU central processing unit . 81

CoCo context condition . 22

CLI command line interface . 100

DDC diagnostic data cache . 87

DDS data distribution service . 91

DNS domain name system . 101

DT digital twin . 18

DS determinism spacing . 158

DSL domain-specific language . 4

DTIS digital twin information system . 111

EBNF extended Backus-Naur form . 21

EMA EmbeddedMontiArc . 28

215

Appendix A Acronyms

GCP Google Cloud Platform . 3

GPIO general-purpose input/output . 44

GPL general purpose programming language 46

GUI graphical user interface . 112

HVAC heating, ventilation, and air conditioning 167

IoT Internet of Things . 3

IP Internet Protocol . 136

JSON JavaScript object notation . 113

NAT network address translation . 106

MDE model-driven engineering . 5

MARTE modeling and analysis of real-time and embedded systems 67

MAC media access control . 10

MDE model-driven engineering . 5

MDSE model-driven software engineering . 13

MQTT message queue telemetry transport . 42

MUX multiplexer

OCL object constraint language . 8

RFID radio-frequency identification . 167

ROS robot operating system . 162

RTE run-time environment . 6

SC Statechart . 59

SI international system of units . 6

TA technical assumption . 31

UML unified modeling language . 60

UPS uninterruptible power supply . 81

VCG vehicle connectivity gateway . 81

WARP wireless open access research platform 10

216

Appendix B

Selected Grammars from the MontiVerse

As MontiThings includes many languages from the MontiVerse (sometimes called Monti-
Zoo), this section gives an overview of selected grammars that are used by MontiThings.
The author of this thesis wants to point out that while he was involved in the develop-
ment of grammars in the MontiVerse, he does not claim the grammars in this appendix
are his own work. This appendix only gives a small overview over the grammars most
important for understanding this thesis. Due to space reasons, a complete reprint of
all used MontiVerse grammars is not given here. All MontiVerse projects and their
grammars can be found at https://github.com/monticore.

B.1 ArcBasis (MontiArc)

MCG
1 /* (c) https://github.com/MontiCore/monticore */
2

3 /* This is a MontiCore stable grammar.
4 * Adaptations -- if any -- are conservative. */
5

6 /**
7 * This grammar defines the basic structural elements of component & connector
8 * architecture descriptions in form of component models. The grammar contains
9 * definitions for components, ports, and connectors.

10 *
11 * This grammar is part of the MontiArc langauge definition,
12 * which are organized according to this extension hierachy:
13 * * ArcBasis.mc4
14 * * -- ComfortableArc.mc4
15 * * -- GenericArc.mc4
16 *
17 * * ArcCore.mc4 composes
18 * + ArcBasis.mc4 + ComfortableArc.mc4 + GenericArc.mc4
19 * and builds the core of architectural modelling
20 * (still without concrete expressions, literals, etc.)
21 *
22 * Furthermore MontiArc.mc4 extends Arc.mc4 to a complete
23 * language, with Expressions, Literals, etc. defined
24 * * ArcCore.mc4
25 * * -- MontiArc.mc4
26 *

217

https://github.com/monticore

Appendix B Selected Grammars from the MontiVerse

27 * The grammar relies on basic expressions, literals and types only.
28 * All these are meant to be extended.
29 */
30

31 component grammar ArcBasis extends
32 de.monticore.MCBasics,
33 de.monticore.types.MCBasicTypes,
34 de.monticore.expressions.ExpressionsBasis,
35 de.monticore.symbols.OOSymbols {
36

37 /**
38 * ASTArcElement is the top-level interface for all elements of the component.
39 * A component may contain arbitrary many elements. This interface may be
40 * used as an extension point to enrich components with further elements.
41 */
42 interface ArcElement;
43

44 /**
45 * ASTComponent represents the definition of a component type. A component is
46 * a unit of computation or a data store. The size of a component may scale
47 * from a single procedure to a whole application. A component ist either
48 * atomic or decomposed into subcomponents.
49 *
50 * @attribute name The type name of this component.
51 * @attribute head Defines configuration options and extensions of this component

.
52 * @attribute componentInstances List of identifiers used to create instances
53 * of this component type. Only available for inner components.
54 * @attribute body Contains the architectural elements of this component.
55 */
56 symbol scope ComponentType implements ArcElement =
57 key("component") Name
58 head:ComponentHead
59 (ComponentInstance || ",")*
60 body:ComponentBody
61 ;
62

63 /**
64 * ASTComponentHead holds the definitions of generic type parameters that may
65 * be used as prt types in the component, definitions of configuration parameters
66 * that ma may be used to configure the component, and this component’s parent.
67 *
68 * @attribute arcParamers A list of parameters that define the configuration
69 * options of the component.
70 * @attribute parent The type of the parent component.
71 */
72 ComponentHead =
73 ("(" (ArcParameter || ",")* ")")?
74 ("extends" parent:MCType)?
75 ;
76

77 /**
78 * ASTParameter defines the configuration usage interface of the
79 * component type.
80 *
81 * @attribute type The type of the parameter.
82 * @attribute name The identifier of the parameter.
83 * @attribute value Default value used for the parameter if no argument is

218

B.1 ArcBasis (MontiArc)

84 * given during instantiation.
85 */
86 ArcParameter implements Variable =
87 MCType Name ("=" default:Expression)?
88 ;
89

90 /**
91 * ASTComponentBody holds the architectural elements of the component.
92 *
93 * @attribute arcElements A list of architectural elements.
94 */
95 ComponentBody = "{" ArcElement* "}" ;
96

97 /**
98 * ASTComponentInterface defines the interface of the component in terms of
99 * in- and outgoing ports.

100 *
101 * @attribute portDeclarations A list of port declarations.
102 */
103 ComponentInterface implements ArcElement =
104 key("port") (PortDeclaration || ",")+ ";"
105 ;
106

107 /**
108 * ASTPortDeclaration declares one or more ports by specifying their
109 * direction and type.
110 *
111 * @attribute portDirection The direction of the port. Can be in- or outgoing.
112 * @attribute type The type of the port.
113 * @attribute ports A list of declared port identifiers.
114 */
115 PortDeclaration =
116 PortDirection MCType (Port || ",")+
117 ;
118

119 /**
120 * ASTPortDirection defines the direction of the port.
121 */
122 interface PortDirection;
123

124 PortDirectionIn implements PortDirection = key("in");
125

126 PortDirectionOut implements PortDirection = key("out");
127

128 /**
129 * ASTPort defines the port identifier and functions as an extension point
130 * for other port identifier kinds.
131 * ASTPort also creates PortSymbols.
132 *
133 * @attribute name The name of the port.
134 */
135 symbol Port = Name;
136

137 /**
138 * ASTArcFieldDeclaration declares one or more component fields by
139 * specifying their type and identifier.
140 *
141 * @attribute type The type of the component field.

219

Appendix B Selected Grammars from the MontiVerse

142 * @attribute fields A list of field identifier.
143 */
144 ArcFieldDeclaration implements ArcElement =
145 MCType (ArcField || ",")+ ";" ;
146

147 /**
148 * ASTArcField defines the field identifier.
149 *
150 * @attribute name The name of the field.
151 * @attribute value The initialization value of the field.
152 */
153 ArcField implements Variable <100> = Name "=" initial:Expression;
154

155 /**
156 * ASTComponentInstantiation holds one or more component instances that are
157 * used in topology spanned by the component. This way the hierarchical
158 * structure of decomposed components is defined.
159 *
160 * @attribute type The type of the component instance.
161 * @attribute componentInstance A list of instantiated components.
162 */
163 ComponentInstantiation implements ArcElement <100> =
164 MCType (ComponentInstance || ",")+ ";"
165 ;
166

167 /**
168 * ASTComponentInstance defines the component instance identifier and functions
169 * as an extension point for other identifier kinds of component instances.
170 *
171 * @attribute name The name of the component instance.
172 * @attribute arguments A list of configuration arguments.
173 */
174 symbol ComponentInstance = Name Arguments?;
175

176 /**
177 * ASTConnector connects one source port with one or more target ports.
178 *
179 * @attribute source The qualified identifier of the source port.
180 * @attribute targets A list of the qualified identifiers of the target ports.
181 */
182 Connector implements ArcElement =
183 source:PortAccess "->" target:(PortAccess || ",")+ ";"
184 ;
185

186 /**
187 * ASTPortAccess refers to a port via its qualified identifier.
188 *
189 * @attribute component The name of the component the port belongs to.
190 * @attribute port the name of the port.
191 */
192 PortAccess = (component:Name@ComponentInstance ".")? port:Name@Port ;
193

194 }

Listing B.1: ArcBasis grammar. ArcBasis is the basis grammar of MontiArc.

220

B.2 Class Diagrams

B.2 Class Diagrams

MCG
1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore;
3

4 /* This is a MontiCore stable grammar.
5 * Adaptations -- if any -- are conservative. */
6

7 /**
8 This is the basis language component for CD4Analysis and CD4Code.
9

10 It contains class structures with attributes, but omits
11 interfaces, enums, modifiers, methods.
12

13 It uses
14 * ExpressionsBasis, MCLiteralsBasis (for the Expressions)
15 * MCBasicTypes (for the types in CS and AST) and
16 * TypesSymbols (for imported/exported TypeSymbols)
17 as holes that shall be filled in concrete, complete languages
18 by a variety of available grammars.
19 */
20

21 component grammar CDBasis extends
22 de.monticore.literals.MCLiteralsBasis,
23 de.monticore.expressions.ExpressionsBasis,
24 de.monticore.types.MCBasicTypes,
25 de.monticore.symbols.OOSymbols,
26 de.monticore.UMLStereotype,
27 de.monticore.UMLModifier {
28

29 /* ==== General ==== */
30 /** The artifact header:
31 import statements, package definition
32 */
33 CDCompilationUnit =
34 MCPackageDeclaration?
35 MCImportStatement*
36 CDTargetImportStatement*
37 CDDefinition;
38

39 /** This import statement allows to explain in the model, which
40 additional imports are relevant for the target, this includes
41 e.g. includes generated code.
42 (beyond the imports that the generator identifies itself).
43 */
44 CDTargetImportStatement = "targetimport" MCQualifiedName ("." Star:["*"])? ";";
45

46 /** The class diagram: defines a set of elements
47 */
48 CDDefinition implements Diagram =
49 Modifier "classdiagram" Name "{" CDElement* "}";
50

51 /* ==== CDElement ==== */
52 /** CDElement denotes the basic elements of a class diagram.
53 This includes Classes, Interfaces, Enums, Associations
54 and is meant for extension if needed.

221

Appendix B Selected Grammars from the MontiVerse

55 */
56 interface CDElement;
57

58 /** CDPackage span a scope which can contain any CDElement.
59 The name of the package is a flat name and can not create
60 a hierarchical package structure.
61 */
62 scope symbol CDPackage implements CDElement =
63 "package" MCQualifiedName "{"
64 CDElement*
65 "}";
66

67 /** CDType are all of the CDElements, which can be used to describe a
68 type for e.g. variables, method arguments, ...
69 */
70 interface symbol CDType extends CDElement, OOType;
71

72 /* Remark:
73 Because people that know Java also know interface implementation,
74 we decide to add "implements" already here
75 and restrict the grammar to classes only through a CoCo.
76 Advantage: better explanation of the error if someone
77 actually uses "implement" with the base grammar .
78 This CoCo restriction will be switched off in the
79 CDInterfaceAndEnum extension.
80 */
81

82 /** This adds the possibility for classes to implement
83 interfaces (by filling the external NT defined there)
84 */
85 CDInterfaceUsage =
86 "implements" interface:(MCObjectType || ",")+;
87

88 /** This adds the possibility for classes to extend
89 other classes or interfaces extend other interfaces
90 (by filling the external NT defined there)
91 */
92 CDExtendUsage =
93 "extends" superclass:(MCObjectType || ",")+;
94

95 /** CDClass defines a class including extensions and its body.
96 */
97 scope CDClass implements CDType =
98 Modifier "class" Name
99 CDExtendUsage?

100 CDInterfaceUsage?
101 ("{"
102 CDMember*
103 "}"
104 | ";");
105

106 /* ==== Attributes ==== */
107 /** The CDMember interface is for all possible members of class.
108 * This grammar only uses it for CDAttribute.
109 */
110 interface CDMember;
111

112 /** An attribute has a type, a name and an optional initializing expression.

222

B.2 Class Diagrams

113 */
114 CDAttribute implements CDMember, Field =
115 Modifier MCType Name ("=" initial:Expression)? ";";
116 }

Listing B.2: CDBasis grammar. CDBasis is the basis grammar of class diagram
grammars.

MCG
1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore;
3

4 /* This is a MontiCore stable grammar.
5 * Adaptations -- if any -- are conservative. */
6

7 /**
8 This component grammar defines interfaces and enum classes
9 for CD4Analysis and CD4Code.

10

11 This includes directions, qualifiers, multiplicities and compositions.
12 */
13

14 component grammar CDInterfaceAndEnum extends de.monticore.CDBasis {
15

16 /** An interface is quite similar to a class:
17 */
18 scope CDInterface implements CDType =
19 Modifier "interface" Name
20 CDExtendUsage?
21 ("{"
22 CDMember*
23 "}"
24 | ";");
25

26 /** Enumerations allow to define a list of names that act as constants.
27 Please note that Java allows attributes for enums:
28 this possibility will be added in CD4Code, but not yet here.
29 */
30 scope CDEnum implements CDType =
31 Modifier "enum" Name
32 CDInterfaceUsage?
33 ("{"
34 (CDEnumConstant || ",")* ";"
35 CDMember*
36 "}"
37 | ";");
38

39 /** Have the enum constants as separate NT. To allow extensions
40 an enum constant is a static final attribute of the enum with the type
41 of the enum
42 */
43 CDEnumConstant implements Field = Name;
44 }

Listing B.3: CDInterfaceAndEnum grammar. CDInterfaceAndEnum extends CDBasis
with interfaces and enums.

223

Appendix B Selected Grammars from the MontiVerse

MCG
1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore;
3

4 /* This is a MontiCore stable grammar.
5 * Adaptations -- if any -- are conservative. */
6

7 /**
8 This component grammar defines associations for CD4Analysis and CD4Code.
9

10 This includes directions, qualifiers, multiplicities and compositions.
11 */
12

13 component grammar CDAssociation extends de.monticore.CDBasis {
14

15 /** The AssociationType is a separate NT to allow for extension later
16 */
17 interface CDAssocType;
18

19 /** The list of association types available as variants of CDAssocType:
20 */
21 CDAssocTypeAssoc implements CDAssocType = "association";
22 CDAssocTypeComp implements CDAssocType = "composition";
23

24 /** An association has a name, a left, right part and a direction
25 */
26 scope symbol CDAssociation implements CDElement =
27 Modifier
28 CDAssocType Name?
29 left:CDAssocLeftSide
30 CDAssocDir
31 right:CDAssocRightSide
32 ";";
33

34 /* ==== Association ==== */
35 interface CDAssocDir;
36

37 /** The list of association directions available as variants of
CDAssociationDirection:

38 */
39 CDLeftToRightDir implements CDAssocDir = "->";
40 CDRightToLeftDir implements CDAssocDir = "<-";
41 CDBiDir implements CDAssocDir = "<->";
42 CDUnspecifiedDir implements CDAssocDir = "--";
43

44 splittoken "->", "<-", "<->", "--";
45

46 CDOrdered = {noSpace(2,3)}? "{" "ordered" "}";
47

48 /** CDAssociationSide defines the properties of one side of
49 an association. This construction allows developers to access
50 both sides of the associations using the same interface,
51 even though the concrete syntax differs in their order.
52 */
53 interface CDAssocSide =
54 CDOrdered? Modifier CDCardinality?
55 MCQualifiedType CDQualifier? CDRole?;
56

224

B.2 Class Diagrams

57 CDAssocLeftSide implements CDAssocSide =
58 CDOrdered? Modifier CDCardinality?
59 MCQualifiedType CDQualifier? CDRole?;
60

61 CDAssocRightSide implements CDAssocSide =
62 CDRole? CDQualifier? MCQualifiedType
63 CDCardinality? Modifier CDOrdered?;
64

65 /** A role symbol is a simple name. It is embedded in the association.
66 */
67 symbol CDRole implements CDMember = "(" Name ")";
68

69 /** CDCardinality captures the cardinality of an association side.
70 Associations currently allow for standard cardinalities, but
71 this is extensible. Visitors help to identify the correct cardinality.
72 Cardinality from de.monticore.Cardinality is not used, because we only
73 want the simple variants here
74 */
75 interface CDCardinality;
76 CDCardMult implements CDCardinality = "[*]";
77 CDCardOne implements CDCardinality = {noSpace(2,3) && _input.LT(2).getText

().equals("1")}? "[" Digits "]"; // matches "[1]"
78 CDCardAtLeastOne implements CDCardinality = {noSpace(2,3,4,5) && _input.LT(2).

getText().equals("1") }? "[" Digits "." "." "*" "]"; // matches "[1..*]"
79 CDCardOpt implements CDCardinality = {noSpace(2,3,4,5) && _input.LT(2).

getText().equals("0") && _input.LT(5).getText().equals("1") }? "[" Digits "."
"." Digits "]"; // matches "[0..1]"

80

81 // TODO SVa: MC#2548, use token when available: _input.LT(2).getText().equals
("1") = token(2).equals("1")

82

83 splittoken "[*]";
84

85 /** CDQualifier describes the two forms of explicit qualifications:
86 either through an attribute value contained in the value-object
87 or through a type (such as String) , which the value-object doesn’t
88 know about.
89 */
90 CDQualifier =
91 "[[" byAttributeName:Name@Variable "]]"
92 | "[" byType:MCType "]";
93

94 splittoken "[[", "]]";
95

96 /** Write a composition in short form inside the composite class:
97 class A { -> (r) B [*]; }
98 transforms to:
99 composition [1] A -> (r) B [*];

100 */
101 CDDirectComposition implements CDMember =
102 "->" CDAssocRightSide ";";
103

104

105 /* ==== Symbols ==== */
106

107 /** The symbol for CDRole contains all the information of one side of an
association.

108 It contains the link to the type and the SymAssociation, which contains the

225

Appendix B Selected Grammars from the MontiVerse

109 basic information of an association.
110 */
111 symbolrule CDRole =
112 isDefinitiveNavigable: boolean
113 cardinality: Optional<de.monticore.cdassociation._ast.ASTCDCardinality>
114 field: Optional<de.monticore.symbols.oosymbols._symboltable.FieldSymbol>
115

116 // Defined exactly if a qualifier is given:
117 attributeQualifier: Optional<de.monticore.symbols.basicsymbols._symboltable.

VariableSymbol>
118 typeQualifier: Optional<de.monticore.types.check.SymTypeExpression>
119

120 // the CDRole symbol only links to a SymAssociation if the other role also has
a Symbol

121 assoc: Optional<de.monticore.cdassociation._symboltable.SymAssociation>
122 isOrdered: boolean
123 isLeft: boolean
124

125 type: de.monticore.types.check.SymTypeExpression
126 isReadOnly: boolean
127 isPrivate: boolean
128 isProtected: boolean
129 isPublic: boolean
130 isStatic:boolean
131 isFinal: boolean
132 ;
133

134 /** The symbol for CDAssociation is defined for named associations.
135 The SymAssociation object provides all relevant
136 information obout the association and the roles.
137 */
138 symbolrule CDAssociation =
139 assoc: Optional<de.monticore.cdassociation._symboltable.SymAssociation>;
140 }

Listing B.4: CDAssociation grammar. CDAssociation defines associations in class
diagrams.

MCG
1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore;
3

4 /* This is a MontiCore stable grammar.
5 * Adaptations -- if any -- are conservative. */
6

7 /**
8 CD4A is the textual representation to describe UML class diagrams
9 (it uses the UML/P variant).

10 CD4A covers classes, interfaces, inheritance, attributes with types,
11 visibilities, and all kinds of associations and composition,
12 including qualified and ordered associations.
13

14 CD4A focusses on the analysis phase in typical data-driven development
15 projects and is therefore mainly for data modelling.
16 Consequently, it omits method signatures and complex generics.
17

18 This grammar brings together all CD components

226

B.3 MCCommonStatements

19 * CDBasis.mc4
20 for the core class structures
21 * CDInterfaceAndEnum.mc4
22 for interfaces and enumerations
23 * CDAssociation.mc4
24 for associations
25

26 It builds on MCCollectionTypes, which allow. e.g. List<int>
27

28 And it includes MCCommonLiterals, CommonExpressions, BitExpressions
29 to allow a rich set of expressions
30 (e.g. to initialize attributes and enum values.)
31 */
32

33 grammar CD4Analysis extends
34 de.monticore.CDInterfaceAndEnum,
35 de.monticore.CDAssociation,
36 de.monticore.types.MCCollectionTypes,
37 de.monticore.types.MCArrayTypes,
38 de.monticore.literals.MCCommonLiterals,
39 de.monticore.expressions.BitExpressions,
40 de.monticore.expressions.CommonExpressions {
41

42 start CDCompilationUnit;
43

44 // Certain keywords of the used grammars shall not become
45 // restricted words in other context:
46 nokeyword "targetpackage", "targetimport", "classdiagram";
47 nokeyword "association", "composition", "ordered";
48

49 }

Listing B.5: CD4Analysis grammar. CD4Analysis combines CDBasis,
CDInterfaceAndEnum, and CDAssociation to define full class diagrams.

B.3 MCCommonStatements

MCG
1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore.statements;
3

4 /* This is a MontiCore stable grammar.
5 * Adaptations -- if any -- are conservative. */
6

7 import de.monticore.statements.*;
8

9 /**
10 * This grammar defines typical statements, such as
11 * method calls (which are actually expressions),
12 * assignment of variables, if, for, while, switch statements, and blocks.
13 *
14 * This embodies a complete structured statement language, however does not
15 * provide return, assert, exceptions, and low-level constructs like break.
16 *

227

Appendix B Selected Grammars from the MontiVerse

17 * This grammar is part of a hierarchy of statements, namely
18 * * statements/MCStatementsBasis.mc4
19 * * -- statements/MCAssertStatements.mc4
20 * * -- statements/MCVarDeclarationStatements.mc4
21 * * -- -- statements/MCArrayStatements.mc4
22 * * -- -- statements/MCCommonStatements.mc4
23 * * -- -- -- statements/MCExceptionStatements.mc4
24 * * -- -- -- statements/MCSynchronizedStatements.mc4
25 * * -- statements/MCLowLevelStatements.mc4
26 * * -- statements/MCReturnStatements.mc4
27 *
28 * and the composition of all statement grammars to full Java:
29 * * -- -- statements/MCFullJavaStatements.mc4
30 *
31 */
32

33 component grammar MCCommonStatements
34 extends MCVarDeclarationStatements {
35

36 /**
37 * Standard Form of a block { ... }
38 * it allows to define local variables that are not exported
39 * and can only be used after defined (typical within code bodies).
40 */
41 scope(non_exporting ordered) MCJavaBlock implements MCStatement
42 = "{" MCBlockStatement* "}" ;
43

44 /**
45 * All the Java Modifier
46 */
47 JavaModifier implements MCModifier =
48 Modifier:["private" | "public" | "protected" | "static"
49 | "transient" | "final" | "abstract" | "native"
50 | "threadsafe" | "synchronized" | "const" | "volatile"
51 | "strictfp"] ;
52

53 IfStatement implements MCStatement
54 = "if" "(" condition:Expression ")"
55 thenStatement:MCStatement
56 ("else" elseStatement:MCStatement)? ;
57 // we use "elseStatement", because the
58 // generated Java code doesn’t allow "else" as Name
59

60

61 scope (non_exporting ordered) ForStatement implements MCStatement
62 = "for" "(" ForControl ")" MCStatement ;
63

64 interface ForControl ;
65

66 CommonForControl implements ForControl
67 = ForInit? ";" condition:Expression? ";" (Expression || ",")* ;
68

69 ForInit
70 = ForInitByExpressions | LocalVariableDeclaration ;
71

72 ForInitByExpressions
73 = (Expression || ",")+ ;
74

228

B.4 MCCommonLiterals

75 EnhancedForControl implements ForControl
76 = FormalParameter ":" Expression;
77

78 FormalParameter
79 = JavaModifier* MCType DeclaratorId;
80

81 WhileStatement implements MCStatement
82 = "while" "(" condition:Expression ")" MCStatement ;
83

84 DoWhileStatement implements MCStatement
85 = "do" MCStatement "while" "(" condition:Expression ")" ";" ;
86

87 SwitchStatement implements MCStatement
88 = "switch" "(" Expression ")"
89 "{" SwitchBlockStatementGroup* SwitchLabel* "}" ;
90

91 EmptyStatement implements MCStatement
92 = ";" ;
93

94 ExpressionStatement implements MCStatement
95 = Expression ";" ;
96

97 // Matches cases then statements, both of which are mandatory.
98 // To handle empty cases at the end, SwitchLabel* is explicitely added
99 // in the statement body

100 SwitchBlockStatementGroup
101 = SwitchLabel+ MCBlockStatement+ ;
102

103 interface SwitchLabel ;
104

105 ConstantExpressionSwitchLabel implements SwitchLabel
106 = "case" constant:Expression ":" ;
107

108 EnumConstantSwitchLabel implements SwitchLabel
109 = "case" enumConstant:Name ":" ;
110

111 DefaultSwitchLabel implements SwitchLabel
112 = "default" ":" ;
113

114 BreakStatement implements MCStatement
115 = "break" ";" ;
116

117 }

Listing B.6: MCCommonStatements grammar. MCCommonStatements is the basis
MontiThings’ Java-like behavior descriptions.

B.4 MCCommonLiterals

MCG
1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore.literals;
3

4 /* This is a MontiCore stable grammar.

229

Appendix B Selected Grammars from the MontiVerse

5 * Adaptations -- if any -- are conservative. */
6

7 import de.monticore.literals.*;
8

9 /**
10 * This grammar defines Java compliant literals.
11 * The scope of this grammar is to
12 * ease the reuse of literals structures in Java-like sublanguages, e.g., by
13 * grammar inheritance or grammar embedment.
14 * The grammar contains literals from Java, e.g., Boolean, Char, String,
15 */
16

17 component grammar MCCommonLiterals
18 extends de.monticore.MCBasics,
19 MCLiteralsBasis {
20

21

22 /*==*/
23 /*======================= INTERFACE DEFINITIONS ==========================*/
24 /*==*/
25

26

27 /** ASTSignedLiteral is the interface for all literals (NullLiteral,
28 BooleanLiteral, CharLiteral, StringLiteral and all NumericLiterals).
29 Compared to Literal it also includes negative NumericLiterals
30 */
31 interface SignedLiteral;
32

33

34 /** The interface ASTNumericLiteral combines the numeric literal types for
35 Integer, Long, Float and Double without ’-’ at the beginning)
36 */
37 interface NumericLiteral extends Literal <100>;
38

39

40 /** The interface ASTNumericLiteral combines the numeric literal types for
41 Integer, Long, Float and Double.
42 Compared to NumericLiteral it also includes negative numbers.
43 */
44 interface SignedNumericLiteral extends SignedLiteral <100>;
45

46

47 /*==*/
48 /*============================ PARSER RULES ==============================*/
49 /*==*/
50

51 /** ASTNullLiteral represents ’null’
52 */
53 NullLiteral implements Literal, SignedLiteral =
54 "null";
55

56

57 /** ASTBooleanLiteral represents "true" or "false"
58 @attribute source String-representation (including ’"’).
59 */
60 BooleanLiteral implements Literal, SignedLiteral =
61 source:["true" | "false"];
62

230

B.4 MCCommonLiterals

63

64 /** ASTCharLiteral represents any valid character parenthesized with "’".
65 @attribute source String-representation (including "’").
66 */
67 CharLiteral implements Literal, SignedLiteral =
68 source:Char;
69

70

71 /** ASTStringLiteral represents any valid character sequence parenthesized
72 with ’"’.
73 @attribute source String-representation (including ’"’).
74 */
75 StringLiteral implements Literal, SignedLiteral =
76 source:String;
77

78

79 /** ASTNatLiteral represents a positive Decimal number.
80 @attribute source String-representation (including ’"’).
81 */
82 NatLiteral implements NumericLiteral<1> =
83 Digits;
84

85 /** ASTSignedNatLiteral represents a positive or negative Decimal number.
86 @attribute source String-representation (including ’"’).
87 */
88 SignedNatLiteral implements SignedNumericLiteral<1> =
89 {noSpace(2)}? (negative:["-"]) Digits |
90 Digits;
91

92 /** ASTLongLiteral represents a positive Decimal number.
93 @attribute source String-representation (including ’"’).
94 */
95 BasicLongLiteral implements NumericLiteral<1> =
96 { cmpToken(2,"l","L") && noSpace(2) }? Digits key("l" | "L");
97

98 /** ASTSignedLongLiteral represents a positive or negative Decimal number.
99 @attribute source String-representation (including ’"’).

100 */
101 SignedBasicLongLiteral implements SignedNumericLiteral<1> =
102 { cmpToken(3,"l","L") && noSpace(2,3) }?
103 negative:["-"] Digits key("l" | "L")
104 |
105 { cmpToken(2,"l","L") && noSpace(2) }?
106 Digits key("l" | "L");
107

108 /** ASTFloatLiteral represents a positive float.
109 @attribute source String-representation (including ’"’).
110 */
111 BasicFloatLiteral implements NumericLiteral<1> =
112 { cmpToken(4,"f","F") && noSpace(2,3,4) }?
113 pre:Digits "." post:Digits key("f" | "F");
114

115 /** ASTSignedFloatLiteral represents a positive or negative float.
116 @attribute source String-representation (including ’"’).
117 */
118 SignedBasicFloatLiteral implements SignedNumericLiteral<1> =
119 { cmpToken(5,"f","F") && noSpace(2,3,4,5)}?
120 negative:["-"] pre:Digits "." post:Digits key("f" | "F") |

231

Appendix B Selected Grammars from the MontiVerse

121 { cmpToken(4,"f","F") && noSpace(2,3,4) }?
122 pre:Digits "." post:Digits key("f" | "F");
123

124 /** ASTDoubleLiteral represents a positive double.
125 @attribute source String-representation (including ’"’).
126 */
127 BasicDoubleLiteral implements NumericLiteral<1> =
128 { noSpace(2,3) }? pre:Digits "." post:Digits;
129

130 /** ASTSignedDoubleLiteral represents a positive or negative double.
131 @attribute source String-representation (including ’"’).
132 */
133 SignedBasicDoubleLiteral implements SignedNumericLiteral<1> =
134 { noSpace(2,3,4) }? negative:["-"] pre:Digits "." post:Digits |
135 { noSpace(2,3) }? pre:Digits "." post:Digits;
136

137 /*==*/
138 /*============================ LEXER RULES ===============================*/
139 /*==*/
140

141

142 /*==*/
143 /* The following section is adapted from */
144 /* https://github.com/antlr/grammars-v4/blob/master/java/Java.g4 */
145 /*==*/
146

147 // §3.10.1 Integer Literals
148

149 token Digits
150 = Digit+;
151

152 fragment token Digit
153 = ’0’..’9’;
154

155 // §3.10.4 Character Literals
156 token Char
157 = ’\’’ (SingleCharacter|EscapeSequence) ’\’’
158 : {setText(getText().substring(1, getText().length() - 1));};
159

160 fragment token SingleCharacter
161 = ~ (’\’’);
162

163

164 // §3.10.5 String Literals
165 token String
166 = ’"’ (StringCharacters)? ’"’
167 : {setText(getText().substring(1, getText().length() - 1));};
168

169 fragment token StringCharacters
170 = (StringCharacter)+;
171

172 fragment token StringCharacter
173 = ~ (’"’ | ’\\’) | EscapeSequence;
174

175

176 // §3.10.6 Escape Sequences for Character and String Literals
177 fragment token EscapeSequence
178 = ’\\’ (’b’ | ’t’ | ’n’ | ’f’ | ’r’ | ’"’ | ’\’’ | ’\\’)

232

B.4 MCCommonLiterals

179 | OctalEscape | UnicodeEscape;
180

181 fragment token OctalEscape
182 = ’\\’ OctalDigit | ’\\’ OctalDigit OctalDigit
183 | ’\\’ ZeroToThree OctalDigit OctalDigit;
184

185 fragment token UnicodeEscape
186 = ’\\’ ’u’ HexDigit HexDigit HexDigit HexDigit;
187

188 fragment token ZeroToThree
189 = ’0’..’3’ ;
190

191 fragment token HexDigit
192 = ’0’..’9’ | ’a’..’f’ | ’A’..’F’ ;
193

194 fragment token OctalDigit
195 = ’0’..’7’ ;
196

197

198 /*==*/
199 /*======================= AST DEFINITIONS ================================*/
200 /*==*/
201

202 astrule BooleanLiteral =
203 method public boolean getValue() {
204 return this.source == ASTConstantsMCCommonLiterals.TRUE;
205 }
206 ;
207

208 astrule CharLiteral =
209 method public char getValue() {
210 return de.monticore.literals.MCLiteralsDecoder.decodeChar(
211 getSource());
212 }
213 ;
214

215 astrule StringLiteral =
216 method public String getValue() {
217 return de.monticore.literals.MCLiteralsDecoder.decodeString(
218 getSource());
219 }
220 ;
221

222 astrule NatLiteral =
223 method public String getSource() {
224 return getDigits();
225 }
226 method public int getValue() {
227 return de.monticore.literals.MCLiteralsDecoder.decodeNat(
228 getSource());
229 }
230 ;
231

232 astrule SignedNatLiteral =
233 method public String getSource() {
234 return (negative?"-":"") + getDigits();
235 }
236 method public int getValue() {

233

Appendix B Selected Grammars from the MontiVerse

237 return de.monticore.literals.MCLiteralsDecoder.decodeNat(
238 getSource());
239 }
240 ;
241

242 astrule BasicLongLiteral =
243 method public String getSource() {
244 return getDigits() + "L";
245 }
246 method public long getValue() {
247 return de.monticore.literals.MCLiteralsDecoder.decodeLong(getSource());
248 }
249 ;
250

251 astrule SignedBasicLongLiteral =
252 method public String getSource() {
253 return (negative?"-":"") + getDigits() + "L";
254 }
255 method public long getValue() {
256 return de.monticore.literals.MCLiteralsDecoder.decodeLong(getSource());
257 }
258 ;
259

260 astrule BasicFloatLiteral =
261 method public String getSource() {
262 return getPre() + "." + getPost() + "F";
263 }
264 method public float getValue() {
265 return de.monticore.literals.MCLiteralsDecoder.decodeFloat(getSource());
266 }
267 ;
268

269 astrule SignedBasicFloatLiteral =
270 method public String getSource() {
271 return (isNegative()?"-":"") + getPre() + "." + getPost() + "F";
272 }
273 method public float getValue() {
274 return de.monticore.literals.MCLiteralsDecoder.decodeFloat(getSource());
275 }
276 ;
277

278 astrule BasicDoubleLiteral =
279 method public String getSource() {
280 return getPre() + "." + getPost();
281 }
282 method public double getValue() {
283 return de.monticore.literals.MCLiteralsDecoder.decodeDouble(getSource());
284 }
285 ;
286

287 astrule SignedBasicDoubleLiteral =
288 method public String getSource() {
289 return (isNegative()?"-":"") + getPre() + "." + getPost();
290 }
291 method public double getValue() {
292 return de.monticore.literals.MCLiteralsDecoder.decodeDouble(getSource());
293 }
294 ;

234

B.5 OCL Expressions

295

296 }

Listing B.7: MCCommonLiterals grammar. MCCommonLiterals provides the basis of
MontiThings’ literals.

B.5 OCL Expressions

MCG
1 // (c) https://github.com/MontiCore/monticore
2 package de.monticore.ocl;
3

4 /* This is a MontiCore stable grammar.
5 * Adaptations -- if any -- are conservative. */
6

7 import de.monticore.expressions.*;
8 import de.monticore.types.*;
9 import de.monticore.symbols.*;

10

11 /**
12 * This grammar defines expressions typical to UMLs OCL
13 *
14 * This includes among others the
15 * * typeif, forall and exists quantifiers,
16 * * set selection with any, iteration,
17 * * @pre and transitive closure **
18 *
19 * OCL expressions can savely (i.e. as conservative extension)
20 * be composed if with other forms of expressions
21 * given in the MontiCore core project.
22 * Especially common expressions should be added.
23 *
24 * This grammar is part of a hierarchy of expressions, namely
25 * * expressions/ExpressionsBasis.mc4
26 * * -- expressions/CommonExpressions.mc4
27 * * -- -- expressions/JavaClassExpressions.mc4
28 * * -- expressions/AssignmentExpressions.mc4
29 * * -- expressions/BitExpressions.mc4
30 * * -- ocl/OCLExpressions.mc4
31 * * -- ocl/SetExpressions.mc4
32 * * -- ocl/OptionalOperators.mc4
33 *
34 * Care: other grammars may include a syntactically similar casting
35 * function. The parser then only takes one alternative (dependend
36 * on the priority (which is here <200>).
37 *
38 * Note that it may be useful to use the "nokeyword"-keyword statement
39 * for a variety of keywords used here, such as "implies", "forall", "in"
40 */
41

42 component grammar OCLExpressions
43 extends ExpressionsBasis,
44 MCBasicTypes,
45 BasicSymbols

235

Appendix B Selected Grammars from the MontiVerse

46 {
47 /**
48 * ASTTypeCastExpression casts an expression to a given type
49 * @attribute MCType
50 * type to cast the expression to
51 * @attribute Expression
52 * the expression that should be casted
53 */
54 TypeCastExpression implements Expression <200> =
55 "(" MCType ")" Expression;
56

57 /**
58 * ASTOCLVariableDeclaration defines a variable
59 * @attribute MCType
60 * type of the variable
61 * @attribute Name
62 * name of the variable
63 * @attribute Expression
64 * initial value of the variable
65 */
66 OCLVariableDeclaration implements Variable =
67 MCType? Name (dim:"[" "]")* ("=" Expression)?;
68

69 /*===*/
70

71 /**
72 * ASTTypeIfExpression
73 * Type-safe version of type-cast for variables.
74 * typeif m instanceof Subtype
75 * then (m known here as Subtype)
76 * else (m here as only Supertype)
77 *
78 * @attribute Name
79 * Name of a variable of which the type should be checked
80 * @attribute MCType
81 * The type to which the variable should be compared
82 * @attribute thenExpression
83 * resulting expression in which the variable can be used with
84 * the type defined by MCType (if the type check returns true)
85 * @attribute elseExpression
86 * resulting expression which will be evaluated if the variable
87 * is not of the type defined by MCType
88 *
89 * Example:
90 * typeif bm instanceof BidMesssage
91 * then bm.auction==copper912
92 * else false
93 */
94 TypeIfExpression implements Expression <100> =
95 "typeif" Name@Variable "instanceof" MCType
96 "then" thenExpression:Expression
97 "else" elseExpression:Expression
98 ;
99

100 /**
101 * IfThenElseExpression defines a case distinction operator.
102 * If the condition is true, thenExpression will be returned,
103 * otherwise the elseExpression will be returned.

236

B.5 OCL Expressions

104 *
105 * @attribute condition
106 * the condition to be evaluated
107 * @attribute thenExpression
108 * the expression to return if the condition is true
109 * @attribute elseExpression
110 * the expression to return if the condition is false
111 */
112 IfThenElseExpression implements Expression <100> =
113 "if" condition:Expression
114 "then" thenExpression:Expression
115 "else" elseExpression:Expression
116 ;
117

118

119 /*===*/
120

121 /**
122 * ASTImpliesExpression defines a logical implies operator.
123 * Example: a.startTime >= Time.now() implies a.numberOfBids == 0
124 */
125 ImpliesExpression implements Expression <116> =
126 left:Expression
127 "implies"
128 right:Expression
129 ;
130

131 /**
132 * ASTEquivalentExpression defines a logical equals operator.
133 * Example: sa.equals(sb) <=> sa==sb
134 */
135 EquivalentExpression implements Expression <115> =
136 left:Expression operator:"<=>" right:Expression;
137

138

139 /*===*/
140

141 /**
142 * ASTForAllExpression defines a quantified expression for collections e.g.
143 * "forall x in Y : ...".
144 * @attribute InDeclaration
145 * List of collection variable declarations, e.g:
146 * "forall a in A: ..."
147 * "forall a in List <..> : ..."
148 * "forall a: ..."
149 * @attribute OCLExpression
150 * The body of forall iteration as an expression.
151 */
152 scope (non_exporting) ForallExpression implements Expression <90> =
153 "forall"
154 (InDeclaration || ",")+
155 ":"
156 Expression
157 ;
158

159 /**
160 * ASTExistsExpression defines a quantified expression for collections e.g.
161 * "exists x in Y : ...".

237

Appendix B Selected Grammars from the MontiVerse

162 * @attribute InDeclaration
163 * List of collection variable declarations, e.g:
164 * "exists a in A: ..."
165 * "exists a in List <..> : ..."
166 * "exists a: ..."
167 * @attribute OCLExpression
168 * The body of exists iteration as an expression.
169 */
170 scope (non_exporting) ExistsExpression implements Expression <90> =
171 "exists"
172 (InDeclaration || ",")+
173 ":"
174 Expression
175 ;
176

177 /**
178 * ASTOCLAnyExpression selects an element from a non-empty collection e.g.
179 * any x in set or any Auction. The result is underspecified.
180 * @attribute OCLExpression
181 * A collection defined by an expression.
182 */
183 AnyExpression implements Expression <100> =
184 "any" Expression;
185

186

187 /*===*/
188

189 /**
190 * ASTLetinExpression are used to define local vars or methods. The defined
191 * vars and methods are visible in the in-expression body.
192 * @attribute letDeclaration
193 * A list of variable declarations.
194 * @attribute expression
195 * An expression where previous declarations are used.
196 */
197 scope (non_exporting) LetinExpression implements Expression <100> =
198 "let" (OCLVariableDeclaration || ";")+
199 "in" Expression ;
200

201 /**
202 * ASTIterateExpression is used to iterate collections. It differs from
203 * Java5-Iterator.
204 * Example:
205 * iterate{ elem in Auction; int acc=0 : acc = acc+elem.numberOfBids }.
206 * @attribute iterationDeclarator
207 * The elements of a collection that will be iterated as an
208 * OCLCollectionVarDeclaration.
209 * @attribute init
210 * Definiton of a accumulation variable as an
211 * OCLVariableDeclaration.
212 * @attribute Name
213 * Name of the accumulation assignment variable. This has to be
214 * the variable introduced by init:OCLVariableDeclaration
215 * @attribute value
216 * Right hand of the accumulation as an expression.
217 */
218 scope (non_exporting) IterateExpression implements Expression <100> =
219 "iterate" "{"

238

B.5 OCL Expressions

220 iteration:InDeclaration ";"
221 init:OCLVariableDeclaration ":"
222 Name@Variable "=" value:Expression
223 "}";
224

225 /*===*/
226

227 /**
228 * ASTInDeclaration defines a collection like "int x in y" or "Auction a" as
229 * shortform of "Auction a in Auction.allInstances").
230 */
231 InDeclaration =
232 MCType (InDeclarationVariable || ",")+
233 | MCType? (InDeclarationVariable || ",")+ ("in" Expression)
234 ;
235

236 /**
237 * ASTInDeclarationVariable defines the name of the variable
238 * used in the InDeclaration nonterminal
239 * ASTInDeclarationVariable also creates VariableSymbols.
240 *
241 * @attribute Name
242 * name of the variable.
243 *
244 * Variable defines an according symbol.
245 */
246 InDeclarationVariable implements Variable = Name;
247

248 /*===*/
249

250 /**
251 * ASTInstanceOfExpression checks if an expression has a certain type
252 * evaluates to true if the expression has the type given by MCType
253 * otherwise evaluates to false
254 *
255 * @attribute Expression
256 * expression whose type is to be checked
257 * @attribute MCType
258 * type against which the expression should be checked
259 */
260 InstanceOfExpression implements Expression <150> =
261 Expression "instanceof" MCType;
262

263 /*===*/
264

265 /**
266 * ASTOCLArrayQualification is used to access elements of
267 * an array of elements.
268 *
269 * @attribute Expression
270 * The expression whose elements will be accessed
271 * @attribute arguments
272 * The expression defining which element to access
273 */
274 OCLArrayQualification implements Expression <250> =
275 Expression ("[" arguments:Expression "]")+;
276

277 /**

239

Appendix B Selected Grammars from the MontiVerse

278 * ASTOCLAtPreQualification
279 * Value of the expression in the precondition
280 * Example: post: messageList == messageList@pre.add(m)
281 */
282 OCLAtPreQualification implements Expression <400> =
283 Expression atpre:["@pre"];
284

285 /**
286 * ASTOCLTransitiveQualification
287 * Transitive closure of an association. The operator ** is
288 * only directly applied to a reflexive association. It
289 * cannot be applied on chains of associations of the form (a.b.c)**
290 * The transitive closure of an association is also calculated if the
291 * association’s source and target are not identical or even if they
292 * are not subclasses of each other. In that case, the transitive
293 * closure is identical to the initial association.
294 * Example: this.clique = this.friend**
295 */
296 OCLTransitiveQualification implements Expression <400> =
297 Expression transitive:["**"];
298

299 }

Listing B.8: OCLExpressions grammar. OCLExpressions are imported by MontiThings.

B.6 Set Expressions

MCG
1 // (c) https://github.com/MontiCore/monticore
2 package de.monticore.ocl;
3

4 /* This is a MontiCore stable grammar.
5 * Adaptations -- if any -- are conservative. */
6

7 import de.monticore.expressions.*;
8 import de.monticore.types.*;
9 import de.monticore.symbols.*;

10

11 /**
12 * This grammar defines set expressions, such as
13 * union, intersect, setand, setor and set comprehension.
14 *
15 * Set expressions can savely (i.e. as conservative extension)
16 * be composed if with other forms of expressions
17 * given in the MontiCore core project.
18 * Especially common expressions should be added.
19 *
20 * This grammar is part of a hierarchy of expressions, namely
21 * * expressions/ExpressionsBasis.mc4
22 * * -- expressions/CommonExpressions.mc4
23 * * -- -- expressions/JavaClassExpressions.mc4
24 * * -- expressions/AssignmentExpressions.mc4
25 * * -- expressions/BitExpressions.mc4
26 * * -- ocl/OCLExpressions.mc4

240

B.6 Set Expressions

27 * * -- ocl/SetExpressions.mc4
28 * * -- ocl/OptionalOperators.mc4
29 *
30 */
31

32 component grammar SetExpressions
33 extends ExpressionsBasis,
34 MCBasicTypes,
35 BasicSymbols
36 {
37 /*===*/
38

39 SetInExpression implements Expression <150> =
40 elem:Expression
41 operator:"isin"
42 set:Expression;
43

44 SetNotInExpression implements Expression <150> =
45 elem:Expression
46 operator:"notin"
47 set:Expression;
48

49 /*===*/
50

51 UnionExpression implements Expression <180> =
52 left:Expression
53 operator:"union"
54 right:Expression;
55

56 IntersectionExpression implements Expression <180> =
57 left:Expression
58 operator:"intersect"
59 right:Expression;
60

61 SetMinusExpression implements Expression <180> =
62 left:Expression
63 operator:"\\"
64 right:Expression;
65

66 /*===*/
67

68 // sets of sets united (i.e. flattened) and intersected
69 SetUnionExpression implements Expression <170> =
70 "union" set:Expression;
71

72 SetIntersectionExpression implements Expression <170> =
73 "intersect" set:Expression;
74

75 /*===*/
76

77 // Logical expressions extended to sets of arguments
78 SetAndExpression implements Expression <130> =
79 "setand" set:Expression;
80

81 SetOrExpression implements Expression <130> =
82 "setor" set:Expression;
83

84 /*===*/

241

Appendix B Selected Grammars from the MontiVerse

85

86 SetVariableDeclaration implements Variable =
87 MCType? Name (dim:"[" "]")* ("=" Expression)?;
88

89 /*===*/
90

91 /**
92 * ASTSetComprehension defines a comprehension with given
93 * characteristic.
94 * @attribute MCType
95 * Optional type of comprehension, e.g. Set, List or Collection.
96 * @attribute left
97 * A comprehension-item (e.g. "x*x" or "x in Y") that describes
98 * or introduces the elements stored in the set.
99 * @attribute setComprehensionItems

100 * Characterization of comprehension as a list of
101 * comprehension-items. This can be generators, vardefinitions
102 * or filters.
103 * Example:
104 * {x * x | x in y, x < 10}
105 * Note that we assume at least one generator (e.g. x in Y) in this AST.
106 */
107 scope (non_exporting) SetComprehension implements Expression <40> =
108 MCType?
109 "{" left:SetComprehensionItem "|"
110 (SetComprehensionItem || ",")+ "}"
111 ;
112

113 /**
114 * ASTSetComprehensionItem defines the items that can occur
115 * on the right hand side of a comprehension.
116 * This can be
117 * Boolean expressions that act as filter, e.g. x < 6
118 * introductions on new local variables that act as
119 * intermediate result, e.g. int y = 2*x
120 * and generators that introduce a new variable and let them
121 * range over a set of values, e.g. x in S,
122 * y in {3..10}, z in Set{3,5,10..20}
123 */
124 SetComprehensionItem =
125 Expression |
126 SetVariableDeclaration |
127 GeneratorDeclaration
128 ;
129

130 /**
131 * ASTGeneratorDeclaration defines a generator that introduces a new
132 * variable and lets it range over a set
133 * @attribute MCType
134 * Optional type of variable
135 * @attribute Name
136 * Name of the variable
137 * @attribute Expression
138 * Expression that describes or references a set
139 */
140 GeneratorDeclaration implements Variable =
141 MCType? Name "in" Expression;
142

242

B.7 SI Units

143 /**
144 * ASTSetEnumeration is used for an enumeration of
145 * comprehension elements. Note that collection items are optional.
146 * @attribute MCType
147 * Optional type of comprehension, e.g. Set, List or Collection.
148 * @attribute setCollectionItems
149 * Enumerated elements as a list separated by , (comma).
150 * (e.g.: "1..3, x, y..z")
151 * Example:
152 * {1 .. 3, x+1 .. 10, 2*y, 21}
153 */
154 SetEnumeration implements Expression <40> =
155 MCType?
156 "{" (SetCollectionItem || ",")* "}"
157 ;
158

159 interface SetCollectionItem;
160

161 // list of allowed values
162 SetValueItem implements SetCollectionItem =
163 (Expression || ",")+
164 ;
165

166 // range of allowed values
167 SetValueRange implements SetCollectionItem =
168 lowerBound:Expression ".." upperBound:Expression
169 ;
170 }

Listing B.9: SetExpressions grammar. SetExpressions are imported by MontiThings.

B.7 SI Units

MCG
1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore;
3

4 /* Beta-version: This is intended to become a MontiCore stable grammar. */
5

6 /**
7 * This grammar defines SI units and other derived units such as
8 * ’m’, ’km’, ’km^2’ or ’mm^2/kVA^2h’. Spaces in a unit are
9 * prevented by semantic predicates.

10 *
11 * The definitions are fully compliant to the definitions given in
12 * International Bureau of Weights and Measures (20 May 2019),
13 * SI Brochure: The International System of Units (SI) (9th ed.).
14 *
15 * SI units are declared as independent Nonterminal and can then
16 * be used as part of a
17 * * value definition, such as "5kg", or
18 * * type definition, such as "km/h"
19 *
20 * The grammar extends the MontiCore common literals, because it uses

243

Appendix B Selected Grammars from the MontiVerse

21 * natural numbers e.g. as exponent.
22 */
23

24 grammar SIUnits extends de.monticore.literals.MCCommonLiterals {
25

26

27 /**
28 * The SIUnit is either a SIUnitPrimitive, e.g. "km"
29 * the division of two SIUnitPrimitives, e.g. "km/h"
30 * or the division of "1" and a SIUnitPrimitive, e.g. "1/h"
31 *
32 */
33 SIUnit =
34 // The lookahead is needed for the parser to
35 // decide which alternative to take.
36 { isSIOneDiv() }?
37 one:NatLiteral "/" denominator:SIUnitPrimitive |
38 { isSIDiv() }?
39 numerator:SIUnitPrimitive "/" denominator:SIUnitPrimitive |
40 { !isSIDiv() }?
41 SIUnitPrimitive;
42

43

44 /**
45 * The SIUnitPrimitives are the primitives of the SIUnit
46 *
47 * SIUnitPrimitives contains the basic SI units without prefixes
48 * such as ’m’, ’s’ or ’kg’
49 * as well as the basic SI units with prefixes
50 * such as ’km’, ’mm’ or ’ms’.
51 *
52 * Other derived or officialy accepted units are also contained
53 * (’h’, ’day’, ’Ohm’, ...)
54 *
55 * Do not take a SIUnitWith(out)Prefix if it is in fact a
56 * SIUnitKindGroupWithExponent.
57 */
58 SIUnitPrimitive =
59 { !isSIUnitKindGroupWithExponent(1) }? SIUnitWithPrefix |
60 { !isSIUnitKindGroupWithExponent(1) }? SIUnitWithoutPrefix |
61 SIUnitDimensionless |
62 CelsiusFahrenheit |
63 { isSIUnitKindGroupWithExponent(1) }? SIUnitKindGroupWithExponent;
64

65

66 /**
67 * SIUnitWithPrefix
68 *
69 * The regular expression is defined according to:
70 * * https://en.wikipedia.org/wiki/Metric_prefix
71 * * https://en.wikipedia.org/wiki/SI_base_unit
72 * * https://en.wikipedia.org/wiki/SI_derived_unit
73 * * https://en.wikipedia.org/wiki/Non-SI_units_mentioned_in_the_SI
74 *
75 * The expression matches an SI unit starting
76 * with a prefix. An SI unit that can have a
77 * prefix is one of the following:
78 * ’m,g,s,A,K,mol,cd,Hz,N,Pa,J,W,C,V,F,Ohm,

244

B.7 SI Units

79 * Ω,S,Wb,T,H,lm,lx,Bq,Gy,Sv,kat,l,L’
80 *
81 * Alternatively the SIUnitWithPrefix is
82 * followed by any other SIUnitWithPrefix or
83 * SIUnitWithoutPrefix (see below) for a
84 * SI unit group, e.g. ’kVAh’.
85 *
86 * The regular expression is needed, because SI
87 * units shall not be defined as keywords
88 * because they would not be usable e.g. as
89 * variable names in other places anymore.
90 * See also functions available to handle the
91 * stored unit.
92 */
93 SIUnitWithPrefix =
94 { isSIUnitWithPrefix(1) }? (Name | NonNameUnit);
95

96

97 /**
98 * SIUnitWithoutPrefix
99 *

100 * The regular expression is defined according to:
101 * * https://en.wikipedia.org/wiki/Metric_prefix
102 * * https://en.wikipedia.org/wiki/SI_base_unit
103 * * https://en.wikipedia.org/wiki/SI_derived_unit
104 * * https://en.wikipedia.org/wiki/Non-SI_units_mentioned_in_the_SI
105 *
106 * The expression matches an SI unit not starting
107 * with a prefix. An SI unit that does not need a
108 * prefix is one of the following:
109 * ’m,g,s,A,K,mol,cd,Hz,N,Pa,J,W,C,V,F,Ohm,
110 * Ω,S,Wb,T,H,lm,lx,Bq,Gy,Sv,kat,l,L’
111 * and
112 * ’min,h,d,ha,t,au,Np,B,dB,eV,Da,u’
113 *
114 * Alternatively the SIUnitWithPrefix is
115 * followed by any other SIUnitWithPrefix (see
116 * above) or SIUnitWithoutPrefix for a
117 * SI unit group, e.g. ’VAh’.
118 *
119 * The regular expression is needed, because SI
120 * units shall not be defined as keywords
121 * because they would not be usable e.g. as
122 * variable names in other places anymore.
123 * See also functions available to handle the
124 * stored unit.
125 */
126 SIUnitWithoutPrefix =
127 { isSIUnitWithoutPrefix(1) }? (Name | NonNameUnit);
128

129

130 /**
131 * CelsiusFahrenheit matches °"C" and °"F"
132 *
133 * Lookahead needed at the beginning to
134 * distinguish with other alternatives
135 */
136 CelsiusFahrenheit =

245

Appendix B Selected Grammars from the MontiVerse

137 { isCelsiusFahrenheit(1) }? "°" unit:Name;
138

139

140 /**
141 * SIUnitDimensionless matches °"" and "deg|rad|sr"
142 * according to https://en.wikipedia.org/wiki/SI_derived_unit
143 *
144 * Lookahead needed at the beginning to
145 * distinguish with other alternatives
146 */
147 SIUnitDimensionless =
148 "°" |
149 { isDimensionless(1) }? unit:Name;
150

151

152 /**
153 * The SIUnitKindGroupWithExponent combines
154 * several SIUnitWithPrefix and SIUnitWithoutPrefix
155 * with exponents as one SI unit group, such as
156 * ’kV^2Ah’ and ’s^2m’
157 */
158 SIUnitKindGroupWithExponent =
159 { isSIUnitKindGroupWithExponent(1) }?
160 (SIUnitGroupPrimitive "^" exponent:SignedNatLiteral)+
161 SIUnitGroupPrimitive?;
162

163 /**
164 * The SIUnitGroupPrimitive is either a
165 * SIUnitWithPrefix or SIUnitWithoutPrefix
166 */
167 SIUnitGroupPrimitive =
168 SIUnitWithPrefix | SIUnitWithoutPrefix;
169

170

171

172 /** This Token is needed because the Name-Token
173 * does not cover greek Ohm ’Ω’ and greek mu µ’’.
174 * The Token contains at least one of those
175 * symbols.
176 */
177 token NonNameUnit =µ
178 ’’ UnitChar+ |
179 UnitChar* ’Ω’ |µ
180 ’’ ’Ω’ ;
181

182 fragment token UnitChar =
183 ’a’..’z’ | ’A’..’Z’ ;
184

185

186 // Defining semantic predicates
187 concept antlr {
188 parserjava {
189 public static final String prefix =
190 "(Y|Z|E|P|T|G|M|k|h|da|d|c|m|uµ||n|p|f|a|z|y)";
191 public static final String unitWithPrefix =
192 "(m|g|s|A|K|mol|cd|Hz|N|Pa|J|W|C|V|F|Ohm|Ω|S|Wb|T|H|lm|lx|Bq|Gy|Sv|kat|l|L)

";
193 public static final String unitWithoutPrefix =

246

B.7 SI Units

194 "(min|h|d|ha|t|au|Np|B|dB|eV|Da|u)";
195 public static final String units =
196 "(m|g|s|A|K|mol|cd|Hz|N|Pa|J|W|C|V|F|Ohm|Ω|S|Wb|T|H|lm|lx|Bq|Gy|Sv|kat|l|L|

min|h|d|ha|t|au|Np|B|dB|eV|Da|u)";
197

198 /* returns true iff the next token matches a
199 * SI unit (group) starting with a prefix
200 */
201 public boolean isSIUnitWithPrefix(int i) {
202 String regex = "(" + prefix + unitWithPrefix + units + "*" + ")|" + units +

"+";
203 return cmpTokenRegEx(i, regex);
204 }
205

206 /* returns true iff the next token matches a
207 * SI unit (group) starting without a prefix
208 */
209 public boolean isSIUnitWithoutPrefix(int i) {
210 return cmpTokenRegEx(i, units + "+");
211 }
212

213 /* returns true iff the next token matches a
214 * dimensionless SI unit
215 */
216 public boolean isDimensionless(int i) {
217 return cmpToken(i,"°","deg","rad","sr");
218 }
219

220 /* returns true iff the next token matches a
221 * ° C or °F
222 */
223 public boolean isCelsiusFahrenheit(int i) {
224 return cmpToken(1,"°") && cmpToken(2,"C","F") && noSpace(2);
225 }
226

227 /* returns true iff the next token matches a
228 * SI unit (group) starting with or without
229 * a prefix
230 */
231 public boolean isSIUnitGroupPrimitive(int i) {
232 return isSIUnitWithPrefix(i) || isSIUnitWithoutPrefix(i);
233 }
234

235 /* counts the tokens used for a UnitGroup with
236 * exponents, e.g. kV^2Ah
237 * returns -1, iff ht next tokens do not match
238 */
239 public int countSIUnitKindGroupWithExponent(int i) {
240 if (!isSIUnitGroupPrimitive(i))
241 return -1;
242

243 /* A SI unit group with exponents cannot
244 * be a simple primitive and must be
245 * followed by an exponent
246 */
247 if (!cmpToken(i + 1, "^") || !(
248 cmpTokenRegEx(i + 2, "\\d+") && noSpace(i + 1, i + 2) ||
249 cmpToken(i + 2, "-") && cmpTokenRegEx(i + 3, "\\d+") &&

247

Appendix B Selected Grammars from the MontiVerse

250 noSpace(i + 1, i + 2, i + 3)))
251 return -1;
252

253 boolean loop = true;
254 int counter = 0;
255 while (loop) {
256 // have seen a primitive
257 counter ++;
258

259 // exponent ^2
260 if (cmpToken(i + counter, "^")
261 && cmpTokenRegEx(i + counter + 1, "\\d+")
262 && noSpace(i + counter, i + counter + 1))
263 counter += 2;
264

265 // exponent ^-2
266 else if (cmpToken(i + counter, "^")
267 && cmpToken(i + counter + 1, "-")
268 && cmpTokenRegEx(i + counter + 2, "\\d+")
269 && noSpace(i + counter, i + counter + 1, i + counter + 2))
270 counter += 3;
271

272 /* break if there are spaces between the tokens
273 * or the next tokens do not match an exponent
274 */
275 else
276 loop = false;
277 /* break if the next token is not a SIUnitGroup
278 * or there are spaces between the tokens
279 */
280 if (!isSIUnitGroupPrimitive(i + counter) || !noSpace(i + counter))
281 loop = false; // break
282 }
283 return counter;
284 }
285

286 /* returns true iff the next tokens match a
287 * SI unit (group) with exponents
288 */
289 public boolean isSIUnitKindGroupWithExponent(int i) {
290 return countSIUnitKindGroupWithExponent(i) > 0;
291 }
292

293 /* counts the tokens used for a SI unit primitive
294 * returns -1, iff ht next tokens do not match
295 */
296 public int countPrimitive(int i) {
297 int j = countSIUnitKindGroupWithExponent(i);
298 if (j > 0) return j;
299 if (isSIUnitWithPrefix(i)) return 1;
300 if (isSIUnitWithoutPrefix(i)) return 1;
301 if (isDimensionless(i)) return 1;
302 if (isCelsiusFahrenheit(i)) return 2;
303 return -1;
304 }
305

306 /* returns true iff the next token(s) matches a
307 * SI unit primitive

248

B.7 SI Units

308 */
309 public boolean isPrimitive(int i) {
310 return countPrimitive(i) > 0;
311 }
312

313 /* returns true iff the next tokens match a
314 * SI unit Div
315 */
316 public boolean isSIDiv() {
317 int j = countPrimitive(1);
318 if (j > 0
319 && cmpToken(1 + j, "/")
320 && isPrimitive(2 + j)
321 && noSpace(1 + j, 2 + j))
322 return true;
323 return false;
324 }
325

326 /* returns true iff the next tokens match a
327 * 1 divided by a SI unit primitive
328 */
329 public boolean isSIOneDiv() {
330 return cmpToken(1, "1") && isPrimitive(3) && noSpace(2,3);
331 }
332 }
333 }
334

335 }

Listing B.10: SIUnits grammar. The SIUnits grammar provides the basis for using SI
units in literals and types.

MCG
1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore;
3

4 /* This is a MontiCore stable grammar.
5 * Adaptations -- if any -- are conservative. */
6

7 /**
8 * This grammar defines SI unit literals
9 * based on all the available SI units such as

10 * ’3 m’, ’2.5 km’, ’1 km^2’ or ’3.54l m*deg/(h^2*mg)’
11 *
12 * The definitions are fully compliant to the definitions given in
13 * International Bureau of Weights and Measures (20 May 2019),
14 * SI Brochure: The International System of Units (SI)(9th ed.)
15 *
16 * Caution:
17 * Java long and float unfortunately conflict with SI Units "F" and "L".
18 * We therefore decided:
19 * If the number is followed by L (or F respectively), the literal will
20 * be parsed as BasicLongLiteral "30L" or BasicFloatLiteral "30.2F"
21 * Only if a space is inbetween, it becomes a Liter Literal "30 L"
22 * or Farad Literal "30.2 F".
23 * Accordingly "30Lkg" is not parsable, but "30L kg" and "30 L*kg" are.
24 *

249

Appendix B Selected Grammars from the MontiVerse

25 * The grammar extends the MontiCore common literals, because it uses
26 * natural numbers e.g. as exponent.
27 */
28

29 component grammar SIUnitLiterals extends
30 de.monticore.SIUnits,
31 de.monticore.literals.MCCommonLiterals {
32

33 // The unsigned SI unit literals
34 SIUnitLiteral implements Literal <10> =
35 NumericLiteral SIUnit ;
36

37 // The signed SI unit literals
38 SignedSIUnitLiteral implements SignedLiteral <10> =
39 SignedNumericLiteral SIUnit ;
40

41 }

Listing B.11: SIUnitLiterals grammar. The SIUnitLiterals grammar defines how to use
SI units in literals.

MCG
1 /* (c) https://github.com/MontiCore/monticore */
2 package de.monticore;
3

4 /* This is a MontiCore stable grammar.
5 * Adaptations -- if any -- are conservative. */
6

7 /**
8 * This grammar declares SI unit also as generic types
9 * based on all the available SI unit definitions.

10 * The type parameter can be a numeric type, describing the
11 * range of possible values (such as int, long, float, double).
12 *
13 * The definitions of the SI Unit type themselves (without type parameter)
14 * are fully compliant to the definitions given in
15 * International Bureau of Weights and Measures (20 May 2019),
16 * SI Brochure: The International System of Units (SI)
17 * (9th ed.)
18 *
19 * With this definition an SI Unit such as "kg/m<float>"
20 * can also be used as type definition.
21 *
22 * An extension of the typecheck algorithms is available.
23 * The typecheck ensures correct typing of mathematical expressions.
24 *
25 * As a shortcut the type parameter may be omitted asumming double as
26 * default, i.e.
27 * "km" is identical to "km<double>"
28 * (quite like "List" is identical to "List<Object> in Java)"
29 */
30

31 component grammar SIUnitTypes4Computing extends
32 de.monticore.types.MCBasicTypes,
33 de.monticore.SIUnitTypes4Math {
34

35 interface SIUnitType4ComputingInt extends MCType =

250

B.7 SI Units

36 MCPrimitiveType SIUnit;
37

38 SIUnitType4Computing implements SIUnitType4ComputingInt =
39 SIUnit "<" MCPrimitiveType ">" ;
40 }

Listing B.12: SIUnitTypes4Computing grammar. The SIUnitTypes4Computing
grammar defines how to use SI units as types.

251

Appendix C

MontiThings Grammars

This section shows grammars of the MontiThings project. The grammars have been
developed over multiple years including many student theses (cf. Sec. 1.4). Due to the
student theses, they are not the sole work of the author of this thesis, even though
the author supervised the theses that influenced the grammars. The grammars are
also largely based on grammars of the MontiVerse (see Appendix B). Deprecated non-
terminals not discussed in this thesis are removed to save space.

C.1 Behavior

MCG
1 // (c) https://github.com/MontiCore/monticore
2

3 /**
4 * This grammar is supposed to extend the functionality for writing
5 * behavior for components directly into the MontiThings models
6 */
7 component grammar Behavior extends de.monticore.literals.MCCommonLiterals,
8 de.monticore.statements.MCCommonStatements,
9 de.monticore.SIUnitLiterals,

10 ArcBasis
11 {
12 /**
13 * ASTAfterStatement can be used to defer the execution
14 * of a MCJavaBlock by the specified amount of time.
15 * This is done asynchronously, i.e. statements after the
16 * statement will be executed without delay.
17 *
18 * @attribute SIUnitLiteral
19 * Amount of time by which the execution of the statements shall be

deferred
20 * @attribute MCJavaBlock
21 * Statements to be executed later
22 */
23 AfterStatement implements MCStatement =
24 "after" SIUnitLiteral MCJavaBlock;
25

26 /**

253

Appendix C MontiThings Grammars

27 * ASTEveryBlock contains statements that shall be executed
28 * periodically. The interval between two executions refers
29 * to the time since the last execution was started. For example,
30 * if the code should be executed "every 5s" and the computation
31 * takes 2 seconds, then the next computation will start 3 seconds
32 * after the last execution finished. If the execution takes longer
33 * than the interval between two execution a warning will be logged.
34 *
35 * @attribute Name
36 * Name of the block (can be used to start / stop execution)
37 * @attribute SIUnitLiteral
38 * Distance between two executions
39 * @attribute MCJavaBlock
40 * Statements to be executed periodically
41 */
42 symbol EveryBlock =
43 (Name ":")? "every" SIUnitLiteral MCJavaBlock;
44

45 /**
46 * ASTLogStatement can be used to log to the console.
47 * Similar to Bash, variables referenced in the StringLiteral
48 * prefixed with a dollar symbol (e.g. "$variable") will be
49 * replaced by their value.
50 *
51 * @attribute StringLiteral
52 * Text to print to the console
53 */
54 LogStatement implements MCStatement =
55 "log" StringLiteral ";" ;
56 nokeyword "log";
57

58 /**
59 * ASTAgoQualification can be used to access the values of
60 * variables and ports at an earlier point in time.
61 * Using "variable@ago(2s)" accesses the value of "variable"
62 * 2 seconds before the execution of the AgoQualification.
63 *
64 * @attribute Expression
65 * Variable or port to be accessed
66 * @attribute SIUnitLiteral
67 * Time at which value is accessed
68 */
69 AgoQualification implements Expression <400> =
70 Expression "@ago" "(" SIUnitLiteral ")";
71

72 /**
73 * ASTConnectStatement can be used to describe behavior which dynamically
74 * connects ports at runtime.
75 *
76 * @attribute Connector
77 * Connector which specifies which ports should be connected
78 */
79 ConnectStatement implements MCStatement =
80 Connector;
81

82 /**
83 * ASTDisconnectStatement can be used to describe behavior which dynamically
84 * removes connections of ports at runtime.

254

C.2 Error Handling

85 *
86 * @attribute Source
87 * Name of the source port which another port should be
88 * disconnected from
89 * @attribute Target
90 * Name of the port(s) which should be disconnected from the
91 * source port
92 */
93 DisconnectStatement implements MCStatement =
94 source:PortAccess "-/>" target:(PortAccess || ",")+ ";"
95 ;
96 }

Listing C.1: Behavior grammar. Behavior defines MontiThings’ extensions to
MCCommonStatements (Appendix B.3).

C.2 Error Handling

MCG
1 // (c) https://github.com/MontiCore/monticore
2

3 /**
4 * Pre- and Postconditions for components. Preconditions are evaluated before

executing the behavior
5 * of a component. Postconditions are evaluated after executing the behavior of a

component.
6 */
7 component grammar PrePostCondition extends ConditionBasis,
8 de.monticore.expressions.

ExpressionsBasis
9 {

10

11 /**
12 * Preconditions are evaluated before executing the behavior
13 * of a component. If a precondition is not fulfilled, the
14 * component throws an error. Preconditions may not access
15 * the output ports of a component (as they only hold a valid
16 * value after the behavior is executed).
17 */
18 Precondition implements Condition =
19 "pre" guard:Expression ";"
20 ;
21

22 /**
23 * Preconditions are evaluated before executing the behavior
24 * of a component. If a precondition is not fulfilled, the
25 * component throws an error.
26 */
27 Postcondition implements Condition =
28 "post" guard:Expression ";"
29 ;
30 }

255

Appendix C MontiThings Grammars

Listing C.2: PrePostCondition grammar. PrePostCondition defines pre- and
postconditions.

MCG
1 // (c) https://github.com/MontiCore/monticore
2

3 /**
4 * Catches violated conditions
5 */
6 component grammar ConditionCatch extends ConditionBasis,
7 de.monticore.statements.MCCommonStatements
8 {
9

10 /**
11 * Defines a catch statement describing how to handle a violated assumption.
12 * If the condition is violated, the handler is executed.
13 */
14 ConditionCatch =
15 Condition // the catch statement must directly follow a condition
16 "catch" handler:MCJavaBlock
17 ;
18

19 }

Listing C.3: ConditionCatch grammar. ConditionCatch defines how to handle violated
pre- and postconditions.

C.3 Set Definitions

MCG
1 // (c) https://github.com/MontiCore/monticore
2

3 /**
4 * This grammar can be used to define sets of values using, e.g., single values,
5 * ranges of values, or regular expressions.
6 */
7 component grammar SetDefinitions extends de.monticore.literals.MCCommonLiterals,
8 de.monticore.ocl.SetExpressions
9 {

10 // range of allowed values (optionally with stepsize)
11 @Override
12 SetValueRange implements SetCollectionItem =
13 lowerBound:Expression
14 (".." stepsize:Expression)?
15 ".." upperBound:Expression
16 ;
17

18 // RegEx to which value has to conform
19 SetValueRegEx implements SetCollectionItem =
20 "format" ":" format:StringLiteral
21 ;

256

C.4 MontiThings Main Grammar

22 }

Listing C.4: SetDefinitions grammar. SetDefinitions extends the set definitions from the
OCL project (Appendix B.6) with sets containing string that conform to a
regular expression.

C.4 MontiThings Main Grammar

MCG
1 // (c) https://github.com/MontiCore/monticore
2

3 import de.monticore.ocl.*;
4 import de.monticore.*;
5

6 grammar MontiThings extends MontiArc,
7 ClockControl,
8 PortExtensions,
9 ConditionBasis,

10 PrePostCondition,
11 ConditionCatch,
12 SetDefinitions,
13 Behavior,
14 OCLExpressions,
15 OptionalOperators,
16 SIUnitTypes4Computing,
17 SIUnitLiterals
18 {
19 start MACompilationUnit;
20

21 /**
22 * Component Types. Matches MontiArc’s component types but additionally
23 * allows a "component modifier", i.e. an additional keyword.
24 *
25 * @attribute name The type name of this component.
26 * @attribute head Defines configuration options and extensions of this

component.
27 * @attribute componentInstances List of identifiers used to create instances
28 * of this component type.
29 * Only available for inner components.
30 * @attribute body Contains the architectural elements of this component.
31

32 */
33 MTComponentType extends ComponentType =
34 MTComponentModifier Name
35 head:ComponentHead
36 MTImplements?
37 (ComponentInstance || ",")*
38 body:ComponentBody
39 ;
40

41 /**
42 * An additional keyword for components.
43 * Interface keyword marks interface components, i.e. components without

257

Appendix C MontiThings Grammars

44 * behavior.
45 * See [Wor16 Sec. 4.1.1]
46 */
47 MTComponentModifier = ["interface"]? "component";
48

49 /**
50 * An additional keyword for components, which marks a component as
51 * implementing an interface component.
52 */
53 MTImplements = "implements" (Name@ComponentType || ",")+;
54

55 /* == */
56 /* ================== ArcElement Insertions =================== */
57 /* == */
58

59 MTCondition implements ArcElement = Condition;
60 MTCatch implements ArcElement = ConditionCatch;
61

62 /**
63 * Store and restore component states in case of failure
64 * Priority higher than 100 to prevent MontiCore from trying to
65 * interpret "retain" as a component type’s name.
66 */
67 MTRetainState implements ArcElement <110> = key("retain") key("state") ";";
68

69

70 /* == */
71 /* ========================= Behavior ========================= */
72 /* == */
73

74 interface MTBehavior extends ArcBehaviorElement =
75 (Name@Port || ",")* MCJavaBlock;
76

77 /**
78 * Behavior of components get executed whenever all ports listed in front
79 * of the MCJavaBlock have a new message available. If no ports are listed
80 * the behavior is executed whenever any port has a new message available.
81 */
82 Behavior implements MTBehavior =
83 "behavior" (Name@Port || ",")* MCJavaBlock;
84

85 /**
86 * InitBehavior of components get executed once all ports listed in front
87 * of the MCJavaBlock have a new message available for the first time.
88 * During this first cycle, normal behavior gets skipped and resumes
89 * normally after.
90 */
91 InitBehavior implements MTBehavior =
92 key("init") (Name@Port || ",")* MCJavaBlock;
93

94 /**
95 * Behavior that gets executed in regular time intervals independent of the
96 * availability of new messages.
97 */
98 MTEveryBlock implements ArcBehaviorElement = EveryBlock;
99

100 // In contrast to MontiArc, we use the "statechart" keyword from the
101 // statechart language instead of "automaton"

258

C.5 Configuration

102 @Override
103 ArcStatechart implements ArcBehaviorElement =
104 "statechart" "{"
105 SCStatechartElement*
106 "}";
107 }

Listing C.5: MontiThings grammar. This is the main grammar of MontiThings that
defines component definitions.

C.5 Configuration

MCG
1 // (c) https://github.com/MontiCore/monticore
2

3 /**
4 * MTConfig provides additional properties for MontiThings language elements.
5 */
6 grammar MTConfig extends MontiThings {
7

8 start MTConfigUnit;
9

10 /**
11 * MTConfigUnit represents the complete properties for MontiThings
12 * configuration.
13 *
14 * @attribute package The package declaration of the elements.
15 * @attribute Element List of elements.
16 */
17 scope MTConfigUnit = ("package" package:MCQualifiedName ";")? Element+;
18

19 /**
20 * Element is an extension point that is used for the top-level elements in
21 * the MTConfig.
22 */
23 interface Element;
24

25 /**
26 * MTCFGTag is an extension point that is used for tags that refer to a
27 * specific component and platform combination
28 */
29 interface MTCFGTag;
30

31 /**
32 * CompConfig represents the configuration of a
33 * MontiThings Component for a specific platform.
34 *
35 * @attribute Name Name of the MontiThings component.
36 * @attribute platform Deployment platform. E.g. GENERIC, Windows, Arduino etc.
37 */
38 scope symbol CompConfig implements Element =
39 "config" componentType:Name "for" platform:Name
40 "{"
41 MTCFGTag*

259

Appendix C MontiThings Grammars

42 "}";
43

44 interface SinglePortTag;
45

46 /**
47 * PortTemplateTag specifies the templates that are used for processing of the
48 * specified port.
49 *
50 * @attribute Name Name of the MontiThings port.
51 */
52 scope symbol PortTemplateTag implements MTCFGTag =
53 port:Name "{"
54 SinglePortTag+
55 "}";
56

57 /**
58 * Hookpoint specifies the template and the arguments that should be supplied
59 * to the template.
60 *
61 * @attribute Name Identification of the Hookpoint.
62 * @attribute template Unqualified name of the template.
63 * @attribute Arguments Attributes required by the template.
64 */
65 symbol Hookpoint implements SinglePortTag =
66 Name "=" template:String Arguments? ";";
67

68 /**
69 * Specifies how often a port should be read out. This is important for
70 * analog inputs that do not have explicit messages.
71 */
72 EveryTag implements SinglePortTag = "every" SIUnitLiteral ";";
73

74 /**
75 * RequirementStatement contain information about what physical requirements
76 * a component has. E.g Sensors/Actuators etc.
77 */
78 scope RequirementStatement implements MTCFGTag =
79 "requires" (propertiess:Property | "{" propertiess:Property+ "}");
80

81 /**
82 * A specific property a device needs to fulfill to execute a component.
83 * Properties have a name and a content. The content can either be a
84 * String or a number.
85 *
86 * @attribute Name Identifier of the property (e.g. "sensor")
87 * @attribute stringValue Content of the property (e.g. "DHT22")
88 * @attribute numericValue Content of the property
89 */
90 symbol Property = Name& ":"
91 (
92 stringValue:StringLiteral | numericValue:SignedNumericLiteral
93)
94 ";";
95

96 /**
97 * A SeparationHint gives instructions about how the component should
98 * be split up if splitting is enabled.
99 * "none" means that the component and its subcomponents should not be

260

C.5 Configuration

100 * splitted. This can be useful to prevent creating container images with
101 * almost no functionality (e.g. a component that adds two numbers).
102 */
103 SeparationHint implements MTCFGTag = "separate" "none" ";";
104 }

Listing C.6: MTConfig grammar. This grammar defines MontiThings’ configuration
language (Sec. 4.3.2).

261

Appendix D

Open Source Software Used In RTE

MontiThings also utilizes various (sometimes slightly adapted) open-source projects in
its RTE:

SPSCQueue 1 provides a single producer, single consumer queue. MontiThings’ Ports
use them to buffer messages.

Sole 2 is used to generate unique identifiers. MontiThings uses UUID version 4.

TCLAP 3 parses command line arguments of the binaries created from the generated
code.

nlohmann/json 4 offers a fast JSON parser. MontiThings uses it for storing, e.g., for
parsing configuration files.

Easylogging++ 5 provides a logging library that, unlike std::cout, can be filtered,
includes timestamps and has different levels of logging.

Optional 6 offers optionals called tl::optional, because C++’s std::optional is
only available since C++17 and MontiThings is C++11 compatible (TA4).

Cereal 7 (de)serializes C++ objects into JSON format. Adapted to also support
tl::optional values. Classes generated from MontiThings’ class diagram code
generator also include the necessary code to be compatible with Cereal.

1SPSCQueue GitHub Project. [Online]. Available: https://github.com/rigtorp/SPSCQueue.
Last accessed: 11.11.2021

2Sole GitHub Project. [Online]. Available: https://github.com/r-lyeh-archived/sole. Last
accessed: 11.11.2021

3TCLAP SourceForge Project. [Online]. Available: https://sourceforge.net/projects/
tclap/. Last accessed: 11.11.2021

4nlohmann JSON GitHub Project. [Online]. Available: https://github.com/nlohmann/json.
Last accessed: 11.11.2021

5Easylogging++ GitHub Project. [Online]. Available: https://github.com/amrayn/
easyloggingpp. Last accessed: 11.11.2021

6Optional GitHub Project. [Online]. Available: https://github.com/TartanLlama/optional.
Last accessed: 11.11.2021

7Cereal GitHub Project. [Online]. Available: https://github.com/USCiLab/cereal. Last ac-
cessed: 11.11.2021

263

https://github.com/rigtorp/SPSCQueue
https://github.com/r-lyeh-archived/sole
https://sourceforge.net/projects/tclap/
https://sourceforge.net/projects/tclap/
https://github.com/nlohmann/json
https://github.com/amrayn/easyloggingpp
https://github.com/amrayn/easyloggingpp
https://github.com/TartanLlama/optional
https://github.com/USCiLab/cereal

Appendix D Open Source Software Used In RTE

NNG 8 provides websocket and inter-process communication. For example, the WSPort
is implemented using NNG.

Mosquitto 9 provides a client library for communicating with MQTT brokers.

OpenDDS 10 provides communication using the OMG’s DDS standard [Obj15].

8NNG GitHub Project. [Online]. Available: https://github.com/nanomsg/nng. Last accessed:
11.11.2021

9Mosquitto Project. [Online]. Available: https://mosquitto.org/. Last accessed: 14.11.2021
10OpenDDS Project. [Online]. Available: https://opendds.org/. Last accessed: 14.11.2021

264

https://github.com/nanomsg/nng
https://mosquitto.org/
https://opendds.org/

Appendix E

Models of the HVAC Case Study

Disclosure of prior publication: The models in this section were developed and taken
from [KMR21, Mal21, KRSW22].

This appendix shows the composed components and data types of the HVAC case
study. Components not shown in this appendix are atomic components. The behavior
of the atomic components only consists of logging and if-statements for choosing the
next message to send.

Thermostat

User

Interface

MontiThings

display

button

Time-based

Mode

Selector

temperature

Temperature Mode

SelectorautoMode

Temperature Selector

desired

Temperature

mode

ecoTemperature

comfortTemperature

user

Selected

Mode

calendar

Figure E.1: Thermostat component of the HVAC application. Figure adapted
from [KRSW22].

265

Appendix E Models of the HVAC Case Study

HVAC

Thermostat

display

button

temperature

VoiceCtrl

SmartHome

Controller

Window

Heater
radiator

temperature

Air

Conditioner

voiceInput

temperature airQualityLevel

MontiThings

desired

Temp

cmd

desired

Temp

cmd

statecmd

weather

Forecast

opening

State

opening

State

Figure E.2: Outermost component of the HVAC application. Figure taken
from [KMR21].

AirConditioner

Window

Controller

AirQuality

Assessment

MontiThings

air

Quality

Level

temperature

window

State

desiredTemp

Figure E.3: AirConditioner component of the HVAC application. Figure adapted
from [KRSW22].

266

Heater

Evaluator

Polling

Controller

MontiThings

temperature

radiator

desired

Temperature

Figure E.4: Heater component of the HVAC application. Figure adapted from [Mal21].

CalendarEntry

DayOfWeek dow

Mode mode

Calendar

Time

int hours

int minutes

1

1

1

*

«enum»

DayOfWeek

MON,

TUE,

WED,

THU,

FRI,

SAT,

SUN

«enum»

Mode

AUTO,

COMFORT,

ECO

«enum»

Button

BTN_SET_ECO_TMP,

BTN_SET_COMF_TMP,

BTN_ENABLE_ECO,

BTN_ENABLE_COMF

«enum»

WeatherState

UNKNOWNCONDITION,

SUNNY,

CLOUDY,

RAINY,

STORMY

«enum»

OpeningState

UNKNOWN,

CLOSED,

OPEN,

HALFOPEN

«enum»

AirQuality

BAD,

GOOD

CD

Figure E.5: Additional types used by the HVAC case study defined in class diagrams.
As many class diagrams only define single enums, the class diagrams were
merged for this figure.

267

Appendix F

Diagram and Listing Tags

Tag Description

AD Activity Diagram

Adapter CD4A Adapter

C++ C++ Source Code

CD Class Diagram

CD4A Class Diagram for Analysis Diagram

CD4Code Class Diagram for Code

CpD Component Diagram

FD Feature Diagram

Java Java Source Code

MCG MontiCore Grammar

MCL MontiCore Languages

OD Object Diagram

SC Statechart Diagram

SD Sequence Diagram

Tagging Model Tagging Model (for Digital Twins)

Shell Shell command

Table F.1: Explanation of the used tags in listings and figures.

269

Appendix F Diagram and Listing Tags

Stereotype Description

«concept» Conceptual model. Elements do not directly show implementa-
tion.

«enum» Enumeration.

«EXT» External elements

«extends» Inheritance relationship.

«GEN» Generated elements

«HWC» Handcoded elements

«interface» Interface component or class.

«pseudo» Pseudocode.

«real system» Model refers to what is executed by IoT devices at runtime.

«reproduction» Model refers to what is executed by developers to reproduce the
real system’s behavior.

«RTE» Run-time Environment elements

Table F.2: Explanation of the used stereotypes in listings and tags.

270

List of Definitions

1 Definition ((IoT) Developer) . 16
2 Definition (Device Owner) . 16
3 Definition (User) . 16
4 Definition (Digital Twin) . 18
5 Definition (Software Architecture) . 23
6 Definition (Component) . 23
7 Definition (Microservice) . 24
8 Definition (Container) . 25
9 Definition (Container Image) . 25
10 Definition (Stream) . 27

11 Definition (Interface Component) . 55
12 Definition (Subcomponent) . 56
13 Definition (Enclosing Component) . 56

14 Definition (Technical Requirement) . 114
15 Definition (Local Requirement) . 115

16 Definition ((Non-)Equal Replay) . 179

271

List of Figures

2.1 Common architecture of IoT applications as identified by [TM17a] (sim-
plified and redrawn from [TM17a]). 18

2.2 Architecture of (code) generators developed using MontiCore (adapted
from [HR17, HKR21]). 21

2.3 An example for MontiArc’s graphical syntax (taken from [KMR+20b]). . . 26

3.1 Lifecycle of model-driven IoT systems. 33
3.2 High-level overview of MontiThings’ code generation. Figure conceptually

based on [HR17, HKR21]. 43
3.3 High-level overview of iterative development cycle using MontiThings. . . 44
3.4 A smart home at different points of its lifetime. Some devices fail and

new devices get added to the system. Figure taken from [KKR+22a]. . . . 47

4.1 A teaser of the graphical and textual syntax of MontiThings. The
constructs in this figure are explained throughout this chapter. Figure
adapted from [KKR+22a]. 52

4.2 Overview of MontiThings’ relation to languages of the MontiVerse. Figure
taken from [KKM+22]. 53

4.3 MontiThings’ system boundary is at the hardware access. External ser-
vices can be used to access sensors, actuators, and other hardware via
ports. 66

4.4 Conceptual overview of MontiThings’ dynamics. The environment in-
forms the deployment manager about hardware changes. As a result, the
dynamics manager may choose to instantiate components. Their interface
is given to the outermost component of the application modeled by the
developers. Figure adapted from [KKR+22a]. 68

4.5 Example for using dynamic reconfiguration: A smart speaker gets
connected to a microphone at runtime. Figure conceptually based
on [KKR+22a]. 70

4.6 Adapters can specify that class diagram types shall be converted to a type
of a target language to facilitate the integration with hand-written code.
Figure taken from [KRSW22]. 72

4.7 Sequence diagram specifying a white box test of a fire detector. The
graphical syntax of placing ports below components is taken from [HNPR13]. 77

273

List of Figures

5.1 Methodology of developing IoT applications using MontiThings. Figure
taken from [KRSW22]. 86

5.2 Overview of MontiThings’ RTE. Figure is an extended version of the
overview from [KRSW22]. 88

5.3 InOutPorts forward messages and can translate between different com-
munication technologies. In this case a message is received via Bluetooth
and forwarded via MQTT. MultiPorts defer the decision which com-
munication technology to use to runtime by providing multiple alternative
implementations for the same port. The BluetoothPort is only shown
for better understanding and not part of the RTE. 91

5.4 Example for the object structure created when connecting ports. 92

5.5 Communication with independently executed external ports uses local
message broker (cf. Fig. 4.3). The hardware access manager connects the
architecture to external ports. Figure taken from [BKK+22]. 94

5.6 Overview of the C++ code MontiThings generates from architecture mod-
els. Figure is an extended version from [KRSW22]. 95

5.7 Partitioning an architecture into different container images and setting up
the component instances started from these container images. 99

6.1 High-level overview of MontiThings’ deployment process. Figure taken
from [KRSW22]. 110

6.2 Workflow for the development of integrated IoT systems and information
systems. Both the IoT system and the DTIS are developed using model-
driven development. Figure adapted from [KMR+20b]. 111

6.3 Workflow of developing and deploying software for IoT applications. Fig-
ure taken from [KKR+22a]. 114

6.4 Overview of the components of the deployment system. Figure taken
from [KKR+22a]. 117

6.5 Interaction between the target providers and deployment clients. Figure
taken from [KKR+22a]. 118

6.6 Workflow how the deployment manager utilizes Prolog and Docker
Compose for deploying software to an IoT device. Figure adapted
from [KRSW22]. 121

6.7 Activity diagram of how the generated Prolog code calculates which
to which devices a component shall be deployed. Figure taken
from [KKR+22a]. 122

274

List of Figures

6.8 Example of IoT app store-based specification of technical requirements.
The app store provides a hardware ontology as class diagram. Device
developers associate each IoT with an object diagram that specifies its
hardware. IoT application developers define the components’ require-
ments using OCL. Prolog code generated from the object diagrams and
OCL expressions checks whether a device can execute a component. Fig-
ure adapted from [BKK+22]. 123

6.9 A fire extinguisher application for a smart home. IoT developers tag fea-
tures with the component instances that implement them. Tagging is
shown using the dashed arrows. Device owners can choose a feature con-
figuration without knowing which components are required to implement
the feature. Figure taken from [BKK+22]. 126

6.10 Models of a fire extinguishing application. The information system and
the IoT system can be connected by connecting attributes of the class
diagram to ports within the architecture. Figure taken from [KMR+20b]. 127

6.11 Overview of the app store concept. Application development and device
development are decoupled from each other. By specifying a hardware
ontology, the app store ensures compatibility between software and hard-
ware. Figure taken from [BKK+22]. 128

6.12 Example of the tagging language that connects the class diagram and the
MontiThings model from Fig. 6.10. Figure taken from [KMR+20b]. 131

6.13 Model-to-model transformations for keeping adding synchronization el-
ements to MontiThings models. Elements created by model-to-model
transformations are shown in bold. Figure adapted from [KMR+20b]. . . 133

6.14 Generic components for exchanging data with the information system.
Generated elements are shown in bold. Figure adapted from [KMR+20b]. 134

6.15 Extension of the information system’s class diagrams to synchronize with
the IoT system. Elements created by model-to-model trans- formations
are shown in bold. Figure taken from [KMR+20b]. 135

6.16 Process of retrieving an object from the information system’s database
in response to receiving a message from the IoT system. Figure taken
from [KMR+20b]. 136

7.1 Motivating example for MontiThings’ error analysis. Figure taken
from [KMR21]. 146

7.2 Overview of MontiThings’ transformation-based replay. Figure taken
from [KMR21]. 147

7.3 MontiThings’ failure recovery process. If a component fails, the system
replays messages received by the failed component to restore the state of
the failed component. Figure taken from [KRSW22]. 150

275

List of Figures

7.4 Concept of bundling logs for tracing. Figure taken from [KMM+22] and
based on [Mal21]. 152

7.5 GUI of the web-based log tracing tool. Figure taken from [Mal21]. 153

7.6 Handling non-determinism using the nd function. The results of non-
deterministic function calls are stored while recording the system’s execu-
tions. If the system is replayed the actual results of the function call get
replaced by the recorded results. Figure taken from [KMR21]. 155

7.7 Model-to-model transformations for transforming the original models into
the reproduction model. Figure taken from [KMR21]. 156

7.8 Relation between the IoT system and the digital twin used for the replay.
Figure taken from [KMR21]. 159

8.1 MontiThings architecture of the Smart Home / Hotel application. Figure
taken from [KKR+22a]. 168

8.2 Screenshot of the deployment web application for entering location re-
quirements. Labels in the screenshot were translated from the original
German web application to English. Unnecessary website elements were
removed to save space. Figure taken from [KKR+22a]. 170

8.3 Screenshot of the deployment web application suggesting to buy a new
device with a sensorRFID and actuatorLock capability and placing
it in the living room. Labels in the screenshot were translated from the
original German web application to English. Figure taken from [KKR+22a].171

8.4 Result of applying the model-to-model transformations to the IoT and in-
formation system. Elements created by model-to-model trans- formations
are shown in bold. Figure adapted from [KMR+20b]. 174

8.5 Electronic setup of the Raspberry Pis. Each of the GPIO extension boards
is connected to a Raspberry Pi 4 Model B. Figure taken from [Für20]. . . 175

8.6 Outermost component of the HVAC application. Figure taken
from [KMR21]. 177

8.7 Concept of running MontiThings in a simulation. A scenario describes
how the sensors are supposed to behave. A simulation runner forwards this
information to the application via shared files. Figure taken from [Mal21]. 178

8.8 Visualization of the accuracy of the replay. Each event is represented by
a circle on the timeline. The events of the original execution are con-
nected to their replayed version in the reproduction. The more accurate
the temporal reproduction, the less skewed the lines. If there is no corre-
sponding event in the reproduction, the circle has a red fill. Figure taken
from [KMR21]. 179

8.9 Performance results of of executing the recorder. Figure taken
from [KMR21]. 181

276

List of Figures

8.10 Performance results of executing an IoT application with and without log
tracing. Figure taken from. Figure taken from [KMM+22]. 183

8.11 Map of the Fischertechnik setup. This figure was created by the lab’s
students. Thin black lines represent the road the robots drive on. Blue
circles are intersections, red squares are idle positions of the robots. Thick
red lines next to the road represent Fischertechnik machines. 187

9.1 High-level overview of the MontiThings ecosystem. Figure adapted
from [KRSW22]. 192

E.1 Thermostat component of the HVAC application. Figure adapted
from [KRSW22]. 265

E.2 Outermost component of the HVAC application. Figure taken
from [KMR21]. 266

E.3 AirConditioner component of the HVAC application. Figure adapted
from [KRSW22]. 266

E.4 Heater component of the HVAC application. Figure adapted from [Mal21].267
E.5 Additional types used by the HVAC case study defined in class diagrams.

As many class diagrams only define single enums, the class diagrams were
merged for this figure. 267

277

Listings

2.1 A guitar tab specifying how to play music on a guitar. 20

2.2 A non-terminal defining an If-Then-Else statement (taken from Monti-
Core’s MCCommonStatements). 21

2.3 Excerpt of the textual representation of the MontiArc architecture
in Fig. 2.3. 27

4.1 Definition of a component type Sink with a single incoming port of type
int named value. 54

4.2 Definition of a component type Source with a parameter of type int
named startValue, a single outgoing port of type int named value,
and a state variable of type int named lastValue. 54

4.3 Definition of an interface component type MathOperation. Interface
components have no behavior. 55

4.4 Definition of a generic component type Calc. The argument passed to
the type parameter T must conform to the interface of MathOperation. 55

4.5 Definition of a composed component type Example. 56

4.6 Definition of a component type Source that uses SI units. 57

4.7 Definition of a component type LowPassFilter that replaces messages
higher than a threshold with a default value. 59

4.8 Definition of a component Source with a periodic behavior. 60

4.9 A component that sends messages to itself in an endless loop. 61

4.10 A component for a smart light bulb that turns on or off based on voice
commands from the user. 62

4.11 A component that calculates a running sum and for monotonically in-
creasing values. 63

4.12 A component that takes an integer and only forwards it if it is a prime
number. 64

4.13 Configuration file for a scale component. Two weight sensors provide
values via Freemarker templates on the weightLeft and weightRight
ports. An OLED display receives messages via an MQTT topic. 75

4.14 Textual representation of the test specification from Fig. 4.7. 78

B.1 ArcBasis grammar. ArcBasis is the basis grammar of MontiArc. 217

279

Listings

B.2 CDBasis grammar. CDBasis is the basis grammar of class diagram gram-
mars. 221

B.3 CDInterfaceAndEnum grammar. CDInterfaceAndEnum extends CDBa-
sis with interfaces and enums. 223

B.4 CDAssociation grammar. CDAssociation defines associations in class di-
agrams. 224

B.5 CD4Analysis grammar. CD4Analysis combines CDBasis, CDInterface-
AndEnum, and CDAssociation to define full class diagrams. 226

B.6 MCCommonStatements grammar. MCCommonStatements is the basis
MontiThings’ Java-like behavior descriptions. 227

B.7 MCCommonLiterals grammar. MCCommonLiterals provides the basis of
MontiThings’ literals. 229

B.8 OCLExpressions grammar. OCLExpressions are imported by MontiThings.235
B.9 SetExpressions grammar. SetExpressions are imported by MontiThings. . 240
B.10 SIUnits grammar. The SIUnits grammar provides the basis for using SI

units in literals and types. 243
B.11 SIUnitLiterals grammar. The SIUnitLiterals grammar defines how to use

SI units in literals. 249
B.12 SIUnitTypes4Computing grammar. The SIUnitTypes4Computing gram-

mar defines how to use SI units as types. 250

C.1 Behavior grammar. Behavior defines MontiThings’ extensions to MC-
CommonStatements (Appendix B.3). 253

C.2 PrePostCondition grammar. PrePostCondition defines pre- and postcon-
ditions. 255

C.3 ConditionCatch grammar. ConditionCatch defines how to handle violated
pre- and postconditions. 256

C.4 SetDefinitions grammar. SetDefinitions extends the set definitions from
the OCL project (Appendix B.6) with sets containing string that conform
to a regular expression. 256

C.5 MontiThings grammar. This is the main grammar of MontiThings that
defines component definitions. 257

C.6 MTConfig grammar. This grammar defines MontiThings’ configuration
language (Sec. 4.3.2). 259

280

List of Tables

4.1 Primitive data types of MontiThings. 57
4.2 Overview of related IoT modeling methods. = fulfilled, G# = partly

fulfilled, # = not fulfilled. 83

6.1 Overview of related IoT modeling and deployment approaches. = ful-
filled, G# = partly fulfilled, # = not fulfilled. Table and annotations largely
taken from [KKR+22a]. 139

8.1 Overview of the devices used in the case study. All devices are Raspberry
Pi 4 Model B. 169

8.2 Influence of DSs on the accuracy of the order of messages and timing.
Table taken from [KMR21]. 180

F.1 Explanation of the used tags in listings and figures. 269
F.2 Explanation of the used stereotypes in listings and tags. 270

281

Related Interesting Work from the SE Group, RWTH Aachen

Related Interesting Work from the SE Group, RWTH Aachen

The following section gives an overview of related work done at the SE Group, RWTH Aachen.
More details can be found on the website www.se-rwth.de/topics/ or in [HMR+19]. The
work presented here mainly has been guided by our mission statement:

Our mission is to define, improve, and industrially apply techniques, concepts, and methods
for innovative and efficient development of software and software-intensive systems, such that
high-quality products can be developed in a shorter period of time and with flexible integration
of changing requirements. Furthermore, we demonstrate the applicability of our results in various
domains and potentially refine these results in a domain specific form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04c]: “Using an
executable, yet abstract and multi-view modeling language for modeling, designing and pro-
gramming still allows to use an agile development process.”, [JWCR18] addresses the question of
how digital and organizational techniques help to cope with the physical distance of developers
and [RRSW17] addresses how to teach agile modeling.

Modeling will increasingly be used in development projects if the benefits become evident
early, e.g with executable UML [Rum02] and tests [Rum03]. In [GKR+06], for example, we
concentrate on the integration of models and ordinary programming code. In [Rum11, Rum12]
and [Rum16, Rum17], the UML/P, a variant of the UML especially designed for programming,
refactoring, and evolution is defined.

The language workbench MontiCore [GKR+06, GKR+08, HKR21] is used to realize the UM-
L/P [Sch12]. Links to further research, e.g., include a general discussion of how to manage and
evolve models [LRSS10], a precise definition for model composition as well as model languages
[HKR+09], and refactoring in various modeling and programming languages [PR03]. To better
understand the effect of an agile evolving design, we discuss the need for semantic differencing
in [MRR10].

In [FHR08] we describe a set of general requirements for model quality. Finally, [KRV06]
discusses the additional roles and activities necessary in a DSL-based software development
project. In [CEG+14] we discuss how to improve the reliability of adaptivity through models
at runtime, which will allow developers to delay design decisions to runtime adaptation. In
[KMA+16] we have also introduced a classification of ways to reuse modeled software components.

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time consuming
process. Managing the complexity, the size, and the number of artifacts developed and used
during a project together with their complex relationships is not trivial [BGRW17].

To keep track of relevant structures, artifacts, and their relations in order to be able, e.g., to
evolve or adapt models and their implementing code, the artifact model [GHR17, Gre19] was

283

Related Interesting Work from the SE Group, RWTH Aachen

introduced. [BGRW18] and [HJK+21] explain its applicability in systems engineering based on
MDSE projects and [BHR+18] applies a variant of the artifact model to evolutionary develop-
ment, especially for CPS.

An artifact model is a meta-data structure that explains which kinds of artifacts, namely code
files, models, requirements files, etc. exist and how these artifacts are related to each other.
The artifact model, therefore, covers the wide range of human activities during the development
down to fully automated, repeatable build scripts. The artifact model can be used to optimize
parallelization during the development and building, but also to identify deviations of the real
architecture and dependencies from the desired, idealistic architecture, for cost estimations, for
requirements and bug tracing, etc. Results can be measured using metrics or visualized as graphs.

Artificial Intelligence in Software Engineering

MontiAnna is a family of explicit domain specific languages for the concise description of the
architecture of (1) a neural network, (2) its training, and (3) the training data [KNP+19].
We have developed a compositional technique to integrate neural networks into larger software
architectures [KRRW17] as standardized machine learning components [KPRS19]. This enables
the compiler to support the systems engineer by automating the lifecycle of such components
including multiple learning approaches such as supervised learning, reinforcement learning, or
generative adversarial networks.

For analysis of MLOps in an agile development, a software 2.0 artifact model distinguishing
different kinds of artifacts is given in [AKK+21].

According to [MRR11g] the semantic difference between two models are the elements contained
in the semantics of the one model that are not elements in the semantics of the other model.
A smart semantic differencing operator is an automatic procedure for computing diff witnesses
for two given models. Such operators have been defined for Activity Diagrams [MRR11d], Class
Diagrams [MRR11b], Feature Models [DKMR19], Statecharts [DEKR19], and Message-Driven
Component and Connector Architectures [BKRW17, BKRW19]. We also developed a modeling
language-independent method for determining syntactic changes that are responsible for the
existence of semantic differences [KR18a].

We apply logic, knowledge representation, and intelligent reasoning to software engineering
to perform correctness proofs, execute symbolic tests, or find counterexamples using a theorem
prover. We have defined a core theory in [BKR+20], which is based on the core concepts of Broy’s
Focus theory [RR11, BR07], and applied it to challenges in intelligent flight control systems and
assistance systems for air or road traffic management [KRRS19, KMP+21, HRR12].

Intelligent testing strategies have been applied to automotive software engineering [EJK+19,
DGH+19, KMS+18], or more generally in systems engineering [DGH+18]. These methods are
realized for a variant of SysML Activity Diagrams (ADs) and Statecharts.

Machine Learning has been applied to the massive amount of observable data in energy man-
agement for buildings [FLP+11, KLPR12] and city quarters [GLPR15] to optimize operational
efficiency and prevent unneeded CO2 emissions or reduce costs. This creates a structural and
behavioral system theoretical view on cyber-physical systems understandable as essential parts
of digital twins [RW18, BDH+20].

284

Related Interesting Work from the SE Group, RWTH Aachen

Generative Software Engineering

The UML/P language family [Rum12, Rum11, Rum16] is a simplified and semantically sound
derivate of the UML designed for product and test code generation. [Sch12] describes a flexible
generator for the UML/P, [Hab16] for MontiArc is used in domains such as cars or robotics
[HRR12], and [AMN+20a] for enterprise information systems based on the MontiCore language
workbench [KRV10, GKR+06, GKR+08, HKR21].

In [KRV06], we discuss additional roles necessary in a model-based software development
project. [GKR+06, GHK+15, GHK+15a] discuss mechanisms to keep generated and handwrit-
ten code separated. In [Wei12, HRW15, Hoe18], we demonstrate how to systematically derive a
transformation language in concrete syntax and, e.g., in [HHR+15, AHRW17] we have applied
this technique successfully for several UML sub-languages and DSLs.

[HNRW16] presents how to generate extensible and statically type-safe visitors. In [NRR16],
we propose the use of symbols for ensuring the validity of generated source code. [GMR+16]
discusses product lines of template-based code generators. We also developed an approach for
engineering reusable language components [HLN+15, HLN+15a].

To understand the implications of executability for UML, we discuss the needs and the ad-
vantages of executable modeling with UML in agile projects in [Rum04c], how to apply UML for
testing in [Rum03], and the advantages and perils of using modeling languages for programming
in [Rum02].

Unified Modeling Language (UML) & the UML-P Tool

Starting with the early identification of challenges for the standardization of the UML in [KER99]
many of our contributions build on the UML/P variant, which is described in the books [Rum16,
Rum17] and is implemented in [Sch12].

Semantic variation points of the UML are discussed in [GR11]. We discuss formal semantics for
UML [BHP+98] and describe UML semantics using the “System Model” [BCGR09], [BCGR09a],
[BCR07b] and [BCR07a]. Semantic variation points have, e.g., been applied to define class
diagram semantics [CGR08]. A precisely defined semantics for variations is applied when checking
variants of class diagrams [MRR11e] and object diagrams [MRR11c] or the consistency of both
kinds of diagrams [MRR11f]. We also apply these concepts to activity diagrams [MRR11a] which
allows us to check for semantic differences in activity diagrams [MRR11d]. The basic semantics
for ADs and their semantic variation points are given in [GRR10].

We also discuss how to ensure and identify model quality [FHR08], how models, views, and
the system under development correlate to each other [BGH+98b], and how to use modeling in
agile development projects [Rum04c], [Rum03] and [Rum02].

The question of how to adapt and extend the UML is discussed in [PFR02] describing product
line annotations for UML and more general discussions and insights on how to use meta-modeling
for defining and adapting the UML are included in [EFLR99a], [FEL+98] and [SRVK10].

The UML-P tool was conceptually defined in [Rum16, Rum17, Rum12, Rum11], got the first
realization in [Sch12], and is extended in various ways, such as logically or physically distributed

285

Related Interesting Work from the SE Group, RWTH Aachen

computation [BKRW17a]. Based on a detailed examination [JPR+22], insights are also trans-
ferred to the SysML 2.

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use than
general-purpose programming languages but need appropriate tooling. The MontiCore language
workbench [GKR+06, KRV10, Kra10, GKR+08, HKR21] allows the specification of an integrated
abstract and concrete syntax format [KRV07b, HKR21] for easy development. New languages
and tools can be defined in modular forms [KRV08, GKR+07, Voe11, HLN+15, HLN+15a,
HRW18, BEK+18b, BEK+19, Sch12] and can, thus, easily be reused. We discuss the roles in
software development using domain specific languages already in [KRV06] and elaborate on the
engineering aspect of DSL development in [CFJ+16].

[Wei12, HRW15, Hoe18] present an approach that allows the creation of transformation rules
tailored to an underlying DSL. Variability in DSL definitions has been examined in [GR11,
GMR+16]. [BDL+18] presents a method to derive internal DSLs from grammars. In [BJRW18],
we discuss the translation from grammars to accurate metamodels. Successful applications have
been carried out in the Air Traffic Management [ZPK+11] and television [DHH+20] domains.
Based on the concepts described above, meta modeling, model analyses, and model evolution
have been discussed in [LRSS10] and [SRVK10]. [BJRW18] describes a mapping bridge between
both. DSL quality in [FHR08], instructions for defining views [GHK+07] and [PFR02], guidelines
to define DSLs [KKP+09], and Eclipse-based tooling for DSLs [KRV07a] complete the collection.

A broader discussion on the global integration of DSMLs is given in [CBCR15] as part of
[CCF+15a], and [TAB+21] discusses the compositionality of analysis techniques for models.

The MontiCore language workbench has been successfully applied to a larger number of
domains, resulting in a variety of languages documented, e.g., in [AHRW17, BEH+20, BHR+21,
BPR+20, HHR+15, HJRW20, HMR+19, HRR12, PBI+16, RRW15] and Ph.D. theses like
[Ber10, Gre19, Hab16, Her19, Kus21, Loo17, Pin14, Plo18, Rei16, Rot17, Sch12, Wor16].

Software Language Engineering

For a systematic definition of languages using a composition of reusable and adaptable language
components, we adopt an engineering viewpoint on these techniques. General ideas on how to
engineer a language can be found in the GeMoC initiative [CBCR15, CCF+15a]. As said, the
MontiCore language workbench provides techniques for an integrated definition of languages
[KRV07b, Kra10, KRV10, HR17, HKR21, HRW18, BPR+20, BEK+19].

In [SRVK10] we discuss the possibilities and the challenges of using metamodels for language
definition. Modular composition, however, is a core concept to reuse language components like
in MontiCore for the frontend [Voe11, Naz17, KRV08, HLN+15, HLN+15a, HNRW16, HKR21,
BEK+18b, BEK+19] and the backend [RRRW15b, NRR16, GMR+16, HKR21, BEK+18b,
BBC+18]. In [GHK+15, GHK+15a], we discuss the integration of handwritten and generated
object-oriented code. [KRV10] describes the roles in software development using domain specific
languages.

286

Related Interesting Work from the SE Group, RWTH Aachen

Language derivation is to our belief a promising technique to develop new languages for a
specific purpose, e.g., model transformation, that relies on existing basic languages [HRW18].

How to automatically derive such a transformation language using a concrete syntax of the
base language is described in [HRW15, Wei12] and successfully applied to various DSLs.

We also applied the language derivation technique to tagging languages that decorate a base
language [GLRR15] and delta languages [HHK+15, HHK+13] that are derived from base lan-
guages to be able to constructively describe differences between model variants usable to build
feature sets.

The derivation of internal DSLs from grammars is discussed in [BDL+18] and a translation of
grammars to accurate metamodels in [BJRW18].

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals,
streams of telephone or video data, method invocation, or data structures passed between soft-
ware services.

We use streams, statemachines, and components [BR07] as well as expressive forms of com-
position and refinement [PR99, RW18] for semantics. Furthermore, we built a concrete tooling
infrastructure called MontiArc [HRR10, HRR12] for architecture design and extensions for states
[RRW13c, BKRW17a, RRW14a, Wor16]. In [RRW13], we introduce a code generation framework
for MontiArc. [RRRW15b] describes how the language is composed of individual sublanguages.

MontiArc was extended to describe variability [HRR+11] using deltas [HRRS11, HKR+11]
and evolution on deltas [HRRS12]. Other extensions are concerned with modeling cloud architec-
tures [PR13], security in [HHR+15], and the robotics domain [AHRW17, AHRW17b]. Extension
mechanisms for MontiArc are generally discussed in [BHH+17].

[GHK+07] and [GHK+08] close the gap between the requirements and the logical architecture
and [GKPR08] extends it to model variants.

[MRR14b] provides a precise technique for verifying the consistency of architectural views
[Rin14, MRR13] against a complete architecture to increase reusability. We discuss the synthesis
problem for these views in [MRR14a]. An experience report [MRRW16] and a methodological
embedding [DGH+19] complete the core approach.

Extensions for co-evolution of architecture are discussed in [MMR10], for powerful analyses
of software architecture behavior evolution provided in [BKRW19], techniques for understand-
ing semantic differences presented in [BKRW17], and modeling techniques to describe dynamic
architectures shown in [HRR98, HKR+16, BHK+17, KKR19].

Compositionality & Modularity of Models

[HKR+09, TAB+21] motivate the basic mechanisms for modularity and compositionality for
modeling. The mechanisms for distributed systems are shown in [BR07, RW18] and algebraically
grounded in [HKR+07]. Semantic and methodical aspects of model composition [KRV08] led to

287

Related Interesting Work from the SE Group, RWTH Aachen

the language workbench MontiCore [KRV10, HKR21] that can even be used to develop mod-
eling tools in a compositional form [HKR21, HLN+15, HLN+15a, HNRW16, NRR16, HRW18,
BEK+18b, BEK+19, BPR+20, KRV07b]. A set of DSL design guidelines incorporates reuse
through this form of composition [KKP+09].

[Voe11] examines the composition of context conditions respectively the underlying infras-
tructure of the symbol table. Modular editor generation is discussed in [KRV07a]. [RRRW15b]
applies compositionality to robotics control.

[CBCR15] (published in [CCF+15a]) summarizes our approach to composition and remaining
challenges in form of a conceptual model of the “globalized” use of DSLs. As a new form of
decomposition of model information, we have developed the concept of tagging languages in
[GLRR15, MRRW16]. It allows the description of additional information for model elements in
separated documents, facilitates reuse, and allows typing tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision, and
detailedness is discussed in [HR04]. We defined a semantic domain called “System Model” by
using mathematical theory in [RKB95, BHP+98] and [GKR96, KRB96, RK96]. An extended
version especially suited for the UML is given in [GRR09], [BCGR09a] and in [BCGR09] its
rationale is discussed. [BCR07a, BCR07b] contain detailed versions that are applied to class
diagrams in [CGR08] or sequence diagrams in [BGH+98a].

To better understand the effect of an evolved design, detection of semantic differencing, as
opposed to pure syntactical differences, is needed [MRR10]. [MRR11d, MRR11a] encode a part
of the semantics to handle semantic differences of activity diagrams. [MRR11f, MRR11f] compare
class and object diagrams with regard to their semantics. And [BKRW17] compares component
and connector architectures similar to SysML’ block definition diagrams.

In [BR07, RR11], a precise mathematical model for distributed systems based on black-box
behaviors of components is defined and accompanied by automata in [Rum96]. Meta-modeling
semantics is discussed in [EFLR99]. [BGH+97] discusses potential modeling languages for the
description of exemplary object interaction, today called sequence diagram. [BGH+98b] discusses
the relationships between a system, a view, and a complete model in the context of the UML.

[GR11] and [CGR09] discuss general requirements for a framework to describe semantic and
syntactic variations of a modeling language. We apply these to class and object diagrams in
[MRR11f] as well as activity diagrams in [GRR10].

[Rum12] defines the semantics in a variety of code and test case generation, refactoring,
and evolution techniques. [LRSS10] discusses the evolution and related issues in greater de-
tail. [RW18] discusses an elaborated theory for the modeling of underspecification, hierarchical
composition, and refinement that can be practically applied to the development of CPS.

A first encoding of these theories in the Isabelle verification tool is defined in [BKR+20].

288

Related Interesting Work from the SE Group, RWTH Aachen

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code, they are not initially
correct and need to be changed, evolved, and maintained over time. Model transformation is
therefore essential to effectively deal with models [CFJ+16].

Many concrete model transformation problems are discussed: evolution [LRSS10, MMR10,
Rum04c, MRR10], refinement [PR99, KPR97, PR94], decomposition [PR99, KRW20], synthe-
sis [MRR14a], refactoring [Rum12, PR03], translating models from one language into another
[MRR11e, Rum12], systematic model transformation language development [Wei12, HRW15,
Hoe18, HHR+15], repair of failed model evolution [KR18a].

[Rum04c] describes how comprehensible sets of such transformations support software develop-
ment and maintenance [LRSS10], technologies for evolving models within a language and across
languages, and mapping architecture descriptions to their implementation [MMR10]. Automaton
refinement is discussed in [PR94, KPR97] and refining pipe-and-filter architectures is explained
in [PR99]. This has e.g. been applied for robotics in [AHRW17, AHRW17b].

Refactorings of models are important for model driven engineering as discussed in [PR01,
PR03, Rum12]. [HRRS11, HRR+11, HRRS12] encode these in constructive Delta transforma-
tions, which are defined in derivable Delta languages [HHK+13].

Translation between languages, e.g., from class diagrams into Alloy [MRR11e] allows for com-
paring class diagrams on a semantic level. Similarly, semantic differences of evolved activity
diagrams are identified via techniques from [MRR11d] and for Simulink models in [RSW+15].

Variability and Software Product Lines (SPL)

Products often exist in various variants, for example, cars or mobile phones, where one man-
ufacturer develops several products with many similarities but also many variations. Variants
are managed in a Software Product Line (SPL) that captures product commonalities as well as
differences. Feature diagrams describe variability in a top down fashion, e.g., in the automotive
domain [GHK+08, GKPR08] using 150% models. Reducing overhead and associated costs is
discussed in [GRJA12].

Delta modeling is a bottom up technique starting with a small, but complete base variant.
Features are additive, but also can modify the core. A set of commonly applicable deltas
configures a system variant. We discuss the application of this technique to Delta-MontiArc
[HRRS11, HRR+11] and to Delta-Simulink [HKM+13]. Deltas can not only describe special
variability but also temporal variability which allows for using them for software product line
evolution [HRRS12]. [HHK+13, HHK+15] and [HRW15] describe an approach to systematically
derive delta languages.

We also apply variability modeling languages to describe syntactic and semantic variation
points, e.g., in UML for frameworks [PFR02] and generators [GMR+16]. Furthermore, we spec-
ified a systematic way to define variants of modeling languages [CGR09], leverage features for
their compositional reuse [BEK+18b, BEK+19], and applied it as a semantic language refinement
on Statecharts in [GR11].

289

Related Interesting Work from the SE Group, RWTH Aachen

Digital Twins and Digital Shadows in Engineering and Production

The digital transformation of production changes the life cycle of the design, the production, and
the use of products [BDJ+22]. To support this transformation, we can use Digital Twins (DTs)
and Digital Shadows (DSs). In [DMR+20] we define: ”A digital twin of a system consists of a
set of models of the system, a set of digital shadows, and provides a set of services to use the
data and models purposefully with respect to the original system.”

We have investigated how to synthesize self-adaptive DT architectures with model-driven
methods [BBD+21a] and have applied it e.g. on a digital twin for injection molding [BDH+20].
In [BDR+21] we investigate the economic implications of digital twin services.

Digital twins also need user interaction and visualization, why we have extended the infrastruc-
ture by generating DT cockpits [DMR+20]. To support the DevOps approach in DT engineering,
we have created a generator for low-code development platforms for digital twins [DHM+22] and
sophisticated tool chains to generate process-aware digital twin cockpits that also include con-
densed forms of event logs [BMR+22].

[BBD+21b] describes a conceptual model for digital shadows covering the purpose, relevant
assets, data, and metadata as well as connections to engineering models. These can be used
during the runtime of a DT, e.g. when using process prediction services within DTs [BHK+21].

Integration challenges for digital twin systems-of-systems [MPRW22] include, e.g., the hori-
zontal integration of digital twin parts, the composition of DTs for different perspectives, or how
to handle different lifecycle representations of the original system.

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12, BBR20] are complex, distributed systems that control
physical entities. In [RW18], we discuss how an elaborated theory can be practically applied to
the development of CPS. Contributions for individual aspects range from requirements [GRJA12],
complete product lines [HRRW12], the improvement of engineering for distributed automotive
systems [HRR12, KRRW17], autonomous driving [BR12b, KKR19], and digital twin develop-
ment [BDH+20] to processes and tools to improve the development as well as the product itself
[BBR07].

In the aviation domain, a modeling language for uncertainty and safety events was developed,
which is of interest to European avionics [ZPK+11]. Optimized [KRS+18a] and domain specific
code generation [AHRW17b], and the extension to product lines of CPS [RSW+15, KRR+16,
RRS+16] are key for CPS.

A component and connector architecture description language (ADL) suitable for the specific
challenges in robotics is discussed in [RRW13c, RRW14a, Wor16, RRSW17, Wor21]. In [RRW12],
we use this language for describing requirements and in [RRW13], we describe a code generation
framework for this language. Monitoring for smart and energy efficient buildings is developed as
an Energy Navigator toolset [KPR12, FPPR12, KLPR12].

290

Related Interesting Work from the SE Group, RWTH Aachen

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradition of contribut-
ing to systems engineering in automotive [FND+98] and [GHK+08a], which culminated in a new
comprehensive model-driven development process for automotive software [KMS+18, DGH+19].
We leveraged SysML to enable the integrated flow from requirements to implementation to in-
tegration.

To facilitate the modeling of products, resources, and processes in the context of Industry
4.0, we also conceived a multi-level framework for production engineering based on these con-
cepts [BKL+18] and addressed to bridge the gap between functions and the physical product
architecture by modeling mechanical functional architectures in SysML [DRW+20]. For that
purpose, we also did a detailed examination of the upcoming SysML 2.0 standard [JPR+22]
and examined how to extend the SPES/CrEST methodology for a systems engineering approach
[BBR20].

Research within the excellence cluster Internet of Production considers fast decision making
at production time with low latencies using contextual data traces of production systems, also
known as Digital Shadows (DS) [SHH+20]. We have investigated how to derive Digital Twins
(DTs) for injection molding [BDH+20], how to generate interfaces between a cyber-physical
system and its DT [KMR+20], and have proposed model-driven architectures for DT cockpit
engineering [DMR+20].

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including
Petri nets or temporal logics. Software engineering is particularly interested in using statema-
chines for modeling systems. Our contributions to state based modeling can currently be split
into three parts: (1) understanding how to model object-oriented and distributed software using
statemachines resp. Statecharts [GKR96, BCR07b, BCGR09a, BCGR09], (2) understanding the
refinement [PR94, RK96, Rum96, RW18] and composition [GR95, GKR96, RW18] of statema-
chines, and (3) applying statemachines for modeling systems.

In [Rum96, RW18] constructive transformation rules for refining automata behavior are given
and proven correct. This theory is applied to features in [KPR97]. Statemachines are embedded
in the composition and behavioral specification concepts of Focus [GKR96, BR07].

We apply these techniques, e.g., in MontiArcAutomaton [RRW13, RRW14a, RRW13, RW18],
in a robot task modeling language [THR+13], and in building management systems [FLP+11b].

Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational support
for human behavior (2) based on information from previously stored and real-time monitored
structural context and behavior data (3) at the time the person needs or asks for it [HMR+19].
To create them, we follow a model centered architecture approach [MMR+17] which defines
systems as a compound of various connected models. Used languages for their definition include

291

Related Interesting Work from the SE Group, RWTH Aachen

DSLs for behavior and structure such as the human cognitive modeling language [MM13], goal
modeling languages [MRV20, MRZ21] or UML/P based languages [MNRV19]. [MM15] describes
a process of how languages for assistive systems can be created. MontiGem [AMN+20a] is used
as the underlying generator technology.

We have designed a system included in a sensor floor able to monitor elderlies and analyze
impact patterns for emergency events [LMK+11]. We have investigated the modeling of human
contexts for the active assisted living and smart home domain [MS17] and user-centered privacy-
driven systems in the IoT domain in combination with process mining systems [MKM+19],
differential privacy on event logs of handling and treatment of patients at a hospital [MKB+19],
the mark-up of online manuals for devices [SM18a] and websites [SM20], and solutions for privacy-
aware environments for cloud services [ELR+17] and in IoT manufacturing [MNRV19]. The user-
centered view of the system design allows to track who does what, when, why, where, and how
with personal data, makes information about it available via information services and provides
support using assistive services.

Modeling Robotics Architectures and Tasks

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an
inherent heterogeneity of involved domains, relevant platforms, and challenges. The engineer-
ing of robotics applications requires the composition and the interaction of diverse distributed
software modules. This usually leads to complex monolithic software solutions hardly reusable,
maintainable, and comprehensible, which hampers the broad propagation of robotics applica-
tions.

The MontiArcAutomaton language [RRW12, RRW14a] extends the ADL MontiArc and inte-
grates various implemented behavior modeling languages using MontiCore [RRW13c, RRRW15b,
HKR21] that perfectly fit robotic architectural modeling.

The iserveU modeling framework describes domains, actors, goals, and tasks of service robotics
applications [ABH+16, ABH+17] with declarative models. Goals and tasks are translated into
models of the planning domain definition language (PDDL) and then solved [ABK+17]. Thus,
domain experts focus on describing the domain and its properties only.

The LightRocks [THR+13, BRS+15] framework allows robotics experts and laymen to model
robotic assembly tasks. In [AHRW17, AHRW17b], we define a modular architecture model-
ing method for translating architecture models into modules compatible with different robotics
middleware platforms.

Many of the concepts in robotics were derived from automotive software [BBR07, BR12b].

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment, and communication
systems as well as advanced active and passive safety-systems result in complex embedded sys-
tems. As these feature-driven subsystems may be arbitrarily combined by the customer, a huge
amount of distinct variants needs to be managed, developed, and tested. A consistent requirement

292

Related Interesting Work from the SE Group, RWTH Aachen

management connecting requirements with features in all development phases for the automotive
domain is described in [GRJA12].

The conceptual gap between requirements and the logical architecture of a car is closed in
[GHK+07, GHK+08]. A methodical embedding of the resulting function nets and their quality
assurance using automated testing is given in the SMaRDT method [DGH+19, KMS+18].

[HKM+13] describes a tool for delta modeling for Simulink [HKM+13]. [HRRW12] discusses
the means to extract a well-defined Software Product Line from a set of copy and paste variants.

Potential variants of components in product lines can be identified using similarity analysis
of interfaces [KRR+16], or execute tests to identify similar behavior [RRS+16]. [RSW+15]
describes an approach to using model checking techniques to identify behavioral differences of
Simulink models. In [KKR19], we model dynamic reconfiguration of architectures applied to
cooperating vehicles.

Quality assurance, especially of safety-related functions, is a highly important task. In the
Carolo project [BR12b, BR12], we developed a rigorous test infrastructure for intelligent, sensor-
based functions through fully-automatic simulation [BBR07]. This technique allows a dramatic
speedup in the development and the evolution of autonomous car functionality, and thus enables
us to develop software in an agile way [BR12b].

[MMR10] gives an overview of the state-of-the-art in development and evolution on a more
general level by considering any kind of critical system that relies on architectural descriptions.

MontiSim simulates autonomous and cooperative driving behavior [GKR+17] for testing vari-
ous forms of errors as well as spatial distance [FIK+18, KKRZ19]. As tooling infrastructure, the
SSELab storage, versioning, and management services [HKR12] are essential for many projects.

Internet of Things, Industry 4.0 & the MontiThings Tool

The Internet of Things (IoT) requires the development of increasingly complex distributed
systems. The MontiThings ecosystem [KRS+22] provides an end-to-end solution to model-
ing, deploying [KKR+22], and analyzing [KMR21] failure-tolerant [KRS+22] IoT systems and
connecting them to synthesized digital twins [KMR+20]. We have investigated how model-
driven methods can support the development of privacy-aware [ELR+17, HHK+14] cloud sys-
tems [PR13], distributed systems security [HHR+15], privacy-aware process mining [MKM+19],
and distributed robotics applications [RRRW15b].

In the course of Industry 4.0, we have also turned our attention to mechanical or electrical ap-
plications [DRW+20]. We identified the digital representation, integration, and (re-)configuration
of automation systems as primary Industry 4.0 concerns [WCB17]. Using a multi-level modeling
framework, we support machine as a service approaches [BKL+18].

Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emis-
sions are important challenges. Thus, energy management in buildings as well as in neighbor-
hoods becomes equally important to efficiently use the generated energy. Within several research

293

Related Interesting Work from the SE Group, RWTH Aachen

projects, we developed methodologies and solutions for integrating heterogeneous systems at dif-
ferent scales.

During the design phase, the Energy Navigators Active Functional Specification (AFS)
[FPPR12, KPR12] is used for the technical specification of building services already.

We adapted the well-known concept of statemachines to be able to describe different states
of a facility and validate it against the monitored values [FLP+11b]. We show how our data
model, the constraint rules, and the evaluation approach to compare sensor data can be applied
[KLPR12].

Cloud Computing and Services

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for
web-based application and service architectures with high complexity, criticality, and new ap-
plication domains. It promises to enable new business models, facilitate web-based innovations,
and increase the efficiency and cost-effectiveness of web development [KRR14].

Application classes like Cyber-Physical Systems and their privacy [HHK+14, HHK+15a], Big
Data, Apps, and Service Ecosystems bring attention to aspects like responsiveness, privacy, and
open platforms. Regardless of the application domain, developers of such systems need robust
methods and efficient, easy-to-use languages and tools [KRS12].

We tackle these challenges by perusing a model-based, generative approach [PR13]. At the
core of this approach are different modeling languages that describe different aspects of a cloud-
based system in a concise and technology-agnostic way. Software architecture and infrastructure
models describe the system and its physical distribution on a large scale.

We apply cloud technology for the services we develop, e.g., the SSELab [HKR12] and the
Energy Navigator [FPPR12, KPR12] but also for our tool demonstrators and our development
platforms. New services, e.g., for collecting data from temperature sensors, cars, etc. are now
easily developed and deployed, e.g., in production or Internet-of-Things environments.

Security aspects and architectures of cloud services for the digital me in a privacy-aware
environment are addressed in [ELR+17].

Model-Driven Engineering of Information Systems & the MontiGem Tool

Information Systems provide information to different user groups as the main system goal. Using
our experiences in the model-based generation of code with MontiCore [KRV10, HKR21], we
developed several generators for such data-centric information systems.

MontiGem [AMN+20a] is a specific generator framework for data-centric business applica-
tions that uses standard models from UML/P optionally extended by GUI description models
as sources [GMN+20]. While the standard semantics of these modeling languages remains un-
touched, the generator produces a lot of additional functionality around these models. The
generator is designed flexible, modular, and incremental, handwritten and generated code pieces
are well integrated [GHK+15a, NRR15a], tagging of existing models is possible [GLRR15], e.g.,
for the definition of roles and rights or for testing [DGH+18].

294

Related Interesting Work from the SE Group, RWTH Aachen

We are using MontiGem for financial management [GHK+20, ANV+18], for creating digital
twin cockpits [DMR+20], and various industrial projects. MontiGem makes it easier to create
low-code development platforms for digital twins [DHM+22]. When using additional DSLs, we
can develop assistive systems providing user support based on goal models [MRV20], privacy-
preserving information systems using privacy models and purpose trees [MNRV19], and process-
aware digital twin cockpits using BPMN models [BMR+22].

We have also developed an architecture of cloud services for the digital me in a privacy-aware
environment [ELR+17] and a method for retrofitting generative aspects into existing applications
[DGM+21].

295

Related Interesting Work from the SE Group, RWTH Aachen

[ABH+16] Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Model-Driven Separation of Concerns for Service Robotics.
In International Workshop on Domain-Specific Modeling (DSM’16), pages 22–27.
ACM, October 2016.

[ABH+17] Kai Adam, Arvid Butting, Robert Heim, Oliver Kautz, Jérôme Pfeiffer, Bernhard
Rumpe, and Andreas Wortmann. Modeling Robotics Tasks for Better Separation
of Concerns, Platform-Independence, and Reuse. Aachener Informatik-Berichte,
Software Engineering, Band 28. Shaker Verlag, December 2017.

[ABK+17] Kai Adam, Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wort-
mann. Executing Robot Task Models in Dynamic Environments. In Proceedings
of MODELS 2017. Workshop EXE, CEUR 2019, September 2017.

[AHRW17] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. En-
gineering Robotics Software Architectures with Exchangeable Model Transfor-
mations. In International Conference on Robotic Computing (IRC’17), pages
172–179. IEEE, April 2017.

[AHRW17b] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Mod-
eling Robotics Software Architectures with Modular Model Transformations.
Journal of Software Engineering for Robotics (JOSER), 8(1):3–16, 2017.

[AKK+21] Abdallah Atouani, Jörg Christian Kirchhof, Evgeny Kusmenko, and Bernhard
Rumpe. Artifact and Reference Models for Generative Machine Learning Frame-
works and Build Systems. In Eli Tilevich and Coen De Roover, editors, Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE 21), pages 55–68. ACM SIG-
PLAN, October 2021.

[AMN+20a] Kai Adam, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga.
Enterprise Information Systems in Academia and Practice: Lessons learned
from a MBSE Project. In 40 Years EMISA: Digital Ecosystems of the Future:
Methodology, Techniques and Applications (EMISA’19), LNI P-304, pages 59–66.
Gesellschaft für Informatik e.V., May 2020.

[ANV+18] Kai Adam, Lukas Netz, Simon Varga, Judith Michael, Bernhard Rumpe, Patricia
Heuser, and Peter Letmathe. Model-Based Generation of Enterprise Information
Systems. In Michael Fellmann and Kurt Sandkuhl, editors, Enterprise Modeling
and Information Systems Architectures (EMISA’18), CEUR Workshop Proceed-
ings 2097, pages 75–79. CEUR-WS.org, May 2018.

[BBC+18] Inga Blundell, Romain Brette, Thomas A. Cleland, Thomas G. Close, Daniel
Coca, Andrew P. Davison, Sandra Diaz-Pier, Carlos Fernandez Musoles, Padraig
Gleeson, Dan F. M. Goodman, Michael Hines, Michael W. Hopkins, Pramod
Kumbhar, David R. Lester, Bóris Marin, Abigail Morrison, Eric Müller, Thomas
Nowotny, Alexander Peyser, Dimitri Plotnikov, Paul Richmond, Andrew Row-
ley, Bernhard Rumpe, Marcel Stimberg, Alan B. Stokes, Adam Tomkins, Guido
Trensch, Marmaduke Woodman, and Jochen Martin Eppler. Code Generation
in Computational Neuroscience: A Review of Tools and Techniques. Frontiers
in Neuroinformatics, 12, 2018.

296

Related Interesting Work from the SE Group, RWTH Aachen

[BBD+21b] Fabian Becker, Pascal Bibow, Manuela Dalibor, Aymen Gannouni, Viviane
Hahn, Christian Hopmann, Matthias Jarke, Istvan Koren, Moritz Kröger, Jo-
hannes Lipp, Judith Maibaum, Judith Michael, Bernhard Rumpe, Patrick Sapel,
Niklas Schäfer, Georg J. Schmitz, Günther Schuh, and Andreas Wortmann. A
Conceptual Model for Digital Shadows in Industry and its Application. In Aditya
Ghose, Jennifer Horkoff, Vitor E. Silva Souza, Jeffrey Parsons, and Joerg Ever-
mann, editors, Conceptual Modeling, ER 2021, pages 271–281. Springer, October
2021.

[BBD+21a] Tim Bolender, Gereon Bürvenich, Manuela Dalibor, Bernhard Rumpe, and An-
dreas Wortmann. Self-Adaptive Manufacturing with Digital Twins. In 2021 In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pages 156–166. IEEE Computer Society, May 2021.

[BBR07] Christian Basarke, Christian Berger, and Bernhard Rumpe. Software & Systems
Engineering Process and Tools for the Development of Autonomous Driving In-
telligence. Journal of Aerospace Computing, Information, and Communication
(JACIC), 4(12):1158–1174, 2007.

[BBR20] Manfred Broy, Wolfgang Böhm, and Bernhard Rumpe. Advanced Systems Engi-
neering - Die Systeme der Zukunft. White paper, fortiss. Forschungsinstitut für
softwareintensive Systeme, Munich, July 2020.

[BCGR09] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Considerations and Rationale for a UML System Model. In K. Lano, editor,
UML 2 Semantics and Applications, pages 43–61. John Wiley & Sons, November
2009.

[BCGR09a] Manfred Broy, Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe.
Definition of the UML System Model. In K. Lano, editor, UML 2 Semantics and
Applications, pages 63–93. John Wiley & Sons, November 2009.

[BCR07a] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 2: The Control Model. Technical Report TUM-I0710, TU
Munich, Germany, February 2007.

[BCR07b] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe. Towards a System
Model for UML. Part 3: The State Machine Model. Technical Report TUM-
I0711, TU Munich, Germany, February 2007.

[BDH+20] Pascal Bibow, Manuela Dalibor, Christian Hopmann, Ben Mainz, Bernhard
Rumpe, David Schmalzing, Mauritius Schmitz, and Andreas Wortmann. Model-
Driven Development of a Digital Twin for Injection Molding. In Schahram Dust-
dar, Eric Yu, Camille Salinesi, Dominique Rieu, and Vik Pant, editors, Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’20),
Lecture Notes in Computer Science 12127, pages 85–100. Springer International
Publishing, June 2020.

[BDJ+22] Philipp Brauner, Manuela Dalibor, Matthias Jarke, Ike Kunze, István Ko-
ren, Gerhard Lakemeyer, Martin Liebenberg, Judith Michael, Jan Pennekamp,
Christoph Quix, Bernhard Rumpe, Wil van der Aalst, Klaus Wehrle, Andreas

297

Related Interesting Work from the SE Group, RWTH Aachen

Wortmann, and Martina Ziefle. A Computer Science Perspective on Digital
Transformation in Production. ACM Trans. Internet Things, 3:1–32, February
2022.

[BDL+18] Arvid Butting, Manuela Dalibor, Gerrit Leonhardt, Bernhard Rumpe, and An-
dreas Wortmann. Deriving Fluent Internal Domain-specific Languages from
Grammars. In International Conference on Software Language Engineering
(SLE’18), pages 187–199. ACM, 2018.

[BDR+21] Christian Brecher, Manuela Dalibor, Bernhard Rumpe, Katrin Schilling, and An-
dreas Wortmann. An Ecosystem for Digital Shadows in Manufacturing. In 54th
CIRP CMS 2021 - Towards Digitalized Manufacturing 4.0. Elsevier, September
2021.

[BEH+20] Arvid Butting, Robert Eikermann, Katrin Hölldobler, Nico Jansen, Bernhard
Rumpe, and Andreas Wortmann. A Library of Literals, Expressions, Types,
and Statements for Compositional Language Design. Special Issue dedicated to
Martin Gogolla on his 65th Birthday, Journal of Object Technology, 19(3):3:1–16,
October 2020. Special Issue dedicated to Martin Gogolla on his 65th Birthday.

[BEK+18b] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and An-
dreas Wortmann. Modeling Language Variability with Reusable Language Com-
ponents. In International Conference on Systems and Software Product Line
(SPLC’18). ACM, September 2018.

[BEK+19] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas
Wortmann. Systematic Composition of Independent Language Features. Journal
of Systems and Software, 152:50–69, June 2019.

[Ber10] Christian Berger. Automating Acceptance Tests for Sensor- and Actuator-based
Systems on the Example of Autonomous Vehicles. Aachener Informatik-Berichte,
Software Engineering, Band 6. Shaker Verlag, 2010.

[BGH+97] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger, Bern-
hard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and Com-
plete Object Interaction Descriptions. In Object-oriented Behavioral Semantics
Workshop (OOPSLA’97), Technical Report TUM-I9737, Germany, 1997. TU
Munich.

[BGH+98a] Ruth Breu, Radu Grosu, Christoph Hofmann, Franz Huber, Ingolf Krüger,
Bernhard Rumpe, Monika Schmidt, and Wolfgang Schwerin. Exemplary and
Complete Object Interaction Descriptions. Computer Standards & Interfaces,
19(7):335–345, November 1998.

[BGH+98b] Ruth Breu, Radu Grosu, Franz Huber, Bernhard Rumpe, and Wolfgang Schw-
erin. Systems, Views and Models of UML. In Proceedings of the Unified Model-
ing Language, Technical Aspects and Applications, pages 93–109. Physica Verlag,
Heidelberg, Germany, 1998.

[BGRW17] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wortmann.
Taming the Complexity of Model-Driven Systems Engineering Projects. In Part
of the Grand Challenges in Modeling (GRAND’17) Workshop, July 2017.

298

Related Interesting Work from the SE Group, RWTH Aachen

[BGRW18] Arvid Butting, Timo Greifenberg, Bernhard Rumpe, and Andreas Wortmann.
On the Need for Artifact Models in Model-Driven Systems Engineering Projects.
In Martina Seidl and Steffen Zschaler, editors, Software Technologies: Applica-
tions and Foundations, LNCS 10748, pages 146–153. Springer, January 2018.

[BHH+17] Arvid Butting, Arne Haber, Lars Hermerschmidt, Oliver Kautz, Bernhard
Rumpe, and Andreas Wortmann. Systematic Language Extension Mechanisms
for the MontiArc Architecture Description Language. In European Conference
on Modelling Foundations and Applications (ECMFA’17), LNCS 10376, pages
53–70. Springer, July 2017.

[BHK+17] Arvid Butting, Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard
Rumpe, and Andreas Wortmann. A Classification of Dynamic Reconfiguration in
Component and Connector Architecture Description Languages. In Proceedings
of MODELS 2017. Workshop ModComp, CEUR 2019, September 2017.

[BHK+21] Tobias Brockhoff, Malte Heithoff, István Koren, Judith Michael, Jérôme Pfeiffer,
Bernhard Rumpe, Merih Seran Uysal, Wil M. P. van der Aalst, and Andreas
Wortmann. Process Prediction with Digital Twins. In Int. Conf. on Model
Driven Engineering Languages and Systems Companion (MODELS-C), pages
182–187. ACM/IEEE, October 2021.

[BHP+98] Manfred Broy, Franz Huber, Barbara Paech, Bernhard Rumpe, and Katha-
rina Spies. Software and System Modeling Based on a Unified Formal Seman-
tics. In Workshop on Requirements Targeting Software and Systems Engineering
(RTSE’97), LNCS 1526, pages 43–68. Springer, 1998.

[BHR+18] Arvid Butting, Steffen Hillemacher, Bernhard Rumpe, David Schmalzing, and
Andreas Wortmann. Shepherding Model Evolution in Model-Driven Develop-
ment. In Joint Proceedings of the Workshops at Modellierung 2018 (MOD-WS
2018), CEUR Workshop Proceedings 2060, pages 67–77. CEUR-WS.org, Febru-
ary 2018.

[BHR+21] Arvid Butting, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann.
Compositional Modelling Languages with Analytics and Construction Infrastruc-
tures Based on Object-Oriented Techniques - The MontiCore Approach. In Hein-
rich, Robert and Duran, Francisco and Talcott, Carolyn and Zschaler, Steffen,
editor, Composing Model-Based Analysis Tools, pages 217–234. Springer, July
2021.

[BJRW18] Arvid Butting, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann. Trans-
lating Grammars to Accurate Metamodels. In International Conference on Soft-
ware Language Engineering (SLE’18), pages 174–186. ACM, 2018.

[BKL+18] Christian Brecher, Evgeny Kusmenko, Achim Lindt, Bernhard Rumpe, Simon
Storms, Stephan Wein, Michael von Wenckstern, and Andreas Wortmann. Multi-
Level Modeling Framework for Machine as a Service Applications Based on Prod-
uct Process Resource Models. In Proceedings of the 2nd International Sympo-
sium on Computer Science and Intelligent Control (ISCSIC’18). ACM, Septem-
ber 2018.

299

Related Interesting Work from the SE Group, RWTH Aachen

[BKR+20] Jens Christoph Bürger, Hendrik Kausch, Deni Raco, Jan Oliver Ringert, Bern-
hard Rumpe, Sebastian Stüber, and Marc Wiartalla. Towards an Isabelle The-
ory for distributed, interactive systems - the untimed case. Aachener Informatik
Berichte, Software Engineering, Band 45. Shaker Verlag, March 2020.

[BKRW17a] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Ar-
chitectural Programming with MontiArcAutomaton. In In 12th International
Conference on Software Engineering Advances (ICSEA 2017), pages 213–218.
IARIA XPS Press, May 2017.

[BKRW17] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Se-
mantic Differencing for Message-Driven Component & Connector Architectures.
In International Conference on Software Architecture (ICSA’17), pages 145–154.
IEEE, April 2017.

[BKRW19] Arvid Butting, Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Con-
tinuously Analyzing Finite, Message-Driven, Time-Synchronous Component &
Connector Systems During Architecture Evolution. Journal of Systems and Soft-
ware, 149:437–461, March 2019.

[BMR+22] Dorina Bano, Judith Michael, Bernhard Rumpe, Simon Varga, and Matthias
Weske. Process-Aware Digital Twin Cockpit Synthesis from Event Logs. Journal
of Computer Languages (COLA), 70, June 2022.

[BPR+20] Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, and Andreas Wortmann. A
Compositional Framework for Systematic Modeling Language Reuse. In Pro-
ceedings of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, pages 35–46. ACM, October 2020.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung. Informatik-Spektrum, 30(1):3–
18, Februar 2007.

[BR12b] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after
the Urban Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In
Automotive Software Engineering Workshop (ASE’12), pages 789–798, 2012.

[BR12] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Soft-
ware. In C. Rouff and M. Hinchey, editors, Experience from the DARPA Urban
Challenge, pages 243–271. Springer, Germany, 2012.

[BRS+15] Arvid Butting, Bernhard Rumpe, Christoph Schulze, Ulrike Thomas, and An-
dreas Wortmann. Modeling Reusable, Platform-Independent Robot Assembly
Processes. In International Workshop on Domain-Specific Languages and Mod-
els for Robotic Systems (DSLRob 2015), 2015.

[CBCR15] Tony Clark, Mark van den Brand, Benoit Combemale, and Bernhard Rumpe.
Conceptual Model of the Globalization for Domain-Specific Languages. In Glob-
alizing Domain-Specific Languages, LNCS 9400, pages 7–20. Springer, 2015.

[CCF+15a] Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel,
and Bernhard Rumpe, editors. Globalizing Domain-Specific Languages, LNCS
9400. Springer, 2015.

300

Related Interesting Work from the SE Group, RWTH Aachen

[CEG+14] Betty H.C. Cheng, Kerstin I. Eder, Martin Gogolla, Lars Grunske, Marin Litoiu,
Hausi A. Müller, Patrizio Pelliccione, Anna Perini, Nauman A. Qureshi, Bern-
hard Rumpe, Daniel Schneider, Frank Trollmann, and Norha M. Villegas. Us-
ing Models at Runtime to Address Assurance for Self-Adaptive Systems. In
Nelly Bencomo, Robert France, Betty H.C. Cheng, and Uwe Aßmann, editors,
Models@run.time, LNCS 8378, pages 101–136. Springer International Publishing,
Switzerland, 2014.

[CFJ+16] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe,
James Steel, and Didier Vojtisek. Engineering Modeling Languages: Turning
Domain Knowledge into Tools. Chapman & Hall/CRC Innovations in Software
Engineering and Software Development Series, November 2016.

[CGR08] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. System Model
Semantics of Class Diagrams. Informatik-Bericht 2008-05, TU Braunschweig,
Germany, 2008.

[CGR09] Maŕıa Victoria Cengarle, Hans Grönniger, and Bernhard Rumpe. Variability
within Modeling Language Definitions. In Conference on Model Driven En-
gineering Languages and Systems (MODELS’09), LNCS 5795, pages 670–684.
Springer, 2009.

[DEKR19] Imke Drave, Robert Eikermann, Oliver Kautz, and Bernhard Rumpe. Semantic
Differencing of Statecharts for Object-oriented Systems. In Slimane Hammoudi,
Luis Ferreira Pires, and Bran Selić, editors, Proceedings of the 7th International
Conference on Model-Driven Engineering and Software Development (MODEL-
SWARD’19), pages 274–282. SciTePress, February 2019.

[DGH+18] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Matthias
Markthaler, Bernhard Rumpe, and Andreas Wortmann. Model-Based Testing of
Software-Based System Functions. In Conference on Software Engineering and
Advanced Applications (SEAA’18), pages 146–153, August 2018.

[DGH+19] Imke Drave, Timo Greifenberg, Steffen Hillemacher, Stefan Kriebel, Evgeny Kus-
menko, Matthias Markthaler, Philipp Orth, Karin Samira Salman, Johannes
Richenhagen, Bernhard Rumpe, Christoph Schulze, Michael Wenckstern, and
Andreas Wortmann. SMArDT modeling for automotive software testing. Soft-
ware: Practice and Experience, 49(2):301–328, February 2019.

[DGM+21] Imke Drave, Akradii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe,
and Simon Varga. A Methodology for Retrofitting Generative Aspects in Existing
Applications. Journal of Object Technology, 20:1–24, November 2021.

[DHH+20] Imke Drave, Timo Henrich, Katrin Hölldobler, Oliver Kautz, Judith Michael,
and Bernhard Rumpe. Modellierung, Verifikation und Synthese von validen Pla-
nungszuständen für Fernsehausstrahlungen. In Dominik Bork, Dimitris Kara-
giannis, and Heinrich C. Mayr, editors, Modellierung 2020, pages 173–188.
Gesellschaft für Informatik e.V., February 2020.

[DHM+22] Manuela Dalibor, Malte Heithoff, Judith Michael, Lukas Netz, Jérôme Pfeif-
fer, Bernhard Rumpe, Simon Varga, and Andreas Wortmann. Generating Cus-

301

Related Interesting Work from the SE Group, RWTH Aachen

tomized Low-Code Development Platforms for Digital Twins. Journal of Com-
puter Languages (COLA), 70, June 2022.

[DKMR19] Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe. Semantic
Evolution Analysis of Feature Models. In Thorsten Berger, Philippe Collet, Lau-
rence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Jabier Martinez,
Raúl Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Tërnava, Thomas
Thüm, and Tewfik Ziadi, editors, International Systems and Software Product
Line Conference (SPLC’19), pages 245–255. ACM, September 2019.

[DMR+20] Manuela Dalibor, Judith Michael, Bernhard Rumpe, Simon Varga, and Andreas
Wortmann. Towards a Model-Driven Architecture for Interactive Digital Twin
Cockpits. In Gillian Dobbie, Ulrich Frank, Gerti Kappel, Stephen W. Liddle,
and Heinrich C. Mayr, editors, Conceptual Modeling, pages 377–387. Springer
International Publishing, October 2020.

[DRW+20] Imke Drave, Bernhard Rumpe, Andreas Wortmann, Joerg Berroth, Gregor
Hoepfner, Georg Jacobs, Kathrin Spuetz, Thilo Zerwas, Christian Guist, and
Jens Kohl. Modeling Mechanical Functional Architectures in SysML. In Pro-
ceedings of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, pages 79–89. ACM, October 2020.

[EFLR99] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Meta-Modelling
Semantics of UML. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behav-
ioral Specifications of Businesses and Systems, pages 45–60. Kluver Academic
Publisher, 1999.

[EFLR99a] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. The UML as a
Formal Modeling Notation. In J. Bézivin and P.-A. Muller, editors, The Unified
Modeling Language. «UML»’98: Beyond the Notation, LNCS 1618, pages 336–
348. Springer, Germany, 1999.

[EJK+19] Rolf Ebert, Jahir Jolianis, Stefan Kriebel, Matthias Markthaler, Benjamin Pru-
enster, Bernhard Rumpe, and Karin Samira Salman. Applying Product Line
Testing for the Electric Drive System. In Thorsten Berger, Philippe Collet, Lau-
rence Duchien, Thomas Fogdal, Patrick Heymans, Timo Kehrer, Jabier Martinez,
Raúl Mazo, Leticia Montalvillo, Camille Salinesi, Xhevahire Tërnava, Thomas
Thüm, and Tewfik Ziadi, editors, International Systems and Software Product
Line Conference (SPLC’19), pages 14–24. ACM, September 2019.

[ELR+17] Robert Eikermann, Markus Look, Alexander Roth, Bernhard Rumpe, and An-
dreas Wortmann. Architecting Cloud Services for the Digital me in a Privacy-
Aware Environment. In Ivan Mistrik, Rami Bahsoon, Nour Ali, Maritta Heisel,
and Bruce Maxim, editors, Software Architecture for Big Data and the Cloud,
chapter 12, pages 207–226. Elsevier Science & Technology, June 2017.

[FEL+98] Robert France, Andy Evans, Kevin Lano, and Bernhard Rumpe. The UML as
a formal modeling notation. Computer Standards & Interfaces, 19(7):325–334,
November 1998.

302

Related Interesting Work from the SE Group, RWTH Aachen

[FHR08] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modellqualität als Indika-
tor für Softwarequalität: eine Taxonomie. Informatik-Spektrum, 31(5):408–424,
Oktober 2008.

[FIK+18] Christian Frohn, Petyo Ilov, Stefan Kriebel, Evgeny Kusmenko, Bernhard
Rumpe, and Alexander Ryndin. Distributed Simulation of Cooperatively In-
teracting Vehicles. In International Conference on Intelligent Transportation
Systems (ITSC’18), pages 596–601. IEEE, 2018.

[FLP+11] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. Der Energie-Navigator - Performance-Controlling für Gebäude und An-
lagen. Technik am Bau (TAB) - Fachzeitschrift für Technische Gebäudeausrüs-
tung, Seiten 36-41, März 2011.

[FLP+11b] M. Norbert Fisch, Markus Look, Claas Pinkernell, Stefan Plesser, and Bernhard
Rumpe. State-based Modeling of Buildings and Facilities. In Enhanced Building
Operations Conference (ICEBO’11), 2011.

[FND+98] Max Fuchs, Dieter Nazareth, Dirk Daniel, and Bernhard Rumpe. BMW-ROOM
An Object-Oriented Method for ASCET. In SAE’98, Cobo Center (Detroit,
Michigan, USA), Society of Automotive Engineers, 1998.

[FPPR12] M. Norbert Fisch, Claas Pinkernell, Stefan Plesser, and Bernhard Rumpe. The
Energy Navigator - A Web-Platform for Performance Design and Management.
In Energy Efficiency in Commercial Buildings Conference (IEECB’12), 2012.

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, and Bernhard
Rumpe. View-based Modeling of Function Nets. In Object-oriented Modelling of
Embedded Real-Time Systems Workshop (OMER4’07), 2007.

[GHK+08] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Roth-
hardt, and Bernhard Rumpe. Modelling Automotive Function Nets with Views
for Features, Variants, and Modes. In Proceedings of 4th European Congress
ERTS - Embedded Real Time Software, 2008.

[GHK+08a] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan Kriebel, Lutz Roth-
hardt, and Bernhard Rumpe. View-Centric Modeling of Automotive Logical
Architectures. In Tagungsband des Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteter Systeme IV, Informatik Bericht 2008-02. TU Braun-
schweig, 2008.

[GHK+15] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram
Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk
Reiß, Alexander Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wort-
mann. A Comparison of Mechanisms for Integrating Handwritten and Generated
Code for Object-Oriented Programming Languages. In Model-Driven Engineer-
ing and Software Development Conference (MODELSWARD’15), pages 74–85.
SciTePress, 2015.

[GHK+15a] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram
Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk
Reiß, Alexander Roth, Bernhard Rumpe, Martin Schindler, and Andreas Wort-

303

Related Interesting Work from the SE Group, RWTH Aachen

mann. Integration of Handwritten and Generated Object-Oriented Code. In
Model-Driven Engineering and Software Development, Communications in Com-
puter and Information Science 580, pages 112–132. Springer, 2015.

[GHK+20] Arkadii Gerasimov, Patricia Heuser, Holger Ketteniß, Peter Letmathe, Judith
Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Generated Enterprise
Information Systems: MDSE for Maintainable Co-Development of Frontend and
Backend. In Judith Michael and Dominik Bork, editors, Companion Proceedings
of Modellierung 2020 Short, Workshop and Tools & Demo Papers, pages 22–30.
CEUR Workshop Proceedings, February 2020.

[GHR17] Timo Greifenberg, Steffen Hillemacher, and Bernhard Rumpe. Towards a Sus-
tainable Artifact Model: Artifacts in Generator-Based Model-Driven Projects.
Aachener Informatik-Berichte, Software Engineering, Band 30. Shaker Verlag,
December 2017.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bernhard Rumpe. Model-
ing Variants of Automotive Systems using Views. In Modellbasierte Entwicklung
von eingebetteten Fahrzeugfunktionen, Informatik Bericht 2008-01, pages 76–89.
TU Braunschweig, 2008.

[GKR96] Radu Grosu, Cornel Klein, and Bernhard Rumpe. Enhancing the SysLab System
Model with State. Technical Report TUM-I9631, TU Munich, Germany, July
1996.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore 1.0 - Ein Framework zur Erstellung und Verarbeitung domän-
spezifischer Sprachen. Informatik-Bericht 2006-04, CFG-Fakultät, TU Braun-
schweig, August 2006.

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. Textbased Modeling. In 4th International Workshop on Software Lan-
guage Engineering, Nashville, Informatik-Bericht 4/2007. Johannes-Gutenberg-
Universität Mainz, 2007.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven
Völkel. MontiCore: A Framework for the Development of Textual Domain Spe-
cific Languages. In 30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008, Companion Volume, pages 925–926,
2008.

[GKR+17] Filippo Grazioli, Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and
Michael von Wenckstern. Simulation Framework for Executing Component and
Connector Models of Self-Driving Vehicles. In Proceedings of MODELS 2017.
Workshop EXE, CEUR 2019, September 2017.

[GLPR15] Timo Greifenberg, Markus Look, Claas Pinkernell, and Bernhard Rumpe. En-
ergieeffiziente Städte - Herausforderungen und Lösungen aus Sicht des Software
Engineerings. In Linnhoff-Popien, Claudia and Zaddach, Michael and Grahl,
Andreas, Editor, Marktplätze im Umbruch: Digitale Strategien für Services im
Mobilen Internet, Xpert.press, Kapitel 56, Seiten 511-520. Springer Berlin Hei-

304

Related Interesting Work from the SE Group, RWTH Aachen

delberg, April 2015.

[GLRR15] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard Rumpe. Engi-
neering Tagging Languages for DSLs. In Conference on Model Driven Engineer-
ing Languages and Systems (MODELS’15), pages 34–43. ACM/IEEE, 2015.

[GMN+20] Arkadii Gerasimov, Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon
Varga. Continuous Transition from Model-Driven Prototype to Full-Size Real-
World Enterprise Information Systems. In Bonnie Anderson, Jason Thatcher,
and Rayman Meservy, editors, 25th Americas Conference on Information Sys-
tems (AMCIS 2020), AIS Electronic Library (AISeL), pages 1–10. Association
for Information Systems (AIS), August 2020.

[GMR+16] Timo Greifenberg, Klaus Müller, Alexander Roth, Bernhard Rumpe, Christoph
Schulze, and Andreas Wortmann. Modeling Variability in Template-based Code
Generators for Product Line Engineering. In Modellierung 2016 Conference, LNI
254, pages 141–156. Bonner Köllen Verlag, March 2016.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent Timed Port Automata. Technical
Report TUM-I9533, TU Munich, Germany, October 1995.

[GR11] Hans Grönniger and Bernhard Rumpe. Modeling Language Variability. In Work-
shop on Modeling, Development and Verification of Adaptive Systems, LNCS
6662, pages 17–32. Springer, 2011.

[Gre19] Timo Greifenberg. Artefaktbasierte Analyse modellgetriebener Softwareentwick-
lungsprojekte. Aachener Informatik-Berichte, Software Engineering, Band 42.
Shaker Verlag, August 2019.

[GRJA12] Tim Gülke, Bernhard Rumpe, Martin Jansen, and Joachim Axmann. High-Level
Requirements Management and Complexity Costs in Automotive Development
Projects: A Problem Statement. In Requirements Engineering: Foundation for
Software Quality (REFSQ’12), 2012.

[GRR09] Hans Grönniger, Jan Oliver Ringert, and Bernhard Rumpe. System Model-based
Definition of Modeling Language Semantics. In Proc. of FMOODS/FORTE 2009,
LNCS 5522, Lisbon, Portugal, 2009.

[GRR10] Hans Grönniger, Dirk Reiß, and Bernhard Rumpe. Towards a Semantics of
Activity Diagrams with Semantic Variation Points. In Conference on Model
Driven Engineering Languages and Systems (MODELS’10), LNCS 6394, pages
331–345. Springer, 2010.

[Hab16] Arne Haber. MontiArc - Architectural Modeling and Simulation of Interactive
Distributed Systems. Aachener Informatik-Berichte, Software Engineering, Band
24. Shaker Verlag, September 2016.

[Her19] Lars Hermerschmidt. Agile Modellgetriebene Entwicklung von Software Security
& Privacy. Aachener Informatik-Berichte, Software Engineering, Band 41. Shaker
Verlag, June 2019.

[HHK+13] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller,
Bernhard Rumpe, and Ina Schaefer. Engineering Delta Modeling Languages. In

305

Related Interesting Work from the SE Group, RWTH Aachen

Software Product Line Conference (SPLC’13), pages 22–31. ACM, 2013.

[HHK+14] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. User-driven Privacy Enforcement for Cloud-based
Services in the Internet of Things. In Conference on Future Internet of Things
and Cloud (FiCloud’14). IEEE, 2014.

[HHK+15] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller,
Bernhard Rumpe, Ina Schaefer, and Christoph Schulze. Systematic Synthesis of
Delta Modeling Languages. Journal on Software Tools for Technology Transfer
(STTT), 17(5):601–626, October 2015.

[HHK+15a] Martin Henze, Lars Hermerschmidt, Daniel Kerpen, Roger Häußling, Bernhard
Rumpe, and Klaus Wehrle. A comprehensive approach to privacy in the cloud-
based Internet of Things. Future Generation Computer Systems, 56:701–718,
2015.

[HHR+15] Lars Hermerschmidt, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wort-
mann. Generating Domain-Specific Transformation Languages for Component &
Connector Architecture Descriptions. In Workshop on Model-Driven Engineer-
ing for Component-Based Software Systems (ModComp’15), CEUR Workshop
Proceedings 1463, pages 18–23, 2015.

[HJK+21] Steffen Hillemacher, Nicolas Jäckel, Christopher Kugler, Philipp Orth, David
Schmalzing, and Louis Wachtmeister. Artifact-Based Analysis for the Devel-
opment of Collaborative Embedded Systems. In Model-Based Engineering of
Collaborative Embedded Systems, pages 315–331. Springer, January 2021.

[HJRW20] Katrin Hölldobler, Nico Jansen, Bernhard Rumpe, and Andreas Wortmann.
Komposition Domänenspezifischer Sprachen unter Nutzung der MontiCore Lan-
guage Workbench, am Beispiel SysML 2. In Dominik Bork, Dimitris Karagiannis,
and Heinrich C. Mayr, editors, Modellierung 2020, pages 189–190. Gesellschaft
für Informatik e.V., February 2020.

[HKM+13] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bern-
hard Rumpe, and Ina Schaefer. First-Class Variability Modeling in Mat-
lab/Simulink. In Variability Modelling of Software-intensive Systems Workshop
(VaMoS’13), pages 11–18. ACM, 2013.

[HKR+07] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. An Algebraic View on the Semantics of Model Composition.
In Conference on Model Driven Architecture - Foundations and Applications
(ECMDA-FA’07), LNCS 4530, pages 99–113. Springer, Germany, 2007.

[HKR+09] Christoph Herrmann, Holger Krahn, Bernhard Rumpe, Martin Schindler, and
Steven Völkel. Scaling-Up Model-Based-Development for Large Heterogeneous
Systems with Compositional Modeling. In Conference on Software Engineeering
in Research and Practice (SERP’09), pages 172–176, July 2009.

[HKR+11] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer.
Delta-oriented Architectural Variability Using MontiCore. In Software Architec-
ture Conference (ECSA’11), pages 6:1–6:10. ACM, 2011.

306

Related Interesting Work from the SE Group, RWTH Aachen

[HKR12] Christoph Herrmann, Thomas Kurpick, and Bernhard Rumpe. SSELab: A Plug-
In-Based Framework for Web-Based Project Portals. In Developing Tools as
Plug-Ins Workshop (TOPI’12), pages 61–66. IEEE, 2012.

[HKR+16] Robert Heim, Oliver Kautz, Jan Oliver Ringert, Bernhard Rumpe, and Andreas
Wortmann. Retrofitting Controlled Dynamic Reconfiguration into the Architec-
ture Description Language MontiArcAutomaton. In Software Architecture - 10th
European Conference (ECSA’16), LNCS 9839, pages 175–182. Springer, Decem-
ber 2016.

[HKR21] Katrin Hölldobler, Oliver Kautz, and Bernhard Rumpe. MontiCore Language
Workbench and Library Handbook: Edition 2021. Aachener Informatik-Berichte,
Software Engineering, Band 48. Shaker Verlag, May 2021.

[HLN+15a] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. Composition of Het-
erogeneous Modeling Languages. In Model-Driven Engineering and Software De-
velopment, Communications in Computer and Information Science 580, pages
45–66. Springer, 2015.

[HLN+15] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. Integration of Het-
erogeneous Modeling Languages via Extensible and Composable Language Com-
ponents. In Model-Driven Engineering and Software Development Conference
(MODELSWARD’15), pages 19–31. SciTePress, 2015.

[HMR+19] Katrin Hölldobler, Judith Michael, Jan Oliver Ringert, Bernhard Rumpe, and
Andreas Wortmann. Innovations in Model-based Software and Systems Engi-
neering. The Journal of Object Technology, 18(1):1–60, July 2019.

[HNRW16] Robert Heim, Pedram Mir Seyed Nazari, Bernhard Rumpe, and Andreas Wort-
mann. Compositional Language Engineering using Generated, Extensible, Static
Type Safe Visitors. In Conference on Modelling Foundations and Applications
(ECMFA), LNCS 9764, pages 67–82. Springer, July 2016.

[Hoe18] Katrin Hölldobler. MontiTrans: Agile, modellgetriebene Entwicklung von und
mit domänenspezifischen, kompositionalen Transformationssprachen. Aachener
Informatik-Berichte, Software Engineering, Band 36. Shaker Verlag, December
2018.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics
of ”Semantics”? IEEE Computer, 37(10):64–72, October 2004.

[HR17] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Language Workbench
Edition 2017. Aachener Informatik-Berichte, Software Engineering, Band 32.
Shaker Verlag, December 2017.

[HRR98] Franz Huber, Andreas Rausch, and Bernhard Rumpe. Modeling Dynamic Com-
ponent Interfaces. In Technology of Object-Oriented Languages and Systems
(TOOLS 26), pages 58–70. IEEE, 1998.

[HRR10] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. Towards Architectural
Programming of Embedded Systems. In Tagungsband des Dagstuhl-Workshop

307

Related Interesting Work from the SE Group, RWTH Aachen

MBEES: Modellbasierte Entwicklung eingebetteterSysteme VI, Informatik-
Bericht 2010-01, pages 13 – 22. fortiss GmbH, Germany, 2010.

[HRR+11] Arne Haber, Holger Rendel, Bernhard Rumpe, Ina Schaefer, and Frank van der
Linden. Hierarchical Variability Modeling for Software Architectures. In Software
Product Lines Conference (SPLC’11), pages 150–159. IEEE, 2011.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architec-
tural Modeling of Interactive Distributed and Cyber-Physical Systems. Technical
Report AIB-2012-03, RWTH Aachen University, February 2012.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta Modeling
for Software Architectures. In Tagungsband des Dagstuhl-Workshop MBEES:
Modellbasierte Entwicklung eingebetteterSysteme VII, pages 1 – 10. fortiss GmbH,
2011.

[HRRS12] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Evolving Delta-
oriented Software Product Line Architectures. In Large-Scale Complex IT Sys-
tems. Development, Operation and Management, 17th Monterey Workshop 2012,
LNCS 7539, pages 183–208. Springer, 2012.

[HRRW12] Christian Hopp, Holger Rendel, Bernhard Rumpe, and Fabian Wolf. Einführung
eines Produktlinienansatzes in die automotive Softwareentwicklung am Beispiel
von Steuergerätesoftware. In Software Engineering Conference (SE’12), LNI 198,
Seiten 181-192, 2012.

[HRW15] Katrin Hölldobler, Bernhard Rumpe, and Ingo Weisemöller. Systematically De-
riving Domain-Specific Transformation Languages. In Conference on Model
Driven Engineering Languages and Systems (MODELS’15), pages 136–145.
ACM/IEEE, 2015.

[HRW18] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. Software Lan-
guage Engineering in the Large: Towards Composing and Deriving Languages.
Computer Languages, Systems & Structures, 54:386–405, 2018.

[JPR+22] Nico Jansen, Jerome Pfeiffer, Bernhard Rumpe, David Schmalzing, and Andreas
Wortmann. The Language of SysML v2 under the Magnifying Glass. Journal of
Object Technology, 21, July 2022.

[JWCR18] Rodi Jolak, Andreas Wortmann, Michel Chaudron, and Bernhard Rumpe. Does
Distance Still Matter? Revisiting Collaborative Distributed Software Design.
IEEE Software, 35(6):40–47, 2018.

[KER99] Stuart Kent, Andy Evans, and Bernhard Rumpe. UML Semantics FAQ. In
A. Moreira and S. Demeyer, editors, Object-Oriented Technology, ECOOP’99
Workshop Reader, LNCS 1743, Berlin, 1999. Springer Verlag.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Design Guidelines for Domain Specific Languages.
In Domain-Specific Modeling Workshop (DSM’09), Techreport B-108, pages 7–
13. Helsinki School of Economics, October 2009.

308

Related Interesting Work from the SE Group, RWTH Aachen

[KKR19] Nils Kaminski, Evgeny Kusmenko, and Bernhard Rumpe. Modeling Dynamic Ar-
chitectures of Self-Adaptive Cooperative Systems. The Journal of Object Tech-
nology, 18(2):1–20, July 2019. The 15th European Conference on Modelling
Foundations and Applications.

[KKR+22] Jörg Christian Kirchhof, Anno Kleiss, Bernhard Rumpe, David Schmalzing,
Philipp Schneider, and Andreas Wortmann. Model-driven Self-adaptive Deploy-
ment of Internet of Things Applications with Automated Modification Proposals.
ACM Transactions on Internet of Things, November 2022.

[KKRZ19] Jörg Christian Kirchhof, Evgeny Kusmenko, Bernhard Rumpe, and Hengwen
Zhang. Simulation as a Service for Cooperative Vehicles. In Loli Burgueño,
Alexander Pretschner, Sebastian Voss, Michel Chaudron, Jörg Kienzle, Markus
Völter, Sébastien Gérard, Mansooreh Zahedi, Erwan Bousse, Arend Rensink,
Fiona Polack, Gregor Engels, and Gerti Kappel, editors, Proceedings of MODELS
2019. Workshop MASE, pages 28–37. IEEE, September 2019.

[KLPR12] Thomas Kurpick, Markus Look, Claas Pinkernell, and Bernhard Rumpe. Mod-
eling Cyber-Physical Systems: Model-Driven Specification of Energy Efficient
Buildings. In Modelling of the Physical World Workshop (MOTPW’12), pages
2:1–2:6. ACM, October 2012.

[KMA+16] Jörg Kienzle, Gunter Mussbacher, Omar Alam, Matthias Schöttle, Nicolas Bel-
loir, Philippe Collet, Benoit Combemale, Julien Deantoni, Jacques Klein, and
Bernhard Rumpe. VCU: The Three Dimensions of Reuse. In Conference on
Software Reuse (ICSR’16), LNCS 9679, pages 122–137. Springer, June 2016.

[KMP+21] Hendrik Kausch, Judith Michael, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe,
and Andreas Schweiger. Model-Based Development and Logical AI for Secure and
Safe Avionics Systems: A Verification Framework for SysML Behavior Specifica-
tions. In Aerospace Europe Conference 2021 (AEC 2021). Council of European
Aerospace Societies (CEAS), November 2021.

[KMR+20] Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, and
Andreas Wortmann. Model-driven Digital Twin Construction: Synthesizing the
Integration of Cyber-Physical Systems with Their Information Systems. In Pro-
ceedings of the 23rd ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems, pages 90–101. ACM, October 2020.

[KMR21] Jörg Christian Kirchhof, Lukas Malcher, and Bernhard Rumpe. Understand-
ing and Improving Model-Driven IoT Systems through Accompanying Digital
Twins. In Eli Tilevich and Coen De Roover, editors, Proceedings of the 20th
ACM SIGPLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE 21), pages 197–209. ACM SIGPLAN, October
2021.

[KMS+18] Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo Greifenberg,
Steffen Hillemacher, Bernhard Rumpe, Christoph Schulze, Andreas Wortmann,
Philipp Orth, and Johannes Richenhagen. Improving Model-based Testing in
Automotive Software Engineering. In International Conference on Software En-
gineering: Software Engineering in Practice (ICSE’18), pages 172–180. ACM,

309

Related Interesting Work from the SE Group, RWTH Aachen

June 2018.

[KNP+19] Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard Rumpe,
and Thomas Timmermanns. Modeling and Training of Neural Processing Sys-
tems. In Marouane Kessentini, Tao Yue, Alexander Pretschner, Sebastian Voss,
and Loli Burgueño, editors, Conference on Model Driven Engineering Languages
and Systems (MODELS’19), pages 283–293. IEEE, September 2019.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature Specification
and Refinement with State Transition Diagrams. In Workshop on Feature In-
teractions in Telecommunications Networks and Distributed Systems, pages 284–
297. IOS-Press, 1997.

[KPR12] Thomas Kurpick, Claas Pinkernell, and Bernhard Rumpe. Der Energie Navi-
gator. In H. Lichter and B. Rumpe, Editoren, Entwicklung und Evolution von
Forschungssoftware. Tagungsband, Rolduc, 10.-11.11.2011, Aachener Informatik-
Berichte, Software Engineering, Band 14. Shaker Verlag, Aachen, Deutschland,
2012.

[KPRS19] Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, and Sebastian
Stüber. On the Engineering of AI-Powered Systems. In Lisa O’Conner, editor,
ASE19. Software Engineering Intelligence Workshop (SEI19), pages 126–133.
IEEE, November 2019.

[KR18a] Oliver Kautz and Bernhard Rumpe. On Computing Instructions to Repair Failed
Model Refinements. In Conference on Model Driven Engineering Languages and
Systems (MODELS’18), pages 289–299. ACM, October 2018.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von domänenspezifischen Sprachen
im Software-Engineering. Aachener Informatik-Berichte, Software Engineering,
Band 1. Shaker Verlag, März 2010.

[KRB96] Cornel Klein, Bernhard Rumpe, and Manfred Broy. A stream-based mathemati-
cal model for distributed information processing systems - SysLab system model.
In Workshop on Formal Methods for Open Object-based Distributed Systems, IFIP
Advances in Information and Communication Technology, pages 323–338. Chap-
mann & Hall, 1996.

[KRR14] Helmut Krcmar, Ralf Reussner, and Bernhard Rumpe. Trusted Cloud Comput-
ing. Springer, Schweiz, December 2014.

[KRR+16] Philipp Kehrbusch, Johannes Richenhagen, Bernhard Rumpe, Axel Schloßer, and
Christoph Schulze. Interface-based Similarity Analysis of Software Components
for the Automotive Industry. In International Systems and Software Product
Line Conference (SPLC ’16), pages 99–108. ACM, September 2016.

[KRRS19] Stefan Kriebel, Deni Raco, Bernhard Rumpe, and Sebastian Stüber. Model-
Based Engineering for Avionics: Will Specification and Formal Verification e.g.
Based on Broy’s Streams Become Feasible? In Stephan Krusche, Kurt Schnei-
der, Marco Kuhrmann, Robert Heinrich, Reiner Jung, Marco Konersmann, Eric
Schmieders, Steffen Helke, Ina Schaefer, Andreas Vogelsang, Björn Annighöfer,
Andreas Schweiger, Marina Reich, and André van Hoorn, editors, Proceedings of

310

Related Interesting Work from the SE Group, RWTH Aachen

the Workshops of the Software Engineering Conference. Workshop on Avionics
Systems and Software Engineering (AvioSE’19), CEUR Workshop Proceedings
2308, pages 87–94. CEUR Workshop Proceedings, February 2019.

[KRRW17] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von Wenck-
stern. Modeling Architectures of Cyber-Physical Systems. In European Con-
ference on Modelling Foundations and Applications (ECMFA’17), LNCS 10376,
pages 34–50. Springer, July 2017.

[KRS12] Stefan Kowalewski, Bernhard Rumpe, and Andre Stollenwerk. Cyber-Physical
Systems - eine Herausforderung für die Automatisierungstechnik? In Proceedings
of Automation 2012, VDI Berichte 2012, Seiten 113-116. VDI Verlag, 2012.

[KRS+18a] Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael von
Wenckstern. Highly-Optimizing and Multi-Target Compiler for Embedded Sys-
tem Models: C++ Compiler Toolchain for the Component and Connector Lan-
guage EmbeddedMontiArc. In Conference on Model Driven Engineering Lan-
guages and Systems (MODELS’18), pages 447 – 457. ACM, October 2018.

[KRS+22] Jörg Christian Kirchhof, Bernhard Rumpe, David Schmalzing, and Andreas
Wortmann. MontiThings: Model-driven Development and Deployment of Re-
liable IoT Applications. Journal of Systems and Software, 183:1–21, January
2022.

[KRV06] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Roles in Software Develop-
ment using Domain Specific Modelling Languages. In Domain-Specific Modeling
Workshop (DSM’06), Technical Report TR-37, pages 150–158. Jyväskylä Uni-
versity, Finland, 2006.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient Editor Genera-
tion for Compositional DSLs in Eclipse. In Domain-Specific Modeling Workshop
(DSM’07), Technical Reports TR-38. Jyväskylä University, Finland, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated Definition of
Abstract and Concrete Syntax for Textual Languages. In Conference on Model
Driven Engineering Languages and Systems (MODELS’07), LNCS 4735, pages
286–300. Springer, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monticore: Modular De-
velopment of Textual Domain Specific Languages. In Conference on Objects,
Models, Components, Patterns (TOOLS-Europe’08), LNBIP 11, pages 297–315.
Springer, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Stefen Völkel. MontiCore: a Framework for
Compositional Development of Domain Specific Languages. International Jour-
nal on Software Tools for Technology Transfer (STTT), 12(5):353–372, Septem-
ber 2010.

[KRW20] Oliver Kautz, Bernhard Rumpe, and Andreas Wortmann. Automated semantics-
preserving parallel decomposition of finite component and connector architec-
tures. Automated Software Engineering, 27:119–151, April 2020.

311

Related Interesting Work from the SE Group, RWTH Aachen

[Kus21] Evgeny Kusmenko. Model-Driven Development Methodology and Domain-
Specific Languages for the Design of Artificial Intelligence in Cyber-Physical
Systems. Aachener Informatik-Berichte, Software Engineering, Band 49. Shaker
Verlag, November 2021.

[LMK+11] Philipp Leusmann, Christian Möllering, Lars Klack, Kai Kasugai, Bernhard
Rumpe, and Martina Ziefle. Your Floor Knows Where You Are: Sensing and
Acquisition of Movement Data. In Arkady Zaslavsky, Panos K. Chrysanthis,
Dik Lun Lee, Dipanjan Chakraborty, Vana Kalogeraki, Mohamed F. Mokbel,
and Chi-Yin Chow, editors, 12th IEEE International Conference on Mobile Data
Management (Volume 2), pages 61–66. IEEE, June 2011.

[Loo17] Markus Look. Modellgetriebene, agile Entwicklung und Evolution mehrbenutzer-
fähiger Enterprise Applikationen mit MontiEE. Aachener Informatik-Berichte,
Software Engineering, Band 27. Shaker Verlag, March 2017.

[LRSS10] Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz, and Jonathan Sprin-
kle. Model Evolution and Management. In Model-Based Engineering of Embed-
ded Real-Time Systems Workshop (MBEERTS’10), LNCS 6100, pages 241–270.
Springer, 2010.

[MKB+19] Felix Mannhardt, Agnes Koschmider, Nathalie Baracaldo, Matthias Weidlich,
and Judith Michael. Privacy-Preserving Process Mining: Differential Privacy for
Event Logs. Business & Information Systems Engineering, 61(5):1–20, October
2019.

[MKM+19] Judith Michael, Agnes Koschmider, Felix Mannhardt, Nathalie Baracaldo, and
Bernhard Rumpe. User-Centered and Privacy-Driven Process Mining System
Design for IoT. In Cinzia Cappiello and Marcela Ruiz, editors, Proceedings of
CAiSE Forum 2019: Information Systems Engineering in Responsible Informa-
tion Systems, pages 194–206. Springer, June 2019.

[MM13] Judith Michael and Heinrich C. Mayr. Conceptual modeling for ambient assis-
tance. In Conceptual Modeling - ER 2013, LNCS 8217, pages 403–413. Springer,
2013.

[MM15] Judith Michael and Heinrich C. Mayr. Creating a domain specific modelling
method for ambient assistance. In International Conference on Advances in ICT
for Emerging Regions (ICTer2015), pages 119–124. IEEE, 2015.

[MMR10] Tom Mens, Jeff Magee, and Bernhard Rumpe. Evolving Software Architecture
Descriptions of Critical Systems. IEEE Computer, 43(5):42–48, May 2010.

[MMR+17] Heinrich C. Mayr, Judith Michael, Suneth Ranasinghe, Vladimir A. Shekhovtsov,
and Claudia Steinberger. Model Centered Architecture, pages 85–104. Springer
International Publishing, 2017.

[MNRV19] Judith Michael, Lukas Netz, Bernhard Rumpe, and Simon Varga. Towards
Privacy-Preserving IoT Systems Using Model Driven Engineering. In Nico-
las Ferry, Antonio Cicchetti, Federico Ciccozzi, Arnor Solberg, Manuel Wim-
mer, and Andreas Wortmann, editors, Proceedings of MODELS 2019. Workshop
MDE4IoT, pages 595–614. CEUR Workshop Proceedings, September 2019.

312

Related Interesting Work from the SE Group, RWTH Aachen

[MPRW22] Judith Michael, Jérôme Pfeiffer, Bernhard Rumpe, and Andreas Wortmann. In-
tegration Challenges for Digital Twin Systems-of-Systems. In 10th IEEE/ACM
International Workshop on Software Engineering for Systems-of-Systems and
Software Ecosystems, pages 9–12. IEEE, May 2022.

[MRR10] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. A Manifesto for Seman-
tic Model Differencing. In Proceedings Int. Workshop on Models and Evolution
(ME’10), LNCS 6627, pages 194–203. Springer, 2010.

[MRR11d] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. ADDiff: Semantic
Differencing for Activity Diagrams. In Conference on Foundations of Software
Engineering (ESEC/FSE ’11), pages 179–189. ACM, 2011.

[MRR11a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. An Operational Seman-
tics for Activity Diagrams using SMV. Technical Report AIB-2011-07, RWTH
Aachen University, Aachen, Germany, July 2011.

[MRR11e] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CD2Alloy: Class Di-
agrams Analysis Using Alloy Revisited. In Conference on Model Driven En-
gineering Languages and Systems (MODELS’11), LNCS 6981, pages 592–607.
Springer, 2011.

[MRR11b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. CDDiff: Semantic
Differencing for Class Diagrams. In Mira Mezini, editor, ECOOP 2011 - Object-
Oriented Programming, pages 230–254. Springer Berlin Heidelberg, 2011.

[MRR11c] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Modal Object Dia-
grams. In Object-Oriented Programming Conference (ECOOP’11), LNCS 6813,
pages 281–305. Springer, 2011.

[MRR11f] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Semantically Config-
urable Consistency Analysis for Class and Object Diagrams. In Conference on
Model Driven Engineering Languages and Systems (MODELS’11), LNCS 6981,
pages 153–167. Springer, 2011.

[MRR11g] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Summarizing Seman-
tic Model Differences. In Bernhard Schätz, Dirk Deridder, Alfonso Pierantonio,
Jonathan Sprinkle, and Dalila Tamzalit, editors, ME 2011 - Models and Evolu-
tion, October 2011.

[MRR13] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Compo-
nent and Connector Models from Crosscutting Structural Views. In Meyer, B.
and Baresi, L. and Mezini, M., editor, Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE’13), pages 444–454. ACM New York, 2013.

[MRR14a] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Synthesis of Component
and Connector Models from Crosscutting Structural Views (extended abstract).
In Wilhelm Hasselbring and Nils Christian Ehmke, editors, Software Engineering
2014, LNI 227, pages 63–64. Gesellschaft für Informatik, Köllen Druck+Verlag
GmbH, 2014.

313

Related Interesting Work from the SE Group, RWTH Aachen

[MRR14b] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Verifying Component
and Connector Models against Crosscutting Structural Views. In Software En-
gineering Conference (ICSE’14), pages 95–105. ACM, 2014.

[MRRW16] Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe, and Michael von Wenck-
stern. Consistent Extra-Functional Properties Tagging for Component and Con-
nector Models. In Workshop on Model-Driven Engineering for Component-Based
Software Systems (ModComp’16), CEUR Workshop Proceedings 1723, pages 19–
24, October 2016.

[MRV20] Judith Michael, Bernhard Rumpe, and Simon Varga. Human behavior, goals and
model-driven software engineering for assistive systems. In Agnes Koschmider,
Judith Michael, and Bernhard Thalheim, editors, Enterprise Modeling and In-
formation Systems Architectures (EMSIA 2020), pages 11–18. CEUR Workshop
Proceedings, June 2020.

[MRZ21] Judith Michael, Bernhard Rumpe, and Lukas Tim Zimmermann. Goal Modeling
and MDSE for Behavior Assistance. In Int. Conf. on Model Driven Engineering
Languages and Systems Companion (MODELS-C), pages 370–379. ACM/IEEE,
October 2021.

[MS17] Judith Michael and Claudia Steinberger. Context modeling for active assistance.
In Cristina Cabanillas, Sergio España, and Siamak Farshidi, editors, Proc. of
the ER Forum 2017 and the ER 2017 Demo Track co-located with the 36th Int.
Conference on Conceptual Modelling (ER 2017), pages 221–234, 2017.

[Naz17] Pedram Mir Seyed Nazari. MontiCore: Efficient Development of Composed Mod-
eling Language Essentials. Aachener Informatik-Berichte, Software Engineering,
Band 29. Shaker Verlag, June 2017.

[NRR15a] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. Mixed Gen-
erative and Handcoded Development of Adaptable Data-centric Business Appli-
cations. In Domain-Specific Modeling Workshop (DSM’15), pages 43–44. ACM,
2015.

[NRR16] Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe. An Extended
Symbol Table Infrastructure to Manage the Composition of Output-Specific Gen-
erator Information. In Modellierung 2016 Conference, LNI 254, pages 133–140.
Bonner Köllen Verlag, March 2016.

[PR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures
as Interactive Systems. In Model-Driven Engineering for High Performance and
Cloud Computing Workshop, CEUR Workshop Proceedings 1118, pages 15–24,
2013.

[PBI+16] Dimitri Plotnikov, Inga Blundell, Tammo Ippen, Jochen Martin Eppler, Abigail
Morrison, and Bernhard Rumpe. NESTML: a modeling language for spiking
neurons. In Modellierung 2016 Conference, LNI 254, pages 93–108. Bonner Köllen
Verlag, March 2016.

[PFR02] Wolfgang Pree, Marcus Fontoura, and Bernhard Rumpe. Product Line Anno-
tations with UML-F. In Software Product Lines Conference (SPLC’02), LNCS

314

Related Interesting Work from the SE Group, RWTH Aachen

2379, pages 188–197. Springer, 2002.

[Pin14] Claas Pinkernell. Energie Navigator: Software-gestützte Optimierung der En-
ergieeffizienz von Gebäuden und technischen Anlagen. Aachener Informatik-
Berichte, Software Engineering, Band 17. Shaker Verlag, 2014.

[Plo18] Dimitri Plotnikov. NESTML - die domänenspezifische Sprache für den NEST-
Simulator neuronaler Netzwerke im Human Brain Project. Aachener Informatik-
Berichte, Software Engineering, Band 33. Shaker Verlag, February 2018.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for
Behaviour Modelling with Automata. In Proceedings of the Industrial Benefit of
Formal Methods (FME’94), LNCS 873, pages 154–174. Springer, 1994.

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe-and-Filter Architec-
tures. In Congress on Formal Methods in the Development of Computing System
(FM’99), LNCS 1708, pages 96–115. Springer, 1999.

[PR01] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kilov, H. and Ba-
clavski, K., editor, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa
Bay, Florida, USA, October 15. Northeastern University, 2001.

[PR03] Jan Philipps and Bernhard Rumpe. Refactoring of Programs and Specifications.
In Kilov, H. and Baclavski, K., editor, Practical Foundations of Business and
System Specifications, pages 281–297. Kluwer Academic Publishers, 2003.

[Rei16] Dirk Reiß. Modellgetriebene generative Entwicklung von Web-
Informationssystemen. Aachener Informatik-Berichte, Software Engineering,
Band 22. Shaker Verlag, May 2016.

[Rin14] Jan Oliver Ringert. Analysis and Synthesis of Interactive Component and Con-
nector Systems. Aachener Informatik-Berichte, Software Engineering, Band 19.
Shaker Verlag, Aachen, Germany, December 2014.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In
B. Harvey and H. Kilov, editors, Object-Oriented Behavioral Specifications, pages
265–286. Kluwer Academic Publishers, 1996.

[RKB95] Bernhard Rumpe, Cornel Klein, and Manfred Broy. Ein strombasiertes
mathematisches Modell verteilter informationsverarbeitender Systeme - Syslab-
Systemmodell. Technischer Bericht TUM-I9510, TU München, Deutschland,
März 1995.

[Rot17] Alexander Roth. Adaptable Code Generation of Consistent and Customizable
Data Centric Applications with MontiDex. Aachener Informatik-Berichte, Soft-
ware Engineering, Band 31. Shaker Verlag, December 2017.

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams, Stream
Processing Functions, and State-Based Stream Processing. International Journal
of Software and Informatics, 2011.

[RRRW15b] Jan Oliver Ringert, Alexander Roth, Bernhard Rumpe, and Andreas Wortmann.
Language and Code Generator Composition for Model-Driven Engineering of
Robotics Component & Connector Systems. Journal of Software Engineering

315

Related Interesting Work from the SE Group, RWTH Aachen

for Robotics (JOSER), 6(1):33–57, 2015.

[RRS+16] Johannes Richenhagen, Bernhard Rumpe, Axel Schloßer, Christoph Schulze,
Kevin Thissen, and Michael von Wenckstern. Test-driven Semantical Similar-
ity Analysis for Software Product Line Extraction. In International Systems and
Software Product Line Conference (SPLC ’16), pages 174–183. ACM, September
2016.

[RRSW17] Jan Oliver Ringert, Bernhard Rumpe, Christoph Schulze, and Andreas Wort-
mann. Teaching Agile Model-Driven Engineering for Cyber-Physical Systems.
In International Conference on Software Engineering: Software Engineering and
Education Track (ICSE’17), pages 127–136. IEEE, May 2017.

[RRW12] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Requirements
Modeling Language for the Component Behavior of Cyber Physical Robotics
Systems. In Seyff, N. and Koziolek, A., editor, Modelling and Quality in Re-
quirements Engineering: Essays Dedicated to Martin Glinz on the Occasion of
His 60th Birthday, pages 133–146. Monsenstein und Vannerdat, Münster, 2012.

[RRW13] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From Software
Architecture Structure and Behavior Modeling to Implementations of Cyber-
Physical Systems. In Software Engineering Workshopband (SE’13), LNI 215,
pages 155–170, 2013.

[RRW13c] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. MontiArcAuto-
maton: Modeling Architecture and Behavior of Robotic Systems. In Conference
on Robotics and Automation (ICRA’13), pages 10–12. IEEE, 2013.

[RRW14a] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Architecture and
Behavior Modeling of Cyber-Physical Systems with MontiArcAutomaton. Aach-
ener Informatik-Berichte, Software Engineering, Band 20. Shaker Verlag, Decem-
ber 2014.

[RRW15] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Tailoring the
MontiArcAutomaton Component & Connector ADL for Generative Develop-
ment. In MORSE/VAO Workshop on Model-Driven Robot Software Engineering
and View-based Software-Engineering, pages 41–47. ACM, 2015.

[RSW+15] Bernhard Rumpe, Christoph Schulze, Michael von Wenckstern, Jan Oliver
Ringert, and Peter Manhart. Behavioral Compatibility of Simulink Models for
Product Line Maintenance and Evolution. In Software Product Line Conference
(SPLC’15), pages 141–150. ACM, 2015.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. Herbert Utz Verlag Wissenschaft, München, Deutschland, 1996.

[Rum02] Bernhard Rumpe. Executable Modeling with UML - A Vision or a Nightmare?
In T. Clark and J. Warmer, editors, Issues & Trends of Information Technology
Management in Contemporary Associations, Seattle, pages 697–701. Idea Group
Publishing, London, 2002.

[Rum03] Bernhard Rumpe. Model-Based Testing of Object-Oriented Systems. In Sympo-
sium on Formal Methods for Components and Objects (FMCO’02), LNCS 2852,

316

Related Interesting Work from the SE Group, RWTH Aachen

pages 380–402. Springer, November 2003.

[Rum04c] Bernhard Rumpe. Agile Modeling with the UML. In Workshop on Radical
Innovations of Software and Systems Engineering in the Future (RISSEF’02),
LNCS 2941, pages 297–309. Springer, October 2004.

[Rum11] Bernhard Rumpe. Modellierung mit UML, 2te Auflage. Springer Berlin, Septem-
ber 2011.

[Rum12] Bernhard Rumpe. Agile Modellierung mit UML: Codegenerierung, Testfälle,
Refactoring, 2te Auflage. Springer Berlin, Juni 2012.

[Rum16] Bernhard Rumpe. Modeling with UML: Language, Concepts, Methods. Springer
International, July 2016.

[Rum17] Bernhard Rumpe. Agile Modeling with UML: Code Generation, Testing, Refac-
toring. Springer International, May 2017.

[RW18] Bernhard Rumpe and Andreas Wortmann. Abstraction and Refinement in Hi-
erarchically Decomposable and Underspecified CPS-Architectures. In Lohstroh,
Marten and Derler, Patricia Sirjani, Marjan, editor, Principles of Modeling: Es-
says Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, LNCS
10760, pages 383–406. Springer, 2018.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der
UML/P. Aachener Informatik-Berichte, Software Engineering, Band 11. Shaker
Verlag, 2012.

[SHH+20] Günther Schuh, Constantin Häfner, Christian Hopmann, Bernhard Rumpe,
Matthias Brockmann, Andreas Wortmann, Judith Maibaum, Manuela Dali-
bor, Pascal Bibow, Patrick Sapel, and Moritz Kröger. Effizientere Produk-
tion mit Digitalen Schatten. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb,
115(special):105–107, April 2020.

[SM18a] Claudia Steinberger and Judith Michael. Towards Cognitive Assisted Living
3.0. In International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops 2018), pages 687–692. IEEE, march 2018.

[SM20] Claudia Steinberger and Judith Michael. Using Semantic Markup to Boost Con-
text Awareness for Assistive Systems. In Smart Assisted Living: Toward An Open
Smart-Home Infrastructure, Computer Communications and Networks, pages
227–246. Springer International Publishing, 2020.

[SRVK10] Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai.
Metamodelling: State of the Art and Research Challenges. In Model-Based Engi-
neering of Embedded Real-Time Systems Workshop (MBEERTS’10), LNCS 6100,
pages 57–76. Springer, 2010.

[TAB+21] Carolyn Talcott, Sofia Ananieva, Kyungmin Bae, Benoit Combemale, Robert
Heinrich, Mark Hills, Narges Khakpour, Ralf Reussner, Bernhard Rumpe, Pa-
trizia Scandurra, and Hans Vangheluwe. Composition of Languages, Models, and
Analyses. In Heinrich, Robert and Duran, Francisco and Talcott, Carolyn and
Zschaler, Steffen, editor, Composing Model-Based Analysis Tools, pages 45–70.

317

Related Interesting Work from the SE Group, RWTH Aachen

Springer, July 2021.

[THR+13] Ulrike Thomas, Gerd Hirzinger, Bernhard Rumpe, Christoph Schulze, and An-
dreas Wortmann. A New Skill Based Robot Programming Language Using UM-
L/P Statecharts. In Conference on Robotics and Automation (ICRA’13), pages
461–466. IEEE, 2013.

[Voe11] Steven Völkel. Kompositionale Entwicklung domänenspezifischer Sprachen.
Aachener Informatik-Berichte, Software Engineering, Band 9. Shaker Verlag,
2011.

[WCB17] Andreas Wortmann, Benoit Combemale, and Olivier Barais. A Systematic Map-
ping Study on Modeling for Industry 4.0. In Conference on Model Driven Engi-
neering Languages and Systems (MODELS’17), pages 281–291. IEEE, September
2017.

[Wei12] Ingo Weisemöller. Generierung domänenspezifischer Transformationssprachen.
Aachener Informatik-Berichte, Software Engineering, Band 12. Shaker Verlag,
2012.

[Wor16] Andreas Wortmann. An Extensible Component & Connector Architecture De-
scription Infrastructure for Multi-Platform Modeling. Aachener Informatik-
Berichte, Software Engineering, Band 25. Shaker Verlag, November 2016.

[Wor21] Andreas Wortmann. Model-Driven Architecture and Behavior of Cyber-Physical
Systems. Aachener Informatik-Berichte, Software Engineering, Band 50. Shaker
Verlag, Oktober 2021.

[ZPK+11] Massimiliano Zanin, David Perez, Dimitrios S Kolovos, Richard F Paige, Ku-
mardev Chatterjee, Andreas Horst, and Bernhard Rumpe. On Demand Data
Analysis and Filtering for Inaccurate Flight Trajectories. In Proceedings of the
SESAR Innovation Days. EUROCONTROL, 2011.

318

	Table of Contents
	Prologue
	Introduction
	Motivation
	Goal, Approach, and Main Contributions
	Thesis Organization
	Publications

	Background
	Internet of Things (IoT)
	Cloud Computing and Digital Twins in the Context of IoT
	Model-Driven Software Engineering and Domain-Specific Languages
	MontiCore
	Software Architecture and Architecture Description Languages
	MontiArc

	Scope of the Thesis
	Vision and Assumptions
	Lifecycle and Development Process of IoT Applications
	What Do IoT Projects Need?
	Challenges
	Research Questions
	Requirements
	What Is Out of Scope?
	Method at a Glance
	Running Use Case: Smart Home

	The MontiThings Ecosystem for Model-Driven IoT Applications
	C&C-based IoT Application Development
	Research Questions
	MontiThings Language
	Component Definition and Instantiation
	Type System
	Timing
	Behavior Description
	OCL
	Sensor and Actuator Access
	Dynamic Reconfiguration

	Language Integration
	Integration With Class Diagrams
	Configuration Language
	Sequence Diagram Test Specification

	Discussion

	Code Generation
	Methodology and Tool Infrastructure
	Run-time Environment (RTE)
	Components and Event-Handling
	Ports and Communication Technologies / Protocols

	Generated Code Structure
	Architecture Partitioning and Setup Information Exchange
	Generated CLIs
	Generated Scripts and Compilation
	Supporting Different Target Platforms
	Test Case Generation

	Discussion

	Deployment and Integration of C&C-based IoT Applications
	Research Questions
	Development and Deployment Processes
	Requirement-based Deployment
	Deployment Workflow
	Deployment System Overview
	Prolog Code Generation

	Feature-based Deployment
	Model-driven App Store Concept
	Integration with Model-driven Information Systems: Synthesizing Digital Twins
	Discussion

	Execution and Runtime Analysis of C&C-based IoT Applications
	Research Questions
	Methodical Considerations
	Fault Tolerance
	Tracing Behavior and Filtering Logs
	Transformation-based Record and Replay
	Discussion

	Evaluation and Conclusion
	Experiments
	Case Study 1: Smart Home and Smart Hotel
	Case Study 2: Fire Alarm Digital Twin
	Case Study 3: HVAC Reproduction
	Performance Evaluation: Transformation-based Replayer
	Performance Evaluation: Log Tracing
	Student Lab: Autonomous Driving
	Student Lab: Fischertechnik
	Discussion

	Conclusion and Future Research Directions
	Bibliography
	Acronyms
	Selected Grammars from the MontiVerse
	ArcBasis (MontiArc)
	Class Diagrams
	MCCommonStatements
	MCCommonLiterals
	OCL Expressions
	Set Expressions
	SI Units

	MontiThings Grammars
	Behavior
	Error Handling
	Set Definitions
	MontiThings Main Grammar
	Configuration

	Open Source Software Used In RTE
	Models of the HVAC Case Study
	Diagram and Listing Tags
	List of Definitions
	List of Figures
	Listings
	List of Tables
	Related Interesting Work from the SE Group, RWTH Aachen

